
Enhancing and Using an Automatic Design System for

Creating FPGAs

by

Aaron Charles Egier

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright c© 2005 by Aaron Charles Egier

Abstract

Enhancing and Using an Automatic Design System for Creating FPGAs

Aaron Charles Egier

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2005

The creation of integrated circuits has progressed from custom design and layout to

the less time-intensive implementation media of ASICs and FPGAs. FPGAs provide

the lowest development cost and fastest development time; however, the design of the

FPGA itself is still a time-consuming, expensive, custom layout task that takes at least

50 person-years to complete. This work explores new techniques to automate the design

and layout of FPGAs. An existing automatic layout system is improved by changing

the grouping of transistors that form the basic building blocks of the system. These

improvements result in a 16.8% area savings over previous versions and only a 36%

area increase compared to equivalent custom designs. The system was also extended to

create the first automatic layout of an FPGA from a generic architecture description.

These improvements and additions suggest that the automatic layout system is a viable

alternative to custom layout of FPGAs.

ii

Acknowledgements

I would like to thank my supervisor, Professor Jonathan Rose, for his advice and guidance

in all aspects of this work and my education. Also, Ian Kuon deserves my profound thanks

and gratitude for his achievements and co-operation that led to the completion of this

work. This work would not have been possible without the people who worked on it

before me. They are Ketan Padalia, Ryan Fung, Mark Bourgeault, Josh Slavkin, and

Chris Sun.

I am grateful to Simon So for providing additional cell layouts and Kostas Pagiamtzis

for sharing his knowledge and experience regarding the fabrication of chips through CMC.

In addition, Professor Rose’s students and all the students in LP392 have been extremely

helpful by offering new perspectives on this work.

Funding for this project was provided by Altera and the NSERC CRD program. CMC

granted us silicon area without which it would not have been possible for us to fabricate

our FPGA. I received funding for my studies from the University of Toronto and NSERC.

Thanks to my parents for their support and encouragement in all aspects of my life.

Last but not least, to Katherine, I hope I can help you reach your goals as well as you

have helped me reach mine.

iii

Table of Contents

Abstract ii

Acknowledgements iii

List of Tables vii

List of Figures ix

List of Acronyms xii

1 Introduction 1

1.1 Motivation and Goals . 3

1.2 Organization . 3

2 Background 4

2.1 FPGA Architecture . 4

2.2 VLSI . 11

2.2.1 ASICs . 14

2.3 Related Prior Work . 14

2.3.1 Area Estimation . 14

2.3.2 Automatic Layout . 16

2.4 The GILES Automatic FPGA Design and Layout System 20

2.4.1 Netlist Generator . 23

iv

2.4.2 Placer . 24

2.4.3 Router . 28

2.4.4 Previous Results . 29

3 Improvements to the GILES Automated FPGA Layout System 30

3.1 A New Area Model for Cells . 31

3.1.1 Previous Area Model and Measurement of Accuracy 32

3.1.2 New Area Model . 33

3.2 Grouping Transistors into Cells . 40

3.2.1 Functional Groupings . 46

3.2.2 Groupings of Configuration SRAMs 52

3.2.3 Combined Groupings . 66

3.3 Tile Area Compared to a Commercial FPGA 67

4 Automatic Layout of a Complete FPGA 69

4.1 Architecture . 70

4.1.1 Periphery Tiles . 71

4.2 Circuit Design . 73

4.2.1 Level Restorer . 73

4.2.2 Programming Infrastructure . 76

4.2.3 Power-up Protection . 76

4.3 Metal Layer Allocation . 77

4.4 Cell Layouts . 80

4.5 Creating Tile Placements with GILES 82

4.6 Integrating with the Virtuoso Custom Design Platform 84

4.6.1 Tile Placements . 84

4.6.2 Power Grid . 85

4.6.3 Clock Tree . 90

v

4.6.4 Power-up Protection . 92

4.6.5 Routing . 93

4.6.6 Tiling the Array . 95

4.6.7 I/O Pads and Programmer . 95

4.7 Verification . 98

4.8 Design Time . 99

5 Conclusions 102

5.1 Contributions . 103

5.2 Future Work . 103

Appendix A Experimental Results for Transistor Groupings 105

Appendix B POWELL Architecture Description 122

Appendix C POWELL Cell Layout Information 124

References 126

vi

List of Tables

3.1 Accuracy of old area model . 34

3.2 Accuracy of tile area with old area model 35

3.3 Accuracy of new area model . 38

3.4 Accuracy of tile area with new area model 39

3.5 Verification of new area model . 39

3.6 Parameters of ten experimental architectures 42

3.7 Effect of cell border on tile area . 43

3.8 Distribution of cell types . 45

3.9 List of functional groupings . 47

3.10 Benefits of inter-cell SRAM bit swapping for the 2x2 SRAM grouping . . 60

4.1 Metal layer allocation . 79

4.2 Cells used in POWELL and their sizes in 0.66 µm by 0.66 µm grid squares 81

4.3 Breakdown of time required to design POWELL 101

A.1 Tile area before routing for functional groupings 105

A.2 Tile area after routing for functional groupings 106

A.3 Tile whitespace before routing for functional groupings 106

A.4 Tile area before routing for 2x2 SRAM grouping 107

A.5 Tile area after routing for 2x2 SRAM grouping 107

A.6 Tile wirelength before routing for 2x2 SRAM grouping 108

vii

A.7 Programming wirelength before routing for 2x2 SRAM grouping 108

A.8 SRAM output wirelength before routing for 2x2 SRAM grouping 109

A.9 Tile area before routing for 4x4 SRAM grouping 109

A.10 Tile area after routing for 4x4 SRAM grouping 110

A.11 Tile wirelength before routing for 4x4 SRAM grouping 110

A.12 Programming wirelength before routing for 4x4 SRAM grouping 111

A.13 SRAM output wirelength before routing for 4x4 SRAM grouping 111

A.14 Tile area before routing for SRAM groupings 112

A.15 Tile area after routing for SRAM groupings 113

A.16 Tile wirelength before routing for SRAM groupings 114

A.17 Programming wirelength before routing for SRAM groupings 115

A.18 SRAM output wirelength before routing for SRAM groupings 116

A.19 Tile area before routing for combined groupings 117

A.20 Tile area after routing for combined groupings 118

A.21 Tile wirelength before routing for combined groupings 119

A.22 Programming wirelength before routing for combined groupings 120

A.23 SRAM output wirelength before routing for combined groupings 121

viii

List of Figures

2.1 An island-style FPGA . 5

2.2 A logic cluster . 6

2.3 Basic logic element (BLE) . 7

2.4 Input and output connection blocks . 8

2.5 Switch block . 9

2.6 FPGA tile and array . 10

2.7 Schematic and layout of an inverter . 12

2.8 Examples of design rules . 13

2.9 Diode prevents large voltage that could damage transistor gate 13

2.10 ASIC design flow . 15

2.11 Excerpt from a VPR architecture description file used as input to GILES 21

2.12 GILES flow . 22

2.13 VPR flow . 23

2.14 Netlist generator based on VPR . 24

2.15 Placer algorithm . 26

2.16 Initial and final tile placements . 27

2.17 Placer swaps logically equivalent pins . 27

2.18 Reweaving SRAM word and bit lines . 28

3.1 Required n-well spacing between inverter cells 36

3.2 Grouping cells saves border area . 41

ix

3.3 Smaller cells result in less whitespace . 44

3.4 Average frequency of cell usage . 45

3.5 Functional grouping number 1 (PTrans & SRAM) 47

3.6 Functional groupings 2 and 3 (Buffer & PTrans, Buffer & PTrans & SRAM) 48

3.7 Routed area comparison for functional groupings 50

3.8 Whitespace comparison for functional groupings 51

3.9 1x4-LUT tile placements with and without functional groupings 51

3.10 Grouping of configuration SRAMs . 53

3.11 1x4-LUT tile placements with groupings of 1x1, 4x4, and 10x10 SRAMs . 55

3.12 Netlist generator creates random groupings then placer optimizes them . 57

3.13 SRAM bits cannot be programmed with different values 58

3.14 SRAM bit swaps reduce wirelength . 59

3.15 Number of pin swap moves versus wirelength for 4x4 SRAM grouping . . 62

3.16 Number of pin swap moves versus area for 4x4 SRAM grouping 63

3.17 Area comparison for SRAM groupings 64

3.18 Wirelength comparison for SRAM groupings 65

3.19 Functional grouping number 2 combined with SRAM grouping 67

4.1 Array and periphery tiles . 72

4.2 PMOS level restorer pulls high logic level to full voltage 74

4.3 Power-up protection prevents short circuit 78

4.4 Cadence router does not require cell pins to be aligned to routing grid . . 82

4.5 Revised GILES flow . 83

4.6 Placement of main tile . 86

4.7 Power grid for main tile . 88

4.8 Power grid regions . 89

4.9 Clock H-tree . 91

4.10 Procedure for connecting clock pin to H-tree 92

x

4.11 Power-up protection pin uses unconnected clock wire 93

4.12 Connections of power-up protection network between tiles 94

4.13 Fully routed main tile . 96

4.14 Array of tiles . 97

4.15 POWELL layout . 100

xi

List of Acronyms

ASIC application-specific integrated circuit

BLE basic logic element

CMC Canadian Microelectronics Corporation

CMOS complementary metal-oxide-semiconductor

DRC design rule check

FPGA field-programmable gate array

GILES Good Instant Layout of Erasable Semiconductors

HDL hardware description language

IC integrated circuit

I/O input/output

IP intellectual property

LUT look-up table

LVS layout versus schematic

NMOS n-channel metal-oxide-semiconductor

PGA pin grid array

xii

PMOS p-channel metal-oxide-semiconductor

POWELL Pushbutton Optimized Widely Erasable Logic Layout

SRAM static random-access memory

TSMC Taiwan Semiconductor Manufacturing Company

VLSI very large-scale integration

VPR Versatile Place and Route

xiii

Chapter 1

Introduction

The implementation of digital circuits has changed dramatically since the invention of the

transistor in 1947 [1]. In the early years, circuits were designed with discrete components

and connected on a circuit board. As the technology to create transistors improved,

multiple transistors were integrated on a single chip to form logic gates. With time,

entire circuits fit on a chip. When the size of integrated circuits (ICs) reached the scale

of microprocessors, this level of complexity became know as very large-scale integration

(VLSI) [2]. It became possible to create application-specific integrated circuits (ASICs)

for unique applications. ASIC tools were developed to automate the design cycle and

reduce the time to market [3]. Although these tools create ASICs that occupy more area,

run at a slower speed, and consume more power compared to manually-designed, custom

ICs, most applications are suitable to accept this tradeoff. Custom ICs are only used for

the most advanced designs when area, speed, and power are critical.

In recent years, the complexity of IC fabrication processes has continued to increase

requiring more optical lithography masks at an increased price. In addition, once the

masks have been made, the cost to modify the IC for bug fixes or feature enhance-

ments is similarly increased. This has created a market for a new class of ICs called

field-programmable gate arrays (FPGAs) that can be programmed to implement any

1

Chapter 1. Introduction 2

circuit [4]. The companies that create FPGAs incur the cost of fabrication and sell them

to customers who are willing to spend more per chip to reduce development costs, risks,

and manufacturing time. FPGAs also reduce costs because they can be reconfigured for

bug fixes and feature enhancements. These savings makes FPGAs attractive even though

they are slower and use more power than ASICs.

The market for FPGAs is increasing but so is their complexity and the time required to

design them. To compete with ASICs, FPGA companies use custom IC design techniques

to reduce area and power while increasing speed. The standard ASIC flow cannot meet

these requirements. Thus, FPGA companies must spend on the order of at least 50

person-years to create new FPGAs.

Previous work at the University of Toronto has created a software tool that reduces

the time to develop FPGAs [5]. The inputs to that system are an architectural description

of the FPGA and the mask layouts of custom cells that implement the basic building

blocks of the architecture. The output is a placed and routed netlist of the FPGA tile.

The tile is repeated to create large FPGAs. Creating a new FPGA with a different

architecture is achieved by changing a few lines in the input file and providing a different

set of custom cells optimized for the new architecture. Therefore, the time to design an

FPGA is no more than the time required to design the custom cells. This is dramatically

less time than the full custom approach.

This tool, named Good Instant Layout of Erasable Semiconductors (GILES), contains

a placer and router similar to those used in ASIC tools. However, it addresses some of

their shortcomings without sacrificing the benefit of reduced time to market. ASIC tools

use standard cells to implement basic logic functions. These cells are generic and not

optimized for specific circuits [3]. Instead the custom cells used by GILES are optimized

for each specific FPGA architecture. This hybrid custom/ASIC approach allows GILES

to achieve silicon area smaller than ASIC tools and near that of custom designs. In

addition, GILES places these cells more efficiently than ASIC tools by using optimizations

Chapter 1. Introduction 3

specific to FPGAs.

1.1 Motivation and Goals

The first version of GILES obtained promising results. However, many assumptions were

made that can be revisited and explored for improvement. One such assumption, which

has a large impact on area, is the choice of custom cells. The first goal of this work is to

revisit this choice to achieve area results closer to that of commercial FPGAs designed

using custom flows. Part of that goal is to obtain more accurate results by improving

the models needed to estimate the area of the custom cells.

The second goal of this work is to extend GILES to create a complete, fully-functional

FPGA. In the previous version, many issues were ignored regarding the power grid, clock

network, and programming circuitry that must be resolved. The overriding theme is to

automate the entire process and to provide the flexibility to quickly implement alternative

architectures.

1.2 Organization

The remainder of this dissertation is divided into four chapters. Chapter 2 provides

a background on FPGA architecture, VLSI design methodologies, and prior work that

contrasts with GILES. Chapter 3 describes tradeoffs in choosing the custom cells used

by GILES and which choices achieve smaller chip area. Chapter 4 explains our proof-of-

concept FPGA and the issues surpassed during the design process. Also, it discusses the

infrastructure implemented to automate most of the steps involved. Finally, Chapter 5

concludes and provides suggestions for future work.

Chapter 2

Background

This chapter is divided into four sections. It begins with a review of FPGA architecture

focusing on the features used in this work. It follows with a brief background on VLSI

design methodologies. Then it examines other approaches to automatic layout of FPGAs.

Finally, the chapter concludes with an explanation of the GILES system flow, which is

the basis for the present work, and the previous results obtained with it.

2.1 FPGA Architecture

FPGAs are designed to implement any logic circuit. Their inherent reconfigurability

derives from their programmable architecture. The main parts of the FPGA are the logic

blocks, the input/output (I/O) blocks, and the routing [4]. All are programmable using

static random-access memory (SRAM) to allow different connections and functionalities.

Their arrangement for an island-style FPGA is shown in Figure 2.1. The logic blocks are

distributed in an array with the routing fabric running between them. The I/O blocks

surround the logic blocks and routing tracks. The direction of each I/O block and their

connections to the routing tracks are configurable.

The logic blocks implement arbitrary logic functions. Connections are made between

them with the programmable routing fabric. The inputs and outputs of the logic block

4

Chapter 2. Background 5

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

I/O I/O I/O I/O I/O I/O I/O I/O

I/O I/O I/O I/O I/O I/O I/O I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

Figure 2.1: An island-style FPGA

Chapter 2. Background 6

BLE
#N

Outputs

Inputs

BLE
#1

I

N

Figure 2.2: A logic cluster

connect to some of the adjacent routing tracks. Logic blocks are often implemented with

clusters of one or more basic logic elements (BLEs) as shown in Figure 2.2. This structure

is called a logic cluster. The inputs to the BLE are selected using multiplexers from the

set of inputs to the logic block and the set of BLE outputs. These multiplexers are called

input crossbars and in this work they are fully populated meaning all logic block inputs

and BLE outputs are connected to each multiplexer. Configuration SRAM bits select

which signals are connected to each BLE.

A BLE is often composed of a look-up table (LUT) and a flip-flop. A K-input LUT

implements an arbitrary K-input combinational logic function and the flip-flop allows

sequential circuits to be created. The BLE circuit used in this work is shown in Figure 2.3

and employs a four-input LUT and a flip-flop. The output of the BLE is either registered

or unregistered based on a configurable multiplexer. In this figure, the LUT has four

Chapter 2. Background 7

LUTInputs

Clock

Output

Figure 2.3: Basic logic element (BLE)

inputs so it can realize any logic function of four inputs. It is typically implemented with

a 16-input multiplexer. The four inputs of the LUT connect to the select lines of the

multiplexer. They select one of sixteen SRAM bits that correspond to the entries of the

truth table.

The configurable connections from the routing tracks to the inputs of the logic block

are implemented with multiplexers as shown in Figure 2.4. The programmable output

connections from the logic block to the routing tracks are made with buffered switches

and are also shown in Figure 2.4. These are called the input and output connection

blocks, respectively. The number of routing tracks that connect to each logic block input

or each output is know as the connection block flexibility and is represented as Fc,input

or Fc,output [6]. In Figure 2.4, Fc,input is four and Fc,output is two. Similarly, the number of

routing tracks that connect to each I/O block for both input and output is represented

as Fc,pad.

The routing wires may stretch the length of one logic block or they may span multiple

blocks. The number of logic blocks a routing track spans is know as its length. All routing

wires may be of the same length or some fraction of them may be different lengths.

Routing wires can be connected together at their ends and where they cross. A set of

programmable switches allows these connections. They can be buffered or unbuffered

switches as shown in Figure 2.5. The buffered switches can also be unidirectional or

bidirectional. The set of switches is called a switch block and the number of possible

Chapter 2. Background 8

Logic block

Input connection block Output connection block

Figure 2.4: Input and output connection blocks

connections each wire can make is called the switch block flexibility, Fs [6]. In this figure,

Fs is three for the first routing track in both the horizontal and vertical channels.

It is desirable to use the regular structure of FPGAs to simplify their design and

physical layout. An FPGA tile refers to a logic block and one set of adjacent horizontal

and vertical routing tracks. This tile is repeated in an array to form the FPGA as shown

in Figure 2.6. Since most FPGA architectures require routing tracks that span more

than one tile yet not the entire length of the chip, Figure 2.6 also shows how “twisting”

the routing tracks achieves other track lengths [7]. In this figure, all routing tracks are

length four.

Chapter 2. Background 9

Bidirectional
buffered switch

Unidirectional
buffered switch

Unbuffered
switch

1 2 3

1

2

3

Figure 2.5: Switch block

Chapter 2. Background 10

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

FPGA tile

Array of identical tiles

Figure 2.6: FPGA tile and array

Chapter 2. Background 11

2.2 VLSI

Implementing massive circuits on a single chip is called very large-scale integration

(VLSI). These chips are fabricated on silicon wafers using chemical and mechanical pro-

cesses. Many stages of oxidation, diffusion, deposition, ion implantation, metallization,

and polishing are performed to create the chip [8]. Photolithography masks are used

to selectively perform each task on different areas of the wafer. These masks are de-

rived from layouts containing two dimensional diagrams of each layer. A complementary

metal-oxide-semiconductor (CMOS) process is designed to implement both p-channel

metal-oxide-semiconductor (PMOS) and n-channel metal-oxide-semiconductor (NMOS)

transistors. Ion implantation dopes the silicon with n+ or p+ impurities. Transistors are

created where active n+ and p+ diffusion regions intersect with the polysilicon layer that

forms the gate of the transistor [1]. For the process used in this work, PMOS transistors

must be contained in a n-well region. Contacts connect active n+ and p+ diffusion re-

gions as well as polysilicon to the first metal layer. Several metal layers exist in modern

processes and they are connected with vias. An example layout of an inverter is shown

in Figure 2.7. To connect wires off chip, large bonding pads are used. After fabrication,

the wafers are cut into chips and wires are bonded between the pads and the pins of the

chip package.

To ensure that the layout is manufacturable, each fabrication process has a list of

design rules that must be met [1]. As part of the design flow, these rules must be verified

with design rule check (DRC) software. Figure 2.8 shows rules involving minimum width,

fixed width, and minimum spacing of some drawing layers as well as extensions of one

layer over another. The exact specifications for each rule are different for each process.

Other rules involve minimum area of an object and minimum density across the entire

chip. For finer geometry processes, large metal wires can act as unwanted antennas and

build up charge during fabrication, potentially causing damage to transistor gates [9].

Antenna rules dictate when a wire is likely to cause this problem. Connecting a diode as

Chapter 2. Background 12

IN

IN
OUT

OUT

VDD

VSS

VDD

VSS

Figure 2.7: Schematic and layout of an inverter

shown in Figure 2.9 prevents a large voltage between the gate and the substrate. During

normal operation, the substrate is grounded so the diode is reverse biased and the circuit

functionality is unaffected.

Making sure the design is free of DRC and antenna errors improves fabrication yield;

however, it does not guarantee the design will work to specifications or at all. To verify

the design, a schematic is extracted from the layout [1]. The extracted version represents

the circuit that is implemented by the layout. It is compared to the original design

schematic using a process called layout versus schematic (LVS). If the netlists match it is

likely that the layout will behave the same as the schematic simulation. To provide more

confidence, the extracted view can be simulated with the extracted parasitic capacitors

and the correct diffusion area resistances.

Chapter 2. Background 13

Minimum
space rule

Minimum
width rule

Minimum
width rule

Fixed width
rules

Minimum
extension

rules Minimum
space rule

Figure 2.8: Examples of design rules

Large wire

Substrate

Figure 2.9: Diode prevents large voltage that could damage transistor gate

Chapter 2. Background 14

2.2.1 ASICs

VLSI design methodologies include ASIC and custom flows. Custom IC design involves

drawing every geometric shape on every layer needed to create photolithography masks.

ASIC tools automate the design process to reduce development time at the expense of

decreased speed and increased area and power [3]. A simplified ASIC design flow is shown

in Figure 2.10. Design specification is done using a schematic or hardware description

language (HDL). This is synthesized to a netlist of components from an ASIC library.

These components, called standard cells, contain transistor layouts designed for various

functions such as logic gates and flip-flops. The cells, which are required to be of equal

height but have variable width, are placed on a grid and the connections between them

routed using automated tools.

2.3 Related Prior Work

This section divides related prior work into two categories. Section 2.3.1 examines previ-

ous techniques to estimate the layout area of cells. Section 2.3.2 reviews relevant portions

of the vast field of automatic layout.

2.3.1 Area Estimation

Layout designers often estimate the layout area of an IC before completing the entire

design process. This gives designers early information about the IC’s size that can help

with floorplanning and with evaluating the silicon area and packaging requirements.

Several approaches exist for estimating the area of standard cell designs assuming the

area of each standard cell is known [10, 11].

In this work, we compare the tile area of many FPGA architectures. An automatic

layout tool determines the exact tile area based on the size of the custom cells in the

tile netlist. However, the set of custom cells required for an FPGA tile changes with the

Chapter 2. Background 15

Synthesize to
standard cell

library

Place standard
cells

Schematic
or HDL files

Layout

Route
connections

Figure 2.10: ASIC design flow

Chapter 2. Background 16

FPGA architecture. It would be very time consuming to layout every cell used in every

experimental architecture to obtain the area of all possible cells. Instead, the area of

each cell is estimated based on its transistor implementation.

Few researchers have looked at area estimation of ICs based on the transistor im-

plementation. Wu et al. [12] propose formulas for estimating the size of datapath and

control logic based on the transistor implementation of standard cells. They sum the

number of transistors in the design and multiply by the pitch between transistors and

the height of the standard cells.

Betz et al. [4] estimate the layout area of FPGAs. They measure area in terms

of the number of minimum-width transistors that exist in the layout. However, many

transistors are larger than minimum width to increase their drive strength. Betz et al.

devised an equation to determine the area of each transistor, i, in terms of the number

of minimum-width transistors that occupy the same area:

areai(minWidthTransistors) = 0.5 +
driveStrengthi

2×minWidthDriveStrength
(2.1)

This equation recognizes that a transistor with 2x drive strength takes up less space than

two 1x transistors. Betz et al. sum the result of Equation 2.1 for all the transistors in

the FPGA. Then to obtain the area in µm2, they multiply by the layout area required

for a minimum-width transistor. They also assume custom designers achieve 60% of the

maximum transistor density so they divide the final area by 0.6.

2.3.2 Automatic Layout

There is an extensive body of work on automatic layout [13, 14] as well as widely used

commercial tools. These projects and tools can be classified depending on whether the

layout is performed at the transistor-level or the cell-level. In addition, floorplanning,

which determines the high-level layout structure, can be performed using automatic tools.

After reviewing different techniques, this section examines automatic layout projects that

Chapter 2. Background 17

target FPGAs.

Transistor-Level Layout

A research project by Serdar and Sechen [15] explored automatic layout at the transistor-

level. Their tool, AKORD, performs automatic layout for small groups of transistors.

Their results indicate automatic layout is comparable to manual layout for up to fifty

transistors; however, no results are presented for larger designs. Synopsys has a commer-

cial tool called Cadabra for the automatic creation of standard cells from a transistor-level

netlist [16]. Again it is designed for small circuit sub-blocks (typically standard cells) and

not a whole chip. While these tools could be used to create cells for cell-level automatic

layout, they do not scale well enough to create automatic layouts of entire FPGAs or

even FPGA tiles on their own.

Cell-Level Layout

An approach that scales to a larger number of transistors is to break the problem into

two levels of hierarchy. At the bottom-level, the transistors are grouped into cells with

two to twenty transistors and their layout is performed manually or with transistor-level

automatic layout tools. The top-level netlist is composed only of these cells. The position

of the cells in the top-level layout is determined automatically using a placement tool

and connected automatically using a router.

Cell-level layout can be classified into standard cell layout and general cell (or building

block) layout [13]. Standard cells have a fixed height and variable width. They have power

and ground wires running along the top and bottom of the cells. Abutting standard cells

horizontally connects the power and ground nets. General cells have variable width and

height. The power and ground connections must be connected by a router. Standard

cells are part of the ASIC design flow described in Section 2.2.1. Libraries of these cells

are available so the layouts are created once and used repeatedly. The present work uses

Chapter 2. Background 18

general cells like the work by Ogawa et al. [17] and Onodera et al. [18]. General cells are

not used in ASIC designs because of the lack of cell libraries and the increased difficulty

in routing power and ground.

Chinnery and Keutzer [3] compare automated ASIC designs that use standard cells to

custom designs where the layout of the entire IC is performed manually. While ASIC tools

dramatically reduce layout time, they found that ASIC designs are three to eight times

slower than custom designs. This performance gap is partially attributed to restrictive

standard cell ASIC libraries that often limit the choice of cells and result in non-optimal

drive strength. The standard cell libraries also provide poor latches and lack dynamic

logic gates used in high-performance custom ICs. Chinnery and Keutzer give suggestions

for improving the quality of ASIC designs. They suggest adding application-specific

standard cells to the library as well as better logic design, pipelining, and floorplanning.

In one chapter of their book, which was contributed by Chang and Dally, an ASIC

implementation of a 64-bit microprocessor register fetch stage was found to be 14.5x

larger and 3.72x slower than a custom implementation. By adding some manual layout

effort to exploit the regularity of each bit-slice and to add application-specific standard

cells to the library, the partially automated design was only 1.64x larger and 1.11x slower

than the custom implementation.

Floorplanning

Floorplanning determines the placement of large blocks such as intellectual property (IP)

cores, embedded memories, and groups of standard cells. The area of each block is fixed

but there may be several alternative layouts with different shapes [14]. It is similar to

general cell layout but the shape of each block has to be determined in addition to its

placement. Floorplanning is performed manually or with automatic tools. Some of these

tools attempt to minimize the placement area and eliminate the whitespace between

blocks [19] while others optimize the placement within a fixed area [20]. When the

Chapter 2. Background 19

area is fixed, the goal is to distribute the whitespace between the cells to reduce routing

congestion. Some floorplanning tools also allow the blocks to be mixed with standard cells

and the tool will perform standard cell placement at the same time as floorplanning [21].

Automatic Layout of FPGAs

Most previous approaches to the automatic layout of FPGAs have employed the stan-

dard cell design flow. Phillips and Hauck applied a standard cell flow to implement

a reconfigurable datapath architecture called RaPiD [22]. This architecture is similar

to a one-dimensional FPGA with datapath operations for logic blocks. They obtain a

standard cell version of RaPiD that is 42% larger and 64% slower than the custom imple-

mentation. They improve this result by targeting a specific set of circuits and removing

reconfiguration flexibility that is not necessary for those specific circuits. This technique

achieves designs that are up to 46% smaller and 36% faster than the original custom

implementation. While the results are promising, these chips are not nearly as flexi-

ble as a general purpose FPGA. Phillips and Hauck also achieve benefits from adding

FPGA-specific standard cells to the ASIC library. They reduced the area of their various

standard cell versions by 9% to 18.9% and improved the speed by 7% to 36%.

A similar approach by Kafafi, Bozman, and Wilton uses a standard cell flow to cre-

ate small customizable FPGA cores for use as part of an IC [23]. They simplify the

programmable architecture by removing flip-flips and combinational loops and rely on

external logic to perform these functions. The results show that the automated approach

creates designs 6.4 times larger than the custom implementations of their FPGA cores.

Clearly, it is challenging to create FPGAs using existing ASICs tools that are similar in

size to custom FPGAs.

In the present work, we employ an automatic layout tool called GILES [5]. The next

section discusses how GILES works compared to previous approaches.

Chapter 2. Background 20

2.4 The GILES Automatic FPGA Design and Lay-

out System

There are several features that make GILES [5] unique compared to other previous work

on automatic layout of FPGAs. It is similar to the general cell layout approach so it

handles large numbers of transistors; however, it uses a custom placer with optimizations

specific to FPGAs so it outperforms standard cell design flows on FPGA-specific layouts.

A key feature is that it is the only automatic layout tool that uses a high-level architec-

tural description as input to specify the FPGA structure. The architecture description

is easily understandable and configures most of the architectural parameters described

in Section 2.1. Its format is the same as the architecture file used in the architecture

exploration tool called Versatile Place and Route (VPR) [4].

An excerpt of an architecture description file is shown in Figure 2.11. It specifies one

BLE per cluster with a four-input LUT. The logic block has four inputs, one output, and

a clock for the flip-flop. The connection block flexibilities are specified as a fraction of

the routing tracks instead of an absolute number so they adjust when a different number

of routing tracks is used. The file also specifies that half the routing tracks are buffered.

All the routing tracks have a length of four.

The previous version of GILES focused on the automatic layout of a single FPGA

tile. The tile is repeatable as illustrated in Figure 2.6. The GILES tool flow is illustrated

in Figure 2.12. It begins with an architecture description and finishes with the layout of

the tile. The first stage is the netlist generator. It translates the architecture description

into two netlists: one composed of cells and one of transistors. The next stage places the

cell-level netlist. Finally, the connections are routed to obtain the layout.

Chapter 2. Background 21

Logic block parameters

subblocks_per_clb 1 # 1 BLE per logic cluster

subblock_lut_size 4 # 4-input LUTs

Logic block inputs and outputs

inpin class: 0 bottom

inpin class: 0 left

inpin class: 0 top

inpin class: 0 right

outpin class: 1 bottom # Logic block output

inpin class: 2 global left # Clock input

Connection block flexibilities

Fc_type fractional # Specified as fractional number of tracks

Fc_input 0.5625 # Flexibility of input connection block

Fc_output 1 # Flexibility of output connection block

Fc_pad 1 # Flexibility of I/O pads

Switch types

switch 0 buffered: no ...

switch 1 buffered: yes ...

Length 4 routing tracks, half buffered

segment frequency: 0.5 length: 4 wire_switch: 0 ...

segment frequency: 0.5 length: 4 wire_switch: 1 ...

Figure 2.11: Excerpt from a VPR architecture description file used as input to GILES

Chapter 2. Background 22

Netlist generator

Placer

Architecture
description

Tile layout

Router

Cell-level
netlist

Transistor-
level netlist

Figure 2.12: GILES flow

Chapter 2. Background 23

Architecture
generator

Placer

Architecture
description

Placed and
routed
circuit

Router

Circuit
netlist

Figure 2.13: VPR flow

2.4.1 Netlist Generator

The netlist generator is based on the architecture exploration tool called VPR [4]. VPR

places and routes circuits on an FPGA. The goal of VPR is to easily implement circuits

on different architectures. As shown in Figure 2.13 the inputs are a circuit netlist and an

architecture description of the FPGA on which to implement that circuit. The output is

the placement and routing of an application circuit on the specified FPGA. This should

not be confused with the goal of this work, which is the placement and routing of the

FPGA layout required to build the FPGA itself.

VPR was not designed to create FPGAs. However, it has an internal representation

of the FPGA and its programmable routing in the form of a routing-resource graph. The

Chapter 2. Background 24

Architecture
generator

Architecture
description

Transistor-
level netlist
of FPGA tile

Cell-level
netlist of
FPGA tile

Figure 2.14: Netlist generator based on VPR

netlist generator of GILES is a modified version of VPR that outputs a transistor-level

netlist and a cell-level netlist of the FPGA tile based on the logic block structure and

the routing-resource graph as shown in Figure 2.14 [24]. Instead of using standard cells

taken from an ASIC library for the cell-level netlist, the netlist generator assumes the

creation of custom, general cells optimized for the specific FPGAs architecture. The

transistor-level netlist contains the transistor implementation of each cell. Additionally,

the netlists describe the connections out of the tile, called ports. Because the tile will be

abutted to copies of itself to create the array, ports on each side of the tile will connect

to ports on the opposite side. Therefore, each port must match up with another port

called its “tiling partner”. The tiling partners are labelled so the placer knows to keep

them aligned.

2.4.2 Placer

The placer reads in the cell-level netlist and outputs the placement of the tile. The

placer’s goal is to minimize area and wirelength [5]. It begins with a random placement

and moves the cells to minimize its cost function. Whether an attempted move is accepted

Chapter 2. Background 25

is based on a simulated annealing algorithm [25, 26].

A unique feature of the placer is that it compacts the tile between placement phases

as illustrated in Figure 2.15 [5]. The entire process begins with a course grid that is

the size of the largest cell. Cells are forced to spread out so they have plenty of space

to move around the grid. The placer performs an optimization phase to obtain good

relative positions for the cells. Then the first compaction phase removes as much empty

space as possible by shrinking the tile. After compaction, a new optimization phase

reduces the wirelength and strives to move the blocks off the tile edges. Afterwards

another compaction phase tries to reduce the area further. These phases alternate until

the tile has not shrunk in several iterations. A final optimization phase is performed

without biasing cell moves that help to compact the tile. An example of initial and final

placements is shown in Figure 2.16.

Another unique feature of the placer is its ability to make FPGA specific optimiza-

tions. The inputs and outputs of the cells are called pins. Many of the connections

to these pins can be swapped because the pins are logically equivalent [27]. In other

words, the circuit would still perform the same function whether the pin connections are

swapped or not. The benefit of swapping the pins is that it reduces wirelength. Examples

of swappable pins are the input and select signals of multiplexers. Because SRAM bits

connect to the select lines, the input lines can be swapped and the SRAM bits will be

programmed to reflect the change. The case is similar for swapping the select lines as

well as the input and select signals of LUTs. The multiplexers in this work require both

regular and complemented select lines so the SRAM cells output both signals. For both

cells, the two signals can be swapped by flipping the value programmed into the SRAM

bit. All these pin swaps are illustrated in Figure 2.17. ASIC flows also allow connections

to standard cells be swapped but our placer has more options because it allows changes

in how the SRAM bits are programmed.

The logical equivalence of SRAM bits is also leveraged to minimize the wirelength

Chapter 2. Background 26

Perform initial
course-grid
optimization

Cell-level
netlist of
FPGA tile

Tile
placement

Compact tile

Perform
optimization

Compact tile

Perform final
optimization

Has tile shrunk
recently? Yes

No

Figure 2.15: Placer algorithm

Chapter 2. Background 27

Initial Placement

Final Placement

Initial placement

Final placement

Figure 2.16: Initial and final tile placements

Input 1
Input 2
Input 3
Input 4

SRAM 1
 _
Q Q

SRAM 2
 _
Q Q

Input 3
Input 2
Input 4
Input 1

SRAM 2
 _
Q Q

SRAM 1
 _
Q Q

Before placement After placement

Figure 2.17: Placer swaps logically equivalent pins

Chapter 2. Background 28

SRAM

SRAM

SRAM

SRAM
SRAM

SRAM
SRAM

SRAM

SRAM

SRAM

SRAM

SRAM
SRAM

SRAM
SRAM

SRAM

Before reweave After reweave

Figure 2.18: Reweaving SRAM word and bit lines

of their programming lines. A word line selects a row of SRAM bits for writing and

a series of bit lines drive individual values into each SRAM bit. These lines may get

tangled when the placer moves cells. To untangle the wires, the placer rips up and

rewires the programming lines after each anneal [27]. This process is called reweaving

and is illustrated in Figure 2.18.

2.4.3 Router

The router is the last stage of GILES. It routes the connections between the cells and

to the tile ports. The input is the tile placement and the number of metal layers used

for routing. The output is a description of the routing. It is an implementation of the

maze router algorithm [28]. A unique feature of the router is that when it fails to route

a design, it adds space in congested regions and starts again [29].

The router uses a grid on which it draws wires. The grid is sized so that two mini-

mum size vias can be placed in adjacent grid squares and meet minimum spacing design

rules. When the router completes, all wires in the design are connected, including power,

ground, and clock networks. However, there are no special structures such as a clock tree

Chapter 2. Background 29

or power grid. Therefore, they must be implemented separately on metal layers not used

for routing. The router is not capable of avoiding existing metal traces so the layers used

for routing cannot be used by the power grid, clock tree, or the cells.

2.4.4 Previous Results

Padalia et al. [5] compared GILES to two commercial FPGAs: the Xilinx Virtex-E and

the Altera Apex 20K400E. The comparisons were very approximate because GILES is

limited to VPR architectures and cannot reproduce the features of these commercial

chips exactly. Using a total of eight metal layers, the FPGA tiles created by GILES

were 47% and 97% larger than the tiles of the Virtex-E and Apex 20K400E, respectively.

This is quite impressive considering the ease in which the tiles are generated. Instead of

performing the layout of the entire tile, only the set of cells used by GILES is required.

Chapter 3

Improvements to the GILES

Automated FPGA Layout System

The goal of the GILES automated layout project is to significantly reduce the develop-

ment time of FPGAs while maintaining competitive area, speed, and power compared

to custom designs. Competitive area results are critically important since any increase

in silicon area increases production costs and detracts from cost benefits resulting from

reduced development time. Smaller, compact designs also have side benefits affecting

speed and power by reducing the length of connecting wires. The previous results men-

tioned in Section 2.4.4 compare the area of FPGA tiles made with GILES to commercial

FPGAs. The results show GILES creates FPGA tiles that are 47% to 97% larger than

commercial FPGAs [5]. The primary goal of this chapter is to improve these results.

To accomplish this goal, this chapter explores the set of cells that make up the netlist

of the FPGA tile. These cells are the basic building blocks used by the GILES placer

and router. The size of these cells have an impact on the density of the layout and the

effectiveness of the placer. The original version of GILES used arbitrary groupings of

transistors to form these cells. This chapter revisits these groupings to determine how

they affect the area results and then chooses the best groupings to minimize the area.

30

Chapter 3. Improvements to the GILES System 31

To obtain accurate area results for comparison, the layout of each unique cell in

the tile is required. New cells are required for different groupings and different FPGA

architectures. However, the only information needed from the layout is the size and pin

positions of each cell. So, to avoid manual layout, the GILES netlist generator estimates

the size of each cell based on its transistor implementation and assigns pin positions such

that they are spread out over the cell. The accuracy of the area results are dependent

on the accurate modelling of the cell sizes. Therefore, before improving the results of

GILES, Section 3.1 devises a new area model for estimating cell area with better accuracy.

Then Section 3.2 examines the area results of different groupings of transistors into cells.

Section 3.3 compares the area of tiles generated with GILES to the layout area of a

commercial FPGA.

3.1 A New Area Model for Cells

GILES is capable of automatically generating the layout of any FPGA that can be

described using the VPR architecture description. This implies that the netlist of the

FPGA tile will be different depending on the architecture. Some cells are needed for

some architectures but not for others. Examples of cells are inverters, buffers, SRAMs,

multiplexers, flip-flops, and pass transistors. All but the SRAMs and flip-flops have

transistors that are sized based on the architecture description file. Instead of manually

creating the layout of each cell for numerous architectures, GILES contains an area model

for estimating the layout area of a cell based on the number and size of transistors. This

section measures the accuracy of the area model used in the previous version of GILES.

Then a new area model is derived that achieves better results.

Chapter 3. Improvements to the GILES System 32

3.1.1 Previous Area Model and Measurement of Accuracy

We measure cell area in grid squares corresponding to the granularity of the placement

and routing grid. The grid size is set to 0.66 µm by 0.66 µm, which is the minimum

distance allowed between metal vias in 0.18 µm technology. The previous GILES area

model [27] uses the following equation to estimate the area in grid squares of each cell:

cellArea(gridSquares) = max(2.25×
∑

i∈xtors

driveStrengthi, 3× numPins) (3.1)

This equation sums the drive strengths of the transistors in a cell to obtain a rough

estimate of the number of minimum-width transistors that occupy the same area. It

assumes that a 1x drive strength transistor is equal to one minimum-width transistor.

Therefore, a transistor with 2x drive strength is equivalent in area to two minimum

size transistors. The number of minimum-width transistors is multiplied by 2.25 for

the number of grid squares required to layout a minimum-width transistor in 0.18 µm

technology. For some cells, this area is not enough to fit all the pins and routing needed

for external connections. In these cases, the area is set to be three times the number of

pins in the cell.

The GILES placer obtains the best results when the cells are as close to square as

possible [27]. Therefore, the width of each cell is determined by taking the square root

of its area. The width is rounded up to the nearest integer since cells cannot occupy a

fraction of a grid square. The cell height is determined by dividing the cell area by the

rounded width. The cell height is rounded up as well. The final cell area is equal to the

product of the rounded width and height.

To determine the accuracy of the previous model, we examined the layouts of sixteen

cells of various types with sizes ranging from 20 to 418 grid squares. These cells were laid

out using a 0.18 µm technology and Micro Magic MAX. The layout area is compared to

the estimated area obtained from the model in Table 3.1. The area model of Equation 3.1

underestimates the area of all the cells except the 15x buffer cell. Overall, the previous

Chapter 3. Improvements to the GILES System 33

model has an average absolute error of 43.7%.

To see how this error impacts the use of GILES and its comparisons, we examined

the same two tiles as Padalia et al. [5]. These tiles have similar features to the tiles in the

Xilinx Virtex-E and the Altera Apex 20K400E. The differences between our tiles and the

commercial FPGA tiles are a result of the limitations of the VPR architecture description

language. We ran GILES with the actual cell layouts and the modelled cell layouts for

both tiles. As shown in Table 3.2, when using the modelled cell layouts instead of the

actual cell layouts, GILES underestimates the tile areas by 33.7% and 7.5%. The error

for the tile areas is smaller than for individual cell areas because the router adds space

between the cells to ease routing congestion.

3.1.2 New Area Model

To improve these results, we derive a new area model based on the area model by Betz

et al. [4]. The area of each transistor, i, is measured in terms of the number of minimum-

width transistors that occupy the same area using the following equation:

areai(minWidthTransistors) = 0.5 +
driveStrengthi

2
(3.2)

This equation is the same as Equation 2.1 except the minWidthDriveStrength term

in the denominator is missing. GILES specifies all drive strengths relative to the drive

strength of a minimum-width transistor so this term is not needed.

Cell areas are estimated by summing the result of Equation 3.2 for each transistor in

the cell:

cellArea(minWidthTransistors) =
∑

i∈xtors

areai(minWidthTransistors) (3.3)

In this equation, the cell area is still represented in terms of the number of minimum

width transistors that occupy the same area. To convert the area to the number of grid

squares used by the cell, we multiply by the number of grid squares required to lay out

Chapter 3. Improvements to the GILES System 34

Table 3.1: Accuracy of old area model

Cell Layout area Estimated area Error

(grid squares) (grid squares)

1x inverter 25 12 -52.0%

2x inverter 30 16 -46.7%

4x inverter 36 30 -16.7%

4x buffer 56 36 -35.7%

5x buffer 90 64 -28.9%

15x buffer 121 144 +19.0%

SRAM 49 20 -59.2%

2-input multiplexer 25 20 -20.0%

12-input multiplexer 156 72 -53.8%

24-input multiplexer 306 110 -64.1%

32-input multiplexer 342 144 -57.9%

36-input multiplexer 418 169 -59.6%

LUT 196 81 -58.7%

Flip-flop 90 42 -53.3%

3x pass transistor 20 12 -40.0%

8x pass transistor 30 20 -33.3%

Average absolute error 43.7%

Chapter 3. Improvements to the GILES System 35

Table 3.2: Accuracy of tile area with old area model

Approximate architecture Tile area (grid squares) Error

Actual cell layouts Modelled cell layouts

Xilinx Virtex-E 52,268 34,640 -33.7%

Altera Apex 20K400E 124,161 114,873 -7.5%

a minimum-width transistor:

cellArea(gridSquares) = 3.3× cellArea(minWidthTransistors) (3.4)

The number of grid squares required to lay out a minimum-width transistor has been

changed from 2.25 in the previous area model to 3.3 to include the space needed between

transistors.

Using Equation 3.4, we determined that the areas of SRAMs and multiplexers are un-

derestimated, which can be attributed to their relatively complex layout. In comparison,

inverters, buffers, flip-flops, and pass transistors are more simple structures and/or take

greater advantage of diffusion region sharing. Accordingly, a complexity factor is added

to Equation 3.4 to increase the cell area when it is more difficult to create a compact

layout:

cellArea(gridSquares) = complexity × 3.3× cellArea(minWidthTransistors) (3.5)

The complexity factor is calibrated to 1.455 for SRAMs and multiplexers and to 1.0 for the

remaining cells to closely estimate the area of the test cells. At the end of this section,

the value of this factor is verified against a new set of cells. An important difference

between the new and old area models is that the previous area model of Equation 3.1

depends on the number of pins in the cell. The new area model of Equation 3.5 does not

have this dependency because the areas of our actual cell layouts are not pin-limited.

Chapter 3. Improvements to the GILES System 36

n-well
spacing

Figure 3.1: Required n-well spacing between inverter cells

The width and height of each cell are calculated as before to obtain cells that are

approximately square. However, the width and height are rounded to the nearest integer

instead of rounding up since two grid squares are now added to both the width and the

height to create a one grid square border around each cell. This models the n-well, n+,

and p+ regions that extend beyond the transistors as well as the design rules for the

space required between these regions. Figure 3.1 shows the space needed between two

inverter cells. The space is designed so that any side of one cell can be abutted against

any side of another cell without violating design rules. The final area estimates include

this border as do the actual areas obtained from the layouts. This is one reason why the

previous area model underestimated the cell areas.

To measure the accuracy of the new area model, the actual layout area of each cell is

compared to the area estimated by Equation 3.5. The percent error for each cell and the

Chapter 3. Improvements to the GILES System 37

average absolute error for all cells is shown in Table 3.3. The average absolute error has

been reduced to 5.8% from 43.7% with the previous area model. The worst area estimate

of any cell is for the largest buffer with an error of +28.9%. Its area is overestimated due

to extensive use of diffusion region sharing in the layout.

To see how the new area model impacts the area of the tile, we ran GILES with the

new area model on the approximate Virtex-E and Apex 20K400E from Table 3.2. The

results using the new area model are shown in Table 3.4. Now the tile areas are 3.2%

and 8.0% larger than when using the actual cell layouts. These results are more accurate

than when using the previous area model and they also show that tile areas are likely to

be slightly pessimistic when using the new area model.

The cells in Table 3.3 were used to formulate the new area model so it is not surprising

that it performs well for these cells. To verify the area model accuracy in general, we

examine a new set of cells. Chapter 4 discusses using GILES to create an FPGA. To

accomplish this, new cells were laid out in Cadence’s Virtuoso Layout Editor [30] using

a 0.18 µm technology library that has small differences compared to the 0.18 µm library

used with Micro Magic MAX. In addition, new types of cells were required. The layout

area of each cell is compared with the estimated area using the area model of Equation 3.5

in Table 3.5. The average absolute error of these fifteen new cells is 16.4%.

The area model was not tuned to these cells yet it still performs reasonably well.

Many of the cell areas are overestimated but this is to be expected since when these cells

were laid out, we had more experience and were able to create more compact layouts.

The worst estimate is the 4x buffer and pass transistor grouping with an error of +52.4%.

The layout of this cell makes extensive use of diffusion region sharing to compact the

layout. It may be possible to use a complexity factor of less than one to estimate the

area of cells with high levels of optimization; however, it is difficult to predict which cells

will use these optimizations.

Chapter 3. Improvements to the GILES System 38

Table 3.3: Accuracy of new area model

Cell Layout area Estimated area Error

(grid squares) (grid squares)

1x inverter 25 25 0.0%

2x inverter 30 30 0.0%

4x inverter 36 42 +16.7%

4x buffer 56 56 0.0%

5x buffer 90 90 0.0%

15x buffer 121 156 +28.9%

SRAM 49 49 0.0%

2-input multiplexer 25 25 0.0%

12-input multiplexer 156 156 0.0%

24-input multiplexer 306 289 -5.6%

32-input multiplexer 342 380 +11.1%

36-input multiplexer 418 420 +0.5%

LUT 196 196 0.0%

Flip-flop 90 81 -10.0%

3x pass transistor 20 20 0.0%

8x pass transistor 30 36 +20.0%

Average absolute error 5.8%

Chapter 3. Improvements to the GILES System 39

Table 3.4: Accuracy of tile area with new area model

Approximate architecture Tile area (grid squares) Error

Actual cell layouts Modelled cell layouts

Xilinx Virtex-E 52,268 53,957 +3.2%

Altera Apex 20K400E 124,161 134,050 +8.0%

Table 3.5: Verification of new area model

Cell Layout area Estimated area Error

(grid squares) (grid squares)

1x inverter (with level restorer) 35 30 -14.3%

2x inverter 30 30 0.0%

4x inverter 36 42 +16.7%

4x buffer 42 56 +33.3%

SRAM (4x4 grouping) 480 462 -3.75%

2-input multiplexer 20 25 +25.0%

11-input multiplexer 110 144 +30.9%

12-input multiplexer 120 156 +30.0%

20-input multiplexer 252 240 -4.8%

LUT 198 196 -1.0%

Flip-flop 108 90 -16.7%

Flip-flop with enable 126 110 -12.7%

4x buffer and pass transistor grouping 42 64 +52.4%

Level restorer 30 30 0.0%

AND gate 40 42 +5.0%

Average absolute error 16.4%

Chapter 3. Improvements to the GILES System 40

3.2 Grouping Transistors into Cells

Now that GILES has a more accurate area model, we focus on the primary goal of this

chapter: to reduce the area of FPGA tiles created with our automatic layout system.

One of the key steps in the GILES system is the choice of which groups of transistors

should form the cells for the placement and compaction stage. In the original GILES [5],

these are set somewhat arbitrarily to be inverters, buffers, SRAMs, multiplexers, LUTs,

flip-flops, and pass transistors. There are several tradeoffs involved with these choices

that could markedly affect the quality of results. These tradeoffs are discussed here.

In general, using smaller cells (in the extreme, each cell would be a single transis-

tor) gives the placement and compaction stage more freedom to move individual cells,

providing opportunity to produce placements with less wirelength and less “whitespace”

(space that does not contain cells). However, the layout of each cell has an empty border

around it, as shown in Figure 3.1, to ensure that design rules are not violated when cells

are placed next to each other. If transistors are grouped into larger cells, the amount of

border space needed is reduced.

For example, on the left of Figure 3.2, there are two cells that contain 12 grid squares

of transistors each (shown in black) but occupy a total of 30 grid squares each due to the

border (shown in grey). Placed side-by-side as neighbours, they occupy 60 grid squares,

but their transistors only occupy 24 grid squares so 60% of the area is wasted. If the same

transistors are grouped into a new cell, shown on the left, the transistors occupy the same

24 grid squares but no longer need the space between them. The layout designer can

intelligently remove this space because he or she knows the implementation of the cells.

The border is still needed around the new cell so the total cell area is 48 grid squares,

a 20% savings from the total of 60 grid squares for the two separate cells. Smaller cells

have a greater perimeter to area ratio so they have the most to gain from grouping.

To determine an estimate of the largest possible gain from eliminating borders, we

used the new area model to estimate the area of the cells with and without the border.

Chapter 3. Improvements to the GILES System 41

Figure 3.2: Grouping cells saves border area

We ran GILES using cells with the border and again without the border. Then we

calculated the change in tile area between the two runs. We performed this procedure

for ten FPGA architectures and obtained the geometric average of the area savings for

each architecture.

The parameters of the ten FPGA architectures are summarized in Table 3.6. These

are the same architectures used by Padalia et al. [5]. The main difference between these

ten architectures is that each one has a different cluster size ranging from one to ten.

The number of routing tracks and the connection block flexibilities, Fc, for input and

output are set to optimize routability using minimal area for each architecture. All

the architectures use four-input LUTs and a switch block flexibility, Fs, of 3. In each

architecture all the routing tracks are length four wires and half of the routing switches

are buffered. The GILES inter-cell router uses all but three of the available metal layers

for routing. The three reserved layers are used for intra-cell connections and global

distribution networks for power and clocking.

We ran GILES with and without the space around the cells for these ten FPGA

architectures. The tile area for each case is shown in Table 3.7. For each architecture, we

calculated the ratio of the tile area without cell borders to the tile area with cell borders.

The geometric average of the ratios over the ten architectures is 0.659, which means that

Chapter 3. Improvements to the GILES System 42

Table 3.6: Parameters of ten experimental architectures

of LUTs per cluster # of tracks (W) Fc,input Fc,output Metal layers

1 32 0.56W 1.00W 7

2 56 0.44W 0.50W 8

3 80 0.30W 0.33W 8

4 96 0.23W 0.25W 8

5 120 0.19W 0.20W 8

6 144 0.15W 0.17W 8

7 160 0.13W 0.14W 8

8 176 0.11W 0.13W 8

9 192 0.10W 0.11W 8

10 200 0.10W 0.10W 8

removing the border reduces the tile area of the ten architectures by an average of 34.1%.

This gives us an approximate upper bound on the gain we can achieve by merging cells

and eliminating the empty space between them.

Another advantage of merging cells is that the connections between them no longer

have to be routed. This eases the congestion faced by the inter-cell router. The human

designer will connect the cells internally in the new cell. The designer may also be able

to compact the design even further by using techniques such as diffusion region sharing.

One disadvantage of combining cells is that the separate cells may still be required

in the tile. For example, a buffered switch is made up of a buffer and a pass transistor

switch. The buffered switch could be implemented using a single cell or two cells that

make up its components. In either case, the amount of manual layout effort is similar.

However, if a single cell is used for the buffered switch and the buffers and pass transistors

are used elsewhere in the FPGA then all three cells will have to be laid out. This increases

Chapter 3. Improvements to the GILES System 43

Table 3.7: Effect of cell border on tile area

Architecture Tile area (grid squares) Ratio

With cell borders Without cell borders

1 26350 15812 0.600

2 50007 27692 0.554

3 71273 43870 0.616

4 96084 56862 0.592

5 126374 90846 0.719

6 156832 97175 0.620

7 180994 126324 0.698

8 203320 148500 0.730

9 225094 166690 0.741

10 252324 190569 0.755

Geometric average 0.659

Chapter 3. Improvements to the GILES System 44

Figure 3.3: Smaller cells result in less whitespace

the number of cells and the total amount of manual layout effort.

A second disadvantage of making larger cells is that there is a point where the cells

are made so large that the placer/compacter has limited freedom to place the cells. A

simple example of this is shown in Figure 3.3. The placement on the left cannot be

compacted any further; however, if the black cell is divided into two smaller cells then

the whitespace is filled in and the placement area is reduced.

The potential for area savings is greatest when combining cells that are used more

frequently. Therefore, we analyzed the distribution of cell types for the architectures in

Table 3.6. The number of cells of each type in a single tile is summarized in Table 3.8.

The frequency of each cell type increases linearly with the total number of cells in the tile

so the percent of each cell type out of the total number of cells is approximately constant

across the ten architectures. The average of this percent for each cell type across the ten

architectures is shown in Figure 3.4. The number of flip-flops and LUTs each account

for only 0.3% of the total number of cells in each tile so merging these cells will not save

much area compared to merging SRAMs, which account for 36% of the cells. Buffers

and pass transistors are also common since they form the routing fabric that occupies a

larger percentage of the total area than the logic elements.

Because SRAMs, buffers, and pass transistors are by far the most common cells,

Chapter 3. Improvements to the GILES System 45

Table 3.8: Distribution of cell types

Architecture 1 2 3 4 5 6 7 8 9 10

Buffers 156 291 403 472 591 686 757 822 910 965

Flip-flops 1 2 3 4 5 6 7 8 9 10

Inverters 30 52 74 96 118 140 162 184 206 228

LUTs 1 2 3 4 5 6 7 8 9 10

Multiplexers 9 16 23 30 37 44 51 58 65 72

Pass transistors 120 210 301 360 450 540 601 660 726 750

SRAMs 169 298 440 542 695 832 940 1046 1159 1230

Total 486 871 1247 1508 1901 2254 2525 2786 3084 3265

Buffers
30.9%

Flip-flops
0.3%

Inverters
6.4%

LUTs
0.3%

Multiplexers
2.0%

Pass transistors
23.8%

SRAMs
36.4%

Figure 3.4: Average frequency of cell usage

Chapter 3. Improvements to the GILES System 46

we focus on grouping the transistors of these cells into larger cells. We categorize the

different ways we group these cells into three categories: functional groupings, SRAM

groupings, and combined groupings.

3.2.1 Functional Groupings

The goal at this stage is to search for the best way to group transistors into cells to

minimize the tile area. From the discussion in the previous section, we expect that

creating larger cells will reduce tile area by reducing the wasted border around each cell.

Secondly, smaller cells have a larger proportion of wasted space to useful space. Finally,

the more frequent a cell appears in the tile, the more area is saved when merging it with

another cell.

Based on the data in Figure 3.4, the SRAMs, buffers, and pass transistors are the

most common cells in our ten FPGA architectures. The pass transistor cells are also the

smallest of any cell because they contain only one transistor each. These tiny cells are

found only in the routing switches of our architectures. Each routing switch is controlled

by an SRAM bit and in our architectures half of the switches are buffered so half of

the pass transistors are preceded by a buffer. Because routing switches contain all three

of the most common cells, they are a natural starting point to create larger cells by

combining their components. We explore different ways of grouping these components

into cells. Collectively, we call these new groupings functional groupings because they

form larger functional units in the FPGA fabric.

The unbuffered switches consist of a pass transistor and an SRAM bit that controls its

state. Buffered switches have a buffer that precedes the pass transistor. The first grouping

we try combines the pass transistor and SRAM cells into a new cell for both buffered and

unbuffered switches as shown in Figure 3.5. The second and third groupings consider

just the buffered switches. The second grouping combines the buffer and pass transistor

and the third grouping combines all three cells. These two groupings are illustrated in

Chapter 3. Improvements to the GILES System 47

PTrans & SRAM
Buffer

SRAM

PTrans
Buffer

Figure 3.5: Functional grouping number 1 (PTrans & SRAM)

Table 3.9: List of functional groupings

Grouping number Unbuffered switches Buffered switches

1 PTrans & SRAM PTrans & SRAM

2 No grouping Buffer & PTrans

3 No grouping Buffer & PTrans & SRAM

4 PTrans & SRAM Buffer & PTrans

5 PTrans & SRAM Buffer & PTrans & SRAM

Figure 3.6. For the fourth and fifth groupings, we use different combinations for the

buffered and unbuffered switches. We combine the pass transistor and SRAM for just

unbuffered switches and either the buffer and pass transistor or the buffer, pass transistor,

and SRAM for buffered switches. These five groupings are summarized in Table 3.9.

Infrastructure Changes

We modified the GILES netlist generator to create a different cell-level netlist for each of

the five functional groupings. For each new cell type, the area model of Section 3.1.2 is

used to determine the cell’s area and dimensions. The complexity factor in Equation 3.5

is set to the weighted average of the complexity factors for the cells being combined using

Chapter 3. Improvements to the GILES System 48

SRAM

Buffer & PTrans

Buffer

SRAM

PTrans

Buffer & PTrans &
SRAM

Figure 3.6: Functional groupings 2 and 3 (Buffer & PTrans, Buffer & PTrans & SRAM)

Chapter 3. Improvements to the GILES System 49

the following equation:

complexity =

∑
i∈cells(cellAreai × complexityi)∑

i∈cells cellAreai

(3.6)

where cells is the set of cells being combined and cellAreai is the area of cell i obtained

from Equation 3.3. Using this complexity factor to calculate the cell area achieves the

same result as summing the areas of the cells being combined.

Experiment and Results

We ran GILES without any functional grouping for each of the ten architectures of

Table 3.6 and recorded the tile area after placement and routing for each architecture. We

repeated this procedure for each of the five functional groupings. For each architecture

and grouping, we calculated the ratio of the tile area with grouping to that without.

Then for each grouping, we obtained the geometric average of the area ratios over the

ten architectures. This gives us the average tile area of each grouping relative to the area

without grouping.

The average reduction in tile area for each grouping is represented as a percentage

in Figure 3.7. The experimental results used to generate this graph and all subsequent

graphs are listed in Appendix A. Figure 3.7 shows that functional groupings one and two

achieve the same average area savings of 4.9%. However, the best functional grouping is

the third grouping that combines the buffer, pass transistor, and SRAM of the buffered

switch. This achieves an average 9.8% reduction in area. Groupings four and five are

the same as groupings two and three, respectively, but the unbuffered switch is grouped

as well. We expected that more groupings would result in more area saving; however, in

this case the opposite is true. Grouping number four only achieves a 4.5% reduction in

tile area compared to 4.9% for grouping two. Similarly, using grouping five results in less

area savings than grouping three. This indicates that the placer is having more difficulty

compacting the tile with the larger cells of groupings four and five.

Chapter 3. Improvements to the GILES System 50

4.9% 4.9%

9.8%

4.5%

9.2%

0%

2%

4%

6%

8%

10%

12%

1 2 3 4 5
Functional grouping

Routed area
savings (10
architecture
geometric
average)

Figure 3.7: Routed area comparison for functional groupings

We confirm this point by measuring the whitespace remaining in each tile after place-

ment. Using the same procedure as we did for the tile area, we calculated the average

whitespace for each grouping relative to the whitespace without grouping. Figure 3.8

plots the average increase in whitespace for each grouping. Groupings four and five

exhibit a much larger increase in whitespace compared to groupings two and three indi-

cating the placer is having more difficulty compacting the tile. Figure 3.9 illustrates this

by comparing tile placements without grouping and with grouping number five for the

one four-input LUT per cluster architecture. There is more whitespace in the placement

with grouping because the placer has less freedom to move the larger blocks and cannot

compact the tile further. This extra whitespace reduces the area saved by increased

grouping.

Chapter 3. Improvements to the GILES System 51

7.9%

-0.3%

8.9%

12.0%

26.9%

-5%

0%

5%

10%

15%

20%

25%

30%

1 2 3 4 5
Functional grouping

Whitespace
increase (10
architecture
geometric
average)

Figure 3.8: Whitespace comparison for functional groupings

Buffer or inverter
Flip-flop
LUT
Multiplexer
PTrans or PTrans & SRAM
SRAM
Buffer & PTrans & SRAM

No grouping Functional grouping number 5

Figure 3.9: 1x4-LUT tile placements with and without functional groupings

Chapter 3. Improvements to the GILES System 52

3.2.2 Groupings of Configuration SRAMs

As shown in Figure 3.4, SRAM cells are the most frequently used cell type across the ten

architectures. Each SRAM cell contains a single SRAM bit. It has two external connec-

tions for programming: one for enabling the write into the cell and the other for specifying

the bit to be stored in the cell. The SRAM cells are arranged in a two dimensional array

and the programming lines are connected horizontally and vertically into word and bit

lines as shown in Figure 3.10a. Since SRAM cells share programming signals, we explore

grouping varying numbers of these cells together as shown in Figure 3.10b.

Tradeoffs

Similar to functional groupings, SRAM groupings reduce the wasted border around each

cell but the placer has trouble eliminating the whitespace when the cells become too

large. Also, by grouping SRAM cells, the length of the wires that connect to them is

affected. We categorize the wires connected to SRAM cells into those used for loading

the SRAM and those used to output the stored values to the programmable elements.

We call these the SRAM programming wires and SRAM output wires, respectively.

In some cases as in Figure 3.10, there are additional programming lines when grouping

is used. However, this is offset by fewer programming connections between cells. For

example, the 2x2 SRAM group contains four SRAM bits. Each SRAM bit needs to be

connected to both a word and a bit line. Instead of exposing eight connections to the

cell, the SRAM group is internally connected in a two by two array. Therefore, only two

word and two bit lines are connected externally, making the inter-cell router’s job easier.

This has a large impact on reducing the programming wirelength since the SRAM cells

are typically not placed in a straight line as they are shown in Figure 3.10.

The length of the SRAM output wires always increases with grouping. The more

SRAM bits are grouped together, the more centralized they become as shown in Fig-

ure 3.11. The output wires still must connect to programmable elements in other cells

Chapter 3. Improvements to the GILES System 53

SRAM SRAM

SRAM SRAM SRAM

SRAM

SRAM SRAM SRAM

SRAM

SRAM

Word lines

Bit lines

(a) Array of SRAM bits

SRAM Unused
SRAM

SRAM SRAM

SRAM SRAM SRAM

SRAM SRAM SRAM

SRAM

SRAM

Word lines

Bit lines

(b) Array of SRAM bits grouped into 2x2 SRAM cells

Figure 3.10: Grouping of configuration SRAMs

Chapter 3. Improvements to the GILES System 54

yet it becomes harder to place these cells close to the SRAM bits that control them. Not

only are there more cells that need to be close to the grouped SRAM but the SRAM bit

might be in the middle of the SRAM cell, not its edge. Therefore, the output wirelength

increases making the router’s task more difficult and causing the router to increase the

tile area to ease congestion.

Infrastructure Changes

To experiment with groupings of SRAM cells, the GILES netlist generator and placer

were modified to support SRAM cells with multiple bits. The netlist generator was

modified to create SRAM cells that contain two dimensional arrays of SRAM bits such

as the 2x2 array shown in Figure 3.10b. The dimensions of the SRAM arrays are specified

as input to the program. All the SRAM cells in the tile have the same dimensions so

that only one SRAM cell is needed for the tile layout. Therefore, when the total number

of SRAM bits in the tile is not a multiple of the array size, extra bits are added to

the netlist that are not used to configure any programmable element. These extra bits

occupy unnecessary area so they reduce the effectiveness of larger groupings.

The previous version of the netlist generator adds SRAM cells to the netlist one by

one as they are needed to configure programmable elements. Padalia [24] chose to make

the netlist generator randomize the programming connections of the SRAM cells so that

when the placer optimizes for wirelength, it is not influenced by the order that the SRAM

cells were added to the netlist. Instead, the placer positions the SRAM cells near the

programmable elements they control and rewires the programming connections to reduce

their wirelength as shown in Figure 2.18.

Similarly, when grouping SRAM bits into cells, rather than grouping as the bits are

added to the netlist, our version of the netlist generator collects the bits and groups them

randomly after all the bits are known. The random grouping of bits prevents the placer

from being influenced by the order the bits are added to the netlist. We let the placer

Chapter 3. Improvements to the GILES System 55

Buffer or inverter
Flip-flop
LUT
Multiplexer
Pass transistor
SRAM grouping

10x10 SRAM grouping (100 SRAMs per cell)

No grouping (1 SRAM per cell) 4x4 SRAM grouping (16 SRAMs per cell)

Figure 3.11: 1x4-LUT tile placements with groupings of 1x1, 4x4, and 10x10 SRAMs

Chapter 3. Improvements to the GILES System 56

rearrange the SRAM bits to optimize the groupings and reduce the wirelength between

each bit and the programmable element it controls. After placement, the SRAM bits are

grouped based on the locations of the programmable elements they control rather than

a random or netlist sequential grouping. This procedure is illustrated in Figure 3.12.

To create the initial random grouping, the netlist generator stores connectivity infor-

mation about each SRAM bit as it emits the netlist. Once it has a list of all the SRAM

bits, it adds extra bits to round the total number up to a multiple of the array size of

the SRAM cell. Then it randomly chooses bits for each SRAM group and connects the

programming lines between them. The programming lines are not connected randomly

since the SRAM bits in each cell are already chosen randomly.

The netlist is then passed to the GILES placer. The placer was modified to handle

reweaving of programming lines when SRAM cells are grouped as well as swapping of

SRAM bits to improve on the initial random grouping. The details of these changes are

now discussed.

As shown in Figure 2.18, the placer “reweaves” the SRAM word and bit lines so

that the logical equivalence of the SRAM bits is used to reduce the wirelength of the

programming lines [27]. We enhanced this reweaving process to handle cells containing

multiple SRAM bits since each grouped cell has multiple word and bit lines as shown

in Figure 3.10b. The placer reweaves the vertical bit lines first. It orders the SRAM

cells based on their horizontal position. Cells closest to the left of the tile are chosen to

connect to the first bit line. To accommodate grouped SRAM cells, additional bit lines

are connected to the same set of cells until all the bit lines for those cells are connected.

Then the next set of cells closest to the the left of the tile are chosen and they are

connected to a different set of bit lines. After all the cells have been connected to bit

lines, the process is repeated with the horizontal word lines starting with the cells closest

to the bottom of the tile. Care is taken to avoid connecting a word line to two SRAM

bits with the same bit line as shown in Figure 3.13. Connecting two SRAM bits in this

Chapter 3. Improvements to the GILES System 57

SRAM
1

SRAM
2

SRAM
3

SRAM
5

SRAM
6

SRAM
7

SRAM
4

SRAM
8

SRAM
3

SRAM
7

SRAM
6

SRAM
5

SRAM
4

SRAM
1

SRAM
2

SRAM
8

SRAM
7

SRAM
3

SRAM
5

SRAM
4

SRAM
8

SRAM
2

SRAM
6

SRAM
1

Netlist generator

Placer

Figure 3.12: Netlist generator creates random groupings then placer optimizes them

Chapter 3. Improvements to the GILES System 58

SRAM

SRAM

Word line

Bit line

Figure 3.13: SRAM bits cannot be programmed with different values

way would prevent programming the two SRAM bits to different values.

The other change to the placer adds the ability to swap SRAM bits to improve on the

initial random grouping. To reduce the SRAM output wirelength, the placer is able to

swap the location of SRAM bits within a cell or between cells. The previous version of

the placer is capable of swapping connections of functionally equivalent pins such as the

output and inverted output of an SRAM bit as shown in Figure 2.17 [27]. For grouped

SRAM cells, this feature is also used to swap the output connections of one SRAM bit

with those of another in the same cell. The only change to the placer involves specifying

that the output pins of each SRAM bit in a cell are functionally equivalent. To expand

this feature to include swapping of SRAM bits in different cells, we enlarged the placer’s

scope of possible bit swaps to include bits in different SRAM cells. Examples of intra-

cell and inter-cell bit swap moves are shown in Figure 3.14. This allows the placer to

connect programmable elements to SRAM groups that are nearby without moving an

entire group. It also prevents the SRAM groups from being pulled in different directions

to minimize the wirelength between their initial random connections.

To determine the importance of inter-cell SRAM bit swapping, we ran GILES using

the 2x2 SRAM grouping with and without this feature for the ten FPGA architectures of

Table 3.6. We calculated the ratio of some tile statistics with and without the swapping

Chapter 3. Improvements to the GILES System 59

Inter-cell SRAM bit swap

SRAM
 _
Q Q

SRAM
 _
Q Q

SRAM
 _
Q Q

SRAM
 _
Q Q

SRAM
 _
Q Q

SRAM
 _
Q Q

SRAM
 _
Q Q

SRAM
 _
Q Q

SRAM
 _
Q Q

SRAM
 _
Q Q

SRAM
 _
Q Q

SRAM
 _
Q Q

Intra-cell SRAM bit swap

Figure 3.14: SRAM bit swaps reduce wirelength

Chapter 3. Improvements to the GILES System 60

Table 3.10: Benefits of inter-cell SRAM bit swapping for the 2x2 SRAM grouping

Increase compared to no grouping

(10 architecture geometric average)

Without inter-cell SRAM With inter-cell SRAM

Tile statistic bit swapping bit swapping

Placed area -7.4% -7.8%

Routed area -1.0% -8.6%

Total wirelength +17.5% +3.1%

SRAM programming wirelength -21.5% -21.4%

SRAM output wirelength +162.4% +38.1%

feature compared to the case without grouping. Table 3.10 shows the geometric average

of these results over the ten architectures. Regardless of whether inter-cell SRAM bit

swapping is used, the improvements in placed area with the 2x2 SRAM grouping remain

the same. However, the routed area decreases by only 1.0% without the new feature but

decreases by 8.6% with the new feature. The additional decrease in routed area is because

the router experiences less congestion due to less total wirelength when the new feature is

added. To understand the difference in wirelength, we examine the SRAM programming

wirelength and SRAM output wirelength. Whether the inter-cell SRAM bit swapping

feature is used or not, the SRAM programming wirelength is reduced similarly. This

is expected because the programming wires are not affected by which SRAM bits are

grouped together. The SRAM output wirelength increases substantially when grouping

SRAM bits without the inter-cell bit swap move because the placer has more difficulty

positioning the SRAM bits close to the programmable elements they control. However,

when the placer is able to swap SRAM bits between different cells, it reduces the output

wirelength by grouping SRAM bits that control nearby programmable elements.

Chapter 3. Improvements to the GILES System 61

Even with inter-cell SRAM bit swapping, the SRAM output wirelength is 38.1% larger

than without grouping. The placer has less flexibility to reduce the output wirelength

when grouping SRAM bits but some of this increase may still be attributed to sub-

optimal SRAM groupings. The placer has several types of moves it can attempt. The

swapping of functionally equivalent pins, of which SRAM bit swapping is a subset, is

only attempted for 4% of all placer moves. Fung found that 4% obtained the best results

with the original pin swapping move [27]. However, we have added the inter-cell SRAM

bit swap move that was proven to be critically important. Therefore, we tried increasing

the number of pin swap moves performed by the placer.

We ran GILES repeatedly using the 4x4 SRAM grouping with up to seven times

the default number of pin swap moves. We recorded the placed area, the routed area,

the total wirelength, and the SRAM output wirelength for each of the ten architectures

and compared them to the case without grouping. As shown in Figure 3.15, increasing

the number of pin swap moves does reduce the SRAM output wirelength and the total

wirelength. However, Figure 3.16 shows that the routed area stays relatively flat except

for small fluctuations that are attributed to the randomness of the tools. The routed

area is limited by the placed area so improvements to the routed area are only possible

when the tile is congested. In this case the tile is not congested so for now we leave the

number of pin swap moves at the default value to reduce runtime.

Experiment and Results

Now that GILES is able to handle SRAM groupings, we examine different grouping sizes

to determine the ideal number of SRAM bits per cell that minimizes the tile area across

the ten FPGA architectures. We explore grouping sizes of 2x2 to 10x10 SRAM bits. Since

the GILES placer performs better with square cells, we keep the array size of each cell to

be roughly square to make it easier for the layout designer to make a square cell. We ran

GILES for each SRAM grouping and each of the ten architectures and obtained ratios

Chapter 3. Improvements to the GILES System 62

80%

85%

90%

95%

100%

105%

1x 2x 3x 4x 5x 6x 7x

Multiplier for number of pin swap moves

SRAM output
wirelength

increase (10
architecture
geometric
average)

0%

1%

2%

3%

4%

5%

6%

7%

1x 2x 3x 4x 5x 6x 7x

Multiplier for number of pin swap moves

Total
wirelength

increase (10
architecture
geometric
average)

Figure 3.15: Number of pin swap moves versus wirelength for 4x4 SRAM grouping

Chapter 3. Improvements to the GILES System 63

0%

2%

4%

6%

8%

10%

12%

14%

16%

1x 2x 3x 4x 5x 6x 7x

Multiplier for number of pin swap moves

Area
savings (10
architecture
geometric
average)

Placed area
Routed area

Figure 3.16: Number of pin swap moves versus area for 4x4 SRAM grouping

for the placed area and the routed area when using the SRAM groupings compared to

no grouping. The geometric average of the ratios for the ten architectures was obtained

for each grouping and is represented as a percent increase relative to the case without

grouping in Figure 3.17.

SRAM grouping successfully decreases the routed area as the grouping size increases

up to the 4x4 grouping. The area savings remain near 13% until it increases for the larger

groupings starting at 7x7. Unlike the functional groupings, the reason for this increase

is not due to an increase in whitespace after placement. The whitespace stays relatively

constant for all groupings. As shown in Figure 3.17, the placement area follows the same

trend as the routed area but it does not increase for larger groupings. Therefore, the

router is increasing the area due to heavy congestion.

To confirm this conclusion, we examine the increase in wirelength for each SRAM

grouping compared to the case without grouping and average the results across all ten

Chapter 3. Improvements to the GILES System 64

0%

2%

4%

6%

8%

10%

12%

14%

16%

2
x2

3
x3

3
x4

4
x4

4
x5

5
x5

5
x6

6
x6

6
x7

7
x7

8
x8

9
x9

1
0
x1

0

SRAM grouping

Area

savings (10

architecture

geometric

average) Placed area

Routed area

Figure 3.17: Area comparison for SRAM groupings

architectures in Figure 3.18. In the first chart, the total wirelength increases with larger

SRAM groupings up to 24.2%. Again, we examine the two classifications of SRAM

wires: programming wires and output wires. With larger groupings, the programming

wirelength decreases up to 36.1% and the output wirelength increases up to 280%. The

total wirelength increases because the wirelength of the output lines increases much more

rapidly than the wirelength of the programming lines is reduced. Therefore, for larger

groupings the total wirelength increases and in addition, the router has less area to start

with so it increases the area needed to ease congestion.

Since the SRAM output wirelength is causing congestion for larger groupings, we

considered increasing the number of pin swap moves performed by the placer to reduce

it. However, groupings larger than 4x4 have similar placed area so even if the congestion

is eased in the larger groupings they will not achieve significantly better results than

the 4x4 case. Therefore, it is best to choose a smaller grouping with less congestion so

Chapter 3. Improvements to the GILES System 65

-40%

-30%

-20%

-10%

0%

10%

20%

30%

2x
2

3x
3

3x
4

4x
4

4x
5

5x
5

5x
6

6x
6

6x
7

7x
7

8x
8

9x
9

10
x1

0

SRAM grouping

Wirelength
increase (10
architecture
geometric
average)

Total wirelength
SRAM programming wirelength

0%

50%

100%

150%

200%

250%

300%

2x
2

3x
3

3x
4

4x
4

4x
5

5x
5

5x
6

6x
6

6x
7

7x
7

8x
8

9x
9

10
x1

0

SRAM grouping

Wirelength
increase (10
architecture
geometric
average)

SRAM output wirelength

Figure 3.18: Wirelength comparison for SRAM groupings

Chapter 3. Improvements to the GILES System 66

increasing the number of pin swap moves and hence the runtime is avoided.

In summary, these results indicate that the best SRAM grouping occurs with the 4x4

cell because it achieves an average routed area savings of 13.1% with minimal manual

layout effort, runtime, and less chance the increase in wirelength will cause problems

for the router. This conclusion may also be applicable to custom FPGA designers when

choosing how to lay out the configuration SRAM bits.

3.2.3 Combined Groupings

To achieve more area savings, we considered combining functional groupings with SRAM

groupings. However, four out of the five functional groupings include a single SRAM

bit that causes problems when reweaving the word and bit lines of grouped SRAM cells.

Therefore, we only combine functional grouping number two (Buffer & PTrans) with

SRAM grouping. The tradeoffs of combined groupings are the same as with the previous

grouping types and no further infrastructure changes are needed to support combined

groupings.

Experiment and Results

We ran GILES with functional grouping number two and SRAM groupings with sizes

varying from 1x1 to 8x8. Using the 1x1 SRAM grouping is the same as functional

grouping two without SRAM grouping. As with SRAM groupings, we recorded the placed

area and routed area of the tile for each grouping and each of our ten FPGA architectures.

The ratio of the area with grouping to the area without grouping is obtained and averaged

across the ten architectures.

Figure 3.19 shows the average savings for the placed area and the routed area for

each combined grouping. Both areas decrease with larger SRAM groupings, but do not

vary significantly for groupings larger than 4x4. The larger groupings provide fewer gains

but require more manual layout effort and risk causing routing congestion. Therefore,

Chapter 3. Improvements to the GILES System 67

0%

5%

10%

15%

20%

25%

1x1 2x2 3x3 4x4 5x5 6x6 7x7 8x8

SRAM grouping

Area

savings (10

architecture

geometric

average)
Placed area

Routed area

Figure 3.19: Functional grouping number 2 combined with SRAM grouping

the 4x4 SRAM grouping achieves the best balance between area reduction and increases

in wirelength and manual layout effort. The combined grouping of 4x4 SRAM with

functional grouping two outperforms all separate functional and SRAM groupings with

a routed area savings of 16.8%.

3.3 Tile Area Compared to a Commercial FPGA

Kuon [31] compared the area of a Xilinx Virtex-E tile to the area of an approximated

Virtex-E tile generated by GILES. His comparison is more accurate than the one by

Padalia et al. [5], which found that the tile generated by GILES is 47% larger than

the actual Virtex-E tile. Kuon’s more accurate tile is 198% larger than the Virtex-E

tile. He attributes most of this increase to routing congestion that caused the router to

increase the area. To reduce the area of the generated tile, Kuon experimented with the

Chapter 3. Improvements to the GILES System 68

transistor groupings explored in this work. SRAM groupings and combined groupings

increase congestion so they were found to further increase the tile area. However, using

the best functional grouping, which grouped the buffer, pass transistor, and SRAM in the

buffered switch, reduced the area difference to 187%. To ease congestion, Kuon added an

extra layer for inter-cell routing that was previously used for intra-cell routing to reduce

the tile area of the GILES Virtex-E to be 36% larger than the actual Virtex-E tile. If

two extra metal layers are used with GILES in addition to the six metal layers used

in the real Virtex-E, then the tile generated by GILES is only 13% larger. Kuon also

compared the real Virtex-E tile to a comparable standard cell implementation and found

the standard cell version to be 102% larger than the custom implementation. This shows

that our automatic layout system obtains smaller designs than commercial standard cell

tools and comes remarkably close to the area of custom layouts.

This chapter studied the choice of cells used by the automatic layout tool. The best

functional grouping helped Kuon reduce the area of an approximated Virtex-E tile. The

best grouping found in this work was a combined grouping that used the buffer and pass

transistor functional grouping and the 4x4 SRAM grouping. The approximated Virtex-E

tile would likely benefit from this combined grouping now that the congestion has been

reduced by adding inter-cell routing layers. If routing congestion is still a problem then

the number of the pin swap moves could be increased to reduce the extra wirelength

added by the SRAM grouping. The next chapter uses the improved transistor groupings

when designing the first complete FPGA to be generated using this automatic layout

tool.

Chapter 4

Automatic Layout of a Complete

FPGA

Prior to the present work, the GILES automatic layout system for FPGAs had only

been used to layout a single FPGA tile. That tile generation has been improved upon

in this work. It has also been compared to commercial FPGA layouts [5, 31]. The

next step is to prove that GILES can be used to fabricate an FPGA. The proof-of-

concept FPGA we created is called Pushbutton Optimized Widely Erasable Logic Layout

(POWELL), an admittedly somewhat tortured acronym. It is the first FPGA designed

automatically, beginning with an architecture description and proceeding to layout. It

was implemented in a six metal layer, 0.18 µm fabrication process from the Taiwan

Semiconductor Manufacturing Company (TSMC) [32]. Access to this technology was

provided by the Canadian Microelectronics Corporation (CMC) [33].

This chapter describes all the steps involved in creating this chip. It begins with the

architecture of the FPGA and discusses all the issues through to the final layout that is

programmed and verified. Along the way it solves some circuit design issues that were

encountered. It also discusses our work to integrate GILES with Cadence’s Virtuoso

custom design platform [34] so our design is compatible with an industrial design flow.

69

Chapter 4. Automatic Layout of a Complete FPGA 70

This work was performed jointly with Ian Kuon [31]. Work attributed to Kuon will be

identified as it is discussed.

One challenge of fabricating a chip with GILES is that the generated tile layout has

never been tested for functionality. This issue is addressed in this chapter and related

problems are solved that were neglected in the past. For example, the focus of the

layout system was to create a single tile. The system does not consider the periphery

of the FPGA for connecting I/O pads. Also it connects the power and clock signals

internal to the tile, but does not consider how these signals are distributed to the array

of tiles. Finally, there are many problems with the way GILES handles the programming

infrastructure that must be solved for a real chip to function.

4.1 Architecture

The architecture of an FPGA is based on the design requirements. POWELL did not

have to be large because it is a proof-of-concept, not a commercial product. Also, silicon

area is expensive and CMC sets limits on its grants of silicon area so the design had

to be small. To make the results applicable to commercial products, we kept in mind

that the automatic design system must be scalable to large FPGAs and POWELL must

include realistic features of commercial FPGAs. For example, if there is only one BLE

per cluster then there will be no intra-cluster routing to test except for feedback into

the single BLE. Also, if length four routing tracks are used with a four by four array of

tiles, then we cannot test signals that span multiple routing tracks. Therefore, a small

architecture that is representative of features found in large FPGAs was chosen. Kuon

determined appropriate architectural parameters and verified that routable circuits are

possible on the FPGA [31].

Based on Kuon’s research, POWELL uses four-input LUTs and contains three BLEs

per cluster with each cluster having eight inputs. As with all GILES architectures there

Chapter 4. Automatic Layout of a Complete FPGA 71

is one logic block per tile, which is composed of one logic cluster. The tiles are arranged

in an eight by eight array so there are a total of 64 logic blocks and 192 LUTs. The

array is surrounded by two I/O pads per tile for a total of 64. The routing architecture

consists of 20 tracks per channel. All routing tracks are length four and only use bidi-

rectional buffered switches. The architecture avoids unbuffered switches because of the

pass transistor circuit issues discussed in Section 4.2.1. The values of Fc,input, Fc,ouput,

and Fc,pad are 12, 20
3
, and 12 respectively. The complete architecture description is given

in Appendix B.

4.1.1 Periphery Tiles

The previous research [5] did not consider how to implement the periphery of the FPGA.

This, of course, is an important part of laying out an entire chip. As shown in Figure 4.1,

periphery tiles are needed on all four sides of the array as well as three corners. The

top-right corner does not require a periphery tile because no additional logic is needed

for that location. The logic required for the other periphery locations is discussed in

this section. For more details on how the periphery tiles are generated including their

implementation and how they connect to the main tiles, see Kuon’s work [31].

Figure 2.6 illustrates the full FPGA array, created by replicating a single tile. The

routing tracks are always on the top and right of the tile. Therefore, logic blocks on the

bottom and left of the array do not have routing tracks on all sides. Because the inputs

to logic blocks come from all sides, these routing tracks must be added. This problem is

solved by creating periphery tiles to implement the missing routing tracks as shown in

Figure 4.1. Two different tiles are needed for the bottom and left of the array and one

for the bottom-left corner.

Another problem involves how the I/O pads will connect to the array. Some logic

is needed to select which routing track will connect to each pad and the direction of

that signal. This is implemented in the top, bottom, left, and right periphery tiles. In

Chapter 4. Automatic Layout of a Complete FPGA 72

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

Figure 4.1: Array and periphery tiles

Chapter 4. Automatic Layout of a Complete FPGA 73

addition, some circuitry is needed for programming the FPGA that is implemented in

the bottom and left sides of the array including the three corner tiles. This is discussed

in Section 4.2.2.

4.2 Circuit Design

The circuits used to implement POWELL are based on those used in the previous version

of GILES [24]. They are similar to those by Betz et al. [4] with the exception of the

configuration SRAM cell, which does not require an inverted input for programming,

and the flip-flop, which does not have asynchronous set and reset functionality. The

flip-flop used in POWELL also has an extra inverter on the end so it is non-inverting.

Other exceptions to the circuits described in the previous work are noted in this section.

4.2.1 Level Restorer

The circuits produced by the GILES system use NMOS pass transistors to implement

multiplexers and routing switches. NMOS transistors pass a low logic level through them

without a problem, but they cause a voltage drop equal to the threshold voltage when

passing a high logic signal [1]. The next inverter in the signal path will receive the

degraded voltage causing the PMOS to be slightly on and possibly leak power. Betz et

al. use a boosted gate voltage for routing switches to allow the NMOS transistor to pass

the full voltage level [4]. They do not address the issue for multiplexers. The previous

version of GILES neglects this problem for both multiplexers and routing switches.

The complications that arise from using two voltage levels on one chip forced the

consideration of options other than the gate boosting approach. Transmission gates

use complementary NMOS and PMOS pass transistors to properly transmit both logic

levels [1]. However, the additional PMOS transistors require significant extra area con-

sidering they require n-wells and have to be added to every routing switch and every

Chapter 4. Automatic Layout of a Complete FPGA 74

Level restorer

In Out

Figure 4.2: PMOS level restorer pulls high logic level to full voltage

transistor in the multiplexers.

Instead, a more area-efficient option was chosen. For any inverter cell following a

routing switch or multiplexer, a PMOS level restorer was added as shown in Figure 4.2.

When a high logic level arrives at the inverter, the low output signal turns on the PMOS

level restorer to pull up the input to the full voltage level [1]. When the input signal is

low, the output is high and the PMOS level restorer is disabled.

A problem with this approach is that the feedback loop could prevent the input to the

inverter from being driven low. The PMOS level restorer tries to keep the voltage high

so it must be weaker than the input driver. Compounding the problem is the fact that

each routing switch typically drives multiple inverters since each routing track has many

receivers and spans four tiles. Therefore, level restorers in each inverter could combine

their strengths to prevent the routing switch from driving its output low. To avoid this

situation, only one level restorer is added per routing track. A new level restorer cell that

contains an inverter and PMOS level restorer is connected to each routing track. The

cell’s input connects to the routing track and the output is left unconnected. Simulations

Chapter 4. Automatic Layout of a Complete FPGA 75

were performed to size the PMOS level restorer such that it does not overpower the drivers

but also quickly pulls up the signal on the heavily loaded routing track. Kuon modified

the netlist generator to add the level restorer only to routing tracks that start in the tile.

Tracks that span the tile or end in the tile will connect to a track with a level restorer

when the tiles are replicated to form the array.

Unlike the routing switches, the multiplexers (which are used for the input connection

blocks, the logic cluster crossbars, and the output selectors of the BLEs) typically drive

a single inverter. Therefore, a PMOS level restorer is added to the inverter cell instead of

using the dedicated level restorer cell so the transistors can be sized differently. The level

restorers following multiplexers cannot be as strong as the ones on the routing tracks

because the signal strength is weakened after passing through several stages of pass

transistors in the multiplexers. Instead of increasing the strength of each multiplexer’s

input drivers to overcome the level restorer, a weaker level restorer is used. The stronger

level restorer cell is used for the routing tracks so the routing performance is improved

with the faster pull-up rate.

The 1x drive strength inverter cell is present at the output of every multiplexer so

a PMOS level restorer was added to this cell. However, the cell is also used in places

where the PMOS level restorer is not needed and could prevent proper functionality. In

these cases, a 2x drive strength inverter is used instead since the extra drive strength is

not an issue and the area impact is minimal. Kuon performed simulations that found

other cases where the level restorers were too strong for the drivers. This resulted in

resizing the PMOS level restorer, adding a level restorer to the output of each LUT, and

buffering the output of each SRAM bit that connects to a LUT so the SRAM bits are

isolated from the level restorer on each LUT output.

Chapter 4. Automatic Layout of a Complete FPGA 76

4.2.2 Programming Infrastructure

The programming infrastructure is perhaps the most important part of the FPGA. If

some portion of the logic or routing fabric does not work then the programming can

route around the problem. However, if the programming does not work then the chip is

useless. Kuon [31] performed the design and verification of the programming circuitry.

The circuit design issues that arose from his work are summarized here.

The SRAM cells allow the FPGA to be programmed. Therefore, it is critical that

they perform correctly. This involves writing values into the SRAM and making sure

those values are not likely to change. The GILES system employs a single-sided write

to SRAM bits instead of the more robust two-sided write so as to reduce the number of

connections [24]. Kuon sized the transistors of the SRAM cell and verified that the cell

works correctly.

The SRAM bits are arranged in a rectangular array. Horizontal connections, or word

lines, select which row will be enabled for writing. Vertical connections, or bit lines, drive

values to be written into the SRAM. These lines extend across the length of each tile.

When the tiles are arranged in an array, the programming lines extend across the entire

length of the chip. Kuon decided to buffer each line as it enters the tile to reduce the

propagation time of the programming signals.

The programming lines are driven by shift registers in the periphery tiles. There is

also an on-chip programmer that is implemented separate from the tiles and drives the

shift registers. This programmer was implemented with a standard ASIC flow. For more

details see Kuon’s research [31].

4.2.3 Power-up Protection

Another issue with the configuration SRAM in FPGAs is that when the power is turned

on, each bit is in an unknown state. A situation could arise where two SRAM bits enable

Chapter 4. Automatic Layout of a Complete FPGA 77

two routing switches to drive opposite logic values as shown in Figure 4.3a. This causes

a short between power and ground and could damage the chip. To prevent this from

occurring, we use the same approach as Chow et al. [7]. We added AND gates between

every SRAM bit and pass transistor switch as shown in Figure 4.3b. The power-up

protection net connects to one input of the AND gate so that when it is driven low, the

switch is disabled regardless of the state of the SRAM bit. The power-up protection net

is held low during power-up and driven high only after programming is complete and the

SRAM bits are in a known state.

4.3 Metal Layer Allocation

With only six metal layers in our fabrication process, we need to be careful how they are

used. It has been shown that GILES is highly sensitive to the number of metal layers

used for routing [31]. Four layers is often enough but if only three are used then the

router increases the tile area significantly to complete the routing. The GILES router

is not capable of routing wires around obstacles on each metal layer. Therefore, routing

layers cannot be used for tasks other than routing. If four layers are used for routing

then only two layers can be used for the cell internals, the power grid, and the clock

and power-up protection networks. Also, the router does not obey the design rules that

specify the minimum area of metal wires on each layer.

To solve these problems, Cadence’s Virtuoso Chip Assembly Router [35] is used in-

stead of the GILES router. Unlike the GILES router, this commercial router adheres to

all design rules and routes around previously drawn metal on all layers. This allows us to

draw the cell internals, the power grid, and the clock and power-up protection networks

on any or all metal layers and the router will avoid these obstacles while using all metal

layers.

However, we still must allocate metal layers for the cell internals, the power grid,

Chapter 4. Automatic Layout of a Complete FPGA 78

SRAMSRAM

'1' '0'Short circuit

'1' '1'

(a) Without power-up protection

SRAMSRAM

'1' '0'

Protect = '0'

'0' '0'

'1' '1'

(b) With power-up protection

Figure 4.3: Power-up protection prevents short circuit

Chapter 4. Automatic Layout of a Complete FPGA 79

Table 4.1: Metal layer allocation

Metal layer Preferred direction Purpose

1 Horizontal Cells

2 Vertical Cells (and clock between tiles)

3 Horizontal Clock and power-up protection

4 Vertical Tile ports

5 Horizontal Power grid

6 Vertical Power grid

and the clock and power-up protection networks so these wires do not overlap each

other. Also, the Cadence router achieves better results when it routes wires in the same

direction on a given metal layer. The purpose and preferred routing direction of each

metal layer are listed in Table 4.1. The two bottom metal layers are used for the cell

internals. The clock and power-up protection networks are drawn on metal three with

the clock network switching to metal two between the tiles so it does not overlap the

power-up protection network. The connections between tiles are called ports and are

drawn on metal four. GILES is capable of using multiple layers for the tile ports but

there is plenty of space in this tile of all the ports on one layer and not enough layers to

use two. The two top metal layers are used for the power grid. We still try to minimize

the use of layers two through five so that the router has as much space as possible for

inter-cell routing.

The wires listed in Table 4.1 are not drawn by the router so they are not required to

follow the router’s preferred direction; however, doing so helps the router so the preferred

direction is followed for the power grid and the clock and power-up protection networks.

The clock and power-up protection networks do not follow the preferred direction between

the tiles since the router only routes connections inside the tile.

Chapter 4. Automatic Layout of a Complete FPGA 80

4.4 Cell Layouts

The layout of each cell required for the POWELL architecture was drawn using Cadence’s

Virtuoso Layout Editor [30] and the TSMC 0.18 µm technology library [32], which was

provided by CMC [33]. The cell layouts were based on designs provided by So [36].

Table 4.2 reports the layout area of each cell in grid squares, which have dimensions of

0.66 µm by 0.66 µm. Some cell areas differ slightly from the cell areas used to generate

the area model in Section 3.1 because these cells were designed with different design

rules. Also these cells only use one metal layer instead of two with the exception of the

SRAM cell and the flip-flop with enable. In addition, the 1x inverter and flip-flop used

here have different transistor implementations than before but the area model accurately

predicts the area of these cells when using the correct transistor implementations.

We use the best combined transistor grouping that was determined in Section 3.2.3.

That grouping used the buffer and pass transistor functional grouping and the 4x4 SRAM

grouping. Two of the fifteen cells are only used in the periphery tiles. They are the 20-

input multiplexer, which is used to connect the I/O pads, and the flip-flop with enable,

which is used in the programming shift registers. All cells were verified with Diva DRC

and LVS [37] and with simulations using the Virtuoso Analog Design Environment [38]

in conjunction with Kuon.

A border was left around each cell so that any two cells can be placed next to each

other and meet design rules as shown in Figure 3.1. This space is included in the sizes

listed in Table 4.2. To determine how much space to leave, we find the minimum space

required between the edge of the cell and any other drawing object. Then half of the

minimum space is added to the cell edge. Since half of the minimum space is added to

every cell, any two cells can be placed next to each other and will have the required full

space between them. Usually the space is greater than the minimum because the cell

also has to be aligned to the placement grid.

The cells have pins that specify where to connect the inter-cell routing. The GILES

Chapter 4. Automatic Layout of a Complete FPGA 81

Table 4.2: Cells used in POWELL and their sizes in 0.66 µm by 0.66 µm grid squares

Cell Width Height Area

1x inverter (with level restorer) 7 5 35

2x inverter 5 6 30

4x inverter 6 6 36

4x buffer 7 6 42

SRAM (4x4 grouping) 20 24 480

2-input multiplexer 4 5 20

11-input multiplexer 11 10 110

12-input multiplexer 12 10 120

20-input multiplexer 14 18 252

LUT 11 18 198

Flip-flop 12 9 108

Flip-flop with enable 14 9 126

4x buffer and pass transistor grouping 7 6 42

Level restorer 6 5 30

AND gate 8 5 40

Chapter 4. Automatic Layout of a Complete FPGA 82

Cell for GILES router Cell for Cadence router

IN OUT

VDD

VSS

VDD

IN OUT

VSS

Figure 4.4: Cadence router does not require cell pins to be aligned to routing grid

router requires these cell pins to be aligned to the placement grid and attached to the

first routing layer with vias as shown in Figure 4.4. Cadence’s Virtuoso Chip Assembly

Router does not have these requirements. It connects to pins on any metal layer and

they do not need to be aligned to the grid. In some cells, it was difficult to connect all

the power (VDD) and ground (VSS) connections to one pin for each net. Rather than

use higher metal layers to connect the nets, multiple VDD and VSS pins are exposed so

the router connects them automatically in the best way it sees fit.

4.5 Creating Tile Placements with GILES

Some modifications to GILES were required to obtain tile placements that use the new

cell layouts. The cell-level netlist created by the netlist generator contains the dimensions

Chapter 4. Automatic Layout of a Complete FPGA 83

Netlist generator

Placer

Architecture
description

Tile
placement

Cell layout
information

Cell-level
netlist

Transistor-
level netlist

Figure 4.5: Revised GILES flow

and pin positions of each cell. However, the dimensions are estimated by the area model

and the pin positions are arbitrarily spread out across the cell. The placer needs the

real dimensions and pin positions from the cell layouts to create valid placements and to

properly minimize wirelength. Therefore, the cell layout information must be given to

the netlist generator so it passes the correct cell information to the placer. The original

GILES flow from Figure 2.12 was modified so the netlist generator has a new input that

specifies the cell layout information. The new flow is shown in Figure 4.5. The cell

information input specifies the dimensions and pin positions of the cells. The netlist

generator uses this information when creating the netlist. The cell information file used

for POWELL is in Appendix C.

Chapter 4. Automatic Layout of a Complete FPGA 84

Another change to the flow is that we no longer run the GILES router since we have

decided to employ Cadence’s Virtuoso Chip Assembly Router [35]. The output of the

GILES flow is now the tile placement that needs to be imported into the Virtuoso custom

design platform. Using this flow, the size of the main tile of POWELL is 168 by 202 grid

squares or 110.88 µm by 133.32 µm. See Kuon’s research [31] for a description of how

the periphery tile placements are generated.

4.6 Integrating with the Virtuoso Custom Design

Platform

Each tile is imported into Cadence’s Virtuoso custom design platform [34] after place-

ment. The Virtuoso Chip Assembly Router [35] is used for routing. The Virtuoso Layout

Editor [30] is used for adding the power grid, clock H-tree, power-up protection network,

I/O pads, and the programmer. We automate all the time consuming tasks using the

Cadence scripting language called SKILL [39]. The GILES placer was modified to emit

SKILL files for each tile it generates. Each SKILL file contains six functions that are

executed in Virtuoso sequentially. These functions import the tile placement, draw the

power grid, clock H-tree, and power-up protection network, and tile the array. Each

SKILL file has all the information needed to generate a routed array of tiles and each

function takes several arguments to set configurable parameters. In addition, there is a

separate SKILL file that helps route the connections between the array and the I/O pads

and programmer. Each of these functions are discussed in the following sections.

4.6.1 Tile Placements

The first stage of integrating the design with Virtuoso is to import the placement of each

unique tile. Each tile has a SKILL function called GilesCreateTile() that was generated

by the GILES placer. Calling one of these functions in Virtuoso draws the tile in a new

Chapter 4. Automatic Layout of a Complete FPGA 85

layout. The function creates instances of each cell in the tile and positions it on the

placement grid. The function also describes the connections between the pins of every

cell, which will later be wired together by the router.

The SKILL function also creates connections to port locations on the sides of each

tile. It treats a port like a cell with one pin. The cell library must contain port cells that

are merely a patch of metal and a single pin. For this design, metal layer four is used for

tile ports but this is easily changed by modifying the port cells. There are separate port

cells for each tile edge because the metal in each port cell must extend in the correct

direction to reach the adjacent tile. The port cells extend far enough outside the tile so

we can leave a gap between tiles for drawing the clock and power-up protection networks.

The placement of the main tile for POWELL is shown in Figure 4.6. The layout of

each cell is shown and the spacing between them. The largest cells are the 4x4 SRAM

cells. Here it can be observed how grouping cells results in less wasted space between

cells. Around the border are the tile ports. They extend in each direction towards the

tile they will connect too. A thin line runs around the tile and through the ports. This is

the routing border. The router must keep all wires inside this box so they do not overlap

other tiles or the clock and power-up protection networks that are drawn between the

tiles.

4.6.2 Power Grid

The power grid is drawn before routing the tile connections so that the router will au-

tomatically connect the power grid to all the cells in the tile. The power gird used for

the main tile is shown in Figure 4.7. It consists of alternating power (VDD) and ground

(VSS) vertical stripes on metal layer six and a single pair of VDD and VSS horizontal

stripes on metal layer five in each tile. The horizontal stripes allow current to be shunted

between vertical stripes quickly in the case of a large power spike on one vertical stripe.

Using only a single pair of horizontal stripes per tile allows the router to use most of

Chapter 4. Automatic Layout of a Complete FPGA 86

Port CellRouting boundary

Figure 4.6: Placement of main tile

Chapter 4. Automatic Layout of a Complete FPGA 87

metal layer five for routing. The vertical and horizontal stripes are connected where they

cross with vias. The power grids for the periphery tiles are the same except there are

fewer vertical stripes to accommodate the smaller tile dimensions.

An issue arose when using the Virtuoso Chip Assembly Router. Very few connections

were made between the power grid on metal five and six and the cells on metal one and

two. The router preferred to make connections between the cells on the lower metal

layers and brought up only a few connections to the power grid. The router has a power

routing feature but our custom cells are not compatible with this feature so these power

nets were routed like any other net. The typical behaviour of the router was to make

only five connections per tile to the power grid. Kuon determined the maximum current

draw of the main tile is 63.6 mA if all cells switch at the same time. Assuming only

a quarter of the cells switch simultaneously, the current draw is 15.9 mA. With only

five connections to the power grid, each connection must supply 3.18 mA. However, the

maximum current each connection can supply is only 0.28 mA for our fabrication process.

Therefore, at least 57 connections are needed to supply 15.9 mA.

Our solution to the power distribution problem is to plan a power grid that forces

the router to make more connections to it. This was achieved by dividing the tile into

regions using the following procedure. The original power grid of Figure 4.7 is divided

into four columns corresponding to the four pairs of vertical stripes. Each stripe is then

divided into separate patches of metal as shown in Figure 4.8. Each patch of metal is

assigned to a unique VDD or VSS net. A single region contains one VDD and one VSS

net. The cells located in that region are modified to connect to the VDD and VSS nets

for the region. Then the router connects the VDD and VSS nets in each region and

brings at least one connection up to the power grid per region. After routing, the nets

of the power grid are connected together to create the full grid structure of Figure 4.7.

In Figure 4.8 as in the main tile of POWELL, there are four pairs of vertical stripes

that are divided into twenty sections each. This gives a total of eighty power regions and

Chapter 4. Automatic Layout of a Complete FPGA 88

VDD

VSS

VDD VDD VDDVSS VSS VSS VSS

VDD

Figure 4.7: Power grid for main tile

Chapter 4. Automatic Layout of a Complete FPGA 89

VDD VSS VDD VSS VDD VSS VDD VSS
1 2 3 4

20

1

2

19

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Figure 4.8: Power grid regions

Chapter 4. Automatic Layout of a Complete FPGA 90

guarantees a minimum of eighty connections to the power grid. Having too many regions

complicates the router’s task but too few regions will slow down the FPGA when the

current is restricted. For the purpose of this chip, we were not concerned about speed

but in the future, we would like to verify the number of regions required to achieve the

best performance. The power grid regions are generated automatically by parameterized

SKILL scripts so it is possible to easily create power grids with more or less regions.

For example, the periphery tiles are divided into fewer regions because of their smaller

dimensions. The area of each region is similar to those in the main tile.

4.6.3 Clock Tree

Before routing the connections in the tile, we consider how the clock network connects

into the tile. To minimize the skew of the clock between tiles, an H-tree is used as

shown in Figure 4.9. Metal layer three is used for the connections into the tile and

metal layer two is used for the connections between the tiles. Metal layer two is used to

avoid crossing the power-up protection network that is described in Section 4.6.4. The

periphery tiles are shown but they do not connect to the clock tree because some do

not need a clock and the others use a separate programming clock. The programming

circuitry was designed by Kuon [31]. It consists of shift registers so the programming

clock is routed automatically through the tiles in the opposite direction of the shifting to

avoid hold time violations. The programming clock frequency is set to be slow enough

to avoid setup time violations.

The clock tree of Figure 4.9 is driven by a large clock driver input pad. Because

POWELL only contains 192 flip-flops in the main eight by eight tile array, Kuon’s sim-

ulations showed that this clock driver is sufficient for driving all the flip-flops without

additional buffering. However, if larger FPGAs are created, clock buffers can be inserted

between the tiles.

The clock tree connects to the centre of each tile. A clock pin is drawn on metal three

Chapter 4. Automatic Layout of a Complete FPGA 91

Clock

Metal 2
Metal 3

Figure 4.9: Clock H-tree

Chapter 4. Automatic Layout of a Complete FPGA 92

Clock pin is unconnected before routing

Clock pin is connected to H-tree after routing and tiling

Clock

Clock Clock

Figure 4.10: Procedure for connecting clock pin to H-tree

and the router connects the flip-flops within the tile to this pin. The connection from the

edge of the tile to the centre of the tile must be drawn before routing so it does not cross

any other connections. However, half the tiles require the connection to come from the

left of the tile and the other half from the right. To keep all tiles identical so that only

one main tile needs to be routed, wires are drawn to both sides of the tile as shown in

Figure 4.10. The clock pin and the wires to the edge of the tile are drawn before routing.

After the design is routed and the array is tiled, the clock pin in each tile is connected

to the H-tree through one of the two wires depending on where the tile is in the array.

4.6.4 Power-up Protection

Another concern that must be addressed before routing occurs is the design of the power-

up protection network. As described in Section 4.2.3, the power-up protection signal

connects to AND gates that prevent switches in the routing tracks from shorting power

to ground before programming is complete. There are 111 AND gates in each main tile

so this net has a much larger fan-out than the clock network. We use a large clock driver

for its input pad but the speed of this net is not critical so additional buffering is not

needed. Also, the skew across tiles is not a concern so an H-tree is not required.

Chapter 4. Automatic Layout of a Complete FPGA 93

Protect

Clock

Pins are unconnected before routing

Pins are connected after routing and tiling

Protect

Clock

Protect

Clock

Figure 4.11: Power-up protection pin uses unconnected clock wire

To bring the power-up protection net out of the tile, a pin is created opposite the clock

pin in the centre of the tile. The router connects this pin to all the AND gates in the tile.

After routing and tiling of the array, the power-up protection pin is connected to the wire

not used by the clock network as shown in Figure 4.11. Since skew is tolerable on this

signal, the tiles are connected as illustrated in Figure 4.12. The clock network between

the tiles is drawn on metal two so it crosses under the power-up protection network.

4.6.5 Routing

Routing is performed on each unique tile using Cadence’s Virtuoso Chip Assembly

Router [35]. The router uses all layers of metal and alternates the preferred wire di-

rection on every other layer as listed in Table 4.1. It obeys the route boundary that was

drawn during the placement import phase of Section 4.6.1. For some of the eight tiles,

the router encountered congestion and did not find a valid route for all nets. However,

these errors were minor and were easily fixed by hand. In total there were 26 DRC

errors fixed manually including those in periphery tiles. After routing, the power grid

Chapter 4. Automatic Layout of a Complete FPGA 94

Protect

Figure 4.12: Connections of power-up protection network between tiles

Chapter 4. Automatic Layout of a Complete FPGA 95

regions are connected by running a SKILL script. The fully routed main tile is shown in

Figure 4.13.

4.6.6 Tiling the Array

In an empty layout cell view, a parameterized SKILL script creates the array of tiles.

For POWELL, the main tile array is eight by eight. These are surrounded by periphery

tiles. As shown in Figure 4.14, the tiles are abutted to each other and the ports bridge

the gap between them. The gap is left for the clock and power-up protection networks,

which are now drawn by another SKILL function. At the same time, the clock and

power-up protection pins at the centre of each tile are connected to the wires leading

to the opposite sides of the tile as shown in Figure 4.11. This connects the clock and

power-up protection nets inside each tile to the global networks.

4.6.7 I/O Pads and Programmer

The final details required to complete the FPGA include the I/O pads and the pro-

grammer. The programmer was designed using standard cells and typical ASIC tools by

Kuon [31]. Kuon also created the I/O ring that consists of 84 pins including power, clock,

power-up protection, and general purpose I/O. Both the I/O pads and the programmer

were added to the design manually because it was easy to do so.

To enable automatic routing between the tile array, the programmer, and the I/O

pads, a SKILL script labels the ports on the periphery tiles to match the manually

labelled signals on the programmer and I/O pads. This greatly simplified the task of

identifying the signals for the 64 I/Os since each I/O consists of input, output, and

output enable signals and the GILES placer is free to move them around within each

periphery tile. The SKILL script also creates power and ground rings around the array

of tiles and connects the power grid to the rings.

The connections between the tile array, the programmer, and the I/O pads are routed

Chapter 4. Automatic Layout of a Complete FPGA 96

Figure 4.13: Fully routed main tile

Chapter 4. Automatic Layout of a Complete FPGA 97

Figure 4.14: Array of tiles

Chapter 4. Automatic Layout of a Complete FPGA 98

automatically using the Virtuoso Chip Assembly Router except for four critical nets:

power, ground, clock, and power-up protection. All four nets are critically important for

the functionality of the chip. The clock net was routed carefully to the tile array and

the programmer to reduce the clock skew. There are four power and four ground I/O

pads that are connected to the power and ground rings in four different places. These

connections are drawn 28 µm wide to carry large amounts of current.

4.7 Verification

The design was verified for both design rules and functionality in conjunction with

Kuon [31]. CMC does not provide the layouts of the standard cells that were used

in the programmer or the layouts of the I/O pads so the design was submitted to CMC

to check for design rule violations using Calibre DRC [40]. Besides the DRC errors caused

by the router described in Section 4.6.5, the only other errors were polysilicon density

and antenna errors. To fix the polysilicon density error, polysilicon was added using Diva

DRC’s [37] fill feature.

There were 218 antenna errors caused by long wires that could build charge during

fabrication and damage transistor gates. These errors were fixed by adding a small diode

between the problematic wire and the substrate to regulate the charge on the wire as

shown in Figure 2.9. Because the FPGA is composed of identical tiles, fixing one error

fixed identical errors in copies of the same tile. In one case, adding a single diode to the

main tile fixed 168 errors. In total, only eleven diodes were added and it was not difficult

to find space for these between the existing cells.

Verification of functionality was done by Kuon [31] using Calibre LVS [40] and exten-

sive simulations. To simulate the FPGA, Kuon enhanced VPR to generate programming

bitstreams for test circuits. He simulated the programming of each bitstream and each

resulting test circuit. Initially, simulation was performed with a Verilog netlist of POW-

Chapter 4. Automatic Layout of a Complete FPGA 99

ELL. Later, the transistor implementation was simulated with Synopsys NanoSim [41].

Finally, NanoSim was used to simulate the extracted schematic to verify the layout.

The final layout for POWELL is shown in Figure 4.15. The top two metal layers

have been removed for clarity. The tile array and the I/O pads are clearly visible. The

programmer is in the bottom-left corner of the chip. The large red rectangles on either

side of the tile array are areas of polysilicon to meet the density requirements.

POWELL was submitted to CMC on March 24, 2004 with a bonding diagram for an

84 pin grid array (PGA) package. Fabrication and packaging has been completed. We

received five packaged chips on November 22, 2004. Testing is currently underway using

the TH1000 test fixture and other equipment available at the University of Toronto.

4.8 Design Time

The goal of our automatic design system is to reduce the time required to create FPGAs.

Creating a commercial FPGA using custom design techniques requires at least 50 person-

years. Using our automated approach, we created an FPGA in approximately eight

person-months. The breakdown of the time required for our FPGA is listed in Table 4.3.

It took two graduate students four months to complete the design not including the

time required to develop the tools. Admittedly, the design of commercial FPGAs is

significantly more complex; however, this still represents a huge time savings compared

to custom design. With additions to the automatic design system, more complex FPGAs

could be created while maintaining significant reductions in design time.

Chapter 4. Automatic Layout of a Complete FPGA 100

Figure 4.15: POWELL layout

Chapter 4. Automatic Layout of a Complete FPGA 101

Table 4.3: Breakdown of time required to design POWELL

Design task Time required

(person-weeks)

Architecture exploration 2

Circuit design 8

Cell layout 6

Tile layout 0.5

Programming infrastructure 2

Power grid 1

Clock tree 1

Fixing design rule violations 0.5

I/O pads 1

Verification 12

Total 34

Chapter 5

Conclusions

The two goals of this work were to improve the area results of an automated layout system

for FPGAs and to fabricate the first automated FPGA from architectural specification

to layout. To achieve the first goal, the accuracy of the area model was improved. Using

this improved area model, the set of cells used by the placer was evaluated and better

cells were sought. Experiments showed that grouping larger numbers of transistors into

cells was beneficial to the final routed area. The best grouping used a new 4x4 SRAM

cell and a buffer and pass transistor cell. This balanced the tradeoff of reduced area

without increasing wirelength and manual layout effort.

Using this work on transistor grouping, Kuon [31] found that GILES produces an

FPGA tile that is just 36% larger than a commercial Xilinx Virtex-E. This is much better

than a standard cell version of the Virtex-E, which is 102% larger than the custom layout

by Xilinx. With the addition of extra metal layers, the automatically-produced tile is

only 13% larger.

The second goal of this work was to manufacture an FPGA created with these au-

tomatic tools. The GILES tool [5] was extensively modified and extended to reach this

goal. Cadence SKILL scripts are now generated to automate most of the tasks to take the

tile placement and obtain a complete FPGA layout ready for fabrication. This includes

102

Chapter 5. Conclusions 103

unique approaches to the design of the power grid and clock network. The FPGA, called

POWELL, was designed in only eight person-months not including the time required to

develop the automatic design system. POWELL was fabricated through CMC using a

TSMC 0.18 µm process.

5.1 Contributions

The contributions of this research are the following:

1. A model for estimating the layout area of small groups of transistors.

2. Improved area results of an automated FPGA design tool by grouping transistors

into larger cells.

3. Extensions to the automated design tool to enable generating complete FPGAs.

4. The first automatically generated FPGA to be created from an architectural spec-

ification.

5. Important steps in proving the viability of an automated approach to FPGA design,

which is still done manually in industry.

5.2 Future Work

This work would benefit from a continued effort to improve the area results. Some possible

avenues for improvement involve creating a smarter netlist generator that would map a

transistor netlist to a cell library and automatically optimize the specific architecture to

the most efficient groupings. Another approach is to make the placer able to place cells

that do not have space around them. It would need knowledge of the cell internals and

the design rules of the process to avoid any violations. Alternatively, a layout compactor

could be run on the tile after placement to reduce the space left between cells.

Chapter 5. Conclusions 104

With improved area results, it may be possible to surpass the area efficiency of custom

designers. However, to replace custom designers, automatically generated FPGAs must

also be competitive in terms of speed and power. In the future, the speed and power of

automatic designs need to be compared to custom designs. Then the automatic layout

system can be improved to obtain better results in these categories.

GILES also needs updating to handle modern FPGA architectures. This involves

updating the architecture description language and the architecture generator to support

new interconnect structures, logic block designs, and heterogeneous structures such as

hard multipliers and memories. The automatic layout tools will also have to be tested

with smaller fabrication processes.

Appendix A

Experimental Results for Transistor

Groupings

Table A.1: Tile area before routing for functional groupings

Architecture Tile area before routing (grid squares)
No grouping Functional grouping

1 2 3 4 5

1 26832 24585 25418 24220 24167 23925
2 49896 45990 47952 45288 46632 44880
3 70932 68352 69048 64944 68340 64904
4 96398 91168 91956 89060 89082 85544
5 124942 120574 125874 114437 116960 113321
6 150100 145668 141804 137940 142835 148176
7 170982 165946 161579 157488 181008 168520
8 195960 184260 187000 189288 181746 189161
9 217413 206912 203432 200994 206480 198856
10 239259 231632 226320 219252 238620 214700

105

Appendix A. Experimental Results for Transistor Groupings 106

Table A.2: Tile area after routing for functional groupings

Architecture Tile area after routing (grid squares)
No grouping Functional grouping

1 2 3 4 5

1 26832 24585 26718 24220 25431 23925
2 49896 45990 47952 45288 47066 44880
3 70932 69133 69048 64944 69647 64904
4 98587 91168 91956 89060 90890 85544
5 126360 123370 126252 115434 119712 114000
6 154014 147600 141804 137940 142835 148176
7 186192 173382 167678 158304 184851 173494
8 201312 199230 193536 194084 192126 199728
9 228206 218183 218094 201894 219897 200175
10 254828 245310 233532 225400 247995 217490

Table A.3: Tile whitespace before routing for functional groupings

Architecture Tile whitespace before routing (grid squares)
No grouping Functional grouping

1 2 3 4 5

1 3920 3337 3710 3772 2999 4017
2 5949 6096 6420 6003 6423 6918
3 7172 7995 7351 7801 7813 8931
4 10838 10612 10896 11996 10074 10532
5 12478 15640 19590 13358 13241 14807
6 15410 17908 14458 16768 17109 28624
7 17268 21769 16609 19400 39098 33492
8 20758 19530 20928 30300 19040 33539
9 22026 23045 18131 23526 24851 25060
10 28614 35437 22525 28082 38650 27355

Appendix A. Experimental Results for Transistor Groupings 107

Table A.4: Tile area before routing for 2x2 SRAM grouping

Architecture Tile area before routing (grid squares)
No grouping 2x2 SRAM grouping

Without inter-cell SRAM With inter-cell SRAM
bit swapping bit swapping

1 26832 24436 24178
2 49896 46209 45980
3 70932 66045 64498
4 96398 88755 89012
5 124942 116955 116795
6 150100 138600 144375
7 170982 158950 159032
8 195960 179350 181900
9 217413 211896 198907
10 239259 214700 213834

Table A.5: Tile area after routing for 2x2 SRAM grouping

Architecture Tile area after routing (grid squares)
No grouping 2x2 SRAM grouping

Without inter-cell SRAM With inter-cell SRAM
bit swapping bit swapping

1 26832 24436 24178
2 49896 46209 45980
3 70932 66045 64498
4 98587 88755 91104
5 126360 121446 116795
6 154014 152358 145899
7 186192 187220 174000
8 201312 207935 187920
9 228206 266760 205205
10 254828 282220 216618

Appendix A. Experimental Results for Transistor Groupings 108

Table A.6: Tile wirelength before routing for 2x2 SRAM grouping

Architecture Tile wirelength before routing (grid squares)
No grouping 2x2 SRAM grouping

Without inter-cell SRAM With inter-cell SRAM
bit swapping bit swapping

1 46605 50046 46989
2 95662 109386 98383
3 151285 175348 155364
4 202051 233250 213390
5 281464 325858 294573
6 353384 421068 367707
7 423721 499892 440330
8 477275 584354 496504
9 549871 680144 551736
10 600678 745113 615258

Table A.7: Programming wirelength before routing for 2x2 SRAM grouping

Architecture Programming wirelength before routing (grid squares)
No grouping 2x2 SRAM grouping

Without inter-cell SRAM With inter-cell SRAM
bit swapping bit swapping

1 9173 7566 7638
2 17346 14644 14607
3 26516 21221 21562
4 35394 28144 28458
5 48282 37930 37004
6 59761 45091 46531
7 70140 52513 53614
8 79443 62196 61588
9 91726 71560 69225
10 100623 74782 73814

Appendix A. Experimental Results for Transistor Groupings 109

Table A.8: SRAM output wirelength before routing for 2x2 SRAM grouping

Architecture SRAM output wirelength before routing (grid squares)
No grouping 2x2 SRAM grouping

Without inter-cell SRAM With inter-cell SRAM
bit swapping bit swapping

1 6288 11740 8764
2 11005 23972 15585
3 17134 44555 23783
4 22320 53873 33317
5 31586 78141 42132
6 36987 100227 51888
7 46876 128459 63014
8 46841 150945 65120
9 55157 172554 71969
10 58670 191742 79524

Table A.9: Tile area before routing for 4x4 SRAM grouping

Architecture Tile area before routing (grid squares)
Multiplier for number of pin swap moves

1x 2x 3x 4x 5x 6x 7x

1 22464 22833 23188 22801 23146 22680 23595
2 43281 43554 44070 43979 43472 43560 43884
3 62275 62464 62178 62618 62976 62712 61997
4 82940 84854 84084 84208 84099 84348 83142
5 108924 109188 112896 110745 110889 109512 110400
6 130285 129596 129792 129591 131930 129210 130592
7 148740 149040 149144 153543 150220 149480 163625
8 168597 170280 171768 179780 169644 174096 169122
9 189125 190920 197400 187812 188958 189996 190080
10 205660 203472 206974 210672 206150 207792 209196

Appendix A. Experimental Results for Transistor Groupings 110

Table A.10: Tile area after routing for 4x4 SRAM grouping

Architecture Tile area after routing (grid squares)
Multiplier for number of pin swap moves

1x 2x 3x 4x 5x 6x 7x

1 22464 22833 23188 22801 23146 22984 23595
2 43281 43554 44070 43979 43472 43560 43884
3 62275 62464 63684 62618 62976 62712 61997
4 82940 84854 84084 84208 84680 84348 83142
5 108924 110853 112896 111758 112896 109512 112404
6 131008 135050 129792 132487 134862 130662 131688
7 154570 153340 149144 163116 162432 160094 166530
8 180744 181152 181020 195300 174603 189318 189696
9 205572 205552 222300 211754 206610 217350 217945
10 235708 212160 240552 231352 222750 232243 218880

Table A.11: Tile wirelength before routing for 4x4 SRAM grouping

Architecture Tile wirelength before routing (grid squares)
Multiplier for number of pin swap moves

1x 2x 3x 4x 5x 6x 7x

1 48604 48193 48982 47501 48247 47208 47879
2 102232 101405 99573 101276 98918 102078 99230
3 163300 159200 161195 157380 156611 155999 155622
4 218981 218488 212646 212847 209297 212740 209592
5 301808 299409 297939 295468 299375 291324 291519
6 380016 379120 359150 367213 375200 357937 369487
7 439076 432635 425574 430101 429571 430583 425491
8 499729 505960 498125 497900 485013 496944 503040
9 576914 570019 571395 564743 565421 564389 571342
10 638094 625010 627127 624710 630826 611249 620468

Appendix A. Experimental Results for Transistor Groupings 111

Table A.12: Programming wirelength before routing for 4x4 SRAM grouping

Architecture Programming wirelength before routing (grid squares)
Multiplier for number of pin swap moves

1x 2x 3x 4x 5x 6x 7x

1 6285 6504 6899 7078 6876 6561 7096
2 12268 12745 12522 12846 12263 12691 12174
3 19113 18555 18736 18587 18498 18815 18690
4 23289 25291 23643 24757 23411 24162 24772
5 33366 32844 34334 32320 32883 33199 33109
6 37481 40545 39760 39063 39023 37666 39152
7 44605 45754 44597 45637 45945 44610 45334
8 49595 50537 52297 53364 50610 52049 51286
9 56210 56500 58877 56425 56069 57656 58732
10 62046 59902 61791 62384 61240 62088 60738

Table A.13: SRAM output wirelength before routing for 4x4 SRAM grouping

Architecture SRAM output wirelength before routing (grid squares)
Multiplier for number of pin swap moves

1x 2x 3x 4x 5x 6x 7x

1 12216 12035 12201 11803 11789 11313 11613
2 22531 22706 21815 22488 22158 21097 20651
3 37608 33947 36689 33167 31203 31368 31994
4 44760 44320 42060 43795 41786 41840 40737
5 63460 60104 60673 56662 56436 57692 57464
6 77157 77593 67164 66457 68627 67888 70161
7 86717 79177 79130 78169 80729 78953 72926
8 94760 94635 90997 89252 86181 87546 97718
9 109530 101624 100236 103433 96055 101497 97964
10 122889 111831 119176 110769 112189 106561 107137

Appendix A. Experimental Results for Transistor Groupings 112

Table A.14: Tile area before routing for SRAM groupings

Architecture Tile area before routing (grid squares)
No grouping SRAM grouping

2x2 3x3 3x4 4x4 4x5 5x5

1 26832 24178 23100 24048 22464 22704 22378
2 49896 45980 44096 43758 43281 42728 43054
3 70932 64498 62331 63250 62275 61360 61696
4 96398 89012 84970 85039 82940 83811 83122
5 124942 116795 111555 109890 108924 108836 109200
6 150100 144375 131350 132588 130285 128975 130221
7 170982 159032 149768 149040 148740 146960 147864
8 195960 181900 189272 171808 168597 170602 168245
9 217413 198907 203343 191406 189125 186263 188550
10 239259 213834 208182 210132 205660 206400 202950

Architecture Tile area before routing (grid squares)
SRAM grouping

5x6 6x6 6x7 7x7 8x8 9x9 10x10

1 22078 22378 24420 22575 22419 23625 22968
2 45888 43560 44908 43537 45567 42080 41478
3 62997 62478 61020 60784 60973 62602 60696
4 82524 82446 81355 86142 83230 85228 81984
5 108661 108225 107200 108924 107868 108896 112161
6 128412 130755 129210 131369 127117 129430 129360
7 146216 149733 149362 147132 145112 144824 149946
8 167217 167475 168378 171741 165170 167085 166752
9 186036 187425 187766 186192 187515 188131 189354
10 202419 201960 201132 203775 199368 200688 200640

Appendix A. Experimental Results for Transistor Groupings 113

Table A.15: Tile area after routing for SRAM groupings

Architecture Tile area after routing (grid squares)
No grouping SRAM grouping

2x2 3x3 3x4 4x4 4x5 5x5

1 26832 24178 23100 24048 22464 22704 23598
2 49896 45980 44096 43758 43281 42728 43054
3 70932 64498 62832 65535 62275 61360 61696
4 98587 91104 85554 85039 82940 83811 83122
5 126360 116795 112224 111555 108924 108836 109200
6 154014 145899 135750 132588 131008 128975 131688
7 186192 174000 159200 154088 154570 153900 157963
8 201312 187920 192375 175140 180744 190806 175775
9 228206 205205 214020 195364 205572 206150 206330
10 254828 216618 228656 228830 235708 229439 220430

Architecture Tile area after routing (grid squares)
SRAM grouping

5x6 6x6 6x7 7x7 8x8 9x9 10x10

1 22078 22378 24420 22575 22419 23625 22968
2 45888 43560 44908 43537 45567 42080 41478
3 63246 62980 61517 60784 60973 62602 60696
4 82823 82446 81355 86142 83230 85813 81984
5 108661 110536 107870 109935 107868 108896 112161
6 132750 130755 129930 139040 132925 136710 136965
7 159879 154026 155220 155324 152036 166950 163800
8 181882 175824 175848 184730 183570 182988 198900
9 218446 201978 204223 209728 209292 229297 222950
10 217968 222222 220891 233220 241664 261630 239720

Appendix A. Experimental Results for Transistor Groupings 114

Table A.16: Tile wirelength before routing for SRAM groupings

Architecture Tile wirelength before routing (grid squares)
No grouping SRAM grouping

2x2 3x3 3x4 4x4 4x5 5x5

1 46605 46989 48045 48511 48604 49615 50893
2 95662 98383 100905 100109 102232 100629 106932
3 151285 155364 153968 162841 163300 164395 168077
4 202051 213390 213334 216673 218981 219751 218101
5 281464 294573 295478 298208 301808 304942 298018
6 353384 367707 373125 370252 380016 373248 386210
7 423721 440330 436722 427063 439076 442266 449214
8 477275 496504 506274 499823 499729 512007 515519
9 549871 551736 580451 575030 576914 571261 581300
10 600678 615258 627015 641292 638094 642332 637138

Architecture Tile wirelength before routing (grid squares)
SRAM grouping

5x6 6x6 6x7 7x7 8x8 9x9 10x10

1 51167 52618 55227 55410 56133 61674 60619
2 107991 106976 109894 112140 118849 120141 124889
3 167597 168031 172588 175012 178764 187874 189440
4 222779 223223 229826 234765 239508 247081 254283
5 304699 306085 322923 319302 328186 340241 354990
6 380022 395405 398077 401747 414305 424807 431974
7 455111 460797 459882 457848 471950 495204 510501
8 531762 528606 534619 545619 554396 562500 577300
9 595347 596711 615619 616939 625304 645092 671704
10 659252 650675 661315 671776 679974 692226 715522

Appendix A. Experimental Results for Transistor Groupings 115

Table A.17: Programming wirelength before routing for SRAM groupings

Architecture Programming wirelength before routing (grid squares)
No grouping SRAM grouping

2x2 3x3 3x4 4x4 4x5 5x5

1 9173 7638 6761 7243 6285 6469 7610
2 17346 14607 13531 13148 12268 11823 12298
3 26516 21562 18105 19462 19113 19243 19270
4 35394 28458 26267 25227 23289 23500 24739
5 48282 37004 33178 33127 33366 31465 30135
6 59761 46531 42247 39392 37481 37055 37941
7 70140 53614 46815 44131 44605 41302 45030
8 79443 61588 55554 50251 49595 49864 46979
9 91726 69225 63129 58057 56210 55033 52976
10 100623 73814 65839 63633 62046 57512 60168

Architecture Programming wirelength before routing (grid squares)
SRAM grouping

5x6 6x6 6x7 7x7 8x8 9x9 10x10

1 6534 6933 8333 6969 7266 8834 7667
2 12861 12333 12446 13658 13457 12241 13304
3 18051 19483 18028 17610 18106 17497 18924
4 22444 23520 24230 23040 22762 24042 22378
5 30257 28899 31187 30824 28860 27507 30749
6 35532 36661 35565 36750 34126 37115 34860
7 43693 44712 41581 40432 39469 38096 42234
8 48272 47268 46320 48140 45285 45474 44942
9 52388 52175 54809 50595 53761 50669 51530
10 57852 56621 54654 58802 52972 53006 55535

Appendix A. Experimental Results for Transistor Groupings 116

Table A.18: SRAM output wirelength before routing for SRAM groupings

Architecture SRAM output wirelength before routing (grid squares)
No grouping SRAM grouping

2x2 3x3 3x4 4x4 4x5 5x5

1 6288 8764 11122 11072 12216 12993 14478
2 11005 15585 20109 21168 22531 24541 26071
3 17134 23783 29065 34782 37608 37526 42396
4 22320 33317 40233 42257 44760 48696 51651
5 31586 42132 49375 60009 63460 68046 70863
6 36987 51888 65325 67530 77157 75693 88375
7 46876 63014 74399 79261 86717 92815 102453
8 46841 65120 83567 92068 94760 105464 111823
9 55157 71969 96459 104821 109530 113735 125510
10 58670 79524 99224 116465 122889 126897 138998

Architecture SRAM output wirelength before routing (grid squares)
SRAM grouping

5x6 6x6 6x7 7x7 8x8 9x9 10x10

1 15460 16112 17301 18822 20383 22041 24396
2 29007 28554 31109 32731 37432 41379 46301
3 44177 46413 48551 53101 57109 62522 67988
4 53876 56239 64029 66465 74681 80628 85454
5 73187 78580 84722 88309 95761 107790 117632
6 90574 95240 102768 109282 120162 128388 139574
7 108903 111008 118106 119624 135074 151654 159149
8 124185 123897 137628 138603 156888 168265 180970
9 139504 138302 159337 157759 168095 185761 206825
10 153839 155558 163164 164975 185899 200902 215452

Appendix A. Experimental Results for Transistor Groupings 117

Table A.19: Tile area before routing for combined groupings

Architecture Tile area before routing (grid squares)
No grouping Combined grouping

1x1 2x2 3x3 4x4

1 26832 25418 23400 22200 21648
2 49896 47952 43956 42636 40994
3 70932 69048 64507 61468 60876
4 96398 91956 84091 80330 78957
5 124942 125874 110124 105525 102610
6 150100 141804 135036 129084 124656
7 170982 161579 149625 142880 142048
8 195960 187000 176336 164811 160776
9 217413 203432 194682 183897 178928
10 239259 226320 221188 204700 198475

Architecture Tile area before routing (grid squares)
Combined grouping

5x5 6x6 7x7 8x8

1 21594 21315 21195 21195
2 40800 42612 42680 41322
3 58928 59220 58824 59286
4 78279 79523 77283 76708
5 101440 102510 103734 101332
6 124500 123004 120373 119238
7 139876 139795 139515 135014
8 158840 157500 160272 158782
9 179280 178500 174985 178048
10 206064 196692 196686 196650

Appendix A. Experimental Results for Transistor Groupings 118

Table A.20: Tile area after routing for combined groupings

Architecture Tile area after routing (grid squares)
No grouping Combined grouping

1x1 2x2 3x3 4x4

1 26832 26718 23400 22200 21648
2 49896 47952 43956 42636 40994
3 70932 69048 64507 61468 60876
4 98587 91956 84091 80330 78957
5 126360 126252 110466 105525 106829
6 154014 141804 135772 129804 130410
7 186192 167678 155856 146688 145452
8 201312 193536 180128 170520 172610
9 228206 218094 196880 194712 196690
10 254828 233532 232674 221760 214896

Architecture Tile area after routing (grid squares)
Combined grouping

5x5 6x6 7x7 8x8

1 22750 21315 21195 21195
2 40800 42612 42680 41322
3 58928 59220 58824 59286
4 78570 79523 77283 76708
5 108570 102510 103734 101970
6 124500 123004 124573 127253
7 144020 144300 141372 147420
8 171936 167616 176732 168084
9 199230 189216 190393 189189
10 234188 218085 214830 219897

Appendix A. Experimental Results for Transistor Groupings 119

Table A.21: Tile wirelength before routing for combined groupings

Architecture Tile wirelength (grid squares)
No grouping Combined grouping

1x1 2x2 3x3 4x4

1 46605 42944 43471 45158 45525
2 95662 92296 93695 96853 97428
3 151285 144429 148057 153921 156185
4 202051 193651 204774 205612 206542
5 281464 270736 279489 281359 286227
6 353384 337163 349106 361473 363189
7 423721 400603 410145 412234 418920
8 477275 461410 473124 470140 492189
9 549871 534098 543562 544321 559892
10 600678 573367 612036 606945 624168

Architecture Tile wirelength (grid squares)
Combined grouping

5x5 6x6 7x7 8x8

1 49081 48898 51883 53586
2 95870 104011 107393 108640
3 159873 165221 166587 172571
4 208621 216274 221149 228523
5 294330 299096 304423 311302
6 375315 373496 384609 395404
7 428442 442322 443655 454334
8 488258 497881 515649 528717
9 572498 574545 586230 599001
10 644447 633306 652475 662758

Appendix A. Experimental Results for Transistor Groupings 120

Table A.22: Programming wirelength before routing for combined groupings

Architecture Programming wirelength (grid squares)
No grouping Combined grouping

1x1 2x2 3x3 4x4

1 9173 8507 7438 6643 6763
2 17346 17202 14212 12899 12184
3 26516 26486 20806 18626 17789
4 35394 35653 27616 25255 24079
5 48282 48277 36263 32465 32228
6 59761 57921 44956 41140 37517
7 70140 66893 50701 44864 43521
8 79443 79242 60086 51821 49363
9 91726 87590 68879 59493 57296
10 100623 97213 75231 63864 58507

Architecture Programming wirelength (grid squares)
Combined grouping

5x5 6x6 7x7 8x8

1 7176 6488 6250 6801
2 11878 12472 13335 12700
3 17863 18630 16225 18028
4 23008 22635 23591 21805
5 29308 28664 29856 27559
6 36077 36475 35420 37351
7 41262 41123 38643 38952
8 46269 45805 45525 46096
9 51222 49740 49090 48734
10 61440 54552 55919 55883

Appendix A. Experimental Results for Transistor Groupings 121

Table A.23: SRAM output wirelength before routing for combined groupings

Architecture SRAM output wirelength (grid squares)
No grouping Combined grouping

1x1 2x2 3x3 4x4

1 6288 6217 8635 10103 12190
2 11005 12407 16234 20643 24183
3 17134 18686 25182 34485 36978
4 22320 24387 33558 39846 47875
5 31586 33309 47295 54240 70109
6 36987 42382 53874 70270 81715
7 46876 49604 67475 75172 88420
8 46841 53814 69747 86541 101835
9 55157 64270 77825 95853 120314
10 58670 64124 89784 108152 131343

Architecture SRAM output wirelength (grid squares)
Combined grouping

5x5 6x6 7x7 8x8

1 14998 16683 18400 21309
2 25621 31002 33162 37344
3 40768 45754 53699 58757
4 54739 61361 66118 73798
5 74361 78452 88689 99663
6 93414 98013 113084 123522
7 101484 114612 127546 142663
8 117643 130118 143808 159957
9 140064 151334 162994 170895
10 154304 158804 174356 193178

Appendix B

POWELL Architecture Description

Uniform channels. Each pin appears on only one side.

io_rat 2 #2 pads per row or column

chan_width_io 1

chan_width_x uniform 1

chan_width_y uniform 1

#Cluster of size 3, with 8 logic inputs

inpin class: 0 bottom

inpin class: 0 left

inpin class: 0 top

inpin class: 0 right

inpin class: 0 bottom

inpin class: 0 left

inpin class: 0 top

inpin class: 0 right

outpin class: 1 bottom

outpin class: 1 left

outpin class: 1 top

inpin class: 2 global right #Clock; shouldn’t matter

#Class 0 is LUT inputs, class 1 is the output, class 2 is the clock.

subblocks_per_clb 3

subblock_lut_size 4

#parameters needed only for detailed routing.

switch_block_type subset

Fc_type fractional

Fc_output 0.333333333333333

Fc_input 0.6

122

Appendix B. POWELL Architecture Description 123

Fc_pad 0.6

segment frequency: 1.0 length: 4 wire_switch: 0 opin_switch: 0 \

Frac_cb: 1 Frac_sb: 1 Rmetal: 29.079 Cmetal: 3.546e-14

The routing architecture is fully buffered!

switch 0 buffered: yes R: 2032.037 Cin: 1.6200e-15 Cout: 1.6849e-15 \

Tdel: 3.5610e-11

R_minW_nmos 4565

R_minW_pmos 8674 # 1.9x R of an nmos

Timing info below.

C_ipin_cblock 1.62e-15

T_ipin_cblock 3.7700e-10

T_ipad 242e-12 #Clk_to_Q + 2:1 mux

T_opad 4.7e-11

T_sblk_opin_to_sblk_ipin 2.7000e-10

T_clb_ipin_to_sblk_ipin 2.7000e-10

T_sblk_opin_to_clb_opin 0

T_subblock T_comb: 3.73e-10 T_seq_in: 3.48e-10 T_seq_out: 2.42e-10

T_subblock T_comb: 3.73e-10 T_seq_in: 3.48e-10 T_seq_out: 2.42e-10

T_subblock T_comb: 3.73e-10 T_seq_in: 3.48e-10 T_seq_out: 2.42e-10

Appendix C

POWELL Cell Layout Information

CELL Format: cell_type "Name" width height num_pins

(pin_class x_offset y_offset) (...) etc for num_pins times

0 "1x_Inverter" 7 5 4 (5 2 4) (0 5 1) (1 2 2) (6 4 1)

0 "2x_Inverter" 5 6 4 (5 1 3) (0 2 2) (1 3 2) (6 1 1)

0 "4x_Inverter" 6 6 4 (5 3 4) (0 2 2) (1 3 2) (6 3 0)

0 "4x_Non_inv_Buffer" 7 6 4 (5 3 4) (0 1 2) (1 4 2) (6 3 0)

1 "SRAM" 20 24 42 (5 7 12) (2 9 23) (2 9 12) (2 9 11) (2 9 0) (3 1 12) \

(3 9 12) (3 10 12) (3 18 12) (4 2 20) (4 4 20) \

(4 8 20) (4 5 20) (4 11 20) (4 14 20) (4 17 20) \

(4 15 20) (4 2 15) (4 4 15) (4 8 15) (4 5 15) \

(4 11 15) (4 14 15) (4 17 15) (4 15 15) (4 2 8) \

(4 4 8) (4 8 8) (4 5 8) (4 11 8) (4 14 8) (4 17 8) \

(4 15 8) (4 2 3) (4 4 3) (4 8 3) (4 5 3) (4 11 3) \

(4 14 3) (4 17 3) (4 15 3) (6 12 12)

2 "2_input_MUX" 4 5 6 (0 1 4) (0 1 0) (0 0 3) (0 0 1) (1 2 2) (6 2 0)

2 "11_input_MUX" 11 10 22 (0 0 2) (0 0 6) (0 1 9) (0 2 5) (0 2 9) \

(0 6 5) (0 6 9) (0 9 6) (0 9 9) (0 7 5) \

(0 7 9) (0 1 0) (0 4 0) (0 6 0) (0 8 0) \

(0 7 3) (0 3 4) (0 4 6) (0 4 8) (1 3 1) \

(6 0 1) (6 10 1)

2 "12_input_MUX" 12 10 23 (0 3 5) (0 3 9) (0 1 6) (0 1 9) (0 7 5) \

(0 7 9) (0 4 5) (0 4 9) (0 8 5) (0 8 9) \

(0 10 6) (0 10 9) (0 2 0) (0 5 0) (0 7 0) \

(0 9 0) (0 3 3) (0 8 3) (0 5 6) (0 5 8) \

(1 4 1) (6 0 1) (6 10 1)

2 "20_input_MUX" 14 18 34 (0 12 3) (0 12 0) (0 10 3) (0 10 0) (0 6 4) \

124

Appendix C. POWELL Cell Layout Information 125

(0 6 0) (0 8 3) (0 8 0) (0 3 3) (0 4 0) \

(0 2 4) (0 2 0) (0 6 13) (0 6 17) (0 8 14) \

(0 8 17) (0 3 14) (0 4 17) (0 2 13) (0 2 17) \

(0 12 8) (0 12 12) (0 10 7) (0 10 11) (0 7 9) \

(0 4 8) (0 2 8) (0 3 8) (0 1 8) (0 0 8) \

(1 12 9) (6 4 8) (6 10 14) (6 13 1)

3 "LUT" 11 18 28 (0 0 8) (0 1 8) (0 3 8) (0 2 8) (0 5 8) (0 7 9) \

(0 10 11) (0 10 6) (0 6 4) (0 6 0) (0 8 3) (0 8 0) \

(0 3 3) (0 4 0) (0 2 4) (0 2 0) (0 6 13) (0 6 17) \

(0 8 14) (0 8 17) (0 3 14) (0 4 17) (0 2 13) (0 2 17) \

(1 10 9) (6 4 8) (6 10 14) (6 10 3)

4 "Flipflop" 12 9 7 (5 5 4) (0 1 2) (0 9 6) (0 5 2) (1 1 6) (6 0 0) \

(6 9 5)

4 "FlipFlopenable" 14 9 8 (5 7 4) (0 1 1) (0 11 6) (0 7 2) (1 3 3) \

(6 0 2) (6 11 5) (0 2 6)

6 "4x_Buffer_Switch_Size_4" 7 6 5 (5 3 4) (0 1 2) (0 6 2) (1 5 1) (6 2 1)

9 "And_gate" 8 5 5 (5 3 4) (0 2 2) (0 5 2) (1 6 2) (6 3 0)

13 "Pmos_pullup" 6 5 3 (5 2 4) (0 4 1) (6 3 1)

References

[1] J. M. Rabaey, Digital Integrated Circuits: A Design Perspective. Prentice Hall, 1996.

[2] M. M. Mano, Digital Design. Prentice Hall, 2nd ed., 1991.

[3] D. Chinnery and K. Keutzer, Closing the Gap Between ASIC & Custom: Tools and

Techniques for High-Performance ASIC Design. Kluwer Academic Publishers, 2002.

[4] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron

FPGAs. Kluwer Academic Publishers, 1999.

[5] K. Padalia, R. Fung, M. Bourgeault, A. Egier, and J. Rose, “Automatic tran-

sistor and physical design of FPGA tiles from an architectural specification,” in

ACM/SIGDA Int’l Symp. Field-Programmable Gate Arrays, pp. 164–172, 2003.

[6] J. Rose and S. Brown, “Flexibility of interconnection structures for field-

programmable gate arrays,” IEEE J. Solid-State Circuits, vol. 26, pp. 277–282, Mar.

1991.

[7] P. Chow, S. O. Seo, J. Rose, K. Chung, G. Paez-Monzon, and I. Rahardja, “The

design of a SRAM-based field-programmable gate array—Part II: Circuit design and

layout,” IEEE Trans. VLSI Systems, vol. 7, pp. 321–330, Sept. 1999.

[8] A. S. Sedra and K. C. Smith, Microelectronic Circuits. Oxford University Press,

4th ed., 1998.

126

References 127

[9] J. Ferguson and A. J. Moore, “Solutions for maximizing die yield at 0.13 µm,” Solid

State Technology, vol. 45, July 2002.

[10] F. J. Kurdahi and C. Ramachandran, “Evaluating layout area tradeoffs for high

level applications,” IEEE Trans. VLSI Systems, vol. 1, pp. 46–55, Mar. 1993.

[11] H. Mecha, M. Fernandez, F. Tirado, J. Septien, D. Mozos, and K. Olcoz, “A method

for area estimation of data-path in high level synthesis,” IEEE Trans. Computer-

Aided Design of Integrated Circuits and Systems, vol. 15, pp. 258–265, Feb. 1996.

[12] A. C.-H. Wu, V. Chaiyakul, and D. D. Gajski, “Layout-area models for high-level

synthesis,” in IEEE Int’l Conf. Computer-Aided Design, pp. 34–37, 1991.

[13] S. H. Gerez, Algorithms for VLSI Design Automation. John Wiley & Sons, 1999.

[14] N. Sherwani, Algorithms for VLSI Physical Design Automation. Kluwer Academic

Publishers, 1993.

[15] T. Serdar and C. Sechen, “AKORD: Transistor level and mixed transistor/gate level

placement tool for digital data paths,” in IEEE Int’l Conf. Computer-Aided Design,

pp. 91–97, 1999.

[16] Synopsys, “Cadabra.” http://www.synopsys.com/products/ntimrg/cadabra_

ds.html, Oct. 2004.

[17] Y. Ogawa, M. Pedram, and E. S. Kuh, “Timing-driven placement for general cell

layout,” in IEEE Int’l Symp. Circuits and Systems, pp. 872–876, 1990.

[18] H. Onodera, Y. Taniguchi, and K. Tamaru, “Branch-and-bound placement for build-

ing block layout,” in ACM/IEEE Design Automation Conf., pp. 433–439, 1991.

[19] M. Pedram, M. Marek-Sadowska, and E. S. Kuh, “Floorplanning with pin assign-

ments,” in IEEE Int’l Conf. Computer-Aided Design, pp. 98–101, 1990.

http://www.synopsys.com/products/ntimrg/cadabra_ds.html
http://www.synopsys.com/products/ntimrg/cadabra_ds.html

References 128

[20] S. N. Adya and I. L. Markov, “Fixed-outline floorplanning through better local

search,” in Int’l Conf. Computer Design, pp. 328–334, 2001.

[21] C.-C. Chang, J. Cong, and X. Yuan, “Multi-level placement for large-scale mixed-

size IC designs,” in Asia South Pacific Design Automation Conf., pp. 325–330, 2003.

[22] S. Phillips and S. Hauck, “Automatic layout of domain-specific reconfigurable sub-

systems for system-on-a-chip,” in ACM/SIGDA Int’l Symp. Field-Programmable

Gate Arrays, pp. 165–173, 2002.

[23] N. Kafafi, K. Bozman, and S. J. E. Wilton, “Architectures and algorithms for syn-

thesizable embedded programmable logic cores,” in ACM/SIGDA Int’l Symp. Field-

Programmable Gate Arrays, pp. 3–11, 2003.

[24] K. Padalia, “Automated transistor-level design and layout placement of FPGA logic

and routing from an architectural specification.” Bachelor’s thesis, University of

Toronto, 2001.

[25] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated anneal-

ing,” Science, vol. 220, pp. 671–680, May 1983.

[26] C. Sechen and A. Sangiovanni-Vincentelli, “The TimberWolf placement and routing

package,” IEEE J. Solid-State Circuits, vol. 20, pp. 510–522, Apr. 1985.

[27] R. Fung, “Optimization of transistor-level floorplans for field-programmable gate

arrays.” Bachelor’s thesis, University of Toronto, 2002.

[28] C. Y. Lee, “An algorithm for path connections and its applications,” IRE Trans.

Electronic Computers, vol. EC-10, pp. 346–365, Sept. 1961.

[29] M. Bourgeault, J. Slavkin, and C. Sun, “Automatic transistor-level design and layout

of FPGAs.” Design project report, University of Toronto, 2002.

References 129

[30] Cadence Design Systems, “Virtuoso Layout Editor.” http://www.cadence.com/

products/custom_ic/veditor/index.aspx, Oct. 2004.

[31] I. C. Kuon, “Automated FPGA design, verification and layout,” Master’s thesis,

University of Toronto, 2004.

[32] Taiwan Semiconductor Manufacturing Company, “TSMC 0.18 and 0.15-micron tech-

nology platform.” http://www.tsmc.com/download/english/a05_literature/0.

15-0.18-micron_Brochure.pdf, Oct. 2004.

[33] Canadian Microelectronics Corporation. http://www.cmc.ca/, Oct. 2004.

[34] Cadence Design Systems, “Virtuoso custom design platform.” http://www.

cadence.com/products/custom_ic/index.aspx, Oct. 2004.

[35] Cadence Design Systems, “Virtuoso Chip Assembly Router.” http://www.cadence.

com/products/custom_ic/chip_assembly/index.aspx, Oct. 2004.

[36] S. So, “Automatic layout of FPGA tiles using one-layer metal cells.” Bachelor’s

thesis, University of Toronto, 2003.

[37] Cadence Design Systems, “Diva physical verification.” http://www.cadence.com/

products/dfm/diva/index.aspx, Oct. 2004.

[38] Cadence Design Systems, “Virtuoso Analog Design Environment.” http://www.

cadence.com/products/custom_ic/analog_design/index.aspx, Oct. 2004.

[39] Cadence Design Systems. http://www.cadence.com/, Oct. 2004.

[40] Mentor Graphics, “Calibre DRC/LVS: Physical verification and manufacturability.”

http://www.mentor.com/calibre/datasheets/calibre/html/index.html, Oct.

2004.

http://www.cadence.com/products/custom_ic/veditor/index.aspx
http://www.cadence.com/products/custom_ic/veditor/index.aspx
http://www.tsmc.com/download/english/a05_literature/0.15-0.18-micron_Brochure.pdf
http://www.tsmc.com/download/english/a05_literature/0.15-0.18-micron_Brochure.pdf
http://www.cmc.ca/
http://www.cadence.com/products/custom_ic/index.aspx
http://www.cadence.com/products/custom_ic/index.aspx
http://www.cadence.com/products/custom_ic/chip_assembly/index.aspx
http://www.cadence.com/products/custom_ic/chip_assembly/index.aspx
http://www.cadence.com/products/dfm/diva/index.aspx
http://www.cadence.com/products/dfm/diva/index.aspx
http://www.cadence.com/products/custom_ic/analog_design/index.aspx
http://www.cadence.com/products/custom_ic/analog_design/index.aspx
http://www.cadence.com/
http://www.mentor.com/calibre/datasheets/calibre/html/index.html

References 130

[41] Synopsys, “NanoSim.” http://www.synopsys.com/products/mixedsignal/

nanosim/nanosim.html, Oct. 2004.

http://www.synopsys.com/products/mixedsignal/nanosim/nanosim.html
http://www.synopsys.com/products/mixedsignal/nanosim/nanosim.html

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	1 Introduction
	1.1 Motivation and Goals
	1.2 Organization

	2 Background
	2.1 FPGA Architecture
	2.2 VLSI
	2.2.1 ASICs

	2.3 Related Prior Work
	2.3.1 Area Estimation
	2.3.2 Automatic Layout

	2.4 The GILES Automatic FPGA Design and Layout System
	2.4.1 Netlist Generator
	2.4.2 Placer
	2.4.3 Router
	2.4.4 Previous Results

	3 Improvements to the GILES Automated FPGA Layout System
	3.1 A New Area Model for Cells
	3.1.1 Previous Area Model and Measurement of Accuracy
	3.1.2 New Area Model

	3.2 Grouping Transistors into Cells
	3.2.1 Functional Groupings
	3.2.2 Groupings of Configuration SRAMs
	3.2.3 Combined Groupings

	3.3 Tile Area Compared to a Commercial FPGA

	4 Automatic Layout of a Complete FPGA
	4.1 Architecture
	4.1.1 Periphery Tiles

	4.2 Circuit Design
	4.2.1 Level Restorer
	4.2.2 Programming Infrastructure
	4.2.3 Power-up Protection

	4.3 Metal Layer Allocation
	4.4 Cell Layouts
	4.5 Creating Tile Placements with GILES
	4.6 Integrating with the Virtuoso Custom Design Platform
	4.6.1 Tile Placements
	4.6.2 Power Grid
	4.6.3 Clock Tree
	4.6.4 Power-up Protection
	4.6.5 Routing
	4.6.6 Tiling the Array
	4.6.7 I/O Pads and Programmer

	4.7 Verification
	4.8 Design Time

	5 Conclusions
	5.1 Contributions
	5.2 Future Work

	Appendix A Experimental Results for Transistor Groupings
	Appendix B POWELL Architecture Description
	Appendix C POWELL Cell Layout Information
	References

