
ADDIS ABABA UNIVERSITY

ADDIS ABABA INSTITUTE OF TECHNOLOGY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

Acceleration and Energy Reduction of Object
Detection on Mobile Graphics Processing Unit

By:
Fitsum Assamnew Andargie

Supervisor:
Prof. Jonathan ROSE

University of Toronto

Co-supervisor:
Dr-Ing. Dereje Hailemariam

Addis Ababa University

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in

Computer Engineering

June 2019

http://www.aau.edu.et
http://www.aait.edu.et
http://www.aau.edu.et
Jonathan Rose

i

Addis Ababa University
Addis Ababa Institute of Technology

School of Electrical and Computer Engineering

Doctor of Philosophy

Acceleration and Energy Reduction of Object Detection on Mobile Graphics
Processing Unit

by Fitsum Assamnew Andargie

APPROVAL BY BOARD OF EXAMINERS

Dr. Yalemzewd Nagash
Dean, SECE, AAiT Signature

Prof. Jonathan ROSE

Supervisor Signature

Dr-Ing. Dereje Hailemariam
Co-supervisor Signature

Prof. Jason Anderson
External Examiner Signature

Dr. Mesfin Kifle
Internal Examiner Signature

http://www.aau.edu.et
http://www.aait.edu.et
http://www.aau.edu.et

ii

Declaration of Authorship

I, Fitsum Assamnew Andargie, declare that this dissertation titled, “Acceleration
and Energy Reduction of Object Detection on Mobile Graphics Processing Unit” and
the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this dissertation has previously been submitted for a degree
or any other qualification at this University or any other institution, this has
been clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this dissertation is entirely my own work.

• I have acknowledged all main sources of help.

• Where the dissertation is based on work done by myself jointly with others, I
have made clear exactly what was done by others and what I have contributed
myself.

Signed:

Date:

iii

iv

Addis Ababa University
Addis Ababa Institute of Technology

School of Electrical and Computer Engineering

Doctor of Philosophy

Acceleration and Energy Reduction of Object Detection on Mobile Graphics
Processing Unit

by Fitsum Assamnew Andargie

Abstract

The evolution of high performance computing in today’s smartphones is enabling
their use in compute-intensive applications. As the compute requirement increases,
the energy required to do the computation cannot increase in proportion because
the cost of providing that energy available and cooling would become prohibitive.
An alternative, potentially power-reducing approach is to use graphics processing
units or special accelerator cores. Today’s smartphones are equipped with system-
on-chip (SoC) devices that house many cores such as graphics processing units, digi-
tal signal processors, and special multimedia encoder/decoder hardware along side
multi-core central processing units. Their inclusion enables applications that require
greater computational power such as real-time computer vision. In this work, we
study the capability of the recently introduced general-purpose graphics processing
unit (GPU) in a smartphone SoC to enable energy-efficient object detection. This
will include understanding the architecture of the recent GPUs that will be used (the
Adreno 320 and Adreno 420 from Qualcomm), the implementation and optimiza-
tion of the object detection algorithm used in the Open Computer Vision library
(OpenCV) using these GPUs and measuring the energy consumption of this imple-
mentation. We implemented the Viola-Jones based object detection on the GPU in
an Android tablet. The implementation is 35% faster on average than the same algo-
rithm running on the CPU on the same device. The implementation also reduces the
average energy consumption by 68% compared to the CPU on the same device. An
application that utilized the object detector on the mobile GPU to detect Ringworm
skin disease was developed. A classifier was trained for this application and it has
an accuracy of 75%.
Keywords: Smartphone, GPU, Object Detection, Acceleration, Ringworm

http://www.aau.edu.et
http://www.aait.edu.et
http://www.aau.edu.et

v

Acknowledgements

I had the chance of being in three countries while working on this dissertation,
namely; Ethiopia where I am originally from, Canada where I started working on
my PhD, the US where I had a six month fellowship. I was fortunate enough to meet
amazing people who are kind and accepting. It makes great sense to organize my
acknowledgements by country.

I would like to start by expressing my heartfelt gratitude to Professor Jonathan
Rose of the University of Toronto who is my thesis supervisor for his unwavering
support, guidance, and patience. He has been a continued source of wisdom in the
methods of doing quality research, in good teaching skill and striving to learn. I
would like also take this chance to thank Professor Rose’s family for hosting me
whenever I was in Toronto. Next, I would like to thank Braiden Brousseau and Dr.
Jason Luu for making me feel at home and teaching me how to survive the win-
ter when I first moved to Toronto and for their technical support with my studies.
I would also like to thank Alex Radionov, Daniel Di Mateo and Dr. Henry Wong
for their insights which were very helpful in advancing my work. I would like to
thank Sergi Lopez-Torres and Brandon Janke who were my room mates for teaching
me about the Spanish and Canadian culture and their friendship. I would like to
thank my friends Micaela Cristiano, Beatrice Stefanescu, Ross Mujica, Cata Morales,
Michael Crimi, Matthew Patience, Olivia Marasco, Erin Hamlyn, Eranga De Zoysa
and Aaron Kligerman. They have made my time in Toronto exciting and unforget-
table. I would like to thank Tseganesh Temesgen and her family for treating me to
Ethiopian culture while in Toronto so I didn’t feel homesick.

I am forever grateful for Professor Valeria Bertacco and Professor Todd Austin
for their mentorship and willingness to host me as University of Michigan African
Presidential Scholar at their Lab. I would like to also thank their students Dr. Biruk
Wondimagegn Mamo, Dr. Salessawi Ferede, Zelalem Awoke, Misiker Tadesse, Abra-
ham Lamesgin and Doowon Lee. The discussions I had with them led me to some
of my breakthroughs. I would like to specifically thank Doowon Lee for lending me
some of the hardware that I experimented on.

I am very proud to be part of the School of Electrical and Computer Engineering
community and forever thankful for their support to accomplish my goals. I would
like to thank my co-supervisor Dr-Ing. Dereje Hailemariam for his continued sup-
port. My colleagues Getachew Teshome, Leul Beyene, Kibrework Alemayehu, Azeb
Mekuria for making my time at SECE enjoyable. Last but not least, I would like to
thank my parents Ato Assamnew Andargie and W/ro Haimanot Tassew for making
me understand the value of education at an early age and for believing in me and
my siblings that we can achieve anything we aspire to. Also, sincere gratitude is
due my siblings Bekalu Assamnew, Selam Assamnew, Samra Assamnew and Yodit

vi

Abate along with their spouses for their continuous support and unfaltering love.
Although not listed here I am grateful to everyone I cross path with everyday for
the support and kindness you have shown me.

Thank you!
Fitsum Assamnew Andargie

vii

Contents

Declaration of Authorship ii

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Objectives . 3

1.2 Methodology . 4

1.2.1 Performance Characterization of the Architecture 4

1.2.2 Implementation of the Viola-Jones Object Detection Algorithm 5

1.2.3 Application Development . 5

1.3 Relevance and Application to Ethiopia 6

1.4 Contributions . 6

1.5 Thesis Organization . 7

2 Background 9

2.1 General Purpose Programming on GPUs 9

2.2 Open Computing Language (OpenCL) 10

2.2.1 The OpenCL Architecture . 10

The Platform Model . 10

OpenCL Memory Model . 12

OpenCL Execution Model . 13

viii

2.3 Computer Vision . 17

2.4 Cascade Classifier based Object Detector 18

2.4.1 Haar-like Features and Classifier Matching 19

Cascade Classifier . 20

Integral Image . 23

Normalization of Lighting Conditions 24

The Viola-Jones Object Detection Algorithm 25

2.5 Previous Related Work . 25

OpenGL ES for General Purpose Computing 25

OpenCL for general purpose computing 27

2.6 Summary . 29

3 Performance Characterization of Mobile GPU 30

3.1 Experimental Setup . 30

3.2 Data Transfer Throughput Measurement 31

3.3 Memory Throughput and Latency . 32

3.3.1 Global Memory Throughput Measurement 32

Coalesced Memory Access . 35

Global Memory Access with Shifts 37

Global Memory Access with Strides 38

3.3.2 Global Memory Read Latency 40

3.3.3 Local Memory Latency Measurement 42

Local Memory Latency . 43

Local Memory Bank Conflict . 44

3.4 Arithmetic Operations Latency Test . 45

3.5 Measuring Parallelism . 47

ix

3.5.1 Summary . 49

4 Object Detection on a Mobile GPU 50

4.1 Integral Image Computation . 51

4.1.1 Image Resizing . 51

4.1.2 Integral Image . 53

4.2 Searching for Objects . 57

4.2.1 The Naive Object Detection on the GPU 57

Using Local Memory . 61

Data Transfer Reduction . 62

Work-item Organization . 62

4.2.2 Modified Classifier Representation 64

4.2.3 Work Size Reduction . 68

Using Local Memory . 70

4.2.4 Energy Efficiency Measurement 71

4.2.5 Comparison with other works 73

4.3 Summary . 74

5 Application to Medical Image Classification 75

5.1 Ringworm . 75

5.2 Related Work . 77

5.3 Training the Ringworm Cascade Classifier 78

5.3.1 Data Collection . 78

5.3.2 Training process . 79

Tools used for training . 79

Classifier Training . 80

Test Results . 80

x

5.4 Summary . 82

6 Conclusion and Future Work 83

6.1 Contributions . 83

6.2 Future work . 85

Bibliography 86

A OpenCL Application Example: Matrix Multiplication 93

B List of Source of Ringworm Images 102

xi

List of Figures

2.1 Platform Model . 11

2.2 Memory Model . 13

2.3 Execution Model . 14

2.4 Cascade Classifier . 19

2.5 HAAR features . 20

2.6 Classifier Stage . 21

2.7 Feature Evaluation . 22

2.8 Integral Image . 24

3.1 Snapdragon SOC . 31

3.2 Memory in SOC . 32

3.3 Memory Structure . 33

3.4 Coalesced Access . 33

3.5 Misaligned Sequential Memory Access [49] 34

3.6 Strided Access . 35

3.7 Coalesced Access Result . 37

3.8 Shifted Access Result . 39

3.9 Strided Access Result . 40

3.10 (a)Krait CPUs Main Memory and (b) Adreno GPUs Global Memory
Read Latency . 42

3.11 Local Memory Latency . 44

xii

3.12 Local Memory Bank Conflict . 45

3.13 Degree of Parallelism . 48

4.1 Serial Prefix Sum Computing . 53

4.2 Parallel Prefix Sum Computing . 54

5.1 Sample pictures of Ringworm Skin Disease 76

xiii

List of Tables

3.1 Measurement of Transfer Rates . 32

3.2 Results of Integer Arithmetic Operations latency 46

3.3 Results of Floating Point Arithmetic Operations latency 46

4.1 Runtime Measurement for the Naive Implementation 60

4.2 Runtime Measurement for the Naive Implementation with Local Mem-
ory . 62

4.3 Runtime Measurement for the Naive Implementation with Mapped
Memory . 63

4.4 Runtime Measurement for MyGPU Mapped Reduced Thread (Work-
item) Count . 63

4.5 Representation of the Cascade Classifier on the GPU 66

4.6 Representation of the Cascade Classifier on the GPU 67

4.7 Runtime Measurement for the Packed Implementation with Reduced
Thread/Work-item Count . 68

4.8 Runtime Measurement for the Reduced Thread/Work-item Count with
Work Compaction . 69

4.9 Runtime Measurement for the Reduced Thread/Work-item Count with
Work Compaction and Local Memory Use 71

4.10 Energy Performance Measurement . 72

4.11 Comparison with other implementations on the mobile GPU 73

5.1 Confusion Matrix . 81

5.2 Ringworm Classifiers Testing Results . 82

xiv

B.1 Ringworm Image Sources for Training 102

B.2 Ringworm Image Sources for Testing . 104

xv

List of Abbreviations

1-D 1-Dimension
2-D 2-Dimension
3-D 3-Dimension
AMD Advanced Micro Devices
AOT Ahead Of Time
API Application Programming Interface
ART Android Run Time
CPU Central Procesing Unit
CU Compute Unit
CUDA Compute Unified Device Architecture
DSP Digital Signal Processor
FPGA Field Programmable Gate Array
GFLOP Giga Floating Operations Per Second
GHz Giga Hertz
GP GPU General Purpose Graphics Processing Unit
GPU Graphics Processing Unit
GTP Growth and Transformation Plan
HD High Definition
HDR High Dynamic Range
HOG Histogram of Oriented Gradients
JIT Just In Time
KB Kilo Byte
LPDDR3 Low Power Double Data Rate version 3
MB Mega Byte
MHz Mega Hertz
MLP Multi Layer Perceptron
NDRange N-Dimensional Range
NPR Non-Photorealistic Rendering
OpenCL Open Computing Language
OpenCV Open Computer Vision
OpenGL ES Open Graphics Library for Embedded Systems
PE Processing Element
RAM Random Access Memory
SIFT Scale Invariant Feature Transform
SIMD Single Instruction Multiple Data
SoC System On Chip
STDCL STandard Compute Layer
SURF Speeded UP Robust Feature
SVM Support Vector Machines

xvi

Dedicated to my parents Assamnew Andargie and Haimanot
Tassew.

1

Chapter 1

Introduction

The progress made by the electronics industry fuelled by Moore’s law (the expo-
nential increase over the past 50 years in the number of transistors that is possible
to fabricate in a semiconductor chip[1]) has enabled many modern miracles. This
includes low-cost and high-performance computers as well as a revolution in hand-
held smart devices such as smartphones. The increase in the number of transistors
in a chip enabled the design of multi-core central processing units (CPU) and many
core graphics processing units (GPUs) that are capable of parallel processing. Origi-
nally, GPUs had many parallel but fixed-function graphics pipelines which later on
were made more flexible so as to do other computations in addition to graphics pro-
cessing. The capabilty to do more general computations other than graphics tasks
in parallel has seen the wide adoption of GPUs for scientific, image processing and
many kinds of data parallel applications [2, 3]. As a result, these GPUs were ref-
ered to as general purpose GPUs (GP GPUs) (however, in this work we will refer to
GP GPU as GPU because virtually all GPUs these days are capable of general pur-
pose computation and there is no need for this distinction). Indeed, many of the
top supercomputers, as listed in top500.org [4], are made of hybrids of GPUs and
CPUs, leveraging the enhanced computational power available from GPUs. More-
over, since the modern imperative is to achieve higher computational performance
per unit of energy required, it is clear that GPUs have contributed to improvements
on that front as well [5].

The progress in computing capacity seen in server/desktop processors has also
occurred in smartphone and tablet processors. This progress enabled the smart-
phone to become a more general-purpose computational device rather than mainly
being a communications device. A key issue in the evolution of smart phones is the
energy storage capacity of their batteries. Battery capacity has not followed the same
rate of progress in the electronics industry as dictated by Moore’s law. As a result
new features that consume too much energy cannot be added to smartphones due to
the impact on how long a single charge of the battery lasts. Manufacturers have tried
to alleviate this problem in many ways, from integrating special co-processors such
as media encoders/decoders and regular GPUs for graphics processing to compute

Chapter 1. Introduction 2

cores that would only be turned on whenever they are needed. These special hard-
ware cores are designed to be energy efficient. In addition, the GPUs in smartphones
have become programmable for general-purpose computation in recent years [6, 7].
In this way they followed in the footsteps of general purpose computers [8].

A second method for reducing energy consumption in smartphones is to opti-
mize the software written in the applications. A first-order way to reduce energy is
to find ways to finish a computation more quickly, allowing a processor to go into
an energy-saving mode sooner. Such an approach, however, requires understanding
of the architecture of the smartphone processor and the tools provided for develop-
ment. In the very popular Android platform [9], most applications are developed
using the Java programming language that runs on top of a Java Virtual Machine
called Dalvik [10]. For most applications that are not compute-intensive, developing
in Java is sufficient. On top of that, the older Dalvik runtime was equipped with a
just in time compiler (JIT) to increase the speed of code sections that are compute-
intensive at run time. The more recent Android runtime (ART) introduced Ahead
of Time (AOT) [11] compiling of application code to the native machine code. ART
later on included the JIT for futher optimization of applications at runtime. Devel-
opers can also optimize parts of applications that are compute-intensive using low
level programming langugages like C or C++ and make use of capabilities such as
the vector processing capability available in many CPU cores. (For example ARM’s
NEON vector processor[12]).

A third option for reducing energy consumption of an application is to offload
some of the computation to the GPU while utilizing the CPU for some other compu-
tation. A different approach for the application is to let the processor sleep (saving
energy) until the GPU finishes the computation offloaded to it. In addition, there
are many ways of optimizing applications that are inherently data-parallel to run
in an energy-efficient way on a GPU. For example, as there are different types and
sizes of memory in the GPU, how these are accessed and utilized in an algorithm
greatly affects performance and energy consumption. Also, the way an algorithm is
organized to run on the GPU affects performance.

As stated earlier, data parallel applications have the potential to significantly
benefit from the parallel computational capability of a GPU. One class of applica-
tions that is highly data parallel are those related to computer vision. Most algo-
rithms in computer vision apply a series of instructions on all pixels or a set of pixels
in an image or a video frame at a time. Given the data size in an image or video
frame, processing many pixels in a sequential manner places a significant workload
on a serial processor. Serial processors by nature lack parallelism, and spend signif-
icant amount of time and energy for each scalar operation that they execute. While
this is improved with the introduction of vector-based instruction sets, their perfor-
mance and energy consumption per operation are significantly worse than GPUs

Chapter 1. Introduction 3

[13]. As such, it makes sense to consider implementing computer vision applica-
tions on GPUs, and this has been widely done in the desktop/server space [14, 15,
16, 17, 18]. One can apply the same operation on multiple pixels or set of pixels at
the same time on the GPU, which means there is a chance the application can finish
much earlier than the previous case and consume less energy than the CPU.

In the early days of general purpose GPU computing, graphics libraries were
used to implement general purpose applications for the GPU. This had a significant
effect on software engineering costs as general problems had to be transformed into
a graphics problem. This issue was first solved by the introduction of the compute
unified device architecture (CUDA) [19] and associated programming tools. Using
CUDA, programmers no longer need to cast their problems as graphics problems.
Non-graphics problems were directly and comparatively easily developed for the
GPU. However, CUDA was proprietary and only worked with GPUs, specifically
with NVIDIA GPUs. And as discussed earlier, compute systems are becoming more
heterogeneous by containing different kinds of processors and co-processors. To en-
able efficient software development for this heterogeneous compute environment, a
number of tools and standards such as the Open Compute Language (OpenCL) [20]
have been created. In this work, a smartphone-based GPU is used to accelerate and
reduce energy consumption of a computer vision application compared to the same
application running on the smartphone CPU. OpenCL is used as the programming
tool for the GPU.

1.1 Objectives

The goal of this thesis is to explore if a computer vision application can be acceler-
ated using the GPUs found in smartphone processors while saving energy. We will
focus on one of the computer vision algorithms found in the Open Computer Vision
(OpenCV) [18] library: in particular the Viola-Jones [21] object detection algorithm.
One of the reasons this algorithm is selected is that the Viola-Jones algorithm is pop-
ularly used for detecting objects in particular faces in images or videos [22, 23, 24, 25,
26, 27]. The other reason is that this algorithm has parts that are compute intensive
and can be parallelized. Going forward the research will focus on understanding the
architecture of the mobile GPU and exploring how it can best be utilized in acceler-
ating the Viola-Jones object detection algorithm.

The specific objectives of this work include:

1. The study and characterization of the architecture of the mobile GPU to under-
stand the underlying architecture and use it to optimize the object detection

Chapter 1. Introduction 4

algorithm.

2. Implementing the object detection algorithm with different optimization tech-
niques.

3. Measuring the runtime performance and energy consumption of each version
of the algorithms implemented.

4. Comparing the results with benchmark (OpenCV) implementation of the Viola-
Jones algorithm [21] on the mobile CPU to gauge the improvement achieved.

5. Applying the results to implement a medical image classification application
on a smartphone - in particular to the detection of the Ringworm skin disease .

1.2 Methodology

In this section the process followed to achieve the objectives of this research is dis-
cussed. The tasks involved are performance characterization of mobile GPUs, im-
plementation and evaluation of the object detection algorithm and development of
a medical image classification application.

1.2.1 Performance Characterization of the Architecture

The purpose of this first step is to study and measure the parameters and the per-
formance of components of mobile GPUs. The measurements will help in deciding
which kind of optimization techniques to use. This is necessary, as the vendor of the
GPU we use, Qualcomm Inc., reveals almost nothing about its GPU architecture that
is helpful to global optimization of programs. For example, the OpenCL framework
lists distinct memory systems, which are referred to as the Host side memory and
the Device side memory. The Device side memory is further separated into units
with differing locality, size and speed. Measuring the performance of these different
kinds of memory helps in determining which memory type to use frequently and
which ones to limit the use of. Other measurements to consider are the latencies of
common arithmetic operations, the number of work items per work group and the
like. The measurements conducted are listed below:

1. The data transfer rate between the Host CPU and the GPU.

2. The throughput and latency of the different types of memory in the GPU.

3. The structure of the memory caching system – how many levels, and size of
levels.

4. The aggregate arithmetic computation performance of the GPUs.

Chapter 1. Introduction 5

1.2.2 Implementation of the Viola-Jones Object Detection Algorithm

In this second step, the Viola-Jones object detection algorithm [21] will be imple-
mented on the mobile GPU using OpenCL. In chapter 2, we will describe the core
Viola-Jones object detection algorithm [21] which includes something called ’inte-
gral image’, ’square integral image’, along with the core cascade detection algorithm.
Our implementation will employ the following steps:

1. Implement the integral and square integral image computation.

2. Optimize the integral and square integral image computation.

3. Implement the Cascade detection algorithm.

4. Optimize the Cascade detection implementation.

Afterwards the performance of our implementation of the Viola-Jones object de-
tection algorithm [21] on the mobile GPU will be compared with the benchmark
implementation. The benchmark implementation that will be used is the multi-
threaded Viola-Jones object detection algorithm [21] that resides in the OpenCV li-
brary running on the CPU of the same mobile device. The process includes:

1. Measurement of run time for each implementation.

2. Measurement of the energy consumed for each implementation.

3. Comparing of run time and energy consumption with the benchmark imple-
mentation.

1.2.3 Application Development

In the last step of our work, we develop an application that utilizes the outcomes of
our research. We have selected a medical image classification application in partic-
ular the automatic detection of ring-worm skin disease from images. The process of
developing this application includes

1. Preparing positive and negative datasets for training.

2. Training of many ring-worm classifiers to choose from.

3. Evaluation of the trained classifiers to choose the best one.

Section 1.3 explains the motivation for this exercise.

Chapter 1. Introduction 6

1.3 Relevance and Application to Ethiopia

The growth and transformation plan (GTP) of the Ethiopian government stresses the
importance of science and technology in the economic growth plans of the country.
The health, education, agriculture, industrial and infrastructure sectors are focused
on development. Research in these areas is ongoing in different institutions of the
country. This research is one of such efforts, and the benefit of is two-fold: first, it
helps with the development of educated manpower with proper training in doing
research and expertise in mobile applications. Secondly, the outcome of the research
can be applied in many of the sectors mentioned above.

In agriculture and health, for example, the government has trained millions of
extension workers to help with the development effort. Also, the government has
expanded and is developing the coverage of mobile communications infrastructure
to cover most of the country. Therefore, in a scenario where an 1extension worker is
equipped with a mobile phone or tablet with applications such as the one developed
in this work and given the complete lack or intermittent behaviour of electricity ac-
cess in their work area, the challenge becomes how long a single charge of the battery
used in the smartphone or tablet lasts. The result of this work could be applied to
improve the runtime performance and energy efficiency of the applications used in
these devices.

1.4 Contributions

In this work, three contributions are made, namely; the performance characteriza-
tion of mobile GPU [28], the implementation and optimization of the Viola-Jones
[21] object detector on a mobile GPU [29] and the training of a cascade classifier for
the detection of the ringworm skin disease from an image of a person’s skin.

• In the first contribution, measurements were done to understand the mobile
GPU’s architecture and its related performance. Understanding the architec-
ture helps guide our work and the work of others to enhance performance of
applications on the mobile GPU. We show that the CPU and GPU in smart-
phones are connected to a single main memory hence data can be directly
shared by programs running on both systems unlike their desktop counter-
parts. This presents an opportunity for an improved application performance

1Extension worker: is an employee of the government who has a basic training in the area of health
and agriculture. The goal of extension worker is to provide basic training to the masses with regards
to health and agriculture practices.

Chapter 1. Introduction 7

where explicit data copying is avoided as we have used this in our implemen-
tation. However, the access patterns to this memory used on the GPU can sig-
nificantly affect performance. In order to overcome these effects, memory ac-
cess should be coalesced as our measurements show. Additional architectural
measurements include a quantification of the amount of parallelism available
in the specific GPU, which is hidden by the vendor. Knowing this available
parallelism helps with planning the arrangement of processing threads for a
particular algorithm. This is important because some device manufacturers do
not specify how many parallel processing elements are in their device and how
threads are scheduled on the processing elements.

• The second contribution in this work is the implementation and optimization
of the Viola-Jones [21] object detection on a specific mobile GPU. Our version
of the object detector ported to the mobile GPU was measured to be 35% faster
in runtime on average and more than two fold faster in runtime for the best
case on the largest and hardest Full HD images as compared to an optimized
parallel implementation on the CPU of the same mobile device. The energy
consumption measurement for the ported object detector on the mobile GPU
shows a best case of 84% reduction for Full-HD images. The object detector
on the GPU was slower than the CPU-based object detector for images that
are smaller than the Full-HD images. However, it had an improved energy
consumption where the minimum energy consumption reduction measured
was ∼ 35%. This indicates that porting data parallel applications to run on the
mobile GPU makes them energy efficient even if the applications do not gain
in runtime improvement.

• The third contribution is using our object detector for the ringworm skin dis-
ease detection on the mobile GPU. We chose the ringworm skin disease as it
has a large prevalence in sub-saharan Africa [30]. Also, it easy for a person to
take a picture of skin using a mobile phone and the image fed to object detector.
However, the object detector needs a classifier to be used in the detection pro-
cess. Hence, a classifier for the ringworm skin disease detection was trained
from a set of positive and negative samples. This trained classifier with the
available dataset has an accuracy of 75%. In order to improve the accuracy
of the classifier a higher number of positive and negative samples are needed
during training.

1.5 Thesis Organization

The remainder of the dissertation is organized in the following way: Chapter Two
will give background on general-purpose GPU computation using OpenCL, de-
scribe the Viola-Jones [21] object detection algorithm and give some related work

Chapter 1. Introduction 8

in the use of the mobile GPU to accelerate various applications. In Chapter Three,
the methodology used, the experiments done and results collected for the perfor-
mance characterization of the mobile GPU architecture will be detailed. Chapter
Four will describe the implementation of the object detection algorithm on the mo-
bile GPU and the different modifications done to it to improve runtime performance
and energy consumption. Then, Chapter Five will give a description of the process
used to develop a medical image classification application, namely: ringworm skin
disease detection on the mobile GPU. Lastly, Chapter Six will conclude on the work
and give future research directions.

9

Chapter 2

Background

The first section of this chapter will give a brief overview of the Open Comput-
ing Language (OpenCL) which is used for general purpose computation on highly-
parallel systems. The next section will describe a widely-used method for object
detection: the Viola-Jones object detection algorithm [21]. The last section will sum-
marise work related to the goal of this project: making use of a mobile GPU for
general purpose computing.

2.1 General Purpose Programming on GPUs

Ever since graphics processing units evolved from the graphics display processing
units and became relatively programmable, researchers have used them for general
purpose computation. Early on, the general purpose algorithms needed to be repre-
sented in terms of graphics API primitives because the first standards and languages
developed for these GPUs were targeted to representing graphical objects, such as
triangles, polygons and textures. Owens et.al. [2], describe many efforts that have
been made to develop high-level programming languages for GPUs. All such efforts
strive to abstract the underlying hardware architecture so that it can be programmed
easily. The earlier languages still needed the programmer to understand how to map
the computation into graphics primitives such as vertex and texture shading. The
authors note that the streaming programming model is the dominant model em-
ployed.

The first widely accepted high level programming language for general GPU
computing was developed by NVIDIA. This C-based programing language was
called CUDA [19]. It exposes much of the architecture of NVIDIA’s GPUs to the
programmer. There was no need to represent algorithms as graphics objects. Pro-
grammers can directly allocate buffers on the GPU and utilize them as they see fit. In
addition, threads could be organized in a way that best suits the application. How-
ever, CUDA was proprietary and only worked on NVIDIA GPUs.

Chapter 2. Background 10

Another high level programing language that was initiated by Apple Inc. was
the open compute language (OpenCL). OpenCL was Apple’s way of standardizing
the way general purpose computing is done on GPUs and/or any other accelera-
tor co-processor. Many vendors have joined the consortium started by Apple and
the Khronos group was given the responsibly to maintain and evolve the OpenCL
standard [20].

2.2 Open Computing Language (OpenCL)

The open computing language standard was developed to work on any kind of com-
pute device. These compute devices can be CPUs, GPUs, Digital Signal Processors
(DSPs) , Field Programmable Gate Arrays (FPGAs) and so on. The main purpose of
OpenCL is to express a standard compute model and develop definition of APIs for
the standard thereby allowing one to express parallelism that might be successfully
deployed accross a range of architectures. Every manufacturer/vendor of a compute
device is responsible to develop an OpenCL library/driver to implement the APIs
and kernel compilers for their device. OpenCL gives the programmer specific ways
to express parallelism present in the code. The same code can be run on different
devices with no or minimal alterations. However, the performance of the code on
different architectures is not guaranteed to be the same [31]. In cases where perfor-
mance degrades, optimizations need to be done by understanding the underlying
architecture.

2.2.1 The OpenCL Architecture

The OpenCL Architecture defines a hierarchy of models [32]. These are platform
model, memory model, execution model and programming model. The first two
models define an abstraction of a hardware architecture that is easy to understand.
These two models clearly describe how the available computational devices and
their associated memory are organized. The execution model describes how compu-
tation can be divided and scheduled between the available computational devices.
The programming model defines how parallelism can be achieved; data parallel or
task parallel.

The Platform Model

The platform model pre-supposes the existence of a host computer, which is typi-
cally a general purpose CPU, and several other compute devices that act as accel-
erators. A compute device is further subdivided into compute units (CUs). Each

Chapter 2. Background 11

compute unit usually has one or more processing elements (PEs). The processing
elements in each compute unit execute a single stream of instructions as Single-
Instruction Multiple-Data (SIMD) units [33]. The compute devices in the platform
model can be from different vendors. The combination of one or more compute de-
vices and associated drivers from a particular vendor are referred to as a platform
in the platform model. There can be one or more platforms in a system. Figure 2.1
shows the platform model.

FIGURE 2.1: OpenCL Platform Model (Reproduced from[32])

The host is responsible for identifying the OpenCL platform available in a sys-
tem. As many platforms can exist in a system, the host code needs to choose/handle
which platform to use for the execution of the OpenCL code. The OpenCL platform
usually provides a compiler that converts the OpenCL code to run on the OpenCL
device. This compiler can be an offline compiler, where the OpenCL code needs to
be compiled before runtime, or an online compiler that compiles OpenCL code at
runtime. OpenCL defines two platform profiles: the embedded profile and the full
profile. The embedded profile has restricted functionalities and is not expected to
have an online compiler whereas the full profile is expected to do so. As these com-
pilers are device and/or vendor specific, device vendors are at their discretion to
include online compilers for the embedded profile while they are required to pro-
vide the online compiler for a full profile device.

The host is also responsible for creating and associating a context with devices
in the platform. A context keeps track of the memory objects and kernels associated
with a particular application. Defining a context is necessary as there may be other
applications running on the platform at the same time. On the other hand, if the
application wants to partition parts of the work it can create multiple contexts. This

Chapter 2. Background 12

way it can ensure the consistency of data used in different parts of the code.

OpenCL Memory Model

The OpenCL memory model describes how memory is organized on an OpenCL
platform, and is illustrated in Figure 2.2. There is host side memory, which is usually
the main system memory, and device side memory in a typical OpenCL platform.
The memory on the OpenCL compute device is organized hierarchically as global
memory, constant memory, local memory and private memory. The large global
memory and the constant memory are accessible by all compute units as well as
each processing element in the compute unit. This makes the global memory visible
to all threads (threads are referred as workitems in OpenCL nomenclature) running
in an OpenCL based application. The global memory is significantly slower than the
smaller constant, local and private memories which means kernels must organize
global memory access to hide its access latency. The local memory is very small in
size as compared to the global memory and is shared by the processing elements in
a compute unit. However, the local memory is usually an order of magnitude faster
than the global memory. The private memory is also a shared resource on a compute
unit that can be allocated to each work-item/thread residing in a processing element.
A variable allocated on the private memory by a work-item/thread is not accessible
by any other work-item/thread. The global, constant, local and private memories
are programmable and the programmer manages them explicitly. However, there is
often a separate hardware-controlled cache for the global and constant memory on
the OpenCL device.

In the case where many OpenCL devices exist in a system or there is a hardware
support for sharing a part of the host memory, a shared virtual memory address
space is used. The shared virtual memory address space allows for direct data shar-
ing between the devices and/or with the host with out issuing explicit copy com-
mands on the host side. Consistency of the shared data is assured at synchroniza-
tion points and atomic operations if supported. The synchronization can happen
both from the host and device side.

When defining data structures in OpenCL programs, address space qualifiers
need to be used to specify on which part of the memory hierarchy an object is to
be allocated. These qualifiers are __global, __constant, __local and __private. The
address space qualifiers can be used without the double dash prefixes as global, con-
stant, local and private (Listing 2.2 and Listing 2.3 show both usages). If a variable
in a kernel is defined without an address space qualifier, it will be allocated on the
default (generic) address space which is the private memory. The const qualifier can
also be included with the __global qualifier to specify the object is read only. All
kernel and device function arguments are defined on the private memory address

Chapter 2. Background 13

FIGURE 2.2: OpenCL Memory Model (Reproduced from[32])

space but in case of pointers they can point to the other address spaces. Listing 2.1
gives a vector addition example that shows how these address qualifiers are used in
a kernel (kernel: OpenCL functions that run on the OpenCL device).

LISTING 2.1: Vector addition kernel

1 __kernel void vector_add(__global const float* A,

2 __global const float* B,__global float* C,int dataSize)

3 { //tid and dataSize are allocated on the private memory

4 int tid=get_global_id(0);

5 if(tid<dataSize)

6 C[tid]=A[tid]+B[tid];

7 }

OpenCL Execution Model

In the OpenCL execution model there is code that runs on one or more OpenCL
devices and code that runs on the host. The host code manages the code that runs
on the OpenCL device and the context it runs on. When a kernel is submitted for
execution, an index space is created on the context. An instance of the kernel runs
for each item in the index space. This kernel instance running on the device is called
a work-item. Each work-item resides on a processing element when it is executing.
Work-items are grouped in to a work-group that are scheduled to run on a single
compute unit. Each work-item is assigned global-id that uniquely identifies it in the
index space. Similarly, each work–group is assigned a unique index. In addition,

Chapter 2. Background 14

each work-item in a work-group is given a unique local-id that identifies it in the
work-group.

Threads/work-items in an OpenCL program can be arranged in an N-Dimensional
Range (NDRange), where N may be 1, 2 or 3. A range is defined as index space from
which reference id can be assigned to a thread/work-item. The index space can be
1-Dimensional, 2-Dimensional or 3-Dimensional and its bounds vary from device to
device. The arrangement of threads/work-items in this way can help with manag-
ing algorithms in a more natural way. Consider the following 2-Dimensional index
space in Figure 2.3. Such arrangement is ideal for matrix manipulation, 2-D im-
age processing and the like. Work-items are usually grouped together into a work-
group. The purpose of this grouping is to schedule a group of work-items to execute
in a given compute unit. Another benefit of grouping work-items, be it explicit or
defined by the OpenCL implementation, is in synchronizing the various kids of par-
allelism available in OpenCL. However, synchronization is limited to work-items in
a work-group. OpenCL does not provide built in global work-item synchronization.

FIGURE 2.3: An example of two dimensional work-item index
space.(Reproduced from[32])

For the vector addition example given in Listing 2.1, the ideal set up of the work-
items will be a single dimensional range (1D-Range) because vectors are linear data
structures. We can instantiate as many work-items as the number of vector elements
until the allowed maximum work-item size for the OpenCL device is reached. (One
can query the device to know what this maximum number is.) In the case where
the number of vector elements is greater than the max allowed work-item size, each
work item can be made to work on more than one vector element. The next step is to
define how these work-items are grouped. The OpenCL runtime is able to determine

Chapter 2. Background 15

the best configuration or grouping can be specified by the programmer. However,
finding a good grouping may not be straight forward. It is advised to experiment
with different work-group sizes and use what works well.

We use matrix multiplication as another example to illustrate how work-items
can be organized. Here, setting up the work-items as a 2-dimensional grid (2D-
Range) is ideal because of the 2-dimensional nature of matrices. The single-threaded
matrix multiplication C-code given in Listing 2.2 can be converted as the OpenCL
Kernel shown in Listing 2.3. It can be seen that the outer two loops of the C-code
have been converted into an OpenCL kernel. Each work-item now will have two
global_ids that correspond to indices from both dimensions of the matrix. The length
of each dimension for our particular case is set to (RowA,ColB). This way, it is
ensured that there will be enough work-items to do the job. For example, if matrix
A and B have dimensions of (204, 576) and (576, 367) respectively, then ideally we
will require 204 x 367 = 74, 868 work items to do the job. This particular number of
work-item dimension size would work if the work-group size is set to (1, 1) which
is very inefficient on most OpenCL enabled systems. Depending on the system, a
more reasonable work-group size should be chosen, although this may lead to the
readjustment of the global work-item sizes. For instance, if one chooses an (8, 8)

work-group size, the global work-item size for the previous example needs to be
adjusted to the nearest multiple of 8 as 208 x 368 = 76, 544. However, as more
work-items are instantiated than actually needed, one has to insert checkpoints in
the kernel code as done on line 9 of Listing 2.3 to avoid index out of bound (buffer
overflow) errors.

LISTING 2.2: Matrix multiplication in C

1 void C_MatMul(float* A,float* B, float* C,

2 int RowA,int ColRowAB,int ColB)

3 {

4 float sum=0.0;

5 for(int i=0;i<RowA;i++)

6 for(int j=0;j<ColRowAB;j++)

7 {

8 sum=0.0;

9 for(int k=0;k<ColB;k++)

10 sum+=A[i*ColRowAB+k]*B[k*ColRowAB+j]

11 C[i*ColRowAB+j]=sum;

12 }

13 }

LISTING 2.3: Matrix multiplication in OpenCL

1 __kernel void OpenCL_MatMul(global float* A,global float* B,

2 global float* C,int RowA,int ColRowAB,int ColB)

3 {

4
5 int i = get_global_id(0); //work-item id in dimension 1

Chapter 2. Background 16

6 int j = get_global_id(1); //work-item id in dimension 2

7 float sum = 0.0;

8
9 if ((i < RowA) && (j < ColRowAB)) {

10 sum = 0.0;

11 for(int k = 0; k < ColB; k++)

12 {

13 sum += A[i*ColRowAB + k]*B[k*ColRowAB + j] ;

14 }

15 C[i*ColRowAB + j] = sum;

16 }

17 }

An OpenCL application has host side code and device side code (kernel code) as
mentioned earlier. In order to successfully run the application and get results, the
following procedures need to be done on the host side code

1. Initialize OpenCL Device

• Get available platforms

• Get available devices in the discovered platforms

• Create a context/contexts on the selected platform/platforms

• Create command queues and associate with a context/contexts

2. Build Program

• Read kernel source/binary from a file/files

• Create a program/programs with the source/binary

• Build the program/programs

• Check if the program/programs compiled successfully

3. Create Buffers

• Create buffers on the selected context with appropriate access behaviour
and sizes

• If explicit copying of data is needed, enqueue buffer write operation

4. Set arguments and Enqueue kernels

• Set arguments to the kernels

• Set the sizes of global work-items and work-groups

• Enqueue the kernel

5. Get back results

• Enqueue Read buffer operation to read data back from the GPU if explicit
copying is required.

Chapter 2. Background 17

The OpenCL APIs used in the host code usually give feedback on the success-
ful completion of the task at hand. Therefore, it is advised that the host side code
should always check the success of any OpenCL API call. The error code returned
from these API calls can be interpreted to help with identifying problems/bugs in
the OpenCL application. Appendix A gives the complete Matrix Multiplication ap-
plication source code with commentaries.

2.3 Computer Vision

Computer vision algorithms allow computers to understand their environment from
visual inputs. The visual inputs can come from stored images, videos, or a camera.
The purpose of computer vision is to interpret this visual input for some purpose,
such as object detection and modelling of an environment from a stored video or
camera feed. The main barrier to the advancement of computer vision is its require-
ment for large amounts of computational power. This computational requirement
arises from the immense data generated by visual inputs and the inherent difficulty
of the vision task itself. There is an ongoing effort to improve existing algorithms to
perform better as well as create new algorithms that are better and can utilize alter-
nate computing facilities available in a system. This is most relevant and important
when we seek to achieve real-time computer vision, which has hard performance
constraints. Many of the algorithms developed (prior to the recent advances in Deep
Neural Nets in this area) are incorporated in a library called the Open Computer Vi-
sion (OpenCV) library [18].

The Open Computer Vision collaboration is engaged in continuous development
of a library that can be used free of charge for many kinds of computer vision ap-
plications. This collaboration collects many of the widely accepted computer vision
algorithms and packages them in a library that is well tested and ready to use. This
OpenCV library incorporates more than 2500 computer vision algorithms grouped
in modules such as image processing, video analysis, machine learning, object detec-
tion and so on. These algorithms are available for different processor architectures
and different programming languages. The OpenCV library supports the accelera-
tion of the computer vision algorithms on GPUs using CUDA and OpenCL (but not
yet on mobile GP GPUs as of OpenCV version 3.1). It also supports the Windows,
Linux, Mac OS, iOS, and Android operating systems.

The object detection module in OpenCV is used for detecting objects in images
and videos. There are several different object detection algorithms, including the
Support Vector Machine (SVM) approach [34], Histogram of Oriented Gradients
(HOG) [35], and Cascade Classifier [21]. Since the Cascade Classifier based object
detector is the focus of this work, we will describe it in more detail next.

Chapter 2. Background 18

2.4 Cascade Classifier based Object Detector

The cascade classifier based object detector was first introduced by Viola and Jones
[21]. Their object detector uses a set of basic binary classifiers arranged in stages with
each stage consisting of a set of features used to evaluate some feature of the object.
These basic classifiers are called weak classifiers as they are expected to be correct
slightly more than 50% of the time. However, the combination of weak classifiers
in a cascade of stages gives rise to a strong classifier. The classifier stages can consist
of a few weak classifiers in the early stages and upto hundreds of weak classifiers
at later stages.This strong classifier is called a cascade classifier as it is composed of
cascade of classifier stages.

The cascade classifier is produced by training it with positive and negative sam-
ples, where positive samples are images of the object of interest and negative sam-
ples are background images that do not include the object. The training process uses
the AdaBoost algorithm [36] to learn the weak classifiers that give rise to the strong
cascade classifier. A fixed size of image of the object is used during training which
will later be used in the detection process.

In the process of detection, a sliding window approach is used. A window in
this context means a region of an image where the presence of the object of interest is
being checked and is equal to the size of the object at training time. In the detection
process, the first stage of the cascade classifier is applied to a window. The next
stage classifier will only continue on the same window when the first stage of the
cascade classifier passes. If the first stage fails, there is no need to continue with
the subsequent classifier stages, as the object is deemed not found in this window.
The object is deemed to be found in this window if all the stages pass. Figure 2.4
illustrates this process. Once the decision is made on the particular window, the
same procedure is repeated on the subsequent, adjacent windows until the whole
image has been explored.

There are two reasons the object may not be detected in the image/window. One
reason is that the object is indeed missing or is too small to be detected. The other is
in case the scale of the image is wrong that the object does not fit into the window
under test. In order to address this later issue, the Viola-Jones [21] method scales
down the image by a certain constant factor. The scaling is needed as the basic
classifiers are trained on a fixed window size. Once the image is scaled down, the
detection procedure is applied at the new scale. The recursive scaling down process
terminates at the point that the entire image fits into a single window.

The features used in the Viola-Jones [21] approach are called Haar-like features
that compute local oriented intensity difference using rectangular blocks. The rect-
angular blocks used in their work are upright rectangles where the rectangles lie

Chapter 2. Background 19

FIGURE 2.4: The Cascade Classifier Process

horizontally or vertically never at an angle. The work by Leinhart and Maydt [37]
introduced rotated Haar-like features that improved the quality of the object detec-
tor. The inclusion of the rotated feature rectangles lowered the false alarm rate. Both
works use a cascade of boosted classifiers in the object detection process. In this
work however we will only be focusing on the work by Viola and Jones [21] and
the terms "object detector" or "cascade classifier" will mean the Viola-Jones object
detector and will be used interchangeably.

The key concepts in the Viola-Jones [21] object detector discussed earlier will be
detailed in the following sections beginning with the key mechanism used in the
classifiers, the Haar-like features. The structure of the classifier cascade will then be
discussed. The process of the detection procedure will be discussed followed by the
optimizations used in the detection procedure.

2.4.1 Haar-like Features and Classifier Matching

The Haar-like features are rectangles that represent some feature of an object. Figure
2.5 shows some Haar-like features used in the object detection algorithm. A feature
used in a classifier is specified by its shape, its position within a region of interest
and the scale. The coloring of the rectangles shows the contribution of the colored
region when taking the sum of underlying pixel values of the input image. Black
pixels make positive contribution while white pixels make negative contribution.
Listing 2.4 shows the representation of Haar-like features in a program.

Listing 2.4 shows a similar representation of Haar-like features as found in OpenCV
in C programming language. As one can see, the HAAR_feature type definition
has a boolean data to indicate the presence and absence of tilted features. How-
ever, it is to be remembered that in this work only upright rectangle features are

Chapter 2. Background 20

FIGURE 2.5: Haar-like features (Reproduced from[17])

used. The way a feature is represented is by a set of rectangles with associated
weights as depicted in Listing 2.4 by the rects object. These associated weights
have a positive or negative values depending on their color as shown in Figure 2.5.
MAX_HAAR_FEATURE_SIZE is a macro definition that allows the user to spec-
ify the maximum number of rectangles per feature as the number of rectangles per
feature can vary depending on the object that is being sought after.

LISTING 2.4: Represenation of the HAAR-like features in a program

1 typedef struct

2 {

3 bool tilted; //tilted features present??

4 struct

5 {

6 Rect f; //feature rectangle

7 float weight; //feature rectangle weight

8 }rects[MAX_HAAR_FEATURE_SIZE]; //rectangles per feature

9 } HAAR_feature;

Cascade Classifier

The building blocks of the cascade classifier are a set of weak classifiers. These weak
classifiers are composed of one or more Haar-like features. The Haar-like features in
these weak classifiers are evaluated to test for the existence of a certain feature of the
object. The term weak classifier is given because the level of certainty expected from
these classifiers is just over 50%. If these weak classifiers are grouped together, they
tend to push the detector to the right direction in detecting the object. In other words,
if the collective certainty is below a threshold, the object is definitely not present in
the current location of the image, meaning further scrutiny of the location is not
necessary. Conversely if the threshold is surpassed, the object probably is found in
the current location and more testing is needed. Hence, when taken together a group

Chapter 2. Background 21

of weak classifiers is called a strong classifier. The strong classifier is sufficient to
detect if the object exists in an image. Figure 2.6 shows the structure of a stage of a
strong classifier.

FIGURE 2.6: One stage of the cascade classifier in OpenCV (Repro-
duced from [17])

As one can see from Figure 2.6, each weak classifier hi(X) is evaluated on the
region of interest. These evaluations result in either constant α1 or constant α2 value
for each weak classifier. α1 is a value less than the threshold for the specific weak
classifier while α2 is above the threshold. However, these individual values do not
determine the the existence of the object in the particular window by themselves
unless the stage is composed of only one weak classifier. Instead, the results of each
weak classifier in a stage are summed up and compared with a threshold for the
stage. If the sum is greater than the stage threshold, then the object is likely to be
found in the window requiring further scrutiny with the subsequent stages. In the
case the sum is below the threshold, the object is deemed not found in the current
window and no further processing of the window is required. The computation
process is shown in equation 2.1.

H(X) =

1,
∑K

i=1 hi(X) ≥ T

0, otherwise
hi(X) =

α1, fi(X) > ϕi

α2, otherwise
(2.1)

where X is the region of interest(window) defined by MxN pixels.

Figure 2.7 shows an example of feature evaluation in the detection process dis-
cussed above. The object being detected in this example is face of a person as shown
in 2.7a. The first feature overlayed on the face in Figure 2.7b checks for the forehead
because usually the forehead is brighter than the area around the eyes in compar-
ison. Similarly the next feature as in Figure 2.7c evaluates for the eyes with the
assumption that the nose bridge is brighter than the eyes. This way all the features
determined during the training process will be applied on the window of interest
through the weak classifiers discussed above.

The way the cascade classifier is represented in a C program is given Listing 2.5.

Chapter 2. Background 22

(a) (b) (c)

FIGURE 2.7: Haar-like Feature Evaluation Example (Reproduced
from [17])

The cascade classifier used in this work is based on the stump weak classifier. A
stump weak classifier has a two level binary tree of features. This means after a fea-
ture in the root node is evaluated, a choice is made to evaluate the left child feature if
the feature evaluated is greater than weak classifier threshold or right child feature
is selected otherwise. Hence, the HAAR_Treenode object in Listing 2.5 represents
a node of the binary tree described above. The HAAR_Weak_Classifier object con-
tains a count of nodes in the decision tree, a pointer to root node of the tree and a
pointer to the alpha values to be selected. The next object is the HAAR_Stage_Classifier
that is used to represent one stage of the cascade classifier. This object contains the
count of weak classifiers in the stage, the stage threshold and a pointer to the list of
weak classifiers in the stage. The last object in the representation of the cascade clas-
sifier is the HAAR_Classifier_Cascade. It stores the count of stages in the classifier
cascade and keeps a pointer to the list of classifier stages among other values.

LISTING 2.5: Represenation of the Cascade Classifier in a program

1 typedef struct

2 {

3 short left; //points to left node

4 short right; //points to right node

5 short featureIndex; //points the feature to evaluate

6 double threshold; //weak classifier threshold

7 } HAAR_TreeNode;

8
9 typedef struct

10 {

11 short count; // number of nodes in the decision tree

12 HAAR_treeNode *treeNode; //pointer to the tree structure

13 /* pointer to alpha values chosen based on the evaluated

14 threshold */

15 double *alpha;

Chapter 2. Background 23

16 } HAAR_Weak_Classifier;

17
18 typedef struct

19 {

20 int count; // number of stages in the battery

21 double threshold; // stage threshold

22 // pointer to array of weak classifiers in a stage

23 HAAR_Weak_Classifier* classifier;

24 } HAAR_Stage_Classifier;

25
26 typedef struct HAAR_Classifier_Cascade

27 {

28 int count; // number of stages

29 /*original object size the classifier is trained for*/

30 Size orig_window_size;

31 Size real_window_size; // current object size

32 /* pointer to the array of stages */

33 HAAR_Stage_classifier* stage_classifier;

34 } HAAR_Classifier_Cascade;

Integral Image

The features are evaluated by subtracting the weighted sum of pixel values under
the black rectangular regions of the input image from the ones under the white rect-
angular regions. There can be hundreds of weak classifiers in a particular cascade
classifier each of which may have one or more features. Also, the classifier is applied
to windows of the image at different scales which results in a large set of windows
to be tested. If the sum of pixels is computed every time a feature is evaluated, the
computational need would be so large that the use of this object detector would be
ineffective. One innovative approach Viola-Jones [21] introduced was an intermedi-
ate image representation called the integral image. In order to reduce the computa-
tional complexity, the sum of pixel values preceding and including the pixel value
at every point in the entire image was computed and stored in an integral image
(equation 2.2). The integral image is also computed for all the scales of the original
image. This way, we can avoid the redundant computations and computing sum of
pixels in a rectangular region of the image can be done in constant time (O(1)).

IntImg(x, y) =

x−1∑
i=0

y−1∑
j=0

image(i, j) (2.2)

where image is the original image and IntImage is the resulting integral image.

Figure 2.8 demonstrates the efficiency of the integral image representation. For
example, if one wants to compute the sum of the pixels in the rectangular region D.
In order to achieve this, one only needs to consider points 1, 2, 3 and 4 of the integral

Chapter 2. Background 24

FIGURE 2.8: Integral Image Representation Example (Reproduced
from[17])

image. The value stored at point 1 is sum of the pixel values in region A, at 2 we
have A + B, at 3 we have A + C and at 4 the value is A + B + C + D. Therefore,
the sum of pixel values in region D can easily be found by four array references as
shown in equation 2.3.

IntImg(4) + IntImg(1)− IntImg(2)− IntImg(3) = sum(D) (2.3)

The square integral image, which is similar to the integral image, is the sum of the
squares of each pixel before and including the point as shown in equation 2.4. It is
used when computing the variance to normalize the image.

sqIntImg(x, y) =
x−1∑
i=0

y−1∑
j=0

image(i, j)2 (2.4)

where sqIntImage is the resulting square integral image.

Normalization of Lighting Conditions

The sample images used during the training and the detection process are usually
taken at different lighting condition. This would affect the quality of the classifier
trained as the lighting condition can introduce a bias. In order to minimize the effect
of lighting conditions the classifiers are trained on a variance normalized image.
Also, the image to be used for detection needs to be variance normalized as well.
The variance of a region of an image can be easily computed from the integral image
and square integral images as shown in equation 2.5. To be variance normalized
the pixels of the region need to be divided by the standard deviation, which is the
square root of the variance.

V ar(image) =
1

MN

M∑
i=0

N∑
j=0

image(i, j)2 − (
1

MN

M∑
i=0

N∑
j=0

image(i, j))2 (2.5)

Chapter 2. Background 25

The Viola-Jones Object Detection Algorithm

The complete algorithm for the Haar-like based object detection as listed in [17] is
reproduced in Algorithm 1. In this algorithm, the integral image and square integral
image are computed first for all scales of the image. This means the target image
needs to be resized into all the scales. The nearest neighbor and the bilinear interpo-
lation image resizing techniques can be used for this purpose.

Algorithm 1 Cascade Classifier-based Object Detector

1: Build integral image I(F) and square integral image SI(F)
2: Set curScale = 1.0

3: for all scales do
4: curScale∗ = S

5: for curRegion in all regions X on the current scale do
6: for Hi(x) in all cascade stages do
7: StageSum = 0

8: for hj(x) in all weak classifiers of Hi(x) do
9: StageSum+ = calculate weak classifier hj(x) using I(F) and SI(F)

10: if StageSum < StageThreshold then
11: Mark region as non-object and proceed to next region

12: Mark region as object

13: Partition and filter regions marked as objects

2.5 Previous Related Work

Several researchers have previously tried to utilize the low power mobile GPU to
improve the power consumption and performance efficiency of mobile applications
while performing general purpose computing on it. In this section we present a
survey of prior work on the acceleration of general purpose algorithms on a mobile
GPU. We have identified that many earlier works used the open graphics library for
embedded systems (OpenGL ES) for representing their general problem as a graph-
ics problem on the mobile GPU while recent research uses OpenCL for direct imple-
mentation of algorithms on the GPU. The rest of this section is organized according
to the programming framework the research used on the mobile GPU.

OpenGL ES for General Purpose Computing

A survey done by Pulli et al. [38] identified programming frameworks such as
OpenGL ES and OpenCL to be used for implementing applications on the mobile

Chapter 2. Background 26

GPU. They suggested that mobile GPUs can be used to accelerate augmented reality
applications including object detection and tracking, and scene modelling. They also
explored the computational photography applications high dynamic range (HDR)
imaging and panorama capture.

The work by Cheng et. al [6] mapped the face recognition problem to a graphics-
rendering paradigm. The face detection part of this work was done using an An-
droid API. For the recognition part, they implemented the Gabor wavelet using a
Fast Fourier Transform. They used OpenGL ES on an NVidia Tegra SoC. The face
recognition took about 8.5 seconds on the CPU while taking only 4.6 seconds on the
GPU and consuming 16.3J of energy in contrast to the CPU only implementation’s
29.8J . This shows an almost 2x speed up was gained using the GPU while also
lowering the energy consumption by 45.3%.

In the work done by Rister et al. [39], the Scale-Invariant Feature Transform
(SIFT) detector was implemented on a mobile GPU. SIFT is an image descriptor for
image-based matching and recognition developed by David Lowe [40]. In their ap-
proach, data was partitioned between the CPU and GPU in order to maximize effi-
ciency. The parts of the SIFT detector that can be quickly computed in the CPU were
scheduled to run on the CPU. The ones that take longer and can be computed in par-
allel (the algorithms that are data parallel) were scheduled to run on the GPU. In this
way, they were able to minimize data movement between main memory and GPU
memory, which is a slow process. Another innovation of this work is the use of data
compression by pixel reordering. Since a SIFT detector works on gray scale images,
4 gray scale pixels can be copied into one texture pixel which expects red, green,
blue and alpha values. This effectively reduced the data transfer requirement by
up to four times. They report a significant energy consumption reduction (87%) as
compared to CPU only implementation when using the CPU+GPU in combination.

Lee et. al [41]] used a mobile GPU for an augmented reality application where
they applied computer-vision techniques for tagging spaces for augmentation. Their
work involved the learning of a patch of space to be augmented and then detecting
and tracking the tagged space. In addition, they used the phones sensor’s for pose
estimation. They conclude that the GPUs in the phones enable a near real time Any-
where Augmentation.

Ensor and Hall [42] implemented the Canny edge detection on mobile GPUs us-
ing OpenGL ES 2.0. The implementation moved the entire pipeline in the Canny
edge detector to the GPU. The Gaussian blurring, the gradient vector computa-
tion, the non-maximum suppression, double threshold and their own tweaks to the
Canny algorithm are all done on the GPU. They report significant frame rate im-
provement with the GPU implementation for some of the mobile devices that were
tested with 640x480 resolution.

Chapter 2. Background 27

Hofmann et. al [43] implemented an upright speeded up robust features (SURF)
descriptor on a mobile GPU called uSURF-ES. They used OpenGL ES 2.0 and C++ for
programming their application. Their implementation on the GPU was compared
against the upright SURF in OpenCV, which is not multi-threaded. The comparison
was made on different mobile devices and tablets, and speed-ups ranging from 2x

up to 14x were reported.

Singhal, Park and Cho [44] used OpenGL ES 2.0 to implement an image pro-
cessing tool kit. The image processing tool kit includes algorithms such as Gaussian
smoothing, edge detection, color conversion, and bilateral filtering. Optimization
techniques such as floating point control, loop unrolling, branching control, sharing
computation load between the vertex and fragment shaders and texture compress-
ing were considered when the image processing toolkit was implemented. Cartoon
style non-photorealistic rendering (NPR), speeded up robust features (SURF) and
stereo matching applications were implemented on a system equipped with an ARM
Cortex A8 at 1GHz and a PowerVR SGX 540 GPU at 200MHz to measure the GPUs
performance using their tool kit. The authors reported speed up of 5x, 1.7x and
5x ∼ 7x for the Cartoon style NPR, SURF and stereo matching, respectively, when
comparing the GPU implementation vs CPU. However, the authors have not re-
ported the energy consumption measurements.

OpenCL for general purpose computing

The SIFT detector was also implemented in the work by Wang et al. [45] using C++
and OpenCL. In this work, the optimizations mentioned in the work by Rister et al.
were used with the addition of a fast Gaussian blur pyramid generation. With these
optimizations, they were able to get about 8.5 frames per second for key point de-
tections and 19 frames per second for descriptor generations. A performance speed
up of about 1.69x for key point detections as compared to an optimized C++ refer-
ence implementation was achieved. In addition, energy consumption was reduced
by 41%.

The work by Wang et al. [46] implemented object removal from images using
an exemplar-based in-painting algorithm on a mobile GPU. Object removal deals
with the removal of an object deemed unimportant or for some particular reason
from images or videos. In this work, the OpenCL capable GPU from Qualcomm’s
Snapdragon SoC was used. The object removal algorithm was implemented as a het-
erogeneous application using OpenCL after profiling revealed the bottleneck part of
the algorithm. Further optimizations of their implementation used processing of
data in vector form and using data sharing by copying to local memory of the GPU.
With other optimizations, the heterogeneous implementation reduced the runtime

Chapter 2. Background 28

required to about 2 seconds on the GPU. On the other hand, the OpenCL implemen-
tation on the CPU performed very low at about 393.8 seconds. The work does not
give the speed up gained by their implementation.

Jones et al. [47] used mobile GPUs and OpenCL for acceleration of embodied
robot simulation. They chose the Stage robot simulator’s ray tracing algorithm to
be accelerated using OpenCL as it was found to be the most time consuming. They
report that 82% runtime performance increase and around 30% drop in energy usage
for one of their experiment setups. They also speculate that more performance and
energy saving can be achieved with rigorous OpenCL code optimization as the goal
of the current implementation was porting the ray tracing algorithm with minimal
coding effort.

Ross et al. [48] ported an OpenCL Benchmark developed for the desktop to run
on a mobile GPU on an Android system. The benchmark implemented is made of
N-Body simulation kernel with auto tuning capability. They report the difficulty of
writing an OpenCL program for the mobile GPU because the Android development
tools did not directly support it at the time. They also point out that OpenCL is opti-
mized for portability of code not programmability hence they used a high level API
called STandarD Compute Layer (STDCL) which makes programming in OpenCL
for high performance computing easier. They reported the best N-body simulation
on the Adreno 320 mobile GPU achieved 14.7 GFLOPs. They compared this result
with a similar kernel running on an ARM Cortex A9, dual Intel Xeon X5650 CPU,
and an AMD Radeon HD 6970 GPU. These three processors had 1.09 GFLOPs, 89.8
GFLOPs and 1362 GFLOPs runtime performance respectively. The authors conclude
that the Adreno GPU has the potential to close the performance gap with the Intel
Xeon CPU in future versions. The authors also suggest that the mobile GPU has a su-
perior energy consumption performance over the Intel Xeon processor even though
they have not provided any measured values.

In the earlier days of mobile GPU acceleration the OpenGL ES language was
used to utilize the capabilities of the mobile GPUs. This was a difficult task, as it
required reinterpreting problems as graphics problems. Also, the proper use of the
GPU’s vertex and fragment shaders must be understood. The introduction of unified
shader GPU architectures and the support of OpenCL on these mobile GPUs recently
has made developing software for such systems relatively easier. Although the use
of OpenCL is much better than using OpenGL ES for general purpose applications,
it is still difficult to develop with OpenCL for the mobile GPU as the development
environment is not yet matured as discussed earlier [48].

Computer Vision problems seem to be the main focus of the literature reviewed

Chapter 2. Background 29

with regards to utilizing the general-purpose nature of the mobile GPUs. The rea-
son behind this trend is that computer vision problems are computationally inten-
sive data parallel applications that can benefit from any optimizations available in a
system. Applications from simple primitives of image processing to real-time aug-
mented reality were observed as a choice to be implemented on the mobile GPU.
All literature reviewed reported a positive runtime performance gain. However,
only some of the researchers measured the energy consumption for their applica-
tion on the mobile GPU. The ones that measured the energy consumption observed
that their application on the mobile GPU consumed less energy than the application
running on the mobile CPU. However, the resolution of the images used in the ex-
perimentation is much smaller than the full high definition inputs (images, videos
and cameras) that current mobile systems are expected to handle.

2.6 Summary

In the first section of this chapter, the open compute language (OpenCL) was de-
scribed. The models present in this language were briefly explained. The process of
developing an OpenCL programm was given. In the second section, the Viola-Jones
[21] object detector algorithm was described. It was described that this object detec-
tor uses a cascade classifier. The components of this cascade classifier and the princi-
ple operation on an input image was explained. Also, the integral image used as an
optimization technique for the object detector was detailed. In the third section, we
presented research that used the mobile GPU for general purpose computation. It
was observed that two types of programming languages were used where one is rel-
atively easier to use. The first one was OpenGL ES which required reinterpretation
of general problems as graphics problems. The second one was OpenCL that allows
direct implementation of problems on the mobile GPU. It was also shown that all
the reviewed researches reported speed ups using the mobile GPU.

30

Chapter 3

Performance Characterization of
Mobile GPU

In this chapter, we present measurement that characterizes the nature of two modern
Mobile GPU architectures; the purpose was to understand the capabilities of the
underlying hardware so that applications developed for it can be well optimized.
We describe experiments that were run to determine the throughput of data transfer
between host and OpenCL device (the architectre of which is illustrated in Figure
2.2). Further experiments were also done to measure the global and local memory
access latencies of the OpenCL device. In addition, the latencies of basic arithmetic
operations were measured. The detailed experiments, results and their description
are given below.

3.1 Experimental Setup

The devices used to run the experiments were the Qualcomm Snapdragon S4 Pro
(APQ8064) and Qualcomm Snapdragon 805 mobile development tablets . The for-
mer tablet has the Qualcomm APQ8064 Snapdragon S4 pro applications processor
that has 4 Krait 200 processors running up to 1.5 GHz, 2GB of LPDDR2 memory at
533MHz and an Adreno 320 GPU running at 325 MHz. The latter is equipped with
4 Krait 450 processors running up to 2.5 GHz, 3GB of LPDDR3 memory at 800MHz
and Andreno 420 GPU running at 600MHz. Figure 3.1 shows the architecture of a
dual core Qualcomm Snapdragon S4 pro applications processor as a reference. The
Krait CPUs are used as the hosts and the Adreno GPUs are the OpenCL devices.

Chapter 3. Performance Characterization of Mobile GPU 31

FIGURE 3.1: Architecture of dual core Qualcomm Snapdragon S4 Pro
(MSM8960) [23]

3.2 Data Transfer Throughput Measurement

One of the key determinants of performance for GPU systems is the rate at which
the host can send and receive information to/from the GPU. Historically, the desk-
top/server GPUs had physically separate memory, which was connected to the phys-
ically separate chips that contained the CPU (typically referred to as the host) and the
GPU. In that context data must be copied to the GPU’s memory from the CPU’s main
memory and returned to the CPU’s main memory after computations are complete
on the GPU. These data transfers often take up a significant fraction of the computa-
tion time. In this section we measure the data copying throughput between the CPU
and GPU memories.

The OpenCL Software stack provides APIs that explicitly transfer data to the
OpenCL device memory from the host memory and back. We used these OpenCL
APIs to measure the cpu-to-gpu and gpu-to-cpu transfer rates. A data size of 256 MB
was used in the experiments. Table 3.1 gives the result of the experiments conducted
on the two tablets with the two generations of Qualcomm SoCs. The results in Table
3.1 show that the explicit copy actions between the host CPU and the GPU are very
slow. Hence, the performance of applications that contain frequent data transfers
between the host and the OpenCL device would be significantly affected.

However, in the mobile context, with a single SoC connected to an off chip mem-
ory as illustrated in Figure 3.2, there is no separate CPU or GPU memory as both

Chapter 3. Performance Characterization of Mobile GPU 32

TABLE 3.1: Measurement of Transfer Rates

APQ8064 (MBytes/s)(Adreno 320/Krait 200) APQ8084 (MBytes/s)(Adreno 420/Krait 450)
cpu-to-gpu gpu-to-cpu cpu-to-gpu gpu-to-cpu

1522 264 97 532

the GPU and the host CPU use the same main memory. With recent versions of
OpenCL, the cpu-to-gpu copy and gpu-to-cpu copy can be avoided on such systems
where the memory is shared. The OpenCL API clCreateBuffer can be used with the
CL_MEM_ALLOC_HOST_PTR flag to utilize this feature. On the SoCs tested, this
feature does indeed work, and makes the copy process redundant, making this part
of the mobile GPU computation very efficient.

FIGURE 3.2: Abstracted Architecture of Qualcomm Snapdragon SoC

3.3 Memory Throughput and Latency

3.3.1 Global Memory Throughput Measurement

In chapter 2, it was discussed that the global memory of a GPU is usually slower in
access speed compared to the constant, local and private memories. However, there
is a clever memory architecture feature that allows an improved access speed. The
global memory is usually aligned in blocks of n bytes (where n can be 32, 64, and 128)
that can be accessed by a single memory request. An example of such alignment
is shown in Figure 3.3 with 64 and 128 byte aligned memory blocks. In order to
hide the slowness of the global memory access, a single memory transaction can
be issued for a group of work-items accessing memory with in an aligned segment.
This way the number of memory transactions will be reduced and the work-items
can begin processing as soon as the data they were waiting on arrives at the same
time. However, depending on the pattern memory is accessed in algorithms that run
on the GPU, there can be a benefit from this feature or not.

Chapter 3. Performance Characterization of Mobile GPU 33

FIGURE 3.3: Linear Memory Segments and half of work-items per
wavefront (warp in CUDA) [49]

A simple but efficient memory access pattern is when all (but does not have to
be) the work-items in a work-group access an aligned memory segment or a set
of sequential aligned memory segments. This pattern of access is called coalesced
memory access. In coalesced memory access, work-items can access corresponding
memory locations to their arrangement or permuted locations within the aligned
memory segment. Hence, the memory transaction issued in GPUs for each aligned
segment will be only one. The red enclosing box in Figure 3.4 shows the only mem-
ory transaction issued for the work-items requesting data from the aligned segment.
A simple OpenCL kernel that illustrates coalesced memory access is given in Listing
3.1. This kernel does an element wise copy of vector A on to vector B which means
all the work-items will be accessing data in aligned memory segments.

FIGURE 3.4: Coalesced Access: All work items except one access
memory. One 64-byte segment is read from memory. [49]

LISTING 3.1: Kernel code for aligned memory access

1 __kernel void coalescedMemoryAccess(__global

2 float* A,__global float* B,int dataSize)

3 {

4 int tid=get_global_id(0);

5 B[tid]=A[tid];

6 }

In the case where memory access is shifted by a constant distance relative to in-
dex of the work-items, many scenarios can arise. The shift can incur a misalignment

Chapter 3. Performance Characterization of Mobile GPU 34

within a 128 byte segment or overflow a 64 byte segment as shown in Figure 3.5a
and Figure 3.5b. The former case will still issue a single memory transaction but a
128-byte segment will be read while in the later case two transactions will be made;
one 64-byte segment read and one 32-byte segment read. A kernel code to test the ef-
fect of this shifted memory access is given in Listing 3.2. In the case of the coalesced
memory access, an element of vector A located at work-item index tid is copied to
the same index location but in vector B. In the shifted access case, an element of
vector A located at tid + shiftdistance , where shiftdistance stays constant for a
kernel execution, is copied to an element location of tid in vector B. The value of
shiftdistance can be varied to measure its effect on memory access throughput dur-
ing different runs of the kernel. However, the effect of shifts on the memory access
throughput can vary from device to device. This is because the device architects may
chose different sets of compromises in the device design.

(a)

(b)

FIGURE 3.5: Misaligned Sequential Memory Access [49]

LISTING 3.2: Kernel code for misaligned sequential memory access

1 __kernel void uncoalescedMemoryAccessShift(__global

2 float* A,__global float* B,int dataSize,int shift)

3 {

4 int tid=get_global_id(0);

5 B[tid]=A[tid+shift];

6 }

Another kind of misaligned memory access is memory access with strides. In this
kind of memory access, each work-item accesses a memory location, which is a con-
stant number of memory locations away. Listing 3.3 shows memory access with
strides. If the stride length is small enough to make the entire memory access lie
within 128-byte segment, only one memory transaction is made. Usually, the strides

Chapter 3. Performance Characterization of Mobile GPU 35

are long enough to necessitate multiple memory transactions. Hence, such mem-
ory access method should be used sparingly. In cases where it must be used, other
optimization techniques such as caching on the local memory should be used to
minimize its effect.

FIGURE 3.6: Strided Memory Access [50]

LISTING 3.3: Kernel code for strided memory access

1 __kernel void uncoalescedMemoryAccessStride(__global

2 float* A,__global float* B,int dataSize,int stride)

3 {

4 int tid=get_global_id(0);

5 B[tid]=A[tid*stride];

6 }

Given the above memory access methods, the global memory of the mobile GPU
is tested for memory copy throughput, where elements of a buffer are copied from
one location of memory to an other. To test the copy throughput coalesced memory
access, memory access with a constant shift, and memory access with a constant
stride were conducted. Also each test was done for varying numbers of work-items
per work-group. The reason this secondary test was employed is to see if the number
work-items in a work-group affected memory access throughput.

Coalesced Memory Access

In this experiment, a single precision floating point array A resident in the global
memory was copied to another array B with same size and data type using the kernel
shown in Listing 3.1. The kernel was run with a total number 67108864 work-items
that is equal to the size of each array. The memory allocated in the global memory
then becomes 67108864 x 4 bytes = 256MB per array. Each work-item makes a
single element copy between A and B corresponding to its index in the index space,
where a work-item is identified by a unique integer id. Also, as mentioned above,

Chapter 3. Performance Characterization of Mobile GPU 36

the memory copy operation is done with varying number of work-items per work-
group between 1 and a Maximum value, which is inherent to the device. In our case
this value is 128 for the Adreno 320 GPU and 512 for the Adreno 420 GPU.

The memory copy throughput is measured using the time it takes to copy all
the elements of the array A to array B. The kernel in Listing 3.1, which is used to
measure the throughput, does one memory read and one memory write operation.
Hence, the copy throughput is computed as follows

CopyThroughput =
1Read ∗ArraySize+ 1Write ∗ArraySize

Total T ime Taken to Copy A to B
∗ sizeof(dataType)

(3.1)
where ArraySize is the number of elements in array A and dataType is the data

type of array A.

However, both the read and write operations are of the same dataType, which
means equation 3.1 reduces to

CopyThroughput =
2 ∗ArraySize ∗ sizeof(dataType)
Total T ime Taken to Copy A to B

(3.2)

The results of this experiment are shown in Figure 3.7. The x − axis represents the
number of work-items per work-group in logarithmic scale while the y − axis gives
the measured data transfer throughput in Mega bytes per second (MB/s). The blue
line shows the copy throughput trend for Adreno 320 GPU while the red line gives
the copy throughput trend for the Adreno 420 GPU for the coalesced memory access.
The immediate observation from Figure 3.7 is that the vertical gap between the blue
and red lines which is caused the memory used with the two GPUs being from differ-
ent generations with different speeds. Another observation is the copy throughput
increased as the size of work-group increased from one to the maximum value. This
phenomenon can be explained by more coalescing of memory access happening as
a result of more and more work-items accessing contiguous memory locations from
within a work-group. More coalescing means fewer and fewer memory transactions
are done resulting in higher and higher data copy throughput.

However, the increasing copy throughput trend may not continue indefinitely
with increasing number of work-items per work-group in general as the effect of
various overheads starts to appear. The decrease in copy throughput observed for
a size of 512 work-items per work-group for the Adreno 420 GPU from the max-
imum throughput at 256 work-items per work-group for the same GPU indicates
the effect of overheads. The sheer amount of workload created (memory requests)
by the number of work-items and the work-item scheduling used by the GPU can
be attributed as the cause for this decrease. In other words, higher number of work-
items per work-group create thread/work-item scheduling overhead and saturation

Chapter 3. Performance Characterization of Mobile GPU 37

of the memory pipeline by the increased number of memory transaction requests is-
sued even if they are coalesced requests.

FIGURE 3.7: Coalesced Memory Access

Global Memory Access with Shifts

As shown in Listing 3.2, memory access with shifts does reads and writes memory
a constant shift distance away from the current work-item id. Such reads/writes
may result in surpassing the boundary of a memory block a work-group can access
resulting in the issuance of multiple memory transactions. Experiments were done
on the Adreno 320 and Adreno 420 GPUs to test the effects of shifted memory access.
The size and type of array used in this experiment was same as the one used for the
coalesced memory access experiment. Shift distance sizes ranging from 0 to 32 with
increments of 1 were used. The kernel execution time was measured for each shift
distance value while keeping work-group size fixed. Then the same procedure was
repeated for increasing work-group sizes. The results of the experiment are depicted
in Figure 3.8.

The x − axis in Figure 3.8 represents the number of shift distances used in the
experiments in linearly increasing order while the y − axis shows the throughput
achieved in Mega bytes per second (MB/s). The different color lines represent the

Chapter 3. Performance Characterization of Mobile GPU 38

results obtained for the varying sizes of the work-groups used on the two GPUs used
for experiment as indicated in the legends of Figure 3.8 . It is easily observed from
Figure 3.8 that the memory access throughput is at its highest when the work-group
size is the largest for both GPUs. This leads us to believe the GPUs are optimized for
memory access at work-group sizes of 128 for the Adreno 320 and 512 for Adreno
420. Also, the distance between the bumps in graphs lead us to believe that in the
Adreno 320 the memory alignment is 32 bytes while in the Adreno 420 it is 64 bytes.

Another, observation is that the throughput is not significantly affected by most
shift values except ones that break the memory block boundary. The results fo the
two GPUs show characteristically different graphs. On the Adreno 320 GPU with
work-group size of 128 work-items, the bumps in the graph have a positive trend
indicating that most of the shifts have an effect in reducing memory access through-
put. However, these positive bumps did not start with shift values of 0 indicating
that buffers are not allocated in memory at the beginning of an aligned memory seg-
ment. This also seems to be the case for the Adreno 420 GPU,where for shift value
of 0 the memory access throughput is the lowest for this GPU as well. Apart from
this common behaviour, the two GPUs have opposite responses for the shifted ac-
cess. For the Adreno 320 GPU, the shifts negatively affected throughput keeping it
lower until a shift when memory is aligned again. In the case of the Adreno 420,
the throughput is not affected for most of the shifts except at intervals of 16 shift
distances apart where it gets lower. This shows modern GPU architectures are im-
proving to reduce the effect memory access patterns.

Global Memory Access with Strides

The global memory access with strides experiment is done using Listing 3.3. In
this experiment, a memory location that is found a constant multiple away from
the current work-item id is accessed. As the size of the constant multiple increases,
the gap between two accessed memory locations widens significantly which quickly
breaches the aligned memory block boundaries. As a result, more and more memory
transactions will be issued. Similar array sizes and measurement techniques were
used as in the previous two experiments. But this time, the global work item size
was reduced to 4194304 using equation 3.3 where max stride size used in the exper-
iments was 16. The reason for this reduction of work size is to make memory access
be within the allocated array boundaries and also keep a similar work size for the
different stride sizes.

The number of strides was varied in the experiment from 2 to 16 linearly. There
are two reasons for the strides starting from 2. If the strides start from 0, it will
mean all the work-items will be accessing the first element of the array used in the
experiments. If the strides started from 1, the resulting memory access pattern will

Chapter 3. Performance Characterization of Mobile GPU 39

FIGURE 3.8: Global Memory Access with shifts

be coalesced which has been studied and reported earlier. The experiment was also
repeated for two different work-group sizes for each GPU. These work-group sizes
were chosen based on the previous experiment where we picked the best performing
work-group size for both GPUs.

GlobalWorkItemSize =
ArraySize

Max Stride Size
(3.3)

The x − axis in Figure 3.9 represents the value of strides used in the experi-
ments while the y − axis gives memory access throughput in Mega bytes per sec-
ond. The bold blue and red lines show results for the Adreno 420 GPU while the
greyed out blue and red lines show results for the Adreno 320 GPU. The figure shows
that the memory access throughput decreased significantly as the number of strides
increased for both GPUs. These results indicate that memory accessed with large
strides result in many memory transactions hence the observed lower throughput.
Therefore, this memory access pattern should be avoided. In case it could not be
avoided, moving the data to the local memory and making the memory access with
strides in the local memory can improve performance. One can also deduce from
the results shown in Figure 3.9 that a random memory access pattern will perform
worse in GPUs and should be avoided or mitigation techniques suggested earlier be
used in such situation.

Chapter 3. Performance Characterization of Mobile GPU 40

FIGURE 3.9: Global Memory Access with strides

3.3.2 Global Memory Read Latency

In the earlier section we saw, how the pattern of accessing the global memory af-
fected throughput of memory access. In this section, we measured the global mem-
ory read latency to identify how long it takes to read an integer from memory; this
helps to reveal optimizations in the memory system of the GPU, giving insights into
its caching structures. The basic structure of the measurement is to read all elements
of an array, and to measure the run time used to make the accesses. The array size is
varied from small (likely to fit all inside a cache) to much larger than all the caches.
The locality of the accesses is destroyed by making essentially random consecutive
accesses, guaranteeing cache misses once the array size is large enough.

The code illustrated in Listing 3.4 is used for this task. It is a version of pointer
chasing construct usually used in such measurements [51]. A random sequence of
indices have been stored in the array (array A) used in the experiment beforehand
to make ensure cache miss occur. The construct repeat128(str) in the listing is a
macro defined to repeat a given string in the brackets. It is used for unrolling the
loop to lower the effect of the loop time on timing measurement. Also, to prevent
the compiler from optimizing away the kernel, a dummy result had to be returned
from the kernel as shown on line 9 of Listing 3.4. To also remove the effect of latency
hiding by coalescing only a single work-item is used in this experiment.

Chapter 3. Performance Characterization of Mobile GPU 41

LISTING 3.4: Kernel code for memory read latency measurement

1 __kernel void MeasureMemoryLatency

2 (__global unsigned int *A, int dataSize,int iterations)

3 {

4 unsigned int j=0;

5 for(int i=0;i<iterations;i++)

6 {

7 repeat128(j=A[j];);

8 }

9 A[dataSize-1]=j;

10 }

The measurement was done for the CPUs (the Krait 200 and Krait 450) as well as the
GPUs (Adreno 320 and Adreno 420) for comparison. Figure 3.10a shows the CPU
results and Figure 3.10b shows the GPU latency. In both figures, the x − axis gives
data size used in bytes using a logarithmic scale while the y − axis represents the
memory read latency measured in nano seconds (ns). In Figure 3.10a the blue line
give results for the Krait 200 CPU while the red line depicts the trend of latency
measured for the Krait 450 processor. This sub-figure suggests that the Krait 200 and
the Krait 450 processors have two levels of cache, and the sizes did not change across
the generations: they both have 16 KByte level one (L1) Cache and 512 KBytes of
level two (L2) cache. This can be seen by the jumps in latency measurement at these
values on the x− axis of Figures 3.10a.

The red line in Figure 3.10b depicts the memory read latency for the Adreno 320
GPU while the violet line gives the results for the Adreno 420 GPU. From this figure,
one can see the GPUs also appear to have two levels of cache; the Adreno 320’s has
an L1 cache of 32Kbytes and a 512Kbyte L2 cache. We suspect that L2 cache of the
Adreno 320 GPU is shared with the Krait 200 CPU, as they are the same size and
are quite large. The Adreno 420’s L1 cache is smaller, at 16Kbytes, but it contains its
own L2 Cache at 128 Kbytes, separate from the Krait 450 CPU’s L2 Cache.

The CPUs and the GPUs all share the same global memory, as illustrated in Fig-
ure 3.1, but the latency to global memory is not the same. For example, the Adreno
320 global memory latency, shown at the right side of Figure 3.10b is approximately
859ns, whereas the CPU global memory latency is about 100ns. In the case of the
Adreno 420, the GPU global memory access latency has improved to be about three
times slower than the corresponding CPU Memory compared to the Adreno 320s
eight times slowness against its CPU memory access latency. Although, there is
improvement over generations of applications processors, these results point to the
need to use the global memory sparingly. However, it needs to be remembered that
these experiments were done using only one processing element and this larger la-
tency observed for the GPUs can be hidden using coalescing when many work-items
are used.

Chapter 3. Performance Characterization of Mobile GPU 42

(a)

(b)

FIGURE 3.10: (a)Krait CPUs Main Memory and (b) Adreno GPUs
Global Memory Read Latency

3.3.3 Local Memory Latency Measurement

In this section, we present two experiments done to measure the capabilities of the
local memory of the GPU. The first experiment was done to determine the latency
of the local memory. The second experiment was done to see the effect of memory
bank conflicts in the local memory.

Chapter 3. Performance Characterization of Mobile GPU 43

Local Memory Latency

The read latency of the local memory was measured by accessing it with strides. The
strides were varied from 0 to 255. This was done to spread the reads across the al-
located local memory. Using strides in this experiment does not have the behaviour
described in section 3.3.1 because only one processing element is used. The indices
generated as a result of stride computation were first copied to a buffer in the global
memory as the local memory is not directly accessible from the host side. These
indices stored in the global memory buffer are then copied to the local memory at
the runtime of the kernel. Then, data is read from the local memory in the pointer
chasing fashion as shown in listing 3.5. In order to remove the effect of copying from
the global memory to the local memory and have a correct runtime measurement,
the experiment was run first to measure the average run time of the global-to-local
memory copy part of the kernel. Then this average time was subtracted from the
overall average kernel run time. For comparison, the latency of global memory was
also measured. The device used for this experiment was the Adreno 420 GPU in the
Snapdragon 805 SoC.

LISTING 3.5: Kernel code for local memory read latency measure-
ment

1 __kernel void dTestLocalMemoryLantency(__global int* gdata,

2 __local int* ldata,int dlength, int iterations)

3 {

4 __local int j;

5 for(int i=0;i<dlength;i++)

6 ldata[i]=gdata[i];

7 j=0;

8 for(int i=0;i<iterations;i++)

9 {

10 repeat256(j=ldata[j];);

11 }

12 }

Figure 3.11 shows the results of the experiment conducted. The strides used in
the experiment are given in linear scale in the x−axis and the corresponding latency
in nano seconds (ns) is given in the y − axis. The red line shows the latency values
measured for the global memory while the local memory latency is the blue line.
The immediate observation from the figure is the gap between the global memory
latency and the local memory latency. On average the Adreno 420’s global memory
latency is 446ns while the local memory has a latency of about 12.45ns. This means
the local memory is 37 times faster than the global memory for this GPU. Although,
this speed difference is lower than the 100 times difference usually attributed to such
memories, it still is very significant and algorithms can benefit from using the local
memory. Another observation is that there is no significant change in latency be-
tween accessing the same location of local memory as in the case of stride = 0 and

Chapter 3. Performance Characterization of Mobile GPU 44

different locations with other stride values. However, a slight increase can be noticed
for the global memory as the strides increased.

FIGURE 3.11: Read latency for the global and local memories of the
Adreno 420 GPU

Local Memory Bank Conflict

The local memory in the GPU is organized in banks to allow for simultaneous read-
/write access of data stored in different banks. However, if two work-items try to
access data in the same local memory bank, the access will be serialized. The se-
rialization will have impact on the performance of the algorithm running on the
GPU. Hence, understanding the behaviour of the local memory banks is essential
for optimizing algorithms to avoid bank conflicts. In this second experiment, two
work-items are used where the first one accesses data at a base of an array on the
local memory while the other is moved with linear offsets to identify conflict points
where the offsets are varied from 0 to 256. The conflict points can be inferred from
the latencies measured at each offset. The experiment was done on the Adreno 420
GPU, an AMD Radeon HD 6770M from a laptop and a desktop NVIDIA GTX 480
GPU. The laptop and desktop GPUs were included for comparison.

The results of the experiment are given in Figure 3.12. The x − axis gives the
linear offsets and the y − axis gives latency in nano seconds (ns). The blue line
represents the measured latencies for the different offsets on the Adreno 420 GPU.
The red line provides latency measurements for the AMD Radeon HD 6770M GPU

Chapter 3. Performance Characterization of Mobile GPU 45

while the green line give measured latencies for the NVIDIA GTX 480. It is expected
to see a doubling of access latencies whenever there is a conflict. As one can see from
Figure 3.12,the older NVIDIA GTX 480 GPU shows bank conflicts at every 32 offsets
which is inferred from the doubling of latencies at these points. This behaviour is
clearly described in the documentation [19]. Whereas, the more modern Adreno 420
and AMD Radeon HD 6770M don’t show any bank conflict. As a result, one can
assume that there is a clever hardware trick in these GPUs that can predict potential
conflicts and take appropriate measure to avoid them.

FIGURE 3.12: Local Memory Bank Conflict Measurement

3.4 Arithmetic Operations Latency Test

In this experiment, the latency of the basic arithmetic operations (+,−, ∗, /) is mea-
sured for integer and floating-point data types. The measurement is done following
the algorithm shown in Listing 3.6. Two variables, a and b, are instantiated on the
private memory (registers) of the GPU to reduce the memory access latency. The
operation is done on a in a cumulative way so that the instructions run are processor
bound. That is, since a and b are created to be on registers, it is assumed a is moved
to the accumulator once and the value of b is operated on a repeatedly as shown.
Also to avoid all clever optimizations of the compiler, the kernels are compiled with
all compiler optimizations disabled. One other thing to note is that the kernels are
run on a single processing element on the GPU.

Chapter 3. Performance Characterization of Mobile GPU 46

A similar code was run for the CPU (Krait 450 and Kriat 200) as well for compar-
ison. The code for the CPU was compiled with the default GCC optimizations.

LISTING 3.6: Kernel code for arithmetic latency measurement

1 __kernel void d_measureArithmetic[DataType][Operator]

2 (int iterations,__global float *result)

3 {

4 DataType a=Const1;

5 DataType b=Const2;

6
7 for(int i=0;i<iterations;i++)

8 {

9 repeat128(a=a[Operator]b;);

10 }

11 result[0]=a;

12 }

This measurement was run on both systems. Table 3.2 and Table 3.3 show the time it
takes to complete a single operation for integer and floating-point data types in nano
seconds. It can be seen that the newer GPU i.e Adreno 420 has superior integer and
floating-point performance when compared to the Adreno 320 GPU. Interestingly
the GPU’s floating-point performance and integer arithmetic performance are very
similar. For both integer and floating-point, addition and subtraction operations
were the fastest followed by multiplication. The division operation consistently took
a significantly longer time in all cases except on the Krait 200 Integer arithmetic. Re-
peated Integer divisions quickly reach a zero values and all subsequent divisions
will have a zero nominator. This leads one to believe that there exists a clever hard-
ware optimization that removes the further division operations in the case of the
Krait 200 CPU.

TABLE 3.2: Results of Integer Arithmetic Operations latency

Integer Adreno 320(ns) Krait 200(ns) Adreno 420(ns) Krait 450(ns)
Addition 142 29 86 8

Subtraction 143 28 86 8
Multiplication 180 21 94 8

Division 737 12 315 13

TABLE 3.3: Results of Floating Point Arithmetic Operations latency

Float Adreno 320(ns) Krait 200(ns) Adreno 420(ns) Krait 450(ns)
Addition 142 29 86 14

Subtraction 142 28 86 14
Multiplication 143 21 94 15

Division 398 70 176 23

Chapter 3. Performance Characterization of Mobile GPU 47

3.5 Measuring Parallelism

In this experiment, the amount of parallelism that exists in GPUs was measured by
measuring the latency of arithmetic operations with respect to number of threads/work-
items used. A fixed amount of work was given to a work-item and the number
work-items was gradually increased. Although, the total work-size increases each
work-item will have the same fixed amount of work. This fixed amount of work in
our case was a set of simple arithmetic operations performed on integer data in the
private memory of the GPU. There is no interdependence between each work-item
and the effect of using the global memory is not present. Therefore, we expect to see
no change in the latency of the execution of the instructions in Listing 3.7 until we
have the work-group size greater than or equal to the number of processing elements
in the system. The Qualcomm Adreno 420, the ARM Mali T628 and the Imagination
Tech’s PowerVR G6400 mobile GPUs as well as the laptop AMD Radeon HD 6770M
and the desktop NVIDIA GTX 480 GPUs were used for the experiment. The default
OpenCL compiler optimization is enabled in this experiment unlike the previous
arithmetic latency measurement where it was disabled. As usual the average of the
latencies measured were taken after multiple runs. In addition cache warming runs
were made before measurement was taken.

LISTING 3.7: Kernel code for measuring degree of parallelism

1 __kernel void dTestWorkLoadParallelism(__global int* gdata,

2 int iterations,int offset)

3 {

4 int a=offset;

5 int b=const1; //const1 is replaced by a number

6 int x=const2; //const2 is replaced by a number

7 int j=get_global_id(0);

8 for(int i=0;i<iterations;i++)

9 {

10 //some dummy arithmetic operation

11 repeat128(x+=a;a+=b;b+=x;);

12 }

13 gdata[j]=x; //return dummy data

14 }

As stated earlier, the latency should be the same for a number of work-items
less than the number of actual processing elements in the GPU. For example, if the
number of processing elements in a GPU is 64 and all work items have similar work
load, one should not see a difference in latency between 10 work-items or 58 work-
items running on the GPU. However, there should be a difference when the number
of work-items is greater than 64 because there are not enough processing elements to
handle computation in parallel. The extra work-items will need to be scheduled to
run only after resources are available again. The results in Figure 3.13 show clearly
the amount of parallelism present in each tested GPU allowing us to determine the

Chapter 3. Performance Characterization of Mobile GPU 48

number of processing elements for each. The x−axis in Figure 3.13 gives the number
of work-items in linear scale while the y − axis gives the arithmetic load latency in
nano seconds. The blue, red, green, violet and cyan colored lines give the measured
arithmetic workload latency for the Adreno 420, AMD Radeaon HD 6770M, Nvidia
GTX 480, ARM MALI T628 and the PowerVR G6400 GPUs respectively.

FIGURE 3.13: Arithmetic workload vs work-group-size

The Adreno 420 GPU and the PowerVR G6400 both boast about 96 processing
elements while the Mali T628 GPU starts to saturate earlier than its nominal number
of 100 processing elements. The latency for the Radeon HD 6770M GPU stayed low
until 128 work-items and the GTX 480 had the same latency for all work-item sizes
in this test which was limited at 256 work-items. The reason for this behaviour of
the GTX 480 is that it has many more processing elements than tested. All except
the GTX 480 GPU show a stepping increase in latency after the first set of measured
latencies although these steps were different for each GPU. The measured latency
for the Adreno 420 GPU comparatively stayed the same until the number of work-
items reached 96 and showed a doubling of the latency for the next set of 96 work-
items and a tripling for the next set of work-items until the end of the test. The
results for the ARM Mali T628 show irregularity for the first 100 work-items.The
latency at the beginning lowers from its starting value and lowers again after many
work-items then keeps this value until it reached around the 100 work-item mark.
After the 100 work-items, the measured latency for the ARM Mali T628 have ramps
and landings at regular intervals that lead to quickly rising latency. In the case of
the powerVR G6400 GPU, the latency for the first 100 work-items was relatively
constant. However, for next set of work-items the latency showed variable length
steps. The latency increased at shorter intervals at first and starts to widen at higher

Chapter 3. Performance Characterization of Mobile GPU 49

number of work-items. The AMD Radeon 6770M GPU showed the same latency for
the first 128 work-items and after that the latency increased at steps of 64 work-items.
However, the latency did not double or triple but increased at regular values.

Figure 3.13 also shows that although the mobile GPUs tested were relatively the
same generation, the Adreno 420 had the lowest latency. In fact, the Adreno 420 had
the lowest latency for the first 128 work-items compared to all GPUs tested. The Mali
T628 showed a lower latency than the PowerVR G6400 GPU for the first 154 work-
items but after that number of work-items the PowerVR G6400 had a more stable
lower increase in latency unlike the Mali T628. One can infer from this behaviour
that different computer architects choose different ways of scheduling work-items
and sharing resources.

3.5.1 Summary

In this chapter the measurements that were done to understand the mobile GPU’s ar-
chitectural capabilities were discussed. Data transfer throughput between host side
and device side were measured giving us the insight to avoid such explicit move-
ment of data on mobile systems. Then we saw how different patterns of accessing
data from the global memory of the GPU affects data transfer throughput and what
this means for computation. Following this, we determined the sizes of different lev-
els of caching available for both the CPU and GPU in the systems tested. The latency
of local memory was measured and compared with the latency of the global mem-
ory and this latency measurement technique was also used to study the behaviour of
local memory bank conflicts. The latency of arithmetic operations was also tested to
get an insight on how GPU processing element bound computations behave. Finally,
the arithmetic latency measurement technique was adapted to measure the available
parallelism in the GPUs tested. The insights gained from these experiments will be
used in the next section for optimizing the object detection algorithm.

50

Chapter 4

Object Detection on a Mobile GPU

The second objective of this work is to implement the Viola-Jones object detection
algorithm [21], described in detail in Chapter 2, on a mobile GPU and to measure
the resulting performance both in run time and energy efficiency. In this chapter,
the implementation of the components of Algorithm 1 in Section 2.4 on a GPU are
described. First, the implementation of the integral and square integral image com-
putation will be described. The naive implementations of Algorithm 1 on both the
CPU and GPU will then follow. After that the different approaches used to improve
the performance of the algorithm on the GPU will be described.

The mobile development platform used in this work was the Qualcomm Snap-
dragon 805 [52] developer tablet. It has four Krait 450 processors that run at fre-
quencies of up to 2.5 GHz, with 3GB of LPDDR3 memory running at 800MHz. It
also contains the Adreno 420 GPU running at 600MHz. This GPU has four compute
units where each contain 32KB of local memory. It is important to note that both the
processor and the GPU share the same RAM which means that it is possible to avoid
memory copies as a buffer allocated in memory can be accessed from the CPU and
GPU. This is significant as those copies are often bottlenecks [53, 54].

The parallel and serial implementations presented in this chapter are based on
the same algorithm as the OpenCV 3.1 version [18] and we will directly compare the
quality of results and runtime with the OpenCV 3.1 code. Note that the OpenCV ver-
sion 3.1 also has an implementation in OpenCL (which is a key goal of this research;
we warn the reader that the two acronyms in the preceeding sentence - OpenCV
and OpenCL refer to quite different things - OpenCV is the open-source computer
vision library, and OpenCL is the open computing language used for accelerating
computation) that was indicated to be compatible with Android. However, we were
unable to make the OpenCL version of the object detection algorithm from OpenCV
work on the mobile device used. That code did work on the desktop environment
when the same version of OpenCV was compiled for the desktop environment with
the same build options as in the case of the Android version. A closer look at the

Chapter 4. Object Detection on a Mobile GPU 51

OpenCV 3.1 version source code revealed that the OpenCL version of the Viola-
Jones based object detection algorithm was limited to only run on Advanced Micro
Devices (AMD) and Intel systems. We compiled the OpenCV 3.1 version after re-
moving this limitation and tested it with the same sample images as for the CPU
only version. The results obtained showed a great erroneous deviation from the
CPU only version suggesting that the OpenCL object detection code is not designed
to function correctly on systems other than the ones mentioned earlier.

4.1 Integral Image Computation

In this section we will describe the integral image computation (described in Section
2.4) that is required before the search for objects commences. The integral image is
computed for different scales of the input image. The first subsection describes the
way the resizing of the input image is done for different scales. It is followed by
the description of the implementation of the integral image computation using the
prefix sum algorithm.

4.1.1 Image Resizing

Before the integral image computation commences the original image needs to be re-
sized to the appropriate scales i.e. the original image is successively shrunk to create
a scaled image pyramid. The scales used for resizing the original image are com-
puted based on the window size a cascade classifier is trained on and the original
image size. The bilinear image scaling method shown in Listing 4.1 is used as this
method is also used in OpenCV. The bilinear algorithm uses the linear interpolation
of the neighbouring pixels to compute the value of the new pixel in the new resized
image. This algorithm was straightforward to implement on the GPU. Our GPU im-
plementation is based on the Java implementation of the bilinear resizing algorithm
given in [55].

The inputs to the kernel in Listing 4.1 are a gray scale image, a scaleDataGPU
object and other necessary information. The scaleDataGPU object contains the pre-
computed sizes of the new images at each scale, pointers to the location of memory
where the new resized images are going to be stored and other information needed
for later computations. The kernel is organized to be run with [8 x H] number of
work-items, where H is the image height of the largest scale. We have also selected
to organize work-items in an [8 x 8 = 64] work-group following our finding that
upto 96 work-items can virtually execute together on a compute unit in chapter 3.
Each row of work-items is responsible to iterate over a corresponding row of the

Chapter 4. Object Detection on a Mobile GPU 52

image at the new scale computing new pixel values. These newly computed pixel
values are then stored in their corresponding location in memory.

LISTING 4.1: GPU implementation of the Bilinear image scaling

1 __kernel void resizeBilinearGrayGPU(__global uchar* pixels,

2 int w,int h,__global uchar* sums,

3 __global ScaledDataGPU* s,int numberOfScales)

4 {

5 int ygid=get_global_id(1);

6 int xlid=get_local_id(0);

7 __global int* temp;

8 int w2,h2; //dimensions of target image

9 for(int scales=0; scales < numberOfScales; scales++)

10 {

11 w2=s[scales].sizeOfImage.s0; //get target width

12 h2=s[scales].sizeOfImage.s1; //get target height

13 temp = (__global int*)(sums + s[scales].bufferOffset

14 * sizeof(int));

15 int A, B, C, D, x, y, index, gray ;

16
17 float x_ratio = ((float)(w))/w2; // x - scaling ratio

18 float y_ratio = ((float)(h))/h2; // y - scaling ratio

19 float x_diff, y_diff ;

20
21 int offset=ygid*w2; //used for easy memory reference

22 int iterations=0;

23 for (int j=0; j < w2 && ygid < h2; j += HALF_TILE_SIZE)

24 {

25 int xIndex=mad24(iterations,HALF_TILE_SIZE,xlid);

26 x = (int)(x_ratio * xIndex) ;

27 y = (int)(y_ratio * ygid) ;

28 x_diff = (x_ratio * xIndex) - x ;

29 y_diff = (y_ratio * ygid) - y ;

30 index = y*(w)+x ;

31
32 // range is 0 to 255 thus bitwise AND with 0xff

33 A = pixels[index] & 0xff ;

34 B = pixels[index+1] & 0xff ;

35 C = pixels[index+w] & 0xff ;

36 D = pixels[index+w+1] & 0xff ;

37
38 // Y = A(1-w)(1-h) + B(w)(1-h) + C(h)(1-w) + Dwh

39 gray = A*(1-x_diff)*(1-y_diff) + B*(x_diff)*(1-y_diff)

40 + C*(y_diff)*(1-x_diff) + D*(x_diff*y_diff);

41 temp[offset+xIndex] = (int)(gray) ;

42 iterations++;

43 }

44 }

45 }

Chapter 4. Object Detection on a Mobile GPU 53

4.1.2 Integral Image

Once the image is resized, the next step is to compute the integral images. The
integral image is computed using the prefix sum also known scan operation. The
serial computation of the prefix sum is straight forward as shown in Figure 4.1.
Given an input vector, the algorithm first sets the first element of the output vec-
tor to 0. Then starting from i = 0 iterates through each element of the output vector
doing output[i + 1] = output[i] + input[i] until i + 1 < input_vector_length.
At the end of this operation each element of the output vector will store the sum
of elements preceding and including itself. However, as one can see from Figure
4.1 the last element of the input vector is not used. This kind of prefix sum is
called an exclusive prefix sum. In order to have in inclusive sum, the length of
the output vector has to be increased by one and the iteration should continue until
i + 1 < (input_vector_length + 1).

FIGURE 4.1: Sequential computing of an exclusive prefix sum (scan)

There are different ways of computing the prefix sum as shown in [56] but in
this work the parallel prefix sum computation method developed by Blelloch in [57]
is used. This prefix computation method uses an upward reduction operation on a
summation tree and a downward summation pass. Figure 4.2 shows the process of
computation of the prefix sum on a SIMD parallel hardware such as GPUs. Given an
input vector as shown in step 0 of Figure 4.2, pairs of elements of the input vector are
summed in parallel and the resulting sums are stored in the same vector avoiding the
need for additional memory to store output results. In the second step, pairs of the
previously computed sums will be summed and stored in parallel. This computation
is continued step by step in a similar manner until finally the last element of the
vector carries the sum of all elements in the vector.

Once the upward reduction operation is done, the last element of the vector will
be replaced by a 0 indicating the beginning of the downward swap and sum opera-
tion. The first of these operations is shown in the fifth step of the example shown in

Chapter 4. Object Detection on a Mobile GPU 54

Figure 4.2. Here a copy of the fourth element of the vector is stored in a temporary
memory location. Then the last element in the vector is copied to the fourth location.
This is followed by the addition of the value stored in the temporary location to the
last element. In the next step, the process described above is applied to levels of the
summation tree generated during the upward reduction process. After all the levels
in the tree are processed, each element of the resulting vector will have the sum of
all preceding elements including itself.

The operations discussed above are designed to be executed on SIMD machines.
It can be seen in Figure 4.2 that to compute the prefix sum for a vector size of n,
only n/2 or n/2 + 1 processing elements/threads are required. However, all the
processing elements are not used all the time as some of them will be idle for parts
of the prefix sum algorithm. Although, these processing elements/threads are not
used all the time during the execution of the prefix sum, on SIMD machines, such as
a GPU, this algorithm is efficient as there are only O(n) additions done.

FIGURE 4.2: Process of computing an exclusive prefix sum (scan) in
parallel [57, 56]

The code snippet in Listing 4.2, which is a version of the CUDA implementa-
tion presented in [56] into OpenCL, shows the implementation of the prefix sum
computation discussed earlier on a GPU which is a SIMD device. This snippet does
prefix sum computation for a single block of a row in the input gray image. GivenX
amount of work-items per work-group in one dimension in the GPU, this approach
has the capacity to compute the prefix sum for up to 2X number of elements in a
vector. However, this approach is to be utilized for the computation of the integral
image. The integral image is composed of a number of rows that can have more
than 2X number of elements.This necessitates the improvement of the prefix sum
algorithm to handle multiple rows and large number of elements per row.

LISTING 4.2: Code snippet for prefix sum computation on a GPU

1 /*copy input data to local memory (temp)- for coalescing*/

2 temp[2*lid]=input[2*lid]; //lid - local work item id

3 temp[2*lid+1]=input[2*lid+1];

Chapter 4. Object Detection on a Mobile GPU 55

4 /*Build the reduction tree*/

5 for(int d=blockSize>>1;d>0;d>>=1) //blockSize=2*workGroupSize

6 {

7 /*make sure all copies are done*/

8 barrier(CLK_LOCAL_MEM_FENCE);

9 if(lid<d)

10 {

11 int ai=offset*(2*lid+1)-1;

12 int bi=offset*(2*lid+2)-1;

13 temp[bi]+=temp[ai];

14 }

15 offset*=2; //offset is initialized to 1

16 }

17 /*set the last element to zero*/

18 if(lid==0)

19 temp[blockSize-1]=0;

20 /*sum up the tree*/

21 for(int d=1;d<blockSize;d*=2)

22 {

23 offset>>=1;

24 /*make sure all updates are done*/

25 barrier(CLK_LOCAL_MEM_FENCE);

26 if(lid<d)

27 {

28 int ai=offset*(2*lid+1)-1;

29 int bi=offset*(2*lid+2)-1;

30 int tmp=temp[ai];

31 temp[ai]=temp[bi];

32 temp[bi]+=tmp;

33 }

34 }

35 /*write back results to global memory*/

36 output[2*lid]=temp[2*lid];

37 output[2*lid+1]=temp[2*lid+1];

The prefix sum given in Listing 4.2 can be modified in many ways to compute the
sum for the entire image. We will describe two options here. Both approaches use
blocks of work-items for computing the prefix sum. The first approach uses half the
width (W/2) by the height (H) number of work-items for a given input image. These
work items are grouped into work-groups of size X by X that are responsible for
computation of the prefix sum for a particular block of the image. However, as one
can see in Listing 4.2 the last element in the computed sum for each row in a block
is set to zero. This is acceptable if the width of the input image is less than or equal
to 2X . Otherwise, the resulting output is not a prefix sum for the entire image but
for blocks of it. To correct this problem, the last elements of the computed sums in
each block have to be collected in temporary storage located in the global memory.
Each block will have a resulting column of intermediate sums. In the next step,
these intermediate sums have to be aggregated sequentially (blkSum[i, j + 1] +=

Chapter 4. Object Detection on a Mobile GPU 56

blkSum[i, j]) which then are added to each row element in the corresponding block
in a second pass and so requires a second kernel.

The idea behind the second approach is that instead of instantiating as many
as (W/2) work-items per row and have a second aggregation pass to compute the
prefix sum for the entire row, instead fix the number of work-items (X) and have
them loop over the row. This way, the need for a set of temporary storage per row is
replaced by only one temporary storage located in the private memory. In addition,
the second aggregation pass is removed as the carried over sums is applied in the
next loop iteration. In order to compute the prefix sum for the entire image using
this method, X by H number of work-items will be needed.

The computation of the integral image on the GPU in this way requires the com-
putation of the prefix sum on the rows of the image first and then followed by the
columns. However, computing the prefix sum for the columns will be very ineffi-
cient, as data locality will be affected because the pattern of memory access when
operating on the the columns is strided. We know from Chapter 3 that global mem-
ory access with strides is very inefficient and is to be avoided. Transposing the re-
sulting image after the computation of the row prefix sum solves the problem of
data locality, at some cost of extra data movement effort. Applying the row prefix
sum computation on this transposed image will result in an integral image for the
given input gray image. Another transpose may or may not be required depending
on how subsequent computations are configured to use the resulting integral image.
In our case a second transpose was required.

The way the prefix sum kernels and the transpose kernels are organized can af-
fect performance. One can have a row prefix sum kernel followed by a transpose
kernel and then a column prefix sum followed by another transpose kernel. This
will be a total of four kernel calls which is inefficient because of the overhead asso-
ciated with kernel calls. In this work, the row prefix sum and the first transpose as
well as the column prefix sum and the second transpose were combined into a sin-
gle kernel each to reduce the cost of kernel call overhead. This means we will have
only two kernel calls instead of four. In addition, the computation of the integral
and square integral images are combined in the same kernels as the computations
are similar, further reducing the number of kernels needed.

The integral image must be computed for all the scales of the original image as
required by the object detection algorithm. As mentioned in the previous section, the
input gray image was resized and stored in memory for all the scales. Therefore, the
prefix sum computation kernels developed were modified to compute the sum for all
the scales. This approach reduced the number of kernel calls that would have been
needed for each scale in the previous method. This way the the number of kernel
calls to compute the integral image are reduced only to two. In all the computation

Chapter 4. Object Detection on a Mobile GPU 57

discussed above data was only accessed on the GPU side.

4.2 Searching for Objects

The next step in the Viola-Jones [21] object detection algorithm is the search for ob-
jects in a given image. As already discussed, the input gray image has been resized
for all the scales and the integral image computed for each scale. In the process, the
integral image for all scales is computed and stored in memory. Doing so reduces
the need to allocate memory, resize the image, and compute the integral image on
the fly for each scale. However, this has a toll on memory requirement as a large
amount of memory has to be reserved. In recent smart phones, this will not be a
problem as the trend in the industry is to include sufficient sizes of memory in the
device.

In this section we describe the different approaches used to implement the Viola-
Jones[21] object detection algorithm on the mobile GPU. First, the naive implemen-
tation of the object detection, as described in Algorithm 1 of Section 2.4, on the GPU
is discussed. Next, the different techniques applied on the naive implementation for
performance improvement are detailed.

4.2.1 The Naive Object Detection on the GPU

The naive implementation of the object detection Algorithm 1 described in Section
2.4 is given in Listing 4.3. In this implementation, it is assumed that each candidate
window from the input image will be tested for the existence of the object using a
separate work-item/thread. Most of the buffers used for storing the necessary input
data for the algorithm are stored in the global memory.

As described in Listing 4.3, given the top left corner of the a window to be tested,
the variance norm factor is computed first (in lines 5-11). The variance norm factor
is used to reduce the effect of lighting condition in the input image. Next, the outer
for loop in Listing 4.3 (in lines 17-69) applies the cascade classifier on the window
stage by stage. The inner for loop (in lines 23-66) evaluates the features present in
each weak-classifier per stage. It is known that each feature consists of two or three
feature rectangles that requires the computation of weighted sum of the underlying
pixels. This computation is unrolled instead of using a loop in lines 36-56.

In this particular implementation, the number of rectangles per feature are either
two or three and are evaluated accordingly. Once all the weak classifiers present in
a stage are evaluated, the computed result is compared against the stage threshold.
If the computed result is greater than the stage threshold, the window needs further

Chapter 4. Object Detection on a Mobile GPU 58

testing and the next stage needs to be applied. If, otherwise, the computed result is
less than the threshold, the object is deemed to not be present in the current window
and further processing is not needed. After the outer loop finishes processing, the
iterator is checked to see if it is equal to the number of stages.If this is so, the object
is deemed to be found in the current window and it will be marked as containing
the object of interest.

LISTING 4.3: Naive Object Detection Kernel

1 /* (xglid,yglid) top-left corner of current window */

2 x1=xglid+windowSize.x-1;

3 y1=yglid+windowSize.y-1;

4 /* computation of the lighting normalization */

5 mean=GET_SUM2(xglid,yglid,x1,y1,width,sum);

6 variance_norm_factor=GET_SQSUM(xglid,yglid,x1,y1,width,sqSum)

7 * window_area - (float)(mean*mean);

8 if(variance_norm_factor>0.0f)

9 variance_norm_factor=rsqrt(variance_norm_factor);

10 else

11 variance_norm_factor=1.0f;

12 /* apply the cascade classifier on the current window */

13 treeStart=0;

14 alphaStart=0;

15 treeIndex=0;

16 featureIndex=0;

17 for(i=0;i<numberOfstages;i++)

18 {

19 stageSum=0;

20 j=haarStages[i].countWPtr.s0;

21 end=haarStages[i].countWPtr.s1+haarStages[i].countWPtr.s0;

22
23 for(;j<end;j++)

24 {

25 k=0;

26 res=0;

27 treeStart=weakClassifiers[j].countTPtr.s0;

28 alphaStart=weakClassifiers[j].alphaStart;

29 /* evaluate the feature */

30 do

31 {

32 treeIndex=treeStart+k;

33 featureIndex= (int)treeNodes[treeIndex].featureIndex;

34 HAAR_Feature_GPU feature=features[featureIndex];

35 /* Evaluate first feaure */

36 x0=(feature.f[0].s0)+xglid;

37 y0=(feature.f[0].s1)+yglid;

38 x1=(feature.f[0].s2)+x0;

39 y1=(feature.f[0].s3)+y0;

40 res=GET_SUM2(x0,y0,x1,y1,width,sum)

41 * feature.weights.s0;

42 /* Evaluate second feaure */

43 x0=(feature.f[1].s0)+xglid;

Chapter 4. Object Detection on a Mobile GPU 59

44 y0=(feature.f[1].s1)+yglid;

45 x1=(feature.f[1].s2)+x0;

46 y1=(feature.f[1].s3)+y0;

47 res+=GET_SUM2(x0,y0,x1,y1,width,sum)

48 * feature.weights.s1;

49 /* Evaluate third feaure if it exists */

50 res+=select(0.0f,GET_SUM2(

51 feature.f[2].s0+xglid,

52 feature.f[2].s1+yglid,

53 feature.f[2].s0+xglid+feature.f[2].s2,

54 feature.f[2].s1+yglid+feature.f[2].s3,

55 width,sum)* feature.weights.s2,

56 (feature.weights.s2!=0));

57 /* apply the variance norm factor */

58 res*=variance_norm_factor;

59 /* choose an alpha value */

60 k=(res<treeNodes[treeIndex].threshold)?

61 (treeNodes[treeIndex].lr.s0):

62 (treeNodes[treeIndex].lr.s1);

63
64 }while(k>0);

65 stageSum+=alphas[-k+alphaStart];

66 }

67 /* Object not detected */

68 if(stageSum<haarStages[i].threshold) break;

69 }

70 /* Object detected: add to list of detections */

71 if(i==numberOfstages)

72 {

73 int nObjects=atomic_inc(numberOfFoundObjects);

74 if(nObjects<MAX_OBJECTS){

75 foundObject[nObjects].s0=xglid*scaleFactor;

76 foundObject[nObjects].s1=yglid*scaleFactor;

77 foundObject[nObjects].s2=windowSize.x*scaleFactor;

78 foundObject[nObjects].s3=windowSize.y*scaleFactor;

79 }

80 }

There can be as many as [W x H], where W = (imgWidth− window.width) and
H = (imgHeight − window.height), candidate windows when searching the first
scale of input image. Subsequent scales will have progressively fewer candidate
windows. imgWidth and imgHeight are the sizes of the first scaled image while
window.width and window.height are the sizes of the window the cascade classifier
is trained for. Each candidate window will be tested for the existence of the object of
interest by one instance of the kernel (a work-item) that executes the code snippet in
Listing 4.3. Hence, in order to run the object detection kernel in this implementation,
a global work-item size of [W x H] is needed. These work-items can be grouped in
many ways but in this work they are grouped into a work-group size of [8x8] work-
items using the lessons learned in Chapter 3. Although, subsequent scales do not

Chapter 4. Object Detection on a Mobile GPU 60

require as many as [W x H] work-items as used for the first scale, these same work-
items will be reused for searching the object for the subsequent scales. This approach
of reusing work-items is used in all of the implementations on the GPU in this work.

The naive implementation was tested on nine images that were selected based
on their diversity in resolution and the number of objects they contain. Table 4.1
presents results on the speed and accuracy of several implementations of the Viola-
Jones [21] object detection algorithm that we compare. The first column of Table
4.1 gives the resolution of the image under test. Subsequent pairs of columns give
the execution (wall clock) time measured in seconds and number of detections of a
face object by each implementations. For better presentation the test images were
separated into two groups based on their resolution. The geometric mean of the
execution time and the speed up were computed separately for the two groups of
images. There are three implementations compared in the table: the one labelled
OpenCV CPU is the multi-threaded implementation provided in OpenCV [18] ver-
sion 3.1 package and is run on the CPU, the one labelled MyCPU is the naive serial
implementation (described above) running on the mobile CPU and the one labelled
MyGPU Copied is the above naive implementation running on the Adreno 420 Mo-
bile GPU. The term Copied is in reference to the explicit copying of data that was
done in this implementation between the host CPU and the GPU memories.

It is apparent from Table 4.1 that the single-threaded MyCPU is about 5 times
slower than the parallel OpenCV CPU implementation. MyGPU Copied, our naive
implementation on the mobile GPU, was a little faster than the MyCPU implementa-
tion, however, it was still 3.8 and 4.3 times slower than the OpenCV CPU on average
for the Full HD and the smaller sized images respectively. Taking the OpenCV CPU
detection results as the baseline, it can be observed there are slight differences in the
number of detections of objects in the table. This behaviour is most likely caused
by the rearrangements made in the algorithm during its implementation as well as
floating point representations on the different devices. We can also infer from the
results in Table 4.1 that more improvements can and need be done on the naive im-
plementation for better results.

TABLE 4.1: Runtime Measurement for the Naive Implementation

OpenCV CPU MyCPU MyGPU Copied
Images Res - #Object Runtime(S) Detections Runtime(S) Detections Speed Up Runtime(S) Detections Speed Up

Full HD - 1 0.64 1 3.58 1 0.18 3.18 1 0.20
Full HD - 2 1.15 2 6.85 3 0.17 5.53 4 0.23
Full HD - 3 1.10 3 6.12 3 0.18 3.80 3 0.34
Full HD - 9 1.33 9 7.26 9 0.18 5.04 8 0.26

Full HD - 19 1.36 19 7.50 20 0.18 5.05 20 0.27
Full HD - 72 1.74 72 8.24 72 0.21 6.19 74 0.30

Geometric Mean 1.17 6.38 0.19 4.68 0.26
512x512 - 1 0.16 1 0.75 1 0.21 0.55 1 0.29
450x326 - 2 0.09 2 0.41 2 0.22 0.37 2 0.22
647x650 - 31 0.31 31 1.59 31 0.19 1.52 31 0.20

Geometric Mean 0.16 0.79 0.20 0.68 0.23

Chapter 4. Object Detection on a Mobile GPU 61

Using Local Memory

The way the feature rectangles are accessed and evaluated depends on the current
window under scrutiny in the Viola-Jones [21] object detection algorithm. Depend-
ing on the values of the current feature evaluation results the next feature to be eval-
uated is chosen. This next feature to be evaluated may not be stored in contiguous
memory as the previous one. This shows the algorithm has non-uniform memory
access. As it is discussed in Chapter 3 that if an application has non-uniform global
memory access it can benefit from the caching of data in the local memory which has
a much lower latency than the global memory in the GPU. Hence, the naive imple-
mentation was modified so as image data associated with each work-item in a work-
group is copied to the local memory. As each work-item is to operate with one win-
dow, it requires access to [window.width x window.height] pixels that are associated
with the specific window. As a result, a [window.width x window.height] X [8x8]

pixels need copying to be processed by a work-group as the work-items were or-
ganized in an [8x8] work-group. However, all the windows that are evaluated in
a work-group are found adjacent to each other. Therefore, we only need to copy
[(window.width + 8) x (window.height + 8)] pixels per work group. We refer to
this modified implementation as MyGPU Copied LM, where the LM signifies the
use of local memory.

The results collected after applying this modification on the same test images and
using the same experiment settings stated earlier are given in Table 4.2. We keep the
results for the OpenCV CPU and MyCPU from Table 4.1 for comparison. The third
major column gives run time, number of detections and the speed up for MyGPU
Copied LM implementation. It can be seen that the MyGPU Copied LM is about
4.17 and 4.76 times slower than the OpenCV CPU implementation for the different
classes of images respectively. When the current implementation is compared to the
MyGPU Copied implementation from the previous section, it was found to be about
7.9% and 8.6% slower for the different classes of test images, which means the use
of local memory did not improve performance.

The cause of such performance degradation can be attributed to the redundant
copying of image data done to the local memory by each work-group. As each work-
group is a composed of an [8x8] block of work-items and each work-item processes
a window with a resolution of [20x20] pixels, and these candidate windows are con-
tiguous, a [28x28] image block needs to be copied to the local memory per work-
group. However, data copied to the local memory is only visible to the specific
work-group. This leads each work work-group make copies of significant portions
of the image data that could have been shared. In fact, 91.8% of the data copied by
each work-group was copied by other work-groups as well. Hence, MyGPU Copied
LM is an inefficient implementation that can benefit from further improvements.

Chapter 4. Object Detection on a Mobile GPU 62

TABLE 4.2: Runtime Measurement for the Naive Implementation
with Local Memory

OpenCV CPU MyCPU MyGPU Copied LM
Images Res - #Object Runtime(S) Detections Runtime(S) Detections Speed Up Runtime(S) Detections Speed Up

Full HD - 1 0.64 1 3.58 1 0.18 3.55 1 0.18
Full HD - 2 1.15 2 6.85 3 0.17 6.17 4 0.21
Full HD - 3 1.10 3 6.12 3 0.18 4.22 3 0.31
Full HD - 9 1.33 9 7.26 9 0.18 5.60 8 0.23

Full HD - 19 1.36 19 7.50 20 0.18 5.55 20 0.27
Full HD - 72 1.74 72 8.24 72 0.21 6.79 74 0.26

Geometric Mean 1.17 6.38 0.19 5.19 0.24
512x512 - 1 0.16 1 0.75 1 0.21 0.60 1 0.27
450x326 - 2 0.09 2 0.41 2 0.22 0.40 2 0.20
647x650 - 31 0.31 31 1.59 31 0.19 1.65 31 0.18

Geometric Mean 0.16 0.79 0.20 0.73 0.21

Data Transfer Reduction

In the previous GPU implementations the input image was copied from the host side
to the device side explicitly. This explicit copy of data between the CPU and GPU is
slow and wasteful in the mobile system used for experimentation in this work. The
reason is that both the CPU and GPU are connected to the same memory and can
share the same memory space. In the next modification of the naive implementation,
we allocate buffers on the GPU memory (recall it is the same memory as the CPU
memory) in a way that allows them to be shared. These allocated buffers are then
mapped to pointers on the CPU side. After the mapping process, the pointers can
be used as any other pointer used to access memory on the host CPU. This new
implementation is referred to as MyGPU Mapped, where the term Mapped shows
this method avoids explicit copying of data between the host CPU and the GPU.

Table 4.3 gives the results of the measurements done for this particular modifi-
cation. The measurements were done with the experiment device and experiment
setup discussed earlier. We again keep the results collected for the OpenCV CPU
and MyCPU implementations for comparison purposes. In the third major column
in Table 4.3, the runtime, number of detections and speed up obtained in the cur-
rent implementation are provided. The average speed up computed for MyGPU
Mapped is around 0.3 and 0.27 as compared to the OpenCV CPU implementation
for the two groups of test images. However, when compared to the naive MyGPU
Copied implementation there is a 15% and 17% improvement respectively. This in-
dicates that avoiding the direct copying of data between the CPU and GPU memory
can help with improving performance on such heterogeneous architectures.

Work-item Organization

The cascade classifier used in the object detection is usually trained with a smaller
window size than normal input images. Most of the area of the input image is back-
ground or part of the object of interest in the case the object is large enough to fill

Chapter 4. Object Detection on a Mobile GPU 63

TABLE 4.3: Runtime Measurement for the Naive Implementation
with Mapped Memory

OpenCV CPU MyCPU MyGPU Mapped
Images Res - #Object Runtime(S) Detections Runtime(S) Detections Speed Up Runtime(S) Detections Speed Up

Full HD - 1 0.64 1 3.58 1 0.18 2.80 1 0.23
Full HD - 2 1.15 2 6.85 3 0.17 4.66 4 0.28
Full HD - 3 1.10 3 6.12 3 0.18 3.34 3 0.39
Full HD - 9 1.33 9 7.26 9 0.18 4.33 8 0.30

Full HD - 19 1.36 19 7.50 20 0.18 4.30 20 0.31
Full HD - 72 1.74 72 8.24 72 0.21 5.32 74 0.34

Geometric Mean 1.17 6.38 0.19 4.04 0.30
512x512 - 1 0.16 1 0.75 1 0.21 0.47 1 0.34
450x326 - 2 0.09 2 0.41 2 0.22 0.31 2 0.26
647x650 - 31 0.31 31 1.59 31 0.19 1.30 31 0.24

Geometric Mean 0.16 0.79 0.20 0.57 0.27

significant portions of the input image. This means during the search for the object
in the input image, most windows would not contain the object being searched for.
Hence, most of the work-items that were instantiated in the naive implementation
will be idle after the application of the first few stages of the classifier. In order to
mitigate the effect of idle work-items, the number of work-items were reduced to
[8 x H] as used in the case of the integral image computation as shown in Section
4.1. In this modification, a row of work-items in a work-group are used to process
a row of windows. We refer to this implementation as MyGPU Mapped RTC. The
RTC stands for reduced thread count which signifies the reduced number of threads
(a short-hand term for work-items) used.

TABLE 4.4: Runtime Measurement for MyGPU Mapped Reduced
Thread (Work-item) Count

OpenCV CPU MyCPU MyGPU Mapped RTC
Images Res - #Object Runtime(S) Detections Runtime(S) Detections Speed Up Runtime(S) Detections Speed Up

Full HD - 1 0.64 1 3.58 1 0.18 3.12 1 0.20
Full HD - 2 1.15 2 6.85 3 0.17 5.51 4 0.23
Full HD - 3 1.10 3 6.12 3 0.18 3.78 3 0.34
Full HD - 9 1.33 9 7.26 9 0.18 5.02 8 0.26

Full HD - 19 1.36 19 7.50 20 0.18 4.99 20 0.27
Full HD - 72 1.74 72 8.24 72 0.21 6.20 74 0.30

Geometric Mean 1.17 6.38 0.19 4.65 0.26
512x512 - 1 0.16 1 0.75 1 0.21 0.55 1 0.29
450x326 - 2 0.09 2 0.41 2 0.22 0.37 2 0.22
647x650 - 31 0.31 31 1.59 31 0.19 1.55 31 0.19

Geometric Mean 0.16 0.79 0.20 0.68 0.23

In this reduced thread implementation we build on the performance gained with
the MyGPU Mapped version. The buffers used in the object detection algorithm are
mapped for shared use between the CPU and the GPU. The same experiment device
and setup are used for measurement in this case as well. Table 4.4 as usual keeps the
measurement data collected forOpenCV CPU and MyCPU as reference. It also pro-
vides the measurements collected for the new MyGPU mapped RTC. The average
speed up calculated from the results given in Table 4.4 with respect to the OpenCV
CPU implementation is 0.26 and 0.23 for the larger and smaller set of images re-
spectively. The amount of performance reduction compared to MYGPU Mapped,
which is 13.3% and 14.8%, and the identical performance as MyGPU Copied ob-
served indicates that the amount of time most work-items spend being idle in the

Chapter 4. Object Detection on a Mobile GPU 64

previous implementations. Hence, all further improvements in the object detection
implementation in this work will be based on this MyGPU Mapped RTC implemen-
tation. With regard to the number of objects detected, there are slight discrepancies
from the other implementations on the GPU.

4.2.2 Modified Classifier Representation

The most frequently accessed data in the object detection algorithm is the cascade
classifier as it is applied to all windows tested. In the naive implementation, the
data structure that holds the cascade classifier is stored in the global memory. It
was ascertained earlier that accessing data from the global memory is slow as com-
pared to the other memory types present in the GPU. We also have found out that
accessing data in a coalesced pattern can hide the global memory latency. How-
ever, the pattern of accessing the cascade classifier data stored in the global memory
depends on the current window under test.This makes the access pattern variable
from work-item to work-item. On the other hand, the cascade classifier data is used
by all the work-items which makes it frequently used data that may or may not be
cached by the system. A more direct way is to store this frequently used data in a
faster memory that is visible to all work-items. Such a memory , as suggested in
[17], is the constant memory. Storing the cascade classifier in the constant memory
is ideal as the data is constant and does not change. However, the cascade classifier
in its current representation is very large to fit inside the limited constant memory
available.

Our original representation of the cascade classifier on the GPU is given in List-
ing 4.4. It is based on the representation of the cascade classifier on the CPU as
shown in Listings 2.4 and 2.5. As can be seen, there is a visible difference between
the representations on the CPU and the GPU. This difference appeared only be-
cause of the difference in data types used in the CPU and GPU. The changes that
are made are described as follows. The feature representation on the GPU does not
include a boolean component used to check for the presence of tilted features as our
implementation considers upright features only. The Rect data structure, which is
composed of four integers, used to represent the feature rectangles is replaced with
cl_int4 vector data type. The associated feature weights are stored in cl_float4 type.
We have used the cl_float4 instead of cl_float3 type to keep a proper alignment of
data. The feature rectangles, weak classifiers and alpha values are stored in arrays
respectively. Our main goal was to represent the cascade classifier with minimum
number of bytes that lead to the use of aligned vector data types. This use of aligned
vector data types has additional benefits as their use is efficient on the GPU [58].

Chapter 4. Object Detection on a Mobile GPU 65

LISTING 4.4: Representation of the Cascade Classifier on the GPU

1 typedef struct {

2
3 cl_int4 f[3]; //feature rectangles

4 cl_float4 weights; //feature weights

5
6 }HAAR_Feature_GPU;

7 typedef struct{

8 cl_char2 lr; //where l - left(1 byte), r- right (1 byte)

9 cl_int featureIndex; //pointer to feature

10 float threshold; //weak classifier threshold

11 }HAAR_TreeNode_GPU;

12
13 typedef struct {

14 cl_short2 countTPtr;

15 //count - number of tree nodes

16 //TPtr - pointer to tree node

17 cl_short alphaStart; //pointer to associated alpha values

18 }HAAR_WeakClassifier_GPU;

19
20 typedef struct{

21 cl_short2 countWPtr;

22 //count - stores the number of weak Classifiers

23 //WPtr - the beginning of the weak classifier

24 float threshold; //stage threshold

25 }HAAR_Stage_classifier_GPU;

26
27 typedef struct{

28 int count;

29 Size orig_window_size;

30 Size real_window_size;

31 float scale;

32 float window_area;

33 HAAR_Stage_classifier_GPU* stageClassifier;

34 }HAAR_ClassifierCascade_GPU;

As an example to compute how much memory is required to represent a cascade
classifier, we have used one of files containing a cascade classifier for detection of the
face of a person from the OpenCV library. We have made sure the selected cascade
classifier file does not contain tilted features as our focus is a classifier trained with
upright features. In this particular file, there are 2135 features associated with the
weak classifiers present in the file. Each weak classifier is composed of a stump tree
node which means there is exactly one feature per weak classifier. Hence, the total
number of weak classifiers in this example cascade classifier becomes 2135. The
weak classifiers each also contain two alpha values (α) that are selected based on
the evaluation of the feature it contains. The weak classifiers are organized in 22

stages in the example file. These stages contain varying number of weak classifiers
between 3 to 213 per stage. Table 4.5 gives the amount of memory needed to store

Chapter 4. Object Detection on a Mobile GPU 66

each component of the cascade classifier for the face detection example in OpenCV
based on the representation given in Listing 4.4. It can be seen that a total of 188, 088
bytes are needed to store the cascade classifier in the GPU memory.

TABLE 4.5: Representation of the Cascade Classifier on the GPU

Data Bytes/Feature Instance Total Bytes
HAAR_Feature_GPU 64 2135 136640
HAAR_TreeNode_GPU 10 2135 21350
HAAR_WeakClassifier_GPU 6 2135 12810
HAAR_Stage_classifier_GPU 8 22 176
Alpha Values 4 4270 17080
HAAR_ClassifierCascade_GPU 28 1 28

In order for the cascade classifier to fit inside the available constant memory, it
needs to be represented in an alternative way. A close look at the cascade classifier
file revealed that the representation of the feature rectangles assumes the top-left
corner of the window rectangle as the origin. The window rectangle is the size of
the window the classifier is trained for. In our case, the window has a resolution
of [20 x 20] pixels. Hence, the dimensions used to represent the feature rectangles
can never have a value greater than 20. This means the feature rectangles values
can be represented with just 5 bits. However, the smallest number of bits that can
be addressed by modern computers is a group of 8 bits or 1 byte. In OpenCL, the
data type that uses one byte to store values is the cl_char data type. Since there are
four values to be stored for each feature rectangle we use cl_char4 instead as shown
in Listing 4.5. Another revelation from the scrutiny of the cascade classifier file is
that the weights associated with each feature rectangle are small signed integers
(<< 127) rather than large real numbers. This means each weight can be represented
with cl_char data type. Because there can be upto three rectangles per feature, the
weights can be represented withcl_char4 collectively. cl_char4 is used in this case to
keep the alignment of data as stated earlier.

LISTING 4.5: Alternate Represenation of the Cascade Classifier on the
GPU

1 typedef struct {

2
3 cl_char4 f[3]; //feature rectangles

4 cl_char4 weights; //feature weights

5
6 }HAAR_Feature_GPU_Packed;

7
8 typedef struct{

9 cl_char2 lr; //where l - left(1 byte), r- right (1 byte)

10 cl_short featureIndex; //pointer to feature

11 float threshold; //weak classifier threshold

12 }HAAR_treeNode_GPU_Packed;

Chapter 4. Object Detection on a Mobile GPU 67

The inspection of the file also revealed that the left child and right child pointers
of the feature tree in the file only store values of 0 or 1 and can be represented with
cl_char each. The number of features inside the example file were limited to 2135

which means a data type that can store this with the minimum number of bytes can
be selected. Hence, the cl_short data type is used to represent the featureIndex.
The alpha values are stored using cl_floatdata type and further reduction of storage
space was not made because the alpha values utilize significant number of decimal
places. The other data structure shown earlier are already in optimized state and
are not considered for modification here. The memory space saving done because of
this modification is given in Table 4.6.

TABLE 4.6: Representation of the Cascade Classifier on the GPU

Data Bytes/Feature Instance Total Bytes
HAAR_Feature_GPU_Packed 16 2135 34160
HAAR_TreeNode_GPU_Packed 8 2135 21350
HAAR_WeakClassifier_GPU 6 2135 12810
HAAR_Stage_classifier_GPU 8 22 176
Alpha Values 4 4270 17080
HAAR_ClassifierCascade_GPU 28 1 28

As can be seen in Table 4.6,the new required total 81, 338 bytes size is still larger
than the 64KB constant memory reported to be present in our system by querying
the device tested. In our implementation, the features were stored in a separate array
structure that can be made to reside in the constant memory. These features are one
of the most frequently accessed data types as such can benefit from being stored
on the constant memory. The HAAR_TreeNode_GPU_Packed data structure is also
stored on the constant memory. Together these two modified data structures will
only need about 55, 510 bytes which is well below the size of the constant memory
in the system.

The experiments done for the measurement of this implementation used the
same set of test images and experiment settings as used earlier. It can be seen
from Table 4.7 that the 0.26 and 0.23 average speed ups are the same as the MyGPU
Mapped RTC implementation. This suggests that utilization of the constant mem-
ory is not as important as indicated in [17]. This behaviour can be attributed to
the fact that there is no separate constant memory but the caches in the system are
used for storing buffers flagged as constant memory [32]. In our implementation we
flagged the most commonly used data to be stored in the constant memory which
could have been stored in the caches by the caching system anyway.

Chapter 4. Object Detection on a Mobile GPU 68

TABLE 4.7: Runtime Measurement for the Packed Implementation
with Reduced Thread/Work-item Count

OpenCV CPU MyCPU MyGPU Packed RTC
Images Res - #Object Runtime(S) Detections Runtime(S) Detections Speed Up Runtime(S) Detections Speed Up

Full HD - 1 0.64 1 3.58 1 0.18 3.19 1 0.20
Full HD - 2 1.15 2 6.85 3 0.17 5.53 4 0.23
Full HD - 3 1.10 3 6.12 3 0.18 3.82 3 0.34
Full HD - 9 1.33 9 7.26 9 0.18 5.05 8 0.26

Full HD - 19 1.36 19 7.50 20 0.18 4.95 20 0.27
Full HD - 72 1.74 72 8.24 72 0.21 6.10 74 0.30

Geometric Mean 1.17 6.38 0.19 4.66 0.26
512x512 - 1 0.16 1 0.75 1 0.21 0.56 1 0.29
450x326 - 2 0.09 2 0.41 2 0.22 0.38 2 0.21
647x650 - 31 0.31 31 1.59 31 0.19 1.50 31 0.20

Geometric Mean 0.16 0.79 0.20 0.68 0.23

4.2.3 Work Size Reduction

In section 4.2.1, different approaches used to improve the naive implementation by
using techniques of improving performance on the GPU were discussed. In this
section, we will describe the application of work size reduction for performance im-
provement as suggested in [59, 60]. We will build on the reduced thread (work-item)
count implementation discussed earlier. The idea is that most candidate windows
would be of background type or a portion of the object in a typical image under
test. This means, the test on these types of candidate windows will fail at the earliest
stages of the cascade classifier. The effect of this behaviour is that the workload dis-
tribution among the work-items will not be even. Most work-items will finish early
and stay idle while some of the candidate windows are being tested for the higher
stages of the cascade classifier.

To reduce this idle time, we can apply the stages of the cascade classifier one at
a time or grouped in stages on the candidate windows. In the first approach, the
first stage can be applied to all the candidate windows and windows that pass the
stage are collected to be put on a queue. Then in the second round, the second stage
will be applied to all the candidate windows that were on the work-queue and only
those that pass the second stage are put back on the work-queue and so on. In the
second approach, instead of computing stage by stage, the stages were grouped into
multiple bands and applied on candidate windows as reported in [59]. However, we
have observed this approach didn’t work well as there was drastic changes in the
number of candidate windows that passed to the next stage after the computation
on the first few stages. This meant grouping together stages resulted in the same
effect as the naive implementation where most work-items stayed idle. Therefore,
the first approach is used in this work as well as the OpenCL implementation of
object detection in OpenCV [18].

The procedure described in the above paragraph can be computed in two phases
based on whether a work-queue is used. In the first phase the work-queue is not
yet initialized and is empty. The first stage of the cascade classifier is then applied

Chapter 4. Object Detection on a Mobile GPU 69

to all candidate windows and windows that passed the first stage are put on the
work-queue. The work-queue stores information about the location of the candidate
window and important values associated with it. After applying the first stage on
all candidate windows, the work-queue potentially contains candidate windows for
further processing, which means the next phase can begin. In this next phase, work-
items will be assigned work from the work-queue, apply the next classifier stage and
put back candidate windows that pass this stage on the work-queue. Repeat this
process until the work-queue is empty or all the stages are applied on the candidate
windows that remained in the work queue.

The kernel for this implementation is processed with [8 x H] number of work
items in a [8 x 8] work-group. In the unoptimized version of this implementation, 64
adjacent windows i.e. one window per work item was processed in the first phase.
It is apparent that unless this group of work-items is processing near the location
where the object may reside in the input image,very few windows pass to the next
stage. This makes most of the work-items in the work-group idle. In our imple-
mentation, we have empirically found that it is efficient to process a block of 16 x 64

candidate windows per work-group in the first phase. As there are more candi-
dates, the work-queue size was also increased to accommodate the possible number
of windows that pass the first phase. However, the work-queue size can’t increase
significantly as it is located on the local memory of the GPU which is a limited re-
source. This implementation is refered to as MyGPU Mapped RTC WC where the
term WC refers to the work compaction signifying the further reduction of work-
items staying idle.

TABLE 4.8: Runtime Measurement for the Reduced Thread/Work-
item Count with Work Compaction

OpenCV CPU MyCPU MyGPU Mapped RTC WC
Images Res - #Object Runtime(S) Detections Runtime(S) Detections Speed Up Runtime(S) Detections Speed Up

Full HD - 1 0.64 1 3.58 1 0.18 0.27 1 2.33
Full HD - 2 1.15 2 6.85 3 0.17 1.54 1 0.84
Full HD - 3 1.10 3 6.12 3 0.18 0.59 3 2.19
Full HD - 9 1.33 9 7.26 9 0.18 1.05 9 1.24

Full HD - 19 1.36 19 7.50 20 0.18 1.27 19 1.06
Full HD - 72 1.74 72 8.24 72 0.21 1.75 72 1.05

Geometric Mean 1.17 6.38 0.19 0.91 1.35
512x512 - 1 0.16 1 0.75 1 0.21 0.21 1 0.76
450x326 - 2 0.09 2 0.41 2 0.22 0.14 2 0.57
647x650 - 31 0.31 31 1.59 31 0.19 0.53 31 0.57

Geometric Mean 0.16 0.79 0.20 0.25 0.63

As in the previous sections the same experiment set up and test images were
used for measuring the performance of MyGPU Mapped RTC WC. Table 4.8 lists
the run times, number of detections and speed up measured for the current imple-
mentation. The MyGPU Mapped RTC WC implementation shows a 35% average
speed over the base line for the Full HD image category.This was the first time a
positive performance enhancement was achieved. In fact, for the test image Full
HD - 1, we recorded a 2.33 speed up over the baseline. This test image hand only
one face object in the scene and because of the nature of the algorithm used most

Chapter 4. Object Detection on a Mobile GPU 70

of the candidate windows were rejected earlier that lead to the reduction of idle
work-items. The work-items were kept busy processing only from the work-queue
which is work efficient. However, for the smaller images the performance was lower
than the baseline by 37% on average. Even though MyGPU Mapped RTC WC was
slower for the smaller images with respect to the baseline, it was more than two-fold
faster compared to our previous GPU implementations. The number of detections
with the exception of one test image were the same as the baseline in this implemen-
tation. This was achieved because enough local memory was allocated to store the
work-queue.

Using Local Memory

The use of local memory was employed to see if further improvements can be gained.
Recall that in section 4.2.1 that a block of [8x8] windows was copied to the local
memory. Each window is in turn 20x20 pixels which means a 28x28 block of im-
age has to be copied to the local memory for every set of work-group. This lead
to a huge amount (about 92%) of redundant memory copies resulting in significant
performance loss. In this implementation, we have tried to reduce this overhead by
making copies of sixteen blocks of windows or a 52x52 block of image per work-
group. In this way pixel data is shared between adjacent windows reducing redun-
dant copies to 62%.

Even though the redundant memory copies were reduced to 62% with this ap-
proach, performance was still reduced as the 62% redundant copy is still significant.
This conclusion can be reached from the data presented in Table 4.9. It can be seen
that the average speed up reduced by 36% for the larger images when local mem-
ory was used. However, for the smaller images the average speed up was similar.
An other observation was that the number of detections were significantly affected
for most of the images. The reduction of memory used for storing the work queue
was found to be the reason for the difference in the number of detection. The work
queue size was reduced to half it size because now there is a need to accommodate
the 52x52 block of image data that need to be copied to the local memory.

As a proof that decreasing the work-queue size impacts the number of detection,
one can compare the results reported in the work by Andargie, F.A., et. al[29] with
the result reported in Table 4.8. The size of the work queues were set to be same
(at half the size of what is used in section 4.2.3 for both the MyGPU RTC and the
MyGPU RTC LM in [29], which are similar to MyGPU Mapped RTC WC and same
as MyGPU Mapped RTC WC LM respectively. It can be seen, the resulting number
of detections for these two implementations deviated from the baseline OpenCV
CPU implementation in a significant way for most images tested. However, MyGPU

Chapter 4. Object Detection on a Mobile GPU 71

Mapped RTC WC implementation reported above had an increased size of work
queue which resulted in comparatively similar detections with the baseline.

TABLE 4.9: Runtime Measurement for the Reduced Thread/Work-
item Count with Work Compaction and Local Memory Use

OpenCV CPU MyCPU MyGPU Mapped RTC WC LM
Images Res - #Object Runtime(S) Detections Runtime(S) Detections Speed Up Runtime(S) Detections Speed Up

Full HD - 1 0.64 1 3.58 1 0.18 1.07 1 0.59
Full HD - 2 1.15 2 6.85 3 0.17 1.39 1 0.93
Full HD - 3 1.10 3 6.12 3 0.18 1.33 2 0.97
Full HD - 9 1.33 9 7.26 9 0.18 1.56 6 0.83

Full HD - 19 1.36 19 7.50 20 0.18 1.62 13 0.83
Full HD - 72 1.74 72 8.24 72 0.21 1.63 111 1.12

Geometric Mean 1.17 6.38 0.19 1.42 0.86
512x512 - 1 0.16 1 0.75 1 0.21 0.20 1 0.80
450x326 - 2 0.09 2 0.41 2 0.22 0.18 1 0.44
647x650 - 31 0.31 31 1.59 31 0.19 0.46 33 0.65

Geometric Mean 0.16 0.79 0.20 0.25 0.61

It is to be remembered that the run-time measurements were taken as the aver-
age of 20 consecutive runs of each implementation. All implementations were run
atleast once before measurement commenced for warming the caches. The standard
deviation of each measurement session was also computed. It was found that the
standard deviation for the timing measurement for multiple runs is with in 9% of
the average run-times overall and less than 1% for MyGPU Mapped RTC WC im-
plementation which is our best performing implementation.

4.2.4 Energy Efficiency Measurement

In this subsection, we will describe the experiments and measurements that were
done to measure the energy consumption of our select implementations and com-
pare them with the baseline OpenCV CPU implementation. We have measured the
energy consumptions of OpenCV CPU, MyCPU, MyGPU Mapped RTC WC, and
MyGPU Mapped RTC WC LM. In order to measure the energy consumption, we
have used a data logger from National Instruments to measure the current drawn by
mobile development platform used in this study while the implementations men-
tioned earlier were running. The screen of the tablet was kept turned off at all times
and the tablet has been left idle for sometime before measurements were taken.

We measured the energy consumption of the different algorithms in the follow-
ing way: the current drawn by the tablet was measured while the implementations
listed were being run on the different test images. In order to have reliable measure-
ments, each implementation was run for multiple times as in the case of the run time
measurement. However, in this case the number of runs was varied depending on
the run times associated with the test images. We used 20 runs for images that took
longer to process and 50 runs for images with lower runtimes. This was done to have
reasonable current measurement samples from the data logger. Then the root mean
square power usage was computed from the collected data to arrive at the energy

Chapter 4. Object Detection on a Mobile GPU 72

consumption values (note that these values are the overall energy consumed by the
tablet for each algorithm).

Table 4.10 presents the energy consumption measured in Joules and the improve-
ments achieved in percentage as compared to the baseline, which is the OpenCV
CPU implementation. An immediate observation from the data in Table 4.10 is that
serial and multi-threaded implementations on the CPU consistently consumed more
energy compared to the implementations on the GPU. The serial implementation
MyCPU consumed almost only twice as much as the multithreaded OpenCV CPU
implementation. This is a surprise because OpenCV CPU was almost five times
faster than MyCPU. The reason for this behaviour may arise from the fact that all
four cores of the CPU are activated for the OpenCV CPU implementation and the
device draws more current from the supply for the OpenCV version. It was ob-
served that the multi-threaded OpenCV CPU drew around 500mA while MyCPU
drew about 200mA.

TABLE 4.10: Energy Performance Measurement

OpenCV CPU MyCPU MyGPU Mapped RTC WC MyGPU Mapped RTC WC LM
Images Res - #Object Energy(J) Energy(J) %Improvement Energy(J) %Improvement Energy(J) %Improvement

Full HD Object - 1 3.81 8.42 -121.00 0.61 83.99 2.23 41.47
Full HD Object - 2 7.66 16.15 -110.84 3.38 55.87 2.85 62.79
Full HD Object - 3 7.71 14.30 -85.47 1.33 82.75 2.65 65.63
Full HD Object - 9 7.89 17.29 -119.14 2.41 69.46 3.24 58.94

Full HD Object - 19 8.08 17.62 -118.07 2.88 64.36 3.35 58.54
Full HD Object - 72 9.78 19.56 -100.00 4.07 58.38 3.92 59.92
Geometric Mean 7.21 15.04 -108.29 2.06 68.28 2.99 57.28

512x512 - 1 0.80 1.76 -120.00 0.44 45.00 0.42 47.50
450x326 - 2 0.43 0.95 -120.93 0.28 34.88 0.38 11.63
647x650 - 31 1.68 3.68 -119.05 1.07 36.31 0.92 45.24

Geometric Mean 0.83 1.83 -119.99 0.51 38.48 0.53 29.24

Both the GPU based implementations measured consistently showed energy ef-
ficiency improvement over the OpenCV CPU version. In particular, the best energy
efficiency (about 84%) improvement was achieved for MyGPU Mapped RTC WC
when run with a Full HD image with only one object in the scene. This can be at-
tributed to the nature of the algorithm that rejected most of the candidate windows
at the early stages of the cascade classifier. Lower but positive energy efficiency im-
provements were measured for the smallest resolution images although they are still
significantly better than the OpenCV CPU implementation.

The MyGPU Mapped RTC WC LM implementation had a maximum of 66%

and a minimum of 11% energy consumption improvement over the baseline. Recall
from the previous section that MyGPU Mapped RTC WC LM was mostly slower
in runtime compared to the OpenCV CPU implementation. This shows that even
when an implementation is under performing in runtime on the mobile GPU, there
is a higher chance that energy can be saved by pushing some computation to the
GPU. This suggests that for non-real time applications using the mobile GPU will
definitely be beneficial in conserving battery charge levels.

Chapter 4. Object Detection on a Mobile GPU 73

4.2.5 Comparison with other works

A summary of speed ups and energy consumption reductions reported in the litera-
ture reviewed in Section 2.5 is given in Table 4.11. The first column lists applications
on mobile GPUs while in the second column the type of GPU used with the ap-
plications is given. The maximum resolution of images in the dataset used with
experiments for the particular applications is given in the third column. The fourth
column shows what type of programming language is used for the implementation
of the corresponding application. In column five the speed up is given as reported
in the literature while the energy reduction reported is given in column six. Energy
consumption reduction data is not provided by almost half of the literature reviewed
as can be seen in Table 4.11.

It is difficult from Table 4.11 to directly compare our work with others as most
of the applications in reviewed literature are different with differing algorithmic be-
haviour and different data sets used. Also, the GPUs used in the experiments in
the literature are from different vendors and different generations which is another
reason that makes the comparison difficult. If one must compare the different appli-
cations, the resolution of data set can be used as comparison metric. In other words,
is there performance gain while processing the largest resolution images. One can
observe from the table the speed ups reported for the other applications are higher
than for our application. However, the resolution of images used in the other ap-
plications is significantly lower than what our application can processes. Unlike the
others, our application has an average speed up of 35% with an average 68% energy
usage reduction while processing full high definition images. Also, our reported
speed up is not against a serial version of the respective algorithm on the CPU. Our
average 35 speed gain reported is when compared against a parallel version of the
same application running on a quad core mobile CPU.

TABLE 4.11: Comparison with other implementations on the mobile
GPU

Data Set Programming Energy
Application GPU Type (Max. Res.) Language Speed up Reduction (%)
Face Recognition [6] NVIDIA Tegra 64x84 OpenGL ES 2 45.3
SIFT [39] NVIDIA Tegra 320x280 OpenGL ES 4-7 87
SIFT [45] Adreno 320 320x256 OpenCL 1.69 41
uSURF-ES [43] Multiple Systems 512x384 OpenGL ES 2-14 Not Given
Cartoon Style NPR [44] PowerVR SGX 540 800x480 OpenGL ES 5 Not Given
SURF [44] PowerVR SGX 540 800x480 OpenGL ES 1.7 Not Given
Stereo Matching [44] PowerVR SGX 540 384x288 OpenGL ES 5-7 Not Given
Object Removal [46] Adreno 330 1024x550 OpenCL 8.44 - 28.3 Not Given
Embodied Robot Simulation [47] ARM MALI T604 & T628 MP6 N/A OpenCL 1.82 30
Viola-Jones Object Detection [29] Adreno 420 1920x1080 OpenCL 1.35 68

Chapter 4. Object Detection on a Mobile GPU 74

4.3 Summary

In this chapter, we discussed how the Viola-Jones [21] object detection can be im-
plemented on a mobile GPU. The computation of the integral image needed before
objects can be searched from the images was first discussed. It was then followed
by discussion of how the actual object search can be conducted on an input image.
First a serial (single threaded) version of the Viola-Jones [21] object detection algo-
rithm, that has similar computations as this algorithm’s parallel implementation in
the OpenCV [18] library, was implemented. This was done to understand the al-
gorithm’s complexity and performance need. Then this serial implementation was
ported into a naive parallel implementation on a mobile GPU. Further enhancements
of the naive implementation that utilized performance enhancing aspects of the GPU
were shown.

It was indeed found out that running the object detector on the mobile GPU
used for testing had more than two folds speed up for some full high definition
images and is 35% faster on average than the parallel OpenCV [18] implementation
on the mobile CPU. Our energy consumption measurements showed that our best
implementation has a better energy consumption trend than OpenCV [18] on the
CPU even when our implementation is slower in runtime.

75

Chapter 5

Application to Medical Image
Classification

In Chapter 1 Section 1.3 we discussed the relevance of this work has to our country,
Ethiopia. To this effect, this chapter discuss our efforts to apply the Viola-Jones [21]
object detection for medical image classification. In particular, we focus on the detec-
tion of the ringworm skin disease from image samples. We describe what ring-worm
disease is, the procedures followed to train a new classifier for ring-worm detection
and our test results in the subsequent sections.

5.1 Ringworm

The ringworm is an infection of the skin and nail caused by dermatophyte fungi
which are pathogenic [61]. There are about 40 species of dermatopytes that can
cause the ringworm infection. The ringworm infection is also referred to as tinea or
dermatophytosis. Ringworm infection can occur on different parts of a person’s body
and has different names accordingly. According to the naming convention described
in [61], if a name for ringworm disease starts with tinea, then the body part on which
the disease occurs will be referred in Latin. On the other hand, if naming starts with
dermatophytosis, then the body part it occurs on is referred in English. The list below
gives the specialised ringworm infections according to the definitions found from
Center for Disease Control [62]

• tinea capitis or dermatophytosis of the scalp is ringworm infection found on the
scalp

• tinea faciei or dermatophytosis of the face is ringworm infection found on a per-
son’s face

• tinea barbae or dermatophytosis of the beard is ringworm infection found on a
person’s beard and moustache area usually found in adult men

Chapter 5. Application to Medical Image Classification 76

• tinea manuum or dermatophytosis of the hands is ringworm infection found on the
hands

• tinea pedis or dermatophytosis of the feet is ringworm infection found on the feet
of a person and is commonly referred to as athlete’s foot

• tinea cruris or dermatophytosis of the groin and perianal area is ringworm infection
found on the inner thighs, the groin and the buttocks

• tinea unguium or dermatophytosis of the fingernails is ringworm infection found
on the fingernails of the hand or toenails

• tinea corporis or dermatophytosis of the body is ringworm infection found on the
other parts of the body

The ringworm infection is usually characterized by itchy, red circular rash. Fig-
ure 5.1 shows two sample pictures of Ringworm infection. In Figure 5.1a, the type
of the Ringworm infection is tinea corporis as the infection is located by the shoulder
blades. In Figure 5.1b, the ringworm infection is of the type tinea faciei. The ring-
worm disease can occur both on humans and animals, however, in this work only
ringworm disease occurring on human skin is considered.

(a) Tinea Corporis (b) Tinea Faciei

FIGURE 5.1: Sample pictures of Ringworm Skin Disease

According to [30], the estimated incidence of ringworm in sub-saharan Africa
was about 78 million in 2005. The research conducted in [30], [63], [64] reported that
the incidence of ringworm disease is mainly present with pre-teen children in select
regions of Ethiopia, Egypt and Nigeria. In [65], the type and causing strain of the
ringworm (dermaphytosis) are identified in a hospital that caters to dermatological
diseases in Addis Ababa, Ethiopia. In [66], the risk factors and communicability of
ringworm disease of the scalp in south-western region of Ethiopia is studied.

Chapter 5. Application to Medical Image Classification 77

5.2 Related Work

In this section, we discuss research that has tried to automatically classify ringworm
disease. In the work by Kundu et al. [67], the local binary pattern (LBP) [68] features
extracted from skin images are used as an input to machine learning algorithms for
ringworm detection. The dataset used in this experiment contains 70 positive and
70 negative images. The images in the dataset have been resized to have a uniform
size and converted to gray scale as well. 50% of the positive and negative images
are used for training and the remaining 50% are used for testing. The extracted LBP
features are used for training three classifiers; namely, the Bayesian classifier[69],
the Support Vector Machine (SVM) [70], and the Multi-layer Perceptron (MLP) [71].
After training, 72.85%, 90%, and 94.28% accuracy were reported for the Bayesian
classifier, SVM and MLP respectively. The researchers combined the three classifiers
into a majority voting scheme which resulted in a detection accuracy of 91.42%.

In [72] Saha et al., extracted wavelet energy signatures of the skin and used it to
detect ringworm disease. Their approach is based on the nature of the ringworm
infection having a circular scaly outer bound that contrasts with the internal and
surrounding skin. Hence, the input image is 3-level decomposed for the extrac-
tion of Daubechies (DB), Coiflet (CF), Biorthogonal (BO) and Discrete Meyer (DM)
wavelets energy signatures of the skin. The extracted wavelet energy signatures are
then used as features for the Support Vector Machine (SVM) for classification. They
used 35 positive and 35 negative samples. These images were converted into gray
scale and resized so as to have a uniform size. The images were divided in training
and testing although the testing set has only 3 images from each class. After training,
the reported accuracy on the testing data set is 86.66%.

In [73], the ringworm and scabies diseases are segmented using K-means and
Fuzzy clustering means (FCM) methods. It is reported that the K-means clustering
method out performed the FCM the reason being that FCM uses grayscale images.
In [74], fungal infections of the scalp are automatically detected from Optical Coher-
ent Tomography (OCT) images. One of the targeted fungal infections in this work
is the tinea capitis which is ringworm of the scalp. The dataset used in this work
had 30 positive and 30 negative OCT images. These were used with a multi-level
ensemble machine learning model that has fused decision tree, extreme learning
machine (ELM), neural network, support vector machine (SVM), random forest, av-
erage neural network (avNNet). The training was conducted with 60% of the dataset
and testing was done on the rest. They were able to achieve binary classification for
the presence of fungal infections with an accuracy of 91.66%.

The researches discussed earlier focused on how to automatically classify the
existence of fungal infections specifically ringworm infection on human skin. Ma-
chine learning methods were used as the classifiers. The processing platform used

Chapter 5. Application to Medical Image Classification 78

in these researches were desktop computer environments. We were not able to find
automatic detection of the ringworm skin disease on mobile computing platforms
such as smart phones in our research of the literature. As discussed in Chapter 1,
smart phones are ubiquitously available in most parts of the world. Also given the
large incidence of ringworm skin disease in school age students [30, 63, 64], imple-
menting a ringworm skin disease detector on a mobile platform will allow the early
detection and diagnosis of the disease.

5.3 Training the Ringworm Cascade Classifier

In order to use the Viola-Jones object detector [21] for detection of any object of inter-
est a classifier has to be trained first for the particular object. In this section we detail
the process we followed to train a classifier for the ringworm skin disease detection.

5.3.1 Data Collection

The precursor for the training process is the collection of a suitable dataset. The
dataset should include positive samples which can be representatives of the the ob-
ject of interest which in our case is a picture of a ringworm infection. The negative
samples can be any image that strictly does not contain the object of interest. How-
ever, it is preferred for the negative samples to be images of the natural background
where the object of interest may appear usually i.e. images of normal skin for our
case.

The image samples in our dataset were collected from various sources such as
the Internet. We have collected about 63 positive samples that contain images of
different ringworm infections from sources on the internet (a complete list of sources
can be found in Table B.1 and Table B.2 of Appendix B). These samples are then used
to generate training and testing positive dataset. In our case, 52 of the 63 positive
samples were used to generate more than 1000 positive training samples. The rest 11
were used to generate around 300 positive testing samples. This generation of many
positive samples from fewer originals is called data augmentation [75]. Negative
samples were prepared from our personal collection of images composed of skin
from peoples’ faces and other body parts. The number of images in the negative
samples dataset is a little more than 1000.

Chapter 5. Application to Medical Image Classification 79

5.3.2 Training process

In this section, we discuss the process that is followed to train a classifier that can
classify the ringworm infection. We describe the tools that are used in the train-
ing process and give descriptions of the different classifier trainings done using the
dataset described in Section 5.3.1.

Tools used for training

The cascade classifier training process described in [76] and [77] is followed in this
work where the OpenCV [18] library is used for the training process. The OpenCV
libary contains three tools that are used for training a cascade classifier that detects
the object of interest in an image. These are

• opencv_annotation: is a tool used for annotating (selecting) portions of an in-
put image as the object of interest. This tool produces a file that has a list of
coordinates of the rectangles containing the object of interest. These annotated
areas are considered to be truly the positive samples.

• opencv_createsamples: this tool is used for creating more positive samples
from the already annotated positive samples through data augmentation[75].
The new training positive samples are created by transforming the positive
samples by rotating the rectangles within a specified bound of rotation angles
and variation of lighting condition of the positive samples.The test samples are
generated in a similar way and then are inserted inside a set of given negative
samples.This way the generated testing will be used for testing the quality of
the classifier trained.

• opencv_traincascade: is a tool that actually does the training of the cascade
classifier given the input positive and negative samples of the object of interest.
Users can specify if they wanted to use upright features only or a combination
of upright features with 45◦ rotated features.

The user is allowed to set different parameters that may lead to a good classifier.
The main parameter that needs to be used with all the tools discussed above is the
size of the rectangle containing the object of interest. The value of this parameter has
to be the same when used with all three tools. In our case the value of this rectangle
is set to 20 by 20 pixels.

Chapter 5. Application to Medical Image Classification 80

Classifier Training

The opencv_annotation tool was used to annotate the 63 positive samples mentioned
in section 5.3.2. Of the 63 positive samples, the 52 samples were used to generate
more than 1000 new positive training samples using the opencv_createsamples tool.
The opencv_createsamples tools was also used to generate positive samples for testing.
We have trained many classifiers as detectors for the ringworm infection based on
these generated samples. The different classifiers were trained by varying the false
alarm rate used with the training tool. The training process was conducted on a
desktop computer system.

The different classifiers were trained with 1001 positive samples and 999 skin
based negative samples. The maxFalseAlarmRate was varied from 0.3 to 0.95 in steps
0.05. The maxWeakCount was kept constant at 200. Most of the parameters of the
training tool were left to their default values. The following list shows parameter
values that are changed in this work

• Feature mode: upright features only

• object image width: 20 pixels

• object image height: 20 pixels

• # of positive samples: 1001

• # of negative samples: 999

• # of stages: 20 stages in the classifier

• maxFalseAlarmRate: was varied between 0.3− 0.95 in 0.05 step

• maxWeakCount: 200

Test Results

After the training process was done, the trained classifiers were tested on a test set
of 307 generated positive test samples and 307 negative samples. The performance
of each classifier on the test dataset was measured using the performance metrics
accuracy, precision, recall and the F1-Score[78]. Accuracy determines the accurate pre-
diction of both the positive and negative samples from the total test dataset. Preci-
sion measures the quality of the classifier by computing the percentage of true posi-
tives from all positive predictions. Recall measures the sensitivity of the classifier by
determining the percentage of true positives predicted from the actual positive sam-
ples. These three metrics separately do not necessarily reflect how good a classifier
is. Such a meteric that is usually used for determining the quality of a classifier is

Chapter 5. Application to Medical Image Classification 81

the F1-score. The F1-score combines precision and recall of a classifier by computing
their harmonic average. The higher the F1-Score the better the classifier is expected
to be.

Accuracy, precision and recall are computed based on the confusion matrix given
in Table 5.1. The first row of the confusion matrix shows how many of the input
positive samples the classifier predicted as positive and negative. The second row
shows the negative samples predicted as positive and negative. Equations 5.1, 5.2,
5.3, 5.4 show how accuracy, precision, recall and F1-score are computed respectively.

TABLE 5.1: Confusion Matrix

Predicted Positive Predicted Negative
Actual Positive #True Positive (TP) #False Negative (FN)

Actual Negatives #False Positive (FP) #True Negative (TN)

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

Precision =
TP

TP + FP
(5.2)

Recall =
TP

TP + FN
(5.3)

F1− score =
2 ∗ (Precision ∗Recall)
Precision+Recall

(5.4)

We named the trained classifiers after the maxFalseAlarmRate used to train them.
For example, a classifier trained with a false alarm rate of 0.3 is called c0.3 where
the letter "c" indicates that it is a classifier. Table 5.2 gives the results for the trained
classifiers. The first column in the table gives the classifier names. The next four
columns give the number of True Postives, False Postives, True Negatives and False
Negatives measured for each classifier, respectively. The computed accuracy, preci-
sion, recall and F1-Score are given in the next successive columns.

In Table 5.2, there are four good candidates based on accuracy while there are
four good candidates based on the F1-score (with > 0.7 value). In the first set are
classifiers c0.35,c0.4,c0.45 and c0.5 which have respective accuracies of 0.72, 0.73,0.76
and 0.75. In the second set, classifiers c0.45, c0.5,c0.55 and c0.6 with 0.73, 0.74, 0.72
and 0.71 F1-Scores respectively are grouped. Two classifiers from the two sets de-
scribed earlier overlap. These are classifier c0.45 which has an accuracy of 0.76 (76%)

and F1-Score of 0.73, and classifier c0.5 with accuracy of 0.75 (75%) and F1-Score of

Chapter 5. Application to Medical Image Classification 82

TABLE 5.2: Ringworm Classifiers Testing Results

True False True False
classifer maxFalseAlarmRate Positive Positive Negative Negative Accuracy Precision Recall F1-Score

c0.3 0.3 103 5 302 204 0.66 0.95 0.34 0.0.50
c0.35 0.35 143 9 298 164 0.72 0.94 0.47 0.62
c0.4 0.4 149 8 299 158 0.73 0.95 0.49 0.64

c0.45 0.45 195 33 274 112 0.76 0.86 0.64 0.73
c0.5 0.5 215 62 245 92 0.75 0.78 0.70 0.74

c0.55 0.55 252 140 167 55 0.68 0.64 0.82 0.72
c0.6 0.6 269 185 122 38 0.64 0.59 0.88 0.71

c0.65 0.65 276 225 82 31 0.58 0.55 0.90 0.68
c0.7 0.7 289 258 49 18 0.55 0.53 0.94 0.68

c0.75 0.75 291 168 39 16 0.54 0.52 0.95 0.67
c0.8 0.8 296 288 19 11 0.51 0.51 0.968 0.66

c0.85 0.85 287 296 11 20 0.49 0.49 0.93 0.64
c0.9 0.9 239 301 6 68 0.40 0.44 0.78 0.56

c0.95 0.95 190 305 2 117 0.31 0.38 0.61 0.47

0.74. The desirable value of the metrics accuracy and F1-score is the higher the bet-
ter. It seems there is no clear winner as c0.45 has more accuracy than c0.5 while c0.5
has more F1-Score than c0.45. However, the F1-Score will have more weight as it is a
combination of two other metrics. Therefore, the classifier c0.5 is selected as the best
classifier with good qualities from the trained classifiers in this work.

We were able to show that with limited number of positive samples, it is possible
to train a classifier for the ringworm skin disease using the Viola-Jones [21] based
object detection. Although, the accuracy of our classifier compared to the work by
others discussed earlier is lower, it is first of its kind that can work on the mobile
GPU. Also, there is a great chance that the accuracy of the classifier can be improved
with access to clinical ringworm skin disease image dataset.

5.4 Summary

In this chapter, the nature and types of the ringworm skin disease were briefly dis-
cussed. Researches that have been done to automatically detect the presence of the
ringworm skin disease from images were presented. It was observed from our lit-
erature review that all the attempts at automatic detection of ringworm skin disease
were done on the desktop system. This presented an opportunity for our object de-
tector implemented on mobile GPU to be used as detector for the ringworm skin
disease on the mobile platform. The process of training a classifier to be used for
this purpose was presented. Classifiers were trained and the best one was chosen to
be used with our object detector.

83

Chapter 6

Conclusion and Future Work

This chapter is organized in two sections. In the first section we give a brief summary
of the contributions made in this work and conclude. In the second section we give
recommendations for future work.

6.1 Contributions

In this work, three tasks were conducted, namely; the performance characterization
of a set of mobile GPUs [28], the implementation and optimization of the Viola-Jones
[21] object detector on a mobile GPU [29] and the training of a cascade classifier for
the detection of the ringworm skin disease from an image of a person’s skin.

• In the first task measurements were done to understand the mobile GPU’s ar-
chitecture and its related performance. The lessons learned are listed below

– Data transfer throughput between the host and the device was measured
to be very low. Hence, its use should be reduced or completely avoided in
systems that have shared memory such as mobile (smartphones) systems.

– Data transfer throughput of different global memory access patterns were
measured. The coalesced memory access had the best performance. The
worst performing pattern was the strided access whose effect can be re-
duced by moving data to the local memory.

– Memory latencies were measured for the different levels of cache, local
memory and global memory for the mobile GPU. Also, this technique was
used to measure the effect of bank conflicts in the local memory. Under-
standing this helps with choosing where to store data that is frequently
accessed.

– Computational latencies were also measured for the basic arithmetic op-
erations. This method was adapted to measure the available parallelism
in a GPU. The insights gained from these measurements were used for

Chapter 6. Conclusion and Future Work 84

example to reduce the use of divisions or replace it with multiplication
operations and to limit the number work-items used in a work group to
utilize the available parallelism.

• The second task was the implementation and optimization of the Viola-Jones
[21] object detection on a specific mobile GPU. The following steps were im-
plemented on the GPU

– The input gray image was successively reduced (scaled down) using the
bilinear interpolation method to create an image pyramid.

– The integral and square integral images were computed for each scale in
the image pyramid and stored in memory.

– Different approaches were used to implement the Viola-Jones[21] algo-
rithm on the mobile GPU

– The implemented object detector was tested with sample images and the
runtime performance and energy consumption of the different approaches
were measured.

The object detector on the mobile GPU was measured to be 35% faster on aver-
age and more than two folds faster on the best case on Full HD images as com-
pared to an optimized parallel implementation on the CPU of the same mobile
device. In addition the energy consumption measurement revealed that an en-
ergy consumption reduction of 35% to 84% can be achieved on the entire test
dataset. It was also observed that our best object detector has a better energy
consumption trend than OpenCV’s object detector [18] implementation on the
mobile CPU even when our implementation is slower in runtime.

• Our third task was using the object detector for a medical image classification
problem. The ringworm skin disease was selected as it has large prevalence
in sub-saharan Africa[30] and as it easy for a person to take a picture of a skin
lesion. The following steps were taken to train a classifier for the ringworm
disease

– Positive and negative sample were prepared where positive sample means
an image that contains a ringworm while a negative sample doesn’t. As
the number of positive samples collected was smaller than expected data
augmentation was applied to get a larger positive data set.

– Many classifiers were trained on the prepared dataset by varying the hy-
per parameters of the classifier.

– The trained classifiers were applied on the test dataset to select the best
classifier. The best classifier was selected based on its accuracy and F-1
Score which are 75% and 0.74 respectively.

Chapter 6. Conclusion and Future Work 85

From the results discussed earlier, we can conclude that a better understanding of
a mobile GPU architecture is achieved. Using this understanding an energy efficient
object detector with enhanced runtime performance was implemented on the mobile
GPU. We have also shown that the object detector can be used for a medical image
classification to detect the ringworm skin disease on the mobile GPU.

6.2 Future work

Although we have shown good results can be achieved by using the mobile GPU,
improvements can still be made if the following approaches are taken for the object
detector implementation and the ringworm detection. Accordingly, we make the
following recommendations

• Heterogeneous (CPU-GPU) computing: our best implementation of the object de-
tector on the GPU (MyGPU Mapped RTC WC) was implemented with the
premise of a fixed set of work-items retrieving work from a work-queue. It is
to be remembered from Section 4.2.3 that the amount of work reduces as the
stage number increases during the application of the cascade classifier. Hence,
as work gets depleted from the work-queue, more and more work-items be-
come idle. This means load balancing will be an issue at later stages. How-
ever, if computation is transferred to the CPU the load balancing issue would
be reduced. We recommend further work to figure out at which stage of the
classifier to move computation from the GPU to the host CPU.

• Accuracy of Ringworm Detection: the accuracy of our ringworm classifier is
lower than what is expected for a clinical level detector. Also, our classifier
doesn’t differentiate between different classes of ringworm disease. The qual-
ities of our classifier are limited because of the small positive samples used
for training. Therefore, we recommend further work to collect more positive
samples and retrain the classifier.

• Deep learning: deep learning approaches have become more mature and a lot
of research is being done in this area. We think the use of deep learning can be
used for multi-class ringworm classification.

• Specialized Neural Cores: specialized hardware cores that are used for neural
processing are coming into the picture such as the Tensor cores that are present
in recent NVidia GPUs and in some smart phones. These cores enable energy
efficient faster training and classification for deep learning algorithms. There-
fore, we recommend the adoption of these cores for future medical image clas-
sification.

86

Bibliography

[1] Robert R Schaller. “Moore’s law: past, present and future”. In: IEEE spectrum
34.6 (1997), pp. 52–59.

[2] John D Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger,
Aaron E Lefohn, and Timothy J Purcell. “A survey of general-purpose com-
putation on graphics hardware”. In: Computer graphics forum. Vol. 26. 1. Wiley
Online Library. 2007, pp. 80–113.

[3] Cristobal A Navarro, Nancy Hitschfeld-Kahler, and Luis Mateu. “A survey
on parallel computing and its applications in data-parallel problems using
GPU architectures”. In: Communications in Computational Physics 15.2 (2014),
pp. 285–329.

[4] Eric Strohmaier, Jack Dongarra, Horst Simon, and Martin Meuer. The TOP 500
list. URL: http://www.Top500.org/lists (visited on 08/05/2017).

[5] Song Huang, Shucai Xiao, and Wu-chun Feng. “On the energy efficiency of
graphics processing units for scientific computing”. In: Parallel & Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on. IEEE. 2009, pp. 1–
8.

[6] Kwang-Ting Cheng and Yi-Chu Wang. “Using mobile GPU for general-purpose
computing–a case study of face recognition on smartphones”. In: VLSI Design,
Automation and Test (VLSI-DAT), 2011 International Symposium on. IEEE. 2011,
pp. 1–4.

[7] Guohui Wang, Yingen Xiong, Jay Yun, and Joseph R Cavallaro. “Accelerating
computer vision algorithms using OpenCL framework on the mobile GPU-
a case study”. In: Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on. IEEE. 2013, pp. 2629–2633.

[8] Karim Arabi. Low power Design Techniques in Mobile Processors. 2004.

[9] Android Developers. “Android, the world’s most popular mobile platform”.
In: Google, USA (2013).

[10] David Ehringer. “The dalvik virtual machine architecture”. In: Techn. report
(March 2010) 4 (2010), p. 8.

[11] Google. ART and Dalvik. URL: https://source.android.com/devices/
tech/dalvik/ (visited on 07/19/2018).

http://www.Top500.org/lists
https://source.android.com/devices/tech/dalvik/
https://source.android.com/devices/tech/dalvik/

BIBLIOGRAPHY 87

[12] Introducing Neon. Development Article. Arm Ltd. 2009.

[13] Victor W Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,
Anthony D Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chen-
nupaty, Per Hammarlund, et al. “Debunking the 100X GPU vs. CPU myth: an
evaluation of throughput computing on CPU and GPU”. In: ACM SIGARCH
computer architecture news 38.3 (2010), pp. 451–460.

[14] James Fung and Steve Mann. “OpenVIDIA: parallel GPU computer vision”.
In: Proceedings of the 13th annual ACM international conference on Multimedia.
ACM. 2005, pp. 849–852.

[15] Yannick Allusse, Patrick Horain, Ankit Agarwal, and Cindula Saipriyadar-
shan. “Gpucv: an opensource gpu-accelerated framework forimage processing
and computer vision”. In: Proceedings of the 16th ACM international conference
on Multimedia. ACM. 2008, pp. 1089–1092.

[16] James Fung and Steve Mann. “Using graphics devices in reverse: GPU-based
image processing and computer vision”. In: Multimedia and Expo, 2008 IEEE
International Conference on. IEEE. 2008, pp. 9–12.

[17] W Hwu Wen-Mei. GPU computing gems emerald edition. Elsevier, 2011, pp. 439–
546.

[18] The Open Computer Vision Library. URL: http://www.opencv.org/about.
html (visited on 08/05/2017).

[19] NVIDIA CUDA. Programming Guide. NVIDIA. 2008.

[20] Khronos OpenCL Working Group. OpenCL - The Open Standard for Parallel
Programming of Heterogeneous Systems. URL: http://www.khronos.org/
opencl (visited on 08/05/2017).

[21] Paul Viola and Michael Jones. “Rapid object detection using a boosted cascade
of simple features”. In: Computer Vision and Pattern Recognition, 2001. CVPR
2001. Proceedings of the 2001 IEEE Computer Society Conference on. Vol. 1. IEEE.
2001, pp. I–I.

[22] Michael Jones and Paul Viola. “Fast multi-view face detection”. In: Mitsubishi
Electric Research Lab TR-20003-96 3.14 (2003), p. 2.

[23] Theo Ephraim, Tristan Himmelman, and Kaleem Siddiqi. “Real-time viola-
jones face detection in a web browser”. In: Computer and Robot Vision, 2009.
CRV’09. Canadian Conference on. IEEE. 2009, pp. 321–328.

[24] Daniel Hefenbrock, Jason Oberg, Nhat Tan Nguyen Thanh, Ryan Kastner, and
Scott B Baden. “Accelerating Viola-Jones face detection to FPGA-level using
GPUs”. In: Field-Programmable Custom Computing Machines (FCCM), 2010 18th
IEEE Annual International Symposium on. IEEE. 2010, pp. 11–18.

http://www.opencv.org/about.html
http://www.opencv.org/about.html
http://www.khronos.org/opencl
http://www.khronos.org/opencl

BIBLIOGRAPHY 88

[25] Modesto Castrillón, Oscar Déniz, Daniel Hernández, and Javier Lorenzo. “A
comparison of face and facial feature detectors based on the Viola–Jones gen-
eral object detection framework”. In: Machine Vision and Applications 22.3 (2011),
pp. 481–494.

[26] Qian Li, Usman Niaz, and Bernard Merialdo. “An improved algorithm on
Viola-Jones object detector”. In: Content-Based Multimedia Indexing (CBMI), 2012
10th International Workshop on. IEEE. 2012, pp. 1–6.

[27] Yi-Qing Wang. “An analysis of the Viola-Jones face detection algorithm”. In:
Image Processing On Line 4 (2014), pp. 128–148.

[28] Fitsum Assamnew Andargie and Jonathan Rose. “Performance characteriza-
tion of mobile GP-GPUs”. In: AFRICON, 2015. IEEE. 2015, pp. 1–6.

[29] Fitsum Assamnew Andargie, Jonathan Rose, Todd Austin, and Valeria Bertacco.
“Energy efficient object detection on the mobile GP-GPU”. In: AFRICON, 2017
IEEE. IEEE. 2017, pp. 945–950.

[30] Alem Alemayehu, Gebremedhin Minwuyelet, and Gizachew Andualem. “Preva-
lence and Etiologic Agents of Dermatophytosis among Primary School Chil-
dren in Harari Regional State, Ethiopia”. In: Journal of Mycology 2016 (2016).

[31] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peterson, and
Jack Dongarra. “From CUDA to OpenCL: Towards a performance-portable
solution for multi-platform GPU programming”. In: Parallel Computing 38.8
(2012), pp. 391–407.

[32] Lee Howes and Aaftab Munshi. The OpenCL Specification. Version 2.0. Khronos
OpenCL Working Group. 2015.

[33] Michael Sung. “Simd parallel processing”. In: Architectures Anonymous 6 (2000),
p. 11.

[34] Edgar Osuna, Robert Freund, and Federico Girosit. “Training support vector
machines: an application to face detection”. In: Computer vision and pattern
recognition, 1997. Proceedings., 1997 IEEE computer society conference on. IEEE.
1997, pp. 130–136.

[35] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for human
detection”. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on. Vol. 1. IEEE. 2005, pp. 886–893.

[36] Yoav Freund and Robert E Schapire. “A decision-theoretic generalization of
on-line learning and an application to boosting”. In: Journal of computer and
system sciences 55.1 (1997), pp. 119–139.

[37] Rainer Lienhart and Jochen Maydt. “An extended set of haar-like features for
rapid object detection”. In: Image Processing. 2002. Proceedings. 2002 Interna-
tional Conference on. Vol. 1. IEEE. 2002, pp. I–I.

BIBLIOGRAPHY 89

[38] Kari Pulli, Wei-Chao Chen, Natasha Gelfand, Radek Grzeszczuk, Marius Tico,
Ramakrishna Vedantham, Xianglin Wang, and Yingen Xiong. “Mobile visual
computing”. In: Ubiquitous Virtual Reality, 2009. ISUVR’09. International Sym-
posium on. IEEE. 2009, pp. 3–6.

[39] Blaine Rister, Guohui Wang, Michael Wu, and Joseph R Cavallaro. “A fast
and efficient SIFT detector using the mobile GPU”. In: Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference on. IEEE. 2013,
pp. 2674–2678.

[40] David G Lowe. “Object recognition from local scale-invariant features”. In:
Computer vision, 1999. The proceedings of the seventh IEEE international conference
on. Vol. 2. Ieee. 1999, pp. 1150–1157.

[41] Wonwoo Lee, Youngmin Park, Vincent Lepetit, and Woontack Woo. “Point-
and-shoot for ubiquitous tagging on mobile phones”. In: Mixed and Augmented
Reality (ISMAR), 2010 9th IEEE International Symposium on. IEEE. 2010, pp. 57–
64.

[42] Andrew Ensor and Seth Hall. “GPU-based image analysis on mobile devices”.
In: arXiv preprint arXiv:1112.3110 (2011).

[43] Robert Hofmann, Hartmut Seichter, and Gerhard Reitmayr. “A GPGPU ac-
celerated descriptor for mobile devices”. In: Mixed and Augmented Reality (IS-
MAR), 2012 IEEE International Symposium on. IEEE. 2012, pp. 289–290.

[44] Nitin Singhal, Jin Woo Yoo, Ho Yeol Choi, and In Kyu Park. “Implementation
and optimization of image processing algorithms on embedded GPU”. In: IE-
ICE TRANSACTIONS on Information and Systems 95.5 (2012), pp. 1475–1484.

[45] Guohui Wang, Blaine Rister, and Joseph R Cavallaro. “Workload analysis and
efficient OpenCL-based implementation of SIFT algorithm on a smartphone”.
In: Global Conference on Signal and Information Processing (GlobalSIP), 2013 IEEE.
IEEE. 2013, pp. 759–762.

[46] Guohui Wang, Yingen Xiong, Jay Yun, and Joseph R Cavallaro. “Computer
vision accelerators for mobile systems based on opencl gpgpu co-processing”.
In: Journal of Signal Processing Systems 76.3 (2014), pp. 283–299.

[47] Simon Jones, Matthew Studley, and Alan Winfield. “Mobile GPGPU acceler-
ation of embodied robot simulation”. In: Artificial Life and Intelligent Agents
Symposium. Springer. 2014, pp. 97–109.

[48] James A Ross, David A Richie, Song J Park, Dale R Shires, and Lori L Pollock.
“A case study of OpenCL on an Android mobile GPU”. In: High Performance
Extreme Computing Conference (HPEC), 2014 IEEE. IEEE. 2014, pp. 1–6.

[49] Jeremiah van Oosten. Optimizing CUDA Applications. URL: https://www.
3dgep.com/optimizing-cuda-applications/ (visited on 02/12/2019).

[50] CUDA NVidia. “C best practices guide”. In: NVIDIA, Santa Clara, CA (2018).

https://www.3dgep.com/optimizing-cuda-applications/
https://www.3dgep.com/optimizing-cuda-applications/

BIBLIOGRAPHY 90

[51] Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, and
Andreas Moshovos. “Demystifying GPU microarchitecture through microbench-
marking”. In: Performance Analysis of Systems & Software (ISPASS), 2010 IEEE
International Symposium on. IEEE. 2010, pp. 235–246.

[52] MDP Tablet based on the Qualcomm R© SnapdragonTM 805 Processor. Qualcomm
Technologies, Inc. URL: https : / / www . qualcomm . com / documents /
snapdragon-805-processor-product-brief (visited on 11/07/2017).

[53] John D Owens, Mike Houston, David Luebke, Simon Green, John E Stone, and
James C Phillips. “GPU computing”. In: Proceedings of the IEEE 96.5 (2008),
pp. 879–899.

[54] Zhiyi Yang, Yating Zhu, and Yong Pu. “Parallel image processing based on
CUDA”. In: Computer Science and Software Engineering, 2008 International Con-
ference on. Vol. 3. IEEE. 2008, pp. 198–201.

[55] Bilinear Image Scaling. URL: http://tech-algorithm.com/articles/
bilinear-image-scaling/ (visited on 02/11/2017).

[56] Mark Harris, Shubhabrata Sengupta, and John D Owens. “Parallel prefix sum
(scan) with CUDA”. In: GPU gems 3.39 (2007), pp. 851–876.

[57] Guy E Blelloch. “Prefix sums and their applications”. In: (1990).

[58] Benedict Gaster, Lee Howes, David R Kaeli, Perhaad Mistry, and Dana Schaa.
Heterogeneous Computing with OpenCL: Revised OpenCL 1. Newnes, 2012.

[59] Paulius Micikevicius. “Maximizing Face Detection Performance”. GPU Tech-
nology Conference. 2015.

[60] Haipeng Jia, Yunquan Zhang, Weiyan Wang, and Jianliang Xu. “Accelerating
viola-jones facce detection algorithm on gpus”. In: High Performance Comput-
ing and Communication & 2012 IEEE 9th International Conference on Embedded
Software and Systems (HPCC-ICESS), 2012 IEEE 14th International Conference on.
IEEE. 2012, pp. 396–403.

[61] FC Odds, T Arai, AF Disalvo, EGV Evans, RJ Hay, HS Randhawa, MG Rinaldi,
and TJ Walsh. “Nomenclature of fungal diseases: a report and recommenda-
tions from a Sub-Committee of the International Society for Human and An-
imal Mycology (ISHAM)”. In: Journal of Medical and Veterinary Mycology 30.1
(1992), pp. 1–10.

[62] Ringworm Definition. URL: https://www.cdc.gov/fungal/diseases/
ringworm/definition.html (visited on 05/14/2018).

[63] Azza GA Farag, Mostafa A Hammam, Reda A Ibrahim, Reda Z Mahfouz,
Nada F Elnaidany, Masroor Qutubuddin, and Rehab RE Tolba. “Epidemiology
of Dermatophyte Infections among School Children in Menoufia Governorate,
Egypt”. In: Mycoses (2018).

https://www.qualcomm.com/documents/snapdragon-805-processor-product-brief
https://www.qualcomm.com/documents/snapdragon-805-processor-product-brief
http://tech-algorithm.com/articles/bilinear-image-scaling/
http://tech-algorithm.com/articles/bilinear-image-scaling/
https://www.cdc.gov/fungal/diseases/ringworm/definition.html
https://www.cdc.gov/fungal/diseases/ringworm/definition.html

BIBLIOGRAPHY 91

[64] Eziyi Iche Kalu, Victoria Wagbatsoma, Ephraim Ogbaini-Emovon, Victor Ugochukwu
Nwadike, and Chiedozie Kingsley Ojide. “Age and sex prevalence of infec-
tious dermatoses among primary school children in a rural South-Eastern Nige-
rian community”. In: Pan African Medical Journal 20.1 (2015).

[65] Y Woldeamanuel, R Leekassa, E Chryssanthou, Y Mengistu, and B Petrini.
“Clinico-mycological profile of dermatophytosis in a reference centre for lep-
rosy and dermatological diseases in Addis Ababa”. In: Mycopathologia 161.3
(2006), pp. 167–172.

[66] Jose Ignacio Figueroa, Thomas Hawranek, Aynalem Abraha, and Roderick
James Hay. “Tinea capitis in south-western Ethiopia: a study of risk factors
for infection and carriage”. In: International journal of dermatology 36.9 (1997),
pp. 661–666.

[67] Srimanta Kundu, Nibaran Das, and Mita Nasipuri. “Automatic detection of
ringworm using local binary pattern (LBP)”. In: arXiv preprint arXiv:1103.0120
(2011).

[68] Timo Ojala, Matti Pietikäinen, and David Harwood. “A comparative study
of texture measures with classification based on featured distributions”. In:
Pattern recognition 29.1 (1996), pp. 51–59.

[69] Pedro Domingos and Michael Pazzani. “On the optimality of the simple Bayesian
classifier under zero-one loss”. In: Machine learning 29.2-3 (1997), pp. 103–130.

[70] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard
Scholkopf. “Support vector machines”. In: IEEE Intelligent Systems and their
applications 13.4 (1998), pp. 18–28.

[71] Simon S Haykin. Neural networks : a comprehensive foundation. 3ed. Prentice
Hall, 2008, pp. 122–229. ISBN: 0-13-147139-2,978-0-13-147139-9.

[72] Manas Saha, Mrinal Kanti Naskar, and Biswa Nath Chatterji. “Human ring-
worm detection using wavelet energy signature”. In: Recent Trends in Infor-
mation Systems (ReTIS), 2015 IEEE 2nd International Conference on. IEEE. 2015,
pp. 178–182.

[73] Olusayo Deborah Fenwa, OO ALO, and AS FALOHUN. “Coloured Image
Segmentation Using K-Means Algorithm”. In: INTERNATIONAL JOURNAL
OF COMPUTERS & TECHNOLOGY 15.3 (2016), pp. 6555–6562.

[74] Kavita Dubey, Vishal Srivastava, and Dalip Singh Mehta. “Automated in vivo
identification of fungal infection on human scalp using optical coherence to-
mography and machine learning”. In: Laser Physics 28.4 (2018), p. 045602.

[75] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classifica-
tion with deep convolutional neural networks”. In: Advances in neural informa-
tion processing systems. 2012, pp. 1097–1105.

BIBLIOGRAPHY 92

[76] Cascade Classifier Training. URL: https://docs.opencv.org/3.1.0/dc/
d88/tutorial_traincascade.html (visited on 04/04/2018).

[77] Thorsten Ball. TRAIN YOUR OWN OPENCV HAAR CLASSIFIER. URL: https:
//coding-robin.de/2013/07/22/train-your-own-opencv-haar-

classifier.html (visited on 04/04/2018).

[78] David Martin Powers. “Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation”. In: (2011).

https://docs.opencv.org/3.1.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.1.0/dc/d88/tutorial_traincascade.html
https://coding-robin.de/2013/07/22/train-your-own-opencv-haar-classifier.html
https://coding-robin.de/2013/07/22/train-your-own-opencv-haar-classifier.html
https://coding-robin.de/2013/07/22/train-your-own-opencv-haar-classifier.html

93

Appendix A

OpenCL Application Example:
Matrix Multiplication

The following code demonstrates how to program in OpenCL using matrix multipli-
cation as an example. The program is organized in three components where the first
component is the main program that initializes the OpenCL environment, stages
data and submits the data for computation on the OpenCL device. The second com-
ponent is the matrix multiplication implementation in C programming language.
The third component is the matrix multiplication kernel in OpenCL. In the end of
the main program results of the matrix multiplication computed by the different
methods is compared.

LISTING A.1: Matrix multiplication in OpenCL - staging

1 // main.cpp

2 // MatrixMultiplication

3
4 #include <iostream> //header file console input output

5 #include "MatMul.h" //header file for C based matrix multiplication

6
7 /* Header for OpenCL - has different names for different platforms */

8 #ifdef __APPLE__

9 #include <OpenCL/OpenCL.h>

10 #else

11 #include<CL/cl.h>

12 #endif

13
14 using namespace std;

15 /*
16 @Function: queryPlatform

17 Given a platform, retrievies information about the platform such has

Name, Vendor

18 and Supported OpenCL Version.

19 */

20 void queryPlatform(cl_platform_id platform)

21 {

22 const int bufferSize=2048;

Appendix A. OpenCL Application Example: Matrix Multiplication 94

23 char buffer[bufferSize]; //stores information

24
25 //get platform info

26 clGetPlatformInfo(platform,CL_PLATFORM_NAME,bufferSize,buffer,NULL)

;

27 printf("Name:%s\n",buffer);

28 clGetPlatformInfo(platform,CL_PLATFORM_VENDOR,bufferSize,buffer,

NULL);

29 printf("Vendor:%s\n",buffer);

30 clGetPlatformInfo(platform,CL_PLATFORM_PROFILE,bufferSize,buffer,

NULL);

31 printf("Profile:%s\n",buffer);

32 clGetPlatformInfo(platform,CL_PLATFORM_VERSION,bufferSize,buffer,

NULL);

33 printf("Version:%s\n",buffer);

34 //... more information can be retrieved

35
36 }

37 /*
38 @Function: queryDevice

39 Given a device, retrievies information about the device such as Name,

Vendor,

40 Device Version, Driver Version, #Compute Units, Frequency,Global

Memory Size, ...

41 */

42 void queryDevice(cl_device_id device_id)

43 {

44 const int bufferSize=2048;

45 char buffer[bufferSize];

46 cl_uint max_work_group_size=1;

47
48 cl_uint computeUnits;

49 cl_ulong globalMemSize;

50
51 clGetDeviceInfo(device_id,CL_DEVICE_NAME,bufferSize,buffer,NULL);

52 printf("\tDevice Name:%s\n",buffer);

53 clGetDeviceInfo(device_id,CL_DEVICE_VENDOR,bufferSize,buffer,NULL);

54 printf("\tDevice Vendor:%s\n",buffer);

55 clGetDeviceInfo(device_id,CL_DEVICE_VERSION,bufferSize,buffer,NULL)

;

56 printf("\tDevice Version:%s\n",buffer);

57 clGetDeviceInfo(device_id,CL_DRIVER_VERSION,bufferSize,buffer,NULL)

;

58 printf("\tDriver Name:%s\n",buffer);

59 clGetDeviceInfo(device_id,CL_DEVICE_MAX_COMPUTE_UNITS,sizeof(

computeUnits),

60 &computeUnits,NULL);

61 printf("\tDevice Max Compute Units:%u\n",computeUnits);

62 clGetDeviceInfo(device_id,CL_DEVICE_MAX_CLOCK_FREQUENCY,sizeof(

computeUnits),

63 &computeUnits,NULL);

64 printf("\tDevice Max Clock Frequency:%u MHz\n",computeUnits);

Appendix A. OpenCL Application Example: Matrix Multiplication 95

65 clGetDeviceInfo(device_id,CL_DEVICE_GLOBAL_MEM_SIZE,sizeof(

globalMemSize),

66 &globalMemSize,NULL);

67 printf("\tDevice Global Mem Size:%f Mbytes\n",(float)globalMemSize

/(1024*1024));

68
69 //... more information can be retrieved

70 }

71 /*
72 @Function: readProgram

73 Given a file name, this function reads the contents of the file in to

memory

74 and returns a pointer to the memory location.

75 */

76 const char* readProgram(char *fileName)

77 {

78 char *source;

79 FILE *file;

80 file=fopen(fileName,"r"); //open the file in read mode

81 printf("Trying to open:%s \n",fileName);

82 //check if the file is open properly otherwise return NULL.

83 if(file!=NULL)

84 {

85 fseek(file,0L,SEEK_END);

86 long size=ftell(file);

87 rewind(file);

88 source=new char[size+1];

89 fread(source,1,size,file);

90 source[size]=’\0’;

91 fclose(file);

92 }

93 else

94 return NULL;

95 return source;

96 }

97 /*
98 @Function: main

99 This is the main function.

100 */

101 int main(int argc, const char * argv[]) {

102 //1. Initialize OpenCL Device

103 cl_int error; // stores opencl error codes

104 cl_uint num_platforms=0,num_devices=0;

105 cl_platform_id platforms[10];

106 cl_device_id devices[10],device;

107 cl_context context; //to identify which context is associated with

a deice

108 //holds list of kernels to be executed on the context on the

device

109 cl_command_queue commandQueue;

110 int platformChoice=0,deviceChoice=0;

111

Appendix A. OpenCL Application Example: Matrix Multiplication 96

112 //retrieve opencl platforms in the system

113 error=clGetPlatformIDs(1,platforms,&num_platforms);

114 printf("%d platforms found.\n",num_platforms);

115 if(num_platforms!=0)

116 {

117 //print the OpenCL platforms found in the system

118 for(int i=0;i<num_platforms;i++){

119 printf("Platform %d: \n",i);

120 queryPlatform(platforms[i]);

121 }

122 }

123 else {

124 printf("OpenCL Platform not found\n");

125 printf("OpenCL is not supported by the system\n");

126 exit(1);

127 }

128 printf("Choose which platform to use (default 0): \n");

129 scanf("%d ",&platformChoice);

130
131 //retrieve opencl devices found in the platform choice of the user

132 if(platformChoice>=0 && num_platforms!=0)

133 error=clGetDeviceIDs(platforms[platformChoice],

CL_DEVICE_TYPE_ALL,10,devices,&num_devices);

134
135 if(num_devices!=0){

136 for(int i=0;i<num_devices;i++)

137 {

138 printf("Device %d: \n",i);

139 queryDevice(devices[i]);

140 }

141 }

142 else {

143 printf("No OpenCL supporting devices found in selected Platform

.\n");

144 exit(1);

145 }

146
147 printf("Choose which device to use (default 0): \n");

148 scanf("%d",&deviceChoice);

149 if(deviceChoice>=0 &&deviceChoice<num_devices)

150 device=devices[deviceChoice];

151 else

152 {

153 printf("Invalid device choice! Exiting ...");

154 exit(1);

155 }

156
157 //create a context on the chosen opencl device

158 context=clCreateContext(NULL,1,&device,NULL,NULL,&error);

159 //checkError

160
161 //create a command queue on the selected device

Appendix A. OpenCL Application Example: Matrix Multiplication 97

162 commandQueue=clCreateCommandQueue(context,device,

CL_QUEUE_PROFILING_ENABLE,

163 &error);

164 //checkError

165
166 //2. Building the OpenCL program

167 cl_program program;

168
169 //read the source

170 //(the source file should be in the same folder as the application

)

171 const char* source=readProgram("matMul_kernel.cl");

172
173 //create a program - compile the opencl program

174 program=clCreateProgramWithSource(context,1,&source,NULL,&error);

175
176 //build the program

177 error=clBuildProgram(program,0,NULL,NULL,NULL,NULL);

178 //check if the program building failed

179 if(error!=CL_SUCCESS)

180 {

181 size_t len;

182 //measure the size of the build report

183 clGetProgramBuildInfo(program,device,CL_PROGRAM_BUILD_LOG,0,

NULL,&len);

184 char* buffer=new char[len+1];

185 //retrieve the build report

186 error=clGetProgramBuildInfo(program,device,CL_PROGRAM_BUILD_LOG

,len,

187 buffer,&len);

188 buffer[len]=’\0’;

189 //print the build report to the screen

190 printf("%s\n","Program failed:");

191 printf("%s\n",buffer);

192 exit(1);

193 }

194 /*
195 3. create buffers and manage data

196 Data first needs to be prepared on the host side first.

197 Then buffers should be allocated on the OpenCL Device to hold

the data.

198 Data needs to be copied from host memory to host memory.

199 */

200 //the ’h’ in the variables indicates host side

201 //the sizes for the Matrices is randomly assigned

202 int hRowA=157,hRowB=115,hColA=115,hColB=204;

203 float *hA,*hB,*hC;

204 //allocate buffers on the host side

205 hA=(float*)malloc(hRowA*hColA*sizeof(float));

206 hB=(float*)malloc(hRowB*hColB*sizeof(float));

207 hC=(float*)malloc(hRowA*hColB*sizeof(float));

208 //fill matrix A and matrix B with random numbers

Appendix A. OpenCL Application Example: Matrix Multiplication 98

209 for(int i=0;i<hRowA;i++)

210 for(int j=0;j<hColA;j++)

211 {

212 hA[i*hColA+j]=1;//rand();

213 }

214
215 for(int i=0;i<hRowB;i++)

216 for(int j=0;j<hColB;j++)

217 {

218 hB[i*hColB+j]=1;//rand();

219 }

220
221 /* Allocate buffers on the OpenCL device and copy data

222 from the host device to the OpenCL Device */

223 cl_mem devA=clCreateBuffer(context,CL_MEM_READ_ONLY|

224 CL_MEM_COPY_HOST_PTR,hRowA*hColA*sizeof(float) , hA,NULL);

225 cl_mem devB=clCreateBuffer(context,CL_MEM_READ_ONLY|

226 CL_MEM_COPY_HOST_PTR,hRowB*hColB*sizeof(float) , hB,NULL);

227 cl_mem devC=clCreateBuffer(context,CL_MEM_WRITE_ONLY,

228 hRowA*hColB*sizeof(float), NULL,NULL);

229
230 /* 4. Set arguments and Enqueue Kernels

231 */

232 cl_kernel kernel=clCreateKernel(program, "OpenCL_MatMul", &error);

233 error=clSetKernelArg(kernel, 0, sizeof(cl_mem), &devA);

234 error|=clSetKernelArg(kernel, 1, sizeof(cl_mem), &devB);

235 error|=clSetKernelArg(kernel, 2, sizeof(cl_mem), &devC);

236 error|=clSetKernelArg(kernel, 3, sizeof(int), &hRowA);

237 error|=clSetKernelArg(kernel, 4, sizeof(int), &hRowB);

238 error|=clSetKernelArg(kernel, 5, sizeof(int), &hColB);

239 if(error!=CL_SUCCESS)

240 {

241 printf("Failed to set arguments\n");

242 exit(1);

243 }

244
245 size_t global_ws[2];

246 size_t local_ws[2]={8,8};

247
248 //instatiate enough number of work-items to handle the computation

249 //add padding where it is needed

250 size_t temp = (hRowA/ 8)*8;

251 global_ws[0]= (hRowA - temp) == 0 ? hRowA : hRowA + 8 - (hRowA -

temp);

252
253 temp = (hColB/ 8)*8;

254 global_ws[1]= (hColB - temp) == 0 ? hColB : hColB + 8 - (hColB -

temp);

255
256 //execute the kernel on the OpenCL Device

257 error=clEnqueueNDRangeKernel(commandQueue, kernel, 2, NULL ,

258 global_ws,local_ws, 0, NULL, NULL);

Appendix A. OpenCL Application Example: Matrix Multiplication 99

259 clFinish(commandQueue);

260 if(error!=CL_SUCCESS)

261 {

262 printf("Failed to excute kernel on the device:%d\n",error);

263 exit(1);

264 }

265
266 /* 5. Get results back from the OpenCL Device */

267 error=clEnqueueReadBuffer(commandQueue, devC, CL_TRUE, 0,

268 hRowA * hColB* sizeof(float), hC, 0, NULL,NULL);

269 clFinish(commandQueue);

270 if(error!=CL_SUCCESS)

271 {

272 printf("Failed to read data from the OpenCL device:%d\n",error)

;

273 exit(1);

274 }

275 //allocate buffers on the host side

276 //to store computed results on the host side

277 float *gC;

278 gC=(float*)malloc(hRowA*hColA*sizeof(float));

279 C_MatMul(hA, hB, gC, hRowA, hRowB, hColB);

280
281 //compare the results from host side and the device side

282 printf("The matrix multiplication on the OpenCL Device and

283 the Host is %s\n",compareResults(hC,gC,hRowA,hColB)?

284 "identical.":" not identical.");

285
286 return 0;

287 }

Listing A.2 gives the C implementation of the matrix multiplication in a function.
Also, the a function that checks the similarity of two Matrices is given in the same
listing. This comparison function is added to show that computing on the host side
and the OpenCL device side will give similar if not identical results.

LISTING A.2: Matrix multiplication function in C

1 // MatMul.c

2 // MatrixMultiplication

3
4 #include "MatMul.h" //contains the prototypes of the functions in this

file

5 #include <math.h>

6
7 /*
8 @Function: C_MatMul

9 Accepts two Matrices (A and B) and stores their product on Matrix C.

10 Assumptions:

11 - The number of columns of A are equal to the number of rows of B.

12 - Matrix C is of size RowA x ColB

13 */

Appendix A. OpenCL Application Example: Matrix Multiplication 100

14 void C_MatMul(float* A,float* B, float* C,

15 int RowA,int ColRowAB,int ColB)

16 {

17 float sum=0.0;

18 for(int i=0;i<RowA;i++)

19 for(int j=0;j<ColRowAB;j++)

20 {

21 sum=0.0;

22 for(int k=0;k<ColB;k++)

23 sum+=A[i*ColRowAB+k]*B[k*ColRowAB+j];

24 C[i*ColRowAB+j]=sum;

25 }

26 }

27
28 /*
29 @Function: compareResults

30 Accepts two matrices and compares if they are identical

31 to a certain degree of error.

32 */

33 bool compareResults(float* A,float *B, int row, int col)

34 {

35 for(int i=0; i<row; i++)

36 for(int j=0;j<col;j++)

37 if(fabs(A[i*col+j]-B[i*col+j])>1e-5)

38 {

39 //show where the error occured

40 printf("(%d,%d) - (%f,%f)\n",i,j,A[i*col+j],B[i*col+j]);

41 return false;

42 }

43
44 return true;

45 }

The implementation of the matrix multiplication in an OpenCL kernel is given
in Listing A.3.

LISTING A.3: Matrix multiplication OpenCL kernel

1 // matMul_kernel.cl

2 // MatrixMultiplication

3
4 /*
5 @kernel: OpenCL_MatMul

6 This kernel accepts two floating point Matrices A and B.

7 It computes and stores the product of Matrix A and

8 Matrix B in Matrix C.

9 */

10
11 __kernel void OpenCL_MatMul(global float* A,global float* B,

12 global float* C,int RowA,int ColRowAB,int ColB)

13 {

14

Appendix A. OpenCL Application Example: Matrix Multiplication 101

15 int i = get_global_id(0); //work-item id in dimension 1

16 int j = get_global_id(1); //work-item id in dimension 2

17 float sum = 0.0;

18
19 if ((i < RowA) && (j < ColRowAB)) {

20 sum = 0.0;

21 for(int k = 0; k < ColB; k++)

22 {

23 sum += A[i*ColRowAB + k]*B[k*ColRowAB + j] ;

24 }

25 C[i*ColRowAB + j] = sum;

26 }

27 }

102

Appendix B

List of Source of Ringworm Images

All ringworm images used in this work are collected from sources on the internet.
These images are used as positive samples for training and testing of a ringworm
classifier as discussed in Chapter 5. Hence, the following table gives the sources of
the images, how many images are taken form that source and a brief description of
the sources website. Table B.1 gives the list of source websites for ringworm images
used in the training. Table B.2 gives list of sources for images used for testing the
ringworm detector. Note that the number of images from these sources does not
match the number of ringworm images used during training. This is because some
of the source images had more than one ringworm samples in them.

TABLE B.1: Ringworm Image Sources for Training

S/N Number of
Images

Website Description

1 1 www.nhsdirect.wales.nhs.uk NHS Direct Wales is a health
advice and information ser-
vice available 24 hours a day,
every day

2 2 www.healthline.com

3 1 www.babycentre.co.uk BabyCentre provides support
for parents at every stage
of their child’s development,
from preconception to age
five.

4 4 educationtoday.eu/a-ring-
worm.html

5 1 www.skincarearticles.com/

6 1 www.babyrashhq.com

7 2 www.rvrhs.com/

8 1 www.medicalimages.com

9 2 emedicine.medscape.com

Appendix B. List of Source of Ringworm Images 103

TABLE B.1: Continued

S/N Number of
Images

Website Description

10 2 www.webmd.com

11 1 ringwormtreatmentips.wordpress.com

12 1 medical-
dictionary.thefreedictionary.com

13 1 mdhairmixtress.com

14 1 Rosemary Shy - DOI:
10.1542/pir.28-5-164

Tinea Corporis and Tinea
Capitis

15 1 Neerja Puri, Asha Puri - DOI:
10.7241/ourd.20132.36

A Study of Tinea Capitis on
preschool and school going
children

16 1 www.hairtx.com Hair transplant center

17 1 www.researchgate.net Tinea corporis over abdomen
showing erythematous scaly
lesions, annular, sharply
marginated plaques with
raised border and central
clearing.

18 1 5minuteconsult.com

19 1 www.infinitypath.com.au Pathology Service

20 1 www.studyblue.com Study flash card service

21 1 www.pharmacy.gov.my Pharmaceutical Services Pro-
gramme Ministry of Health
Malaysia

22 1 www.globalskinatlas.com The site provides useful to
people across the globe look-
ing for information and help
with their skin problems irre-
spective of skin colour or race

23 1 africanskindiseases.org An educational website de-
signed to provide access to
information and high quality
dermatology images of com-
mon African skin diseases

24 1 www.cortesedermatology.com

25 1 www.cram.com Dermatology Flashcards

26 1 skintreat.net Education

27 2 www.omicsonline.org Dermatology Flashcards

28 1 www.aocd.org tinajero.pdf

Appendix B. List of Source of Ringworm Images 104

TABLE B.2: Ringworm Image Sources for Testing

S/N Number of
Images

Website Description

1 2 patientslounge.com A site created by patients,
caregivers, and loved ones
sharing knowledge on per-
sonal medical experiences.

2 1 www.news-medical.net A tight-knit community of
scientific, medical, and life
sciences experts that produce
and share the latest informa-
tion, in a readable, under-
standable way.

3 1 dermatoweb.udl.es
4 1 www.ringworm-

treatment.net
5 1 www.huffingtonpost.co.uk
6 2 allskinrashes.blogspot.com
7 1 www.babycentre.co.uk
8 1 www.rytir.info
9 1 www.kidskunst.info

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	 Objectives
	Methodology
	 Performance Characterization of the Architecture
	Implementation of the Viola-Jones Object Detection Algorithm
	Application Development

	Relevance and Application to Ethiopia
	Contributions
	Thesis Organization

	Background
	General Purpose Programming on GPUs
	Open Computing Language (OpenCL)
	The OpenCL Architecture
	The Platform Model
	OpenCL Memory Model
	OpenCL Execution Model

	Computer Vision
	Cascade Classifier based Object Detector
	Haar-like Features and Classifier Matching
	Cascade Classifier
	Integral Image
	Normalization of Lighting Conditions
	The Viola-Jones Object Detection Algorithm

	Previous Related Work
	OpenGL ES for General Purpose Computing
	OpenCL for general purpose computing

	Summary

	Performance Characterization of Mobile GPU
	Experimental Setup
	Data Transfer Throughput Measurement
	Memory Throughput and Latency
	Global Memory Throughput Measurement
	Coalesced Memory Access
	Global Memory Access with Shifts
	Global Memory Access with Strides

	Global Memory Read Latency
	Local Memory Latency Measurement
	Local Memory Latency
	Local Memory Bank Conflict

	Arithmetic Operations Latency Test
	Measuring Parallelism
	Summary

	Object Detection on a Mobile GPU
	Integral Image Computation
	Image Resizing
	Integral Image

	Searching for Objects
	The Naive Object Detection on the GPU
	Using Local Memory
	Data Transfer Reduction
	Work-item Organization

	Modified Classifier Representation
	Work Size Reduction
	Using Local Memory

	Energy Efficiency Measurement
	Comparison with other works

	Summary

	Application to Medical Image Classification
	Ringworm
	Related Work
	Training the Ringworm Cascade Classifier
	Data Collection
	Training process
	Tools used for training
	Classifier Training
	Test Results

	Summary

	Conclusion and Future Work
	Contributions
	Future work

	Bibliography
	OpenCL Application Example: Matrix Multiplication
	List of Source of Ringworm Images

