
Architecture and Synthesis of

Field-Programmable Gate Arrays with

 Hard-wired Connections

by

Kevin Charles Kenton Chung

A thesis
submitted in conformity with the requirements

for the Degree of
Doctor of Philosophy

Graduate Department of Electrical and Computer Engineering
Computer Group

University of Toronto
Toronto, Ontario

CANADA

©Copyright by Kevin C. K. Chung 1994

ii

“Architecture and Synthesis of Field-Programmable Gate Arrays with Hard-wired

Connections”, by Kevin C. K. Chung, Ph. D. 1994, Department of Electrical and Com-

puter Engineering, University of Toronto, Canada.

Abstract

Current Field-Programmable Gate Arrays (FPGAs) are roughly three times slower and ten

times less dense than Mask Programmed Gate Arrays (MPGAs) in the same VLSI technology.

This speed and density difference arises mainly because of the slow and large programmable con-

nections between FPGA logic blocks.

One way to improve the speed and density of an FPGA is to substitute fast and small fixed

metal connections, which we callhard-wired connections, between some of the primitive gates or

basic blocks of an FPGA. We use hard-wired connections in FPGAs withhard-wired logic blocks

(HLBs), where an HLB consists of several basic blocks connected by hard-wired connections.

This dissertation describes algorithms for mapping basic block circuits to HLB circuits opti-

mized for speed or area. HLB mapping is done in two steps: First, a covering algorithm generates

a set of HLBfragments to implement the input circuit. Second the covering fragments are packed

together to minimize the number of HLBs in the final HLB netlist. We prove that the fragment

covering algorithm, when optimizing delay, generates an HLB netlist with minimal number of

programmable connections along critical paths. We also prove sufficient conditions for the frag-

ment packing algorithm to generate a minimal number of HLBs and show that all two-level HLB

topologies satisfy these conditions.

This dissertation explores a wide selection of LUT-based HLB FPGAs empirically. A suite of

benchmark circuits is implemented in each HLB architecture and each circuit’s area and delay is

measured. The goal is to find the HLB architectures that will yield fast FPGA circuits with rea-

sonable density, and conversely, dense FPGA circuits with good speed. Since an HLB architecture

is defined by its LUT size and its topology, the specific research questions are as follows:

iii

i) Which LUT size should be used to build an HLB-based FPGA that will yield

the fastest (densest) circuits with reasonable density (speed)?

ii) Which topologies should be used to build an HLB-based FPGA that will yield

the fastest (densest) circuits with reasonable density (speed)?

The results of the empirical study show that 6-input LUTs should be used in HLB-based

FPGAs for the fastest circuits with reasonable area and that 5-input LUTs should be used for the

smallest circuits with reasonable speed. The topologies that led to the fastest circuits had nodes

with a high fan-in of hard-wired connections, while the topologies that gave the densest circuits

had all nodes with two or more non-hard-wired inputs.

iv

Acknowledgements
I would like to thank my parents, Joyce and Donald, for providing a loving, nurturing and sup-

portive environment throughout my life. Many thanks to my sister, Donna, for being there when I

needed her, especially when mom and dad were not available.

I would like to thank my supervisor, Professor Jonathan Rose, for his unwavering technical,

moral and financial support during my thesis. I am a beneficiary of Jonathan’s enthusiastic and

dedicated attitude towards all of his students and peers, and I hope to provide a similar positive

environment for all who work with me.

Thanks to my examiners, Dr. Nam-Sung Woo, Professor David Lewis, Professor Safwat Zaky,

Professor Zvonko Vranesic, Professor Derek Corneil and Professor Jonathan Rose for their

helpful comments and suggestions for improving my thesis.

Thanks to Bob Francis, Keith Farkas, Steve Wilton and Mike Hutton for proof-reading various

parts of my thesis and related papers. Thanks to the students in the computer group, in particular,

Bob, Keith, Steve, John C., John N., Heather, Yaska, Mike vdP, Aris, Chris and Lawrence for

making my time in school so much fun. Maybe next year, we’ll have a winning softball team!

Thanks to the badminton and tennis groupies in Agincourt for the on-court and off-court

activities. You have made keeping fit so much fun!

In closing, I’d like thank all the “teachers” in my life (my parents, sister, relatives, friends and

professional instructors) for sharing their wisdom with me.

Wisdom... is more precious than rubies;

and all the things you may desire cannot compare with her.

Length of days is in her right hand,

and in her left hand riches and honour.

Her ways are ways of pleasantness,

and all her paths are peace.

 Proverbs 3:13-17

v

Table of Contents

Chapter 1 Introduction .. 1
1.1 Motivation .. 1

1.2 Research Scope, Goals and Methodology... 4

1.3 Thesis Organization... 6

Chapter 2 Terminology and Previous Work 7
2.1 Lookup Tables.. 8

2.2 Logic Synthesis for Lookup-Table Based FPGAs............................. 9
2.2.1 Technology-Independent Logic Optimization................................. 11
2.2.2 Technology-Dependent Mapping to Lookup-Tables 12

2.3 Previous FPGA Architectural Studies.. 18
2.3.1 Area-efficiency of LUT-based FPGAs... 18
2.3.2 Speed performance of LUT-based FPGAs....................................... 19
2.3.3 Interconnection flexibility of LUT-based FPGAs............................ 19

2.4 Previous work involving hard-wired connections.............................. 21

2.5 Conclusion... 22

Chapter 3 Algorithms for Mapping to Hard-wired Logic Blocks .. 23
3.1 Definition of the HLB Architecture... 24

3.2 HLB Synthesis Overview ... 24

3.3 The HLB Technology Mapping Problem.. 25

3.4 Fragment Covering .. 27
3.4.1 Definitions for the Fragment Covering Algorithm 27
3.4.2 Naming Convention for HLBs... 30
3.4.3 Generation of the Fragment Pattern Library.................................... 31
3.4.4 Selection of the Set of Covering Fragments.................................... 34
3.4.5 Delay versus Area Optimization.. 41

3.5 Fragment Packing .. 43
3.5.1 Fragment Packing Problem Definitions... 44
3.5.2 Unique Ordering for Fragment Trees... 45
3.5.3 Generation of Maximal Packing Sets.. 46
3.5.4 The Fragment Packing Algorithm ... 47

3.6 Conclusion... 50

vi

Chapter 4 Complexity and Optimality of the HLB Mapping Algorithms 51
4.1 Complexity and Optimality of Fragment Covering Problem and Algorithm 51

4.1.1 Covering Problem Definition and Algorithm Review 52
4.1.2 Complexity of Fragment Covering Algorithm................................. 52
4.1.3 Optimality of Fragment Covering Algorithm 53

4.2 Complexity and Optimality of Fragment Packing Problem and Algorithm 62
4.2.1 Packing Problem Definition Review .. 63
4.2.2 Complexity of Fragment Packing .. 63
4.2.3 Complexity of the Heuristic Fragment Packing Algorithm............. 66
4.2.4 Definition of Optimality for Fragment Packing............................... 67
4.2.5 HLBs for which FFD Fragment Packing is Optimal....................... 67
4.2.6 An HLB for which FFD Fragment Packing is Sub-optimal............ 70

4.3 Conclusion... 72

Chapter 5 Effectiveness of the HLB Mapping Algorithms 73
5.1 Comparison to Theoretical Bounds... 73

5.1.1 Performance of the Area-optimization Algorithm........................... 73

5.2 Effectiveness of Overall HLB Mapping Procedure........................... 76

5.3 Conclusion... 79

Chapter 6 An Empirical Study of HLB Architectures 80
6.1 The Hard-wired Logic Block Design Space...................................... 81

6.2 Empirical Method for Exploring HLBs... 83
6.2.1 Benchmark Circuits... 84
6.2.2 Synthesis Steps.. 84
6.2.3 Fixed vs. Free Variable Number of HLBs and Channel Width 87
6.2.4 Delay Model... 88
6.2.5 Area Model .. 92

6.3 Experimental Results... 94
6.3.1 Speed of HLB Architectures.. 95
6.3.2 Area-efficiency of HLB Architectures... 101
6.3.3 Limitations of the HLB Synthesis Procedure.................................. 107
6.3.4 The Effect of Changing the Average Routing Delay, DR 113
6.3.5 The Effect of Changing the Routing Bit Area,RB 116

6.4 Summary of Results... 120

6.5 Limitations of the Empirical Study.. 120
6.5.1 Effect of HLB synthesis tools.. 121
6.5.2 Effect of Routing Architecture Assumption.................................... 121

vii

Chapter 7 Conclusions and Future Work .. 122
7.1 Thesis Summary and Contributions... 122

7.2 Future Work ... 123
7.2.1 Enhancements to the HLB Mapping Algorithms............................. 123
7.2.2 HLB-based FPGA Architecture Investigation Avenues................... 124

Appendix AData from the HLB Architecture Studies 127
A.1 Envelope Set data from Speed Study... 127

A.2 Envelope Set data from Area-efficiency Study 131

A.3 Envelope Set Data for Individual Circuits ... 133

viii

List of Tables
Table 3-1: Mapping between Subject nodes and Covering Graph nodes 29

Table 5-1: Comparison with Lower Bound on Area of L2-3 HLB circuits 74

Table 5-2: Comparison with Lower Bound on Area of 4-LUT HLB circuits................ 75

Table 5-3: Comparison of PPR and TEMPT for Delay-optimization............................ 78

Table 5-4: Comparison of PPR and TEMPT for Area-optimization.............................. 79

Table 6-1: Benchmark Circuit Information.. 85

Table 6-2: Lookup Table Delays in 1.2µm CMOS.. 88

Table 6-3: Envelope Point Set for Speed-optimized 4-LUT HLB circuits 96

Table 6-4: Envelope Point Set for Speed-optimized 6-LUT HLB circuits 100

Table 6-5: Envelope Point Set for Area-optimized 4-LUT HLB circuits 103

Table 6-6: Envelope Point Set for Area-optimized 5-LUT HLB circuits 106

Table 6-7: HLBs with logic density better than the 4-LUT ... 107

Table 6-8: Best 6-LUT HLBs for Speed-optimized circuits .. 110

Table 6-9: Best 5-LUT HLBs for Area-optimized circuits .. 112

Table 6-10: Total LUT delays for Speed-optimized LUT circuits................................... 113

Table 6-11: Average Logic Area for Area-optimized HLB circuits 116

Table A-1: Speed-optimized 2-LUT HLB envelope set ... 128

Table A-2: Speed-optimized 3-LUT HLB envelope set ... 128

Table A-3: Speed-optimized 4-LUT HLB envelope set ... 129

Table A-4: Speed-optimized 5-LUT HLB envelope set ... 129

Table A-5: Speed-optimized 6-LUT HLB envelope set ... 130

Table A-6: Speed-optimized 7-LUT HLB envelope set ... 130

Table A-7: Area-optimized 2-LUT HLB envelope set ... 131

Table A-8: Area-optimized 3-LUT HLB envelope set ... 131

Table A-9: Area-optimized 4-LUT HLB envelope set ... 132

Table A-10: Area-optimized 5-LUT HLB envelope set ... 132

Table A-11: Area-optimized 6-LUT HLB envelope set ... 132

Table A-12: Area-optimized 7-LUT HLB envelope set ... 133

Table A-13: Speed-optimized 4-LUT HLB envelope set for individual circuits.............. 134

Table A-14: Area-optimized 4-LUT HLB envelope set for individual circuits................ 136

ix

List of Figures
Figure 1-1: Using hard-wired logic blocks to speed up a circuit 3

Figure 1-2: HLB tapping buffers ... 4

Figure 1-3: Balanced tree topology ... 5

Figure 2-1: Synthesis of a circuit into a Generic FPGA ... 8

Figure 2-2: 3-LUT implementing F = a b + c .. 9

Figure 2-3: A Boolean Network .. 10

Figure 2-4: A Netlist of 3-LUTs ... 10

Figure 2-5: Library of gates .. 14

Figure 2-6: Mapping a Boolean network .. 15

Figure 2-7: OR decomposition guided by bin packing [18] ... 17

Figure 2-8: Chaining the bins .. 17

Figure 2-9: Generic FPGA routing architecture .. 20

Figure 2-10: Connection and switch blocks of an FPGA tile ... 21

Figure 2-11: Xilinx 4000 CLB .. 22

Figure 3-1: L2-3 HLB and L2-3 HLB Fragments ... 26

Figure 3-2: Example of a Cover .. 29

Figure 3-3: Some 4-LUT HLB topologies .. 30

Figure 3-4: Mux-based HLB and a Buffered HLB fragment .. 32

Figure 3-5: Pseudocode describing the generation of the HLB fragment pattern library . 33

Figure 3-6: Fragment Covering Algorithm ... 35

Figure 3-7: Internal-node pattern matching algorithm .. 39

Figure 3-8: Pattern matches to a tree and non-tree subgraphs .. 40

Figure 3-9: Example where replication reduces area .. 42

Figure 3-10: Canonical Labelling Algorithm .. 45

Figure 3-11: String Label Example ... 46

Figure 3-12: L2-3 HLB and maximal packing sets due to edge-deletion 48

Figure 3-13: HLB Fragment Packing Algorithm .. 48

Figure 3-14: The subset checking function ... 49

Figure 4-1: Example to show sub-optimality of area algorithm 60

Figure 4-2: Sub-optimal replication example ... 61

Figure 4-3: A generic two-level HLB ... 69

Figure 4-4: A two-level HLB (L2-4) and its maximal packing sets 70

Figure 4-5: L3-4.2 HLB and its maximal packing sets ... 71

x

Figure 4-6: Covering Fragments that give sub-optimal packing for L3-4.2 HLB 71

Figure 4-7: Sub-optimal packing and Optimal packing for L3-4.2 HLB example 72

Figure 5-1: The Xilinx 4000 CLB ... 76

Figure 6-1: Some 4-LUT HLB topologies .. 82

Figure 6-2: HLB tapping buffers ... 83

Figure 6-3: FPGA layout tile and the routing architecture ... 85

Figure 6-4: Detailed view of Hard-wired Connection and Tapping Buffer [25] 89

Figure 6-5: Assumed Routing Architecture .. 90

Figure 6-6: Better routing architecture .. 91

Figure 6-7: Speed versus Area Curve for Speed-optimized 4-LUT HLB Circuits 97

Figure 6-8: Speed versus Area curves for Speed-optimized HLB Circuits 98

Figure 6-9: Fastest 6-LUT HLB topologies .. 101

Figure 6-10: Speed versus Area Curve for Area-optimized 4-LUT HLB Circuits 102

Figure 6-11: Speed versus Area curves for Area-optimized HLB Circuits 104

Figure 6-12: Densest 5-LUT HLB topologies .. 105

Figure 6-13: Speed versus Area curve shift due to non-ideal speed-optimization 109

Figure 6-14: Chaining together three LUTs with 5 used inputs .. 111

Figure 6-15: Speed versus Area curves for Speed-optimized HLB circuits, DR = 1ns 114

Figure 6-16: Speed versus Area curves for Speed-optimized HLB circuits, DR = 10ns 115

Figure 6-17: Speed versus Area curves for Speed-optimized HLB circuits, RB = 250 mm2 118

Figure 6-18: Speed versus Area curves for Area-optimized HLB circuits, RB = 250 mm2 119

xi

Glossary
basic block

the smallest combinational logic unit or primitive gate of the FPGA.

connection box

part of the routing architecture that allows connections between a logic block pin and a

routing channel.

covering fragments

a set of HLB fragments that implement the basic block network with minimized area

or delay.

DR

the average delay of a programmable routing connection.

envelope set

the set of HLB architecture (area, speed) points such that no point outside the envelope

set has both higher speed and lower area than some point within the envelope set. Con-

versely, every point outside the envelope set has higher area and lower speed than

some point within the envelope set. The envelope set represents the “best” HLB archi-

tectures among a given group of HLB architectures.

FFD

first fit decreasing.

flexibility

refers to the number of choices in making a routing connection.

fragment

seeHLB fragment .

fragment covering

the first phase of the HLB mapping algorithm that generates the covering fragments.

fragment packing

the second phase of the HLB mapping algorithm that packs the set of covering frag-

ments into a minimized number of packed HLBs.

xii

fragment pattern

represents an HLB fragment in the pattern library used during fragment covering.

hard-wired connection (or hard-wired link)

a fixed connection (usually a simple metal wire) between two basic blocks.

hard-wired logic block

an FPGA logic block consisting of several basic blocks connected by hard-wired con-

nections.

HLB

hard-wired logic block.

HLB fragment

a connected subset of the basic blocks of an HLB.

HLB architecture

defined by the granularity of the basic block and the connection topology of the HLB.

HLB-based FPGA

an FPGA whose logic blocks are HLBs.

HLB mapping (or HLB technology mapping)

the phase of logic synthesis that transforms an input basic block network into an out-

put HLB netlist.

HLB template

the graph that describes the HLB.

HLB topology

how the basic blocks of the HLB are connected.

logic block

the part of the FPGA that is used to implement the combinational and sequential logic

of a circuit.

logic synthesis

the synthesis step that converts a Boolean description into a netlist of FPGA logic

blocks.

xiii

lookup-table

a programmable gate that can implement any Boolean function of its inputs.

LUT

see lookup table.

LUT size

the number of inputs to the LUT or lookup table.

maximal packing set

the largest possible packing sets.

packed HLB

an HLB during or after the packing algorithm.

packing set

a set of fragments that can be legally packed within the same HLB.

RB

the area of each routing bit in the connection boxes and switch boxes.

speed versus area curve

the curve made by connecting together the points in the envelope set.

switch box

part of the routing architecture that allows connections between horizontal and vertical

routing channels.

Xilinx 4000 CLB

a commercial FPGA with hard-wired LUT basic blocks.

1

Chapter 1 Introduction

Field-Programmable Gate Arrays (FPGAs) are the newest and currently most popular media

for designingnew digital Application Specific Integrated Circuits (ASICs) [1]. An FPGA consists

of an array of user-programmable combinational and sequential logic elements (called logic

blocks), which implement the functionality of a circuit, and a set of user-programmable routing

resources, which connect the logic blocks [2]. Like Programmable Logic Devices, the designer

“manufactures” the ASIC in the office within minutes by programming the logic elements and

connections1. FPGAs have speed and density within an order of magnitude of Mask-Programmed

Gate Arrays (MPGAs), the previous most popular choice of ASIC designers. Since the non-

recurring engineering costs of FPGAs are much lower than MPGAs, FPGAs are cheaper when

manufactured in small quantities and thus pose less of a financial risk. Another advantage is that

FPGAs have the properties of a commodity chip, such as a random access memory: the FPGA

chips are all the same and, because of large volumes, can be produced more economically. This

commodity property makes FPGAs a more attractive product than MPGAs for silicon foundries,

which have become expensive capital ventures.

1.1 Motivation

Current FPGAs are roughly three times slower and ten times less dense than MPGAs made in

the same fabrication process technology [2]. This disparity is caused mostly by the routing used to

connect logic components in each technology. In MPGAs, the logic is connected via mask-pro-

1. The term “field-programmable” means that the ASIC can be manufactured in the designer’s
office or modified during field operation, without having to send the design to a fabrication plant.

2

grammed metal wires, whereas in FPGAs, logic block pins are connected via programmable

switches. Regardless of the type of programmable switch in the FPGA (whether based on static

RAM-controlled pass transistors [3], anti-fuses [4] or floating gate transistors [5]) the capacitance,

resistance and size of the switch makes them much slower and larger than a simple metal wire. In

addition, for an MPGA, the amount of routing resources used is exactly what is needed to connect

the logic. However, to provide good logic block utilization and routability in an FPGA, there must

exist a rich and flexible programmable switching structure to provide many alternate paths

between logic block pins. Since many of the programmable switches in the routing matrix will be

unused, this further reduces FPGA logic density with respect to MPGAs.

One way to improve the speed and density of FPGAs is to replace some of the slow and large

programmable connections between the logic blocks withhard-wired connections, which are sim-

ple metal wires. We explore the use of hard-wired connections in FPGAs by postulating an FPGA

architecture based onhard-wired logic blocks (HLBs), with each HLB consisting of several iden-

tical simple logic blocks connected together by hard-wired links into a coarse-grained logic block.

The use of hard-wired logic blocks (HLBs) in an FPGA may reduce the delay and size of circuits.

For example, Figure 1-1 illustrates how HLBs can improve the speed and density of an FPGA

circuit. Define abasic block to be the primitive gate or the simplest combinational logic unit of the

FPGA. Figure 1-1(a) illustrates a network of 4-input basic blocks. Assuming that the longest path

is the critical path and that only gate-output programmable connections are counted. Then this

network has five slow programmable connections in the routing along the critical path (through

blocks1, 2, 3, 4 and5) and nine programmable connections in total. Suppose that three of the

basic blocks are hard-wired together to create a hard-wired logic block (Figure 1-1(b)) with a fast

three-block path. If this hard-wired logic block (HLB) is used to implement the circuit of Figure

1-1(a), the circuit in Figure 1-1(c) results. This circuit has only two slow programmable links

instead of five along the critical path and this represents a sizeable reduction in routing delay.

3

Also, the total number of programmable connections has been reduced from nine to four and this

may lead to a significant reduction in routing area.

The use ofhard-wired connections in FPGA logic blocks, however, leads to a reduction in the

flexibility of the FPGA compared to an FPGA that has only programmable connections between

basic blocks. For example, in the hard-wired logic block of Figure 1-1(b), the hard-wired input of

basic blockC is no longer independent of the output of basic blockB. Thus if a logic function

only requires two of the three basic blocks (sayA andB), then because of the hard-wired connec-

tions between the basic blocks, one basic block (C) would be wasted. The hard-wired input

between blocksB and C also renders basic blockC unusable for logic functions that do not

depend on the output of basic blockB, yet require all of the four basic block inputs. This effect

may lead to lower FPGA logic density.

To improve an HLB-based FPGA’s density, each HLB is assumed to have atapping buffer on

the output of each basic block. The tapping buffers allow access to the output of every basic block

in the HLB and this can improve both the density and speed of HLB circuits. For example, Figure

1-2 illustrates the tapping buffers for the HLB from Figure 1-1(b).

1-1(a): Basic Block Cct. 1-1(b): An HLB 1-1(c): The faster HLB Cct.

A

B

C

hard−wired link

prog. conn.1

2

3

4

5

A

A

AA

B

C

BB

C

Figure 1-1: Using hard-wired logic blocks to speed up a circuit

4

HLBs suffer from reduced logic density because of reduced connection flexibility between

basic blocks. Because tapping buffers give access to basic block outputs, one can use subsets of

the HLB basic blocks independently. For example, basic blocksA andB can be used to imple-

ment one logic function, while basic blockC is used to implement another.

The presence of tapping buffers also leads to faster circuits since the output of one basic block

can be accessed directly instead of propagating it through another basic block. For example, the

output ofA in Figure 1-2 can be accessed directly throughtapping buffer 1, whereas without

intermediate tapping buffers, the output of A would have to be propagated throughB andC.

This thesis will investigate the speed improvements and density benefits of hard-wired con-

nections in FPGA logic blocks, as well as the logic synthesis algorithms needed to automate the

design of such FPGAs.

1.2 Research Scope, Goals and Methodology

The HLB architecture of an FPGA is defined by the choice of basic block and connection

topology between the hard-wired basic blocks. Figure 1-1(b) shows an example of an HLB archi-

tecture consisting of three 4-input basic blocks connected in a chained topology. There are many

other possible HLB connection topologies. For example, Figure 1-3 illustrates another connection

topology, a balanced tree, for three 4-input basic blocks. We restricted our hard-wired connection

tapping buffer 1

tapping buffer 2

A

B

C
root tapping buffer

Figure 1-2: HLB tapping buffers

5

lookup tables (LUTs) are a good basic block from both a logic density and speed perspective [6]

[8] [29] [30]. Thus, only LUTs are considered as basic blocks for the HLB-based FPGAs in this

work.

There are architectural trade-offs between basic blocks and topology of the HLB and the

speed and density of the HLB-based FPGA. A more functional basic block, in general, leads to

faster circuits because it reduces the number of logic levels. However, when the basic block is too

complex, it may be difficult to make efficient use of its functionality, and this may lead to lower

logic density. A greater number of hard-wired links in an HLB leads to faster circuits since more

of the critical path connections can be implemented by fast hard-wired connections. More hard-

wired links in the HLBs also imply more hard-wired connections between the basic blocks of the

circuit. This reduces the total number of programmable connections in the circuit and may reduce

the routing area. However, as discussed above, the increase in hard-wired links may lead to more

wasted logic, and so reduce logic density.

The goal of this research is to explore these trade-offs in basic block functionality and hard-

wired connection topologies to find those HLBs that will lead to fast FPGA architectures with

good logic density. The results will show that certain FPGAs with hard-wired links are not only

faster than FPGAs without hard-wired links, but can also achieve better area-efficiency.

To explore the HLB architectural space, this thesis uses an empirical approach to evaluate the

different HLB-based FPGA architectures. Each FPGA architecture is used to implement a set of

benchmark circuits and then the speed and area of the resulting circuits are measured using area

a

1

b

c

2 34 5 6 7 8

109

Figure 1-3: Balanced tree topology

6

and delay models. A comparison of the speed and area of the implemented circuits yields the best

architectural alternatives.

When performing such an empirical study, it is preferable to use the best CAD tools available

for the circuit implementations. Since the synthesis of HLB-based FPGAs is a new CAD problem,

a new HLB mapping tool had to be constructed [9]. This thesis describes the algorithms used in a

novel HLB mapper as well as a discussion and statements concerning the optimality of the algo-

rithm. When compared to a commercial CAD tool [11] aimed at mapping a particular hard-wired

logic block [13], this HLB mapper is comparable in effectiveness. However, it should be noted

that this new tool can be applied to a much broader range of hard-wired logic block structures.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 presents the background necessary to under-

stand the rest of the thesis and related work. Chapter 3 describes the CAD algorithms used to map

the benchmark circuits to HLB-based FPGA circuits. Chapter 4 discusses the complexity and

optimality of the HLB mapping algorithms described in Chapter 3. The effectiveness of the HLB

mapping algorithms is evaluated with respect to theoretical bounds and a commercial mapping

tool in Chapter 5. Chapter 6 describes the range of HLB architectures investigated, the experimen-

tal method used to implement benchmark circuits in the various HLBs and the area and delay

models used to calculate the size and speed of the resulting HLB circuits. Chapter 6 also presents

the results for various HLB architectures when optimizing for speed and area and discusses the

limitations of the experimental method. The final chapter concludes with a summary of the thesis

and gives suggestions for future work.

7

Chapter 2 Terminology and Previous Work

This chapter presents the background terminology needed to understand the following

chapters plus a survey of related research into FPGA architecture. In this thesis, FPGA

architecture alternatives are evaluated using the same basic methods employed in other FPGA

empirical studies [6] [7] [8] [25] [27] [28] [29] [30] [31]. This methodology can be briefly

described as follows. In order to improve upon the speed and density of the current FPGAs an

architectural idea is proposed that gives rise to a new class of FPGA architectures, or an existing

class of FPGAs is investigated. For a given variation of FPGA architecture, several benchmark

circuits are implemented in that FPGA and then the area and/or speed of the circuit

implementations are measured. Note that whenever the proposed FPGA architectures are novel,

new CAD synthesis tools are often needed to carry out these empirical studies - for example, the

Chortle technology mapper [20] was necessary to perform LUT-based FPGA studies [6] [7] [8]. A

comparison of the speed and area of the circuits, when implemented in the different FPGA

architectures, yields the best alternatives.

Mapping a benchmark circuit to an FPGA is done in two main steps. The circuit is first

mapped into the logic blocks of the FPGA in a step referred to aslogic synthesis, and then the

resulting netlist of logic blocks is placed and routed within the interconnection resources of the

FPGA. For example, Figure 2-1 shows a circuit that has been implemented in a generic FPGA. On

the left side of Figure 2-1 is a circuit consisting of two logic blocks, each represented by a dotted

rectangle. One logic block implements a two-inputAND function and the other a two-inputOR

function. The right side of Figure 2-1 shows the generic FPGA used to implement the circuit. The

logic blocks used to implement the circuit are placed in the upper left corner of the FPGA and the

8

connections between I/O pads and logic blocks in thick lines. Since the new CAD tool presented

in this thesis mapscombinational circuits to the logic blocks of the HLB-based FPGA, only the

combinational logic synthesis phase will be discussed in this chapter. As mentioned in Chapter 1,

the logic blocks investigated in this thesis are based on lookup tables (LUTs). This chapter first

presents some background information on LUTs and then some of the previous work in logic

synthesis and architecture for LUT-based FPGAs.

2.1 Lookup Tables

A K-input lookup table (K-LUT) is a programmable gate that can implement any Boolean

function of K or fewer variables. The 2K memory cells in the LUT contain the truth table for the

K-input Boolean function. A 2K to 1 multiplexer, controlled by the K inputs, is used to select one

of the memory cells. For example, Figure 2-2 shows a 3-LUT that implements the Boolean

functionF = a b + c. The 8 memory cells and their addresses are on the left side of Figure

2-2 and the 8 to 1 multiplexer is on the right. For example, ifa = 1, b = 0 andc = 1

(memory cell address 101), then the LUT outputF = 1.

Interconnection
Resources

Logic Block

F
A

B
C

AB

C

F

I/O Pad

Figure 2-1: Synthesis of a circuit into a Generic FPGA

9

2.2 Logic Synthesis for Lookup-Table Based FPGAs

Logic synthesis takes an input circuit description, often in the form of a Boolean network, and

produces a netlist of logic blocks optimized for either speed or area. A Boolean network [38] can

be represented as a directed acyclic graph (DAG). Each node in the DAG represents a logic gate,

primary input or primary output. In the DAG, there is a directed edge (i, j) if the output of

gate i is an input of gate j. The gate functions for the nodes of a Boolean network are usually

restricted to implementing a simple function of its inputs, such as an AND, OR or a sum of

products expression. The primary input nodes are those with no incoming edge and primary

output nodes are those with no outgoing edge. All other nodes in the Boolean network are termed

internal nodes. For example, Figure 2-3 shows a Boolean network with primary inputs a, b,

c, d and primary output F. There are two internal nodes in the network, x and y. Node x

implements the sum of products expression, a b + c, of the primary inputs. Node y implements

the AND function of the output of node x and primary input d. The primary output node, F, is

connected to the internal node y.

0

0

0

1

1

1

1

1

000

001

010

011

100

101

110

111

a b c

F

8 to 1

MUX

Memory
Cell
Contents

Figure 2-2: 3-LUT implementing F = a b + c

10

 The output netlist of FPGA logic blocks can also be described by a DAG. In this case, each

node represents a logic block and each edge represents a connection between the output of a logic

block and the input of another logic block. Associated with each node is a Boolean function that

tells how that logic block transforms its inputs to generate an output. For example, Figure 2-4

shows a DAG that represents a netlist of 3-input lookup tables (3-LUTs) after mapping the

Boolean network in Figure 2-3. Each of the two 3-LUTs in Figure 2-4 has an associated Boolean

function as shown in the figure.

Logic synthesis can be conceptually separated into two phases, technology-independent logic

optimization and technology-dependent mapping. In the logic optimization phase, the input

a b + c

F

a b c d

x

x d

y

Figure 2-3: A Boolean Network

a b + c

F

a b c d

x

x d

y

Figure 2-4: A Netlist of 3-LUTs

11

Boolean description is modified by Boolean operations to minimize some technology-

independent cost function that measures area or delay. The structure of the Boolean network can

be modified in any manner so long as the output functionality is preserved. In the technology

mapping phase, the optimized Boolean description is mapped to a netlist of nodes, each node

having a Boolean function that is implemented by an FPGA logic block. Technology mapping

operations should preserve the general structure of the optimized Boolean network so that logic

optimizations are not undone. Decompositions of nodes and local replication of portions of the

Boolean network are the only structure-changing operations usually employed.

2.2.1 Technology-Independent Logic Optimization

The goal of the logic optimization phase is to improve the input Boolean network so that the

subsequent technology mapping to logic blocks can be more effective. This phase is described as

technology-independent because it does not use knowledge of the implementation technology to

guide the restructuring of the Boolean network. For example, the total number of literals in the

Boolean description is one technology-independent measure of area and the depth of the Boolean

network is one measure of delay. The goal of the logic optimization algorithms is to minimize the

cost of the Boolean network by applying Boolean operations to the network, such as two-level

minimization or factoring. One benefit of technology-independent logic optimization is that the

logic optimizer may be applied to the implementation of circuits in many target technologies.

However, the main drawback is that the technology-independent measures of area and delay may

not be accurate for a particular target technology. This may lead to an inferior result after

technology mapping has been performed.

The MIS system [17] is an example of a logic optimization system. The MIS logic

optimization system uses a count of the number of literals in the gate functions of the Boolean

network as a measure of area. MIS optimization operations include (1) algebraic factoring to

extract logic expressions that appear in several parts of the network, (2) node function

simplification using techniques similar to Karnaugh-map minimization and (3) decomposition of

12

large node functions to simplify and improve technology-dependent mapping. An illustration of

some of the MIS optimization algorithms is now presented using the following Boolean network:

x = a b c d + a b c e (4.1)

y = a b c f + a b c g (4.2)

z = a h + b h + c h + a b c (4.3)

The initial Boolean network has 25 literals in the sum-of-product form of the gate functions.

Suppose the algebraic factoring operation extracts the factor a b c. Note thata b c is

equivalent toa + b + c. If a new node,t, with the functiona b c is introduced and

substituted in the above network, then the modified Boolean network is:

t = a b c (4.4)

x = t d + t e (4.5)

y = t f + t g (4.6)

z = t h + t (4.7)

Simplifying the function for node z, results in the following equation:

z = h + t (4.8)

The optimized form of the Boolean network now has only 13 sum-of-product literals compared to

the original literal count of 25. This significant reduction in the complexity of the Boolean

network will lik ely lead to a smaller circuit implementation when the equations are mapped to

logic blocks. Before technology-dependent mapping, the network nodesx and y may be

decomposed to yield the following factored equations, which may be easier to map:

x = t (d + e) (4.9)

y = t (f + g) (4.10)

The optimized set of equations for t, x, y andz has a total of 11 literals in the factored form.

2.2.2 Technology-Dependent Mapping to Lookup-Tables

The technology mapping step takes the optimized Boolean network and finds an optimized

netlist of K-LUTs thatcovers or implements the network. To determine if a K-LUT covers a

portion of the network, one simply counts the number of input edges to the sub-network. If the

number of inputs is less than or equal to K, then it can be covered by a K-LUT. The goal of

13

technology mapping is to minimize the area or delay (or some combination of both) of the K-LUT

cover. Area minimization refers to using the smallest possible number of K-LUTs. A delay-

optimized K-LUT circuit has the minimum depth (in terms of K-LUTs) along any of the longest

paths between primary inputs and a primary output1.

Sometimes logic optimization produces nodes in the optimized Boolean network with more

than K inputs. These are referred to asinfeasible nodes. An infeasible node has to bedecomposed

into nodes with fewer than or equal to K inputs (calledfeasible nodes) to enable covering by a K-

LUT. Decomposition of feasible nodes can also improve the quality of the cover by increasing the

number of alternatives available to the covering operations. During the construction of the cover,

the process of checking to see if a sub-network rooted at a node can be implemented by a gate is

referred to asmatching. Covering, matching and decomposition operations are common to all

technology mapping algorithms.

Library-based Technology Mapping for LUTs

This subsection describes a general approach to technology mapping, called library-based

mapping, that can be applied to many ASIC technologies, including LUTs. Library-based

technology mapping using graph-covering and dynamic programming was first introduced in the

DAGON technology mapper [19]. The HLB-based FPGA mapping algorithm in this dissertation

uses a library-based mapping algorithm in one of its stages.

The first step in a general ASIC library-based mapping algorithm is to use decomposition

operations to convert the input Boolean network, also called thesubject network, to a canonical

network of gates. Often the canonical gates areINVERTER or 2-inputNAND, NOR, AND or OR

gates. Similar decomposition operations are applied to each gate function in the library to make a

set ofpattern graphs that are used to match against nodes in the subject DAG. Since the gates in

1. This optimizes the longest path delay but may not optimize the critical path delay. In the
absence of exact timing information, it is assumed that the longest path is the same as the critical
path.

14

the pattern library and the subject network are of the same type, this reduces the mapping problem

to one of covering a directed acyclic graph (DAG) with a set of graphs. An additional constraint is

that each input of a gate in the cover must be produced by the output of another gate or a primary

input.

The mapping algorithm traverses the input Boolean network from inputs towards the outputs

and uses dynamic programming to select the best pattern (and hence best gate) to implement each

node in the network. At each node,every gate pattern in the library is matched against the network

to see if it can cover the network at that node. The matched sub-network includes the node plus a

portion of the network feeding the node. The cost of using the matching gate at that node is the

sum of the gate cost plus the costs of the nodes that fan-in to the sub-network covered by the gate.

Primary inputs are assigned a cost of zero. The matching gate that leads to the lowest cost

implementation of the node is selected. The lowest cost (and the matching gate) is retained so that

the cost can be used to determine the lowest cost matches for succeeding nodes.

For example, suppose the library consists of the five gates in Figure 2-5 and this library is used

to implement the Boolean network shown in Figure 2-6. Figure 2-6(a) shows the mapping of

nodesA andC. The mappings ofA andC are trivial because there is only one possible gate that

can be used at each node. The cost of nodeA is 4, which is the cost of anOR gate. The cost of

node C is 1. Figure 2-6(b) shows the mapping of nodeB, which has two possible matching gates:

anAND gate or anOA21 gate. If theAND gate is used to implement nodeB, then the total cost for

implementingB would be 7, which is the sum of the cost of theAND gate and the cost of fan-in

INV, cost = 1 AND, cost = 3 OR, cost = 4 AO21, cost = 5 OA21, cost = 6

Figure 2-5: Library of gates

15

nodeA. However, if theOA21 gate is used to implement nodeB, then the cost is 6, and so, the

OA21 gate would be chosen for implementing nodeB (Figure 2-6(b)). Figure 2-6(c) shows the

mapping of the root nodeD. At D there are two possible matching gates, anOR gate or anAO21

gate. The lowest cost ofD (a cost of 10) occurs when using theA021 gate. The best mapping for

the entire network is shown in Figure 2-6(c).

The completeness of the set of functions that can be implemented by a K-input LUT makes it

a difficult target technology for a library-based mapper [18]. For a given value of K, there are

possible functions that can be implemented by a K-LUT. Thus, for even small values of K, the

library becomes very large. For example, K = 4 would require 65536 gates in the library.

Performing the matching of such a large number of library gates against each node would be too

time-consuming and so more efficient means of mapping to LUTs were created [18] [20] [21]

[32] [33] [35] [37].

Chortle LUT Technology Mapper

This subsection describes the LUT mapper used for the experiments in this thesis. The Chortle

technology mapper for LUT-based FPGAs [20] [21] exploits the completeness of LUTs during

decomposition and covering. Similar to the library-based mapping algorithm described above, the

Chortle algorithm traverses the input Boolean network from primary inputs to outputs, and at each

node finds the best K-LUT circuit to realize the function at that node. The input network consists

A

B C

D

Figure 2-6: Mapping a Boolean network

A

B C

D

A

B C

D

2-6(a): Mapping nodes A 2-6(b): Mapping node B 2-6(c): Mapping node D

22K

16

of AND and OR nodes and the decomposition techniques are restricted toAND-OR

decompositions. At each node in the network, the goal is to find the circuit of K-LUTs rooted at

the node with minimum area or delay cost as a primary cost function. When optimizing area, the

primary cost function is the total number of K-LUTs. When optimizing delay, the primary cost

function is the maximum number of K-LUTs in any path from the node to a primary input. The

secondary objective is to minimize the number of inputs to the K-LUT rooted at the node. This is

important because the number of inputs to the K-LUT at a node affects the mapping of the fan-out

of the node. The rest of this section will describe the Chortle algorithm with respect to area

minimization only.

When mapping a givenAND orOR node, the goal is to decompose the node in such a way as to

optimize the covering of the node’s fan-in K-LUTs and the node itself. Decomposition is also

necessary to ensure that all nodes have fan-in less than or equal to K. BecauseAND andOR

operations are associative and commutative, the decomposition of theAND or OR node can be

formulated as an integerbin packing problem. The bin packing problem is as follows. Given a set

of boxes of integer size one to K, where the size of the boxes correspond to the number of inputs

used by a fan-in LUT, the goal is to pack these boxes into as few as possible bins of size K. Each

packed bin corresponds to a LUT. The output of the boxes in each packed bin connect to a

common gate of the same type as the decomposed node. In addition, all of the outputs of the

packed bins also feed into a common gate of the same type as the decomposed node.

For example, Figure 2-7 illustrates the decomposition of theOR nodez when mapping to 5-

input LUTs. TheOR node in Figure 2-7(a) has five fan-in LUTs with 3, 2, 2, 2 and 2 inputs

respectively. Each of the fan-in LUTs in Figure 2-7(a) implement anAND function. The best

packing of the five fan-in boxes into bins of size 5 has three bins, one with a total of 5 inputs,

another with a total of 4 inputs and the last with only 2 inputs. Note that since the two boxes in the

left bin of Figure 2-7(b) are packed in the same bins, the outputs of the two boxes fan-in to a

common 2-inputOR gate. We will refer to the LUTs after bin-packing as bin-packed LUTs.

17

To complete the mapping of node z, the bin-packed LUTs are chained together. The chaining

algorithm sorts the bin-packed LUTs in descending order based on the number of used inputs and

then links the output of each bin-packed LUT to an unused input of a subsequent bin-packed LUT.

If there are no unused inputs in any subsequent bin-packed LUT, a new K-LUT (with K unused

inputs) is created. The algorithm terminates when the last bin-packed LUT is encountered. Figure

2-8 illustrates the chaining of the three bin-packed LUTs in Figure 2-7(b).

The Chortle algorithm produces a netlist with the minimal number of K-LUTs when mapping

single fan-out1 AND-OR Boolean networks to K-LUTs when K is less than or equal to 5.

Optimization across nodes with fan-out greater than one can further reduce the area or delay of

z z

2-7(a): fan-in LUTs for OR node

Figure 2-7: OR decomposition guided by bin packing [18]

2-7(b): LUTs after bin packing

z

Figure 2-8: Chaining the bins

18

the K-LUT netlist. For mapping networks with fan-out nodes, Chortle employs heuristics to cover

reconvergent paths and replicates logic at fan-out nodes to improve the lookup table netlist.

2.3 Previous FPGA Architectural Studies

The methodology used for investigating hard-wired logic block FPGA architectures in this

work is similar to that used for investigating other aspects of FPGA logic block architectures.

There have been empirical studies into finding the most area-efficient basic block [8] [15] [30],

the non-hard-wired logic block that gives the best speed performance [14] [29] and the minimum

levels of interconnection flexibility for good routability [27] [28]. Since this thesis concerns area

and speed of LUT-based hard-wired logic blocks, the following subsections will summarize one

of the area-efficiency studies [8] and one of the speed studies [14] involved with LUT-based

FPGAs. Since hard-wired logic blocks deal in part with routing architecture, this section also

describes a study concerning the required flexibility of interconnection structures in FPGAs [27].

This dissertation also uses some of the terminology from [27].

2.3.1 Area-efficiency of LUT-based FPGAs

One of the first empirical studies of FPGA logic block architecture sought to determine the

effect of logic block functionality on area-efficiency [8]. This involved the implementation of

several benchmark circuits in different LUT-based logic blocks, the measurement of the area of

the resulting circuits and then the determination of the best logic blocks using the area

measurements. It was observed that the area of the routing was from 3 to 15 times greater than the

area devoted to logic and so the best logic blocks were those that minimize routing area. The

amount of routing is related to the total number of pins in the logic blocks of the circuit and the

total number of connections between the pins. Therefore, logic blocks with high functionality per

pin were the most desirable since these kinds of logic blocks would lead to fewer pins and fewer

connections for a given amount of circuit functionality. Lookup tables fit this criteria of high

1. that is all non-primary input nodes have fan-out of one.

19

functionality per pin1 and the highest densities were achieved for three- and four-input lookup

tables.

2.3.2 Speed performance of LUT-based FPGAs

A second empirical study of FPGA logic block architecture [6] [7] investigated the speed

performance of FPGAs with different types of basic logic blocks, including mux-based, NAND-

based, AND-OR based and LUT-based blocks. In general, the more functional the logic block, the

greater the delay per block but the fewer logic block levels between primary inputs and outputs.

We refer to the connection between the output pin of a logic block and the input pin of another

logic block as aprogrammable connection. Fewer logic block levels means fewer programmable

connections along the critical path and this is important because programmable connection delay

is often much larger than the combinational logic component of the critical path delay. Thus, the

best logic blocks for speed performance will have a combination of high functionality and small

delay per logic block. High functionality will minimize the number of logic blocks levels and thus

keep the routing delay small, and small delay per logic block will keep the combinational logic

portion of the delay small. Lookup table-based logic blocks have this desirable combination of

high functionality and small delay. The results of this empirical study showed that 5- and 6-input

LUTs were the best for speed performance among the logic blocks investigated.

2.3.3 Interconnection flexibility of LUT-based FPGAs

A third empirical FPGA architecture study [27] [28] investigated the interconnection

flexibility required to ensure good routability. The greater the interconnection flexibility the

greater the routability and the higher the number of programmable switches on the FPGA. Higher

numbers of programmable switches impact both the area and delay of the FPGA. More switches

require more space on the FPGA. In addition, an increase in the number of switches increases the

1. Recall that a LUT with K input pins can implement Boolean functions.22K

20

parasitic capacitance and series resistance associated with each routing track in a channel

segment. This leads to greater delays for each programmable connection.

The FPGA routing architecture assumed in that work is illustrated in Figure 2-9. The FPGA in

Figure 2-9 has both horizontal and vertical routing channels and consists of the HLB tile in Figure

2-9(a) replicated several times. Each HLB tile contains a logic block, labelled “L”, and blocks of

programmable switches, labelled “C” and “S”. The pins of the “L” blocks are connected to

routing tracks through the “C” blocks. Between connection (“C”) and switch (“S”) blocks are

routing channel segments with a fixed number of tracks. Figure 2-10 shows a more detailed view

of the HLB tile. In Figure 2-10, there areW = 3 routing tracks per channel segment. The “C”

block allows logic block pins to connect to a subset of theW routing tracks in each channel

segment. The flexibility of the connection block,Fc, is the number of routing tracks to which each

logic block pin can connect.Fc ranges from one toW. In Figure 2-10, each logic block pin can

connect to two of the three routing tracks and soFc = 2. The “S” block allows connections

between horizontal and vertical routing tracks. The flexibility of the switch block,Fs, is the

number of tracks on the opposing sides to which an incoming track can connect.Fs ranges from

one to3*W. Figure 2-10 illustrates a switch block in which each horizontal track can be connected

to a track on each of the three opposing sides and thusFs = 3.

L

L

L

L

LL

L

L

L C

C

C

C

C

C

C

C

C

CS S

SS

C

C

HLB tile

L C

C S

HLB tile

W Routing Tracks

}

Figure 2-9: Generic FPGA routing architecture

2-9(a): HLB tile 2-9(b): Array of HLB tiles

21

The goal of the empirical study in [27] was to determine the effect of connection block and

switch block flexibility on the routing completion ratio. The results of the experiments indicate

that connection blocks should have high flexibility (Fc between 0.5W andW). A highFc/W ratio is

necessary because there is only one “C” block through which a given physical pin can be

accessed. A highFc/W is needed to give a sufficient number of alternative paths to that pin. The

experiments also showed that it is sufficient to have a low flexibility (Fs from 3 to 4) in the switch

blocks. Ignoring any conflicts with other programmable connection paths, when a connection

goes through a switch block, the number of path choices increases by a factor of Fs. Thus, a

cascade of switch blocks, between pins on two different logic blocks, provides a number of paths

that is exponentially related to baseFs [27]. Therefore, a smallF s should be sufficient to provide

enough path choices for good routability.

2.4 Previous work involving hard-wired connections

There has been little previously published work involving hard-wired connections in FPGAs.

Currently there exists a commercial FPGA, the Xilinx 4000 [13], with a LUT-based hard-wired

logic block. There is also associated software for mapping Boolean networks to Xilinx 4000

circuits [11]. The combinational portion of the Xilinx 4000 Configurable Logic Block (CLB)

Fc = 2 Fs=3

Logic
Block Fc = 2

W = 3

horizontal
routing channel

vertical routing channel

Connection
 Block

Switch BlockConnection Block

Figure 2-10: Connection and switch blocks of an FPGA tile

22

(shown in Figure 2-11) contains two 4-LUTs, whose outputs feed into two of the inputs of a 3-

LUT. Note that the Xilinx 4000 CLB only allows two of the three LUT outputs to be accessed

simultaneously by the routing. In contrast, the HLBs studied in this dissertation allow all LUT

outputs to be accessed simultaneously by the routing.

The idea of using hard-wired connections in LUT-based FPGAs originated in [14]. However,

the study in [14] was restricted to determining the potential speedups of a small number of 4-LUT

hard-wired logic blocks. The study in [14] was conducted using the novel CAD algorithms

presented in this thesis. In comparison, this dissertation will investigate both the speed

performance and area-efficiency of a much larger range of hard-wired logic blocks, as well as

describe the CAD algorithms used to map to HLB-based FPGAs.

2.5 Conclusion

This chapter has presented the background knowledge needed to understand the technology

mapping algorithms for HLB and the HLB-based FPGA architectural studies. The next chapter

will describe the HLB technology mapping algorithms.

Figure 2-11: Xilinx 4000 CLB

23

Chapter 3 Algorithms for Mapping to
Hard-wired Logic Blocks

This chapter presents the CAD algorithms used for an empirical evaluation of HLB-based

FPGA architectures. An empirical study of HLB-based FPGA architectures, such as the one to be

described in Chapter 6, implements benchmark circuits in different HLB-based FPGA

architectures and then uses area and delay measurements of the HLB circuits to determine the

relative quality of each architecture.

The mapping of any circuit to a netlist of HLBs can occur during either logic or layout

synthesis. If the mapping is done in layout synthesis, the circuit would first be mapped to a netlist

of basic blocks and then these basic blocks would be placed within HLBs so as to optimize the use

of the hard-wired connections. If the mapping is done during logic synthesis, then the entire HLB,

basic blocks plus hard-wired links, would simply be considered as a coarse-grained target for

technology mapping.

In this dissertation, we chose to do the mapping during logic synthesis because one of the

research goals is to explore FPGA logic block architecture without assuming a specific routing

architecture. The use of a placement and routing algorithm would require more detailed

specification of the routing architecture, whereas mapping to HLBs during the technology

mapping phase of logic synthesis can be done without physical layout details. Mapping to HLBs

during logic synthesis also allows a tighter focus on the hard-wired logic block itself and its hard-

wired connection topology and this may lead to better HLB utilization.

24

This chapter is organized as follows. Section 3.1 describes the HLB architectures targeted by

synthesis. Section 3.2 gives an overview of the logic synthesis methods used to create HLB

circuits. The definition of the technology mapping problem addressed by the algorithms in this

chapter is given in Section 3.3. Section 3.4 and Section 3.5 describe the details of the two main

phases of the HLB technology mapping algorithm. The final section summarizes this chapter.

3.1 Definition of the HLB Architecture

The HLB architecture definition presented in this section is one of many possible choices. We

define the architecture here to clarify the target for synthesis.

A hard-wired logic block consists of several identical basic blocks connected together by

hard-wired links. The basic blocks are assumed to be hard-wired in tree topologies to simplify the

synthesis problem. Each HLB basic block is also assumed to have a tapping buffer that makes the

output accessible to the routing. Because tapping buffers make it possible to implement

independent functions in different portions of an HLB, they may improve the density of HLB

circuits.

3.2 HLB Synthesis Overview

The synthesis of a circuit to a netlist of HLBs takes as input an optimized (in the technology-

independent sense) Boolean network circuit description and a description of the hard-wired logic

block topology. It is assumed that the basic blocks of the HLB are all the same type of gate,

although there may well be reasons to employ different types of gates in the same HLB [13] [46].

The output from the HLB logic synthesis steps is a netlist of HLBs that has been optimized either

for delay or area.

The mapping from Boolean network to HLBs is done in two stages. First the optimized

Boolean network is mapped to an area- or delay-optimized netlist of basic blocks using one of the

many existing basic block technology mappers [20] [21] [33] [34]. Note that the basic blocks

25

produced by the technology mapper are of the same type as those in the HLB. Second, using the

new HLB technology mapping tool described in this chapter, the netlist of basic blocks is mapped

to a netlist of HLBs optimized for area or delay.

The reason for dividing the synthesis of a Boolean network to HLBs into two distinct stages is

to separate the mapping to basic blocks from the mapping that uses the HLB topology

information. By doing so, the CAD algorithms in the second stage can focus on optimizing the

use of hard-wired connections and the CAD algorithms used in the first stage can leverage off

specialized mappers for different basic blocks. These specialized mappers should provide a good

starting point for the second stage mapper, plus the second stage mapper will be useful for HLBs

composed of any basic block gate type. Note that the basic block is assumed to be a LUT in the

rest of this chapter.

The remainder of this chapter will focus on algorithms for executing the second stage of HLB

synthesis, that is, the mapping of the basic block netlist to HLBs. This step will be referred to as

technology mapping to HLBs or HLB technology mapping.

3.3 The HLB Technology Mapping Problem

The HLB technology mapping step takes as input a directed acyclic graph (DAG) that

describes a netlist of basic blocks and anHLB template, which is a tree that describes the HLB

topology. The input DAG is also referred to as thesubject DAG. The output of the technology

mapping algorithm is a DAG representation of a netlist of HLBs that implements or covers the

subject DAG. The goal of the mapping algorithm is to find a minimum area-cost or delay-cost

HLB cover of the input basic block netlist. The area cost is the total number of HLBs needed to

implement the subject DAG. The primary delay-cost is the maximum number of programmable

connections between any primary input and a primary output. The secondary delay-cost is the

number of basic block delays along critical paths. Note that, in the absence of more timing

information, this delay-cost assumes that the critical paths are identical to the longest paths. This

26

order of delay-costs assumes that a programmable connection delay is greater than a basic block

delay. Note that this assumption is only significant when additional basic blocks may be added

along a path in order to reduce the number of programmable connections along the path.

As mentioned in Section 1.1, an important architectural assumption is that each HLB has a

tapping buffer on every basic block output. Since every HLB basic block output is accessible,

several portions of the same HLB can be used to implement unconnected subgraphs of the subject

DAG. The general term HLBfragment denotes a connected subset of the basic blocks in the HLB

template. An HLBfragment pattern is a subtree of the HLB template. Each HLB fragment pattern

represents a portion of the HLB that may be used to implement a subtree of the subject DAG. For

example Figure 3-1(a) shows the template of the L2-3 HLB1 consisting of three 4-LUTs (or the

L2-3 4-LUT HLB for short) and its four fragment patterns. Note that because we have assumed

LUT basic blocks, fragment (1) is equivalent to its any fragment generated by permuting the

inputs to basic blockc. Details of the rules that govern fragment pattern generation will be

presented in Section 3.4.3. For a given node in the subject DAG, afeasible HLB fragment pattern

(or feasible fragment for short) at that subject node is a fragment pattern that matches, and can

thus implement, a subtree of the subject DAG rooted at that node.

1. The naming convention for HLBs is given in Section 3.4.2.

a

1

b

c

2 34 5 6 7 8

109

(1) (2) (3) (4)

1 12 3 4

a

c

9 10

5 6 7 8

b a

c

2 34

9 10

b

c

9 10

3-1(a): L2-3 HLB 3-1(b): L2-3 HLB Fragments

Figure 3-1: L2-3 HLB and L2-3 HLB Fragments

27

The problem of technology mapping to HLBs is solved in two stages. The first stage selects

the set of feasible HLB fragments that cover the subject DAG with minimum area or delay cost.

The set of feasible fragments chosen by this fragment covering step is referred to as the set of

covering fragments. The second stage packs these covering fragments together as tightly as

possible to reduce the number of HLBs. This division of the algorithm into these two steps occurs

naturally because the selection of the covering fragments that minimize delay is independent of

the packing stage that puts fragments together intopacked HLBs.

3.4 Fragment Covering

The selection of the covering fragments is formulated as a DAG covering problem. The inputs

are a subject DAG, which represents the basic block network, and the HLB template that

describes the HLB topology. Before the actual construction of the cover, the HLB template tree is

decomposed to produce the fragment pattern trees in a library of patterns. Informally, the cover is

a set of fragment patterns that include all nodes in the subject DAG and has the lowest area or

delay cost. A formal definition is given in Section 3.4.1. The solution approach is similar to the

tree-matching and dynamic programming methods used in the DAGON [19] and misII [38]

technology mappers.

3.4.1 Definitions for the Fragment Covering Algorithm

The graph terminology used to describe the pattern trees and DAGs in the fragment covering

algorithms is similar to the one given in [38]. A directed acyclic graphG is a pair(V(G), E(G))

consisting of a set of vertices (or nodes)V(G) and a set of directed edgesE(G). Each edge inE

consists of an ordered pair of vertices (vi, vj). Each vertex in V represents a primary input, primary

output or a LUT basic block. Each edge represents connectivity between primary inputs and the

input of a LUT or between the output of a LUT and the input of another LUT. Following the flow

of signals in the basic block network, a source of the DAG is called a primary input node and a

sink of the DAG is called a primary output node. The incoming arcs of a node are called the inputs

28

or fan-ins of the node, and the outgoing arcs are called the fan-outs of the node. For a given node

v, the fan-in of v, i(v), is defined as and the fan-out of v, o(v), is

. The in-degree of a nodev is and the out-degree ofv is .

Assume thatH is a subgraph ofG and thatH is defined by the pair(V(H), E(H)). The fan-in ofH,

I(H), is defined as . The fan-out ofH, O(H),

is defined as .

An internal node is a node that is not a primary input node. Note that primary output nodes are

also internal nodes. Each internal node of the subject DAG represents a LUT. Each internal node

of a fragment pattern represents a LUT in the HLB template. An edge between two internal input

nodes is called aninternal edge. Thus, an internal edge of an HLB fragment pattern represents a

hard-wired link between two of its LUT basic blocks. An edge between a primary input and an

internal node is called aprimary input edge. A leaf node is one whose fan-in edges are allprimary

input edges. Similarly, a leaf LUT or leaf basic block is one whose fan-in edges are all primary

input edges.

Fragment Covering Problem Definition

The inputs to the fragment covering stage are the HLB template,H, and the subject DAG

network, S. The goal of the fragment covering algorithm is to find a set of fragments ofH, with

minimum area or delay cost, that coversS. A cover ofS is defined below.

Definition 3-1 Given a subject DAG S, and a set ofn DAGs, C = {Ci }, where C is the disjoint

union of theCi’s, C is said tocover S iff there exists a surjective mapping,σ: V(C) → V(S) such

that∀ u, v ∈V(C),

(i) (u, v) ∈E(C) ⇒ (σ(u), σ(v)) ∈E(S)

(ii) (σ(u),σ(v)) ∈E(S) ⇒ (u, v) ∈E(C) ORu is a primary output node ofCi, v is a

primary input node ofCj, i ≠ j.

If σ is one-to-one, thenC is an exact cover of S.

i v() u u v,() E∈{ }=

o v() u v u,() E∈{ }= i v() o v()

I H() t t u,() E G() t V H() u V H()∈,∉,∈{ }=

O H() t u t,() E G() t V H() u V H()∈,∉,∈{ }=

29

The first condition of Definition 3-1 ensures that all edges of the cover, C, really do exist in the

subject DAG, S. Condition (ii) ensures that all edges inS are either mapped to edges in one of the

Ci or are edges between two distinct covering subgraphsCi andCj.

Figure 3-2 shows an example of a cover. The covering graphs,C1, C2 andC3 are shown in

Figure 3-2(a) and the subject graph is illustrated in Figure 3-2(b). The covering graphs contain six

nodes labelled1, 2, 3, 4, 5 and6. The subject graph contains five nodes labelleda, b, c, d ande.

Each of the graphs in the three ovals of Figure 3-2(b) corresponds to one of the covering graphs in

Figure 3-2(a). The mapping between the nodes ofC andS is shown in Table 3-1. Note that nodea

in the subject graph is covered by two nodes (1 and3) in the covering graphs and so this covering

does not have a one-to-one mapping between covering graph nodes and subject graph nodes.

C vertex S vertex

1 a

2 b

3 a

4 c

5 d

6 e

Table 3-1: Mapping between Subject nodes and Covering Graph nodes

1

2

3

4

5

6

C
1

C C
2 3

b c

d

e

aC C

C

1 2

3

3-2(a): Covering Graphs 3-2(b): Subject Graph

Figure 3-2: Example of a Cover

30

3.4.2 Naming Convention for HLBs

The naming convention [41] is unique for each HLB tree topology and is the letter “L” fol-

lowed by the number of levels (or height) of the HLB followed by “-” followed by a listing of the

subtree sizes (that is, the number of LUTs in the subtrees) from a pre-order traversal of the canon-

ical HLB tree. The canonical HLB tree is generated by the canonical labelling algorithm given in

Section3.5.4. Each subtree size is separated by a “.” and leaf inputs and single-LUT subtrees are

not listed. Some of the 4-LUT HLB tree topologies are illustrated in Figure 3-3. The circles in

Figure 3-3 represent LUT nodes in the HLB tree. The thick lines in Figure 3-3 represent a hard-

wired connection edge between two LUTs, while the thin lines represent a primary input edge.

For example, the L3-6.3.2 HLB in Figure 3-3 contains six 4-LUTs connected in an asymmetric

tree with three levels. The “L3” part of L3-6.3.2 says that the HLB has three levels. The entire L3-

6.3.2 tree has six LUTs, hence the 6 in “6.3.2”. The “3” in “6.3.2” represents the number of LUTs

in the left subtree. Since the subtrees of the left-most subtree of the root node are either a single

Figure 3-3: Some 4-LUT HLB topologies

L1 L2−2 L2−3 L2−4 L2−5 L3−3.2 L3−4.2

L3−4.3 L3−5.2 L3−5.2.2 L3−5.3 L3−5.4 L3−6.2

L3−6.2.2 L3−6.3 L3−6.3.2 L3−6.4 L3−6.5

31

LUT or a leaf input their sizes are not listed. Next the second subtree of the root node is traversed.

This subtree has 2 nodes and thus the “2” in “6.3.2”. Note that the L1 HLB in Figure 3-3 repre-

sents a 4-LUT HLB without hard-wired connections.

3.4.3 Generation of the Fragment Pattern Library

The fragment pattern library is generated from the HLB template,H, using fragmentation

operations. These fragmentation operations depend upon the properties of the basic block. One

property of LUTs that can be exploited during fragmentation is that an input can be ignored or not

used. This property is due to the fact that a K-input lookup table can implement any function of K

or fewer inputs. The fragmentation operation that results from thisignorable input property is the

deletion of an internal edge of the HLB fragment pattern tree that is connected to a given input.

For example, Figure 3-1 shows the L2-3 HLB template and itsdelete-edge fragmentpatterns.

Fragment patterns (1) and (2) in Figure 3-1(b) were generated by the deleting edge(b, c) of

the HLB template in Figure 3-1(a). Fragment pattern (4) was generated by deleting edge(a, c)

from fragment pattern (1).

Another property of LUTs is that a LUT can implement the identity function, which we shall

call a buffer. The resulting fragmentation operation converts an internal edge connected to a leaf

LUT into a primary input edge. Thebuffered fragment pattern, Fragment (3), in Figure 3-1(b) was

generated by converting LUT b of the HLB template in Figure 3-1(a) into a buffer.

One or both of the above fragmentation operations may be applied to HLBs that consist of

non-LUT basic blocks. For example, Figure 3-4 shows a mux-based HLB and one of its fragments

generated by a buffering fragmentation operation. The HLB shown in Figure 3-4(a) is composed

of 3 two-input muxes. The connection of the inputsa andb to the same signal has the effect of

makingo1 into a primary input. Another way of converting o1 into a primary input is to ground

s1. The resulting buffered fragment is shown in Figure 3-4(b).

32

The fragment pattern library generation algorithm for LUT-based HLBs is described in Figure

3-5. Initially, the pattern library list, P, consists of the complete HLB tree, h. The patterns to

decompose list, ToDecom, initially contains only h. While there are patterns to decompose, the

outer while loop of the algorithm continues to generate new pattern graphs using the edge deletion

and edge buffering operations. For each graph g in ToDecom, all internal edges in g (the set eg)

are enumerated to determine the order of deletion. Each internal edge is deleted to yield two

graphs, g1 and g2, which are tested for isomorphism with respect to the other generated HLB

patterns. Every isomorphically unique pattern is added to the AddLib list. After restoring the

deleted internal edge to the graph g, the edge deletion operation is applied to the next internal

edge in eg. Also, for each graph g in ToDecom, all internal edges are enumerated to determine

the order for the buffering operation to yield new pattern graphs. Again, only isomorphically

unique patterns are added to the AddLib list. After completion of the deletion and buffering

operations on the graphs in the ToDecom list, the new patterns in the AddLib list are added to

the set P. The ToDecom list takes on the value of the AddLib list if this list is not empty, the

outer loop continues to generate patterns from the new ToDecom list patterns. Because the sim-

ple matching algorithm outlined later in this chapter does not check for permutations of the inter-

nal node inputs when doing matching, the last step of the algorithm permutes the fan-in edges of

each node of the patterns in P.

c do1

o2

s2

s3

o3

3-4(a): A mux-based HLB

a b c d

o1 o2

s2s1

s3

o3
3-4(b): Buffered fragment

Figure 3-4: Mux-based HLB and a Buffered HLB fragment

33

Fragment Pattern Library Size

The algorithm described in Figure 3-5 exhaustively generates all possible fragment patterns

from an HLB template and this can lead to a large pattern library. The fragment pattern subgraphs

are created by all possible combinations of edge deletions, edge bufferings and permutations.

P := { h }
ToDecom := P

while ToDecom ≠ φ do

AddLib := φ

for every graph g ∈ToDecom do
for every internal edge e in edge set eg do

delete e from g to create graphs g1, g2
if g1 is not isomorphic to any graph in P, AddLib or ToDecom then

AddLib := AddLib U {g1}
end if
if g2 is not isomorphic to any graph in P, AddLib or ToDecom then

AddLib := AddLib U {g2}
end if
restore the deleted edge in g

end for

for every internal edge e connected to a leaf node in edge set eg do

buffer e to create graph g1
if g1 is not isomorphic to any graph in P, AddLib, ToDecom then

AddLib := AddLib U {g1}
end if
restore the buffered edge in g

end for
end for

P := P U AddLib
ToDecom := AddLib

end while

P := Permute(P)

Figure 3-5: Pseudocode describing the generation of the HLB fragment pattern library

34

In a fragment pattern for the HLB template, each hard-wired link can either be (1) present, (2)

deleted or (3) connected to a LUT implementing a buffer. Thus the number of fragments that can

be generated by an exhaustive application of the fragmentation operations isO(3m), wherem is

the number of internal edges in the HLB tree. Note that some of these patterns may be isomorphic

to each other. Only the isomorphically unique fragment patterns are then permuted to generate the

final library. This permutation of input edges may lead to an expansion factor of up to K!, whereK

is the number of inputs to the LUT basic blocks. This gives an upper bound ofO(K! * 3m) frag-

ment patterns.

 However, symmetriesin the patterns keeps the number of isomorphically unique HLB frag-

ment patterns to much fewer thanO(3m). For example, of the HLBs considered in the architec-

tural studies of Chapter 6, the one that resulted in the most patterns is composed of nine 4-LUTs

(the L3-9.3.2.2 topology). This HLB has 8 internal edges but resulted in only 150 (<< 38 = 6561)

isomorphically unique fragment pattern trees. After permutation of the L3-9.3.2.2 4-LUT HLB

library patterns, the library expanded to 18372 (<< 4! * 38 = 157464) patterns.

The generation of permuted patterns before covering allows the use of a simple matching

function. The expansion of the library due to permutations can be avoided by using a more

complicated matching function that generates the permutations of the isomorphically unique

fragment patterns during run-time. However, a more complicated matching function would

increase the time required for matching. This trade-off increased memory usage to reduce the

matching execution time.

3.4.4 Selection of the Set of Covering Fragments

Given the subject DAG and the fragment pattern library, the next step is to select a set of

fragment patterns that together form a minimum cost cover of the subject DAG. The covering

algorithm finds the feasible fragments at each node and uses dynamic programming to select the

best set of feasible fragments. The covering algorithms used for area and delay optimization have

35

several differences. The essence of both algorithms is captured in thefindOptimalCover

procedure outlined in Figure 3-6. The features unique to each of the delay- and area-optimization

algorithms are related to their respective cost measures and pattern matching options, and these

differences will be discussed in Section 3.4.5.

To map the entire subject network, thefindOptimalCover procedure is invoked at every

output node of the subject DAG. This recursive procedure maps the transitive fan-in of each node

before mapping the node itself. ThefindOptimalCover procedure finds the lowest cost

matching HLB fragment pattern at each node in the subject DAG and at completion of the

procedure records the lowest cost pattern and lowest cost for that node. After completion of

findOptimalCover at a given node, the node is said to bemapped. Each node has aMapped

procedure findOptimalCover(n)
if (isInput(n) or n.Mapped) then

return
end if

/* find optimal cover for fan-in nodes of n */
foreach fan-in node f of n do

findOptimalCover(f)
end for

/* using optimal covers of fan-in of n construct optimal cover at n */
n.Cost := INFINITY
n.Match := NULL_PATTERN

foreach fragment pattern p ∈P do
if isMatch(p, n) then

currentCost := p.Cost + faninCost(n, p)
if (currentCost < n.Cost) then

n.Cost := currentCost
n.Match := p

end if
end if

end for
n.Mapped := TRUE

end findOptimalCover

Figure 3-6: Fragment Covering Algorithm

36

flag to record its current state as well as attributes to indicate the lowestCost and bestMatch

pattern seen so far. Note that the area and delay cost of a primary input node is 0.

The transitive fan-in of several outputs may have overlapping regions and thus a node may be

visited more than once by the covering algorithm. TheMapped flag is used to ensure that a node

in the overlapping regions is only mapped once. The first time a node is visited and mapped its

Mapped flag is set so that on subsequent visits the node will not be mapped again.

A detailed description of applyingfindOptimalCover at a noden is as follows: First the

noden is checked to see if it is a primary input or has already been mapped, and if so the

procedure returns. Ifn has not been mapped, the fan-ins ofn are mapped first and then the

algorithm proceeds to find the best matching pattern atn. All matching patterns are found using

the algorithm outlined in Figure 3-7, and for each matching patternp, the area- or delay-cost of

using that fragment pattern atn is determined by summing the cost of p and the value of the

function calledfaninCost(n, p). ThefaninCost(n, p) is the cost of the fan-ins of the

subgraph of the subject DAG matched byp. Let s be the subgraph of the subject DAG matched

by p. For area, thefaninCost(n, p) is thesum of the costs of the nodes that fan-in tos.

For delay, the faninCost(n, p) is themaximum of the costs of the nodes that fan-in tos.

Since the cost of the current node,currentCost, is found using the previously computed costs

of the fan-in nodes, this algorithm uses a dynamic programming approach. The final mapped cost

of n is the lowest cost over all matched patterns. The matching pattern that leads to the lowest cost

is also retained. Finally, the noden is marked as being mapped so that each node is only mapped

once. An example showing the construction of an optimal cover using a similar library-based

mapping algorithm was given in Section 2.2.2.

The matching of HLB fragment pattern trees at a given node in the subject DAG is similar to

the graph theoretic problem of finding all subgraph isomorphisms of the pattern trees on the

subject digraph. Each isomorphism is called amatch. A pattern tree match is defined in [38] as

follows:

37

Definition 3-2 A (full-node) match of a pattern graphGp = (Vp, Ep) on a subject subgraph

 is aone-to-one mapping of the pattern graph nodes into the subject graph nodes

(I: Vp → Vs) such that the following properties hold:

(i) for every edgee defined by the pair of nodes(p1, p2) ∈ Ep, the corresponding

edge defined by nodes(I(p1), I(p2)) ∈ Es.

(ii) for every non-input vertex v in Vp, | i(v) | = | i(I(v)) |.

Property (ii) adds a fan-in constraint to the definition of a match. Note that without (ii) we would

simply say thatEp is isomorphic to an induced subgraph ofEs.

The full-node matching problem at a given node in the subject DAG is to find if a pattern

matches according to Definition 3-2. It is called full-node because every node in the pattern graph

is mapped to a single node in the subject graph. The mapping is described as one-to-one because

each pattern node is matched to a single subject node and vice versa. There is also a unique map-

ping between each edge in the pattern graph and an edge in the subject graph. Note that a one-to-

one mapping between pattern nodes and subject nodes and the fact that the pattern is a tree

ensures that only matches to tree subgraphs of the subject DAG will be found. The first property

of Definition 3-2 states that the edge relationships are preserved between the pattern and subject

graph nodes and the second property states that the fan-ins of matching subject and pattern nodes

must be equal.

However, recall that each internal node of an HLB pattern corresponds to a lookup table, and

some of the inputs to a LUT may be left unused. Thus, when a LUT-based HLB fragment pattern

matches the subject graph, some of the primary input edges of the pattern tree need not have cor-

responding subject graph edges. Nevertheless, each internal node of the subject digraph must have

a corresponding internal node of a pattern tree. This leads to the following modified definition of a

match, which gives a related problem referred to as theinternal-node matching problem.

Gs V s Es,()=

38

Definition 3-3 An internal-node (or non-input node) match of a pattern graphGp = (Vp, Ep) on a

subject subgraph is an onto mapping of the internal pattern graphnodes into the

subject graphnodes(I: Vp→ Vs) such that the following properties hold:

(i) for every edgee defined by the pair of internal nodes(p1, p2) ∈Ep, there is a

corresponding edge defined by(I(p1), I(p2)) ∈Es.

(ii) for every internal node v in Vp, | i(v) | ≥ | i(I(v)) | .

Note that the mapping between subject nodes and pattern nodes in Definition 3-2 is not

necessarily one-to-one. A subject node with fan-out greater than one may be mapped to more than

one pattern node during covering. The resulting cover may not be exact.

Property (i) of the Definition 3-2 states that the edge relationships between LUT basic blocks

in the HLB pattern are exactly duplicated in the matching subject subgraph. The second property

uses the ignorable input property of LUTs and states that the fan-in of an internal pattern node can

be either greater than or equal to the fan-in of the matching subject node.

The internal-node matching algorithm function is outlined in Figure 3-7. This algorithm

checks to see if a pattern subtree rooted at a nodep matches the subject subgraph rooted at node

s. Note that the matching algorithm allows a subject node to be mapped to more than one pattern

node, that is, matches to subgraphs that have nodes with fan-out greater than one are allowed.

Also the fan-in edge ordering in the subject DAG is preserved in the matching pattern tree.

In the non-trivial case, the algorithm recursively tests if the fan-in nodes ofp matches the fan-

in nodes ofs. The functionfan-inNode(n, i) returns the fan-in node on theith fan-in

edge. If each of the fan-ins ofs match each of the firstfan-in(s) nodes ofp and all leftover

fan-ins of p are input nodes, then the pattern match is successful. The pattern matching algorithm

is O(m) wherem is the number of edges in the pattern tree.

Figure 3-8 illustrates the matching of a pattern tree on a subgraph of the subject DAG. The

pattern graph in Figure 3-8(a) shows a pattern with seven internal nodes, with each internal node

Gs V s Es,()=

39

having two fan-in nodes. Figure 3-8(b) shows the matching of the pattern graph on a tree sub-

graph of the subject DAG. The subject DAG in Figure 3-8(b) consists of ten nodes and the match-

ing pattern covers the seven nodes D, E, F, G, H, I and J. Note that nodes F and G have only one

fan-in node each, so the matching pattern nodes will each have one unused input. Figure 3-8(c)

illustrates the matching of the pattern tree on a subgraph with a fan-out greater than one node1.

Nodes A and B in the subject DAG each have fan-out of two. In this match, nodes 1 and 3 of the

1. Note that hereafter a “fan-out node” will be assumed synonymous with “fan-out greater
than one node”.

function isMatch(p, s)
if isInput(p) then

/* pattern input node matches any subject node */
return MATCHED

else if isInput(s) then
/* no match since subject is an input node but pattern is not */
/* for tree-matching, treat subject nodes with fan-out as inputs */
return FAILED

else if fan-in(p) < fan-in(s) then
/* no match since fan-in of pattern is less than fan-in of subject */
return FAILED

else
/* compare fan-in nodes of pattern and subject */
/* assumes that fan-in edges of p, s have been enumerated */
for i = 1 to fan-in(s) do

if isMatch(fan-inNode(p, i), fan-inNode(s, i)) == FAILED then
return FAILED

end if
end for

/* if any leftover fan-ins of p are not inputs then matching FAILED */
for i = fan-in(s)+1 to fan-in(p) do

if isInput(fan-inNode(p, i)) == FALSE then
return FAILED

end if
end for
return MATCHED

end if
end isMatch

Figure 3-7: Internal-node pattern matching algorithm

40

pattern graph are mapped to node A of the subject graph. Nodes 2 and 4 of the pattern graph are

mapped to node B of the subject graph. If the covering algorithm chooses a pattern match that

spans a fan-out node, then this node (and its fan-in edges) must be replicated in the final stage of

the covering algorithm in order to realize the chosen fragment in the HLB circuit. In the example

shown in Figure 3-8(c), nodes A and B and their fan-in input edges would each be duplicated as

illustrated in Figure 3-8(d).

The final stage of the mapping algorithm constructs a netlist of the covering fragments. As

was previously mentioned, some of the subject DAG nodes may have been matched to more than

one fragment pattern node. During this stage, replication of subject DAG nodes is used to create a

new subject network, which has the property that every one of its nodes is matched to a single

1 2 3 4

5 6

7

A B C

D E F G

H I

J

A B C

D E F G

H I

J

3-8(a): Fragment pattern 3-8(b): Match to tree subgraph

3-8(c): Match to subgraph
with fan-out > 1 nodes

Figure 3-8: Pattern matches to a tree and non-tree subgraphs

C

D E F G

H I

J

A.1 B.2B.1 A.2

3-8(d): Replication of fan-out
nodes in Figure 3-8(c)

41

fragment pattern node. This stage begins at the subject DAG output nodes and proceeds towards

the primary inputs. If the best fragment pattern matches atree subgraph of the subject DAG, then

the correspondence between pattern and subject nodes is a simple one-to-one mapping and so

there is no replication. However, if the best pattern matches a subgraph with fan-out nodes, then

the fan-out subject nodes (and their fan-in edges) are replicated to make the pattern-to-subject

node correspondence one-to-one. The algorithm then proceeds to visit the subject DAG nodes in

the fan-in of the subgraph mapped to the current covering fragment.

3.4.5 Delay versus Area Optimization

The primary measure of delay cost used during fragment covering is the number of HLB

covering fragments in the longest path. This measure is equivalent to counting the number of

programmable connections in the longest path or assuming a unit delay for each HLB fragment in

the fragment library. However, the actual delay of the HLB circuit is a combination of basic block

delays and programmable connection delays. The basic block delays for every path are fixed

before the mapping to HLBs and only change if extra basic blocks are introduced by buffered

patterns. It is assumed that basic block delays are smaller than programmable connection delays

and that few extra basic blocks are added to the critical path. Thus the only component of delay to

be minimized is the number of programmable connection delays along the path.

In contrast, the primary measure of area used during fragment covering is the total number of

HLB covering fragments. Note that the actual area cost of the HLB circuit is the number of HLBs

after the fragments are packed together as tightly as possible (packing will be covered in Section

3.5). The rationale for minimizing the number of HLB fragments during covering is that the use

of fewer fragments implies a greater total number of hard-wired connections are employed in the

fragments. Since the packing of distinct fragments into the same HLB leads to a wastage of hard-

wired connections, a greater number of hard-wired links in the fragments means that fewer are

wasted when packing occurs.

42

The fragment pattern library and matching algorithm differ when optimizing for speed versus

area. In speed optimization, the primary goal is to minimize the number of HLB fragment levels

between primary inputs and outputs. In some cases all fan-ins of a basic block are needed to

achieve the minimum number of programmable connections, even at the expense of added basic

block delays on non-critical paths. Thus to minimize delay, the fragment pattern library includes

all possible buffered patterns. Another feature of the delay-optimization algorithm is that the

pattern matching step allows matches across fan-out nodes, and thus replication of fan-out nodes

is used to reduce delay.

In contrast, the area-optimization library does not include buffered patterns, but has only the

patterns generated by edge deletion. Recall that a buffered input represents a basic block used to

implement a buffer and this is an inefficient use of a basic block. Contrary to the delay-

optimization algorithm, during area optimization, matching does not occur across fan-out nodes.

Thus the area algorithm does not allow replication of fan-out nodes.

It is true, however, that in some cases replication may reduce the number of packed HLBs. For

example, suppose the subject DAG in Figure 3-9(a) is mapped to the L2-2 HLB in Figure 3-9(b).

The solution with replication in Figure 3-9(c) has exactly two HLBs. Without replication, the

solution in Figure 3-9(d) has three single-block fragments, each with fan-in equal to four. Only

the uppermost basic block of the L2-2 HLB has fan-in of four and so, each single-block fragment

must be packed in an HLB by itself. Thus, the no replication solution has three HLBs.

A

CB B

A.1

C

A.2 A

CB

3-9(b): L2-2
HLB

3-9(a): Subject
DAG

3-9(c): With replication 3-9(d): No Replication

Figure 3-9: Example where replication reduces area

43

However, in many cases, replication may increase the area cost of the final packed HLB

circuit by the following argument: Assume that each basic block has the maximum K inputs. For

each basic block added by replication, not only is there an increase by one in the number of basic

blocks, but there is also an attendant increase by K in the total number of edges in the subject

DAG. The increase in the number of blocks and edges to be packed into HLBs tends to make

circuits with replication require more packed HLBs and hence less area-efficient.

In this work, the benefits of replication during area-optimization were not investigated further.

3.5 Fragment Packing

After the selection of the set of covering fragments, the fragments are packed together as

tightly as possible to minimize the final number of packed HLBs. The optimization goal of the

algorithm presented in this section is to minimize the number of HLBs, without regard to the

connectivity of the HLB fragments. Other optimization goals that take connectivity or placement

of the HLB fragments into account during packing may yield a more routable solution, and hence

a smaller and faster circuit after routing. However, there are often many alternative and equivalent

combinations of covering fragments that may be placed within the same packed HLB. Thus, a

well-chosen permutation of equivalent fragments in the minimized packed HLBs solution may

lead to a solution with good routability, without resorting to optimization goals that take

placement into account.

The following section begins with definitions for the fragment packing problem. The

subsequent subsection describes the generation of the packing sets used to verify whether

fragments can be packed together. The next subsection contains the fast heuristic algorithm used

to pack the fragments together. The final subsection describes the method used by the packing

algorithm to order the fragment trees.

44

3.5.1 Fragment Packing Problem Definitions

This section presents several definitions needed to understand the fragment packing problem

and the algorithms used to solve the problem.

Denote byP = { P1, P2, P3, .. , Pl } the set ofl isomorphically unique fragment patterns in the

library generated from the HLB template. Denote by C = { C1, C2, C3, .. , Cn } the set ofn pattern

trees in the cover of the subject DAG, S, where eachCi is isomorphic to a member ofP.

A packing set of an HLB is a set of fragment patterns such that the fragment pattern trees may

be legally packed together in the same HLB template. A precise definition is as follows:

Definition 3-4 A set S is apacking set iff S is a cover of a subgraph of the HLB template.

The maximal packing sets are the largest sets of fragments that can be legally packed together

in the same HLB template. A maximal packing set is defined as follows:

Definition 3-5 Given a packing setS, define a corresponding packing setS’, which is equivalent

to S except that each buffered input inS is transformed into a basic block inS’. ThenS is amaxi-

mal packing set iff S’ is a cover of the entire HLB template.

The algorithm outlined in Section 3.5.3 generates the setM = { M1, M2, M3, .. , Mp }, of p

maximal packing sets from the HLB template. The maximal packing sets are used to validate

HLB packings as follows:

Definition 3-6 A set Xi is a valid HLB packing ifXi ⊆ Mj for someMj ∈M.

Given the above definitions, the fragment packing problem is defined as follows:

Definition 3-7 Thefragment packing problem: GivenP, C and M as defined above, find a parti-

tion of C into k valid HLB packings such thatk is minimum.

45

3.5.2 Unique Ordering for Fragment Trees

A unique (descending) ordering for fragment trees is needed for efficient subset checking

during fragment packing. The ordering of fragment pattern trees is accomplished by comparing

the root-node label strings for the trees after each tree has been converted into a canonical form.

The technique for labelling the root-nodes of the trees is derived from an algorithm in [45] that

generates a unique label string for isomorphically unique trees.

The canonical labelling algorithm is shown in Figure 3-10 and is calledlabelNode. Input

nodes are labelled with the string “1” and the size of these nodes is also set to the integer 1. In the

general case, each of the fan-in nodes of the current noden are first labelled and then the fan-in

labels are used to generate the label forn. The labels for the fan-ins are used to sort the fan-in

procedure labelNode(n)
if isLeaf(n) then

n.Label := “1”
n.Size := 1

else
/* label fan-in nodes then put fan-ins in descending order of string labels*/
for i := 1..fan-in(n) do

labelNode(fan-inNode(n, i))
end for
sortFaninsByLabel(n)

/* the size of current node equals sum of fan-in sizes plus 1*/
n.Size := 1
for i := 1 to fan-in(n) do

n.Size := n.Size + fan-inNode(n,1).Size
end for

/* the current node’slabel is the node size concatenated with fan-ins’ labels */
n.Label := integerToString(n.Size)
for i := 1 to fan-in(n) do

n.Label := concatenate(n.Label, fan-inNode(n,1).Label)
end for

end if
end labelNode

Figure 3-10: Canonical Labelling Algorithm

46

nodes so that the left fan-in node has the largest label string and the rightmost fan-in node has the

smallest label string. The size ofn is then set to be the sum of the sizes of the fan-in nodes plus 1.

The current node’s label string is composed of the size ofn concatenated with the fan-in label

strings added onto the end ofn’s label string from left to right. For example, the string label of

nodeA in Figure 3-11 is {“5”, “1”, “1”, “1”, “1”} and the string label of nodeB is {“8”, string

label ofA, “1”, “1”}.

The ordering of the fragment trees into descending order of labels is done by comparing the

string labels of the fragment trees character by character left to right. Since the label for any

isomorphic tree is unique, the canonical labels can be used to make a unique ordering for the

fragment pattern trees. The string label of nodeB starts with an “8” and the string label of nodeA

starts with a “5”, and so the tree rooted atB is greater than the tree rooted atA. One property of

this ordering scheme is that the label of a tree,Ti which is a subgraph of another tree,Tj, is smaller

and thus the ordering will have Tj beforeTi. The scheme also orders single-block fragments in

descending order of fan-in.

3.5.3 Generation of Maximal Packing Sets

The maximal packing sets used for validating each packed HLB are generated before

proceeding to the actual packing. The input to this step is the HLB template and the output is a set

M of maximal packing sets.

A

B

Figure 3-11: String Label Example

47

Assuming that the basic block has the properties of input ignorability and buffering capability,

the maximal packing sets are generated using the same internal edge deletion and buffering

operations as in the pattern generation step described in Section 3.4.3. As in the fragment pattern

generation algorithm, the maximal packing set generation algorithm exhaustively deletes or

buffers all internal edges. Thus, the setM contains all possible maximal packing sets. Similar to

the case for fragments, the number of possible ways to select edges to buffer or delete implies that

the number of maximal packing sets isO(3m). Note that during the generation of each maximal

packing set, the list of fragment patterns in eachMi is kept in a canonical order to make checking

for subsets of maximal packing sets more efficient. The method of determining the order for

fragment trees is described in Section 3.5.2. If a generated packing set is a subset of another

packing set (or vice versa), then only the larger packing set will appear on the list of maximal

packing sets.

Figure 3-12 shows the L2-3 HLB template on the left and two maximal packing sets,M1 and

M2, generated by the edge deletion operation on the right. Each maximal packing set is enclosed

within a dotted rectangle. The first internal edge deletion operation generates a maximal packing

setM1 with two HLB fragment patterns, a two-basic block fragment pattern plus a single 4-input

basic block fragment pattern. The dashed line between the two fragment patterns represents the

deleted hard-wired input edge. Deletion of the internal edge from the two-basic block fragment

pattern inM1 generates a second maximal packing set,M2, which consists of two 4-input basic

blocks and one 2-input basic block. If buffered patterns are allowed then a third maximal packing

set, consisting of a single two-LUT fragment, is generated by converting one of the non-root

LUTs into a buffer.

3.5.4 The Fragment Packing Algorithm

The algorithm used to solve the fragment packing problem is shown in Figure 3-13. The input

to the algorithm is a list ofn unpacked HLB covering fragments, C = { C1, C2, C3, .. , Cn }. The

output is a setY of k packed HLBs,Y = { Y1, Y2, Y3, .. , Yk } for whichk is minimized. InitiallyY

48

is empty and as packed HLBs are constructed they are added to the set. The algorithm to construct

each packed HLB is a “first-fit” packing algorithm on the setC of the fragments sorted into

descending order of size. Because it is easier to fit smaller fragments into unused portions of an

HLB, it is more effective to pack them last. This type of packing algorithm is generally known as

a first-fit decreasing (FFD) packing algorithm because it processes a descending list by placing

the largest object into the first container into which it can fit.

Initially the collection of packed HLBs,Y, is empty. First a sorted copy of the fragments in the

setC are placed in the setC’ . The outer loop constructs packed HLBs by adding the first remain-

ing fragment fromC’ (calledaddedFrag) to the first packed HLB in the collectionY that can

M
1

M
2

Figure 3-12: L2-3 HLB and maximal packing sets due to edge-deletion

Y := φ
C’ := descendingSort(C)

while C’ not= φ do
addedFrag := deleteNext(C’)

if ∃ y ∈Y such that isValidPackingSet(y U {addedFrag}) == TRUE then
y := y U { addedFrag }

else
newPackedHLB := { addedFrag }
Y := Y U newPackedHLB

end if

end while

Figure 3-13: HLB Fragment Packing Algorithm

49

accommodate it. If there exists ay ∈ Y that can accommodateaddedFrag , thenaddedFrag

is added toy. If none of the packed HLBs inY can accommodateaddedFrag , then a new

packed HLB, composed of onlyaddedFrag , is added to Y . The outer while loop of the algo-

rithm terminates when there are no remaining elements in C’ .

The isValidPackingSet function checks if the candidate packed HLB is a subset of one

of the maximal packing sets by calling thesubsetChecking function in Figure 3-14. Before

invoking thesubsetChecking function, the fragment patterns in the candidate packed HLB

are ordered using the scheme in Section 3.5.2. Recall that the fragment patterns in the maximal

packing set are also ordered by the same scheme. ThenextFragment function returns the next

fragment in the maximal packing set orNIL if at the end of the list. The first timenextFrag-

ment is called it returns the first fragment.

First, thesubsetChecking function compares the largest of the fragment patterns in the

packed HLB against each fragment pattern in the maximal packing set until it finds a match. If a

function subsetChecking(packedHLB, packingSet)
for each fragment h in packedHLB do

matched := FALSE
s := nextFragment(packingSet)
repeat

if isMatch(h, s) then
matched := TRUE
exit repeat loop

else
s := nextFragment(packingSet)

end if
until (s == NIL)
if (matched == FALSE) then

return FALSE
end if

end for
return TRUE

end subsetChecking
Figure 3-14: The subset checking function

50

match is found, then the next largest fragment pattern in the packed HLB is compared to the

remaining fragments in the maximal packing set. For any fragment pattern in the packed HLB, if

a match is not found then the packed HLB is not a subset of this maximal packing set and the

function returns FALSE. If all packed HLB fragments are matched the function returns TRUE.

3.6 Conclusion

This chapter presented the algorithms used to map LUT networks to HLBs. The following

chapter discusses the complexity and optimality of the HLB technology mapping algorithms. The

subsequent chapter (Chapter 5) contains an evaluation of the effectiveness of the HLB mapping

algorithms with respect to theoretical bounds and to a technology mapper for a commercial LUT-

based FPGA architecture with hard-wired connections.

51

Chapter 4 Complexity and Optimality of
the HLB Mapping Algorithms

This chapter derives the complexity of the HLB mapping algorithms and gives statements and

proofs concerning the optimality of the algorithms described in Chapter 3. One key theoretical

result is that the fragment covering algorithm is delay optimal with respect to the number of

programmable connections in a critical path of the HLB cover. The other important result is that

the fragment packing algorithm results in a minimal number of packed HLBs when packing the

covering fragments of any two-level HLB topology.

The first section of this chapter contains the complexity derivations and optimality statements

and proofs for the fragment covering algorithm. The second section derives the complexity of the

fragment packing problem and the heuristic fragment packing algorithm and shows sufficient

conditions for the heuristic algorithm to be optimal. The second section also demonstrates the

optimality of the fragment packing algorithm for all two-level HLB topologies. The final section

concludes this chapter.

4.1 Complexity and Optimality of Fragment Covering Prob-
lem and Algorithm

This section reviews the fragment covering problem in Section 4.1.1 and then examines the

run-time complexity of the fragment covering algorithm in Section 4.1.2. The next subsection

(Section 4.1.3) considers the optimality of the fragment covering algorithm with respect to the

52

minimization of the delay and area of an HLB cover. The fragment covering algorithm is shown to

be optimal for delay but sub-optimal for area.

4.1.1 Covering Problem Definition and Algorithm Review

The inputs to the fragment covering algorithm are a subject DAG, S, and the HLB template,H.

In the HLB covering algorithm described in Section 3.4, the templateH is used to generate the

fragment pattern library, P = { P1, P2, P3, .. , Pl }. Every pattern inP is matched against the nodes

in S to find feasible fragments. The goal of the fragment covering algorithm is to select the least

cost feasible fragment matches for the covering set of fragments,C = { C1, C2, C3, .., Cn }. The

area cost of the cover is the number of fragments in the cover and the delay cost of the cover is the

number of fragments along the critical path. The last stage of the covering algorithm generates the

final HLB fragment netlist by using replication whenever the subgraphs ofS covered by theCi

overlap. The algorithm replicates the overlapping regions to ensure that the final mapping

between fragment pattern nodes and subject nodes is one-to-one.

4.1.2 Complexity of Fragment Covering Algorithm

The general problem of constructing an optimal area or delay cover of a subject DAG using

pattern trees has been proven to be NP-hard [19] [38]. Note that in the general problem, the delay

model includes the effect of loading on the outputs of gates, whereas the problem in this

dissertation assumes unit delay for each gate, and so the delay calculations are not dependent on

fan-out. The algorithm for computing the best pattern match at each node during fragment

covering entails finding all pattern matches at each subject node, and for each pattern match,

evaluating the cost of using that match. The evaluation of the cost of each match is a simple

computation and so the computational complexity of the finding the best pattern matches is

dominated by the matching algorithm. After finding the best pattern matches at each node in the

subject DAG, the fragment covering algorithm assembles the set of covering fragments using a

pre-order traversal from the outputs.

53

The complexity of selecting the best pattern matches has running time proportional to the

number of matches at each node in the subject DAG. In the worst case the running time will beO(|

S | | P |), where | P | is the total number of fragment patterns in the library and | S | is the total

number of nodes in the subject DAG. An upper bound on | P | was shown in Section 3.4.3 to be

O(K! * 3m), where K is the number of inputs to the LUT basic block and m is the number of

internal edges in the HLB. Thus, the complexity of finding the best matches isO(| S | * K! * 3m).

The complexity of assembling the covering set of fragments is the same as the complexity of a

pre-order traversal, which isO(| S |). Thus the overall complexity of the fragment covering

algorithm isO(| S | * K! * 3m).

Cost of Replication

The covering algorithm uses replication during delay optimization (but not during area

optimization). We now show that the run-time cost of replication is bounded by a finite factor.

The replications may be done for every fragment pattern in the cover, and the upper bound on

the number of fragment patterns is | S |. The HLB template hasm internal edges andm+1 nodes.

Thus, for each of thesubject nodes,O(m) new nodes may be created for each fragment pattern in

the cover during replication. The cost of node creation is constant, and so the complexity of the

replication stage isO(| S | * m). This calculation also shows that in the worst case replication may

increase the size of the subject network by a factor ofm.

4.1.3 Optimality of Fragment Covering Algorithm

This section will discuss the optimality of the fragment covering algorithm, described in

Figure 3-6, with respect to delay and area.

Delay Optimality of Fragment Covering Algorithm

This sub-section proves that the fragment covering algorithm generates a delay-optimal

solution with respect to the number of programmable connections on the critical path, for an

arbitrary subject DAG. The delay-optimizing version of the fragment covering algorithm hasall

54

possible buffered and delete-edge fragment patterns in the pattern library P, uses matching across

fan-out nodes during covering, and uses replication of subject nodes to construct the final HLB

netlist.

This sub-section first defines delay and delay optimality of the covering set of fragments.

Then the fragment covering algorithm is shown to be delay optimal for subject DAGs that are

trees. Finally, the optimality of the algorithm is extended to arbitrary DAGs. Note that in the proof

of delay optimality it is assumed that the subject DAG, S, corresponds to the transitive fan-in of a

single primary outputo. After proving delay optimality for mappingS with a single primary

output, it is shown that delay optimality holds for mappingS with multiple outputs.

Note that in our definition of delay, we only consider the delay due to programmable

connections. Each fragment pattern has an associated delay of one programmable connection.

Definition 4-1 Given an HLB template,H, a subject DAG, S, and the set of covering frag-

ments C = { C1, C2, C3, .., Cn }, the delay of a nodev ∈V(S) is defined as follows:

i) If v is a primary input thendelay(v) = 0.

(ii) Otherwise, , where F is the

subgraph ofS rooted atv and covered by aCi ∈C. Recall thatI(F) is the fan-

in of F.

A less formal way of defining thedelay(v) is that it is equal to the maximum number of

fragments betweenv and any primary input.

The cone rooted at a subject DAG nodev denotes the entire transitive fan-in ofv, including

primary inputs.

delay v() 1 max

u I F()∈
delay u()()+=

55

Definition 4-2 Given an HLB template,H, and a subject DAG, S, which is the cone for a pri-

mary output, o, adelay optimal set of covering fragments,C, is one such thatdelay(o) is minimal.

Note that all possible HLB fragment pattern trees implementable byH will be considered by

the delay-optimizing fragment covering algorithm because the fragment generation algorithm is

exhaustive.

The following lemma states that for any subject node v, the matching algorithm in Figure 3-7

will correctly find any feasible match between a pattern tree and a subject subgraph (with or with-

out fan-out nodes) rooted atv. A match is defined in Definition 3-2. The matching algorithm com-

pares the number of fan-in nodes of the subject nodev and the root node of the pattern treePi to

see if there is a match. If the match between the two nodes is successful, the algorithm recursively

compares the fan-in nodes of v and the root of Pi in the same fan-in edge order.

Lemma 1 The matching algorithm in Figure 3-7 will correctly find a match (according to Defini-

tion 3-2) between a pattern treep and a subject DAG subgraph rooted at subject nodes, if such a

match exists. If there is no match then the algorithm fails, correctly.

Proof by induction:

Base cases: If p ands are both primary inputs ORp is a primary input ands is not a primary

input then a match is found. In this matchp is mapped tos and the match is correct because both

properties of Definition 3-2 are satisfied. Ifp is not a primary input ands is a primary input node

then the matching algorithm terminates and fails correctly because it does not satisfy the fan-in

constraint (property (ii) of Definition 3-2).

General Case: This is the case when bothp ands are not primary inputs. Assume that the fan-

ins ofp ands have been matched properly. The matching algorithm compares the in-degrees ofp

and the subject node s to ensure that , that is, property (ii) of Definition 3-2 is satis-

fied. If this condition is false then the algorithm fails correctly for nodesp ands. The fan-in node

i p() i s()≥

56

checking sets up an edge correspondence betweenEp andEs by mapping the fan-in edges ofp to

those ofs in the order they are visited. If , then this mapping satisfies property (i)

of Definition 3-2. Thus if the fan-in nodes ofp ands match, then the algorithm will also matchp

ands correctly. If the match of the fan-in nodes fails then the algorithm will fail correctly.

The matching algorithm has been shown to work properly whenp or s are primary inputs. For

the case when bothp ands are not primary inputs, if the algorithm works properly for the fan-ins

of p ands, it has been shown to work properly forp ands. Thus, by induction it follows that the

matching algorithm will work properly for any givenp ands.

QED.

The fragment covering algorithm in Figure 3-6 uses dynamic programming and tree-match-

ing. A well known result [19] [38] states that if the subject DAG is a tree and the library of pat-

terns also consists of trees, then a dynamic programming and tree-matching covering algorithm

produces a delay optimal cover of library gates for the unit-delay gate model. The proof of the

optimality of a dynamic programming and tree-matching covering algorithm, when applied to a

subject tree, was given in [38]. A similar proof will be repeated here for the sake of completeness.

Theorem 4 Given a subject treeS, corresponding to a primary outputo, and a library of frag-

ment pattern treesP = { P1, P2, P3, .. , Pl }, corresponding to the HLB templateH,

the fragment covering algorithm (findOptimalCover) outlined in Figure 3-6

produces a delay optimal cover of fragmentsC = { C1, C2, C3, .. , Cn } for o.

Proof by induction:

Base case: The subject treeS is a primary input. The algorithm terminates with the optimal

delay of0 for S. The optimal fragment choice whenS is a primary input is the empty set.

General case: The subject treeS is not a primary input and is rooted at a nodev.

i p() i s()≥

57

Since all possible HLB fragment pattern trees for H are in the libraryP, Lemma 1 ensures that

the matching algorithm will correctly findall possible feasible HLB fragments for the subject

nodev.

Suppose that the fragment choices at each of the nodes in the transitive fan-in ofv result in the

optimal delay. The definition ofdelay(v) is , where a

feasibleCi ∈P matches the subject subgraphF rooted atv. The fragment covering algorithm

selects from among all possible feasible fragment patterns, aCopt ∈P that gives the minimum

delay. Since the optimal fragment choice for all nodes in the transitive fan-in ofv have been deter-

mined, thisCopt will be the delay optimal fragment choice for the cover of the tree rooted atv.

Thus the fragment covering algorithm generates the delay optimal fragment choicefor a given

non-input nodev given the optimal fragment choices for the fan-in ofv.

Since the fragment covering algorithm finds the delay optimal fragment choice for primary

input nodes and also generates the delay optimal fragment choicefor a given non-input nodev

given the optimal fragment choices for the fan-in ofv, then by induction, the fragment covering

algorithm generates a delay optimal fragment choice for any given subtree, including the one

rooted at a primary output nodeo.

Given the delay optimal fragment choices for an output nodeo and its transitive fan-in nodes,

a delay optimal cover of fragmentsC = { C1, C2, C3, .. , Cn } for the tree rooted ato can be trivi-

ally generated by a pre-order traversal. The traversal starts at theCi ∈C rooted ato, adds thisCi to

C, then recursively adds theCj ∈C at each of the fan-in nodes of the subject subgraph covered by

Ci. Note that there is no replication during the construction of the delay optimal cover because the

mapping between nodes in theCi andS are one-to-one.

QED.

delay v() 1 max

u I F()∈
delay u()()+=

58

What remains to be shown is that the fragment covering algorithm will also produce a delay

optimal solution if the output cone rooted at primary outputo is not a tree, that is, if the cone that

produceso contains fan-out nodes. The key to the proof is to show that the inclusion of matches

between fragment pattern trees and subject DAG subgraphs with fan-out nodes1 does not affect

the delay optimality of the set of covering fragments.

The selection of a fragment that matches to a subject DAG subgraph with fan-out nodes

implies replication of subject nodes when constructing the final HLB circuit. During construction

of the final netlist, if the best pattern Pi matches a subgraphF of the subject DAG with fan-out

nodes, the fan-out nodes ofF are replicated so that the final mapping has a one-to-one correspon-

dence between the nodes and edges ofPi andF. The next lemma states that these replications do

not affect the delay optimality of the cover.

Lemma 2 For a subject DAG nodev, if any subject DAG subgraphF rooted atv matches a frag-

ment patternPi, the replication of internal nodes ofF does not affect the delay ofv.

Proof Given a nodev, there is the subject subgraph F covered by the fragmentPi that matchesat

v. The calculation of thedelay(v) uses the maximum of the delays of the fan-ins ofF. Because the

replication of internal nodes (and their fan-in edges) of subject subgraphF does not introduce

another fragment level between the inputs ofF and the nodev, it does not affect the delay of the

fan-ins of F and thus does not affect thedelay(v).

QED.

Given that replications of the subject nodes do not affect the delay of the cover, the delay opti-

mality of the fragment covering algorithms can be extended to subject DAGs in the following the-

orem.

1. Recall that “fan-out” nodes is short for “fan-out greater than one nodes”.

59

Theorem 5 Given a subject DAG S, corresponding to a primary outputo, and a library of frag-

ment pattern treesP = { P1, P2, P3, .. , Pl }, corresponding to the HLB templateH,

the fragment covering algorithm produces a delay optimal cover of fragmentsC =

{ C1, C2, C3, .. , Cn } for o.

Proof The induction proof proceeds exactly as in the proof of Theorem 4 except that the con-

struction of the final HLB netlist may require the replication of fan-out nodes in matching subject

subgraphs. Lemma 2 states that the delay of the nodev implemented by a fragment pattern match

to a subject subgraphF with fan-out is unchanged by the replication of fan-out nodes that are

internal toF. Thus the delay optimality of the cover is unchanged by these replications. If the sub-

ject DAG node to be mapped is rooted at the primary outputo, then the covering set of fragments,

C = {C1, C2, C3, .. , Cn }, is delay optimal for the outputo.

QED.

The delay optimality of the fragment covering algorithm can be easily extended to multiple

output DAGs. The covering fragments for each output cone can be determined separately. The

construction of the final HLB netlist may require replication for the overlapping regions between

output cone covers. However, by Lemma 2 this does not affect the delay optimality of the

individual output nodes’ covers and so the combination of the separate output covers will also be

delay optimal.

Sub-optimality of Area Optimization Algorithm

This section shows that the fragment covering algorithm is not area optimal for an arbitrary

subject DAG. The area-optimizing version of the fragment covering algorithm uses only delete-

edge fragment patterns in the pattern libraryP and does not allow matching across fan-out nodes

during the covering stage. Since matching across fan-out is not allowed, replication is not needed

to construct the final HLB netlist.

60

This section first defines area and area optimality of the covering set of fragments. Then the

fragment covering area-optimizing algorithm is shown to be sub-optimal for subject trees using a

counter-example.

Definition 4-3 Given an HLB template,H, a subject DAG, S, and the covering set of frag-

ments for S, C = {C1, C2, C3, .. , Cn }, the area of the cover ofS is the number of fragments in the

covering set of fragments,n. An area optimal set of covering fragments, is one such thatn is min-

imal.

One reason that the area algorithm is sub-optimal is because the fragment pattern library used

in the area algorithm does not contain the HLB fragment patterns with buffers. The use of buff-

ered fragments may reduce the total number of HLB fragments (this is the area cost function in

covering) after mapping. However, buffered patterns waste basic blocks and the extra basic blocks

will often lead to a greater number of HLBs after fragment packing.

Figure 4-1 contains an example that demonstrates that the area-optimizing version of the

fragment covering algorithm is not optimal with respect to minimizing the number of fragments.

Figure 4-1(a) shows the L2-3 HLB and Figure 4-1(b) shows its isomorphically unique delete-edge

fragments. If the subject tree in Figure 4-1(c) is mapped using the library in Figure 4-1(b), then

the area-optimizing algorithm gives the set of two covering fragments enclosed in the shaded

boxes. However, a smaller area cost in terms of fragments may be obtained if the library were

a

1

b

c

2 34 5 6 7 8

109

4-1(a): L2-3 HLB 4-1(b): L2-3 HLB fragments 4-1(c): Mapped Subject
DAG

Figure 4-1: Example to show sub-optimality of area algorithm

61

expanded to include HLB fragments with buffers. With the complete isomorphically unique

library shown in Figure 3-1, the subject tree could be mapped to only one HLB fragment. Since

the area-optimizing algorithm resulted in a solution with more fragments, it is sub-optimal for

trees and will also be sub-optimal for DAGs.

Extensions to the Area Optimization Algorithm

There are extensions to the area optimization algorithm that may result in mappings with

fewer HLB fragments. As shown above, a complete fragment pattern library that includes the

HLB fragment patterns with buffers results in solutions with fewer fragments. Similar to the delay

optimizing algorithm, the area-optimizing algorithm will be optimal for trees if the subject graph

is a tree and a complete HLB pattern tree library is used [19] [38].

The use of replication during area optimization may also reduce the number of HLB

fragments in subject networks with fan-out. However a covering algorithm with replication may

not lead to an area-optimal cover if the area cost function is simply the sum of the area costs (in

terms of number of HLB fragments) of the transitive fan-in nodes. Note that we also assume that

if two solutions have the same cost in HLB fragments, then the solution with the smallest root

HLB fragment is selected. For example, Figure 4-2 shows an example where replication results in

a sub-optimal solution. Figure 4-2(a) shows the L2-2 4-LUT HLB template and Figure 4-2(b)

shows the subject network to be covered by the L2-2 HLB.

A

B C

D E

4-2(a): L2-2 HLB 4-2(b): Subject network

Figure 4-2: Sub-optimal replication example

A

B C

D E

A

B C

D E

4-2(c): Sub-
optimal mapping

4-2(d): Optimal
mapping

62

Assuming replication were allowed, the mapping of the subject network would proceed as

follows. NodeA of the subject network is trivially mapped to a single-block fragment and has area

cost of one. NodesB andC are each mapped to an entire L2-2 HLB (that includes nodeA) and

both have area cost of one. Note that this mapping implies a replication of nodeA. NodeD is

mapped to a single-block fragment and its area cost is one plus the cost of nodeB, which is equal

to two. Node E is also mapped to a single-block fragment and its area cost is also two. The entire

area cost of the mapped network is the sum of the costs ofD andE, which is four HLB fragments.

The final mapping of the subject network is shown in Figure 4-2(c). The nodes covered by each of

the four HLB fragments are encircled by a thick line.

However, an optimal covering algorithm would not replicate nodeA. The optimal covering

algorithm would implement nodesD andE with complete L2-2 HLBs and nodeA with a single-

block fragment. The cost of the optimal cover is three HLB fragments. The optimal cover is

illustrated in Figure 4-2(d). Thus the covering algorithm with replication and using the simple

area cost function is sub-optimal.

4.2 Complexity and Optimality of Fragment Packing Prob-
lem and Algorithm

This section reviews the fragment packing problem in Section 4.2.1 and then shows that the

fragment packing problem can be solved optimally in polynomial time in Section 4.2.2. The com-

plexity of the heuristic fragment packing algorithm is discussed in Section 4.2.3. The optimality

of fragment packing is defined in Section 4.2.4 and then the conditions under which the heuristic

algorithm is optimal are described in Section 4.2.5. The final subsection (Section 4.2.6) gives a

counter-example that shows that the heuristic fragment packing algorithm is, for the general case,

sub-optimal.

63

4.2.1 Packing Problem Definition Review

The fragment packing problem is defined as follows: Given a setP = { P1, P2, P3, .. , Pl },

where eachPi corresponds to a fragment pattern, the covering set of fragmentsC = { C1, C2, C3,

.. , Cn }, where eachCi is isomorphic to a member ofP, and a collection of maximal packing sets

M = { M1, M2, M3, .. , Mm } where eachMi is a subset ofP, the fragment packing problem is to

find a partition ofC into a collection of disjoint subsets,X = { X1, X2, X3, .. , Xk }, such that each

Xi ⊆ Mj for somej andk is as small as possible.

4.2.2 Complexity of Fragment Packing

The HLB fragment packing problem shares some features with the integer bin-packing

problem. The integer bin-packing problem can be stated as follows: Given a set ofn items, each

item having an integer sizesi, 1 ≤ si ≤ K, pack then items into a minimum number of integer bins

of integer sizeK. Assuming that the integer sizeK is a constant, the integer bin-packing problem

can been shown to be polynomial inn [42]. It will now be shown that the fragment packing

problem can also be solved optimally in polynomial time.

Theorem 6 The fragment packing problem described in Section 3.5.1 can be solved optimally

in polynomial time.

Proof The proof shows that an exhaustive algorithm to solve the fragment packing problem opti-

mally can be executed in polynomial time. An outline of the exhaustive algorithm is as follows:

Givenn fragments to pack, all possible sets ofn or fewer packed HLBs are generated. Each gener-

ated set of packed HLBs,X, is checked to determine if it contains all of then covering fragments

in C, that is, ifX is avalid set of packed HLBs. The valid set of packed HLBs with smallest cardi-

nality is the optimal packing.

The following proof assumes that the HLB hasb LUTs and is represented by a directed tree

consisting ofb internal nodes andm = b-1 internal edges. The covering set ofn fragments to be

64

packed is denoted by C. It is also assumed that the cardinality of the collection M of maximal

packing sets is p. The upper bound on the number of maximal packing sets p was shown in Sec-

tion 3.5.3 to be 3b-1. Since b is a constant, p will also be bounded by another constant.

We now determine an upper bound on the number of sets of packed HLBs that the algorithm

will generate given n fragments to pack. Suppose the integer n is partitioned into integers n0, n1,

n2, .. , np such that . Let each ni, where i = 1.. p, correspond to the number of

occurrences of packing set Mi in the generated packed HLB set X and n0 correspond to the unused

part of n that has not been assigned to any of the p packing sets. The fragments in X correspond to

the union of the fragments in n1 packing sets of type M1, n2 packing sets of type n2, .. , and np

packing sets of type Mp. Note that if then the number of packed HLBs in X is less than n

and thus if X is valid then some of the packed HLBs in X contain more than one fragment from C.

There is no need to consider partitioning an integer greater than n because there are at most n

packed HLBs for n fragments. The inclusion of n0 in the partitioning of n ensures that all

solutions with fewer than n packed HLBs will also be considered. The number of possible sets of

packed HLBs is bounded by the number of ways of partitioning the integer n into p+1 partitions,

which is less than or equal to .

The validity checking can be formulated as a bipartite matching problem as follows. Let G be

a bipartite graph with a vertex set equal to the union of the two sets of vertices, Vc and Vx and a set

of edges E. Each vertex in Vc corresponds to a fragment in the covering set C and each vertex in

Vx corresponds to a fragment in the packing sets of X. If a fragment f in X can cover a fragment g

in C, then there is an edge between the corresponding vertices in Vx and Vc. If the cardinality of

the maximum matching of G is equal to | Vc | then X is a valid set of packed HLBs. For all valid

solutions, the one with the lowest number of packed HLBs (that is, the lowest value of n−n0) is

the optimal solution.

ni
i 0=

p

∑ n=

n0 0>

n p+
p

65

The cost of validity checking is the sum of the costs of creating the bipartite graph G plus the

costs of solving the bipartite matching problem. The cost of constructing G is the cost of applying

the fragment matching algorithm times the number of possible fragment matches. The cost of

using the fragment matching algorithm is O(m), where m is a constant equal to the number of

internal edges in the HLB. There are at most n packed HLBs in X and each packed HLB has at

most b fragments, so there are O(b n) = O(n) fragments in X. There are n fragments in C, and so

there are O(n2) possible applications of the fragment matching algorithm and thus O(n2) edges in

G. The complexity of generating the bipartite graph is therefore O(m n2) = O(n2). The cost of

solving the bipartite matching problem is [44]. Therefore the overall

complexity of validity checking is .

Thus the expression for the overall run-time complexity of the exhaustive algorithm, T(n), is

bounded as follows:

Therefore:

Since the number of maximal packing sets p is bounded by a constant, T(n) is polynomial in n,

and thus the run-time complexity of the fragment packing problem is also polynomial.

QED.

However, the exponent of the polynomial for the above algorithm is large and thus the

algorithm may not be practical.

O n1 2/ E() O n1 2/ n2()=

O n5 2/()

T n() n p+
p

 n5 2/×≤

T n() n p+()p n5 2/×≤

T n() O n
p

5
2
---+

 =

66

4.2.3 Complexity of the Heuristic Fragment Packing Algorithm

The heuristic fragment packing algorithm described in Section 3.5.4 first sorts theelements of

C into descending order, and then proceeds to create the list of packed HLBs,X. The largest

remainingCi is placed in the first current packed HLB that can accommodate it. If no current

packed HLB can accommodate the largest remainingCi then a new packed HLB is created for

that Ci and added toX. The fragment packing isgreedy because it packs the largest remaining

fragment,Ci , into the unused part of the first packed HLB inX into whichCi can fit. This type of

heuristic algorithm is referred to as a first fit decreasing (FFD) fragment packing algorithm.

The two steps of the heuristic fragment packing algorithm that determine its complexity are

the sorting of the covering fragments list,C, and the construction of the packed HLBs from the

sorted list. Assume that there aren fragments to pack and that there arep maximal packing sets.

The fragments can be sorted using a sorting algorithm, such as heapsort, inO(n log n) time [45].

The construction of the packed HLBs requires scanning each of then covering fragments

exactly once. Each scanned fragment is added to each of the current packed HLBs, one after the

other, to give candidate packed HLBs. Each candidate packed HLB is then validated by

comparing it to each of thep maximal packing sets for containment. If the candidate packed HLB

is valid then the fragment is packed there.

If there areb basic blocks in the HLB template, then there are at mostb fragments in each

maximal packing set and at mostb fragments in each packed HLB. Checking if a candidate

packed HLB is a subset of a given maximal packing set requires a linear comparison of both lists

and is thusO(b). Because there arep maximal packing sets, the complexity of validating a packed

HLB is O(p b). There may be up to n candidate packed HLBs for each fragment and so the cost of

determining where to pack a fragment isO(n p b). Since there aren fragments to pack, the total

complexity of constructing the packed HLBs isO(n2 p b). Sincep and b are constants, the

complexity of constructing the packed HLBs isO(n2).

67

Since the complexity of sorting the fragments isO(n log n) (< O(n2)) and the cost of

constructing the packed HLBs isO(n2), the overall complexity of the FFD fragment packing

algorithm isO(n2).

4.2.4 Definition of Optimality for Fragment Packing

Given the packing problem definition in Section 4.2.1, anoptimal algorithm for an instance of

the fragment packing problem is one that finds the minimal number of packed HLBs,k. More

formally stated, the optimality of a valid packing of fragments is as follows:

Definition 4-4 The valid packing of the n covering fragments ofC = { C1, C2, C3, .. , Cn } into

a collection of disjoint subsets X = { X1, X2, X3, .. , Xk } is optimal if and only if for any other valid

packingY = { Y1, Y2, Y3, .. , Yy } of C, .

The following section proves that the FFD fragment packing algorithm is optimal under

certain constraints on the maximal packing sets and that all two-level HLBs fit these constraints.

4.2.5 HLBs for which FFD Fragment Packing is Optimal

The following theorem defines a set of sufficient conditions for the maximal packing sets of an

HLB so that the FFD fragment packing algorithm will be optimal. Note that in the following

theorem, the HLB is assumed to consist of several basic blocks with an identical fan-in ofK.

Theorem 7 The FFD fragment packing algorithm described in Section 3.5.4 is optimal if the

maximal packing sets of the HLB satisfy the following two constraints:

(i) Every maximal packing set with multi-block fragments can have only one

multi-block fragment and zero or more single-block fragments.

(ii) There is only one maximal packing set consisting of only single-block

fragments.

Proof Because the FFD fragment packing algorithm sorts the covering fragments in descending

order of labels it packs the multi-block fragments first. Constraint (i) implies that a packed HLB

y k≥

68

with multi-block fragments can accommodate exactly one multi-block fragment. Thus, the pack-

ing of each multi-block fragment is trivial. No other rearrangement of the multi-block fragments

can lead to a better packing and so the FFD fragment packing algorithm packs the multi-block

fragments optimally. The unused part of an HLB will be referred to as ahole. The FFD fragment

packing algorithm must now pack the single-block fragments into either the holes left after pack-

ing the multi-block fragments or some newly created HLBs.

The holes left after packing multi-block fragments are single-block holes. A single-block hole

can accommodate a single-block fragment if the fan-in of the fragment is less than or equal to the

fan-in of the hole. FFD fragment packing places the largest remaining single-block fragment in

any single-block hole that can accommodate the fragment. The packing of each single-block hole

is independent of each other because only one fragment can fit in each hole. The next paragraph

shows that the FFD fragment packing algorithm fills the single-block holes optimally with single-

block fragments.

Assume that the strategy of greedily placing the largest remaining single-block fragment,f, in

any hole,h, that can accommodatef leads to a sub-optimal packing. This means that there exists a

subsequent single-block fragmentg that can fillh better thanf, that is,g has greater fan-in thanf.

However, this is a contradiction because no fragment afterf can have greater fan-in because the

single-block fragments have been sorted in descending order of fan-in.

After exhausting the holes due to multi-block fragments, any remaining single-block frag-

ments must be packed in HLBs that consist of only single-block fragments. Constraint (ii) says

that there is a unique maximal packing set that consists of only single-block fragments. Thus,

there is no alternative way of packing together only single-block fragments in an HLB. The sin-

gle-block fragments in the maximal packing set can be considered as single-block holes. As

69

shown earlier in this proof, the FFD strategy for packing single-block fragments in single-block

holes is an optimal strategy.

QED.

All two-level HLBs are shown to fit the constraints of Theorem 7 in the next subsection and

thus FFD fragment packing will be optimal for these HLB topologies.

Two-level HLBs

A generic two-level HLB consisting ofI+1 K-input basic blocks andI hard-wired links is

shown in Figure 4-3. The root basic block is hard-wired to theI leaf blocks and the root block has

K–I primary inputs. Note that the primary inputs of theI leaf blocks are not shown.

First we show that a two-level HLB has at most one multi-block fragment in any maximal

packing set and thus satisfies constraint (i) of Theorem 7. Every multi-block fragment must

include the root block. Since there is only one root block there cannot be more than one multi-

block fragment.

We now show that for all two-level HLBs there is only one maximal packing set consisting of

only single-block fragments (constraint (ii) of Theorem 7). Assume that the HLB template has

only two blocks, a leaf block and a root block. Using the leaf block to implement a buffer will

yield one buffered single-block fragment withK inputs. A delete-edge operation on the same

input edge yields two single-block fragments, aK-input block and another block withK-1 inputs.

I K−I

Figure 4-3: A generic two-level HLB

70

Thus the delete-edge operation leads to a packing set that is a superset of the packing set

generated by using a buffer operation. A similar argument can be applied to an HLB template

with three blocks. To create a buffered single-block fragment, one or both of the leaf blocks must

be used to implement a buffer. In either case, the packing set with the buffered fragment is a

subset of the one created by only using delete-edge operations. The argument can be extended to

HLB templates with more than three blocks. Thus we conclude that the maximal packing set of

single-block fragments is generated by using only delete-edge operations on all edges and since

there is only one way to delete all edges, this maximal packing set is unique.

For example, Figure 4-4(a) shows the L2-4 5-LUT HLB and Figure 4-4(b)-(d) are the

maximal packing sets created by one, two and three edge deletions. Other maximal packing sets

(with buffered patterns) are generated by using blocks A, B and/or C to implement buffers.

4.2.6 An HLB for which FFD Fragment Packing is Sub-optimal

This section presents an HLB topology and an instance of the fragment packing problem for

which the FFD fragment packing algorithm is sub-optimal. The counter-example assumes that the

HLB has 4-LUT basic blocks. Thus, the FFD fragment packing algorithm is not optimal in

general for all HLBs.

The counter-example uses the L3-4.2 4-LUT HLB. This HLB is labelled as ps1 in Figure 4-5

and consists of four 4-LUTs. Figure 4-5 shows the L3-4.2 HLB and the 7 maximal packing sets

generated by delete-edge operations. The maximal packing sets are labelled ps1, ps2, .. , ps8.

A B C

D

A B C

D

A B C

D

A B C

D

(a) (b) (c) (d)

Figure 4-4: A two-level HLB (L2-4) and its maximal packing sets

71

Figure 4-6 shows a set of fragments that are not packed optimally by the FFD fragment

packing algorithm. This covering set of fragments consists of two multi-block fragments, two

single-block fragments with fan-in of four and two single-block fragments with fan-in of three.

The six fragments in Figure 4-6 are in descending order and are labelledf1, f2, .. ,f6.

The result of using the FFD fragment packing algorithm is illustrated in Figure 4-7(a). FFD

packs f1 andf2 into the same packed HLB since these two fragments can fit into maximal

packing setps2. Fragmentf1 is isomorphic to the fragment with blocksC and D in ps2.

Fragmentf2 has one fewer primary input than the fragment with blocksA andD in ps2, but still

fits the matching criteria. Fragmentsf3, f4 andf5 fit in the second packed HLB, but since

fragmentf6 does not fit, the FFD algorithm requires another HLB, for a total of three packed

HLBs. In contrast, the optimal packing in Figure 4-7(b) requires only two packed HLBs, in which

B C

D

A

B C

D

A

B C

D

A

B C

D

A

B C

D

A

B C

D

A

B C

D

A

B C

D

A

ps1 ps2 ps3 ps4

ps5ps6ps7ps8

Figure 4-5: L3-4.2 HLB and its maximal packing sets

f1 f2

f3 f4 f5 f6

Figure 4-6: Covering Fragments that give sub-optimal packing for L3-4.2 HLB

72

each of the two packed HLBs contain three fragments that are isomorphic to the fragments in

maximal packing set ps7. Since the FFD algorithm generates a solution with more packed HLBs

than an optimal algorithm, it is sub-optimal for the L3-4.2 HLB.

4.3 Conclusion

This chapter has presented proof of the delay optimality of the fragment covering algorithm.

The FFD fragment packing algorithm was shown to be optimal for all two-level HLBs. The

following chapter evaluates the effectiveness of the HLB mapping algorithms with respect to

theoretical bounds and a commercial mapping tool.

f1 f2

f3 f4f5 f6

f1 f2

f3 f4 f5 f6

4-7(a): Sub-optimal packing by FFD 4-7(b): Optimal Packing

Figure 4-7: Sub-optimal packing and Optimal packing for L3-4.2 HLB example

73

Chapter 5 Effectiveness of the HLB
Mapping Algorithms

This chapter evaluates the effectiveness of the HLB technology mapping algorithms. The

overall HLB synthesis methodology consists of technology-independent logic optimization,

followed by mapping to LUTs and then the HLB fragment covering and packing algorithms

detailed in Chapter 3. The first section of this chapter evaluates the effectiveness of the covering

and packing algorithms using theoretical bounds. Section 5.2 contains an empirical study to

compare the efficacy of our overall HLB synthesis methodology to a commercial technology

mapper [11] for an FPGA with hard-wired connections, the Xilinx 4000 FPGA. The last section

summarizes this chapter.

5.1 Comparison to Theoretical Bounds

This section compares the effectiveness of the HLB mapping algorithms with respect to the

minimization of area. The measure of area is the total number of packed HLBs. We do not discuss

the optimality of the algorithms with respect to delay-optimization because in Chapter 4 it was

shown that the delay-optimization algorithm produces an HLB netlist with the minimal delay.

5.1.1 Performance of the Area-optimization Algorithm

In Chapter 4, the area-optimization HLB mapping algorithm was proven sub-optimal with

respect to producing the minimal number of HLBs for a given input LUT network. The fragment

covering stage of the algorithm does not necessarily generate the minimal number of HLB

fragments. However, the packing stage of the algorithm produces a minimal number of packed

74

HLBs for certain HLB topologies and so the area-optimization algorithm may be reasonably

effective.

The overall effectiveness of the area-optimization HLB mapping algorithm can be measured

with respect to easily calculated lower bounds: Given a network of N basic blocks and an HLB

composed ofB basic blocks, a simple lower bound,LB, on the number of HLBs is .

This lower bound may not be achievable whenever the basic block network precludes the

selection of a set of fragments that can be packed with no wasted internal blocks in the packed

HLBs. When there are no wasted basic blocks in the packed HLBs the packing is said to be a

perfect packing.

An application of the lower bound is shown in Table 5-1. In this table, 15 MCNC benchmark

circuits [49] are mapped to the L2-3 HLB with three 4-LUTs shown in Figure 3-1. Note that the

L2-3 HLB is a two-level HLB and thus its fragments will be packed optimally. The first column

Circuit # LUTs Lower Bound Actual HLBs

9symml 71 24 26

alu2 142 48 49

alu4 236 79 86

apex7 74 25 29

b9 45 15 15

c1355 91 31 33

c8 38 13 15

cc 25 9 9

cm162a 12 4 5

comp 36 12 13

count 39 13 16

decod 20 7 10

mux 17 6 6

vda 208 70 71

z4ml 6 2 3

Totals 1060 358 386

Table 5-1: Comparison with Lower Bound on Area of L2-3 HLB circuits

LB N B⁄=

75

gives the circuit name, the second column is the number of 4-LUTs in the circuit, the third column

has the predicted lower bound for the number of L2-3 HLBs and the last column gives the actual

number of HLBs after using our technology mapper. These circuits are also used in Section 5.2

for the comparison with a commercial HLB mapper. The summary at the bottom of the table

shows that the lower bound predicts a total of 358 HLBs, while the actual mappings totalled 386

packed HLBs. This 8% average difference is caused by the following: (1) the covering algorithm

makes sub-optimal fragment choices which cannot pack well together and (2) the properties of the

basic block network do not allow choosing a set of fragments that will pack perfectly together.

In general, as the number of LUTs (and hard-wired links) in the HLB increases, the size of the

area-optimized circuits with respect to the lower bound increases. This effect is caused by the

increase in the number of hard-wired links in the HLBs. More hard-wired links in the HLB reduce

the connection flexibility , and this makes it more difficult to efficiently utilize the larger HLB.

Table 5-2 lists the most area-efficient HLBs consisting of a given number of 4-LUTs, and

compares the number of actual HLBs and the number of HLBs predicted by the lower bound.

Column 1 contains the name of the HLB, column 2 contains the predicted lower bound on the

total number of HLBs in all circuits, column 3 lists the actual totals after mapping and the last

column shows the percent difference between the actual number and the lower bound number.

Topology
Lower

Bound totals
Actual HLBs

totals
% difference

L2-2 533 547 3

L2-3 358 386 8

L3-4.2 270 285 6

L3-5.2.2 219 244 11

L3-6.3.2 183 207 13

L3-7.2.2 158 183 16

L3-8.2.2.2 139 157 13

L3-9.4.3 125 139 11

Table 5-2: Comparison with Lower Bound on Area of 4-LUT HLB circuits

76

The percent differences from the lower bound in Table 5-2 range from small (3%) to

significant (16%). This shows that the area-optimizing HLB synthesis procedure is reasonably

effective when mapping 4-LUT HLBs and may also be effective for other HLBs.

5.2 Effectiveness of Overall HLB Mapping Procedure

This section compares our overall HLB mapping procedure with a technology mapper for the

Xilinx 4000 FPGA architecture called PPR [11]. We used version 1.21 of PPR for our

experiments. The CAD systems are compared for delay and area in an empirical study. The

benchmark circuits used in these evaluations are chosen randomly from the multi-level logic

synthesis benchmark suite [49], with the constraint that every circuit could fit in the Xilinx 4005

FPGA when implemented by PPR. These same circuits were used to evaluate the Xilinx 4000

logic block architecture in a previous study [9] and some of the circuits are used in the empirical

FPGA architecture study in Chapter 6.

The Xilinx 4000 Configurable Logic Block (X4000 CLB) is a commercial LUT-based FPGA

architecture with hard-wired connections. The combinational logic portion of the X4000 CLB,

which is illustrated in Figure 5-1, consists of two 4-LUTs whose outputs are hard-wired to the

inputs of a 3-LUT. Note that the X4000 CLB only allows any two of the three LUT outputs to be

accessed simultaneously. This is in contrast to the architectural assumption in Section 1.1 that

states thatall LUT outputs are accessible through tapping buffers.

Figure 5-1: The Xilinx 4000 CLB

77

The overall HLB synthesis procedure includes technology-independent logic optimization,

technology mapping to LUTs and then the HLB covering and mapping steps. The common

starting point for PPR and for our HLB synthesis methodology is a Boolean network that has

undergone technology-independent logic optimization. PPR maps the delay- or area-optimized

Boolean network directly to a netlist of X4000 CLBs. For the following comparison, PPR was set

to use its default optimization parameters. The HLB synthesis methodology in this dissertation

first maps the Boolean network to an area- or delay-optimized network of LUTs using Chortle

[20] [21] and then uses the HLB covering and packing algorithms, implemented in a CAD tool

called TEMPT, to produce the final HLB netlist. Note that TEMPT had to be modified to map to

the X4000 CLB because it violated the assumption that there is a tapping buffer on every LUT

basic block output and because its H LUT has 3 inputs while the other two LUTs each have 4

inputs.

Table 5-4 compares PPR and the Chortle+TEMPT combination for delay optimization. The

first column lists the MCNC benchmark circuit name, the second column lists the number of

programmable connections (PCs) in the critical path when that benchmark is mapped using PPR,

the third column lists the PCs required when using Chortle+TEMPT, the fourth column lists the

number of X4000 CLBs required for that benchmark when using PPR, and the last column lists

the number of X4000 CLBs when using Chortle+TEMPT. Chortle+TEMPT used an average of

22% fewer programmable connections than PPR. This is a significant difference in the number of

programmable connections. However, this may not translate into a significant reduction in routing

delay after placement and routing because, when optimizing for delay, Chortle+TEMPT uses 89%

more CLBs than PPR. A large part of the area overhead is due to the Chortle mapper, which

produces an excessive number of LUTs when optimizing delay. A more area-efficient delay-

optimizing LUT mapper, such as Flowmap [33], would greatly reduce the area overhead and thus

the reduction in programmable connection delay would more likely translate into a similar

reduction in routing delay.

78

Table 5-4 compares PPR and the Chortle+TEMPT synthesis methodology for area-

optimization. The first column lists the MCNC benchmark circuit name, the second column lists

the number of X4000 CLBs required for that benchmark when using PPR, the third column lists

the number of CLBs required when using Chortle+TEMPT, the fourth column lists the number of

programmable connections (or PCs) along the critical path when using PPR, and the last column

lists the number of critical path PCs when using Chortle+TEMPT. Overall, Chortle+TEMPT uses

about 4% fewer X4000 CLBs to implement the same benchmark suite than PPR, so the two CAD

systems are similar in effectiveness for area-optimization. When optimizing area,

Chortle+TEMPT has 10% more PCs in the critical paths because the first priority is keeping the

number of CLBs as low as possible.

The above tables have shown that Chortle+TEMPT are similar in effectiveness to PPR when

optimizing area, but is significantly more effective when optimizing delay. However, it should be

Benchmark
Circuit

Number of Prog. Conn. Number of CLBs.

PPR s Ch+TEMPT PPR Ch+TEMPT

9symml 8 5 36 41

alu2 15 12 71 145

alu4 20 14 123 283

apex7 5 5 36 51

b9 3 3 21 25

c1355 7 8 47 111

c8 5 3 18 17

cc 2 2 8 20

cm162a 3 3 5 8

comp 7 5 17 29

count 9 7 16 21

decod 2 1 10 16

mux 2 3 5 6

vda 9 5 98 193

z4ml 3 2 3 5

Totals 100 78 514 971

Table 5-3: Comparison of PPR and TEMPT for Delay-optimization

79

noted that TEMPT can be used to map to any HLB topology, while PPR is restricted to mapping

to the X4000 CLB. The next chapter will demonstrate how TEMPT can be used to explore many

different HLB topologies to find the HLB-based FPGA architectures with good speed and density.

5.3 Conclusion

This chapter showed that the HLB mapping algorithm performs reasonably well compared to

theoretical lower bounds for area. Compared to a commercial CAD tool for a commercial HLB-

based FPGA architecture, the synthesis procedure performed similarly in terms of area (4% fewer

CLBs) and significantly better in terms of delay (22% fewer programmable connections in critical

paths).

The next chapter will demonstrate the use of the HLB mapping algorithms in an empirical

study of HLB-based FPGA architectures.

Benchmark
Circuit

Number of CLBs Number of Prog. Conn.

PPR s Ch+TEMPT PPR Ch+TEMPT

9symml 36 36 8 8

alu2 71 69 15 20

alu4 123 113 20 19

apex7 36 36 5 7

b9 21 20 3 5

c1355 47 38 7 7

c8 18 18 5 4

cc 8 11 2 3

cm162a 5 6 3 4

comp 17 15 7 6

count 16 16 9 8

decod 10 10 2 2

mux 5 8 2 4

vda 98 97 9 10

z4ml 3 3 3 3

Totals 514 496 100 110

Table 5-4: Comparison of PPR and TEMPT for Area-optimization

80

Chapter 6 An Empirical Study of HLB
Architectures

This chapter describes the experiments used to evaluate a set of alternative hard-wired logic

block (HLB) architectures. As discussed previously, hard-wired connections in logic blocks may

lead to FPGA circuits that are faster and have reduced routing area. However, area-efficiency may

be reduced since the fixed interconnections in HLBs make it difficult to utilize the logic effi-

ciently. This chapter describes the empirical approach used to explore the relationships between

the basic block functionality, the hard-wired connection topology of the HLB and the speed and

density of the resulting HLB circuits.

The methodology is to implement several benchmark circuits in an FPGA using each HLB

architecture and then measure the area and delay of the resulting circuits. These results are then

compared to determine the best HLBs for speed and/or density.

The goals of this empirical study are:

i) Find the basic block and HLB topology that will lead to fast FPGA

architectures with good area-efficiency.

ii) Determine the best basic block and topology for the most area-efficient HLB

circuits.

This chapter is organized as follows. Section 6.1 describes the space of hard-wired logic

blocks explored in the experiments. The experimental method, which includes the synthesis steps

and the area and delay models, is given in Section 6.2. Section 6.3 contains the results of the HLB

81

architectural investigations, as well as some discussion regarding the effect of non-ideal HLB syn-

thesis tools and the area and delay model parameters on the results. Section 6.4 summarizes the

key empirical results. The final section discusses some limitations of the empirical study.

6.1 The Hard-wired Logic Block Design Space

An HLB is defined by its basic blocks and the topology used to connect the basic blocks with

hard-wired links. The HLBs investigated are tree topologies and all the basic blocks in the HLB

are identical. Each basic block has a tapping buffer to make its output accessible to the routing.

The results of previous studies [6] [8] have shown that for FPGA architectures without hard-

wired connections, lookup table (LUT) basic blocks are a good choice from both a density and

speed perspective. Thus, in this dissertation, we restrict our attention to LUTs as the basic block

of the HLB. The HLBs are also constrained to have LUT basic blocks with the same number of

inputs. This simplifies the mapping problem and restricts the size of the design space, although

other research indicates that there may be reasons to use a heterogeneous mixture of LUT basic

blocks [13] [46].

The HLBs investigated in this study are as follows:

i) All possible HLB topologies consisting of 2-LUTs (that is, 2-LUT HLB

topologies) with 4 or fewer levels of LUTs.

ii) All possible 3-LUT HLB topologies with 3 or fewer levels.

iii) All possible 4-LUT HLB topologies with 3 or fewer levels and 9 or fewer

LUTs.

iv) All possible 5-, 6- and 7-LUT HLB topologies with two levels and those with 3

levels and 6 or fewer LUTs.

82

The investigated HLBs were restricted to the above types because the run-times and memory

requirements of the HLB technology mapper increase greatly with the number of hard-wired links

in the HLB. In addition, the results of the HLB architecture studies presented later in this chapter

show that there are diminishing improvements in speed as the size of the HLBs approach the lim-

its of the above types. As the number of hard-wired links increase, the incremental speed

improvements become more costly in terms of area because the reduced connection flexibility

makes it more difficult to utilize the HLB efficiently.

In total, there were over 200 different HLBs investigated. Some of the 4-LUT HLB tree topol-

ogies investigated in this study are illustrated in Figure 6-1. The circles in Figure 6-1 represent

LUT nodes in the HLB tree. The thick lines in Figure 6-1 represent a hard-wired connection edge

between two LUTs, while the thin lines represent a primary input edge. The naming convention

adopted for each HLB topology is described in Section 3.4.2.

Figure 6-1: Some 4-LUT HLB topologies

83

An important assumption is that each HLB features atapping buffer on the output of each

LUT basic block, which makes the output accessible to the routing. Figure 6-2 illustrates the tap-

ping buffers on each LUT output. Tapping buffers offer two major advantages:

i) Tapping buffers lead to faster HLB circuits since the output of one LUT can be

accessed directly instead of propagating it through another LUT.

ii) Tapping buffers improve logic density since unrelated pieces of logic can be

packed together in the same HLB, with each piece using a separate tapped

basic block output.

The disadvantage of tapping buffers is that they require significant area because they have

large signal driving capability and require extra routing resources to access them.

The next section describes how the speed and density of FPGAs with these kind of hard-wired

logic blocks can be explored empirically.

6.2 Empirical Method for Exploring HLBs

To evaluate the various HLB-based FPGA architectures, a set of 15 MCNC combinational

benchmark circuits are implemented in each FPGA architecture (each with a different HLB) using

available synthesis tools and a novel CAD tool based on the algorithms described in Chapter 3.

Over 200 different HLB-based FPGAs were investigated, and thus, over 3000 different HLB cir-

cuits were constructed. The area and delay of each implemented circuit is then calculated, and the

Figure 6-2: HLB tapping buffers

84

results over all circuits are summarized for each HLB architecture. The summaries are used to

produce measures of the goodness of each HLB-based FPGA architecture for the comparisons

discussed in Section 6.3.

The following subsections describe the benchmark circuits used in this study, the synthesis

steps used to implement each circuit, and the models used to measure the area and delay of the

circuit.

6.2.1 Benchmark Circuits

The 15 benchmark circuits were chosen from the MCNC multi-level logic synthesis bench-

mark suite [49]. The selected benchmarks include seven of the circuits that were used to evaluate

the Xilinx 4000 logic block architecture in a previous study [9] and to determine the effectiveness

of the HLB mapping algorithms in Chapter 3. Table 6-1 contains the information about the bench-

mark circuits. The circuit’s name is listed in column 1 and a brief description of the function of

the benchmark circuit is in column 2 [49]. These limited functional descriptions are the only ones

available in [49]. The third and fourth columns respectively contain the size of the circuit in terms

of the number of 4-input LUTs and the maximum primary output depth, when the circuit is

mapped to 4-LUTs using Chortle [21] in speed-optimizing mode. The benchmark circuits contain

a mixture of random logic and arithmetic circuits and vary in size from 13 to 608 4-LUTs. The

maximum output depth varies from 3 to 12 LUT levels. The final row summarizes the total num-

ber of 4-LUTs and the sum of the critical path depths over the entire benchmark suite.

6.2.2 Synthesis Steps

The input to the experimental procedure is a Boolean description of the benchmark circuit and

the output is a place-and-routed netlist of HLBs that implement the circuit. The FPGA routing

architecture illustrated in Figure 6-3 is assumed. In Figure 6-3, the FPGA on the right consists of

the HLB tile on the left repeated in a 2-dimensional square array. Each HLB tile contains a hard-

wired logic block (labelled “L”), two connection boxes (labelled “C”), a switch box (labelled “S”)

85

and channel segments between the connection and switch boxes. The connection boxes are used

to connect HLB I/O pins to the channel segments. The switch boxes are used to connect vertical

and horizontal channel segments. Each channel segment contains W routing tracks, where W is

determined by the placement and routing step described below.

Benchmark Description Size (# of 4-LUTs) Max. Output Depth

9symml count ones 87 6

c1355 error correcting 426 7

c432 priority decoder 265 12

c499 error correcting 383 8

alu2 ALU 365 11

apex7 logic 128 5

cm150a logic 13 4

cm151a logic 13 3

cm162a logic 25 3

cm163a logic 22 3

count counter 117 4

frg1 logic 58 5

k2 logic 608 7

mux MUX 17 3

parity parity 21 3

Totals 2548 84

Table 6-1: Benchmark Circuit Information

Figure 6-3: FPGA layout tile and the routing architecture

86

The mapping from MCNC benchmark circuit to the HLB-based FPGA consists of the follow-

ing steps:

1. Perform technology-independent logic optimization on the MCNC benchmark circuit using

mis2.2 [17] to produce an optimized Boolean network. The goal of this step is to minimize the

technology-independent cost function that measures the area or delay of the Boolean descrip-

tion of the circuit.

2. Map the optimized Boolean description to an optimized network of LUTs using the Chortle

[20] [21] LUT technology mapper. Chortle has two modes: (a) area-optimizing mode, in which

it minimizes the number of LUTs and (2) speed-optimizing mode, in which it minimizes the

depth of the LUT network.

3. Map the optimized LUT network to a netlist of hard-wired logic blocks using the algorithms

outlined in Chapter 3. The algorithms are implemented in a program called the TEMPT HLB

technology mapper [9]. When optimizing area, TEMPT minimizes the number of HLBs,NHLB,

in the circuit. When optimizing delay, TEMPT minimizes the number of programmable con-

nections,NR, in the critical path. Note that it is assumed that the FPGA will have exactly the

number of HLBs specified by this mapping step and thisNHLB is used to calculate the area of

the FPGA resources needed to implement the circuit. This assumption of having FPGA

resources that “float” according to the circuit being implemented will be further discussed in

Section6.2.3.

4. Perform global placement and routing on the HLB netlist, using Altor [22] and PGAroute [8]

respectively, to find W, the maximum channel width over all the channel segments of the

FPGA. The placement and routing step minimizes the number of tracks in the routing channels

between the logic blocks and attempts to make the resulting implementation as square as possi-

ble. This leads to a circuit that is both small and fast. Note that the FPGA has exactly W tracks

when implementing this particular benchmark circuit, andW is used to find the size of the

87

FPGA routing resources needed to implement the circuit. This assumption of having the chan-

nel width “float” according to the circuit being implemented will be further discussed in

Section6.2.3.

Note that in the study concerned with HLB speed, the first three steps are set to minimize

delay with area being a secondary concern. In the area-efficiency study, the first three steps are set

to minimize area with delay being a lesser consideration.

6.2.3 Fixed vs. Free Variable Number of HLBs and Channel Width

In the experiments presented below, the area costs for implementing a set of benchmark cir-

cuits using a given HLB is calculated using two free variables,NHLB andW. These free variables

are set to whatever value is needed by the CAD tools to implement the circuit in the HLB-based

FPGA. However, the use of free variables may not be relevant because in a “real” HLB-based

FPGA, the amount of each resource (NHLB andW) would be fixed at the point of fabrication. Thus

an alternative to using free variables in the experiments would be to fix the value ofNHLB andW

variables and then implement each circuit in the FPGA within these constraints. The only consid-

eration with respect to area, when dealing with an FPGA with fixed resources, is whether or not

the circuit will fit on the FPGA.

However, suppose one has several FPGA architectures with a fixed set of resources sufficient

to accommodate any of the benchmark circuits. To compare the different fixed resource FPGAs

on a level playing field, one would have to use some measure of theutilization of each FPGA’s

total resources when implementing each circuit. One can argue that this is what the free variable

values ofNHLB andW do indeed measure. The values of the free variables indicate the minimum

amount of resources needed to implement a circuit in an FPGA with a particular HLB architec-

ture. Since the fixed resource FPGA can accommodate the circuit, these free variable values

would be less than the amount of fixed resources in the FPGA and can be used to measure the uti-

88

lization of the total resources of the FPGA. Thus, the free variable numbers are suitable for com-

paring the area costs of the various HLB architectures.

6.2.4 Delay Model

The delay of a circuit of hard-wired logic blocks is taken to be the longest combinational path

delay. The longest path delay, Dtot, is given by:

 Dtot = NLB * DLB + NR * DR (6.1)

whereNLB is the number of basic logic blocks along any of the longest paths,DLB is the delay of

each basic block,NR is the number of programmable routing connections along a longest paths

andDR is a constant that represents the average delay per programmable routing connection. Note

that each programmable connection counted byNR may consist of one or more switching stages.

The delay due to the hard-wired links is assumed to be zero. The first product in this expression is

the combinational delay along the longest path. TheDLB delays for the various LUT sizes in a

1.2µm CMOS process are summarized in Table 6-2. These delays were determined from SPICE

simulations [7]. The second product is the routing delay. The average delay of a programmable

connection is difficult to determine since it depends upon several circuit and routing architecture

properties, such as connection fanout, number of switching stages in the connection, switch

delays and number of switches connected to each routing track. The simplest possible model for

average delay, a constant parameter, was chosen. TheDR constant parameter will be varied to

investigate its effect on the conclusions of the FPGA architecture experiments.

LUT
inputs

DLB Delay
(ns)

2 1.39

3 1.44

4 1.71

5 2.03

6 2.38

7 2.85

Table 6-2: Delays of Lookup Tables in 1.2µm CMOS process

89

Discussion about the Delay of a Hard-wired Connection

In the delay model it was assumed that a hard-wired link has zero delay. This sub-section

discusses whether this assumption is reasonable.

A hard-wired connection consists of a simple metal wire, which by itself would have an

insignificant delay compared to a basic block or programmable connection. However, the load of

the tapping buffer on the LUT output driving the hard-wired connection may increase the delay

through a hard-wired connection. Figure 6-4 shows the detailed view of an implementation of a

hard-wired connection between two 4-input LUTs labelledLUT1 and LUT2 and the tapping

buffer on the output ofLUT1 [25]. The details of one quarter of the SRAM cells and decoding

tree ofLUT1 are shown in Figure 6-4. The hard-wired link between the LUTs is shown as a bold

line. The output ofLUT1 has a small buffer since it must drive both the tapping buffer and the

hard-wired input ofLUT2. InputD of LUT1 (and inputL of LUT2) is the least loaded of the four

inputs because it has the fewest pass transistors connected to it. Note that the hard-wired link

Figure 6-4: Detailed view of Hard-wired Connection and Tapping Buffer [25]

90

between the LUTs is connected to the least loaded input (inputL) of LUT2 to minimize the delay

of the hard-wired connection [25]. The total load on theLUT1 output buffer is small and so the

hard-wired link delay is insignificant compared to the delay of a LUT or a programmable

connection. In a layout of an FPGA in a 1.2µm CMOS technology [25] [26] the delay due to a

hard-wired connection was 0.01ns and the delay of a 4-LUT was 1.71ns. Thus the assumption of

zero delay for hard-wired connections is reasonable.

Discussion about the Assumption of a Constant Value for DR

The delay model assumes that the average delay of a programmable connectionDR is constant

over all FPGAs, regardless of the HLB architecture or if the FPGA has hard-wired connections.

This sub-section examines the validity of this assumption.

The routing architecture shown in Figure 6-3 was assumed because of the availability of CAD

tools suitable for this architecture. In this architecture, the LUTs in each HLB are grouped closely

together and the HLB I/O pins are spread evenly on the periphery of the group of LUTs. For

example, Figure 6-5 shows an HLB that has four K-input LUTs connected with three hard-wired

Figure 6-5: Assumed Routing Architecture

91

links (bold lines). With this architecture, as the total number of LUTs in the HLB increases, the

average number of pins that have to be connected to the channel segments on each side of the

HLB also increases. For example, if each LUT hasK inputs and one output, then the HLB in

Figure 6-5 will have on average pins on each side, and thus there is an

average of about 2K pins per channel segment. A K-LUT FPGA without hardwired connections

would have on average about pins per channel segment. Since there are more pins per

channel segment for HLBs with several LUTS, there will tend to be a greater number of routing

tracks per channel segment,W, relative to an FPGA without hard-wired connections. A higherW

means that the parasitic capacitance connected to each programmable switch is greater and hence

the delay per programmable connection is also greater.

A better routing architecture is one in which the routing tracks are between the LUTs of the

HLBs and the hard-wired links between the LUTs span the routing channels in a manner similar

to the direct connect in the Xilinx 3000 architecture [10]. For example, Figure 6-6 shows an HLB

with four LUTs using the alternative routing architecture. This routing scheme leads to almost the

4 K 1+() 3–()
4

----------------------------------- K≅

K 2⁄

Figure 6-6: Better routing architecture

92

same number of pins to connect to each channel segment as in the FPGA has no hard-wired

connections. Thus, assuming the number of basic blocks in the HLB circuit and input basic block

circuit is the same, then it is likely that the circuits will have a similar number of routing tracks per

channel segment,W. Thus if the assumption of similar numbers of basic blocks holds, the delay

per programmable connection in the circuits of the HLB-based FPGA and the FPGA without

hard-wired connections would be about the same.

For area-optimized circuits, it was shown in Section 5.1.1 that the mapping algorithm, when

mapping to a variety of HLB architectures, produced a number of HLBs close (from 3 to 16%

difference) to a lower bound based on the number of basic blocks in the input basic block circuit.

Hence the number of basic blocks does not vary significantly among the HLB architectures for

area-optimized circuits. Thus, we expect that with the better routing architecture,W will not vary

significantly with the HLB architecture and thus the average programmable connection delay will

be about the same independent of the HLB architecture.

However, it should be noted that when optimizing for delay, the HLB mapper increases the

number of LUT basic blocks by significant amounts because it uses replication to improve the

delay of every fan-out node. A large increase in the number of LUTs would lead to greater

programmable connection delays. However, the use of an improved HLB mapper that only uses

replication along the critical paths would alleviate this problem.

6.2.5 Area Model

The total area of a circuit is calculated as the product of the number of HLBs,NHLB, times the

area per HLB tile. Each HLB tile consists of two portions, a logic portion and a routing portion.

The logic area per tile is the sum of three components. The first component is the area of the

lookup tables themselves. The second part is the fixed area per LUT and accounts for the circuitry

used to access the LUT outputs. D flip flops are needed to implement sequential circuits and so

93

they are assumed to exist in the FPGA. The third component is the area due to D flip flops. The

expression for the logic area per tile,LA, is as follows:

LA = M * 2K * LB + M * FA + D * DFFA (6.2)

whereM is the number of lookup tables in the HLB,K is the number of inputs per LUT, LB is the

area per logic bit in the LUT, FA is the fixed area per LUT, D is the number of D flip flops per

HLB andDFFA is the area of each D flip flop.

The area per logic bit, LB, consists of the area of a programming bit, the pass transistor from

the decoding tree used to select the bit1, and the buffer for each bit used to drive the decoding tree.

Since the entire truth table of the function is in the LUT, there are 2K bits. The fixed area per LUT,

FA, consists of the area for the LUT output buffer needed to drive the next LUT input and the tap-

ping buffer. Because of the relatively small size of a DFF compared to a LUT, we have found that

varyingD does not significantly affect the ranking of the sizes of the various HLBs. For the fol-

lowing studies, we assumeD = 1 (only 1 D flip flop per HLB) in the area model.

In the studies, the area model parameter values were derived from the layout of an FPGA in a

1.2µm CMOS technology [25] [26]. The parameter values areLB = 1400µm2, FA = 1800µm2

andDFFA = 3000µm2.

For the routing area model, it is assumed that the area of the programmable switches will

dominate the routing area per tile (RA). Thus the expression forRA counts the number of routing

bits and is as follows:

RA = (NIO * Fc + 2 * Fs * W) * RB. (6.3)

whereNIO is the number of input and output pins per HLB,Fc is the flexibility of the connection

box,Fs is the flexibility of the switch box,W is the number of routing tracks in each channel seg-

1. Note that the decoding tree for a LUT with 2K bits has 2K-1 pass transistors. Thus, there is
approximately one pass transistor per LUT bit.

94

ment after global routing andRB is the area of each programmable routing bit. The termsFc and

Fs are defined in Section 2.3.3. TheNIO * Fc product is the number of programmable switches

used to connect the I/O pins to the channel segments. The 2 * Fs * W term is the number of

switches in the switch boxes used to connect channel segments to each other. The area of each bit

in the programmable routing resources,RB, consists of the area of a programmable bit plus the

area of a pass transistor controlled by the bit.

The results in [27] showed that anFc which is close toW andFs = 3 gives good routability

without excessive routing resources, and this leads us to the following simplified equation forRA:

RA = (NIO * W + 6 * W) * RB (6.4)

The number of I/O pins,NIO, is equal toM * K + 1 and so the final expression forRA is:

RA = (M * K + 7) * W * RB (6.5)

The 1.2µm CMOS layout in [25] [26] used static-RAM programmable routing bits and the

derived value ofRB is equal to 1000µm2.

6.3 Experimental Results

There were two types of studies conducted, one that optimized the HLB-based FPGA circuits

purely for speed and another that optimized purely for area. The goal of the speed study is to find

the LUT basic block and connection topologies that lead to a high-performance HLB architecture,

with reasonably good logic density. The goals of the area study are to find the LUT basic block

and topologies that give the most area-efficient HLB-based FPGAs and to determine if HLBs can

provide better density than logic blocks without hard-wired connections. Section 6.3.1 and Sec-

tion 6.3.2 describe the speed and area studies withDR andRB values that correspond roughly to

an FPGA in a 1.2µm CMOS layout technology with static-RAM programming bits in the routing.

In the speed and area studies, the HLBs were chosen based on one optimization criterion

(either speed or area), with the other criterion being the tie-breaker. However in both studies, our

95

CAD tools focus on optimizing either speed or area, with little regard to optimizing the other. The

CAD tools’ singular optimization goal may lead to inaccurate conclusions. Section 6.3.3 dis-

cusses how this limitation of the HLB synthesis procedure may affect the accuracy of the speed

study of Section 6.3.1 and the area study of Section 6.3.2.

The conclusions of the speed and area study, with respect to the best LUT basic block, can

also be affected by the parameters of the delay and area models. The parameters with the greatest

impact are the average interconnection delay, DR, and the routing programming bit size,RB. The

effect of these parameters on the architecture conclusions will be discussed in Section 6.3.4 and

Section 6.3.5.

6.3.1 Speed of HLB Architectures

As mentioned earlier, in the speed study, all the CAD tools were set to optimize speed with

area being a secondary goal. In the context of this study, thespeed of a circuit refers to the maxi-

mum operating frequency of the circuit. We assume that the combinational benchmark circuits

will be placed between latches or flip flops, and thus the speed or maximum operating frequency

is the fastest rate at which this sequential circuit can be clocked.

We define the “speed” for a particular HLB to be the arithmetic mean of the normalized speed

for each benchmark circuit implemented in an FPGA with that HLB. The speed is normalized

with respect to the speed of the same benchmark circuit implemented in an FPGA composed of 4-

LUT basic blocks without hard-wired connections (an L1 4-LUT HLB-based FPGA). The nor-

malized speed is given by , whereDK4 is the delay along the longest path between

primary inputs and outputs of the circuit in the L1 4-LUT FPGA andDHLB is the delay of the cir-

cuit in the HLB-based FPGA.DK4 andDHLB are derived from the delay model given in Section

6.2.4. In this section, we assume thatDR = 4ns andRB = 1000µm2. After speed-optimized imple-

S
1 D⁄ HLB

1 D⁄ K4
--------------------=

96

mentation, the 4-LUT FPGA circuits have an average system speed of 39MHz, corresponding to

an average longest path delay of26ns.

The area metric for a particular HLB is the arithmetic mean of the normalized areas of the cir-

cuits found by using the area model presented in Section 6.2.5. The average area of the L1 4-LUT

FPGA circuits is 19 x 106 µm2.

Every HLB has a corresponding (area, speed) point that is the average normalized area and

speed when the benchmark circuits are implemented in an FPGA with that hard-wired logic

block. The speed versus area curve for a given set of K-LUT HLBs is constructed by connecting

the points in theenvelope set, which is the set of (area, speed) co-ordinates for the “best” K-LUT

HLB architectures. An HLB’s (area, speed) point belongs to the envelope set if and only if no

other point in the entire set has both greater speed and lower area cost.

 Figure 6-7 shows the speed versus area curve corresponding to the envelope point set for the

delay-optimized 4-LUT HLBs and Table 6-3 lists the normalized values of speed and area for

each point in the graph. The first column in Table 6-3 lists the name of HLB for that point, the sec-

Topology Normalized Speed σ(speed)
Normalized

Area
σ(area)

L1 1.00 0 1.00 0

L2-2 1.14 0.10 1.19 0.16

L2-3 1.27 0.14 1.22 0.22

L3-4.2 1.28 0.14 1.33 0.34

L2-4 1.34 0.13 1.34 0.29

L3-5.2 1.37 0.13 1.42 0.47

L2-5 1.42 0.10 1.44 0.39

L3-8.4.3 1.44 0.19 1.69 0.67

L3-8.3.2 1.48 0.15 1.73 0.75

L3-9.4.3 1.49 0.21 1.74 0.70

L3-9.4.2 1.51 0.16 1.86 0.88

Table 6-3: Envelope Point Set for Speed-optimized 4-LUT HLB circuits

97

ond column lists the average normalized speed of the benchmark circuits, the third column lists

the standard deviation of the average normalized speed, the fourth column lists the average nor-

malized area and the last column lists the standard deviation of the average normalized area.

The speed versus area curve for 4-LUT HLBs in Figure 6-7 illustrates the trade-off of speed

for area, when optimizing purely for speed. In general, with more added hard-wired links in the

HLB, the HLB speed increases while the area-efficiency of the HLB decreases because of the

reduced connection flexibility . This effect is partly due to the mapping process. When the HLB

mapper is optimizing purely for delay, it seeks to place as many hard-wired links as possible along

critical paths by replicating LUT basic blocks as needed. This replication of LUTs leads to an

increase in area because of the additional logic bits in the replicated LUTs and the additional pro-

grammable connections to connect the inputs of the replicated LUTs. For example, the L2-2 HLB

is 14% faster than the L1 4-LUT HLB but at the cost of 19% more area.

Figure 6-7: Speed versus Area Curve for Speed-optimized 4-LUT HLB Circuits

98

The standard deviations for normalized speed and area reflect the variation in the characteris-

tics of the benchmark circuits. There tends to be a higher variation in area among the speed-opti-

mized circuits in Table 6-3 because some circuits require more replication of LUT basic blocks to

achieve the maximum speed.

Figure 6-8 illustrates the speed versus area curves for each size of basic block LUT, when

optimizing purely for speed. Figure 6-8 is used in the next subsection to determine the best basic

block for constructing fast HLB-based FPGAs.

Best LUT Basic Block for Speed

Figure 6-8 demonstrates that the fastest HLBs are those made of the coarsest-grained basic

block, the 7-LUT. With 7-LUT basic blocks, the HLB speeds range from 132% to 177% of the

Figure 6-8: Speed versus Area curves for Speed-optimized HLB Circuits

99

speed of the L1 4-LUT HLB. However, Figure 6-8 shows there is a relatively high area cost (from

23% to 204% higher than the L1 4-LUT HLB) associated with using this large-grained basic

block. The high area costs arise because of two reasons: (1) it is difficult to utilize the logic func-

tionality of large-grained 7-LUT HLBs efficiently and (2) because of the large number of pins

associated with 7-LUT HLBs, there is a high routing area cost for connecting the many logic

block pins. Although the 7-LUT basic block leads to the fastest HLBs, the high area costs make

the 7-LUT undesirable for HLBs with reasonable density.

In contrast, Figure 6-8 shows that the slowest HLBs are made with the finest grained basic

block, the 2-LUT. The speeds of 2-LUT HLBs range from only 75% to 101% of the speed of the

L1 4-LUT HLB. However, the 2-LUT HLBs also have a lower area-efficiency than the coarse-

grained LUT HLBs (from 40% to 144% more area than the L1 4-LUT HLB). Thelogic area-effi-

ciency of fine-grained LUT HLBs tends to be higher than that of coarse-grained LUT HLBs

because it is easier to efficiently utilize the smaller LUTs. However, the fine-grained LUT HLB

circuits have many LUTs and thus many pins. The routing area cost of connecting the many pins

is high and this leads to low overall area-efficiency [8]. The slow speeds and high area costs make

the fine-grained 2-LUT basic block undesirable for fast HLBs with good density.

Figure 6-8 shows that the intermediate granularity of a 6-LUT leads to the best basic block for

fast HLB circuits with reasonable density. Most of the 6-LUT speed versus area curve lies to the

left and above all other LUT speed versus area curves. This shows that for almost any given

speed, there exists a 6-LUT HLB that can implement the benchmark circuits using a smaller area

than an HLB composed of any other LUT basic block. Conversely, for almost any given area, a 6-

LUT HLB has the fastest speed. The location of the 6-LUT HLB curve demonstrates 6-LUT is the

best LUT basic block for fast FPGA circuits with good density (although we note that some of the

points on the 5-LUT and 7-LUT curves are withinσ of the 6-LUT curve).

100

Table 6-4 contains the speed and area of the 6-LUT HLBs in Figure 6-8. The first column is

the HLB topology, the second and third columns respectively contain the average normalized

speed for speed-optimized circuits and standard deviation of the speed of the HLB. The fourth and

fifth column lists the average normalized area of the HLB circuits relative to the L1 4-LUT HLB

and the standard deviation of the area. This table shows that for speed optimized circuits, the sin-

gle 6-LUT HLB is 25% faster than the L1 4-LUT HLB and has about the same area cost. The

logic area costs of 6-LUT circuits are higher than for 4-LUT circuits. However, the 4-LUT circuits

have many more LUTs in the circuits (2548 versus 1743) and this leads to higher routing area

costs for 4-LUT circuits. Thus, this results in the 6-LUT and 4-LUT circuits having similar total

areas for speed-optimized circuits.

The L2-2 HLB has an additional 6-LUT, which leads to a 6% increase in speed at the cost of

an 11% increase in area over the L1 6-LUT HLB. The fastest 6-LUT HLB investigated is the L3-

6.5 HLB, which is 72% faster than the L1 4-LUT HLB but requires 77% more area.

Best HLB Topologies for Speed

The topologies of the 6-LUT HLBs on the speed versus area curve are listed in Table 6-4 and

the fastest topologies for a given number of 6-LUTs (from one to six) are illustrated in Figure 6-9.

Topology Normalized Speed σ(speed) Normalized Area σ(area)

L1 1.25 0.18 1.02 0.21

L2-2 1.31 0.18 1.13 0.19

L2-3 1.45 0.20 1.30 0.38

L2-4 1.54 0.26 1.46 0.52

L3-5.2 1.56 0.25 1.50 0.47

L3-6.3 1.58 0.27 1.61 0.53

L2-5 1.67 0.28 1.62 0.62

L3-6.2 1.70 0.28 1.70 0.56

L3-6.5 1.72 0.30 1.77 0.78

Table 6-4: Envelope Point Set for Speed-optimized 6-LUT HLB circuits

101

Figure 6-9 shows that the fastest HLB topologies for one, two, three, four, five and six 6-LUTs

have balanced subtrees.

Since the circuits are optimized for speed, the LUT technology mapper tries to make all paths

from inputs to outputs as even as possible. This tends to make portions of the LUT networks

appear as balanced trees with high fan-in nodes, and this explains why the fastest HLB topologies

contain balanced subtrees and nodes with high fan-in of hardwired connections. The topologies

illustrated in Figure 6-9 are also reasonably good for area-optimized circuits. The area-efficiency

of these topologies will be further discussed in Section 6.3.3.

An inspection of the envelope set for speed-optimized 4-LUT HLBs in Table 6-3 reveals that

the fastest HLB topologies for one, two, three, four, and five 4-LUTs are identical to the first five

topologies in Figure 6-9. This further substantiates the view that balanced topologies lead to the

fastest HLBs. Note that the fastest HLB with six 4-LUTs is the L3-6.5 topology, but this HLB is

not in the envelope set listed in Table 6-3.

6.3.2 Area-efficiency of HLB Architectures

The goal of the area study is to determine the LUT basic block and topologies that give the

best HLB for maximizing area-efficiency. All CAD tools were set to optimize area with little

Figure 6-9: Fastest 6-LUT HLB topologies

102

regard for speed. Even though the circuits are not optimized for speed, there will likely be hard-

wired links present in the HLBs along the critical paths. These hard-wired connections will make

the area-optimized HLB circuits faster than circuits built from the same LUT basic blocks without

hard-wired connections.

Figure 6-10 shows the speed versus area curve for the best 4-LUT HLBs when optimizing

purely for area. In this section, we assume thatDR = 4ns andRB = 1000µm2. The area-optimized

L1 4-LUT HLB circuits have an average maximum operating frequency or speed of 26MHz

(delay of 39ns) and an average area of 8 x 106 µm2. The point at co-ordinate (1.00, 1.00) is

labelled “L1” in Figure 6-10 and corresponds to the L1 4-LUT HLB.

Table 6-5 lists the average normalized speed and areas of the 4-LUT HLBs in Figure 6-10.

The first column contains the topology name, the second column contains the average normalized

area for area-optimized circuits and the third column lists the standard deviation of the area. The

fourth and fifth columns list the average speed and standard deviation of the speed respectively.

Figure 6-10: Speed versus Area Curve for Area-optimized 4-LUT HLB Circuits

103

Table 6-5 demonstrates that FPGAs with HLBs can be more area-efficient than those without

hard-wired connections. For example, the L2-2 HLB, which has two 4-LUTs hard-wired together

uses 6% less area than the L1 4-LUT HLB. In the case of the L2-2 HLB, the increase in area due

to loss of flexibility caused by hardwired connections is more than offset by the decrease in area

due to the reduction in the number programmable connections. Note that the presence of hard-

wired connections in the critical path of the L2-2 HLB circuits resulted in an 18% speedup with

respect to the L1 4-LUT HLB circuits.

The standard deviations for the average normalized area in Table 6-5 for area-optimized cir-

cuits are much smaller than those for speed-optimized circuits in Table 6-3. In area-optimized cir-

cuits the standard deviations for normalized area are smaller because there is no replication during

area-optimization. In speed-optimization, the amount of replication depends upon the circuit

properties, and so there is more variation than in the standard deviation of the area-optimized cir-

cuits.

Figure 6-11 shows the speed versus area curves for each of the LUT basic blocks when opti-

mizing area. Figure 6-11 is used to determine the best LUT basic block for making area-efficient

HLB-based FPGAs.

Best LUT Basic Block for Density

Figure 6-11 shows that the 2-LUT and 7-LUT HLBs require significantly more area than the

L1 4-LUT HLB to implement circuits. The fine-grained 2-LUT basic block has good logic area-

efficiency, but because 2-LUT circuits have many logic blocks and associated pins to connect, the

Topology Normalized Area σ(area) Normalized Speed σ(speed)

L2-2 0.94 0.19 1.18 0.13

L3-4.2 0.95 0.17 1.28 0.15

L3-6.3.2 1.04 0.11 1.32 0.17

L3-7.4.2 1.20 0.21 1.33 0.17

Table 6-5: Envelope Point Set for Area-optimized 4-LUT HLB circuits

104

cost of routing is high [8]. The coarse-grained 7-LUT basic block, because of their large function-

ality, have the worst logic area-efficiency among the LUTs investigated. There are also many logic

block pins in 7-LUT circuits and this leads to a high routing area cost to connect the pins. Thus

neither the finest-grained or coarsest-grained LUTs are suitable for high density HLB circuits.

Figure 6-11 demonstrates that the 4-LUT basic block leads to the HLBs with greatest area-

efficiency. The HLB with the best density has the L2-2 topology. The L2-2 4-LUT HLB uses 6%

less area and is 18% faster than the L1 4-LUT HLB. The HLB with the second lowest area-costs

is the L3-4.2 4-LUT HLB, which uses 5% less area than the L1 4-LUT HLB. Note that the L3-4.2

4-LUT HLB has similar area-efficiency to the L2-2 HLB but is significantly faster (28% faster

than the L1 4-LUT HLB).

However, Figure 6-11 shows that the 5-LUT may provide a better basic block for making

area-efficient FPGAs because, while using only slightly more area than the densest 4-LUT HLBs,

Figure 6-11: Speed versus Area curves for Area-optimized HLB Circuits

105

the 5-LUT HLBs result in much faster circuits. For example, the L2-3 5-LUT HLB uses 3% less

area than the L1 4-LUT HLB but is 47% faster. By using slightly more area (3% more) than the

most area-efficient 4-LUT HLB, the most area-efficient 5-LUT HLB realizes an additional 29%

speedup. The 5-LUT speed versus area curve lies almost wholly to the left and above all other

LUT speed versus area curves. This shows that for area-efficient FPGA circuits, a 5-LUT HLB

will be the best for almost any given speed or area.

Best HLB Topologies for Density

The topologies of the 5-LUT HLBs on the speed versus area curve are summarized in Table 6-

6 and the 5-LUT HLB topologies with the best area-efficiency are illustrated in Figure 6-12. The

first column in Table 6-6 contains the HLB name, the second column lists the average normalized

area for area-optimized circuits in that HLB and the standard deviation for the area. The fourth

and fifth columns contain the average speed of the HLB circuits and the standard deviation of the

speed. In general, the most area-efficient HLBs have topologies with long chains and the HLB has

all LUTs with two or more non-hard-wired inputs.

In the area-optimizing mode of the fragment covering algorithm, the algorithm only uses

matches to subjecttrees. Since the LUT networks tend to have small subject trees, the covering set

of fragments contains a high ratio of single-block fragments. Thus, for good density every HLB

should be able to accommodate many single-block fragments.

Figure 6-12: Densest 5-LUT HLB topologies

106

In order to pack a single-block fragment, the LUT must have at least two non-hard-wired

inputs because LUTs with zero or one non-hard-wired inputs cannot be used for packing any sin-

gle-LUT fragment. Any LUTs with zero or one non-hard-wired inputs are wasted when packing

single-block fragments. For the densest 5-LUT HLB topologies shown in Figure 6-12, all LUTs

have two or more non-hard-wired inputs.

The HLBs whose LUTs have two or more non-hard-wired inputs have topologies in which all

internal LUTs have sparsely populated fan-ins of hard-wired connections. This is in contrast to

the fastest HLB topologies, which have a few internal LUTs with fully populated fan-ins of hard-

wired connections. These HLBs with fully populated fan-ins have lower densities compared to

HLBs with sparsely populated fan-ins with the same number of LUTs because some of the LUT

basic blocks cannot be used to pack single-block fragments.

HLBs with the Highest Density

Table 6-7 lists all HLBs with better logic density (that is, normalized area less than 1) than the

L1 4-LUT HLB. The first column lists the number of inputs for the LUT basic block, the second

column gives the topology, the third column lists the average normalized area of area-optimized

circuits, the fourth column contains the standard deviation of the area, the fifth column contains

the average normalized speed and the sixth column contains the standard deviation of the area.

The 4-LUT basic block is the most area-efficient logic block for FPGAs without hard-wired

connections [8]. In general, the most area-efficient HLBs have a small number of basic blocks

(less than five) because as the number of basic blocks increase in an HLB, the more difficult it is

Topology Normalized Area σ(area) Normalized Speed σ(speed)

L2-3 0.97 0.17 1.47 0.45

L3-5.2.2 1.03 0.18 1.52 0.44

L3-6.2.2 1.09 0.27 1.54 0.42

L3-6.3.2 1.15 0.28 1.56 0.53

Table 6-6: Envelope Point Set for Area-optimized 5-LUT HLB circuits

107

to utilize the functionality of the larger HLB efficiently. Also, all of the HLBs in Table 6-7 have no

LUTs with one or zero non-hard-wired inputs. Note that all the HLBs made of LUTs with 4 or

more inputs are faster than the 4-LUT basic block. The fastest HLB with better logic density than

the 4-LUT, the 5-LUT L2-3 HLB, is also 47% faster.

6.3.3 Limitations of the HLB Synthesis Procedure

In the FPGA architecture studies of Section 6.3.1 and Section 6.3.2, the set of envelope points

was used to determine the best basic block and HLB topologies in terms of speed and density.

Recall that the set of envelope points corresponds to the HLBs with the best (area, speed) points.

The method for gathering the envelope point data is important for establishing confidence in the

architecture study results.

In the speed study, the goal was to find the HLBs that result in the fastest circuits with

reasonable density, and thus when optimizing the speed of a circuit, the area was the tie-breaker.

In the area-efficiency study, the goal was to find the HLBs that result in the densest circuits with

reasonable speed. Thus when minimizing the area of a circuit, the speed was the tie-breaker. An

ideal HLB mapping procedure would maximize the speed of a circuit and from among the circuits

with maximum speed choose the one with minimal area, or it would minimize the area of a circuit

and choose the fastest of the smallest circuits. The use of this ideal HLB mapping procedure

would yield the set of envelope points that perfectly describes the trade-offs between speed and

area when the optimization goal is either maximum speed or minimum area.

LUT
inputs

Topology
Normalized

Area
σ(area)

Normalized
Speed

σ(speed)

3 L2-2 0.98 0.12 0.90 0.20

4 L2-2 0.94 0.19 1.18 0.13

4 L2-3 0.96 0.08 1.18 0.13

4 L3-4.2 0.95 0.17 1.28 0.15

5 L2-2 0.97 0.15 1.45 0.42

5 L2-3 0.97 0.17 1.47 0.45

Table 6-7: HLBs with logic density better than the 4-LUT

108

However, the technology mapping tools used in our FPGA architecture studies are not ideal

and this may lead to an erroneous set of envelope points. There are two sources of inaccuracy in

the HLB mapping procedure: the LUT basic block technology mapper (Chortle [20]) and the

HLB technology mapper described in this dissertation (TEMPT).

Accuracy of the Speed Study

When minimizing delay for the speed study, the Chortle mapper, when compared to the

optimal depth Flowmap LUT mapper [33], yields close to the optimal delay for 5-LUT circuits.

However, Chortle uses an average of about 50% more LUTs than Flowmap because Chortle does

not attempt to conserve area when optimizing speed. The TEMPT HLB mapper yields the optimal

delay HLB circuits but uses more than minimal area because it does not conserve area when

mapping the non-critical parts of the circuit. Thus, during speed optimization, this combination of

technology mappers would yield circuits with close to optimal speeds but with areas that are

significantly greater than optimal. This results in the envelope points being shifted to the right

relative to their locations when using an ideal mapping procedure. For example, Figure 6-13

shows the speed versus area curve that would be produced by an ideal mapping procedure as a

solid line, and the non-ideal speed versus area curve that would be produced by our mapping

procedure as a dashed line. The non-ideal speed versus area curve is to the right of the ideal curve

because the areas of the points on the non-ideal curve are larger but the speeds are the same.

If the areas of the envelope points in the speed study are greater by similar proportions then

the general shape of the speed versus area curve would remain the same and the conclusions of the

speed study would not be changed. However, if the mapping procedure increases area costs by

widely varying amounts for different HLBs, then the (area, speed) points of the HLBs may be

shifted so that some points that should not be in the envelope set now falsely appear there. In order

to support the conclusions of the speed study, we shall demonstrate that our mapping procedure

does not significantly alter the HLBs on the speed versus area curve due to widely varying effects

on different HLBs.

109

One way to show that the mapping procedure is reasonably consistent across the various

HLBs is to check if the area results of the speed-optimization study shows some consistency with

the area results of the area-optimization study. The set of envelope points for best 6-LUT HLBs

from the speed study are shown in Table 6-8. The first column lists the HLB topology. The second

Topology
Speed-optimized Circuits Area-optimized Circuits

Normalized
Speed

Normalized
Area

Normalized
Speed

Normalized
Area

L1 1.25 1.02 1.11 1.17

L2-2 1.31 1.13 1.22 1.17

L2-3 1.45 1.30 1.26 1.20

L2-4 1.54 1.46 1.24 1.29

L3-5.2 1.56 1.50 1.31 1.34

L3-6.3 1.58 1.61 1.32 1.40

L2-5 1.67 1.62 1.27 1.40

L3-6.2 1.70 1.70 1.34 1.42

L3-6.5 1.72 1.77 1.31 1.46

Table 6-8: Best 6-LUT HLBs for Speed-optimized circuits

Figure 6-13: Speed versus Area curve shift due to non-ideal speed-optimization

110

and third columns list the average normalized speed and area of the HLB circuits relative to the

speed-optimized circuits, when using the L1 4-LUT speed-optimized circuit speed and area

values as a basis for normalization. The fourth and fifth columns list the average normalized speed

and area relative to the area-optimized circuits, when using the L1 4-LUT area-optimized circuit

speed and area values as a basis for normalization. The rank of the HLB circuit areas for speed-

optimized circuits (column 3) and area-optimized circuits (column 5) is consistent. This shows

that the relative areas of the various HLBs are the same between the speed-optimized and area-

optimized results. This supports the notion that our non-ideal speed-optimization mapping

procedure is relatively unbiased by the HLB topology and the area increase due to our non-ideal

procedure is reasonably consistent across the HLBs on the speed versus area curve. Thus, the

shapes of the speed versus area curves and the results of the speed study derived from the curves

are likely to be valid.

Accuracy of the Area-efficiency Study

When optimizing area for the area study, the Chortle mapper is among the best LUT

technology mapper for minimizing the number of LUTs in 5-LUT circuits [20]. However, Chortle

does not attempt to maximize speed when performing area optimization. When chaining together

the bin-packed LUTs, Chortle first sorts the bin-packed LUTs in descending order of used inputs,

and then greedily utilizes the unused inputs in the chaining. When the unused inputs are exhausted

new LUTs are created for the chaining. If all the bin-packed LUTs have only one or two unused

input before chaining, this can lead to a LUT network with a long critical path.

For example, Figure 6-14 shows the chaining of three bin-packed LUTs with 5 used inputs.

When mapping to a 5-LUT circuit, because there are no unused inputs available, a new LUT has

to be created to chain the three bin-packed LUTs together as in Figure 6-14(a). When mapping to

a 6-LUT circuit, the LUTs can be chained together using the unused input of two of the bin-

packed LUTs as in Figure 6-14(b). The cascaded arrangement in Figure 6-14(b) has a longer

critical path.

111

The above effect may explain why the speeds of the 6-LUT and 7-LUT HLBs are significantly

slower than the 5-LUT HLBs in Figure 6-11. As the number of LUT inputs increase, the

probability of unused inputs and a cascaded arrangement along the critical path also increases.

Thus the 6-LUT and 7-LUT networks have more LUTs along the critical paths than the 5-LUT

networks and the resulting HLB networks have more programmable connections on the critical

paths.

In Section 5.1.1 the TEMPT HLB mapper in area-optimization mode was shown to give area-

efficient implementations. However, during area-optimization, TEMPT does not optimize across

fan-out and since the fan-out free trees tend to be small, TEMPT does not effectively use larger

HLBs to speed up the circuits. An examination of the normalized speeds of area-optimized

circuits in Table 6-8 (column 4) shows that the speed of all the HLBs with 5 or 6 LUTs are close

to each other (ranges from 1.27 to 1.34).

When using the combination of Chortle and TEMPT to implement area-optimized HLB

circuits, the resulting circuits have close to minimal area but are significantly slower than the

maximum speed circuits with minimal area. The speed versus area curve generated from this non-

ideal mapping procedure would appear below the curve generated by an ideal mapping procedure

because the speeds of the points on the non-ideal curve are lower, but the areas are about the same.

6-14(a): Chaining for 5-LUT circuit 6-14(b): Chaining for 6-LUT circuit

Figure 6-14: Chaining together three LUTs with 5 used inputs

112

Table 6-9 lists the set of envelope points corresponding to area-optimized 5-LUT HLB

circuits. The first column contains the HLB topology. The second and third columns contain the

average normalized speed and area of the HLB circuits relative to the area-optimized 4-LUT

circuits. The fourth and fifth columns contain the average normalized speed and area relative to

the speed-optimized 4-LUT circuits.

The low variation in the speed of the HLBs in Table 6-9 shows that the large-grained HLBs

with five or six 5-LUTs are not used effectively to speed up circuits during area-optimization.

Since speed is the tie-breaker in the area-efficiency study the conclusions of the area-efficiency

study with respect to large-grained HLBs are questionable. There may be other large-grained

HLBs with greater speeds and higher areas that belong to the envelope set. Thus the rightmost

portions of the area-optimization study envelope points may be incorrect.

6.3.4 The Effect of Changing the Average Routing Delay, DR

This subsection examines the effect on the conclusions of the speed and area studies when the

average programmable connection delay, DR, is varied. The speed and area studies in Section

6.3.1 and Section 6.3.2 assumed static-RAM controlled routing bits (RB = 1000µm2) and an aver-

age programmable connection delay, DR = 4ns. The speed study led to the conclusion that the 6-

LUT is the best basic block for fast circuits with reasonable density. The area study led to the con-

clusion that the 5-LUT is the best basic block for high area-efficiency. However, the best LUT

basic block may change with variations inDR.

Topology
Area-optimized Circuits Speed-optimized Circuits

Normalized
Speed

Normalized
Area

Normalized
Speed

Normalized
Area

L2-3 1.47 0.97 1.38 1.33

L3-5.2.2 1.52 1.03 1.39 1.63

L3-6.2.2 1.54 1.09 1.44 1.59

L3-6.3.2 1.56 1.15 1.42 1.59

Table 6-9: Best 5-LUT HLBs for Area-optimized circuits

113

Effect of DR on Speed Study

At lower values ofDR, the delay of the programmable connections in critical paths have less

effect on the critical path delay. This also means that the delay of the LUTs in critical paths have a

greater impact on the critical path delay. Table 6-10 shows the total combinational delay along the

critical paths of the speed-optimized LUT circuits. The first column contains the LUT basic block

size, the second column contains the sum of the number of LUTs along the critical path over all

circuits,TNLB, the third column contains the delay of each LUT, DLB, and the last column has the

total LUT delay over all circuits,TNLB*DLB. If DR = 0, that is, total routing delay is zero, then this

table predicts that 5-LUTs lead to the fastest circuits because they have the lowest combinational

delay. The 6-LUT, 4-LUT and 7-LUT circuits are almost as fast as the 5-LUT circuits. The fine-

grained 2-LUT and 3-LUT basic blocks lead to significantly slower circuits.

Figure 6-15 shows the speed versus area curves whenDR has a value of 1ns. With this small

value ofDR, the HLB speedups relative to the 4-LUT are now smaller because of the lower impact

of routing delay. The maximum speedups due to hard-wired links is only 29% versus the 77%

speedups whenDR was 4ns. The increase in area costs are similar to whenDR was 4ns (up to

150%), and so hard-wired links are not as attractive at the lower DR of 1ns.

At DR = 1ns, the 6-LUT is still the best basic block choice for fast circuits because its speed

versus area curve is almost entirely above and to the left of the other curves. However, at this low

value ofDR, since the combinational delay of the 5-LUT circuits is almost the same as the 6-LUT,

LUT inputs TNLB DLB (ns) TNLB*DLB (ns)

2 186 1.39 258.5

3 115 1.44 165.6

4 84 1.71 143.6

5 68 2.03 138.0

6 60 2.38 142.8

7 53 2.85 151.0

Table 6-10: Total LUT delays for Speed-optimized LUT circuits

114

the 5-LUT curve is very close to the 6-LUT curve. Thus, for small DR, the 5-LUT is an

equivalently good basic block for fast circuits.

When DR is increased, the delay of the programmable connections in the critical path have a

greater impact on the critical path delay and so the HLB speedups have become larger. Figure 6-

16 shows the speed versus area curves when DR has a value of 10ns. The maximum speedups due

to hard-wired links has increased to 119% versus the 77% maximum speedup when DR = 4ns. The

increase in area costs are similar to when DR was 4ns, and so hard-wired links are more attractive

when DR is 10ns.

 The increase in DR to 10ns makes the coarse-grained 7-LUT HLBs slightly more attractive.

For this value of DR, the 7-LUT curve crosses the 6-LUT curve at one point (corresponding to the

L2-3 7-LUT HLB), whereas for DR = 4ns, the 6-LUT curve never intersected the 7-LUT curve. At

this single point in the speed versus area design space, the 7-LUT provides a better HLB than the

Figure 6-15: Speed versus Area curves for Speed-optimized HLB circuits, DR = 1ns

115

6-LUT HLB point just below it. However, for most speed and area combinations, the 6-LUT is a

superior basic block to the 7-LUT.

Effect of DR on Area study

The value ofDR does not affect the area model and thus the area study results are the same.

All HLBs have the same ranking in terms of area-efficiency. The 5-LUT is still the best basic

block for area-efficiency. IncreasingDR gives the 5-LUT a larger speed advantage over the

smaller grained LUTs, while decreasingDR reduces the speed advantage.

The overall conclusion is that the value ofDR has little effect on the choice of best LUT for

speed or area-optimized circuits.

Figure 6-16: Speed versus Area curves for Speed-optimized HLB circuits, DR = 10ns

116

6.3.5 The Effect of Changing the Routing Bit Area, RB

This subsection examines the effect on the conclusions of the speed and area studies when the

programmable routing bit size,RB, is varied. The speed and area studies in Section 6.3.1 and Sec-

tion 6.3.2 assumed static-RAM controlled routing bits (RB = 1000µm2) andDR = 4ns, and con-

cluded that the 6-LUT is the best basic block for fast circuits with reasonable density and that the

5-LUT is the best basic block for high area-efficiency. The static-RAM routing bit is one of the

largest programming technologies for FPGAs. This subsection will examine the effect of using a

much smaller routing bit technology, which has a routing bit size,RB, equal to 250µm2.

Effect of RB on Area Costs in the Speed Study

For smaller routing bit size, the routing area has less impact on the total area, and the logic

area has an increased impact. Table 6-11 shows the average normalized area for the logic-only

part of each area-optimized HLB circuit,LOA. The values ofLOA are derived by assuming a

routing area cost of0, that isRB = 0, in the area model.LOA is the average of the logic-only areas

of each circuit implemented in K-LUTs normalized with respect to the logic-only areas of the

same circuit implemented in 4-LUTs. Column 1 contains the number of inputs for the LUT basic

block and column 2 contains the average logic area if the circuits were implemented in the given

LUT. The 3-LUT circuits have the lowest logic area cost and in general, the finer-grained LUTs,

with 2 to 4 inputs, have significantly lower logic area costs than the LUTs with 5 or more inputs.

LUT inputs LOA

2 0.97

3 0.87

4 1.00

5 1.44

6 2.40

7 3.94

Table 6-11: Average Logic Area for Area-optimized HLB circuits

117

Figure 6-17 shows the speed versus area curves for RB = 250µm2. Since all areas are

normalized to the 4-LUT, the 4-LUT curve is in about the same position as whenRB = 1000µm2.

The smaller-grained 2- and 3-LUTs have higher logic area-efficiency than the 4-LUT and so their

speed versus area curves forRB = 250µm2 are shifted to the left relative to their locations forRB =

1000µm2. For example, whenRB = 1000µm2, the L1 3-LUT HLB at the bottom of the 3-LUT

curve required 13% more area than the L1 4-LUT HLB, but whenRB = 250µm2, the L1 3-LUT

HLB required only 3% more area. The larger-grained 5-, 6- and 7-LUTs have lower logic area-

efficiency than 4-LUTs and so their curves are shifted to the right. For example, whenRB =

1000µm2, the L1 7-LUT HLB at the bottom of the 7-LUT curve required only 23% more area

than the L1 4-LUT HLB, but whenRB = 250µm2, the L1 7-LUT HLB required 98% more area.

The relative area cost of the 6-LUT is much higher than whenRB = 1000µm2 (a maximum

area increase of 125% versus 60%) and so the 6-LUT is no longer the best LUT basic block for

Figure 6-17: Speed versus Area curves for Speed-optimized HLB circuits, RB = 250 µm2

118

high speed circuits. The 4-LUT and 5-LUT HLBs have become relatively more area-efficient

compared to the 6-LUT HLBs, so that for most speeds the HLBs on the 4-LUT and 5-LUT curves

are the best for high speed circuits with good density. Thus for small programming technologies,

these finer-grained LUTs are the best choices for constructing fast HLB circuits.

Effect of RB on Area Costs in the Area study

For small routing bit sizes, the routing area is less of a factor, and thus the LUTs that lead to

the lowest logic area costs have a greater influence on the overall area-efficiency. According to

Table 6-11, the 3-LUT has the best logic area-efficiency of any LUT. WhenRB = 1000µm2, the

most area-efficient HLB had 4-LUTs. However, when the cost of routing is lowered significantly,

RB = 250µm2, Figure 6-18 shows that a 3-LUT HLB has the best area-efficiency amongst all

HLBs. The L2-2 3-LUT HLB has 8% less area than the 4-LUT but is 10% slower. Another 3-LUT

Figure 6-18: Speed versus Area curves for Area-optimized HLB circuits, RB = 250 µm2

119

HLB with better area-efficiency than the 4-LUT is the L3-4.2 HLB (uses 2% less area than the 4-

LUT and is 5% faster).

However, the fastest HLBs that have better density than a 4-LUT, belong to the set of 4-LUT

HLBs. The L2-2 4-LUT HLB uses 3% less area than the 4-LUT and is 18% faster. The L3-4.2 4-

LUT HLB uses about the same area as the 4-LUT but is 28% faster.

The 5-LUT curve is shifted to the right because of the relatively high logic area cost of the 5-

LUT with respect to the 4-LUT. There are now no 5-LUT HLBs with better logic density than the

4-LUT L1 HLB. However, there are 5-LUT HLBs with high speeds for moderate area costs. For

example, with a 16% increase in area with respect to the 4-LUT L1 HLB, the L2-3 5-LUT HLB

yields a 47% increase in speed.

The overall conclusion is thatRB affects the choice of best LUT for fast and dense circuits. A

lower value ofRB makes smaller LUTs relatively more area-efficient with respect to large LUTs

and thus changes the choice of best LUT for speed or density. This section showed that a

significant decrease in the value ofRB from 1000 to 250µm2 makes 4-LUTs and 5-LUTs a better

basic block choice than 6-LUTs for use in HLB-based FPGAs aimed at making fast circuits with

good density. This lower value ofRB also makes 3-LUTs better than 4-LUTs for making HLB-

based FPGAs that lead to the densest circuits.

6.4 Summary of Results

The empirical studies of this chapter have demonstrated that hard-wired links can be used

effectively in FPGA logic blocks, to not only improve FPGA speed, but also to increase density.

For area and delay models corresponding to a static RAM programming technology in1.2µm

CMOS layout technology (RB = 1000µm2) and assumingDR = 4ns, the best LUT basic block for

high speed HLB architectures with reasonable logic density is the 6-input lookup table. Under the

same assumptions, the 5-input lookup table was the best basic block in terms of logic density.

120

For high speed HLB-based FPGA circuits, the best HLB topologies contained balanced and

fully populated trees. For dense circuits, the most area-efficient HLB topologies employ LUTs

with two or more non-hard-wired inputs.

The average programmable connection delay, DR, did not affect the choice of best LUT basic

block whenDR was varied from 1 to 10ns, with RB = 1000µm2. The 6-LUT is the best basic block

over this range ofDR.

The average programmable routing bit size,RB, affects the choice of best LUT for fast and

dense HLB-based FPGA circuits. Small values ofRB makes finer-grained LUTs more attractive

because of their higher logic area-efficiencies. For speed-optimized HLB circuits and a smallRB,

the 4- and 5-LUTs become better choices for basic block than the 6-LUT because of the improved

relative area-efficiency of 4- and 5-LUT HLBs. The 3-LUT has the highest logic area-efficiency

among all LUTs. Thus, for area-optimized circuits and a smallRB, the 3-LUT basic block is the

best choice for making area-efficient HLB-based FPGAs.

6.5 Limitations of the Empirical Study

This section contains more discussion on how the CAD tools and the assumed routing

architecture can affect the results and conclusions of the experimental study.

6.5.1 Effect of HLB synthesis tools

The current procedure for mapping an input Boolean network to a netlist of HLBs proceeds in

two phases. First the Boolean network is mapped to basic blocks and then the basic block network

is mapped to a netlist of HLBs. The basic block technology mapper optimizes the speed or area of

the basic block network and does not optimize the network for particular HLB topologies. The

resulting basic block networks may be more favourable for some HLB topologies. A technology

mapper that maps the input Boolean network directly to a netlist of HLBs may be less biased and

this may alter the results of the HLB architecture studies.

121

6.5.2 Effect of Routing Architecture Assumption

To derive our area model, we assumed a routing architecture in which all the routing tracks

were between entire HLBs, that is, all the pins of the HLB are evenly distributed on its four sides.

For HLBs with several LUTs and many pins this may lead to a large maximum channel width, W,

because there are many pins to be connected in each channel segment. Thus the HLBs with

several LUTs will appear unattractive because of high area costs.

An alternative routing architecture is one in which the routing tracks are between the LUTs of

the HLBs and the hard-wired links between the LUTs span the routing channels in a manner

similar to the direct connect in the Xilinx 3000 architecture [10]. With this scheme, W should be

less than the W of an FPGA without hard-wired connections because the number of pins to be

connected to each channel segment is reduced. A reduced W implies that the alternative routing

architecture may lead to HLBs with more LUT basic blocks becoming more attractive because

they would have lower area costs.

122

Chapter 7 Conclusions and Future Work

7.1 Thesis Summary and Contributions

This dissertation presents CAD algorithms for mapping a combinational digital circuit into a

delay- or area-optimized netlist of hard-wired logic blocks (HLBs). The algorithm begins with a

circuit of basic blocks and transforms it into a netlist of HLBs using two stages. The first step

produces a delay- or area-optimized set of covering fragments. The second step packs the set of

covering fragments together into a minimum number of packed HLBs.

The delay-optimization covering algorithm is shown to produce a netlist of HLB fragments

with a minimal number of programmable connections along the critical path. Also, the fragment

packing algorithm is proven to be optimal when packing the set of covering fragments for all two-

level HLBs.

The effectiveness of the CAD algorithms is evaluated with respect to a lower bound and also

compared with a commercial mapping tool [11]. Since the delay-optimization covering algorithm

is optimal the theoretical minimum bounds for delay was achieved. Compared to a simple lower

bound on area, the mapping algorithms uses only 3% to 16% more HLBs when mapping HLBs

with two to nine 4-LUTs. When compared to a commercial mapping tool for the Xilinx 4000

Configurable Logic Block [11], which is a commercial HLB-based FPGA architecture, our

overall synthesis procedure produces area-optimized circuits of about the same size and delay-

optimized circuits with significantly (22%) fewer programmable connections along the critical

paths.

123

The HLB mapping tools were used to investigate a wide range of HLB-based FPGA

architectures for speed and density. In particular we sought to determine the relationships between

the basic block functionality and hard-wired connection topology of the HLB versus the speed

and density of the resulting HLB circuits. These are the results of the HLB architecture studies:

i) HLB architectures consisting of 6-LUTs yield the fastest HLB-based FPGA

circuits with reasonable density.

ii) HLB architectures consisting of 4-LUTs yield the most area-efficient FPGA

circuits. However, for only a slightly higher cost in area relative to the densest

4-LUT HLBs, some 5-LUT HLBs give much higher speeds.

iii) The HLB topologies that resulted in the fastest FPGA circuits had a high fan-in

of hard-wired connections to some of its basic blocks.

iv) The HLB topologies that resulted in the most area-efficient FPGA circuits

consisted of basic blocks which all had two or more non-hard-wired inputs.

7.2 Future Work

This section describes several improvements that could be made to the HLB mapping

algorithm and also several avenues for future HLB-based FPGA architecture research.

7.2.1 Enhancements to the HLB Mapping Algorithms

The mapping algorithms in this thesis are the first attempts at synthesis for general HLB

architectures. This section contains several suggestions for improving the quality of HLB

synthesis.

Combining Basic Block Mapping and HLB Technology Mapping

The current procedure for mapping a Boolean network to a netlist of HLBs has two steps. First

the Boolean network is mapped to a network of basic blocks, and then the basic block network is

124

mapped to a netlist of HLBs. The CAD tools that map to basic block networks do not utilize HLB

topology information. A technology mapper that synthesized directly from Boolean network to

the HLB structure could yield better mapping results because it would use HLB topology infor-

mation during the basic block mapping process.

Mapping to Multi-output Fragments

HLBs have multiple outputs. However, the mapping algorithm in this dissertation first finds a

covering set of single-output fragments and then packs these single-output fragments together.

When several single-output fragments are packed together hard-wired links are wasted. A map-

ping algorithm that maps to multi-output fragments directly should give better area results since

fewer hard-wired links would be wasted.

Placement-Based Cost Function

During the fragment packing stage, the connectivity of the fragments is not taken into account.

Other optimization goals that take connectivity or placement of the HLB fragments into account

during packing may yield a more routable solution, and hence a smaller and faster circuit after

routing.

Delay-Area Trade-off

The delay- and area-optimization algorithms do not easily allow trade-offs between delay and

area. The mapping algorithms either minimize area or delay, with no provisions for area or delay

constraints. A better mapping algorithm would minimize area under a delay constraint.

7.2.2 HLB-based FPGA Architecture Investigation Avenues

This dissertation examined a subset of the possible avenues of research into HLB-based

FPGA architectures. This section suggests some new directions for HLB architecture research.

125

Using More Effective Basic Block Mappers

The LUT mapper may also have an effect on the results. The Chortle LUT mapper either opti-

mizes area or delay and does not devote much effort towards optimizing the secondary optimiza-

tion goal. In the future, other studies could be done with technology mappers that are more

effective for minimizing the secondary costs. For example, the Flowmap LUT mapper [33] mini-

mizes delay with much better area results than Chortle.

Application Specific or Class Specific Architectures

The selection of benchmark circuits used to evaluate the architectures is a mixture of random

logic and arithmetic circuits. One avenue to investigate is to determine if benchmark circuit topol-

ogies vary widely and if so, determine whether there are HLB topologies which are more suitable

for a particular class of circuits, such as random logic or arithmetic circuits.

Other hard-wir ed connection topologies

This thesis assumed that basic blocks were hard-wired in tree topologies. There may be

benefits to having fan-out of hard-wired connections within an HLB or to having sharing of LUT

inputs as in the Xilinx 3000 architecture.

Heterogeneous LUT HLB architectures

This thesis assumed that the LUTs in the HLB were homogeneous. Other research indicates

that the use of several sizes of LUT basic blocks in the FPGA may result in improved density with

respect to homogeneous LUT basic blocks [13] [46]. Heterogeneous LUT HLB architectures may

also result in similar improvements.

Focus on Certain LUT sizes

The results in Chapter 6 indicate that mid-grained LUTs (from 3 to 6 inputs) offer the best

HLBs for speed and or density. Future HLB-based FPGA studies should target HLBs composed

of these particular LUTs, and so more topologies could be examined. The run-time of the CAD

126

tools would have to be reduced to investigate HLBs with more LUTs than those studied in this

dissertation.

Reduction of Tapping Buffers

The tapping buffers used to access each basic block output have a significant on-chip area

cost. While this work assumed that there is a tapping buffer onevery LUT output, this may not be

necessary. A study of the utilization of the HLB tapping buffers may lead to methods to reduce the

number of tapping buffers per HLB.

Improved Delay Modelling

Hard-wired logic blocks reduce the average programmable connection length in circuits

because they reduce the number of logic blocks in the circuit. This reduction of the average pro-

grammable connection length also means the number of switching stages is lessened and this

leads to faster circuits. A study to measure the speedup attained by reducing the programmable

connection lengths in circuits would require a more accurate delay model.

Changed Architecture Assumptions

The routing architecture in this thesis assumed that each HLB (which consists of several basic

blocks) is surrounded by the routing channels. A possibly better routing architecture is one in

which the routing tracks are between the LUTs of the HLBs and the hard-wired links between the

LUTs span the routing channels in a manner similar to the direct connect in the Xilinx 3000 archi-

tecture [10]. This leads to narrower routing channels because the number of pins to connect to

each channel is lower. In fact, the routing channel widths should be closer to the widths of the cir-

cuits without hard-wired logic blocks. The drawback of this new scheme is that the programmable

connections would have to go through more switching stages than the scheme that assumed the

HLB was surrounded by the routing channels. However, the circuits using the new scheme will

still experience speedups because of the presence of hard-wired connections in critical paths.

127

Appendix A Data from the HLB Architec-
ture Studies

This appendix presents a summary of the data from the speed and area-efficiency studies in

Chapter 6.

A.1 Envelope Set data from Speed Study

This section of the appendix contains the (area, speed) co-ordinates of the envelope set of

points used for the speed study (Figure 6-8). Each of the following six tables, Table A.1 to Table

A.6, corresponds to the speed versus area curves for the 2-LUT, 3-LUT, 4-LUT, 5-LUT, 6-LUT

and 7-LUT HLBs respectively. The data in the following tables was generated using a delay

model withDR = 4ns and an area model withRB = 1000µm2. The first column in each table lists

the HLB topology, the second column lists the average normalized area over all circuits, the third

column lists the standard deviation of the average area, the fourth column lists the average nor-

malized speed and the fifth column lists the standard deviation of the average speed.

128

HLB topology Area S.D. Area Speed S.D. Speed

L2-3 1.40 0.16 0.75 0.08

L3-5.2.2 1.55 0.23 0.83 0.11

L3-6.3.2 1.60 0.23 0.90 0.11

L3-7.3.3 1.79 0.29 0.91 0.09

L4-8.4.2.3 1.82 0.33 0.93 0.10

L4-11.6.3.2.4.3 1.90 0.47 0.95 0.12

L4-9.5.2.2.3 1.93 0.47 0.97 0.09

L4-12.6.3.2.5.3 1.95 0.56 1.00 0.10

L4-15.7.3.3.7.3.3 2.44 0.70 1.01 0.08

Table A-1: Speed-optimized 2-LUT HLB envelope set

HLB topology Area S.D. Area Speed S.D. Speed

L1 1.13 0.19 0.77 0.12

L2-3 1.24 0.28 1.10 0.16

L2-4 1.35 0.25 1.17 0.19

L3-6.3.2 1.55 0.45 1.21 0.18

L3-6.4 1.65 0.47 1.23 0.19

L3-7.3.2 1.68 0.58 1.28 0.22

L3-7.4.2 1.72 0.56 1.30 0.19

L3-9.4.3 1.82 0.64 1.32 0.19

L3-10.4.3.2 1.88 0.68 1.36 0.22

L3-11.4.4.2 2.04 0.80 1.38 0.24

L3-12.4.4.3 2.13 0.75 1.39 0.25

Table A-2: Speed-optimized 3-LUT HLB envelope set

129

HLB topology Area S.D. Area Speed S.D. Speed

L1 1.00 0.00 1.00 0.00

L2-2 1.19 0.16 1.14 0.10

L2-3 1.22 0.22 1.27 0.14

L3-4.2 1.33 0.34 1.28 0.14

L2-4 1.34 0.29 1.34 0.13

L3-5.2 1.42 0.47 1.37 0.13

L2-5 1.44 0.39 1.42 0.10

L3-8.4.3 1.69 0.67 1.44 0.19

L3-8.3.2 1.73 0.75 1.48 0.15

L3-9.4.3 1.74 0.70 1.49 0.21

L3-9.4.2 1.86 0.88 1.51 0.16

Table A-3: Speed-optimized 4-LUT HLB envelope set

HLB topology Area S.D. Area Speed S.D. Speed

L1 1.01 0.20 1.16 0.16

L2-2 1.13 0.18 1.21 0.15

L2-3 1.33 0.45 1.38 0.20

L3-4.2 1.39 0.47 1.39 0.20

L2-4 1.46 0.49 1.42 0.20

L3-5.2 1.49 0.51 1.43 0.22

L3-6.3 1.55 0.61 1.47 0.22

L3-6.2 1.56 0.64 1.52 0.26

L2-6 1.78 0.64 1.65 0.31

Table A-4: Speed-optimized 5-LUT HLB envelope set

130

HLB topology Area S.D. Area Speed S.D. Speed

L1 1.02 0.21 1.25 0.18

L2-2 1.13 0.19 1.31 0.18

L2-3 1.30 0.38 1.45 0.20

L2-4 1.46 0.52 1.54 0.26

L3-5.2 1.50 0.47 1.56 0.25

L3-6.3 1.61 0.53 1.58 0.27

L2-5 1.62 0.62 1.67 0.28

L3-6.2 1.70 0.56 1.70 0.28

L3-6.5 1.77 0.78 1.72 0.30

Table A-5: Speed-optimized 6-LUT HLB envelope set

HLB topology Area S.D. Area Speed S.D. Speed

L1 1.23 0.38 1.32 0.21

L2-2 1.42 0.35 1.35 0.21

L2-3 1.52 0.51 1.55 0.26

L2-4 1.69 0.58 1.56 0.27

L3-6.4 1.87 0.87 1.57 0.27

L2-5 2.02 0.98 1.70 0.30

L3-6.2 2.11 1.04 1.71 0.30

L2-7 2.89 1.73 1.74 0.31

L2-8 3.04 1.98 1.77 0.32

Table A-6: Speed-optimized 7-LUT HLB envelope set

131

A.2 Envelope Set data from Area-efficiency Study

This section of the appendix contains the (area, speed) co-ordinates of the envelope set used

for the area-efficiency study (Figure 6-11). Each of the following six tables, Table A.7 to Table

A.12, corresponds to the speed versus area curves for the 2-LUT, 3-LUT, 4-LUT, 5-LUT, 6-LUT

and 7-LUT HLBs respectively. The data in the following tables was generated using a delay

model withDR = 4ns and an area model withRB = 1000µm2. The first column in each table lists

the HLB topology, the second column lists the average normalized area over all circuits, the third

column lists the standard deviation of the average area, the fourth column lists the average

normalized speed and the fifth column lists the standard deviation of the average speed.

HLB topology Ar ea S.D. Area Speed S.D. Speed

L4-5.3.2 1.21 0.24 0.89 0.27

L4-7.3.2.3.2 1.27 0.27 0.90 0.27

L4-7.4.2.2 1.29 0.36 0.92 0.26

L4-8.4.2.3.2 1.35 0.31 0.95 0.27

Table A-7: Area-optimized 2-LUT HLB envelope set

HLB topology Ar ea S.D. Area Speed S.D. Speed

L2-2 0.98 0.12 0.90 0.20

L3-4.2 1.03 0.13 1.05 0.28

L3-5.3 1.10 0.27 1.10 0.37

L3-8.3.3 1.43 0.41 1.11 0.37

L3-9.3.3.2 1.50 0.38 1.12 0.36

Table A-8: Area-optimized 3-LUT HLB envelope set

132

HLB topology Area S.D. Area Speed S.D. Speed

L2-2 0.94 0.19 1.18 0.13

L3-4.2 0.95 0.17 1.28 0.15

L3-6.3.2 1.04 0.11 1.32 0.17

L3-7.4.2 1.20 0.21 1.33 0.17

Table A-9: Area-optimized 4-LUT HLB envelope set

HLB topology Area S.D. Area Speed S.D. Speed

L2-3 0.97 0.17 1.47 0.45

L3-5.2.2 1.03 0.18 1.52 0.44

L3-6.2.2 1.09 0.27 1.54 0.42

L3-6.3.2 1.15 0.28 1.56 0.53

Table A-10: Area-optimized 5-LUT HLB envelope set

HLB topology Area S.D. Area Speed S.D. Speed

L2-2 1.17 0.20 1.22 0.39

L2-3 1.20 0.24 1.26 0.42

L3-4.2 1.24 0.27 1.31 0.44

L3-5.2.2 1.26 0.30 1.36 0.53

L3-6.3.2 1.32 0.26 1.39 0.54

Table A-11: Area-optimized 6-LUT HLB envelope set

133

A.3 Envelope Set Data for Individual Circuits

Table A.13 lists the 4-LUT HLB topologies that lie on the speed versus area curve for each

individual circuit when the HLB circuits are optimized for speed. The first column lists the

benchmark circuit name, the second column lists the HLB topology, the third column lists the

average normalized area and the fourth column lists the average normalized speed.

HLB topology Area S.D. Area Speed S.D. Speed

L1 1.43 0.37 1.27 0.26

L2-2 1.47 0.36 1.38 0.32

L3-4.2 1.56 0.42 1.44 0.39

L3-5.2 1.73 0.45 1.47 0.39

Table A-12: Area-optimized 7-LUT HLB envelope set

134

Benchmark Cct. HLB topology Area Speed

9symml L3-7.3.3 0.89 1.54

c1355 L1 1.00 1.00

¨ L2-2 1.27 1.11

¨ L2-3 1.41 1.25

¨ L3-6.3.2 1.68 1.43

¨ L3-9.4.2 3.05 1.67

c432 L1 1.00 1.00

¨ L2-2 1.22 1.21

¨ L2-3 1.59 1.30

¨ L2-5 2.05 1.54

¨ L3-9.5 4.02 1.69

c499 L1 1.00 1.00

¨ L2-2 1.34 1.10

¨ L2-3 1.52 1.36

¨ L3-6.4 1.67 1.54

alu2 L1 1.00 1.00

¨ L2-2 1.27 1.15

¨ L3-4.2 1.28 1.34

¨ L3-5.4 1.73 1.47

¨ L3-7.3 2.14 1.62

apex7 L1 1.00 1.00

¨ L2-2 1.13 1.16

¨ L3-4.2 1.23 1.39

¨ L3-7.3.2 1.64 1.73

cm150a L3-7.4 0.67 1.54

cm151a L3-7.4 0.77 1.30

Table A-13: Speed-optimized 4-LUT HLB envelope set for individual circuits

135

Table A.14 lists the 4-LUT HLB topologies that lie on the speed versus area curve for each

individual circuit when the HLB circuits are optimized for area. The first column lists the

benchmark circuit name, the second column lists the HLB topology, the third column lists the

average normalized area and the fourth column lists the average normalized speed.

¨ L3-8.4.3 0.87 1.88

cm162a L2-2 0.91 1.30

cm163a L3-7.2.2 0.99 1.30

¨ L3-7.5 0.99 1.30

¨ L3-9.5.2 1.16 1.88

count L1 1.00 1.00

¨ L3-4.2 1.03 1.21

¨ L3-6.2.2 1.16 1.54

¨ L3-6.3.2 1.16 1.54

frg1 L3-4.2 0.96 1.39

¨ L3-9.3.2.2 1.26 1.73

k2 L1 1.00 1.00

¨ L2-2 1.14 1.11

¨ L2-3 1.29 1.25

¨ L2-4 1.50 1.43

¨ L3-9.4.2 2.46 1.67

mux L2-5 0.80 1.30

¨ L3-5.2 0.80 1.30

¨ L3-9.4.2 0.80 1.30

¨ L3-9.5 0.80 1.30

parity L2-5 0.90 1.30

Benchmark Cct. HLB topology Area Speed

Table A-13: Speed-optimized 4-LUT HLB envelope set for individual circuits

136

Benchmark Cct. HLB topology Area Speed

9symml L3-4.2 0.84 1.36

c1355 L2-2 0.92 1.37

¨ L3-4.3 1.02 1.48

c432 L2-2 0.98 1.12

¨ L2-3 1.04 1.16

¨ L3-4.2 1.08 1.21

¨ L3-6.3.2 1.16 1.27

c499 L3-3.2 0.85 1.37

¨ L3-4.3 0.90 1.48

alu2 L2-2 0.77 1.21

¨ L3-4.2 0.81 1.32

¨ L3-8.4.2 1.52 1.39

apex7 L2-2 1.02 1.21

¨ L2-3 0.89 1.10

cm150a L3-7.3.3 0.92 1.54

¨ L3-7.4 0.92 1.54

cm151a L3-8.4.2 0.58 1.39

cm162a L3-6.2.2 0.65 1.21

cm163a L3-3.2 0.75 1.21

count L2-2 0.92 1.08

frg1 L2-3 0.81 1.18

¨ L3-3.2 0.89 1.30

k2 L2-2 0.90 1.18

mux L3-7.3.3 0.65 1.54

parity L3-9.2.2.2.2 0.78 1.73

Table A-14: Area-optimized 4-LUT HLB envelope set for individual circuits

137

References

[1] Panel discussion, “Will the Field-Programmable Gate Array replace the Mask-Pro-
grammed Gate Array,” Pr oceedings of the 28th Design Automation Conference (DAC-28),
June 1991.

[2] S. Brown, R. J. Francis, J. Rose and Z. G. Vranesic,Field-Programmable Gate Arrays,
Kluwer Academic Publishers, 1992.

[3] W. Carter, K. Duong, R. H. Freeman, H. Hsieh, J. Y. Ja, J. E. Mahoney, L. T. Ngo and S. L.
Sze, “A User Programmable Reconfigurable Gate Array,” Proceedings of the 1986 Custom
Integrated Circuits Conference(CICC-86), May 1986, pp. 233-235.

[4] A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. El-Ayat and A. Mohsen, “An Archi-
tecture for Electrically Configurable Gate Arrays,” IEEE Journal of Solid State Circuits
(JSSC), Vol. 24, No. 2, April 1989, pp. 394-398.

[5] A. Gupta, V. Aggarwal, R. Patel, P. Chalasani, D. Chu, P. Seeni, P. Liu, J. Wu and G. Kaat,
“A User Configurable Gate Array Using CMOS-EPROM Technology,” CICC-90, May
1990, pp. 31.7.1-31.7.4.

[6] S. Singh, J. Rose, D. Lewis, K. Chung and P. Chow, “Optimization of Field-Programma-
ble Gate Array Logic Block Architecture for Speed,” CICC-91, May 1991, pp. 6.1.1-6.1.6.

[7] S. Singh, J. Rose, P. Chow and D. Lewis, “The Effect of Logic Block Architecture on
FPGA Performance,” JSSC, Vol. 27, No. 3, March 1992, pp. 281-287.

[8] J. Rose, R. J. Francis, D. Lewis, P. Chow, “Architecture of Field-Programmable Gate
Arrays: The Effect of Logic Block Functionality on Area Efficiency,” JSSC, Vol. 25, No.
5, Oct. 1990, pp. 1217-1225.

[9] K. Chung and J. Rose, “TEMPT: Technology Mapping for the Exploration of FPGA
Architectures with Hard-Wired Connections,” Proceedings of the 29th Design Automation
Conference (DAC-29), June 1992, pp. 361-367.

[10] “The XC3000 Logic Cell Array Family,” in The Programmable Gate Array Data Book,
Xilinx Inc, 1991.

[11] The XACT 4000 User Guide, Xilinx Inc., March 1991,

138

[12] “The XC4000 Logic Cell Array Family” Product Description, Xilinx Inc., August 1992.

[13] H. Hsieh, W. Carter, J. Y. Ja, E. Cheung, S. Schreifels, C. Erickson, P. Freidin and L. Tin-
key, “Third-Generation Architecture Boosts Speed and Density of Field-Programmable
Gate Arrays,” CICC-90, pp. 31.2.1-31.2.7.

[14] S. Singh, “The Effect of Logic Block Architecture on FPGA Performance,” M.A.Sc. The-
sis, Department of Electrical Engineering, University of Toronto, 1991.

[15] K. Chung, S. Singh, J. Rose and P. Chow, “Using Hierarchical Logic Blocks to Improve
the Speed of Field-Programmable Gate Arrays,” in FPGAs - Proceedings of the First
International Workshop on Field Programmable Logic and Applications, Oxford, Sept.
1991, pp. 103-113.

[16] D. Hill and N. Woo, “The Benefits of Flexibility in Lookup-Table FPGAs” inFPGAs -
Proceedings of the First International Workshop on Field Programmable Logic and Appli-
cations, Oxford, Sept. 1991, pp. 127-136.

[17] R. Brayton, R. Rudell, A. Sangiovanni--Vincentelli and A. Wang, “MIS: a Multiple-Level
Logic Optimization System,” IEEE Transactions on CAD (TCAD), Vol. CAD-6, No. 6,
Nov. 1987, pp. 1062-1081.

[18] R. J. Francis, “A Tutorial on Logic Synthesis for Lookup-Table Based FPGAs,” ICCAD-
92, Nov. 1992, pp. 40-47.

[19] K. Keutzer, “DAGON: Technology Binding and Local Optimization by DAG Matching,”
DAC-24, June 1987, pp. 341-347.

[20] R. J. Francis, J. Rose and Z. Vranesic, “Chortle-crf: Fast Technology Mapping for Lookup
Table-Based FPGAs,” DAC-28, June 1991, pp. 227-233.

[21] R. J. Francis, J. Rose and Z. Vranesic, “Technology Mapping of Lookup Table-Based
FPGAs for Performance,” Proceedings of IEEE International Conference on CAD
(ICCAD-91), Nov. 1991, pp. 568-571.

[22] J. Rose, Z. Vranesic and W. M. Snelgrove, “ALTOR: An automatic standard cell layout
program,” in Proceeding of the Canadian Conference on VLSI, Nov. 1985, pp. 168-173.

[23] J. Vuillamy, “Performance Enhancement in Field-Programmable Gate Arrays,” M.A.Sc.
Thesis, Department of Electrical Engineering, University of Toronto, 1991.

[24] J. Vuillamy, Z. Vranesic and J. Rose, “Performance Evaluation and Enhancement of
FPGAs,” in FPGAs - Proceedings of the First International Workshop on Field Program-
mable Logic and Applications, Oxford, Sept. 1991, pp. 137-146.

[25] P. Chow, S. O. Seo, K. Chung, G. Paez and J. Rose, “A High-Speed FPGA Using Pro-
grammable Mini-tiles,” Research on Integrated Systems - Proceedings of the 1993 Sym-
posium on Integrated Systems, University of Washington, March 1993, pp. 103-122.

139

[26] S. O. Seo, “A High-Speed FPGA Using Programmable Mini-tiles,” M.A.Sc. Thesis in
preparation, Department of Electrical Engineering, University of Toronto.

[27] J. Rose and S. Brown, “The Effect of Switch Box Flexibility on Routability of Field Pro-
grammable Gate Arrays,” CICC-90, May 1990, pp. 27.5.1-27.5.4.

[28] J. Rose and S. Brown, “Flexibility of Interconnection Structures in Field Programmable
Gate Arrays,” JSSC, Vol. 26, No. 3, March 1991, pp. 277-282.

[29] J. Kouloheris and A. El Gamal, “FPGA Performance vs. Cell Granularity,” CICC-91, May
1991, pp. 6.2.1-6.2.4.

[30] J. Kouloheris and A. El Gamal, “FPGA Area vs. Cell Granularity - Lookup tables and
PLA Cells,” ACM/SIGDA Workshop on Field-Programmable Gate Arrays, FPGA-92, Ber-
keley, CA, February 1992, pp. 9-14.

[31] J. Kouloheris and A. El Gamal, “PLA-based FPGA Area vs. Cell Granularity,” CICC-92,
May 1992, pp. 4.3.1-4.3.4

[32] K. Chen, J. Cong, Y. Ding, A. Kahng and P. Trajmar, “DAG-MAP: Graph-based FPGA
Technology Mapping for Delay Optimization,” IEEE Design and Test of Computers, Sept.
1992, pp. 7-20.

[33] J. Cong and Y. Ding, “An Optimal Technology Mapping Algorithm for Delay Optimiza-
tion in Lookup-Table Based FPGA Designs,” ICCAD-92, Nov. 1992, pp. 48-53.

[34] R. Murgai, N. Shenoy, R. K. Brayton and A. Sangiovanni-Vincentelli, “Improved Logic
Synthesis Algorithms for Table Look Up Architectures,” ICCAD-91, Nov. 1991, pp. 564-
567.

[35] R. Murgai, N. Shenoy, R. K. Brayton and A. Sangiovanni-Vincentelli, “Performance
Directed Synthesis for Table Look Up Programmable Gate Arrays,” ICCAD-91, Nov.
1991, pp. 572-575.

[36] P. Sawkar and D. Thomas, “Area and Delay Mapping for Table-Lookup Based Field Pro-
grammable Gate Arrays,” DAC-29, June 1992, pp. 368-373.

[37] N. Woo, “A Heuristic Method for FPGA Technology Mapping Based on Edge Visibility,”
DAC-28, June 1991, pp. 248-251.

[38] R. Rudell, “Logic Synthesis for VLSI Design,” PhD. Thesis, University of California, Ber-
keley, April 1989. Memorandum No. UCB/ERL M89/49.

[39] R. J. Francis, “Technology Mapping for Lookup-Table Based Field-Programmable Gate
Arrays,” PhD. Thesis, University of Toronto, Toronto, Canada. December 1992.

[40] M. Garey and D. Johnson,COMPUTERS AND INTRACTABILITY - A Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, New York, 1979.

140

[41] D. Lewis, Personal communication regarding unique naming of HLB tree topologies.

[42] M. Hutton, Personal communication regarding complexity of the integer bin-packing
problem, February 1993.

[43] M. Hutton, “Notes on Integer Bin-Packing for Technology Mapping on Trees,” Personal
communication, February 1993.

[44] C. Papadimitriou and K. Steiglitz,COMBINATORIAL OPTIMIZATION - Algorithms
and Complexity, Prentice-Hall Inc.,Englewood Cliffs, New Jersey, 1982.

[45] A. Aho, J. Hopcroft and J. Ullman,The Design and Analysis of Computer Algorithms,
Addison-Wesley Publishing Company, Reading, Massachusetts, 1974.

[46] J. He and J. Rose, “Advantages of Heterogeneous Logic Block Architectures for FPGAs ,”
CICC-93, May 1993, pp. 7.4.1-7.4.5.

[47] R. Bellman.Dynamic Programming, Princeton University Press, 1957.

[48] L. Cooper and M. Cooper, Introduction to Dynamic Programming, Pergamon Press
Ltd., 1981.

[49] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide,” Version 3.0,
Microelectronics Centre of North Carolina (MCNC), January 1991.

[50] T. Cormen, C. Leiserson and R. Rivest, Introduction to Algorithms, The MIT Press,
Cambridge, Massachusetts, McGraw-Hill Book Company, Toronto, Eighth printing, 1992.

[51] J. L. Hennessy and D. A. Patterson,Computer Architecture: A Quantitative Approach,
Morgan Kaufmann Publishers, Inc., San Mateo, California, 1990.

PhD Thesis Draft 141 July 8, 1999

Introduction 1
Motivation 1
Research Scope, Goals and Methodology 4
Thesis Organization 6
Terminology and Previous Work 7
Lookup Tables 8
Logic Synthesis for Lookup-Table Based FPGAs 9
Technology-Independent Logic Optimization 11
Technology-Dependent Mapping to Lookup-Tables 12
Previous FPGA Architectural Studies 18
Area-efficiency of LUT-based FPGAs 18
Speed performance of LUT-based FPGAs 19
Interconnection flexibility of LUT-based FPGAs 19
Previous work involving hard-wired connections 21
Conclusion 22
Algorithms for Mapping to Hard-wired Logic Blocks 23
Definition of the HLB Architecture 24
HLB Synthesis Overview 24
The HLB Technology Mapping Problem 25
Fragment Covering 27
Definitions for the Fragment Covering Algorithm 27
Naming Convention for HLBs 30
Generation of the Fragment Pattern Library 31
Selection of the Set of Covering Fragments 34
Delay versus Area Optimization 41
Fragment Packing 43
Fragment Packing Problem Definitions 44
Unique Ordering for Fragment Trees 45
Generation of Maximal Packing Sets 46
The Fragment Packing Algorithm 47
Conclusion 50
Complexity and Optimality of the HLB Mapping Algorithms 51
Complexity and Optimality of Fragment Covering Problem and Algorithm 51
Covering Problem Definition and Algorithm Review 52
Complexity of Fragment Covering Algorithm 52
Optimality of Fragment Covering Algorithm 53
Complexity and Optimality of Fragment Packing Problem and Algorithm 62
Packing Problem Definition Review 63
Complexity of Fragment Packing 63
Complexity of the Heuristic Fragment Packing Algorithm 66
Definition of Optimality for Fragment Packing 67
HLBs for which FFD Fragment Packing is Optimal 67
An HLB for which FFD Fragment Packing is Sub-optimal 70
Conclusion 72
Effectiveness of the HLB Mapping Algorithms 73
Comparison to Theoretical Bounds 73

PhD Thesis Draft 142 July 8, 1999

Performance of the Area-optimization Algorithm 73
Effectiveness of Overall HLB Mapping Procedure 76
Conclusion 79
An Empirical Study of HLB Architectures 80
The Hard-wired Logic Block Design Space 81
Empirical Method for Exploring HLBs 83
Benchmark Circuits 84
Synthesis Steps 84
Fixed vs. Free Variable Number of HLBs and Channel Width 87
Delay Model 88
Area Model 92
Experimental Results 94
Speed of HLB Architectures 95
Area-efficiency of HLB Architectures 101
Limitations of the HLB Synthesis Procedure 107
The Effect of Changing the Average Routing Delay, DR 113
The Effect of Changing the Routing Bit Area, RB 116
Summary of Results 120
Limitations of the Empirical Study 120
Effect of HLB synthesis tools 121
Effect of Routing Architecture Assumption 121
Conclusions and Future Work 122
Thesis Summary and Contributions 122
Future Work 123
Enhancements to the HLB Mapping Algorithms 123
HLB-based FPGA Architecture Investigation Avenues 124
Data from the HLB Architecture Studies 127
Envelope Set data from Speed Study 127
Envelope Set data from Area-efficiency Study 131
Envelope Set Data for Individual Circuits 133

Mapping between Subject nodes and Covering Graph nodes 29

Comparison with Lower Bound on Area of L2-3 HLB circuits 74

Comparison with Lower Bound on Area of 4-LUT HLB circuits 75

Comparison of PPR and TEMPT for Delay-optimization 78

Comparison of PPR and TEMPT for Area-optimization 79

: Benchmark Circuit Information 85

: Delays of Lookup Tables in 1.2mm CMOS process 88

: Envelope Point Set for Speed-optimized 4-LUT HLB circuits 96

: Envelope Point Set for Speed-optimized 6-LUT HLB circuits 100

: Envelope Point Set for Area-optimized 4-LUT HLB circuits 103

: Envelope Point Set for Area-optimized 5-LUT HLB circuits 106

: HLBs with logic density better than the 4-LUT 107

: Best 6-LUT HLBs for Speed-optimized circuits 110

: Best 5-LUT HLBs for Area-optimized circuits 112

: Total LUT delays for Speed-optimized LUT circuits 113

: Average Logic Area for Area-optimized HLB circuits 116

Speed-optimized 2-LUT HLB envelope set 128

Speed-optimized 3-LUT HLB envelope set 128

Speed-optimized 4-LUT HLB envelope set 129

Speed-optimized 5-LUT HLB envelope set 129

Speed-optimized 6-LUT HLB envelope set 130

Speed-optimized 7-LUT HLB envelope set 130

Area-optimized 2-LUT HLB envelope set 131

Area-optimized 3-LUT HLB envelope set 131

Area-optimized 4-LUT HLB envelope set 132

Area-optimized 5-LUT HLB envelope set 132

Area-optimized 6-LUT HLB envelope set 132

Area-optimized 7-LUT HLB envelope set 133

Speed-optimized 4-LUT HLB envelope set for individual circuits 134

Area-optimized 4-LUT HLB envelope set for individual circuits 136

