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Abstract

Current Field-Programmable Gate Arrays (FPGAS) are roughly three tinvesr slad ten
times less dense than Mask Programmed Gate Arrays (MPGAS) in the same VLSI technology
This speed and density fdifence arises mainly because of thevsdod lage programmable con-

nections between FPGA logic blocks.

One vay to imprare the speed and density of an FPGA is to substiaisteaind small fixd
metal connections, which we calird-wired connections, between some of the prinwé gates or
basic blocks of an FPGA. W use hard-wired connections in FPGAs viadind-wired logic blocks

(HLBs), where an HLB consists ofwa@al basic blocks connected by hard-wired connections.

This dissertation describes algorithms for mapping basic block circuits to HLB circuits opti-
mized for speed or area. HLB mapping is done im $teps: First, a e@ring algorithm generates
a set of HLBfragments to implement the input circuit. Second the@ong fragments are paett
together to minimize the number of HLBs in the final HLB netlisé p¥ove that the fragment
covering algorithm, when optimizing delagenerates an HLB netlist with minimal number of
programmable connections along critical paths. éo pree suficient conditions for the frag-
ment packing algorithm to generate a minimal number of HLBs amnd gfat all two-level HLB

topologies satisfy these conditions.

This dissertationxplores a wide selection of LUdased HLB FPGAs empiricalhA suite of
benchmark circuits is implemented in each HLB architecture and each siare# and delay is
measured. The goal is to find the HLB architectures that will yadtt FPGA circuits with rea-
sonable densityand comersely dense FPGA circuits with good speed. Since an HLB architecture

is defined by its LUT size and its topolodlye specific research questions are asvisltio



i) Which LUT size should be used to build an HLB-based FPGA that will yield
the fastest (densest) circuits with reasonable density (speed)?

i) Which topologies should be used to build an HLB-based FPGA that will yield
the fastest (densest) circuits with reasonable density (speed)?

The results of the empirical study show that 6-input LUTs should be used in HLB-based
FPGAs for the fastest circuits with reasonable area and that 5-input LUTs should be used for the
smallest circuits with reasonable speed. The topologies that led to the fastest circuits had nodes
with a high fan-in of hard-wired connections, while the topologies that gave the densest circuits

had all nodes with two or more non-hard-wired inputs.
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Glossary

basic block
the smallest combinational logic unit or priméicate of the FPGA.

connection box
part of the routing architecture that a®connections between a logic block pin and a
routing channel.

covering fragments
a set of HLB fragments that implement the basic block oetwith minimized area

or delay

Dr
the average delay of a programmable routing connection.

ernvelope set
the set of HLB architecture (area, speed) points such that no point outsidectiiopen
set has both higher speed angdo area than some point within thezelope set. Con-
versely every point outside the galope set has higher area anddo speed than
some point within the erlope set. The @Blope set represents the “best” HLB archi-
tectures among avgn group of HLB architectures.

FFD
first fit decreasing.

flexibility
refers to the number of choices in making a routing connection.

fragment

seeHLB fragment.

fragment covering
the first phase of the HLB mapping algorithm that generates teeicg fragments.

fragment packing
the second phase of the HLB mapping algorithm that packs the setepingofrag-
ments into a minimized number of packHLBs.

Xi



fragment pattern
represents an HLB fragment in the pattern library used during fragmeartrap

hard-wired connection (or hard-wired link)
a fixed connection (usually a simple metal wire) betweenhwasic blocks.

har d-wired logic block
an FPGA logic block consisting ofvaal basic blocks connected by hard-wired con-
nections.

HLB
hard-wired logic block.

HL B fragment
a connected subset of the basic blocks of an HLB.

HL B architecture
defined by the granularity of the basic block and the connection topology of the HLB.

HL B-based FPGA
an FPGA whose logic blocks are HLBs.

HL B mapping (or HL B technology mapping)
the phase of logic synthesis that transforms an input basic blockrkeétio an out-
put HLB netlist.

HLB template
the graph that describes the HLB.

HL B topology
how the basic blocks of the HLB are connected.

logic block
the part of the FPGA that is used to implement the combinational and sequential logic
of a circuit.

logic synthesis
the synthesis step that e@nts a Boolean description into a netlist of FPGA logic
blocks.

Xii



lookup-table
a programmabl e gate that can implement any Boolean function of itsinputs.

LUT
see lookup table.

LUT size
the number of inputsto the LUT or lookup table.

maximal packing set
the largest possible packing sets.

packed HLB
an HLB during or after the packing algorithm.

packing set
aset of fragments that can be legally packed within the same HLB.

Rg

the area of each routing bit in the connection boxes and switch boxes.

speed versus area curve
the curve made by connecting together the pointsin the envelope set.

switch box
part of the routing architecture that allows connections between horizontal and vertical
routing channels.

Xilinx 4000 CLB
acommercia FPGA with hard-wired LUT basic blocks.
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Chapter 1 Introduction

Field-Programmable Gate Arrays (FPGASs) are theese and currently most popular media
for designingnew digital Application Specific Intgrated Circuits (ASICs) [1]. An FPGA consists
of an array of useprogrammable combinational and sequential logic elements (called logic
blocks), which implement the functionality of a circuit, and a set ofusEyrammable routing
resources, which connect the logic blocks [2].eLRrogrammable Logic DiEes, the designer
“manufactures” the ASIC in the fi€e within minutes by programming the logic elements and
connections FPGAs hee speed and density within an order of magnitude of Mask-Programmed
Gate Arrays (MPGASs), the prous most popular choice of ASIC designers. Since the non-
recurring engineering costs of FPGAs are muetetothan MPGAs, FPGAs are cheaper when
manufctured in small quantities and thus pose less of a financial risk. Anotlaertagky is that
FPGAs hae the properties of a commodity chip, such as a random access memory: the FPGA
chips are all the same and, because gelaolumes, can be produced more economicdllis
commodity property mads FPGAs a more attragti product than MPGAs for silicon foundries,

which havre becomexg@ensve capital entures.

1.1 Motivation

Current FPGAs are roughly three timesasdo and ten times less dense than MPGAs made in
the samedbrication process technology [2]. This disparity is caused mostly by the routing used to

connect logic components in each technaldgyMPGAs, the logic is connected via mask-pro-

1. The term “field-programmable” means that the ASIC can be metowéd in the designsr’
office or modified during field operation, withouwiray to send the design to abfication plant.



grammed metal wires, whereas in FPGAs, logic block pins are connected via programmable
switches. Rgardless of the type of programmable switch in the FPGA (whether based on static
RAM-controlled pass transistors [3], anti-fuses [4] or floatiatggransistors [5]) the capacitance,
resistance and size of the switch mskhem much skeer and lager than a simple metal wire. In
addition, for an MPGA, the amount of routing resources useditlg what is needed to connect

the logic. Hovever, to provide good logic block utilization and routability in an FPGA, there must
exist a rich and fleble programmable switching structure to yide mary alternate paths
between logic block pins. Since nyaof the programmable switches in the routing matrix will be

unused, this further reduces FPGA logic density with respect to MPGAs.

One way to imprae the speed and density of FPGAs is to replace some of thastblage
programmable connections between the logic blockshaittkwired connections, which are sim-
ple metal wires. W explore the use of hard-wired connections in FPGAs by postulating an FPGA
architecture based drard-wired logic blocks (HLBs), with each HLB consisting of weral iden-
tical simple logic blocks connected together by hard-wired links into a coarse-grained logic block.

The use of hard-wired logic blocks (HLBs) in an FPGA may reduce the delay and size of circuits.

For example, Figure 1-1 illustrates WdHLBs can imprege the speed and density of an FPGA
circuit. Define @asic block to be the primitie gate or the simplest combinational logic unit of the
FPGA. Figure 1-1(a) illustrates a netk of 4-input basic blocks. Assuming that the longest path
is the critical path and that onhaig-output programmable connections are counted. Then this
network has fie slav programmable connections in the routing along the critical path (through
blocks 1, 2, 3, 4 and5) and nine programmable connections in total. Suppose that three of the
basic blocks are hard-wired together to create a hard-wired logic block (Figure 1-1(b))agith a f
three-block path. If this hard-wired logic block (HLB) is used to implement the circuit of Figure
1-1(a), the circuit in Figure 1-1(c) results. This circuit has only slew programmable links

instead of fie along the critical path and this represents a sizeable reduction in routing delay



prog. conn.

L1 NI hard-wired link

1-1(a): Basic Block Cct.
Figure 1-1: Using hard-wired logic blocks to speed up a circuit

Also, the total number of programmable connections has been reduced from nine to four and this

may lead to a significant reduction in routing area.

The use ohard-wired connections in FPGA logic blockswewer, leads to a reduction in the
flexibility of the FPGA compared to an FPGA that has only programmable connections between
basic blocks. &r example, in the hard-wired logic block of Figure 1-1(b), the hard-wired input of
basic blockC is no longer independent of the output of basic bBcKhus if a logic function
only requires tw of the three basic blocks (sAyandB), then because of the hard-wired connec-
tions between the basic blocks, one basic bldakwould be vasted. The hard-wired input
between blockd8 and C also renders basic blodk unusable for logic functions that do not
depend on the output of basic bld8kyet require all of the four basic block inputs. Thieef
may lead to lver FPGA logic density

To improve an HLB-based FPG#&densityeach HLB is assumed tousaatapping buffer on
the output of each basic block. The tappinffdys allav access to the output ofexy basic block
in the HLB and this can impve both the density and speed of HLB circuits. &ample, Figure

1-2 illustrates the tappingufiers for the HLB from Figure 1-1(b).



root tapping buffer
Figure 1-2: HL B tapping buffers

HLBs sufer from reduced logic density because of reduced connectiahilitg between
basic blocks. Because tappingffiers give access to basic block outputs, one can use subsets of
the HLB basic blocks independenthor example, basic blocké& andB can be used to imple-

ment one logic function, while basic blo€kis used to implement another

The presence of tappingfbers also leads t@ster circuits since the output of one basic block
can be accessed directly instead of pragiag it through another basic bloclorFexample, the
output of A in Figure 1-2 can be accessed directly throtagping buffer 1, whereas without

intermediate tappinguffers, the output of A wuld hare to be propaaged througiB andC.

This thesis will ivestigate the speed imprements and density benefits of hard-wired con-
nections in FPGA logic blocks, as well as the logic synthesis algorithms needed to automate the

design of such FPGAs.

1.2 Research Scope, Goals and M ethodology

The HLB architecture of an FPGA is defined by the choice of basic block and connection
topology between the hard-wired basic blocks. Figure 1-1(bysha @ample of an HLB archi-
tecture consisting of three 4-input basic blocks connected in a chained tofddlegy are man
other possible HLB connection topologiesr Example, Figure 1-3 illustrates another connection

topology a balanced tree, for three 4-input basic blocks r&¥tricted our hard-wired connection
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Figure 1-3: Balanced tree topology

lookup tables (LUTs) are a good basic block from both a logic density and speed par4pgcti
[8] [29] [30]. Thus, only LUTs are considered as basic blocks for the HLB-based FPGAs in this

work.

There are architectural traddsotbetween basic blocks and topology of the HLB and the
speed and density of the HLB-based FPGA. A more functional basic block, in general, leads to
faster circuits because it reduces the number of logatsleHavever, when the basic block is too
compl, it may be dificult to male eficient use of its functionalityand this may lead tower
logic density A greater number of hard-wired links in an HLB leadsakidr circuits since more
of the critical path connections can be implementedaby liard-wired connections. More hard-
wired links in the HLBs also imply more hard-wired connections between the basic blocks of the
circuit. This reduces the total number of programmable connections in the circuit and may reduce
the routing area. Hweever, as discussed ab®, the increase in hard-wired links may lead to more

wasted logic, and so reduce logic density

The goal of this research is tepbore these trade-fsf in basic block functionality and hard-
wired connection topologies to find those HLBs that will leadast FPGA architectures with
good logic densityThe results will she that certain FPGAs with hard-wired links are not only

faster than FPGAs without hard-wired linkst ban also achue better area-giency.

To explore the HLB architectural space, this thesis uses an empirical approaelutiesthe
different HLB-based FPGA architectures. Each FPGA architecture is used to implement a set of

benchmark circuits and then the speed and area of the resulting circuits are measured using arec



and delay models. A comparison of the speed and area of the implemented circuits yields the best

architectural alternates.

When performing such an empirical studys preferable to use the best CAD toolaikble
for the circuit implementations. Since the synthesis of HLB-based FPGAsus@Ai problem,
a nev HLB mapping tool had to be constructed [9]. This thesis describes the algorithms used in a
novel HLB mapper as well as a discussion and statements concerning the optimality of the algo-
rithm. When compared to a commercial CAD tool [11] aimed at mapping a particular hard-wired
logic block [13], this HLB mapper is comparable ifeetiveness. Haever, it should be noted

that this nev tool can be applied to a much broader range of hard-wired logic block structures.

1.3 Thesis Organization

This thesis is @anized as folles. Chapter 2 presents the background necessary to under-
stand the rest of the thesis and relateckwChapter 3 describes the CAD algorithms used to map
the benchmark circuits to HLB-based FPGA circuits. Chapter 4 discusses thexigngid
optimality of the HLB mapping algorithms described in Chapter 3. Tieet®eness of the HLB
mapping algorithms isvaluated with respect to theoretical bounds and a commercial mapping
tool in Chapter 5. Chapter 6 describes the range of HLB architectuessigated, the xperimen-
tal method used to implement benchmark circuits in #reous HLBs and the area and delay
models used to calculate the size and speed of the resulting HLB circuits. Chapter 6 also presents
the results for arious HLB architectures when optimizing for speed and area and discusses the
limitations of the gperimental method. The final chapter concludes with a summary of the thesis

and gves suggestions for futureovk.



Chapter 2 Terminology and Previous Work

This chapter presents the background terminology needed to understand tiandollo
chapters plus a sugy of related research into FPGA architecture. In this thesis, FPGA
architecture alternatés are ealuated using the same basic methods eyeplon other FPGA
empirical studies [6] [7] [8] [25] [27] [28] [29] [30] [31]. This methodology can be briefly
described as follws. In order to impnee upon the speed and density of the current FPGAs an
architectural idea is proposed thates rise to a ve class of FPGA architectures, or atiséing
class of FPGAs is uresticated. or a given \ariation of FPGA architecture, \s&al benchmark
circuits are implemented in that FPGA and then the area and/or speed of the circuit
implementations are measured. Note that whemthe proposed FPGA architectures areeho
nenv CAD synthesis tools are often needed to carry out these empirical studiegamies the
Chortle technology mapper [20fas necessary to perform LiWased FPGA studies [6] [7] [8]. A
comparison of the speed and area of the circuits, when implemented inférentiFPGA

architectures, yields the best altermedi.

Mapping a benchmark circuit to an FPGA is done io twain steps. The circuit is first
mapped into the logic blocks of the FPGA in a step referred togassynthesis, and then the
resulting netlist of logic blocks is placed and routed within the interconnection resources of the
FPGA. For example, Figure 2-1 shies a circuit that has been implemented in a generic FPGA. On
the left side of Figure 2-1 is a circuit consisting ob tigic blocks, each represented by a dotted
rectangle. One logic block implements aptuaput AND function and the other a dainput OR
function. The right side of Figure 2-1 st®the generic FPGA used to implement the circuit. The

logic blocks used to implement the circuit are placed in the upper left corner of the FPGA and the



Logic Block

Figure 2-1: Synthesis of a circuit into a Generic FPGA

connections between 1/0 pads and logic blocks in thick lines. Sinceuh€AbB tool presented

in this thesis mapsombinational circuits to the logic blocks of the HLB-based FPGA, only the
combinational logic synthesis phase will be discussed in this chAapterentioned in Chapter 1,

the logic blocks imestigated in this thesis are based on lookup tables (LUTSs). This chapter first
presents some background information on LUTs and then some of theupreork in logic

synthesis and architecture for Libased FPGAs.

2.1 Lookup Tables

A K-input lookup table (K-LUT) is a programmablatg that can implement yarBoolean
function of K or faver \ariables. The ® memory cells in the LUT contain the truth table for the
K-input Boolean function. A" to 1 multiplecer, controlled by the K inputs, is used to select one
of the memory cells. &t example, Figure 2-2 shes a 3-LUT that implements the Boolean
functionF = a b + c. The 8 memory cells and their addresses are on the left side of Figure
2-2 and the 8 to 1 multipter is on the right. 6 example, ifa = 1,b = O andc = 1
(memory cell address 101), then the LUT oufput 1.
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Figure2-2: 3-LUT implementingF =ab +c

2.2 Logic Synthesisfor Lookup-Table Based FPGAS

Logic synthesis takes an input circuit description, often in the form of a Boolean network, and
produces a netlist of logic blocks optimized for either speed or area. A Boolean network [38] can
be represented as a directed acyclic graph (DAG). Each node in the DAG represents a logic gate,
primary input or primary output. In the DAG, thereis adirected edge (i, ) if the output of
gate i isaninput of gatej . The gate functions for the nodes of a Boolean network are usually
restricted to implementing a simple function of its inputs, such as an AND, OR or a sum of
products expression. The primary input nodes are those with no incoming edge and primary
output nodes are those with no outgoing edge. All other nodes in the Boolean network are termed
internal nodes. For example, Figure 2-3 shows a Boolean network with primary inputsa, b,
c, d and primary output F. There are two internal nodes in the network, x and y. Node x
implements the sum of products expression,a b + c, of the primary inputs. Nodey implements
the AND function of the output of node x and primary input d. The primary output node, F, is

connected to the internal nodey.
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Figure 2-3: A Boolean Network

The output netlist of FPGA logic blocks can also be described ByG D this case, each
node represents a logic block and each edge represents a connection between the output of a logi
block and the input of another logic block. Associated with each node is a Boolean function that
tells hav that logic block transforms its inputs to generate an outmputetample, Figure 2-4
shavs a DAG that represents a netlist of 3-input lookup tables (3-LUTs) after mapping the
Boolean netwrk in Figure 2-3. Each of the on8-LUTSs in Figure 2-4 has an associated Boolean

function as shen in the figure.

Logic synthesis can be conceptually separated indgptvases, technology-independent logic

optimization and technology-dependent mapping. In the logic optimization phase, the input

Figure 2-4. A Netlist of 3-LUTs

10



Boolean description is modified by Boolean operations to minimize some technology-
independent cost function that measures area or.ddiaystructure of the Boolean neik can

be modified in ap manner so long as the output functionality is presgrin the technology
mapping phase, the optimized Boolean description is mapped to a netlist of nodes, each node
having a Boolean function that is implemented by an FPGA logic bloekhfology mapping
operations should preserthe general structure of the optimized Boolean oiwo that logic
optimizations are not undone. Decompositions of nodes and local replication of portions of the

Boolean netwrk are the only structure-changing operations usually graglo

2.2.1 Technology-Independent Logic Optimization

The goal of the logic optimization phase is to inyar¢he input Boolean netwk so that the
subsequent technology mapping to logic blocks can be mexief. This phase is described as
technology-independent because it does not usel&dge of the implementation technology to
guide the restructuring of the Boolean netiv For example, the total number of literals in the
Boolean description is one technology-independent measure of area and the depth of the Boolean
network is one measure of delayhe goal of the logic optimization algorithms is to minimize the
cost of the Boolean netwk by applying Boolean operations to the natey such as to-level
minimization or &ctoring. One benefit of technology-independent logic optimization is that the
logic optimizer may be applied to the implementation of circuits inymamet technologies.
However, the main draback is that the technology-independent measures of area and delay may
not be accurate for a particular gat technology This may lead to an inferior result after

technology mapping has been performed.

The MIS system [17] is anxample of a logic optimization system. The MIS logic
optimization system uses a count of the number of literals inateefgnctions of the Boolean
network as a measure of area. MIS optimization operations include (1) algedctdrfy to
extract logic epressions that appear inveeal parts of the newvk, (2) node function

simplification using techniques similar to Karnaugh-map minimization and (3) decomposition of
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large node functions to simplify and impetechnology-dependent mapping. An illustration of

some of the MIS optimization algorithms ismpresented using the follang Boolean netark:

x =abcd+abce (4.1
y=abcf +abcg (4.2
z=ah+bh+Cch+abc (4.3)

The initial Boolean netark has 25 literals in the sum-of-product form of tteegfunctions.
Suppose the algebraiadtoring operationxracts the dctora b c. Note thata b C is
equvalent toa + b + C. If a nav node,t, with the functiona b c is introduced and

substituted in the abe netvork, then the modified Boolean netik is:

t =abc (4.4
X =t d+t e (4.5)
y=tf +tg (4.6)
z =1t h+t (4.7)

Simplifying the function for nodez, results in the follwing equation:

z =h +t (4.8)
The optimized form of the Boolean netik nov has only 13 sum-of-product literals compared to
the original literal count of 25. This significant reduction in the coxiyleof the Boolean
network will likely lead to a smaller circuit implementation when the equations are mapped to
logic blocks. Before technology-dependent mapping, the arktwodesx andy may be

decomposed to yield the folling factored equations, which may be easier to map:

x =t (d+ e) (4.9)
y =t (f +09) (4.10)
The optimized set of equations for, x, Yy andz has a total of 11 literals in thadtored form.

2.2.2 Technology-Dependent Mapping to L ookup-Tables

The technology mapping step &skthe optimized Boolean neivik and finds an optimized
netlist of K-LUTs thatcovers or implements the netwk. To determine if a K-LUT ceers a
portion of the netark, one simply counts the number of input edges to the sulmrietif the

number of inputs is less than or equal to K, then it can bered by a K-LUT The goal of

12



technology mapping is to minimize the area or delay (or some combination of both) of the K-LUT
cover. Area minimization refers to using the smallest possible number of K-LUTs. A delay-
optimized K-LUT circuit has the minimum depth (in terms of K-LUTs) along @frthe longest

paths between primary inputs and a primary odtput

Sometimes logic optimization produces nodes in the optimized Booleaonrketith more
than K inputs. These are referred tardsasible nodes. An infeasible node has todeeomposed
into nodes with ferer than or equal to K inputs (calléghsible nodes) to enable gering by a K-
LUT. Decomposition of feasible nodes can also impithe quality of the aer by increasing the
number of alternates aailable to the ceering operations. During the construction of theero
the process of checking to see if a sub-oektwooted at a node can be implemented bgta
referred to asnatching. Covering, matching and decomposition operations are common to all

technology mapping algorithms.

Library-based Technology Mapping for LUTSs

This subsection describes a general approach to technology mapping, called library-based
mapping, that can be applied to maASIC technologies, including LUTs. Library-based
technology mapping using graphwvesing and dynamic programmingag/first introduced in the
DAGON technology mapper [19]. The HLB-based FPGA mapping algorithm in this dissertation

uses a library-based mapping algorithm in one of its stages.

The first step in a general ASIC library-based mapping algorithm is to use decomposition
operations to carert the input Boolean nebwk, also called theubject network, to a canonical
network of gates. Often the canonicahtgs ard NVERTER or 2-inputNAND, NOR, AND or OR
gates. Similar decomposition operations are applied to esethfgnction in the library to maka

set ofpattern graphs that are used to matclaiagt nodes in the subjecAB. Since the gtes in

1. This optimizes the longest path delay imay not optimize the critical path deldy the
absence ofyact timing information, it is assumed that the longest path is the same as the critical
path.
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the pattern library and the subject netlware of the same type, this reduces the mapping problem
to one of ceering a directed aclic graph (AG) with a set of graphs. An additional constraint is
that each input of aage in the ceer must be produced by the output of anotlze @r a primary

input.

The mapping algorithm tvarses the input Boolean netxk from inputs tavards the outputs
and uses dynamic programming to select the best pattern (and henaddst ighplement each
node in the netark. At each nodesvery gate pattern in the library is matchedatgst the netark
to see if it can oger the netwrk at that node. The matched sub-r@tnincludes the node plus a
portion of the netwrk feeding the node. The cost of using the matchatg gt that node is the
sum of the gte cost plus the costs of the nodes thiadif to the sub-netwvk covered by the gte.
Primary inputs are assigned a cost of zero. The matchatg that leads to thevest cost
implementation of the node is selected. Thedst cost (and the matchingtg) is retained so that

the cost can be used to determine theki cost matches for succeeding nodes.

For example, suppose the library consists of the fates in Figure 2-5 and this library is used
to implement the Boolean netvk shavn in Figure 2-6. Figure 2-6(a) she the mapping of
nodesA andC. The mappings ofA andC are trvial because there is only one possidéeghat
can be used at each node. The cost of Aode4, which is the cost of &R gate. The cost of
node Cis 1. Figure 2-6(b) shes the mapping of nod®, which has tw possible matchingages:
anAND gate or arOA21 gate. If theAND gate is used to implement noBethen the total cost for

implementingB would be 7, which is the sum of the cost of AND gate and the cost o&f-in

[

9 O & B4R

INV, cost =1 AND, cost=3 OR, cost=4 AO21, cost=5 OA21, cost=6

Figure2-5: Library of gates
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2-6(a): Mapping nodes A 2-6(b): Mapping node B 2-6(c): Mapping node D

Figure 2-6: Mapping a Boolean network
nodeA. However, if the OA21 gate is used to implement noBethen the cost is 6, and so, the
QA21 gate would be chosen for implementing noBgFigure 2-6(b)). Figure 2-6(c) sis the
mapping of the root node. At D there are tw possible matchingages, arOR gate or amrAQO21
gate. The lavest cost oD (a cost of 10) occurs when using #@21 gate. The best mapping for

the entire netark is shevn in Figure 2-6(c).

The completeness of the set of functions that can be implemented by a K-input LUTesik
a difficult taiget technology for a library-based mapper [18} & gven \alue of K, there arg*
possible functions that can be implemented by a K-LTHus, for gen small alues of K, the
library becomes ery lage. For example, K = 4 wuld require 65536 aes in the library
Performing the matching of such agamumber of library @es aginst each node auld be too
time-consuming and so morefieient means of mapping to LUTs were created [18] [20] [21]

[32] [33] [35] [37].

Chortle LUT Technology M apper

This subsection describes the LUT mapper used foxierienents in this thesis. The Chortle
technology mapper for LUbased FPGAs [20] [21]xploits the completeness of LUTs during
decomposition and eering. Similar to the library-based mapping algorithm describedealbioe
Chortle algorithm treerses the input Boolean netsk from primary inputs to outputs, and at each

node finds the best K-LUT circuit to realize the function at that node. The inpuirketansists
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of AND and OR nodes and the decomposition techniques are restricted\Ni» OR
decompositions. At each node in the natgy the goal is to find the circuit of K-LUTs rooted at

the node with minimum area or delay cost as a primary cost function. When optimizing area, the
primary cost function is the total number of K-LUTs. When optimizing defey primary cost
function is the maximum number of K-LUTs inyapath from the node to a primary input. The
secondary objeate is to minimize the number of inputs to the K-LUT rooted at the node. This is
important because the number of inputs to the K-LUT at a néeletsathe mapping of thar-out

of the node. The rest of this section will describe the Chortle algorithm with respect to area

minimization only

When mapping a genAND or OR node, the goal is to decompose the node in sudyawto
optimize the cwering of the node&’ fan-in K-LUTs and the node itself. Decomposition is also
necessary to ensure that all nodegehfan-in less than or equal to K. BecausdD and OR
operations are associai and commutate, the decomposition of th&\D or OR node can be
formulated as an ingerbin packing problem. The bin packing problem is as falfo Gven a set
of boxes of intger size one to K, where the size of thedsogorrespond to the number of inputs
used by adn-in LUT, the goal is to pack these l@sxinto as f& as possible bins of size K. Each
packed bin corresponds to a LUThe output of the ba@s in each pa&d bin connect to a
common @te of the same type as the decomposed node. In addition, all of the outputs of the

paclked bins also feed into a commaoateg of the same type as the decomposed node.

For example, Figure 2-7 illustrates the decomposition of@Renodez when mapping to 5-
input LUTs. TheOR node in Figure 2-7(a) has évan-in LUTs with 3, 2, 2, 2 and 2 inputs
respectrely. Each of thedn-in LUTs in Figure 2-7(a) implement aND function. The best
packing of the fie fan-in boxs into bins of size 5 has three bins, one with a total of 5 inputs,
another with a total of 4 inputs and the last with only 2 inputs. Note that sinceothex®g in the
left bin of Figure 2-7(b) are paeHl in the same bins, the outputs of the tvoxes aan-in to a

common 2-inpuOR gate. W\ will refer to the LUTSs after bin-packing as bin-padk . UTs.
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2-7(a): fan-in LUTsfor OR node 2-7(b): LUTsafter bin packing

Figure 2-7: OR decomposition guided by bin packing [18]

To complete the mapping of node z, the bin-packed LUTSs are chained together. The chaining
algorithm sorts the bin-packed LUTs in descending order based on the number of used inputs and
then links the output of each bin-packed LUT to an unused input of a subsequent bin-packed LUT.
If there are no unused inputs in any subsequent bin-packed LUT, anew K-LUT (with K unused
inputs) is created. The agorithm terminates when the last bin-packed LUT is encountered. Figure
2-8 illustrates the chaining of the three bin-packed LUTsin Figure 2-7(b).

The Chortle algorithm produces a netlist with the minimal number of K-LUTs when mapping
single fan-out! AND- OR Boolean networks to K-LUTs when K is less than or equa to 5.

Optimization across nodes with fan-out greater than one can further reduce the area or delay of

O TOUE SO OO BN

Figure 2-8: Chaining the bins
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the K-LUT netlist. Br mapping netarks with fan-out nodes, Chortle emp®heuristics to oger

recorvergent paths and replicates logic amhfout nodes to impve the lookup table netlist.

2.3 Prvious FPGA Architectural Studies

The methodology used forvestigating hard-wired logic block FPGA architectures in this
work is similar to that used forvastigating other aspects of FPGA logic block architectures.
There hae been empirical studies into finding the most aréeiait basic block [8] [15] [30],
the non-hard-wired logic block thatvgss the best speed performance [14] [29] and the minimum
levels of interconnection fiability for good routability [27] [28]. Since this thesis concerns area
and speed of LUbased hard-wired logic blocks, the follmg subsections will summarize one
of the area-diciency studies [8] and one of the speed studies [14dlued with LUT-based
FPGAs. Since hard-wired logic blocks deal in part with routing architecture, this section also
describes a study concerning the requiredtilty of interconnection structures in FPGAs [27].

This dissertation also uses some of the terminology from [27].

2.3.1 Area-efficiency of LUTFbased FPGAs

One of the first empirical studies of FPGA logic block architecture sought to determine the
effect of logic block functionality on areafefiency [8]. This involved the implementation of
several benchmark circuits in ddrent LUTFbased logic blocks, the measurement of the area of
the resulting circuits and then the determination of the best logic blocks using the area
measurements. Itas obsered that the area of the routingsvfrom 3 to 15 times greater than the
area deoted to logic and so the best logic blocks were those that minimize routing area. The
amount of routing is related to the total number of pins in the logic blocks of the circuit and the
total number of connections between the pins. Therefore, logic blocks with high functionality per
pin were the most desirable since these kinds of logic blook&dvwead to fever pins and feer

connections for a gen amount of circuit functionality_ookup tables fit this criteria of high

1. that is all non-primary input nodesviegan-out of one.
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functionality per pifh and the highest densities were aehikfor three- and fotinput lookup

tables.

2.3.2 Speed pedrmance of LUT-based FPGAs

A second empirical study of FPGA logic block architecture [6] [Vpsticated the speed
performance of FPGAs with digrent types of basic logic blocks, including mux-basetiNN-
based, AND-OR based and Liy&sed blocks. In general, the more functional the logic block, the
greater the delay per blockitathe fever logic block leels between primary inputs and outputs.
We refer to the connection between the output pin of a logic block and the input pin of another
logic block as grogrammable connection. Faver logic block leels means f&er programmable
connections along the critical path and this is important because programmable connection delay
is often much lager than the combinational logic component of the critical path .dehays, the
best logic blocks for speed performance wiNda combination of high functionality and small
delay per logic block. High functionality will minimize the number of logic blockslkand thus
keep the routing delay small, and small delay per logic block wdpkthe combinational logic
portion of the delay small. Lookup table-based logic blocke hhis desirable combination of
high functionality and small delayjhe results of this empirical study s¥exd that 5- and 6-input

LUTs were the best for speed performance among the logic blaastigated.

2.3.3 Interconnection flexibility of LUT-based FPGAs

A third empirical FPGA architecture study [27] [28]vésticated the interconnection
flexibility required to ensure good routabilitfhe greater the interconnectionxilality the
greater the routability and the higher the number of programmable switches on the FPGA. Higher
numbers of programmable switches impact both the area and delay of the FPGA. More switches

require more space on the FPGA. In addition, an increase in the number of switches increases the

1. Recall that a LUT with K input pins can impleme#it Boolean functions.
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parasitic capacitance and series resistance associated with each routing track in a channel

segment. This leads to greater delays for each programmable connection.

The FPGA routing architecture assumed in thatkwis illustrated in Figure 2-9. The FPGA in
Figure 2-9 has both horizontal anertical routing channels and consists of the HLB tile in Figure
2-9(a) replicated seral times. Each HLB tile contains a logic block, labelled “L”, and blocks of
programmable switches, labelled “C” and “S”. The pins of the “L” blocks are connected to
routing tracks through the “C” blocks. Between connection (“C”) and switch (“S”) blocks are
routing channel ggnents with a figd number of tracks. Figure 2-10 glsoa more detailed wie
of the HLB tile. In Figure 2-10, there aw¥ = 3 routing tracks per channelgseent. The “C”
block allovs logic block pins to connect to a subset of Weaouting tracks in each channel
sggment. The fleibility of the connection block:, is the number of routing tracks to which each
logic block pin can conneck. ranges from one t@/ In Figure 2-10, each logic block pin can
connect to tw of the three routing tracks and Bg = 2. The “S” block allas connections
between horizontal andewtical routing tracks. The #éility of the switch block,Fg, is the
number of tracks on the opposing sides to which an incoming track can cdfyraciges from
one to3*W. Figure 2-10 illustrates a switch block in which each horizontal track can be connected

to a track on each of the three opposing sides andr{wS.

HLB tile HLB tile
= e
|
‘ L
} II T
‘ C S 1 ||||||||||||||||||||||||
e T

I
—
W Routing Tracks

2-9(a): HLBtile 2-9(b): Array of HLB tiles

Figure 2-9: Generic FPGA routing architecture
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Figure 2-10: Connection and switch blocks of an FPGA tile

The goal of the empirical study in [27]a& to determine thefett of connection block and
switch block flibility on the routing completion ratio. The results of thxperiments indicate
that connection blocks shouldveshigh fleibility (F. between 0.8/ andW). A highF /W ratio is
necessary because there is only one “C” block through whiclvea gilysical pin can be
accessed. A high/W is needed to ge a suficient number of alternate paths to that pin. The
experiments also skeed that it is sudicient to hae a lav flexibility (Fg from 3 to 4) in the switch
blocks. Ignoring ay conflicts with other programmable connection paths, when a connection
goes through a switch block, the number of path choices increasesabtoiadfFg Thus, a
cascade of switch blocks, between pins oo different logic blocks, prades a number of paths
that is &ponentially related to bas& [27]. Therefore, a smalt gshould be sdiicient to pravide

enough path choices for good routability

2.4 Previouswork involving hard-wired connections

There has been little pr@usly published wrk involving hard-wired connections in FPGAs.
Currently there xdsts a commercial FPGA, the Xilinx 4000 [13], with a LHbased hard-wired
logic block. There is also associated saitev for mapping Boolean netwks to Xilinx 4000

circuits [11]. The combinational portion of the Xilinx 4000 Configurable Logic Block (CLB)
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I
Figure 2-11: Xilinx 4000 CLB

(showvn in Figure 2-11) contains w4-LUTs, whose outputs feed intodwf the inputs of a 3-
LUT. Note that the Xilinx 4000 CLB only aNes two of the three LUT outputs to be accessed
simultaneously by the routing. In contrast, the HLBs studied in this dissertatisnadlloUT

outputs to be accessed simultaneously by the routing.

The idea of using hard-wired connections in thiased FPGAs originated in [14]. Wever,
the study in [14] was restricted to determining the potential speedups of a small number of 4-LUT
hard-wired logic blocks. The study in [14]a® conducted using the va CAD algorithms
presented in this thesis. In comparison, this dissertation wikstitate both the speed
performance and areafiefency of a much lager range of hard-wired logic blocks, as well as

describe the CAD algorithms used to map to HLB-based FPGAs.

2.5 Conclusion

This chapter has presented the backgrounavletge needed to understand the technology
mapping algorithms for HLB and the HLB-based FPGA architectural studies. Xhehapter

will describe the HLB technology mapping algorithms.
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Chapter 3 Algorithmsfor Mapping to
Hard-wired Logic Blocks

This chapter presents the CAD algorithms used for an empinealagion of HLB-based
FPGA architectures. An empirical study of HLB-based FPGA architectures, such as the one to be
described in Chapter 6, implements benchmark circuits iferdift HLB-based FPGA
architectures and then uses area and delay measurements of the HLB circuits to determine the

relatve quality of each architecture.

The mapping of an circuit to a netlist of HLBs can occur during either logic or layout
synthesis. If the mapping is done in layout synthesis, the cirouitviirst be mapped to a netlist
of basic blocks and then these basic bloctisld/be placed within HLBs so as to optimize the use
of the hard-wired connections. If the mapping is done during logic synthesis, then the entire HLB,
basic blocks plus hard-wired links,owld simply be considered as a coarse-grainegetdor

technology mapping.

In this dissertation, we chose to do the mapping during logic synthesis because one of the
research goals is txglore FPGA logic block architecture without assuming a specific routing
architecture. The use of a placement and routing algorittouldvrequire more detailed
specification of the routing architecture, whereas mapping to HLBs during the technology
mapping phase of logic synthesis can be done withordiqad layout details. Mapping to HLBs
during logic synthesis also alls a tighter focus on the hard-wired logic block itself and its hard-

wired connection topology and this may lead to better HLB utilization.
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This chapter is ganized as follevs. Section 3.1 describes the HLB architecturegetad by
synthesis. Section 3.2wgis an werview of the logic synthesis methods used to create HLB
circuits. The definition of the technology mapping problem addressed by the algorithms in this
chapter is gien in Section 3.3. Section 3.4 and Section 3.5 describe the details obtheaiw

phases of the HLB technology mapping algorithm. The final section summarizes this.chapter

3.1 Definition of the HLB Architecture

The HLB architecture definition presented in this section is one of pwssible choices. &/

define the architecture here to clarify they&rfor synthesis.

A hard-wired logic block consists of wsal identical basic blocks connected together by
hard-wired links. The basic blocks are assumed to be hard-wired in tree topologies to simplify the
synthesis problem. Each HLB basic block is also assumed¢oah@pping bffer that maks the
output accessible to the routing. Because tappinffeis male it possible to implement
independent functions in d@#rent portions of an HLB, tlyemay impraoe the density of HLB

circuits.

3.2 HLB Synthesis Oerview

The synthesis of a circuit to a netlist of HLBsedalas input an optimized (in the technology-
independent sense) Boolean natikvcircuit description and a description of the hard-wired logic
block topology It is assumed that the basic blocks of the HLB are all the same tyeeof g
although there may well be reasons to empliéferent types of gtes in the same HLB [13] [46].

The output from the HLB logic synthesis steps is a netlist of HLBs that has been optimized either

for delay or area.

The mapping from Boolean netwk to HLBs is done in tw stages. First the optimized
Boolean netwrk is mapped to an area- or delay-optimized netlist of basic blocks using one of the

mary existing basic block technology mappers [20] [21] [33] [34]. Note that the basic blocks
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produced by the technology mapper are of the same type as those in the HLB. Second, using the
new HLB technology mapping tool described in this chapter netlist of basic blocks is mapped

to a netlist of HLBs optimized for area or delay

The reason for giding the synthesis of a Boolean netkto HLBs into tvo distinct stages is
to separate the mapping to basic blocks from the mapping that uses the HLB topology
information. By doing so, the CAD algorithms in the second stage can focus on optimizing the
use of hard-wired connections and the CAD algorithms used in the first stagearagdedf
specialized mappers for thfent basic blocks. These specialized mappers shouldlpra good
starting point for the second stage mappkrs the second stage mapper will be useful for HLBs
composed of anbasic block gte type. Note that the basic block is assumed to be a LUT in the

rest of this chapter

The remainder of this chapter will focus on algorithms ka&ceting the second stage of HLB
synthesis, that is, the mapping of the basic block netlist to HLBs. This step will be referred to as

technology mapping to HLBs or HLB technology mapping.

3.3 TheHLB Technology Mapping Problem

The HLB technology mapping step &tk as input a directed yatic graph (DAG) that
describes a netlist of basic blocks andHB template, which is a tree that describes the HLB
topology The input [AG is also referred to as tlsabject DAG. The output of the technology
mapping algorithm is a AG representation of a netlist of HLBs that implements oethe
subject IAG. The goal of the mapping algorithm is to find a minimum area-cost or delay-cost
HLB cover of the input basic block netlist. The area cost is the total number of HLBs needed to
implement the subjectAG. The primary delay-cost is the maximum number of programmable
connections between yamprimary input and a primary output. The secondary delay-cost is the
number of basic block delays along critical paths. Note that, in the absence of more timing

information, this delay-cost assumes that the critical paths are identical to the longest paths. This
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Figure3-1: L2-3HLB and L2-3 HL B Fragments

order of delay-costs assumes that a programmable connection delay is greater than a basic block
delay Note that this assumption is only significant when additional basic blocks may be added

along a path in order to reduce the number of programmable connections along the path.

As mentioned in Section 1.1, an important architectural assumption is that each HLB has a
tapping luffer on eery basic block output. Sincerexy HLB basic block output is accessible,
several portions of the same HLB can be used to implement unconnected subgraphs of the subject
DAG. The general term HLBagment denotes a connected subset of the basic blocks in the HLB
template. An HLBfragment pattern is a subtree of the HLB template. Each HLB fragment pattern
represents a portion of the HLB that may be used to implement a subtree of the shGjeEdD
example Figure 3-1(a) sha the template of the L2-3 HI!Ronsisting of three 4-LUTs (or the
L2-3 4-LUT HLB for short) and its four fragment patterns. Note that becausewseabaumed
LUT basic blocks, fragment (1) is egalent to its ap fragment generated by permuting the
inputs to basic bloclc. Details of the rules that gern fragment pattern generation will be
presented in Section 3.4.3rFa gven node in the subjectAls, afeasible HLB fragment pattern
(or feasible fragment for short) at that subject node is a fragment pattern that matches, and can

thus implement, a subtree of the subjed@rooted at that node.

1. The naming corention for HLBs is gien in Section 3.4.2.
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The problem of technology mapping to HLBs is solun two stages. The first stage selects
the set of feasible HLB fragments thavepothe subject BG with minimum area or delay cost.
The set of feasible fragments chosen by this fragmerdricq step is referred to as the set of
covering fragments. The second stage packs thesgecog fragments together as tightly as
possible to reduce the number of HLBs. Thigsion of the algorithm into these éwsteps occurs
naturally because the selection of theezing fragments that minimize delay is independent of

the packing stage that puts fragments togetheipextked HLBs.

3.4 Fragment Cwering

The selection of the wering fragments is formulated as AG covering problem. The inputs
are a subject BG, which represents the basic block matey and the HLB template that
describes the HLB topologfefore the actual construction of thevep the HLB template tree is
decomposed to produce the fragment pattern trees in a library of patterns. Infdireatlyer is
a set of fragment patterns that include all nodes in the subfggtdhd has the Veest area or
delay cost. A formal definition is\gn in Section 3.4.1. The solution approach is similar to the
tree-matching and dynamic programming methods used in #@CN [19] and misll [38]

technology mappers.

3.4.1 Definitions br the Fragment Covering Algorithm

The graph terminology used to describe the pattern trees/AGd D the fragment e@ring
algorithms is similar to the onewgin in [38]. A directed aclic graphG is a pair(V(G), E(G))
consisting of a set ofertices (or nodesy(G) and a set of directed edge&s). Each edge i
consists of an ordered pair artices {;, v;). Each ertex in V represents a primary input, primary
output or a LUT basic block. Each edge represents cowuitedietween primary inputs and the
input of a LUT or between the output of a LUT and the input of another EIBwing the flav
of signals in the basic block netvk, a source of the AG is called a primary input node and a

sink of the DAG is called a primary output node. The incoming arcs of a node are called the inputs
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or fan-ins of the node, and the outgoing arcs are calledthelits of the nodeoF a gven node
v, the &n-in of v, i(v), is defined asi(v) = {u|(u,v) OE} and the &n-out ofv, o(v), is

o(v) = {u|(v,u) OE} . The in-dgree of a node is |i(v)| and the out-dgree ofvis [o(V)| .
Assume thaH is a subgraph d& and thaH is defined by the pa{v(H), E(H)). The fan-in ofH,
I(H), is defined as I (H) = {t|(t,u) DE(G),tOV(H),ulV(H)} .The fin-out ofH, O(H),
is defined as O(H) = {t|(u,t) DE(G),tOV(H),udV(H)}

An internal node is a node that is not a primary input node. Note that primary output nodes are
also internal nodes. Each internal node of the subja@ Eepresents a LUEach internal node
of a fragment pattern represents a LUT in the HLB template. An edge betwegndmmal input
nodes is called amternal edge. Thus, an internal edge of an HLB fragment pattern represents a
hard-wired link between twof its LUT basic blocks. An edge between a primary input and an
internal node is called@imary input edge. A leaf node is one whosean-in edges are gikrimary
input edges. Similarlyaleaf LUT or leaf basic block is one whosea-in edges are all primary

input edges.

Fragment Covering Problem Definition

The inputs to the fragment wering stage are the HLB templaté, and the subject 8G
network, S. The goal of the fragment wering algorithm is to find a set of fragmentsHyfwith

minimum area or delay cost, thatveosS. A cover of Sis defined belw.

Definition 3-1 Given a subject BG S, and a set oh DAGs, C = {C; }, whereC is the disjoint
union of theC;’'s, C is said tocover Siff there &ists a surjectie mapping0: V(C) — V(S such
that[J u, v JV(C),

() (uv)UEC) D (o(u), o) UES

(i) (o(u),0(v)) OES O (u,v) JE(C) ORu s a primary output node @, vis a
primary input node o€, i #j.

If O is one-to-one, the@ is an &act caover of S
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The first condition of Definition 3-1 ensures that all edges of ther,d®, really do &ist in the
subject NG, S Condition (ii) ensures that all edgesSare either mapped to edges in one of the

C; or are edges betweendwlistinct cwering subgraph§; andC;.

Figure 3-2 shars an &ample of a ceer. The cwering graphsC,, C, andCz are shwn in

Figure 3-2(a) and the subject graph is illustrated in Figure 3-2(b). Teemg graphs contain six
nodes labelled, 2, 3, 4, 5 and6. The subject graph containsdinodes labelled, b, ¢, d ande.
Each of the graphs in the threeats of Figure 3-2(b) corresponds to one of theedag graphs in
Figure 3-2(a). The mapping between the nodé€s aidSis shavn in Table 3-1. Note that nodge
in the subject graph is eered by tvo nodes 1 and3) in the caering graphs and so thisvaring

does not hee a one-to-one mapping betweerering graph nodes and subject graph nodes.

C, C, Cs
<§
2

NONONO

a). Covering Graphs 3-2(b): Subject Graph

Figure 3-2: Example of a Cover

Cvertex | Svertex
1 a
2 b
3 a
4 C
5 d
6 e

Table 3-1: Mapping between Subject nodes and Covering Graph nodes
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3.4.2 Naming Convention for HLBs

The naming covention [41] is unique for each HLB tree topology and is the letter “L” fol-
lowed by the number ofvels (or height) of the HLB follwed by “-” followed by a listing of the
subtree sizes (that is, the number of LUTs in the subtrees) from a pre-ordesataf the canon-
ical HLB tree. The canonical HLB tree is generated by the canonical labelling algortmiryi
Section3.5.4. Each subtree size is separated byantl leaf inputs and single-LUT subtrees are
not listed. Some of the 4-LUT HLB tree topologies are illustrated in Figure 3-3. The circles in
Figure 3-3 represent LUT nodes in the HLB tree. The thick lines in Figure 3-3 represent a hard-
wired connection edge betweenotwUTs, while the thin lines represent a primary input edge.
For example, the L3-6.3.2 HLB in Figure 3-3 contains six 4-LUTs connected in an asymmetric
tree with three Meels. The “L3” part of L3-6.3.2 says that the HLB has threel$e The entire L3-

6.3.2 tree has six LUTs, hence the 6 in “6.3.2”. The “3” in “6.3.2” represents the number of LUTs

in the left subtree. Since the subtrees of the left-most subtree of the root node are either a single

Sree e

13-3.2 L3-4.2
L3-4.3 L3-5.2 L3-5.2.2 L3-5.3 L3-5.4 L3-6.2
L3-6.2.2 L3-6.3 L3-6.3.2 L3-6.4 L3-6.5

Figure 3-3: Some 4-LUT HLB topologies
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LUT or a leaf input their sizes are not listedxNene second subtree of the root node igetrsed.
This subtree has 2 nodes and thus the “2” in “6.3.2”. Note that the L1 HLB in Figure 3-3 repre-

sents a 4-LUT HLB without hard-wired connections.

3.4.3 Generation of the Fragment Pattern Library

The fragment pattern library is generated from the HLB templhteising fragmentation
operations. These fragmentation operations depend upon the properties of the basic block. One
property of LUTs that can begoited during fragmentation is that an input can be ignored or not
used. This property is due to tleet that a K-input lookup table can implement amction of K
or fewer inputs. The fragmentation operation that results fromigimrable input property is the
deletion of an internal edge of the HLB fragment pattern tree that is connected/ém angit.

For example, Figure 3-1 shes the L2-3 HLB template and itelete-edge fragmentpatterns.
Fragment patterns (1) and (2) in Figure 3-1(b) were generated by the deletif{goedgs of
the HLB template in Figure 3-1(a). Fragment pattern @ generated by deleting edgge ¢)

from fragment pattern (1).

Another property of LUTs is that a LUT can implement the identity function, which we shall
call a luffer. The resulting fragmentation operation werts an internal edge connected to a leaf
LUT into a primary input edge. Theiffered fragment pattern, Fragment (3), in Figure 3-1(Bpw
generated by coerting LUT b of the HLB template in Figure 3-1(a) into affer.

One or both of the abe fragmentation operations may be applied to HLBs that consist of
non-LUT basic blocks. & example, Figure 3-4 slws a mux-based HLB and one of its fragments
generated by auffering fragmentation operation. The HLB shoin Figure 3-4(a) is composed
of 3 two-input mwes. The connection of the inpwtsandb to the same signal has théeet of
makingol into a primary input. Anotheray of cowerting o1 into a primary input is to ground

s1. The resulting bffered fragment is shn in Figure 3-4(b).
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The fragment pattern library generation algorithm for LUT-based HLBsis described in Figure
3-5. Initialy, the pattern library list, P, consists of the complete HLB tree, h. The patterns to
decompose list, ToDecom initially contains only h. While there are patterns to decompose, the
outer while loop of the algorithm continues to generate new pattern graphs using the edge deletion

and edge buffering operations. For each graph g in ToDecom all internal edgesin g (the set eg)

are enumerated to determine the order of deletion. Each internal edge is deleted to yield two
graphs, g1 and g2, which are tested for isomorphism with respect to the other generated HLB
patterns. Every isomorphically unique pattern is added to the AddLi b list. After restoring the
deleted internal edge to the graph g, the edge deletion operation is applied to the next internal

edge in ey. Also, for each graph g in ToDecom all internal edges are enumerated to determine

the order for the buffering operation to yield new pattern graphs. Again, only isomorphically
unique patterns are added to the AddLi b list. After completion of the deletion and buffering
operations on the graphs in the ToDecom list, the new patterns in the AddLi b list are added to
the set P. The ToDecomlist takes on the value of the AddLi b list if this list is not empty, the
outer loop continues to generate patterns from the new ToDecomlist patterns. Because the sim-
ple matching algorithm outlined later in this chapter does not check for permutations of the inter-
nal node inputs when doing matching, the last step of the algorithm permutes the fan-in edges of

each node of the patternsin P.

|| || %7 |
sl | | s2 | s2
ol 02 I_| 02
1 I r—

s3 s3 — |
I

0|3 03

3-4(a): A mux-based HLB 3-4(b): Buffered fragment

Figure 3-4: Mux-based HL B and a Buffered HL B fragment
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Fragment Pattern Library Size

The algorithm described in Figure 3-5 exhaustively generates all possible fragment patterns
from an HLB template and this can lead to alarge pattern library. The fragment pattern subgraphs

are created by all possible combinations of edge deletions, edge bufferings and permutations.

P:={h}
ToDecom := P
while ToDecom # (pdo

AddLib := @

for every graph g LJToDecom do
for every internal edge e in edge set eg do
delete e from g to create graphs g1, g2
if g1 is not isomorphic to any graph in P, AddLib or ToDecom then
AddLib := AddLib U {g1}
end if
if g2 is not isomorphic to any graph in P, AddLib or ToDecom then
AddLib := AddLib U {g2}
end if
restore the deleted edge in g
end for

for every internal edge e connected to a leaf node in edge set ey do
buffer e to create graph gl
if g1 is not isomorphic to any graph in P, AddLib, ToDecom then

AddLib := AddLib U {g1}

end if
restore the buffered edge in g

end for

end for

P :=P U AddLib
ToDecom := AddLib
end while

P := Permute(P)

Figure 3-5: Pseudocode describing the gener ation of the HL B fragment pattern library
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In a fragment pattern for the HLB template, each hard-wired link can either be (1) present, (2)

deleted or (3) connected to a LUT implementingiidn. Thus the number of fragments that can

be generated by anxtaustie application of the fragmentation operation©{8™), wherem is
the number of internal edges in the HLB tree. Note that some of these patterns may be isomorphic
to each otheiOnly the isomorphically unique fragment patterns are then permuted to generate the

final library. This permutation of input edges may lead toxgagasion &ctor of up tK!, whereK

is the number of inputs to the LUT basic blocks. Thiggjian upper bound @i(K! * 3™ frag-

ment patterns.

However, symmetriesn the patternséeps the number of isomorphically unique HLB frag-

ment patterns to muchvier thanO(3™). For example, of the HLBs considered in the architec-

tural studies of Chapter 6, the one that resulted in the most patterns is composed of nine 4-LUTs

(the L3-9.3.2.2 topology). This HLB has 8 internal edgetsésulted in only 150 (<<83= 6561)

isomorphically unique fragment pattern trees. After permutation of the L3-9.3.2.2 4-LUT HLB

library patterns, the libraryxpanded to 18372 (<< 4! B3 157464) patterns.

The generation of permuted patterns beforeedog allavs the use of a simple matching
function. The gpansion of the library due to permutations can va&dad by using a more
complicated matching function that generates the permutations of the isomorphically unique
fragment patterns during run-time. Wever, a more complicated matching functiorowld
increase the time required for matching. This traderareased memory usage to reduce the

matching &ecution time.

3.4.4 Selection of the Set of Covering Fragments

Given the subject BG and the fragment pattern librate net step is to select a set of
fragment patterns that together form a minimum cosercof the subject RG. The ceering
algorithm finds the feasible fragments at each node and uses dynamic programming to select the

best set of feasible fragments. Theering algorithms used for area and delay optimizatiome ha
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several diferences. The essence of both algorithms is captured ihithéQOpt i mal Cover
procedure outlined in Figure 3-6. The features unique to each of the delay- and area-optimization
algorithms are related to their respeetcost measures and pattern matching options, and these

differences will be discussed in Section 3.4.5.

To map the entire subject neatxk, thef i ndOpt i mal Cover procedure is woked at gery
output node of the subjectds. This recursie procedure maps the trangitifan-in of each node
before mapping the node itself. Thé ndOpt i mal Cover procedure finds the Wwest cost
matching HLB fragment pattern at each node in the subjé¢ @nd at completion of the
procedure records thewest cost pattern andvest cost for that node. After completion of

fi ndOpti mal Cover at a gven node, the node is said torbapped. Each node hashMapped

procedure findOptimalCover(n)
if (islnput(n) or n.Mapped) then
return
end if

[* find optimal cover for fan-in nodes of n */

foreach fan-in node f of n do
findOptimalCover(f)

end for

/* using optimal covers of fan-in of n construct optimal cover at n */
n.Cost := INFINITY
n.Match := NULL_PATTERN
foreach fragment pattern p LIP do
if isMatch(p, n) then
currentCost := p.Cost + faninCost(n, p)
if (currentCost < n.Cost) then
n.Cost := currentCost
n.Match :=p
end if
end if
end for
n.Mapped := TRUE
end findOptimalCover

Figure 3-6: Fragment Covering Algorithm
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flag to record its current state as well as aitab to indicate the WeestCost and bestvat ch

pattern seen s@if Note that the area and delay cost of a primary input node is O.

The transitve fan-in of sgeral outputs may Iva overlapping rgions and thus a node may be
visited more than once by thevewing algorithm. Thévapped flag is used to ensure that a node
in the averlapping rgions is only mapped once. The first time a node is visited and mapped its

Mapped flag is set so that on subsequent visits the node will not be mapgiad ag

A detailed description of applyinfg ndOpt i mal Cover at a noden is as follavs: First the
noden is checled to see if it is a primary input or has already been mapped, and if so the
procedure returns. I has not been mapped, thenfins ofn are mapped first and then the
algorithm proceeds to find the best matching pattem atl matching patterns are found using
the algorithm outlined in Figure 3-7, and for each matching pattetime area- or delay-cost of
using that fragment pattern mtis determined by summing the cost @f and the alue of the
function called ani nCost (n, p). Thefani nCost(n, p) is the cost of theah-ins of the
subgraph of the subjectAl matched by. Lets be the subgraph of the subjedd® matched
by p. For area, thé ani nCost (n, p) is thesum of the costs of the nodes thanfin tos.

For delay the f ani nCost (n, p) isthemaximum of the costs of the nodes thanfin tos.

Since the cost of the current nodey r ent Cost , is found using the pveusly computed costs

of the fan-in nodes, this algorithm uses a dynamic programming approach. The final mapped cost
of n is the lavest cost wer all matched patterns. The matching pattern that leads toatbst loost

is also retained. Finallyhe noden is marked as being mapped so that each node is only mapped
once. An gample shwing the construction of an optimal\ar using a similar library-based

mapping algorithm was gven in Section 2.2.2.

The matching of HLB fragment pattern trees atv@ginode in the subjectA® is similar to
the graph theoretic problem of finding all subgraph isomorphisms of the pattern trees on the
subject digraph. Each isomorphism is callealedich. A pattern tree match is defined in [38] as

follows:
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Definition 3-2 A (full-node) match of a pattern graj, = (Vj,, E;) on a subject subgraph
G, = (V4 Ey) is aone-to-one mapping of the pattern graph nodes into the subject graph nodes

(I: Vp = V) such that the follwing properties hold:

(i) for every edgee defined by the pair of nod€s;, p,) L E,, the corresponding
edge defined by nodégp;,), 1(p,)) L Eg

(i) for every non-input ertex vin Vy, |i(v) |= |i(I(V)) |.

Property (ii) adds aah-in constraint to the definition of a match. Note that without (ii) welav

simply say thak;, is isomorphic to an induced subgraptegf

The full-node matching problem at a\g@n node in the subjectAs is to find if a pattern
matches according to Definition 3-2. It is called full-node becatesy @ode in the pattern graph
is mapped to a single node in the subject graph. The mapping is described as one-to-one becaust
each pattern node is matched to a single subject node andexgee Vhere is also a unique map-
ping between each edge in the pattern graph and an edge in the subject graph. Note that a one-to
one mapping between pattern nodes and subject nodes arattitaat the pattern is a tree
ensures that only matches to tree subgraphs of the suliecil be found. The first property
of Definition 3-2 states that the edge relationships are pesbbetween the pattern and subject
graph nodes and the second property states tharthiad of matching subject and pattern nodes

must be equal.

However, recall that each internal node of an HLB pattern corresponds to a lookup table, and
some of the inputs to a LUT may be left unused. Thus, when abasdd HLB fragment pattern
matches the subject graph, some of the primary input edges of the pattern tree neeslcwt ha
responding subject graph edgesvéléheless, each internal node of the subject digraph meest ha
a corresponding internal node of a pattern tree. This leads to theifigilmodified definition of a

match, which gies a related problem referred to asititernal-node matching problem.
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Definition 3-3 An internal-node (or non-input node) match of a pattern g&ph (V),, Ep) on a
subject subgrapl, = (V, E,) is an onto mapping of theternal pattern grapmodes into the

subject grapmodes(l: V,— V) such that the follwing properties hold:

(i) for every edgee defined by the pair of internal nodgs, p,) DEp, there is a
corresponding edge defined @{p,), 1(p,)) LIE,.

(i) for every internal node in Vy, [i(V) |=|i(I(V)) |.
Note that the mapping between subject nodes and pattern nodes in Definition 3-2 is not

necessarily one-to-one. A subject node wath-but greater than one may be mapped to more than

one pattern node during\eering. The resulting a@r may not beact.

Property (i) of the Definition 3-2 states that the edge relationships between LUT basic blocks
in the HLB pattern arexactly duplicated in the matching subject subgraph. The second property
uses the ignorable input property of LUTs and states thaathie fof an internal pattern node can

be either greater than or equal to the-in of the matching subject node.

The internal-node matching algorithm function is outlined in Figure 3-7. This algorithm
checks to see if a pattern subtree rooted at a modatches the subject subgraph rooted at node
s. Note that the matching algorithm alls a subject node to be mapped to more than one pattern
node, that is, matches to subgraphs thae hrebdes with dn-out greater than one are aléwl.

Also the fin-in edge ordering in the subjedAB is presergd in the matching pattern tree.

In the non-tivial case, the algorithm recwsly tests if thedn-in nodes op matches theain-
in nodes ofs. The functionf an-i nNode(n, i) returns thedn-in node on theth fan-in
edge. If each of theah-ins ofs match each of the firétan- i n(s) nodes op and all leftwer
fan-ins of p are input nodes, then the pattern match is successful. The pattern matching algorithm

is O(m) wherem s the number of edges in the pattern tree.

Figure 3-8 illustrates the matching of a pattern tree on a subgraph of the sukacT e

pattern graph in Figure 3-8(a) st®a pattern with sen internal nodes, with each internal node
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having two fan-in nodes. Figure 3-8(b) ski® the matching of the pattern graph on a tree sub-
graph of the subjectAG. The subject BG in Figure 3-8(b) consists of ten nodes and the match-
ing pattern ceers the seen nodes D, E,,F5, H, | and J. Note that nodes F and @ehanly one
fan-in node each, so the matching pattern nodes will eaehdme unused input. Figure 3-8(c)
illustrates the matching of the pattern tree on a subgraph wéth-aut greater than one ndde

Nodes A and B in the subjeciAlz each hee fan-out of tvo. In this match, nodes 1 and 3 of the

function isMatch(p, s)
if isInput(p) then
[* pattern input node matches any subject node */
return MATCHED
else if islnput(s) then
/* no match since subject is an input node but pattern is not */
[* for tree-matching, treat subject nodes with fan-out as inputs */
return FAILED
else if fan-in(p) < fan-in(s) then
/* no match since fan-in of pattern is less than fan-in of subject */
return FAILED
else
[* compare fan-in nodes of pattern and subject */
/* assumes that fan-in edges of p, s have been enumerated */
for i = 1 to fan-in(s) do
if isMatch(fan-inNode(p, i), fan-inNode(s, i)) == FAILED then
return FAILED
end if
end for

/* if any leftover fan-ins of p are not inputs then matching FAILED */
for i = fan-in(s)+1 to fan-in(p) do
if isinput(fan-inNode(p, i)) == FALSE then
return FAILED
end if
end for
return MATCHED
end if
end isMatch

Figure 3-7: Internal-node pattern matching algorithm

1. Note that hereafter a&h-out node” will be assumed syiyomous with “&an-out greater
than one node”.
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pattern graph are mapped to node A of the subject graph. Nodes 2 and 4 of the pattern graph are
mapped to node B of the subject graph. If theedog algorithm chooses a pattern match that
spans adn-out node, then this node (and &@s-in edges) must be replicated in the final stage of

the cavering algorithm in order to realize the chosen fragment in the HLB circuit. Irxémepte

shavn in Figure 3-8(c), nodes A and B and tham-in input edges oauld each be duplicated as

illustrated in Figure 3-8(d).

The final stage of the mapping algorithm constructs a netlist of thexicg fragments. As
was preiously mentioned, some of the subje&® nodes may h& been matched to more than
one fragment pattern node. During this stage, replication of subjggtriddes is used to create a

new subject netwrk, which has the property thatezy one of its nodes is matched to a single

) (=) )

2 QP

3-8(c): Match to subgraph 3-8(d): Replication of fan-out
with fan-out > 1 nodes nodesin Figure 3-8(c)

Figure 3-8: Pattern matchesto atree and non-tree subgraphs
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fragment pattern node. This stag@ibs at the subject &G output nodes and proceeds/ands

the primary inputs. If the best fragment pattern matche=aubgraph of the subjectA, then

the correspondence between pattern and subject nodes is a simple one-to-one mapping and sc
there is no replication. Keever, if the best pattern matches a subgraph vathidut nodes, then

the fan-out subject nodes (and theinfin edges) are replicated to raathe pattern-to-subject

node correspondence one-to-one. The algorithm then proceeds to visit the sajeubdds in

the fan-in of the subgraph mapped to the curremedng fragment.

3.4.5 Delay versus Area Optimization

The primary measure of delay cost used during fragmerdriog is the number of HLB
covering fragments in the longest path. This measure isr&gut to counting the number of
programmable connections in the longest path or assuming a unit delay for each HLB fragment in
the fragment libraryHowever, the actual delay of the HLB circuit is a combination of basic block
delays and programmable connection delays. The basic block delaygefgrpath are fied
before the mapping to HLBs and only changexifa basic blocks are introduced byffiered
patterns. It is assumed that basic block delays are smaller than programmable connection delays
and that fev extra basic blocks are added to the critical path. Thus the only component of delay to

be minimized is the number of programmable connection delays along the path.

In contrast, the primary measure of area used during fragmestiragis the total number of
HLB covering fragments. Note that the actual area cost of the HLB circuit is the number of HLBs
after the fragments are pazktogether as tightly as possible (packing will beeoed in Section
3.5). The rationale for minimizing the number of HLB fragments duringriiog is that the use
of fewer fragments implies a greater total number of hard-wired connections areyetipldhe
fragments. Since the packing of distinct fragments into the same HLB leadsastagevof hard-
wired connections, a greater number of hard-wired links in the fragments meansvéraare

wasted when packing occurs.
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3-9(a): Subject 3-9(b): L2-2 3-9(c): With replication 3-9(d): No Replication
DAG HLB

Figure 3-9: Example wherereplication reduces area

The fragment pattern library and matching algorithrfedivhen optimizing for speedeysus
area. In speed optimization, the primary goal is to minimize the number of HLB fragnest le
between primary inputs and outputs. In some cases@&iing of a basic block are needed to
achieve the minimum number of programmable connectioven at the xpense of added basic
block delays on non-critical paths. Thus to minimize ddlay fragment pattern library includes
all possible bffered patterns. Another feature of the delay-optimization algorithm is that the
pattern matching step alle matches acrosari-out nodes, and thus replication afifout nodes

is used to reduce delay

In contrast, the area-optimization library does not inclugféeked patterns,ui has only the
patterns generated by edge deletion. Recall thaffarbed input represents a basic block used to
implement a bffer and this is an inB€ient use of a basic block. Contrary to the delay-
optimization algorithm, during area optimization, matching does not occur aaressitf nodes.

Thus the area algorithm does not aileeplication of &n-out nodes.

It is true, hevever, that in some cases replication may reduce the number d@h&itiBs. for
example, suppose the subjeB in Figure 3-9(a) is mapped to the L2-2 HLB in Figure 3-9(b).
The solution with replication in Figure 3-9(c) hasaetly two HLBs. Wthout replication, the
solution in Figure 3-9(d) has three single-block fragments, each antinfequal to fourOnly
the uppermost basic block of the L2-2 HLB has-in of four and so, each single-block fragment

must be packd in an HLB by itself. Thus, the no replication solution has three HLBs.
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However, in mary cases, replication may increase the area cost of the finadghatkB
circuit by the follaving agument: Assume that each basic block has the maximum K inputs. F
each basic block added by replication, not only is there an increase by one in the number of basic
blocks, lut there is also an attendant increase by K in the total number of edges in the subject
DAG. The increase in the number of blocks and edges to begado HLBs tends to mak

circuits with replication require more patkHLBs and hence less arefiesént.

In this work, the benefits of replication during area-optimization were mestitated further

3.5 Fragment Packing

After the selection of the set of varing fragments, the fragments are matkogether as
tightly as possible to minimize the final number of matkiLBs. The optimization goal of the
algorithm presented in this section is to minimize the number of HLBs, withgartdréo the
connectvity of the HLB fragments. Other optimization goals thattaknnectiity or placement
of the HLB fragments into account during packing may yield a more routable solution, and hence
a smaller andaster circuit after routing. Keever, there are often mgralternatve and equwialent
combinations of oeering fragments that may be placed within the sameguael.B. Thus, a
well-chosen permutation of egralent fragments in the minimized packHLBs solution may
lead to a solution with good routabilityvithout resorting to optimization goals that gak

placement into account.

The folloving section bgins with definitions for the fragment packing problem. The
subsequent subsection describes the generation of the packing sets usedly tavhether
fragments can be paet togetherThe ne&t subsection contains thast heuristic algorithm used
to pack the fragments togethdihe final subsection describes the method used by the packing

algorithm to order the fragment trees.
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3.5.1 Fragment Rcking Problem Definitions

This section presents\aral definitions needed to understand the fragment packing problem

and the algorithms used to selthe problem.

Denote byP = { P4, P,, P3, .., R } the set of isomorphically unique fragment patterns in the
library generated from the HLB template. Denotelby { C,, C,, Cg, .., G, } the set oh pattern

trees in the oeer of the subject BG, S where eaclg; is isomorphic to a member Bf

A pading setof an HLB is a set of fragment patterns such that the fragment pattern trees may

be leyally pacled together in the same HLB template. A precise definition is asvfollo

Definition 3-4 A setSis apading setiff Sis a coer of a subgraph of the HLB template.

The maximal packing sets are thegkst sets of fragments that can lgally pacled together

in the same HLB template. A maximal packing set is defined asvillo

Definition 3-5 Given a packing s&, define a corresponding packing Sétwhich is equalent
to Sexcept that eachuffered input inSis transformed into a basic block® ThenSis amaxi-

mal packing set ffS’ is a coer of the entire HLB template.

The algorithm outlined in Section 3.5.3 generates thiset{ M, My, Mg, .. , M, }, of p

maximal packing sets from the HLB template. The maximal packing sets are usadiatev

HLB packings as follas:
Definition 3-6 A setX; is a \alid HLB packing ifX; [l M; for someM, [IM.
Given the abee definitions, the fragment packing problem is defined asafsilo

Definition 3-7 Thefragment packing problem: GivenP, C andM as defined ahe, find a parti-

tion of C into k valid HLB packings such th&tis minimum.
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3.5.2 Unique Ordering for Fragment Trees

A unique (descending) ordering for fragment trees is needed fioleef subset checking
during fragment packing. The ordering of fragment pattern trees is accomplished by comparing
the root-node label strings for the trees after each tree has beentednnto a canonical form.

The technique for labelling the root-nodes of the trees isetefrom an algorithm in [45] that

generates a unique label string for isomorphically unique trees.

The canonical labelling algorithm is st in Figure 3-10 and is callddabel Node. Input
nodes are labelled with the string “1” and the size of these nodes is also set ta#relinite the
general case, each of thenfin nodes of the current nodeare first labelled and then thanfin

labels are used to generate the labehfofhe labels for theah-ins are used to sort thenfin

procedure labelNode(n)

if isLeaf(n) then
n.Label :=*1”
n.Size :=1

else
/* label fan-in nodes then put fan-ins in descending order of string labels*/
for i := 1..fan-in(n) do

labelNode(fan-inNode(n, i))

end for
sortFaninsByLabel(n)

/* the size of current node equals sum of fan-in sizes plus 1*/
n.Size :=1
for i :=1 to fan-in(n) do
n.Size := n.Size + fan-inNode(n,1).Size
end for

[* the current node’'slabel is the node size concatenated with fan-ins’ labels */
n.Label := integerToString(n.Size)
for i :=1 to fan-in(n) do
n.Label := concatenate(n.Label, fan-inNode(n,1).Label)
end for
end if
end labelNode

Figure 3-10: Canonical Labelling Algorithm
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nodes so that the lefah-in node has the @est label string and the rightmoabfin node has the
smallest label string. The sizemis then set to be the sum of the sizes of éneim nodes plus 1.
The current nodse’label string is composed of the sizenofoncatenated with theii-in label
strings added onto the end @t label string from left to right.df example, the string label of
nodeA in Figure 3-11 is {*57, “1”, “1”, “1”, “1"} and the string label of nodB is {“8", string
label of A, “17, “17}.

The ordering of the fragment trees into descending order of labels is done by comparing the
string labels of the fragment trees character by character left to right. Since the labgl for an
isomorphic tree is unique, the canonical labels can be used ® anakique ordering for the
fragment pattern trees. The string label of nBdgarts with an “8” and the string label of nodle
starts with a “5”, and so the tree rootedas greater than the tree rootedAatOne property of
this ordering scheme is that the label of a tfe@hich is a subgraph of another trég,is smaller
and thus the ordering will ke T; beforeT;. The scheme also orders single-block fragments in

descending order o&h-in.

3.5.3 Generation of Maximal Packing Sets

The maximal packing sets used faalidating each padgd HLB are generated before
proceeding to the actual packing. The input to this step is the HLB template and the output is a set

M of maximal packing sets.

\ ,/

Figure 3-11: String Label Example
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Assuming that the basic block has the properties of input ignorabilityudisdibg capability
the maximal packing sets are generated using the same internal edge deletioffeaimd) b
operations as in the pattern generation step described in Section 3.4.3. As in the fragment pattern
generation algorithm, the maximal packing set generation algorittiraustvely deletes or
buffers all internal edges. Thus, the Betontains all possible maximal packing sets. Similar to
the case for fragments, the number of possilalgswo select edges tafter or delete implies that
the number of maximal packing set<36™). Note that during the generation of each maximal
packing set, the list of fragment patterns in écls kept in a canonical order to neakhecking
for subsets of maximal packing sets morkceint. The method of determining the order for
fragment trees is described in Section 3.5.2. If a generated packing set is a subset of another
packing set (or viceersa), then only the lger packing set will appear on the list of maximal

packing sets.

Figure 3-12 shws the L2-3 HLB template on the left andotmaximal packing set#); and
M,, generated by the edge deletion operation on the right. Each maximal packing set is enclosed
within a dotted rectangle. The first internal edge deletion operation generates a maximal packing
setM; with two HLB fragment patterns, a tabasic block fragment pattern plus a single 4-input
basic block fragment pattern. The dashed line between théragment patterns represents the
deleted hard-wired input edge. Deletion of the internal edge from thédsic block fragment
pattern inM, generates a second maximal packing Met,which consists of te/ 4-input basic
blocks and one 2-input basic block. ifftered patterns are alle@d then a third maximal packing
set, consisting of a single bALUT fragment, is generated by e@nting one of the non-root

LUTs into a lffer.

3.5.4 The Fragment Packing Algorithm

The algorithm used to sawhe fragment packing problem is shmoin Figure 3-13. The input
to the algorithm is a list af unpacled HLB covering fragmentsC = { C, C,, C3, .., C, }. The
output is a seY of k pacled HLBs,Y = { Y1, Y5, Y3, .., Y } for whichk is minimized. InitiallyY
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j = Eil

Figure 3-12: L2-3 HL B and maximal packing sets due to edge-deletion

is empty and as paeldl HLBs are constructed thare added to the set. The algorithm to construct
each packd HLB is a “first-fit” packing algorithm on the s€tof the fragments sorted into
descending order of size. Because it is easier to fit smaller fragments into unused portions of an
HLB, it is more efective to pack them last. This type of packing algorithm is generallykras

a first-fit decreasing (FFD) packing algorithm because it processes a descending list by placing

the lagest object into the first container into which it can fit.

Initially the collection of packd HLBS,Y, is empty First a sorted cgpof the fragments in the
setC are placed in the s€ . The outer loop constructs packHLBs by adding the first remain-

ing fragment fronC’ (calledaddedFrag ) to the first packd HLB in the collectiorY that can

Y =
C’ := descendingSort(C)
while C’ not= (pdo

addedFrag := deleteNext(C’)

if Lly LIY such that isValidPackingSet(y U {addedFrag}) == TRUE then
y .=y U {addedFrag }

else
newPackedHLB := { addedFrag }
Y := Y U newPackedHLB

end if

end while

Figure 3-13: HLB Fragment Packing Algorithm
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accommodate it. If thereists ay [ Y that can accommodaseldedFrag , thenaddedFrag
is added toy. If none of the padd HLBs inY can accommodataddedFrag , then a ne
packed HLB, composed of onlgddedFrag , is added toY. The outer while loop of the algo-

rithm terminates when there are no remaining elemer@s in

TheisValidPackingSet function checks if the candidate padkHLB is a subset of one
of the maximal packing sets by calling thebsetChecking  function in Figure 3-14. Before
invoking thesubsetChecking  function, the fragment patterns in the candidate @ddkLB
are ordered using the scheme in Section 3.5.2. Recall that the fragment patterns in the maximal
packing set are also ordered by the same schemaektieragment  function returns the mé
fragment in the maximal packing setMi_ if at the end of the list. The first tinmextFrag-

ment is called it returns the first fragment.

First, thesubsetChecking  function compares the est of the fragment patterns in the

packed HLB aginst each fragment pattern in the maximal packing set until it finds a match. If a

function subsetChecking(packedHLB, packingSet)
for each fragment h in packedHLB do

matched := FALSE

s := nextFragment(packingSet)

repeat

if isMatch(h, s) then

matched := TRUE
exit repeat loop

else
S := nextFragment(packingSet)
end if
until (s == NIL)

if (matched == FALSE) then
return FALSE
end if
end for
return TRUE

end subsetChecking
Figure 3-14: The subset checking function
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match is found, then the next largest fragment pattern in the packed HLB is compared to the
remaining fragments in the maximal packing set. For any fragment pattern in the packed HLB, if
a match is not found then the packed HLB is not a subset of this maximal packing set and the

function returns FALSE. If all packed HLB fragments are matched the function returns TRUE.

3.6 Conclusion

This chapter presented the algorithms used to map LUT networks to HLBs. The following
chapter discusses the complexity and optimality of the HLB technology mapping algorithms. The
subsequent chapter (Chapter 5) contains an evaluation of the effectiveness of the HLB mapping
algorithms with respect to theoretical bounds and to a technology mapper for acommercial LUT-

based FPGA architecture with hard-wired connections.
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Chapter 4 Complexity and Optimality of
the HL B Mapping Algorithms

This chapter deves the compbaty of the HLB mapping algorithms andvgis statements and
proofs concerning the optimality of the algorithms described in Chapter 3. értadoretical
result is that the fragment \ering algorithm is delay optimal with respect to the number of
programmable connections in a critical path of the HL#ecdlhe other important result is that
the fragment packing algorithm results in a minimal number ofguhéld Bs when packing the

covering fragments of antwo-level HLB topology

The first section of this chapter contains the coripl@lerivations and optimality statements
and proofs for the fragmentwering algorithm. The second section des the complaty of the
fragment packing problem and the heuristic fragment packing algorithm ang shidicient
conditions for the heuristic algorithm to be optimal. The second section also demonstrates the
optimality of the fragment packing algorithm for allavkevel HLB topologies. The final section

concludes this chapter

4.1 Complexity and Optimality of Fragment Covering Prob-
lem and Algorithm

This section reéiews the fragment aeering problem in Section 4.1.1 and theramines the
run-time complgity of the fragment oeering algorithm in Section 4.1.2. Thextesubsection

(Section 4.1.3) considers the optimality of the fragmeregong algorithm with respect to the
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minimization of the delay and area of an HLR/eo The fragment ogering algorithm is shan to

be optimal for delayutt sub-optimal for area.

4.1.1 Cwering Problem Definition and Algorithm Review

The inputs to the fragment\ering algorithm are a subjecA, S and the HLB templaté].
In the HLB cwering algorithm described in Section 3.4, the tempthie used to generate the
fragment pattern library = { P4, P,, P3, .., P, }. Every pattern irP is matched agjnst the nodes
in Sto find feasible fragments. The goal of the fragmemeng algorithm is to select the least
cost feasible fragment matches for theasing set of fragment§ = { C4, C,, C3, .., C, }. The
area cost of the eer is the number of fragments in thezepand the delay cost of theveo is the
number of fragments along the critical path. The last stage of ¥ieeing algorithm generates the
final HLB fragment netlist by using replication wheeethe subgraphs @& covered by theC;
overlap. The algorithm replicates theveolapping rgions to ensure that the final mapping

between fragment pattern nodes and subject nodes is one-to-one.

4.1.2 Complexity of Fragment Cwering Algorithm

The general problem of constructing an optimal area or delar b a subject BG using
pattern trees has been yea to be NP-hard [19] [38]. Note that in the general problem, the delay
model includes the fefct of loading on the outputs ofags, whereas the problem in this
dissertation assumes unit delay for eaategand so the delay calculations are not dependent on
fan-out. The algorithm for computing the best pattern match at each node during fragment
covering entails finding all pattern matches at each subject node, and for each pattern match,
evaluating the cost of using that match. Tivaleation of the cost of each match is a simple
computation and so the computational comipyeof the finding the best pattern matches is
dominated by the matching algorithm. After finding the best pattern matches at each node in the
subject AG, the fragment aeering algorithm assembles the set ofering fragments using a

pre-order traersal from the outputs.
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The compleity of selecting the best pattern matches has running time proportional to the

number of matches at each node in the subja& .Dn the vorst case the running time will 16|

S| |P]), where |P | is the total number of fragment patterns in the library &fi$ the total
number of nodes in the subjecAB. An upper bound onH | was shan in Section 3.4.3 to be
O(K! * 3M), whereK is the number of inputs to the LUT basic block amis the number of
internal edges in the HLB. Thus, the conxthe of finding the best matches@®| S| * K! * 3M).

The compleity of assembling the eering set of fragments is the same as the contplef a
pre-order trgersal, which isO(| S |). Thus the werall compleaity of the fragment ceering

algorithm isO(] S| * K! * 3™,

Cost of Replication

The cwering algorithm uses replication during delay optimizationt (bot during area

optimization). Vi nav shaw that the run-time cost of replication is bounded by a fiaitéot

The replications may be done fareey fragment pattern in the wer, and the upper bound on
the number of fragment patterns 8|} The HLB template has internal edges anai+ 1 nodes.
Thus, for each of theubject node<)(m) nev nodes may be created for each fragment pattern in
the caver during replication. The cost of node creation is constant, and so the xibynpie¢he
replication stage i®(] S| * m). This calculation also sk that in the wrst case replication may

increase the size of the subject nativby a aictor ofm.

4.1.3 Optimality of Fragment Covering Algorithm

This section will discuss the optimality of the fragmenvecing algorithm, described in

Figure 3-6, with respect to delay and area.

Delay Optimality of Fragment Covering Algorithm

This sub-section prk@s that the fragment wering algorithm generates a delay-optimal
solution with respect to the number of programmable connections on the critical path, for an

arbitrary subject BG. The delay-optimizingersion of the fragment gering algorithm hasl|
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possible bffered and delete-edge fragment patterns in the pattern liBrases matching across
fan-out nodes during wering, and uses replication of subject nodes to construct the final HLB

netlist.

This sub-section first defines delay and delay optimality of thertm set of fragments.
Then the fragment eering algorithm is shen to be delay optimal for subjectAlss that are
trees. Finallythe optimality of the algorithm isxeended to arbitrary BGs. Note that in the proof
of delay optimality it is assumed that the subje&d)S, corresponds to the transdifan-in of a
single primary outpub. After proving delay optimality for mapping with a single primary

output, it is shan that delay optimality holds for mappi&gvith multiple outputs.

Note that in our definition of delaye only consider the delay due to programmable

connections. Each fragment pattern has an associated delay of one programmable connection.

Definition 4-1  Given an HLB template, a subject BG, S, and the set of sering frag-
mentsC = { Cy, C,, Cg, .., C, }, the delay of a node[ V(S is defined as follws:

i) If vis a primary input thedelay(v) = 0.
(i) Otherwise, delay(v) = 1+ maz( ) (delay(u)) , where F is the
aI(F
subgraph oSrooted av and ceered by &C; LIC. Recall that (F) is the fin-

in of F.

A less formal vay of defining thedelay(v) is that it is equal to the maximum number of

fragments betweemand agy primary input.

The cone rooted at a subjectAl5 nodev denotes the entire transii fan-in ofyv, including

primary inputs.
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Definition 4-2  Given an HLB templatd{, and a subject BG, S, which is the cone for a pri-

mary outputp, adelay optimal set of cwering fragmentsC, is one such thalelay(o) is minimal.

Note that all possible HLB fragment pattern trees implementablé¢ Wil be considered by
the delay-optimizing fragment eering algorithm because the fragment generation algorithm is

exhaustve.

The following lemma states that foryasubject node, the matching algorithm in Figure 3-7
will correctly find aly feasible match between a pattern tree and a subject subgraph (with or with-
out fan-out nodes) rooted atA match is defined in Definition 3-2. The matching algorithm com-

pares the number o&m-in nodes of the subject nodand the root node of the pattern tRe¢o

see if there is a match. If the match between tloentwdes is successful, the algorithm reelyi

compares theah-in nodes o¥ and the root oP; in the samean-in edge order

Lemma 1 The matching algorithm in Figure 3-7 will correctly find a match (according to Defini-
tion 3-2) between a pattern trpand a subject BG subgraph rooted at subject n&ld such a

match aists. If there is no match then the algorithaiis, correctly

Proof by induction:

Base casedf p ands are both primary inputs ORis a primary input andis not a primary
input then a match is found. In this mafels mapped t@ and the match is correct because both
properties of Definition 3-2 are satisfiedplis not a primary input anslis a primary input node
then the matching algorithm terminates aatlsfcorrectly because it does not satisfy t@ih

constraint (property (ii) of Definition 3-2).

General CaseThis is the case when bgprands are not primary inputs. Assume that taha-f

ins of p ands have been matched properlyhe matching algorithm compares the igp@ges ofp

and the subject nodeto ensure thati(p)| = |i(s)| , that is, property (ii) of Definition 3-2 is satis-

fied. If this condition isdlse then the algorithnaifs correctly for nodep ands. The fan-in node
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checking sets up an edge correspondence beti#geandEs by mapping theeh-in edges o to

those ofs in the order thg are visited. If [i(p)| 2 |i(s)| , then this mapping satisfies property (i)
of Definition 3-2. Thus if thedn-in nodes op ands match, then the algorithm will also matgh

ands correctly If the match of theadn-in nodesdils then the algorithm willdil correctly

The matching algorithm has been winao work properly wherp or s are primary inputs. ¢t
the case when bothands are not primary inputs, if the algorithrmovks properly for thean-ins
of p ands, it has been shen to work properly forp ands. Thus, by induction it follas that the

matching algorithm will werk properly for ag givenp ands.

QED.

The fragment oeering algorithm in Figure 3-6 uses dynamic programming and tree-match-
ing. A well knovn result [19] [38] states that if the subjedd® is a tree and the library of pat-
terns also consists of trees, then a dynamic programming and tree-matalariggcalgorithm
produces a delay optimal er of library @tes for the unit-delayage model. The proof of the
optimality of a dynamic programming and tree-matchingecog algorithm, when applied to a

subject tree, @as gven in [38]. A similar proof will be repeated here for theesakcompleteness.

Theorem 4  Given a subject tre§, corresponding to a primary outpytand a library of frag-
ment pattern treeB = { Py, Py, P3, .., P }, corresponding to the HLB templdie
the fragment oeering algorithm {i ndQOpt i mal Cover) outlined in Figure 3-6

produces a delay optimal\eer of fragment€ = { C;, C,, Cg, .., C,, } foro.
Proof by induction:

Base case: The subject tre§ is a primary input. The algorithm terminates with the optimal

delay of0 for S. The optimal fragment choice wh&is a primary input is the empty set.

General case: The subject tre8is not a primary input and is rooted at a nade
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Since all possible HLB fragment pattern treesHare in the library?, Lemma 1 ensures that
the matching algorithm will correctly findll possible feasible HLB fragments for the subject

nodev.

Suppose that the fragment choices at each of the nodes in theviedasHin ofv result in the

optimal delay The definition ofdelay(v) is delay(v) = 1+ maz( ) (delay(u)) , where a
uldI(F

feasibleC; [IP matches the subject subgraphrooted atv. The fragment oeering algorithm
selects from among all possible feasible fragment patterﬁgptaDP that gves the minimum

delay Since the optimal fragment choice for all nodes in the traedin-in ofv have been deter-

mined, thisCqyy will be the delay optimal fragment choice for theeoof the tree rooted at

Thus the fragment eering algorithm generates the delay optimal fragment cHoica gven

non-input noder given the optimal fragment choices for tla@fin ofv.

Since the fragment gering algorithm finds the delay optimal fragment choice for primary
input nodes and also generates the delay optimal fragment ¢dboi@egven non-input node
given the optimal fragment choices for tlam{fin ofv, then by induction, the fragmentvasing
algorithm generates a delay optimal fragment choice fgrgaren subtree, including the one

rooted at a primary output node

Given the delay optimal fragment choices for an output @ its transitie fan-in nodes,

a delay optimal oceer of fragment€ = { C4, C,, Cg, .., C,, } for the tree rooted atcan be twi-
ally generated by a pre-ordenteasal. The treersal starts at thg; LIC rooted ab, adds thi<; to

C, then recursiely adds the; [IC at each of theaih-in nodes of the subject subgrapliered by
Ci. Note that there is no replication during the construction of the delay optivegllmecause the

mapping between nodes in BgandSare one-to-one.

QED.
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What remains to be sthvm is that the fragment gering algorithm will also produce a delay
optimal solution if the output cone rooted at primary ougpistnot a tree, that is, if the cone that
produces contains &n-out nodes. Theek to the proof is to shw that the inclusion of matches
between fragment pattern trees and subjed®Bubgraphs withah-out nodesdoes not déct

the delay optimality of the set of wering fragments.

The selection of a fragment that matches to a subj&¢ Bubgraph with&n-out nodes
implies replication of subject nodes when constructing the final HLB circuit. During construction

of the final netlist, if the best patteR) matches a subgraghof the subject BG with fan-out

nodes, thedn-out nodes df are replicated so that the final mapping has a one-to-one correspon-

dence between the nodes and edgdy ahdF. The nat lemma states that these replications do

not afect the delay optimality of the ger.

Lemma 2 For a subject BG nodey, if any subject [AG subgraph rooted atv matches a frag-

ment patterrP;, the replication of internal nodesBfdoes not déct the delay o¥.

Proof Given a node, there is the subject subgrapltovered by the fragmem; that matchesat

v. The calculation of thdelay(v) uses the maximum of the delays of tae-ins ofF. Because the
replication of internal nodes (and theamfin edges) of subject subgrabldoes not introduce
another fragment \@l between the inputs éf and the nods, it does not déct the delay of the
fan-ins ofF and thus does notfatt thedelay(v).

QED.

Given that replications of the subject nodes do rfetathe delay of the eer, the delay opti-
mality of the fragment aring algorithms can bexeended to subjectAGs in the follaving the-

orem.

1. Recall that “an-out” nodes is short forgh-out greater than one nodes”.
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Theorem5 Given a subject BG S corresponding to a primary outpytand a library of frag-
ment pattern treeB = { P,, P,, P3, .., P, }, corresponding to the HLB templdte
the fragment oeering algorithm produces a delay optimaveoof fragment€ =

{ Cl’ C2, C3, v Cn} for o.

Proof The induction proof proceedsactly as in the proof of Theorem #oept that the con-
struction of the final HLB netlist may require the replicationami-but nodes in matching subject
subgraphs. Lemma 2 states that the delay of thewnmadplemented by a fragment pattern match
to a subject subgraph with fan-out is unchanged by the replication af-fout nodes that are
internal toF. Thus the delay optimality of theer is unchanged by these replications. If the sub-
ject DAG node to be mapped is rooted at the primary owutpilen the ceering set of fragments,
C={Cq, C,Cy, .., C,}, is delay optimal for the outpot

QED.

The delay optimality of the fragment\aring algorithm can be easilxtended to multiple
output DAGs. The cwering fragments for each output cone can be determined separétely
construction of the final HLB netlist may require replication for therlapping rgions between
output cone ceers. Havever, by Lemma 2 this does notfeft the delay optimality of the
individual output nodes’ a@rs and so the combination of the separate outpetrsavill also be

delay optimal.

Sub-optimality of Area Optimization Algorithm

This section shes that the fragment gering algorithm is not area optimal for an arbitrary
subject AG. The area-optimizingersion of the fragment wering algorithm uses only delete-
edge fragment patterns in the pattern libfagnd does not alle matching acrossah-out nodes
during the cwering stage. Since matching acroas-but is not alleved, replication is not needed

to construct the final HLB netlist.
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Figure 4-1: Example to she sub-optimality of area algorithm

This section first defines area and area optimality of thercm set of fragments. Then the
fragment cegering area-optimizing algorithm is shin to be sub-optimal for subject trees using a

counterexample.

Definition 4-3  Given an HLB templatelH, a subject BG, S and the ceering set of frag-
ments for§ C = {Cy, Cy, Cg, .., C,, }, the area of the wer of Sis the number of fragments in the
covering set of fragments, An area optimal set of gering fragments, is one such timas min-

imal.

One reason that the area algorithm is sub-optimal is because the fragment pattern library used
in the area algorithm does not contain the HLB fragment patterns ufférd The use ofuif-
ered fragments may reduce the total number of HLB fragments (this is the area cost function in
covering) after mapping. Heever, buffered patterns aste basic blocks and thet basic blocks

will often lead to a greater number of HLBs after fragment packing.

Figure 4-1 contains anxample that demonstrates that the area-optimizergion of the
fragment cwering algorithm is not optimal with respect to minimizing the number of fragments.
Figure 4-1(a) shes the L2-3 HLB and Figure 4-1(b) skse its isomorphically unique delete-edge
fragments. If the subject tree in Figure 4-1(c) is mapped using the library in Figure 4-1(b), then
the area-optimizing algorithm\gis the set of tw covering fragments enclosed in the shaded

boxes. Havever, a smaller area cost in terms of fragments may be obtained if the library were
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4-2(a): L2-2HLB  4-2(b): Subject network 4-2(c): Sub- 4-2(d): Optimal
optimal mapping mapping

Figure 4-2: Sub-optimal replication example

expanded to include HLB fragments with buffers. With the complete isomorphically unique
library shown in Figure 3-1, the subject tree could be mapped to only one HLB fragment. Since
the area-optimizing algorithm resulted in a solution with more fragments, it is sub-optimal for

trees and will also be sub-optimal for DAGs.

Extensionsto the Area Optimization Algorithm

There are extensions to the area optimization algorithm that may result in mappings with
fewer HLB fragments. As shown above, a complete fragment pattern library that includes the
HLB fragment patterns with buffers results in solutions with fewer fragments. Similar to the delay
optimizing algorithm, the area-optimizing algorithm will be optimal for trees if the subject graph

isatree and acomplete HLB pattern tree library is used [19] [38].

The use of replication during area optimization may also reduce the number of HLB
fragments in subject networks with fan-out. However a covering algorithm with replication may
not lead to an area-optimal cover if the area cost function is simply the sum of the area costs (in
terms of number of HLB fragments) of the transitive fan-in nodes. Note that we also assume that
if two solutions have the same cost in HLB fragments, then the solution with the smallest root
HLB fragment is selected. For example, Figure 4-2 shows an example where replication resultsin
a sub-optimal solution. Figure 4-2(a) shows the L2-2 4-LUT HLB template and Figure 4-2(b)
shows the subject network to be covered by the L2-2 HLB.
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Assuming replication were all@d, the mapping of the subject netw would proceed as
follows. NodeA of the subject netark is trivially mapped to a single-block fragment and has area
cost of one. NodeB andC are each mapped to an entire L2-2 HLB (that includes Ajdand
both hae area cost of one. Note that this mapping implies a replication ofAaddedeD is
mapped to a single-block fragment and its area cost is one plus the cost Bf mduleh is equal
to two. NodeE is also mapped to a single-block fragment and its area cost is alsbheventire
area cost of the mapped netk is the sum of the costs BfandE, which is four HLB fragments.
The final mapping of the subject neink is shavn in Figure 4-2(c). The nodeswared by each of

the four HLB fragments are encircled by a thick line.

However, an optimal ceering algorithm wuld not replicate nod&. The optimal ceering
algorithm would implement nodeB andE with complete L2-2 HLBs and nodewith a single-
block fragment. The cost of the optimalveo is three HLB fragments. The optimalveo is
illustrated in Figure 4-2(d). Thus thewasing algorithm with replication and using the simple

area cost function is sub-optimal.

4.2 Complexity and Optimality of Fragment Packing Prob-
lem and Algorithm

This section reiews the fragment packing problem in Section 4.2.1 and themsstiat the
fragment packing problem can be sahoptimally in polynomial time in Section 4.2.2. The com-
plexity of the heuristic fragment packing algorithm is discussed in Section 4.2.3. The optimality
of fragment packing is defined in Section 4.2.4 and then the conditions under which the heuristic
algorithm is optimal are described in Section 4.2.5. The final subsection (Section 42s63 gi
counterexample that shas that the heuristic fragment packing algorithm is, for the general case,

sub-optimal.
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4.2.1 Racking Problem Definition Review

The fragment packing problem is defined as fWdioGiven a se = { P4, Py, P3, .., P },
where eachP; corresponds to a fragment pattern, theecmg set of fragments = { C,, Cy, Cj,
.., Ch }, where eaclg; is isomorphic to a member Bf and a collection of maximal packing sets
M= { Mq, My, M3, .., M|, } where eachM; is a subset dP, the fragment packing problem is to

find a partition ofC into a collection of disjoint subsets = { X;, X5, X3, .., X, }, such that each

X; U M; for somg andk is as small as possible.

4.2.2 Complexity of Fragment Rcking

The HLB fragment packing problem shares some features with thgeinben-packing
problem. The intger bin-packing problem can be stated as WdtoGiven a set of items, each
item having an intger sizes, 1 < 5 <K, pack then items into a minimum number of igfer bins
of integer sizeK. Assuming that the inger sizeK is a constant, the irder bin-packing problem
can been shwn to be polynomial im [42]. It will now be shan that the fragment packing

problem can also be s@s optimally in polynomial time.

Theorem 6 The fragment packing problem described in Section 3.5.1 can kel sghtimally

in polynomial time.

Proof The proof shars that an xhaustve algorithm to sole the fragment packing problem opti-
mally can be wecuted in polynomial time. An outline of thehaustve algorithm is as folles:
Givenn fragments to pack, all possible setsof fewer paclked HLBs are generated. Each gener-
ated set of padd HLBs,X, is checkd to determine if it contains all of thecovering fragments

in C, that is, ifX is avalid set of packd HLBs. The alid set of pac&d HLBs with smallest cardi-

nality is the optimal packing.

The folloving proof assumes that the HLB HagUTs and is represented by a directed tree

consisting ofb internal nodes anoh = b-1 internal edges. The eering set oin fragments to be
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packed is denoted by C. It is also assumed that the cardinality of the collection M of maximal

packing sets is p. The upper bound on the number of maximal packing sets p was shown in Sec-

tion 3.5.3 to be 3°L. Since b is a constant, p will also be bounded by another constant.

We now determine an upper bound on the number of sets of packed HLBs that the algorithm

will generate given n fragments to pack. Suppose the integer n is partitioned into integers ng, Ny,

P
Ny, .., Ny such that Z n; = n. Let each n;, where i = 1.. p, correspond to the number of
i=0

occurrences of packing set M; in the generated packed HLB set X and ng correspond to the unused
part of n that has not been assigned to any of the p packing sets. The fragmentsin X correspond to
the union of the fragments in ny packing sets of type My, n, packing sets of type ny, .. , and n,

packing sets of type M,. Note that if ny> 0 then the number of packed HLBsin X is less than n

and thus if X isvalid then some of the packed HLBs in X contain more than one fragment from C.
There is no need to consider partitioning an integer greater than n because there are at most n
packed HLBs for n fragments. The inclusion of ny in the partitioning of n ensures that al
solutions with fewer than n packed HLBs will aso be considered. The number of possible sets of

packed HLBs is bounded by the number of ways of partitioning the integer n into p+ 1 partitions,

which isless than or equal to S] ; p% .

The validity checking can be formulated as a bipartite matching problem as follows. Let G be
abipartite graph with avertex set equal to the union of the two sets of vertices, V. and V, and a set
of edges E. Each vertex in V, corresponds to a fragment in the covering set C and each vertex in
V, corresponds to a fragment in the packing sets of X. If afragment f in X can cover afragment g
in C, then there is an edge between the corresponding verticesin V, and V.. If the cardinality of
the maximum matching of G is equal to | V. | then X is avalid set of packed HLBs. For &l valid
solutions, the one with the lowest number of packed HLBs (that is, the lowest value of n—ng) is

the optimal solution.



The cost of validity checking is the sum of the costs of creating the bipartite graph G plus the
costs of solving the bipartite matching problem. The cost of constructing G is the cost of applying
the fragment matching algorithm times the number of possible fragment matches. The cost of
using the fragment matching algorithm is O(m), where m is a constant equal to the number of
internal edges in the HLB. There are at most n packed HLBs in X and each packed HLB has at
most b fragments, so there are O(b n) = O(n) fragmentsin X. There are n fragmentsin C, and so
there are O(nz) possible applications of the fragment matching algorithm and thus O(nz) edgesin
G. The complexity of generating the bipartite graph is therefore O(m n2) = O(nz). The cost of
solving the bipartite matching problem is O(n1/2E) = O(n1/2n2) [44]. Therefore the overall

complexity of validity checking is O(n%/2) .

Thus the expression for the overall run-time complexity of the exhaustive algorithm, T(n), is

bounded as follows:
M+ PO, 5/2
T(n) < 0 p oxn

T(n) < (n+ p)Pxnd/2
Therefore:

p+2
T(n) = OHh 23

Since the number of maximal packing sets p is bounded by a constant, T(n) is polynomial inn,
and thus the run-time complexity of the fragment packing problem is also polynomial.

QED.

However, the exponent of the polynomia for the above algorithm is large and thus the

algorithm may not be practical.
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4.2.3 Complexity of the Heuristic Fragment Packing Algorithm

The heuristic fragment packing algorithm described in Section 3.5.4 first sostertients of
C into descending ordeand then proceeds to create the list of pdcKLBs, X. The lagest
remaining C; is placed in the first current paak HLB that can accommodate it. If no current
packed HLB can accommodate thedast remainindC; then a ne packed HLB is created for
that C; and added tX. The fragment packing igreedy because it packs the ggst remaining
fragment,C;, into the unused part of the first padkHLB in X into whichC; can fit. This type of

heuristic algorithm is referred to as a first fit decreasing (FFD) fragment packing algorithm.

The two steps of the heuristic fragment packing algorithm that determine its caiylee
the sorting of the aering fragments listC, and the construction of the packHLBs from the
sorted list. Assume that there aréragments to pack and that there pm@aximal packing sets.

The fragments can be sorted using a sorting algorithm, such as heapg3¢rti,ogmn) time [45].

The construction of the pae#d HLBs requires scanning each of theovering fragments
exactly once. Each scanned fragment is added to each of the currezd pHdBs, one after the
other to gve candidate paekl HLBs. Each candidate pack HLB is then alidated by
comparing it to each of tigmaximal packing sets for containment. If the candidatequhel B

is valid then the fragment is past there.

If there areb basic blocks in the HLB template, then there are at méstgments in each
maximal packing set and at mdstfragments in each paet HLB. Checking if a candidate
paclked HLB is a subset of avgin maximal packing set requires a linear comparison of both lists
and is thuO(b). Because there apmaximal packing sets, the comytg of validating a packd
HLB is O(p b). There may be up tocandidate pa@d HLBs for each fragment and so the cost of
determining where to pack a fragmenO@& p b). Since there are fragments to pack, the total
compleity of constructing the paekl HLBs isO(n® p b). Sincep andb are constants, the

complity of constructing the paekli HLBs isO(nZ).
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Since the compiety of sorting the fragments i®©(n log n) (< O(nz)) and the cost of
constructing the paekl HLBs isO(n?), the werall complaity of the FFD fragment packing

algorithm isO(n).

4.2.4 Definition of Optimality for Fragment Packing

Given the packing problem definition in Section 4.2.1g@trmal algorithm for an instance of
the fragment packing problem is one that finds the minimal number oégatkBs,k. More

formally stated, the optimality of alid packing of fragments is as folis:

Definition 4-4  The \alid packing of then covering fragments o€ = { C, C,, C3, .., C,, } into
a collection of disjoint subseX¥s= { X1, X5, X3, .., X, } isoptimal if and only if for ary other \alid
packingY={ Yy, Y5, Y3,.., Yy} of C,y=k .

The following section prees that the FFD fragment packing algorithm is optimal under

certain constraints on the maximal packing sets and thataletw®l HLBs fit these constraints.

4.2.5 HLBs br which FFD Fragment Packing is Optimal

The folloving theorem defines a set offstient conditions for the maximal packing sets of an
HLB so that the FFD fragment packing algorithm will be optimal. Note that in thenfatio

theorem, the HLB is assumed to consist @ksal basic blocks with an identicali-in ofK.

Theorem 7  The FFD fragment packing algorithm described in Section 3.5.4 is optimal if the

maximal packing sets of the HLB satisfy the faling two constraints:

() Every maximal packing set with multi-block fragments camehanly one
multi-block fragment and zero or more single-block fragments.

(i) There is only one maximal packing set consisting of only single-block

fragments.

Proof Because the FFD fragment packing algorithm sorts thericey fragments in descending

order of labels it packs the multi-block fragments first. Constraint (i) implies that adokiti8
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with multi-block fragments can accommodaxaely one multi-block fragment. Thus, the pack-

ing of each multi-block fragment is\ral. No other rearrangement of the multi-block fragments
can lead to a better packing and so the FFD fragment packing algorithm packs the multi-block
fragments optimallyThe unused part of an HLB will be referred to dwla. The FFD fragment
packing algorithm must nopack the single-block fragments into either the holes left after pack-

ing the multi-block fragments or somewig created HLBs.

The holes left after packing multi-block fragments are single-block holes. A single-block hole
can accommodate a single-block fragment if Hreih of the fragment is less than or equal to the
fan-in of the hole. FFD fragment packing places thgelsirremaining single-block fragment in
ary single-block hole that can accommodate the fragment. The packing of each single-block hole
is independent of each other because only one fragment can fit in each holextTyeragraph
shaws that the FFD fragment packing algorithm fills the single-block holes optimally with single-

block fragments.

Assume that the stragg of greedily placing the lgest remaining single-block fragmeftin
ary hole,h, that can accommodattéeads to a sub-optimal packing. This means that thestse
subsequent single-block fragmepthat can fillh better tharf, that is,g has greaterain-in tharf.
However, this is a contradiction because no fragment &ftan hae greaterdn-in because the

single-block fragments ke been sorted in descending orderami-in.

After exhausting the holes due to multi-block fragments; semaining single-block frag-
ments must be pael in HLBs that consist of only single-block fragments. Constraint (ii) says
that there is a unique maximal packing set that consists of only single-block fragments. Thus,
there is no alternate way of packing together only single-block fragments in an HLB. The sin-

gle-block fragments in the maximal packing set can be considered as single-block holes. As
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Figure4-3: A generictwo-level HLB

shawn earlier in this proof, the FFD strgtefor packing single-block fragments in single-block

holes is an optimal strajg

QED.

All two-level HLBs are shen to fit the constraints of Theorem 7 in thexineubsection and

thus FFD fragment packing will be optimal for these HLB topologies.

Two-level HLBs

A generic tw-level HLB consisting ofl+1 K-input basic blocks antl hard-wired links is
shavn in Figure 4-3. The root basic block is hard-wired tol tleaf blocks and the root block has

K- primary inputs. Note that the primary inputs of tHeaf blocks are not skam.

First we shw that a tvo-level HLB has at most one multi-block fragment iry anaximal
packing set and thus satisfies constraint (i) of Theorem &yBEwulti-block fragment must
include the root block. Since there is only one root block there cannot be more than one multi-

block fragment.

We nav shawv that for all two-level HLBs there is only one maximal packing set consisting of
only single-block fragments (constraint (i) of Theorem 7). Assume that the HLB template has
only two blocks, a leaf block and a root block. Using the leaf block to implemeuifex vill
yield one liffered single-block fragment witK inputs. A delete-edge operation on the same

input edge yields tersingle-block fragments, Kinput block and another block wit1 inputs.
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Thus the delete-edge operation leads to a packing set that is a superset of the packing set
generated by using a buffer operation. A similar argument can be applied to an HLB template
with three blocks. To create a buffered single-block fragment, one or both of the leaf blocks must
be used to implement a buffer. In either case, the packing set with the buffered fragment is a
subset of the one created by only using del ete-edge operations. The argument can be extended to
HLB templates with more than three blocks. Thus we conclude that the maximal packing set of
single-block fragments is generated by using only delete-edge operations on all edges and since

thereisonly one way to delete al edges, this maximal packing set is unique.

For example, Figure 4-4(a) shows the L2-4 5-LUT HLB and Figure 4-4(b)-(d) are the
maximal packing sets created by one, two and three edge deletions. Other maximal packing sets

(with buffered patterns) are generated by using blocks A, B and/or C to implement buffers.

4.2.6 An HLB for which FFD Fragment Packing is Sub-optimal

This section presents an HLB topology and an instance of the fragment packing problem for
which the FFD fragment packing algorithm is sub-optimal. The counter-example assumes that the
HLB has 4-LUT basic blocks. Thus, the FFD fragment packing algorithm is not optimal in
genera for all HLBs.

The counter-example usesthe L3-4.2 4-LUT HLB. ThisHLB islabelled asps 1 in Figure 4-5
and consists of four 4-LUTs. Figure 4-5 shows the L3-4.2 HLB and the 7 maximal packing sets

generated by delete-edge operations. The maximal packing sets are labelled ps1, ps2, .., ps8.

______________

Figure 4-4: A two-level HLB (L 2-4) and its maximal packing sets
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Figure 4-5: L3-4.2 HLB and its maximal packing sets

Figure 4-6 shas a set of fragments that are not matloptimally by the FFD fragment
packing algorithm. This a@ring set of fragments consists ofotwnulti-block fragments, ta
single-block fragments withah-in of four and tw single-block fragments wittah-in of three.

The six fragments in Figure 4-6 are in descending order and are ldukled, .. ,f 6.

The result of using the FFD fragment packing algorithm is illustrated in Figure 4-7(a). FFD
packs f1 andf 2 into the same paekl HLB since these twfragments can fit into maximal
packing setps2. Fragmentf 1 is isomorphic to the fragment with blocksandD in ps2.
Fragment 2 has one f@er primary input than the fragment with blogkandD in ps2, but still
fits the matching criteria. Fragmerft8, f 4 andf 5 fit in the second paekl HLB, ut since
fragmentf 6 does not fit, the FFD algorithm requires another HLB, for a total of threegack

HLBs. In contrast, the optimal packing in Figure 4-7(b) requires ordyparclked HLBs, in which
f3 f4 f5 f6
f1 f2

Figure 4-6: Covering Fragmentsthat give sub-optimal packing for L3-4.2 HLB
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4-7(a): Sub-optimal packing by FFD 4-7(b): Optimal Packing
Figure 4-7: Sub-optimal packing and Optimal packing for L3-4.2 HLB example

each of the two packed HLBs contain three fragments that are isomorphic to the fragments in
maximal packing set ps7. Since the FFD algorithm generates a solution with more packed HLBs
than an optimal algorithm, it is sub-optimal for the L3-4.2 HLB.

4.3 Conclusion

This chapter has presented proof of the delay optimality of the fragment covering agorithm.
The FFD fragment packing algorithm was shown to be optimal for al two-level HLBs. The
following chapter evaluates the effectiveness of the HLB mapping algorithms with respect to

theoretical bounds and a commercial mapping tool.
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Chapter 5 Effectivenessof theHLB
Mapping Algorithms

This chapter ealuates the é&fctiveness of the HLB technology mapping algorithms. The
overall HLB synthesis methodology consists of technology-independent logic optimization,
followed by mapping to LUTs and then the HLB fragmentecmg and packing algorithms
detailed in Chapter 3. The first section of this chaptaluates the é&fctiveness of the a@ring
and packing algorithms using theoretical bounds. Section 5.2 contains an empirical study to
compare the étacy of our averall HLB synthesis methodology to a commercial technology
mapper [11] for an FPGA with hard-wired connections, the Xilinx 4000 FPGA. The last section

summarizes this chapter

5.1 Comparison to Theoretical Bounds

This section compares thdegtiveness of the HLB mapping algorithms with respect to the
minimization of area. The measure of area is the total number cégh&itkBs. Vv do not discuss
the optimality of the algorithms with respect to delay-optimization because in Chapteagl it w

shawn that the delay-optimization algorithm produces an HLB netlist with the minimal delay

5.1.1 Performance of the Area-optimization Algorithm

In Chapter 4, the area-optimization HLB mapping algorithas wraen sub-optimal with
respect to producing the minimal number of HLBs fonegiinput LUT netwrk. The fragment
covering stage of the algorithm does not necessarily generate the minimal number of HLB

fragments. Havever, the packing stage of the algorithm produces a minimal number oégack
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HLBs for certain HLB topologies and so the area-optimization algorithm may be reasonably

effective.

The orerall efectiveness of the area-optimization HLB mapping algorithm can be measured
with respect to easily calculatedader bounds: Gien a netwrk of N basic blocks and an HLB
composed oB basic blocks, a simplewer boundLB, on the number of HLBs IsB = [ N/B].

This lower bound may not be ackiable wheneer the basic block netwk precludes the
selection of a set of fragments that can be @adckith no vasted internal blocks in the pack
HLBs. When there are noasted basic blocks in the packHLBs the packing is said to be a

perfect packing.

An application of the er bound is shen in Table 5-1. In this table, 15 MCNC benchmark
circuits [49] are mapped to the L2-3 HLB with three 4-LUTsvahan Figure 3-1. Note that the

L2-3 HLB is a tw-level HLB and thus its fragments will be packoptimally The first column

Circuit || #LUTs | Lower Bound || Actual HLBs |
9symml 71 24 26
alu2 142 48 49
alu4 236 79 86
ape’ 74 25 29
b9 45 15 15
c1355 91 31 33
c8 38 13 15
cc 25 9 9
cml62a 12 4 5
comp 36 12 13
count 39 13 16
decod 20 7 10
mux 17 6 6
vda 208 70 71
z4aml 6 2 3
|  Totals | 1060 || 358 | 386

Table5-1: Comparison with Lower Bound on Area of L2-3 HL B circuits
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gives the circuit name, the second column is the number of 4-LUTSs in the circuit, the third column
has the predicted\er bound for the number of L2-3 HLBs and the last columeasgihe actual
number of HLBs after using our technology mapférese circuits are also used in Section 5.2

for the comparison with a commercial HLB mapp&ne summary at the bottom of the table
shaws that the lever bound predicts a total of 358 HLBs, while the actual mappings totalled 386
pacled HLBs. This 8% eerage diference is caused by the follmg: (1) the cwering algorithm

makes sub-optimal fragment choices which cannot pack well together and (2) the properties of the

basic block netark do not allov choosing a set of fragments that will pack perfectly together

In general, as the number of LUTs (and hard-wired links) in the HLB increases, the size of the
area-optimized circuits with respect to thevés bound increases. Thisfexdt is caused by the
increase in the number of hard-wired links in the HLBs. More hard-wired links in the HLB reduce

the connection flability, and this maés it more dfficult to eficiently utilize the lager HLB.

Table 5-2 lists the most arediefent HLBs consisting of a gen number of 4-LUTs, and
compares the number of actual HLBs and the number of HLBs predicted byw#reblound.
Column 1 contains the name of the HLB, column 2 contains the predigted bound on the
total number of HLBs in all circuits, column 3 lists the actual totals after mapping and the last

column shws the percent dérence between the actual number and tivedldound number

Topology BomIJ_no(\the(g tals Actttjglt;SLBs % difference

L2-2 533 547 3

L2-3 358 386 8
L3-4.2 270 285 6
L3-5.2.2 219 244 11
L3-6.3.2 183 207 13
L3-7.2.2 158 183 16
L3-8.2.2.2 139 157 13
L3-9.4.3 125 139 11

Table5-2: Comparison with Lower Bound on Area of 4-LUT HLB circuits
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The percent dierences from the Wer bound in &ble 5-2 range from small (3%) to
significant (16%). This shes that the area-optimizing HLB synthesis procedure is reasonably

effective when mapping 4-LUT HLBs and may also bieatfve for other HLBs.

5.2 Effectiveness of Overall HLB Mapping Procedure

This section compares ouverall HLB mapping procedure with a technology mapper for the
Xilinx 4000 FPGA architecture called PPR [11].eWised ersion 1.21 of PPR for our
experiments. The CAD systems are compared for delay and area in an empiricalTseidy
benchmark circuits used in theseakations are chosen randomly from the multelelogic
synthesis benchmark suite [49], with the constraint thetyecircuit could fit in the Xilinx 4005
FPGA when implemented by PPR. These same circuits were usedluate the Xilinx 4000
logic block architecture in a pr@us study [9] and some of the circuits are used in the empirical

FPGA architecture study in Chapter 6.

The Xilinx 4000 Configurable Logic Block (X4000 CLB) is a commercial thiiBed FPGA
architecture with hard-wired connections. The combinational logic portion of the X4000 CLB,
which is illustrated in Figure 5-1, consists ofot@-LUTs whose outputs are hard-wired to the
inputs of a 3-LUT Note that the X4000 CLB only ailks ary two of the three LUT outputs to be
accessed simultaneouslihis is in contrast to the architectural assumption in Section 1.1 that

states thaall LUT outputs are accessible through tappiofjdrs.

Figure 5-1: The Xilinx 4000 CLB
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The orverall HLB synthesis procedure includes technology-independent logic optimization,
technology mapping to LUTs and then the HLBsexing and mapping steps. The common
starting point for PPR and for our HLB synthesis methodology is a Booleaorkettvat has
undegone technology-independent logic optimization. PPR maps the delay- or area-optimized
Boolean netwrk directly to a netlist of X4000 CLBsoFthe follaving comparison, PPRasg set
to use its defult optimization parameters. The HLB synthesis methodology in this dissertation
first maps the Boolean netwk to an area- or delay-optimized netWw of LUTs using Chortle
[20] [21] and then uses the HLB\aring and packing algorithms, implemented in a CAD tool
called TEMPT to produce the final HLB netlist. Note that TEMPT had to be modified to map to
the X4000 CLB because it violated the assumption that there is a tapffiegdn eery LUT
basic block output and because its H LUT has 3 inputs while the otbdrUWws each hae 4

inputs.

Table 5-4 compares PPR and the Chortle+TEMPT combination for delay optimization. The
first column lists the MCNC benchmark circuit name, the second column lists the number of
programmable connections (PCs) in the critical path when that benchmark is mapped using PPR,
the third column lists the PCs required when using Chortle+TEMTfourth column lists the
number of X4000 CLBs required for that benchmark when using PPR, and the last column lists
the number of X4000 CLBs when using Chortle+TEMETRortle+TEMPT used arverage of
22% faver programmable connections than PPR. This is a significéertedi€e in the number of
programmable connections. Wever, this may not translate into a significant reduction in routing
delay after placement and routing because, when optimizing for, @astle+ TEMPT uses 89%
more CLBs than PPR. A Ige part of the areaverhead is due to the Chortle mappe&hich
produces anxeessve number of LUTs when optimizing dela& more area-étient delay-
optimizing LUT mappersuch as Flmap [33], would greatly reduce the aregephead and thus
the reduction in programmable connection delayuldd more lilely translate into a similar

reduction in routing delay
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Benchmark Number of Prog. Conn. || Number of CLBs. |
Circuit PPR s Ch+TEMPT PPR Ch+TEMPT
9symml 8 5 36 41

alu2 15 12 71 145
alu4 20 14 123 283
ape’ 5 5 36 51
b9 3 3 21 25
cl1355 7 8 47 111
c8 5 3 18 17
cc 2 2 8 20
cml62a 3 3 5 8
comp 7 5 17 29
count 9 7 16 21
decod 2 1 10 16
mux 2 3 5 6
vda 9 5 98 193
z4mi 3 2 3 5
Totals 100 78 514 971

Table5-3: Comparison of PPR and TEMPT for Delay-optimization

Table 5-4 compares PPR and the Chortle+TEMPT synthesis methodology for area-
optimization. The first column lists the MCNC benchmark circuit name, the second column lists
the number of X4000 CLBs required for that benchmark when using PPR, the third column lists
the number of CLBs required when using Chortle+TEMR& fourth column lists the number of
programmable connections (or PCs) along the critical path when using PPR, and the last column
lists the number of critical path PCs when using Chortle+TENIR&rall, Chortle+TEMPT uses
about 4% fever X4000 CLBs to implement the same benchmark suite than PPR, s@tGARv
systems are similar in feCtiveness for area-optimization. When optimizing area,
Chortle+TEMPT has 10% more PCs in the critical paths because the first prioggpisds the

number of CLBs as @ as possible.

The abee tables hae shavn that Chortle+ TEMPT are similar infe€tiveness to PPR when

optimizing area, bt is significantly more &ctive when optimizing delayHowever, it should be
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Benchmark Number of CLBs | Number of Prog. Conn. |
Circuit PPR s Ch+TEMPT PPR Ch+TEMPT
9symml 36 36 8 8

alu2 71 69 15 20
alud 123 113 20 19
ap’ 36 36 5 7
b9 21 20 3 5
cl1355 47 38 7 7
c8 18 18 5 4
cc 8 11 2 3
cml62a 5 6 3 4
comp 17 15 7 6
count 16 16 9 8
decod 10 10 2 2
mux 5 8 2 4
vda 98 97 9 10
z4ml 3 3 3 3
Totals 514 496 100 110

Table5-4: Comparison of PPR and TEMPT for Area-optimization
noted that TEMPT can be used to map tp ldhB topology while PPR is restricted to mapping
to the X4000 CLB. The m chapter will demonstrate WoTEMPT can be used txglore mary

different HLB topologies to find the HLB-based FPGA architectures with good speed and density

5.3 Conclusion

This chapter sheed that the HLB mapping algorithm performs reasonably well compared to
theoretical laver bounds for area. Compared to a commercial CAD tool for a commercial HLB-
based FPGA architecture, the synthesis procedure performed similarly in terms of areag@% fe
CLBs) and significantly better in terms of delay (22%deprogrammable connections in critical

paths).

The net chapter will demonstrate the use of the HLB mapping algorithms in an empirical

study of HLB-based FPGA architectures.
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Chapter 6 An Empirical Study of HLB
Architectures

This chapter describes thegperiments used tovaluate a set of alterne#i hard-wired logic
block (HLB) architectures. As discussed\poeisly, hard-wired connections in logic blocks may
lead to FPGA circuits that aradter and hae reduced routing area. ever, area-diciency may
be reduced since the é&d interconnections in HLBs makt difficult to utilize the logic di-
ciently. This chapter describes the empirical approach usexptore the relationships between
the basic block functionalifythe hard-wired connection topology of the HLB and the speed and

density of the resulting HLB circuits.

The methodology is to implementveeal benchmark circuits in an FPGA using each HLB
architecture and then measure the area and delay of the resulting circuits. These results are ther

compared to determine the best HLBs for speed and/or density

The goals of this empirical study are:

i) Find the basic block and HLB topology that will lead tastf FPGA

architectures with good aredieiengy.

i) Determine the best basic block and topology for the most diieeeetf HLB

circuits.

This chapter is @anized as follews. Section 6.1 describes the space of hard-wired logic
blocks &plored in the gperiments. Thex@erimental method, which includes the synthesis steps

and the area and delay models, i&giin Section 6.2. Section 6.3 contains the results of the HLB
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architectural imestigations, as well as some discussiagarding the dect of non-ideal HLB syn-
thesis tools and the area and delay model parameters on the results. Section 6.4 summarizes the

key empirical results. The final section discusses some limitations of the empirical study

6.1 TheHard-wired Logic Block Design Space

An HLB is defined by its basic blocks and the topology used to connect the basic blocks with
hard-wired links. The HLBs iresticated are tree topologies and all the basic blocks in the HLB

are identical. Each basic block has a tapputeb to male its output accessible to the routing.

The results of preous studies [6] [8] hae shavn that for FPGA architectures without hard-
wired connections, lookup table (LUT) basic blocks are a good choice from both a density and
speed perspeet. Thus, in this dissertation, we restrict our attention to LUTs as the basic block
of the HLB. The HLBs are also constrained toeh&UT basic blocks with the same number of
inputs. This simplifies the mapping problem and restricts the size of the design space, although
other research indicates that there may be reasons to use a heterogeneous mixture of LUT basic

blocks [13] [46].

The HLBs ivestigated in this study are as fols:

i) All possible HLB topologies consisting of 2-LUTs (that is, 2-LUT HLB

topologies) with 4 or feer levels of LUTSs.
i) All possible 3-LUT HLB topologies with 3 oreer levels.

iii) All possible 4-LUT HLB topologies with 3 or Veer levels and 9 or feer
LUTs.

iv) All possible 5-, 6- and 7-LUT HLB topologies withavievels and those with 3

levels and 6 or feer LUTSs.
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The investigated HLBs were restricted to the abdypes because the run-times and memory
requirements of the HLB technology mapper increase greatly with the number of hard-wired links
in the HLB. In addition, the results of the HLB architecture studies presented later in this chapter
shaw that there are diminishing imprements in speed as the size of the HLBs approach the lim-
its of the abwe types. As the number of hard-wired links increase, the incremental speed
improvements become more costly in terms of area because the reduced connedidty fle

malkes it more diicult to utilize the HLB diciently.

In total, there werewer 200 diferent HLBs ivestigated. Some of the 4-LUT HLB tree topol-
ogies ivesticated in this study are illustrated in Figure 6-1. The circles in Figure 6-1 represent
LUT nodes in the HLB tree. The thick lines in Figure 6-1 represent a hard-wired connection edge
between tw LUTSs, while the thin lines represent a primary input edge. The namingrdamn

adopted for each HLB topology is described in Section 3.4.2.

Figure 6-1: Some 4-LUT HLB topologies
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An important assumption is that each HLB featureapping buffer on the output of each
LUT basic block, which mads the output accessible to the routing. Figure 6-2 illustrates the tap-

ping kuffers on each LUT outputapping luffers ofer two major adentages:

i) Tapping huffers lead todster HLB circuits since the output of one LUT can be

accessed directly instead of proptigg it through another LUT

i) Tapping luffers imprave logic density since unrelated pieces of logic can be
pacled together in the same HLB, with each piece using a separate tapped

basic block output.

The disadantage of tappinguffers is that thg require significant area becauseytieve

large signal dsing capability and requirexeéra routing resources to access them.

The net section describes hwathe speed and density of FPGAs with these kind of hard-wired

logic blocks can bexplored empirically

6.2 Empirical Method for Exploring HL Bs

To evaluate the arious HLB-based FPGA architectures, a set of 15 MCNC combinational
benchmark circuits are implemented in each FPGA architecture (each wigrandiHLB) using
available synthesis tools and aveb CAD tool based on the algorithms described in Chapter 3.
Over 200 diferent HLB-based FPGAs werevastigated, and thus,ver 3000 diferent HLB cir-

cuits were constructed. The area and delay of each implemented circuit is then calculated, and the

Figure 6-2: HL B tapping buffers
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results @er all circuits are summarized for each HLB architecture. The summaries are used to
produce measures of the goodness of each HLB-based FPGA architecture for the comparisons

discussed in Section 6.3.

The folloving subsections describe the benchmark circuits used in this stedgynthesis
steps used to implement each circuit, and the models used to measure the area and delay of the

circuit.

6.2.1 Benchmark Circuits

The 15 benchmark circuits were chosen from the MCNC muigtliegic synthesis bench-
mark suite [49]. The selected benchmarks includgersef the circuits that were used t@kiate
the Xilinx 4000 logic block architecture in a pieus study [9] and to determine théeetiveness
of the HLB mapping algorithms in Chapter &ble 6-1 contains the information about the bench-
mark circuits. The circui$ name is listed in column 1 and a brief description of the function of
the benchmark circuit is in column 2 [49]. These limited functional descriptions are the only ones
available in [49]. The third and fourth columns respes§i contain the size of the circuit in terms
of the number of 4-input LUTs and the maximum primary output depth, when the circuit is
mapped to 4-LUTs using Chortle [21] in speed-optimizing mode. The benchmark circuits contain
a mixture of random logic and arithmetic circuits a@adyvin size from 13 to 608 4-LUTs. The
maximum output depthavies from 3 to 12 LUT leels. The final rw summarizes the total num-

ber of 4-LUTs and the sum of the critical path deptres the entire benchmark suite.

6.2.2 Synthesis Steps

The input to thexperimental procedure is a Boolean description of the benchmark circuit and
the output is a place-and-routed netlist of HLBs that implement the circuit. The FPGA routing
architecture illustrated in Figure 6-3 is assumed. In Figure 6-3, the FPGA on the right consists of
the HLB tile on the left repeated in a 2-dimensional square. &esh HLB tile contains a hard-

wired logic block (labelled “L”), tw connection boas (labelled “C”), a switch box (labelled “S”)
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Benchmark Description Size (#of 4-LUTYS) Max. Output Depth
9symml count ones 87 6
c1355 error correcting 426 7
c432 priority decoder 265 12
c499 error correcting 383 8
au2 ALU 365 11
apex7 logic 128 5
cml50a logic 13 4
cml5la logic 13 3
cml62a logic 25 3
cml63a logic 22 3
count counter 117 4
frgl logic 58 5
k2 logic 608 7
mux MUX 17 3
parity parity 21 3
[ Tos || [ 2548 [ 84

and channel segments between the connection and switch boxes. The connection boxes are used
to connect HLB 1/O pins to the channel segments. The switch boxes are used to connect vertical

and horizontal channel segments. Each channel segment contains W routing tracks, where W is

Table 6-1: Benchmark Circuit I nformation

determined by the placement and routing step described below.

Figure 6-3: FPGA layout tile and therouting architecture
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The mapping from MCNC benchmark circuit to the HLB-based FPGA consists of the-follo

ing steps:

1. Perform technology-independent logic optimization on the MCNC benchmark circuit using
mis2.2 [17] to produce an optimized Boolean raetw The goal of this step is to minimize the
technology-independent cost function that measures the area or delay of the Boolean descrip-

tion of the circuit.

2. Map the optimized Boolean description to an optimized ogtwf LUTs using the Chortle
[20] [21] LUT technology mappe€Chortle has tew modes: (a) area-optimizing mode, in which
it minimizes the number of LUTs and (2) speed-optimizing mode, in which it minimizes the

depth of the LUT netark.

3. Map the optimized LUT neterk to a netlist of hard-wired logic blocks using the algorithms
outlined in Chapter 3. The algorithms are implemented in a program called the TEMPT HLB
technology mapper [9]. When optimizing area, TEMPT minimizes the number of NLBg,
in the circuit. When optimizing delaff EMPT minimizes the number of programmable con-
nectionsNg, in the critical path. Note that it is assumed that the FPGA wik beactly the
number of HLBs specified by this mapping step andNhjss is used to calculate the area of
the FPGA resources needed to implement the circuit. This assumptiorvio§ FPGA
resources that “float” according to the circuit being implemented will be further discussed in

Section6.2.3.

4. Perform global placement and routing on the HLB netlist, using Altor [22] and PGAroute [8]
respectrely, to find W, the maximum channel widthver all the channel genents of the
FPGA. The placement and routing step minimizes the number of tracks in the routing channels
between the logic blocks and attempts to endde resulting implementation as square as possi-
ble. This leads to a circuit that is both small zexst.fNote that the FPGA hasaetly W tracks

when implementing this particular benchmark circuit, &vds used to find the size of the
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FPGA routing resources needed to implement the circuit. This assumptionraf tree chan-
nel width “float” according to the circuit being implemented will be further discussed in

Section6.2.3.

Note that in the study concerned with HLB speed, the first three steps are set to minimize
delay with area being a secondary concern. In the afiegeedy study the first three steps are set

to minimize area with delay being a lesser consideration.

6.2.3 Fixed vs. Free Variable Number of HLBs and Channel Width

In the experiments presented belpthe area costs for implementing a set of benchmark cir-

cuits using a gen HLB is calculated using twfree \ariables Ny, g andW. These free ariables

are set to whater value is needed by the CAD tools to implement the circuit in the HLB-based
FPGA. Havever, the use of freeariables may not be relent because in a “real” HLB-based

FPGA, the amount of each resourbig (g andW) would be fixed at the point ofabrication. Thus
an alternatie to using free ariables in thexgeriments wuld be to fix the alue ofNy g andW

variables and then implement each circuit in the FPGA within these constraints. The only consid-
eration with respect to area, when dealing with an FPGA wigl firsources, is whether or not

the circuit will fit on the FPGA.

However, suppose one hasveeal FPGA architectures with add set of resources $ofent
to accommodate sof the benchmark circuits.oTcompare the diérent fixed resource FPGASs
on a lerel playing field, one wuld have to use some measure of thization of each FPGA
total resources when implementing each circuit. One @areahat this is what the freanable

values ofNy, g andW do indeed measure. Thalues of the freeariables indicate the minimum

amount of resources needed to implement a circuit in an FPGA with a particular HLB architec-
ture. Since the fed resource FPGA can accommodate the circuit, these dresble alues

would be less than the amount offikresources in the FPGA and can be used to measure the uti-
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lization of the total resources of the FPGA. Thus, the feemble numbers are suitable for com-

paring the area costs of tharious HLB architectures.

6.2.4 Delay Model

The delay of a circuit of hard-wired logic blocks iseako be the longest combinational path

delay The longest path dela®,q, is gven by:

Diot = NLg* Dig + Nr* DR (6.1)
whereN, g is the number of basic logic blocks alony &f the longest path), g is the delay of
each basic block\g is the number of programmable routing connections along a longest paths
andDgris a constant that represents therage delay per programmable routing connection. Note
that each programmable connection countetiiynay consist of one or more switching stages.
The delay due to the hard-wired links is assumed to be zero. The first product xpithssieon is
the combinational delay along the longest path. Dhg delays for the arious LUT sizes in a
1.2um CMOS process are summarized able 6-2. These delays were determined from SPICE
simulations [7]. The second product is the routing deléne aerage delay of a programmable
connection is dffcult to determine since it depends upowesal circuit and routing architecture
properties, such as connecticendut, number of switching stages in the connection, switch
delays and number of switches connected to each routing track. The simplest possible model for
average delaya constant parametevas chosen. ThBg constant parameter will beawed to

investicate its eflect on the conclusions of the FPGA architectugeeiments.

#LUT D, g Delay
inputs (ns)

2 1.39

3 1.44

4 1.71

5 2.03

6 2.38

7 2.85

Table 6-2: Delays of Lookup Tablesin 1.2um CM OS process
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Discussion about the Delay of a Hard-wired Connection

In the delay model it as assumed that a hard-wired link has zero dédlaig sub-section

discusses whether this assumption is reasonable.

A hard-wired connection consists of a simple metal wire, which by itsslidvhare an
insignificant delay compared to a basic block or programmable connectiwavéiothe load of
the tapping bffer on the LUT output dving the hard-wired connection may increase the delay
through a hard-wired connection. Figure 6-4vehithe detailed vie of an implementation of a
hard-wired connection betweendwi-input LUTs labelledUT1 andLUT2 and the tapping
buffer on the output oEUT1 [25]. The details of one quarter of the SRAM cells and decoding
tree ofLUT1 are shwn in Figure 6-4. The hard-wired link between the LUTs issghas a bold
line. The output oL UT1 has a small ddfer since it must dvie both the tappinguffer and the
hard-wired input o UT2. InputD of LUT1 (and input. of LUT?2) is the least loaded of the four

inputs because it has themest pass transistors connected to it. Note that the hard-wired link

Figure 6-4: Detailed view of Hard-wired Connection and Tapping Buffer [25]
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between the LUTs is connected to the least loaded input (ipftL UT2 to minimize the delay

of the hard-wired connection [25]. The total load onlth& 1 output buffer is small and so the
hard-wired link delay is insignificant compared to the delay of a LUT or a programmable
connection. In a layout of an FPGA in ain2CMOS technology [25] [26] the delay due to a
hard-wired connection & 0.0hs and the delay of a 4-LUTag 1.7hs. Thus the assumption of

zero delay for hard-wired connections is reasonable.

Discussion about the Assumption of a Constant Value for Dy
The delay model assumes that tiilerage delay of a programmable connecbgyis constant
over all FPGAs, rgardless of the HLB architecture or if the FPGA has hard-wired connections.

This sub-sectionxamines the alidity of this assumption.

The routing architecture siva in Figure 6-3 \es assumed because of thailability of CAD
tools suitable for this architecture. In this architecture, the LUTs in each HLB are grouped closely
together and the HLB I/O pins are spreadrgy on the periphery of the group of LUTSrF

example, Figure 6-5 siws an HLB that has four K-input LUTs connected with three hard-wired

Figure 6-5: Assumed Routing Architecture
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links (bold lines). Vith this architecture, as the total number of LUTs in the HLB increases, the
average number of pins thatusato be connected to the channejmsents on each side of the
HLB also increases.df example, if each LUT haK inputs and one output, then the HLB in
Figure 6-5 will hae on aerage w

average of aboutRk pins per channel genent. A K-LUT FPGA without hardwired connections

[OK pins on each side, and thus there is an

would hare on aerage abouK/2 pins per channel geent. Since there are more pins per
channel sgment for HLBs with seeral LUTS, there will tend to be a greater number of routing
tracks per channel gment,W, relatve to an FPGA without hard-wired connections. A higher

means that the parasitic capacitance connected to each programmable switch is greater and henc

the delay per programmable connection is also gteater

A better routing architecture is one in which the routing tracks are between the LUTs of the
HLBs and the hard-wired links between the LUTs span the routing channels in a manner similar
to the direct connect in the Xilinx 3000 architecture [10}. &ample, Figure 6-6 skes an HLB

with four LUTs using the alternag routing architecture. This routing scheme leads to almost the

Figure 6-6: Better routing architecture
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same number of pins to connect to each chanmgheet as in the FPGA has no hard-wired
connections. Thus, assuming the number of basic blocks in the HLB circuit and input basic block
circuit is the same, then it is &ky that the circuits will hae a similar number of routing tracks per
channel sgment,W. Thus if the assumption of similar numbers of basic blocks holds, the delay
per programmable connection in the circuits of the HLB-based FPGA and the FPGA without

hard-wired connectionsauld be about the same.

For area-optimized circuits, itas shwn in Section 5.1.1 that the mapping algorithm, when
mapping to a ariety of HLB architectures, produced a number of HLBs close (from 3 to 16%
difference) to a er bound based on the number of basic blocks in the input basic block circuit.
Hence the number of basic blocks does raoy \wsignificantly among the HLB architectures for
area-optimized circuits. Thus, wepect that with the better routing architectuAéwill not vary
significantly with the HLB architecture and thus terage programmable connection delay will

be about the same independent of the HLB architecture.

However, it should be noted that when optimizing for deldne HLB mapper increases the
number of LUT basic blocks by significant amounts because it uses replication teantpeo
delay ofevery fan-out node. A lagre increase in the number of LUTowd lead to greater
programmable connection delays.wéwer, the use of an impwed HLB mapper that only uses

replication along the critical pathowld alleviate this problem.

6.2.5 Area Moddl

The total area of a circuit is calculated as the product of the number of NL,5s,times the
area per HLB tile. Each HLB tile consists ofotywortions, a logic portion and a routing portion.
The logic area per tile is the sum of three components. The first component is the area of the
lookup tables themsedg. The second part is theefkarea per LUT and accounts for the circuitry

used to access the LUT outputs. D flip flops are needed to implement sequential circuits and so
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they are assumed toist in the FPGA. The third component is the area due to D flip flops. The

expression for the logic area per tily, is as follavs:

LA=M* 2% LB+ M* FA+ D * DFFA (6.2)
whereM is the number of lookup tables in the HUB{s the number of inputs per LUIB is the
area per logic bit in the LUTFA is the fied area per LUTD is the number of D flip flops per
HLB andDFFA is the area of each D flip flop.

The area per logic bit,B, consists of the area of a programming bit, the pass transistor from

the decoding tree used to select thé hitd the bffer for each bit used to ae the decoding tree.

Since the entire truth table of the function is in the | th&re are ¥ bits. The fixed area per LUT
FA, consists of the area for the LUT outpuffbr needed to dve the ngt LUT input and the tap-
ping kuffer. Because of the relagly small size of a DFF compared to a LW hae found that
varying D does not significantly &dct the ranking of the sizes of tharious HLBs. Br the fol-

lowing studies, we assunie= 1 (only 1 D flip flop per HLB) in the area model.

In the studies, the area model parametdues were dered from the layout of an FPGA in a
1.2um CMOS technology [25] [26]. The parametedues ardB = 1400pn?, FA = 1800pn?

andDFFA = 3000pn?.

For the routing area model, it is assumed that the area of the programmable switches will
dominate the routing area per tiRA). Thus the epression folRA counts the number of routing

bits and is as folles:
RA= (Njo* Fe+ 2* Fs* W) * RB. (6.3)
whereN, g is the number of input and output pins per HEBjs the flaibility of the connection

box, Fyis the fleibility of the switch boxW is the number of routing tracks in each channg! se

1. Note that the decoding tree for a LUT withisits has $-1 pass transistors. Thus, there is
approximately one pass transistor per LUT bit.
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ment after global routing arfeB is the area of each programmable routing bit. The tégasd
F are defined in Section 2.3.3. TNgy * F, product is the number of programmable switches
used to connect the 1/0O pins to the channghsmts. The * Fg* W term is the number of

switches in the switch bes used to connect channesents to each otheérhe area of each bit
in the programmable routing resourcBB, consists of the area of a programmable bit plus the

area of a pass transistor controlled by the bit.

The results in [27] siweed that arfF. which is close tdV andFg = 3 gves good routability
without excessve routing resources, and this leads us to thevollp simplified equation foRA:
RA= (Njo* W+ 6*W)* RB (6.4)

The number of I/O pingyg is equal tavl * K + 1 and so the finabgression foRA is:

RA=(M*K+ 7)* W* RB (6.5)
The 1.21m CMOS layout in [25] [26] used static-RAM programmable routing bits and the

derived \alue ofRB is equal to 1000m.

6.3 Experimental Results

There were tw types of studies conducted, one that optimized the HLB-based FPGA circuits
purely for speed and another that optimized purely for area. The goal of the speed study is to find
the LUT basic block and connection topologies that lead to a high-performance HLB architecture,
with reasonably good logic densififhe goals of the area study are to find the LUT basic block
and topologies that gt the most areafefient HLB-based FPGAs and to determine if HLBs can
provide better density than logic blocks without hard-wired connections. Section 6.3.1 and Sec-

tion 6.3.2 describe the speed and area studiesDgtindRB values that correspond roughly to

an FPGA in a 1/2m CMOS layout technology with static-RAM programming bits in the routing.

In the speed and area studies, the HLBs were chosen based on one optimization criterion

(either speed or area), with the other criterion being the tiedrdédwever in both studies, our
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CAD tools focus on optimizing either speed or area, with littjaneto optimizing the otheirhe
CAD tools’ singular optimization goal may lead to inaccurate conclusions. Section 6.3.3 dis-
cusses hw this limitation of the HLB synthesis procedure mafgetf the accuracof the speed

study of Section 6.3.1 and the area study of Section 6.3.2.

The conclusions of the speed and area stwith respect to the best LUT basic block, can
also be dected by the parameters of the delay and area models. The parameters with the greatest

impact are thewerage interconnection deldyg, and the routing programming bit sifB. The

effect of these parameters on the architecture conclusions will be discussed in Section 6.3.4 and

Section 6.3.5.

6.3.1 Speed of HLB Architectures

As mentioned earlieiin the speed studwll the CAD tools were set to optimize speed with
area being a secondary goal. In the cdandé this studythespeed of a circuit refers to the maxi-
mum operating frequegoof the circuit. V& assume that the combinational benchmark circuits
will be placed between latches or flip flops, and thus the speed or maximum operating yrequenc

is the Bstest rate at which this sequential circuit can be ebhck

We define the “speed” for a particular HLB to be the arithmetic mean of the normalized speed
for each benchmark circuit implemented in an FPGA with that HLB. The speed is normalized
with respect to the speed of the same benchmark circuit implemented in an FPGA composed of 4-

LUT basic blocks without hard-wired connections (an L1 4-LUT HLB-based FPGA). The nor-

1/D
malized speed isgen by S = WHLB , WhereDy4 is the delay along the longest path between
K4

primary inputs and outputs of the circuit in the L1 4-LUT FPGA Bpgg is the delay of the cir-

cuit in the HLB-based FPGAy, andDy, g are derred from the delay modelgin in Section

6.2.4. In this section, we assume that= 4nsandRB = 1000umz. After speed-optimized imple-
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mentation, the 4-LUT FPGA circuits Vean aerage system speed of BBHz, corresponding to

an arerage longest path delay 26ns.

The area metric for a particular HLB is the arithmetic mean of the normalized areas of the cir-

cuits found by using the area model presented in Section 6.2.5v8ilag@area of the L1 4-LUT

FPGA circuits is 19 x 10um?.

Every HLB has a corresponding (area, speed) point that isvtage normalized area and
speed when the benchmark circuits are implemented in an FPGA with that hard-wired logic
block. The speedersus area cuevfor a gven set of K-LUT HLBs is constructed by connecting
the points in thenvelope set, which is the set of (area, speed) co-ordinates for the “best” K-LUT
HLB architectures. An HLE (area, speed) point belongs to theetpe set if and only if no

other point in the entire set has both greater speed aed &wea cost.

Figure 6-7 she's the speedersus area cuevcorresponding to the wslope point set for the

delay-optimized 4-LUT HLBs andable 6-3 lists the normalizedilues of speed and area for

Topology Normalized Speed | O(speed) NorAr\r: z;l;zed O(area)
L1 1.00 0 1.00 0
L2-2 1.14 0.10 1.19 0.16
L2-3 1.27 0.14 1.22 0.22

L3-4.2 1.28 0.14 1.33 0.34
L2-4 1.34 0.13 1.34 0.29
L3-5.2 1.37 0.13 1.42 0.47
L2-5 1.42 0.10 1.44 0.39

L3-8.4.3 1.44 0.19 1.69 0.67

L3-8.3.2 1.48 0.15 1.73 0.75

L3-9.4.3 1.49 0.21 1.74 0.70

L3-9.4.2 1.51 0.16 1.86 0.88

Table 6-3: Envelope Point Set for Speed-optimized 4-LUT HLB circuits

each point in the graph. The first column able 6-3 lists the name of HLB for that point, the sec-
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ond column lists thevarage normalized speed of the benchmark circuits, the third column lists
the standard deation of the aerage normalized speed, the fourth column lists Wieeage nor-

malized area and the last column lists the standasidtten of the aerage normalized area.

The speedersus area cuevfor 4-LUT HLBs in Figure 6-7 illustrates the tradé-of speed
for area, when optimizing purely for speed. In general, with more added hard-wired links in the
HLB, the HLB speed increases while the ardaiehcy of the HLB decreases because of the
reduced connection ##ility. This efect is partly due to the mapping process. When the HLB
mapper is optimizing purely for delayseeks to place as mahard-wired links as possible along
critical paths by replicating LUT basic blocks as needed. This replication of LUTs leads to an
increase in area because of the additional logic bits in the replicated LUTs and the additional pro-
grammable connections to connect the inputs of the replicated LOTexdmple, the L2-2 HLB

is 14% fster than the L1 4-LUT HLBUb at the cost of 19% more area.

Figure 6-7: Speed versus Area Curvefor Speed-optimized 4-LUT HLB Circuits
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Figure 6-8: Speed versus Area curves for Speed-optimized HLB Circuits

The standard deations for normalized speed and area reflect #m@tron in the characteris-
tics of the benchmark circuits. There tends to be a higlr@&ation in area among the speed-opti-
mized circuits in @ble 6-3 because some circuits require more replication of LUT basic blocks to

achieve the maximum speed.

Figure 6-8 illustrates the speedrsus area cues for each size of basic block LIMhen
optimizing purely for speed. Figure 6-8 is used in thd sabsection to determine the best basic

block for constructingdst HLB-based FPGAs.

Best LUT Basic Block for Speed

Figure 6-8 demonstrates that tlastest HLBs are those made of the coarsest-grained basic

block, the 7-LUT With 7-LUT basic blocks, the HLB speeds range from 132% to 177% of the
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speed of the L1 4-LUT HLB. Heever, Figure 6-8 shes there is a relately high area cost (from
23% to 204% higher than the L1 4-LUT HLB) associated with using thiye-grained basic
block. The high area costs arise because ofreasons: (1) it is ditult to utilize the logic func-
tionality of lage-grained 7-LUT HLBs étiently and (2) because of the darnumber of pins
associated with 7-LUT HLBs, there is a high routing area cost for connecting tlyelogan
block pins. Although the 7-LUT basic block leads to thetdést HLBs, the high area costs mak

the 7-LUT undesirable for HLBs with reasonable density

In contrast, Figure 6-8 stws that the shwest HLBs are made with the finest grained basic
block, the 2-LUT The speeds of 2-LUT HLBs range from only 75% to 101% of the speed of the
L1 4-LUT HLB. However, the 2-LUT HLBs also hae a laver area-diciency than the coarse-
grained LUT HLBs (from 40% to 144% more area than the L1 4-LUT HLB).|ddjie area-€i-
cieng of fine-grained LUT HLBs tends to be higher than that of coarse-grained LUT HLBs
because it is easier tofiefently utilize the smaller LUTs. Heever, the fine-grained LUT HLB
circuits hae mary LUTs and thus manpins. The routing area cost of connecting theyyans
is high and this leads tovlooverall area-diciency [8]. The slav speeds and high area costs emak

the fine-grained 2-LUT basic block undesirable &stHLBs with good density

Figure 6-8 shass that the intermediate granularity of a 6-LUT leads to the best basic block for
fast HLB circuits with reasonable densitost of the 6-LUT speedevsus area cuevlies to the
left and abwe all other LUT speedersus area cues. This shas that for almost angiven
speed, therexests a 6-LUT HLB that can implement the benchmark circuits using a smaller area
than an HLB composed of mother LUT basic block. Caersely for almost ap given area, a 6-
LUT HLB has the &stest speed. The location of the 6-LUT HLB eutemonstrates 6-LUT is the
best LUT basic block forast FPGA circuits with good density (although we note that some of the

points on the 5-LUT and 7-LUT cueg are withiro of the 6-LUT cure).
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Table 6-4 contains the speed and area of the 6-LUT HLBs in Figure 6-8. The first column is
the HLB topology the second and third columns respesdyi contain the \serage normalized
speed for speed-optimized circuits and standarztien of the speed of the HLB. The fourth and
fifth column lists the werage normalized area of the HLB circuits rektio the L1 4-LUT HLB
and the standard dation of the area. This table si®®that for speed optimized circuits, the sin-
gle 6-LUT HLB is 25% éster than the L1 4-LUT HLB and has about the same area cost. The
logic area costs of 6-LUT circuits are higher than for 4-LUT circuitsvéder, the 4-LUT circuits
have mary more LUTs in the circuits (2548wsus 1743) and this leads to higher routing area
costs for 4-LUT circuits. Thus, this results in the 6-LUT and 4-LUT circuisgasimilar total

areas for speed-optimized circuits.

The L2-2 HLB has an additional 6-LUWhich leads to a 6% increase in speed at the cost of
an 11% increase in areaay the L1 6-LUT HLB. Thedstest 6-LUT HLB imesticated is the L3-
6.5 HLB, which is 72%dster than the L1 4-LUT HLBuUb requires 77% more area.

Topology Nor malized Speed O(speed) Normalized Area O(area)
L1 1.25 0.18 1.02 0.21
L2-2 1.31 0.18 1.13 0.19
L2-3 1.45 0.20 1.30 0.38
L2-4 154 0.26 1.46 0.52
L3-5.2 1.56 0.25 1.50 0.47
L3-6.3 1.58 0.27 1.61 0.53
L2-5 1.67 0.28 1.62 0.62
L3-6.2 1.70 0.28 1.70 0.56
L3-6.5 1.72 0.30 1.77 0.78

Table 6-4: Envelope Point Set for Speed-optimized 6-LUT HLB circuits

Best HL B Topologies for Speed

The topologies of the 6-LUT HLBs on the speedsus area cuevare listed in dble 6-4 and

the fastest topologies for awgin number of 6-LUTs (from one to six) are illustrated in Figure 6-9.
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Figure 6-9 shas that the dstest HLB topologies for one, awthree, fourfive and six 6-LUTs

have balanced subtrees.

Since the circuits are optimized for speed, the LUT technology mapper triese¢athpéths
from inputs to outputs asven as possible. This tends to ragbortions of the LUT netorks
appear as balanced trees with high-in nodes, and thixglains wly the fastest HLB topologies
contain balanced subtrees and nodes with haghrf of hardwired connections. The topologies
illustrated in Figure 6-9 are also reasonably good for area-optimized circuits. Thefiarenegf

of these topologies will be further discussed in Section 6.3.3.

An inspection of the emlope set for speed-optimized 4-LUT HLBs iable 6-3 reeals that
the fastest HLB topologies for one, tiwthree, fourand five 4-LUTs are identical to the first &v
topologies in Figure 6-9. This further substantiates the that balanced topologies lead to the
fastest HLBs. Note that thadtest HLB with six 4-LUTs is the L3-6.5 topolodmt this HLB is

not in the ewelope set listed indble 6-3.

6.3.2 Area-efficiency of HLB Architectures

The goal of the area study is to determine the LUT basic block and topologies/¢htitegi

best HLB for maximizing areafgfiency. All CAD tools were set to optimize area with little

Figure 6-9: Fastest 6-LUT HLB topologies
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Figure 6-10: Speed versus Area Curvefor Area-optimized 4-LUT HLB Circuits

regard for speed. Ean though the circuits are not optimized for speed, there walylike hard-
wired links present in the HLBs along the critical paths. These hard-wired connections will mak
the area-optimized HLB circuita$ter than circuitsuilt from the same LUT basic blocks without

hard-wired connections.

Figure 6-10 shos the speedersus area cuevfor the best 4-LUT HLBs when optimizing
purely for area. In this section, we assume Ehat 4nsandRB = 1000pmz. The area-optimized
L1 4-LUT HLB circuits hae an &erage maximum operating frequgnar speed of 28VIHz

(delay of 3%s) and an werage area of 8 x iqumz. The point at co-ordinate (1.00, 1.00) is
labelled “L1” in Figure 6-10 and corresponds to the L1 4-LUT HLB.

Table 6-5 lists theveerage normalized speed and areas of the 4-LUT HLBs in Figure 6-10.
The first column contains the topology name, the second column containsithgeanormalized
area for area-optimized circuits and the third column lists the standasdiae of the area. The

fourth and fifth columns list thevarage speed and standardidion of the speed respely.

102



Topology Normalized Area O(area) Normalized Speed | O(speed)
L2-2 0.94 0.19 1.18 0.13
L3-4.2 0.95 0.17 1.28 0.15

L3-6.3.2 1.04 0.11 1.32 0.17

L3-7.4.2 1.20 0.21 1.33 0.17

Table 6-5: Envelope Point Set for Area-optimized 4-LUT HLB circuits
Table 6-5 demonstrates that FPGAs with HLBs can be more dr@ardfthan those without
hard-wired connections ofF example, the L2-2 HLB, which has emM-LUTs hard-wired together
uses 6% less area than the L1 4-LUT HLB. In the case of the L2-2 HLB, the increase in area due
to loss of flgibility caused by hardwired connections is more thdsebfby the decrease in area
due to the reduction in the number programmable connections. Note that the presence of hard-
wired connections in the critical path of the L2-2 HLB circuits resulted in an 18% speedup with

respect to the L1 4-LUT HLB circuits.

The standard deations for the werage normalized area iradle 6-5 for area-optimized cir-
cuits are much smaller than those for speed-optimized circuitthie ©-3. In area-optimized cir-
cuits the standard dtions for normalized area are smaller because there is no replication during
area-optimization. In speed-optimization, the amount of replication depends upon the circuit
properties, and so there is moggigtion than in the standarduviktion of the area-optimized cir-

cuits.

Figure 6-11 shws the speedersus area cues for each of the LUT basic blocks when opti-
mizing area. Figure 6-11 is used to determine the best LUT basic block for makingfiareatef

HLB-based FPGAS.

Best LUT Basic Block for Density

Figure 6-11 shas that the 2-LUT and 7-LUT HLBs require significantly more area than the
L1 4-LUT HLB to implement circuits. The fine-grained 2-LUT basic block has good logic area-

efficiengy, but because 2-LUT circuits @ maty logic blocks and associated pins to connect, the
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Figure 6-11: Speed versus Area curvesfor Area-optimized HLB Circuits

cost of routing is high [8]. The coarse-grained 7-LUT basic block, because of tyeifuaction-
ality, have the vorst logic area-&tiency among the LUTs westicated. There are also malogic
block pins in 7-LUT circuits and this leads to a high routing area cost to connect the pins. Thus

neither the finest-grained or coarsest-grained LUTs are suitable for high density HLB circuits.

Figure 6-11 demonstrates that the 4-LUT basic block leads to the HLBs with greatest area-
efficiengy. The HLB with the best density has the L2-2 topoldgdye L2-2 4-LUT HLB uses 6%
less area and is 18%sdfter than the L1 4-LUT HLB. The HLB with the seconddst area-costs
is the L3-4.2 4-LUT HLB, which uses 5% less area than the L1 4-LUT HLB. Note that the L3-4.2
4-LUT HLB has similar area-g8€iency to the L2-2 HLB lot is significantly &ster (28% dster
than the L1 4-LUT HLB).

However, Figure 6-11 shws that the 5-LUT may pride a better basic block for making

area-eficient FPGAs because, while using only slightly more area than the densest 4-LUT HLBs,
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Figure 6-12: Densest 5-LUT HL B topologies

the 5-LUT HLBs result in muchakter circuits. & example, the L2-3 5-LUT HLB uses 3% less
area than the L1 4-LUT HLBuW is 47% &ster By using slightly more area (3% more) than the
most area-édicient 4-LUT HLB, the most areafefient 5-LUT HLB realizes an additional 29%
speedup. The 5-LUT speeeérgus area cuevlies almost wholly to the left and al@oall other
LUT speed ersus area cues. This shes that for area-&tient FPGA circuits, a 5-LUT HLB

will be the best for almost grgiven speed or area.

Best HL B Topologies for Density

The topologies of the 5-LUT HLBs on the speedsus area cuevare summarized irable 6-
6 and the 5-LUT HLB topologies with the best ardaieing are illustrated in Figure 6-12. The
first column in &Able 6-6 contains the HLB name, the second column lists/érage normalized
area for area-optimized circuits in that HLB and the standandtd®n for the area. The fourth
and fifth columns contain theerage speed of the HLB circuits and the standarthtien of the
speed. In general, the most arefzcEnt HLBs hae topologies with long chains and the HLB has

all LUTs with two or more non-hard-wired inputs.

In the area-optimizing mode of the fragmentvexing algorithm, the algorithm only uses
matches to subjettees. Since the LUT netarks tend to hae small subject trees, thevawsing set
of fragments contains a high ratio of single-block fragments. Thus, for good demsity B

should be able to accommodate mamgle-block fragments.
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In order to pack a single-block fragment, the LUT mustehat least tw non-hard-wired
inputs because LUTs with zero or one non-hard-wired inputs cannot be used for paglsimg an
gle-LUT fragment. Ay LUTs with zero or one non-hard-wired inputs am@sted when packing
single-block fragments.df the densest 5-LUT HLB topologies shroin Figure 6-12, all LUTs

have two or more non-hard-wired inputs.

Topology Normalized Area O(area) Normalized Speed | O(speed)
L2-3 0.97 0.17 1.47 0.45
L3-5.2.2 1.03 0.18 1.52 0.44
L3-6.2.2 1.09 0.27 1.54 0.42
L3-6.3.2 1.15 0.28 1.56 0.53

Table 6-6: Envelope Point Set for Area-optimized 5-LUT HLB circuits

The HLBs whose LUTs & two or more non-hard-wired inputsveatopologies in which all
internal LUTs hae sparsely populate@r-ins of hard-wired connections. This is in contrast to
the fastest HLB topologies, which ¥aa fev internal LUTs with fully populatedah-ins of hard-
wired connections. These HLBs with fully populatas-ins hae lowver densities compared to
HLBs with sparsely populate@r-ins with the same number of LUTs because some of the LUT

basic blocks cannot be used to pack single-block fragments.

HLBswith the Highest Density

Table 6-7 lists all HLBs with better logic density (that is, normalized area less than 1) than the
L1 4-LUT HLB. The first column lists the number of inputs for the LUT basic block, the second
column gves the topologythe third column lists thevarage normalized area of area-optimized
circuits, the fourth column contains the standandad®n of the area, the fifth column contains

the average normalized speed and the sixth column contains the standatbdef the area.

The 4-LUT basic block is the most areéieént logic block for FPGAs without hard-wired
connections [8]. In general, the most ardaieint HLBs hae a small number of basic blocks

(less than fig) because as the number of basic blocks increase in an HLB, the rfiout difs
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to utilize the functionality of the Iger HLB eficiently. Also, all of the HLBs in @ble 6-7 hae no
LUTs with one or zero non-hard-wired inputs. Note that all the HLBs made of LUTs with 4 or
more inputs areafster than the 4-LUT basic block. Thastest HLB with better logic density than
the 4-LUT, the 5-LUT L2-3 HLB, is also 47%aster

?nIE)tJJth Topology NorAr\r; aeI;ZGd O(area) Norsgl:;zed O(speed)
3 L2-2 0.98 0.12 0.90 0.20
4 L2-2 0.94 0.19 1.18 0.13
4 L2-3 0.96 0.08 1.18 0.13
4 L3-4.2 0.95 0.17 1.28 0.15
5 L2-2 0.97 0.15 1.45 0.42
5 L2-3 0.97 0.17 1.47 0.45

Table 6-7: HLBswith logic density better than the 4-LUT

6.3.3 Limitationsof the HLB Synthesis Procedure

In the FPGA architecture studies of Section 6.3.1 and Section 6.3.2, the satlopepoints
was used to determine the best basic block and HLB topologies in terms of speed and density
Recall that the set of eelope points corresponds to the HLBs with the best (area, speed) points.
The method for gthering the aerelope point data is important for establishing confidence in the

architecture study results.

In the speed stugythe goal vas to find the HLBs that result in thastest circuits with
reasonable densjtand thus when optimizing the speed of a circuit, the aasathe tie-breadc
In the area-diciengy study the goal vas to find the HLBs that result in the densest circuits with
reasonable speed. Thus when minimizing the area of a circuit, the sped¢dewtie-bread An
ideal HLB mapping procedureould maximize the speed of a circuit and from among the circuits
with maximum speed choose the one with minimal area, autdyminimize the area of a circuit
and choose theastest of the smallest circuits. The use of this ideal HLB mapping procedure
would yield the set of exelope points that perfectly describes the trade{oétween speed and

area when the optimization goal is either maximum speed or minimum area.
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However, the technology mapping tools used in our FPGA architecture studies are not ideal
and this may lead to an erroneous set gekpe points. There are avwsources of inaccuragn
the HLB mapping procedure: the LUT basic block technology mapper (Chortle [20]) and the
HLB technology mapper described in this dissertation (TEMPT).

Accuracy of the Speed Study

When minimizing delay for the speed studlye Chortle mappewhen compared to the
optimal depth Flwmap LUT mapper [33], yields close to the optimal delay for 5-LUT circuits.
However, Chortle uses arvarage of about 50% more LUTs thanwdnap because Chortle does
not attempt to conseevarea when optimizing speed. The TEMPT HLB mapper yields the optimal
delay HLB circuits kit uses more than minimal area because it does not cernsexa when
mapping the non-critical parts of the circuit. Thus, during speed optimization, this combination of
technology mappers auld yield circuits with close to optimal speeds lwith areas that are
significantly greater than optimal. This results in theetpe points being shifted to the right
relative to their locations when using an ideal mapping procedureed&mple, Figure 6-13
shaws the speedersus area cuevthat would be produced by an ideal mapping procedure as a
solid line, and the non-ideal speedrsus area cuevthat would be produced by our mapping
procedure as a dashed line. The non-ideal spesdy area cuevis to the right of the ideal cuev

because the areas of the points on the non-ideat aneviager lut the speeds are the same.

If the areas of the @elope points in the speed study are greater by similar proportions then
the general shape of the speedsus area cuemwould remain the same and the conclusions of the
speed study wuld not be changed. Maver, if the mapping procedure increases area costs by
widely varying amounts for diérent HLBs, then the (area, speed) points of the HLBs may be
shifted so that some points that should not be in thel@pe set nw falsely appear there. In order
to support the conclusions of the speed stuayshall demonstrate that our mapping procedure
does not significantly alter the HLBs on the spesxdws area cuevdue to widely arying efects

on different HLBs.
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Figure 6-13: Speed versus Area curve shift dueto non-ideal speed-optimization

One vay to shwv that the mapping procedure is reasonably consistent acrossrtbasv
HLBs is to check if the area results of the speed-optimization stugys Swme consistepavith
the area results of the area-optimization stddhe set of erelope points for best 6-LUT HLBs

from the speed study are stmin Table 6-8. The first column lists the HLB topolodye second

| Speed-optimized Circuits || Area-optimized Circuits |
Topology Normalized | Normalized | Normalized | Normalized

Speed Area Speed Area
L1 1.25 1.02 1.11 1.17
L2-2 1.31 1.13 1.22 1.17
L2-3 1.45 1.30 1.26 1.20
L2-4 1.54 1.46 1.24 1.29
L3-5.2 1.56 1.50 1.31 1.34
L3-6.3 1.58 1.61 1.32 1.40
L2-5 1.67 1.62 1.27 1.40
L3-6.2 1.70 1.70 1.34 1.42
L3-6.5 1.72 1.77 1.31 1.46

Table 6-8: Best 6-LUT HLBsfor Speed-optimized circuits
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and third columns list thevarage normalized speed and area of the HLB circuitsweltdithe
speed-optimized circuits, when using the L1 4-LUT speed-optimized circuit speed and area
values as a basis for normalization. The fourth and fifth columns listé¢h&ge normalized speed

and area relate to the area-optimized circuits, when using the L1 4-LUT area-optimized circuit
speed and arealues as a basis for normalization. The rank of the HLB circuit areas for speed-
optimized circuits (column 3) and area-optimized circuits (column 5) is consistent. Tivs sho
that the relatie areas of thearious HLBs are the same between the speed-optimized and area-
optimized results. This supports the notion that our non-ideal speed-optimization mapping
procedure is relately unbiased by the HLB topology and the area increase due to our non-ideal
procedure is reasonably consistent across the HLBs on the srsed area cuev Thus, the
shapes of the speeédrgus area cueg and the results of the speed studyddrfrom the cures

are likely to be alid.

Accuracy of the Area-efficiency Study

When optimizing area for the area studlge Chortle mapper is among the best LUT
technology mapper for minimizing the number of LUTs in 5-LUT circuits [20}vé&ler, Chortle
does not attempt to maximize speed when performing area optimization. When chaining together
the bin-packd LUTSs, Chortle first sorts the bin-packLUTs in descending order of used inputs,
and then greedily utilizes the unused inputs in the chaining. When the unused inpxhisiaseed
new LUTs are created for the chaining. If all the bin-ptk UTs hae only one or tw unused

input before chaining, this can lead to a LUT rekwvith a long critical path.

For example, Figure 6-14 sk the chaining of three bin-pask LUTs with 5 used inputs.
When mapping to a 5-LUT circuit, because there are no unused inpiébke, a n& LUT has
to be created to chain the three bin-matkUTs together as in Figure 6-14(a). When mapping to
a 6-LUT circuit, the LUTs can be chained together using the unused inpub aif tthe bin-
paclked LUTs as in Figure 6-14(b). The cascaded arrangement in Figure 6-14(b) has a longer

critical path.

110



The abwoe efect may &plain why the speeds of the 6-LUT and 7-LUT HLBs are significantly
slower than the 5-LUT HLBs in Figure 6-11. As the number of LUT inputs increase, the
probability of unused inputs and a cascaded arrangement along the critical path also increases.
Thus the 6-LUT and 7-LUT netwks hae more LUTs along the critical paths than the 5-LUT
networks and the resulting HLB nebnks hae more programmable connections on the critical

paths.

In Section 5.1.1 the TEMPT HLB mapper in area-optimization maeshiavn to gve area-
efficient implementations. Heever, during area-optimization, TEMPT does not optimize across
fan-out and since thaifi-out free trees tend to be small, TEMPT does riettefely use lager
HLBs to speed up the circuits. Arxamination of the normalized speeds of area-optimized
circuits in Table 6-8 (column 4) shs that the speed of all the HLBs with 5 or 6 LUTs are close

to each other (ranges from 1.27 to 1.34).

When using the combination of Chortle and TEMPT to implement area-optimized HLB
circuits, the resulting circuits i@ close to minimal areaubare significantly skwer than the
maximum speed circuits with minimal area. The spedus area cuevgenerated from this non-
ideal mapping procedureonld appear bele the cure generated by an ideal mapping procedure

because the speeds of the points on the non-idead atevaever, but the areas are about the same.

6-14(a): Chaining for 5-LUT circuit 6-14(b): Chainingfor 6-LUT circuit

Figure 6-14: Chaining together three LUTswith 5 used inputs
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Table 6-9 lists the set of wslope points corresponding to area-optimized 5-LUT HLB
circuits. The first column contains the HLB topologye second and third columns contain the
average normalized speed and area of the HLB circuits vel&ti the area-optimized 4-LUT
circuits. The fourth and fifth columns contain thverage normalized speed and area redaid

the speed-optimized 4-LUT circuits.

| Area-optimized Circuits || Speed-optimized Circuits |
Topology Normalized | Normalized | Normalized | Normalized
Speed Area Speed Area
L2-3 1.47 0.97 1.38 1.33
L3-5.2.2 1.52 1.03 1.39 1.63
L3-6.2.2 1.54 1.09 1.44 1.59
L3-6.3.2 1.56 1.15 1.42 1.59

Table 6-9: Best 5-LUT HLBsfor Area-optimized circuits

The lav variation in the speed of the HLBs imfle 6-9 shas that the lage-grained HLBs
with five or six 5-LUTs are not usedf@gtively to speed up circuits during area-optimization.
Since speed is the tie-brekin the area-&tiengy study the conclusions of the are&ieeéncgy
study with respect to lge-grained HLBs are questionable. There may be othge-ained
HLBs with greater speeds and higher areas that belong tohma set. Thus the rightmost

portions of the area-optimization studyelope points may be incorrect.

6.3.4 The Effect of Changing the Aver age Routing Delay, Dg

This subsectionx@mines the &kct on the conclusions of the speed and area studies when the

average programmable connection dely is varied. The speed and area studies in Section
6.3.1 and Section 6.3.2 assumed static-RAM controlled routingRiits (000pm?) and an eer-
age programmable connection delBy = 4ns. The speed study led to the conclusion that the 6-

LUT is the best basic block foagt circuits with reasonable densityie area study led to the con-
clusion that the 5-LUT is the best basic block for high arBeiexicy. However, the best LUT

basic block may change witlarations inDg.
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Effect of Dg on Speed Study

At lower values ofDg, the delay of the programmable connections in critical pates lleas
effect on the critical path delayhis also means that the delay of the LUTs in critical paths &ia
greater impact on the critical path del@gble 6-10 shas the total combinational delay along the
critical paths of the speed-optimized LUT circuits. The first column contains the LUT basic block
size, the second column contains the sum of the number of LUTs along the criticalqradh o
circuits, TN, g, the third column contains the delay of each |D|Ig, and the last column has the
total LUT delay @er all circuits,TN, g*D| . If Dg = 0, that is, total routing delay is zero, then this

table predicts that 5-LUTs lead to thestest circuits because yhieave the lavest combinational

#LUT inputs TN g D g (ns) TN g*Dy g (ns)
2 186 1.39 258.5
3 115 1.44 165.6
4 84 1.71 143.6
5 68 2.03 138.0
6 60 2.38 142.8
7 53 2.85 151.0

Table 6-10: Total LUT delaysfor Speed-optimized LUT circuits

delay The 6-LUT 4-LUT and 7-LUT circuits are almost aasst as the 5-LUT circuits. The fine-

grained 2-LUT and 3-LUT basic blocks lead to significantlyvslocircuits.

Figure 6-15 shos the speedersus area cues wherDg has a @lue of hs. With this small
value ofDg, the HLB speedups relaé to the 4-LUT are i@ smaller because of theNer impact
of routing delay The maximum speedups due to hard-wired links is only 28f4us the 77%
speedups whebgr was 4s. The increase in area costs are similar to wbgrwas 4s (up to

150%), and so hard-wired links are not as attracit the laver Dy of 1ns.

At Dgr = 1ns, the 6-LUT is still the best basic block choice fastfcircuits because its speed
versus area cuevis almost entirely alve and to the left of the other ces: Havever, at this lav

value ofDg, since the combinational delay of the 5-LUT circuits is almost the same as the 6-LUT
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the 5-LUT curve is very close to the 6-LUT curve. Thus, for smal Dg, the 5-LUT is an

equivalently good basic block for fast circuits.

When Dg isincreased, the delay of the programmable connections in the critical path have a
greater impact on the critical path delay and so the HLB speedups have become larger. Figure 6-
16 shows the speed versus area curves when Dy has a value of 10ns. The maximum speedups due
to hard-wired links hasincreased to 119% versus the 77% maximum speedup when Dg = 4ns. The
increase in area costs are similar to when Dg was 4ns, and so hard-wired links are more attractive

when Dg is 10ns.

The increase in Dy to 10ns makes the coarse-grained 7-LUT HLBs dightly more attractive.
For thisvalue of Dg, the 7-LUT curve crosses the 6-LUT curve at one point (corresponding to the
L2-37-LUT HLB), whereasfor D = 4ns, the 6-LUT curve never intersected the 7-LUT curve. At

this single point in the speed versus area design space, the 7-LUT provides a better HLB than the

Figure 6-15: Speed versus Area curvesfor Speed-optimized HL B circuits, Dg = 1ns
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Figure 6-16: Speed versus Area curves for Speed-optimized HL B circuits, Dg = 10ns

6-LUT HLB point just belav it. However, for most speed and area combinations, the 6-LUT is a

superior basic block to the 7-LUT

Effect of Dg on Area study

The \alue ofDg does not déct the area model and thus the area study results are the same.
All HLBs have the same ranking in terms of arefeafngy. The 5-LUT is still the best basic
block for area-diciengy. IncreasingDg gives the 5-LUT a laer speed adwntage wer the

smaller grained LUTSs, while decreasibg reduces the speed ahiage.

The overall conclusion is that thealue ofDg has little efect on the choice of best LUT for

speed or area-optimized circuits.
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6.3.5 The Effect of Changing the Routing Bit Area, RB

This subsectionx@mines the &kct on the conclusions of the speed and area studies when the

programmable routing bit sizBB, is varied. The speed and area studies in Section 6.3.1 and Sec-
tion 6.3.2 assumed static-RAM controlled routing bRB € 100qum?) andDg = 4ns, and con-

cluded that the 6-LUT is the best basic block &st ftircuits with reasonable density and that the
5-LUT is the best basic block for high arefeaéngy. The static-RAM routing bit is one of the

largest programming technologies for FPGAs. This subsectionxgithme the déct of using a

much smaller routing bit technolggyhich has a routing bit sizBB, equal to 250m2.

Effect of RB on Area Costsin the Speed Study

For smaller routing bit size, the routing area has less impact on the total area, and the logic

area has an increased impaablé 6-11 shws the &erage normalized area for the logic-only

#LUT inputs LOA
0.97
0.87
1.00
1.44
2.40
7 3.94

OO A~ W|IN

Table 6-11: Average Logic Area for Area-optimized HLB circuits

part of each area-optimized HLB circultDA. The \alues ofLOA are dered by assuming a
routing area cost d, that isRB = 0, in the area moddlOA is the aerage of the logic-only areas

of each circuit implemented in K-LUTs normalized with respect to the logic-only areas of the
same circuit implemented in 4-LUTs. Column 1 contains the number of inputs for the LUT basic
block and column 2 contains thee@age logic area if the circuits were implemented in thengi

LUT. The 3-LUT circuits hee the lavest logic area cost and in general, the fgrained LUTS,

with 2 to 4 inputs, hae significantly lever logic area costs than the LUTs with 5 or more inputs.
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Figure 6-17: Speed versus Area curves for Speed-optimized HL B circuits, RB = 250 pm?

Figure 6-17 shes the speedearsus area cues for RB = ZSQJmZ. Since all areas are
normalized to the 4-LUTthe 4-LUT cure is in about the same position as wRB= 100Q1mz.
The smallegrained 2- and 3-LUTs ke higher logic area-gBfiency than the 4-LUT and so their
speed ersus area cues forRB = 250m12 are shifted to the left rela# to their locations faRB =
100Qun?. For example, wherRB = 100Qun?, the L1 3-LUT HLB at the bottom of the 3-LUT
curve required 13% more area than the L1 4-LUT HL&, WwhenRB = 25Cpmz, the L1 3-LUT
HLB required only 3% more area. Thedargrained 5-, 6- and 7-LUTs ba lowver logic area-
efficiengy than 4-LUTs and so their cuey are shifted to the rightoF example, whenRB =
1OOQJm2, the L1 7-LUT HLB at the bottom of the 7-LUT cervequired only 23% more area
than the L1 4-LUT HLB, bt whenRB = ZSQJmZ, the L1 7-LUT HLB required 98% more area.

The relatve area cost of the 6-LUT is much higher than wRBn= 100Qun¥ (a maximum

area increase of 125%nsus 60%) and so the 6-LUT is no longer the best LUT basic block for
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Figure 6-18: Speed versus Area curves for Area-optimized HL B circuits, RB = 250 pm?

high speed circuits. The 4-LUT and 5-LUT HLBsvhabecome relately more area-&tient
compared to the 6-LUT HLBSs, so that for most speeds the HLBs on the 4-LUT and 5-L@$% curv
are the best for high speed circuits with good denghys for small programming technologies,

these finegrained LUTSs are the best choices for constructst) LB circuits.

Effect of RB on Area Costsin the Area study

For small routing bit sizes, the routing area is less afctéof and thus the LUTSs that lead to
the lovest logic area costs Ve a greater influence on theeoall area-diciency. According to
Table 6-11, the 3-LUT has the best logic ardmiehoy of ary LUT. WhenRB = 100Qun?, the
most area-dicient HLB had 4-LUTs. Havever, when the cost of routing isvi@red significantly
RB = 25Qun?, Figure 6-18 shas that a 3-LUT HLB has the best arefieiéncy amongst all
HLBs. The L2-2 3-LUT HLB has 8% less area than the 4-LUfli$©10% slwer. Another 3-LUT
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HLB with better area-&tiency than the 4-LUT is the L3-4.2 HLB (uses 2% less area than the 4-
LUT and is 5% éster).

However, the fastest HLBs that va better density than a 4-LUelong to the set of 4-LUT
HLBs. The L2-2 4-LUT HLB uses 3% less area than the 4-LUT and is 488 fThe L3-4.2 4-
LUT HLB uses about the same area as the 4-LutTi$28% &ster

The 5-LUT cure is shifted to the right because of the re&yi high logic area cost of the 5-
LUT with respect to the 4-LUTThere are n@ no 5-LUT HLBs with better logic density than the
4-LUT L1 HLB. However, there are 5-LUT HLBs with high speeds for moderate area casts. F
example, with a 16% increase in area with respect to the 4-LUT L1 HLB, the L2-3 5-LUT HLB

yields a 47% increase in speed.

The overall conclusion is tha®B affects the choice of best LUT faadt and dense circuits. A
lower value ofRB makes smaller LUTs relately more area-&tient with respect to lge LUTs
and thus changes the choice of best LUT for speed or defbity section sheed that a
significant decrease in thalue ofRB from 1000 to 25am? malkes 4-LUTs and 5-LUTs a better
basic block choice than 6-LUTSs for use in HLB-based FPGAs aimed at makingjrtuits with
good densityThis lover value ofRB also maks 3-LUTs better than 4-LUTs for making HLB-

based FPGAs that lead to the densest circuits.

6.4 Summary of Results

The empirical studies of this chaptevbademonstrated that hard-wired links can be used

effectively in FPGA logic blocks, to not only impre FPGA speed,ub also to increase density

For area and delay models corresponding to a static RAM programming technologiynm
CMOS layout technologyRB = 100qum?) and assumin®g = 4ns, the best LUT basic block for

high speed HLB architectures with reasonable logic density is the 6-input lookup table. Under the

same assumptions, the 5-input lookup talds the best basic block in terms of logic density
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For high speed HLB-based FPGA circuits, the best HLB topologies contained balanced and
fully populated trees. d¥ dense circuits, the most arefieéént HLB topologies empio LUTs

with two or more non-hard-wired inputs.

The average programmable connection del@y, did not afect the choice of best LUT basic

block whenDg was \aried from 1 to 16s, with RB = 100Qun?. The 6-LUT is the best basic block

over this range oDg.

The average programmable routing bit sif8, affects the choice of best LUT foadt and
dense HLB-based FPGA circuits. Smadlues ofRB males finergrained LUTs more attragg
because of their higher logic aredi@éncies. br speed-optimized HLB circuits and a snizi,
the 4- and 5-LUTs become better choices for basic block than the 6-LUT because of thkedmpro
relatve area-diciency of 4- and 5-LUT HLBs. The 3-LUT has the highest logic ardiatehcy
among all LUTs. Thus, for area-optimized circuits and a sRilithe 3-LUT basic block is the

best choice for making areafiefent HLB-based FPGAs.

6.5 Limitationsof the Empirical Study

This section contains more discussion onvhbe CAD tools and the assumed routing

architecture can tdct the results and conclusions of tkperimental study

6.5.1 Effect of HLB synthesistools

The current procedure for mapping an input Booleanarétio a netlist of HLBs proceeds in
two phases. First the Boolean netwis mapped to basic blocks and then the basic bloclonetw
is mapped to a netlist of HLBs. The basic block technology mapper optimizes the speed or area of
the basic block netwrk and does not optimize the netk for particular HLB topologies. The
resulting basic block netwks may be moreafourable for some HLB topologies. A technology
mapper that maps the input Boolean reetdirectly to a netlist of HLBs may be less biased and

this may alter the results of the HLB architecture studies.
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6.5.2 Effect of Routing Architecture Assumption

To derive our area model, we assumed a routing architecture in which all the routing tracks
were between entire HLBsS, that is, all the pins of the HLB are evenly distributed on its four sides.
For HLBs with several LUTs and many pins this may lead to a large maximum channel width, W,
because there are many pins to be connected in each channel segment. Thus the HLBs with

several LUTswill appear unattractive because of high area costs.

An aternative routing architecture is one in which the routing tracks are between the LUTSs of
the HLBs and the hard-wired links between the LUTs span the routing channels in a manner
similar to the direct connect in the Xilinx 3000 architecture [10]. With this scheme, W should be
less than the W of an FPGA without hard-wired connections because the number of pins to be
connected to each channel segment is reduced. A reduced W implies that the alternative routing
architecture may lead to HLBs with more LUT basic blocks becoming more attractive because

they would have lower area costs.
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Chapter 7 Conclusionsand Future Work

7.1 ThesisSummary and Contributions

This dissertation presents CAD algorithms for mapping a combinational digital circuit into a
delay- or area-optimized netlist of hard-wired logic blocks (HLBsS). The algoritlygimbevith a
circuit of basic blocks and transforms it into a netlist of HLBs using stages. The first step
produces a delay- or area-optimized set @kecog fragments. The second step packs the set of

covering fragments together into a minimum number of pddKkLBs.

The delay-optimization a@ring algorithm is shen to produce a netlist of HLB fragments
with a minimal number of programmable connections along the critical path. Also, the fragment
packing algorithm is praen to be optimal when packing the set ofering fragments for all tor

level HLBs.

The efectiveness of the CAD algorithms igaduated with respect to awer bound and also
compared with a commercial mapping tool [11]. Since the delay-optimizatieniicg algorithm
is optimal the theoretical minimum bounds for delegsvachieged. Compared to a simplener
bound on area, the mapping algorithms uses only 3% to 16% more HLBs when mapping HLBs
with two to nine 4-LUTs. When compared to a commercial mapping tool for the Xilinx 4000
Configurable Logic Block [11], which is a commercial HLB-based FPGA architecture, our
overall synthesis procedure produces area-optimized circuits of about the same size and delay-
optimized circuits with significantly (22%) eer programmable connections along the critical

paths.
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The HLB mapping tools were used tovessticate a wide range of HLB-based FPGA
architectures for speed and dendityparticular we sought to determine the relationships between
the basic block functionality and hard-wired connection topology of the HitBug the speed

and density of the resulting HLB circuits. These are the results of the HLB architecture studies:

i) HLB architectures consisting of 6-LUTs vyield thestest HLB-based FPGA

circuits with reasonable density

i) HLB architectures consisting of 4-LUTs yield the most ardaieft FPGA
circuits. Havever, for only a slightly higher cost in area relatito the densest

4-LUT HLBs, some 5-LUT HLBs ge much higher speeds.

iii) The HLB topologies that resulted in thesfest FPGA circuits had a higinfin

of hard-wired connections to some of its basic blocks.

iv) The HLB topologies that resulted in the most ard@ient FPGA circuits

consisted of basic blocks which all hadtar more non-hard-wired inputs.

7.2 FutureWork

This section describes \v&al impravements that could be made to the HLB mapping

algorithm and also seral avenues for future HLB-based FPGA architecture research.

7.2.1 Enhancementstothe HLB Mapping Algorithms

The mapping algorithms in this thesis are the first attempts at synthesis for general HLB
architectures. This section containsvesal suggestions for imprimg the quality of HLB

synthesis.

Combining Basic Block Mapping and HL B Technology M apping

The current procedure for mapping a Boolean ndtwo a netlist of HLBs has tsteps. First

the Boolean netark is mapped to a netwk of basic blocks, and then the basic block oetws
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mapped to a netlist of HLBs. The CAD tools that map to basic bloclonetwdo not utilize HLB
topology information. A technology mapper that synthesized directly from Booleaoriketov
the HLB structure could yield better mapping results becauseuldwise HLB topology infor-

mation during the basic block mapping process.

M apping to Multi-output Fragments

HLBs have multiple outputs. Heever, the mapping algorithm in this dissertation first finds a
covering set of single-output fragments and then packs these single-output fragments. together
When segeral single-output fragments are padkogether hard-wired links areagted. A map-
ping algorithm that maps to multi-output fragments directly showd etter area results since

fewer hard-wired links wuld be vasted.

Placement-Based Cost Function

During the fragment packing stage, the connégtof the fragments is not tak into account.
Other optimization goals that ®kconnectiity or placement of the HLB fragments into account
during packing may yield a more routable solution, and hence a smalleasaeddircuit after

routing.

Delay-Area Trade-off

The delay- and area-optimization algorithms do not easilydtiade-ofs between delay and
area. The mapping algorithms either minimize area or geitty no prwisions for area or delay

constraints. A better mapping algorithrowld minimize area under a delay constraint.

7.2.2 HLB-based FPGA Architecture Investigation Avenues

This dissertation amined a subset of the possible@ues of research into HLB-based

FPGA architectures. This section suggests somedirections for HLB architecture research.
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Using More Effective Basic Block Mappers

The LUT mapper may also &an efiect on the results. The Chortle LUT mapper either opti-
mizes area or delay and does notade much dbrt towards optimizing the secondary optimiza-
tion goal. In the future, other studies could be done with technology mappers that are more
effective for minimizing the secondary costarfexample, the Flaemap LUT mapper [33] mini-

mizes delay with much better area results than Chortle.

Application Specific or Class Specific Achitectures

The selection of benchmark circuits usedvaleate the architectures is a mixture of random
logic and arithmetic circuits. On@enue to imesticate is to determine if benchmark circuit topol-
ogies \ary widely and if so, determine whether there are HLB topologies which are more suitable

for a particular class of circuits, such as random logic or arithmetic circuits.

Other hard-wir ed connection topologies

This thesis assumed that basic blocks were hard-wired in tree topologies. There may be
benefits to hang fan-out of hard-wired connections within an HLB or teihg sharing of LUT

inputs as in the Xilinx 3000 architecture.

Heterogeneous LUT HLB architectures

This thesis assumed that the LUTs in the HLB were homogeneous. Other research indicates
that the use of seral sizes of LUT basic blocks in the FPGA may result in ingutaensity with
respect to homogeneous LUT basic blocks [13] [46]. Heterogeneous LUT HLB architectures may

also result in similar impr@ments.

Focus on Certain LUT sizes

The results in Chapter 6 indicate that mid-grained LUTs (from 3 to 6 inpdés)tbhé best
HLBs for speed and or densityuture HLB-based FPGA studies shouldyéarHLBs composed

of these particular LUTs, and so more topologies couldkbemed. The run-time of the CAD
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tools would have to be reduced tovesticgate HLBs with more LUTs than those studied in this

dissertation.

Reduction of Tapping Buffers

The tapping bffers used to access each basic block outpust hasignificant on-chip area
cost. While this wrk assumed that there is a tappindfdr onevery LUT output, this may not be
necessaryA study of the utilization of the HLB tappingifiers may lead to methods to reduce the

number of tappingudfers per HLB.

Improved Delay Modelling

Hard-wired logic blocks reduce theremage programmable connection length in circuits
because thereduce the number of logic blocks in the circuit. This reduction ofwtbeage pro-
grammable connection length also means the number of switching stages is lessened and this
leads to &ster circuits. A study to measure the speedup attained by reducing the programmable

connection lengths in circuitsould require a more accurate delay model.

Changed Architecture Assumptions

The routing architecture in this thesis assumed that each HLB (which consistsraf basic
blocks) is surrounded by the routing channels. A possibly better routing architecture is one in
which the routing tracks are between the LUTs of the HLBs and the hard-wired links between the
LUTSs span the routing channels in a manner similar to the direct connect in the Xilinx 3000 archi-
tecture [10]. This leads to nawer routing channels because the number of pins to connect to
each channel is¥eer. In fact, the routing channel widths should be closer to the widths of the cir-
cuits without hard-wired logic blocks. The diaack of this ne& scheme is that the programmable
connections wuld hare to go through more switching stages than the scheme that assumed the
HLB was surrounded by the routing channelswEer, the circuits using the mescheme will

still experience speedups because of the presence of hard-wired connections in critical paths.
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Appendix A Datafrom the HLB Architec-
ture Studies

This appendix presents a summary of the data from the speed andfiaie@eestudies in

Chapter 6.

A.1 Envelope Set data from Speed Study

This section of the appendix contains the (area, speed) co-ordinates oVeloperset of
points used for the speed study (Figure 6-8). Each of thevialjosix tables, dble A.1 to &ble
A.6, corresponds to the speeersus area cues for the 2-LUT 3-LUT, 4-LUT, 5-LUT, 6-LUT
and 7-LUT HLBs respeately. The data in the folleing tables vas generated using a delay
model withDg = 4ns and an area model wifB = 100qun?. The first column in each table lists
the HLB topologythe second column lists theemage normalized areaer all circuits, the third
column lists the standarddation of the &erage area, the fourth column lists therage nor-

malized speed and the fifth column lists the standargiiten of the aerage speed.
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HL B topology Area SD. Area Speed S.D. Speed
L2-3 1.40 0.16 0.75 0.08
L3-5.2.2 155 0.23 0.83 0.11
L3-6.3.2 1.60 0.23 0.90 0.11
L3-7.3.3 1.79 0.29 0.91 0.09
L4-8.4.2.3 1.82 0.33 0.93 0.10
L4-11.6.3.24.3 1.90 0.47 0.95 0.12
L4-95.2.2.3 1.93 0.47 0.97 0.09
L4-12.6.3.25.3 1.95 0.56 1.00 0.10
L4-15.7.3.3.7.3.3 244 0.70 101 0.08

Table A-1: Speed-optimized 2-LUT HLB envelope set

HL B topology Area SD. Area Speed S.D. Speed
L1 1.13 0.19 0.77 0.12
L2-3 1.24 0.28 1.10 0.16
L2-4 1.35 0.25 117 0.19
L3-6.3.2 1.55 0.45 121 0.18
L3-6.4 1.65 0.47 1.23 0.19
L3-7.3.2 1.68 0.58 1.28 0.22
L3-74.2 1.72 0.56 1.30 0.19
L3-94.3 1.82 0.64 1.32 0.19
L3-10.4.3.2 1.88 0.68 1.36 0.22
L3-11.4.4.2 2.04 0.80 1.38 0.24
L3-12.4.4.3 2.13 0.75 1.39 0.25

Table A-2: Speed-optimized 3-LUT HL B envelope set
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HL B topology Area SD. Area Speed S.D. Speed
L1 1.00 0.00 1.00 0.00
L2-2 1.19 0.16 114 0.10
L2-3 1.22 0.22 1.27 0.14
L3-4.2 1.33 0.34 1.28 0.14
L2-4 1.34 0.29 1.34 0.13
L3-5.2 142 0.47 1.37 0.13
L2-5 144 0.39 142 0.10
L3-84.3 1.69 0.67 144 0.19
L3-8.3.2 1.73 0.75 1.48 0.15
L3-94.3 1.74 0.70 1.49 0.21
L3-94.2 1.86 0.88 151 0.16

Table A-3: Speed-optimized 4-LUT HLB envelope set

HL B topology Area S.D. Area Speed S.D. Speed

L1 101 0.20 1.16 0.16

L2-2 1.13 0.18 121 0.15
L2-3 1.33 0.45 1.38 0.20
L3-4.2 1.39 0.47 1.39 0.20
L2-4 1.46 0.49 142 0.20
L3-5.2 1.49 0.51 1.43 0.22
L3-6.3 155 0.61 147 0.22
L3-6.2 1.56 0.64 1.52 0.26
L2-6 1.78 0.64 1.65 0.31

Table A-4: Speed-optimized 5-LUT HL B envelope set
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HL B topology Area SD. Area Speed S.D. Speed

L1 1.02 0.21 1.25 0.18

L2-2 1.13 0.19 131 0.18
L2-3 1.30 0.38 145 0.20
L2-4 1.46 0.52 1.54 0.26
L3-5.2 1.50 0.47 1.56 0.25
L3-6.3 161 0.53 1.58 0.27
L2-5 1.62 0.62 1.67 0.28
L3-6.2 1.70 0.56 1.70 0.28
L3-6.5 1.77 0.78 1.72 0.30

Table A-5: Speed-optimized 6-LUT HL B envelope set

HL B topology Area S.D. Area Speed S.D. Speed

L1 1.23 0.38 1.32 0.21

L2-2 142 0.35 1.35 0.21
L2-3 1.52 0.51 155 0.26
L2-4 1.69 0.58 1.56 0.27
L3-6.4 1.87 0.87 1.57 0.27
L2-5 2.02 0.98 1.70 0.30
L3-6.2 211 1.04 171 0.30
L2-7 2.89 1.73 1.74 0.31
L2-8 3.04 1.98 177 0.32

Table A-6: Speed-optimized 7-LUT HL B envelope set
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A.2 Envelope Set data fom Area-efficiency Study

This section of the appendix contains the (area, speed) co-ordinates ofeloperset used
for the area-diciency study (Figure 6-11). Each of the folling six tables, @ble A.7 to &ble
A.12, corresponds to the speesfsus area cues for the 2-LUT3-LUT, 4-LUT, 5-LUT, 6-LUT
and 7-LUT HLBs respeately. The data in the folleing tables vas generated using a delay
model withDg = 4ns and an area model wifB = 100Qun?. The first column in each table lists
the HLB topologythe second column lists theemage normalized areaer all circuits, the third
column lists the standard \dation of the serage area, the fourth column lists theerage

normalized speed and the fifth column lists the standasidta® of the aerage speed.

HLB topology Area S.D. Area Speed S.D. Speed
L4-5.3.2 1.21 0.24 0.89 0.27
L4-7.3.2.3.2 1.27 0.27 0.90 0.27
L4-7.4.2.2 1.29 0.36 0.92 0.26
L4-8.4.2.3.2 1.35 0.31 0.95 0.27

Table A-7: Area-optimized 2-LUT HLB envelope set

HLB topology Area S.D. Area Speed S.D. Speed
L2-2 0.98 0.12 0.90 0.20
L3-4.2 1.03 0.13 1.05 0.28
L3-5.3 1.10 0.27 1.10 0.37
L3-8.3.3 1.43 0.41 1.11 0.37
L3-9.3.3.2 1.50 0.38 1.12 0.36

Table A-8: Area-optimized 3-LUT HLB envelope set
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HL B topology Area SD. Area Speed S.D. Speed
L2-2 0.94 0.19 1.18 0.13
L3-4.2 0.95 0.17 1.28 0.15
L3-6.3.2 1.04 0.11 1.32 0.17
L3-74.2 1.20 0.21 1.33 0.17

Table A-9: Area-optimized 4-LUT HLB envelope set

HL B topology Area SD. Area Speed S.D. Speed
L2-3 0.97 0.17 1.47 0.45
L3-5.2.2 1.03 0.18 1.52 0.44
L3-6.2.2 1.09 0.27 154 0.42
L3-6.3.2 1.15 0.28 1.56 0.53

Table A-10: Area-optimized 5-LUT HLB envelope set

HL B topology Area S.D. Area Speed S.D. Speed
L2-2 117 0.20 1.22 0.39
L2-3 1.20 0.24 1.26 0.42

L3-4.2 1.24 0.27 131 0.44
L3-5.2.2 1.26 0.30 1.36 0.53
L3-6.3.2 1.32 0.26 1.39 0.54

Table A-11: Area-optimized 6-LUT HL B envelope set
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HL B topology Area SD. Area Speed S.D. Speed
L1 1.43 0.37 1.27 0.26
L2-2 1.47 0.36 1.38 0.32
L3-4.2 1.56 0.42 1.44 0.39
L3-5.2 1.73 0.45 1.47 0.39

Table A-12: Area-optimized 7-LUT HLB envelope set

A.3 Envelope Set Data for Individual Circuits

Table A.13 lists the 4-LUT HLB topologies that lie on the spemdus area cuevfor each
individual circuit when the HLB circuits are optimized for speed. The first column lists the
benchmark circuit name, the second column lists the HLB topotbgythird column lists the

average normalized area and the fourth column listswbeage normalized speed.
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Benchmark Cct. HL B topology Area Speed
9symml L3-7.3.3 0.89 1.54
c1355 L1 1.00 1.00
L2-2 1.27 1.11

L2-3 1.41 1.25

L3-6.3.2 1.68 1.43

L3-9.4.2 3.05 1.67

c432 L1 1.00 1.00
L2-2 1.22 1.21

L2-3 1.59 1.30

L2-5 2.05 1.54

L3-9.5 4.02 1.69

c499 L1 1.00 1.00
L2-2 1.34 1.10

L2-3 1.52 1.36

L3-6.4 1.67 1.54

alu2 L1 1.00 1.00
L2-2 1.27 1.15

L3-4.2 1.28 1.34

L3-5.4 1.73 1.47

L3-7.3 2.14 1.62

ape’ L1 1.00 1.00
L2-2 1.13 1.16

L3-4.2 1.23 1.39

L3-7.3.2 1.64 1.73

cm150a L3-7.4 0.67 1.54
cml5la L3-7.4 0.77 1.30

Table A-13: Speed-optimized 4-LUT HLB envelope set for individual circuits

134




Benchmark Cct. HL B topology Area Speed
N L3-8.4.3 0.87 1.88
cml62a L2-2 0.91 1.30
cml63a L3-7.2.2 0.99 1.30
L3-7.5 0.99 1.30

L3-9.5.2 1.16 1.88

count L1 1.00 1.00
L3-4.2 1.03 1.21

L3-6.2.2 1.16 1.54

L3-6.3.2 1.16 1.54

frgl L3-4.2 0.96 1.39
N L3-9.3.2.2 1.26 1.73
k2 L1 1.00 1.00
L2-2 1.14 1.11

L2-3 1.29 1.25

L2-4 1.50 1.43

L3-9.4.2 2.46 1.67

mux L2-5 0.80 1.30
L3-5.2 0.80 1.30

L3-9.4.2 0.80 1.30

L3-9.5 0.80 1.30

parity L2-5 0.90 1.30

Table A-13: Speed-optimized 4-LUT HL B envelope set for individual circuits

Table A.14 lists the 4-LUT HLB topologies that lie on the spemdus area cuevfor each
individual circuit when the HLB circuits are optimized for area. The first column lists the
benchmark circuit name, the second column lists the HLB topotbgythird column lists the

average normalized area and the fourth column listswaege normalized speed.
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Benchmark Cct. HL B topology Area Speed
9symml L3-4.2 0.84 1.36
c1355 L2-2 0.92 1.37
L3-4.3 1.02 1.48

c432 L2-2 0.98 1.12
L2-3 1.04 1.16

L3-4.2 1.08 1.21

L3-6.3.2 1.16 1.27

c499 L3-3.2 0.85 1.37
L3-4.3 0.90 1.48

alu2 L2-2 0.77 1.21
L3-4.2 0.81 1.32

L3-8.4.2 1.52 1.39

ape’ L2-2 1.02 1.21
L2-3 0.89 1.10

cm150a L3-7.3.3 0.92 1.54
L3-7.4 0.92 1.54

cml5la L3-8.4.2 0.58 1.39
cml62a L3-6.2.2 0.65 1.21
cml63a L3-3.2 0.75 1.21
count L2-2 0.92 1.08
frgl L2-3 0.81 1.18
N L3-3.2 0.89 1.30
k2 L2-2 0.90 1.18
mux L3-7.3.3 0.65 1.54
parity L3-9.2.2.2.2 0.78 1.73
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