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ABSTRACT

This thesis describes the implementation of a stereo depth measurement algorithm in hard-
ware on Field-Programmable Gate Arrays (FPGAS). This system generates 8-bit,esub-pix
disparities on 256 by 360 mkimages at video rate (30 frames/sec). The algorithm imple-
mented is a multi-resolution, multi-orientation phase-based technique called Leighitétl
Phase-Correlation. Hardwe implementation speeds up the performance approximately 60 to
900 times that of the same algorithm running in safewIn this thesis, we describe the pro-
grammable hardare platform, the base stereo vision algorithm and the design of the hard-
ware. V& include warious trade-d$ required to makthe hardware small enough to fit on our
system anddst enough to wrk at video rate. W shaov the depth map results from the func-
tioning hardvare. Although this research is specifically focused on phase-based stereo vision
FPGA realizations, most of the design issues are common to other DSKsmdayplica-

tions.
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CHAPTER 1 I ntrmucti On

Vision enables humans towigate and gther information about the surroundingvieon-

ment. Detecting a humamade in a scene, recognizing objects and understanding people's
emotional moods from theiatial expressions are only avileexamples of vision tasks that we

all do automatically in eryday life. Although these tasks are performed with minimum

effort, analysis and simulation of these processes are highly comple

In the last three decades researcheve lided to gve vision capabilities to automated sys-
tems such as robots, whiclould lead to more intelligent systems with a wider range of capa-
bilities. This is ery much a wrk-in-progress: the ay human brain processes visual
information is not yetactly understood, and image processing tasks are usually computa-

tionally intensve.

In building vision systems, designers/eassentially tw options: deeloping the vision algo-
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rithms in softvare and running them on a standard processatesigning custom haradwne
specially tailored for the application. Custom designed harglvean perform operations
faster and also alles taking adantage of parallelismxesting in mary image processing algo-
rithms, lut it is rarely tried in practice because the resources required are not ugaidlyl@
at an afordable price and the design procesesa& long time. Thesadts hae usually lim-
ited researchers to the first option, which is teettgp algorithms that can be run astfas

possible on standard processors.

In the last fev years, a third solution for vision system designers has become viable due to the
rapid gravth in capacity and speed of programmable hardwProgrammable hardve has

also been used successfully in some non-vision signal processing applications [35]. This
method allavs designers to configure the chip according to the specifications of the algorithm
cheaply and quickly because it eliminates the mrpemesve and time consuming part of
Application Specific Intgrated Circuit (ASIC) Design, namelZ fabrication. It also reduces

the deligging time because one can typically re-compile the desigwihdars and re-con-

figure the FPGAs in less than a second.

In this research, the goal is tepdore the feasibility of using a programmable haadswplat-

form to implement one important feature of the human vision system: to estimate the depth
structure of a three-dimensional scene frora imwages seen by left and riglyes. This task

is knowvn as “stereo vision”. A robot equipped with a real-time stereo vision system can esti-
mate the distance of an objects around it and use this informatigaitbcallision, or as an

input to an object recognition module. Byp#iting the useful features of reconfigurable
hardware along with parallelism, our goal is to speed up the depth reconstruction process such

that the system will be able to “see” in stereo in real time (30 frames per second).

The nature of this research neccessitates focusing both omsotnd hardare. \\ investi-

gate diferent techniques in sofawe already proposed for disparity measurements and choose
a high performance algorithm that is also appropriate for remedimplementation. The algo-
rithm we hae implemented is called “Local&ghted Phase-Correlation algorithm” [11]. The

key issue is to modify the original algorithm to neak eficiently implementable in harcave
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with minimal loss in algorithm performance. In hasade, the focus will be on designing a cir-
cuit to run the algorithm in video rate (30 frames/se®.N&e implemented our system on a
reprogrammable board calledahsmogrifiet3A (TM-3A) [18][28] developed at the Umier-
sity of Toronto. In the circuit design process, wpleit the parallelismasting in the algo-
rithm and at the same time fit the whole computations to the limited asrdwsources
available on the TM-3A.

This thesis is @anized as follows. Chapter 2 prades the background on stereo vision algo-
rithms in softvare and hardare. It describes stereo disparity measurement methods and
focuses on the specific method used in our stereo system. Inaheydtvintroduces the
FPGAs and somexample systems based on reconfigurable chips. Chapter 3 describes the
implementation of the Local ¥ighted Phase-Correlation disparity measurement algorithm on
programmable hardave. In Chapter 4, the depth map results from hare\system are pre-
sented and compared with the results from the original aoétvased algorithm. Chapter 5

presents conclusions and futureri



CHAPTER 2 Bad(ground

The nature of this research requires knowledge of both stereo vision techniques and hardware
design issues. This chapter provides the background for both of these areas. Section 2.1
describes the theoretical basis of stereo vision. It includes a brief description of major
approaches and then focuses on the approach adopted in thiswork. Section 2.2 introduces pro-
grammable hardware and describes the architecture of a general Field-Programmable Gate
Array (FPGA). It then looks at a few hardware systems that are based on FPGA devices.
Finally, Section 2.3 reviews previous work on implementing vision and image processing

applications on reprogrammable hardware.

2.1 StereoVision Basics

Stereo vision is the task of reconstructing depth information encoded within multiple images.
In this thesis, by stereo vision we mean reconstructing the depth information only from two

images, atask also known as binocular stereopsis. All the stereo vision techniques stem from
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the fact that when tewimages are tah from diferent viev points of a scene, the projection of

a 3D point will hae different locations on the twnimages. The shift between the correspond-
ing projected points, also referred to as dispaciéy be used to estimate the distance of the
3D point to the cameras. Figuzel shavs a pair of cameras and the corresponding points

from the same scene point.

The goal of an stereo vision system is to establish the correspondence between fiwrtts

arising from the same element in the scene. This problem is staieal matching or thecor-
respondence problem. Once matching points are detected, one can simpigot disparity as

the shift between these points and then estimate the scene point distance by simple calcula-
tions. Figure2.2 illustrates hw distance is calculated from disparityn this figure and
through this thesis, we )@ made tw assumptions for the camera set up: 1) the camevas ha

the same focal length; and 2) the cameras entecally aligned and ha parallel optical aes.

In Figure2.2, the disparityd, is defined as the shift betweerotaorresponding points:

d=u-u (2.1)

and then the distancg, can be calculated as:

fT

Z = q (2.2)
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Figure 2.2 Calculating depth from disparity

wheref is the camera focal length amds the distance between the optical centers of the tw
cameras. Eq. (2.2) sis that gven a fixed focal length and camera separation, distance is
inversely proportional to disparit§o, the bigger the disparitye closer the scene point is to

the cameras.

To solhe the correspondence problem, the first approach is to pick aierpone image and
then search through a 2-Dgren around that ped location in the other image to find the cor-
responding point. Heever, it can be shon that a 1-D search is $igfent due to the epipolar
constraint. This constraint guarantees that is the projection of a scene point in one image,
then the corresponding poird;, in the other image will lie on a straight lirepipolar line,
which is the intersection of the image planes with a plane that containsApaintl the tvo

centers of projection.

In a pair of cameras that arertically aligned and he& parallel optical aes, the epipolar line
will coincide with a scan line of the image (Figure 2.3). This propertyesétie search pro-
cess simpler compared with non-horizontal epipolar lines. This will be of gremttade for

a hardvare implementation because in haade/the piel stream is usually rec@d in hori-



CHAPTER 2. Background 7

scene point

7 \
left image right image
C C
center of projection center of projection

Figure 2.3 Epipolar Constraint

zontal order

2.1.1 Stereo Matching Techniques

Stereo matching is the task of finding corresponding points betweemtges. This task is
usually complicated by seral factors such as lack ofxteire, occlusion and lightingavia-

tions. Rgions of the image with not enouglxtigre will male it difficult to find correspond-

ing points. Also, sometimes a scene point is visible in one imatge bccluded in the other
image. In these cases, there is no corresponding point to find. In addition, sometimes the light-
ing varies between dérent viev points such that the same scene point wilehdifferent

gray scale intensities in the awmages. This will add some noise to the final disparity map

results.

Researchers kha proposedarious techniques to s@and impree the performance of stereo
matching. The & question that will déct the matching performance and swgstés the
selection of matching primiteés. Depending on the primié used, matching techniques can

be catgorized into three major groups: 1) Intensity-Based; 2) Feature-Based; and 3) Phase-

Based.

Intensity-based techniques use the jgibs intensity or brightness as the matching pnmiti
These techniques assume that the image intensity corresponding to a 3-D point remains the

same in binocular images. In this method the intensity of eaehipigne image is compared
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with the intensity of a range of s in the other image in order to find the most similaglpix

To improve the performance, some intensity-based techniques usewrad@d comparison
instead of point-to-point comparison. The important issue in intensity-based techniques is the
correct selection of windw size: Small windaws may not hae enough image structure, and
hence, lead toalse matches; Lge windavs might lose fine image structures that are much
smaller than the size of the windloSome techniques such as an ageptiatching winde
approach [21] and coarse-to-fine approach [24][SEHzeen proposed tov@come the win-

dow size problem. The fundamental weakness of intensity-based technigaedless of the

comparison approach, is thatyrere sensitie to brightnessariations in binocular images.

Feature-based techniques use sparse priwveis such as corners, edges [4] or straight lige se
ments [3]. In feature-based techniques, the input images are usually passed through pre-pro-
cessing blocks which detect features such as edges or corners. The matching block then finds
the corresponding features indwnages and assigns disparities to them. The major limitation

of all feature-based techniques is thatthan not generate dense disparity maps and hence

they often need to be used in conjunction with other techniques.

In Phase-based techniques the disparity is defined as the shift necessary to align the phase
value of band-pass filterecersions of the ter images. In [10], phase-based methods are
shavn to be robst when therexasts smooth lighting ariations between stereo images. It also
shavs that phase is predominantly linear and hence reliable approximations to disparity can
be tracted from phase displacement. It is interesting to note that ngsrojolgical data

also imply the importance of phase information. These data suggest that the first stage of ste-
reo disparity processing in the visual cgrie cats is thought to use a phase-based approach
[8]. The first step in anphase-based method is ttract the phase from input images. One
commonly used approach is to pass the input images through gevapled quadrature pair

filters. The phase of the complgalued output of these filters is used as the prmiir ste-

reo matching.

Figure 2.4 shas a sample pair of stereo images from a scene and the result of stereo matching
in the form of a depth map. In the depth map image, the distance is encodey spatgethe

closer objects are brightdn the ne&t section, we will gplain one particular phase-based
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Depth map result
(normalized to [0, 255])

Figure 2.4 Tree stereo images and a sample depth map
(courtesy of Bob Bolles, SRI International)

method,Local Weighted Phase-Correlation, which is the basis of the stereo systenettged

in this research.

2.1.2 Local Weighted Phase-Correlation Algorithm

The stereo system deloped in this research is based on a phase-based stereo matching tech-
nique called “Local Wighted Phase-Correlation” [11] (In this thesis, we also refer to it as
LWPC algorithm.). This algorithm decomposes the input images into multiple scales. All the
scales are then passed through multiple G2-H2 quadrature filter pairs, each of them oriented in
unique directions using steerable filters [13]. The left and right pairs of filter outputs for each
scale and each orientation are passed through a correlation block which assigns similarity
measures, oroting functions, between one pixand its shifted ersions in the other image.

These wting functions are then combineden all the scales and orientations taldh the
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overall wting wvalue. The shift corresponding to the location of the peak response will be
declared as an estimate for the disparitye IWPC algorithm can be summarized in four

steps (Figure 2.5):

1. Create a Gaussianyyamid [13] with total number ofr scales for both left and right

images. Then, decompose each scale of yheend using oriented quadrature-pair filters.
Assuming that;(x) is the filter impulse response of tfi& orientation, we can write the
complex-valued output of the coolution of k;(x) with each scale of left and right images,

I,(x) andi, (x), as:

i,(x) (%)

O,(x) = p|(x)e O,(x) = pr(x)eiq) (2.3)

in the polar representation, wherg) = |0(x)| is the amplitude and(x) = arg[O(x)] is the
phase of the compteesponse.

2. Compute the ating functionc; 4 (x, 1) as:

G o(0T) = W(x) O[O, (x)O,Hx +1)] o

A/W(x) 0 |O|(x)|2A/W(x) 0|0,

whereW(x) is a smoothing, small, localized wind@nd+ is the pre-shift of the right fil-

ter output.

3. Combine the sting functionsc; (xt) over all orientations,1<j<F, and scales,

1<m< M, whereF is the total number of orientations akidis the total number of scales:

S(x, 1) = C(j, m)(x, 1) (2.5)
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4. For each position, find ther value corresponding to the peak in the real pag&(af 1) as

a good estimate for the true disparity

Scalin%GZ_Hg ,
\ Phase . Peak I?ﬂ
L_»| Interpolation || > &

/ Correlation Detection

Scaling—»G2-H2

depth map

Figure 2.5 Block diagram of Local \&ighted Phase-Correlation disparity matching algorithm

Two major features makthis algorithm a good candidate for haagevimplementation: First,

it is primarily composed of linear operations which are easier to implement. Second, there is
no iteration or ay explicit coarse-to-fine control strajg This property maés the real-time

flow of data possible through the haathe system. In the resections, we will describe the
general architecture of programmable haadwand the fAnsmogrifietr3A board which is

used as the platform to implement stereo vision system.

2.2 Field-Programmable Gate Arrays (FPGAS)

An FPGA is a chip that ales its user to control and reprogram the functionality of its logic
circuits. All FPGAs consist of three major components [6]: 1) logic blocks; 2) 1/0 blocks; and
3) programmable routing as sti in Figure 2.6. @ implement a circuit on an FPGA, each
logic block is programmed to perform a small portion of the logic required by the circuit and
each /0 block is programmed to act as an input or output as required by the circuit. The pro-
grammable routing is also configured to makl the necessary connections between logic

blocks and also from logic blocks to I/O blocks.

When compared to custom hamw, the first adantage of an FPGA is shorter maatiiring
cycle and the ability to modify theisting systems only by re-compiling the design instead of
re-fabricating the chip. The second adtage is that using FPGA is cheaper: Building an

ASIC costs in the order of hundreds of thousands of dollars, while FPGASs cost less than a fe
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Figure 2.6 Architecture of a generic FPGA
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Logic Block

LA

thousand dollars.

The processing peer of an FPGA is directly proportional to the processing capabilities of its
logic blocks and the total number of logic blocksitble in the arrayCurrently most of the
commercial FPGAs use logic blocks that contain one or more Lookabled (LUTS). A k-

input LUT can implement grbinary function of k logic inputs. Figure 2.7 stgthe architec-

ture of a simple LB containing one 4-input LUT and one flip flop for storage. Modern FPGAs
also contain blocks of on-chip memoFpr example, the chips used in thiom contain 160
blocks of 4kbits of RAM and 38,000 LUip flop pairs. Current commercial FPGAs can
have arrays containing as maias 93,000 LUTs and flip-flops in a single FPGAr Ehe
designs that are too @ to fit on a single FPGA, a group of FPGAs connected with a pro-

o e 1 D o

Flip—flop

Input ] I:' I:' I:'
o

Figure 2.7 Simplified architecture of a logic block with one 4-input LUT and one flip flop.
The flip flop at the output of LUT alles storage of the LUT output and hence implementing
sequential circuits.
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grammable interconnection neivk can be used.

2.2.1 Reconfigurable Systems

A variety of reconfigurable systemsvieabeen deeloped that contain more than one FPGA
device. These systems are used for implementing designs that do not fit on a single FPGA.
They typically consist of FPGAs, some method of programmably interconnecting FPGAS,
and might hae external memory resources or video inéee circuitry The AM system [31]
consists of a 4x4 mesh of Xilinx XC3090 chips with each FPGA connected to each of its four
Manhattan neighbors through 16 direct connections. This system has a total of 4 MB of RAM.
The Splash-2 parallel processor board [2] contains 16 processing elements (PEs) fully con-
nected via a 16x16 crossbar switch which is controlled by a 17th processing element. Each PE
consists of a Xilinx XC4010 FPGA with 256K 16-bibvds of memoryThe RARTS reconfig-

urable computer [32] is a single PCI board that utilizeargety of Xilinx chips with a maxi-

mum total number of about 35,000 4-input LUTSs.

2.2.2 Transmogrifier-3A
The Transmogrifier3A (TM-3A) [15],[28] is a reconfigurable platfornmuiit at the Unversity

of Toronto and is used in ourork to implement video rate stereo depth reconstruction. The
TM-3A is a programmable hardwe architecture containing four Xilinxirtéx 2000E [32]
FPGAs. Each Xilinx Wftex 2000E chip contains 38,000 LUTs, which in comparison is 20
times more than the number of LUTs in a Xilinx XC402&tex 2000E chips also pvade

640 Kbits of on-chip memoryEach FPGA on the TM-3A is connected to the other three
FPGAs via a 98-bituss. Each chip is also connected to a 256K x 64bit synchrontersnal
SRAM, an I/O connector and a nibblesbwhich allevs communication with a houssdping
FPGA. The houseaeping chip communicates with the host computer famdtwad and con-

trol functions. A video encoder and decoder chip [26] is included on the TM-3A boaxet to gi
the ability to recaie NTSC video and also send output results directly to a disp\yBA

can operate at frequencies of up to 100 MHz.

The TM-3A can be used to implement designs that ageddhan the capacity of one single
FPGA. A set of TM-3A softare tools preide support for design compilation, routing

between FPGAs, system managementudgimg and user inteaa€e. The board can commu-
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nicate with a program running on a UNIXovkstation using the ‘ports package’ [29]. The
ports packageatilitates design stimulus, data transfer and desigogdghg. TM-3A also
provides two other tools for delgging: 1) JAG boundary scan which reports treues of I/
O pins on all FPGAs; and 2) a circuit dgging program called tm3step that alorunning
the system clock for aygn number of ycles and displays the content ofydlip flop in the

design.

Figure 2.8 Transmogrifier3A board

2.2.3 VHDL Language

This section preides a brief introduction to the hardwe description language used in this
work to huild our hardvare system. VHDL is the VHSIC Hardwe Description Language.
VHSIC is an abbnaation for \ery High Speed Intgated Circuit. This language can describe
the behwsior and structure of electronic systemst s particularly suited as a language to
describe the structure and beioa of digital electronic hardare designs, such as ASICs and
FPGAs.

VHDL allows the behaor of comple electronic circuits to be captured into a design system
for automatic circuit synthesis or for system simulation. Similar to higdl-languages such

as Riscal, C and C++, VHDL includes features useful for structured design techniques and
offers a set of control and data representation features. One imporfargndié between
VHDL and other programming languages is that VHDLvfdes features that alldescrib-

ing concurrentents. This is because the haedlevdescribed by VHDL is inherently concur-

rent in its operation.
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As an eample, the follaving VHDL code describes a simple comparaidris comparator
receves two 8-bit inputs, A and B, and generates a 1-bit output, EQ, based on whether A is

equal to B or not.

library ieee;
useieee.std_logic_1164ll;
entity compards
port (A, B:in std_logic_ector(0to 7);
EQout std_logic);

end compare;

architecture my_comparef compards
begin
EQ <= ‘1’when (A = B) else'0’;

end my_compare;

In the code abee, the VHDL leywords are highlighted in boldée type. A complete refer-
ence for VHDL and a guide to VHDL for synthesis can be found in [17] and [27] resgdgcti

2.3 Vision Applications on Reconfigurable Systems

The increase in capacity and speed of FPGAs in the lasydars has led to aariety of

reconfigurable systems being used for accelerating computationally wetemschine vision
and graphics applications. Theahsmogrifier2A [24], the predecessor of TM-3A a8 used
as a platform for video ratade detection [21] andxtire mapping [35]. In INRIA [9], a 4 x
4 matrix of small FPGAs is used to perform the cross-correlationam2b8 x 256 images in

140 msec.

A small number of hardare based stereo systemséialso been deloped in the past fe
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years. A stereo engine was developed on PARTS system based on the census transform, an
intensity-based stereo matching method mainly consisting of bit-wise comparisons and addi-
tions [36]. The PARTS stereo engine generates dense disparity maps of size 240 x 320 pixels
at video rate. In [15], acombination of FPGA and Digital Signal Processors (DSPs) is used to
perform edge-based stereo vision. It uses FPGASs to perform low level tasks such as edge
detection and DSPs for high level image processing tasks. There are also stereo systems that
are based on custom designed hardware as opposed to reprogrammable hardware: in [21], a
system is described that is composed of three boards built from discrete components plus a
C40 DSP-array board and areal-time OS board. This system performs sum-of-absol ute-differ-

ence correlation in 30 frames/seconds on images of size 200 x 200 pixels.

These video rate hardware-based stereo systems are principally implementing intensity-based
or a combination of intensity and feature-based matching techniques. As we mentioned in
Section 2, phase-based matching techniques have a better performance than intensity-based
techniques in the presence of brightness variations in binocular images. Phase has aso the
advantage of linearity and stability. To date, no phase-based video rate stereo system is
believed to be implemented on hardware other than the one described in this thesis. Thisis
likely due to the large amount of computation required for extracting and manipulating the

phase.

The following chapter describes devel opment of a phase-based multi-resolution multi-orienta-
tion stereo vision system on an FPGA platform that generates a 256 x 360 pixel depth map in
video-rate and with 8-hit, sub-pixel accuracy. The basis of the algorithm is Local Weighted
Phase-Correlation technique [11], as explained in Section 2.1.2, which is one of the highest
performance algorithms to date for disparity matching. By implementing this algorithm on
FPGAs, we achieve a speed-up factor of approximately 60 to 900 over its software implemen-

tation with the same parameters.
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When implementing a complalgorithm on reprogrammable harahe, the ky issue is that

there is a fird amount of hardare aailable in each FPGA. These haate resources
include logic capacityon-FPGA and ¢fFPGA available memorymemory access bandwidth
and chip-to-chip communication bandwidth. Aching) the best werall performance requires

efficient usage of all hardave resources.

This chapter describes implementation of Locaighted Phase-Correlation\WWPC) algo-

rithm as introduced in Chapter 2. In thienk, for parallel and é&tient hardvare implementa-

tion of the stereo depth measurement, some modifications are introduced to the original
LWPC algorithm. Three major modifications are: 1) emiplg fixed-point data representa-

tion instead of floating-point representation; 2) changing the location of the smoothing Gauss-

ian windavs; and 3) using, —norm instead ofL,-norm in calculating phase correlationo T

analyze the ééct of these modifications on the final performance of the system, weufltst b

a software model that emulates the be@baof hardvare. Once all the design parameters were

17
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Figure 3.1 High Level Stereo System Architecturev@ video inputs are recad
from parallel cameras and are passed through multi-scale multi-resolWi®@ L
algorithm. The Weo Output Intedce sends the depth map results to display

decided in the emulatiorevsion of the algorithm, we started to design the hardwystem.
In this chapterwe first &plain the major bilding blocks of the system and the distitibn of
tasks oer the four FPGAswailable on TM-3A board. Then, we will discuss the atages

and efects of modifications on theverall system performance.

3.1 System Overview

The architecture of the stereo vision system is described in Figure 3.1. This architecture is
derived from IWPC algorithm illustrated in Chapter 2. It consists of four major units: the
Video Interfice Unit, the Scale/Orientation Decomposition Unit, the Phase-Correlation Unit
and the Interpolation/Peak-Detection Unit. Each of these units are implemented on one of the
Xilinx Virtex 2000E chips\ailable on the flansmogrifier3A.

A brief overview of the hardware units is as folles: After being bffered, image streams from
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left and right cameras are passed, in the form @l jgvey scale alues, through Gaussiagrp

amid scaling and steerable G2-H2 filters. The outputs of left and right G2-H2 filters are then
meiged in a correlation block which computes tloéing functions based on the similarity of

the left filter output with shiftedarsions of the right filter output. At the end of the correlation
unit, we hae a series of three dimensional arrays, each corresponding to a specific scale and
orientation. The first tav dimensions of these arrays are X and Y coordinates of teeipix

the image and the third dimension hasing function \alues for each of the candidate dispar-
ities, ranging from 0 to the maximum disparfBmnce there are multiple scales of image at this
stage, we need to interpolate thlaing function arrays in X, Y and also in disparity domain,

1, In order to combine all theoting functions results. As the final step, for eaclelpliaca-

tion, the disparity inde t,_., corresponding to the maximuroting function, is detected. By

max?
performing linear interpolation oroting function results, sub-pgkaccurag can be obtained
for disparity estimates. This estimate is then translated to a cdpthusing Eq. (2). The fol-
lowing sections will describe each of the major units of the hamrelstereo system in more

detail.

3.2 Video Input Interface Unit

This unit receies composite NTSC video signals fromot@CD cameras (Figure 3.2). The
analog NTSC input is cerrted to digital RGB signals using the designated NTSC decoder
chip [23] on the TM-3A board. Realization of a video-rate stereo vision system requres tw
simultaneous video signals fromdwameras. @ do this, we need wwideo input channels

on board, each res@ng video from one camera. But there is only one NTSC decoder on the

TM-3A board and it has only one video input chanwallable at a time.

To sohe the single video input channel problem, we alternate the source selector of the
decoder chip after each frame is grabbed such that in each second 15 frames from the left
camera and 15 frames from the right camera arevemterhe draback of this solution is

that the oerall processing rate of the stereo system in practice is half of the standard video
rate (15 frames/sec). Mever, this limitation is only arising from theaét that TM-3A is a
general purpose reprogrammable board with one video input channel. If teie wy to

receve two 30 frame/sec video signals in parallel, the rest of the current stereo sysiém w
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Figure 3.2 The camera head with da/2” CCD cameras. The focal length of
the camera lenses is 12mm and the separation between the optic centers of the
cameras is 70mm.
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Figure 3.3 Using source selector to alternate between left and right cameras

have been able to generate disparities in full video ratedt in the current design, the input
image luffers are read and processed in 30 framesigat though the input image changes

every 15 frames/sec. Figure 3.3 describes the source selector alternation after each frame.

At the end of the Meo Input Interhce Unit, the input interlaced images of 256 by 36@Ipix
are written into left and right frameuffers. The Scale/Orientation Decomposition Unit will,
then, read these framafters in non-interlaced order and will process these image streams as

explained in ngt section.
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3.3 Scale-Orientation Decomposition Unit

This unit consists of taw major sub-blocks: the Scaler block and the G2-H2 Filter block. It
reads from the frameulfers and after scaling and filtering, sends the outputs to the Phase-
Correlation Unit. Br parallel processing of left and right image streams,itstantiations of

the scaler and filtering sub-blocks are used to separately process iheatye streams.

3.3.1 Scaler Block

As discussed in Chapter 2, combining the matching data from multiple scales of the stereo
images improes the werall performance of stereo matching. This inweroent is because
each scale leads to one correct disparity and some possgdydisparities. By combining the

matching data across all the scales, #eefdisparities can be reduced [11].

Figure 3.4 shas the architecture of the Scaler Block. This blocwml@amples the original
image in tvo steps, each time by actor of 2 in both horizontal ancestical directions. @
avoid aliasing, which can happen as a result afrdgsampling, we pass the input image
through a lav-pass anti-aliasing filtein our system, a three-tap Gaussian FIR filter is used as
an anti-aliasing filter in both horizontal andrtrcal directions. The Scaler Unit outputsotw

Gaussian yramids, one for left image and one for right image.

Original Scale Scali 1
Anti—alias
LPF
Scale 2
l 2 >
v
Anti—alias
LPF

Scale 4
[ =%

Figure 3.4 Two-step scaler architecture with anti-alias-pass filters and 2D @a sampling
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3.3.2 G2-H2 Filter

G2-H2 Filter is the second block of the Scale/Orientation Decomposition Unit. As discussed
in Chapter 2, G2/H2 filters are a common approach for pkaseton. G2/H2 is a compte
valued quadrature-pair filtefhe real and imaginary parts of this filtewéahe same ampli-

tude spectra,ut they are 90° out of phase. In otherawds, G2 can bexpressed as the second
derivative of a Gaussian function and H2 is its Hilbert transformmed@ract more features

from the input images, we apply awdifferent orientations of G2/H2 filters (The original
LWPC algorithm uses three directionst lve decompose in twdirections due to the space
considerations.). In [13], it is sivm that G2/H2 filters are “steerable” which meang airii-

trary orientation of G2 or H2 filters can bpeessed as a linear combination of a set of basis

filters. The basis set for G2 filter has three filters; G,, andc,., while H2 has a basis set
with four filters:H,,, H,,, H,, @andH,,. In hardvare, we hae implemented all the gen basis
filters and then, by combining the basis filter outputs by propefi@eats, we construct tw

oriented filters in45° and—45° degrees. One adntage of implementing basis filters is that

ary other filter orientation can be constructed with minimuwinaecost.

Figure 3.5 shws the architecture of the G2/H2 filter block. In this block, the main computa-
tion is performed in the basis filters. Each basis fdter G, , ..., H,q iS originally a9 x9 FIR
filter. However, for hardware implementation purpose, since the first and lasficeets are
negligible compared with the other céiefents, we implemented them as 7 filters. In the

next paragraphs, we will describe the implementation of the basis filters indrardw

One important feature of G2/H2 filters is thatytlaee X-Y separable. An X-Y separable filter
has an impulse response that candpeessed as the product ofafunctions: one which only
depends orx, and one which only depends gnConsider a separable filter with impulse

respons&[x,y], which can bexgpressed as:

KIx y] = F[x] 0G[y] 3.1)

Then, the 2D corolution of imagd[x,y] with K[x,y] can be written as:

I[x y] OK[xy] = (I[x y] O F[x]) O G[y] 3.2)
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Figure 3.5 Architecture of the G2/H2 filter block. Arorientation of G2/H2 filters can be calculated by a linear com
of a set of seen basis filters.

or

I[x yl OK[xy] = (I[x,y] O G[y]) UF[x] 33)

This property allas eficient implementation of G2/H2 filters because thevohrtion of the
input image with ann xN, X-Y separable érnel can be replaced withdveeparate 1-D con-

volutions with a horizontak x N vector and a ertical Nx1 vector This feature reduces the

filter compleity from o(N?) to o(2n). We call the cowolution with 1xN vector the X-filter

stage and the cwalution with Nx 1 vector the ¥Yilter stage.
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Hardware implementation of FIR filters requiresotateps: 1) creating delayfers, 2) multi-
plying with constant coétients and hilding an adder tree. The X-filter andfilter are both
FIR, and, thus hee similar architectures in hardwe. Their only dierence is that since the
video input data is axing in rons, implementation of the X-filter delaytfers is simpler and
smaller in comparison with the-fifter delay luffers. AnN-tap FIR X-filter requires only
N-1 delay elements, while affiter with the same size requires roughlyin-1) delay ele-

ments, wherew is the number of peds in one image scan line.

The design shen in Figure 3.5 includes gen pairs of X-filters and-filters, all of them pro-
cessing the same input image. In this figure, all the basis filteestha same input. This
property suggests sharing of delayffers among all the basis filters. As Eq. (3.2) and Eq.
(3.3) shav, we can perform X-filtering and-ftering in arbitrary order without &dcting the

final corvolution results. W hare chosen to perform-itering first (as in Eq. (3.3)).

. o — X buffer
Input pixel stream 1 | Yfilter L . 1 -
? L_| ‘ L coefficients X filter
| L — coefficients
! 7

‘ — Ga Basisfilter

- 5 . X buffer

| : : : Y filter | 1 1

! | > " > + >

! coefficients X filter

i t ... D coefficients
,,,,,,,,,,,,,,,,,,, . Gb Basisfilter

W =# of pixelsin scanline
Shift register

Shared Y buffer 7

X buffer
Y filter | 1 L
- > + >
coefficients X filter
coefficients
Hd Basisfilter

Figure 3.6 Sharing Y hiffer for all s&en Y filters of the basis filters. The Yiffers are bydr lager than X kffers. So, sha
ing the Y luffer among all the basis filtersves more hardare as opposed to sharing Xfflers.



CHAPTER 3. Hardware Design 25

By implementing the ¥ilters first, the ertical tuffer for Y-filtering can be shared between the
Y-filters of all basis filters. Since the Yiffer is much lager than the X wffer, the amount of
hardware saing as a result of Yuffer sharing is much higher in comparison with ibr

sharing. Figure 3.6 s the internal architecture of basis filters.

In a hardvare realization of an algorithm, floating point multiplication anaisebn is usually
expensve in terms of the amount of logic resourcesilable on the chip. One common solu-

tion is to replace floating-point operations withefixpoint operations of an appropriate width.

The width should be Ige enough to introduce acceptable quantization error according to the
constraints of the algorithm. In Figuses, input piel values are in 8-bit gyescale, so all the

shift registers in the delayuffers are 8 bits wide. The X-filter andfifter coeficients are
guantized to 8-bit signed precision. The final outputs of oriented filters are presented in signed
16-bit values. A full detail analysis of the &&-point representation for each stage of the

design will be gien in Section 3.7.

Besides diierent structures for delayffers, the rest of the architecture of X-filter andil¥ér

is similar Figure 3.7(a) shws the design of an FIR 7-tap X-filter with chekntsc,, c,, ...,
c,. One important feature of X and Y decomposition of G2/H2 filters is that thicea@s
are either symmetric or anti-symmetric, e.g. for a 7-tap FIR fittee +c,, c, = +c, and

C, = +C.. This property is used in the design to reduce the number of constant multiplications

A Filter output
]

Filter output

Input

— D D D D
pixels
D ~ D ~— D

(@) (b)

Delay element

Figure 3.7 (a) Original architecture of the horizontal 7-tap FIR fil{bj Revised architecture with symmetric céeients.
(For anti-symmetric coéitients the first leel of adders can be replaced with subtractors.)
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from 7 to 4, as shvn in Figure 3.7(b). In this architecture, the pairs of input samples are
added or subtracted before being multiplied by theficosits. Note that the total number of

adders in both designs (a) and (b) is identical.

The Scale/Orientation Decomposition Unit produces temple valued band-pass outputs
(in directions 45> and-45°) for each scale of theypamid. Since theyramid has three scales,

there are totally 6 comptevalued outputs from this unit. Note that there are parallel

streams of signals: one for left image stream and one for right stream. So, each scale and each
orientation has a pair of left and right signals that should be sent to the Phase-Correlation
Unit. The comple valued signals consist of real and imaginary parts, each represented by 16-

bit signed alues.
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Figure 3.8 Communication between Scale/Orientation Unit and Correlation Unit

3.4 Phase-Correlation Unit

This unit is the heart of the vision system where the filter outputs of left and right images are
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meiged. As discussed in Chapter 2, the final goal of the stereo matching is todiodrter
sponding points in the stereo images. In general, finding the corresponding point requires
search wer the whole image,ub by aligning the cameras and using the epipolar constraint,
we can shrink the search winkldo a 1D horizontal winde. This means that for each plxn

one image, the corresponding gixn the other image lies on the same scan line and within a

maximum distance.

To find the best match, we compute a similarity function for eac# pixhe left image and
the horizontally shifted locations of that pixin the right image. The similarity function
results are then combined across all scales and orientations. Theksldftwich produces

the highest similarity will be detected as the best match.

Figure 3.9 shws the high leel architecture of the correlation unit for one pair of left and right
images. Thealue of D in Figure3.9 represents the maximum aled disparity between ste-
reo images, or the size of the searching winda our work, we hae limited the alue of D

to 20 piels in the finest scale, based on the hardwesourcesvailable. In the coarser

D : Max Disparity ——=

R=(Re(R),Im(R)) j ﬂ @ {
z z z ° o o ‘1
HENE

L=(Re(L),Im(L))

Ly

Voting C(0)
func.

| Voting Cc@)
func.

c©)

I Voting

L func.

To Interpolation Unit

| Voting C(D)

L .| func.

Figure 3.9 High level architecture of Phase-Correlation Unit for one pair of left and right images. In this architecture
voting function blocks are operating in parallel.
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scales, the number of shifts are also scaled by the satoe $uch that in scale 2, there are 10
shifts and in scale 4, there are 5 shifts. Choosiggfaalues for maximum alleed disparity
D, will result in a lager search winde which proportionally decreases the minimum detect-
able distance from objects to the camera head. On the other hand, increasalgetlod

will increase the size of Phase-Correlation Unit and Interpolation Unit almost proportionally

The similarity function, or eting function, implemented in thisask, is based on theoting
function proposed inWPC algorithm:

Clx 1) = W(x) 0[0,(x)0,Hx +1)] 3.4)

JW() 00, (x)2W(x) 0]0,(x)]?

Based on this equation, to computging functionc in locationx of the image and for can-
didate disparity oft , we need to camlve the Gaussian window(x) , with the inner product
of 0,(x) and O,lx+1) , whereO(x) isthe comple-valued G2/H2 filter output for left image
and O,lx+1) is the conjugte of right image G2/H2 filter output shifted bypixels horizon-

tally. The result is then dided by square root of ceolution of w(x) with the square of the

amplitude of bothO(x) and O,(x) .

Efficient calculation of theating function,c(x, 1), in hardvare is critical to the delopment

of the whole system because obtfacts: 1) this block containswaal non-constant multipli-
cations, square roots andidiers which are allx@ensve in terms of logic resourcegalable

on FPGA. 2) Seeral identical wting function blocks should be implemented in parallel. T
have a rough estimate of the total number of this block, we B8, 10 and 5oting functions

in scale 1, 2 and 4 respestiy, which adds to a total of 35 blocks per orientation. Since this
whole process is done ondweparate orientations, in total there are 70 blocketofg/func-
tion. So, ag saving in the implementation of this block will be magnified 70 times. In tlké ne
paragraphs, we will describe the techniques we lagplied to shrink the size abting func-

tion block, while introducing minimal error compared with originating function.

As discussed in Chapter 2, at true dispatitg real part o€(x, ) should be maximum and its

imaginary part should be close to zero. It means ideally all the true matches should be detect-
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able just by finding the at which Rre[C(x,1)] IS maximum, although computing both real and
imaginary parts ot(x,t) will help to reject wrong matches. Based on this propengyonly
compute the real part @fx, 1) in Eqg. (3.4) in our system. In this equation, the Gaussian win-
dow, w, and denominator arevedys real-alued. So, to computee[C(x, T)] , We just compute

Re[O,(x)O,x+1)] , as follavs:

Re[0,(x)O,L(x+T)] = Re[O,(x)]Re[O; (x + )] ~ Im[O,(x)]IM[ O (x +T)] 35)

Implementation of Eg. (3.5) requires onlyaeal multipliers, as opposed to four multipliers
for full complex-valued multiplication to compute both real and imaginary parts ofdtiegy

function.

Figure 3.10 shes hawv Re[C(x,1)] can be devied from O,(x) and O,(x) with basic mathemat-

ical operations. It requires\sn multipliers, one square root block, oneidiér and three
adders plus three parallel blocks of Gaussian windtere is a rough estimate of number of
LUTs required to implement the block illustrated in Figure 3.10 Assume that all multipliers
are 8x8 bit and square root andider blocks need the same number of LUTs as multipliers.
Implementation of each multiplier requires around 60 LUTs and each adder requires 8 LUTSs.

So, architecture of Figure 3.10 needs 566 LUTSs for basic mathematical operations. Consider-

Re(Ol)
ol | Ol |72
" 0@
Im(Ql)
Gaussian Window
Re(c)
Re[O1.0r*] Divider
W
Gaussian Window w * (Re[OI]Re[Or] - Im[OI]im[Or])
sqrt([w * [0l ][ w * |Or ])
Re(Or)
Or | Or |2
W
Im(Or)
Gaussian Window

Figure 3.10Realization of the real part obting function in (3.4)
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ing the fct that this bock needs to be replicated 70 times, the total number of LAulics lve
39,620 which is more than the 38,000 LUTs totallgilable in the tex2000E chip. Note

that we hae not talken into account implementation ofya@aussian \Widows, delay elements

or control logics yet. The 8-bit square-roots anddgirs are also more costly than multipliers,

making this problemwen worse.

3.4.1 Location of Gaussian Window

To shrink the size of this block, we g slightly modified the method of calculating

Re[C(x,1)], @s shavn in Figure 3.11. In this vésed architecture, we t@ pushed the Gaussian

windows to the end of the block aftewvdler. In fact, instead of applying the localized Gauss-

ian windav, W(X), to the amplitudes and inner product of left and right outputs, we apply the

Gaussian windw to the result of the dider. While this is not the mathematical eeplent of

the original method, wexpect it will have similar smoothing &kct because thé/(x) window

in our system is a small 3-tap FIR filter and the left and right outputs are band-limited (and

hence their alues do notary dramatically in the windw). This change alles us to gtract

the common portion of computations betweeresa blocks such that we only perform them

once. In &ct, the architecture siwa in Figure3.11 is close to the local phasefeliénce

ol

Re(Ol)

Im(Ol)

Re(Or)

Im(Or)

|Ol |22

1\ Re[OLOr*]

|Or |2

Divider

(Re[Ol]Re[Or] - IM[OI]IM[OF])
W *

sqrt(|Ol|.|Or])

w

Gaussian Window

Figure 3.11Revised \oting function architecture: The Gaussian wiwds moved to the end of block
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method proposed in [10].

Here are tw major techniques we use tetract the commonaictors in order to reduce the
size of the block:

First, by mwing the Gaussian wings to the end of the block, the three Gaussian wisdo
are reduced to one windoln fact, this Gaussian windocan be pushedsen further back to
after addition of theating functions of diierent orientations because of linearity of the Gaus-
sian windaving operation. This will reduce the total number of Gaussian wiadmom 210

to 35.

Second, the sub-block before Gaussian windbFigure 3.11 can be re-arranged asxshim
Figure 3.12. In this e design, each of the twinputs, 0,(x) and O,(x) , are normalized first
such that the both hae unity length. The inner product of these unity lengttitors is then
calculated and sent to Gaussian windAt first, having two normalizing blocks as in Figure
3.12 might seem not to be helpful because kdak dviders and one square root block more

than its original @rsion. But it has a main aaivtage: These normalization blocks are identical

ol
Saltl

Im(Ol) i I
Divider H

Normalizer

Re[01.0r*]
w

) Gaussian Window
Normalizer

Divider [y

Figure 3.12 Re-arrangement of the architecture of Figure 3.11 withrtermalizer blocks, one inner product and one C
sian windav unit.
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for all the shifted grsions of the image (Figure 3.9). It means insteadwh@aormalization

units in erery woting function block, we can share them across all the shiétesions of ot-

ing functions. This sharing technique is illustrated in Figure 3.13. Extracting the normaliza-
tion block from the w@ting function blocks reduces the computational corifylénside each

block. Since all disparities in each scale and orientation need only one pair of normalization
blocks, the total number of normalization blocks is 12, as opposed to 140 normalization

blocks needed before adopting sharing technique.

D : Max Disparity

Or

Normal.

Orn

ol

Normal.

Oln

[ ]

]

Figure 3.13Extracting the normalizer blocks and sharing them acrosstaigvfunctions reduces the conity inside eact

3.4.2 Normalization

For further reduction in the size of the Phase-Correlation Unit, we tnadified the architec-

ture of normalization blocks. The major portion of the normalization block is computing the
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amplitude of compbe-valued inputs. Amplitude of a compl@alue,A, can be ¥pressed as

the L,—norm of the 2D ectorA, with rRe(A) andim(A) as its elements:

L,—norm: Al = A/Re(A)2+ Im(A)2 (3.6)

Hardware implementation afa, is expensve because it requires awnultipliers, one square

root and one addeinstead, we hee replaceda|, with L, —norm of vectorA, |A|,, defined as:

Ly—norm:  [Al; = |[Re(A) +[Im(A)| @37

where|x| means absolutealue ofx. Figure 3.14 shas the efect of replacingal, with |A],
on the normalized outputeetors. In theL,-norm method, all the normalizedegtors are
located on the unit circle in the Real-Imaginary plamei L, —norm, they are projected on a

square, as sk in Figure 3.14. This is because the sum of absolute real and imaginary parts
of normalized ectors are alays unity and therefore theall become projected to straight
lines which form a square instead of a unit circle. This techniquedesenough accurac

for our application and can also be used in similar applicatiangnprovse the accurgcand

still avoiding implementation ofaj, , there is one potential solution: Sirrea ;) andim(A,,)

in Figure 3.14 are wlays limited between -1 and 1, one can use a memory block as a look up

table with appropriate size to replace currept vectors with those closer t@les on the

Im Im

L2-Norm__t L1-Norm *
A A
Au2 1 2 ,'/ ulj \\,1
Re L ’r' Re
_ A A A A
uz_ﬂ”_ — Ag=—= —
2 2 2 TAT |Re(a) | +[im(A) |

Re(A) +Im(A)

Figure 3.14 Effect of usingL; —norm instead ofL, —norm
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unit circle. The important point is that these look up tables canilieibing on-chip memory
which is aailable in most of the current FPGAuilees without the need to use logic elements

of the dice.

Figure 3.15 shws the efiect of the first tw major modifications we ke made to the original
LWPC algorithm. Figure 3.15(a) and (b) are a ‘books’ stereo images. In (c), the depth result
from original algorithm is shen. In (d), the depth map after changing the location of Gauss-

ian windav and replacing., —norm with L, —norm is shavn. In most of the igons, the tw

images hee the same deptlalues, bt as we werexpecting, the depth map in (d) contains

(a) (b)

(d)

Figure 3.15Effect of usingL ; —norm instead ofL, —norm and changing the location of Gaussian windm the fina
depth map results of the ‘books’ stereo images. (a) Left image. (b) Right image. (c) Depth map by usitg m and

original location for Gaussian windo (d) Depth map by usinf; —norm and Gaussian windomoved to the end of
voting function block.
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slightly more noise compared with (c). This noise comes from the approximations/eve ha

made in order to makthe hard implementationfiefent and feasible.

Table 1 summarizes the number of mathematical operations required irfehentdi&rchitec-
tures of the phase-correlation block. In this table Gaussian wede considered as aild-

ing blocks without counting the components inside the Gaussian wirddact Gaussian
windows in our system are 3x3 X-Y separablesdpass FIR filters. So, implementing each
Gaussian windw requires a set of Xelffer and ¥buffer plus constant coidients and adders

tree. These resources are not included in table 1.

Gaussian
windows
Original Gaussian moved Sharing
from windows + +
LWPC moved nor malizer L1
Architecture | algorithm sharing nor malizer
Multipliers 490 490 188 140
Dividers 70 70 24 24
Square roots 70 70 12 -
Adders 210 210 82 82
Gaussian 210 70 35 35
Windows

TABLE 1. Summary of the number of basic blocks for different
architectures of Phase-Correlation Unit

3.5 Interpolation/Peak-Detection Unit

The Interpolation/Peak-Detection Unit is the last unit befoded® Output Intedce. This unit
is implemented on the fourth FPGAadlable on the board and consists obtwajor blocks,

the Interpolation Block, and the Peak Detection Block.

3.5.1 Interpolation Block

This block interpolates twcoarser scaleoting functionsg; ,,(x, 1) andc; 5 (x 1), in bothx
andt domains such that thean be combined with the finest scadéinvg function,c; ;,(x, 7).
It performs quadrature interpolation in thedlomain and constant interpolationxrdomain.

The quadrature interpolation performed in thigrkvis as follevs: Assume a functiori(n),

for o<n<sN . We luild g(m), 0sm< 2N, by quadrature interpolation a{n) based on this
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formula:
E f(n) if m = 2n
g(m) = [0.375f(n) + 0.75f (n+ 1) —0.125f (n + 2) if (m=2n+1)0(mMmzM-1) (3.8
E (=0.125 f (N =2) + 0.75f (N — 1) + 0.375f (N) if m=M-1

The interpolated ating functions are then added together to producewealb voting func-
tion s(x, 1) . The interpolation from scale 2 to scale 1 is performed in one sieipidrpolation

from scale 4 to scale 1 is bekto two steps, each step up-sampling bg@dr of tvo.

3.5.2 Peak-Detection Block

The input to this block is a three dimensional array with the fistimensions the same size

as the size of the image (256 x 360) and the third dimension of size D (maximum disparity).
Each elements(x, y,1) in this array is the combineating function for locationx,y) of the

image and for the candidatalue of t , as the disparityThe goal of the Peak Detection block

is to find, for each pid location (x, y), the t value which maximizes(x y,1). The ind& value

of t is sent to output as the estimated disparity foelpix y) of the image.

Since the maximum disparjt{p, in our system is set to 20 plg, the disparity output can
have integger values from 0 to 20. It means thathas an accurgmf about 5 bits. This will be
translated to 5-bit accunain the final results of depth measurementsiniprove the werall
accurayg of the system, we ha emplyed a sub-pigl accurag sub-block inside the Peak
Detection Block which as not in the original WPC method. The sub-mkaccurag block

picks the s(x,y, 1) that has the maximuralue. In addition, it picks that poistleft and right
neighbors in the domain, e.g.s(x,y,1-1) and S(x, y, 1 +1) and fits these three points to a qua-
dratic cune. The point corresponding to the peak of the quadratieesideclared as the sub-
pixel accurag disparity Assuming that s(x,y,1) =a , S(xy,1-1) =b and S(xy,1+1) =¢c ,

we calculate the sub-mkaccurag disparity 1, ,as the sum of an irger \alue,t, and a

fractional shift, A, , defined as:

__¢C-b
T 4a-b-c

Taub = T+AT, A (3.9)
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Figure 3.16 Sub-pixel accurag in disparity is obtained by adding, to the intgervaluedT .

The \alue of A, adds a fraction to originalalue of t to move it tovards the neighbor with
value closer to the peak.@Mdomputea, with 3 bit precision after the decimal point that after
being added to the original 5-bit iger © produces final t,, results with 8-bit accurgc

(Figure 3.16)

The final disparity results are written in the¢egnal SRAM bank which will be read by the

Video Output Unit to be displayed on a monitor

3.6 Video Output Unit

The Mdeo Output Unit sends three sets of information to the display: 1) original input video,

2) depth map results; and 3) mouse pointers on both original and disparity map results.

The original input video and final depth map areagis uffered in a 2MB gternal SRAM
connected to FPGA #3 of the TM-3A board. Thdés Output Unit reads thesedviuffers
and sends them to the monitor such that thetdalf of the display shies the original image

and the upper half s the result of stereo algorithm. In the depth map results, the depth is
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encoded in grescale alues from 0 to 255: the higher grecale alue (brighter pigls) indi-

cates a pigl close to cameras. Wwer gre/ scale alues indicate peds farther from camera.

In addition to displaying the dense depth map, our systemvsaatloe user to check the dis-
tance of ap arbitrary pixel in the image just by clicking the mouse pointer on thadlpbhis

feature is added by a taway communication between the TM-3A board and the host
machine: the user naes the mouse which is connected to the host machine. A program on the
host machine continuously reads the mouse pointer coordinates and sends them to the TM-3A
board through the ports package, whichwdacommunication of host with the board. The
Video Output Unit recges the mouse pointer coordinates and superimposessitvall
squares as pointers on the original and depth map images on the monitor which is directly
connected to TM-3A board. When the user right clicks the mouse, the TM-3A is informed
through the ports package. The TM-3A is then responsible to read the depthffeajprd

send the depthalue of that piel back to the host machine. After the click, a windm the

host machine displays the X and Y coordinates, plus the distance ofeh&quix the camera

in centimeters.

3.7 Fixed-Point Representation Analysis

Floating-point mathematical operations requixeasve resources to implement in hawahe.

Since we knw the required scale and precision in each stage of the stereo algorithm, we can
implement it in a dr more dicient fixed-point representation. Mever, there is abays a
trade-of between accurgcof fixed-point representation and the haadevcost: minimum
guantization error requires using wideefikpoint representationsytowider signals require
larger circuits to perform mathematical operationsi@drs, multipliers, adders, etc.), in addi-

tion to lager data path circuits, ger memory and higher chip-to-chip communication band-
width. In this section, we analyze thdeet of replacing original floating-point operations

with fixed-point representations of f@ifent size.

Figure 3.17 shws the cost of implementing parallel (one clogkle) multipliers and diders
versus the input width of the multiplier owvdier. If the required throughput permits one can
use serial multipliers andwdders that cost lessubgenerate only one outputegy N clock

cycles (N>1). But rgardless of using parallel or serial operators, the number of LUTsltb b
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Figure 3.17 Divider and Multiplier Hardware Cost

a multiplier or dvider increases approximately with the square of the input width.

The ley issue is that the assignment ofefixpoint width to signals should be analyzed for
every block of the algorithm separatelyhis is because fd-point precision in each stage of
the system has a tBfent efect on the final results. So, we need to engkod decisions for

the precision of theariables and operations in each stage of the algorithm. This analysis
requires both kneledge of the tayet hardvare and the algorithm itself. Weools hae been
developed to solg this problem. & example, [7] is a fram&ork for automatically determin-

ing fixed-point precision of floating-point calculations.

In the design process of our system, weehdone a detailed analysis of thé&ef of fixed-
point width of signals on the final results in order to find the proper width assignment. Before
the detailed discussion of thesdeets, there are seral issues that should be mentioned

regarding the selection of proper width for thesfilxpoint representations:

« As we discussed in Chapter 2, there is a limited amount of heedwsources in TM-3a,
including number of LUTs and flip flops in each FPGA, on-chip af@hop memory
memory access bandwidth and chip-to-chip communication bandwidth. aldhisdts an
upper limit on the figd-point precision of signals. So, as the first rule, we need te mak

sure that the selected dit-point widths meet the hardve requirements.
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« Usually the final accurgcoof the system is more sengdito the precision of some signals
as opposed to othersoiFeficient usage of the hardne resources, we try to assign wider

bit representation to those signals th&tctfthe final results more.

» Decisions should be based on the redatiize and number of the blocks: those blocks that
are replicated so martimes hae lager efect on the total size of the circuit. So, when

minimizing the size of blocks, the priority is for bigger and more frequent blocks.

« This problem is in general an optimization problem with complicated constraints and cost
functions. While we hae tried to assign appropriate representations to signals, we can not

guarantee that this is the optimum setting.

We hare conducted a set of emulations in order to find the approximate\@gnsitthe over-
all performance to the precision offéifent signals. The task of assigning proper precisions to
all signals is theoretically a multaviable optimization problem with a compleost function.
In this research we are not claiming werdvaeached the globally optimum settingg bur

solution is eficient enough to meet our design constraints.

In this section we shmothe results of analysis of the precision in four major points of the sys-
tem: 1) X-filters outputs, 2)-Filters outputs, 3) normalizer block outputs, andatj)ng func-

tion outputs. Our methodology is as felter We start from the first point, X-filters outputs,
sweep its precisionver a wide range, assuming that all the other points in the system are in
full precision. or each precision of the X-filter output, we calculate the quantization error by
comparing the final disparity result of limited X-filter output precision with final disparity
results of full precision X-filter outputs. After creating the graph of emosus precision, we
choose the proper precision before the graph becomes flat (assuming this precision is less than
the upper limit imposed by har@wne resources). The reason for this choice is that when we
reach the flat part of the graph, it means that we are increasing the pregtsiodaes not

improve the quality of final results.

After choosing the X-filter outputs precision, wexl this precision fed and sweep the-fil-
ter outputs, still assuming thatxigoints are in full precision. @/continue this method until

the last point, where all the precisions aredixxcept the last one.
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Figures 3.18, 3.19, 3.20, 3.21 shthe efect of precisions in X-filters outputs;fitters out-

puts, normalization block outputs andtwmg function outputs on the final disparity results
respectrely. In these figures, the horizontal axis is the width at a specific point in the system
and the wertical axis is the mean square error in the final disparity outputs as a result of replac-
ing full precision signals with fed-point representationoFall the three test images in these

figures (Books, flee, Lamp), the maximum disparity is 20 &

=———m tree-image
o——————@ books-image u

¥—V¥ lamp-image

25

20

15

Mean Square Error

Selected width

I I
4 6 8 10 12 14 16 18 20

Output width of X-Filter Unit ( # of bits)

Figure 3.18Fixed-point analysis for the X-filter block output width. Based on this analysis, we represent X-filt
outputs with 16-bit signedalues.
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Figure 3.19 Fixed-point analysis for the-flter block output width. Based on this analysis, we represditteY
outputs with 16-bit signedalues.
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Figure 3.20 Fixed-point analysis for the output width of the Normalizer Block (inside Phase-Correlation Unit)
Based on this analysis, we represent Normalized corvplaes with 8-bit signedalues.
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Figure 3.21 Fixed-point analysis for the input width of the Interpolation Unit (output of Phase-Correlation Unit
Based on this analysis, we represent Interpolation Unit inputs with 8-bit sighedyv

3.8 Chip-to-Chip Communication

As we discussed in prus section, ady issue in hardare design is chip-to-chip communi-
cation. Each FPGA in TM-3A is connected to the other three FPGAs with a Q8blhlour
design, we h&e managed to transfer all the data between the chips using less than 88bits. F
example, from Scale/Orientation Unit to Phase-Correlation Unit we needed to transfer 24,16-
bit signals arsiing at a rate of 8 Mga sample/sec.dlfit this wide signals all in 98-bitus, we

used a simple ilme Division Multiplexing (TDM) technique. In this technique, we use one
16-bit 48 Mhz channel to transfer a group of six parallel 16-bit 8 Msample/sec signals (Figure
3.22).

Figure 3.23 shwos the flav of data through the FPGAs and the number of bits used to commu-
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Figure 3.22 Time Multiplexing/Demultipleing in chip-to-chip communication

nicate between each pair of FPGAs. The major portion of data in this systencibackwise,
starting from FPGA #3, ieo Interfice Unit, and returning backaig to this unit. The data
transfer between FPGA #2 and FPGA #0 does notidie global circular fiv of data. It is
mainly to balance the processing load among all the chips. In otinds wthe Scale/Orienta-
tion Decomposition Units is ‘borvang’ a portion of LUTs and flip fops from FPGA #0,

which is designated to Interpolation/Peak-detection Unit.

FPGA#3 ) FPGA #2
29 bit
Video Interface Scale/Orientation
Unit Decomposition
Unit
34 bit . 67 bit
75 bit
FPGA #0 FPGA #1
i 51 hit
Interpolatlo_n/ I Phase-Correlation
Peak Detection Unit
Unit

Figure 3.23Data transfer between four FPGAs
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3.9 Summary

Table 2 lists the hardave resources used in each unit of the stereo system in terms of number
of Look Up Tables (LUTS), flip flops, slices and the amount of on-cagi memoryEach

slice in Xilinx Virtex 2000E contains taLUTs and tw flip flops [33]. Since Wtex 2000E

FPGA contains 38,000 LUflip flop pairs, it has 19,200 slicesaflle2 indicates that although

in all of the four chips,>xept the video inteaice chip, almost all the slices are used, the per-
centage of used LUTs or flip flops is at most 88%. This means some slices are used patrtially
and still hae some LUTSs of flip flopsvailable. While we could still use more LUTs and flip
flops, it is usually with the cost of not meeting timing constraints of the design such that the
maximum frequengcin which the circuit can perform correctly drops to less than 50 Mhz,

which is our taget clock frequenc

Unit Name # of % of # of % of # of % of total On-chip | % of total
4-input 4-input | flip-flops | flip-flops | slices slices memory | memory
LUTs LUTs (bits)
Video Interface (FPGA #3) 169 1% 71 1% 105 1% -
Scale/Orient. Decomp. 23,151 60% 18,020 | 46% 19,198 99% 614,400 93%
(FPGA #2)
Phase-corelation 16,709 43% 30,961 | 80% 19,198 99%
(FPGA #1)
Inter polation (FPGA #0) 26,615 69% 33,974 | 88% 18,048 94% 172,032 26%

Table 2: Hardware resources br each unit

The stereo system is functioning at the clock frequericcO Mhz and produces 256 x 360
pixels 8-bit, sub-pigl accurag depth map at 30 frames per second. In Chapter 4, we present
the results of the implemented system. It includes the functionality of the stereo system as

well as the depth measurement results.
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4.1 Functionality and performance

The FPGA stereo systemwddoped in this research performs multi-resolution, multi-orienta-

tion depth &traction based on theN/PC algorithm. This system can produce a dense dispar-

ity map of size 256 x 360 peks with 8-bit, sub-pigl accurag disparity results at the rate of

30 frames/sec. One common comparison metric used to measure the throughput of stereo

vision systems is the PDS (Points times Disparity per Second) measurement defined as:

PDS = = D @)

where the image size isxm pixels andD is the maximum disparityvaluated in a total time
of T seconds. Using this metric, our system aasea performance of 55 million PDS, which

is among the highest rates reporteabl&3 compares the performance of our vision system

46
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with several other high performance harah& stereo vision engines.

T PDS
nxm D (msec) | (x10°) algorithm platform
INRIA[9] 256 x 256 | 32 280 7.5 Intensity PeRLe-1 board (23 Xilinx
Correlation XC3090 FPGAS)
PARTS 240x 320 | 24 23.8 77 Census 16 Xilinx 4025 FPGAs
engine[32]
CMU stereo | 200x 200 | 30 33 36 sum of special purpose hardwe (C40
machine [21] absolute DSP + real time processor)
difference
This 256 x 360 | 20 33 55 LWPC TM-3A board (four Xilinx Mrtex
Work (Phase based 2000E FPGAS)

TABLE 3. Summary of reported stereo vision system performances

As this table shwes, our stereo system ranks afté&dRFS engine in terms of PDS metric.

While the PDS metric reflects the density and the speed of the system, it does not measure the
accurag of the implemented algorithm. The important feature of our system in comparison
with other hardware stereo machines is its high accunalease-based algorithmo Tealize a
phase-based algorithm in video rate, the system performs thalegtiof more than 10 bil-

lion 16 x 16 bit multiplications per second and the foutex 2000E deices communicate at

a data rate of up to 200 Mbytes/sec.

In comparison with softare implementation, we @ run the Matlab ersion of the stereo
algorithm on a Sun Ultra@iRC-Ill 750 MHz processor with 2.5 GB of memofn this plat-

form, producing the depth map for each pair of framesstabout 30 seconds which is about
900 times slaver than our FPGA-based stereo system. Although Matlab implementation is not
the fastest possible sofare solution, we>gect that the softare optimizations (implement-

ing the algorithm with C/C++ and create a stand-alone application) will raghe softvare
speed by adctor of less than 5 on the same hadwplatform. This is because our Matlab
implementation is hedy vectorized and is mainly using thailb in Matlab functions which

are designed to badt and dicient. So, depending on the architecture and the maximum fre-
gueng of the processor that runs the safter algorithm, thewerall speed-up from softawe

to reconfigurable hardave is approximately 60 to 900.
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4.2 Depth Measurement Results

We have conducted tev sets of tests tovaluate the performance of disparity matching and
distance estimation. First, we test the system with the synthesized images and, second, with
natural images reoed from the cameras. The adwage of testing with synthesized images

is that since the input is not from a camerg, tgpe of noise associated with the imaging sys-

tem (e.g. noise in image sensors, camera alignment, brightaeasons in left and right

images, etc.) will not &ct the stereo matching performance.

4.2.1 Synthesized Images

The first @ample in Figure 4.10 shs the depth map from a pair of random stereograms.
Random stereograms are pairs of images with randoyrsgede @alues such that the m@bs in

one image are the same as the other imagsHifted based on the intended distance. So, this
pair of images underlies a synthesized 3-Das@f Figure 4.10(a) and (b), sha random ste-
reogram with a depth ground truth asegi in Figure 4.10(c) or a 3D sade as in Figure
4.10(d), which is called a “wedding al{15]. This surfce has four leels of depth with 0, 4,

8 and 12 pirl disparities and is symmetrical in both horizontal aedical directions from

the viev point of the right image. Since the ground truth in this figure ia/isHom the left
image viev point, all the objects are aked to right. Figure 4.10(e) she the depth map
obtained from applying original sofame algorithm and Figure 4.10(f) st® the result
obtained by our hardave stereo engine which is close to the saféawresults. As this figure
shaws, the hardware system is capable of reconstructing smootlasesfsimilar to the results

of the softvare and ground truth deptho €ompare the performance of scdte and hardare
methods quantitately, we hae calculated the Mean Square Error (MSE) between aodtw
disparity results and the ground truth, and also between herdiisparity results and the

ground truth. Br example, in Figure 4.10, the MSE for soétxe disparity compared with

ground truth is 1.19ixel®, while the MSE for hardare is 1.5%ixel. In both cases, the max-
imum alloved disparity vas limited to 20 pigls. As we werexpecting, the hardare results
have lager errors compared to sofive. This lager error is because of all the modifications
we have done to the original sofare method (e.g. the &d-point operations and the changes

in the architecture asxplained in Chapter 3) toulld the system in the limited hardwe
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Figure 4.10: Overall system performance on Wedding-cake random stereograms: (a), (b) The stereogram (c) Ground truth
depth (d) 3D structure of ground truth (€) depth from original software (f) depth from hardware vision system

resources available. Thisincrease in error is of course rewarded by the speed up as the result
of hardware implementation.

In this work we have used M SE to compare the performance of hardware and software meth-

ods. One important point is that while the MSE measure indicates the amount of error
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between the stereo pre-shift results and the ground truth preab#syit is not the best pos-
sible method to quantify this errdrhe reason is that MSE measure assumes a Gaussian dis-
tribution for the error bt by looking at the histogram of the errors in pre-shift results, we can
see that it is a combination ofavdistributions: The first is aery sharp Gaussian distuion
around zero with aariance of less than one plxThe second belongs to a ralaty small
number of pirls with errors uniformly distrited wer all possible pre-shifts. So, in order to
characterize the error in pre-shiéilues, a more accurate methoold be to separate thedw

underlying distrilntions and describe them separately

As we can see in Figure 4.10(e) and (f), at the edges of tlaesuwhere there is a depth dis-
continuity both softvare and hardare methods introduce noise. This is,actf a common
problem in stereo matching: at the depth discontinuties, some points are only visible in one
image hut occluded in the other image. So, the algorithiis to find corresponding points. It

can be noticed that in Figure 4.10(e) and (f), most of error matchings happen in the left-side
edges of the wedding calas opposed to right-side edges. As wmained, this is because in

our algorithm we pick each mkin left image and then look for its match in the right image.
The piels close to the left-side edges in lefiwief wedding ca& are not visiblén the right

view, so, the correct match can not be found. But thelpixiose to the right-side edges in the

left view are still visible from the right point of we so, the noise is mush less in these
regions. Seeral solutions hae been proposed tov@rcome the depth discontinuity problem.
One straight fonard solution is called left-to-right and right-to-leélidation [14]. This tech-

nique performs tw sets of matchings: first time, it searches for the matches of left image pix-
els in the right image, and second time, it searches for the matches of right inedgenphe

left image. By combining the results of thes® tsearches, this technique rejects thvalid
matches and hence impes the performance. The system implemented in thik does not
perform a such post processing operation. All the depth map resulensinothis chapter

are rav disparity data receed from the Interpolation/Peak-Detection Unit. A technique such
as left-to-right and right-to-leftalidating can be inggated with the current system with an

estimated cost of 15% to 20% increase in the amount of required logic.

Figure 4.11 shws anotherxxample of stereograms with results from saitevand hardare.

In the underlying sudce, the background has 3 g disparitythe other three \els hae 6,
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8 and 12 pirls disparity In this figure, the MSE for harcdwe disparity is 1.99ixel*, while

the MSE for softwre disparity is 1.5%ixel”. It can be seen in both sofive and hardare
results that as the size of depth discontinuity becomgsrldne amount of noise on the edges

becomes more visible.

)

Figure 4.11 Overall system performance on a pair of random stereograms: (a), (b) Random-dot stereogram (c) '
truth depth (d) 3D structure of ground truth (e) Depth from original so&f) Depth from hardare vision system
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(b)

Figure 4.12: (a) Input from right camera, (b) Output disparity map

Point # 1 2 3 4 5

Ground truth 300 315 320 365 410
distance (cm)

Distance from
stereo system | 309 320 276 355 402
(cm)

Error % 3% 16% | 13.7% | 2.7% | 1.9%

TABLE 4. Distance measuements or five
points of Figur 4.12

4.2.2 Natural Images

Figure 4.12 shows a sample natural image and the depth map generated by the hardware. As
we can see, the background in this image has a constant distance from the camera, which is
consistent with the plain grey background in the depth map result. The coat rack and the per-
son in the image are closer to the camera respectively. Similar to synthesized test images, at
depth discontinuties of the scene (such as point #3), the depth results are not reliable.
Although the depth map result, as in Figure 4.12(b), qualitatively illustrates the performance
of the stereo system, for quantitative evaluation, we have measured the distance of 5 pointsin
the scene and compared it with the results obtained by hardware. Table 4 shows these two sets
of distance values. In points 1, 2, 4 and 5, the error in the distance results is less than 5% of the

absolute value of the distance.
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Figures 4.13, 4.14, 4.15 and 4.16w8hnore samples of the stereo inputs and distance outputs
in different scenes and in fiifent lighting conditions. In Figure 4.16, thattee of the jackt
on the coat rack is not visible in the original image. This is the main reason of noise in that

region in the distance map.

It is important to note that in our current design, weehessumed that the eavcameras hee
identical focal length and arertically aligned such that no rectification [30] oy ather pre-
processing is required. But this assumption is neays true. There is usually a slight mis-
alignment between the cameras amenesometimes in the position of the CCD plane inside
the camera. This mis-alignment introduces some error in the disparity results of the natural
images. Similar to the pre-processing stages, in thik where is no post-processing stage
such as left-to-right/right-to-leftalidation or smoothingap filling implemented in harcdave.

These processing units can be gnéged with the futureearsions of our system with some

extra cost as we wilb@lain in the ngt chapter

1 w]!

A

(@) O m

Figure 4.13(a) Input from right camera, (b) Output disparity map



CHAPTER 4. Implementation Results 54

(b)

Figure 4.14 (a) Input from right camera, (b) Output disparity map

(b)

Figure 4.15 (a) Input from right camera, (b) Output disparity map

(b)

Figure 4.16 (a) Input from right camera, (b) Output disparity map



s CONclugons &
Future Work

In this work, we hae kuilt a hardvare system that is capable of imaging its surroundings and
reconstructing the 3D structure of the scene. Wsithe scene through a pair of stereo cam-

eras and generates dense depth map results at a video rate of 30 frames/sec. The depth map
obtained from video rate stereo vision carvfte valuable information for highervel vision

tasks such as object detection and pattern recognition which can be usadetyao¥ appli-

cations such as robotics,vigation, securitymonitoring and automos.

The stereo system daoped in this research hasotwain features: First, it runs at video rate
which is approximately 60 to 900 timesster than its softare implementation, and second, it
uses a high performance phase based stereo matching algorithm called “leoghled
Phase-Correlation Algorithm”. The combination of these teatures shas the significance
of this work. While some other video rate vision systemgehbeen reported before, we

believe that this wrk is the first implementation of a complalgorithm such aswWPC in real

55
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time.

Video rate performance in thisovk is achiged by implementing the algorithm on Field-Pro-
grammable Gate Arrays (FPGAs). Haad® implementation accelerates the stereo vision sys-
tem by performing seral parts of the algorithma$t and in parallel. On the other hand,
reprogrammability of the FPGAs als for faster and cheaper desigycle of the system
compared to Application Specific lgtated Circuit (ASIC) design.

One important issue in this research has been tice=et translation of the original sofawe
algorithm to its corresponding hardwe system. Some blocks of the original system were
modified in order to reduce the size of the handwsystem while introducing acceptable

error.

There are seeral possibilities to continue this researcte ¥dtgorize them into three groups.
The first irvolves &panding the current stereo vision system to im@iits performance. Sec-
ondly, we can look at other high performance stereo vision algorithms, thiedtigrting the
feasibility of using better design tools to shorten the desigie cin the follaving paragraphs,

we will explain these suggestions in more detail.

Similar to other semiconductor\dees, the capacity and speed of FPGAs ar&igip very
quickly. Employing bigger anddster FPGAs will allev us to add more features to our current
stereo system in order to impmthe performance. The reprogrammability of the FPGAs also
helps to modify the current system with minimum cost. When additional hegdwsources

become wailable, we wuld suggest thesgansions respeggly:

« Adding a post processing block such as left-right right-laficdation to reject the imalid
matches. This feature will almost double the size of correlation and interpolation units, b
will also remae most of the noise resulted from occlusions or depth discontinutiest|n f
a slaver version of left-right right-left &lidation can be added to the current stereo system

with a small hardware cost: performing left-right matching and right-left matching on alter-



CHAPTER 5. Conclusions & Future Work 57

nating frames. By combining the depth results of eadhdansecutie frames, we can
detect and reject thevialid matches. Hwoever, this solution will reduce theverall frame

rate to 15 frames/sec from current 30 frames/sec.

« An alternatve to the left-right, right-left alidation is the idea of using results frompre
ous frame while calculating the depth in current frame. At the present, our system starts
from “scratch” to find the depth fovery frame, yet we dot'expect the wrld’s depth
structure to change dramatically from one frame to the. i@arrying @er information
from previous frames will allav us to impree the accurgcof the depth results dynami-

cally after each frame.

« Adding pre-processing blocks such as rectification or noise filtering before applying the
stereo matching algorithm. Depending on the acguo¢he camera pair calibration and

alignment, the pre-processing blocks can imprihe quality of final results dramatically

« Performing G2/H2 filters in three directioas{, -45° and 0° ) as opposed to the twdirec-
tions (45> and-45°) implemented in this wrk. This addition will increase the size of the
Decomposition Unit and also the data transfer between this unit and the Phase-Correlation
Unit by almost 50%, it will make the algorithm more raist and will @tract more teture

from the images.

 Introducing a confidence measure for deglues to indicate the goodness of fit between
left and right matching points. The confidence measurestite reliability of each depth
value. Later stages of a vision system can use this information by assignning more weight
to the depth &lues with higher confidence measurer the IWPC algorithm, it is shan

in [19] that the magnitude of theting function, C(x, t) , provides the confidence mea-

sure and itsalue is bounded between 0 and 1.

 Increasing the size of search wimdm order to increase the maximum alkxd disparity
This will expand the range of the stereo system by decreasing the minimum possible dis-
tance. Currentlythe maximum disparity is limited to 20 pis, which translates to a mini-
mum detectable distance of about 2.5 meteksegfimate that choosing d@r horizontal

window size will linearly increase the size of Phase-Correlation and Interpolation Units.
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« Finally, processing images @ar than the current size of 256 x 360gtsx(higher resolu-
tion but with the same field of we). Dealing with higher resolution images wilfedt the
hardware requirements in digrent ways. First, more pels per image means less number
of clock g/cles aailable to process each pixwhich in turn requiresabter and hence usu-
ally larger components (e.gadter multipliers and diders). Second, by increasing the res-
olution, the resulting disparity for an object in aefixdistance from the camera head will
be lager (in terms of the number of gis, assuming that the focal length of the cameras do
not change). So, if we amt to keep the minimum distance é&d, a wider search windo
will be required. This will agin increases the hardve requirements, agm@ained in pre-
vious paragraph. Finalljager images will of course require d¢@r frame bffers and

faster &ternal memory accesses.

One other possible direction for futuremk is to irvesticate other stereo matching algorithms.
This is very important to start with appropriate algorithm since some algorithms are naturally
parallel and hence can be translated to parallel frmedwnplementation more easily and

resulting in higher speed-ups.

The last possibility is to impwe the design methodology by using design tools thatvallo
automation of some design tasks that are currently performed madumabng these tasks is

the translation of high-lel system description to awelevel hardvare description language
that can be then synthesized and translated to bit streams to program FPGAs. ,Receatly
commercial tools ha been introduced that link the Digital Signal Processing (DSP) systems
described in a systemMe design tool such as MAAB or Simulink with Hardvare Descrip-

tion Language (HDL) deslopment tools [1][32]. These automation tools can be used to
develop the sub-blocks of a multi-FPGA system although at presentyehallalesign needs

to be tailored manually to the specifications of the hardwlatform. Another design automa-
tion tool has also been introduced to find the optimuedfpoint precisions when replacing

floating-point operations with their #d-point counterparts [7].

In summarythis thesis has described an implementation of a state-of-the-art stereo disparity
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algorithm. It is hoped that this system will find use as a module ierlaision system and
also that it demonstrates the practical and desirable nature of reconfigurablarédiaw

implementation of vision algorithms.
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