
Video-Rate Stereo Vision on

Reconfigurable Hardware

by

Ahmad Darabiha

A thesis submitted in conformity with the requirements

for the degree of Master of Applied Science in the

Graduate Department of Electrical and Computer Engineering,

University of Toronto

����������������

© Copyright by Ahmad Darabiha 2003

ii

Video-Rate Stereo Vision on Reconfigurable Hardware

Master of Applied Science, 2003

Ahmad Darabiha

Graduate Department of Electrical and Computer Engineering

University of Toronto

ABSTRACT

This thesis describes the implementation of a stereo depth measurement algorithm in hard-

ware on Field-Programmable Gate Arrays (FPGAs). This system generates 8-bit, sub-pixel

disparities on 256 by 360 pixel images at video rate (30 frames/sec). The algorithm imple-

mented is a multi-resolution, multi-orientation phase-based technique called Local Weighted

Phase-Correlation. Hardware implementation speeds up the performance approximately 60 to

900 times that of the same algorithm running in software. In this thesis, we describe the pro-

grammable hardware platform, the base stereo vision algorithm and the design of the hard-

ware. We include various trade-offs required to make the hardware small enough to fit on our

system and fast enough to work at video rate. We show the depth map results from the func-

tioning hardware. Although this research is specifically focused on phase-based stereo vision

FPGA realizations, most of the design issues are common to other DSP and Vision applica-

tions.

iii

Acknowledgements

 First and foremost, I would like to thank my advisors, Jonathan Rose and James MacLean.

They made my graduate study an invaluable and exciting experience. I learned a lot from

Jonathan’s insight, wisdom and his passion for “producing knowledge” as the goal of the

research. James also provided a continuous source of encouragement and confidence. Our

interesting conversations and detailed discussions were fundamental to the success of this

project.

 I am grateful to Professor Allan Jepson, Professor Parham Aarabi and Professor Mireille

Brouck for volunteering to be in my defense committee and for reading my thesis.

 I would like to give special thanks to Dave Galloway and Marcus van Ierssel for their contri-

bution to this work in the form of TM-3A maintenance and support. Without their help this

work would have never been possible.

 All my friends and the fellow grad students in LP392 made our lab an enjoyable and produc-

tive room. I would like to specially thank Rubil Ahmadi, Anish Alex, Jason Anderson, Igor

Arsovski, Reza Azimi, Navid Azizi, Tomasz Czajkowski, Mehrdad Eslami, Yadollah Eslami,

Tooraj Esmailian, Joshua Fender, Vincent Gaudet, Warren Gross, Marcus van Ierssel, Paul

Kundarewich, Kostas Pagiamtzis, Lesley Shannon and Andy Ye, in the alphabetical order.

 I am grateful beyond measure to my family, in particular to my parents for their encourage-

ments. They have always kindly respected my decisions and supported me to achieve my

goals. I am also grateful to the members of my extended family in Mississauga for their kind-

ness and support during the entire course of my studies.

 iv

 Table of Contents

1 Introduction ... 1

2 Background ... 4

 2.1 Stereo Vision Basics ...4
 2.1.1 Stereo Matching Techniques... 7
 2.1.2 Local Weighted Phase-Correlation Algorithm ... 9

 2.2 Field-Programmable Gate Arrays (FPGAs)..11
 2.2.1 Reconfigurable Systems.. 13
 2.2.2 Transmogrifier-3A .. 13
 2.2.3 VHDL Language... 14

 2.3 Vision Applications on Reconfigurable Systems ...15

3 Hardware Design ..17

 3.1 System Overview..18

 3.2 Video Input Interface Unit ..19

 3.3 Scale-Orientation Decomposition Unit...21
 3.3.1 Scaler Block .. 21
 3.3.2 G2-H2 Filter.. 22

 v

 3.4 Phase-Correlation Unit..26
 3.4.1 Location of Gaussian Window.. 30
 3.4.2 Normalization ... 32

 3.5 Interpolation/Peak-Detection Unit ..35
 3.5.1 Interpolation Block ... 35
 3.5.2 Peak-Detection Block ... 36

 3.6 Video Output Unit...37

 3.7 Fixed-Point Representation Analysis..38

 3.8 Chip-to-Chip Communication ..43

 3.9 Summary ...45

4 Implementation Results..46

 4.1 Functionality and performance ...46

 4.2 Depth Measurement Results ...48
 4.2.1 Synthesized Images... 48
 4.2.2 Natural Images .. 52

5 Conclusions & Future Work..55

 Bibliography ...59

1

CHAPTER 1 Introduction

Vision enables humans to navigate and gather information about the surrounding environ-

ment. Detecting a human face in a scene, recognizing objects and understanding people's

emotional moods from their facial expressions are only a few examples of vision tasks that we

all do automatically in everyday life. Although these tasks are performed with minimum

effort, analysis and simulation of these processes are highly complex.

In the last three decades researchers have tried to give vision capabilities to automated sys-

tems such as robots, which would lead to more intelligent systems with a wider range of capa-

bilities. This is very much a work-in-progress: the way human brain processes visual

information is not yet exactly understood, and image processing tasks are usually computa-

tionally intensive.

In building vision systems, designers have essentially two options: developing the vision algo-

Chapter 1. Introduction 2

rithms in software and running them on a standard processor, or designing custom hardware

specially tailored for the application. Custom designed hardware can perform operations

faster and also allows taking advantage of parallelism existing in many image processing algo-

rithms, but it is rarely tried in practice because the resources required are not usually available

at an affordable price and the design process takes a long time. These facts have usually lim-

ited researchers to the first option, which is to develop algorithms that can be run as fast as

possible on standard processors.

In the last few years, a third solution for vision system designers has become viable due to the

rapid growth in capacity and speed of programmable hardware. Programmable hardware has

also been used successfully in some non-vision signal processing applications [35]. This

method allows designers to configure the chip according to the specifications of the algorithm

cheaply and quickly because it eliminates the most expensive and time consuming part of

Application Specific Integrated Circuit (ASIC) Design, namely, IC fabrication. It also reduces

the debugging time because one can typically re-compile the design in few hours and re-con-

figure the FPGAs in less than a second.

In this research, the goal is to explore the feasibility of using a programmable hardware plat-

form to implement one important feature of the human vision system: to estimate the depth

structure of a three-dimensional scene from two images seen by left and right eyes. This task

is known as “stereo vision”. A robot equipped with a real-time stereo vision system can esti-

mate the distance of an objects around it and use this information to avoid collision, or as an

input to an object recognition module. By exploiting the useful features of reconfigurable

hardware along with parallelism, our goal is to speed up the depth reconstruction process such

that the system will be able to “see” in stereo in real time (30 frames per second).

The nature of this research neccessitates focusing both on software and hardware. We investi-

gate different techniques in software already proposed for disparity measurements and choose

a high performance algorithm that is also appropriate for hardware implementation. The algo-

rithm we have implemented is called “Local Weighted Phase-Correlation algorithm” [11]. The

key issue is to modify the original algorithm to make it efficiently implementable in hardware

Chapter 1. Introduction 3

with minimal loss in algorithm performance. In hardware, the focus will be on designing a cir-

cuit to run the algorithm in video rate (30 frames/sec). We have implemented our system on a

reprogrammable board called Transmogrifier-3A (TM-3A) [18][28] developed at the Univer-

sity of Toronto. In the circuit design process, we exploit the parallelism existing in the algo-

rithm and at the same time fit the whole computations to the limited hardware resources

available on the TM-3A.

This thesis is organized as follows. Chapter 2 provides the background on stereo vision algo-

rithms in software and hardware. It describes stereo disparity measurement methods and

focuses on the specific method used in our stereo system. In hardware, it introduces the

FPGAs and some example systems based on reconfigurable chips. Chapter 3 describes the

implementation of the Local Weighted Phase-Correlation disparity measurement algorithm on

programmable hardware. In Chapter 4, the depth map results from hardware system are pre-

sented and compared with the results from the original software based algorithm. Chapter 5

presents conclusions and future work.

4

CHAPTER 2 Background

The nature of this research requires knowledge of both stereo vision techniques and hardware

design issues. This chapter provides the background for both of these areas. Section 2.1

describes the theoretical basis of stereo vision. It includes a brief description of major

approaches and then focuses on the approach adopted in this work. Section 2.2 introduces pro-

grammable hardware and describes the architecture of a general Field-Programmable Gate

Array (FPGA). It then looks at a few hardware systems that are based on FPGA devices.

Finally, Section 2.3 reviews previous work on implementing vision and image processing

applications on reprogrammable hardware.

2.1 Stereo Vision Basics

Stereo vision is the task of reconstructing depth information encoded within multiple images.

In this thesis, by stereo vision we mean reconstructing the depth information only from two

images, a task also known as binocular stereopsis. All the stereo vision techniques stem from

CHAPTER 2. Background 5

the fact that when two images are taken from different view points of a scene, the projection of

a 3D point will have different locations on the two images. The shift between the correspond-

ing projected points, also referred to as disparity, can be used to estimate the distance of the

3D point to the cameras. Figure2.1 shows a pair of cameras and the corresponding points

from the same scene point.

The goal of any stereo vision system is to establish the correspondence between the two points

arising from the same element in the scene. This problem is calledstereo matching or thecor-

respondence problem. Once matching points are detected, one can simply extract disparity as

the shift between these points and then estimate the scene point distance by simple calcula-

tions. Figure2.2 illustrates how distance is calculated from disparity. In this figure and

through this thesis, we have made two assumptions for the camera set up: 1) the cameras have

the same focal length; and 2) the cameras are vertically aligned and have parallel optical axes.

In Figure2.2, the disparity, d, is defined as the shift between two corresponding points:

and then the distance,Z, can be calculated as:

Im
ag

e
pl

an
e

Center of projection Center of projection

Scene point

A A’

Right cameraLeft camera

Figure 2.1: A and A’ are corresponding points originated from one scene
point

(2.1)d u u'–=

(2.2)Z
fT
d

------=

CHAPTER 2. Background 6

wheref is the camera focal length andT is the distance between the optical centers of the two

cameras. Eq. (2.2) shows that given a fixed focal length and camera separation, distance is

inversely proportional to disparity. So, the bigger the disparity, the closer the scene point is to

the cameras.

To solve the correspondence problem, the first approach is to pick one pixel in one image and

then search through a 2-D region around that pixel location in the other image to find the cor-

responding point. However, it can be shown that a 1-D search is sufficient due to the epipolar

constraint. This constraint guarantees that if is the projection of a scene point in one image,

then the corresponding point, , in the other image will lie on a straight line,epipolar line,

which is the intersection of the image planes with a plane that contains point and the two

centers of projection.

In a pair of cameras that are vertically aligned and have parallel optical axes, the epipolar line

will coincide with a scan line of the image (Figure 2.3). This property makes the search pro-

cess simpler compared with non-horizontal epipolar lines. This will be of great advantage for

a hardware implementation because in hardware the pixel stream is usually received in hori-

C C’

Z
u’u

T

A A’

S

o’o

ff

(left) (right)

image plane
(f

oc
al

 le
ng

th
)

(scene point)

Figure 2.2: Calculating depth from disparity

A

A′

A

CHAPTER 2. Background 7

zontal order.

2.1.1 Stereo Matching Techniques

Stereo matching is the task of finding corresponding points between two images. This task is

usually complicated by several factors such as lack of texture, occlusion and lighting varia-

tions. Regions of the image with not enough texture will make it difficult to find correspond-

ing points. Also, sometimes a scene point is visible in one image but is occluded in the other

image. In these cases, there is no corresponding point to find. In addition, sometimes the light-

ing varies between different view points such that the same scene point will have different

gray scale intensities in the two images. This will add some noise to the final disparity map

results.

Researchers have proposed various techniques to solve and improve the performance of stereo

matching. The key question that will affect the matching performance and strategy is the

selection of matching primitives. Depending on the primitive used, matching techniques can

be categorized into three major groups: 1) Intensity-Based; 2) Feature-Based; and 3) Phase-

Based.

Intensity-based techniques use the pixels intensity or brightness as the matching primitive.

These techniques assume that the image intensity corresponding to a 3-D point remains the

same in binocular images. In this method the intensity of each pixel in one image is compared

C C’

scene point

A’

S

left image right image

center of projectioncenter of projection

A

Figure 2.3: Epipolar Constraint

CHAPTER 2. Background 8

with the intensity of a range of pixels in the other image in order to find the most similar pixel.

To improve the performance, some intensity-based techniques use window-based comparison

instead of point-to-point comparison. The important issue in intensity-based techniques is the

correct selection of window size: Small windows may not have enough image structure, and

hence, lead to false matches; Large windows might lose fine image structures that are much

smaller than the size of the window. Some techniques such as an adaptive matching window

approach [21] and coarse-to-fine approach [24][5] have been proposed to overcome the win-

dow size problem. The fundamental weakness of intensity-based techniques, regardless of the

comparison approach, is that they are sensitive to brightness variations in binocular images.

Feature-based techniques use sparse primitives such as corners, edges [4] or straight line seg-

ments [3]. In feature-based techniques, the input images are usually passed through pre-pro-

cessing blocks which detect features such as edges or corners. The matching block then finds

the corresponding features in two images and assigns disparities to them. The major limitation

of all feature-based techniques is that they can not generate dense disparity maps and hence

they often need to be used in conjunction with other techniques.

In Phase-based techniques the disparity is defined as the shift necessary to align the phase

value of band-pass filtered versions of the two images. In [10], phase-based methods are

shown to be robust when there exists smooth lighting variations between stereo images. It also

shows that phase is predominantly linear and hence reliable approximations to disparity can

be extracted from phase displacement. It is interesting to note that neurophysiological data

also imply the importance of phase information. These data suggest that the first stage of ste-

reo disparity processing in the visual cortex in cats is thought to use a phase-based approach

[8]. The first step in any phase-based method is to extract the phase from input images. One

commonly used approach is to pass the input images through complex-valued quadrature pair

filters. The phase of the complex-valued output of these filters is used as the primitive for ste-

reo matching.

Figure 2.4 shows a sample pair of stereo images from a scene and the result of stereo matching

in the form of a depth map. In the depth map image, the distance is encoded by grey scale: the

closer objects are brighter. In the next section, we will explain one particular phase-based

CHAPTER 2. Background 9

method,Local Weighted Phase-Correlation, which is the basis of the stereo system developed

in this research.

2.1.2 Local Weighted Phase-Correlation Algorithm

The stereo system developed in this research is based on a phase-based stereo matching tech-

nique called “Local Weighted Phase-Correlation” [11] (In this thesis, we also refer to it as

LWPC algorithm.). This algorithm decomposes the input images into multiple scales. All the

scales are then passed through multiple G2-H2 quadrature filter pairs, each of them oriented in

unique directions using steerable filters [13]. The left and right pairs of filter outputs for each

scale and each orientation are passed through a correlation block which assigns similarity

measures, or voting functions, between one pixel and its shifted versions in the other image.

These voting functions are then combined over all the scales and orientations to build the

Left

Right

Depth map result

(normalized to [0, 255])

Figure 2.4: Tree stereo images and a sample depth map
 (courtesy of Bob Bolles, SRI International)

CHAPTER 2. Background 10

overall voting value. The shift corresponding to the location of the peak response will be

declared as an estimate for the disparity. The LWPC algorithm can be summarized in four

steps (Figure 2.5):

1. Create a Gaussian pyramid [13] with total number of scales for both left and right

images. Then, decompose each scale of the pyramid using oriented quadrature-pair filters.

Assuming that is the filter impulse response of the orientation, we can write the

complex-valued output of the convolution of with each scale of left and right images,

 and , as:

in the polar representation, where is the amplitude and is the

phase of the complex response.

2. Compute the voting function as:

where is a smoothing, small, localized window and is the pre-shift of the right fil-

ter output.

3. Combine the voting functions over all orientations, , and scales,

, where is the total number of orientations and is the total number of scales:

M

K j x() j
th

K j x()

I l x() Ir x()

, (2.3)Ol x() ρl x()e
iϕl x()

= Or x() ρr x()e
iϕr x()

=

ρ x() O x()= φ x() O x()[]arg=

C j s,() x τ,()

(2.4)C j s,() x τ,()
W x() Ol x()Or

∗ x τ+()[]⊗

W x() Ol x() 2⊗ W x() Or x() 2⊗
---=

W x() τ

C j s,() x τ,() 1 j F≤ ≤

1 m M≤ ≤ F M

(2.5)S x τ,() C j m,() x τ,()
j m,
∑=

CHAPTER 2. Background 11

4. For each position , find the value corresponding to the peak in the real part of as

a good estimate for the true disparity.

Two major features make this algorithm a good candidate for hardware implementation: First,

it is primarily composed of linear operations which are easier to implement. Second, there is

no iteration or any explicit coarse-to-fine control strategy. This property makes the real-time

flow of data possible through the hardware system. In the next sections, we will describe the

general architecture of programmable hardware and the Transmogrifier-3A board which is

used as the platform to implement stereo vision system.

2.2 Field-Programmable Gate Arrays (FPGAs)

An FPGA is a chip that allows its user to control and reprogram the functionality of its logic

circuits. All FPGAs consist of three major components [6]: 1) logic blocks; 2) I/O blocks; and

3) programmable routing as shown in Figure 2.6. To implement a circuit on an FPGA, each

logic block is programmed to perform a small portion of the logic required by the circuit and

each I/O block is programmed to act as an input or output as required by the circuit. The pro-

grammable routing is also configured to make all the necessary connections between logic

blocks and also from logic blocks to I/O blocks.

When compared to custom hardware, the first advantage of an FPGA is shorter manufacturing

cycle and the ability to modify the existing systems only by re-compiling the design instead of

re-fabricating the chip. The second advantage is that using FPGA is cheaper: Building an

ASIC costs in the order of hundreds of thousands of dollars, while FPGAs cost less than a few

x τ S x τ,()

Scaling G2-H2

Scaling G2-H2

Phase

Correlation
Interpolation

Peak

Detection

right

Figure 2.5: Block diagram of Local Weighted Phase-Correlation disparity matching algorithm

left

depth map

CHAPTER 2. Background 12

thousand dollars.

The processing power of an FPGA is directly proportional to the processing capabilities of its

logic blocks and the total number of logic blocks available in the array. Currently most of the

commercial FPGAs use logic blocks that contain one or more Look-Up Tables (LUTs). A k-

input LUT can implement any binary function of k logic inputs. Figure 2.7 shows the architec-

ture of a simple LB containing one 4-input LUT and one flip flop for storage. Modern FPGAs

also contain blocks of on-chip memory. For example, the chips used in this work contain 160

blocks of 4kbits of RAM and 38,000 LUT-flip flop pairs. Current commercial FPGAs can

have arrays containing as many as 93,000 LUTs and flip-flops in a single FPGA. For the

designs that are too large to fit on a single FPGA, a group of FPGAs connected with a pro-

I/O pad

Programmable
routing

Logic Block

Figure 2.6: Architecture of a generic FPGA

4−input

LUT

Input

Clock

Flip−flop

D Out

Figure 2.7: Simplified architecture of a logic block with one 4-input LUT and one flip flop.
The flip flop at the output of LUT allows storage of the LUT output and hence implementing

sequential circuits.

CHAPTER 2. Background 13

grammable interconnection network can be used.

2.2.1 Reconfigurable Systems

A variety of reconfigurable systems have been developed that contain more than one FPGA

device. These systems are used for implementing designs that do not fit on a single FPGA.

They typically consist of FPGAs, some method of programmably interconnecting FPGAs,

and might have external memory resources or video interface circuitry. The PAM system [31]

consists of a 4x4 mesh of Xilinx XC3090 chips with each FPGA connected to each of its four

Manhattan neighbors through 16 direct connections. This system has a total of 4 MB of RAM.

The Splash-2 parallel processor board [2] contains 16 processing elements (PEs) fully con-

nected via a 16x16 crossbar switch which is controlled by a 17th processing element. Each PE

consists of a Xilinx XC4010 FPGA with 256K 16-bit words of memory. The PARTS reconfig-

urable computer [32] is a single PCI board that utilizes a variety of Xilinx chips with a maxi-

mum total number of about 35,000 4-input LUTs.

2.2.2 Transmogrifier-3A

The Transmogrifier-3A (TM-3A) [15],[28] is a reconfigurable platform built at the University

of Toronto and is used in our work to implement video rate stereo depth reconstruction. The

TM-3A is a programmable hardware architecture containing four Xilinx Virtex 2000E [32]

FPGAs. Each Xilinx Virtex 2000E chip contains 38,000 LUTs, which in comparison is 20

times more than the number of LUTs in a Xilinx XC4028. Virtex 2000E chips also provide

640 Kbits of on-chip memory. Each FPGA on the TM-3A is connected to the other three

FPGAs via a 98-bit bus. Each chip is also connected to a 256K x 64bit synchronous external

SRAM, an I/O connector and a nibble bus which allows communication with a housekeeping

FPGA. The housekeeping chip communicates with the host computer for download and con-

trol functions. A video encoder and decoder chip [26] is included on the TM-3A board to give

the ability to receive NTSC video and also send output results directly to a display. TM-3A

can operate at frequencies of up to 100 MHz.

The TM-3A can be used to implement designs that are larger than the capacity of one single

FPGA. A set of TM-3A software tools provide support for design compilation, routing

between FPGAs, system management, debugging and user interface. The board can commu-

CHAPTER 2. Background 14

nicate with a program running on a UNIX workstation using the ‘ports package’ [29]. The

ports package facilitates design stimulus, data transfer and design debugging. TM-3A also

provides two other tools for debugging: 1) JTAG boundary scan which reports the values of I/

O pins on all FPGAs; and 2) a circuit debugging program called tm3step that allows running

the system clock for a given number of cycles and displays the content of any flip flop in the

design.

2.2.3 VHDL Language

This section provides a brief introduction to the hardware description language used in this

work to build our hardware system. VHDL is the VHSIC Hardware Description Language.

VHSIC is an abbreviation for Very High Speed Integrated Circuit. This language can describe

the behavior and structure of electronic systems, but is particularly suited as a language to

describe the structure and behavior of digital electronic hardware designs, such as ASICs and

FPGAs.

VHDL allows the behavior of complex electronic circuits to be captured into a design system

for automatic circuit synthesis or for system simulation. Similar to high-level languages such

as Pascal, C and C++, VHDL includes features useful for structured design techniques and

offers a set of control and data representation features. One important difference between

VHDL and other programming languages is that VHDL provides features that allow describ-

ing concurrent events. This is because the hardware described by VHDL is inherently concur-

rent in its operation.

Figure 2.8: Transmogrifier-3A board

CHAPTER 2. Background 15

As an example, the following VHDL code describes a simple comparator. This comparator

receives two 8-bit inputs, A and B, and generates a 1-bit output, EQ, based on whether A is

equal to B or not.

-- Eight-bit comparator

library ieee;

use ieee.std_logic_1164.all;

entity compareis

port (A, B: in std_logic_vector(0to 7);

 EQ:out std_logic);

end compare;

architecture my_compareof compareis

begin

 EQ <= ‘1’when (A = B) else ‘0’;

end my_compare;

In the code above, the VHDL keywords are highlighted in bold face type. A complete refer-

ence for VHDL and a guide to VHDL for synthesis can be found in [17] and [27] respectively.

2.3 Vision Applications on Reconfigurable Systems

The increase in capacity and speed of FPGAs in the last few years has led to a variety of

reconfigurable systems being used for accelerating computationally intensive machine vision

and graphics applications. The Transmogrifier-2A [24], the predecessor of TM-3A, was used

as a platform for video rate face detection [21] and texture mapping [35]. In INRIA [9], a 4 x

4 matrix of small FPGAs is used to perform the cross-correlation of two 256 x 256 images in

140 msec.

A small number of hardware based stereo systems have also been developed in the past few

CHAPTER 2. Background 16

years. A stereo engine was developed on PARTS system based on the census transform, an

intensity-based stereo matching method mainly consisting of bit-wise comparisons and addi-

tions [36]. The PARTS stereo engine generates dense disparity maps of size 240 x 320 pixels

at video rate. In [15], a combination of FPGA and Digital Signal Processors (DSPs) is used to

perform edge-based stereo vision. It uses FPGAs to perform low level tasks such as edge

detection and DSPs for high level image processing tasks. There are also stereo systems that

are based on custom designed hardware as opposed to reprogrammable hardware: in [21], a

system is described that is composed of three boards built from discrete components plus a

C40 DSP-array board and a real-time OS board. This system performs sum-of-absolute-differ-

ence correlation in 30 frames/seconds on images of size 200 x 200 pixels.

These video rate hardware-based stereo systems are principally implementing intensity-based

or a combination of intensity and feature-based matching techniques. As we mentioned in

Section 2, phase-based matching techniques have a better performance than intensity-based

techniques in the presence of brightness variations in binocular images. Phase has also the

advantage of linearity and stability. To date, no phase-based video rate stereo system is

believed to be implemented on hardware other than the one described in this thesis. This is

likely due to the large amount of computation required for extracting and manipulating the

phase.

The following chapter describes development of a phase-based multi-resolution multi-orienta-

tion stereo vision system on an FPGA platform that generates a 256 x 360 pixel depth map in

video-rate and with 8-bit, sub-pixel accuracy. The basis of the algorithm is Local Weighted

Phase-Correlation technique [11], as explained in Section 2.1.2, which is one of the highest

performance algorithms to date for disparity matching. By implementing this algorithm on

FPGAs, we achieve a speed-up factor of approximately 60 to 900 over its software implemen-

tation with the same parameters.

17

CHAPTER 3 Hardware Design

When implementing a complex algorithm on reprogrammable hardware, the key issue is that

there is a fixed amount of hardware available in each FPGA. These hardware resources

include logic capacity, on-FPGA and off-FPGA available memory, memory access bandwidth

and chip-to-chip communication bandwidth. Achieving the best overall performance requires

efficient usage of all hardware resources.

This chapter describes implementation of Local Weighted Phase-Correlation (LWPC) algo-

rithm as introduced in Chapter 2. In this work, for parallel and efficient hardware implementa-

tion of the stereo depth measurement, some modifications are introduced to the original

LWPC algorithm. Three major modifications are: 1) employing fixed-point data representa-

tion instead of floating-point representation; 2) changing the location of the smoothing Gauss-

ian windows; and 3) using instead of in calculating phase correlation. To

analyze the effect of these modifications on the final performance of the system, we first built

a software model that emulates the behavior of hardware. Once all the design parameters were

L1 norm– L2 norm–

CHAPTER 3. Hardware Design 18

decided in the emulation version of the algorithm, we started to design the hardware system.

In this chapter, we first explain the major building blocks of the system and the distribution of

tasks over the four FPGAs available on TM-3A board. Then, we will discuss the advantages

and effects of modifications on the overall system performance.

3.1 System Overview

The architecture of the stereo vision system is described in Figure 3.1. This architecture is

derived from LWPC algorithm illustrated in Chapter 2. It consists of four major units: the

Video Interface Unit, the Scale/Orientation Decomposition Unit, the Phase-Correlation Unit

and the Interpolation/Peak-Detection Unit. Each of these units are implemented on one of the

Xilinx V irtex 2000E chips available on the Transmogrifier-3A.

A brief overview of the hardware units is as follows: After being buffered, image streams from

V
id

eo
In

te
rf

ac
e

Video I/O

Video I/Oleft right

Sc
al

e−
O

rie
nt

at
io

n
D

ec
om

po
si

tio
n

Ph
as

e
C

or
re

la
tio

n
In

te
rp

ol
at

io
n/

Display

C
am

er
a

H
ea

d

Pe
ak

 D
et

ec
tio

n

Peak Detection & Depth calculation

Quadrature
Interpolation

Correlation
Scale 1

Gauss. Pyramid

G2/H2 Filter
+

Gauss. Pyramid

G2/H2 Filter
+

CorrelationCorrelation
Scale 2 Scale 4

Interpolation
Quadrature

V
id

eo
In

te
rf

ac
e

Figure 3.1: High Level Stereo System Architecture. Two video inputs are received
from parallel cameras and are passed through multi-scale multi-resolution LWPC

algorithm. The Video Output Interface sends the depth map results to display.

CHAPTER 3. Hardware Design 19

left and right cameras are passed, in the form of pixel grey scale values, through Gaussian pyr-

amid scaling and steerable G2-H2 filters. The outputs of left and right G2-H2 filters are then

merged in a correlation block which computes the voting functions based on the similarity of

the left filter output with shifted versions of the right filter output. At the end of the correlation

unit, we have a series of three dimensional arrays, each corresponding to a specific scale and

orientation. The first two dimensions of these arrays are X and Y coordinates of the pixel in

the image and the third dimension has voting function values for each of the candidate dispar-

ities, ranging from 0 to the maximum disparity. Since there are multiple scales of image at this

stage, we need to interpolate the voting function arrays in X, Y and also in disparity domain,

, in order to combine all the voting functions results. As the final step, for each pixel loca-

tion, the disparity index, , corresponding to the maximum voting function, is detected. By

performing linear interpolation on voting function results, sub-pixel accuracy can be obtained

for disparity estimates. This estimate is then translated to a depth value using Eq. (2). The fol-

lowing sections will describe each of the major units of the hardware stereo system in more

detail.

3.2 Video Input Interface Unit

This unit receives composite NTSC video signals from two CCD cameras (Figure 3.2). The

analog NTSC input is converted to digital RGB signals using the designated NTSC decoder

chip [23] on the TM-3A board. Realization of a video-rate stereo vision system requires two

simultaneous video signals from two cameras. To do this, we need two video input channels

on board, each receiving video from one camera. But there is only one NTSC decoder on the

TM-3A board and it has only one video input channel available at a time.

To solve the single video input channel problem, we alternate the source selector of the

decoder chip after each frame is grabbed such that in each second 15 frames from the left

camera and 15 frames from the right camera are received. The drawback of this solution is

that the overall processing rate of the stereo system in practice is half of the standard video

rate (15 frames/sec). However, this limitation is only arising from the fact that TM-3A is a

general purpose reprogrammable board with one video input channel. If there was a way to

receive two 30 frame/sec video signals in parallel, the rest of the current stereo system would

τ

τmax

CHAPTER 3. Hardware Design 20

have been able to generate disparities in full video rate. In fact, in the current design, the input

image buffers are read and processed in 30 frames/sec even though the input image changes

every 15 frames/sec. Figure 3.3 describes the source selector alternation after each frame.

At the end of the Video Input Interface Unit, the input interlaced images of 256 by 360 pixels

are written into left and right frame buffers. The Scale/Orientation Decomposition Unit will,

then, read these frame buffers in non-interlaced order and will process these image streams as

explained in next section.

Figure 3.2: The camera head with two 1/2” CCD cameras. The focal length of
the camera lenses is 12mm and the separation between the optic centers of the

cameras is 70mm.

New frame siganl:

~ 33 msec
One frame

left camera NTSC

decoder

right

Left
frame
buffer

frame
buffer

To scaling/filtering

right camera

Figure 3.3: Using source selector to alternate between left and right cameras

CHAPTER 3. Hardware Design 21

3.3 Scale-Orientation Decomposition Unit

This unit consists of two major sub-blocks: the Scaler block and the G2-H2 Filter block. It

reads from the frame buffers and after scaling and filtering, sends the outputs to the Phase-

Correlation Unit. For parallel processing of left and right image streams, two instantiations of

the scaler and filtering sub-blocks are used to separately process the two image streams.

3.3.1 Scaler Block

As discussed in Chapter 2, combining the matching data from multiple scales of the stereo

images improves the overall performance of stereo matching. This improvement is because

each scale leads to one correct disparity and some possibly false disparities. By combining the

matching data across all the scales, the false disparities can be reduced [11].

Figure 3.4 shows the architecture of the Scaler Block. This block down-samples the original

image in two steps, each time by a factor of 2 in both horizontal and vertical directions. To

avoid aliasing, which can happen as a result of down-sampling, we pass the input image

through a low-pass anti-aliasing filter. In our system, a three-tap Gaussian FIR filter is used as

an anti-aliasing filter in both horizontal and vertical directions. The Scaler Unit outputs two

Gaussian pyramids, one for left image and one for right image.

Anti−alias
LPF

Original Scale

2

2

Scale 1

Scale 2

Scale 4

Anti−alias
LPF

Figure 3.4: Two-step scaler architecture with anti-alias low-pass filters and 2D down sampling

CHAPTER 3. Hardware Design 22

3.3.2 G2-H2 Filter

G2-H2 Filter is the second block of the Scale/Orientation Decomposition Unit. As discussed

in Chapter 2, G2/H2 filters are a common approach for phase extraction. G2/H2 is a complex-

valued quadrature-pair filter. The real and imaginary parts of this filter have the same ampli-

tude spectra, but they are out of phase. In other words, G2 can be expressed as the second

derivative of a Gaussian function and H2 is its Hilbert transform. To extract more features

from the input images, we apply two different orientations of G2/H2 filters (The original

LWPC algorithm uses three directions, but we decompose in two directions due to the space

considerations.). In [13], it is shown that G2/H2 filters are “steerable” which means any arbi-

trary orientation of G2 or H2 filters can be expressed as a linear combination of a set of basis

filters. The basis set for G2 filter has three filters:, and , while H2 has a basis set

with four filters: , , and . In hardware, we have implemented all the seven basis

filters and then, by combining the basis filter outputs by proper coefficients, we construct two

oriented filters in and degrees. One advantage of implementing basis filters is that

any other filter orientation can be constructed with minimum extra cost.

Figure 3.5 shows the architecture of the G2/H2 filter block. In this block, the main computa-

tion is performed in the basis filters. Each basis filter, , ..., is originally a FIR

filter. However, for hardware implementation purpose, since the first and last coefficients are

negligible compared with the other coefficients, we implemented them as filters. In the

next paragraphs, we will describe the implementation of the basis filters in hardware.

One important feature of G2/H2 filters is that they are X-Y separable. An X-Y separable filter

has an impulse response that can be expressed as the product of two functions: one which only

depends onx, and one which only depends ony. Consider a separable filter with impulse

responseK[x,y], which can be expressed as:

Then, the 2D convolution of imageI[x,y] with K[x,y] can be written as:

90°

G2a G2b G2c

H2a H2b H2c H2d

45° 45– °

G2a G2b H2d 9 9×

7 7×

(3.1)K x y,[] F x[] G y[]⋅=

(3.2)I x y,[] K x y,[]⊗ I x y,[] F x[]⊗() G y[]⊗=

CHAPTER 3. Hardware Design 23

or

This property allows efficient implementation of G2/H2 filters because the convolution of the

input image with an , X-Y separable kernel can be replaced with two separate 1-D con-

volutions with a horizontal vector and a vertical vector. This feature reduces the

filter complexity from to . We call the convolution with vector the X-filter

stage and the convolution with vector the Y-filter stage.

Figure 3.5: Architecture of the G2/H2 filter block. Any orientation of G2/H2 filters can be calculated by a linear combination
of a set of seven basis filters.

CGb 45°,

CGc 45°,

CGa 45°–,

CGb 45°–,

CGc 45°–,

CGa 45°,

CHd 45°,

CHc 45°,

CHb 45°,

CHa 45°,

CHb 45– °,

C
Hc 45°–,

C
Hd 45°–,

CHa 45– °,

Σ

Σ

Σ

Σ

Ga

Hd

Hc

Hb

Ha

Gc

Gb

Basis filters set steering coefficients

G2 output in 45 degree

G2 output in -45 degree

H2 output in 45 degree

H2 output in -45 degree

Input image

(3.3)I x y,[] K x y,[]⊗ I x y,[] G y[]⊗() F x[]⊗=

N N×

1 N× N 1×

O N
2() O 2N() 1 N×

N 1×

CHAPTER 3. Hardware Design 24

Hardware implementation of FIR filters requires two steps: 1) creating delay buffers, 2) multi-

plying with constant coefficients and building an adder tree. The X-filter and Y-filter are both

FIR, and, thus have similar architectures in hardware. Their only difference is that since the

video input data is arriving in rows, implementation of the X-filter delay buffers is simpler and

smaller in comparison with the Y-filter delay buffers. An N-tap FIR X-filter requires only

 delay elements, while a Y-filter with the same size requires roughly delay ele-

ments, where is the number of pixels in one image scan line.

The design shown in Figure 3.5 includes seven pairs of X-filters and Y-filters, all of them pro-

cessing the same input image. In this figure, all the basis filters have the same input. This

property suggests sharing of delay buffers among all the basis filters. As Eq. (3.2) and Eq.

(3.3) show, we can perform X-filtering and Y-filtering in arbitrary order without affecting the

final convolution results. We have chosen to perform Y-filtering first (as in Eq. (3.3)).

N 1– W N 1–()⋅

W

coefficients

Y filter

coefficients
X filter

+

X buffer

coefficients
X filter

+

X buffer

coefficients
X filter

+

X buffer

1

1

1 1

1

11

Ga Basis filter

Gb Basis filter

7

7

N
 =

 7

Shared Y buffer

Input pixel stream

coefficients

Y filter

Hd Basis filter

W = # of pixels in scan line

coefficients

Y filter

Shift register

Figure 3.6: Sharing Y buffer for all seven Y filters of the basis filters. The Y buffers are by far larger than X buffers. So, shar-
ing the Y buffer among all the basis filters saves more hardware as opposed to sharing X buffers.

CHAPTER 3. Hardware Design 25

By implementing the Y-filters first, the vertical buffer for Y-filtering can be shared between the

Y-filters of all basis filters. Since the Y buffer is much larger than the X buffer, the amount of

hardware saving as a result of Y-buffer sharing is much higher in comparison with X-buffer

sharing. Figure 3.6 shows the internal architecture of basis filters.

In a hardware realization of an algorithm, floating point multiplication and division is usually

expensive in terms of the amount of logic resources available on the chip. One common solu-

tion is to replace floating-point operations with fixed-point operations of an appropriate width.

The width should be large enough to introduce acceptable quantization error according to the

constraints of the algorithm. In Figure3.6, input pixel values are in 8-bit grey scale, so all the

shift registers in the delay buffers are 8 bits wide. The X-filter and Y-filter coefficients are

quantized to 8-bit signed precision. The final outputs of oriented filters are presented in signed

16-bit values. A full detail analysis of the fixed-point representation for each stage of the

design will be given in Section 3.7.

Besides different structures for delay buffers, the rest of the architecture of X-filter and Y-filter

is similar. Figure 3.7(a) shows the design of an FIR 7-tap X-filter with coefficients , , ...,

. One important feature of X and Y decomposition of G2/H2 filters is that the coefficients

are either symmetric or anti-symmetric, e.g. for a 7-tap FIR filter: , and

. This property is used in the design to reduce the number of constant multiplications

C1 C2

C7

D D D D
Input

pixels

D D D

Filter output

C7 = C1 C6 = C2 C5 = C3 C4

C C C C C C C7 6 5 4 3 2 1

D D D D D D D
Input

pixels

Filter output

Delay element

(a) (b)

Figure 3.7: (a) Original architecture of the horizontal 7-tap FIR filter. (b) Revised architecture with symmetric coefficients.
(For anti-symmetric coefficients the first level of adders can be replaced with subtractors.)

C1 C7±= C2 C6±=

C3 C5±=

CHAPTER 3. Hardware Design 26

from 7 to 4, as shown in Figure 3.7(b). In this architecture, the pairs of input samples are

added or subtracted before being multiplied by the coefficients. Note that the total number of

adders in both designs (a) and (b) is identical.

The Scale/Orientation Decomposition Unit produces two complex valued band-pass outputs

(in directions and) for each scale of the pyramid. Since the pyramid has three scales,

there are totally 6 complex-valued outputs from this unit. Note that there are two parallel

streams of signals: one for left image stream and one for right stream. So, each scale and each

orientation has a pair of left and right signals that should be sent to the Phase-Correlation

Unit. The complex valued signals consist of real and imaginary parts, each represented by 16-

bit signed values.

3.4 Phase-Correlation Unit

This unit is the heart of the vision system where the filter outputs of left and right images are

45° 45– °

−45

+45

+45

−45

−45

+45

−45

+45

+45

−45

−45

+45

2 x 16 bit

Input

Sc
al

e
1

Sc
al

e
4

Sc
al

e
1

Sc
al

e
2

Sc
al

e
4

Sc
al

e
2Orientation

Scale/

decomposition
Unit

Orientation
Scale/

decomposition
Unit

Ph
as

e−
C

or
re

la
tio

n
U

ni
t

Input

Left

Right

Fr
om

 v
id

eo
 in

te
rf

ac
e

un
it

Figure 3.8: Communication between Scale/Orientation Unit and Correlation Unit

CHAPTER 3. Hardware Design 27

merged. As discussed in Chapter 2, the final goal of the stereo matching is to find two corre-

sponding points in the stereo images. In general, finding the corresponding point requires

search over the whole image, but by aligning the cameras and using the epipolar constraint,

we can shrink the search window to a 1D horizontal window. This means that for each pixel in

one image, the corresponding pixel in the other image lies on the same scan line and within a

maximum distance.

To find the best match, we compute a similarity function for each pixel in the left image and

the horizontally shifted locations of that pixel in the right image. The similarity function

results are then combined across all scales and orientations. The shift value which produces

the highest similarity will be detected as the best match.

Figure 3.9 shows the high level architecture of the correlation unit for one pair of left and right

images. The value of D in Figure3.9 represents the maximum allowed disparity between ste-

reo images, or the size of the searching window. In our work, we have limited the value of D

to 20 pixels in the finest scale, based on the hardware resources available. In the coarser

D : Max Disparity

R=(Re(R),Im(R))

L=(Re(L),Im(L))

C(0)

C(1)

C(2)

C(D) T
o

In
te

rp
ol

at
io

n
U

ni
t

func.

Voting

Z
−1

Z
−1

Z
−1

Z
−1

func.

Voting

func.

Voting

func.

Voting

Figure 3.9: High level architecture of Phase-Correlation Unit for one pair of left and right images. In this architecture, all the
voting function blocks are operating in parallel.

CHAPTER 3. Hardware Design 28

scales, the number of shifts are also scaled by the same factor such that in scale 2, there are 10

shifts and in scale 4, there are 5 shifts. Choosing larger values for maximum allowed disparity,

D, will result in a larger search window which proportionally decreases the minimum detect-

able distance from objects to the camera head. On the other hand, increasing the value of D

will increase the size of Phase-Correlation Unit and Interpolation Unit almost proportionally.

The similarity function, or voting function, implemented in this work, is based on the voting

function proposed in LWPC algorithm:

Based on this equation, to compute voting function in location of the image and for can-

didate disparity of , we need to convolve the Gaussian window, , with the inner product

of and , where is the complex-valued G2/H2 filter output for left image

and is the conjugate of right image G2/H2 filter output shifted by pixels horizon-

tally. The result is then divided by square root of convolution of with the square of the

amplitude of both and .

Efficient calculation of the voting function, , in hardware is critical to the development

of the whole system because of two facts: 1) this block contains several non-constant multipli-

cations, square roots and dividers which are all expensive in terms of logic resources available

on FPGA. 2) Several identical voting function blocks should be implemented in parallel. To

have a rough estimate of the total number of this block, we have 20, 10 and 5 voting functions

in scale 1, 2 and 4 respectively, which adds to a total of 35 blocks per orientation. Since this

whole process is done on two separate orientations, in total there are 70 blocks of voting func-

tion. So, any saving in the implementation of this block will be magnified 70 times. In the next

paragraphs, we will describe the techniques we have applied to shrink the size of voting func-

tion block, while introducing minimal error compared with original voting function.

As discussed in Chapter 2, at true disparity, the real part of should be maximum and its

imaginary part should be close to zero. It means ideally all the true matches should be detect-

(3.4)C x τ,()
W x() Ol x()Or

∗ x τ+()[]⊗

W x() Ol x() 2⊗ W x() Or x() 2⊗
---=

C x

τ W x()

Ol x() Or
∗ x τ+() Ol x()

Or
∗ x τ+() τ

W x()

Ol x() Or x()

C x τ,()

C x τ,()

CHAPTER 3. Hardware Design 29

able just by finding the at which is maximum, although computing both real and

imaginary parts of will help to reject wrong matches. Based on this property, we only

compute the real part of in Eq. (3.4) in our system. In this equation, the Gaussian win-

dow, w, and denominator are always real-valued. So, to compute , we just compute

, as follows:

Implementation of Eq. (3.5) requires only two real multipliers, as opposed to four multipliers

for full complex-valued multiplication to compute both real and imaginary parts of the voting

function.

Figure 3.10 shows how can be derived from and with basic mathemat-

ical operations. It requires seven multipliers, one square root block, one divider and three

adders plus three parallel blocks of Gaussian window. Here is a rough estimate of number of

LUTs required to implement the block illustrated in Figure 3.10 Assume that all multipliers

are 8x8 bit and square root and divider blocks need the same number of LUTs as multipliers.

Implementation of each multiplier requires around 60 LUTs and each adder requires 8 LUTs.

So, architecture of Figure 3.10 needs 566 LUTs for basic mathematical operations. Consider-

τ Re C x τ,()[]

C x τ,()

C x τ,()

Re C x τ,()[]

Re Ol x()Or
∗ x τ+()[]

(3.5)Re Ol x()Or
∗ x τ+()[] Re Ol x()[]Re Or x τ+()[] Im Ol x()[]Im Or x τ+()[]–=

Gaussian Window

Gaussian Window

w

w

Gaussian Window

w

Divider

| Ol |^2

| Or |^2

Re[Ol.Or*]

sqrt

Re(Or)

Im(Or)

Im(Ol)

Re(Ol)

Ol

Or

Re(c)

w * (Re[Ol]Re[Or] − Im[Ol]Im[Or])

sqrt([w * |Ol|][w * |Or|])

Figure 3.10: Realization of the real part of voting function in (3.4)

Re C x τ,()[] Ol x() Or x()

CHAPTER 3. Hardware Design 30

ing the fact that this bock needs to be replicated 70 times, the total number of LUTs would be

39,620 which is more than the 38,000 LUTs totally available in the Virtex2000E chip. Note

that we have not taken into account implementation of any Gaussian Windows, delay elements

or control logics yet. The 8-bit square-roots and dividers are also more costly than multipliers,

making this problem even worse.

3.4.1 Location of Gaussian Window

To shrink the size of this block, we have slightly modified the method of calculating

, as shown in Figure 3.11. In this revised architecture, we have pushed the Gaussian

windows to the end of the block after divider. In fact, instead of applying the localized Gauss-

ian window, W(x), to the amplitudes and inner product of left and right outputs, we apply the

Gaussian window to the result of the divider. While this is not the mathematical equivalent of

the original method, we expect it will have similar smoothing effect because theW(x) window

in our system is a small 3-tap FIR filter and the left and right outputs are band-limited (and

hence their values do not vary dramatically in the window). This change allows us to extract

the common portion of computations between several blocks such that we only perform them

once. In fact, the architecture shown in Figure3.11 is close to the local phase difference

(Re[Ol]Re[Or] − Im[Ol]Im[Or])

sqrt(|Ol|.|Or|)

| Ol |^2

| Or |^2

Re[Ol.Or*]

Re(Or)

Im(Or)

Im(Ol)

Re(Ol)

Ol

Or

Divider

sqrt

Gaussian Window

w

w *

Figure 3.11: Revised voting function architecture: The Gaussian window is moved to the end of block

Re C x τ,()[]

CHAPTER 3. Hardware Design 31

method proposed in [10].

Here are two major techniques we use to extract the common factors in order to reduce the

size of the block:

First, by moving the Gaussian windows to the end of the block, the three Gaussian windows

are reduced to one window. In fact, this Gaussian window can be pushed even further back to

after addition of the voting functions of different orientations because of linearity of the Gaus-

sian windowing operation. This will reduce the total number of Gaussian windows from 210

to 35.

Second, the sub-block before Gaussian window of Figure 3.11 can be re-arranged as shown in

Figure 3.12. In this new design, each of the two inputs, and , are normalized first

such that they both have unity length. The inner product of these unity length vectors is then

calculated and sent to Gaussian window. At first, having two normalizing blocks as in Figure

3.12 might seem not to be helpful because it takes 3 dividers and one square root block more

than its original version. But it has a main advantage: These normalization blocks are identical

Re(Or)

Im(Or)

Im(Ol)

Re(Ol)

Ol

Or

Re[Ol.Or*]

w

Gaussian Window

Divider

Divider

Divider

Divider

sqrt

sqrt | Or |

| Ol |

Normalizer

Normalizer

Figure 3.12: Re-arrangement of the architecture of Figure 3.11 with two normalizer blocks, one inner product and one Gaus-
sian window unit.

Ol x() Or x()

CHAPTER 3. Hardware Design 32

for all the shifted versions of the image (Figure 3.9). It means instead of having normalization

units in every voting function block, we can share them across all the shifted versions of vot-

ing functions. This sharing technique is illustrated in Figure 3.13. Extracting the normaliza-

tion block from the voting function blocks reduces the computational complexity inside each

block. Since all disparities in each scale and orientation need only one pair of normalization

blocks, the total number of normalization blocks is 12, as opposed to 140 normalization

blocks needed before adopting sharing technique.

3.4.2 Normalization

For further reduction in the size of the Phase-Correlation Unit, we have modified the architec-

ture of normalization blocks. The major portion of the normalization block is computing the

D : Max Disparity

C(0)

C(1)

C(2)

C(D) T
o

In
te

rp
ol

at
io

n
U

ni
t

Or

Ol

func.

Voting

func.

Voting

func.

Voting

func.

Voting

Normal.

Normal.

Gaussian

window

Orn

w

Oln

Re(Orn)

Im(Orn)

Re(Oln)

Im(Oln)

Orn

Oln

Z
−1

Z
−1

Z
−1

Z
−1

Figure 3.13: Extracting the normalizer blocks and sharing them across all voting functions reduces the complexity inside each
voting function block.

CHAPTER 3. Hardware Design 33

amplitude of complex-valued inputs. Amplitude of a complex value,A, can be expressed as

the of the 2D vectorA, with and as its elements:

Hardware implementation of is expensive because it requires two multipliers, one square

root and one adder. Instead, we have replaced with of vectorA, , defined as:

where|x| means absolute value ofx. Figure 3.14 shows the effect of replacing with

on the normalized output vectors. In the method, all the normalized vectors are

located on the unit circle in the Real-Imaginary plane but in , they are projected on a

square, as shown in Figure 3.14. This is because the sum of absolute real and imaginary parts

of normalized vectors are always unity and therefore they all become projected to straight

lines which form a square instead of a unit circle. This technique provides enough accuracy

for our application and can also be used in similar applications. To improve the accuracy and

still avoiding implementation of , there is one potential solution: Since and

in Figure 3.14 are always limited between -1 and 1, one can use a memory block as a look up

table with appropriate size to replace current vectors with those closer to values on the

L2 norm– Re A() Im A()

: (3.6)L2 norm– A 2 Re A()2 Im A()2+=

A 2

A 2 L1 norm– A 1

: (3.7)L1 norm– A 1 Re A() Im A()+=

u1
A

u2
A

Re

Im

1

1

Re

1

1

Im

A= =

2
Re(A) + Im(A)

22

A
|| A ||

A
u2

A= =A A
|| A ||u1

1 | Re(A) | + | Im(A) |

L2-Norm L1-Norm

A A

Figure 3.14: Effect of using instead ofL1 norm– L2 norm–

A 2 A 1

L2 norm–

L1 norm–

A 2 Re Au1() Im Au1()

Au1

CHAPTER 3. Hardware Design 34

unit circle. The important point is that these look up tables can be built using on-chip memory

which is available in most of the current FPGA devices without the need to use logic elements

of the device.

Figure 3.15 shows the effect of the first two major modifications we have made to the original

LWPC algorithm. Figure 3.15(a) and (b) are a ‘books’ stereo images. In (c), the depth result

from original algorithm is shown. In (d), the depth map after changing the location of Gauss-

ian window and replacing with is shown. In most of the regions, the two

images have the same depth values, but as we were expecting, the depth map in (d) contains

(a) (b)

(d)(c)

Figure 3.15: Effect of using instead of and changing the location of Gaussian window on the final

depth map results of the ‘books’ stereo images. (a) Left image. (b) Right image. (c) Depth map by using and

original location for Gaussian window. (d) Depth map by using and Gaussian window moved to the end of

voting function block.

L1 norm– L2 norm–

L2 norm–

L1 norm–

L2 norm– L1 norm–

CHAPTER 3. Hardware Design 35

slightly more noise compared with (c). This noise comes from the approximations we have

made in order to make the hard implementation efficient and feasible.

Table 1 summarizes the number of mathematical operations required in the different architec-

tures of the phase-correlation block. In this table Gaussian windows are considered as a build-

ing blocks without counting the components inside the Gaussian window. In fact Gaussian

windows in our system are 3x3 X-Y separable low-pass FIR filters. So, implementing each

Gaussian window requires a set of X-buffer and Y-buffer plus constant coefficients and adders

tree. These resources are not included in table 1.

3.5 Interpolation/Peak-Detection Unit

The Interpolation/Peak-Detection Unit is the last unit before Video Output Interface. This unit

is implemented on the fourth FPGA available on the board and consists of two major blocks,

the Interpolation Block, and the Peak Detection Block.

3.5.1 Interpolation Block

This block interpolates two coarser scale voting functions, and , in bothx

and domains such that they can be combined with the finest scale voting function, .

It performs quadrature interpolation in the domain and constant interpolation inx domain.

The quadrature interpolation performed in this work is as follows: Assume a function ,

for . We build , , by quadrature interpolation of based on this

Architecture

Original
from

LWPC
algorithm

Gaussian
windows
moved

Gaussian
windows
moved

 +
normalizer

sharing

Sharing
+

 L1
normalizer

Multipliers 490 490 188 140

Dividers 70 70 24 24

Square roots 70 70 12 -

Adders 210 210 82 82

Gaussian
Windows

210 70 35 35

TABLE 1. Summary of the number of basic blocks for different
architectures of Phase-Correlation Unit

C j 2,() x τ,() C j 3,() x τ,()

τ C j 1,() x τ,()

τ

f n()

0 n N≤ ≤ g m() 0 m 2N≤ ≤ f n()

CHAPTER 3. Hardware Design 36

formula:

The interpolated voting functions are then added together to produce the overall voting func-

tion . The interpolation from scale 2 to scale 1 is performed in one step, but interpolation

from scale 4 to scale 1 is broken to two steps, each step up-sampling by a factor of two.

3.5.2 Peak-Detection Block

The input to this block is a three dimensional array with the first two dimensions the same size

as the size of the image (256 x 360) and the third dimension of size D (maximum disparity).

Each element in this array is the combined voting function for location of the

image and for the candidate value of , as the disparity. The goal of the Peak Detection block

is to find, for each pixel location , the value which maximizes . The index value

of is sent to output as the estimated disparity for pixel of the image.

Since the maximum disparity, D, in our system is set to 20 pixels, the disparity output can

have integer values from 0 to 20. It means that has an accuracy of about 5 bits. This will be

translated to 5-bit accuracy in the final results of depth measurements. To improve the overall

accuracy of the system, we have employed a sub-pixel accuracy sub-block inside the Peak

Detection Block which was not in the original LWPC method. The sub-pixel accuracy block

picks the that has the maximum value. In addition, it picks that point’s left and right

neighbors in the domain, e.g. and and fits these three points to a qua-

dratic curve. The point corresponding to the peak of the quadratic curve is declared as the sub-

pixel accuracy disparity. Assuming that , and ,

we calculate the sub-pixel accuracy disparity, , as the sum of an integer value, , and a

fractional shift, , defined as:

(3.8)g m()
f n() if m 2n=

0.375f n() 0.75f n 1+() 0.125f n 2+()–+ if m 2n 1+=() m M 1–≠()∧
0.125–() f N 2–() 0.75f N 1–() 0.375f N()+ + if m M 1–=

=

S x τ,()

S x y τ, ,() x y,()

τ

x y,() τ S x y τ, ,()

τ x y,()

τ

S x y τ, ,()

τ S x y τ 1–, ,() S x y τ 1+, ,()

S x y τ, ,() a= S x y τ 1–, ,() b= S x y τ 1+, ,() c=

τsub τ

∆τ

, (3.9)τsub τ ∆τ+= ∆τ
c b–

4a b– c–
------------------------=

CHAPTER 3. Hardware Design 37

The value of adds a fraction to original value of to move it towards the neighbor with

value closer to the peak. We compute with 3 bit precision after the decimal point that after

being added to the original 5-bit integer produces final results with 8-bit accuracy.

(Figure 3.16)

The final disparity results are written in the external SRAM bank which will be read by the

Video Output Unit to be displayed on a monitor.

3.6 Video Output Unit

The Video Output Unit sends three sets of information to the display: 1) original input video,

2) depth map results; and 3) mouse pointers on both original and disparity map results.

The original input video and final depth map are always buffered in a 2MB external SRAM

connected to FPGA #3 of the TM-3A board. The Video Output Unit reads these two buffers

and sends them to the monitor such that the lower half of the display shows the original image

and the upper half shows the result of stereo algorithm. In the depth map results, the depth is

∆τ τ

∆τ

τ τsub

11.5 12 12.5 13 13.5 14 14.5

−0.3

max at 12.7

 12 13 14

 (disparity)τ

Figure 3.16: Sub-pixel accuracy in disparity is obtained by adding to the integer-valued .∆τ τ

0 20

S X Y τ, ,()

CHAPTER 3. Hardware Design 38

encoded in grey scale values from 0 to 255: the higher grey scale value (brighter pixels) indi-

cates a pixel close to cameras. Lower grey scale values indicate pixels farther from camera.

In addition to displaying the dense depth map, our system allows the user to check the dis-

tance of any arbitrary pixel in the image just by clicking the mouse pointer on that pixel. This

feature is added by a two-way communication between the TM-3A board and the host

machine: the user moves the mouse which is connected to the host machine. A program on the

host machine continuously reads the mouse pointer coordinates and sends them to the TM-3A

board through the ports package, which allows communication of host with the board. The

Video Output Unit receives the mouse pointer coordinates and superimposes two small

squares as pointers on the original and depth map images on the monitor which is directly

connected to TM-3A board. When the user right clicks the mouse, the TM-3A is informed

through the ports package. The TM-3A is then responsible to read the depth map buffer and

send the depth value of that pixel back to the host machine. After the click, a window on the

host machine displays the X and Y coordinates, plus the distance of the pixel from the camera

in centimeters.

3.7 Fixed-Point Representation Analysis

Floating-point mathematical operations require extensive resources to implement in hardware.

Since we know the required scale and precision in each stage of the stereo algorithm, we can

implement it in a far more efficient fixed-point representation. However, there is always a

trade-off between accuracy of fixed-point representation and the hardware cost: minimum

quantization error requires using wide fixed-point representations, but wider signals require

larger circuits to perform mathematical operations (dividers, multipliers, adders, etc.), in addi-

tion to larger data path circuits, larger memory and higher chip-to-chip communication band-

width. In this section, we analyze the effect of replacing original floating-point operations

with fixed-point representations of different size.

Figure 3.17 shows the cost of implementing parallel (one clock cycle) multipliers and dividers

versus the input width of the multiplier or divider. If the required throughput permits one can

use serial multipliers and dividers that cost less but generate only one output every N clock

cycles (N>1). But regardless of using parallel or serial operators, the number of LUTs to build

CHAPTER 3. Hardware Design 39

a multiplier or divider increases approximately with the square of the input width.

The key issue is that the assignment of fixed-point width to signals should be analyzed for

every block of the algorithm separately. This is because fixed-point precision in each stage of

the system has a different effect on the final results. So, we need to make good decisions for

the precision of the variables and operations in each stage of the algorithm. This analysis

requires both knowledge of the target hardware and the algorithm itself. Few tools have been

developed to solve this problem. For example, [7] is a framework for automatically determin-

ing fixed-point precision of floating-point calculations.

In the design process of our system, we have done a detailed analysis of the effect of fixed-

point width of signals on the final results in order to find the proper width assignment. Before

the detailed discussion of these effects, there are several issues that should be mentioned

regarding the selection of proper width for the fixed-point representations:

• As we discussed in Chapter 2, there is a limited amount of hardware resources in TM-3a,

including number of LUTs and flip flops in each FPGA, on-chip and off-chip memory,

memory access bandwidth and chip-to-chip communication bandwidth. This fact sets an

upper limit on the fixed-point precision of signals. So, as the first rule, we need to make

sure that the selected fixed-point widths meet the hardware requirements.

4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

Width of inputs

of

 L
U

Ts

Divider

Multiplier

Figure 3.17: Divider and Multiplier Hardware Cost

CHAPTER 3. Hardware Design 40

• Usually the final accuracy of the system is more sensitive to the precision of some signals

as opposed to others. For efficient usage of the hardware resources, we try to assign wider

bit representation to those signals that affect the final results more.

• Decisions should be based on the relative size and number of the blocks: those blocks that

are replicated so many times have larger effect on the total size of the circuit. So, when

minimizing the size of blocks, the priority is for bigger and more frequent blocks.

• This problem is in general an optimization problem with complicated constraints and cost

functions. While we have tried to assign appropriate representations to signals, we can not

guarantee that this is the optimum setting.

We have conducted a set of emulations in order to find the approximate sensitivity of the over-

all performance to the precision of different signals. The task of assigning proper precisions to

all signals is theoretically a multi-variable optimization problem with a complex cost function.

In this research we are not claiming we have reached the globally optimum settings but our

solution is efficient enough to meet our design constraints.

In this section we show the results of analysis of the precision in four major points of the sys-

tem: 1) X-filters outputs, 2) Y-Filters outputs, 3) normalizer block outputs, and 4) voting func-

tion outputs. Our methodology is as follows: We start from the first point, X-filters outputs,

sweep its precision over a wide range, assuming that all the other points in the system are in

full precision. For each precision of the X-filter output, we calculate the quantization error by

comparing the final disparity result of limited X-filter output precision with final disparity

results of full precision X-filter outputs. After creating the graph of error versus precision, we

choose the proper precision before the graph becomes flat (assuming this precision is less than

the upper limit imposed by hardware resources). The reason for this choice is that when we

reach the flat part of the graph, it means that we are increasing the precision but it does not

improve the quality of final results.

After choosing the X-filter outputs precision, we keep this precision fixed and sweep the Y-fil-

ter outputs, still assuming that next points are in full precision. We continue this method until

the last point, where all the precisions are fixed except the last one.

CHAPTER 3. Hardware Design 41

Figures 3.18, 3.19, 3.20, 3.21 show the effect of precisions in X-filters outputs, Y-filters out-

puts, normalization block outputs and voting function outputs on the final disparity results

respectively. In these figures, the horizontal axis is the width at a specific point in the system

and the vertical axis is the mean square error in the final disparity outputs as a result of replac-

ing full precision signals with fixed-point representation. For all the three test images in these

figures (Books, Tree, Lamp), the maximum disparity is 20 pixels.

4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

Output width of X−Filter Unit (# of bits)

M
ea

n
 S

q
u

ar
e

E
rr

o
r

tree−image

books−image

lamp−image

Selected width

Figure 3.18: Fixed-point analysis for the X-filter block output width. Based on this analysis, we represent X-filter
outputs with 16-bit signed values.

CHAPTER 3. Hardware Design 42

4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

tree−image

books−image

lamp−image

Selected width M
ea

n
 S

q
u

ar
e

E
rr

o
r

Output width of Y−Filter Unit (# of bits)

Figure 3.19: Fixed-point analysis for the Y-filter block output width. Based on this analysis, we represent Y-filter
outputs with 16-bit signed values.

2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

Input width of Multipliers in correlation block (# of bits)

M
ea

n
 S

q
u

ar
e

E
rr

o
r

tree−image

books−image

lamp−image

Selected width

Figure 3.20: Fixed-point analysis for the output width of the Normalizer Block (inside Phase-Correlation Unit).
Based on this analysis, we represent Normalized complex values with 8-bit signed values.

CHAPTER 3. Hardware Design 43

3.8 Chip-to-Chip Communication

As we discussed in previous section, a key issue in hardware design is chip-to-chip communi-

cation. Each FPGA in TM-3A is connected to the other three FPGAs with a 98-bit bus. In our

design, we have managed to transfer all the data between the chips using less than 98bits. For

example, from Scale/Orientation Unit to Phase-Correlation Unit we needed to transfer 24,16-

bit signals arriving at a rate of 8 Mega sample/sec. To fit this wide signals all in 98-bit bus, we

used a simple Time Division Multiplexing (TDM) technique. In this technique, we use one

16-bit 48 Mhz channel to transfer a group of six parallel 16-bit 8 Msample/sec signals (Figure

3.22).

Figure 3.23 shows the flow of data through the FPGAs and the number of bits used to commu-

4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

tree−image

books−image

lamp−image

Selected width

Input width of Interpolation Unit (# of bits)

M
ea

n
 S

q
u

ar
e

E
rr

o
r

Figure 3.21: Fixed-point analysis for the input width of the Interpolation Unit (output of Phase-Correlation Unit).
Based on this analysis, we represent Interpolation Unit inputs with 8-bit signed values.

CHAPTER 3. Hardware Design 44

nicate between each pair of FPGAs. The major portion of data in this system flows clockwise,

starting from FPGA #3, Video Interface Unit, and returning back again to this unit. The data

transfer between FPGA #2 and FPGA #0 does not follow the global circular flow of data. It is

mainly to balance the processing load among all the chips. In other words, the Scale/Orienta-

tion Decomposition Units is ‘borrowing’ a portion of LUTs and flip fops from FPGA #0,

which is designated to Interpolation/Peak-detection Unit.

Counter

48 Mhz Clock

Counter

48 Mhz Clock

16 bit

16 bit 16 bit

48 Mhz

8 Mhz 8 Mhz

T
im

e
D

em
ul

tip
le

xi
ng

T
im

e
M

ul
tip

le
xi

ng

Figure 3.22: Time Multiplexing/Demultiplexing in chip-to-chip communication

Interpolation/

Peak Detection

Unit

Video Interface

Unit

Scale/Orientation

Decomposition

Unit

Phase−Correlation

Unit

FPGA #0

FPGA #3

FPGA #1

67 bit
75 bit

34 bit

51 bit

29 bit
FPGA #2

Figure 3.23: Data transfer between four FPGAs

CHAPTER 3. Hardware Design 45

3.9 Summary

Table 2 lists the hardware resources used in each unit of the stereo system in terms of number

of Look Up Tables (LUTs), flip flops, slices and the amount of on-chip fast memory. Each

slice in Xilinx Virtex 2000E contains two LUTs and two flip flops [33]. Since Virtex 2000E

FPGA contains 38,000 LUT-flip flop pairs, it has 19,200 slices. Table2 indicates that although

in all of the four chips, except the video interface chip, almost all the slices are used, the per-

centage of used LUTs or flip flops is at most 88%. This means some slices are used partially

and still have some LUTs of flip flops available. While we could still use more LUTs and flip

flops, it is usually with the cost of not meeting timing constraints of the design such that the

maximum frequency in which the circuit can perform correctly drops to less than 50 Mhz,

which is our target clock frequency.

The stereo system is functioning at the clock frequency of 50 Mhz and produces 256 x 360

pixels 8-bit, sub-pixel accuracy depth map at 30 frames per second. In Chapter 4, we present

the results of the implemented system. It includes the functionality of the stereo system as

well as the depth measurement results.

Unit Name # of
4-input
LUTs

% of
4-input
LUTs

of
flip-flops

% of
flip-flops

of
slices

% of total
slices

On-chip
memory

(bits)

% of total
memory

Video Interface (FPGA #3) 169 1% 71 1% 105 1% - -

Scale/Orient. Decomp.
(FPGA #2)

23,151 60% 18,020 46% 19,198 99% 614,400 93%

Phase-correlation
(FPGA #1)

16,709 43% 30,961 80% 19,198 99% - -

Inter polation (FPGA #0) 26,615 69% 33,974 88% 18,048 94% 172,032 26%

Table 2: Hardware resources for each unit

46

CHAPTER 4 Implementation
Results

4.1 Functionality and performance

The FPGA stereo system developed in this research performs multi-resolution, multi-orienta-

tion depth extraction based on the LWPC algorithm. This system can produce a dense dispar-

ity map of size 256 x 360 pixels with 8-bit, sub-pixel accuracy disparity results at the rate of

30 frames/sec. One common comparison metric used to measure the throughput of stereo

vision systems is the PDS (Points times Disparity per Second) measurement defined as:

where the image size is pixels andD is the maximum disparity evaluated in a total time

of T seconds. Using this metric, our system achieves a performance of 55 million PDS, which

is among the highest rates reported. Table3 compares the performance of our vision system

(4.1)PDS
n m× D×

T
------------------------=

n m×

CHAPTER 4. Implementation Results 47

with several other high performance hardware stereo vision engines.

As this table shows, our stereo system ranks after PARTS engine in terms of PDS metric.

While the PDS metric reflects the density and the speed of the system, it does not measure the

accuracy of the implemented algorithm. The important feature of our system in comparison

with other hardware stereo machines is its high accuracy phase-based algorithm. To realize a

phase-based algorithm in video rate, the system performs the equivalent of more than 10 bil-

lion 16 x 16 bit multiplications per second and the four Virtex 2000E devices communicate at

a data rate of up to 200 Mbytes/sec.

In comparison with software implementation, we have run the Matlab version of the stereo

algorithm on a Sun UltraSPARC-III 750 MHz processor with 2.5 GB of memory. On this plat-

form, producing the depth map for each pair of frames takes about 30 seconds which is about

900 times slower than our FPGA-based stereo system. Although Matlab implementation is not

the fastest possible software solution, we expect that the software optimizations (implement-

ing the algorithm with C/C++ and create a stand-alone application) will improve the software

speed by a factor of less than 5 on the same hardware platform. This is because our Matlab

implementation is heavily vectorized and is mainly using the built in Matlab functions which

are designed to be fast and efficient. So, depending on the architecture and the maximum fre-

quency of the processor that runs the software algorithm, the overall speed-up from software

to reconfigurable hardware is approximately 60 to 900.

D
T

(msec)

PDS

(x) algorithm platform

INRIA[9] 256 x 256 32 280 7.5 Intensity
Correlation

PeRLe-1 board (23 Xilinx
XC3090 FPGAs)

PARTS
engine[32]

240 x 320 24 23.8 77 Census 16 Xilinx 4025 FPGAs

CMU stereo
machine [21]

200 x 200 30 33 36 sum of
absolute

difference

special purpose hardware (C40
DSP + real time processor)

This
Work

256 x 360 20 33 55 LWPC
(Phase based)

TM-3A board (four Xilinx Virtex
2000E FPGAs)

TABLE 3. Summary of reported stereo vision system performances

n m× 106

CHAPTER 4. Implementation Results 48

4.2 Depth Measurement Results

We have conducted two sets of tests to evaluate the performance of disparity matching and

distance estimation. First, we test the system with the synthesized images and, second, with

natural images received from the cameras. The advantage of testing with synthesized images

is that since the input is not from a camera, any type of noise associated with the imaging sys-

tem (e.g. noise in image sensors, camera alignment, brightness variations in left and right

images, etc.) will not affect the stereo matching performance.

4.2.1 Synthesized Images

The first example in Figure 4.10 shows the depth map from a pair of random stereograms.

Random stereograms are pairs of images with random grey scale values such that the pixels in

one image are the same as the other image but shifted based on the intended distance. So, this

pair of images underlies a synthesized 3-D surface. Figure 4.10(a) and (b), show a random ste-

reogram with a depth ground truth as given in Figure 4.10(c) or a 3D surface as in Figure

4.10(d), which is called a “wedding cake” [15]. This surface has four levels of depth with 0, 4,

8 and 12 pixel disparities and is symmetrical in both horizontal and vertical directions from

the view point of the right image. Since the ground truth in this figure is shown from the left

image view point, all the objects are skewed to right. Figure 4.10(e) shows the depth map

obtained from applying original software algorithm and Figure 4.10(f) shows the result

obtained by our hardware stereo engine which is close to the software results. As this figure

shows, the hardware system is capable of reconstructing smooth surfaces similar to the results

of the software and ground truth depth. To compare the performance of software and hardware

methods quantitatively, we have calculated the Mean Square Error (MSE) between software

disparity results and the ground truth, and also between hardware disparity results and the

ground truth. For example, in Figure 4.10, the MSE for software disparity compared with

ground truth is 1.13 , while the MSE for hardware is 1.53 . In both cases, the max-

imum allowed disparity was limited to 20 pixels. As we were expecting, the hardware results

have larger errors compared to software. This larger error is because of all the modifications

we have done to the original software method (e.g. the fixed-point operations and the changes

in the architecture as explained in Chapter 3) to build the system in the limited hardware

pixel2 pixel2

CHAPTER 4. Implementation Results 49

resources available. This increase in error is of course rewarded by the speed up as the result

of hardware implementation.

In this work we have used MSE to compare the performance of hardware and software meth-

ods. One important point is that while the MSE measure indicates the amount of error

(a) (b)

(b)
(d)

(f)(e)

Figure 4.10: Overall system performance on Wedding-cake random stereograms: (a), (b) The stereogram (c) Ground truth
depth (d) 3D structure of ground truth (e) depth from original software (f) depth from hardware vision system

CHAPTER 4. Implementation Results 50

between the stereo pre-shift results and the ground truth pre-shift values, it is not the best pos-

sible method to quantify this error. The reason is that MSE measure assumes a Gaussian dis-

tribution for the error but by looking at the histogram of the errors in pre-shift results, we can

see that it is a combination of two distributions: The first is a very sharp Gaussian distribution

around zero with a variance of less than one pixel. The second belongs to a relatively small

number of pixels with errors uniformly distributed over all possible pre-shifts. So, in order to

characterize the error in pre-shift values, a more accurate method would be to separate the two

underlying distributions and describe them separately.

As we can see in Figure 4.10(e) and (f), at the edges of the surface, where there is a depth dis-

continuity, both software and hardware methods introduce noise. This is, in fact, a common

problem in stereo matching: at the depth discontinuties, some points are only visible in one

image but occluded in the other image. So, the algorithm fails to find corresponding points. It

can be noticed that in Figure 4.10(e) and (f), most of error matchings happen in the left-side

edges of the wedding cake as opposed to right-side edges. As we explained, this is because in

our algorithm we pick each pixel in left image and then look for its match in the right image.

The pixels close to the left-side edges in left view of wedding cake are not visiblein the right

view, so, the correct match can not be found. But the pixels close to the right-side edges in the

left view are still visible from the right point of view, so, the noise is mush less in these

regions. Several solutions have been proposed to overcome the depth discontinuity problem.

One straight forward solution is called left-to-right and right-to-left validation [14]. This tech-

nique performs two sets of matchings: first time, it searches for the matches of left image pix-

els in the right image, and second time, it searches for the matches of right image pixels in the

left image. By combining the results of these two searches, this technique rejects the invalid

matches and hence improves the performance. The system implemented in this work does not

perform any such post processing operation. All the depth map results shown in this chapter

are raw disparity data received from the Interpolation/Peak-Detection Unit. A technique such

as left-to-right and right-to-left validating can be integrated with the current system with an

estimated cost of 15% to 20% increase in the amount of required logic.

Figure 4.11 shows another example of stereograms with results from software and hardware.

In the underlying surface, the background has 3 pixels disparity, the other three levels have 6,

CHAPTER 4. Implementation Results 51

8 and 12 pixels disparity. In this figure, the MSE for hardware disparity is 1.99 , while

the MSE for software disparity is 1.59 . It can be seen in both software and hardware

results that as the size of depth discontinuity becomes larger, the amount of noise on the edges

becomes more visible.

Figure 4.11: Overall system performance on a pair of random stereograms: (a), (b) Random-dot stereogram (c) Ground
truth depth (d) 3D structure of ground truth (e) Depth from original software (f) Depth from hardware vision system

(c)

(e) (f)

(a) (b)

(d)

pixel2

pixel2

CHAPTER 4. Implementation Results 52

4.2.2 Natural Images

Figure 4.12 shows a sample natural image and the depth map generated by the hardware. As

we can see, the background in this image has a constant distance from the camera, which is

consistent with the plain grey background in the depth map result. The coat rack and the per-

son in the image are closer to the camera respectively. Similar to synthesized test images, at

depth discontinuties of the scene (such as point #3), the depth results are not reliable.

Although the depth map result, as in Figure 4.12(b), qualitatively illustrates the performance

of the stereo system, for quantitative evaluation, we have measured the distance of 5 points in

the scene and compared it with the results obtained by hardware. Table 4 shows these two sets

of distance values. In points 1, 2, 4 and 5, the error in the distance results is less than 5% of the

absolute value of the distance.

5

2 3

1

4

(a) (b)

Figure 4.12: (a) Input from right camera, (b) Output disparity map

Point # 1 2 3 4 5

Ground truth
distance (cm)

300 315 320 365 410

Distance from
stereo system

(cm)
309 320 276 355 402

Err or % 3% 1.6% 13.7% 2.7% 1.9%

TABLE 4. Distance measurements for five
 points of Figure 4.12

CHAPTER 4. Implementation Results 53

Figures 4.13, 4.14, 4.15 and 4.16 show more samples of the stereo inputs and distance outputs

in different scenes and in different lighting conditions. In Figure 4.16, the texture of the jacket

on the coat rack is not visible in the original image. This is the main reason of noise in that

region in the distance map.

It is important to note that in our current design, we have assumed that the two cameras have

identical focal length and are vertically aligned such that no rectification [30] or any other pre-

processing is required. But this assumption is not always true. There is usually a slight mis-

alignment between the cameras and even sometimes in the position of the CCD plane inside

the camera. This mis-alignment introduces some error in the disparity results of the natural

images. Similar to the pre-processing stages, in this work there is no post-processing stage

such as left-to-right/right-to-left validation or smoothing/gap filling implemented in hardware.

These processing units can be integrated with the future versions of our system with some

extra cost as we will explain in the next chapter.

(a) (b)

Figure 4.13: (a) Input from right camera, (b) Output disparity map

CHAPTER 4. Implementation Results 54

(a) (b)

Figure 4.14 (a) Input from right camera, (b) Output disparity map

(a) (b)

Figure 4.15 (a) Input from right camera, (b) Output disparity map

(a) (b)

Figure 4.16 (a) Input from right camera, (b) Output disparity map

55

CHAPTER 5 Conclusions &
Future Work

In this work, we have built a hardware system that is capable of imaging its surroundings and

reconstructing the 3D structure of the scene. It views the scene through a pair of stereo cam-

eras and generates dense depth map results at a video rate of 30 frames/sec. The depth map

obtained from video rate stereo vision can provide valuable information for higher level vision

tasks such as object detection and pattern recognition which can be used in a variety of appli-

cations such as robotics, navigation, security, monitoring and automotives.

The stereo system developed in this research has two main features: First, it runs at video rate

which is approximately 60 to 900 times faster than its software implementation, and second, it

uses a high performance phase based stereo matching algorithm called “Local Weighted

Phase-Correlation Algorithm”. The combination of these two features shows the significance

of this work. While some other video rate vision systems have been reported before, we

believe that this work is the first implementation of a complex algorithm such as LWPC in real

CHAPTER 5. Conclusions & Future Work 56

time.

Video rate performance in this work is achieved by implementing the algorithm on Field-Pro-

grammable Gate Arrays (FPGAs). Hardware implementation accelerates the stereo vision sys-

tem by performing several parts of the algorithm fast and in parallel. On the other hand,

reprogrammability of the FPGAs allows for faster and cheaper design cycle of the system

compared to Application Specific Integrated Circuit (ASIC) design.

One important issue in this research has been the efficient translation of the original software

algorithm to its corresponding hardware system. Some blocks of the original system were

modified in order to reduce the size of the hardware system while introducing acceptable

error.

There are several possibilities to continue this research. We categorize them into three groups.

The first involves expanding the current stereo vision system to improve its performance. Sec-

ondly, we can look at other high performance stereo vision algorithms, third, investigating the

feasibility of using better design tools to shorten the design cycle. In the following paragraphs,

we will explain these suggestions in more detail.

Similar to other semiconductor devices, the capacity and speed of FPGAs are growing very

quickly. Employing bigger and faster FPGAs will allow us to add more features to our current

stereo system in order to improve the performance. The reprogrammability of the FPGAs also

helps to modify the current system with minimum cost. When additional hardware resources

become available, we would suggest these expansions respectively:

• Adding a post processing block such as left-right right-left validation to reject the invalid

matches. This feature will almost double the size of correlation and interpolation units, but

will also remove most of the noise resulted from occlusions or depth discontinuties. In fact,

a slower version of left-right right-left validation can be added to the current stereo system

with a small hardware cost: performing left-right matching and right-left matching on alter-

CHAPTER 5. Conclusions & Future Work 57

nating frames. By combining the depth results of each two consecutive frames, we can

detect and reject the invalid matches. However, this solution will reduce the overall frame

rate to 15 frames/sec from current 30 frames/sec.

• An alternative to the left-right, right-left validation is the idea of using results from previ-

ous frame while calculating the depth in current frame. At the present, our system starts

from “scratch” to find the depth for every frame, yet we don’t expect the world’s depth

structure to change dramatically from one frame to the next. Carrying over information

from previous frames will allow us to improve the accuracy of the depth results dynami-

cally after each frame.

• Adding pre-processing blocks such as rectification or noise filtering before applying the

stereo matching algorithm. Depending on the accuracy of the camera pair calibration and

alignment, the pre-processing blocks can improve the quality of final results dramatically.

• Performing G2/H2 filters in three directions(, and) as opposed to the two direc-

tions (and) implemented in this work. This addition will increase the size of the

Decomposition Unit and also the data transfer between this unit and the Phase-Correlation

Unit by almost 50%, but will make the algorithm more robust and will extract more texture

from the images.

• Introducing a confidence measure for depth values to indicate the goodness of fit between

left and right matching points. The confidence measure shows the reliability of each depth

value. Later stages of a vision system can use this information by assignning more weight

to the depth values with higher confidence measure. For the LWPC algorithm, it is shown

in [19] that the magnitude of the voting function, , provides the confidence mea-

sure and its value is bounded between 0 and 1.

• Increasing the size of search window in order to increase the maximum allowed disparity.

This will expand the range of the stereo system by decreasing the minimum possible dis-

tance. Currently, the maximum disparity is limited to 20 pixels, which translates to a mini-

mum detectable distance of about 2.5 meters. We estimate that choosing larger horizontal

window size will linearly increase the size of Phase-Correlation and Interpolation Units.

45° 45– ° 0°

45° 45– °

C x τ,()

CHAPTER 5. Conclusions & Future Work 58

• Finally, processing images larger than the current size of 256 x 360 pixels (higher resolu-

tion but with the same field of view). Dealing with higher resolution images will affect the

hardware requirements in different ways. First, more pixels per image means less number

of clock cycles available to process each pixel, which in turn requires faster and hence usu-

ally larger components (e.g. faster multipliers and dividers). Second, by increasing the res-

olution, the resulting disparity for an object in a fixed distance from the camera head will

be larger (in terms of the number of pixels, assuming that the focal length of the cameras do

not change). So, if we want to keep the minimum distance fixed, a wider search window

will be required. This will again increases the hardware requirements, as explained in pre-

vious paragraph. Finally, larger images will of course require larger frame buffers and

faster external memory accesses.

One other possible direction for future work is to investigate other stereo matching algorithms.

This is very important to start with appropriate algorithm since some algorithms are naturally

parallel and hence can be translated to parallel hardware implementation more easily and

resulting in higher speed-ups.

The last possibility is to improve the design methodology by using design tools that allow

automation of some design tasks that are currently performed manually. Among these tasks is

the translation of high-level system description to a low-level hardware description language

that can be then synthesized and translated to bit streams to program FPGAs. Recently, some

commercial tools have been introduced that link the Digital Signal Processing (DSP) systems

described in a system level design tool such as MATLAB or Simulink with Hardware Descrip-

tion Language (HDL) development tools [1][32]. These automation tools can be used to

develop the sub-blocks of a multi-FPGA system although at present, the overall design needs

to be tailored manually to the specifications of the hardware platform. Another design automa-

tion tool has also been introduced to find the optimum fixed-point precisions when replacing

floating-point operations with their fixed-point counterparts [7].

In summary, this thesis has described an implementation of a state-of-the-art stereo disparity

CHAPTER 5. Conclusions & Future Work 59

algorithm. It is hoped that this system will find use as a module in a larger vision system and

also that it demonstrates the practical and desirable nature of reconfigurable hardware for

implementation of vision algorithms.

60

Bibliography

[1] Altera, DSP Builder User Guide, v2.0.0,http://www.altera.com/literature/ug/

ug_dsp_builder.pdf, 2002.

[2] J.M. Arnold, D.A. Buell, D.T. Hoang, D.V. Pryor, N. Shirazi, M.R. Thistle, The Splash 2

Processor and Applications, IEEE International Conference on Computer Design: VLSI in

Computers and Processors, pages: 482-485, 1993.

[3] N. Ayache and B. Faverjon, Efficient registration of stereo images by matching graph

descriptions of edge segments,Intern. J. Comput. Vis. 1(2):107:131, 1987.

[4] H.H. Baker and T.O. Binford, Depth from edges and intensity based stereo,Proc. 7th

Intern. Joint Conf. Artif. Intell., Vancouver, pp. 631-636, August 1981.

[5] S.T. Barnard, Stochastic stereo over scale,International Journal of Computer Vision, 3:17-

32, 1989.

BIBLIOGRAPHY 61

[6] S. Brown, R. Francis, J. Rose, Z. Vranesic,Field-Programmable Gate Arrays, Kluwer

Academic Publishers, May 1992.

[7] M. L. Chang and S. Hauck, Precis: A design-time precision analysis tool,10th IEEE Sym-

posium on Field-Programmable Custom Computing Machines, April 2002.

[8] G.C. DeAngelis, I. Ohzawa and R.D. Freeman, Depth is encoded in the visual cortex by a

specialized receptive field structure,Nature, 352:156-159, 1991.

[9] O. Faugeras, et al., Real time correlation based stereo: algorithm, implementations and

applications, Research Report 2013, INRIA Sophia-Antipolis, 1993.

[10] D.J. Fleet, A.D. Jepson and M. Jepson, Phase-based disparity measurement,CVGIP:

Image Understanding, 53(2):198-210, 1991.

[11] D.J. Fleet, Disparity from local weighted phase-correlation,IEEE International Confer-

ence On Systems, Man, and Cybernetics, page(s): 48 - 54 vol.1, 1994.

[12] D.J. Fleet and A.D. Jepson, Stability of phase information,IEEE Trans. PAMI,

15(12):1253-1268, 1993.

[13] W.T. Freeman and E.H. Adelson, The design and use of steerable filters,Pattern Analysis

and Machine Intelligence, IEEE Transactions on, Volume: 13, Issue: 9, Page(s): 891 -906,

Sept. 1991.

[14] Pascal Fua, A parallel stereo algorithm that produces dense depth maps and preserves

image features,Machine Vision and Applications, INRIA research report 1369, 6(1), 1993,

[15] W.E.L. Grimson,From Images to Surfaces: a computational study of human early visual

system, MIT press, Cambridge, MA, 1981.

[16] K.M. Hou, et al., A reconfigurable and flexible parallel 3D vision system for a mobile

robot, Proc. Computer Architectures for Machine Perception, pp. 215 - 221, Dec 1993.

[17] IEEE, IEEE standard VHDL Language Reference Manual, std 1076-1993, New York,

1993.

[18] M. Van Ierssel, D. Galloway, P. Chow, J. Rose, The Transmogrifier-3a: Hardware and

Software for a 3 Million Gate Rapid Prototyping System,Micronet Annual Workshop,

2001.

BIBLIOGRAPHY 62

[19] M. Jenkin and A. Jepson, Recovering local surface structure through local phase differ-

ence measurements,CVGIP: Image Understanding 59: 72-93, 1994.

[20] F. Jutand, S. Maginot, N. Demassieux, H. Maitre, ENSTA Single chip VLSI architecture

for a real time stereo vision processor, ICASSP-88., Pages: 1965 - 1968, vol.4, 1988.

[21] T. Kanade, A. Yoshida, K. Oda, H. Kano, M. Tanaka, A stereo machine for video-rate

dense depth mapping and its new applications,IEEE conf. on Computer Vision and Pattern

Recognition, pp 196-202, 1996.

[22] R. McCready, Real-Time Face Detection on a Configurable Hardware Platform, Master’s

thesis, University of Toronto, 2000.

[23] T. Kanade and M. Okutomi, A stereo matching algorithm with an adaptive window: the-

ory and experiment,IEEE International Conference on Robotics and Automation, Vol. 2,

pages: 1088 -1095, 1991.

[24] D. Lewis, D. Galloway, M. Van Ierssel, J. Rose, P. Chow, The Transmogrifier-2: A 1 Mil-

lion Gate Rapid Prototyping System,in IEEE Trans. on VLSI, Vol. 6, No. 2, pp 188-198,

1998.

[25] D. Marr and T. Poggio, A theory of human stereo vision, AI lab, MIT, 1977.

[26] Philips Semiconductors,http://www-us.semiconductors.philips.com/cgi-bin/pldb/pip/SA

A7111H

[27] A. Rushton,VHDL for Logic Systhesis, John Wiley, 1998.

[28] TM-3 documentation,http://www.eecg.utoronto.ca/~tm3/

[29] TM-3 documentation,http://www.eecg.utoronto.ca/~tm3/ports.ps

[30] E. Trucco, A. Verri, Introductory Techniques for 3-D Computer Vision, Prentice Hall,

1998.

[31] J.E. Vuillemin, P. Bertin, D. Roncin, M. Shand, H.H. Touati and P. Boucard, Programma-

ble Active Memories: reconfigurable systems come of age,IEEE Trans. on VLSI Systems,

4:56-69, March 1996.

BIBLIOGRAPHY 63

[32] J. Woodfill and Von Herzen, Real-time stereo vision on the PARTS reconfigurable com-

puter, The 5th Annual IEEE Symposium on Field-Programmable Custom Computing

Machines Proceedings, Pages:201-210, 1997.

[33] Xilinx data sheets,http://direct.xilinx.com/bvdocs/publications/ds022-1.pdf

[34] Xilinx, System Generator for DSP Reference Guide, v2.2,http://www.xilinx.com/

ipcenter/dsp/ref_guide.pdf, July 2002.

[35] A.G. Ye,Procedural Texture Mapping on FPGAs, Master’s thesis, University of Toronto,

1999.

[36] R. Zabih and J. Woodfill, Non-parametric Local Transforms for Computing Visual Corre-

spondence,Proceedings of 3rd European Conference on Computer Vision, pp. 150-158,

May 1994.

