
Routing Algorithms and Architectures

for Field-Programmable Gate Arrays

Stephen Dean Brown

January 1992

Routing Algorithms and Architectures

for Field-Programmable Gate Arrays

by

Stephen Dean Brown

A thesis submitted in conformity with

the requirements for the degree of

Doctor of Philosophy

January 1992

Department ofElectrical Engineering

University of Toronto

Toronto, Ontario

CANADA

Copyright Stephen Dean Brown

"This is indeed a mystery, [remarked Watson] what do you imagine that it means?"

"I have no data yet. It is a capital mistake to theorize before one has data. Insensibly one

begins to twist facts to suit theories, instead of theories to suit facts."

- "Sherlock Holmes," A. Conan Doyle

-i-

Abstract

Field-Programmable Gate Arrays (FPGAs) are a new type of user-programmable

integrated circuits that supply designers with inexpensive, fast access to customized

VLSI. A key component in the design of an FPGA is itsrouting architecture, which

comprises the wiring segments and routing switches that interconnect the FPGA’s logic

cells. Each of the user-programmable switches in an FPGA consumes significant chip

area and has appreciablecapacitance andresistance, leading to a tradeoff in the design of

a good routing architecture. Providing a large number of switches will yield a flexible

architecture in which the logic cells are easily interconnected, but too many switches

wastes area and degrades speed performance. On the other hand, fewer switches allows

better speed performance and uses less area, but if there are too few switches then it may

not be possible to implement the desired circuits. This thesis studies FPGA routing

architectures with regard to this tradeoff, yielding three main contributions.

A novel detailed routing algorithm that can account for the limited connectivity in

FPGA routing architectures has been developed. It can be used over a wide range of

FPGA routing architectures, and represents the first published algorithm that approaches

detailed routing in FPGAs in a general way. The algorithm addresses the unique issues

in FPGA routing by accounting for the side-effects that the routing of one connection

may have on others, allowing it to resolve contention for the routing resources. It is

shown that the router yields excellent results for a set of relatively large industrial cir-

cuits implemented as FPGAs. The router is the principal tool that is used for the experi-

mental study of FPGA routing architectures done in this thesis.

Experiments have been conducted to study the effects of the flexibility of FPGA

routing architectures on theroutability, which is the percentage of connections that can

-ii-

be successfully completed, of circuits.Flexibility is a measure of the total number of

routing switches and wiring segments in a routing architectures. The experiments show

that a high flexibility is required in the connection blocks that join the logic cells to the

routing channels, but a relatively low flexibility is sufficient in the switch blocks at the

intersections of horizontal and vertical channels. It is also shown that a surprisingly

small number of tracks per routing channel is sufficient to allow circuits to be configured,

even when the flexibility is low.

Finally, a stochastic model has been developed that allows the study of FPGA rout-

ing architectures using a theoretical approach. In the model, both an FPGA and a circuit

to be configured are represented as simple parameters, and probability theory is used to

predict the effect of routing the circuit in the FPGA. The model corroborates the experi-

mental results with the same circuits. It provides the foundation of a theoretical approach

that can be used in future studies of FPGA routing architectures, without time-consuming

experiments.

-iii-

Acknowledgements

I would like to take this opportunity to express my sincere thanks and appreciation

to my academic supervisors. Professor Zvonko G. Vranesic has provided a continual

source of guidance, advice, encouragement, and friendship throughout my graduate stu-

dies. It has been my privilege to work with him. Professor Jonathan S. Rose has pro-

vided a great source of inspiration throughout my doctoral studies. Without his technical

advice and friendship, this thesis could not have transpired.

Susan Lo, my fiancee, has been a constant source of support, providing a stable,

happy personal life. I would also like to thank Tony for the endless hours of play.

My father and mother have always supported my studies and deserve much credit

for enabling me to reach this milestone.

I would like to thank my academic supervisors, the Natural Sciences and Engineer-

ing Research Council, the Information Technology Research Centre, and Micronet for

their financial support.

-iv-

TABLE OF CONTENTS

1 Introduction
1.1 Introduction to Field-Programmable Gate Arrays ... 1-1
1.2 Thesis Motivation .. 1-2
1.3 Research Approach .. 1-3
1.4 Dissertation Organization .. 1-4

2 Background Information
2.1 Introduction ... 2-1
2.2 Routing Algorithms ... 2-1

2.2.1 Routing Terminology .. 2-2
2.2.2 General Approach to Routing .. 2-3
2.2.3 Introduction to Global Routing ... 2-4

2.2.3.1 The LocusRoute Global Routing Algorithm ... 2-5
2.2.4 Introduction to Detailed Routing ... 2-6

2.2.4.1 The Lee Maze Router .. 2-6
2.3 Commercially Available FPGAs ... 2-8

2.3.1 Xilinx FPGAs .. 2-8
2.3.1.1 Xilinx XC2000 .. 2-9
2.3.1.2 Xilinx XC3000 .. 2-11
2.3.1.3 Xilinx XC4000 .. 2-13
2.3.1.4 Xilinx CAD Routing Tools ... 2-16

2.3.2 Actel FPGAs .. 2-16
2.3.2.1 Actel Act1 .. 2-17
2.3.2.2 Actel Act2 .. 2-19
2.3.2.3 Actel CAD Routing Tools ... 2-19

2.3.3 Altera FPGAs .. 2-20
2.3.4 Other FPGAs ... 2-23

2.3.4.1 Plessey FPGAs .. 2-23
2.3.4.2 Plus Logic FPGAs ... 2-24
2.3.4.3 Advanced Micro Devices (AMD) FPGAs ... 2-25
2.3.4.4 Quicklogic FPGAs ... 2-25

3 A Detailed Router for Field-Programmable Gate Arrays
3.1 Introduction ... 3-1
3.2 Motivation ... 3-2
3.3 The FPGA Model .. 3-3
3.4 General Approach and Problem Definition ... 3-5
3.5 The CGE Detailed Router Algorithm .. 3-6

3.5.1 Phase 1: The Expansion of the Coarse Graphs .. 3-7
3.5.2 Phase 2: Connection Formation ... 3-8

3.5.2.1 Cost Function Design ... 3-9
3.5.3 Controlling Complexity ... 3-11

3.5.3.1 Iterations .. 3-13
3.5.4 Independence of CGE from FPGA Routing Architectures 3-15

3.6 Results ... 3-16

-v-

3.6.1 FPGA Routing Structures .. 3-16
3.6.2 Routing Results ... 3-17
3.6.3 Routing Delay Optimization for Critical Nets .. 3-19
3.6.4 Memory Requirements and Speed of CGE ... 3-20

3.7 Conclusions and Future Work ... 3-21

4 The Flexibility of Field-Programmable Gate Array Routing Structures
4.1 Introduction ... 4-1
4.2 FPGA Architectural Assumptions ... 4-3

4.2.1 The Logic Cell ... 4-3
4.2.2 The Connection Block ... 4-6

4.2.2.1 Connection Block Topology .. 4-6
4.2.3 The Switch Block .. 4-8

4.2.3.1 Switch Block Topology ... 4-9
4.3 Experimental Procedure .. 4-10
4.4 Limitations of this Work ... 4-11
4.5 Experimental Results ... 4-12

4.5.1 Effect of Connection Block Flexibility on Routability 4-12
4.5.2 Effect of Switch Block Flexibility on Routability 4-17
4.5.3 Tradeoffs in the Flexibilities of the S and C Blocks 4-19
4.5.4 Track Count Requirements .. 4-19
4.5.5 Architectural Choices .. 4-22

4.6 Conclusions ... 4-24

5 A Stochastic Model to Predict the Routability of FPGAs
5.1 Introduction ... 5-1
5.2 Overview of the Stochastic Model .. 5-3

5.2.1 Model of Global Routing and Detailed Routing ... 5-4
5.3 Previous Research for Predicting Channel Densities .. 5-5

5.3.1 Predicting Channel Densities in FPGAs .. 5-6
5.4 Calculating the Probability of Successfully Routing a Connection 5-7

5.4.1 The Logic Cell to C Block Event .. 5-9
5.4.2 The S Block Events ... 5-13

5.4.2.1 The First S Block Event, forFs =3 ... 5-13
5.4.2.2 The First S Block Event, for Any Value ofFs 5-16
5.4.2.3 The Remaining S Block Events ... 5-18

5.4.3 The C Block to Logic Cell Event .. 5-18
5.4.4 The Probability ofRCi

... 5-20
5.5 Using the Stochastic Model to Predict Routability ... 5-21

5.5.1 Routability Predictions .. 5-23
5.6 Conclusions ... 5-27

6 Conclusions
6.1 Thesis Summary .. 6-1
6.2 Thesis Contributions .. 6-1
6.3 Suggestions for Future Work ... 6-2

-vi-

1 Introduction

1.1 Introduction to Field-Programmable Gate Arrays

Field-Programmable Gate Arrays (FPGAs) are a revolutionary new type of user-

programmable integrated circuits that provide fast, inexpensive access to customized

VLSI. An FPGA consists of an array of logic cells that can be interconnected via pro-

grammable routing switches, where the routing structures are sufficiently general to

allow the configuration of multiple levels of the FPGA’s logic cells. FPGAs represent a

combination of the features of Mask Programmable Gate Arrays (MPGAs) and Pro-

grammable Logic Devices (PLDs). From MPGAs, FPGAs have adopted a two-

dimensional array of logic cells, and from PLDs the user-programmability. The research

reported in this thesis is focused on FPGA routing algorithms and routing architectures.

Following their introduction in 1985, by the Xilinx Company [Cart86], FPGAs have

evolved considerably as various new devices have been developed [ElGa88] [ElGa89]

[Wong89] [Ahre90] [AMD90] [Gupt90] [Hsie88] [Hsie90] [Kawa90] [Marr89] [Ples89]

[Plus90]. FPGAs have quickly gained widespread use, which can be attributed to the

reduced manufacturing time and relatively low costs of these large-capacity user-

programmable devices. As an implementation medium for customized VLSI circuits,

FPGAs offer unique advantages over the alternative technologies (MPGAs, standard

cells, and full custom design):

(1) FPGAs provide a reduction in the cost of manufacturing a customized VLSI circuit

from tens of thousands of dollars to about one hundred dollars.

(2) FPGAs reduce the manufacturing time from months to minutes.

1-2

These advantages, which are attributable to the user-programmability of FPGAs,

provide a faster time-to-market and less pressure on designers, because multiple design

iterations can be done quickly and inexpensively. However, user-programmability also

has drawbacks: the logic density and speed performance of FPGAs is considerably lower

than those of the alternatives. While developments over the last few years have shown

significant improvements in FPGAs, much research is still needed before the best FPGA

designs are discovered.

1.2 Thesis Motivation

Circuits are implemented in an FPGA by interconnecting its logic cells through the

user-programmable routing switches. Two distinct purposes are served by the routing

switches: to connect the logic cells to the routing wires, and to connect one routing wire

to another. One example of an FPGA routing switch is a CMOS pass-transistor con-

trolled by a static memory bit [Cart86], but there are a number of other implementations

that are used in commercial products. Regardless of the implementation, routing

switches consume significant chip area and have appreciable resistance and parasitic

capacitance. For these reasons, it is desirable to limit the number of routing switches in

an FPGA.

All of the routing switches and wires in an FPGA, and their distribution over the

surface of the chip, are collectively referred to as the FPGA’s routing architecture. A

measure of the connectivity provided by a routing architecture is its flexibility, which is a

function of the total number of routing switches and wires. The design space for FPGA

routing architectures is enormous. Choosing a good design involves a tradeoff among

flexibility, logic density, and speed performance. A high flexibility yields an FPGA that

is easily configured, but if the flexibility is too high then area will be wasted by unused

1-3

switches, leaving less area for the logic blocks and resulting in lower logic density.

Moreover, since each routing switch introduces an RC-delay, high flexibility results in

reduced speed performance. Low flexibility, on the other hand, allows higher logic den-

sity and lower RC-delay, but if the flexibility is too low, then it may not be possible to

interconnect the logic cells sufficiently to implement circuits. A good routing architec-

ture is one that achieves a balance between these competing factors.

The primary focus of this thesis is the study of FPGA routing architectures with

regard to the flexibility, logic density, and speed performance tradeoff. The goal of the

study is to determine the minimum flexibility that is necessary to provide sufficient inter-

connection capability to satisfy the requirements of real circuits, and yet low enough so

that routing switches are not wasted. This research is part of a large project [Brown90]

[Brown91] [Fran90] [Fran91] [Rose89] [Rose90a] [Rose90b] [Rose90c] [Rose91]

[Sing91] that examines many aspects of the Computer-Aided Design (CAD) and archi-

tecture of FPGAs.

1.3 Research Approach

FPGA routing architectures are studied in this thesis using both an experimental and

a theoretical approach. For the experimental study, a new type of detailed routing algo-

rithm has been developed that is able to route a wide range of FPGA routing architec-

tures. The experiments consist of varying the routing architecture flexibility and using

the router to measure the resulting effects on the routability of circuits. The results of the

experiments provide insights into the amount of routing resources that is sufficient to

meet the requirements of real circuits and yet low enough so that the resources are not

wasted. These issues are also studied using a theoretical approach that represents both a

circuit and an FPGA as simple parameters of a stochastic model.

1-4

1.4 Dissertation Organization

This dissertation is organized as follows. Chapter 2 provides background informa-

tion, including a discussion of general approaches to routing problems, the definitions of

routing terminology, and a short history of routing algorithms. It also describes represen-

tative examples of commercially available FPGAs, including a brief description of the

routing architecture contained in each chip.

Chapter 3 presents a new detailed routing algorithm, designed specifically for

FPGAs. The algorithm is unique in that it approaches FPGA routing in a general way,

and is designed such that it can be used over a wide range of FPGA routing architectures.

The algorithm is the main tool that is used to produce the experimental results that are

shown in Chapter 4.

FPGA routing architectures are studied in Chapter 4 using an experimental

approach. The algorithm in Chapter 3 is used to route a set of circuits in an FPGA based

on a model that allows the routing structures in the FPGA to be changed. For each cir-

cuit, a range of flexibilities is evaluated by varying the number of routing switches and

wires. The experiments measure the effect of the flexibility of the routing architecture on

the percentage of interconnections that can be successfully routed for each circuit.

Chapter 5 investigates FPGA routing architectures using a theoretical approach. For

this study, both the FPGA and a circuit are represented by simple parameters. A stochas-

tic model is developed to predict the effect of routing the circuit in the FPGA. The

model corroborates the experimental results from Chapter 4 and provides the foundation

of a theoretical model that can be used in future studies of FPGA routing architectures.

Chapter 6 provides concluding remarks and directions for future research. Refer-

ences are listed at the end.

2 Background Information

2.1 Introduction

This chapter introduces the two main fields of research, FPGA routing algorithms

and FPGA routing architecture, that are studied in this thesis. Section 2.2 provides some

necessary background information that is assumed in various discussions, particularly in

Chapter 3, about routing software. Section 2.3 describes several commercially available

FPGA devices to provide a point of reference for the FPGA model that is used

throughout this work, and particularly for the routing architecture results that are

presented in Chapters 4 and 5.

2.2 Routing Algorithms

While the focus of this thesis is routing, this chapter begins with an overview of the

entire CAD process that is necessary to implement a circuit in an FPGA. A typical CAD

system for FPGAs consists of several interconnected programs as illustrated in Figure

2.1. The input to the CAD system is a functional description of a network, usually

expressed in a standard format such as boolean equations. The equations are read by a

logic optimization [Bray86] [Greg86] tool, which performs manipulations of the equa-

tions so as to optimize area, delay, or a combination of area and delay. This step usually

performs the equivalent of an algebraic minimization of the boolean equations and is

appropriate when implementing a circuit in any medium, not just FPGAs. To transform

the boolean equations into a circuit of FPGA logic cells, the optimized network is fed to

a technology mapping program [Kahr86] [Keut87] [Fran91]. This step maps the equa-

tions into logic cells, which also presents opportunity to optimize, either to minimize the

total number of logic cells required (area optimization) or the number of logic cells in

2-2

time-critical paths (delay optimization). The circuit of logic cells is then passed to a

placement program [Hana72] [Rose85] [Sech87], which selects a specific location in the

FPGA for each logic cell. Typical placement algorithms usually attempt to minimize the

total length of interconnect required for the resulting placement.

The final step in the CAD system is performed by the routing software, which allo-

cates the FPGA’s routing resources to interconnect the placed logic cells. The routing

tools must ensure that 100 percent of the required connections are formed, and may be

required to maximize the speed performance of time-critical connections. Finally, the

CAD system’s output is fed to a programming unit that is used to configure the FPGA.

Since routing software is the key step in the CAD system for the purposes of this thesis,

the remainder of this section provides a brief introduction to the subject.

2.2.1 Routing Terminology

Software that performs automatic routing has existed for many years, with the first

algorithms designed to route printed circuit boards. Over the years there have been many

publications concerning routing algorithms, so that the problem is well defined and

FPGA

Unit
Programming

Routing
Mapping

TechnologyBoolean
equations Optimization

Logic Placement

Figure 2.1 - A Typical FPGA CAD System

2-3

understood. The following list gives common routing terms, as they are defined for

FPGA routing in this thesis:

� Pin - a logic cell input or output.

� Connection - a pair of logic cell pins that are to be electrically connected.

� Net - a set of logic cell pins that are to be electrically connected. A net can be

divided into one or more connections.

� Wiring segment - a straight section of wire that is used to form part of a connection.

� Routing switch - a device that is used to electrically connect two wiring segments.

� Track - a straight section of wire that spans the entire width or length of a routing

channel. A track can be composed of a number of wiring segments of various

lengths.

� Routing channel - the rectangular area that lies between two rows or two columns of

logic cells. A routing channel contains a number of tracks.

2.2.2 General Approach to Routing

Because of the combinatorial complexity involved, the solution of large routing

problems usually requires a "divide and conquer" strategy. Following this philosophy,

routing can be solved by a three-step process [Loren89]:

1. Partition the routing resources into routing areas that are appropriate for both the

device to be routed and the routing algorithms to be employed.

2. Use a global router to assign each net to a subset of the routing areas. The global

router does not choose specific wiring segments and routing switches for each con-

nection, but rather it creates a new set of restricted routing problems.

2-4

3. Use a detailed router to select specific wiring segments and routing switches for

each connection, within the restrictions set by the global router.

The advantage of this approach is that each of the routing tools can more effectively

solve a smaller part of the routing problem. More specifically, since a global router need

not be concerned with allocating wiring segments or routing switches, it can concentrate

on more global issues, like balancing the usage of the routing channels. Similarly, with

the reduced number of detailed routing alternatives that are available for each connection

because of the restrictions introduced by a global router, a detailed router can focus on

the problem of achieving connectivity. Its limited scope enables a detailed router to con-

centrate on resolving contention for routing resources that may exist among different

nets.

The above routing strategy has been adopted in this thesis for FPGA routing. The

routing resources are partitioned into horizontal and vertical routing channels.

2.2.3 Introduction to Global Routing

This section introduces global routing by describing the LocusRoute global routing

algorithm [Rose90a] for standard cells. Although there are many other published tech-

niques for global routing [Loren89] [Sech88] [Cong88], this specific algorithm is

described as an example because a modified version of it is employed for FPGA global

routing in this thesis. This algorithm has been chosen for FPGAs because, as described

below, its primary goal is to balance the usage of the routing channels. This is important

for FPGAs because the number of tracks per channel is pre-determined. Note that the

description below is based on the standard-cell version of LocusRoute, and the main

difference between this and the FPGA version is the definitions of the routing channels -

the standard-cell program assumes only horizontal routing channels, whereas the FPGA

2-5

version uses both horizontal and vertical channels.

2.2.3.1 The LocusRoute Global Routing Algorithm

The LocusRoute global router views the global routing problem as consisting of

three main tasks:

1. For nets comprising more than two pins, determine which pairs of pins to connect

together. This step decomposes a multi-point net into a set of two-point connec-

tions.

2. Determine a path through the routing channels for each connection.

3. Optimize the solution so that the usage of all of the routing channels is balanced.

The first task is solved by finding a minimum-spanning tree [Prim57] for each net.

Basically, this technique breaks a net into a set of two point connections such that the

total amount of interconnect required is minimized.

To solve the second task, LocusRoute models each routing channel as an array of

grids, as shown in Figure 2.2. Each grid location contains a counter, originally set to

zero, which is incremented by one for each connection that is globally routed through it.

In this way, the algorithm is able to maintain a detailed account of the usage of each rout-

ing channel, so that it can avoid congestion. The algorithm considers alternative ways of

routing each connection and chooses the one that passes through the least congested rout-

ing grids. Note that LocusRoute does not consider all of the possible ways that a connec-

tion can be routed, but rather it evaluates only a subset of the paths that have "two or

fewer bends", as explained in [Rose90a].

After all of the connections have been globally routed once, LocusRoute optimizes

the solution by sequentially ripping up and re-routing each connection. After repeating

2-6

this procedure a small number of times, the final solution is output in a format suitable

for the detailed router to be employed.

grid
channelRouting Channel

Logic
Cell Cell

Logic

Figure 2.2 - The Channel Grids Used by LocusRoute

2.2.4 Introduction to Detailed Routing

This section provides an introduction to detailed routing by describing the maze

routing technique. Although there exist many other detailed routing algorithms [Aker72]

[Souk81] [Loren89], maze routing will be discussed because it is widely used due to its

general applicability, and a variant of a maze router is employed as a comparison against

the detailed routing algorithm for FPGAs that is described in Chapter 3.

2.2.4.1 The Lee Maze Router

Most maze routers can be considered to be a variant of the algorithm described in

[Lee61]. This technique models the entire routing surface as a rectangular array of cells,

where the size of each cell is defined so as not to violate the spacing rules for wiring seg-

ments. Connections are formed one at a time by selecting adjacent cells that reach from

one end of a connection to the other. Once a grid location is occupied, either by a con-

nection or by some sort of obstruction, it is marked as unusable. An array of routing cells

is illustrated in Figure 2.3, where unusable cells are shaded and usable ones are not. The

figure shows the detailed routes of three connections as they might be produced by a

2-7

maze router.

The Lee algorithm implements the array of cells as a regular graph, with one vertex

for each cell and one edge joining each pair of adjacent cells. A connection is routed by

beginning at one of its ends and traversing the graph in a breadth first fashion until the

other end is reached. The result is a diamond shaped wavefront that emanates from the

first point, as illustrated in Figure 2.4. The numbers in the figure correspond to each step

as the wavefront is propagated.

routing surface

4
4

4
4

4
4

4
4

4
4

4
4

3
3

3
3

3
3

3
32

2
2

2
1

starting point

Figure 2.4 - Maze Router Diamond Shaped Wavefront

The main advantage of a maze router is that it is guaranteed to find a path from one

end of a connection to the other, if one exists at the time the connection is routed. On the

LEGEND

unoccupied cell

by a connection
cell occupied

by an obstruction
cell occupied

routing surface

Figure 2.3 - Maze Routers Model the Routing Surface by an Array of Cells

2-8

other hand, because of its sequential nature a maze router is unable to consider the side-

effects that the routing of one connection may have on another. Correspondingly, the

main disadvantage of maze routing is the unnecessary blockage of as yet unrouted con-

nections because of previous routing decisions.

2.3 Commercially Available FPGAs

This section provides a detailed description of three commercially available FPGA

families, including those from Xilinx Co., Actel, and Altera. These particular FPGAs

have been chosen because they are representative examples of state-of-the-art devices

and they are in widespread use. Each device is described in terms of its general architec-

ture, its choice of programmable cell, its routing architecture, and its CAD routing tools.

Enough details are given, and in some cases specific comments are made, to show how

the routing architecture of each device relates to the research contained in this thesis. In

addition, at the end of the section, several recently introduced FPGAs are briefly

described.

2.3.1 Xilinx FPGAs

The general architecture of Xilinx FPGAs is shown in Figure 2.5. It consists of a

two-dimensional array of programmable cells, called Configurable Logic Blocks (CLBs),

with horizontal routing channels between rows of cells and vertical routing channels

between columns. Programmable resources are configured by Static RAM cells, and

each routing switch is implemented as a specially designed transistor controlled by an

SRAM bit. There are three families of Xilinx FPGAs, called the XC2000, XC3000, and

XC4000 corresponding to first, second, and third generation devices. Table 2.1 gives an

indication of the logic capacities of each generation by showing the number of CLBs and

an equivalent gate count. The gate count measure is given in terms of "equivalent to an

2-9

MPGA of the same size." All FPGA manufacturers quote logic capacity by this measure,

but it is questionable whether the figures quoted by each are realistic. The numbers given

in Table 2.1, and in similar tables that appear later in this chapter, should be interpreted

accordingly. The design of the Xilinx CLB and routing architecture differs for each gen-

eration, so they will each be described in turn.

2.3.1.1 Xilinx XC2000

The XC2000 CLB, shown in Figure 2.6, consists of a four-input look-up table and a

D flip-flop [Cart86]. The look-up table can generate any function of up to four variables

I/O Block

Configurable
Logic
Block

Horizontal
Routing
Channel

Vertical
Routing
Channel

Figure 2.5 - General Architecture of Xilinx FPGAs

���
Series Number of CLBs Equivalent Gates��

XC2000 64 - 100 1200 - 1800���
XC3000 64 - 320 2000 - 9000���
XC4000 64 - 900 2000 - 20000��

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Table 2.1 - Xilinx FPGA Logic Capacities

2-10

or any two functions of three variables. Both of the CLB outputs can be combinational,

or one output can be registered.

As illustrated in Figure 2.7, the XC2000 routing architecture employs three types of

routing resources: Direct interconnect, General Purpose interconnect, and Long Lines.

Note that for clarity the routing switches that connect to the CLB pins are not shown in

the figure. The Direct interconnect (shown only for the CLB marked with an ’*’) pro-

vides connections from the output of a CLB to its right, top, and bottom neighbours. For

connections that span more than one CLB, the General Purpose interconnect provides

horizontal and vertical wiring segments, with four segments per row and five segments

per column. Each wiring segment spans only the length or width of one CLB, but longer

wires can be formed because each switch matrix holds a number of routing switches that

can interconnect the wiring segments on its four sides. Note that a connection routed

with the General Purpose interconnect will incur significant routing delays because it

must pass through a routing switch at each switch matrix. Connections that are required

R

D
S

Q

Table

Look-up
Inputs

Outputs

Note:

= User-programmed
Multiplexor

Clock

D
C
B
A

Y

X

Figure 2.6 - XC2000 CLB

2-11

to reach several CLBs with low skew can use the Long Lines, which traverse at most one

routing switch to span the entire length or width of the FPGA.

2.3.1.2 Xilinx XC3000

The XC3000 [Hsie88] is an enhanced version of the XC2000, featuring a more

complex CLB and more routing resources. The CLB, as shown in Figure 2.8, houses a

look-up table that can implement any function of five variables, any two functions of four

variables, and some functions of up to seven variables. The CLB has two outputs, both

of which may be either combinational or registered.

Figure 2.9 shows that the XC3000 routing architecture is similar to that in the

XC2000, having Direct interconnect, General Purpose interconnect, and Long Lines.

Each resource is enhanced: the Direct interconnect can additionally reach a CLB’s left

Long Lines

General Purpose
interconnect

Direct
interconnect *

CLB CLB

CLBCLB

switch
matrix

matrix
switch

CLB CLB

General Purpose
interconnect

Figure 2.7 - XC2000 Interconnect

2-12

Table

Look-up

OR

Vcc

(Global Reset)

Gnd

Data In

Reset

Clock

Clock
Enable

D
S

Q

R

S
D

R

Q

X

Y

M

x
u

u
x

M

Outputs
Inputs

B
C
D
E

A

Figure 2.8 - XC3000 CLB

neighbour, the General Purpose interconnect has an extra wiring segment per row, and

there are more Long Lines.

The XC3000 also contains switch matrices that are similar to those in the XC2000.

Figure 2.9 depicts the internal structure of an XC3000 switch matrix by showing, as an

example, that the wiring segment marked with an ’*’ can connect through routing

switches to six other wiring segments. Although not shown in the figure, the other wiring

segments are similarly connected, though not always to the same number of segments.

This detail is included here because the results shown in Chapter 4 of this thesis suggest

recommended values for the number of routing switches connectable to any wiring seg-

ment, as well as the number of wiring segments in a row or column. Those results indi-

cate that, in terms of routability, the XC3000 contains too many routing switches per

switch matrix and too few wiring segments in its rows and columns.

2-13

Direct

General Purpose
interconnect

interconnect

Routing switch Long Lines

*

CLB

CLB

CLB CLBCLB

CLB

CLB

CLB

CLB

switch
matrix

switch
matrixmatrix

switch

matrix
switch

Figure 2.9 - XC3000 Interconnect

2.3.1.3 Xilinx XC4000

The XC4000 [Hsie90] features several enhancements over its predecessors. The

CLB, illustrated in Figure 2.10, utilizes a hierarchical arrangement of look-up tables that

yields a greater logic capacity per CLB than in the XC3000. The XC4000 CLB can

implement two independent functions of four variables, any single function of five vari-

ables, any function of four variables together with some functions of five variables, or

some functions of up to nine variables. The CLB has two outputs, which may be either

combinational or registered.

2-14

Table
Lookup

Table
Lookup

Table
Lookup

Outputs

C4C3C2C1

F1

F2

F3

F4

G1

G2

G3

G4

state

state

multiplexor

E R

QD

S

S
QD

E R

Q2

Q1

G

F

Vcc

Clock

Inputs

Figure 2.10 - XC4000 CLB

The XC4000 routing architecture is significantly different from the earlier Xilinx

FPGAs, with the most obvious difference being the replacement of the Direct intercon-

nect and General Purpose interconnect with two new resources, called Single-length

Lines and Double-length Lines. The Single-length Lines, which are intended for rela-

tively short connections or those that do not have critical timing requirements, are shown

in Figure 2.11, where each X indicates a routing switch. This figure illustrates three

architectural enhancements in the XC4000 series:

1. There are more wiring segments in the XC4000. While the number shown in the

figure is only suggestive, the XC4000 contains more than twice as many wiring seg-

ments as does the XC3000.

2. Most CLB pins can connect to a high percentage of the wiring segments. This

represents an increase in connectivity over the XC3000.

2-15

3. Each wiring segment that enters a switch matrix can connect to only three others,

which is half the number found in the XC3000.

It is interesting to note these three enhancements here because they are all supported

by the architectural research that appears in Chapter 4 of this thesis.

The remaining routing resources in the XC4000, which includes the Double-length

Lines and the Long Lines, are shown in Figure 2.12. As the figure shows, the Double-

length Lines are similar to the Single-length Lines, except that each one passes through

half as many switch matrices. This scheme offers lower routing delays for moderately

long connections that are not appropriate for the low-skew Long Lines. For clarity, nei-

ther the Single-length Lines nor the routing switches that connect to the CLB pins are

shown in Figure 2.12.

Routing switch

routing switches
point consists of six
Each switch matrix

NOTE:

wiring segment

Matrix
Switch

Switch
Matrix

Switch
Matrix

Clock

F1

F Q1 F2 C2 G2
F3

C3

G3

G
Q2G4C4

G1
F4

C1

CLB

Switch
Matrix

Figure 2.11 - XC4000 Single-Length Lines

2-16

(Single-length Lines

switches

are not shown)

Double-length
Line

six routing

Long Lines
Horizontal

Vertical Long Lines

CLBCLB

CLBCLB

Figure 2.12 - XC4000 Double-Length Lines and Long Lines

2.3.1.4 Xilinx CAD Routing Tools

Xilinx routing tools are based on maze routers that are customized for the particular

routing resources in each part. It was noted earlier in this chapter that maze routers are

unable to consider the side effects that routing some connection in a particular fashion

may have on other connections. This is a serious shortcoming because Xilinx routing

structures have limited connectivity, and for this reason maze routing is probably not the

best technique to use for Xilinx devices.

2.3.2 Actel FPGAs

The basic architecture of Actel FPGAs, depicted in Figure 2.13, is similar to that

found in MPGAs, consisting of rows of programmable cells, called Logic Modules

(LMs), with horizontal routing channels between the rows. Each routing switch in these

FPGAs is implemented by a novel device called an anti-fuse [ElAy88], which normally

2-17

resides in a high-impedance state but takes on a low resistance (about 500 ohms) when

"programmed" by a high voltage pulse. Actel currently has two generations of FPGAs,

called the Act-1 [ElAy88] and Act-2 [Ahre90], whose logic capacities are shown in

Table 2.2.

2.3.2.1 Actel Act-1

The Act-1 LM that is shown in Figure 2.14 illustrates a very different approach

from that found in Xilinx FPGAs. Namely, while Xilinx utilizes a large, complex CLB,

Actel advocates a small, simple LM. Research has shown [Sing91] that both of these

approaches have their merits, and the best choice for a programmable cell depends on the

Routing
Channels

Logic
Module Rows

I/O

k
s

c
o
l
BB
l
o
c

s
k

I/O

k
s

c
o
ll
o
c

s
k

BB

I/O Blocks

I/O Blocks

Figure 2.13 - General Architecture of Actel FPGAs

���
Series Number of LMs Equivalent Gates��
Act-1 295 - 546 1200 - 2000���
Act-2 430 - 1232 6250 - 20000���

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Table 2.2 - Actel FPGA Logic Capacities

2-18

speed performance of the routing architecture. As Figure 2.14 shows, the Act-1 LM is

based on a configuration of multiplexers, which can implement any function of two vari-

ables, most functions of three, some of four, up to a total of 702 logic functions [Mail90].

The Act-1 routing architecture is illustrated in Figure 2.15, which for clarity shows

only the routing resources connected to the LM in the middle of the picture. The Act-1

employs four distinct types of routing resources: Input segments, Output segments, Clock

tracks, and Wiring segments. Input segments connect four of the LM inputs to the Wir-

ing segments above the LM and four to those below, while an Output segment connects

the LM output to several channels, both above and below the module. The Wiring seg-

ments consist of straight metal lines of various lengths that can be connected together

through anti-fuses to form longer lines. The Act-1 features 22 tracks of Wiring segments

in each routing channel and, although not shown in the figure, 13 vertical tracks that lie

directly on top of each LM column. Clock tracks are special low-delay lines that are

used for signals that must reach many LMs with minimum skew.

S1A0 SA

M

x
u

A1

B1 S0SB

M

x
u

B0

Y
u
x

M

Figure 2.14 - Act-1 LM

2-19

Clock track

Output segment

Wiring segment

Input segment

(vertical tracks not shown)

LM

LM

LM

LM

LM

LM

LM LM LM LM

LMLM

LM LM LM

anti-fuse

Figure 2.15 - Act-1 Programmable Interconnect Architecture

2.3.2.2 Actel Act-2

The Act-2 device, an enhanced version of the Act-1, contains two different pro-

grammable cells, called the C (Combinational) module and the S (Sequential) module.

The C module is very similar to the Act-1 LM, although slightly more complex, while

the S module is optimized to implement sequential elements.

The Act-2 routing architecture is also similar to that found in the Act-1. It features

the same four types of routing resources, but the number of tracks is boosted to 36 in

each routing channel and 15 in each column.

2.3.2.3 Actel CAD Routing Tools

The key CAD tool that is used to route Actel FPGAs is the segmented channel

router described in [Green90]. This router uses a novel algorithm that guarantees that

every connection will pass through at most a given maximum number of anti-fuses, if

2-20

such a solution exists, and in this sense the algorithm produces an optimal result.

Although channel routers are not generally appropriate for FPGAs, for reasons given in

Chapter 3, it is possible to use this technique for Actel designs because of their high con-

nectivity. Every LM input connects to all of the tracks either above or below it and each

LM output connects to all the tracks in the channels spanned by its output segment.

However, it is worthy of note that the research reported in Chapter 4 of this thesis indi-

cates that this connectivity can be reduced, in which case it might be necessary to modify

the routing algorithm to handle the reduced horizontal-vertical connectivity.

2.3.3 Altera FPGAs

Altera FPGAs [Alt90] are considerably different from the others discussed above

because they resemble large Programmable Logic Devices. Nonetheless, they are func-

tionally equivalent to FPGAs because they employ a two-dimensional array of pro-

grammable cells and a programmable routing structure, they can implement multi-level

logic, and they are user-programmable. Altera’s general architecture, which is based on

an EPROM programming technology, is illustrated in Figure 2.16. It consists of an array

of programmable cells, called Logic Array Blocks (LABs), interconnected by a routing

resource called the Programmable Interconnect Array (PIA). The logic capacities of the

two generations of Altera FPGAs are listed in Table 2.3.

The Altera LAB is by far the most complex logic cell of any of the FPGA families

described thus far. A LAB can be thought of as an efficient PLD, as will be explained in

the following paragraphs. Each LAB, as seen in Figure 2.17, consists of two major

blocks, called the Macrocell Array and the Expander Product Terms.

The Macrocell Array is a one-dimensional array of elements called Macrocells,

where the number of elements in the array varies with each Altera device. As illustrated

2-21

Block
LAB = Logic Array

Array
Interconnect

PIA = Programmable

I/O Control Block

I/O Control Block

PIA

LAB

LAB

LAB

LAB LAB

LAB

LAB

LAB

LAB

LAB

LAB LAB

LAB

LAB

LAB

LAB

l

k
c
o
l
B

C
I/O

t
r

n
o

o o

o
n

r
t

I/O
C

B
l
o
c
k

l

Figure 2.16 - General Architecture of Altera FPGAs

in Figure 2.18, each Macrocell comprises three wide AND gates that feed an OR gate

which connects to an XOR gate, and a flip-flop. The XOR gate generates the Macrocell

output and can optionally be registered. In Figure 2.18, the inputs to the Macrocell are

shown as single-input AND gates because each is generated as a wired-AND (called a p-

term) of the signals drawn on the left-hand side of the figure. A p-term can include any

signal in the PIA, any of the LAB Expander Product Terms (described below), or the out-

put of any other Macrocell. With this arrangement the Macrocell Array functions much

like a PLD, but with fewer product terms per register (there are usually at least eight pro-

duct terms per register in a PLD). Altera claims [Alt90] that this makes the LAB more

efficient because most logic functions do not require the large number of p-terms found

in PLDs and the LAB supports wide functions by way of the Expander Product Terms.

2-22

��
Series Number of LABs Equivalent Gates��

EPM5000 1 - 12 2000 - 7500��
EPM7000 N/A 2000 - 20000��

�
�
�

��
�
�
�

��
�
�
�

��
�
�
�

Table 2.3 - Altera FPGA Logic Capacities

P
I
A

Array
Macrocell

Array
Product Term

Expander

Figure 2.17 - Altera LAB

As illustrated in Figure 2.19, each Expander Product Terms block consists of a

number of p-terms (the number shown in the figure is only suggestive) that are inverted

and fed back to the Macrocell Array, and to itself. This arrangement permits the imple-

mentation of very wide logic functions because any Macrocell has access to these extra

p-terms.

The Altera routing structure, the PIA, consists of a number of long wiring segments

that pass adjacent to every LAB. The PIA provides complete connectivity because each

LAB input can be programmably connected to the output of any LAB, without con-

straints. With this arrangement, routing an Altera FPGA is trivial, since there are no

routing constraints. However, as mentioned previously for Actel FPGAs, this level of

2-23

connectivity is excessive and could probably be reduced, given an appropriate routing

algorithm.

S

Macrocell

LAB system clock

Programmable
Interconnect

feedbacks
Macrocell
LAB

Note:

reset

set

= programmable EPROM switch

array clock

mux

D Q

R

state

mux

Array signals

LAB
Expander
Product Terms

Figure 2.18 - Altera Macrocell

2.3.4 Other FPGAs

Four recently introduced FPGAs are described briefly in this section, including

those from Plessey Co., Plus Logic, Advanced Micro Devices, and Quicklogic.

2.3.4.1 Plessey FPGAs

The Plessey FPGA, described in [Ples89], is called an Electrically Reconfigurable

Array. It consists of a two-dimensional array of logic cells overlayed with a dense inter-

connect resource. With the routing resources placed on top of the logic cells, these dev-

ices resemble the Sea-Of-Gates architecture used in some MPGAs. Each Plessey logic

cell is relatively simple, containing an eight-to-two line multiplexer that feeds a NAND

gate, and a transparent latch. The multiplexer is controlled by a Static RAM block and is

2-24

To LAB Macrocell Array and
LAB Expander Product Terms

LAB
Expander
Product Terms

Expander Product Terms

Programmable
Interconnect

LAB

Array signals feedbacks
Macrocell

Note:
= programmable EPROM switch

Figure 2.19 - Altera Expander Product Terms

used to connect the logic cell to the routing resources, which comprise wiring segments

of various lengths: Local interconnect for short connections, Short Range interconnect

for moderate-length connections, and Long Range interconnect for long connections.

2.3.4.2 Plus Logic FPGAs

The Plus Logic FPGA [Plus90] consists of two columns of four logic cells, called

Functional Blocks (FBs), that can be fully interconnected by a Universal Interconnect

Matrix (a full cross-bar switch). Compared to the three FPGA architectures that were

described in detail at the first of this section, this device is most like an Altera FPGA, but

the FBs represent more complex logic cells. Each FB comprises a wide AND plane that

feeds an OR plane, like a PLA (programmable AND/programmable OR) device. The OR

plane feed a third plane, which generates the nine (optionally registered) outputs of an

FB. Each of these outputs corresponds to any function of two terms from the OR array

and one output of any other FB. The programming technology used by Plus is EPROM.

3 A Detailed Router for Field-Programmable Gate Arrays

3.1 Introduction

This Chapter presents a new kind of detailed routing algorithm that has been

designed specifically for FPGAs. The algorithm is unique in that it approaches this prob-

lem in a general way, allowing its use over a wide range of different FPGA routing archi-

tectures [Brow90] [Brow91]. This feature is used in Chapter 4, where the router is

employed to investigate the effect of the flexibility of routing architectures.

Detailed routing for FPGAs can be more difficult than classic detailed routing

[Aker72] [Souk81] [Loren89] because connections are made using wiring segments that

are already in place and joins between segments are possible only at pre-determined

places where routing switches exist. In some FPGA routing architectures the amount of

connectivity available is low, which places exacting limitations on the number of routing

choices for a connection. Wherever two or more connections pass through a common

routing channel, there may be competition for the routing resources in that channel. In

FPGAs that have limited connectivity, resolving such competitions is essential in order to

achieve 100 percent routing completion. The algorithm described here, called the Coarse

Graph Expansion (CGE) detailed router for FPGAs, addresses the issue of scarce routing

resources by considering the side effects that the routing of one connection has on

another, and also has the ability to optimize the routing delays of time-critical connec-

tions.

CGE has been used to obtain excellent routing results for several industrial circuits

implemented in FPGAs with various routing architectures. The results show that CGE is

able to route relatively large FPGAs in very close to the minimum number of tracks as

3-2

determined by global routing, and it can successfully optimize the routing delays of

time-critical connections.

This chapter is organized as follows: Section 3.2 motivates the development of an

FPGA-specific router, Section 3.3 presents the model used for the FPGA, Section 3.4

defines the detailed routing problem, Section 3.5 describes the CGE routing algorithm,

Section 3.6 presents the results from tests of the router, and Section 3.7 gives concluding

remarks.

3.2 Motivation

A key problem in the detailed routing of FPGAs is that routing choices made for

one connection may unnecessarily block another. Consider Figure 3.1, which shows

three views of the same section of an FPGA. Each view gives the routing options for one

of connections A, B, and C. In the figure, a routing switch is shown as an X, a wiring

segment as a dotted line, and a possible route as a solid line. Now, assume that a router

first completes connection A. If the wiring segment numbered 3 is chosen for A, then

one of connections B and C cannot be routed because they both rely on the same single

remaining option, namely the wiring segment numbered 1. The correct solution is for the

router to choose the wiring segment numbered 2 for connection A, in which case both B

and C are also routable. Note that in a regular VLSI channel with full customization of

mask layers, this scenario is not a problem because any of segments 1, 2, or 3 could be

used for any of connections A, B, or C. Although this is a simple example, it illustrates

the essence of the problems that occur because of limited routing options in FPGAs.

Common approaches used for detailed routing in other types of devices are not suit-

able for FPGAs. Maze routers [Lee61] are ineffective because, as shown in Chapter 2,

they are inherently sequential and so, when routing one connection, they cannot consider

3-3

Options for Connection A Options for Connection B Options for Connection C

2
1

3

LL

LL

1
2
3

L L

LL

L L

L L

1
2
3

Figure 3.1 - Routing Conflicts

the side-effects on other connections. Channel routers [Hash71] are not appropriate

because the detailed routing problem in FPGAs cannot generally be subdivided into

independent channels. Note that a channel routing algorithm is used in [Green90] for

Actel-like FPGAs [ElGa88]. This is possible for these types of FPGAs because the logic

cells are arranged in rows separated by routing channels and the routing switches are

such that each vertical wiring segment (from a logic cell pin or from another channel)

can be connected to any horizontal wiring segment that it crosses in a channel. This rout-

ing flexibility cannot be assumed, in general, for an FPGA.

3.3 The FPGA Model

Since the primary purpose of this algorithm is to provide a means of investigating

FPGA routing architectures, an appropriate model must be defined for the FPGA. The

model that has been chosen has a two-dimensional array of logic cells interconnected by

vertical and horizontal routing channels, similar to [Cart86]. Note that this model is

much more flexible than the FPGA presented in [Cart86] because it allows the amount of

routing resources to be changed over a wide range. The model comprises three major

parts: the logic cells (L), Connection blocks (C), and Switch (S) blocks, as shown in Fig-

ure 3.2. The logic cells house the combinational and sequential logic that form the func-

tionality of a circuit. In general, a logic cell has a number of pins that may each connect

3-4

to the four adjacent C blocks. The FPGA’s I/O cells appear as logic cells that are on the

periphery of the chip.

The C blocks are rectangular switch boxes with connection points on all four sides,

and are used to connect the logic cell pins to the routing channels, via programmable

switches. Depending on the topology of the C block, each logic cell pin may be switch-

able to either all or some fraction of the wiring segments that pass through the C block.

The fewer wiring segments connectable in the C blocks, the harder the FPGA is to route.

Connections along a routing channel may also pass straight through a C block, but in a

typical routing architecture no switch would be involved for such connections.

The S blocks are also rectangular switch boxes. They are used to connect wiring

segments in one channel segment to those in another. Depending on the topology, each

wiring segment on one side of an S block may be switchable to either all or some fraction

LC C

line
Gridsegment

Channel

Segment
Channel

Horizontal

0 1 2 3 4

0

4

L L

LL

L L

C

C C

C

CC

CC

S S

SS

Routing Channel
Vertical

C

C

L

L

Grid
lineRouting Channel

1

2

3

Wiring Segment

Figure 3.2 - The FPGA Model

3-5

of the wiring segments on each other side of the S block. Again, the fewer wiring seg-

ments that can be switched to, the harder the FPGA is to route. A connection that passes

through an S block may do so through a switch or it may be hard-wired. A connection

will have a lower routing delay if it uses hardwired wiring segments than if it passes

through switches.

In Figure 3.2, each logic cell has two pins that appear on all four of its sides, and

there are three tracks in each routing channel. The figure also defines several terms, such

as channel segment, wiring segment, and routing channel. The two-dimensional grid that

is overlayed on the FPGA is used in this chapter as a means of describing the connections

to be routed.

3.4 General Approach and Problem Definition

FPGA routing is a complex combinatorial problem. The general approach taken

here is the usual two-stage method of global routing followed by detailed routing. This

allows the separation of two distinct problems: balancing the densities of all routing

channels, and assigning specific wiring segments for each connection. The global router

used is an adaptation of the LocusRoute global routing algorithm for standard cells, that

was described in Chapter 2. The global router divides multi-point nets into two-point

connections and routes them in minimum distance paths. Its main goal is to distribute the

connections among the channels so that the channel densities are balanced.

The global router defines a coarse route for each connection by assigning it a

sequence of channel segments. Figure 3.3a shows a representation of a typical global

route for one connection. It gives a sequence of channel segments that the global router

might choose to connect some pin of a logic cell at grid location 2,2 to another at 4,4.

The global route is called a coarse graph, G (V,A), where the logic cell at 2,2 is referred

3-6

to as the root of the graph and the logic cell at 4,4 is called the leaf. The vertices, V, and

edges, A, of G (V,A) are identified by the grid of Figure 3.2. Since the global router splits

all nets into two-point connections, the coarse graphs always have a fan-out of one.

After global routing the problem is transformed to the following: for each two-point

connection, the detailed router must choose specific wiring segments to implement the

channel segments assigned during global routing. As this requires complete information

about the FPGA routing architecture, CGE uses the details of the logic cells, C blocks,

and S blocks, as described in the following sections.

3.5 The CGE Detailed Router Algorithm

The basic algorithm is split into two phases. In the first phase, it records a number

of alternatives for the detailed route of each coarse graph, and then in the second phase,

viewing all the alternatives at once, it makes specific choices for each connection. The

decisions made in phase 2 are driven by a cost function that is based on the alternatives

enumerated in phase 1. Multiple iterations of the two phases are used to allow the algo-

rithm to conserve memory and run-time while converging to its final result, as discussed

in Section 3.5.3.

3

0

edge
label

expand

coordinates
Grid

Block
Grid

coordinates
Block

1 11

1

3,3

3,4

4,4

2,3

2,2L

C

S

C

L

C

S 3,3

2,3

2,2

0

2

0
1 2

1

4,4L

3,4C

L

Figure 3.3a. Coarse graph, Figure 3.3b. Expanded graph,G D

Figure 3.3 - A Typical Coarse Graph and its Expanded Graph

3-7

3.5.1 Phase 1: The Expansion of the Coarse Graphs

During phase 1, CGE expands each coarse graph and records a subset of the possi-

ble ways that the connection can be implemented. For each G (V,A), the expansion

phase produces an expanded graph, called D (N,E). N are the vertices of D and E are its

edges, with each edge referring to a specific wiring segment in the FPGA. The edges are

labelled with a number that refers to the corresponding wiring segment.

In the expansion algorithm, the procedures that define the connection topology of

the C and S blocks are treated as black-box functions. The black-box function for a C

block is denoted as fc([d 1,d 2,l],d 3) and for an S block as fs([d 1,d 2,l],d 3). The param-

eters in square brackets define an edge that connects vertex d 1 to vertex d 2, using a wir-

ing segment labelled l. Such an edge is later referred to as e, where e = (d 1,d 2,l). The

parameter d 3 is the successor vertex of d 2 in G. The task of the function call can be

stated as: "If the wiring segment numbered l is used to connect vertex d 1 to d 2, what are

the wiring segments that can be used to reach d 3 from d 2?" The function call returns the

set of edges that answer this question. As explained in Section 3.5.4, this black-box

approach provides independence from any specific FPGA routing architecture. The

result of a graph expansion is illustrated in Figure 3.3b, which shows a possible expanded

graph for the coarse graph of Figure 3.3a. An expanded graph is produced by examining

the routing switches and wiring segments along the path described by the coarse graph,

and recording the alternative detailed routes in the expanded graph. In algorithmic form,

the graph expansion process for each coarse graph operates as follows:

Create D and give it the same root as G. Make the immediate successor to the
root of D the same as for the root of G.

While traversing D breadth first, enumerate the paths originating at each added
vertex according to:
Expand a C vertex in D by calling Z = fc(eC ,n). eC is the edge in D that

connects to C from its predecessor. n is the required successor vertex

3-8

of C (in G) and Z is the set of edges returned by fc(). The call to fc()
adds Z to D.

Expand an S vertex in D by calling Z = fs(eS ,n). eS is the edge in D that
connects to S from its predecessor. n is the required successor vertex
of S (in G) and Z is the set of edges returned by fs(). The call to fs()
adds Z to D.

Endwhile

3.5.2 Phase 2: Connection Formation

After expansion, each D (N,E) may contain a number of alternative paths. CGE

places all the paths from all the expanded graphs into a single path list. Based on a cost

function, the router then selects paths from the list; each selected path defines the detailed

route of its corresponding connection. Phase 2 proceeds as follows (as explained later in

this section, the terms cf cost and ct cost are functions that represents the relative cost of

selecting a specific detailed route (path) for a connection, and an essential path indicates

a connection that should be routed immediately because it has only one remaining

option):

Put all the paths in the expanded graphs into the path-list

While the path-list is not empty
If there are paths in the path-list that are known to be essential

Select the essential path that has the lowest cf cost.
Else if there are paths in the path-list that correspond to time-critical connec-

tions
Select the critical path with the lowest ct cost.

Else
Select the path with the lowest cf cost

Mark the graph corresponding to the selected path as routed - remove all
paths in this graph from the path-list.

Find all paths that would conflict with the selected path and remove them
from the path list (see Note). If a connection loses all of its alternative
paths, re-expand its coarse graph - if this results in no new paths, the
connection is deemed unroutable (see Section 3.5.3.1 for a discussion
relating to failed connections).

Update the cost of all affected paths.
Endwhile

Note: When a wiring segment is chosen for a particular connection, it and any other wir-

3-9

ing segments in the FPGA that are hardwired to it must be eliminated as possible choices

for connections that are in other nets. This requires a function analogous to fc() and fs()

that understands the connectivity of a particular FPGA configuration. CGE calls this rou-

tine update (e) - the parameter e is an edge in the selected path and update (e) returns the

set of edges that are hardwired to e.

3.5.2.1 Cost Function Design

Because the cost function allows it to consider all the paths at once, CGE can be

said to route the connections ’in parallel’. Each edge in the expanded graphs has a two-

part cost: cf (e) accounts for the competition between different nets for the same wiring

segments, and ct (e) is a number that reflects the routing delay associated with the wiring

segment. Each path has a cost that is simply the sum of the costs of its edges. CGE

selects paths based on the ct cost only if the path corresponds to a time-critical connec-

tion. Otherwise, paths are selected according to their cf cost.

The cf cost has two goals:

1. To select a path that has a relatively small negative effect on the remaining connec-

tions, in terms of routability. The cost deters the selection of paths that contain wir-

ing segments that are in great demand. The reason for using wiring segment

demand was illustrated in Figure 3.1, where connection A should be routed with

wiring segment number 2, because wiring segment number 3 is in greater demand.

2. It is used to identify a path that is essential for a connection. A path is called essen-

tial when it represents the only remaining option in the FPGA for a connection,

because previous path selections have consumed all other alternatives.

3-10

The importance of essential wiring segments is illustrated by the example in Figure

3.4. If the router were to complete connection D first, then wiring segment number 1 or 2

would be equal candidates according to their demand, since they both appear in one other

graph. However, wiring segment number 1 is essential for the completion of connection

E and to ensure the correct assignment of the essential wiring segment, connection E

should be routed first.

To determine whether an edge, e, is in great demand the router could simply count

the number of occurrences of e that are in expanded graphs of other nets. However,

some occurrences of e are less likely to be used than others because there may be alterna-

tives (edges in parallel with e). Thus, the cf cost of an edge e that has j other occurrences

(e 1, e 2, ..., ej) is defined as

cf (e) =
j
Σ alt (ej)

1������ ,

where alt (ej) is the number of edges in parallel with ej .

Because of the summing process in cf (e), the more graphs e occurs in, the higher

will be its cost. This reflects the fact that e is an edge that is in high demand and urges

CGE to avoid using e when there are other choices. Note that an edge that only appears

in its own graph will have a cf of 0. For the special case when alt(ej) is 0, ej is an edge

Options for Connection FOptions for Connection EOptions for Connection D

2
1

3

LL

LL

1
2
3

L L

LL

L L

L L

1
2
3

Figure 3.4 - An Essential Wiring Segment

3-11

that is essential to the associated connection because there are no alternatives. In this

case, any path in the graph that uses ej is identified as essential. When the calculation of

a cost reveals that a path is essential, CGE gives that path the highest priority for routing.

3.5.3 Controlling Complexity

Although the above description of graph expansion implies that all possible paths in

an FPGA are recorded during expansion, this is not practical because the number of paths

can be very large in some architectures. For example, consider the connection of two

pins on two different L blocks. Assume that each pin can connect to Fc of the wiring

segments in the channel segments adjacent to each logic cell, and that the logic cells are

separated by n Switch blocks. If each wiring segment that enters one side of a Switch

block can connect to Fs wiring segments on the other three sides, then there are an aver-

age of Fc

�
�
� 3

Fs���
�
�
�

n

different paths from the first pin to the last logic cell, and assuming W

tracks in each routing channel, there are an average of
W

Fc
2

���
�
�
� 3

Fs���
�
�
�

n

possible ways to form

the connection. Since typical values of Fs are three or greater, as shown in Chapter 4,

and the number of connections is large, a heuristic is employed to reduce the number of

paths in the expanded graphs. Some of the paths are pruned as each graph is expanded.

The pruning procedure is parameterized so that the number of paths is controlled and yet

the expanded graphs still contain as many alternatives as possible. Maximizing the

number of alternatives is important in the context of resolving routing conflicts. The

pruning procedure is part of the graph expansion process that is described in Section

3.5.1. The general flow follows (the criteria used for pruning is given at the end of this

section):

3-12

Expand two levels
Prune; keep at most K vertices at this level, and assign each a unique group

number. Discard the other vertices and the paths they terminate.
Expand two more levels. Assign each added vertex the group number of its prede-

cessor.
While the leaf level has not been reached.

Prune; keep at most k vertices with each group number at this level. Dis-
card the other vertices and the paths they terminate.

Expand two more levels. Assign each added vertex the group number of its
predecessor.

Endwhile

The graphs are pruned every two levels because that is where fanout occurs (after

the first C block and after every S block). The parameter K controls the starting widths

of the graphs and can take values from one to Fc (the number of wiring segments con-

nected to each logic cell pin). Beyond the maximum value of K, parameter k allows the

expanded graphs to further increase in width. The concept of group numbers isolates

each of the original K paths, which maximizes the number of alternatives at each level of

the final expanded graph. The actual values used for K and k are discussed in the next

section. The effect of the pruning algorithm is illustrated in Figure 3.5. The left half of

the figure shows a fully expanded graph from an example circuit, while the correspond-

ing pruned graph is on the right. Also shown are each graph’s edges in the FPGA.

The choice to prune a vertex is based on the wiring segment that corresponds to its

incoming edge, as follows. For the special case of time-critical connections, the wiring

segments with the least delay are favored. For other connections, the wiring segments

that have thus far been included in the most other expanded graphs will be discarded.

This helps the cf cost function discover the wiring segments that are in the least demand.

Note that this introduces an order-dependence in the routing algorithm because the paths

that are pruned from each expanded graph depend on the order in which the coarse

graphs are expanded.

3-13

6

12

8 10 12

14

16

18

6

12

8 10 12

14

16

18

Figure 3.5 - The Effect of Pruning

Note that when paths are discarded because of pruning, they are not necessarily

abandoned permanently by the router. In phase 2, as CGE chooses connections, if rout-

ing conflicts consume all the alternatives for some graph, CGE re-invokes the graph

expansion process to obtain a new set of paths if some exist.

3.5.3.1 Iterative Improvements

This section explains how iterations of the two phases of CGE are used to conserve

memory and run-time. The iterative approach is linked to the pruning parameters of the

graph expansion phase. Setting the pruning parameters to large values allows the router

to do a better job of resolving routing conflicts because it sees many alternatives for each

connection. On the other hand, with large pruning parameters more memory and longer

run-time are required by the algorithm. The key to this routing quality versus memory

and time trade-off is the realization that most connections in an FPGA are relatively easy

to route and only a small percentage of the connections pose real difficulties. This is

because, in a typical routing problem, there are only a few channel segments whose den-

sities are very close to the total number of wires in a routing channel. To exploit this

3-14

property, the router starts with small pruning parameters and then increases them through

successive iterations, but only for the parts of the FPGA that are difficult to route.

For the first iteration the pruning parameters are set to relatively small values, and

the entire FPGA is routed. If routing conflicts leave some connections unrouted, then

another iteration is required. The procedure is to erase all the routing of any connection

that overlaps any part of a failed connection, and then to attempt to route those channel

segments again using larger pruning parameters. Only connections that touch some seg-

ment of a channel in which a failed connection occurred are re-routed in the next itera-

tion. Iterations are continued until all connections are routed or until further improve-

ments are not forthcoming. Note that at this point it would be desirable to try different

global routes for connections that are left unrouted after all iterations, but no such

failure-recovery mechanism is currently implemented. This iterative approach is a minor

variation of classic rip-up and re-route schemes where individual connections would be

removed and re-routed to try to resolve routing conflicts. The technique employed here

allows the algorithm’s cost function to solve the routing problem, but conserve memory

and time where the problem is not difficult and expend them only where it is required.

The specific values used for the pruning parameters in each iteration affect the total

number of iterations required, but do not appreciably affect the quality of the final result.

This indicates a robustness in the algorithm because the quality of the routing does not

depend on the specific values chosen for the program’s parameters. For the results that

are presented in Section 3.6, K and k are set to two for the first iteration. K is increased

by one for each iteration until it reaches Fc , after which k is increased by one for each

subsequent iteration.

3-15

3.5.4 Independence of CGE from FPGA Routing Architectures

CGE achieves the ability to route arbitrary FPGA routing architectures by isolating

the parts of the code that are architecture-specific. This is illustrated in Figure 3.6, which

shows the overall flow of the algorithm. The code that is dependent on the routing archi-

tecture is enclosed in circles. As shown, the separate code includes the fc (), fs (), and

update () routines. Any architecture that fits the general model described in Section 3.3

can be routed by changing these isolated routines. This generality is the key that allows

the router’s use, in Chapter 4, as a research tool for studying routing architecture flexibil-

ity. Figure 3.6 also shows the organization of the phases of CGE and the feedback path

used over multiple iterations.

increase
&

pruning parameters

Erase connections

routed in problem

channel segments

no

yes

done
routing?

connection
for each unrouted

each unrouted
Expand

connection

Start

s

Read the

and()f
fc()

global route for
each connection

Select track segments
update()

FPGA
model

Create

Output
results

Phase 2:

Phase 1:

Figure 3.6 - The Organization of CGE

3-16

3.6 Results

CGE has been used to route several industrial circuits implemented as FPGAs. The

routing results shown in this section are based on five circuits from four sources: Bell-

Northern Research, Zymos, and two different designers at the University of Toronto.

Table 3.1 gives the name, size (number of two-point connections and logic cells), source

and the function of each circuit. For these results, the logic cell used is the result of a

previous study [Rose89] [Rose90c], and the S and C blocks will be described in the next

sub-section. Results are presented for a routing architecture similar to a commercial

FPGA.

3.6.1 FPGA Routing Structures

Since the routability of an FPGA is determined by the topology and flexibility of its

S and C blocks, those used in the tests of the algorithm are presented here. The general

nature of the S block is illustrated in Figure 3.7a. Its flexibility is set by the parameter

Fs , which defines the total number of connections offered to each wiring segment that

enters the S block. For the example shown in Figure 3.7a, the wiring segment at the top

left of the S block can connect to six other wiring segments, and so Fs is 6. Although not

shown, the other wiring segments are similarly connected.

��
Circuit #Blocks #Conn Source Type��
BUSC 109 392 UTD1 Bus Cntl��
DMA 224 771 UTD2 DMA Cntl��

BNRE 362 1257 BNR Logic/Data��
DFSM 401 1422 UTD1 State Mach.��
Z03 586 2135 Zymos 8-bit Mult��

�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

Table 3.1 - Experimental Circuits

3-17

Figure 3.7b illustrates the test C block. The tracks pass uninterrupted through it and

are connected to logic cell pins via a set of switches. The flexibility of the C block, Fc , is

defined as the number of tracks that each logic cell pin can connect to. For the example

shown in the figure, each logic cell pin can connect to 2 vertical tracks, and so Fc is 2.

3.6.2 Routing Results

The familiar yardstick of channel density is used as a measure of the quality of the

detailed router. The ’Channel density’ column in Table 3.2 shows the maximum channel

density over all channels for each circuit. This represents a lower bound on the number

of tracks per routing channel that is needed for each example. The real track require-

ments will depend on the flexibility of the routing architecture because there are interac-

tions between one channel segment and another that are not accounted for in channel

density measurements. The maximum flexibility has Fs = 3W and Fc = W, where there

are W tracks per channel. For the results in Table 3.2 the FPGA parameters are based on

the Xilinx 3000 series [Xili89] FPGAs (Fs = 6, Fc = 0.6W). Table 3.2 gives the minimum

number of tracks per channel that CGE needs in order to route 100 percent of the connec-

tions. The values for W are slightly greater than the global router minimum, which are

excellent results considering the low flexibility of the FPGA routing architecture. Note

Figure 3.7b. The C block.Figure 3.7a. The S block.

210

Block

L L

Block

0 1 2

0

1

210

1

00

1

2

0

1

2

0 1 2

Figure 3.7 - Definitions of S and C Block Flexibility

3-18

that, although not shown, if Fc is increased to 0.8W, CGE achieves the absolute

minimum number of tracks for all the circuits.

For comparison purposes, the same problems have also been routed using CGE with

its cf cost facility disabled. In this mode CGE has no ability to resolve routing conflicts

and is thus a sequential router, similar to a maze router. At first glance, this may seem to

be an unrealistic comparison because some maze routers are guided by cost functions

that aid in finding good routes for connections. However, the ’maze’ router used here

has, in effect, access to the cost function that was used to solve the global routing, which

is based on balancing the densities of all routing channels. Notwithstanding, this is a

constrained ’maze’ router because it is confined to remain within the global route of each

connection, and the comparisons are valid only in that context. The rightmost column in

Table 3.2 gives the number of tracks that the ’maze’ router requires to achieve 100 per-

cent routing. These results demonstrate that the ’maze’ router needs an average of 60

percent more tracks than CGE. This shows that resolving routing conflicts is important

and that CGE addresses this issue well. Figure 3.8 presents the detailed routing for cir-

cuit BUSC, with the FPGA parameters in Table 3.2; the logic cells are shown as solid

boxes, whereas the S and C blocks are dashed boxes.

��
Circuit Channel W required W

density by CGE for ’maze’��
BUSC 9 10 15��
DMA 10 10 15��

BNRE 11 12 20��
DFSM 10 10 18��
Z03 11 13 18���

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Table 3.2 - CGE Minimum W for 100 % routing (Fc = 0.6W, Fs = 6)

3-19

Tue Aug 7 16:43:38 1990Circuit: bus_cntlT4.cge, W = 10, Fs = 6, Fc = 6 Tue Aug 7 16:43:38 1990Circuit: bus_cntlT4.cge, W = 10, Fs = 6, Fc = 6

0

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Figure 3.8 - The Detailed Routing of Circuit BUSC

3.6.3 Routing Delay Optimization for Critical Nets

Table 3.3 illustrates CGE’s ability to optimize critical connections. For this experi-

ment, several connections in circuit BNRE were marked critical. Then, CGE was used to

route the circuit twice; once with CGE’s critical net processing turned off, and once with

it turned on. To facilitate this experiment, the FPGA was defined to have 18 tracks per

channel, with four tracks hardwired for the entire length of each channel. Connections

that use the hardwired tracks have lower routing delays because they pass through fewer

switches (transistors). As Table 3.3 shows, a significant reduction in the number of

switches in the critical paths was achieved.

3-20

Note that a better approach to routing delay optimization would set specific timing

requirements that should be met for each critical path in a circuit. This exercise is left as

future work.

���
Name of # of switches without # of switches with

net critical processing critical processing��
#143 15 5���
#144 14 4���
#220 10 3���
#280 15 2���
#351 15 4��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Table 3.3 - Critical Connection Routing Delay Optimization

3.6.4 Memory Requirements and Speed of CGE

For the examples used here CGE needs between 1.5 and 7.5 MBytes of memory.

As shown in Table 3.4, experimental measurements show that CGE is a linear-time algo-

rithm, requiring from 25 to 215 SUN 3/60 CPU seconds for the smallest to the largest of

the example circuits. This run-time behavior is due to the pruning procedure, which lim-

its the number of routing alternatives that the algorithm considers for each connection.

��
Circuit #Conn Sun 3/60 msec per

CPU sec. connection��
BUSC 392 25 63��
DMA 771 59 76��

BNRE 1257 122 97��
DFSM 1422 103 72��
Z03 2135 215 99���

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Table 3.4 - CGE Run-time

3-21

3.7 Conclusions and Future Work

This chapter has described a new kind of detailed routing algorithm that is designed

specifically for Field-Programmable Gate Arrays. The algorithm is able to consider the

side-effects that routing decisions made for one connection may have on another, and

thus resolve routing conflicts and achieve a high quality result. The algorithm can be

used over a wide range of FPGA routing architectures. It can route relatively large

FPGAs in very close to the absolute minimum number of tracks as determined by global

routing, and is capable of optimizing the routing delays of time-critical connections.

Future research should improve upon the treatment of time-critical nets. The router

could be given specific timing requirements for each critical path in a circuit and should

ensure that the routing delays of the nets in these paths do not exceed these times.

2-25

2.3.4.3 Advanced Micro Devices (AMD) FPGAs

The AMD FPGA [AMD90], based on EEPROM technology, can be considered to

be an array of PAL (programmable AND/fixed OR) devices that are interconnected by a

switch matrix, much like an Altera FPGA. Each PAL block consists of an AND plane

that feeds a large block, called a Logic Allocator (LA). The LA allocates a variable

number of product terms (p-terms) from the AND plane to individual Macrocells, where

each Macrocell provides an OR function of its p-terms, optionally registered. The

Macrocell outputs are fed back to the other PAL blocks via the switch matrix.

2.3.4.4 Quicklogic FPGAs

The Quicklogic FPGA [Quick91] consists of a two-dimensional array of like cells

called pASIC Logic Cells (pLCs). Each pLC comprises four two-input AND gates feed-

ing two two-input multiplexers, which feed a third multiplexer. The two first-stage

multiplexer’s select lines are driven by a single six-input AND gate, and the second-stage

multiplexer’s select line is driven by another six-input AND gate. The second-stage mul-

tiplexer provides the cell output, which can be optionally registered by a D flip-flop. The

pLCs are interconnected by horizontal and vertical routing channels that provide full

connectivity - every horizontal routing track can be connected to every vertical track and

every track that passes a logic cell can connect to all the pins on that cell. Programmed

connections are formed in Quicklogic FPGAs using a unique anti-fuse. Compared to the

Actel anti-fuse, these devices boast an extremely low on-resistance (50 ohms) and unpro-

grammed capacitance (one femtofarad). Compared with other FPGAs, the Quicklogic

devices are most like those from Actel.

4 The Flexibility of Field-Programmable
Gate Array Routing Architectures

4.1 Introduction

This chapter uses an experimental approach to investigate the effect of the flexibil-

ity of an FPGA’s routing architecture on its routability. Flexibility is a measure of the

connectivity provided by a routing architecture and is a function of the total number of

routing switches and wires. A loose definition of routability is the percentage of the con-

nections in a given circuit that can be successfully routed. The experiments consist of

routing a set of circuits in an FPGA that is modelled in such a way that the number of

routing switches and wires can be changed. Routability is measured over a range of

flexibility, using the routing algorithm described in Chapter 3.

Recall that a discussion in Chapter 1 showed that the choice of a good routing archi-

tecture involves a tradeoff among flexibility, logic density, and speed performance. High

flexibility results in an FPGA that has good routability, but routing switches will be

wasted if the flexibility is higher than is necessary for 100 percent routability. Also, high

flexibility results in lower logic density and speed performance because each routing

switch consumes significant area and has appreciable resistance and capacitance. Low

flexibility, on the other hand, permits higher logic density and speed performance, but if

flexibility is too low then 100 percent routability of circuits may not be possible.

The routing architectures that will studied in this chapter fit the FPGA model that

was introduced in Chapter 3. Figure 4.1 reproduces the model, for ease of reference.

The FPGA shown in the figure has three tracks per routing channel and two pins on each

side of a logic cell (L). Recall that the connection (C) blocks contain the routing

4-2

switches that are used to connect the pins of the logic cells to the routing channels, and

the switch (S) blocks at the intersections of horizontal and vertical routing channels pro-

vide the routing switches that can connect wiring segments in one channel segment to

those in another. The flexibility of the routing architecture can be altered by changing

the connectivity in the C blocks, the S blocks or the number of tracks in each routing

channel [Rose90b] [Rose91].

The specific questions concerning FPGA routing architectures that are answered in

this chapter include:

What is the effect of the flexibility of the C blocks on routability? Section 4.5.1
shows that a high flexibility in the C blocks is desirable for good routability.

What is the effect of the flexibility of the S blocks on routability? Section 4.5.2
shows that good routability can be achieved with a relatively low flexibility in the S
blocks.

How do the S block and C block flexibilities interact? Section 4.5.3 shows that a
high flexibility in either of the S or C blocks can compensate to some extent for a
relatively low flexibility in the other.

What is the effect of the flexibilities of the C and S blocks on the number of tracks
per routing channel required to achieve 100 percent routability? Section 4.5.4
shows that very close to the theoretical minimum number of tracks per channel (this
is defined by the maximum channel density over all channels in the FPGA) can be
achieved for surprisingly low flexibilities.

What is the effect of the flexibilities of the C and S blocks on the total number of
routing switches required in an FPGA to achieve 100 percent routability? Section
4.5.5 shows that there is a range of C and S block flexibilities that results in a
minimum number of switches.

This chapter is organized as follows: Section 4.2 presents assumptions that are made

about the architecture of the FPGA, Section 4.3 describes the experimental procedure,

the limitations of this work are discussed in Section 4.4, Section 4.5 presents the experi-

mental results and explanations, and concluding remarks appear in Section 4.6.

4-3

Wiring Segment

Routing Channel
Horizontal

Vertical

LC C

L L

LL

L L

C

C C

C

CC

CC

S S

SSC

C

L

L

Routing Channel

S = Switch Block

C = Connection Block

L = Logic Block

Figure 4.1 - The Model of the FPGA Routing Architecture

4.2 FPGA Architectural Assumptions

The architecture of an FPGA consists of its I/O cells, logic cells, and routing archi-

tecture. The I/O cells are assumed, as in Chapter 3, to be logic cells on the periphery of

the chip. The other assumptions that are made in this chapter concerning the logic cells

and the routing architecture are given in the following subsections.

4.2.1 The Logic Cell

The logic cell that is used here is the result of a previous study [Rose89][Rose90c]

and is illustrated in Figure 4.2. It has a four input look-up table, a D flip-flop, and a tri-

state output. In the previous study, this cell achieved the minimum total area over a set

of circuits when compared to other cells that had differing numbers of inputs, including

and excluding a D flip-flop. The logic cell has a total of 7 logical pins (4 inputs, 1 output,

1 clock, 1 tri-state) but they may not physically appear on all sides of the cell. The

number of physical occurrences of each pin is an important architectural parameter, as

explained below.

4-4

The number of logic cell sides on which each logical pin physically appears is

called T. To illustrate this concept, the cases T = 4 and T = 1 are shown in Figure 4.3,

where the logic cell pins are numbered from 0 to 6. As an example, the figure also shows

the connection of pin 0 on one logic cell to pin 6 on another. The particular choice of T

affects the routing problem in a number of ways. Selecting a low value of T implies that

there will be fewer routing switches, which means the switches will use less area and add

less capacitance to the tracks, but as shown in Figure 4.3, connections may be longer

since it may be necessary to route to a certain side. This increases the channel densities

and causes the connections to pass through more routing switches. Conversely, choosing

a higher value of T allows shorter connections and minimizes the channel densities, but if

T is higher than necessary, switches will be wasted.

For the experiments shown here, the value used for T is 2. This was chosen for area

considerations only and was determined by performing the global routing of several cir-

cuits for each value of T and measuring the number of tracks per channel (maximum

channel density) required in each case. The results are shown in Table 4.1, which gives

the average maximum channel density of the circuits, for each value of T. The table

shows a significant decrease in track count from the T = 1 to T = 2 case but diminishing

Output

Clock
Enable

Inputs

4

Vcc

State

Mux

Mux

Flip-flop

DLook-up

Table

Figure 4.2 - The Logic Cell

4-5

T = 1
Longer connection is necessary

6

5

4 2

3

10

L

L

0
1
2
3
4
5
6

6543210
6
5
4
3
2
1
0

0 1 2 3 4 5 66543210
0
1
2
3
4
5
6

0 1 2 3 4 5 6
6
5
4
3
2
1
0

L

6543210
0
1
2
3
4
5
6

0 1 2 3 4 5 6
6
5
4
3
2
1
0

LL

0
1
2
3
4
5
6

6543210
6
5
4
3
2
1
0

0

6

5

4 2

3

10

L

1 2 3 4 5 6

L

0 1

3

24

5

6

L

0 1

3

24

5

6

Short connection is possible
T = 4

Figure 4.3 - Example, and Effect on Connection Length, of T

returns for higher values of T. Note that the routing tools used for these experiments did

not make use of the functional equivalence of the logic cell inputs (the inputs to a look-

up table are functionally equivalent), and if they had it may have been possible to choose

a value of T = 1 without an increase in the number of tracks.

�������������������������������������
T Avg. Maximum Channel Density��
1 15�������������������������������������
2 12�������������������������������������
3 11�������������������������������������
4 11���������������������������������������

�
�
�
�
�

��
�
�
�
�
�

��
�
�
�
�
�

Table 4.1 - The Effect of T on Channel Density

The following two sections provide a detailed discussion of the C and S blocks used

in these experiments. Some of this information also appeared in Chapter 3, but is

repeated here for continuity.

4-6

4.2.2 The Connection Block

The connection block used is illustrated in Figure 4.4, where a routing switch is

indicated by an X. The channel wires (drawn vertically in the figure) pass uninterrupted

through the C block and have the option of connecting to the logic cell pins through the

switches. The flexibility of the C block is represented by the variable Fc , which defines

the number of tracks that each logic cell pin can connect to. For the example shown in

the figure, each logic cell pin can connect to 2 vertical tracks, and so Fc is 2. In this

chapter, no assumption is necessary about the implementation of routing switches, except

that the switches are assumed to be bi-directional.

4.2.2.1 Connection Block Topology

The topology of the connection block (the pattern of the switches) can have a

significant effect on routability, particularly when Fc is low. To illustrate this consider

Figure 4.5 which shows two different C block topologies and one connection (from pin A

to pin B) that must be routed. In this example each logic cell has three pins on a side and

there are four tracks per routing channel. By examining the locations of the routing

switches, it is clear that it is not possible to route the connection with Topology 1, while

0

1

0 1 2

1

0

210

Block

LL

Block

Figure 4.4 - The Connection Block

4-7

it is possible to do so using Topology 2. Topology 2 works because it has a common

wire that can be reached by both pin A and pin B. This example illustrates the fact that a

C block topology must provide common wires for every pair of pins that may need to be

connected. At the same time, however, it is easy to recognize that it is desirable for the

routing switches in the C block to be spread evenly among the tracks, so that there is a

reasonable opportunity for each track to be used. A good C block topology should

achieve a balance of these tradeoffs. Given W tracks per channel, the design of a C block

is straight-forward if Fc is close to W, but for lower values of Fc the C block should be

carefully designed. The issue is most acute if Fc ≤ 0.5W because at this point some pairs

of pins may not have any common wires if the C block is poorly designed.

The topology of the C block that is used for the results presented in this chapter is

illustrated by Figure 4.6. In the figure, there are 10 tracks per routing channel, seven pins

per logic cell, and Fc is 6. The design of this topology is based on statistics, from a set of

B

A

L

C

LL

C

L

Topology 2Topology 1

B

A

L

C

LL

C

L

Figure 4.5 - Two Connection Block Topologies

4-8

circuits, that show how frequently each pair of pins is connected. For pins that are often

connected the topology tends to provide common tracks, whereas for pins that are seldom

connected different tracks are used. For example, the statistics say that pin 0 (a logic cell

input) is often connected to pin 6 (an output), so these two pins share six tracks, whereas

pin 0 is seldom connected to pin 5 (an input), so this pair shares only three tracks. This

type of analysis is possible because logic cell inputs tend to be connected to outputs, and

vice-versa. In this way, the topology provides as much overlap as practical for each pair

of logic cell pins, while also balancing the distribution of the switches among the channel

wires.

4.2.3 The Switch Block

The general nature of the switch block used is illustrated in Figure 4.7. Its flexibil-

ity, Fs , defines the number of other wiring segments that each wiring segment entering an

S block can connect to. For the example shown in the figure, the wiring segment at the

top left of the S block can be switched to six other wiring segments, and so Fs is 6.

Although not shown, the other wiring segments are similarly connected.

logic cell

0 1 2 3 4 5 6

Figure 4.6 - The C Block Topology Used for this Research

4-9

210

0

1

2

0

1

2

0 1 2

Figure 4.7 - The Switch Block

4.2.3.1 Switch Block Topology

The topology of the S blocks can be very important since it is possible to choose

two different topologies with the same flexibility measure (Fs) that result in very dif-

ferent routabilities. This is particularly important if the flexibility is low. As an illustra-

tion, consider the two different topologies shown in Figure 4.8. In both topologies, the

switch block has the same flexibility measure, Fs = 2. Assume that a global router has

specified that a wiring segment at A must be connected to another at B by traveling

through the two switch blocks shown. By examining the routing switches, it is easy to

see that it is not possible to reach B from A with topology 1, while it is with topology 2.

The reason that topology 2 is successful can be explained as follows. Consider the two

vertical wires in topology 2 that connect from A to the two horizontal wires on the right

side of the S block. At the next S block, one of the horizontal wires can connect to the

top of the block (to B) and one to the bottom. The key is that any turn that is taken at one

S block does not prohibit any other turn at the next S block, and this is true for all possi-

ble sequences of turns. For the results that are presented in this chapter, topology 2 is

used. For higher flexibilities, switches are added such that the basic pattern is preserved.

4-10

4.3 Experimental Procedure

This section describes the experimental procedure that is used to investigate FPGA

routing architectures. Given a functional description of a circuit, the following steps

implement the circuit in an FPGA.

(1) Perform the technology mapping [Keut87] of the original network into the FPGA

logic cells. This step transforms the functional description of the network into a cir-

cuit that interconnects only logic cells of the type shown in Figure 4.2. The technol-

ogy mapping was done using an early version of the algorithm described in

[Fran90].

(2) Perform the placement of the netlist of logic cells. The logic cells are placed by the

Altor placement program [Rose85], which is based on the min-cut placement algo-

rithm [Breu77]. Altor makes the resulting two-dimensional array of logic cells as

square as possible.

(3) Perform the global routing of the logic cell interconnections. This step finds a path

through the routing channels for each pair of logic cell pins that are to be connected.

A A

B B

Topology 2Topology 1

Figure 4.8 - Two Switch Block Topologies

4-11

Since each connection is assigned to specific channels this determines the maximum

channel density of the circuit, which is defined as the maximum number of connec-

tions that pass through any channel segment. This sets the theoretical minimum

number of tracks per channel (for the particular global router used) that is needed to

route the circuit. The global router that is used here is based on the LocusRoute

standard cell global routing algorithm [Rose90a], that is described in Chapter 2.

(4) Perform the detailed routing of each connection, using the path assigned by the glo-

bal router. The CGE detailed router, described in Chapter 3, is used for this pur-

pose, and yields two kinds of results. If a specific W (number of tracks per channel)

is given as input, CGE determines the percentage of connections that can be suc-

cessfully routed for specific values of Fs and Fc . Alternatively, if the desired output

is the number of tracks per routing channel required to route 100% of connections

for a specific Fs and Fc , then CGE is invoked repeatedly, with an increasing number

of tracks, until complete routing is achieved.

The salient point in this procedure is that the global router is used only once for

each circuit, and this determines the densities of all of the routing channels. The number

of tracks required per channel to route each circuit then depends on the flexibility of the

routing architecture. Thus, to investigate the effect of flexibility on routability, step (4) is

performed over a range of values of Fc , Fs , and W.

4.4 Limitations of this Work

This section discusses the effects of the architectural assumptions and the experi-

mental procedure on the accuracy of the results that are presented later in this chapter.

The models that have been used for the C and S blocks are based on balanced topo-

logies, in that each L block pin can be connected to exactly Fc tracks and each wiring

4-12

segment that enters an S block can connect to exactly Fs others. Also, every wiring track

must use a routing switch to pass through an S block - i.e. all the tracks comprise short

wiring segments only. Although it is also interesting to consider other classes of archi-

tectures, the assumptions made here allow interesting and useful results to be generated

with experiments that have simple parameters.

The experimental procedure described in Section 4.3 limits each connection to a

single global route. A better approach would be one that provides a feedback mechanism

that allows the detailed router to request a different global route for connections that fail.

Finally, the accuracy of the routability results that are presented in this chapter depends

on the quality of the routing CAD tools, which includes both the global and detailed

routers.

4.5 Experimental Results

The experimental results that are presented here are based on the five circuits that

were described in Table 3.1. This section first investigates the effect of the flexibilities of

the C and S blocks on the routability of these circuits and shows the tradeoffs that exist

between these two blocks. Following this, the effect of different values of Fc and Fs on

the number of tracks required per channel is shown. Finally, the effect of the C and S

block flexibilities on the total number of switches required in an FPGA is measured.

4.5.1 Effect of Connection Block Flexibility on Routability

Figure 4.9 is a plot of the percentage of successfully routed connections versus con-

nection block flexibility, Fc , for the circuit BNRE. Each curve in the figure corresponds

to a different value of switch block flexibility, Fs . The lowest curve in the figure

corresponds to the case Fs = 2 and the highest curve to Fs = 10. The number of tracks,

W, is set to 14, which is two greater than Wg , the minimum possible number of tracks as

4-13

indicated by the global router. The value of W = Wg + 2 was chosen to give the detailed

router a reasonable chance of success. Using a higher or lower value of W would shift

the curves slightly upward or downward, respectively. Figure 4.9 indicates that the rout-

ing completion rate is very low for small values of Fc and only achieves 100% when Fc

is at least one-half of W. The figure also shows that increasing the switch block flexibil-

ity improves the completion rate at a given Fc , but to get near 100% the value of Fc must

always be high (above 7 for this circuit).

Table 4.2 summarizes the results for the other circuits. It gives the minimum values

of Fc and
W

Fc��� required to achieve 100% routing completion for each circuit, for nine

Fs = 10

Fs = 9

Fs = 8

Fs = 7

Fs = 6

Fs = 5

Fs = 4

Fs = 3

Fs = 2

% Complete

Fc
20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

5.00 10.00

Figure 4.9 - Percent Routing Completion vs. Fc, Circuit BNRE

4-14

values of Fs . W is fixed at Wg + 2, in all cases, to give a reasonable chance for success.

The value "nr" in the table indicates that 100% routing was not achieved.

The key observation from the data of Table 4.2 is that there appear to be minimum

values of Fc and
W

Fc��� below which circuits are not routable. However, since this data is

based on a fixed value of W = Wg + 2, it is interesting to investigate whether Fc or
W

Fc���

can be reduced if W is not fixed. To study this, a similar experiment was conducted in

which W was allowed to vary to a maximum of 3 × Wg . Again, the experiments measure

the minimum possible values of Fc and
W

Fc��� for which 100 percent routing can be

achieved, for a range of values of Fs . The results are shown in Figure 4.10, which for

conciseness gives the average results for the five circuits. The left curve in the figure

shows that
W

Fc��� can be substantially reduced by allowing W to vary, but the curve to the

right shows that Fc still reaches about the same minimum value.

To see why there exists a minimum value of Fc below which circuits are not rout-

able, consider the following discussion concerning C block topology. Assume that a C

block must connect n logic cell pins to a set of tracks, and that some pin, pi , must be able

to connect to all of pins pj , 1 ≤ j ≤ n. Some connections between these pin pairs will

occur within one C block and others will involve two different C blocks. To simplify the

analysis, assume that Fs ≤ 3, so that no jogging is allowed among the tracks. As the dis-

cussion in Section 4.2.2.1 showed, the C block topology must provide at least one com-

mon track that connects to both pi and each pj . To accomplish this, the design of the

topology may:

4-15

������������������������������������
Circuit W Fs 100% Fc Fc/W��
BUSC 11 2 nr nr
BUSC 11 3 9 0.82
BUSC 11 4 7 0.64
BUSC 11 5 7 0.64
BUSC 11 6 6 0.54
BUSC 11 7 6 0.54
BUSC 11 8 5 0.45
BUSC 11 9 6 0.54
BUSC 11 10 5 0.45������������������������������������
DMA 12 2 nr nr
DMA 12 3 8 0.67
DMA 12 4 7 0.58
DMA 12 5 7 0.58
DMA 12 6 7 0.58
DMA 12 7 7 0.58
DMA 12 8 5 0.42
DMA 12 9 5 0.42
DMA 12 10 5 0.42������������������������������������

BNRE 14 2 nr nr
BNRE 14 3 12 0.86
BNRE 14 4 11 0.79
BNRE 14 5 10 0.71
BNRE 14 6 9 0.64
BNRE 14 7 10 0.71
BNRE 14 8 8 0.57
BNRE 14 9 8 0.57
BNRE 14 10 7 0.50������������������������������������
DFSM 13 2 nr nr
DFSM 13 3 9 0.69
DFSM 13 4 9 0.69
DFSM 13 5 9 0.69
DFSM 13 6 8 0.62
DFSM 13 7 8 0.62
DFSM 13 8 7 0.54
DFSM 13 9 7 0.54
DFSM 13 10 7 0.54������������������������������������
Z03 13 2 nr nr
Z03 13 3 10 0.77
Z03 13 4 9 0.69
Z03 13 5 9 0.69
Z03 13 6 9 0.69
Z03 13 7 7 0.54
Z03 13 8 7 0.54
Z03 13 9 7 0.54
Z03 13 10 7 0.54��������������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 4.2 - Minimum Fc Required for 100% Completion

4-16

Fc/W

Fs
0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

2.00 4.00 6.00 8.00 10.00

Fc

Fs
2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

2.00 4.00 6.00 8.00 10.00

Figure 4.10 -
W

Fc��� vs. Fs and Fc vs. Fs, With a Variable W

(1) Attach two switches to each of n different tracks, such that each track connects one

pj to pi . In terms of Section 4.2.2.1, this corresponds to spreading the switches

evenly across the tracks.

(2) Attach n switches to any one track, such that pi can connect to any pj on that track.

(3) Use a combination of options (1) and (2).

Option (1) leads directly to a minimum value for Fc because it entails attaching n

switches to pi . The effect of option (2) is more subtle, as discussed below. Consider Fig-

ure 4.11, which shows a C block topology in which each pin connects to exactly the same

Fc tracks as every other pin. The figure shows that, with this topology, when one pin is

connected to a track, one choice of track is eliminated for every other pin. In this

scenario, it follows that the minimum possible value of Fc is determined by the max-

imum number of pins that are connected at any C block.

4-17

A more realistic C block, such as the one that was shown in Figure 4.6, is based on

option (3). This means that a combination of the effects of options (1) and (2) deter-

mines a minimum value for Fc . The key to this discussion is that any realistic C block

must provide connections between a number of different pairs of pins and this leads

directly to a minimum possible value for Fc .

Note that the minimum value of Fc can be reduced slightly by increasing Fs to be

above three, because this increases the connectivity between pairs of pins by allowing

jogging from one track to another. However, this only affects connections that involve

two different C blocks, and since some connection’s pins are both within one C block, an

absolute minimum value exists for Fc .

4.5.2 Effect of Switch Block Flexibility on Routability

Figure 4.12 is a plot of the percentage routing completion versus switch block flexi-

bility, Fs . Each curve in the figure corresponds to a different value of Fc , with the lowest

Fc = 3

L

6543210

6

L

43210 5

Eliminate these choices

Select this switch

Figure 4.11 - Connecting One Pin Eliminates One Choice for Every Other

4-18

curve representing Fc = 1 and the highest curve corresponding to Fc = W. This plot is for

the circuit BNRE, with W set to 14. The figure shows that if Fc is high enough, then

very low values of Fs can achieve 100% routability. These Fs values are low in com-

parison with the maximum possible value of Fs , which is 3 × W. For the results in Figure

4.12 this maximum is 42, whereas 100% routing completion is often achieved for Fs = 3.

This makes intuitive sense because even for Fs = 3 every track that passes through a par-

ticular C block is guaranteed to connect to one other track at every other C block. To

further quantify the effect of Fs on routability, consider the connection of two logic cell

pins that are separated by n S blocks. The number of tracks connectable at the first logic

cell pin is Fc and the number of paths available to reach the connection block adjacent to

the second logic cell is

Fc = 14

Fc = 13

Fc = 12

Fc = 11

Fc = 10

Fc = 9

Fc = 8

Fc = 7

Fc = 6

Fc = 5

Fc = 4

Fc = 3

Fc = 2

Fc = 1

% Complete

Fs
20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

2.00 4.00 6.00 8.00 10.00

Figure 4.12 - Percent Routing Completion vs. Fs, Circuit BNRE

4-19

Paths = Fc ×
�
�
� 3

Fs���
�
�
�

n

Using the average value of n of about 3 for typical circuits, if Fs = 3 and Fc = 10, then

there are 10 paths available. If Fs is increased to 6, there are 80 paths available. Thus a

small increase in Fs greatly increases the number of paths, and hence the routability.

4.5.3 Tradeoffs in the Flexibilities of the S and C Blocks

Figures 4.9 and 4.12 can be combined in three-dimensions to show that a tradeoff

exists between the flexibilities of the S blocks and the C blocks. This is illustrated by the

three-dimensional surface plot in Figure 4.13. The plot shows, for example, that a

decrease along the Fc axis can be compensated for by an increase along the Fs axis, and

vise-versa. This can also be seen in Figure 4.14, which is a plot of the minimum value of

Fc (averaged over the five circuits) for which 100 percent routing can be attained for a

range of values of Fs . In this plot, W is constant for each circuit, at two higher than Wg .

Note that there is no data point for the case Fs = 2 in the figure because the circuits are

not routable for that S block flexibility with W = Wg + 2. The slope of the curve in Fig-

ure 4.14 will flatten for higher values of Fs since there exists a minimum value of Fc for

each circuit, as was discussed in Section 4.5.1.

Note that Figure 4.14 alone does not provide enough information to choose the best

values of Fc and Fs because it is based on the fixed value of W. The required value of W

for different values of Fc and Fs is the subject of the following section.

4.5.4 Track Count Requirements

This section investigates the effect of the S and C block flexibilities on routability

by measuring the number of tracks per channel, W, required to route 100 percent of a

circuit’s connections for specific values of Fs and Fc . For these experiments, the detailed

4-20

5

10

Fc

246810
Fs

40

60

80

100

%Complete

5

10

Fc

246810
Fs

40

60

80

100

%Co

Figure 4.13 - C Block and S Block Tradeoff

router was invoked repeatedly over a range of values of W, from Wg (the maximum chan-

nel density of the circuit) to a maximum of 3 × Wg , until 100 percent routing was

achieved. Each routing architecture is assessed by comparing how close the required W

is to Wg . For these experiments the flexibility of the C block is expressed as the ratio of

Fc over W - as W is changed, the ratio is kept constant. This provides a convenient way

to coordinate changes in W with the number of routing switches in a C block. This is

automatic for an S block, since Fs applies to each track.

Table 4.3 shows the number of tracks required to achieve 100 percent routing com-

pletion for circuit BNRE over a set of FPGA routing architectures. Each entry in the

table corresponds to a different pair of (Fs ,
W

Fc���) values. The value "nr" in the table

4-21

Fc

Fs
1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

4.00 6.00 8.00 10.00

Figure 4.14 - Fc for 100% Routing vs. Fs, With W = Wg + 2

means that 100 percent routing was not achieved. Since Wg for this circuit is 12, the

table shows that even with low flexibilities it is possible to achieve 100 percent routing

using very near to the minimum possible number of tracks.

Table 4.4 summarizes the results for all the circuits. Each entry in this table is the

average over all the circuits of the number of tracks that are required in excess of the

minimum (Wg) to route 100 percent of the connections. These results show that with

very low flexibilities it is possible to achieve a number of tracks only slightly greater than

the minimum. In particular, for Fs ≥ 3 and
W

Fc��� ≥ 0.6, excluding the case (Fs = 3,

W

Fc��� = 0.6), the number of tracks required in excess of the minimum is no greater than

three.

4-22

��
Fc/W

Fs 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0��
2 nr nr nr nr nr 23 23 17��
3 nr nr nr 18 14 13 13 13��
4 nr nr 18 14 13 13 13 13��
5 nr nr 18 14 13 12 12 12��
6 nr 21 16 14 14 12 13 13��
7 nr 19 17 14 12 12 12 12��
8 nr 19 15 13 12 12 12 12��
9 23 17 13 13 12 12 12 12��
10 19 16 13 13 12 12 12 12��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 4.3 - Track Count Requirements for BNRE (Minimum = 12)

4.5.5 Architectural Choices

The choice of a particular FPGA routing architecture must be based on the cost of

its implementation in terms of area and delay. Although these depend on the technology

used for the routing switches, it is possible to make general comments because, regard-

less of their implementation, routing switches consume area and cause time delays. It is

instructive to examine the total number of routing switches required by different routing

architectures. The number of switches in a C block and an S block depends on the

number of logic cell pins (P), the number of sides that each pin appears on (T), and on

the parameters Fc , Fs , and W, according to the following equations:

Switches in Connection Block =
2
1�� × T × P × Fc

Switches in Switch Block = 2 × Fs × W

For the results presented here P is 7, T is 2, and the last three parameters are read from

the equivalent of Table 4.3 for each circuit. As the flexibility of the routing structures

4-23

���
Fc/W

Fs 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0��
2 nr nr nr nr nr 11.2 10.8 9.0���
3 nr nr nr 4.6 2.4 1.2 0.8 0.8���
4 nr nr 6.2 3.0 1.6 0.6 0.6 0.6���
5 nr nr 4.2 2.4 1.0 0.4 0.2 0.2���
6 nr 7.6 3.8 1.8 0.8 0.4 0.4 0.4���
7 nr 5.2 3.4 1.4 0.2 0.2 0.2 0.2���
8 nr 4.4 1.4 0.6 0.2 0.0 0.4 0.2���
9 10.0 4.2 1.0 0.4 0.2 0.2 0.0 0.0���
10 8.0 3.2 1.4 0.6 0.2 0.0 0.0 0.0���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 4.4 - Average Excess Track Count Requirements over all Circuits

increases (Fs and Fc) the number of switches per track increases, but the number of

tracks per channel may decrease, as shown in Table 4.3. Hence there should be an archi-

tecture that exhibits a minimum total number of switches. Table 4.5 gives the number of

switches per tile required for circuit BNRE for each FPGA routing architecture. A tile is

the section of the FPGA that would be replicated across the entire chip, and includes the

logic cell, two connection blocks and one switch block.

As Table 4.5 shows, flexibilities of Fs = 3 and
W

Fc��� = 0.7 achieve a minimum

number of switches for this circuit, at 221. Note that several neighboring architectures

have similar switch counts. For all of the test circuits the minimum number of switches

was between 172 and 223, and occurred when the architecture’s parameters were in the

range 3 ≤ Fs ≤ 4 and 0.7 ≤
W

Fc��� ≤ 0.8.

4-24

���
Fc/W

Fs 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0��
2 nr nr nr nr nr 349 381 306���
3 nr nr nr 259 221* 223 241 260���
4 nr nr 270 229 231 249 267 286���
5 nr nr 306 257 257 254 271 288���
6 nr 369 304 285 305 278 319 338���
7 nr 372 357 313 285 302 319 336���
8 nr 410 345 317 309 326 343 360���
9 510 401 325 343 333 350 367 384���
10 459 409 351 369 357 374 391 408���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 4.5 - Average Number of Switches per Tile for Each Architecture

4.6 Conclusions

This chapter has explored the relationships between the flexibility of routing archi-

tectures and routability in FPGAs. The principal conclusions are that connection blocks

should have high flexibility to achieve high percentage routing completion, but that a

relatively low flexibility is sufficient in the switch blocks. Furthermore, with low flexi-

bilities the number of tracks per channel required is very close to the minimum. Finally,

it has been shown that routing architectures with these properties yield the lowest total

number of routing switches.

5 A Stochastic Model to Predict the Routability of
Field-Programmable Gate Array Routing Architectures

5.1 Introduction

In this chapter, a study of FPGA routing architectures using a stochastic modelling

approach is presented. The purpose of the model is twofold: to confirm the experimental

results that were presented in Chapter 4, and to develop the foundations of a theory that

facilitates further study of FPGA routing architectures, without the time-consuming

demands of experimental work. In the stochastic model, circuits are represented by

parameters that specify the total number of connections to be routed and the length of

each connection. The model probabilistically ’routes’ a circuit in an FPGA that has a

certain size and a given routing architecture. Using probability theory, the model

predicts the effect of a routing architecture’s flexibility on its routability. Flexibility and

routability were defined in Section 4.1. It is shown that the theoretical results are com-

parable to the corresponding experimental results from Chapter 4.

FPGAs are characterized in the stochastic model using the same basic assumptions

that appear in Chapters 3 and 4. For ease of reference, some information discussed in

those chapters is repeated here. An example FPGA is illustrated in Figure 5.1, which

shows a square array of logic cells, with N cells per side. Note that the grid coordinates

in Figure 5.1 number only the logic cells, which differs from figures shown in earlier

chapters. This change has been made because this labelling scheme is more convenient

for the stochastic model. No assumptions are necessary about the internal details of the

logic cells, except that each cell has some number of pins that are connected to the rout-

ing channels by routing switches. Routing switches are contained within C blocks and S

blocks. It is assumed that tracks are hard-wired straight through the C blocks, without

5-2

passing through routing switches, but that a routing switch is always involved to pass

through an S block. This means that all tracks are composed of wiring segments that

span the length of one logic cell. The switches in the C blocks are used to connect the

logic cell pins to the wiring segments, and the S block switches provide connections from

one wiring segment to another. The flexibility of a C block is defined by Fc , which

specifies the number of tracks that each logic cell pin can connect to. The flexibility of

an S block is given by Fs , which defines the number of other wiring segments that a wir-

ing segment entering an S block can be connected to.

The routing of FPGAs is modelled assuming that a two-stage routing approach of

global routing followed by detailed routing is used (see Section 2.2.2). The global rout-

ing stage is represented in the model by making assumptions, which are described in the

next section, concerning the solution that a global router would produce. Assuming that

a connection is assigned a single global route, the stochastic model uses probability

1

C

C C

C C

C

C

C

C

1

0

S

SS

S

L

L

L L

L

L

L

L

L

0 N-1

N-1

C

C

C

Figure 5.1 - An N× N FPGA

5-3

theory to represent the detailed routing of an FPGA as a random process. The probability

of successfully performing the detailed routing of each connection is calculated and used

to predict the routability of the FPGA.

This chapter is organized as follows. Section 5.2 provides an overview of the sto-

chastic model, Section 5.3 describes previous research that is used to predict channel

densities, Section 5.4 derives analytic expressions for calculating the probability that a

connection can be successfully routed, the theoretical predictions of routability are given

in Section 5.5, and Section 5.6 provides concluding remarks.

5.2 Overview of the Stochastic Model

In the stochastic model, it is assumed that a circuit with a total of CT two-point con-

nections is to be routed in an FPGA with N× N logic cells. The length of each connection

is drawn from a probability distribution, PL . It will later be necessary to choose a

specific distribution for PL . In Section 5.4.4, it is assumed that PL is geometric, with

mean length R
��

. This assumption is taken from earlier work on the stochastic modelling

of two-dimensional arrays of connected cells [Heller84] [ElGa81], and has the following

physical interpretation in an FPGA: at each C block along the path of a connection, the

connection will terminate (at a logic cell) with probability
R
��
1�� and will continue (to the

next C block) with probability 1 −
R
��
1�� .

The CT connections are individually referred to as C 1,C 2, ...,CCT
and the statistical

event that each connection is successfully routed is called RC 1
,RC 2

, ...,RCCT
. The key to

the stochastic model is the calculation of the probabilities of RC 1
,RC 2

, ...,RCCT
. Recall

that routability is defined as the percentage of the connections in a circuit that can be suc-

5-4

cessfully routed. In terms of RC 1
,RC 2

, ...,RCCT
this corresponds to the ratio of the

expected number of successfully routed connections to the total number of connections,

CT . Thus, routability is the average probability of completing a connection and can be

calculated in the stochastic model according to

Routability =
CT

1���
i =1
Σ
CT

P (RCi
) ,

where P (RCi
) is the probability of successfully routing Ci .

5.2.1 Model of Global Routing and Detailed Routing

In order to use a key research result by El Gamal [ElGa81] to predict the densities

of the routing channels in an FPGA, the following assumption is made concerning the

way in which a global routing algorithm would assign the connections in a circuit to the

routing channels. It is assumed that each connection is assigned a single path through the

routing channels in such a way that the number of connections per routing channel is

Poisson distributed. Section 5.3 justifies this assumption and illustrates its use.

In the stochastic model, the detailed routing of an FPGA is represented as a random

process. Based on the assumption that a connection is assigned a single path through the

routing channels, the probability of successfully performing the detailed routing of the

connection is calculated using combinatorial analysis. The probability expressions

account for the number of tracks per routing channel, the flexibilities of the C and S

blocks, and the side-effects that the routing of one connection has on others.

Recall, from earlier discussions in this dissertation, that a key issue in the detailed

routing of FPGAs is how the routing of one connection may affect other connections. To

compute the value of each P (RCi
), it is necessary for the stochastic model to account for

these effects. To accomplish this, the model ’routes’ the connections in a serial manner

5-5

and predicts the effect that each successfully routed connection has on the densities of the

routing channels. By this mechanism, the probability of routing each subsequent connec-

tion is influenced because there are more connections in a channel to compete with. The

next section shows how El Gamal’s results can be used to calculate channel densities and

following this, the probability formulas for P (RCi
) are derived.

5.3 Previous Research for Predicting Channel Densities

In [ElGa81], a stochastic model is developed to predict the wiring requirements of

Master Slice Integrated Circuits that have a two-dimensional array of identical cells, with

horizontal and vertical routing channels between the rows and columns of cells. The

model divides the channels into segments that span the length or width of one cell and it

is assumed that all interconnections start at one cell and travel a minimum distance

through the channel segments to another cell. It is further assumed that the number of

connections per cell can be drawn independently from a Poisson distribution, with

parameter λ, where λ is defined as the ratio of the total number of connections in a circuit

to the total number of cells in the array. The average connection length, in number of

cells traversed, is called R
��

. The paper also makes assumptions about the trajectories of

connections, but these assumptions are not necessary for the results that are quoted here.

[ElGa81] shows that under the above assumptions, in an array that has N× N routing

channels, the densities of the channel segments will be Poisson distributed, with the aver-

age density given by
2

λ R
��

���� . This result holds as long as R
��

< ∞, independent of N, and

provides a convenient method of predicting channel densities.

5.3.1 Predicting Channel Densities in FPGAs

5-6

Although the results in [ElGa81] were developed for Master Slice circuits, they can

also be applied to the FPGAs considered here, since both types of devices are based on a

two-dimensional array of identical cells. The definitions of the routing channels differ,

but these differences can be ignored since the tracks consist of short segments that span

only one logic cell in both cases.

Ideal Poisson

Actual

Probability

Density0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.00 5.00 10.00

Figure 5.2 - Predicted versus Actual Channel Densities

Having made these assumptions, it is convenient to predict channel densities in

FPGAs using El Gamal’s result. The accuracy of the predictions can be checked by com-

paring the ideal Poisson distribution with mean
2

λ R
��

���� to the distribution of channel densi-

ties in real FPGA circuits. Such comparisons were conducted for the example circuits

from Chapter 4. A typical result is shown in Figure 5.2, which gives one curve for the

ideal Poisson distribution and another curve for the measured distribution of channel den-

sities. As the figure shows, the actual channel densities are surprisingly close to the Pois-

son predictions.

5-7

It is interesting to discuss a physical interpretation of the Poisson distribution in this

context. Assume that an FPGA has W tracks in each routing channel and consider a

specific channel segment. For each of the W tracks, define pi as the probability of the

statistical event that the track would be occupied if a circuit were routed in the FPGA. If

W = 1, there will be a probability, p 1, that the track will be occupied by some connection.

If W = 2, then there will be a probability, p 2, that each of the two tracks will be occupied

by some connection and p 2 < p 1. Extending this to the general case, if W = n, then each

track will be occupied with probability pn , and pn < pn −1 < . . . < p 2 < p 1. Further-

more, as n → ∞, pn → 0. Since pn is small in the limiting case, the event that a track is

used is a rare event and the number of these events (density) can be approximated by the

Poisson distribution.

In FPGAs in which the tracks consist of segments that span multiple logic cells, El

Gamal’s result is probably not an accurate approximation of channel densities. In such

cases, a different method of calculating densities would be needed. For this reason, the

probability expressions that are developed in the following section are derived in a gen-

eral way that does not hinge upon any particular distribution for the channel densities.

However, assuming a Poisson distribution for the channels does allow some expressions

to be simplified, an example of which is given in Section 5.4.1.

5.4 Calculating the Probability of Successfully Routing a Connection

This section derives analytic expressions for calculating the probability of success-

fully performing the detailed routing of a single connection in an FPGA. As an example

of a connection, consider Figure 5.3. The figure shows a connection, Ci , that starts at

logic cell (x 1,y 1) and travels through routing channels to logic cell (x 2,y 2). The length

of Ci is defined in terms of logic cell hops (to be consistent with [ElGa81]), as

5-8

LCi = |x 1 − x 2 | + |y 1 − y 2 | . Also, the number of S blocks that Ci passes through is

given by LCi − 1. To define the probability, P (RCi
), of successfully routing Ci , assume

that LCi = n +1. The statistical event that corresponds to this assumption is written Ln +1.

Also define the following events:

� X 1 - the event that the logic cell pin associated with Ci at (x 1,y 1) can connect to at

least one track at the first C block. Note that there are, by definition, Fc tracks that

can connect to the logic cell pin, but any number of them may already be used by

other connections that have been previously ’routed’.

� S 1, S 2, . . . , Sn - the events that Ci can successfully reach at least one track on the

outgoing side of the first, second, up to the n th S block. There are LCi − 1 such

events for Ci .

� X 2 - the event that at least one of the tracks that are available to Ci at the last C

block can be connected to the appropriate logic cell pin at (x 2,y 2).

� RCi
- the event that Ci can be successfully routed.

Since Ci is successfully routed only if all of the events X 1, S 1, S 2, ..., Sn , X 2 occur,

then

yxyx

CSSC

, ,
211 2

Figure 5.3 - A Typical Connection

5-9

RCi
| Ln +1 = X 1 ∩ S 1 ∩ S 2

. . . ∩ Sn ∩ X 2

and the probability of successfully routing Ci is given by

P (RCi
| Ln +1) = P (X 1 ∩ S 1 ∩ S 2

. . . ∩ Sn ∩ X 2)

= P (X 1) P (S 1 | X 1) P (S 2 | S 1 ∩ X 1) . . . P (Sn | Sn −1 ∩ . . . ∩ S 1 ∩ X 1)

5.1. P (X 2 | Sn ∩ . . . S 1 ∩ X 1) .

Since the events X 1, S 1, S 2, ..., Sn , and X 2 are not independent, it is necessary to find

formulas for each of the terms in Equation 5.1. This is accomplished in the following

sections by using combinatorial analysis that accounts for the flexibilities of the C and S

blocks (Fc and Fs), the number of tracks per routing channel (W), and the densities of

the routing channels. As discussed in Section 5.3, channel density is approximated by

the Poisson distribution with parameter λg =
2

λ R
��

���� , where λ is the number of connections

per logic cell and R
��

is the average connection length. Appropriate values for λ and R
��

are

discussed in Section 5.5.

5.4.1 The Logic Cell to C Block Event

The event X 1 can be depicted pictorially as shown in Figure 5.4. The figure shows

a routing channel with W tracks and a logic cell pin that can connect to Fc of the tracks,

via routing switches (shown by an X). The figure also shows a set of D tracks, drawn as

dashed lines, that are already occupied by previously routed connections. In the figure,

W = 10, Fc = 5, and D = 5. The event X 1 can then be viewed as a random process in

which a logic cell pin can connect to any of the unused tracks where there are switches.

To derive a formula for P (X 1), it is convenient to define the event NONE as the oppo-

5-10

Logic Cell

D = 5

Fc = 5

W = 10

Figure 5.4 - The Event X 1

site of X 1 - i.e. P (X 1) = 1 − P (NONE). The event NONE occurs when all Fc tracks are

within the set of D used tracks. As a first step to evaluating P (NONE), assume that

D = d and define the corresponding event Dd . Assuming that the Fc switches can appear

on any of the W tracks, the probability of NONE conditional on Dd is given by the ratio

of the number of ways in which all of the Fc switches can lie within the d occupied

tracks to the number of ways in which the Fc switches can appear on any of the W tracks.

Using combinatorial analysis, this can be expressed as

5.2P (NONE | Dd) =
WCFc

dCFc����� ,

where dCFc
means the combinations of d things taken Fc at a time. As a check, note that

P (NONE | Dd) is 0 if d < Fc and 1 if d = W. Next, consider the events D 0, D 1, ..., DW

corresponding to the possible values of D. Since the occurrence of NONE implies

exactly one of D 0, D 1, ..., DW , then

NONE = (NONE ∩ D 0) ∪ (NONE ∩ D 1) ∪ . . . ∪ (NONE ∩ DW)

and since D 0, D 1, ..., DW are mutually exclusive

5-11

P (NONE) = P (NONE ∩ D 0) + P (NONE ∩ D 1) + . . . + P (NONE ∩ DW) .

Using the relation P (X ∩ Y) = P (X) P (Y | X),

P (NONE) = P (D 0) P (NONE | D 0) + P (D 1) P (NONE | D 1) + . . .

+ P (DW) P (NONE | DW) .

The terms P (D d) are given by the Poisson distribution with parameter λg , written

p (λg , d), so that

P (NONE) =
d =0
Σ
W

p (λg , d) . P (NONE | Dd)

and, substituting equation 5.2,

P (NONE) =
d =0
Σ
W

p (λg , d) .
WCFc

dCFc����� .

Finally,

5.3P (X 1) = 1 − P (NONE) = 1 −
d =0
Σ
W

p (λg , d) .
WCFc

dCFc�����

Note that Equation 5.3 is an approximation because the Poisson distribution has an

infinite tail, whereas the summation has an upper limit of W. This means that there is a

non-zero probability of channel densities above W, but for practical values of W this error

is very small and can be ignored. This same statement also applies to other equations

that appear later in this chapter.

Equation 5.3 has been developed in a way that does not depend upon the channel

densities being Poisson distributed. This approach is taken because the channel densities

in some FPGAs, such as those having tracks with segments that span multiple logic cells,

may have distributions that are not Poisson. The stochastic model can still be used for

such FPGAs, simply by replacing p (λg , d) with an appropriate distribution. It is

5-12

interesting to note, however, that the properties of the Poisson distribution allow expres-

sions like Equation 5.3 to be simplified, as described below.

Equation 5.3 can be simplified by noting that a Poisson distribution is infinitely

divisible. In the case of event X 1, this means that rather than considering a Poisson pro-

cess over W tracks, with mean λg , it is sufficient to deal with a smaller Poisson process

over Fc tracks, with mean λg W

Fc��� . P (NONE) is then given by p (λg W

Fc��� , Fc), and

Equation 5.3 can be expressed as

P (X 1) = 1 − P (NONE) = 1 − p (λg W

Fc��� , Fc) .

Similar simplifications can be made for other expressions shown later in this section, but

they are easily developed and so are not shown.

Equation 5.3 calculates P (X 1) based on the relationship between the event X 1 and

the event NONE. An alternative is to calculate P (X 1) directly by defining

A1
X 1 , A2

X 1 , ..., AFc

X 1 as the events that X 1 occurs with exactly 1, 2, ..., Fc available tracks.

Using this approach,

X 1 = A1
X 1 ∪ A2

X 1 ∪ . . . ∪ AFc

X 1

and since A1
X 1 , A2

X 1 , ..., AFc

X 1 are mutually exclusive,

P (X 1) = P (A1
X 1) + P (A2

X 1) + . . . + P (AFc

X 1) .

Although P (X 1) can be calculated using Equation 5.3, each of P (Aa
X 1) will be

required in the next section, so they are derived here. Consider the general case of X 1

occurring with exactly (a) available tracks, and the corresponding event Aa
X 1 . Assuming

a specific number of occupied tracks, D = d, the conditional probability P (Aa
X 1 | Dd) can

be expressed using combinatorial analysis as

5-13

P (Aa
X 1 | Dd) =

WC (Fc −a)
.

(W −(Fc −a))Ca

dC (Fc −a)
.

(W −d)Ca�������������������� .
Fc

Ca .

In words, this is the number of ways that a set of (Fc − a) tracks can be within (d)

used tracks times the number of ways of choosing a set of (a) tracks from (Fc) tracks,

all divided by the number of ways that two distinguishable sets of (a) and (Fc − a)

tracks can be within W tracks. Since the occurrence of Aa
X 1 implies exactly one of

D 0, D 1, ..., DW , following the steps shown for equation 5.3,

P (Aa
X 1) =

d =0
Σ
W

p (λg , d) . P (Aa
X 1 | Dd)

5.4=
d =0
Σ
W

p (λg , d) .
WC (Fc −a)

.
(W −(Fc −a))Ca

dC (Fc −a)
.

(W −d)Ca�������������������� .
Fc

Ca

As a check, it is easily verified that P (NONE) can be obtained using equation 5.4 by set-

ting a = 0, which must be true since P (NONE) ≡ P (A0
X 1). Finally,

P (X 1) =
a =1
Σ
Fc

P (Aa
X 1)

=
a =1
Σ
Fc

d =0
Σ
W

p (λg , d) .
WC (Fc −a)

.
(W −(Fc −a))Ca

dC (Fc −a)
.

(W −d)Ca�������������������� .
Fc

Ca .

5.4.2 The S Block Events

All of the events that are associated with S blocks can be treated in a uniform way.

This section first derives probability formulas for S 1 | X 1 and then shows how the result-

ing expressions can be applied to subsequent S blocks.

5.4.2.1 The First S Block Event, for Fs == 3

Since P (S 1 | X 1) will be affected by the flexibility of the S block, it is convenient

to assume a specific value of Fs . In the following derivation, the case Fs = 3 is assumed.

5-14

This is the easiest case to handle because it means that each wiring segment that enters

an S block can connect to exactly one wiring segment on each other side. Also, the

derivation need not be concerned with whether a connection turns or passes straight

through an S block since the effect is the same in both cases.

The event S 1 | X 1 is depicted in Figure 5.5, which shows an S block and a routing

channel that has W tracks. The figure shows a set of A X 1 tracks, drawn as bold lines, that

are available at the incoming side of the S block and a set of D tracks, drawn as dashed

lines on the outgoing side of the S block, that are already used by other connections. In

the figure, D = 4, W = 10, and A X 1 = 3. Note that setting A X 1 to three corresponds to the

event A3
X 1 , from Section 5.4.1. Figure 5.5 uses dotted lines to indicate S block switches

and shows that each track on the incoming side of the S block can be connected to one

other track on the outgoing side. The event can then be considered to be a random pro-

cess in which each of the A X 1 incoming tracks can connect to one track on the outgoing

side of the S block, as long as that outgoing track is not among the D used tracks. In

other words, given that there are A X 1 tracks that are available on the incoming side of the

S block, it is necessary to find the probability that one or more of these tracks are also

available on the outgoing side.

The event S 1 | X 1 can occur with one or more available outgoing tracks. To calcu-

late P (S 1 | X 1), define A1
S 1 , ..., AFc

S 1 as the events that S 1 | X 1 occurs with exactly

1, 2, ..., Fc available tracks on the outgoing side. Since

S 1 | X 1 = A1
S 1 ∪ . . . ∪ AFc

S 1

and A1
S 1 , ..., AFc

S 1 are mutually exclusive

5-15

5.5P (S 1 | X 1) = P (A1
S 1) + . . . + P (AFc

S 1) .

Side
Incoming

S Block

D = 4

W = 10

X1A = 3
Outgoing

Side

Figure 5.5 - The Event S 1

Solving for each term in this summation requires several steps. Consider the gen-

eral case where S 1 | X 1 occurs with exactly k available outgoing tracks. The correspond-

ing event is written Ak
S 1 . The probability of Ak

S 1 will depend on the number of tracks

available on the incoming side, given by A X 1 , and on the value of D. Assume a specific

value of A X 1 = a. Since X 1 is known to have occurred, this corresponds to assuming that

X 1 occurred with exactly (a) available tracks. The appropriate statistical event for this

assumption is then written as Aa
X 1 | X 1. Also, assume that D = d and define the event Dd .

A conditional probability for Ak
S 1 can then be expressed using combinatorial analysis as

5.6P ((Ak
S 1 | (Aa

X 1 | X 1)) | Dd) =
WC (a −k)

.
W −(a −k)Ck

dC (a −k)
.

(W −d)Ck����������������� .
aCk .

Equation 5.6 expresses the ratio of the number of ways in which exactly (k) of the

(a) available incoming tracks can end up on unoccupied tracks on the outgoing side to

the number of ways in which (k) and (a − k) tracks can appear on any of the W tracks.

To expand Equation 5.6, following the steps outlined in the previous section, consider the

events D 0, D 1, ..., DW corresponding to the possible values of D. Since the occurrence

5-16

of (Ak
S 1 | (Aa

X 1 | X 1)) implies exactly one of D 0, D 1, ..., DW , then

P (Ak
S 1 | (Aa

X 1 | X 1)) =
d =0
Σ
W

p (λg , d) .
WC (a −k)

.
W −(a −k)Ck

dC (a −k)
.

(W −d)Ck����������������� .
aCk .

Next, consider the events (A1
X 1 | X 1), ..., (AFc

X 1 | X 1) corresponding to the possible

values of A X 1 . The occurrence of Ak
S 1 implies exactly one of (A1

X 1 | X 1), ..., (AFc

X 1 | X 1),

so that

5.7P (Ak
S 1) =

a =1
Σ
Fc

P (Aa
X 1 | X 1) .

d =0
Σ
W

p (λg , d) .
WC (a −k)

.
W −(a −k)Ck

dC (a −k)
.

(W −d)Ck����������������� .
aCk .

As stated above, the terms P (Aa
X 1 | X 1) express the probability that, given the

occurrence of event X 1, X 1 occurred with exactly (a) available tracks. Each of

P (Aa
X 1 | X 1) is defined by Bayes’ rule [Fell52], according to

5.8
P (Aa

X 1 | X 1) =

j =1
Σ
Fc

P (A j
X 1)

P (Aa
X 1)����������� ,

where P (A1
X 1), ..., P (AFc

X 1) are given by Equation 5.4. Substituting 5.7 and 5.8 into 5.5,

P (S 1 | X 1) =
k =1
Σ
Fc

P (Ak
S 1)

5.9
=

k =1
Σ
Fc

a =1
Σ
Fc

�
�
� j =1
Σ
Fc

P (A j
X 1)

�
�
�

P (Aa
X 1)������������� .

d =0
Σ
W

p (λg , d) .
WC (a −k)

.
W −(a −k)Ck

dC (a −k)
.

(W −d)Ck����������������� .
aCk .

5.4.2.2 The First S Block Event, for Any Value of Fs

Equation 5.9 assumes a specific value of S block flexibility, Fs = 3. This section

shows how Equation 5.9 can be generalized for other values of Fs . In Equation 5.6, a

one-to-one correspondence was assumed between the subscript (a) in Aa
X 1 | X 1, on the

left hand side of the equation, and the variable (a), on the right hand side. This relation

holds for Fs = 3 but does not necessarily apply for other values of Fs . For example, if

5-17

Fs = 6, a more appropriate variable for the right hand side of the equation is 2a. In gen-

eral, the subscript (a) should be scaled by some factor, α, and Equation 5.6 becomes

5.10P ((Ak
S 1 | (Aa

X 1 | X 1)) | Dd) =
WC (α a −k)

.
W −(α a −k)Ck

dC (α a −k)
.

(W −d)Ck�������������������� .
α aCk .

Clearly, α depends on the value of Fs , but α may also depend on whether a connection

passes straight through a particular S block, or turns. Define Z 1 as the event that a con-

nection passes straight through an S block, and Z 2 as the event that it turns. Also, define

α1 and α2 as the values of α corresponding to Z 1 and Z 2. Since S 1 | X 1 implies one of

Z 1 and Z 2, then

P (S 1 | X 1) = P (Z 1) . P ((S 1 | X 1) | Z 1) + P (Z 2) . P ((S 1 | X 1) | Z 2)

and using Equation 5.9 and 5.10,

P(S 1 | X 1) =

P (Z 1) .
k =1
Σ
W

a =1
Σ
Fc

�
�
� j =1
Σ
Fc

P (A j
X 1)

�
�
�

P (Aa
X 1)������������� .

d =0
Σ
W

p (λg , d) .
WC (α1a −k)

.
W −(α1a −k)Ck

dC (α1a −k)
.

(W −d)Ck�������������������� .
α1aCk +

5.11
P (Z 2) .

k =1
Σ
W

a =1
Σ
Fc

�
�
� j =1
Σ
Fc

P (A j
X 1)

�
�
�

P (Aa
X 1)������������� .

d =0
Σ
W

p (λg , d) .
WC (α2a −k)

.
W −(α2a −k)Ck

dC (α2a −k)
.

(W −d)Ck�������������������� .
α2aCk

Appropriate values for P (Z 1) (note that P (Z 2) = 1−P (Z 1)), α1, and α2 are dis-

cussed in Section 5.5. Note that the (k) summation in Equation 5.11 has an upper limit

of W, whereas the corresponding upper limit in Equation 5.9 is Fc . This change is

required since it may be possible to connect to all W tracks in a channel for values of Fs

that are greater than three.

5.4.2.3 The Remaining S Block Events

5-18

Thus far, this section has dealt specifically with the event S 1 | X 1, but the derived

expressions are applicable to any of the other S block events, with two changes. First, for

the m th S block event, (Sm | Sm −1 ∩ . . . ∩ S 1 ∩ X 1), all summations must reach an

upper limit of W. Second, the probabilities P (A1
X 1), ..., P (AFc

X 1) in Equation 5.11 are

replaced by P (A1
Sm −1), ..., P (AW

Sm −1), which are defined by Equation 5.12, with m = m −1.

Applying these changes, Equation 5.7 becomes

P (Ak
Sm) =

a =1
Σ
W

P (Aa
Sm −1 | Sm −1 ∩ . . . ∩ S 1 ∩ X 1) .

5.12
d =0
Σ
W

p (λg , d) .
WC (a −k)

.
W −(a −k)Ck

dC (a −k)
.

(W −d)Ck����������������� .
aCk

and Equation 5.11 becomes

P(Sm | Sm −1 ∩ . . . ∩ S 1 ∩ X 1) =

P (Z 1) .
k =1
Σ
W

a =1
Σ
W

�
�
� j =1
Σ
W

P (A j
Sm −1)

�
�
�

P (Aa
Sm −1)�������������� .

d =0
Σ
W

p (λg , d) .
WC (α1a −k)

.
W −(α1a −k)Ck

dC (α1a −k)
.

(W −d)Ck�������������������� .
α1aCk +

5.13
P (Z 2) .

k =1
Σ
W

a =1
Σ
W

�
�
� j =1
Σ
W

P (A j
Sm −1)

�
�
�

P (Aa
Sm −1)�������������� .

d =0
Σ
W

p (λg , d) .
WC (α2a −k)

.
W −(α2a −k)Ck

dC (α2a −k)
.

(W −d)Ck�������������������� .
α2aCk

5.4.3 The C Block to Logic Cell Event

The event X 2 is depicted by Figure 5.6, which shows a set of A Sn = 4 tracks, drawn

as bold lines, that are available at a C block (this corresponds to the event A4
Sn in Section

5.4.2) and a set of Fc = 5 tracks that connect to the appropriate logic cell pin for the con-

nection. The event X 2 can then be viewed as a random process in which the logic cell

pin can be connected to any of the set of (A Sn) tracks where there are switches. Stated

differently, given that one or more tracks were available at the outgoing side of the last S

block, it is necessary to determine the probability that one or more of these tracks con-

5-19

nS
A = 4

Fc = 5

W = 10

Logic Cell

Figure 5.6 - The Event X 2

nects to the appropriate logic cell pin. To simplify the notation, the expression

Sn ∩ . . . S 1 ∩ X 1 will be substituted for by SX. To calculate the probability of X 2 | SX,

define the opposite event NONE | SX, where P (X 2 | SX) = 1 − P (NONE | SX). To find

P (NONE | SX), assume a specific value of A Sn = a and define the corresponding event

Aa
Sn . A conditional probability for NONE | SX can then be defined by

5.14P ((NONE | SX) | Aa
Sn) =

WCa

(W −Fc)Ca�������� .

Equation 5.14 assumes that each of the Fc switches for the the logic cell pin associ-

ated with event X 2 is equally likely to be on any of the W tracks. This may not be realis-

tic since a good C block topology would ensure that the tracks that are connectable to one

pin would overlap the tracks connectable to others, as was discussed in Section 4.2.2.1.

This assumption will have the effect of producing low predictions of routability for low

values of Fc , which is discussed further in Section 5.5.

Consider the events A1
Sn , A2

Sn , ..., AW
Sn corresponding to the possible values of A Sn .

Since the occurrence of NONE | SX implies exactly one of A1
Sn , A2

Sn , ..., AW
Sn , it follows

5-20

that

P (NONE | SX) =
a =1
Σ
W

P (Aa
Sn | SX) . P ((NONE | SX) | Aa

Sn),

where each of P (Aa
Sn | SX) is given by Bayes’ rule, so that

5.15
P (X 2 | SX) = 1 − P (NONE | SX) = 1 −

a =1
Σ
W

�
�
� j =1
Σ
W

P (A j
Sn)

�
�
�

P (Aa
Sn)������������� .

WCa

(W −Fc)Ca�������� .

Each of P (A1
Sn), ..., P (AW

Sn) can be calculated using Equation 5.12, with m = n. Note

that for the case of a connection that has length one, there are no S block events, so that

Aa
Sn in Equation 5.15 are replaced by Aa

X 1 . Each of P (A1
X 1), ..., P (AFc

X 1) can be calcu-

lated using Equation 5.4.

5.4.4 The Probability of RCi

Equation 5.1 can now be solved using the formulas developed in this section to cal-

culate P (RCi
), for the given value of LCi = n +1. Equation 5.1 is reproduced below, as

Equation 5.16.

P (RCi
| Ln +1) = P (X 1 ∩ S 1 ∩ S 2

. . . ∩ Sn ∩ X 2)

= P (X 1) P (S 1 | X 1) P (S 2 | S 1 ∩ X 1) . . . P (Sn | Sn −1 ∩ . . . ∩ S 1 ∩ X 1)

5.16. P (X 2 | Sn ∩ . . . S 1 ∩ X 1) .

To make use of this result to calculate P (RCi
), define LCi = l max as the maximum

length of any connection and Ll max
as the corresponding event. Appropriate values for

l max are discussed in Section 5.5. Next, consider the events L 1, ..., Ll max
corresponding

to the possible values of LCi . Since the occurrence of RCi
implies exactly one of

L 1, ..., Ll max
, then

5-21

5.17P (RCi
) =

l =0
Σ
l max

P (Ll) . P (RCi
| Ll),

where P (Ll) are given by the probability distribution of connection length, referred

to in Section 5.2 as PL , and each P (RCi
| Ll) is defined by Equation 5.16. As mentioned

in Section 5.2, PL is assumed to be geometric, with mean R
��

. Thus, P (Ll) is given by

P (Ll) = pq l −1,

where p =
R
��
1�� and q = 1 − p. The following section shows how Equation 5.17 is evaluated

to predict routability.

5.5 Using the Stochastic Model to Predict Routability

In order to make use of Equation 5.17, it is necessary to choose appropriate values

for the various parameters that appear in the formulas developed in Section 5.4, as well

as to evaluate the function λg , that is used to predict channel densities. This section first

shows how λg is calculated and then gives appropriate values for each of the parameters.

Following this, the routability predictions that are produced by the stochastic model are

presented, with comparisons to the experimental results that were shown in Chapter 4.

As stated in Section 5.3, the parameter λg is defined by λg =
2

λ R
��

���� , where R
��

is the

average connection length and λ is the ratio of the expected number of routed connec-

tions to the total number of logic cells. Given this definition, λ must be re-calculated

after each connection is probabilistically ’routed’ by the stochastic process. Thus, after

i −1 connections have been ’routed’, λ can be calculated as

5.18λ =
N 2
1����

c =1
Σ
i −1

P (RCc
) .

5-22

It is necessary to assign values to the following parameters: N, W, l max, CT , R
��

,

P (Z 1), α1, α2, Fs , and Fc . The first three of these depend on the size of the FPGA array

and the next three are determined by the characteristics of the circuit to be routed. Since

the routability predictions that are generated in this chapter are to be compared with the

results from Chapter 4, the parameters will be taken from the FPGA circuits that were

used in that chapter. The corresponding values are given in Table 4.1.

���
Circuit N W l max CT R

��
P (Z 1)��

BUSC 11 11 20 392 2.7 .71���
DMA 15 12 28 771 2.8 .75���
BNRE 20 14 38 1257 3.0 .75���
DFSM 21 13 40 1422 2.85 .76���

Z03 25 13 48 2135 3.15 .75���
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

Table 4.1 - Stochastic Model Parameters for Experimental Circuits

���
Fs��

2 3 4 5 6 7 8 9 10 ...���
α1 1.0 1.0 2.0 2.0 2.0 3.0 3.0 3.0 4.0 ...���
α2 0.5 1.0 1.0 1.5 2.0 2.0 2.5 3.0 3.0 ...���

�
�
�
�

��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
�
�
�
�

Table 4.2 - Approximations to α1 and α2

The parameters α1 and α2 can be approximated by making some assumptions con-

cerning the topology of the S blocks. It is assumed here that the topology is similar to

the one used in Chapter 4. This means that, as Fs is increased from its minimum value of

2, switches are added to the wiring segments in the order straight across, right turn, left

turn, straight across, right turn, etc.. It is further assumed that the topology spreads the

switches among the tracks such that every track can be switched to exactly Fs others.

5-23

Given these assumptions, appropriate values of α1 and α2 are shown in Table 4.2.

5.5.1 Routability Predictions

Recall, from Section 5.2, that routability is defined as

5.19Routability =
CT

1���
i =1
Σ
CT

P (RCi
),

This equation can now be evaluated using Equation 5.17, the formulas developed in Sec-

tion 5.4, Equation 5.18, and Tables 4.1 and 4.2. A typical result is shown in Figure 5.7,

which gives a plot of the expected percentage of successfully completed connections

versus connection block flexibility, Fc , for parameters that correspond to the circuit

BNRE.

Fs=10

Fs=9

Fs=8

Fs=7

Fs=6

Fs=5

Fs=4

Fs=3

Fs=2

% Complete

Fc

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

5.00 10.00

Figure 5.7 - Routability Predictions vs. Fs, for Circuit BNRE

5-24

Figure 5.7 is analogous to Figure 4.9. Each curve in the figure corresponds to a dif-

ferent value of S block flexibility, Fs . The lowest curve represents the case Fs = 2 and

the highest curve corresponds to Fs = 10. The figure indicates that the routability is low

for small values of Fc and only approaches 100% when Fc is at least one-half of W. The

figure also shows that increasing the S block flexibility improves the completion rate at a

given Fc , but to get near 100% the value of Fc must always be high (above 7 for this cir-

cuit). The reader will note that these are the same conclusions that were reached experi-

mentally in Chapter 4.

Figure 5.8 is a plot of the expected percentage of successfully completed connec-

tions versus S block flexibility, Fs , also for the circuit BNRE. This figure is analogous to

Figure 4.12. Each curve in the figure corresponds to a different value of Fc , with the

lowest curve representing Fc = 1 and the highest curve corresponding to Fc = W. The

curves show an increase in slope at Fs values of 4, 7, and 10. This occurs because

switches are added straight across the S blocks for these values of Fs and, as Table 4.1

shows, connections pass straight through the S blocks more than 70 percent of the time.

Figure 5.8 shows that if Fc is at least half of W, then very low values of Fs approach

100% routability. Again, this is the same conclusion reached in Chapter 4.

While the theoretical and experimental results lead to the same general conclusions,

they are not identical. Figure 5.9 compares the routability results produced by the sto-

chastic model with the experimental results. The dashed curve corresponds to the model,

whereas the solid curve is produced experimentally. Both curves correspond to circuit

BNRE, with Fs = 6. As Figure 5.9 indicates, the two results are quite similar. The fact

that the theoretical curve is lower than the experimental curve for low values of Fc is due

in part to Equation 5.14, which, as discussed in Section 5.4, does not accurately represent

5-25

Fc=13

Fc=12

Fc=11

Fc=10

Fc=9

Fc=8

Fc=6

Fc=5

Fc=4

Fc=3

Fc=2

Fc=1

% Complete

Fs

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

5.00 10.00

Figure 5.8 - Routability Predictions vs. Fc, for Circuit BNRE

good C block topologies. A summary of comparisons between theory and experiment for

all of the circuits appears in Table 5.3. For each circuit, the table shows the difference

between the theoretical and experimental routability results, for each value of Fs . Each

entry gives the mean value (and standard deviation) of the difference between the experi-

mental and theoretical routabilities, over the range of values of Fc from 1 to W. The

values in the table are in percentages since those are the units of routability. Absolute

values are used in the table to avoid a misleading average that could be caused by com-

bining negative and positive differences. However, this is not really necessary since, as

Figure 5.9 indicates, the theoretical predictions are almost always pessimistic. As Table

5.3 shows, the experimental measurements and theoretical predictions of routability are

surprisingly close, especially for values of Fs greater than three.

5-26

Experimental

Theoretical

% Complete

Fc
30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

5.00 10.00

Figure 5.9 - Comparison of Predictions and Experiments for Fs = 6

���
BUSC DMA BNRE DFSM Z03���

Fs Mean S.D. Mean S.D Mean S.D. Mean S.D. Mean S.D.��
2 7.7 4.9 10.2 7.5 7.3 6.3 8.9 8.3 7.2 5.9���
3 9.7 5.6 12.5 8.1 8.7 6.7 10.8 9.4 10.2 5.6���
4 2.9 2.9 4.1 4.5 1.5 3.1 2.7 5.3 1.9 2.1���
5 3.7 4.3 4.9 5.8 2.4 4.3 3.7 6.1 1.8 2.7���
6 3.2 3.5 5.0 6.2 2.6 4.7 4.0 6.7 2.1 3.3���
7 4.8 4.3 5.1 6.6 2.8 4.3 3.9 6.1 1.8 2.8���
8 4.3 4.6 5.1 6.5 3.1 4.3 4.1 6.2 2.2 2.6���
9 4.3 4.9 5.0 6.3 3.2 4.4 4.2 6.2 2.5 3.0���
10 4.3 4.8 5.2 6.7 3.2 4.3 4.2 5.9 2.9 3.4��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 5.3 - Summary of Comparisons Between Theory and Experiment

5.6 Conclusions

5-27

This chapter has developed a stochastic model that can be used to study the effect of

the flexibility of an FPGA’s routing architecture on its routability. It has been shown that

the model can be used to reach the same conclusions that were generated in Chapter 4

using an experimental approach. In future work the model could be extended to handle

the case where some of the routing switches in the S blocks are replaced by hard-wired

connections. This would allow the modelling of routing architectures in which the tracks

may be composed of segments of various lengths and would allow the stochastic model

to be used to study such architectures.

6 Conclusions

6.1 Thesis Summary

The main focus of this thesis has been the study of FPGA routing architectures with

regard to the tradeoff among routability, area and speed performance. The study’s pur-

pose has been to determine the level of flexibility of routing architectures that is high

enough so that real circuits can be successfully routed, and yet low enough so that rout-

ing switches are not wasted. The research has been carried out using both experimental

and theoretical approaches. In the experimental study, a new type of detailed routing

algorithm, parameterized fordifferent levels of flexibility, has been used to measure the

effects of flexibility on the routability of circuits. Theoretical methods have also been

applied to study this issue, using a stochastic modelling approach that predicts, based on

combinatorial analysis, the effect of flexibility on routability. The results of the work in

the thesis provide new insights into the design of FPGA routing algorithms and routing

architectures.

6.2 Thesis Contributions

In Chapter 3, the Coarse Graph Expansion (CGE) detailed routing algorithm for

FPGAs was described. It is the first published algorithm that approaches FPGA routing

in a general way, and it can be used over a wide range of routing architectures. CGE

employs a heuristic approach that bases routing decisions on a global cost function that

accounts for contention for the routing resources that may exist among the connections in

a circuit. The cost function also allows the optimization of routing delays for time-

critical connections. CGE has been used to obtain excellent routing results for relatively

large FPGA routing problems.

6-2

Chapter 4 gives the results of an experimental study of the effects on routability of

the flexibility of FPGA routing architectures. This study is the first of its kind for

FPGAs. The principal conclusions reached are that a high level of connectivity is desir-

able in the connection blocks that join the logic cell pins to the routing channels, but that

a relatively low flexibility is sufficient in the switch blocks at the intersections of hor-

izontal and vertical channels. Also, it is shown that, even with surprisingly low levels of

flexibility, circuits can be routed with very close to the theoretical minimum number of

tracks per channel. Finally, the results show the effect of the flexibility of the routing

architecture on the total number of routing switches needed in an FPGA.

A theoretical foundation that can be used to study FPGA routing architectures is

developed in Chapter 5. A stochastic model is presented that uses probability theory to

predict the routability of circuits over a range of flexibility. The probability expressions

are based on combinatorial analysis that accounts for both the flexibility of the routing

architecture and the side-effects that the successful routing of one connection has on oth-

ers. It is shown that the stochastic model can be used to reach the same conclusions that

were found experimentallyin Chapter 4.

6.3 Suggestions for Future Research

A future enhancement for the CGE detailed router could improve upon the usage of

routing tracks comprising wiring segments that span multiple logic cells. Currently, spe-

cial attention is paid to the segmentation-lengthof tracks onlywhen routing time-critical

connections. A better approach would be for the router to assign tracks to each connec-

tion such that the segmentation-length of thetrack matches, as closely as practical, the

length of the connection. Both phases of the algorithm are affected by this issue. First,

when paths are pruned from expanded graphs during graph expansion, those paths that

6-3

correspond to tracks that have appropriate segment lengths should be given preference.

Second, during path selection, segment lengths should be considered when specific tracks

are chosen for each connection. Thesemodifications to thealgorithm’s implementation

should be integrated with the current cost function so that a high quality of routing can

still be obtained, but with improved usage of segmented tracks.

A topic of future research that may yield significant results is the development of a

near-optimal detailed router for FPGAs. The following discussion describes how such a

router could be realized by building upon the results of this thesis. The CGE algorithm

follows a heuristic approach; a pruning procedure controls the complexity of the routing

problem, and an approximate cost function is used to resolve routing conflicts. The

heuristic approach is necessary for two reasons:

(1) The number of possible detailed routes for a connection is an exponential

function of the length of the connection.

(2) The number of connections to be routed is large.

Using the routing architecture flexibility results in this thesis, issue (1) can be removed

by constraining the flexibility of the switch blocks (Fs ≤ 3). While issue (2) still

remains, it too can be eliminated by using the CGE router. An interesting scheme would

be one that uses CGE to complete the detailed routes of all but the most difficult connec-

tions in a circuit. Then, for channel segments that still contain unrouted connections, a

final routing stage could be invoked to try to complete the routing task. Having greatly

reduced the scope of the problem, it should be practical to implement the final routing

stage using some sort of optimal assignment algorithm. Note that the overall solution is

still only "near-optimal" since there might be some influence on the final routing stage of

decisions made by the heuristic.

6-4

The routing architecture results that are presented in Chapter 4 assume routing

tracks that have a segmentation-length of one.Future research should expand this study

to include other segment lengths. There are three issues to be addressed:

(1) How many tracks ofeach segmentation-length should be included?

(2) What connectivity should be available among the various tracks?

(3) How should the segmented tracks be populated? For segmented tracks, this

issue refers to whether or not there should be routing switches, in the connec-

tion and switch blocks, that connect to the middle sections of segments.

The stochastic model described in Chapter 5 also assumes that tracks have a

segmentation-length of one. The theory shouldbe extended to include other segment

lengths so that the model could be used to study such architectures. Appropriate

modifications would also be necessary for the method that is used to approximate chan-

nel density, since it is also based on non-segmented channels.

References

[Ahre90]

M. Ahrens, A. El Gamal, D. Galbraith, J. Greene, S. Kaptanoglu, K. Dharmarajan,
L. Hutchings, S. Ku, P. McGibney, J. McGowan, A. Samie, K. Shaw, N. Stiawalt,
T. Whitney, T. Wong, W. Wong and B. Wu, "An FPGA Family Optimized for High
Densities and Reduced Routing Delay," Proc. 1990 Custom Integrated Circuits
Conference, May 1990, pp. 31.5.1 - 31.5.4.

[Aker72]

S.B. Akers, "Routing," Chapter 6 of Design Automation of Digital Systems; Theory
and Techniques, M.A. Breuer, Ed., NJ, Prentice-Hall, 1972.

[Alt90]

The Maximalist Handbook, Altera Corp., 1990.

[AMD90]

MACH 1 and MACH 2 Device Families Preliminary Data Sheets, 1990.

[Bray86]

R. Brayton, E. Detjens, S. Krishna, T. Ma, P. McGeer, L.Pei, N. Phillips, R. Rudell,
R. Segal, A. Wang, R. Yung and A. Sangiovanni-Vincentelli, "Multiple-Level
Logic Optimization System," Proc. IEEE International Conference on Computer
Aided Design, pp. 356-359, Nov. 1986.

[Breu77]

M.A. Breuer, "Min-Cut Placement," Journal of Design Automation and Fault
Tolerant Computing, pp. 343-362, Oct. 1977.

[Brow90]

S. Brown, J. Rose and Z.G. Vranesic, "A Detailed Router for Field-Programmable
Gate Arrays", Proc. IEEE International Conference on Computer Aided Design, pp.
382-385, Nov. 1990.

[Brow91]

S. Brown, J. Rose and Z.G. Vranesic, "Routing in Field-Programmable Gate
Arrays", to appear in IEEE Transactions on Computer Aided Design of Integrated
Circuits and Systems, 1991.

[Cart86]

W. Carter, K. Duong, R. H. Freeman, H. Hsieh, J. Y. Ja, J. E. Mahoney, L. T. Ngo
and S. L. Sze, "A User Programmable Reconfigurable Gate Array," Proc. 1986 Cus-
tom Integrated Circuits Conference, May 1986, pp. 233-235.

[Cong88]

J. Cong and B. Preas, "A New Algorithm for Standard Cell Global Routing," Proc.
IEEE International Conference on Computer Aided Design, pp. 176-179, Nov.
1988.

[ElAy88]

K. El-Ayat, A. El Gamal and A. Mohsen, "A CMOS Electrically Configurable Gate
Array," Int’l Solid State Circuits Conf. Digest of Technical Papers, Feb. 1988.

[ElGa81]

A. El Gamal, "Two-Dimensional Stochastic Model for Interconnections in Master
Slice Integrated Circuits" , IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, Vol. CAS-28, No. 2, February 1981.

[ElGa88]

A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. El-Ayat and A. Mohsen, "An
Architecture for Electrically Configurable Gate Arrays," Proc. 1988 Custom
Integrated Circuits Conference, May 1988, pp. 15.4.1 - 15.4.4.

[ElGa89]

A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. El-Ayat and A. Mohsen, "An
Architecture for Electrically Configurable Gate Arrays," IEEE Journal of Solid
State Circuits Vol. 24, No. 2, April 1988, pp. 394-398.

[Fell52]

W. Feller, Introduction to Probability Theory and its Applications, John Wiley and
Sons, 1952.

[Fran90]

R.J. Francis, J. Rose and K. Chung, "Chortle: A Technology Mapping Program for
Lookup Table-Based Field-Programmable Gate Arrays," Proc. 27th Design Auto-
mation Conference, June 1990, pp. 613-619.

[Fran91]

R. J. Francis, J. Rose, and Z. Vranesic, "Chortle-crf: Fast Technology Mapping for
Lookup Table-Based FPGAs," Proc. 28th Design Automation Conference, June
1991, pp. .

[Green90]

J. Greene, V. Roychowdhury, S. Kaptanoglu, and A. El Gamal, "Segmented Chan-
nel Routing," Proc. 27th Design Automation Conference, pp. 567-572, June 1990.

[Greg86]

D. Gregory, K. Bartlett, A. de Geus and G. Hachtel, "Socrates: a system for
automatically synthesizing and optimizing combinational logic," Proc. 23rd Design
Automation Conference, June 1986, pp. 79-85.

[Gupt90]

A. Gupta, V. Aggarwal, R. Patel, P. Chalasani, D. Chu, P. Seeni, P. Liu, J. Wu and
G. Kaat, "A User Configurable Gate Array Using CMOS-EPROM Technology,"
Proc. 1990 Custom Integrated Circuits Conference, May 1990, pp. 31.7.1 - 31.7.4.

[Hana72]

M. Hanan and J.M. Kurtzberg, "Placement Techniques," Chapter 4 of Design Auto-
mation of Digital Systems; Theory and Techniques, M.A. Breuer, Ed., NJ, Prentice-
Hall, 1972.

[Hash71]

A. Hashimoto and J. Stevens, "Wire routing by optimizing channel assignment
within large apertures," Proc. 8th Design Automation Conference, June 1971, pp.
155-163.

[Heller84]

W.R. Heller, C.G. Hsi and W.F. Mikhaill, "Wirability - Designing Wiring Space for
Chips and Chip Packages," IEEE Design and Test of Computers, August 1984.

[Hsie88]

H. Hsieh, K. Duong, J. Ja, R. Kanazawa, L. Ngo, L. Tinkey, W. Carter and R. Free-
man, "A Second Generation User-Programmable Gate Array," Proc. 1987 Custom
Integrated Circuits Conference, May 1987, pp. 515 - 521.

[Hsie90]

H. Hsieh, W. Carter, J. Ja, E. Cheung, S. Schreifels, C. Erickson, P. Freidin, L. Tin-
key and R. Kanazawa, "Third-Generation Architecture Boosts Speed and Density of
Field-Programmable Gate Arrays" Proc. 1990 Custom Integrated Circuits Confer-
ence, May 1990, pp. 31.2.1 - 31.2.7.

[Kahr86]

M. Kahrs, "Matching a parts library in a silicon compiler," Proc. IEEE International
Conference on Computer Aided Design, pp. 169-172, Nov. 1986.

[Kawa90]

K. Kawana, H. Keida, M. Sakamoto, K. Shibata and I. Moriyama, "An Efficient
Logic Block Interconnect Architecture For User-Programmable Gate Array," Proc.
1990 Custom Integrated Circuits Conference, May 1990, pp. 31.3.1 - 31.3.4.

[Keut87]

K. Keutzer, "DAGON: Technology Binding and Local Optimization by DAG
Matching," Proc. 24th Design Automation Conference, June 1987, pp. 341-347.

[Lee61]

C. Lee, "An algorithm for path connections and its applications," IRE Transactions
on Electronic Computers, VEC-10, pp. 346-365, Sept. 1961.

[Lee88]

K. Lee and C. Sechen, "A New Global Router for Row-Based Layout," Proc. IEEE
International Conference on Computer Aided Design, pp. 180-183, Nov. 1988.

[Loren89]

M.J. Lorenzetti and D.S. Baeder, Chapter 5 of "Physical Design Automation of
VLSI Systems," B. Preas and M. Lorenzetti, Ed., Benjamin/Cummings, 1989.

[Marr89]

C. Marr, "Logic Array Beats Development Time Blues," Electronic System Design
Magazine, Nov. 1989, pp. 38-42.

[Mail90]

F. Mailhot, Actel Corp., Private Communication, 1990.

[Ples89]

Plessey Semiconductor ERA60100 Advance Information, Nov. 1989.

[Plus90]

Plus Logic FPGA2020 Preliminary Data Sheet, 1990.

[Prim57]

R. Prim, "Shortest Connecting Networks and Some Generalizations," Bell System
Technical Journal, Vol. 39, pp. 1389-1401, 1957.

[Rose85]

J. Rose, Z. Vranesic and W.M. Snelgrove, "ALTOR: An Automatic Standard Cell
Layout Program," Proc. Canadian Conference on VLSI, Nov. 1985, pp. 168-173.

[Rose89]

J.S. Rose, R.J. Francis, P. Chow and D. Lewis, "The Effect of Logic Block Com-
plexity on Area of Programmable Gate Arrays," Proc. 1989 Custom Integrated Cir-
cuits Conference, May 1989, pp. 5.3.1-5.3.5.

[Rose90a]

J. Rose, "Parallel Global Routing for Standard Cells," IEEE Transactions on Com-
puter Aided Design Vol. 9, No. 10, pp. 1085-1095, Oct. 1990.

[Rose90b]

J. Rose and S. Brown, "The Effect of Switch Box Flexibility on Routability of Field
Programmable Gate Arrays," Proc. 1990 Custom Integrated Circuits Conference,
pp. 27.5.1-27.5.4, May 1990.

[Rose90c]

J.S. Rose, R.J. Francis, D. Lewis and P. Chow, "Architecture of Programmable Gate
Arrays: The Effect of Logic Block Functionality on Area Efficiency," IEEE Journal
of Solid State Circuits, Vol. 25, No 5, October 1990, pp. 1217-1225.

[Rose91]

J. Rose and S. Brown, "Flexibility of Interconnection Structures in Field-
Programmable Gate Arrays", IEEE Journal of Solid State Circuits, Vol. 26 No. 3,
pp. 277-282, March 1991.

[Sech87]

C. Sechen and K. Lee, "An Improved Simulated Annealing Algorithm for Row-
Based Placement," Proc. IEEE International Conference on Computer Aided
Design, Nov. 1987, pp. 478-481.

[Sing91]

S. Singh, J. Rose, D. Lewis, K. Chung and P. Chow, "Optimization of Field-
Programmable Gate Array Logic Block Architecture for Speed," to appear in Cus-
tom Integrated Circuits Conference, 1991.

[Souk81]

J. Soukup, "Circuit Layout," Proc. of the IEEE, Vol. 69, No. 10, pp. 1281-1304,
October 1981.

[Wong89]

S.C. Wong, H.C. So, J.H. Ou and J. Costello, "A 5000-Gate CMOS EPLD with
Multiple Logic and Interconnect Arrays," Proc. 1989 Custom Integrated Circuits
Conference, May 1989, pp. 5.8.1 - 5.8.4.

[Xili89]

The Programmable Gate Array Data Book, Xilinx Co., 1989.

