
A SYNTHESIS ORIENTED OMNISCIENT MANUAL

EDITOR FOR FPGA CIRCUIT DESIGN

by

Tomasz Sebastian Czajkowski

A thesis submitted in conformity with the requirements
For the degree of Master of Applied Science,

Graduate Department of
Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto

© Copyright by Tomasz Sebastian Czajkowski 2004

i

A Synthesis Oriented Omniscient

Manual Editor for FPGA Circuit Design

Tomasz Sebastian Czajkowski

Master of Applied Science, 2003

Graduate Department of

Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto

Abstract

Logic circuit designers for Field-Programmable Gate Arrays (FPGAs) put increasing

demands on Computer Aided Design (CAD) tools to provide higher logic circuit speeds than are

possible using a traditional CAD flow. The problem with the traditional CAD flow lies in that the

logic synthesis makes assumptions about how its logic optimizations will affect the speed of the

logic circuit post-routing. These assumptions are not always realized by the place and route tool,

which leads to a degradation in logic circuit speed. If the post-routing effect of a logic optimization

was known, then better logic circuit optimization decisions could be made. This work refers to such

knowledge as omniscience and explores its applications in the domain of manual physical synthesis.

This work develops a manual editor, named Augur, which uses omniscience in the context

of physical synthesis. The user is allowed to select physical synthesis transformations to improve

the speed of the logic circuit. After each modification the user is instantly informed about the effect

of the specified transformation on the speed of the logic circuit. Because of the manual nature of

the editor the size of logic circuits is limited to 1000 logic elements.

The manual editor was tested on a suite of 10 logic circuits, all implemented on a Xilinx

Virtex-E device. The post-routing timing analysis performed with commercial tools shows that the

application of omniscience improves the logic circuit maximum operating frequency by 9.9% on

average, with a low area penalty. In addition, several new logic synthesis transformations are

developed that arise from the architectural properties of the target device.

iii

Acknowledgements

I would like to take this opportunity to express my thanks to my thesis supervisor, Professor

Jonathan Rose, for his guidance, advice and encouragement throughout the course of my research.

I wish to express my sincere gratitude for all his help. Without his knowledge and technical

expertise this work could not have been realized.

I would like to thank the professors at the University of Toronto who have taught me

throughout my undergraduate and graduate studies. I would like to express my gratitude to Professor

Stephen Brown, Professor Zvonko Vranesic and Professor Paul Chow who through their teaching

encouraged me to pursue graduate studies.

I would also like to thank Dr. Kevin Chung at Xilinx for answering my questions with

patience and dedication, and William Chow for providing the software basis for this thesis.

I would like acknowledge my friends in graduate school: Anish Alex, Navid Azizi, Mehrdad

Eslami, Valavan Manohararajah and Lesley Shannon for their friendship and technical advice.

My closest friends: Dagmara Biskupska, Mark Bourgeault, Borys Bradel, Jennifer Gee,

Henry Jo, Agnieszka and Cezary Piekacz, Gabriel Quan, and Chris Sun. I can only hope that in the

years to come I can do justice the friendship you have blessed me with.

I would like to thank my father, Dr. Grzegorz Czajkowski, for everything that he has taught

me, both as a teacher and a father. My mother, Tatiana Czajkowska, has always supported me in all

my endeavors. My brother, Adam Czajkowski, always reminded me that there is more to life than

research.

I would also like to thank my academic thesis supervisor, the University of Toronto,

Micronet R&D and Xilinx Corporation for funding this research.

v

Table of Contents

Table of Contents . v

List of Figures . ix

List of Tables . xi

1 Introduction . 1

1.1 Introduction to FPGA Circuit Design Process . 1

1.3 Research Goals . 3

1.4 Organization . 3

2 Background . 5

2.1 Introduction . 5

2.2 Technology Mapping for FPGAs . 5

2.2.1 Terminology . 6

2.2.2 Basic Approach . 7

2.2.3 Depth Optimal Solution . 8

2.2.4 Improving Flowmap . 9

2.2.5 Modifying Initial Representation . 10

2.2.6 Mapping Logic Functions into Complex Logic Structures 10

2.3 Physical Synthesis . 12

2.3.1 Estimating Net Delay to Improve Logic Synthesis 12

2.3.2 Improving Interaction between the Logic Synthesis and the P&R 13

2.4 Xilinx Virtex-E device and Xilinx CAD tools . 15

2.4.1 Xilinx Virtex-E Device Family . 15

2.4.2 Xilinx FPGA Editor . 17

2.5 EVE - An Omniscient Placer and Packer . 18

vi

2.6 Summary . 19

3 Augur Context and Logic Synthesis Transformations . 21

3.1 Introduction . 21

3.2 Implementing Logic Transformations with Augur . 22

3.3 Remapping . 25

3.3.1 Carry Chain Remapping . 25

3.3.2 Multiplexor Mapping . 28

3.4 Duplication . 32

3.5 Merging . 33

3.6 Carry Chain Shortening . 34

3.7 Flip-flop Control Signal Extraction . 35

3.8 Summary . 35

4 The User Experience with the Manual Editor . 37

4.1 Introduction . 37

4.2 Getting Started . 37

4.3 Augur’s Graphical User Interface . 38

4.3.1 The Placer and Packer View . 39

4.3.2 The SubCircuit View . 45

4.3.3 The SubCircuit Placer View . 47

4.4 File Commands . 50

4.5 Leaving Augur . 50

4.6 Software Organization . 50

4.7 Summary . 52

5 Experimental Results . 55

5.1 Introduction . 55

5.2 Benchmark Circuits . 56

vii

5.3 Baseline Comparison . 57

5.4 Placement and Packing Results . 58

5.5 Results Including the New Logic Synthesis Transformations 59

5.6 Optimization Strategies . 63

5.6.1 Promoting Nearest-Neighbour Interconnect . 63

5.6.2 Liberating Free Space for Critical Logic . 64

5.6.3 Increasing Packing flexibility of Flip-Flops . 65

5.6.4 Stopping Criterion . 66

5.7 Summary . 67

6 Conclusion . 69

6.1 Thesis Summary . 69

6.2 Future Work . 70

References . 73

A Appendix . 77

ix

List of Figures

Figure 1-1: Traditional CAD Flow for FPGA circuit design . 2

Figure 1-2: The Physical Synthesis approach . 2

Figure 2-1: Sub-optimal solution produced with the basic approach [4] 7

Figure 2-2: Generic Logic Block Structure for Virtex-E and XC4000 series FPGAs 11

Figure 2-3: An Island-Style FPGA . 15

Figure 2-4: Simplified view of a Virtex-E slice . 15

Figure 2-5: The Nearest Neighbour Interconnect on the Virtex-E device 16

Figure 3-1: Logic circuit representation in Augur . 22

Figure 3-2: The SubCircuit view . 23

Figure 3-3: The Placement view used during resynthesis . 24

Figure 3-4: Virtex-E Carry Chain Structure . 26

Figure 3-5: Sample circuit to be mapped into a carry chain configuration 26

Figure 3-6: AND gate extracted from the forward LUT . 27

Figure 3-7: Final implementation in carry chain configuration . 27

Figure 3-8: Algorithm for mapping an AND or an OR gate into the carry chain 28

Figure 3-9: The Joint-LUT structure . 29

Figure 3-10: Basic Joint-LUT mapping algorithm . 29

Figure 3-11: The Joint-Slice structure . 30

Figure 3-12: Example of mapping a 2 output logic function into the Joint-LUT structure 31

Figure 3-13: Mapping a multi-output logic function into the Joint-LUT structure 32

Figure 3-14: Mapping solution not found by the algorithm . 32

Figure 3-15: Circuit before duplication . 33

Figure 3-16: Circuit after duplication . 33

Figure 3-17: Critical path before the application of carry chain shortening 34

Figure 3-18: Circuit after carry chain shortening . 34

Figure 3-19: Two registers with incompatible control signals . 35

Figure 3-20: Control signal functionality implemented in LUTs . 35

x

Figure 4-1: The Placer and Packer View . 39

Figure 4-2: View Controls . 40

Figure 4-3: Delay profile showing nine delay bins . 42

Figure 4-4: The Options window . 43

Figure 4-5: Critical paths with delay greater than specified budget . 43

Figure 4-6: Information box . 44

Figure 4-7: The SubCircuit view . 46

Figure 4-8: The SubCircuit view after a logic transformation . 47

Figure 4-9: SubCircuit Placer view . 48

Figure 4-10: The Placer and Packer view after accepting the logic synthesis transformation . . 49

Figure 4-11: Augur software overview . 51

Figure 4-12: Action list data structure . 52

Figure 5-1: Procedure to obtain baseline performance for a benchmark circuit 57

Figure 5-2: Delay profile for the miim circuit . 66

Figure 5-3: The 15 slowest paths in the miim circuit . 67

Figure A-1: Detailed Xilinx Virtex-E Slice Schematic . 77

xi

List of Tables

Table 5-1: Statistics for benchmark logic circuits . 56

Table 5-2: Results using only placement and packing modifications . 58

Table 5-3: Speed improvement results using the new logic synthesis transformations 59

Table 5-4: Area change due to the new logic synthesis transformations 60

1

1 Introduction

1.1 Introduction to FPGA Circuit Design Process

Field-Programmable Gate Arrays (FPGAs) are programmable devices capable of

implementing complex digital systems. Implementing digital systems on FPGAs allows designers

to test and modify their designs without the need for the FPGA to be re-fabricated, as would be

necessary with Application Specific Integrated Circuits (ASICs), saving both time and money. For

lower volume products FPGAs provide an inexpensive platform to implement digital logic, while

for the high volume products FPGAs can be used to prototype logic circuits before fabrication into

ASICs. These benefits made them very popular and pushed them into the mainstream of digital

design. As the demand for FPGAs increases, so does the demand for the Computer-Aided Design

(CAD) tools, which can achieve higher operating speeds for FPGA logic circuits.

In the traditional FPGA CAD flow, digital circuits are implemented in a sequential process

consisting of several stages, as shown in Figure 1-1. A logic circuit is initially represented by a

Hardware Description Language (HDL), which the Logic Synthesis stage converts to a set of logic

gates that are mapped into lookup tables (LUTs) during the Technology Mapping stage. The Lookup

Tables are then placed and routed onto the FPGA during the Placement and Routing stage. The final

performance of the circuit is obtained through Timing Analysis. The algorithms governing the

optimization decisions made at each stage use cost functions that give only an approximate view

of the final effect of any change to the circuit at any level prior to routing and timing analysis.

 A more advanced CAD flow, known as physical synthesis, improves the cost functions in

2

Figure 1-1: Traditional CAD
Flow for FPGA circuit design

Figure 1-2: The Physical
Synthesis approach

the early stages of the design process by providing information from the later stages, as shown in

Figure 1-2. This is achieved through iteration of the traditional CAD flow, which provides the cost

functions in the early stages with the information about the overall effect of the optimizations on

the final circuit speed. With this information the early stages are able to better predict the effect of

optimizations they perform.

The goal of this research is to develop a manual editor, which provides the user with the

selection of logic synthesis optimizations to improve the speed of a digital circuit. The manual

editor adopts a physical synthesis approach, but instead of applying it to the entire circuit, or on

macroscopic scale, the editor focuses on implementing small and incremental, or microscopic,

design modifications. After each modification the editor performs routing and timing analysis and

provides the user with almost instant feedback about the new circuit speed.

The complete placement, routing and timing analysis performed after each microscopic

modification provides the knowledge of the effect of a small change on the post-routed circuit

performance. This level of knowledge will be referred to as omniscience. The concept of

omniscience is used as a guide to evaluate incremental logic synthesis transformations.

The application of omniscience within the manual editor creates a manual CAD tool capable

of providing the user with all necessary information to make superior optimization decisions. The

manual editor is named Augur, after a religious official in ancient Rome, who interpreted “omens”

3

to guide the public, similarly to the way that the manual editor guides the user to improve the speed

of a digital circuit.

Providing omniscience is computationally expensive, as the circuit has to be routed and

timing analyzed after each microscopic modification. To make the entire process manageable for

the user, this work restricts the size of the circuits Augur is used on. A number of experiments with

various circuit sizes have shown that a good user interaction with Augur can be maintained on

circuits under 1000 Basic Logic Elements in size.

1.3 Research Goals

There are three goals for this research:

1. To explore the effectiveness of the concept of omniscience in improving the performance

of logic circuits,

2. To develop logic synthesis transformations applicable to commercial devices, and

3. To suggest logic circuit optimization strategies that can be applied by automatic CAD tools.

This research uses the concept of omniscience to improve the speed of logic circuits designed for

the Xilinx Virtex-E FPGA [7].

1.4 Organization

This dissertation consists of six chapters. Chapter two reviews the necessary background

information and terminology used throughout the document. After a brief summary of the user’s

view of the manual editor, the description of logic synthesis transformations provided by Augur is

given in chapter three.

In chapter four, Augur’s user interface is presented, along with all necessary information to

use Augur successfully. Augur’s user manual is followed by the description of the software design

of this work.

Chapter five presents results from the use of Augur in improving the speed of FPGA logic

circuits. The observations made by the author during this process are utilized to suggest optimization

strategies, which might be automated in CAD tools. The conclusion of this thesis and the avenues

for future work are presented in chapter six.

5

2 Background

2.1 Introduction

This chapter introduces concepts and algorithms from the field of logic synthesis required

as background to the work presented in this dissertation. Section 2.2 describes prior works related

to technology mapping of logic equations onto FPGAs. Section 2.3 describes physical synthesis

algorithms. The material covered in these Sections is relevant to the discussion about logic synthesis

transformations in chapter 3. We then describe the Xilinx Virtex-E FPGA, which is the target device

of this work. A short overview of the work of Chow and Rose [6], which is the basis for this

research, is given in Section 2.5.

2.2 Technology Mapping for FPGAs

Technology mapping is a step in logic synthesis in which specific logic components are

chosen to implement a desired logic circuit. The mapping of logic gates is performed with the goal

of either minimizing the number of logic components that are required to implement a logic circuit

or to maximize the speed at which the implemented logic circuit operates. Many works exist that

address both of these goals. However, this thesis focuses on improving the speed of logic circuits,

and therefore the following Sections will focus on describing the progress made in the technology

mapping with the goal of improving the speed of the logic circuit implementation.

This Section describes technology mapping algorithms starting with the basic approach to

technology mapping, followed by improvements made to it to increase the speed of the mapped

6

logic circuit. The three major topics in this Section are mapping logic functions into logic

components, reducing the estimated routing delay during technology mapping, and modifying the

representation of logic functions to explore a wider range of technology mapping possibilities.

Before any of the above topics can be discussed a common terminology used to describe

technology mapping algorithms needs to be presented. This is the purpose of the following

subsection.

2.2.1 Terminology

A logic circuit can be represented as graph that consists of nodes and directed edges. The

nodes in a graph that represents a logic circuit correspond to logic gates, primary inputs and primary

outputs. A directed edge (a, b) in a graph is present between a pair of nodes a and b if the output of

a node a is an input to node b. A primary input of a graph represents a primary input to the logic

circuit or an output of a flip-flop and has no incoming edges. Similarly, the primary output of a

graph corresponds to a primary output of the logic circuit or an input to a flip-flop and has no

outgoing edges [4].

For the remainder of this Section a graph representing a logic circuit will be considered to

be free of paths that start and end at the same node, also referred to a a graph without cycles. A

graph with directed edges and no cycles is called a Directed Acyclic Graph (DAG) [27].

In a DAG a node is said to be K-feasible [22] if the number of inputs to the node is less than

or equal to K. If all nodes in a graph are K-feasible then the graph is said to be a K-feasible graph.

In this Section we assume that a graph that is to be the input to the technology mapping algorithm

is K-feasible, so that any single node, or a group of nodes that implement a function of at most K

inputs, can always be implemented in a lookup table that has K inputs (K-LUT). The depth of a K-

LUT in a logic circuit is determined by the maximum number of K-LUTs on any path from any

primary input to that K-LUT. Therefore, the primary input has a depth of 0, while a node whose

inputs are only the primary inputs has a depth of 1.

The edges between the nodes in a DAG are directed edges and represent a connection

between a pair of logic gates. The connection has a source, which is the node where the directed

edge originates, and a destination, which is where the connection terminates. A set of connections

7

that have the same source are also referred to as a net.

In the following subsection the above terminology is used to describe several technology

mapping algorithms. The description of the technology mapping algorithms begins with the basic

approach to technology mapping.

2.2.2 Basic Approach

A basic approach to perform FPGA technology mapping, developed by Chen et. al. [21], uses

a DAG representation of a logic circuit as input and produces a functionally equivalent graph, where

each node is a K-LUT. The algorithms consists of two steps: labeling and mapping. In the labeling

step the algorithm traverses all nodes in the circuit in the topological order and assigns a depth to

each node. In the mapping step, the algorithm processes the nodes starting at the primary outputs

of the circuit towards the primary inputs. Each node encountered in this traversal is assigned to a

K-LUT. To decrease the number of K-LUTs on any path, the algorithm attempts to pack as many

gates as possible into the LUT, such that the depth of logic that is left for mapping is minimized.

This approach does not achieve a depth optimal mapping. There is a case for which this

algorithm fails to produce depth optimal solution. This case is shown in Figure 2-1. Consider a

mapping into a 3-LUT. It is clear that the group of logic gates near the output have more than 3

inputs so they cannot be put in the same 3-LUT. However, further analysis of the circuit reveals that

Figure 2-1: Sub-optimal solution produced
with the basic approach [4]

8

the entire circuit only has 3 inputs, therefore only one 3-LUT is required to implement it. An

algorithm that covers this case was introduced by Cong and Ding. Their Flowmap [4] algorithm,

which guarantees a depth optimal mapping in polymonial time, is presented in the following

subsection.

2.2.3 Depth Optimal Solution

The aforementioned problem is difficult to overcome using the basic approach, because

during the mapping stage the logic gates are processed from primary output to primary input to

reduce the LUT depth. To address that problem a mechanism known as the network flow [27] is

used.

Consider a directed graph G, where a node s has only outgoing edges and node t only

incoming edges. The network flow of such a graph determines the number of paths between s and

t. If each edge is allowed to be used only once then the network flow will determine the maximum

number of paths between nodes s and t that have no common edges. Each edge is assigned a

capacity, which represents the maximum flow per unit time that the edge can support. In the process

the network flow locates the place in the network where a minimum number of edges can be

removed to disconnect all paths from s to t.

The Flowmap algorithm, developed by Cong and Ding [4], uses the network flow to

overcome the problem illustrated in Figure 2-1. Similar to the basic approach, the Flowmap

algorithm processes the logic network in two phases: labeling and mapping. The difference is that

the network flow computation is utilized to determine the LUT depth that should be assigned to each

gate in the logic network.

The input to the Flowmap algorithm is a K-feasible DAG G, which represents the logic

network. Each node in G corresponds to a logic gate or a primary input, while each edge of G is a

connection between the output of one logic gate and the input of another. To determine the label

for each gate the graph G undergoes the following transformation to be suitable for use with the

network flow algorithm:

• a node s driving all primary inputs is created

• a node t is the node to be labeled. All nodes with label max{label(v) : v 0 inputs(t)} and

9

node t are put together to form node t’

• any node or edge of the graph that is not on a directed path from s to t is ignored

1 2• each node v, except s and t’, is split in two. The resulting nodes v and v are such that:

1• all input edges are assigned to v

2• all output edges are assigned to v

1 2• a directed edge from v to v is created. This edge is called the bridging edge [4].

In this new graph, G’, consider the bridging edges as outputs of logic gates. To find a mapping that

covers the node t’ the graph G’ must be divided, or cut, into two parts. One part contains the node

t’ and possibly a few other nodes, while the other part contains the rest of the graph G’. Cutting one

of the bridging edges means that the gate corresponding to the source of this edge will drive a LUT

that implements node t’. Finding a mapping that fits t’ into a K-LUT means separating the graph into

two parts by cutting only the bridging edges. One part of the graph must contain node s and the other

node t’. A successful mapping results in locating a cut of size K or less in the graph G’ by using the

network flow algorithm. If the cut is not found then a new LUT must be created to implement the

gate represented by node t.

The logic circuit implementation obtained by FlowMap is optimal under the assumption that

the delay between any pair of connected LUTs is the same.

2.2.4 Improving Flowmap

The assumption of the FlowMap algorithm that the delay on each edge is identical is not

always true. In fact, after placement and routing each connection in the logic circuit will have a

delay determined by the length of the connection and the number of connections driven by the same

source. To improve the speed of the logic circuit the delay of each connection between K-LUTs

must be considered. A modified version of the FlowMap algorithm that considers variable delay

between K-LUTs, called Edge-Map [22], was introduced by Yang and Wong.

There are two important differences between Edge-Map and FlowMap. First, the Edge-Map

1algorithm assigns a delay value to each edge. Second, the algorithm that divides a node v into v and

2 2v , does not assign all output edges to v . Instead, only edges that have a delay less than or equal to

2 1some delay value d are assigned to v . Other edges are assigned to v . This change causes edges with

10

longer delay to be realized within a LUT, reducing their delay to zero, leaving only edges with

smaller delay to connect the LUTs. The experimental results [22] have shown a 27.8% reduction

in logic circuit delay, based on post-placement estimates, when compared to FlowMap, with only

a small increase in logic circuit size.

2.2.5 Modifying Initial Representation

The result of the FlowMap algorithm relies heavily on the initial circuit representation. It

is important to note that the FlowMap algorithm, as well as the Edge-Map algorithm, try to optimize

the mapping of a logic circuit without resorting to exploring other logic gate networks that

implement the same functionality. Thus, the mapping may be optimal for a specific gate network,

but not necessarily optimal over all possible gate networks that can implement the same logic

circuit.

One method of addressing this problem is presented by Chang et. al. [12]. They propose

grouping logic gates that implement a function of 9-10 inputs and representing the logic function

as a Binary Decision Diagram (BDD). Then a set of mapping solutions is explored, by using the

Roth-Karp decomposition [23], to minimize the depth of LUTs needed to implement the logic

function. The work of Chang et. al. [12] showed that allowing some flexibility in the initial

representation of the circuit decreases the depth of LUTs needed to implement logic functions by

an average of 8 per cent on a set of 20 logic circuits.

The approach presented by Lehman et. al. [24] explores a wider variety of mapping

solutions. Instead of grouping logic and generating BDDs for each group, this work proposed

performing logic transformations on the entire logic circuit. Each transformation applied to the

graph produces alternate solutions that will be considered by the technology mapping algorithm. The

application of their approach on a set of 14 benchmark logic circuit showed a 34% reduction in logic

circuit delay when compared to SIS-1.2 [28].

2.2.6 Mapping Logic Functions into Complex Logic Structures

The mapping of logic functions into programmable logic blocks is a key step in technology

mapping. In the previous subsections, the mapping algorithms considered only a mapping that can

11

be realized in a single K-LUT. Most commercial FPGAs, such as the Xilinx Virtex-E [7] and the

Xilinx XC4000 devices [19], contain more complex logic structures. The generic logic structure for

both of these devices is shown in Figure 2-2, where F, G and H are LUTs.

Boolean matching approaches for logic structures in Figure 2-2 have been presented by Cong

and Hwang [26]. This dissertation focuses on the mapping approach for the Virtex-E type logic

block, in which the LUT H implements a multiplexor controlled by signal x.

To map a logic function f into the Virtex-E type logic structure a logic function

decomposition must be found such that f(X) = x@F + xG@G, where x0X. The logic function f can be

xG xmapped into the Virtex-E type logic structure when Shannon’s expansion [9] f(X) = xG@f + x@f can

xG xbe found for some x0X and each of the cofactors (f and f) can be implemented in LUT G and F

respectively.

In this work the approach of Cong and Hwang [26] is extended to cover more complex logic

structures. The logic structures and the algorithms for mapping logic functions into them are

presented in Chapter 3.

Figure 2-2: Generic Logic Block
Structure for Virtex-E and XC4000

series FPGAs

12

2.3 Physical Synthesis

The previous Section described technology mapping algorithms that focus on improving the

delay in the logic circuit as measured by the number of logic components on all paths in the logic

circuit. Some of the algorithms went one step further by attempting to model interconnect delay.

However, all of these works maintained a strict separation between the logic synthesis and the

placement and routing (P&R) stages. Thus, a logic synthesis optimization that appeared to be

beneficial from the logic synthesis point of view, may in fact be detrimental to the speed of the logic

circuit, once placement and routing is performed. Improving the interaction between the logic

synthesis and P&R to improve the synthesis of the logic circuit is the domain of physical synthesis.

Physical synthesis algorithms use an iterative approach to converge on a good design

implementation. Each iteration provides additional information about the final implementation of

the logic circuit that affects the choice of the logic synthesis optimizations. In this process it is

important to have a delay model so that the delay between logic components can be computed

accurately. Furthermore, methods of leveraging logic synthesis optimization and improving the

interaction between logic synthesis and placement and routing are needed.

We review works that study the means by which an accurate delay model for the connection

between logic components can be obtained, and then give examples of physical synthesis

algorithms. These algorithms present various methods of improving the interaction between the

logic synthesis and the placement and routing (P&R) stages to improve the speed of the logic circuit.

2.3.1 Estimating Net Delay to Improve Logic Synthesis

The physical synthesis approach performs iterations of logic synthesis and placement to

produce an implementation of a logic circuit. If a placement has been created after a first pass of

logic synthesis, an estimate of the delay of nets that connect logic components in the logic circuit

can be obtained. The delay of a net can be estimated using various different methods. The simplest

method, given placement, is to calculate the distance between the source and the destination of a

connection and use it as the delay estimator. On an FPGA this procedure is quite simple as the

distance between logic components can be measured by the number of rows and columns that

separate them, assuming that wires of fixed length are used. This method can be modified to take

13

into account wires of various lengths to better estimate the delay of a logic connection.

A recent work by Lin et. al. [2] uses the location of the source and the target LUTs, in which

a pair of gates reside, to estimate the delay between a pair of connected gates. Their mapping

algorithm uses this information to decide how to modify the assignment of logic gates to the LUTs,

such that the performance of the circuit is improved. The algorithm moves a gate from one LUT to

another, sometimes necessitating the creation of an additional LUT due to LUT’s input size

constraint. Every time a LUT is modified it is assigned a preferred location to guide the subsequent

placement iteration.

The work of Lu et. al. [10] suggests taking the type of gate and the size of the gate fanout

into account when estimating the delay of a net. Their algorithm utilizes these models in an attempt

to decrease the estimated critical path delay through logic synthesis and placement perturbations.

The results show a 17% reduction in post-placement logic circuit delay when these models are used

to estimate net delay in comparison to SIS-1.2 [28].

Each of the aforementioned works does have some inaccuracies in the delay model. In the

present work, as discussed in Chapter 3, commercial FPGA devices and tools are used to estimate

the net delay. The Xilinx FPGA Editor has sufficient knowledge of Xilinx Virtex-E devices to

accurately model every delay element in the FPGA.

2.3.2 Improving Interaction between the Logic Synthesis and the P&R

In the physical synthesis CAD flow the logic synthesis stage precedes the placement and

routing (P&R) stage. This is because the P&R stage requires logic components to be created before

they can be placed and routed. However, to perform good logic synthesis optimizations a logic

synthesis tool needs accurate net delay estimates, which are only available after placement and

routing. Similarly, the P&R stage must be aware of the intention of a logic optimization so that it

does not undermine the efforts of the logic synthesizer. Therefore, a close interaction between the

logic synthesis and the placement and routing (P&R) stages is essential for improving the speed of

logic circuits.

There are currently three types of approaches that address this issue. The first approach

applies synthesis and placement in an iterative process. The second method is for the synthesizer

14

to specify to the placer where to place the synthesized logic components. This enables the placer

to better understand the decisions made by the synthesizer, and possibly accommodate them. The

third option is to permit the placer to evaluate several alternate logic mappings so that their

placement can be considered.

The example of the iterative approach is given by Lin et. al. [2]. During each iteration the

mapping algorithm takes some of the gates from one LUT and places them in another, basing its

decisions on net delays between the gates. The new mapping is then placed again, using last

placement as a guide. The iterative application of synthesis and placement that strives to minimize

the number of logic changes in each consecutive iteration is shown to yield 12.3% speed

improvement, based on the post-routing delay using VPR [29] on a set of 10 logic circuits.

The work of Singh and Brown [3] proposes that the placer should be provided with an

incentive to situate logic components in a specific location on the device. Their approach starts with

a regular CAD flow to obtain a synthesized and placed logic circuit implementation. Then layout-

driven optimization techniques are used to reduce the delay on the critical paths. Each new logic

element, which is created in the process, is assigned a location that the placer aims to obtain for it

while minimizing the disruption to the entire logic circuit. This approach conveys the context in

which the synthesizer made its decision, thus allowing the placer to respond to it accordingly. The

results, based on a set of 10 logic circuits, presented in [3] show that performing logic re-synthesis

on small subsets of logic and assigning “preferred locations” [3] to newly synthesized components

improves convergence.

The previous two examples maintained the separation between the logic synthesis and the

placement stages. The approach proposed by Lou et. al. [1] breaks this boundary by having the

synthesis stage provide several mapping solutions for a subcircuit it considers to be good. The placer

then chooses the mapping solution to improve the speed of the logic circuit, since speed is easier

to estimate during placement and routing stages. This approach was tested on a set of 13 logic

circuits, using a 0.35µm ASIC library. The results have shown an average of 29% reduction in delay

and 5% increase in area.

The method applied in this thesis borrows from each of the three approaches. The iterative

process is used to let the user improve the circuit in an incremental fashion. The user is provided

15

Figure 2-3: An Island-Style FPGA Figure 2-4: Simplified view of a Virtex-E
slice

with detailed timing analysis and visual cues, such as rubber bands and visual representation of

circuit components on the device, to suggest the place the component should be situated. Finally,

the user can explore more than one logic optimization alternative while performing placement.

2.4 Xilinx Virtex-E device and Xilinx CAD tools

The algorithms described in previous sections focused on FPGA architectures that consist

of K-LUTs and flip-flops. The focus of this thesis is to examine the logic synthesis transformations

on a commercial FPGA. This Section describes logic structures specific to the Xilinx Virtex-E

architecture, which are central to the logic synthesis transformations proposed in this work. The set

of Xilinx tools, which are used to implement the logic synthesis transformations on a commercial

device and to provide omniscience, are described as well.

2.4.1 Xilinx Virtex-E Device Family

The FPGA devices in the Xilinx Virtex-E family [7] are island-style FPGAs, as shown in

Figure 2-3. The following subsections describe the Configurable Logic Block (CLB) of the Virtex-E.

The routing architecture is also described, as some of the optimization strategies hinge on its

features.

16

The Configurable Logic Block

The Xilinx Virtex-E CLB is the building block of the Virtex-E FPGA. The CLB is divided

into two slices, which contain two flip-flops, two LUTs, as well as carry and control logic, as shown

in Figure 2-4. The flip-flops in each slice must have common control signals: Clock, Set, Clear and

Enable. The Set and Clear control signals are either synchronous or asynchronous. Each LUT in a

slice can implement a 4-input logic function. More complex functions can be implemented by using

LUTs in conjunction with the carry and control logic. Depending on the configuration of the carry

and control logic, different functions are implemented by slices or the CLBs. The detailed diagram

of the Xilinx Virtex-E slice is shown in Appendix A.

The Routing Architecture

The routing architecture consists of four types of wires, which provide connections between

CLBs. Single length wires facilitate the connection between neighbouring CLBs. Connections

between more distant CLBs are realized using either length six wires, connecting CLBs six

rows/columns apart, or long wires that span the width and height of the device. The crucial type of

wire that is used by the optimization strategies is the Nearest Neighbour (NN) Interconnect [8].

The NN Interconnect is a dedicated set of wires that connects horizontally adjacent CLBs.

Figure 2-5: The Nearest Neighbour
Interconnect on the Virtex-E device

17

This interconnect has a very low delay and can significantly improve performance of the circuit

when used properly. This resource is limited to two pairs of unidirectional wires between each pair

of CLBs, as shown in Figure 2-5.

2.4.2 Xilinx FPGA Editor

The Xilinx FPGA Editor is a tool that allows the user to modify a placed and routed logic

circuit. It visually represents all the components of the chip and provides a set of functions that

enable design modification. In addition to logic circuit modification the FPGA Editor performs

timing analysis.

To modify a logic circuit in FPGA Editor, the user must specify a sequence of very specific

1 1 2 2changes to the logic circuit. For example, to move a LUT from location (x , y) to location (x , y),

the following set of commands must be entered:

1 11) Select slice at (x , y)

2) Remember the logic function implemented by the LUT and the input signals driving the

LUT

3) Remove inputs from the LUT

4) Remove the output of the LUT, but remember which components it was driving. If the LUT

provided a data signal to the local flip-flop, modify the flip-flop to receive external to the

slice data input.

2 25) Select slice at (x , y)

6) Input LUT equation into the slice

7) Connect input and output signals to the LUT. If one of the outputs drives the local flip-flop,

then remove the connection from the output net and reconfigure the slice to implement this

connection internally

It is obvious that making a significant number of changes in this manner is cumbersome. To give

the user the ability to make such modification by providing only an abstract request, such as move

1 1 2 2LUT from (x , y) to (x , y), Chow and Rose [6] developed a CAD tool called EVE that automates

most of these abstract tasks.

18

2.5 EVE - An Omniscient Placer and Packer

A prior work by Chow and Rose [6] introduced a manual editor, which targeted the Virtex-E

architecture. The EVent Horizon Editor (EVE) [6] enabled the user to modify the placement and

packing incrementally. After every modification EVE conducted timing analysis to inform the user

about the new circuit performance, thereby providing omniscience.

EVE relies on Xilinx FPGA Editor to extract the delay information from the design, since

Xilinx FPGA implementation tools encompass more detailed information about Xilinx devices. The

timing information in this environment is therefore accurate, so the performance gains obtained

using the manual editor are realistic. Furthermore, accurate timing information is necessary to

provide omniscience.

To modify a logic circuit with EVE the user must first synthesize, place and route a logic

circuit using commercial tools. The implemented logic circuit is then read by EVE and represented

visually as a set of connected logic components on an FPGA grid. The FPGA grid is represented as

a two dimensional array of rectangular cells, where each cell of the grid corresponds to a single

Virtex-E CLB.

To improve the logic circuit the user selects logic components and moves them into a free

location on the FPGA. The user can select a single component, or a group of components, to move

from one place to another. After each placement and packing modification EVE makes the specified

modification in the FPGA Editor, which holds the exact copy of the logic circuit. After the FPGA

Editor implements the requested changes it performs timing analysis. The results of timing analysis

are transmitted to EVE so that the user is informed about the new speed of the logic circuit.

The EVE software was applied to a set of 8 benchmark logic circuits to modify their

placement and packing. On this set of benchmarks EVE achieved a 12.7% improvement in logic

circuit speed.

In addition to the placement and packing modifications, EVE also assists the user with

pipelining of the logic circuit. EVE allows the user to specify where a flip-flop should be inserted

into the logic circuit and then determines if the specified location is valid. If the location for the new

flip-flop is valid, EVE inserts a flip-flop at the user specified location and at any other location that

requires a flip-flop to be inserted to preserve logic circuit functionality. The pipelining feature of

19

EVE was tested [25] on two logic circuits, improving their operating frequency by 3.53% and

42.24%.

2.6 Summary

This chapter presented prior work concerning physical synthesis. There are two key points

suggested by these works. The first point is that a close interaction between the logic synthesis and

placement and routing stages is necessary to improve the speed of the logic circuit. The second point

is that accurate timing information is crucial to make better logic synthesis optimizations.

In this thesis omniscience is the means by which a close interaction between logic synthesis

and placement and routing is achieved. The timing information that is used to provide omniscience

comes from commercial tools, which have accurate timing information for the device they target.

The work of Chow and Rose [6] is the basis for the manual editor developed in this thesis. The

manual editor is enhanced to provide the user with the ability to perform various logic synthesis

transformations in the context of omniscience.

21

3 Augur Context and Logic Synthesis Transformations

3.1 Introduction

The goal of this research is to improve the speed of the implementation of logic circuits on

FPGAs by providing the user with the most correct, and complete, feedback possible on the

consequences of manually specified logic transformations. If logic synthesis transformations were

made with the full knowledge of their final effect after routing then the final result would likely be

better.

The methodology adopted in this work is to first implement a logic circuit using commercial

logic synthesis, placement and routing tools and then let the user improve the speed of the logic

circuit through manually specified logic transformations. To make informed decisions the user is

provided with information about how each microscopic logic circuit modification affects the speed

of the circuit. This information includes the maximum circuit operating frequency, delay

distribution of all paths in the circuit, the function implemented by each logic component and the

placement of logic components. We term the ability of a CAD tool to provide the above information

after every microscopic modification as omniscience.

In this research we develop a manual editor, called Augur, which uses logic synthesis

optimizations in the context of omniscience to improve the speed of a digital circuit. The focus of

Augur is on microscopic logic transformations, such that the user can observe the effect of a single

logic transformation on the speed of the circuit. After each manual modification resulting in the

change in the netlist and placement of the logic circuit, the editor performs routing and timing

22

analysis and provides the user with instant feedback about the new circuit speed, our so-called

omniscience.

3.2 Implementing Logic Transformations with Augur

Before the logic synthesis transformations that are provided by Augur to the user are

described, the context in which they are used is presented. First, a brief description of the manual

editor is provided, focusing on how the user performs circuit modifications. Then the logic

transformations available in Augur are described in detail.

Augur presents the user with a picture of the logic circuit as shown in Figure 3-1. There are

three types of components shown: LUTs, carry logic and flip-flops. The LUTs are symbolized by

cyan rectangles with an icon, depicting a multiplexor, in the middle. The carry logic is represented

Figure 3-1: Logic circuit representation in Augur

23

in yellow with a plus sign (+) icon in the middle. The flip-flop is green with a flip-flop icon in the

middle. The user can select one or more of these icons to make logic circuit modification. The two

types of logic circuit modifications available are placement/packing and logic synthesis

modifications.

To make a placement modification the user selects a set of components that can then be

moved, retaining their relative positions, to a new location. Augur does not allow components to be

moved into illegal positions, such as moving a LUT into a carry chain slot. A successful logic circuit

modification causes Augur to perform the routing and timing analysis and return to the user with

the new logic circuit maximum operating frequency.

To perform a logic synthesis transformation the user selects a set of logic components and

attempts to employ one of a set of available logic transformations, by pressing the Transform

Figure 3-2: The SubCircuit view

24

button. This causes Augur to present the user with an alternate representation of just the selected

logic, as shown in Figure 3-2.

This view is termed the SubCircuit View, and it shows the logic subcircuit selected by the

user in isolation from the rest of the design. The inputs to the logic subcircuit are shown on the left

side of the screen, the subcircuit itself in the middle, while the outputs of the subcircuit are located

on the right side of the screen. The subcircuit itself is organized on the screen such that it presents

a topological view of the subcircuit, looking from left to right. The user can select the components

in this view and perform logic synthesis transformations on them, causing the creation of a different

netlist of components (still with LUT, carry and flip-flop cells).

At any point during the resynthesis process, the user may attempt to place currently

synthesized subcircuit - this is an important issue as once the netlist has been changed by a logic

Figure 3-3: The Placement view used during resynthesis

25

synthesis transformation the old placement is no longer valid. By selecting a component in the view

in Figure 3-2 and pressing the Tab key, the selected component is shown on the FPGA grid, allowing

the user to select a suitable placement for it. The placement view is shown in Figure 3-3. Once the

user places all logic components of the subcircuit, the user can press the Accept button for the

changes to take effect. This will cause Augur to perform the routing and timing analysis and provide

the user with the new maximum operating frequency.

Augur provides a total of five types of logic transformations: remapping, logic duplication,

merging, carry chain shortening, and register control signal extraction, as described in the following

Sections.

3.3 Remapping

The remapping operation attempts to transform a selected set of logic components into a

functionally equivalent set that fits into a slice or a CLB of the Virtex-E FPGA. The following

subsections describe two remapping algorithms: Carry Chain Mapping and Multiplexer mapping.

3.3.1 Carry Chain Remapping

The Virtex-E slice contains logic capable of directly implementing an arithmetic carry chain

[7]. This same logic can be configured to implement an AND or an OR gate, such that non-

arithmetic functions can utilize the carry chain to improve the speed of the logic circuit.

 The carry chain logic in the Virtex-E slice is a set of multiplexors (coloured in yellow in

Figure 3-4) that connect the two LUTs together, as shown in Figure 3-4. This structure, referred to

as the carry chain structure, can be manipulated to implement an AND or an OR by assigning

constant values to inputs CY0F, CY0G and CIN. To convert the carry chain into an AND gate the

inputs CY0F and CY0G are set to 0, while CIN is set to 1. This transformation implements a

function FCG, where F and G are the functions of LUTs F and G in the slice. An OR gate is

implemented when the inputs CY0F and CY0G are set to 1, while CIN is set to 0. This implements

a function F+G.

The advantage of using the carry chain structure is that a pair of serially connected LUTs can

sometimes be converted into a parallel pair of LUTs connected through a fast AND or OR gate

26

implemented in the carry logic. Since the carry multiplexor is very fast, the transformation leads to

an overall reduction in delay if the original pair of LUTs is on the critical path.

Consider the example pair of LUTs (A and B) illustrated in Figure 3-5, which shows the

logic function of each LUT as a schematic inside each LUT box. The highlighted AND gate at the

right of LUT A can be implemented in the Carry Chain of Figure 3-4 because one of its inputs

comes directly from LUT B. Figure 3-6 illustrates the isolation of this AND gate and Figure 3-7

shows the final implementation of the function using the carry chain to implement an AND gate.

To determine if a pair of serially connected LUTs can be mapped into a slice, the AND gate

Figure 3-4: Virtex-E Carry Chain Structure

Figure 3-5: Sample circuit to be mapped into a carry chain configuration

27

(or OR gate) must be found, as shown in Figure 3-6. The search process is performed using

Shannon’s expansion of LUT A’s function with respect to LUT B. Let A be the function of LUT

1 2 3A, and B be the signal generated by LUT B. The inputs to A are x , x , x and B. From Shannon’s

theorem [9] the following equation is obtained:

1 2 3If the function A(x , x , x , 1) evaluates to a constant 0, then the equation (1) reduces to:

which produces the desired AND gate that can be mapped into the carry chain of the slice.

1 2An OR gate can be detected by following a similar procedure. When the function A(x , x ,

3x , 1) in equation (1) evaluates to 1 then the following simplified equation is obtained:

which produces the OR gate to be implemented in the carry chain of the slice.

The algorithm in Figure 3-8 determines if a pair of serially connected LUTs can be

transformed in this manner. Its input is a user-selected pair of serially connected LUTs, and the

output is either the mapping of those LUTs into a slice, or a declaration that the mapping is not

possible.

Figure 3-6: AND gate extracted
from the forward LUT

Figure 3-7: Final implementation
in carry chain configuration

(1)

(2)

(3)

28

In addition, it is possible to map a pair of serially connected LUTs in which the LUT B has

fanout greater than 1. Notice that the carry chain configuration in Figure 3-4 allows the bottom LUT

to produce an output signal through pin X. To properly generate this secondary output it may be

necessary to add a single LUT that inverts the output of pin X, since the function of LUT B may

need to be inverted to implement an AND gate (or an OR gate) in the carry chain.

3.3.2 Multiplexor Mapping

The Virtex-E slice also contains fast multiplexors that combine the output of two or more

LUTs to implement complex logic functions. In this Section a basic approach for mapping single

output logic functions into multiplexor-based logic structures is presented, followed by the enhanced

algorithm that maps multi-output logic functions into multiplexor-based logic structures.

The Basic Approach

The basic approach to multiplexor mapping allows a single output logic function to be

implemented in a multiplexor based structure using Shannon’s decomposition. The approach for

Input: A pair of series-connected LUTs A and B, with LUT B driving LUT A.
Output: On success, a mapped slice with the same functionality of A & B, but

mapped into carry logic

Let A be the function of LUT A, and B be the function of LUT B.

0f = Shannon expansion of A with respect to B=0

1f = Shannon expansion of A with respect to B=1

0 1if either f or f is a constant (i.e. is 0 or 1) then
it is possible to map A and B into a slice:

0 1let h be the cofactor (f or f) that is not a constant
implement h in the top LUT of the slice, inverting if necessary

as per section 2.1
implement B in the bottom LUT
create a LUT that inverts the output of LUT B if B uses output pin X
return function_implemented_in_slice

else
return fail.

Figure 3-8: Algorithm for mapping an AND or an OR gate into the carry chain

29

mapping logic function into a structure with a single multiplexor that joins the output of two LUTs

has been presented before by Cong and Hwang [26]. This section presents the approach which

allows a mapping into such a structure and extends it to a more complex logic structure that contains

three multiplexors.

The first structure that makes use of the fast multiplexors is the Joint-LUT structure, shown

in Figure 3-9. This structure can implement a logic function containing up to 9 inputs. To implement

a 9-input logic function, the function has to be decomposed to determine if the mapping into the

Joint-LUT is possible. The decomposition process determines if it is possible to break up the logic

function into a multiplexer driven by two 4-input LUTs. We use Shannon’s decomposition theorem

[9] to perform the decomposition of the logic function. The basic idea is to perform Shannon’s

Figure 3-9: The Joint-LUT structure

1 nInput: A logic function f(x ,...,x)
Output: A mapped Virtex-E Slice that implements f in a Joint-LUT structure

ifor all variables x in f do

0 if = cofactor of Shannon’s Expansion of f with respect to x =0

1 if = cofactor of Shannon’s Expansion of f with respect to x =1

0 1if (f fits in a LUT and f fits in a LUT) then

0implement f in top LUT of the Joint-LUT

1implement f in bottom LUT of the Joint-LUT
exit

end do

Figure 3-10: Basic Joint-LUT mapping algorithm

30

expansion with respect to every variable of the function [26]. A valid mapping of the 9-input

function into the Joint-LUT structure is found when both cofactors of the function in the Shannon’s

expansion are functions with at most 4 inputs. The algorithm is summarized in Figure 3-10.

The advantage of using the Joint-LUT structure is that it exploits parallelism, which can

reduce the delay of signals passing through it. For example, when a pair of serially connected LUTs

is mapped into this structure, the function of both LUTs in the Joint-LUT structure is evaluated

simultaneously. Thus, the delay through the Joint-LUT structure is the delay of one LUT plus the

delay of the dedicated multiplexer. A pair of serially connected LUTs has a longer delay, which is

equal to the delay through the two LUTs plus the routing delay between the LUTs.

It is possible to implement even more complex functions by merging two Joint-LUT

structures with a multiplexer available in the Virtex-E CLB, as illustrated in Figure 3-11. This will

be called the Joint-Slice structure. The Joint-Slice can implement some logic functions with up to

19 total inputs. The mapping algorithm is very similar to the Joint-LUT mapping algorithm above,

except that after Shannon’s decomposition of the logic function f the algorithm looks for a

0 1successful mapping of each cofactor, f and f , into a Joint-LUT structure instead of a LUT.

Multiplexor Mapping with Multiple Outputs

The basic method of mapping logic functions into multiplexor-based logic structures allows

logic functions to be implemented in a Joint-LUT or a Joint-Slice structure. The work of Cong and

Figure 3-11: The Joint-Slice structure

31

Hwang covered the case for the Joint-LUT, which we extended to the Joint-Slice structure. A more

important contribution of our multiplexor mapping algorithm is its ability to implement logic

functions with multiple outputs in the Joint-LUT and the Joint-Slice structures, as shown in Figure

3-12. The following discusses how the basic algorithm is modified to provide this ability.

Figure 3-9 shows that the Joint-LUT structure pin X produces the multiplexor output for the

structure. In addition to this output the structure has a secondary output that is generated by pin Y.

Notice that pin Y corresponds to the function of the top LUT in this structure. Because the logic

function implemented produced through the multiplexor, and therefore output through pin X,

depends on the function of the top LUT, the logic function produced by pin X will be termed the

primary output function.

To map a logic function with two outputs into the Joint-LUT structure we must first

determine the primary and the secondary output function. This can be done by checking which

function is a subfunction of the other. Then the algorithm proceeds to decompose the primary output

function using Shannon’s decomposition, but a successful mapping is considered to be found if and

only if one of the cofactors of the expansion implements the secondary output function. The

algorithm is summarized in Figure 3-13.

Note that this algorithm will be unable to map structures like those illustrated in Figure 3-14,

even though this is a correct mapping. This is because during Shannon’s expansion one variable is

Figure 3-12: Example of mapping a 2 output logic function into the Joint-LUT structure

32

removed from the equation of each cofactor and it is assigned to drive the multiplexer selector input.

However, the case shown in Figure 3-14 requires the variable f to drive both the selector input of

the multiplexer and the top LUT.

3.4 Duplication

The second transformation available in Augur is duplication, which creates a copy of a

selected component. By duplicating a component on the critical path, one can increase the freedom

1 nInput: a function f(x ,...,x) with up to two outputs

1 nOutput: a Joint-LUT structure that implements f(x ,...,x)

Let t be the primary output function
Let s be the other function

iFor all variables x in function t

xi it = Shannon’s Expansion of t with respect x = 1

xGi it = Shannon’s Expansion of t with respect x = 0

xi xGiif (t fits in a single LUT) and (t fits in a single LUT) then

xi xGiif (|F| = 2 and (t = s or t = s)) or (|F| = 1) then

xi xGi imap t and t into LUTs and apply signal x to the selector
input of the multiplexor

end for

Figure 3-13: Mapping a multi-output logic function into the Joint-LUT structure

Figure 3-14: Mapping solution not found by the
algorithm

33

Figure 3-15: Circuit before
duplication

Figure 3-16: Circuit after
duplication

to position and route critical connections [4][13]. Logic duplication is a particularly useful feature

that enables the use of fast Nearest-Neighbour (NN) interconnect for critical connections.

For example, consider the circuit in Figure 3-15. The critical path starts at a flip-flop at

location (5,5) and goes through the LUT at location (4,6). Generally, a good strategy is to put critical

connects on NN interconnect to speed them up, but in the current placement this strategy cannot be

used, because the first LUT on the critical path is not in the adjacent CLB. Moving the flip-flop from

(5,5) to (5,6) permits this connection to use the NN interconnects, but removes the NN connections

from the LUTs at (7,5). By duplicating the flip-flop and LUT at (5, 5) and placing them in the CLB

at location (5,6), as shown in Figure 3-16, NN connections can be used for all outputs of the flip-

flop.

3.5 Merging

It is sometimes beneficial to reverse duplication that has occurred in previous synthesis,

which is allowed in a transformation called merging. For example, after the placement and routing

it becomes clear that the distribution of connections between two duplicated components is causing

the performance to suffer. This is because duplication during logic synthesis cannot predict the final

placement of the circuit.

Merging can be used to redistribute connections between duplicate components. To do this

the user selects a pair of identical logic components and uses the merging transformation to merge

34

Figure 3-17: Critical path before the
application of carry chain shortening

Figure 3-18: Circuit after carry
chain shortening

them. Once the components are merged, the user applies the logic duplication transformation to

recreate the two logic components, but with a different connection distribution.

3.6 Carry Chain Shortening

Carry chains have long been part of FPGA architectures [19][20] because they provide a

high-speed path for long bit addition and other arithmetic operations. Their use often reduces the

delay along the critical path, or removes the arithmetic operation from the critical path entirely.

They come with some drawbacks, however, that reduce their positive impact: most importantly,

carry structures force the logic blocks that use them to be a fixed vertical or horizontal structure.

This lack of flexibility is the flip side of the greater speed of connectivity.

In addition, the blind use of a full carry chain may prevent other beneficial optimizations.

For example, consider the circuit in Figure 3-17, which illustrates a 4-bit carry chain that feeds one

more 2-input LUT and then a flip-flop. Assume that the most significant bit of the carry chain,

including the LUT, implements a 3-input function. The most significant bit calculation, including

carry, and the final 2-input LUT function can all be implemented in a single 4-input LUT as

illustrated in Figure 3-18. This operation is called carry chain shortening, as it removes the carry

primitive from the top of the chain. Most synthesis tools are not permitted to optimize carry

primitives away, and so this opportunity is typically unexplored. It may also be possible to shorten

the carry chain at the least-significant bit end, if for some reason that bit is part of a critical path.

35

Figure 3-19: Two registers with
incompatible control signals

Figure 3-20: Control signal
functionality implemented in LUTs

The procedure to test if this optimization is possible is quite straightforward.

3.7 Flip-flop Control Signal Extraction

Recent versions of synthesis tools [14] have used flip-flop control signals to implement

greater logic functionality in a single slice. For example, attaching a logic signal to a flip-flop’s

synchronous clear input has the effect of ANDing that signal with the flip-flop’s D input. While this

kind of optimization can be beneficial with respect to logic depth, it can also have a negative

side-effect: a flip-flop synthesized this way cannot be packed into a slice with another flip-flop that

does not use exactly the same clear signal, as shown in Figure 3-19. This poses a restriction on the

packer and may degrade the final performance.

The alternative, which is implemented as a logic synthesis transformation, is to implement

the synchronous clear function in a separate LUT, as shown in Figure 3-20. This certainly costs extra

logic, but it can potentially improve speed because it increases the packing flexibility and therefore

local connectivity and access to NN interconnects.

3.8 Summary

This chapter presented the logic synthesis transformation available in Augur. These

transformations are used in the context of omniscience to improve the speed of the logic circuit.

Each logic transformation is designed specifically for the Xilinx Virtex-E device, taking advantage

36

of the design of the Virtex-E slice to implement complex logic functions with low delay.

The logic synthesis transformations described here are provided by the manual editor, which

allows the user to apply these logic transformations in the context of omniscience. The user

experience with the manual editor and the explanation of the method the user can apply are the

topics of the next Chapter.

37

4 The User Experience with the Manual Editor

4.1 Introduction

The previous chapter introduced a set of logic synthesis transformations that Augur

performs. These transformations take advantage of the CLB design of the Virtex-E and focus on

improving the speed of the logic circuit. This chapter focuses on how Augur provides the user with

omniscience and how the logic synthesis transformations are used in the context of omniscience.

Providing omniscience requires a CAD tool to perform routing and timing analysis after

every logic synthesis or placement transformation. In addition, a CAD tool must provide all

information about the implementation of a logic circuit. In this work omniscience is provided

through a manual editor called Augur, which is capable of implementing various physical and

logical transformations. Augur provides the user with detailed information about the design

implementation at every step of the improvement process.

The input to Augur is a placed and routed logic circuit. The user uses placement, packing

and logic synthesis transformations to improve the operating frequency of the logic circuit. The

output of Augur is a new placed and routed logic circuit. The logic circuit produced by Augur can

be used by commercial tools. The speed of the logic circuit will be as reported by Augur, as the

results obtained by Augur are verified by commercial tools at every step of the optimization process.

4.2 Getting Started

To create an input file for Augur the user must first synthesize the logic circuit into an EDIF

38

file format and then use Xilinx Place and Route tool (called PAR) to generate placement and

routing for it. The synthesis of the logic circuit must follow three rules:

1. There can only be one clock signal, because Augur does not perform timing analysis of logic

circuits with more than one clock.

2. The Synthesis Tool must be set to not create I/O pins, because Augur is intended for use with

small modules. It is expected that the placed and routed module will be instantiated in a

higher level logic circuit. The assignment of pins should happen at a higher level, because

not all input or outputs of the logic circuit will be connected to I/O pins.

3. The primary output nets must have the prefix “END_”, to allow Augur to distinguish them

for other non-I/O nets.

The logic circuit synthesized this way into an EDF file can then be used to generate placement and

routing for the logic circuit using the PAR program. The PAR program will generate an NCD file,

which contains the synthesis, placement and routing information about the logic circuit.

The user starts the manual editor with the following command entered in the MSDOS

prompt:

editor <filename.ncd>

where the <filename.ncd> is the complete filename for the logic circuit that is to be improved.

The manual editor will launch the Xilinx FPGA Editor in the background and display

Augur’s graphical user interface. The following Sections present how the user utilizes the graphical

user interface to interpret the data provided and to improve the speed of the logic circuit.

4.3 Augur’s Graphical User Interface

Augur’s graphical user interface consists of three distinct views: the Placer/Packer view, the

SubCircuit view and the SubCircuit Placer view. When the user first starts Augur, the placer and

packer view is presented. The placer and packer view allows the user to modify and see the

placement and packing of a logic circuit to improve its speed [6]. In this view the user selects a set

of components and moves them to a different location on the FPGA. The SubCircuit view adds the

ability to resynthesize the logic circuit, while the SubCircuit Placer view allows the user to place

the new netlist created by logic synthesis transforms.

39

To demonstrate how the user utilizes all of these views, and the functions provided with

them, the following subsections will show an example of how each view is used. In each subsection

a specific view will be described, showing the information that can be gathered from it. This

information assists the user in making an informed optimization decision.

4.3.1 The Placer and Packer View

The Placer and Packer view presents an abstract view of the circuit using three types of cells:

LUT, Carry, and Flip-Flop. The LUT cell is a cyan rectangle with a multiplexor icon in the middle.

The Carry cell is a yellow rectangle with a plus sign in the middle, while the Flip-flop cell is a green

rectangle with a Flip-Flop icon in the center. An example view is shown in Figure 4-1.

The components highlighted in red, and the highlighted arrows between them, show the

critical path of the logic circuit. After analyzing each component on the critical path the user may

modify the logic circuit by moving a component on the critical path to a different location so that

Figure 4-1: The Placer and Packer View

40

the delay on the critical path is reduced. When the user moves a component that is on the critical

path, the manual editor will immediately implement the requested operation, if it is valid, and

perform timing analysis to provide the user with the update logic circuit speed.

The most effective method of achieving the delay reduction through placement and packing

changes is to create placement that allows connections between logic components to utilize the

Nearest-Neighbour (NN) interconnect [8]. To do this the user must place logic components

horizontally across the CLB boundaries. In the view these boundaries are marked by vertical white

lines. To better see the CLB boundaries, and the logic circuit components, the user can scroll or

zoom the Placer View using the view controls.

The View Controls

The view controls, shown in Figure 4-2, consist of buttons which allow the

Placer and Packer view to shift up, down, left and right, as well as perform a zoom

in and zoom out operation. The four buttons in the top right corner of the window

cause the view to shift Up, Down, Left, and Right. To perform a zoom operation

the user can use the Zoom In/Zoom Out pair of buttons, the Window button or

the Zoom Fit button. The Zoom In/Zoom Out buttons cause the view to zoom in

(or out) towards the center of the view. The Window button enables the user to

use the mouse to select the area of the design to be enlarged. The same effect is

achieved by pressing the right mouse button in the view area, selecting an area to

zoom into and then pressing the left mouse button. Finally, the Zoom Fit button

causes Augur to display the entire logic circuit in the view area. This option is

very useful as it gets the user out of the zoom, making it easy shift focus to a different location in

the design quickly.

At this point in the optimization process the user has identified the critical path and zoomed

in the view to better observe why the highlighted path has the longest delay and determine if

anything can be done to remedy the situation. To proceed further, more information needs to be

gathered so that the next step of the optimization can be determined. There are three ways in which

the user can obtain information: visual inspection, delay profiling and information dialog box.

Figure 4-2:
View Controls

41

Visual Inspection

The user can visually inspect the connectivity of logic components as well as the delay

information for a subset of longest paths in the logic circuit. The Net button enables the user to

observe all, some or no connections between logic components. Initially, the Placer View does not

show any connection between components. This is indicated by the state of the Net button (None).

The user can toggle the Net button to be in two other states: Selected and All. When the Net

button is in “Selected” state, only the connections for selected components are shown, while in the

“All” state every connection in the logic circuit is shown. The “Select” option is the most useful as

it shows the user only the connections for the components of interest. The “All” option is useful to

determine possible areas of high connectivity.

By looking at the fanout of a single component, the user can determine if it may be

beneficial to use logic duplication to reduce the fanout of the logic component in question. A

component with a large number of arrows that fanout from it is usually a good candidate for

duplication. Furthermore, by locating the logic components that drive the selected component, the

user can locate components that may be identical. Identical components will have the same type

(LUT, Carry, or Flip-Flop) and will be configured the same way, which would make them possible

candidates for merging.

Delay Profiling

In addition to visual inspection, Augur provides the user with the ability to determine the

location of paths whose delay is in a user-specified range. Each path starts at a flip-flop or a primary

input and ends at a flip-flop or a primary output. Knowing where these paths are located helps in

selecting an appropriate logic optimization approach. There are two tools provided by Augur to help

the user determine the delay and location of paths in the logic circuit: the delay profile and the delay

budget [6].

The delay profile is a histogram of paths and their delays. Each path is associated with a bin,

where a bin has an upper and a lower bound on the delay of paths that belong to it. The delay profile

for the example in Figure 4-1 is shown in Figure 4-3. The bins are arranged so that bin 1 contains

all paths which operate within a speed of 1 MHz of the critical path, while every consecutive bin

42

speed range grows by 50%. This arrangement of bins allows the user to determine the overall

number of paths that are close to critical and then use the delay budget to locate these paths in the

logic circuit.

The delay budget is the means by which Augur displays paths that do not meet the timing

constraints. The Options window, shown in Figure 4-4, allows the user to specify the delay budget

at any time. To specify the delay budget for the logic circuit, the user must press the Options button

and then enter the logic circuit delay in the delay budget edit box [6].

Once the delay budget is set all paths in the logic circuit with the delay longer than specified

by the budget are highlighted. The user can use the Hilt button to toggle the display to show only

the critical path, the paths that do not meet the timing budget or no paths.

The Hilt button has three states: None, Max and Slow. The None state disables highlighting

of paths in the logic circuit, while the Max state displays only the longest path in the logic circuit.

The Slow state is used to displays all the paths that have the delay longer than the specified budget.

The budget can be set to any delay value. However, using the delay profile to pick a good

delay budget aids the user in improving the speed of the logic circuit. For example, the logic circuit

in Figure 4-1 has the delay profile shown in Figure 4-3. By setting the delay budget to show all the

paths in bin 1, by setting the delay budget to 6.899ns, highlights the nine critical paths. Figure 4-5

shows the critical paths using the highlighting ability of Augur.

One of these paths traverses the carry chain, near the left edge of the figure, while the

remaining eight paths start at the same flip-flop, go through three common LUTs and then fanout

Geometric bin delay profile :
Bin 9: 3.308ns-4.553ns (302.337MHz-219.613MHz), count = 1239
Bin 8: 4.553ns-5.384ns (219.613MHz-185.734MHz), count = 855
Bin 7: 5.384ns-5.938ns (185.734MHz-168.413MHz), count = 877
Bin 6: 5.938ns-6.307ns (168.413MHz-158.556MHz), count = 523
Bin 5: 6.307ns-6.553ns (158.556MHz-152.601MHz), count = 249
Bin 4: 6.553ns-6.717ns (152.601MHz-148.874MHz), count = 78
Bin 3: 6.717ns-6.826ns (148.874MHz-146.489MHz), count = 56
Bin 2: 6.826ns-6.899ns (146.489MHz-144.940MHz), count = 21
Bin 1: 6.899ns-6.948ns (144.940MHz-143.926MHz), count = 9

Figure 4-3: Delay profile showing nine delay bins

43

into two different directions. These paths overlap the longest path in the logic circuit, shown in

Figure 4-1. Therefore, improving the performance of the logic components that are shared between

the eight paths would improve the performance of eight critical paths.

One way to attempt improving the speed of these critical paths is to move the originating

flip-flop one row up, so that the Nearest Neighbour interconnect can be utilized. However, the flip-

Figure 4-4: The Options window

Figure 4-5: Critical paths with delay greater than specified budget

44

flop is driven by the carry chain structure and moving it from its current location significantly

increases the delay of paths passing through the carry chain. Moving the LUTs one row lower and

to the right is also not a good idea as some of the critical paths will have their delay increased.

Therefore, the only alternative is to search for a logic transformation that will decrease the delay on

these eight paths. To find out if some of these logic components can be resynthesized such that the

delay through them is decreased the user needs the information about the logic function these

components implement. This is obtained using the Logic Component Information box.

Logic Component Information Box

The information box displays all information about the implementation of logic components.

The dialog box contains a scrollable list, which lists the logic function implemented by LUTs, the

configuration of carry chain components and the settings associated with flip-flops. In addition, each

input connection between the logic components is given with the delay associated with it.

The logic function implemented by the first two LUTs on the critical path of Figure 4-1 is

given in the information box in Figure 4-6. The first LUT on the critical path is the LUT

implemented in the bottom half of the slice, also known as LUT F. The second LUT is implemented

Figure 4-6: Information box

45

in the top LUT of the same slice, also known as LUT G. Figure 4-6 states that the LUT G

implements an OR function, while the arrow connecting these logic components in the Placer View

indicates that one of the inputs to LUT G is the output of LUT F. This means that the entire function

has 5 inputs. Therefore it may be a candidate for a Joint-LUT mapping, described in Section 3.3.2.

To perform a logic transformation the user must select the two LUTs and then press the Transform

button.

Transform Button

This button allows the user to select one the logic transformations available in Augur. When

pressed the menu on the right hand side of the window presents the user with the following options:

1. Back - do not perform any logic transformation

2. Duplicate - perform logic duplication

3. Merge - perform logic merging

4. Remap - initiate logic remapping, which includes carry chain shortening

5. Ctrl Ext - perform flip-flop synchronous control signal extraction

Selecting any logic transformation switches the view to the SubCircuit view, where the user is able

to perform logic synthesis transformations. In this example, the user chooses the Remapping

transformation.

4.3.2 The SubCircuit View

The SubCircuit view is the means for the user to see the dependency between logic

components and select subsets of these components to perform logic synthesis transformations.

Once the logic transformations are completed the user must switch to the SubCircuit Placer view

to place the logic components. Once this process is complete the user presses the Accept button to

implement the specified changes in the logic circuit and obtain the new logic circuit speed.

Alternatively, the user can press the Reject button to abort the resynthesis procedure.

The SubCircuit view is organized such that the logic sub-circuit selected in the Placer and

Packer view appears in the topological order from the left to the right side of the screen. The logic

synthesis transformations that can be selected in this view are shown on the right hand side of the

46

screen in the form of buttons. When the user selects a set of components and presses one of the

buttons responsible for a logic synthesis transformation, Augur will attempt to implement the

selected logic components using the selected logic synthesis transformation.

The SubCircuit view for the logic components selected in Figure 4-5 is shown in Figure 4-7.

To perform a logic synthesis transformation that implements these components in the Joint-LUT

structure the user must select both components and press the Joint-LUT button. A successful

transformation will generate the view shown in Figure 4-8.

In this view the dark gray box, which contains the two LUTs, represents a placement

dependency between the two LUTs. These two LUTs have been implemented such that a Joint-LUT

structure is formed. Therefore, when these LUTs are placed they must be in the same slice and in

the same relative position. Augur will always keep track of the relative position of these components

and will not allow them to be placed separately. To place the Joint-LUT structure created by the

Figure 4-7: The SubCircuit view

47

logic synthesis transformation the user must select the structure and press the TAB key. This action

switches the view to the SubCircuit Placer view, where the user is able to look at the logic circuit

and place the newly synthesized components in a suitable location.

4.3.3 The SubCircuit Placer View

The SubCircuit Placer view provides the means for the user to place the re-synthesized logic

components into the logic circuit. The SubCircuit Placer view does not allow components that are

not part of the subcircuit to be moved. Once the placement for every logic component is specified,

the user may press the Accept button in order for the change to take effect, or press the Reject

button to abort the logic transformation entirely. Figure 4-9 presents the SubCircuit Placer view with

a placed Joint-LUT for the example in Figure 4-8.

The SubCircuit Placer view is similar to the Placer and Packer view, except that once a logic

Figure 4-8: The SubCircuit view after a logic transformation

48

component is placed the manual editor will not implement the desired change until the user presses

the Accept button. As a consequence, the logic components that are not a part of the subcircuit are

grayed-out to signify that they cannot be moved.

To help the user place the logic component rubber bands are shown whenever a logic

component is being moved in the SubCircuit Placer view. The rubber bands are semi-transparent

arrows that show the sources and targets of connections associated with a particular logic

component. The rubber bands only show connection to placed logic components. Therefore, if a

logic component is being placed that has a connection to another logic component that is not yet

placed, then the rubber band that corresponds to the connection between these logic components

will not be shown.

The user can also remove logic components from the SubCircuit Placer view. To perform

this action the user must select the desired component and make it move. While the SubCircuit

Figure 4-9: SubCircuit Placer view

49

Placer view is moving the selected logic component and the user presses the TAB key the user will

be returned to the SubCircuit view and the selected component be removed from the SubCircuit

Placer view.

In Figure 4-9 the placement for the resynthesized logic has been selected. Since all of the

logic components have been placed the user can now press the Accept button to see the result of

implementing the logic synthesis transformation. The result of this transformation is presented in

Figure 4-10. This action takes the user back to the Placer and Packer view.

Once back in the Placer and Packer view the user can observe the effect of the logic

synthesis transformation on the speed of the logic circuit. From this point the process of logic circuit

modification becomes iterative. The user can again focus on a logic subcircuit, gather information

about it and select a logic circuit modification that best suits the given situation. Once the user has

completed all modifications, or the desired logic circuit speed is achieved, the file commands can

be used to save the logic circuit.

Figure 4-10: The Placer and Packer view after accepting
the logic synthesis transformation

50

4.4 File Commands

While working with the manual editor, the user can keep intermediate results by using the

Save button. The save button allows the user to create a copy of the logic circuit and save it in a

NCD type file, which can be processed by Xilinx tools. This operation will not change the logic

circuit source file unless the name of the file the logic circuit is to be saved to is identical to the

initial file name.

It is helpful to manually save the logic circuit on occasion, as it allows the user to go back

to the logic circuit implementation that the user considered to be good. Another option which allows

the user to do a similar thing is the Undo. By pressing the Undo button the manual editor will

immediately undo the last logic circuit modification, restoring logic synthesis, placement and

routing of the logic circuit. The Undo command is capable of undoing all logic circuit modifications

that occurred since the start of the program.

4.5 Leaving Augur

To quit Augur press the Exit button at any time. The manual editor will close the user

interface, close the FPGA Editor that was opened at the start of the program and return control to

command prompt. If the logic circuit was modified since the last save operation, the program will

ask if the user wishes the logic circuit to be saved before quitting.

4.6 Software Organization

The previous Sections of this chapter presented the user experience with Augur. In this

Section the software design of Augur is described briefly.

Augur consists of four modules: the Graphical User Interface (GUI), the manual placer and

packer, the synthesis module, and the FPGA Editor Interface, as shown in Figure 4-11. The GUI

provides the means for Augur to communicate with the user and present data necessary to improve

the speed of the logic circuit. The commands are relayed from the GUI to the manual placer and

packer, which enables the user to modify the placement and packing of a logic circuit. In a case

where the user request a logic synthesis change, the manual placer and packer forwards that request

51

to the synthesis module.

Upon receiving a logic synthesis change request the synthesis module accesses the data

structures, which represent the logic circuit to obtain a complete picture of the subcircuit that is to

be modified. The subcircuit is then modified according to user specifications. The synthesis module

then asks the user to perform placement of new logic components by asking the manual placer and

packer to provide access to the proper GUI view, as described in Section 4.3. Once the modification

is accepted by the user the synthesis module transfers the logic circuit modification back to the

manual placer and packer.

To transfer the logic circuit modification incrementally the synthesis module uses the data

structure in Figure 4-12. The data structure in Figure 4-12 represents a list of actions that need to

be performed on the logic circuit to implement the logic circuit modification. The type field

specifies what kind of modification is requested, such as add or delete a net. The

transformation_data field provides detailed information about the action that needs to be performed.

For the case of adding a net, the source pin location and target pin locations are included in the

Figure 4-11: Augur software overview

52

transformation_data field. Finally, the previous and next fields specify a link to the last action that

was performed and the next action to be performed to implement the logic modification. Although

it is sufficient to provide only the link to the next action to be performed to complete the logic

modification, the link to the previous action allows the same set of actions to be reversed to undo

the logic transformation in case the modification could not be implemented.

Once a placement, packing or synthesis modification is complete the manual placer and

packer module uses the FPGA Editor Interface to communicate the changes to the FPGA Editor. The

FPGA Editor is a Xilinx software, which runs in the background. The FPGA Editor allows Augur

to implement placement, packing or synthesis modification on a real FPGA device and perform

timing analysis. The result of timing analysis is returned to the manual placer and packer module,

through the FPGA Editor Interface, so that it can be displayed to the user using the GUI.

4.7 Summary

This chapter has presented the user interface of Augur and a method of using the features

of Augur to improve the speed of the logic circuit. The two aspects of omniscience, which are the

gathering of information from the design and instant feedback after design modification, were

presented in the context of interaction with the user.

In this chapter the process of improving the logic circuit is also shown. The user begins the

process by analyzing the data in the Placer and Packer view to decide how to improve the logic

circuit. The user can use placement or packing modifications to improve the circuit or apply a logic

synthesis transformation. The SubCircuit view and the SubCircuit Placer view facilitate the

implementation of logic synthesis transformations. After each modification the logic circuit

undergoes timing analysis to provide the user with the effect of the logic circuit modification on the

typedef struct s_action_list {
action_type type;
t_action_data *transformation_data;
struct s_action_list *previous, *next;

} t_action_list;

Figure 4-12: Action list data structure

53

speed of the logic circuit.

The approach presented in this chapter has been applied to a suite of benchmark logic

circuits. The improvements resulting from the use of Augur as well as the strategies used during the

logic circuit improvement process are presented in the following chapter.

55

5 Experimental Results

5.1 Introduction

The goal of this work was to create an omniscient manual editor (Augur), which uses logic

synthesis transformation as the means to improve the speed of logic circuits. In Chapter 3 the logic

synthesis transformations that are available in the manual editor were described, while Chapter 4

presented the method by which the user employs Augur. This chapter presents the results obtained

using the editor. In addition, several strategies that can be automated and form the basis for

algorithms in automatic CAD tools are presented.

To evaluate the performance improvement obtained using Augur, a fair basis of comparison

is needed. The reference point chosen in this work is a suite of 10 benchmark logic circuits, which

are synthesized, placed and routed using latest commercial CAD tools. Each of the logic circuits in

the benchmark suite is briefly described in section 5.2. To ensure that the comparison of results

obtained by the use of Augur to those obtained by automatic CAD tools is fair, a rigorous method

of generating the benchmark suite was devised. This method is described in section 5.3.

To evaluate the effectiveness of this new approach, the results for each benchmark logic

circuit were obtained in two phases. The first phase was to apply the approach of Chow and Rose

[6], using only placement and packing modifications to improve the speed of the logic circuit. The

results of this approach are discussed in section 5.4. The second phase was to employ logic synthesis

transformations. The results obtained using these logic synthesis transformations are described in

section 5.5.

56

Section 5.6 describes several optimization strategies that emerged during the course of

improving logic circuits using Augur, that can be automated.

5.2 Benchmark Circuits

The benchmark logic circuits come from designs made at the University of Toronto and IP

cores available through the internet. The summary of the logic circuit statistics is presented in Table

5-1 along with the baseline performance for each circuit obtained using commercial synthesis and

P&R tools. The logic circuits in the benchmark suite are:

1. Batcher - An ATM packet-sorting circuit that serially compares bits of two packets. It is a

part of the StarBurst ATM chip [16].

2. Miim - The MII Management module of an Ethernet IP core obtained from [5].

3. Vision - An FIR filter circuit used in [11]. It is a highly pipelined circuit primarily consisting

of shifters and adders.

4. Banyan - From the StarBurst ATM [16], a packet router that delivers packets to ports

specified in the packet address field.

5. Trap - From the StarBurst ATM [16], a duplicate packet detector.

6. Boundcontroller - A controller for the hardware ray tracing rendering system [17].

7. Linearmap - A 2D to 1D coordinate mapping circuit. Used to calculate the offset in

Logic Circuit Name
Size Operating

Frequency
(MHz)

LUTs +
Carry

FFs

Batcher 252 436 298.6

Miim 162 119 155.0

Vision 310 243 197.4

Banyan 176 335 359.3

Trap 186 486 381.0

Boundcontroller 472 466 131.5

Linearmap 460 72 108.0

Vidout 447 220 134.4

Raygencont 211 118 162.1

Mult 29 21 122.2

Table 5-1: Statistics for benchmark logic circuits

57

memory to look up textures based on given (x, y) coordinates. Also a part of the hardware

ray-tracing engine [17].

8. Vidout - module used to display a rendered image using the VGA interface on the

Transmogrifier-3 [18], and also part of the hardware ray-tracing engine [17].

9. Raygencont - a circuit that generates all rays to be traced for a given view. Part of the

hardware ray-tracing engine [17].

10. Mult - a 4x4 bit multiplier.

The next section describes the process used to generate the baseline results for each of the

benchmark logic circuits.

5.3 Baseline Comparison

To achieve the best possible baseline logic circuits a very rigorous procedure using the

best-in-class tools was created. Figure 5-1 summarizes the procedure, the key of which is that each

circuit is placed and routed 100 times for at least five different target frequency settings. During

each place and route run the Xilinx Place and Route tool uses a different seed.

This method is not practical for large circuits, but the limit imposed on the logic circuit size

allowed the baseline generation to be completed in a reasonable amount of time. Compared to the

method used by Chow and Rose [6] to generate the baseline logic circuits, this method results in

logic circuit performance that is on average 2.4% better.

1. Set target frequency to any value, synthesize, place and route the design. The resulting
operating frequency will be used as initial setting for the remainder of this procedure

2. Set target frequency to initial setting
3. Synthesize using Synplify 7.1 Pro [14]
4. Place and route tool (par.exe) [15] provided with Xilinx ISE 5.1 Service pack 3 tools. The

placement and routing is performed 100 times, each time with a different seed.
5. Record best result
6. Repeat 3-5 for target frequency -10%, -5% +5% and +10% with respect to current
7. If a better solution was obtained in 6 then repeat 2-6 using the frequency setting that

produced a better result as initial setting.

Figure 5-1: Procedure to obtain baseline performance for a benchmark circuit

58

5.4 Placement and Packing Results

To separate out the additional advantage of the synthesis transformations described in

Chapter 3, the baseline logic circuits were first improved using only packing and placement

modifications, using the approach described by Chow and Rose [6]. We tried to improve the

placement and packing of every logic circuit for about 3 hours. Table 5-2 provides a summary of

these results. The results show an average of 3.0% performance improvement across the 10 circuits.

This is significantly less than the 12.7% achieved by Chow and Rose [6]. The following six reasons

are largely responsible for the difference in performance improvement obtained using only

placement and packing modifications:

1. Newer placement and routing tools are used (Xilinx ISE 5.1 service pack 3 vs. 3.3 SP7)

2. Better Synthesis tools are used (Synplicity Synplify 7.1 Pro vs. Synplify 6.2 Pro)

3. The method of generating baseline logic circuits is better than in [6]

4. The benchmark suite in this work has 25% more logic circuits

5. Only 4 of the 10 logic circuits in this benchmark suite are the same as in [6]

6. A human factor has to be taken into account as well, since the placement and packing of a

logic circuit was not a predominant factor in this work

Logic Circuit Name
Baseline

Frequency
(MHz)

Frequency after
Placement and
Packing (MHz)

%
Improvement

Batcher 298.6 314.0 5.1

Miim 155.0 155.2 0.1

Vision 197.4 197.8 0.2

Banyan 359.3 367.8 2.4

Trap 381.0 398.6 4.6

Boundcontroller 131.5 137.9 4.8

Linearmap 108.0 109.3 1.3

Vidout 134.4 140.0 4.1

Raygencont 162.1 173.2 6.8

Mult 122.2 122.3 0.1

Average 3.0

Table 5-2: Results using only placement and packing modifications

59

The new placement and routing tools were successful in performing a number of placement and

packing modifications that the ISE 3.3 SP7 was not. In addition to that the Synplify 7.1 Pro version

utilized the multiplexers in slices more often than version 6.2, essentially making use of the

Joint-LUT and Joint-Slice structures. While this can reduce the delay it also places some restrictions

on placement perhaps contributing to diminished improvements using just placement and packing

modifications. Finally, the baseline logic circuits were created using a more rigorous procedure than

in [6], which made it significantly harder to improve logic circuits using placement and packing

modifications only.

5.5 Results Including the New Logic Synthesis Transformations

This section presents the speed improvement results we obtained using Augur when manual

packing, placement and logic synthesis transformations are employed. We made an attempt to

improve each logic circuit until no further improvement was deemed possible. The conditions for

Logic Circuit Name

Logic Circuit after
placement and packing

modifications only

Logic Circuit after re-
synthesis

Improvement
(%)

LUT
+

Carry
FFs

Operating
Frequency

(MHz)

LUT
+

Carry
FFs

Operating
Frequency

(MHz)

With
respect to
baseline

Due to logic
synthesis

transformations

Batcher 252 436 314.0 252 447 374.8 25.5 19.4

Miim 162 119 155.2 164 119 155.6 0.4 0.2

Vision 310 243 197.8 320 243 210.2 6.5 6.3

Banyan 176 335 367.8 176 335 367.8 2.4 0.0

Trap 186 486 398.6 187 501 418.4 9.8 5.0

Boundcontroller 473 466 137.9 480 469 149.5 13.7 8.5

Linearmap 460 72 109.3 460 76 125.7 16.4 14.9

Vidout 447 220 140.0 454 221 155.6 15.8 11.2

Raygencont 211 118 173.2 211 118 173.2 6.8 0.0

Mult 29 21 122.3 28 25 124.3 1.7 1.6

Average 9.9 6.7

Table 5-3: Speed improvement results using the new logic synthesis transformations

60

stopping logic circuit improvement are described as a part of the stopping criterion in Section 5.6.4.

The speed improvement presented in Table 5-3 was determined by calculating the per cent

difference between the speed of the logic circuit in Table 5-3, column 7, and the baseline logic

circuit speed in Table 5-1, column 4.

The results obtained for the 10 benchmark logic circuits show that using Augur improves

the speed of logic circuit of up to 25.5% and an average of 9.9%. The speed improvement did not

cause a severe area penalty. In the worst case, a total of 16 LUTs, carry elements and flip-flops were

added to the logic circuit Trap. On average the number of LUTs and carry elements has increased

by 0.5%, while the number of flip-flops has increased by 3.1%. The speed and area results are

summarized in Tables 5-3 and 5-4 respectively.

The speed improvement results are divided into two categories. The first category is the logic

speed improvement obtained using placement, packing and logic synthesis transformations, which

provides the logic circuit speed improvement when compared to the baseline logic circuit speed.

The second category is the logic circuit speed improvement that was possible due to the introduction

of logic synthesis transformations. The contribution of logic synthesis transformations was

Logic Circuit Name

Logic Circuit after
placement and packing

modifications only

Logic Circuit after re-
synthesis

Area Increase
(%)

LUT Carry FFs LUT Carry FFs LUT + Carry FFs

Batcher 252 0 436 252 0 447 0 2.5

Miim 149 13 119 151 13 119 1.2 0

Vision 195 115 243 197 123 243 3.2 0

Banyan 176 0 335 176 0 335 0 0

Trap 186 0 486 187 0 501 0.5 3.1

Boundcontroller 383 90 466 390 90 469 1.7 0.6

Linearmap 270 190 72 270 190 76 0 5.6

Vidout 317 130 220 325 129 221 1.6 0.5

Raygencont 166 45 118 166 45 118 0 0

Mult 29 0 21 28 0 25 -3.5 19.0

Average 0.5 3.1

Table 5-4: Area change due to the new logic synthesis transformations

61

determined by calculating the per cent difference between the frequency in column 7 and column

4.

The following are the key steps involved in improving each logic circuit:

1. Batcher - the majority of the flip-flops in this designed were synthesized to use distinct

control signals. These control signals were used to minimize the combinational logic part

of the circuit. However, the resulting packing allowed only one register to occupy a slice,

which spread the circuit over a larger area than necessary. The application of Flip-Flop

control signal extraction (described in Section 3.7) allowed previously incompatible flip-

flops to share a slice, resulting in an overall 25.5% improvement over the baseline logic

circuit speed.

2. Miim - duplication (described in Section 3.4) was used to improve performance of some of

the paths in the circuit. However, the complexity of the design, as well as the congestion in

the critical region, allowed for only minor (0.6%) improvements.

3. Vision - this logic circuit suffered from improper synthesis of logic that controlled Flip-Flop

enable signals. A detailed analysis of these signals showed that each of the enable signals

was functionally identical, while the logic function for these signals was a 7-input AND

gate. The logic synthesis tools implemented this logic function as a pair of serially connected

LUTs and duplicated the forward LUT to reduce fanout. Logic merging (described in Section

3.5) was first used to create a single logic function to implement the enable signal. Then

both LUTs were duplicated (described in section 3.4) to reduce the fanout and distribute the

connection properly. Further improvement was obtained by implementing these two LUTs

in a carry chain, using Carry Chain Remapping transformation (described in Section 3.3.1).

The resulting logic circuit speed exceeded the baseline speed by 6.5%.

4. Banyan - each path in this logic circuit contains at most one LUT. This was possible

because of the use of flip-flop control signals to reduce the logic depth of the logic circuit,

when synthesized by Synplify 7.1 Pro. We were only able to improve the performance of the

logic circuit by modifying the placement and packing. The resulting speed improvement was

2.4% over baseline.

5. Trap - in this logic circuit a few registers used flip-flop control signals to decrease logic

62

depth. However, it was critical to circuit performance that these flip-flops had the freedom

to share a slice with other flip-flops. We used control signals extraction transformation

(described in Section 3.7) to achieve placement flexibility for these flip-flops. Once these

flip-flops had the flexibility to share a slice with other flip-flops, we were able to modify the

placement and packing of the logic circuit effectively. In combination with logic duplication

(described in Section 3.4) the logic circuit speed was increased by 9.8%.

6. Boundcontroller - the design contained a number of Joint-LUT configurations. A closer

examination revealed that remapping certain pairs of them into Joint-Slice structures with

multiple outputs was possible. After these pairs of Joint-LUTs were remapped into Joint-

Slice type structures the placement of the logic components was rearranged to promote

usage of NN interconnect. These modifications resulted in the improvement in the logic

circuit speed by 13.7% compared to the baseline logic circuit speed.

7. Linearmap - the design contains mostly carry chain logic. The problem was that a few

registers were driving multiple carry chains and could not use NN interconnect for all

connections. Duplicating (described in Section 3.4) some of those registers and

re-synthesizing non-carry chain logic into Joint-LUT and Joint-Slice structures (described

in Section 3.3.2) improved the logic circuit speed by 16.4%.

8. Vidout - the logic circuit contained a carry chain that was unnecessarily long. The output

of the top carry cell was not driving the local register, which made it a candidate for the

carry chain shortening transformation (described in Section 3.6). Further analysis revealed

that the functionality implemented by the top segment of the carry chain and the logic

function implemented by the LUT that the carry chain was driving could be implemented

in a single LUT. This modification allowed for further logic optimization resulting in the

improvement in the logic circuit speed by 15.8% compared to the baseline logic circuit

speed.

9. Raygencont - the critical path of this logic circuit traverses LUTs that could be

re-synthesized into wide AND gate carry chain structures (described in Section 3.3.1).

However, that causes the near critical paths to become critical with longer delay. Without

logic synthesis transformations we were able to modify the placement and packing of the

63

logic circuit to improve the speed by 6.8%.

10. Mult - the original placement and synthesis was good, however performing logic duplication

and remapping improved the logic circuit speed by 1.7%.

5.6 Optimization Strategies

The previous Sections of this chapter presented the specific steps used to obtain logic circuit

improvement results and the results themselves. Although the results in this thesis are obtained

manually, one of the long-term goals of this research is to discover new optimization strategies that

could be fully automated. In this Section several such strategies are proposed, which could form

the basis of future algorithms.

5.6.1 Promoting Nearest-Neighbour Interconnect

The first strategy focuses on the nearest-neighbour routing (NN) architecture of the Virtex-E.

The best optimization opportunities are those that enable many critical connections to use NN

interconnect. The essence of this strategy is to move logic elements so that they can take advantage

of available direct connections between logic blocks, as well as liberate the NN interconnect that

is occupied by non-critical logic. The latter can be done by logic transformations such as remapping

and merging.

Remapping can be used to liberate an NN interconnect by transforming the implementation

of serially connected pair of LUTs to a Joint-LUT or Joint-SLICE structure. This replaces the NN

connection between LUTs by an internal-to-the slice connection, freeing the NN for use by other

critical connections.

Here is an outline of the optimization strategy:

1. Create an ordered list L of critical and near-critical path, ordered from the longest delay to

shortest

2. For each path in the list:

ia. Let P be the selected path

ib. For each pair of serially connected logic components on P determine the pairs that

can be remapped into Joint-LUT or Joint-Slice structures (described in Section 3.3.2)

64

and put them in set S

ic. If set S is not empty then attempt to resynthesize P so that the NN interconnect is not

required, otherwise

id. If set S is empty and every connection on P that can use NN interconnect is using it

then abandon this strategy, otherwise

e. If set S is empty and some connections on Pi are not utilizing NN interconnect then

ifor each connection that could use a NN interconnect on P

j ii. Locate the path P , which uses that the NN interconnect P needs

jii. Check if a components on P can be moved or remapped to free the NN

j iinterconnect, while ensuring that the delay of P is less than the delay of P

iii. If step (ii) is unsuccessful then abandon this strategy

If successful, this should allow the critical logic to acquire the liberated NN connection.

5.6.2 Liberating Free Space for Critical Logic

The focus of the second strategy is to free the logic components in a slice or CLB that can

be utilized by critical logic. The essence of this strategy is to examine logic components on the

critical path and search for a suitable placement for them. When the desired placement is found to

conflict with non-critical logic then the non-critical logic must be moved out of its current location,

without the loss in logic circuit speed.

The logic transformations liberate space occupied by non-critical logic by:

• Speeding up non-critical logic, allowing it to move from its current location, without a

performance penalty

• Duplicating components with high fanout, allowing them to be placed in different locations

of the device, while maintaining the circuit performance

The following steps can be used to liberate space to improve performance:

1. For each area containing a critical, or close-to-critical, paths:

a. Locate the non-critical logic

b. Move or duplicate (as per Section 3.4) the non-critical logic if possible without

incurring speed penalty, otherwise

65

c. Find all paths that pass though the non-critical logic and put them in the ordered list

L. The list is ordered from longest delay to shortest delay.

d. For each path in L do:

ii. Let P be the path

iii. For each pair of serially connected logic components on P determine the

pairs that can be remapped into Joint-LUT or Joint-Slice structures (as per

Section 3.3.2) and put them in set S

iii. Apply remapping to component pairs in S to liberate the space, while

imaintaining, or lowering, the delay of P

2. Move the critical logic into the liberated space

5.6.3 Increasing Packing flexibility of Flip-Flops

A recent development in logic synthesis CAD tools is the use of flip-flop control signals to

reduce the amount of logic in the logic circuit. Although this approach has the benefit of reducing

number of gates on the path to such flip-flop, the use of flip-flop control signals in this manner

restricts the flip-flop placement flexibility, as discussed in Section 3.7. The examples of the misuse

of flip-flop control signals are found in logic circuits such as batcher, vision, and trap.

The focus of this logic optimization strategy is ability to trade logic for flip-flop placement

flexibility. This strategy can be implemented using the following steps:

• Move all non-critical flip-flops that have unique control signals out of congested areas of

the circuit, provided this doesn’t hurt performance.

• For each critical flip-flop A, find another critical flip-flop B that would benefit from sharing

a slice with A in the congested area of the circuit. Extract control signals (i.e. put the control

signals into a LUT as described in Section 3.7) for both flip-flops.

• Put both A and B in the same slice and repeat for other critical flip-flops

• When all critical flip-flops have been processed, move the non-critical flip-flops back into

the congested areas, extracting their control signals only if they need to share a slice with

a non-compatible flip-flop

66

5.6.4 Stopping Criterion

A key aspect of any automated iterative algorithm is to determine when to stop the iteration.

As the primary goal in this work is to improve the maximum clock frequency, it is important to

inform the user when a further logic circuit optimization may be unlikely to produce significant

logic circuit speed improvement. In this work the stopping criterion is based on the distribution of

path delays.

Augur summarizes the path delays using a geometric delay profile, as described in section

4.3.1. The delay profile is used to determine the number of critical, and near-critical, paths as well

as their location in the logic circuit. Clearly it is easier to improve the speed of a logic circuit that

has just a few critical paths that do not share components or connection, rather than a logic circuit

with many critical paths that share logic connection or components. In this work the optimization

of the logic circuit was stopped when the following two criterion were met:

1. The two slowest bins contained 15 or more paths and

2. The paths in the two slowest bins were:

a) Situated in close physical proximity to each other, and

b) A logic transformation that improved the delay on all these paths could not be found

The first criterion says that there is little point in continuing if there are too many paths that must

be improved to gain speed. The second notices that close-to-critical paths pose a problem if

improving one of them has a strong likelihood of increasing the delay of the other close-to-critical

paths by virtue of their close physical proximity.

Bin 10: 1.715ns-3.314ns, count = 16
Bin 9: 3.314ns-4.379ns, count = 323
Bin 8: 4.379ns-5.090ns, count = 386
Bin 7: 5.090ns-5.563ns, count = 444
Bin 6: 5.563ns-5.879ns, count = 238
Bin 5: 5.879ns-6.089ns, count = 210
Bin 4: 6.089ns-6.230ns, count = 92
Bin 3: 6.230ns-6.323ns, count = 42
Bin 2: 6.323ns-6.385ns, count = 10
Bin 1: 6.385ns-6.427ns, count = 5

Figure 5-2: Delay profile for the miim circuit

67

An example of the application of this strategy is shown in Figures 5-2 and 5-3. The logic

circuit miim has the 15 slowest paths as indicated by the geometric delay profile shown in Figure

5-2. The 15 slowest paths in this logic circuit are highlighted in red in Figure 5-3. These paths are

in close proximity to one another. No further optimization of the circuit was performed, as none of

our strategies could further improve the logic circuit in reasonable amount of time.

5.7 Summary

This chapter presented the results obtained using the manual editor Augur on a set of

benchmark logic circuits. The set of 10 logic circuit was used as a benchmark. The logic circuits in

the benchmark suite were synthesized, placed and routed using a rigorous method, which yielded

a high logic circuit speed and therefore a fair point of reference.

Using only placement and packing modifications the average logic circuit speed was

improved by 3.0 per cent. The introduction of logic synthesis transformations improved those results

by another 6.7 per cent, resulting in an average speed improvement with respect to the baseline of

Figure 5-3: The 15 slowest paths in the miim circuit

68

9.9 per cent. These results show that the application of omniscience in the context of logic synthesis

yields significant logic circuit speed improvement.

In addition to the speed results, this chapter presented a set of logic circuit optimization

strategies. These strategies are based on the observations made during the logic circuit improvement

process that yielded the above results. The optimization strategies can be used as a base for

automated algorithms in commercial CAD tools.

The results presented in this chapter show that the development of Augur was a success.

However, there are still a number of things that can be improved. This topic and avenues for future

research that bases on the approach presented in this thesis are the topics of the next chapter.

69

6 Conclusion

6.1 Thesis Summary

The goal of this research was to use the concept of omniscience in the context of physical

synthesis to obtain higher speed for FPGA circuit implementation. We showed how the concept of

omniscience was used to address the limitations in circuit performance through specific technology

mapping transformations. Augur was developed so it could implement these transformations,

allowing the user(s) to gain an insight into the way how circuits can be implemented better, and

faster, on Field-Programmable Gate Arrays.

This work has three major contributions. The first contribution is the manual editor Augur,

which uses omniscience in the context of physical synthesis. The second contribution is the set of

logic synthesis transformations targeting the Xilinx Virtex-E devices. The final contribution is the

set of optimization strategies that can be applied in an automatic FPGA CAD tool. The concept of

omniscience is used throughout this thesis to evaluate the optimization choices, while the logic

synthesis transformations provide the means to improve the logic circuit performance.

The results obtained in this thesis shown that the application of omniscience to logic circuit

optimization can yield an average of 9.9% improvement over a suite of 10 benchmark circuits. The

speed improvement obtained for each individual logic circuit varies from 0.1 to 25.5 per cent, while

suffering only minor area penalty. In addition, the use of Augur has lead to the development of

innovative logic synthesis transformations, such as the synchronous flip-flop control signal

extraction and carry chain shortening.

70

6.2 Future Work

While Augur is a good manual CAD tool, there are still a number of issues that need to be

addressed. Currently, the user is not informed of an estimated delay of the logic subcircuit while

performing a logic transformation. This information could better assist the user in performing a

logic optimization. Furthermore, the remapping transformations only result in the creation of a

single LUT, Joint-LUT or a Joint-SLICE. An alternate approach would be to search for a mapping

solution which consists of multiple logic structures.

An interesting topic of future research is the development of a logic block exploration

software based on the approach presented in this dissertation. The following discussion describes

how this approach could be applied in the context of architecture exploration.

There are several issues concerning the logic block design that need to be considered by the

logic block design exploration software. They are:

1. The number of outputs available to the CLB

2. The kind of hardwired logic to include and its relation to the LUTs

3. Output sharing

This work has shown that multiple outputs for a complex logic configuration can be beneficial. In

traditional CAD tools the problem of multiple-output functions is resolved by logic duplication.

Thus, a multi-output function becomes a set of single output logic functions, which implement the

same functionality. The mapping of each of these functions is performed independently, thus a

possible sharing of resources, which arises in the context of complex logic structures, may be

omitted. An alternate approach presented in this thesis shows that there is a significant benefit from

taking into consideration multi-output complex logic structures, such as the Joint-LUT and the Joint-

Slice.

A related topic to multiple output CLBs is the hardwired logic. In this work the hardwired

logic that is considered are the multiplexers in the Virtex-E slice. This thesis showed how to map

into logic structures of this type. When exploring FPGA architectures, it would be beneficial to

implement a black box instead of a multiplexer. Then, a study of which basic function yields the

best results on average could result in a different choice for a logic component.

Finally, there is a question of how the outputs of a CLB should be shared. Providing each

71

output of a CLB with a distinct pin would be very flexible. However, the area and delay penalty may

be too great if all output pins are not frequently used.

73

References

[1] J. Lou, W. Chen and M. Pedram, “Concurrent Logic Restructuring and Placement for

Timing Closure,” Proc. of the 1999 ACM/IEEE Int. Conf. on CAD, November 1999.

[2] J. Lin, A. Jagannathan and J. Cong, “Placement-Driven Technology Mapping for LUT-Based

FPGAs,” ACM/SIGDA Int. Symp. on FPGAs, February 2003, Monterey, California, USA.

[3] D. P. Singh and S. D. Brown, “Incremental Placement for Layout-Driven Optimizations on

FPGAs,” Proc. of the 2002 ACM/IEEE Int. Conf. on CAD, November 2002.

[4] J. Cong and Y. Ding, “FlowMap: an optimal technology mapping algorithm for delay

optimization in lookup-table based FPGA designs,” IEEE Trans. on CAD of Integrated

Circuits and Systems, vol. 13, issue 1, 1994, pp. 1-12.

[5] Online resource: http://toolbox.xilinx.com/docsan/xilinx4/data/docs/lib/dsgnelff47.html

#226728, Last accessed: November 22 , 2003.nd

[6] W. Chow and J. Rose, “EVE: A CAD Tool for Manual Placement and Pipelining Assistance

of FPGA Circuits,” Proc. of ACM/SIGDA Int. Symp. on FPGAs, February 2002, Monterey,

California, USA.

[7] The Virtex-E device is manufactured by Xilinx Corporation. Online resource:

http://direct.xilinx.com/bvdocs/publications/ds022.pdf, accessed on July 7, 2003.

[8] A. Roopchansingh and J. Rose, “Nearest Neighbour Interconnect in Deep Submicron

FPGAs”, Proc. of IEEE CICC, May 2002, pp. 59-62.

[9] S. Devadas, A. Ghosh and K. Keutzer, Logic Synthesis, McGraw-Hill Inc., 1994, ISBN

0-07-016500-9

[10] A. Lu, H. Eisenmann, G. Stenz, and F. M. Johannes, “Combining Technology Mapping with

Post-Placement Resynthesis for Performance Optimization,” Proc. of Int. Conf. on Computer

Design: VLSI in Computers and Processors, October 1998, pp. 616-621.

[11] R. McCready and J. Rose, “Real-Time Face Detection on Configurable Hardware System,”

Tenth International Workshop on Field Programmable Logic, 2000, pp.157-162.

[12] S. Chang, M. Marek-Sadowska, T. Hwang, “Technology Mapping for TLU FPGA’s based

on Decomposition of Binary Decision Diagrams,” IEEE Trans. On CAD of Integrated

Circuits and Systems, Vol. 5, No. 10, pp. , October 1996.

74

[13] K. Schabas and S. D. Brown, “Logic Synthesis and mapping: Using logic duplication to

improve performance in FPGAs,” Proc. of ACM/SIGDA Int. Symp. on FPGAs, February

2003, Monterey, California, USA

[14] Synplify 7.1 Pro is a product developed by Synplicity Incorporated. Online product link is:

http://www.synplicity.com/products/synplifypro/index.html

[15] Xilinx ISE 5.1, Service Pack 3, is a product of Xilinx Corporation. Online product link is:

http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=ISE+Foundation

[16] P. Bade, W. Chow, P. Kundarewich, N. Saniei, and A. Wong, “StarBurst ATM Chip project

at the University of Toronto,” October 2000.

[17] J. Fender and J. Rose, “A High Speed Ray Tracing Engine Built on a Field programmable

System,” submitted to the ACM/SIGDA International Conference on FPGAs, 2004.

[18] D. Galloway, M. Van Ierssel, J. Rose, P. Chow, “Transmogrifier-3 project,”

http://www.eecg.toronto.edu/~tm3, 2000.

[19] XC4000 is an FPGA Device manufactured by Xilinx Corporation. Online resource:

http://www.xilinx.com/bvdocs/publications/4000.pdf

[20] S. Hauck, M. Hosler, and T.Fry, “High-Performance Carry Chains for FPGAs,” Proc. of the

ACM/SIGDA Int. Symp. on FPGAs, Monterey, California, February 1998, pp. 223-233.

[21] K. Chen, J. Cong, Y. Ding, A. Kahng and P. Trajmar, “DAG-Map: Graph Based FPGA

Technology Mapping For Delay Optimization,” IEEE Design and Test, September 1992,

pp.7-20.

[22] H. Yang and D. F. Wong, “Edge-Map: Optimal Performance Driven Technology Mapping

for Iterative LUT Based FPGA Designs,” 1994, pp. 150-155.

[23] J. P. Roth and R. M. Karp, “Minimization over boolean graphs,” IBM Journal, April 1962,

pp 227-238.

[24] E. Lehman, Y. Watanabe, J. Grodstein, H. Harkness, “Logic Decomposition During

Technology Mapping,”IEEE Transactions on Computer Aided Design of Integrated Circuits

and Systems, Vol 16, No. 8, August 1997, pp. 813-833.

[25] W. Chow, “EVE: A CAD Tool Providing Placement and Pipelining Assistance for High-

Speed FPGA Circuit Designs,” Master of Applied Science Thesis, University of Toronto,

75

2001.

[26] J. Cong and Y. Hwang, “Boolean Matching for LUT-Based Logic Blocks With Applications

to Architecture Evaluation and Technology Mapping,” IEEE Trans. on CAD of Integrated

Circuits and Systems, Vol. 20, No. 9, September 2001, pp. 1077-1090.

[27] Douglas B. West, Introduction to Graph Theory, Second Edition, Prentice-Hall Inc., 2001,

ISBN 0-13-014400-2.

[28] E. Sentovich, K. Singh, C. Moon, H. Savoj, R. Brayton, and A. Sangiovanni-Vincentelli,

“Sequential circuit design using synthesis and optimization,” IEEE International Conference

on Computer Design, 1992, pp. 328-333.

[29] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool for FPGA research,”

Seventh International Workshop on Field Programmable Logic, September 1997, pp. 213-

222.

77

A Appendix

Figure A-1: Detailed Xilinx Virtex-E Slice Schematic

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91

