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Abstract
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University of Toronto

2007

There is increasing interest in developing Field Programmable Gate Arrays (FPGA) architec-

tures with new logic blocks containing specific functionality, such as special-purpose computa-

tional blocks and processors. In the development of new FPGAs, a key part in the evaluation of

different logic block ideas and routing architectures is to determine their impact on the need for

routing wires. This demand is typically determined through laborious and compute-intensive

experimentation which is not possible in the early stages of architecture development. This

gives rise to the need for FPGA routing demand models that could be employed at this stage.

This thesis presents an FPGA interconnect model that predicts routing demand, to guide

the architect in the early stages of architecture development. The goal is to produce a model

that is as simple as possible but still usefully accurate so that knowledge, understanding and

intuition can be transmitted by the model. The inputs to the model are a characterization

of the logic block architecture and a set of well-known routing architecture parameters. The

output is the number of routing tracks per channel required for that logic block and routing

architecture, in an island-style FPGA.
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Chapter 1

Introduction

In recent years, there has been increasing interest in developing new Field Programmable Gate

Arrays (FPGA) architectures. In particular there is interest in developing FPGA architectures

with new logic blocks containing more specific functionality including special-purpose compu-

tational blocks, memories and even processors [3, 5, 44, 47, 63]. For each new logic block

architecture, a key part of its evaluation is to determine its need for routing wires, and its

impact on the need for extra routing wires when inflexibility is introduced to the routing archi-

tecture. This routing demand is typically measured through laborious and compute-intensive

experimentation, requiring the synthesis of benchmark circuits into candidate architectures.

This is difficult to do in the early stages of architecture development, however, as there is no

complete architecture to synthesize circuits into. Furthermore, the effort required to create

prototype tools and run time-consuming experiments for nascent architectures is too great to

do for every new logic block and routing architecture idea. Therefore there is a need for an

FPGA routing demand model that is simple to use, and provides understanding and intuition

on FPGA routing and its interaction with logic block architecture, to guide the architect in the

early stages of architecture development.

However, there is a lack of models for this purpose. Most of previous interconnect models in

literature do not consider the inflexibility of FPGA routing architecture. The few models that

are FPGA-specific consist of complex equations, from which it is difficult to draw intuition on

FPGA routing to guide an architect in early-stage architecture development.

1



Chapter 1. Introduction 2

This research presents an FPGA interconnect model that predicts routing demand, to guide

an FPGA architect in early-stage architecture development. The inputs to the model are a

characterization of the logic block architecture and a set of well-known routing architecture

parameters. The output of the model is the routing demand/track count (often referred to as

W, the number of routing tracks per channel) required for that logic block and routing archi-

tecture, in an island-style FPGA. The model’s inputs and output are visually shown in Figure

1.1.

Model 

Inputs

Model 

Output

W
Logic 

Block

Figure 1.1: FPGA routing demand model inputs and output

The specific goal is to produce such an FPGA interconnect model that is as simple as pos-

sible, while still usefully accurate, and provides understanding and intuition on FPGA routing

and its interaction with logic block architecture. The model is intended to guide an archi-

tect in evaluating new logic block architectures for its impact on routing demand and routing

architecture exploration, in early-stage architecture development, in the absence of empirical

methods and benchmark circuits. While this model is intended to replace empirical methods
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in the early stages of architecture development, for providing quick preliminary feedback, the

final architecture decisions should still be based on detailed experimentation.

The modeling approach is an empirical one, in combination with derivations from intuitive

observations. We begin with a simple and intuitive model for the required channel width of

a routing architecture of extreme overpopulation of connectivity – the fully flexible FPGA.

We then incrementally reduce the flexibility of the modeled routing architecture, by reducing

flexibility in routing architecture parameters. At the end of this gradual process, we arrive at

the final routing demand model.

The logic block architectures used in this empirical approach are clusters of lookup table

based logic blocks. While this does not test the model for new logic blocks such as special-

purpose computational blocks, memories and processor cores, it has the advantage that the

quality of the results can be compared to experimentally measured data. Furthermore in

Chapter 5 we discuss how to apply the model for these new logic blocks by estimating parameters

characterizing the logic block architecture.

1.1 Organization

This thesis is organized as follows. Chapter 2 provides the background on FPGA architecture

terminology and tool flow. It also reviews a large body of routing models in literature, some of

which this work draws from.

Chapter 3 presents a detailed description of the modeling methodology.

Chapter 4 discusses the creation of the model as it evolves into a complete equation pre-

dicting track count, as a function of logic block and routing architecture parameters.

Chapter 5 demonstrates the application of the model in early-stage architecture develop-

ment. This includes providing feedback on evaluating routing demand of logic block archi-

tectures, exploring routing architecture space without tools and circuits, and estimating track

count for a commercial FPGA architecture.

Finally, Chapter 6 concludes this work and suggests potential avenues for future research.



Chapter 2

Background and Previous Work

This chapter begins by reviewing FPGA architecture terminology, including the logic block

architecture and routing architecture that is our goal to model. Next an outline the CAD

flow required to implement a circuit onto an FPGA architecture is given. Then we give an

overview of general ASIC interconnect models from classical to contemporary. This chapter

concludes with a review of FPGA specific interconnect models which are based on the general

ASIC models.

2.1 FPGA Architecture Terminology

This section reviews the most common architecture in research for SRAM-based FPGAs, the

island-style FPGA architecture. This architecture forms the basis for the present work.

The island-style FPGA architecture uses a symmetric structure in which logic blocks (LB)

are laid out in an array of islands, as shown in Figure 2.1. The logic blocks are surrounded

by routing channels, where routing wires lie. At the periphery of the array are IO blocks that

connect the FPGA’s logic blocks to off-chip devices.

We will describe the details of the logic block in the following subsection.

4
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LB LB LB LBIO

LB LB LB LB

LB LB LB LB

LB LB LB LB

IO

IO

IO

IOIOIOIO

IOIOIOIO

IO

IO

IO

IO

Figure 2.1: The island-style FPGA architecture

2.1.1 The Logic Block Architecture

The most common logic block architecture is made up of a group/cluster of basic logic elements

(BLEs) [9]. This is called a cluster-based logic block, or simply a logic cluster as shown in

Figure 2.2 (b). The number of inputs to the logic cluster is I, and the number of outputs

equals the number of BLEs in the logic cluster, the cluster size N . Each BLE consists of a

K-input lookup table (LUT) and a register. A two-input multiplexer is used to provide either

a registered or unregistered BLE output as shown in Figure 2.2 (a). Each logic cluster is “fully

connected” meaning that all I inputs and N BLE outputs can connect to each of the K inputs

on every LUT. This connectivity is implemented using a multiplexer on each of the BLE input

as shown in Figure 2.2 (b).

Previous research [1] has shown that the number of input pins to the logic cluster I should

be set according to Equation 2.1.1.1 to permit complete use of BLEs in the cluster. In this

work we adopt this architectural choice.
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Figure 2.2: Structure of (a) basic logic element (BLE) and (b) logic cluster [9]

I =
K

2
(N + 1) (2.1.1.1)

We assume the input and output pins of the logic cluster are evenly distributed among the

four sides of the logic cluster in the manner shown in Figure 2.3, which shows an example logic

cluster (N = 4, K = 4 and I = 10).

Logic Block

0 4 8

1

5

9

2 6

13

10

3

12

7

11

Input P in

Output P in

Figure 2.3: Location of input and output pins on the logic cluster

In commercial FPGAs more complex logic cluster architectures are used. For example the

Altera Stratix II adopts a logic cluster of size 8, each basic logic element being the Adaptive

Logic Module (ALM) shown in Figure 2.4. The ALM contains a fracturable LUT [42] with
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additional carry-chain circuitry. While this commercial logic block is far more complex than our

logic block, it has the same basic hierarchical structure. We believe the logic block architecture

we consider is representative of commercial and future FPGA logic block architectures.

Figure 2.4: A commercial logic block architecture: the Altera Stratix II ALM [4]

The logic blocks implement the logic functionality of circuits and some local connections

internal to the logic block. To fully implement the circuit logic blocks must be connected using

the FPGA routing architecture discussed in the next subsection.

2.1.2 The Routing Architecture

In this subsection we will describe the routing architecture space considered in this work.

Along the way we review a number of routing architecture parameters, many of which were

introduced in [51] and have become the standard method for describing island-style FPGA
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routing architecture. These parameters parameterize a large space of routing architectures,

and we will use them as inputs to our model.

In the island-style FPGA architecture, between the rows and columns of logic blocks are

horizontal and vertical routing channels. Each routing channel spans the length of the array.

The portion of a channel adjacent to a logic block is a channel segment. In each channel segment

there are W wire tracks, where routing wires lie. This is often referred to as the channel width,

or track count. We assume that all channel segments have the same width as Betz et al. in [9]

showed there is little advantage to making them different.

In this work we also assume that the detailed routing architecture employs the single-driver

approach, studied by Lemieux et al. in [38], where each wire can only be driven by a single

source, chosen by a multiplexer followed by a buffer at the beginning of the wire as shown in

Figure 2.5. This is now the common standard in industry. Altera FPGAs use this wire design

and refer to it as direct drive wires [41]. Xilinx FPGAs use the same approach and refer to it

as unidirectional wires [64].

Logic 

Block

Logic 

Block

Logic 

Block

M
U

X

Figure 2.5: Example of FPGA single-driver interconnect

The length of a wire L is the number of logic blocks it spans. A wire that spans multiple

logic blocks is referred to as a starting wire in the location containing its multiplexer. The

example wire shown in Figure 2.5 has length 2. Betz et al. in [9] studied such routing architec-

tures for bidirectional wires that are pass transistor and buffer switched. He suggested a mix

of medium length wires length 4 and length 8 for best area delay.

In a commercial routing architecture, such as that of Altera’s Stratix II FPGA [42], 89%

of the tracks run length 4 wires (208 horizontally and 128 vertically), and the rest consists of
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long wires of length 24 (24 horizontally) and 16 (16 vertically). Another commercial routing

architecture, that of Xilinx’s Virtex 4 FPGA [65], has 65% length 6 wires (120) and 22% length

2 wires (40) and 13% chip length long wires (24), both horizontally and vertically.

For the scope of this work, we will assume all wires in the detailed routing architecture

have the same length. Commercial routing architectures have a mix of wire lengths to achieve

optimal performance, whereas our goal is to study the routability of different wire lengths.

Length will be varied from 1 to 8 to model a large routing architecture space.

Between channel segments, at the intersection of the horizontal and vertical channels, are

switch blocks [51]. In an switch block, labeled as S in Figure 2.6, routing switches are used

to connect wires for turning corners or extending farther down a channel. The flexibility of the

switch block, Fs, is defined to be the total number of starting wires adjacent to the switch block

each incoming wire can connect using routing switches. Routing switches are implemented as

multiplexer that choose the driver of a wire. The switch block in Figure 2.6 (a) uses a dashed

line to indicate a routing switch between wires.

A connection block [51] conceptually contains the connection between the logic block

and the routing wires in the channel segments. It is separated into the input connection block

and the output connection block. The input connection block is a set of routing switches,

implemented by multiplexers, selecting routing wires from the adjacent channel segment to

connect to the logic block input pins. The flexibility of the input connection block, Fcin, is

defined to be the total number of wires that can connect to each input pin through routing

switches. These routing switches are depicted in Figure 2.6 (b) as circles.

The flexibility of the output connection block, Fcout, is defined to be the total number of

starting wires in local channel segments that each output pin can connect via routing switches.

The connection block in Figure 2.6 (b) uses a dashed line to indicate a routing switch between

output pin and wire. The output pin routing switch is implemented by the same multiplexer

that chooses the driver of a wire as the Fs routing switch, hence Figure 2.6 shows them both

as dashed lines going into these multiplexers.

The input and output pins on a logic block can be either logically equivalent or not.

Logical equivalence between a set of pins means they can be swapped for one another without
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Figure 2.6: Island-style FPGA with single-driver routing architecture [38]

change to the functionality of the logic, such as the inputs of an AND gate. In Section 2.1.1 it

was assumed logic clusters are “fully connected”, and this means the I input pins of the cluster

are logically equivalent. This gives routing flexibility since pins are evenly distributed among

the four sides of the logic block as in Figure 2.3 enabling programmable connections to wires

in multiple channel segments when the pins are logically equivalent. This architecture feature

is represented using the binary parameter Eqv. We consider the input pins and output pins to

either all be logically equivalent (Eqv = 1), or not (Eqv = 0).

In sum there are five routing architecture/flexibility parameters we consider: Fs, Fcin,

Fcout, L, and Eqv. We will use these routing flexibility parameters as inputs to the routing

model.
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2.2 FPGA CAD Flow

This section reviews the Computer Aided Design (CAD) steps of implementing a circuit onto

an FPGA architecture described in the last section. This is an important part of our modeling

methodology, which will be described in Chapter 3.

The process of implementing a circuit onto an FPGA architecture can be divided into

five steps, namely: synthesis, technology mapping, packing, placement and routing. The final

output is a detailed placement and routing solution. Figure 2.7 shows a flowchart of the typical

FPGA CAD flow. The following subsections will describe the algorithms that are typically used

in each step of the CAD flow.

Circuit Description

S ynthesis

Technology Mapping

Packing

P lacement

R outing

Implementation S olution

Figure 2.7: FPGA CAD flow

2.2.1 Synthesis and Technology Mapping

In the synthesis step of the CAD flow, a circuit is translated from a hardware description

language (HDL) (such as VHDL or Verilog), into a gate-level representation. The gate-level

representation consists of a network of Boolean logic gates and flip-flops. Often logic optimiza-
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tions, independent of the implementation technology, is performed at this step.

Once the circuit is in a network of boolean gates, technology mapping is performed on it to

convert it into a network of library gates specific to the implementation technology. For FPGAs

these are often K-input lookup tables (LUT).

There are a number of FPGA synthesis and technology mapping algorithms [6, 18, 20] opti-

mizing for a number of objectives including delay, area and power. The SIS/Flowmap/FlowPack

[19] algorithms are the most widely used for synthesis and technology mapping to FPGAs. The

Flowmap algorithm is able to find a logical-delay-optimal (depth-optimal) solution in polyno-

mial time, and FlowPack further improves the solution through area reduction.

For this work, the SIS/Flowmap/FlowPack tools are used for the synthesis and technology

mapping of circuits into netlists of K-input LUTs and flip-flops.

2.2.2 Packing

After synthesis and technology mapping the circuit must be transformed into a netlist of logic

blocks (clusters) by grouping together related LUTs and flip-flops. This step is known as

packing.

Packing algorithms can be categorized into three general approaches, namely top-down

([30, 32]), depth-optimal ([22, 46]) and bottom-up ([25, 43]). In a top-down approach a circuit

is recursively partitioned into fixed size clusters. Depth-optimal solutions minimizes circuit

delay at the expense of area by duplicating logic. Bottom-up approaches are most suitable for

FPGAs because they have fast run times and yield good circuit performance.

An example bottom-up packing approach is the VPack [9] clustering algorithm. VPack

builds clusters sequentially one at a time. It first perform a grouping of LUTs and flip-flops

into BLEs, then group related BLEs into logic blocks/clusters. The first step involves a simple

pattern matching. The second step, the clustering, starts by selecting a seed BLE for a potential

cluster and grows the cluster by greedily adding other BLEs that are attracted to it. The

attraction function is based on the number of shared nets between BLEs. The cluster is complete

when the number of BLEs in it equals the cluster size N of the FPGA architecture, or when

other constraints such as input usage arise. This procedure is repeated until all BLEs are
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clustered.

For this work, VPack is used for the packing of circuits into netlist of logic blocks, which

can then be placed in the FPGA as described in the next subsection.

2.2.3 Placement

The placement step in the FPGA CAD flow places the netlist of logic blocks (clusters) of the

circuit on to the fixed locations in the FPGA. An example placement problem is depicted in

Figure 2.8 where one must place two LUTs into 3 × 3 array.

Figure 2.8: An example placement problem

The FPGA placement problem takes as input a netlist of logic blocks and outputs their

positions in the FPGA, optimized for three metrics. These three metrics are: total wirelength,

routability (balance wiring density across the FPGA), and performance. There are three classes

of placement approaches: min-cut partition ([31]), analytical ([12, 26, 34]), and simulated

annealing ([9, 54]). Simulated annealing is the most common approach since it is easy to add

new optimization goals.

The Simulated Annealing algorithm starts with a random placement, and then performs

a number of pair-wise random logic block swaps. At any placement stage the quality of the

placement is measured by a cost function (which is to be minimized). The algorithm always

accepts a swap that reduces the cost function and accepts with a probability a swap that
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increases the cost function (a bad swap). The choice to accept some bad swaps, allows simulated

annealing to escape cost function local minima; this is called “hill-climbing”. The probability

of accepting a bad swap is e−∆C/T , where ∆C is the amount increase in cost function, and

T is temperature. The temperature is set to be high at the beginning of the algorithm to

accept nearly all swaps. Gradually temperature decreases and the probability of accepting a

cost-increasing swap decreases. At low temperatures only cost-reducing swaps are accepted.

The algorithm ends when a stopping criterion is met. In research, the most commonly used

simulated annealing placer for FPGAs is the VPR placer [9], which we use in this work.

2.2.4 Routing

The final stage in the FPGA CAD flow is routing. It is the step which connects the placed

logic blocks using routing wires and routing switches. The routing problem takes as inputs the

placement solution with a netlist of circuit connections, and a detailed routing architecture.

The output is a detailed mapping solution of nets to pins and wires and which routing switches

should be turned on.

Routers can be classified into two categories: global-detailed two-step routers ([13, 37])

and combined single-step routers ([9, 45]). Global-detailed routers first assign nets to channels

in a first global routing step then assign nets to specific pins and wires in a second detailed

routing step. Global-detailed routers are not suitable for FPGAs because the limited flexibility

of FPGA routing architecture makes the second step difficult under global routing constraints

determined in the first step, and it has been shown that a single-step router is superior [9].

The combined single-step router searches for a final routing solution directly. The most

widely used single-step router in research is the VPR router [9]. It models any arbitrary

routing architecture by representing it by a routing resource graph, a directed acyclic graph in

which nodes are routing resources (pins and wires) and directed edges are routing switches. An

example routing resource graph is depicted in Figure 2.9. The VPR router’s ability to model

any routing architecture is suitable for this work, as we wish to model a large space of routing

architectures.

With a complete routing resource graph, the VPR router routes the circuit’s nets on the



Chapter 2. Background and Previous Work 15

Figure 2.9: Modeling of FPGA routing architecture as a routing resource graph [9]

routing resource graph using an advanced Pathfinder [45] routing algorithm. It is an iterative

routing algorithm which allows nets to use the same routing resources, causing congestion.

At the end of a iteration if there is congestion, all nets are ripped up and a new iteration

is performed. However, in successive routing iterations the cost of using routing resources

that were overused in previous iterations is penalized. The penalty gradually increases with

the number of iterations and increases dramatically for routing resources overused by many

nets. This approach ensures important nets acquire routing resources that were overused in a

previous iteration, while less important nets move off and use other routing resources resolving

congestion.

The “importance” of nets is captured in the VPR router by a cost function that can optimize

for routability or performance. The routability-driven VPR router uses a cost function that

minimizes wirelength by encouraging each net to use the fewest number of routing resources

possible (taking minimum path). In timing-driven mode VPR router uses a cost function that

encourages timing critical nets to use fastest routing resources. In this work, VPR’s router is

used under routability-driven mode.
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2.3 Previous Research on Interconnect Models

In this section we will review general interconnect models proposed for an ASIC implementation

medium. These models compute the expected wirelength distribution and then predict the

routing demand/wire spacing using the wirelength distribution. It is important to review these

ASIC-centric models because FPGA specific interconnect models are built on top of them,

including some aspects of our model.

2.3.1 Rent’s Rule

One of the most widely explored interconnect model is Rent’s Rule. Rent’s Rule pertains to

the organization of circuits, specifically the relationship between the number of external signal

connections to a partition of logic.
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Figure 2.10: Visual interpretation of Rent’s Rule

Rent’s Rule was first reported in [36] as an empirical observation on that relationship. It

states that for a partition the number of IO connections external to the partition is proportional

to a power of the number of logic blocks of the partition. A visual interpretation is depicted in

Figure 2.10. This power-law relationship is expressed by Equation 2.3.1.1

T = t·Cp (2.3.1.1)
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where T is the number of terminals/external IO connections of the partition, C is the logic

block count of the partition, t, known as Rent constant, is the average number of terminals on

a single basic logic block, and p is the Rent exponent (a constant between 0 and 1). Typical

values for p have been observed in the range from 0.5 for a highly serialized structure to 0.75

for a highly parallel structure.

The Rent exponent reflects circuit topology as well as the amount of optimization achieved

in placement. To more precisely define that notion, Hagen et al. in [29] introduced the intrinsic

Rent exponent, p∗, to characterize optimal circuit placement and measure the interconnect

complexity of a circuit. A higher intrinsic Rent exponent value corresponds to higher topological

complexity. The intrinsic Rent exponent is a lower bound on Rent exponent p∗ < p, since it

assumes optimal placement.

There are many applications of Rent’s Rule. The primary application is in estimating

wirelength distributions of integrated circuit chips. The earliest such applications are classic

wirelength distribution models by Donath and Feuer independently, briefly described in the

next subsection.

2.3.2 Donath’s and Feuer’s Models on Wirelength Distribution

Using Rent’s Rule, Donath in [23] derived a model for an upper bound on the average 2-pin

wirelength of a circuit/package, referred to as R. He found that the upper bound of average

wirelength R is a function of the circuit size C and the Rent exponent p, as

R ∝ Cp− 1
2 for p > 1

2

R ∝ logC for p = 1
2

R ∝ F (p) for p < 1
2

(2.3.2.1)

where F (p) is a function of p but independent of C.

This model only predicts a theoretical upper bound on a single average. Later, Donath

extended his findings into a model for wirelength distribution in [24], which can be used to

predict wiring space/routing demand in a uniform gate array routing. He found the distribution
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of wirelengths to be defined by Equation 2.3.2.2

f(r) = gr2p−3 for 1 ≤ r ≤ L

f(r) = 0 for r > L

(2.3.2.2)

where f(r) is the fraction of nets with wirelength r, L is a constant related to the size of the

array, and g is a normalization constant.

Donath’s derivation is based on a devised model for the placement process. He assumed a

two-dimensional placement model based on recursive partitioning that has the smallest bisection

net crossing (minimum cut). This imposes a hierarchical structure on the placement.

An alternative wirelength distribution model that does not impose a recursive/hierarchical

partitioning placement assumption is Feuer’s model. Feuer in [27] states that for a good place-

ment the Rent relationship will hold, on average, for any geometric region/partition of the

circuit. Furthermore, the distribution of wirelengths is

f(r) ∝ r2p−4 (2.3.2.3)

and the average wirelength in a partition of C logic blocks is

R ∝ Cp− 1
2 (2.3.2.4)

both results for a Rent exponent p > 1
2 . Feuer’s results agree with those of Donath in that the

wirelength distribution is a power function, and Feuer extends Donath’s model for any arbitrary

partition of the circuit. Also Feuer formulated an exact expression for the average wirelength

in Equation 2.3.2.5.

α = 2− 2p

R =
√

2
(2− α)(5− α)
(3− α)(4− α)

Cp− 1
2

(2.3.2.5)

Both Feuer and Donath’s wirelength distribution models, built from Rent’s Rule, can be

applied to estimate the wiring space/routing demands of a gate array. One such work that does

this is El Gamal’s stochastic interconnect model for gate arrays.
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2.3.3 El Gamal’s Stochastic Interconnect Model

In [28], El Gamal developed a stochastic model to predict the wiring requirements of Master

Slice Gate Arrays that have a two-dimensional array of identical logic blocks, with horizontal

and vertical routing channels between the rows and columns of logic blocks. The model divides

the channels into channel segments that span the length or width of one logic block. For such an

architecture, which is similar to an island-style FPGA, El Gamal’s model predicts the amount

of wiring required in a channel segment, referred to as the channel density. An example of the

channel density calculation is given in Figure 2.11.
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Figure 2.11: An example 2-D Master Slice routing with channel densities labeled

The model has the following assumptions. First it assumes that logic blocks can be repre-

sented by points in a two-dimensional grid. It is also assumed that all routings are independent

two terminal connections originating stochastically at one logic block, and traveling a minimum

distance (selected at random according to a distribution) through the channel segments to an-

other logic block. This means routes can turn at any point and be of any length as in ASIC

routing or routing in a fully flexible FPGA. It is further assumed that the number of connec-

tions per logic block can be drawn independently from a Poisson distribution with parameter

λ, where λ is defined as the average number of used input pins per logic block. The average
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wirelength per connection, in number of logic blocks traversed, is assumed to be given as R.

It can be estimated using either Donath or Feuer’s wirelength distribution models described in

Section 2.3.2. Finally, it is assumed that the trajectory of the routes follows a non-reversing

random walk.

Under the above assumptions, in an array that has M × M routing channels, El Gamal

found that the channel densities will be Poisson distributed, with the average channel density

Wavg given by

Wavg =
λR

2
(2.3.3.1)

This result holds for any distribution (not just Poisson) as long as R is finite and independent

of M.

Although El Gamal’s model was developed for Master Slice circuits, some of its results can

also be applied to the island-style FPGAs we consider. This is true because both types of devices

are based on a two-dimensional array of identical logic blocks/cells. The key assumption when

using El Gamal’s results for island-style FPGAs is that the routing architecture must consist

of unit length wire segments (spanning only one logic block) and have the ability to turn at

any point (very flexible routing architecture). A simple derivation illustrates the validity of El

Gamal’s interconnect model when applied to FPGAs.

Suppose there is an M × N array of identical logic blocks, each with 2 channel segments

adjacent – one vertical and one horizontal. The total number of two-terminal connections is

λMN , and since each is on average R in length, the total expected routing wirelength would

be λRMN . Each channel segment contains wire segments of unit length and total number

of channel segments is 2MN , therefore the average number of unit length wires in a channel

segment – average channel width – is

Wavg =
total wirelength

number of channel segments
=

λRMN

2MN
=

λR

2
(2.3.3.2)

Later we will make use of El Gamal’s result on average channel density to formulate an

interconnect model for fully flexible FPGAs whose wire segments are all unit length.
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2.3.4 Song’s Channel Density Estimation

While El Gamal was one of the first to consider the problem of estimating routing channel

densities for two-dimensional gate array integrated circuits, his model abstracted arrays of logic

blocks as lattice points in a two-dimensional grid, which can not be used to describe nets

from distinct boundaries of a logic block. To improve routing estimation precision, a similar

stochastic model that considered block boundaries was derived in [57].

In [57] Song et al. extended El Gamal’s channel density/wire space estimation to take

into account geometries of identical logic blocks. They consider routes not emanating from a

lattice point representing a logic block, but a boundary of a logic block with four sides. Some

assumptions of El Gamal were also made in [57] namely, all nets are two-terminal connections,

routes are made with minimum distance, trajectory of the routes follows a non-reversing random

walk, and the number of connections per logic block can be drawn independently from a Poisson

distribution with parameter λ.

Also similar to El Gamal’s model, Song’s model considers a gate array with ASIC-style

routing. All routes can be of any length and turn at any point. There is no inflexibility in

the routing choices, unlike the case of an FPGA routing architecture. However, similar to El

Gamal’s model, Song’s model could be applied to FPGA interconnect prediction with empirical

calibration to incorporate routing architecture inflexibility information.

The result of Song’s model is that the channel density equals the sum of three independently

drawn Poisson distributions X(L), X’(L) and X(LR) with means according to Equation 2.3.4.1,

where each distribution represents the three types of wires shown in Figure 2.12 contributing

to channel density.

E[X(L)] =
λ

4

E[X ′(L)] =
λ

4

E[X(LR)] = 2λ

∞∑

r=1

∞∑
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(
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(2.3.4.1)



Chapter 2. Background and Previous Work 22

Logic B lock

Logic B lock

X(LR)

X’(L)

X(L)

X’(L)

X(L)

Figure 2.12: Model of channel density as three types of routing wires in [57]

where ql is the probability a net terminates at a border of a logic block l distance away and has

the property
∞∑

l=1

8lql = 1 (2.3.4.2)

and its distribution is determined by the wirelength distribution, which was first modeled by

Donath and Feuer in Section 2.3.2. One could also use a modern wirelength distribution model

such as that of Davis [21] overviewed in the next subsection.

2.3.5 Davis’ Wirelength Distribution Model

Similar to Donath’s and Feuer’s wirelength distribution models, the more recent wirelength

distribution model of Davis in [21] is based on Rent’s Rule. Davis made a number of extensions

to the classic models including, deriving a continuous distribution function of wirelength, ex-

tending to multi-terminal net model to account for multiple sink nets, and deriving a complete

closed form analytic expression for wirelength distribution.

Davis starts out considering a point-to-point star-connected routing model of nets as shown

in Figure 2.14(a). He considers the three partitions of a gate array of identical logic blocks as

in Figure 2.13, where A is the source partition (always containing a single logic block), B is
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the buffer partition and C is the wavefront partition (all logic blocks a distance r away from

source partition). He formulates the expected number of IO connections connecting A and C

by applying a conservation of terminals law and Rent’s Rule. Since the wavefront partition C is

by design a distance r away from source partition A, Davis has derived the number of routing

wires of length r. This gives a complete stochastic wirelength distribution for nets connecting

logic block 1.

2 3 4 51

7 8 9 106

12 13 14 1511

17 18 19 2016

22 23 24 2521

Partition A Partition B

Partition C
(distance 6 

from A)

Figure 2.13: Davis model of determining wirelength distribution for a single logic block

Once the stochastic wirelength distribution for logic block 1 is determined, Davis ”removes”

logic block 1 from the array for calculating the remainder of the wiring distribution to avoid

double counting. He designates logic block 2 as the new source partition A and perform the

same calculation of wirelength distribution. He repeats the same process for all other logic

blocks in the system and superimposes wirelength distributions for individual logic blocks to

obtain the wirelength distribution for the entire system.

Davis then adjusts the model to match closer to real routing topology by a linear net model

depicted in Figure 2.14(c).

The resulting analytical derivation for wirelength distribution for an M × M gate array is
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Figure 2.14: Davis models routing of a multi-sink net by (c) linear net model

α =
f.o.

f.o. + 1

f(r) =
αt

2
Γ(

r3

3
− 2Mr2 + 2M2r)r2p−4 for 1 ≤ r < M

f(r) =
αt

6
Γ(2M − r)3r2p−4 for M ≤ r < 2M

(2.3.5.1)

where f(r) is the fraction of nets with wirelength r, f.o. is the average fanout, and t and p are

Rent’s Rule parameters according to Equation 2.3.1.1, repeated here

T = t·Cp (2.3.5.2)

and Γ is a constant determined by p and M.

It has been shown in [21] that this wirelength distribution model is more accurate than

Donath’s model in [24].

Up to now, all interconnect models we have reviewed are theoretic models built on the

empirical observation known as Rent’s Rule. There are many empirically derived models for

predicting interconnect use. One such model we rely on for our work is the post-placement

estimation of wirelength in the RISA placer, described in the next subsection.
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2.3.6 RISA Wirelength Model

RISA, developed by Cheng [14], is a placement algorithm for standard cells. It uses a routing

wirelength model in its cost function. Cheng uses the basic bounding box wirelength model

with an enhancement to more accurately predict wirelength. A more general version of this

enchancement was developed by Swartz [60]. We will review this enhanced wirelength model

since we make use of it in the present work.

The basic bounding box wirelength model predicts that the wirelength needed to route a

net is equal to its half-perimeter bounding box length. This is correct for nets with two or three

terminals, but for nets with four or more terminals, the half-perimeter bounding box does not

account for the extra wire needed to reach all of the terminals.

The RISA wirelength model accounts for the extra wire by scaling the half-perimeter bound-

ing box wirelength of a net by a correction factor. The correction factor compensates for the

fact that the half-perimeter bounding box model underestimates wirelength for nets with more

than three terminals. Nets with just two or three terminals will have a correction factor of 1.0

as shown in Figure 2.15. The wire length correction factor for a four-terminal net is about 1.08,

since extra wire is needed to connect the fourth terminal as shown in Figure 2.15.

Figure 2.15: Example of correction factors [59]

The correction factor for different fanout nets were empirically determined by creating

thousands of randomly distributed net terminals and averaging the correction factor for each

of the different fanout nets. Table 2.1 lists the correction factors given in [14] for nets with up

to fifty terminals.
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Num. Correction Num. Correction

Terminals Factor Terminals Factor

2 ∼ 3 1.00 15 1.69

4 1.08 20 1.89

5 1.15 25 2.07

6 1.22 30 2.23

7 1.28 35 2.39

8 1.34 40 2.54

9 1.40 45 2.66

10 1.45 50 2.79

Table 2.1: RISA correction factors for nets with up to fifty terminals [14]

For higher fanout nets Swartz [60] determined the correction factors for up to 3000 termi-

nals by the same empirical approach. They extended RISA’s wirelength model for nets with

terminals greater than 50 using Equations 2.3.6.1.

C(k) = 2.6× 10−2· k + 1.49 for 50 < k < 85

C(k) = −1.8× 10−6· k2 + 1.1× 10−2· k + 2.79 for k ≥ 85
(2.3.6.1)

We have found that RISA’s wirelength model and its extension by Swartz are good at

predicting wirelength after placement.

2.4 FPGA Specific Interconnect Models

In the previous section we reviewed general interconnect models from classic to contemporary,

originally proposed for ASIC routing. While these models are not directly applicable to FPGA

interconnect, many research efforts have extended them for FPGAs. In this section we will

review some of such FPGA interconnect models.
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Predicted Difficulty Condition

Unroutable Wneed > WFPGA + 0.5

Easily Routable Wneed < WFPGA − 0.5

Marginally Routable WFPGA − 0.5 ≤ Wneed ≤ WFPGA + 0.5

Table 2.2: Routability prediction classification

2.4.1 Chan’s FPGA Routing Difficulty Prediction

One popular FPGA interconnect model is the FPGA routing difficulty prediction model by

Chan et al. Chan et al [11] developed a model to predict the difficulty of successfully routing a

technology mapped circuit, before placement of the circuit. To predict whether or not a circuit

will route successfully in a given FPGA, the model estimates the amount of routing resources

needed by the circuit. If the target FPGA has more routing resources than needed by the

circuit, then the circuit is considered routable.

Chan first estimates the minimum channel width (Wneed) required by a circuit for successful

routing using interconnect models of El Gamal [28] and Sastry and Parker [52]. Both of these

models require the average number of pins per logic block, λ, and the average wirelength, R.

The parameter λ can be found after technology mapping. The average wirelength R is estimated

using Feuer’s wirelength distribution model in [27].

Having an estimate of the required channel width, Wneed, and knowing the target FPGA

channel width, WFPGA, the difficulty of routing a circuit is predicted. If the circuit requires

more channel width than available in the target FPGA, then the circuit is unroutable. If the

circuit requires less channel width than available in the target FPGA, then the circuit is easily

routable. The difficulty classification is susceptible to errors in the estimation of required channel

width, Wneed, particularly when the estimate is close to the available channel width, WFPGA.

For this reason Chan uses a margin of error of ±0.5. Therefore when Wneed lies within ±0.5 of

WFPGA, the circuit is considered marginally routable, meaning that it is unknown whether the

circuit is routable. Table 2.2 lists the three classifications and their conditions.

Chan’s FPGA interconnect model serves as a predictor of whether a circuit is likely to fit or

not in a fixed width FPGA. Its categorical modeling is not sufficient for our purposes, which is to
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predict the required channel width for any circuit and FPGA architecture. However, we mirror

Chan’s approach to estimating the required channel width for a fixed FPGA architecture: we use

El Gamal’s model for average channel width to determine the required channel width for a fully

flexible FPGA architecture. Instead of using an analytic model for wirelength computation,

such as that of Feuer as did Chan, we use the empirical model of RISA.

2.4.2 Rahman’s FPGA Wiring Requirement Model

In [49], Rahman et al presented an analytical model for FPGA interconnect. It predicts the

channel width requirement of a design in FPGA before place and route steps in the CAD flow.

It is a model suitable for providing early analysis and feedback for design trade-offs without

experimentation.

Rahman’s model takes as input an estimate of the circuit’s Rent constant t and exponent p

and its size in number of logic blocks C. It uses Davis’s wirelength distribution model in [21]

to estimate the total required wirelength. Rahman estimates the required channel width Wneed

for successful routing by equating the available total wirelength to the estimate total required

wirelength, in Equation 2.4.2.1.

Wneed =
∑2

√
C−2

r=1 r· f(r, t, p)χfpga + rl

2C· et
(2.4.2.1)

where f(r, t, p) is the fraction of nets with wirelength r for designs with Rent parameters t and p,

and rl is the additional wirelengths from using longer than unit wire segments. They measure

typical utilization et of FPGA wires and additional FPGA point-to-point to multi-sink net

model conversion factor χfpga by place and route experiments using place and route tool SEGA

[37] and VPR [9]. The parameter values are calibrated to each place and route algorithm. It

is important to note that they ran experiments only on FPGA routing architectures consisting

of Fs = 3, and Fcin = Fcout = W . However, they do model FPGA routing architectures

consisting of various wire segment lengths by adjusting Davis’s wirelength distribution model

and rl parameter.

For validation they ran experiments using various benchmark circuits, but predict assuming

the same Rent parameters t = K + 1 (for K-input lookup table there are K input and 1 output
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connection), and p = 0.75. They found acceptable prediction results and showed their model

to be better than El Gamal’s average channel density model when predicting required channel

width.

Their other important contribution is in extending their two-dimensional analytical model

for three-dimensional FPGAs. They argued that three-dimensional integration can significantly

reduce total wirelength (higher dimensionality gives more flexibility), as a result reduce channel

width requirement. They supported their argument with their three-dimensional model and

validation experiments. Further validation on this model was later performed by the same

research group in [35].

In sum, Rahman’s model provides an estimate of FPGA interconnect using Davis’s wire-

length distribution model, which in turn requires Rent characterization of the circuit (thus

requiring a placement to measure Rent parameters or an estimate of Rent parameters). Rah-

man’s model, while able to account for different wire segment lengths, must be tuned to each

routing architecture parameter combination (Fs, Fcin, and Fcout etc.). We like their modeling

approach of equating required wirelength and available wirelength for one routing architecture,

so we approach similarly in modeling the fully flexible FPGA. We differ, however, in the choice

of circuit characterization. We use El Gamal’s characterization of logic block and circuits λ

and R instead of Rent parameters.

2.4.3 Kannan’s FPGA Interconnect Estimation: fGREP

A more tool-based FPGA interconnect estimation model than previous models is fGREP [33]

(fast Generic Routability Estimation for Placed FPGA circuits) by Kannan et al. This model

takes in a placed circuit netlist and a routing resource graph, and predicts the required channel

width by estimating channel segment occupancies. In essence it maps out the routing demand

of the circuit placement on a per channel segment basis.

The key aspect in Kannan’s model is the notion of demand by a net on a routing resource.

If P is the set of all routing choices for a net, and Pi ∈ P are those routes that use the routing

resource vi, then the demand Di on vi exerted by the net is defined as
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Di =
|Pi|
|P | (2.4.3.1)

It is clear that Di can also be interpreted as the probability vi is needed, since it’s value

ranges from 0 to 1. For example, when Di = 1 for a net then routing resource vi must exist

and be used by that net. Every net exerts a demand on a routing resource in the FPGA. When

one sums these individual demands, the final value is the probability-weighted count of number

of routing resources needed. When the routing graph is a global routing resource graph, where

each routing resource represents a channel segment, then the demand sum is the number of

wire segments needed in each channel segment. An example of the demand exerted by a net on

global routing resources is shown in Figure 2.16.

Figure 2.16: Example of demands exerted by (a) terminal T1. (b) terminal T2. [33]

The key step in their estimation is the computation of demands, which requires an enumer-

ation of possible routing paths for nets. They perform this step using a breadth-first traversal

on a routing resource graph, beginning at each net terminal specified by the circuit placement.

It is claimed in [33] that their model can estimate for any detailed routing architecture

as long as the input routing resource graph captures it. However, their experimentation only
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proved the validity of a single routing architecture that has Fcin = Fcout = 1.0. Their results

showed that their model predicts channel width requirements within 4% over their benchmark

circuits.

Kannan’s model is applicable to a large space of routing architectures. This is a feature

that we are interested in for our model. However, Kannan requires the routing architecture

be specified in a routing resource graph. This is inconvenient for an FPGA architect since

it takes a large file (on the order of 100’s MB) to describe a routing resource graph. As an

alternative we opt for an parametrization of routing architectures with input being a number

of easy to understand parameter values defined in Section 2.1.2. An FPGA interconnect model

that uses a similar parametrization of routing architecture is Brown’s Stochastic Model for

FPGAs described in the next section.

2.4.4 Brown’s Stochastic Model for FPGAs

In [10], Brown developed a stochastic model for FPGA routing. It is in the form of a series

of stochastic equations, that takes in parametrization of any of a large space of routing archi-

tectures, and circuit and logic block characterization, and outputs the probability that a net

can successfully route. What sets this model apart from others is that it can model FPGA

interconnect for a large space of routing architectures.

Similar to Chan’s model in Section 2.4.1, Brown uses El Gamal’s result on channel densities.

Brown further assumes, as did El Gamal, that the number of connections per logic block is

Poisson distributed. By El Gamal’s derivations, this assumptions leads to the result that

the channel densities are Poisson distributed also. Knowing channel densities as a Poisson

distribution, Brown is able to compute the likelihood that a circuit will route in a fixed channel

width architecture, where each channel segment has W wiring tracks.

In more detail, Brown takes as input circuit and logic block characterization parameters

λ and R (Section 2.3.3), and routing architecture flexibility parameters Fs, Fcin (fixing other

parameters at L = 1 and Fcout = Fcin) and fixed channel width W . So although the model

only captures unit length architectures, it is powerful in capturing various routing flexibilities

and architectures.
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With the inputs supplied, Brown begins by computing the probability P (RCi) a connection

Ci can successfully route in the specified routing architecture by Equation 2.4.4.1.

P (RCi) =
max∑

r=1

P (RCi |L = r)P (L = r) (2.4.4.1)

where P (RCi |L = r) is the conditional probability of successful routing and P (L = r) is the

probability that connection Ci is of length r. The Brown adopted a geometric distribution for

P (L = r), but any one of Donath, Feuer and Davis’s wirelength distribution model can also be

applied (the distribution function f(r) in Sections 2.3.2 and 2.3.5 is the same as P (L = r)).

The conditional probability of successful routing is modeled by Brown as a sequence of

events of successful connections of routing resources expressed in Equation 2.4.4.2. The physical

interpretation of Equation 2.4.4.2 can be seen in Figure 2.17.

P (RCi |L = r) = P (X1

⋂
S1

⋂
...

⋂
Sr−1

⋂
X2)

= P (X1)P (S1|X1)P (S2|S1)...P (X2|Sr−1)
(2.4.4.2)

where X1 Si and X2 are events of successfully connecting to the first connection block (output

pin to wire), successfully connecting two adjacent wires and successfully connecting to the final

connection block (wire to input pin), respectively.

S ource

Logic 

B lock

Dest.

Logic 

B lock

X1 S1 S2 X2Sr-1

Figure 2.17: Brown’s stochastic model

The conditional probability of each event can be computed by combinatoric arguments given

channel densities from El Gamal’s result.

Once the probability P (RCi) of successfully routing a connection Ci is computed, Brown

repeats the calculations for the next connection Ci+1 with updates to the channel densities to
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reflect the fact that the first connection has been successfully routed. This process is repeated

for all connections and the final output is routability, the average probability of successfully

routing a connection over all, as given in Equation 2.4.4.3.

routability =
1

CT

CT∑

i=1

P (RCi) (2.4.4.3)

Brown’s model is the FPGA interconnect model that most resembles our model in its inputs.

It has the ability to model for a large space of FPGA routing architectures, with various

switching flexibility. Its circuit and logic block characterizations are the same as ours, which

were originally proposed in El Gamal’s model. However, the difference lies in that Brown’s

model requires complex stochastic equations, but our model uses simple analytic equations to

convey intuition on FPGA architecture.

2.5 Summary

In this chapter, we have introduced basic FPGA architecture terminology, including the logic

block architecture and routing architecture. We looked at the CAD flow of implementing a

circuit onto an FPGA architecture. We also overviewed general ASIC interconnect prediction

models that FPGA interconnect models are based on, including aspects of our model. Finally,

we described FPGA interconnect models that are comparable to our model and from which we

have drawn ideas from.

In the next chapter, we describe in detail the modeling approach and experimental setup.
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Modeling Methodology

This chapter describes the methodology by which we develop the FPGA interconnect model

for early architecture development. We begin by a formal definition of the inputs and outputs

of this model in terms of parameters introduced in Chapter 2. Then we establish the context

in which the model is intended to be used. Next we discuss the approach we take to develop

the model, and how to assess its quality. Finally, we describe the experimental methodology

our approach relies on.

3.1 Problem Definition

The goal of this research is to develop a simple and intuitive interconnect model for island-style

FPGAs, for use in early architecture development stages. The model should take as inputs:

1. Characterization of logic block architecture in terms of its routing demand, and some

circuit information in: λ and R.

2. Routing architecture parameters: Fs, Fcin, Fcout, L and Eqv.

The parameters λ and R, from El Gamal’s interconnect model (in Section 2.3.3) charac-

terize the routing demand of the logic block and circuit placed in it. The routing architecture

parameters (defined in Section 2.1.2) model the flexibility of the routing architecture.

The single output of the model is the estimated routing demand/track count required for

successful routing, which we denote Wneed. So the completed model should look as:

34
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Wneed = f(logic block architecture and circuit information, routing architecture)

= f(λ,R, Fs, Fcin, F cout, L, Eqv)
(3.1.0.1)

We seek to develop this model for a balance of simplicity, intuition and accuracy.

The goal of simplicity and giving intuition are important in guiding an architect in the early

architecture development. Accuracy is important because the model should be accurately

enough to be useful.

3.2 Context of Model Application

The FPGA interconnect model developed in this work is intended for use in early stages of

architecture development, to guide an FPGA architect in the absence of an empirical method

that requires tools and circuits. Instead of resorting to an empirical method, the architect can

employ this model for quick preliminary feedback on architectural ideas. To do so, the architect

needs to:

1. Estimate values for λ and R for each logic block architecture under consideration

2. Provide values for the routing architecture parameters Fs, Fcin, Fcout, L, and Eqv.

The routing architecture parameters are easy to choose (and the literature gives a variety of

suggestions), but the architect needs a method to estimate values λ and R, which characterizes

the logic block architecture and circuit. Furthermore, in the interest of developing a widely

useful architecture the characterization needs to be for a set of circuits in a target market, and

not simply one circuit. In Chapter 5, we discuss how this might be done and provide a model

for picking λ and R for cluster-based logic block architectures. With all the inputs determined

the model can be used without any circuits or experiments.

While our model is to be used without any specific circuit or experiment, its development

requires actual benchmark circuits and experiments. While some derivations from first prin-

ciples are used, a majority of the model development process is based on trends observed in
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experimental data obtained from synthesizing benchmark circuits onto architectures being mod-

eled. Therefore during the model development, we measure λ and R for each benchmark circuit

individually, to provide accurate input parameter values. The empirical modeling methodology

is described in the following sections.

3.3 Modeling Approach

Our modeling approach will be detailed in this section. We will first discuss the high-level

strategy for developing the model and then go into details. Next we review the accuracy

metrics and methods used to compare candidate models.

3.3.1 Incremental Modeling Strategy

The goal of this FPGA interconnect model is to provide intuition for architecture development

in the early stages, with reasonable accuracy. For that purpose, the model should inform an

architect the impact of each input parameter, as well as altogether. To gain such transparency

in intuition, a suitable approach is incrementally creating the model, constructing intermediate

models for a subset of architecture parameters.

To incrementally create the model we start (in Chapter 4) by creating a model for a fully

flexible FPGA, in which all routing parameters have maximum values as given in Table 3.1.

Since it is implicit that all routing parameters are at their maximum value the model for a

fully flexible FPGA can omit the routing parameters, and simply be a function of logic block

architecture and circuit characterization parameters as in Equation 3.3.1.1. This is a practice

we adopt throughout: whenever a routing parameter is fixed at its maximum value it does not

appear in the model equation, since its effect is not being modeled.

Once the fully flexible FPGA model is complete, we incrementally generalize it for each

Fs Fcin Fcout L Eqv

3W W W 1 1

Table 3.1: Fully flexible FPGA routing architecture
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routing parameter at a time. We first generalize it for switch block flexibility Fs, to create

an model of form in Equation 3.3.1.2. Keep in mind that since Equation 3.3.1.2 is a gener-

alization of fully flexible FPGA model in Equation 3.3.1.1, we ensure that when Fs is at its

maximum value Equation 3.3.1.2 reduces to (either exactly or approximately) Equation 3.3.1.1.

We next generalize switch block flexibility model for input connection block flexibility Fcin to

create Equation 3.3.1.3 and so on. We follow this procedure until the model is generalized to

include all parameters. The intermediate models give intuition on the impact of each parameter

individually.

Wneed = f(λ,R) fully flexible FPGA (3.3.1.1)

Wneed = f(λ,R, Fs) introduce loss of flexibility in parameter Fs (3.3.1.2)

Wneed = f(λ,R, Fs, Fcin) introduce loss of flexibility in parameter Fcin (3.3.1.3)

We recognize that this incremental approach is less optimal compared to an approach where

all parameters are allowed to vary together in one fitting step. However, the latter approach

would be infeasible due to the large routing architecture space we wish to model. Our incre-

mental approach mirrors that of routing architecture design optimization by Betz et al. in

[9], where they perform a series of experiments in which they optimize for one architectural

parameter, while fixing the other parameters. This approach is commonly adopted for opti-

mization/modeling of a large design space such as in this work. Furthermore, the value of

incremental approach is to gain transparency and intuition on routing architecture, an impor-

tant goal of this work, as aforementioned.

Alternatively, one could adopt a different incremental approach: instead of generalizing the

model starting from maximum routing flexibility, one could start from minimum (or any choice

of) routing flexibility. We chose to start from maximum because it gives intuition on “what is

the effect of a loss in flexibility”, and it allows simpler analytic expressions.

This is our high-level model development strategy. It will be reflected in the presentation

of modeling results in Chapter 4. In the next subsection we will go into the details of modeling

methodology.
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3.3.2 Detailed Modeling Methodology

The detailed construction of the model is a combination of derivations and guided empirical

modeling. A summary of the methodology is presented as a flowchart in Figure 3.1. Whenever

possible we derive analytic expressions that relate input parameters with the output. If no

derivable expression or the derived expression is not sufficiently accurate for predicting the

output, we use a guided empirical modeling process.

In the guided empirical modeling process, we begin by generating empirical data, and per-

form analysis on them to discover more trends that are important for intuition and model forms.

From the trends, we formulate candidate models.

The proposed candidate models are fitted to the initially generated data. This set of data

is the training set. Fitting/Training is performed using the most common method, least

squares fitting, which minimizes the sum of the squares of the difference between the model and

actual experimental data. To do this we use the lsqcurvefit function in MATLAB optimization

toolbox, which solves the nonlinear least-squares-fitting problem for any user-defined continuous

equation. It is based on the interior-reflective Newton method described in [15, 16]. It finds

values of fitting parameters that yields the best model fit.

We keep the number of fitting parameters low, 1 or 2 per intermediate model, to avoid

overfitting. Overfitting is the problem where one has introduced too many fitting parameters

(relative to the size of training set) to create a false model, which fits the training set well

but predicts poorly for unseen future data points. The rule of thumb is the size of training

set should be greater than 10 times the number of fitting parameters. We follow this rule of

thumb, as our training set sizes range from 100’s to 10000’s for 1 or 2 fitting parameters. To

check for overfitting we perform cross validation as suggested in [2, 56].

After candidate models are trained, for the purpose of cross validation, we generate another

set of empirical data called the validation set, of the same number of data points as the

training set. To check for overfitting, we examine the trained model’s accuracy on validation

data. If the model’s accuracy on the validation data is significantly worse than its accuracy

in fitting to the training data, then overfitting has occurred [56]. We check for this condition

throughout the modeling process. The benchmark circuits corresponding to the two sets are
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Figure 3.1: Detailed modeling methodology flowchart

listed in Table 3.2, where the 4-input basic logic element (BLE) counts of circuits are also listed,

in the even columns.

The benchmark circuits come from the largest 20 MCNC circuits [66], and 8 additional

benchmark circuits gathered from various open benchmark sources including: The Opencores
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Training Set Validation Set

Circuit # 4-Input BLEs Circuit # 4-Input BLEs

clma 8383 des perf 12032

s38584.1 6447 s38417 6406

rs decoder 2 4502 pdc 4575

mac1 3718 diffeq paj convert 3792

elliptic 3604 spla 3690

frisc 3556 des area 2025

fir scu rtl 2201 apex2 1878

s298 1931 seq 1750

rs decoder 1 1745 alu4 1522

diffeq 1497 apex4 1262

misex3 1397 ex5p 1064

tseng 1047 apex3 869

cps 757 apex1 700

misex3c 549 parker1986 663

Table 3.2: Benchmark circuit list and sizes in 4-Input BLEs

organization [48], SCU-RTL [53], and Texas-97 [61]. The latter includes various applications

such as FIR and RS decoder design.

The method by which the training and validation sets are chosen is described in a later sub-

section, Section 3.3.4. Once validation is performed on the trained models, we can objectively

evaluate and compare the candidate models using an accuracy metric. We also subjectively

compare the candidate models for simplicity and the intuition they present. We select the final

model based on a combination of subjective and objective evaluations.

The accuracy metric for the objective evaluation is discussed in the following subsection.

3.3.3 Accuracy Metric

We use the most commonly used metric for comparing model accuracy – Root Mean Squared

Error (RMSE) – defined as in Equation 3.3.3.1.
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RMSE =

√√√√ 1
C

∑

all C circuits
(Predicted−Measured)2 (3.3.3.1)

Root Mean Squared Error is a suitable choice because it is the metric whose value is mini-

mized during the fitting process (recall least squares fitting minimizes the sum of squared error).

Furthermore it is appropriate because RMSE heavily penalizes large error (due to squaring).

This is important because in guiding an architect in determining routing demand it is better to

be always off by a small amount, than to occasionally be off by a large error. Also, this metric

is the most commonly used in regression modeling and analysis.

To measure the accuracy of a candidate model, we compare its prediction to experimentally

measured data for each circuit (synthesized into the modeled architecture) individually, then

average across all circuits for the validation set. Candidate models are compared based on their

RMSE value in validation.

The reason for choosing validation RMSE (versus training RMSE) for quantitative com-

parison of candidate models is because validation is the true measure of a candidate model’s

predictive ability. However, we report both training RMSE (the goodness of the fit to data)

and validation RMSE in throughout this work for completeness.

In addition to reporting RMSE we also report accuracy by a more human-comprehensible

metric – Mean Absolute Percentage Error (MAPE) – defined as in Equation 3.3.3.2.

MAPE =
1
C

∑

all C circuits

|Predicted−Measured|
Measured

× 100% (3.3.3.2)

The MAPE metric is not used for quantitative comparison of models, but it varies in unison

with the RMSE metric; they are correlated, particularly since all our data are positive values.

The sole purpose of reporting MAPE is to give an intuitive understanding of error size.

3.3.4 Training and Validation Sets

In this subsection we review the method of assigning benchmark circuits to the training and

validation sets. They are of equal size and are chosen from our total set of benchmark circuits.

The reason for choosing equal size for the two sets is to reduce statistical noise; if one set was
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Average Standard Deviation

Training Validation Ratio Training Validation Ratio

Set Set Set Set

Number of BLEs 2952 3016 0.98 2275 3098 0.73

Number of Nets 4004 4113 0.97 3072 3463 0.89

λ 12.0 12.7 0.95 1.26 1.49 0.85

R 4.56 4.67 0.98 0.88 0.79 1.12

Table 3.3: Statistical similarity of training and validation sets

smaller then it would be sensitive to statistical noise. To further reduce statistical noise we

carefully choose the two sets.

The training and validation sets are chosen by a random separation of the original set of

benchmark circuits, with the constraint that the statistical properties of each set are similar

to that of the combined set as proposed in [58]. This can be interpreted as that the training

and validation sets should be statistically similar. We use BLE count and the number of two-

terminal nets (net model given in Section 3.4) as metrics for comparing statistical properties

of each set. Thus we measure the average and standard deviation of both metrics for both

training and validation sets. Among a number of attempts of random separations, we pick one

that yields the most similar average and standard deviation. This resulted in the assignment

of training and validation sets in Table 3.2. The degree to which these two sets are statistically

similar is summarized in Table 3.3. In Table 3.3, the first column contains statistical metrics for

similarity test. The next three columns contain the metric average for training and validation

sets and ratio of the averages, respectively. The final three columns is the same except it is for

standard deviation. Note the inclusion of measured λ and R of each circuit and determination

of their average and standard deviation in the final two rows; this is done to further show

similarity between the two sets. They are measured by the experimental method described in

the next section.
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3.4 Experimental Methodology

In the guided empirical modeling process described in Section 3.3.2 we need to generate empir-

ical data for analysis and fitting. For this purpose we use the CAD flow described in Section

2.2 to run experiments, synthesizing circuits into modeled architectures.
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Figure 3.2: Experimental flow

The experimental flow is depicted in Figure 3.2. First, benchmark circuits are synthesized

into lookup tables (LUT) and registers using the FlowMap and FlowPack tools in [18, 19]. Then

the registers and LUTs are packed into logic clusters using the packing algorithm VPACK [9]

followed by wireability-driven placement by VPR placer [9]. Each circuit is placed in the

smallest square FPGA it can fit which is the common practice in FPGA architecture study.

Finally, the placed circuit is routed using a modified version of VPR router [9], in routability-

driven mode. Modifications were made to support single-driver routing architectures, with some

effort to make good quality routing switch connectivity patterns. During routing we determine

the minimum required channel width Wneed to successfully route each circuit by iteratively
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Figure 3.3: The minimum spanning tree net model

routing each circuit, reducing channel width of the routing architecture until it fails to route.

The remaining two input parameters λ and R are also measured during this flow. We

measure λ using the circuit netlist after the packing step, by counting the total number of used

pins on logic blocks. To measure R we need to assume a two-terminal net model.

We assumed the Minimum Spanning Tree (MST) two-terminal net model, depicted in Fig-

ure 3.3, since we have found it to be very close to the actual routing from experiments for the

fully flexible FPGA architecture. We determine R by dividing the total expected wirelength,

measured after placement using the wirelength estimation extension of RISA by Swartz (de-

scribed in Section 2.3.6), by the total number of connections assuming the MST net model. In

the experiment tool VPR, we also use the MST net model as the basis for the directed-search

router, as it was found to give high quality and speed router in [60].

The base FPGA architecture based on which we run experiments and generate the training

and validation data is summarized in Table 3.4. It specifies the logic block architecture in rows

2 to 4, and it specifies the routing architectures in rows 6 to 11, in terms of routing parameters.

Experiments on additional architectures are run for further validation, and will be described in

Chapter 5.
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Logic Block Architecture

LUT Size (k) 4

Cluster Size (N) 10

Cluster Input Pins (I) 22

Routing Architecture

Fs [3,21]

Fcin [2,W]

Fcout [2,W]

L {1,2,4,6,8}
Eqv {0,1}

Table 3.4: Base FPGA architecture for experiments

3.5 Summary

In this chapter, we have described a formal definition of the inputs and outputs of our FPGA

interconnect model. We established the context in which the model is intended to be used.

Then we discussed the approach we take to develop the model. The approach is incremental

and based a combination of derivations and empirical modeling. We reviewed how to evaluate

our model’s accuracy and how to choose training and validations sets for empirical modeling.

Finally, we reviewed the experimental methodology our approach relies on.

In the next chapter we walk through the model development process, detailing how the

models are developed, the insights they give and their accuracy.



Chapter 4

Development of Routing Demand

Model

In this chapter, we develop the FPGA interconnect model. As mentioned in Chapter 3, the

model will be incrementally developed, with intermediate models of increasingly complex rout-

ing architectures. This development strategy is reflected in the structure of this chapter. We

first overview the global structure of the model. We start the development by constructing

model for a fully flexible FPGA. Then we incrementally generalize it to account for different

routing architecture parameters, by introducing loss of flexibility accounted for in each param-

eter. This includes: switch block flexibility parameter (Section 4.3), input/output connection

block flexibility parameter (Section 4.4), wire segment length (Section 4.5), and finally logical

equivalence of pins (Section 4.6). We conclude by presenting the complete routing demand

model.

4.1 Global Structure of Model

The goal of the model is to predict the number of tracks per channel, also known as channel

width, needed to route a circuit in a given logic block and routing architecture. The channel

width needed, Wneed, can be viewed at the highest level as consisting of three components as:

46
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Wneed =

switching matrix segment

absolute + flexibility + length

minimum penalty penalty
(4.1.0.1)

The absolute minimum is the portion of required channel width attributable to the fun-

damental logic block and circuit demand. One can view it as requirement of circuit in a given

logic block, without consideration for the routing inflexibility (like in an ASIC routing archi-

tecture). The latter two terms are penalty that channel width requirement must increase by if

inflexibility is introduced to the routing architecture, in order to successfully route. The term

switching matrix flexibility penalty is the penalty associated with the loss of switches,

compared to a fully flexible FPGA, in the switch blocks and input/output connection blocks.

The term segment length penalty is the penalty associated with wire segments being greater

than unit length.

4.2 Model for the Fully Flexible FPGA

We begin with a model for predicting routing demand of a fully flexible FPGA. A fully flexible

FPGA has maximum connectivity between all adjacent routing resources (wires and pins).

Effectively it has: a crossbar in the switch block, as well as input and output connection blocks;

the smallest length wires possible; and logical equivalence between all input pins and between

all output pins. An example of such architecture is shown in Figure 4.1.

The routing architecture parameter values of the fully flexible architecture is given in Table

4.1. Routing in a fully flexible FPGA is similar to ASIC routing, where routes can turn almost

anywhere and have any length. Note that ASIC routing is even more flexible, such as two pins

on the same side of a logic block can share the same track in an ASIC but not in a fully flexible

Fs Fcin Fcout L Eqv

3W W W 1 1

Table 4.1: Fully flexible FPGA routing architecture
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�

Figure 4.1: An example fully flexible FPGA architecture

FPGA as defined here. Nonetheless, we can draw upon a classic ASIC interconnect model for

modeling routing demand of a fully flexible FPGA. We will use a key result from El Gamal’s

interconnect model described in Section 2.3.3, which is that the average channel width, Wavg,

in a gate array with ASIC/fully flexible FPGA routing is given by

Wavg =
λR

2
(4.2.0.2)

where λ is defined as the average number of used input pins per logic block, and R is the average

wirelength per two-terminal connection, in number of logic blocks traversed [28].
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The parameters λ and R will be used as inputs to our model. They characterize the routing

demand of the logic block and circuit. During early stage development, the model should take

as inputs λ and R representing not just one circuit but a domain/market of circuits mapped

to a choice of logic block. In Chapter 5 describing the use of our FPGA interconnect model,

we will provide a model for λ and R, to inform the architect on how to pick a single value

for each, representing a domain/market of circuits and choice of logic block, without having to

measure by experiments. However, to ensure accuracy of our interconnect model, during each

development step in this chapter we measure λ and R for each benchmark circuit individually,

and train and validate our model with each circuit’s λ and R. We measure λ and R using the

methodology described in the Chapter 3.

We can apply El Gamal’s result on average channel width to derive a model predicting

routing demand (maximum channel width) in a fully flexible FPGA.

4.2.1 Maximum versus Average Channel Width

Equation 4.2.0.2 gives the average channel width, but we are interested in estimating the max-

imum channel width across all channel segments, when the circuit is routed with the fewest

number of tracks per channel, Wneed. An expression for the maximum channel width, Wneed,

is derivable by observing that FPGA routing channels have an average utilization [60], U , (the

fraction of wires that are actually used) given by

U =
Wavg

Wneed
(4.2.1.1)

Re-arranging Equation 4.2.1.1 to solve for Wneed and substitute in Equation 4.2.0.2 for Wavg

gives

Wneed =
1
U
· λR

2
(4.2.1.2)

We will employ the inverse of the utilization term U , which we call the peak factor, (p = 1
U ).

We will re-write Equation 4.2.1.2 and refer to the channel width requirement of a fully flexible

FPGA by a special term, called Wabs min, given as

Wabs min = p
λR

2
(4.2.1.3)
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Wabs_min = 1.4 Wavg
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Figure 4.2: Experimental trend of Wabs min using training set benchmark circuits

There is experimental support for the proportionality expressed in Equation 4.2.1.3. We ran

experiments using the flow described in Section 3.4, on training set benchmark circuits under

the fully flexible architecture indicated in Table 4.1. The experimental data is presented in

Figure 4.2. Figure 4.2 is a plot of Wabs min (y-axis) for each circuit ordered by each circuit’s

Wavg (x-axis). The linearity of the plot and correlation coefficient R2 = 0.91 of Wabs min with

Wavg shows that the utilization U of all circuits are consistent under a fully flexible FPGA,

suggesting modeling Wabs min as a proportionality of Wavg as in Equation 4.2.1.3.

4.2.2 Model Accuracy and Intuition

The model for the fully flexible FPGA is determined by finding the peak factor in Equation

4.2.1.3, by fitting the model to experimental data of the training set. We will report the accuracy

of the model by comparing its prediction to actual measured Wneed for each individual circuit

(here λ and R are also individually measured), and summarize by an average across all circuits.

The best fit value of p is 1.4, for a Mean Absolute Percentage Error (MAPE) of 6.2% for the
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Figure 4.3: Accuracy of fully flexible FPGA interconnect model for all benchmark circuits

training set (14 data points) and 5.8% for the validation set (14 data points). The Root Mean

Squared Error (RMSE) is 3.3 for training benchmark circuits and 2.8 for validation benchmark

circuits. The accuracy of the model is shown in Figure 4.3, where Wabs min (y-axis) is plotted for

all circuits ordered by their Wavg (x-axis), and the straight line is our model (predicted values).

The breakdown of the accuracy for training and validation benchmark circuits are shown in

Table 4.2 and 4.3 respectively, where the columns 2 to 4 are measured Wabs min, predicted

Wabs min, predicted − measured and error as percentage of the measured, respectively. The

last row gives the absolute error percentage averaged across all circuits in the set.

This model of the fully flexible FPGA, captures the intrinsic routing demand of the logic

block architecture and circuit mapped to it – intrinsic meaning independent of the routing

architecture.

Wabs min is the absolute minimum channel width needed to route a circuit. If the circuit

is routed on an FPGA that is less than fully flexible, then it will require more channel width

than Wabs min. The following sections explore models for this reduction in flexibility.
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Benchmark Measured Predicted Error Error %

clma 62 59 -3 -5.0%

elliptic 56 46 -10 -17%

frisc 54 52 -2 -4.5%

s298 42 43 1 2.5%

mac1 40 42 2 3.8%

misex3 40 43 3 8.3%

s38584.1 36 38 2 5.5%

rs decoder 2 32 32 0 -1.1%

cps 32 34 2 6.4%

fir scu rtl 32 34 2 6.7%

tseng 30 32 2 8.2%

diffeq 28 30 2 6.5%

rs decoder 1 26 26 0 1.1%

misex3c 26 29 3 9.9%

Average Absolute Error 6.2%

Table 4.2: Accuracy breakdown of fully flexible model on Wabs min of training circuits
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Benchmark Measured Predicted Error Error %

pdc 70 68 -2 -3.1%

spla 62 60 -2 -3.4%

apex2 50 50 0 0.1%

ex5p 44 40 -4 -9.9%

apex4 44 41 -3 -7.3%

seq 44 45 1 1.2%

alu4 44 45 1 2.2%

des perf 42 36 -6 -15%

apex3 40 37 -3 -7.9%

apex1 38 36 -2 -6.0%

des area 38 37 -1 -3.0%

s38417 36 38 2 5.1%

parker1986 28 29 1 2.9%

diffeq paj convert 24 27 3 14%

Average Absolute Error 5.8%

Table 4.3: Accuracy breakdown of fully flexible model on Wabs min of validation circuits

4.3 Generalizing Routing Model for Switch Block Flexibility

The first choice for reduction in flexibility is the switch block. In the previous section, in a

fully flexible routing architecture, the switch block flexibility Fs was set at the maximum value,

Fs = 3W . For the routing architecture modeled in this section, all other routing architecture

parameters are kept at maximum except Fs, which is reduced. We have found that the range

of interest for Fs is [3,21], for two reasons. First, Fs = 3 is considered the minimum because

it gives the wire only one chance to turn in each direction at every switch block. Although

previous studies in [62] have shown Fs = 2 to be a routable architecture, it is commonly

accepted that Fs = 3 is a minimum, and we adopt this convention in this work. Second, we

have empirically found that Fs ≥ 21 is empirically equivalent to the fully flexible Fs = 3W

(this can be expected since Fs ≥ 21 is abundant in switch block flexibility). In experiments

we choose seven Fs values evenly within 3 to 21 inclusively. In sum, the routing architectures
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Fs Fcin Fcout L Eqv

[3, 21] W W 1 1

Table 4.4: FPGA routing architectures with reduced switch block flexibility

being modeled in this section are given in Table 4.4.

We model reduced switch block flexibility by analyzing the empirical trends and making

hypotheses on model form, in the following subsection.

4.3.1 Empirical Analysis on Effects of Reduced Switch Block Flexibility

In this subsection hypotheses on the relationship between Wneed, Fs, and other parameters are

formed based on empirical evidence. In a later subsection, we create models based on these

hypotheses.
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Figure 4.4: Experimental trend of average Wneed for training benchmark circuits

Firstly, the relationship between Wneed and Fs is an inverse relationship. To compensate

for a loss in Fs flexibility, the required channel width Wneed must increase, above Wabs min.

To see what type of inverse relationship, we ran experiments using the flow determining Wneed

(from Section 3.4) on training circuits, under the architectures given in Table 4.4. The measured
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Wneed (y-axis) averaged across all training circuits are plotted in Figure 4.4, against Fs (x-axis)

varied over its range. The figure shows the trend of the average, but individually each circuit

displays the same trend. In Figure 4.4, Wneed tends to Wabs min as Fs becomes large, and

Wneed approaches ∞ as Fs approaches 0. This shows Wneed is an inverse power function of Fs

with an offset Wabs min:

(Wneed −Wabs min) ∝ 1
Fsn

(4.3.1.1)

where n is a positive real. We choose n = 1 for simplicity and will show alternatives later.

Secondly, the amount of increase in Wneed (due to decrease in Fs) depends on the circuit’s

intrinsic routing demand Wabs min. We noticed this trend in the experimental data obtained

for the first hypothesis, as we examined the data for each circuit individually.

In Figure 4.5(a) we plot for each training circuit its measured increase in Wneed (y-axis) at

Fs = 3 (from Wabs min) against its measured Wabs min (x-axis). The experimental trend shows

there is dependence on Wabs min, with a correlation coefficient R2 = 0.74 (some data points

overlap). The same trend exists for increase in Wneed at higher Fs values. One should note

that this architecture is so abundantly flexible (all other parameters at maximum except Fs)

that the increases in Wneed are small (2 to 10) relative to the experimental accuracy1 of ±2.

To ensure our experimental conclusion about the dependence on Wabs min is not due to

noise, we examine a less flexible architecture. Keeping Fs = 3 and all other parameters at

maximum value except Fcin = 2, with the same experimental flow searching for Wneed (Section

3.4), we obtain data shown in Figure 4.5(b). The values of increase range from 14 to 36, much

higher than the experimental accuracy of ±2, and there is still dependence on Wabs min with a

correlation coefficient R2 = 0.65.

An intuitive explanation for this dependence is that reduction in Fs is applied to every wire.

Circuits with more wires to begin with, intrinsic routing demand Wabs min, lose more flexibility

as a result of loss in Fs. Hence such circuits would require more wires and higher increase in

Wneed to compensate.

1for single-driver routing architectures channel width takes on even values only, so searches for Wneed are
accurate to ±2
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Figure 4.5: Experimental trend of training circuits shows dependence on Wabs min
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While the plots of Figure 4.5(a) and 4.5(b) and the correlation coefficients confirms the

dependence of increase in Wneed on Wabs min, it is not clear in the experimental data what

function best models this dependence. Although the correlation coefficients are not 1.0, they

are close enough that we choose a linear function to model the dependence for simplicity:

(Wneed −Wabs min) ∝ Wabs min (4.3.1.2)

Using relationship hypotheses 4.3.1.1 and 4.3.1.2 we form the model for reduced switch

block flexibility in the following subsection.

4.3.2 Constructing Candidate Models for Fs

In this subsection candidate models of Wneed as a function of Fs are constructed, using hy-

potheses formed in the previous subsection. We denote the partial construction of a model by

W ∗
need(Fs) to show the steps.

We first note that the first hypothesis in Relationship 4.3.1.1 says Wneed should be Wabs min

(the absolute minimum), plus a penalty that is inversely proportional to Fs:

W ∗
need(Fs) = Wabs min + penalty due to Fs loss

= Wabs min +
1
β

1
Fs

(4.3.2.1)

where β is the proportionality constant for Relationship 4.3.1.1. Based on the second hypothesis

in Relationship 4.3.1.2, the penalty term must be dependent on Wabs min. So the final model

is:

Candidate Model 1:

Wneed(Fs) = Wabs min +
1
β

Wabs min

Fs
(4.3.2.2)

The proportionality constant β (accounting for the proportionality expressed in both Re-

lationships 4.3.1.1 and 4.3.1.2) is used as fitting parameter, to fit this model to training set

experimental data. Equation 4.3.2.2 is one candidate model.
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Alternatively, a more complex model is constructed as we remove the simplification of

Fs having an exponent of 1 in Relationship 4.3.1.1. This adds complexity to the model by

introducing an additional parameter n, the Fs exponent. The corresponding candidate model

is:

Candidate Model 2:

Wneed(Fs) = Wabs min +
1
β

Wabs min

Fsn
(4.3.2.3)

where we vary the value of n and β simultaneously to fit Equation to data. This added model

complexity is acceptable if it could achieve significantly better model accuracy.

Towards the other end of the complexity spectrum, we form candidate models that are

simpler than Equation 4.3.2.2. One simpler candidate model is the equation that does not

conform to Relationship 4.3.1.2, repeated here:

Candidate Model 3:

Wneed(Fs) = Wabs min +
1
β

1
Fs

(4.3.2.4)

where β is the fitting parameter.

Another is the model that does not conform to the Relationship 4.3.1.1, using a different

type of inverse function, but does conform Relationship 4.3.1.2:

Candidate Model 4:

Wneed(Fs) = βWabs min − Fs (4.3.2.5)

Note that for this negative Fs inverse equation Wabs min must be multiplied by a fitting pa-

rameter β value greater than 1.0, since Wabs min is the absolute minimum value Wneed can take

on.

We fit these candidate models, determine validation accuracy, and choose the best model

based on simplicity, intuition and accuracy in the following subsection.
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4.3.3 Model Accuracy and Intuition

Using the experimental Wneed data from the training benchmark circuits, under the archi-

tectures in Table 4.4, we fit all four candidate models. Validation is done using the same

experiment flow, searching for Wneed on validation circuits under the architectures given in

Table 4.4. Training and validation results are summarized in Table 4.5. In Table 4.5, the first

column identifies the candidate model, and the next four columns are the accuracy metrics. The

final column gives the values of fitted parameters. There are 98 data points for each training

and validation. The rows are sorted by descending validation RMSE (column 3), which is used

to compare candidate model accuracy. Model selection is based on quantitative comparison of

accuracy and qualitative comparison of simplicity and intuition.

Model RMSE RMSE MAPE MAPE Fitted

No. Training Validation Training Validation Parameters

4 5.8 6.0 13% 12% β = 1.33

3 3.7 3.2 6.7% 6.4% β = 0.0979

2 3.5 2.9 6.3% 6.0% β = 1.92, n = 1.32

1 3.5 2.8 6.6% 5.9% β = 3.0

Table 4.5: Accuracy of candidate models for reduced switch block flexibility

As can be seen in Table 4.5, the most accurate model is Candidate Model 1 with the smallest

validation RMSE of 2.8. Candidate Model 4 is significantly worse than the others so we don’t

consider it. Candidate Model 2 and 3 are comparable in accuracy to Candidate Model 1, but

they are worse in qualitative measures. We deem Candidate Model 2 worse than 1 because

it has an extra fitting parameter (more complexity) but with no appreciable improvement in

accuracy (only its training MAPE improved a little). Candidate Model 3 is simpler than 1 but

the intuition in the former is that all circuits require the same amount of increase in Wneed due

to loss in Fs, which is not true as evidenced by Figure 4.5(a). We believe that the accuracy

of Candidate Model 3 will deteriorate much more than 1, when generalized to less flexible

architectures, as evidenced by Figure 4.5(b), where the increase in Wneed ranges from 14 to 36
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for different circuits (the span of the range, 22, cannot be accounted for by Candidate Model 3).

Therefore Candidate Model 1 is better than 3. In sum, Candidate Model 1 is the best model

for its combination of simplicity, intuition and accuracy. We shall refer to it from now on as

the switch block flexibility model.

The value of β that gives the switch block flexibility model (Equation 4.3.2.2) the best fit to

training data is 3 (actually 3.04 but rounded up for simplicity). The accuracy of this model is

shown in Figures 4.6 and 4.7, where measured Wneed (y-axis) is plotted against Fs (x-axis) over

its range. The solid dots are the measured values, and the hollow dots are the model predicted

values. We only show the maximum, minimum and median circuit (sorted by Wabs min as shown

in Tables 4.2 and 4.3) of each set due to the large volume of data.
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Figure 4.6: Accuracy of switch block flexibility model for circuits in the training set
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Figure 4.7: Accuracy of switch block flexibility model for circuits in the validation set

The breakdown of the accuracy of the model for the circuits shown in Figures 4.6 and 4.7

are presented in Table 4.6. In Table 4.6, the modeled architecture specified by Fs is listed

in column 1. The next four columns are the measured Wneed, predicted Wneed, predicted −
measured, and the error as a percentage of the measured, for the training circuits. The final

four columns are the same but for the validation circuits. The absolute error for each circuit

average across different architectures specified by Fs is also computed and listed as the last

row of each circuit’s sub-table.

The intuition in the switch block flexibility model is in how it is constructed: the required

channel width for successful routing is Wabs min for a fully flexible FPGA, and a penalty on

top of that must be paid as Fs is reduced. The penalty is proportional to the circuit and logic

block’s intrinsic demand Wabs min and inversely related to Fs.

Further penalty must be paid if the flexibility in the connection block is reduced. The

following subsection explores models for this reduction in flexibility.
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Training Validation

Fs Measured Predicted Error Error % Measured Predicted Error Error %

clma pdc

3 72 65 -7 -9.1% 80 75 -5 -5.8%

6 64 62 -2 -2.8% 74 72 -2 -3.2%

9 64 61 -3 -4.5% 74 70 -4 -4.9%

12 62 61 -1 -2.3% 70 70 0 -0.4%

15 62 60 -2 -2.9% 70 69 -1 -0.9%

18 62 60 -2 -3.2% 70 69 -1 -1.3%

21 62 60 -2 -3.5% 70 69 -1 -1.5%

Average Absolute Error 4.0% Average Absolute Error 2.6%

s38584.1 alu4

3 42 42 0 0.5% 50 50 0 -0.1%

6 40 40 0 0.3% 46 47 1 3.2%

9 38 39 1 3.7% 46 47 1 1.4%

12 38 39 1 2.8% 46 46 0 0.5%

15 38 39 1 2.2% 44 46 2 4.5%

18 36 39 3 7.5% 44 46 2 4.1%

21 36 39 3 7.2% 44 46 2 3.8%

Average Absolute Error 3.4% Average Absolute Error 2.5%

misex3c diffeq paj convert

3 28 32 4 13% 28 30 2 8.1%

6 28 30 2 7.7% 24 29 5 20%

9 28 30 2 5.8% 24 28 4 18%

12 26 29 3 13% 24 28 4 17%

15 26 29 3 12% 24 28 4 16%

18 26 29 3 12% 24 28 4 16%

21 26 29 3 12% 24 28 4 15%

Average Absolute Error 11% Average Absolute Error 16%

Table 4.6: Accuracy breakdown of switch block flexibility model
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4.4 Generalizing for Connection Block Flexibilities

In previous sections, the routing architectures are assumed to have maximum connection block

flexibility, i.e. Fcin = W and Fcout = W . In this section, we model architectures of reduced

connection block flexibility, where each input pin and output pin on a logic block can pro-

grammably connect to only a select number of routing wires adjacent to it, for example 2 in

the simplified architecture shown in Figure 4.8.
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Figure 4.8: Simplified example showing input and output connection block

We generalize the switch block flexibility model to include Fcin and Fcout; we vary Fs, Fcin

and Fcout, and keep the remaining routing architecture parameters at maximum flexibility.

The range of Fs is as in the previous section. The range of Fcin and Fcout are the same

under this architecture space. We consider 2 as the minimum value Fcin and Fcout can take

on. The reason is that each pin being only able to connect to 1 routing wire would cause

directional bias in the single-driver directional routing architecture, resulting in extremely poor

routability which we have empirically found. We have also found that Fcin ≥ Wabs min and

Fcout ≥ Wabs min are empirically equivalent to maximum flexibility Fcin = W and Fcout = W ,

respectively. Therefore the range of Fcin and Fcout is chosen as [2,Wabs min]. In experiments

under architectures of varying Fcin and Fcout, we choose eight points from 2 to Wabs min
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Fs Fcin Fcout L Eqv

[3, 21] [2,Wabs min] [2,Wabs min] 1 1

Table 4.7: FPGA routing architectures with reduced flexibility

inclusively for each parameter. In sum, the routing architectures being modeled in this section

are given in Table 4.7.

4.4.1 Empirical Analysis on Effects of Reduced Connection Block Flexibili-

ties

To generalize the interconnect model for reduced connection block flexibility, we first analyze

experimental data. Using the Wneed search experimental flow described in Section 3.4, on

training benchmark circuits under the architectures indicated in Table 4.7, we generate training

data. Since data for all training benchmark circuits have consistent trends, for clarity only the

results for the largest circuit clma are displayed, in Figure 4.9.

In Figure 4.9 the x- and y-axes are Fcin and Fcout and each plot for a different Fs value

(only Fs = 3, 6, 9 are shown for clarity). The z-axes show the Wneed for successfully routing

under the various routing architectures. There are a number of trends from which we can

hypothesize analytical relationships between parameters and Wneed.

Firstly, in Figure 4.9(a) it can be seen that Wneed is inversely related to Fcin and Fcout. This

is obvious since less flexibility in either Fcin and Fcout must be compensated by an increase in

track count, in order to still be routable. Moreover, the relationship between Wneed and either

Fcin or Fcout depends on the other parameter. For example, the Wneed vs. Fcout curve flattens

out as Fcin increases. This is expected since as there is more flexibility in Fcin, less flexibility

is needed in Fcout – so a low Fcout and a high Fcout achieves similar Wneed (a flat curve).

This trade-off relationship is best captured by a multiplication of the Fcin or Fcout parameters.

Also the trade-off is not symmetrical (the surface in Figure 4.9(a) is not symmetrical about the

plane Fcin = Fcout); the impact of Fcin on Wneed is greater than that of Fcout. Intuitively, this

means it is more important to have flexibility at the end of a route (Fcin) than at its beginning

(Fcout). A simple and effective way to capture this asymmetry is using different exponents for
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Figure 4.9: Experimental trend of Wneed over Fcin and Fcout for training circuit clma
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Fcin and Fcout. Combining these empirical observations, We hypothesize the relationship of

Wneed, Fcin and Fcout to be

(Wneed −Wabs min) ∝
(

1
Fcin

)αin
(

1
Fcout

)αout

(4.4.1.1)

Intuitively, one can think of input and output connection blocks together as an inter-

connected switching matrix, of which parameters Fcin and Fcout allocates switches in different

parts. One can architect with different allocations and result in the same routability i.e. same

Wneed, just as one can trace a path of constant height on the surface plot of Figure 4.9(a). This

trade-off is intuitively represented by the multiplication of parameters in Relationship 4.4.1.1.

As an extension one can think of this switching matrix as consisting of the input and output

connection blocks and the switch blocks, together programmably connecting all logic block pins

and routing wires in the FPGA. The parameters Fs, Fcin and Fcout describe the amount of

switching in these three parts of the FPGA, and they can be traded off amongst each other to

maintain a fixed level of routability (same Wneed). This is observed in the empirical data as one

examines the Wneed surface for different Fs from Figure 4.9(a) to Figure 4.9(c). Therefore our

hypothesis in Relationship 4.4.1.1 should be multiplied by the Fs term developed in Section

4.3.

Finally, in Figure 4.9 we notice that as Fcin and Fcout both approach the value Wabs min,

Wneed is very close to the value determined by the switch block flexibility model in Equation

4.3.2.2, which we generalize for Fcin and Fcout. In other words, when Fcin = Wabs min the

term associated with Fcin should disappear from the generalized model. This can be effectively

modeled using the term
(

Wabs min
Fcin

)αin

instead of
(

1
Fcin

)αin

. The same for Fcout.

Using relationship hypotheses formed in this subsection we construct candidate models for

input and output connection block flexibility in the following subsection.

4.4.2 Constructing Candidate Models for Fcin and Fcout

In this subsection, candidate models of Wneed as a function of Fs, Fcin and Fcout are constructed

by generalizing the model for switch block flexibility in Equation 4.3.2.2, which is repeated here

in Equation 4.4.2.1.
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Wneed(Fs) = Wabs min +
1
β

Wabs min

Fs
(4.4.2.1)

In all the following candidate models for Fcin and Fcout by generalizing Equation 4.4.2.1,

the parameter β is fixed at 3, optimal value determined previously.

The first candidate model is based on all the observational hypotheses in the previous

subsection.

Candidate Model 1:

Wneed(Fs, Fcin, F cout) = Wabs min +
1
β

(
Wabs min

Fs

)(
Wabs min

Fcin

)αin
(

Wabs min

Fcout

)αout

(4.4.2.2)

where αin and αout are fitting parameters to capture the asymmetry in the dependence of Wneed

on Fcin and Fcout.

We construct other candidate models by modifying Candidate Model 1. First, we can test

the importance of the asymmetry hypothesis by assuming the opposite; let Fcin and Fcout have

the same exponent of 1 resulting in:

Candidate Model 2:

Wneed(Fs, Fcin, F cout) = Wabs min +
α

β

(
Wabs min

Fs

)(
Wabs min

Fcin

)(
Wabs min

Fcout

)
(4.4.2.3)

Instead of having two fitting parameters as in Candidate Model 1, this model only has one fitting

parameter α to scale the penalty term accounting for Fcin and Fcout. This form is especially

simple because there is only one fitting parameter and it is easy for analytic calculations since

all exponents are 1. Its simplicity is so compelling that we give it a special name: the symmetric

simple model.

Alternatively, we can remove Wabs min from Fcin and Fcout terms:

Candidate Model 3:

Wneed(Fs, Fcin, F cout) = Wabs min +
α

β

(
Wabs min

Fs

)(
1

Fcin

)αin
(

1
Fcout

)αout

(4.4.2.4)

however, due to the multiplication we must add one more fitting parameter to ensure that for

any value of Fcin and Fcout Wneed(Fs, Fcin, F cout) must be higher than Wneed(Fs) in Equation

4.4.2.1.
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Finally, we can hypothesize an additive penalty term, instead of the multiplication. This

leads to a candidate model:

Candidate Model 4:

Wneed(Fs, Fcin, F cout) = Wabs min +
1
β

Wabs min

Fs
+ α

(
1

Fcin

)αin
(

1
Fcout

)αout

(4.4.2.5)

these candidate models are fit to training data and the best model is chosen based on a

balance of simplicity, intuition and accuracy in the following subsection.

4.4.3 Model Accuracy and Intuition

We fit all four candidate models to training data, obtained under architectures in Table 4.7.

Validation data are obtained by the same experimental flow, searching for Wneed under archi-

tectures in Table 4.7. The results of candidate model fitting and prediction are summarized

in Table 4.8. In Table 4.8, the first column identifies the candidate model, and the next four

columns are the accuracy metrics. The final column gives the values of fitted parameters. There

are 6020 data points for each training and validation. The rows are sorted by descending vali-

dation RMSE (column 3). Model selection is based on a balance of validation RMSE accuracy

and qualitative judgement of simplicity and intuition.

Model RMSE RMSE MAPE MAPE Fitted

No. Training Validation Training Validation Parameters

2 4.8 6.9 6.3% 8.6% α = 0.0418

4 4.8 6.6 7.2% 7.8% α = 16.1, αin = 0.881, αout = 0.434

3 4.1 5.3 7.5% 7.0% α = 13.0, αin = 0.457, αout = 0.273

1 3.9 4.6 7.6% 6.5% αin = 0.50, αout = 0.25

Table 4.8: Accuracy of candidate models for reduced connection block flexibility

Quantitatively the best model is Candidate Model 1, with the smallest validation RMSE

of 4.6. Candidate Models 3 and 4 are more complex than Candidate Model 1, having an

extra fitting parameter. However, they are not significantly better in accuracy to justify being

better than Candidate Model overall. In fact they are worse in predicting validation data,
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suggesting that the inclusion of the extra fitting parameter has led to over-fitting; the inclusion

was necessary in both Candidate Models 3 and 4 because of the hypotheses on which they are

formed. Therefore Candidate Model 1 is a better choice overall compared to 3 and 4.

Candidate Model 2 is worse than Candidate Model 1 in all accuracy metrics except MAPE

Training. Although Candidate Model 2 is simpler as it has two fewer fitting parameters than

Candidate Model 1 (since all exponents are set to 1), it is inferior for two reasons. One, it does

not give the insight that Fcin has a greater impact on Wneed than Fcout (their exponents are

equal), which is observed in the asymmetry of Figure 4.9 (equal exponents give symmetry).

Candidate Model 2 misses the important intuition that it is more important to have flexibility

at the end of a route (Fcin), when the router has nearly exhausted all choices, than at its

beginning (Fcout).

The second reason, for which Candidate Model 2 is inferior to 1, is that we believe that the

accuracy gap between Candidate Model 2 and 1 is significant and will dramatically increase in

favor of Candidate Model 1 for less flexible architectures (modeled later on). We tested and

confirmed this hypothesis, using candidate model 2 – the symmetric simple model – to model

less flexible architectures in Section 4.5.5.

In conclusion, Candidate Model 1 is the best overall model considering a balance of sim-

plicity, intuition and accuracy. We shall call it the switching matrix model, referring to that it

models the three components of the switching matrix that connects all routing wires and logic

block pins of the FPGA.

The value of αin and αout that gives the switching matrix model (Equation 4.4.2.2) best fit

to training data are 0.5 and 0.25 respectively. These are rounded up values for simplicity, and

easier analytic calculations (note that in Table 4.8 the accuracy values for candidate model 1

correspond to the rounded up parameter values). Due to the large volume of data, we only show

the accuracy of the model for the largest training circuit and validation circuit, respectively

in Figures 4.10 and 4.11. In Figures 4.10 and 4.11, the x- and y-axes are Fcin and Fcout.

There are two identical subplots (placed horizontally together) viewed at different azimuths,

and each pair of subplots are shown for a Fs value (ordered vertically, only Fs = 3, 6, 9 are

shown for clarity). The z-axes show the Wneed for successfully routing under the various routing
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architectures. For each set of axes, there is a plot of measured and a plot of model predicted

values of Wneed overlayed to show model accuracy. Notice in some cases the two plots intersect,

which shows good prediction.

The numerical breakdown of the accuracy for the circuits in Figures 4.10 and 4.11 are

presented in Tables A.1 to A.6 in Appendix A. Note both training and validation data on some

very inflexible routing architectures (e.g. Fs = 3, Fcin = 2 and Fcout = 2) are not available

on the large circuits due to prohibitively long experimental run times; these data are omitted

(only for the these large circuits).

The intuition behind the current form of interconnect model is as follows. The model is

reprised here

Wneed(Fs, Fcin, F cout) = Wabs min +
1
β

(
Wabs min

Fs

)(
Wabs min

Fcin

)αin
(

Wabs min

Fcout

)αout

(4.4.3.1)

The FPGA routing demand is an absolute minimum, Wabs min, plus a penalty for reduced

flexibilities in the three components, switch/input conection/output connect blocks, of the

switching matrix that programmably connects all logic block pins and routing wire segments

in the FPGA. The three parameters Fs, Fcin and Fcout describe the amount of switching in

these parts of the FPGA and they can be traded off amongst each other to maintain the same

routing demand. Our model reflects this in that as long as their product in Equation 4.4.3.1 is

the same, different distribution of switching can result in the same routing demand. The choice

of a product to model the three parameters conveys their “connectedness” in the switching

matrix, much akin to Brown’s model [10] (in Section 2.4.4) in which the likelihood of events

associated with switch/input conection/output connect blocks are multiplied.

The inflexibility modeled so far pertains to reduced switching in the FPGA. A different type

of inflexibility exists when routing wire segments span multiple logic blocks. As wire segments

span longer, more total wires are needed to complete routing, thus incurring an additional

penalty to routing demand. We model this inflexibility/penalty in the following section.
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Figure 4.10: Accuracy of the switching matrix model for training circuit clma
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Figure 4.11: Accuracy of the switching matrix model for validation circuit pdc
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4.5 Model of Long Wire Segments

All intermediate models up to this point model routing architectures of varying switching flex-

ibilities under the assumption that interconnect wire segments are all unit length (L = 1) –

measured in number of logic blocks it spans. Longer wire segments (where the parameter L is

greater than 1), depicted in Figure 4.12, bring a different form of inflexibility. This inflexibility

causes higher total wire length use, leading to a higher Wneed. This section aims at modeling

the penalty in Wneed as a result of increased wire length.
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Figure 4.12: Wire segment lengths 1, 2 and 4

Recall from Chapter 2 that in the scope of this work we assume all wires in an architecture

will have the same length L. The values of interest for L is from lengths {1, 2, 4, 6, 8},
as current research [8, 55] and modern commercial architectures are in this range. Stratix II

predominantly uses length 4 wires (89% of all tracks) [42], Virtex 4 predominantly uses length

6 wires (65% of all tracks) [65]. The architectures modeled in this section are summarized in

Table 4.9.

There are two major effects of using longer wire segments that increase routing demand

Wneed: segmentation waste, and Fcin Reduction, which we discuss and model in turn in the

Fs Fcin Fcout L Eqv

[3, 21] [2,Wabs min] [2,Wabs min] [1,8] 1

Table 4.9: FPGA routing architectures with long interconnect wire segments
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next two subsections.

4.5.1 Segmentation Waste

Architectures with wire segments of length L > 1 has the inflexibility that routes sometimes

use a wire segment to make a connection that is less than length L. When this occurs the wire

segment is only used for a portion of its length, and the remaining portion is wasted. We refer

to the portion of a used wire segment that is wasted as segmentation waste.

2

1

3

4

5

Figure 4.13: Routing using length 4 wire segments

Segmentation waste occurs either at horizontal-to-vertical (or vice versa) turns – which we

call turn waste– or wire to input pin connections – which we call pin waste, as illustrated in

Figure 4.13. Figure 4.13 shows an example routing of a net with an architecture consisting of

only length 4 wire segments. The source block is the black block (near bottom-left) and sink

blocks are numbered 1 to 5; solid lines are wire segments and dashed lines indicate switches in

use. For example, the route to sink block 3 has a turn waste of 3, and the route to sink block
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1 has a pin waste of 1. The amount of waste is measured by length.

Waste does not occur at output pin connections because, in a single-driver routing archi-

tecture all output pins connect at the beginning of a wire segment by definition. Also waste

does not occur when all wire segments are of unit length; every length of used wire is useful for

L = 1 architecture.

A model of total segmentation waste is derived to capture its effect on routing demand

Wneed. First, we empirically found that the dominant type of waste is from pin waste. This is

seen in Table 4.10, which shows the average percentage of total segmentation waste attributed

to pin waste, averaged across all training benchmark circuits. The experiment flow is the same

Wneed search, and at Wneed the routing solution is parsed to count the total segmentation waste

and waste due to wire to input pins. The architecture is indicated in column 1 and row 1 (values

of Fs and L) and other parameters are Fcin = 8, Fcout = 8, and Eqv = 1 (and same logic

block architecture, N = 10 and I = 22).

Shown in Table 4.10, in the majority of architectures high percentage of segmentation waste

is due to pin waste. And this trend is stronger as L increases. This can be expected since a good

placement leads to lots of short distance connections, which causes pin waste. As L increases,

the connections’ distance does not increase, but more pin waste results. This leads to higher

percentage of total segmentation waste being attributed to pin waste as L increases. This is a

key point to consider for the modeling of total segmentation waste.

The second observation is that the possible values of pin waste, for a wire segment of length

L connecting to an input pin, are 0, 1, 2, ..., L − 1 (0 is no waste, and L − 1 is using L as a

length 1 wire and maximum waste). Furthermore we empirically found that the likelihood of

Fs/L 2 4 6 8

3 66.2% 77.2% 80.5% 81.3%

6 57.6% 74.2% 78.5% 80.6%

9 57.3% 74.8% 78.8% 80.9%

12 57.9% 74.5% 79.2% 81.0%

Table 4.10: Percentage of total segmentation waste that is pin waste, of training circuits
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Figure 4.14: Pin waste distribution for training circuit clma

occurrence for each value of pin waste is approximately uniform, and more so as L increases.

This is not unexpected since all segments in the FPGA are the same length. This can be seen

in Figure 4.14.

Figure 4.14 shows the pin waste distribution of the largest training circuit clma, for segment

lengths 2, 4, 6, and 8; the other routing parameters are set at Fs = 6, Fcin = 8, Fcout = 8,

and Eqv = 1 (and same logic block architecture, N = 10 and I = 22). The trend Figure 4.14 is

typical of all circuits. The experimental flow is the same Wneed search (from Section 3.4), and

at the required channel width Wneed the routing solution is parsed to count the segmentation

waste on each used input pin. In Figure 4.14, the x-axis shows the waste amount on a used

input pin and y-axis shows the number of occurrences. For reference of statistical significance,

each histogram has 12092 data points (which is the number of used input pins in the circuit).
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Looking at Figure 4.14, a trend certainly can be observed. For architectures L = 6 and 8

the pin waste distribution is approximately uniform. For architectures L = 2 and 4, zero waste

is more likely to occur than other waste values, which can be expected because of the short

lengths.

We combine the two observations to create a model of total segmentation waste as a function

of L and the number of used input pins: We model total segmentation waste as the sum of H

random draws from a uniform distribution ranging from 0 to L−1, where H is the total number

of used input pins. In essence, we model total segmentation waste as pin waste with a uniform

distribution.

This uniform distribution models total segmentation waste well. At high values of L (6 and

8), a uniform distribution is approximately the same as the pin waste distribution, in Figure

4.14(c) and 4.14(d). This models total segmentation waste distribution well, since at high values

of L most of total segmentation waste is due to pin waste, as seen in Table 4.10.

At low values of L (2 and 4), a uniform distribution models more waste than the pin waste

distribution, since the in latter distribution (in Figure 4.14(a) and 4.14(b)) zero waste is more

likely to occur than other waste values. The additional waste in the uniform distribution

effectively models the turn waste, which accounts for good portion of the total segmentation

waste for low values of L, as seen in Table 4.10.

Therefore, for low and high values of L, a uniform distribution models total segmentation

waste well. This argument is supported by accuracy results reported later in this section and

in Section 4.5.4.

With the model of total segmentation waste in hand, we can derive an expression for the

additional tracks per channel needed due to segmentation waste. Since the probability of seg-

mentation waste is 1
L for all possible values 0, 1, 2, ..., L−1, the expected value of segmentation

waste per used input pin can is:

Segmentation Waste Per Used Input Pin =
1
L

(0) +
1
L

(1) + ... +
1
L

(L− 1)

=
L− 1

2

(4.5.1.1)

The number of used input pins per channel segment is λ
2 , since there are two channel
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Fs Fcin Fcout L Eqv

[3, 21] W W [1,8] 1

Table 4.11: FPGA routing architectures with reduced switch block flexibility and long wires

segments per logic block. The product of the segmentation waste per used input pin times the

number of used input pins per channel segment gives the extra wire required in each channel

segment, on average, which is the amount of increase needed in track count per channel (Wneed):

Segmentation Waste Per Channel Segment =
λ(L− 1)

4
(4.5.1.2)

This model of segmentation waste confirms some intuitive notions. When L = 1, there is

no waste. As L increases above 1, the segmentation waste per channel segment increases as

proportional to λ and L− 1.

To validate this model of segmentation waste’s impact on Wneed we generalize an earlier

intermediate model, the switch block flexibility model, for the architecture in Table 4.11. The

switch block flexibility model was developed for architectures of only wire segments of length

1. It is repeated here:

Wneed(Fs) = Wabs min +
1
β

Wabs min

Fs
(4.5.1.3)

For the same architectures but with wire segments greater than 1, the total wire length

increases, due to segmentation waste. The wire length increase per channel segment is λ(L−1)
4

given in 4.5.1.2. To accommodate the width of each channel segment, W , must increase by

the same amount. The maximum channel width, Wneed, is expected to increase by the same

amount. Therefore the generalized model of Wneed, as a function of switch block flexibility and

wire segment length, can be modeled as:

Wneed(Fs, L) = Wabs min +
1
β

Wabs min

Fs
+

λ(L− 1)
4

(4.5.1.4)

where β remains fixed at previously determined value of 3.

For validation, we ran experiments determining Wneed using the flow in Section 3.4, under

architectures where Fs and L are varied across their range in Table 4.11 and all other parameters
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L 2 4 6 8

RMSE 3.2 3.2 5.2 9.7

MAPE 5.3% 4.3% 6.2% 11%

% of Wneed Accounted for by Segmentation Waste 6.7% 18% 26% 33%

Table 4.12: Breakdown of accuracy of model of Fs and L (Equation 4.5.1.4)

at maximum flexibility2. Notice that this model of segmentation waste is not constructed based

on observation empirical data of training circuits (i.e. their Wneed values) and it requires no

fitting parameters. The accuracy of model in Equation 4.5.1.4 has an RMSE of 5.9 and MAPE

of 6.8%.

For more insight on the validity of the derived model on wire segmentation length, we

break down the model accuracy for different lengths in Table 4.12. Table 4.12 shows the

model accuracy for segment lengths 2, 4, 6 and 8 in first three rows. The fourth rows gives

the percentage of Wneed that is accounted for by the derived term λ(L−1)
4 , averaged across all

benchmark circuits for the column-specified segmentation length. This metric shows that this

quantity accounts for a significant portion of the routing demand modeled in Equation 4.5.1.4.

Going forward, it is not sufficient to generalize the switching matrix model (containing Fs,

Fcin, Fcout) simply by considering segmentation waste, because another important effect of

long wire segments on Wneed needs to be captured in the model. This effect is described in the

following subsection.

4.5.2 Fcin Reduction

Using longer wire segment lengths not only increases routing demand Wneed because of increased

total wire length due to segmentation waste, but it has a second effect that causes an increase

in Wneed, which comes from an interaction between input connection block flexibility (the Fcin

parameter) and the segmentation waste. This effect is illustrated in Figure 4.15, which shows

2Because of restrictions imposed by long wire segment lengths, some architectures in this space are not possible
for certain benchmark circuits. For example, Fs = 21 and L = 8 would require a channel width of 112 ( 2L·Fs

3
)

just to meet architecture specification – i.e. to have enough distinct wires to connect to in the switch block.
Benchmark circuits that require smaller channel widths than 112 will be clipped at demanding Wneed = 112 –
for such cases we discard the data point (for that circuit only)
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Figure 4.15: Fcin reduction effect due to long wire segment lengths

an architecture with three length four wire segments passing by six input pins. The wire-to-

input-pin programmable switches are shown as circles and the figure shows an architecture

where Fcin is less than the maximum possible. Suppose that the top length four wire segment

is used to connect into logic block pin number 5. A side effect of this routing choice is that the

associated segmentation waste led to fewer opportunities to connect into pin number 3 and 4.

This amounts to an effective reduction of Fcin due to segmentation waste. For contrast, Fcin

would not be effectively reduced if unit length wires were used – where there is no segmentation

waste. We intuitively expect this effect to most dramatically increase routing demand when

Fcin is low. The effect of Fcin reduction is not noticeable when there is an abundance of

switching as in the architectures of Table 4.11 in the previous subsection, where Fcin is at

maximum. Which is why without modeling this effect we can still predict accurately in that

architecture subspace.

This observation is supported by empirical data. We ran experiments using the flow search-

ing for Wneed of Section 3.4, under the architectures in Table 4.9, using training benchmark

circuits. Figure 4.16 is a plot of subset of the experimental data (representing the typical

trends), showing the difference Wneed(L = 4)−Wneed(L = 1) (z-axis) averaged across training

benchmark circuits for a range of Fs (x-axis) and Fcin (y-axis), at Fcout = 8. Figure 4.16 shows

that the increase in Wneed, as a result of using L = 4 wire segments instead of unit length wire
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Figure 4.16: Average increase in Wneed going from L = 1 to L = 4 for training circuits

segments, is dependent on Fcin. The dependence is not significant when Fcin is large: from

Fcin = 30 to Fcin = 60 the curve is nearly flat, showing a near constant increase in Wneed of

around 8 tracks (This shows why the Wneed(Fs, L) model in Equation 4.5.1.4, which does not

consider Fcin reduction effect, is sufficiently accurate for routing architectures of Table 4.11).

However, at low values of Fcin, the increase in Wneed is dramatic as hypothesized by the Fcin

reduction effect due to longer wire segment length, described above.

Therefore it is clear that, to generalize the switching matrix model (containing Fs, Fcin,

Fcout) for L, it is not enough to model increase in Wneed by segmentation waste λ(L−1)
4 alone;

one must also consider Fcin reduction effect. To account for the increased routing demand due

to Fcin reduction effect a number of candidate models are proposed.

4.5.3 Constructing Candidate Models

The increase due to Fcin reduction occurs as a function of the amount of segmentation waste:

more segmentation waste (caused by longer L) leads to more Fcin reduction. So the term
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accounting for Fcin reduction should be multiplicative to segmentation waste quantity λ(L−1)
4 .

Furthermore, the increase due to Fcin reduction is inversely related to Fcin as seen in Figure

4.16, suggesting the term 1
Fcin

αseg , where αseg is a parameter fitted to accurately model the

inverse trend. Combining the above hypotheses, one possible expression for the Fcin reduction

increase is:

λ(L− 1)
4

(
1

Fcin
αseg

)
(4.5.3.1)

Recall previous routing demand model (containing Fs, Fcin, Fcout) is

Wneed(Fs, Fcin, F cout) = Wabs min +
1
β

(
Wabs min

Fs

)(
Wabs min

Fcin

)αin
(

Wabs min

Fcout

)αout

(4.5.3.2)

and previous section concluded that segmentation waste contributes to Wneed by λ(L−1)
4 . Adding

that increase and the increase due to Fcin reduction (in Equation 4.5.3.1) to the previous model,

we obtain Candidate Model 1:

Candidate Model 1:

Wneed(Fs, Fcin, F cout, L) = Wabs min +
1
β

(
Wabs min

Fs

)(
Wabs min

Fcin

)αin
(

Wabs min

Fcout

)αout

+
λ(L− 1)

4

(
1 +

1
Fcin

αseg

)

(4.5.3.3)

where β, αin and αout are fixed at their previously determined values of 3, 0.5 and 0.25 respec-

tively (the same statement is made for all candidate models presented in this section), and αseg

is a fitting parameter, to be determined by training data.

However, Candidate Model 1 is very complex to use because of potentially having two

different exponents for Fcin. While we want to model the effect of Fcin reduction accurately,

we also want model simplicity. It may be sufficient to simply have a fixed positive exponent for

Fcin in the penalty term of Equation 4.5.3.1: so the trend (in Figure 4.16) of Fcin reduction

is modeled, but (perhaps) not as accurately as when model contains a parameter αseg fitted to

training data.

Based on this, we propose a candidate model that sacrifices accuracy for simplicity, by fixing

the exponent αseg to equal αin, which is determined to be 0.5. This choice is driven by model

simplicity:
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Candidate Model 2:

Wneed(Fs, Fcin, F cout, L) = Wabs min +
1
β

(
Wabs min

Fs

)(
Wabs min

Fcin

)αin
(

Wabs min

Fcout

)αout

+
λ(L− 1)

4

(
1 +

1
Fcin

αin

)

(4.5.3.4)

On the other end of the spectrum one can argue for a more complex model, noting that

Figure 4.16 shows increase in Wneed due to L has a slight dependence on Fs. Such a model is:

Candidate Model 3:

Wneed(Fs, Fcin, F cout, L) = Wabs min +
1
β

(
Wabs min

Fs

)(
Wabs min

Fcin

)αin
(

Wabs min

Fcout

)αout

+
λ(L− 1)

4

(
1 +

1
Fcin

αseg1Fsαseg2

)

(4.5.3.5)

where αseg1 and αseg2 are fitting parameters of the model, that capture the curvature of Figure

4.16.

As discussed in the previous subsection: “generalizing the switching matrix model (contain-

ing Fs, Fcin, Fcout) simply by considering segmentation waste is not sufficient”. To test this

hypothesis we construct a candidate model that only models segmentation waste:

Candidate Model 4:

Wneed(Fs, Fcin, F cout, L) = Wabs min +
1
β

(
Wabs min

Fs

)(
Wabs min

Fcin

)αin
(

Wabs min

Fcout

)αout

+
λ(L− 1)

4

(4.5.3.6)

Finally, instead of modeling the penalty due to L as additive to switching matrix flexibility

penalty, one can model L in a similar fashion to Fcin and Fcout in the last section, ignoring

the segmentation waste derivation, arriving at:

Candidate Model 5:

Wneed(Fs, Fcin, F cout, L) = Wabs min +
1
β

(
Wabs min

Fs

)(
Wabs min

Fcin

)αin
(

Wabs min

Fcout

)αout

(L)αL

(4.5.3.7)
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where αL is a fitting parameter.

These five candidate models of generalizing switching matrix model for L are evaluated and

compared in the following subsection.

4.5.4 Model Accuracy

Experimental data are generated by the Wneed search flow in Section 3.4, under architectures in

Table 4.9, using training and validation circuits. Candidate models that require fitting are fitted

to training data. The results are summarized in Table 4.13. In Table 4.13, the first column

identifies the candidate model and the next four columns are the accuracy metrics. The final

column gives the fitted parameter values. The rows are sorted by descending validation RMSE

(column 3). For reference of statistical significance, there are 13688 data points from training

circuits and 13049 data points from validation circuits.

Model RMSE RMSE MAPE MAPE Fitted

No. Training Validation Training Validation Parameters

5 10 9.0 11% 8.6% αL = 0.686

4 8.6 7.8 8.7% 7.2% no new fitting parameter

2 6.7 6.2 7.9% 6.5% no new fitting parameter

1 6.1 5.6 8.0% 6.8% αseg = 0.231

3 6.0 5.6 8.0% 6.8% αseg1 = 0.412, αseg2 = 0.248

Table 4.13: Accuracy of candidate models for wire segmentation length

Note that although Candidate Model 2 and 4 are not fitted to data, their accuracy are mea-

sured for training and validation set circuits separately to allow a fair comparison of validation

RMSE with other candidate models.

The best candidate model is selected based on a balance between simplicity, intuition and

accuracy. Candidate Model 5 is significantly worse than the rest, showing that multiplying a

power of L with the switching matrix flexibility penalty term is not as a good model as having

an additive segment length penalty term (as in the four other models). Thus Candidate Model 5

is ruled out. Candidate Model 3, while more complex (requiring two fitting parameters), is not
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significantly better than Candidate Model 2; this reflects that modeling the slight dependence

on Fs in Figure 4.16 is not worth the added complexity. Thus Candidate Model 3 can not be

the best choice.

The choice of best model comes down to Candidate Models 1, 2 and 4. Although Candidate

Model 1 is more accurate than 2, we believe the gap is not significant enough to justify the added

complexity of a fitting parameter for the exponent of Fcin. Candidate Model 2 is simpler than

1 because the exponent of Fcin is chosen same as αin = 0.5 relating Fcin flexibility and Wneed.

Candidate Model 4 is worse than 2 in accuracy but not significantly. However, we expect the

accuracy gap between them to increase as they are generalized for less flexible architectures,

because Candidate Model 4 is missing the Fcin reduction effect which will be a more prominent

cause of increase in Wneed when logical equivalence is reduced (later in Section 4.6).

In conclusion, based on a balance between simplicity, intuition and accuracy, Candidate

Model 2 is the best model for long wire segment architectures ( architectures listed in Table

4.9). We shall refer to this model as the segmentation model, modeling L, Fs, Fcin and Fcout.

The segmentation model accuracy is shown in Figures 4.17 and 4.18. For clarity, only results

for the largest circuit in each training (clma) and validation (pdc) sets are shown (remember

the model is not fitted on either), under a subset of architectures. In Figures 4.17 and 4.18,

y-axis shows Wneed, for the architecture Fs = 3, 6 and 9, Fcin = 8, Fcout = 8, and L = 1, 2,

4, 6 and 8 (x-axis). The measured values are in solid dots, and model predicted values are in

hollow dots. The breakdown of the accuracy shown in Figures 4.17 and 4.18 are presented in

Tables 4.14 and 4.15 respectively. Each table consists of four sub-tables; top two sub-tables give

Wneed at various Fs (row) and L (column) values, for the measured and predicted; the bottom

two sub-tables give the error (predicted − measured) and error as a percentage of measured.

The second last row shows the average absolute error percentage for each wire segment length

L (averaged for each column). The final row gives the average absolute error percentage across

all data points in table.
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Figure 4.17: Accuracy of segmentation model for training circuit clma

Measured Predicted

Fs/L 1 2 4 6 8 1 2 4 6 8

3 88 90 100 124 144 88 93 101 110 119

6 72 74 86 102 122 74 78 87 96 104

9 68 72 82 100 112 69 73 82 91 99

Error Error %

Fs/L 1 2 4 6 8 1 2 4 6 8

3 0 3 1 -14 -25 0.2% 2.9% 1.4% -11% -17%

6 2 4 1 -6 -18 2.2% 5.3% 0.9% -6.3% -14%

9 1 1 0 -9 -13 1.0% 1.5% -0.1% -9.3% -11%

Average Absolute Error per L 1.1% 3.2% 0.8% 8.9% 14%

Average Absolute Error Overall 5.7%

Table 4.14: Breakdown of segmentation model accuracy for training circuit clma
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Figure 4.18: Accuracy of segmentation model for validation circuit pdc

Measured Predicted

Fs/L 1 2 4 6 8 1 2 4 6 8

3 100 104 116 138 166 105 110 121 131 141

6 82 86 98 118 138 87 92 102 112 123

9 78 82 94 108 132 80 85 96 106 116

Error Error %

Fs/L 1 2 4 6 8 1 2 4 6 8

3 5 6 5 -7 -25 5.3% 6.2% 4.1% -5.0% -15%

6 5 6 4 -6 -15 5.6% 6.7% 4.1% -4.8% -11%

9 2 3 2 -2 -16 3.0% 4.2% 1.9% -1.7% -12%

Average Absolute Error per L 4.6% 5.7% 3.4% 3.8% 13%

Average Absolute Error Overall 6.0%

Table 4.15: Breakdown of segmentation model accuracy for validation circuit pdc



Chapter 4. Development of Routing Demand Model 88

4.5.5 Simplicity-Driven Model

Before going on to extend the segmentation model in Equation 4.5.3.4 for more inflexible archi-

tectures, we will evaluate the symmetric simple model. In Section 4.4.3 the symmetric simple

model, repeated here in Equation 4.5.5.1, was found to be worse than the the switching matrix

model (in Equation 4.4.2.2), for a balance of simplicity, intuition and accuracy. Although the

symmetric simple model is simpler than the switching matrix model (one less fitting param-

eter), we hypothesized that the accuracy gap between them will increase for more inflexible

architectures, because the former does not model the important trend that Fcin has a greater

impact on Wneed than Fcout. In this subsection, this hypothesis will be tested by extending the

symmetric simple model to model L.

Wneed(Fs, Fcin, F cout) = Wabs min +
α

β

(
Wabs min

Fs

)(
Wabs min

Fcin

)(
Wabs min

Fcout

)
(4.5.5.1)

The procedure of formulating candidate models derived from the symmetric simple model

is identical to Section 4.5.3. The candidate models are:

Candidate Model 1:

Wneed(Fs, Fcin, F cout, L) = Wabs min +
α

β

(
Wabs min

Fs

)(
Wabs min

Fcin

)(
Wabs min

Fcout

)

+
λ(L− 1)

4

(
1 +

1
Fcin

αseg

) (4.5.5.2)

where α and αseg are fitting parameters, to be determined by training data. The parameter β

is fixed at 3 (same statement holds for all following candidate models).

Candidate Model 2:

Wneed(Fs, Fcin, F cout, L) = Wabs min +
α

β

(
Wabs min

Fs

)(
Wabs min

Fcin

)(
Wabs min

Fcout

)

+
λ(L− 1)

4

(
1 +

1
Fcin

) (4.5.5.3)

where α is the only fitting parameter. Note the exponent of Fcin is adjusted to 1 for simplicity,

similarly to before (adjusted to αin).

Candidate Model 3:



Chapter 4. Development of Routing Demand Model 89

Wneed(Fs, Fcin, F cout, L) = Wabs min +
α

β

(
Wabs min

Fs

)(
Wabs min

Fcin

)(
Wabs min

Fcout

)

+
λ(L− 1)

4

(
1 +

1
Fcin

αseg1Fsαseg2

) (4.5.5.4)

where α, αseg1 and αseg2 are all fitting parameters.

Candidate Model 4:

Wneed(Fs, Fcin, F cout, L) = Wabs min +
α

β

(
Wabs min

Fs

)(
Wabs min

Fcin

) (
Wabs min

Fcout

)
+

λ(L− 1)
4

(4.5.5.5)

where α is the only fitting parameter.

Candidate Model 5:

Wneed(Fs, Fcin, F cout, L) = Wabs min +
α

β

(
Wabs min

Fs

)(
Wabs min

Fcin

)(
Wabs min

Fcout

)
(L)αL

(4.5.5.6)

where α and αL are fitting parameters.

By the same model fitting approach as Section 4.5.4, we obtain results in Table 4.16.

Model RMSE RMSE MAPE MAPE Fitted

No. Training Validation Training Validation Parameters

5 20 19 24% 20% α = 0.00319, αL = 2.18

4 13 13 12% 10% α = 0.0609

2 12 12 11% 9.8% α = 0.0554

1 11 11 10% 9.5% α = 0.0375, αseg = 0.0967

3 11 11 10% 9.6% α = 0.0356, αseg1 = 0.185, αseg2 = 0.135

Table 4.16: Accuracy of symmetric simple candidate models

Comparing Table 4.16 and Table 4.13, it is clear that all candidate models derived from the

symmetric simple model are worse in accuracy than the segmentation model in Equation 4.5.3.4

(extended from the switching matrix model): The validation RMSE of all candidate models

are at least 1.8 times that of the segmentation model (recall validation MAPE of segmentation

model is 6.2) – they are worse by approximately twice the number of tracks mis-predicted.
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The validation MAPE of all candidate models are significantly worse as well, at least 1.5 times

greater (recall validation MAPE of segmentation model is 6.5%).

The hypothesis that the accuracy gap between symmetric simple model and the switching

matrix model will increase for more inflexible architectures is verified. The accuracy gap be-

tween them is 6.9 / 4.6 = 1.5 times worse validation RMSE, and 8.6% / 6.5% = 1.3 times worse

validation MAPE (numbers from Table 4.8 in Section 4.4.3). The accuracy gap between them,

extended for L, is 1.8 times in validation RMSE and 1.5 times in validation MAPE.

This study confirms that for the balance of simplicity, intuition and accuracy, the segmen-

tation model is the best. However, we believe the symmetric simple model has compelling value

in the theme of simplicity. The value of such a simple model lays in the ease with which it

can be analytically manipulated to express tradeoff equations. For this reason, we will develop

a second routing demand model that is more simplicity-driven, by extending the symmetric

simple model. It will be referred to as the simplicity-driven model.

For simplicity-driven model, the best choice is Candidate Model 4, which can be re-arranged

as:

Simplicity-Driven Model:

Wneed(Fs, Fcin, F cout, L) = Wabs min +
1
θ

(
Wabs min

Fs

)(
Wabs min

Fcin

)(
Wabs min

Fcout

)
+

λ(L− 1)
4

(4.5.5.7)

where α
β is replaced by 1

θ , and θ equals 50. Its accuracy is a validation RMSE of 13, and a

validation MAPE of 10% (as given in Table 4.16). In modeling for L, this model does not

account for the Fcin reduction effect, for simplicity. In the following section of modeling logical

equivalence, this simplicity-driven model will be further developed, alongside the main routing

model. Before moving onto the modeling of logical equivalence, we will review the main routing

model and present the insights and intuitions it gives.

4.5.6 Segmentation Model Intuition

The routing model developed so far presents the following insights and intuitions. The routing

demand Wneed has three additive components:
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Wneed =

switching matrix segment

absolute + flexibility + length

minimum penalty penalty
(4.5.6.1)

The first component “absolute minimum” is Wabs min needed for a fully flexible FPGA. A

“switching matrix flexibility penalty” must be added if the switching matrix described by Fs,

Fcin and Fcout is reduced from its maximum flexibility. In detail this penalty equals:

switching matrix flexibility penalty =
1
β

(
Wabs min

Fs

)(
Wabs min

Fcin

)αin
(

Wabs min

Fcout

)αout

(4.5.6.2)

where β = 3, αin = 0.5 and αout = 0.25.

Furthermore a “segment length penalty” must be paid if the wire segment length L of the

routing architecture is greater than 1:

segment length penalty =
λ(L− 1)

4

(
1 +

1
Fcin

αin

)
(4.5.6.3)

This penalty has two components. Primarily, increased segment length L causes increase in

Wneed due to segmentation waste, by the amount λ(L−1)
4 . Second order effects of segmentation

waste causes an effective reduction in Fcin flexibility, captured by the
(
1 + 1

Fcin
αin

)
term, and

this effective reduction is greater for greater segmentation waste – thus it is multiplied with the

amount of segmentation waste λ(L−1)
4 .

Further inflexibility in the routing architecture arises when the input pins and output pins

are no longer logically equivalent as assumed so far. The following subsection models the impact

of logical equivalence.

4.6 Impact of Logical Equivalence

The routing model developed up to this point models architectures in which all input pins on

the same logic block are logically equivalent and all output pins on the same logic block are
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logically equivalent. Recall from Chapter 2 that pins are evenly distributed on the four sides of

a square logic block in the manner shown in Figure 2.3, which is repeated here in Figure 4.19.

Having logical equivalence (parameter Eqv = 1) allows the router to take advantage of the

physical location of pins – an incoming connection has the choice of connecting to any unused

input pin on the four sides (similarly for output pins). On the other hand, removing logical

equivalence between pins (so that all pins are distinct) introduces an inflexibility in routing,

in turn causing an increase in Wneed. The logical equivalence parameter Eqv is binary and we

incorporate it into the routing model by capturing the effects of removing logical equivalence

(Eqv = 0). We leave it to future work to model less binary gradations of logical equivalence.

The architectures to be modeled in this section are summarized in Table 4.17.

Logic Block
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2 6

13
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Input P in
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Figure 4.19: Distribution of pins on the logic block for logic cluster size 10

There are two main effects of removing logical equivalence. One is the distance each con-

nection must travel is increased, because it may have to travel to the far side of a logic block,

rather than connecting to the nearest. A second effect will be to reduce the effective connection

block flexibility, because the number of opportunities to connect in and out of the logic block is

dramatically reduced. The routing model is extended to capture these two effects of removing

logic equivalence in turn in the following subsections.

Fs Fcin Fcout L Eqv

[3, 21] [2,Wabs min] [2,Wabs min] [1,8] 0

Table 4.17: FPGA routing architectures without logical equivalence
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4.6.1 Increased Routing Distance

The first effect of removing logical equivalence, Eqv = 0, is that the distance connections

must travel is increased. This causes an increase in routed wire length, and in turn Wneed.

To determine the distance increase, we isolate it by assuming a fully flexible architecture but

with Eqv = 0, in Table 4.18. In such an architecture, connections are not impacted by lack of

flexibility in other routing parameters, thus are made by near minimum distance routes which

reflect distance increase.

Using the Wneed search experimental flow in Section 3.4, under the architecture described

in Table 4.18, we place and route training circuits. Using the routing solution at Wneed, the

post-routing wire length is parsed out. The total routed wire length increase, expressed as the

ratio:

Average Wire Length for Eqv = 0
Average Wire Length for Eqv = 1

(4.6.1.1)

is shown in Figure 4.20. In Figure 4.20, the wire length increase ratio (y-axis) of each train-

ing circuit is plotted against the Wabs min (x-axis) of the circuit. The average ratio across

all training circuits is 1.166 with standard deviation 0.036. The near-constant plot and low

standard deviation suggest that routing distance increase due to removing logical equivalence

causes consistent increase in routed wire length.

Motivated by the consistency we model this effect in the input parameter, R, the placement-

estimated average two-pin wire length (which uses a Minimum Spanning Tree two-pin net

model). Note the placement estimation of R does not consider logic block boundaries, hence

naturally assumes logical equivalence. The model for removed logical equivalence is:

RNE = σ ∗R (4.6.1.2)

where σ = 1.166. The term RNE is the average two-pin wire length when the routing architec-

Fs Fcin Fcout L Eqv

3W W W 1 0

Table 4.18: Fully flexible FPGA routing architecture except no logical equivalence



Chapter 4. Development of Routing Demand Model 94

0

0.2

0.4

0.6

0.8

1

1.2

1.4

20 25 30 35 40 45 50 55 60 65 70

Wabs _min

W
ir

e
 L

e
n

g
th

 R
a

ti
o

 I

Average R atio = 1.166

Figure 4.20: Routed wire length increase as a result of removing logical equivalence

ture has no logical equivalence.

To check the validity of this model, we substitute it into the fully flexible FPGA routing

model and compare its predicted Wneed to actual measured Wneed under the Eqv = 0 architec-

ture in Table 4.18. We shall refer to Wneed under this architecture as Wabs minNE – the absolute

minimum routing demand for any routing architecture without logical equivalence. The model

after substitution is:

Wabs minNE = p
λRNE

2
= σ ∗ p

λR

2
(4.6.1.3)

where p remains fixed at previously determined value of 1.4.

The accuracy of the fully flexible FPGA routing model for Eqv = 0, Equation 4.6.1.3, is

3.4 RMSE and 6.1% MAPE for training circuits and 3.2 RMSE and 5.5% MAPE for validation

circuits, 14 data points each. The accuracy is displayed in Figure 4.21, where Wneed (y-axis) is

plotted for all circuits ordered by their Wavg (x-axis), and the straight line is the fully flexible

model for Eqv = 0 (slope is again 1.4).
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Figure 4.21: Accuracy of fully flexible but Eqv = 0 FPGA model for all benchmark circuits

The accuracy shows that the model in Equation 4.6.1.2 captures well the increased routing

distance. Routing models developed for Eqv = 1 can account for the routing distance increase

due to removing logical equivalence (Eqv = 0) by replacing R with RNE .

In addition to increased routing distance, removing logical equivalence has the effect of

reducing connection block flexibility, which in turn causes further increase in Wneed. This effect

is modeled in the following subsection.

4.6.2 Effective Connection Block Flexibility Reduction

Without logical equivalence the choices of making a connection in the connection block is

effectively reduced. This can be best seen by an example, illustrated in Figure 4.22. Figure

4.22 depicts example architectures in a) and b), both having W = 5 and Fcin = 2, but a)

has logical equivalence and b) does not. In Figure 4.22 a), having logical equivalence enables

a connection going to input pin 0 to choose between 18 (in blue) out of the 20 total wires

surrounding the logic block (since it can connect to any of the ten input pins). On the other
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Figure 4.22: Removing logical equivalence reduces the number of choices in connection blocks

hand in Figure 4.22 b), in the absence of logical equivalence, the same connection going to input

pin 0 must be made through only two wires. This example shows the number of choices in the

connection block is reduced when logical equivalence is removed; in effect, the connection block

flexibility is reduced.

This effective connection block flexibility reduction in turn causes an increase in Wneed.

This can be seen empirically in Figure 4.23. The data in Figure 4.23 is obtained using the

Wneed search experimental flow, under the architecture Fs = 6, Fcin = 8, Fcout = 8 and L = 1,

using training set circuits. The figure shows the average Wneed, across training circuits, when

logical equivalence is removed (Wneed(Eqv = 0), y-axis) plotted against Wneed when logical

equivalence exists (Wneed(Eqv = 1), x-axis). The average ratio of Wneed(Eqv=0)
Wneed(Eqv=1) is 1.327. While

approximately a factor of 1.166 of the increase in Wneed is accounted for by routing distance

increase, the remaining increase in Wneed is explained by the effective connection block flexibility

reduction.
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Figure 4.23: Average Wneed of training circuits for with vs. without logical equivalence

The output connection block flexibility, Fcout, can be reduced, but its effect is small that it

is ignored for model simplicity. Therefore we will focus on modeling effective connection block

flexibility reduction on the input pins only, reducing Fcin.

To model effective input connection block flexibility reduction, we observe that, when logical

equivalence exists for the I input pins on the logic block, each one of those pins contributes to

the effective Fcin. As one candidate model the loss of those I pins, due to removing logical

equivalence, reduces the effective Fcin by a constant amount each. That is we replace Fcin by

the term FcNEin (effective Fcin for no logical equivalence) defined as follows:

FcNEin =
Fcin

Iµ
(4.6.2.1)

to arrive at

Candidate Model 1:
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Wneed(Fs, Fcin, F cout, L, Eqv = 0) =

Wabs minNE +
1
β

(
Wabs minNE

Fs

) (
Wabs minNE

FcNEin

)αin
(

Wabs minNE

Fcout

)αout

+
λ(L− 1)

4

(
1 +

1
FcNEin

αin

)

(4.6.2.2)

where β, αin and αout are fixed at their previously determined values of 3, 0.5 and 0.25 respec-

tively, and µ is a fitting parameter. The term Wabs minNE is defined in Equation 4.6.1.3.

Alternatively, FcNEin can be modeled as a power function of the nominal Fcin, as:

FcNEin = Fcin

1
Iµ (4.6.2.3)

to obtain Candidate Model 2.

As a more complex variant of Candidate Model 1, the effective Fcin reduction need not be

the same in switching matrix flexibility penalty and segmentation penalty. This is motivated

by the possibility of interaction between Fcin reduction due to segmentation waste and Fcin

reduction due to removing logical equivalence. The proposed model is:

Candidate Model 3:

Wneed(Fs, Fcin, F cout, L, Eqv = 0) =

Wabs minNE +
1
β

(
Wabs minNE

Fs

) (
Wabs minNE

Fcin
Iµ1

)αin (
Wabs minNE

Fcout

)αout

+
λ(L− 1)

4

(
1 +

1
Fcin
Iµ2

αin

)

(4.6.2.4)

where all parameters are fixed at previously determined values, except µ1 and µ2 are fitting

parameters.

These three candidate models capturing the impact of removing logical equivalence are

evaluated and compared in the following subsection.

4.6.3 Model Accuracy

Data are generated by the Wneed search experimental flow in Section 3.4, under architectures

in Table 4.17, using training and validation circuits. Candidate models are fitted to training
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data. The model accuracies are summarized in Table 4.19. In Table 4.19, the first column

identifies the candidate model, the next four columns are the accuracy metrics, and the final

column gives the fitted parameter values. The rows are sorted by descending validation RMSE

(column 3). There are 14552 training data points and 13834 validation data points.

Model RMSE RMSE MAPE MAPE Fitted

No. Training Validation Training Validation Parameters

1 18 15 15% 14% µ = 0.330

2 17 15 15% 14% µ = 0.225

3 14 11 11% 9.1% µ1 = 0.1, µ2 = 2.77

Table 4.19: Accuracy of candidate models for removed logical equivalence

The best candidate model, based on a balance of simplicity, intuition and accuracy, is

Candidate Model 1. It contains one fewer parameter than Candidate Model 3, at the loss of

30-36% in RMSE, an amount that can not justify the added complexity of 3. Candidate Model

2 is not better in accuracy than 1, and its form – a power function – is more complex to work

with than the ratio in Equation 4.6.2.1. In conclusion, Candidate Model 1 is the best.

The value of µ that gives the final model best fit to training data is 0.33. Due to the large

volume of data, only results for the largest circuit in the each training (clma) and validation

(pdc) sets, under a selected set of architectures, are shown in Figures 4.24 and 4.25, respectively.

In Figures 4.24 and 4.25, Wneed for Eqv = 0 (y-axis) is plotted against Fcin (x-axis). There

are three sub-figures in each, showing for architectures of different L values: 1, 4 and 6. In

each sub-figure, are plots for Fs = 3 and 6 of the measured Wneed (solid dots) and the model

predicted Wneed (hollow dots). The architecture parameter Fcout is set to 24 for all, except

when L = 6 in which case Fcout = 183

The general trend in Figures 4.24 and 4.25, which is typical, is that the final routing demand

model (for Eqv = 0) over-predicts for low wire segment lengths (particularly for L = 1) and

improves for larger lengths.

3Choice of Fcout for experiments is dependent on L, since L controls the number of distinct starting wires
(which output pins can connect) adjacent an output pin. In this case, there was no Fcout = 24, L = 6 architecture
in the experiment set.
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Numerical breakdown of the accuracy is shown in Tables 4.20 and 4.21. Each table consists

of four sub-tables; top two sub-tables give Wneed at various architecture, consisting of Fs and

L (row) and Fcin (column) values, for the measured and predicted; the bottom two sub-tables

give the error (predicted − measured) and error as a percentage of measured. The second last

row shows the absolute error percentage averaged for each column. The final row gives the

average absolute error percentage across all data points in table.

The final routing demand model is complete and it will be summarized, with intuitions

given, in Section 4.8.

Measured Predicted

Fs 3 3 3 6 6 6 3 3 3 6 6 6

Fcin/L 1 4 6 1 4 6 1 4 6 1 4 6

4 154 178 234 90 126 174 180 202 226 124 147 166

8 118 152 200 82 116 150 147 166 185 108 127 143

12 110 148 188 80 112 148 133 150 166 101 118 132

26 100 128 164 76 108 130 112 127 140 90 105 117

42 94 118 146 74 100 128 103 117 128 86 100 110

56 90 116 140 74 98 122 98 112 123 84 97 107

70 88 110 134 74 96 116 95 108 119 82 95 104

Error Error %

Fs 3 3 3 6 6 6 3 3 3 6 6 6

Fcin/L 1 4 6 1 4 6 1 4 6 1 4 6

4 26 24 -8 34 21 -8 17% 14% -3.4% 38% 17% -4.4%

8 29 14 -15 26 11 -7 25% 9.3% -7.7% 32% 9.4% -5.0%

12 23 2 -22 21 6 -16 21% 1.4% -11% 26% 5.4% -11%

26 12 -1 -24 14 -3 -13 12% -0.7% -14% 19% -2.4% -10%

42 9 -1 -18 12 0 -18 9.5% -1.1% -12% 16% -0.4% -14%

56 8 -4 -17 10 -1 -15 9.3% -3.8% -12% 13% -1.2% -13%

70 7 -2 -15 8 -1 -12 8.2% -1.7% -11% 11% -1.2% -10%

Average Absolute Error per Column 14% 4.5% 10% 22% 5.3% 9.5%

Average Absolute Error Overall 11%

Table 4.20: Breakdown of final routing model accuracy for training circuit clma



Chapter 4. Development of Routing Demand Model 101

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80

Fcin

W
n

e
e

d
Fs=3, L=1, P redicted

Fs=3, L=1, Measured

Fs=6, L=1, P redicted

Fs=6, L=1, Measured

(a) L = 1

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80

Fcin

W
n

e
e

d

Fs=3, L=4, P redicted

Fs=3, L=4, Measured

Fs=6, L=4, P redicted

Fs=6, L=4, Measured

(b) L = 4

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80

Fcin

W
n

e
e

d

Fs=3, L=6, P redicted

Fs=3, L=6, Measured

Fs=6, L=6, P redicted

Fs=6, L=6, Measured

(c) L = 6

Figure 4.24: Accuracy of the final routing model for training circuit clma
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Figure 4.25: Accuracy of the final routing model for validation circuit pdc
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Measured Predicted

Fs 3 3 3 6 6 6 3 3 3 6 6 6

Fcin/L 1 4 6 1 4 6 1 4 6 1 4 6

4 170 194 250 102 136 180 221 248 276 150 177 200

8 142 172 224 92 132 162 179 202 224 129 152 170

12 126 162 218 90 124 156 161 181 201 120 140 157

26 112 140 184 86 118 140 133 150 165 106 123 137

42 106 132 164 84 108 136 122 138 152 100 117 129

56 102 126 156 84 108 130 116 132 145 98 113 125

70 96 122 152 82 106 126 112 127 140 96 111 122

Error Error %

Fs 3 3 3 6 6 6 3 3 3 6 6 6

Fcin/L 1 4 6 1 4 6 1 4 6 1 4 6

4 51 54 26 48 41 20 30% 28% 11% 47% 30% 11%

8 37 30 0 37 20 8 26% 17% 0.1% 41% 15% 5.1%

12 35 19 -17 30 16 1 28% 12% -7.8% 33% 13% 0.6%

26 21 10 -19 20 5 -3 19% 7.1% -10% 23% 4.4% -2.4%

42 16 6 -12 16 9 -7 15% 4.5% -7.4% 20% 7.9% -5.2%

56 14 6 -11 14 5 -5 14% 4.6% -7.1% 16% 4.8% -3.9%

70 16 5 -12 14 5 -4 17% 4.2% -8.2% 17% 4.3% -3.3%

Average Absolute Error per Column 21% 11% 7% 28% 11% 4.5%

Average Absolute Error Overall 14%

Table 4.21: Breakdown of final routing model accuracy for validation circuit pdc
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4.6.4 Final Simplicity-Driven Model

The simplicity-driven model is extended to capture the impact of logical equivalence by the

same approach as the the main routing model, because that approach leads to the simplest

analytic form.

Recall from Section 4.5.5, for Eqv = 1 the simplicity- driven model is

Simplicity-Driven Model:

Wneed(Fs, Fcin, F cout, L, Eqv = 1) = Wabs min +
1
θ

(
Wabs min

Fs

)(
Wabs min

Fcin

)(
Wabs min

Fcout

)

+
λ(L− 1)

4

(4.6.4.1)

with

Wabs min = p
λR

2
(4.6.4.2)

where p = 1.4, and θ = 50.

When Eqv = 0, R in Equation 4.6.4.2 is replaced by RNE , defined by:

RNE = σ ∗R (4.6.4.3)

where σ = 1.166. And Fcin in Equation 4.6.4.1 is replaced by FcNEin, defined by:

FcNEin =
Fcin

Iµ
(4.6.4.4)

where I is the number of input pins from which logical equivalence is removed, and µ = 0.06.

The accuracy of the final simplicity-driven model is a training RMSE of 32 and validation

RMSE of 26, and a training MAPE of 22% and validation MAPE of 18%.

Although the simplicity-driven model is much worse in accuracy than the main routing

demand model, in terms of individual circuit prediction, it holds value in ease of use. This is

demonstrated in the next chapter, in Section 5.2.

The main routing demand model is completely developed, but before concluding this chap-

ter, it is important to scrutinize the training process of this model. In the next section, we

study the effect of training set choice on the model.
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4.7 Bias of Training Set Choice

In this section we study the impact of training set on the main routing demand model, to ensure

that the model fitting parameter values are not biased to the choice of training circuits.

As described in Section 3.3.4, a systematic approach is adopted for selecting the training

circuits (to which the model is fit to) and validation circuits, to ensure there is no bias: both sets

are similar in circuit nature, measured by a number of statistical metrics (LUT count and the

number of nets). However, to check that there is no bias in the final model fitting parameters

to the choice of training circuits, we swap the original training and validation sets, in Table

3.2. With the new training and validation circuit sets, we step through the entire process of

developing the routing demand model again, in exactly the same approach. The results are

summarized in Table 4.23. The routing demand model trained on the original training set is

summarized in Table 4.22 for comparison.

Each table show the five intermediate models in the first column. The next four columns

give the accuracy metrics, and the final column gives the fitted parameter value.

Looking at the last column of Tables 4.22 and 4.23, the parameters when fitted to either

training or validation sets have the very similar values. Since we make the choice to simplify

the model by rounding the parameters, the fitting parameter values can be considered the same

when fitted to either set. This verifies that the choice of training set does not matter, due to

our careful systematic approach of training and validation circuit selections.

What differs between the model trained on original training set or validation set lays in the

reported accuracy. The training and validation RMSE values, in columns 2 and 3 of tables,

appear to have swapped positions between Tables 4.22 and 4.23 – this can be expected since

the newly trained model is nearly the same as originally trained. The validation RMSE in

Table 4.23 are higher than those in Table 4.22. This reflects the fact that although the two sets

of circuits are similar in nature, the model performs poorer on original training circuits than

validation circuits – this is simply statistical noise. This suggests – for reporting accuracy of the

model in predicting individual circuit’s Wneed – it might be best to use the worse (highest) of

training RMSE and validation RMSE. We shall always report for both training and validation
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sets and leave it to the user’s discretion.

RMSE MAPE

Model Training Validation Training Validation Fitted Parameters

fully flexible 3.3 2.8 6.2% 5.8% p = 1.4

Fs 3.5 2.8 6.6% 5.9% β = 3

Fcin & Fcout 3.9 4.6 7.6% 6.5% αin = 0.5, αout = 0.25

L 6.7 6.2 7.9% 6.5% no new fitted parameter

Eqv 18 15 15% 14% σ = 1.166, µ = 0.33

Table 4.22: Routing demand model trained on original training set of circuits

RMSE MAPE

Model Training Validation Training Validation Fitted Parameters

fully flexible 2.5 3.5 5.5% 8.0% p = 1.44

Fs 2.7 3.7 5.9% 8.5% β = 3.05

Fcin & Fcout 4.6 4.4 7.0% 9.8% αin = 0.455, αout = 0.293

L 6.0 6.6 7.2% 9.2% no new fitted parameter

Eqv 14 18 13% 15% σ = 1.153, µ = 0.288

Table 4.23: Routing demand model trained on original validation set of circuits

The trend in MAPE values is different, however. While the new training MAPE values

(column 4 of Table 4.23) are approximately the same as the original validation MAPE values

(column 5 of Table 4.22) – expected since they are results from the same set of circuits – the new

validation MAPE values (column 5 of Table 4.23) are noticeably worse than original training

MAPE values (column 4 of Table 4.22). This can be explained by the fact that the original

training and validation sets, although similar in BLE count and two-terminal net count, have

different routing demands. In Table 4.24, data from Section 4.2 are re-hashed to show that the

routing demands of circuits in the original training set are greater than those of circuits in the

original validation set. Since MAPE is calculated (in Equation 3.3.3.2) using routing demand

as the base value, smaller base value leads to higher error percentage. The new validation
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Average Wabs min Standard Deviation Wabs min

Original Training Set 38.3 11.6

Original Validation Set 43.1 11.9

Table 4.24: Comparison of average Wabs min of original training and validation sets

MAPE values (column 5 of Table 4.23) are larger due to the fact that the slight increase in

error, from the model being trained on the other set, is accentuated by the small base values of

new validation set (original training set). This suggests MAPE is a easy to comprehend metric,

but is sensitive to training and validation set selection, unless circuits in both sets have the

approximately the same routing demand.
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4.8 Summary

In this chapter, we described the development of an FPGA interconnect model. It was developed

by a guided empirical modeling approach, in combination with some fundamental derivations,

for a balance of simplicity, intuition and accuracy. The final model predicts the routing demand,

Wneed, of island-style single-driver routing architectures parameterized by Fs, Fcin, Fcout, L

and Eqv, to successful route circuits mapped to a logic block architecture described by, I, λ

and R. For architectures with logical equivalence between pins, Eqv = 1, the model is:

Wneed = Wabs min

+
1
β

(
Wabs min

Fs

)(
Wabs min

Fcin

)αin
(

Wabs min

Fcout

)αout

+
λ(L− 1)

4

(
1 +

1
Fcin

αin

)
(4.8.0.5)

with

Wabs min = p
λR

2
(4.8.0.6)

where, p = 1.4, β = 3, αin = 0.5, αout = 0.25.

When Eqv = 0, the model has two changes. First, the distance between each connection’s

source and sink increases when logical equivalence is removed, which is reflected in the model

by replacing the average routing length, R in Equation 4.8.0.6, by RNE defined by:

RNE = σ ∗R (4.8.0.7)

where σ = 1.166.

The second change is Fcin in Equation 4.8.0.5 should be replaced by FcNEin, defined by:

FcNEin =
Fcin

Iµ
(4.8.0.8)

where I is the number of pins from which logical equivalence is removed, and µ = 0.33.

This reflects the effective loss of connection block flexibility.
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On average the model is off by 6.2 tracks, which is 6.5% of actual Wneed, in validation for

Eqv = 1. For Eqv = 0, the model is on average 15 tracks off, which is 14% of actual Wneed, in

validation.

The routing demand model holds the following intuition. The routing demand has three

additive components:

Wneed =

switching matrix segment

absolute + flexibility + length

minimum penalty penalty
(4.8.0.9)

The first component “absolute minimum” is Wabs min needed for a fully flexible FPGA. A

“switching matrix flexibility penalty” must be added if the switching matrix described by Fs,

Fcin and Fcout is reduced from its maximum flexibility:

switching matrix flexibility penalty =
1
β

(
Wabs min

Fs

)(
Wabs min

Fcin

)αin
(

Wabs min

Fcout

)αout

(4.8.0.10)

Furthermore a “segment length penalty” must be paid if the wire segment length L of the

routing architecture is greater than 1:

segment length penalty =
λ(L− 1)

4

(
1 +

1
Fcin

αin

)
(4.8.0.11)

Parallel to this main routing demand model, we also developed a simplicity-driven model

that is similar but much simpler in form. For Eqv = 1 the simplicity-driven model is

Simplicity-Driven Model:

Wneed(Fs, Fcin, F cout, L, Eqv = 1) = Wabs min +
1
θ

(
Wabs min

Fs

)(
Wabs min

Fcin

)(
Wabs min

Fcout

)

+
λ(L− 1)

4

(4.8.0.12)
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with

Wabs min = p
λR

2
(4.8.0.13)

where p = 1.4, and θ = 50.

When Eqv = 0, R in Equation 4.6.4.2 is replaced by RNE , defined by:

RNE = σ ∗R (4.8.0.14)

where σ = 1.166. And Fcin in Equation 4.8.0.12 is replaced by FcNEin, defined by:

FcNEin =
Fcin

Iµ
(4.8.0.15)

where I is the number of input pins from which logical equivalence is removed, and µ = 0.06.

This simplicity-driven model is on average off by 13 tracks (which is 10%) in validation for

Eqv = 1, and 26 tracks (which is 18%) in validation for Eqv = 0. It presents similar intuitions,

although with less insights and is less accurate, compared to the main routing demand model.

In the next chapter applications of the routing demand models, in early-stage architecture

development, will be presented. While model accuracies quoted in this chapter are measured on

an individual circuit basis (for each circuit, λ, R and Wneed are determined experimentally), in

the application examples we measure the accuracy of the model for predicting routing demand

when no circuits are given.



Chapter 5

Applications and Quality of Model

The FPGA interconnect models developed in the last chapter are intended for use when there

are no circuits or tools that the architect can employ in an experimental architecture exploration

process. In this chapter we describe how that might be done in three important application

areas, relevant to architecture development. They are: 1. Comparing routing demand of differ-

ent logic block architectures (Section 5.1), 2. Making routing architectural tradeoffs (Section

5.2), and 3. Estimation of channel width for commercial FPGAs in early generations (Section

5.3). For each application, we also give examples that assess the quality of the models during

use. We will conclude with a discussion on the limitations of our models.

5.1 Comparing Routing Demand of Different Logic Block Ar-

chitectures

An important step in architecting an FPGA is choosing a logic block. When choosing a logic

block among many variants, it is important that the architect can evaluate and compare logic

block choices for their routing demand, as routing dominates the area and therefore cost of the

FPGA. However, at this stage of architecture development no complete routing architecture

is chosen; a multitude of routing architecture choices exist. Also the architect may not have

the circuits or tools for experimental evaluation at this stage. Even if there are circuits and

tools, there are far too many combinations of logic block and routing architecture choices to

111
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run experiments.

For this problem of evaluating and comparing logic block architectures for routing demand

in early-stage development, our FPGA interconnect models are useful for a preliminary analysis.

It can be used to provide quick feedback on each of the multitude of nascent architecture choices,

without employing actual circuits or experiment tools.

To use our FPGA interconnect models to evaluate a logic block’s routing demand Wneed,

the FPGA architect simply needs to provide parameter values to be employed in the models.

Specifically, the architect needs to:

1. Estimate values for λ and R for each logic block under consideration

2. Provide values for the routing architecture parameters Fs, Fcin, Fcout, L and Eqv.

The routing architecture parameters are chosen by the FPGA architect, to represent possible

routing architectures that may ultimately be employed.

The parameters λ and R are a characterization of the logic block (in terms of its post-

placement routing demand in a fully flexible FPGA) circuit connectivity, and placement tool

capability. During the model development in Chapter 4, they are measured using actual circuits

and experiment tools, individually for each circuit. However, this cannot be done during the

application of the model, as λ and R must be chosen to represent a set of circuits in a target

market. Furthermore, there are no circuits or experiment tools in early-stage development, to

measure λ and R. We will discuss how the architect can select values for λ and R, and give

models for them, in turn in the following subsections.

5.1.1 Selecting a Value for λ

The architect must derive the value of λ from the logical nature of the block. The architect

will know the number of input pins on the logic block (presumably having determined that as

part of his/her initial thinking). The value of λ is a function of the number of inputs: it is the

average number of used inputs per logic block expected for the most difficult circuit that the

architect wants to succeed in routing. An upper bound for λ would be the number of input pins,

but this appears to be unduly pessimistic. The best value to choose would likely be related
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Figure 5.1: Average λ vs. cluster size (N)

to the logical nature of the block, and it is not possible to speak to the most general logic

block case – for example, we believe that the most appropriate λ for a hard 20x20 multiplier

as a function of its number of input pins would be rather different than the λ for a cluster of

12 5-input lookup tables, because the size of multiplier actually implemented can vary (thus

number of used pins vary), while the cluster is likely as fully utilized as possible.

We do believe that the more common soft logic blocks would have similar behavior in the

relationship between number of usable input pins and average number of used input pins. This

is because they are being used to implement a common set of logic functions, regardless of what

the native function of the logic block is. This assumption would not be true for highly inefficient

logic blocks that don’t use their available pins very often, compared to the more typical, fairly

well-used pins.

To characterize this relationship, we measure λ by packing all benchmark circuits, using the

synthesis flow described in Section 3.4, for different clustered logic block architectures. Figure

5.1 gives a plot of that measured average λ (y-axis), averaged over all benchmark circuits, for
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clustered logic block architectures ranging from size 1 to 16 (x-axis). The y-error bars give one

standard deviation of λ. From Figure 5.1, λ can be modeled as an increasing linear function

of cluster size. Since the clusters are architected to use use I = 2N + 2 input pins (and recall

from [9] this value is set to permit complete use of the internal logic of the cluster), the fitted

equation in Figure 5.1 can be rewritten in terms of I by substituting N = I−2
2 :

λ = 0.44I + 2.3 (5.1.1.1)

An architect could use this model to choose λ as a function of I, the total number of inputs to

a new logic block, particularly if the nature of the logic in the block is similar to LUT-based

clusters. An example for which this would be true would be PLA-based logic blocks discussed

in [17]. More roughly, Equation 5.1.1.1 suggests that on average λ is roughly half of the total

number of input pins.

The model in Equation 5.1.1.1 gives the average λ. For the purpose of comparing routing

demand of different logic block architectures, without any circuits, having average λ is useful

(it can be used to determine average routing demand). In [42], it was suggested that 20% above

the average routing demand is a useful metric for comparing architectures. Based on this, an

architect can make routing demand comparisons of logic block architectures using the average

λ.

Also discussed in [42], the determination of channel width in a commercial architecture is

done by a full experimental flow on a large set of circuits, representative of the target market.

Furthermore, more weight should be given to the circuits with the largest routing demand

– difficult-to-route circuits. However, this does not imply setting the channel width to the

absolute maximum routing demand of a circuit in the benchmark set, for fear of an outlier that

would unduly and dramatically increase the channel width in the chip. Therefore, to use our

routing model to estimate the channel width of a commercial architecture, the architect needs

select a value of λ representative of difficult-to-route circuits in the set of circuits for the target

market.

Since we do not have circuits in the target market, it is difficult to model this single value of

λ. However, we can create a distribution model for λ based on our benchmark circuits. With
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a distribution model of λ, we can model the the value of λ representative of difficult-to-route

circuits – as the value that is larger than 98% of λ’s in the distribution, because the higher λ the

more difficult it is to route. This modeling has the disadvantage of not being truly reflective of

the target market (which we don’t have any information about), but it has the advantage that

the quality of the model can be compared to a real commercial architecture, later in Section

5.3.1.

To model the distribution of λ, we use statistics gathered from our benchmark circuits. The

standard deviation of measured λ, of our benchmark circuits, is linearly increasing w.r.t. cluster

size, as shown in Figure 5.1. This growth in standard deviation can be explained as follows.

When the cluster size is small, there is little opportunity for input sharing, thus all benchmark

circuits have similar connectivity λ. When the cluster size is larger, more opportunities exist for

input sharing: circuits begin to distinguish themselves on their differing ability to share inputs

– resulting in different λ. Those circuits that share a lot of inputs have low λ (few of I available

inputs is used), and high λ otherwise (most of I is used). Therefore standard deviation of λ

increases as cluster size increases. Experimental data in Figure 5.1 shows a very linear increase,

with correlation R2 = 0.982.

Therefore by the same approach as the average, we model the standard deviation of λ as a

linear function of I:

λSD = 8.05× 10−2I − 0.25 (5.1.1.2)

We further model λ of circuits in the target market as normally distributed. This is a reasonable

assumption given the lack of information.

Given the distribution type, average, and standard deviation, we can find the value of

λ of difficult-to-route circuits – that is more difficult to route than 98% of circuits’s in the

distribution. For a normal distribution 98% lies below approximately 2 standard deviations

above the average [39]. Therefore a difficult-to-route circuit has:

λdiff = average + 2 standard deviations

= 0.44I + 2.3 + 2 ∗ (8.05× 10−2I − 0.25)

= 0.60I + 1.8

(5.1.1.3)
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Figure 5.2: Average R vs. cluster size (N)

The model of λ of difficult circuits in Equation 5.1.1.3 will be used for estimating channel

width of an commercial FPGA architecture in Section 5.3.1.

The second key parameter that the architect needs to determine, to evaluate logic block

architectures is R. We discuss how to select its value in the following subsection.

5.1.2 Selecting a Value for R

In using our interconnect model to compare logic block routing demand the architect needs

to determine R, the average length of two-pin connections measured in number of logic blocks

traversed.

For some insight into this metric, we measure R by packing and placing all benchmark

circuits, using the synthesis flow described in Section 3.4, for different clustered logic block

architectures. Figure 5.2 gives a plot of the measured average R (y-axis), averaged over all

benchmark circuits, for clustered logic block architectures ranging from size 1 to 16 (x-axis).

The y-error bars give standard deviation of individual circuit’s R at each cluster size – we will
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refer to this as the across circuit standard deviation (RACSD).

Seen in Figure 5.2, measurements of this parameter show that R is remarkably consistent as

a constant over different cluster sizes. The average of the benchmark circuits R is consistently

near 4.43, its average across cluster sizes 1 to 16, with the exception of cluster size 1 where

R is lower since there is no clustering. The standard deviation of average R, across cluster

sizes is 0.085, or 1.9% of the average 4.43; this shows a high degree of consistency. This is

a somewhat surprising result: that over a wide range of granularity, the average length of

connections remains relatively fixed when measured in terms of 2-dimensional array of the

changing granularity. Others [40] have suggested that this is due to a some fractal nature of

circuit netlists; this nature is inherent in the Rent’s Rule model of circuit structure.

Since the average R of all benchmark circuits can be seen to be largely independent of

the amount of logic in each logic block, an architect could estimate R as 4.43 for the average

circuit, mapped to any clustered logic block. Of course, some other facet of the architecture

may influence this choice – for example, this model of R as 4.43 doesn’t model the effect of

fixed I/O pad positions, and this is known to increase average wire length [7].

For estimating R of the difficult-to-route circuits we adopt the same strategy as used for

λ. In Figure 5.2, the y-error bar shows the across circuit standard deviation of R (RACSD). It

shows the spread of the distribution of individual circuit’s R, at a cluster size. The figure shows

that it is consistent at any cluster size, around its average value of 0.872, with its standard

deviation (across cluster size) being 0.0218 or 2.5% of the average. Therefore we will model

RACSD as constant 0.872. We further model the R distribution to be normal. Therefore, for

any clustered logic block, the average circuit has R = 4.43, and the difficult-to-route circuit (by

our definition: more difficult to route than 98% of all circuits) has:

Rdiff = average + 2 standard deviations

= 4.43 + 2 ∗ (0.872)

= 6.17

(5.1.2.1)

Again, the model of average R (R = 4.43) will be used for comparing logic block architec-

tures, and the model of R of difficult circuits in Equation 5.1.2.1 will be used for estimating



Chapter 5. Applications and Quality of Model 118

channel width of an FPGA commercially architected in a later section.

Having reviewed how to select input parameter values to our interconnect model, we will

demonstrate examples of using the model to compare logic block architectures in early-stage

development in the following subsection.

5.1.3 Comparing Clustered Logic Blocks

In this subsection, we will test the quality of our interconnect models in comparing logic block

architectures’ routing demand in early-stage architecture development. The method of selecting

λ and R as the average (from the previous subsections) will be adopted: λ will be selected by

0.44I + 2.3, and R will be the constant 4.43. This analysis does not use the models of λ and R

for difficult-to-route circuit, but later Section 5.3.1 does.

In the first example, we will compare two cluster-based logic blocks that were not used in

the training of the models: a cluster of 16 4-input LUTs and a cluster of 4 4-input LUTs. Their

description are given in Table 5.1. To be clear, by using these methods to estimate λ and R

we do not employ any circuits or tools, and hence this could be done at an “early stage” in

architecture development. We realize that this tests the models on logic blocks quite similar in

nature to the ones that the models were trained on. This has the disadvantage of not proving

the models’ utility for new and different blocks, but it has the advantage that the the quality

of model results can be compared to experimentally measured data.

We will use the main routing demand model, repeated here in Equation 5.1.3.1, as well as

the simplicity-driven model, repeated here in Equation 5.1.3.5, to predict routing demand. The

results are given in Tables 5.2 and 5.3.

Logic Block Architecture 1 2

LUT Size (k) 4 4

Cluster Size (N) 4 16

Cluster Input Pins (I) 10 34

Table 5.1: Test logic block architectures for early-stage comparison
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Main Routing Demand Model:

Wneed = Wabs min

+
1
β

(
Wabs min

Fs

)(
Wabs min

Fcin

)αin
(

Wabs min

Fcout

)αout

+
λ(L− 1)

4

(
1 +

1
Fcin

αin

)
(5.1.3.1)

with

Wabs min = p
λR

2
(5.1.3.2)

where, p = 1.4, β = 3, αin = 0.5, αout = 0.25. For Eqv = 0 replace R by RNE and Fcin by

FcNEin, defined by:

RNE = σ ∗R (5.1.3.3)

FcNEin =
Fcin

Iµ
(5.1.3.4)

where σ = 1.166 and µ = 0.33.

Simplicity-Driven Model:

Wneed(Fs, Fcin, F cout, L, Eqv = 1) = Wabs min +
1
θ

(
Wabs min

Fs

)(
Wabs min

Fcin

)(
Wabs min

Fcout

)

+
λ(L− 1)

4

(5.1.3.5)

with

Wabs min = p
λR

2
(5.1.3.6)

where p = 1.4, and θ = 50. For Eqv = 0 replace R by RNE and Fcin by FcNEin, defined by:

RNE = σ ∗R (5.1.3.7)

FcNEin =
Fcin

Iµ
(5.1.3.8)

where σ = 1.166 and µ = 0.06.

To employ each model, a set of routing flexibilities must be chosen. Tables 5.2 and 5.3

both give, in each horizontal row, a set of routing architecture parameters in the columns
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Routing Architecture

Parameters Cluster Size N = 16 Cluster Size N = 4

Fs Fcin Fcout L Eqv Measured Predicted Error Measured Predicted Error

3 12 4 4 1 90 94 5.1% 42 32 -24%

3 12 4 6 1 113 105 -7.0% 52 36 -30%

9 12 4 4 1 76 78 3.4% 34 29 -15%

9 12 4 6 1 94 89 -4.9% 41 33 -20%

3 20 4 4 1 85 88 3.9% 38 31 -20%

3 20 4 6 1 106 99 -6.8% 45 35 -24%

9 20 4 4 1 74 76 2.4% 32 28 -13%

9 20 4 6 1 93 86 -7.2% 40 32 -19%

9 12 8 4 0 119 118 -0.9% 43 35 -18%

9 20 4 4 0 116 112 -2.9% 42 34 -18%

Average Average

Absolute Error 4.5% Absolute Error 20%

Table 5.2: Logic block routing demand comparison by the main routing demand model

1 to 5. Each then gives, for the “proposed” cluster-size 16 logic block the experimentally

measured average routing demand Wneed for that architecture (the average W required across

all benchmark circuits), the routing demand predicted by the model (with λ and R selected as

discussed above), and the percentage error defined by predicted−measured
measured × 100%. The bottom

of the error column gives the average absolute error. Similarly the final three columns of the

tables give the measured, predicted and error for a cluster of size 4.

For the main routing demand model (results in Table 5.2) the average absolute error in the

cluster size 16 predictions, across the selected range of routing architectures is 4.5%, and 20%

for the cluster size 4. The smaller cluster has a larger percentage error, one that is consistently

low, we believe, in part because the model was trained on a larger cluster, and in part because

the W’s are much smaller. In general we believe the model is a success in its ability to make

fairly good predictions across a wide range of routing architecture parameters. This shows that
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Routing Architecture

Parameters Cluster Size N = 16 Cluster Size N = 4

Fs Fcin Fcout L Eqv Measured Predicted Error Measured Predicted Error

3 12 4 4 1 90 88 -2.0% 42 27 -36%

3 12 4 6 1 113 97 -15% 52 30 -41%

9 12 4 4 1 76 74 -2.7% 34 26 -22%

9 12 4 6 1 94 82 -13% 41 30 -28%

3 20 4 4 1 85 79 -6.4% 38 27 -31%

3 20 4 6 1 106 88 -17% 45 30 -34%

9 20 4 4 1 74 71 -4.2% 32 26 -19%

9 20 4 6 1 93 79 -15% 40 29 -26%

9 12 8 4 0 119 87 -27% 43 30 -31%

9 20 4 4 0 116 89 -23% 42 30 -29%

Average Average

Absolute Error 12% Absolute Error 30%

Table 5.3: Logic block routing demand comparison by the simplicity-driven model

our model enables the architect to confidently compare routing demands of logic blocks across

a wide range of routing architectures, in early-stage architecture development, without circuits

or experiment tools.

For the simplicity-driven model (results in Table 5.3) the same trends hold, but generally

the accuracy is significantly worse than that of the main routing demand model. The simplicity

came at a cost of intuition and accuracy. It is left to the architect’s discretion on when to use

the simplicity-driven model (probably “earliest”-stages) for its ease of use, and when to use the

more insightful and accurate main routing demand.

Fs Fcin Fcout L Eqv

6 12 6 4 1

Table 5.4: A test routing architecture
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N Measured Predicted Error

4 35 29 -16%

5 40 33 -16%

6 44 38 -15%

7 48 42 -14%

8 53 46 -12%

9 56 50 -11%

10 60 55 -9.1%

11 63 59 -7.2%

12 67 63 -5.1%

13 68 68 -1.1%

14 72 72 0.3%

15 75 77 2.1%

16 78 81 3.7%

17 81 86 6.0%

18 83 90 9.0%

19 86 95 11%

20 88 100 13%

Average

Absolute Error 8.9%

Table 5.5: Main routing demand model prediction for cluster sizes N for arch. in Table 5.4

To further validate the models, we compare routing demand predictions (using the same λ

and R described above) for a single routing architecture, defined in Table 5.4, across a range of

cluster sizes N = 4 to N = 20, in Tables 5.5 and 5.6, for the main routing demand model and

simplicity-driven model respectively. The tables show: cluster size, measured, predicted and

percentage error defined by predicted−measured
measured × 100%, in the four columns. The average error

is quite small for this fairly flexible architecture, only 8.9% for the main routing demand model

and 14% for the simplicity-driven model.
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N Measured Predicted Error

4 35 26 -25%

5 40 30 -25%

6 44 33 -24%

7 48 37 -23%

8 53 41 -23%

9 56 45 -20%

10 60 49 -19%

11 63 53 -17%

12 67 57 -16%

13 68 61 -11%

14 72 65 -9.8%

15 75 69 -7.7%

16 78 74 -5.6%

17 81 78 -3.5%

18 83 83 -0.2%

19 86 88 1.9%

20 88 93 5.1%

Average

Absolute Error 14%

Table 5.6: Simplicity-driven model prediction for cluster sizes N for arch. in Table 5.4

The interconnect models developed in this work enable an FPGA architect to compare

routing demand of logic blocks in an early-stage architect development. Quality predictions

of routing demands of clustered logic blocks are possible by them, thus reducing the need for

circuits and experiments. In addition to this application, our interconnect models also serve

to provide architects intuition on routing architecture development – it captures interactions

of routing parameters in simple analytical expressions. The following section explores how our

models can provide quick feedback on routing architecture design and intuitions on routing
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parameter tradeoff.

5.2 Routing Architectural Tradeoffs

In the development of the routing architecture, it is often necessary to explore many tradeoffs

of routing parameters. Each tradeoff point may lead to different area, performance, and power

metrics in the FPGA, so such exploration serves as an architecture-driven method to meet area,

performance, and/or power goals. However, the effort required to empirically evaluate tradeoff

points is very large, because the parameter interactions are not known, and they have to be

determined by a multitude of experimental searches.

Instead of running thousands of hours of experiments for each tradeoff idea, the architect

can use our interconnect model to provide: 1. quick feedback on which tradeoff points are

worth further (more accurate) experimental evaluation, and 2. intuition on how the routing

parameter interact and tradeoff for new architectural ideas.

To use our interconnect model for this purpose, during the routing architecture development

stage, it can expected that the architect has chosen a logic block architecture. Thus, λ and

R are known or can be well estimated (if no benchmark circuits to measure). The routing

parameters are also known and a tradeoff is proposed – all input parameters to the model are

known. The architect can then simply manipulate the analytic expression of our model to make

the tradeoff. An example is given in the following subsection.

5.2.1 Trading Of Switches

During routing architecture development, suppose that an architect has chosen a routing ar-

chitecture for a logic block. However, after more development in electrical design and analysis,

the speed of the FPGA is is deemed too slow, and analysis indicates that it is because the mul-

tiplexer driving the single-driver wires are too big and slow. The architect proposes a tradeoff

that reduces the input size of the wire-driving multiplexer at the cost of increasing the input

size of input-pin-driving multiplexer.

This tradeoff has the potential to improve performance, since it speeds up the most fre-
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quently used routing resource, at the expense of slowing a seldom used routing resource: a

routed connection will likely go through many wire-driving multiplexers and only one input-

pin-driving multiplexer.

This implies trading of switches from the switch block, reducing Fs, to the input connection

block, increasing Fcin. To make this tradeoff experimentally the architect must keep all other

parameters fixed and run new experiments that varies only Fs and Fcin. This could require

modifications to experimentation tools and a day of experiments for each design iteration. As a

first-order intuitive analysis to speed up the early design iterations or a guide for actual routing

architecture exploration experiments the architect can use our interconnect model, as follows.

In the original routing architecture the switch block and input connection block parameters

are known, i.e. Fs = Fs1 and Fcin = Fcin1. The architect seeks to reduce Fs from Fs1 to a

second known value Fs2, and the question is what is the new higher value of Fcin, Fcin2, that

provides the same routing track demand, Wneed (Here we assume that it is desired to keep the

number of tracks the same; other kinds of calculations can be used if this is allowed to vary).

This can be expressed as:

Wneed(Fs1, F cin1) = Wneed(Fs2, F cin2) (5.2.1.1)

Using our main routing demand model, and keeping all other parameters constant, we arrive

at the solution through a series of algebraic manipulations:

• If L = 1

Fcin2 = Fcin1·
(

Fs1

Fs2

)2

(5.2.1.2)

• If L > 1

Fcin2 = Fcin1·




Wabs min
1.75

3Fs1Fccout
0.25 + λ(L−1)

4

Wabs min
1.75

3Fs2Fccout
0.25 + λ(L−1)

4





2

(5.2.1.3)

The L = 1 case is the easiest to discuss – it shows that the new value of Fcin increases as

the square of the ratio of the reduction of Fs, which is a fairly expensive tradeoff. The L > 1

analytical expression is more complex but shows the tradeoff depends on other architecture

parameter settings. The architect can use the analytical expressions to find how to trade Fs

switches for Fcin switches, as a quick first-order estimate and a guide for experiments.
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Using the simplicity-driven model, the tradeoff for any L is:

Fcin2 = Fcin1·
(

Fs1

Fs2

)
(5.2.1.4)

Although it is less accurate, the tradeoff derived from the simplicity-driven model reflects

the insight that increase in Fcin should be proportional to the loss in Fs as a ratio. The value

of the simplicity-driven model is demonstrated here: the tradeoff expression in Equation 5.2.1.4

is simple for any L.

In general, the interconnect models developed in this work could be used in many different

kinds of analysis of this sort. They provide FPGA architects intuitions on routing architecture

tradeoff and guidance for which tradeoffs are worth further evaluation by compute-intensive

and time-consuming experiments.

5.3 Channel Width Estimation of Commercial FPGAs in Early

Generations

In recent years, a number of FPGA startups have failed due to lack of routing resources in their

device. They architected a programmable routing fabric with a fixed channel width that is

found to be insufficient for routing completion of circuits when used in the field. This problem

occurs because at early stages of the startup, architects have little to no access to customer

circuits to determine what is the required channel width to route their target market of circuits.

Furthermore there is a lack of non-empirical method for predicting channel width requirements

given different logic block architecture and routing architecture parameters. An architect for

a startup has nothing to guide him/her to develop a first successful device which garners

more customer circuits, reflective of the target market, for use in experiments more accurately

determining the required channel width, which leads to more successful next-generation devices.

This cyclic dependency means very few startups ever get off the ground.

The interconnect models developed in this work can guide an FPGA architect in designing

a first generation device. They can be used to estimate the required channel width, as a

complement to experiments on actual (although limited) circuits, for the goal of providing
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sufficient width to route circuits in the target market not yet accessible to the startup. The

“early” of this application title refers to early in the long-term time frame of generations of

incremental architecture design, which is key to successful FPGA architecture development.

Each new generation of Altera’s and Xilinx’s FPGAs are based on the knowledge gained from

the preceding one.

To demonstrate this application and assess the quality of our interconnect models, we will

determine how well our models could ”predict” the channel width of an existing commercial

FPGA. We extract from the existing commercial FPGA the following information:

1. Number of input pins emanating from the logic block

2. Values for the routing architecture parameters Fs, Fcin, Fcout, L and Eqv.

and treat them as the decisions made by the architect during development. They are inputs to

the interconnect model.

For this analysis we will use our model of λ and R for difficult-to-route circuits in Equation

5.1.1.3 and Equation 5.1.2.1, to predict the channel width required, Wneed. This is because

modern FPGA vendors strive to make their FPGAs routable for almost all circuits in the

target market, including the difficult-to-route ones, as discussed in Section 5.1.1. The predicted

channel width, Wneed, will be compared to the actual channel width of the device for assessing

the quality of our models.

All of this will be done without any circuits and experiments. While we are not suggesting

developing an FPGA routing architecture using these equations alone, they can be used to give

a good sense of the scale of routing demand required.

The existing commercial FPGA we will use is Xilinx’s Virtex 4 [65]. We describe its archi-

tecture and apply models to predict its channel width in the following subsection.

5.3.1 “Predicting” Channel Width of Virtex 4

While Xilinx’s Virtex 4 FPGA certainly is not a first generation FPGA, we chose it to compare

to our model because it is a recent commercially-successful FPGA. It was introduced in 2004
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Figure 5.3: FPGA editor: Virtex 4

and manufactured on 90nm process technology. The specific device we chose in the Virtex 4

family is XC4VLX15, package SF363.

Its logic block architecture consists of 4 slices in a logic block, each slice containing two

4-input lookup tables (LUTs) and two registers [65]. To extract the architecture parameter

values (input to our model) we used Xilinx’s FPGA Editor 9.1i. A sample screen capture of

which is shown in Figure 5.3.

The distribution of wire segments in each vertical and horizontal channel is:

1. 40 length two single-driver wires (called Double-length lines by Xilinx)

2. 120 length six single-driver wires (called HEX-length lines by Xilinx)

3. 24 chip length wires (called Long lines by Xilinx)

We will model all wire segments in this device as length six (i.e. 184 tracks of length six
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wires), since our model can only model one type of wire segment length. In this case, since the

majority of wire segments are single-driver length six (65%), this simplification will only cause

a slight over-estimation (22% length two are modeled as length 6), which could be offset by an

under-estimation of the chip length wires (13%). So WFPGA = 184 and L = 6.

In the switch block, each incoming length six wire segment connects to: 2 horizontal length

two wires, 2 vertical length two wires, 2 horizontal length six wires, and 2 vertical length six

wires. So we will model as Fs = 8.

There are 32 input pins to the logic block, each connecting to 24 single-driver wire segments

(half vertical, half horizontal) through a multiplexer called IMUX by Xilinx. And there are

8 output pins, each connecting to 24 single-driver wire segments through a multiplexer called

OMUX by Xilinx.

Although the IMUX [65] provides depopulated switching between all input pins and adjacent

wires, there is enough switching that we believe it gives logical equivalence between all input

pins. Similar statement holds for OMUX.

This analysis translates to I = 32, Fcin = 24, Fcout = 24, and Eqv = 1.

Therefore, during development the architect of Virtex 4 made a number of architecture

decisions (parameter values), which are summarized in Table 5.7. These parameter values are

input into the interconnect model along with the λ and R model for difficult-to-route circuits.

Recall the model of λ and R for difficult-to-route circuits (higher than 98%) are:

λdiff = 0.60I + 1.8 = 0.60(32) + 1.8 = 21 (5.3.1.1)

Rdiff = 6.17 (5.3.1.2)

The channel width predicted by our main routing model (in Equation 5.1.3.1) is Wneed =

133. This under-predicts by 51 tracks (-28%). The breakdown of required channel width due

I Fs Fcin Fcout L Eqv

32 8 24 24 6 1

Table 5.7: Virtex 4 architecture parameter values for our model
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to various forms of inflexibility are summarized in Table 5.8.

Number of Tracks Percentage of Total

Wabs min 91 68%

Switching matrix flexibility penalty 10 8.0%

Segment length penalty 32 24%

Total Wneed 133 100%

Table 5.8: Breakdown of main routing demand model predicted track count for Virtex 4

The error in the prediction can be attributed to a number of reasons. One, due to layout

constraints (such as tileability) channel width can only be set to quantized values, unlike the

model which gives any real value Wneed. This would cause the actual FPGA channel width

higher than necessary, since architects prefer to err on the side of over-allocating channel width,

than creating an unroutable FPGA. Two, the architectural characterization of logical equiva-

lence Eqv = 1 causes under-prediction. Since there is depopulation in the IMUX and OMUX –

which takes away flexibility in a logically equivalent architecture – the routing demand should

be higher than Wneed predicted for Eqv = 1. Finally, the biggest reason for the under-prediction

is that Virtex 4 architecture was not architected to be just routable: for performance, the final

channel width is typically set to around 20-30% of the minimum required channel width [1, 9],

which is Wneed. Considering this, the main routing model prediction is not as far off as the

numbers indicate (-28%).

The channel width predicted by our simplicity-driven model (in Equation 5.1.3.5) is Wneed =

120. This under-predicts by 64 tracks (-35%). The breakdown of required channel width due

to various forms of inflexibility are summarized in Table 5.9.

The sources of error discussed for the main routing demand model applies to the simplicity-

driven model. The additional error is due to the latter model not capturing some effects of

inflexibility, for the sake of simplicity.

In summary, our interconnect models, using λ and R models for difficult-to-route circuits,

yielded an under-prediction of the Virtex 4 FPGA channel width by 28-35%. Our models,

however, could have guided the architect of Virtex 4 in finding what channel width ranges
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Number of Tracks Percentage of Total

Wabs min 91 76%

Switching matrix flexibility penalty 3 2.5%

Segment length penalty 26 21%

Total Wneed 120 100%

Table 5.9: Breakdown of simplicity-driven model predicted track count for Virtex 4

more accurate experimental approaches should target. Our models can also provide a quick

estimation of breakdown of channel width required due to various forms of inflexibility (in Table

5.8), which gives intuition to the architect on where routing flexibility (e.g. inflexibility of low

percentage track count) can be traded off for other optimization goals such as performance and

power.

5.4 Limitations of Model

There are a number of limitations to the models developed in this work.

The first is the modeling of λ and R. These are empirical modeled using a set of benchmark

circuits that may not reflect the market the architect wishes to target. As mentioned in the

discussion of selecting λ in Section 5.1.1, the target market can have a dramatic effect on the

modeling of λ. If the FPGA is architected for the digital signal processing application domain,

where most designs all have high connectivity (i.e. higher λ), the average and deviation of λ of

real circuits in the market are expected to be significantly different from our model. The same

can be said for R. In the future, it would greatly enhance the applicability of our interconnect

model to develop a model for λ and R based purely on logic block architecture and other

architecture features, and not on benchmarks.

As with all empirically developed models, this interconnect model is influenced by the

benchmark circuits and experiment tools used to generate training data. However, FPGA

architecture research must be specific of a set of experiment tools; it is the nature of FPGA

architecture research: One cannot talk about FPGA architecture independently of the tools that
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map circuits to it. On the other hand, the benchmark circuit bias is true and further validation

using more recent (possibly industrial) benchmark circuits can help ease the concern.

Finally, despite use of many routing architecture parameters, the model is limited in archi-

tectural scope still. More complex/inflexible routing architectures include switch block internal

population [9], mixtures of different types of wire segment lengths, and routing structures such

as nearest neighbor connections [50].

5.5 Summary

In this chapter the interconnect model developed in this work was applied to three application

areas in FPGA architecture development. First models for two input parameters, λ and R,

were discussed. They were input into the interconnect model for comparing clustered logic

block architectures, in terms of routing demands. Results showed good accuracy of model

for predicting large cluster architectures, and worse for small cluster architectures. Next, an

example of trading of routing architecture parameters, trading of switches, is demonstrated

using the interconnect model. The final application area is using the interconnect model and

models for difficult circuit λ and R, to predict channel width of a commercial FPGA. Very

promising results were obtained for a Xilinx’s Virtex 4 FPGA. Finally, we overviewed the

limitations of our models.
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Conclusions

The objective of this research was to develop a simple and intuitive interconnect model for

island-style FPGAs, for use in early-stage architecture development. The model is intended to

guide an architect in evaluating new logic block architectures and routing architecture explo-

ration, in the absence of empirical tools and circuits.

By a guided empirical modeling approach, in combination with derivations from intuitive

observations, we have created a series of intermediate models predicting channel width required

for successful routing, given some logic block architecture and circuit characterization and a set

of well-known routing architecture parameters. We began with a simple and intuitive model

for the required channel width (Wabs min) of a routing architecture of extreme overpopulation

of connectivity – the fully flexible FPGA. Then we incrementally reduced the flexibility of the

modeled routing architecture, by reducing flexibility in routing architecture parameters. These

parameters are: switch block flexibility Fs, connection block flexibilities Fcin & Fcout, wire

segment length L, and logical equivalence of logic block pins Eqv. For each parameter, the

interconnect model is generalized to capture its effect on the required channel width, creating

a series of intermediate models where each is a superset of the previous. The final intercon-

nect model is powerful enough to predict channel width requirement for the large space of

architectures described by the five routing architecture parameters, given a logic block.

This gradual and incremental modeling approach gives insights into the fundamentals of

FPGA routing and its interactions with logic block architecture, which is key for providing

133
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guidance to FPGA architects in early-stage architecture development. We have developed the

model for a balance of simplicity, giving intuition, and accuracy. Results showed that model is

accurate on average within 15 tracks, or 14%, on our set of validation benchmark circuits.

Along the way, we have also created a simplicity-driven version of the routing demand model.

The simplicity-driven model has value in its ease of use in expressing tradeoff equations. Its

simplicity came at the cost of some insights and accuracy. It is accuracte on average within 26

tracks, or 18%, on our set of validation benchmark circuits.

This interconnect model is a contribution to the area of modeling of FPGA routing and

its interaction with logic block architecture, that has been largely neglected in recent years.

Furthermore it models modern FPGA single-driver routing architectures, which now dominate

the industrial routing architectures. These have never been modeled before.

In addition to contributing to the modeling of FPGA routing, we have laid a first foundation

on how to use the interconnect model to guide an FPGA architect in early-stage architecture

development. In the process, models for characterizing circuits in clustered logic blocks were

created; these are necessary for the application of the interconnect model. Three application

examples were given. First, two clustered logic block were compared, for their average routing

demand. Results showed the model predicted with an average error of 4.5% for cluster size 16

and 20% for cluster size 4, averaged across a number of different routing architectures. Also

results showed the model predicted with an average error of 8.9% for a fixed routing architecture,

across cluster sizes 4 to 20. Second, the interconnect model was used in exploring tradeoffs of

routing architecture parameters. Specifically, the example of trading switch block for input

connection block switches was given. The simplicity-driven version easily yielded very simple

expressions of tradeoffs. Finally, the interconnect model was used in estimation of channel

width for the commercial FPGA, Xilinx’s Virtex 4. Results showed the model under-predicted

by 51 tracks, which is -28% of the actual 184 tracks of the commercial FPGA.

6.1 Suggestions for Future Research

A number of directions exist for future research.
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The generation of an FPGA area model to complement to the interconnect model of this

work would greatly help an FPGA architect. Such an area model would take as input the

same routing parameters and required channel width, as predicted by the interconnect model,

to give analytic functions for FPGA area that give architects insights on how to optimize

routing architecture for area and possibly can be optimized by derivation. The area model in

combination with the interconnect model in this work can guide the FPGA architect in choosing

logic blocks and optimizing routing architecture for area, in early-stage development.

Similarly, models for performance and power consumption in analytic expression, as a func-

tion of the same routing parameters, would be helpful in guiding the FPGA architect in early-

stage development.

More work is needed in validating and improving the model for logic blocks that don’t have

the same properties of a typical lookup-table-based logic clusters. For logic blocks such as

memory, and multiplier blocks etc. and mixtures of such logic blocks with lookup-table-based

logic clusters, the interconnect model needed to be validated further. Certainly, for such logic

blocks new models for λ and R must be created to reflect the logical and connective nature

of the logic block. Once created, they should be tested for validation. After validated and

improved, the interconnect model can guide architects in architecting next generation FPGAs,

such as FPOAs [44].

Other aspects of this interconnect model should be further developed. Currently it can

only model routing architectures of a single wire segment length. Mixtures of wire segment

lengths should be modeled, as it is the choice of latest and future FPGA architectures, for it

allows better utilization of routing wires (resulting in less segmentation waste) and improves

performance.

Finally, partial logical equivalence is another aspect to add to this interconnect model. The

current model assumes all input pins and output pins are either all logically equivalent or

not. With the ability to model partial logical equivalence – where only some pins are logically

equivalent – the interconnect model will have greater applicability, particularly to hard blocks

such as memory block which has partial logical equivalence.
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Additional Tables and Figures

Measured Predicted

Fcin/Fcout 4 8 12 24 38 50 62 4 8 12 24 38 50 62

4 128 116 110 106 104 104 102 108 100 96 90 87 85 84

8 102 92 90 88 82 82 82 94 88 85 81 79 77 76

12 94 88 86 82 76 76 76 87 83 81 77 75 74 73

24 86 80 80 76 74 74 74 79 76 74 72 70 70 69

38 84 80 76 74 72 70 70 75 72 71 69 68 67 67

50 82 76 74 72 70 70 70 73 71 70 68 67 66 66

62 82 76 74 72 70 70 70 71 69 68 67 66 66 65

Error Error %

Fcin/Fcout 4 8 12 24 38 50 62 4 8 12 24 38 50 62

4 -20 -16 -14 -16 -17 -19 -18 -16 -14 -12 -15 -16 -18 -18

8 -8 -4 -5 -7 -3 -5 -6 -8.1 -4.1 -5.1 -7.8 -4.0 -5.6 -6.7

12 -7 -5 -5 -5 -1 -2 -3 -7.1 -5.9 -6.4 -6.0 -1.2 -2.6 -3.6

24 -7 -4 -6 -4 -4 -4 -5 -8.1 -5.2 -7.3 -5.6 -4.9 -5.9 -6.7

38 -9 -8 -5 -5 -4 -3 -3 -11 -9.6 -6.5 -6.6 -5.5 -3.7 -4.3

50 -9 -5 -4 -4 -3 -4 -4 -11 -7.1 -6.1 -5.8 -4.5 -5.2 -5.8

62 -11 -7 -6 -5 -4 -4 -5 -13 -8.6 -7.5 -7.1 -5.7 -6.3 -6.8

Table A.1: Switching matrix model accuracy for training circuit clma Fs = 3
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Measured Predicted

Fcin/Fcout 4 8 12 24 38 50 62 4 8 12 24 38 50 62

2 96 80 80 78 76 76 76 94 88 85 81 79 77 76

4 88 78 76 76 76 72 72 84 80 78 75 73 72 71

8 80 72 72 70 70 68 68 76 74 72 70 69 68 68

12 76 70 70 68 68 68 68 73 71 70 68 67 66 66

24 74 68 68 68 68 68 68 69 67 67 65 65 64 64

38 74 68 66 66 66 66 64 67 66 65 64 63 63 63

50 74 66 66 66 66 64 64 66 65 64 63 63 63 62

62 72 66 66 64 64 64 64 65 64 64 63 62 62 62

Error Error %

Fcin/Fcout 4 8 12 24 38 50 62 4 8 12 24 38 50 62

2 -2 8 5 3 3 1 0 -2.4 10 6.7 4.1 3.6 1.9 0.6

4 -4 2 2 -1 -3 0 -1 -5.1 2.1 2.1 -1.8 -4.0 0.0 -0.9

8 -4 2 0 0 -1 0 0 -4.6 2.2 0.2 0.1 -1.7 0.3 -0.4

12 -3 1 0 0 -1 -2 -2 -3.8 1.2 -0.4 0.0 -1.4 -2.2 -2.8

24 -5 -1 -1 -3 -3 -4 -4 -6.8 -0.9 -2.1 -3.9 -4.9 -5.5 -5.9

38 -7 -2 -1 -2 -3 -3 -1 -9.6 -3.5 -1.5 -3.0 -3.8 -4.3 -1.6

50 -8 -1 -2 -3 -3 -1 -2 -11 -1.9 -2.7 -4.0 -4.7 -2.1 -2.5

62 -7 -2 -2 -1 -2 -2 -2 -9.5 -2.8 -3.5 -1.7 -2.4 -2.7 -3.0

Table A.2: Switching matrix model accuracy for training circuit clma Fs = 6
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Measured Predicted

Fcin/Fcout 4 8 12 24 38 50 62 4 8 12 24 38 50 62

2 88 74 74 72 70 70 70 82 78 77 74 72 71 71

4 72 68 68 68 68 68 68 75 73 71 69 68 68 67

8 70 68 66 66 66 66 66 71 69 68 66 66 65 65

12 68 68 66 66 66 66 64 68 67 66 65 64 64 64

24 68 66 64 64 64 64 64 66 65 64 63 63 62 62

38 68 66 64 64 64 64 64 64 63 63 62 62 62 62

50 68 64 64 64 64 64 64 64 63 62 62 62 61 61

62 66 64 64 64 64 64 64 63 62 62 62 61 61 61

Error Error %

Fcin/Fcout 4 8 12 24 38 50 62 4 8 12 24 38 50 62

2 -6 4 3 2 2 1 1 -6.7 6.0 3.5 2.4 3.1 1.8 0.9

4 3 5 3 1 0 0 -1 4.6 6.9 5.0 2.1 0.4 -0.5 -1.2

8 1 1 2 0 0 -1 -1 0.8 1.0 2.6 0.5 -0.7 -1.4 -1.9

12 0 -1 0 -1 -2 -2 0 0.6 -1.6 0.2 -1.6 -2.5 -3.1 -0.5

24 -2 -1 0 -1 -1 -2 -2 -3.5 -2.2 0.0 -1.2 -2.0 -2.4 -2.7

38 -4 -3 -1 -2 -2 -2 -2 -5.5 -3.9 -1.6 -2.6 -3.2 -3.5 -3.7

50 -4 -1 -2 -2 -2 -3 -3 -6.5 -1.8 -2.4 -3.3 -3.8 -4.1 -4.3

62 -3 -2 -2 -2 -3 -3 -3 -4.4 -2.5 -3.0 -3.8 -4.2 -4.5 -4.7

Table A.3: Switching matrix model accuracy for training circuit clma Fs = 9
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Measured Predicted

Fcin/Fcout 4 8 12 26 42 56 70 4 8 12 26 42 56 70

4 150 140 126 118 116 116 114 131 121 116 107 103 100 99

8 134 110 104 96 96 96 94 112 105 102 96 93 91 90

12 128 102 98 94 94 88 88 104 98 95 91 88 87 86

26 114 90 88 84 82 82 82 93 89 87 83 82 81 80

42 110 88 86 84 82 82 82 87 84 83 80 79 78 77

56 110 88 84 80 80 80 80 85 82 81 78 77 77 76

70 104 86 84 80 80 80 80 83 81 79 77 76 76 75

Error Error %

Fcin/Fcout 4 8 12 26 42 56 70 4 8 12 26 42 56 70

4 -19 -19 -10 -11 -13 -16 -15 -13 -14 -8.2 -9.1 -11 -13 -13

8 -22 -5 -2 0 -3 -5 -4 -16 -4.3 -2.2 -0.3 -3.6 -5.3 -4.7

12 -24 -4 -3 -3 -6 -1 -2 -19 -3.5 -2.6 -3.6 -6.3 -1.5 -2.7

26 -21 -1 -1 -1 0 -1 -2 -19 -1.5 -1.6 -0.8 -0.5 -1.7 -2.5

42 -23 -4 -3 -4 -3 -4 -5 -21 -4.3 -3.9 -4.7 -4.1 -5.0 -5.7

56 -25 -6 -3 -2 -3 -3 -4 -23 -6.8 -4.0 -2.0 -3.5 -4.3 -4.9

70 -21 -5 -5 -3 -4 -4 -5 -20 -6.4 -5.6 -3.4 -4.7 -5.5 -6.0

Table A.4: Switching matrix model accuracy for validation circuit pdc Fs = 3
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Measured Predicted

Fcin/Fcout 4 8 12 26 42 56 70 4 8 12 26 42 56 70

2 120 94 94 90 88 86 86 112 105 102 96 93 91 90

4 94 86 86 86 82 82 82 99 94 92 88 85 84 83

8 90 82 82 80 80 80 80 90 87 85 82 80 79 79

12 86 82 80 80 78 78 78 86 83 82 79 78 77 77

26 82 78 76 76 76 76 76 80 78 77 76 75 74 74

42 80 76 76 74 74 74 74 78 76 75 74 73 73 73

56 80 76 76 74 74 74 74 76 75 74 73 73 72 72

70 80 76 76 74 74 74 74 75 74 74 73 72 72 72

Error Error %

Fcin/Fcout 4 8 12 26 42 56 70 4 8 12 26 42 56 70

2 -8 11 8 6 5 5 4 -6.3 12 8.2 6.4 5.2 5.7 4.2

4 5 8 6 2 3 2 1 5.7 9.7 6.7 1.8 4.1 2.6 1.5

8 0 5 3 2 0 -1 -1 0.1 5.6 3.4 2.2 0.3 -0.8 -1.6

12 0 1 2 -1 0 -1 -1 0.0 1.4 2.1 -1.0 -0.1 -1.0 -1.6

26 -2 0 1 0 -1 -2 -2 -2.2 0.3 1.6 -0.6 -1.7 -2.3 -2.8

42 -2 0 -1 0 -1 -1 -1 -3.0 0.0 -1.0 -0.1 -1.0 -1.5 -1.9

56 -4 -1 -2 -1 -1 -2 -2 -4.7 -1.4 -2.3 -1.2 -2.0 -2.4 -2.8

70 -5 -2 -2 -1 -2 -2 -2 -5.8 -2.4 -3.2 -2.0 -2.7 -3.1 -3.3

Table A.5: Switching matrix model accuracy for validation circuit pdc Fs = 6
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Measured Predicted

Fcin/Fcout 4 8 12 26 42 56 70 4 8 12 26 42 56 70

2 90 84 84 80 80 80 80 98 93 90 86 84 83 82

4 84 82 80 78 76 76 76 89 85 84 81 80 79 78

8 80 78 76 76 76 76 74 83 80 79 77 76 76 75

12 78 76 76 76 74 74 74 80 78 77 75 75 74 74

26 78 74 74 74 74 72 72 76 75 74 73 72 72 72

42 76 74 74 72 72 72 72 74 73 73 72 71 71 71

56 76 74 74 72 72 72 72 73 73 72 71 71 71 71

70 76 74 74 72 72 72 72 73 72 72 71 71 70 70

Error Error %

Fcin/Fcout 4 8 12 26 42 56 70 4 8 12 26 42 56 70

2 8 9 6 6 4 3 2 8.4 10 7.6 8.0 5.4 4.0 3.0

4 5 3 4 3 4 3 2 5.8 4.3 4.7 3.8 4.6 3.5 2.8

8 3 2 3 1 0 0 1 3.4 3.0 4.1 1.5 0.1 -0.6 1.5

12 2 2 1 -1 1 0 0 2.5 2.7 1.4 -0.7 0.8 0.1 -0.3

26 -2 1 0 -1 -2 0 0 -2.5 1.0 0.1 -1.4 -2.1 0.1 -0.2

42 -2 -1 -1 0 -1 -1 -1 -2.2 -1.0 -1.7 -0.1 -0.8 -1.1 -1.4

56 -3 -1 -2 -1 -1 -1 -1 -3.4 -1.9 -2.6 -0.9 -1.4 -1.7 -2.0

70 -3 -2 -2 -1 -1 -2 -2 -4.1 -2.6 -3.2 -1.4 -1.9 -2.2 -2.4

Table A.6: Switching matrix model accuracy for validation circuit pdc Fs = 9
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