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Abstract

FPGA-based hardware development systems are exyreseful for exploring exciting
applications in vision, graphics, and many othempgotationally intensive problems.
Experience with previous systems has shown that anencapacity, inter-FPGA
bandwidth, host-to-FPGA bandwidth, and memory baddware all critical to the
successful implementation of high performance systeThis thesis presents the design,
and implementation, of a new FPGA-based developsystem that was created with the
goal of providing as much performance in these frelas as feasible. The design was
built with 8GB of memory and its bandwidth performa was measured. The system
has 17.6GB/s total aggregate memory bandwidth, I#MB/s (read) and 266MB/s
(write) host-to-FPGA bandwidth. The result is arkig development system that is
capable of implementing the applications of theifet
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1 INTRODUCTION

1.1 FPGA-BASED RAPID PROTOTYPING

An FPGA-based rapid prototyping system is a sehafdware and software
components that enable hardware engineers to desdnmplement high speed digital
systems both quickly and cheaply. Typically, tredware components consist of a
number of programmable FPGAs, some memory, somphgeals, and a link to a host
computer. The software components usually corish design tool flow, such as
synthesis, placement and routing tools, and afibtary. Through the use of a properly
designed hardware platform, an engineer can desightest many different digital
systems without having to design a physical hardwalatform for each. The only
limitations on what is possible are those thateairem the hardware platform itself.

It is the goal of this research to design a nextegation FPGA-based prototyping
system that removes a number limitations found xisteg prototyping systems. In
particular this thesis will focus on improving folkey areas: memory depth, memory
bandwidth, inter-FPGA bandwidth, and host comphbgerdwidth.

1.2 FPGA-BASED RAPID PROTOTYPING L IMITATIONS

The primary limitation of early single FPGA-bagatotyping systems was the
small size of circuits that they could implemeRPGA logic capacity lags behind semi-
custom ASIC technology by an order of magnitudemore. This meant that a single
FPGA-based prototyping system could only handleuds one-tenth the size of what
could be implemented using an ASIC. Incorporatingltiple FPGAs on a single
hardware platform has been employed to addressHus.

These multi-FPGA systems provided ample amountsalble logic but it came at
a cost. While each of the different FPGAs can pl®high-speed and high-bandwidth



intra-FPGA connections, the inter-FPGA board legehnections have much less
bandwidth and much greater latency. Once systeaw tp span multiple circuit boards
the inter-board bandwidth only exaggerated thidblem. This means that an engineer
must either design their circuits to run at the dowpeed, dictated by the inter-FPGA
connections, or must segment their designs in saclvay to account for the
heterogeneous nature of the development systetherBvay this inter-FPGA bandwidth
is another limitation provided by multi-FPGA devetognt systems.

Another factor that can limit the usability of sughmototyping systems is
peripherals and interfaces provided on the hardpitéorm. A development platform is
typically designed towards a specific market withedfic interface needs. Some

examples of such markets, and the interfaces #wgyine, are listed below:

* Computer Vision
o Computer vision applications require one, or pdgsibore, video
input peripherals.
» Computer Networking
o Networking devices require peripherals that intezfavith the physical
network media.
* Embedded Application
o Since embedded systems often employ standard tasfaces, such as

PCI, or 12C, development systems must include #maes

It is the inclusion, or absence, of these intedat®t limits the types of systems that a
prototyping system can implement. In addition hese specific interfaces, almost all
development boards contain some amount of on-bmardory. Once again the amount
of memory and its speed is also a limitation ontveharototyping system can implement.
The combination of all of these different factotise amount of usable digital
logic, the inter-FPGA bandwidth, the available pkerals, the memory bandwidth and
the memory depth, dictate the limitations on theegypf systems that can be
implemented using modern FPGA-based prototypintesys. The goal of this research



is to develop a state-of-the-art multi-FPGA devebept system that maximizes usability

of the system by enhancing many of these key liroia.

1.3 KEY OBJECTIVES

The prototyping system described in this thesis, Transmogrifier-4 (or TM-4
for short), is the fourth generation developmerdtey designed at the University of
Toronto. The previous three systems [1,2,3], #taits of which can be found in chapter
2, focused on providing sufficient amounts of peogmable digital logic, combined with
useful peripherals and interfaces. The most recergion of these systems, the TM-3,
provided both video-in and video-out, links to a-&l@ss host computer, and several
megabytes of on-board SRAM.

The TM-3 system has been successfully used to mgae a number of different
applications including stereo vision [4], ray tragi[5], and a protein identification
system [6]. While each project was successfuly #Hiso provided new insight into what

could be improved in the Transmogrifier design.

:

Figure 1: Stereo Vision Input [4] Figure 2: Stereo Vision Output [4]

The stereo vision application [4] was a computatieavy design that was
segmented between several different FPGAs. Theogerof the application was to take
video from two cameras and determine the distam@ath object in the video. Figure 1
shows a sample input from one of the stereo camétigsire 2 shows the resulting depth
map as generated by the stereo vision hardware. ligthter colours indicate pixels that
are closer to the camera and the darker colouiisait@lpixels that are further away. It

3



was found that the amount of available bandwidttwben FPGAs was such that the
inter-FPGA buses had to be carefully designed dasfler sufficient amounts of data.
Without that constraint, this effort could have bd®etter spent on designing the core
stereo vision algorithms and implementations inktea

The ray-tracing project [5] used the TM-3 to ren®® images from data
describing a virtual scene. This data was generayea host PC and sent to the TM-3
where it would render the images. A sample imagehown in Figure 3. It was found
that the amount of bandwidth available on this fiostransmogrifier link was a serious
bottleneck to performance. Although the TM-3 cotddder a 3D scene in well under a
second, it would take the host link several secqudsto transfer the scene data and

completed image out of memory.

The final application, the protein identificatioryseem [6], implemented a
bioinformatics algorithm that identified proteiftgdaugh the use of the human genome.
The desired system would take data from a masdrepester sample and then perform a
linear search through the gigabytes of human gerdateeto identify the protein sample.
A prototype was implemented on the TM-3 that showed searching the genome this
way is feasible but would require a developmentesysvith more memory.

These three systems illustrate the limitations riehtin any prototyping systems,
those of inter-FPGA bandwidth, host computer badéhyiand memory bandwidth and
depth. It is the goal of the TM-4 project to desig development platform that



maximizes the inter-FPGA, host computer, and memoamdwidth as well as the

available memory depth.

1.4 ORGANIZATION

The remaining chapters of this thesis are organaedbllows. Chapter 2 will
provide some background information on past andecurFPGA-based development
systems along with a brief primer on some of thg technologies being used in the
design of the TM-4. Chapter 3 will describe thesige methodology, and the circuit
design itself of the TM-4. Chapter 4 will descrite design of the printed circuit board
for the TM-4. Chapter 5 will measure the perforoenf each of the four key goals, and

Chapter 6 will conclude.



2 BACKGROUND

2.1 INTRODUCTION

The first half of this chapter will examine thestory of FPGA-based
development systems to provide a context for treeawch presented here. First, a
representative set of systems will be described thed functionality divided into a
taxonomy of the entire space of FPGA-based deveadoprsystems. Next, the history of
the previous Transmogrifier systems will be destiand finally a description of recent,
commercially-available, development system willgoeen.

The second half of the chapter will provide a tdescription of some of the
technologies that are incorporated into the presewbrk. These include a discussion of
source-synchronous clocking, the Altera Stratix AP@ual data rate SDRAM, and low
voltage differential signalling, or LVDS, high-sgkserial communication.

2.2 A TAXONOMY OF FPGA DEVELOPMENT SYSTEMS

Over the history of FPGAs there have been manyitiérent development
systems that are based on FPGAs. These rangesimpie single-FPGA systems to
huge multi-board, multi-FPGA systems with the satftevtool flows to match. Of these
different development systems there are a numbkeytharacteristics that differentiate
them from each other. This section will presemséhcharacteristics and use them to
categorize a sample of development systems.

The first categorization is the number of FPGAsnpdsing the development
system. The simplest development system is cordpo$eonly one FPGA. These
systems are typically designed to allow very singg®elopment to be done on a given
generation of FPGA. As such, single FPGA-based Idpwgent systems will not be

examined in further detail. The following subsecsiavill provide classifications that are



applicable to multi-FPGA-based systems. Althougme of these classifications apply
equally to both single and multi-FPGA systems, omlylti-FPGA examples will be
provided.

2.2.1 RJRPOSE PROTOTYPING /VERIFICATION

There are two distinct classes of developmenesgyst those that allow the user to
prototype an algorithm or a system and those thit @low verification. The primary
difference between the two different classes isahdesigner typically uses a prototyping
system to design a system that will ultimately emg targeting FPGASs, whereas
verification systems are used to validate a desigat will target an ASIC. This
distinction is important as each type of systemvaayg different needs.

The designs that can be prototyped on a givenesysire dictated by the
architecture of the system itself. For example, d@esigner wishes to prototype a video-
processing system, the prototyping system must llaeeproper video interfaces and
must be able to operate at the desired speede firthl design will run at 200Mhz then
the prototyping system must also be able to hatmBespeed. This is directly contrary to
a verification system where speed is not a drivaggor.

It is typically impossible to prototype an ASICsifgn running at full speed on an
FPGA-based prototyping system. This is becaudeP&A’s speed lags that of a custom
ASIC chip manufactured in the same fabrication pssc However, FPGA development
systems can still be used in the design of ASIChere are a number of commercial
systems, such as Aptix’s system explorer [7], Ebmtaand Verification Engineering’s
ZeBu-XL [8], Mentor Graphics’ VStationPRO [9], Caue Palladium 1l [10] and AMO
GmbH’s Venux-X Emulator [11], that enable such hggpeed designs to be emulated
using FPGASs running at a much lower speed. Thgseems are designed to abstract
away the underlying FPGA structure to allow eassfication. This is quite different
from a prototyping system in which the structureéhaf system is very important.

To allow for an easy transition between a protiniypsystem and a production
system, both systems typically have a similar aechire. If the designer is targeting a
production system with two FPGAs and a certain ath@i memory, the prototyping



system should also have at least two FPGAs andcisunf memory. A designer could
then directly target their design to the architeetwithout the need for the abstraction
layer provided in an emulation system. By removinig abstraction layer the prototype

system is able to operate at a much higher speadatth emulation system.

2.2.2 MULTI -FPGA INTERCONNECT TOPOLOGY

A design targeting a multi-FPGA-based developnsgstem must be split across
the various FPGAs. The way this is done is depetnde the interconnection topology
between the different FPGAs that the system pravidehe topology can either be tuned
for a specific class of application or designedeoflexible enough to implement most
applications. Figure 4 shows several common tapefused by various development

systems.

D E F

Figure 4: Interconnect Topologies

Topology A consists of a crossbar style interamion scheme. Each FPGA is
connected to a central crossbar. This crossbawslany FPGA to communicate with
any other FPGA. This crossbar might be a speeml@ossbar chip, or another FPGA
that is used for routing. The crossbar topologygiste common in academic
development systems as it allows the topology tacdmfigured to emulate any other

style. Crossbars can be found in many developsysiems including the following [1,



2, 14, 16, 19, 22, 27]. Figure 5 shows how thmotogy was used in the Splash 2 [27]
development system. The Splash 2 architectursistsmof 16 FPGAs all connected to a
central crossbar with the crossbar’s programmattmection controlled by a TFPGA.

FPGA|FPGA|FPGA|FPGA|FPGA|FPGA|FPGA|FPGA

I I I I I I I I
— Cross Bar

I I I I I I I I
FPGA[FPGA|FPGA[FPGA|FPGA|FPGA|IFPGA|FPGA

Ctrl
FPGA

Figure 5: Splash 2 Crossbar Interconnect Architectee

A slight variation of the crossbar style interceanis to fully connect all the
FPGAs to each other, as show in Topology B, instehdusing a programmable
connection scheme. This scene has the advantagenot/ing the crossbar latency from
interconnects but requires many more wires to aehibe same connectivity. Examples
of systems that use this topology are [3, 25]. &ibath topologies A and B have each
FPGA connected to every other FPGA they are the fiesble topologies. However,
this flexibility comes at a cost. As the numberF#GAs increases in a system the
number of connections required grows with O(n"20l avith fixed interconnects, the
number of connections between any 2 FPGAs is retluce

Topology C, a 2D or 3D interconnection mesh, isslghtly less flexible
connection scheme then the crossbar scheme. Thet mlows a given FPGA to
communicate directly with its neighbours. Communaabetween more distant FPGAs
must be relayed through an intermediate node. fBpslogy is good in systems with a
large number of FPGAs, due to the fact that therifRPGA connection requirements
scale linearly as the FPGA count is increased.s Thimes at the cost of having less total
interconnection resources and increased connedét@y between distant FPGAs, but as
long as applications are designed to localize {RBGA communication this topology
works well. Examples of systems that use 2D meahe$20, 22] and systems that use a
3D mesh are [21].



There is a common class of application for whiatr@ssbar or mesh topology is
excessive. Many algorithms operate in a pipelimashor. That is there is a data source
for which a series of independent algorithms agiep. Topology D, which consists of
a linear interconnection scheme between FPGA, d¢acieatly implement pipelined
applications. Data is fed into the system from end of the chain for each FPGA to
process in turn. The result is then output from tdst FPGA. This topology can be
extended slightly by connecting the first and lasdes of the chain, as shown in
Topology E, the ring. A linear topology is usedthg Anyboard system [17] and a ring
topology is used by the ARMen system [18].

Another class of application, which is common, #énese with a series of
algorithms that increase in complexity. TopologyFRree structure, can implement some
of these classes of applications. Data is fed th# system at the root node and is
processed by nodes downward along the tree. Theedélee data flows down the tree,
the more processing power is available. Figushd@wvs the 3 FPGA tree structure used
by the Prism Il [24] system.

Figure 6: Prism Il Tree Interconnect Topology

Systems with very large numbers of FPGA tend soausombination of the above
topologies. Typically a small group of FPGAs aanmected tightly using either a
crossbar or mesh approach. This allows singleriifgos to span across several FPGAs.

10



These groups of FPGAs are then connected with gtioeips through either a linear, tree
or larger mesh structure.

In addition to these flexible interconnection soles, there are also a number of
development systems that consist of applicatioripenterconnections. For example,
the functional memory computer [12] is designedeiplore a very specific type of
computational paradigm. It consists of a numbeFREGASs that are connected using a
common memory-mapped bus. Another developmentessysiGanglion [13], was
designed to explore neural network style processiAg such, the interconnections are
optimized for this specific requirement.

2.2.3 FPGA NTERCONNECT |IMPLEMENTATION

As described in the previous section, there aramber of different possible
interconnection topologies. In addition to thig tvay these topologies are implemented
can also vary between development systems. Thestgp interconnections typically
falls into one of four different categories: fixgatpgrammable, switched and hybrid.

A fixed interconnect structure is one where thanaztions between different
FPGAs is hardwired into the systems circuit board. programmable interconnect
structure has the various FPGA signals feedingami& or more, switching chips. These
chips provide the ability to connect the various3APsignals programmably. Typically
these chips are either a crossbar or an additieiP@lA itself.

The third classification, switched interconnestaiconnection method that allows
the interconnections to be changed while the dewvedmt system is operational.
Typically, this is done using packet switching, @smmonly used in the networking
world. An example of a switched interconnectiotmwaek can be found in the form of
either an FPGA controlled crossbar, as found irm&8pR [27], or as a packet switched
network, as found in the Bee 2 system [14].
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Figure 7: Bee's Interconnection Topology Hierarchy

The final classification, hybrid, combines seveshthe previous interconnection
structures. For example, the Bee system [14], istn®f an interconnect hierarchy,
shown in Figure 7. The lowest level of the hiergrcbnsists of a fixed nearest neighbour
grid of interconnected FPGAs. This fixed grid pd®s local connections. The next
level in the hierarchy provides global connectidghsough the use of programmable

crossbar switches.

2.2.4 EXTERNAL INTERFACE /HOST

A development system does not exist in completéati®n. For a design to
perform a useful task, it must have some intertacthe outside world. This interface
might consist of a specific type of interface, sashvideo I/O or a network port, or a
more general interface, such as a CPU or generpbpe expansion IO. The general-
purpose interfaces allow more flexibility, sinceeyhcould also provide a video stream,
but the bandwidth provided is not optimized towadspecific application, as a dedicated
video I/O port would be. This means that the add bandwidth on a general interface
will ultimately limit the rate, and type of data cdahat can be provided to the
development system.

The bandwidth of general-purpose expansion I/@méed by the number of
FPGA pins dedicated to expansion as well as thammar data rate each pin can operate
at. A host CPU interface’s bandwidth is limited the method used to connect the

development system to the host computer. The sshpbhnd slowest, method is to

12



provide a parallel or serial port interface asd@gs. This method can provide at most a
few megabytes per second of bandwidth due to tiwedperating performance of both
parallel and series ports. A method with much @éighandwidth is to connect the
development board directly to a CPU’s expansion bush as SBUS, SCSI, PCI [15], or
VME. This type of connection can provide anywh&mm a few dozen megabytes per
second to several hundred megabytes per second.

Systems that use an SBUS host computer intercommeade [16, 18, 20, 25,
27], a SCSI interface [28], a PCl interface [3, &8l a VME interface [13,21].

2.2.5 MEMORY

Many important applications require a large amoaintnemory. Most modern
FPGAs include moderate amounts of on-chip rampoufOMb in state-of-the-art FPGAs,
but this amount is usually not sufficient. Mostvdliepment systems augment this
memory by adding additional external memory.

The speed, type, and configuration of the memarylave a substantial effect on
the performance of circuits using it. For examphe simplest memory for a circuit to
interface with is SRAM. This type of memory doed nequire refreshes and typically
has very low latency. The primary drawback is tiha&t memory capacity is low. Using
DRAM can increase this memory capacity and bandwibdtit this comes at a cost. A
DRAM interface is much more complex than an SRAM doe to the fact that DRAM
must be refreshed. In addition to this the meniatgncy is also increased. Where an
SRAM’s latency could be a low as 2 cycles, a DRAM®Ncy is often closer to 10, or
more, cycles.

Which type of memory is best depends upon the t§y@gplication using it. If an
application is very latency-dependent, and onlyi@g a small amount of memory, then
SRAM is ideal. If an application requires high Beudth or a large amount of memory
then DRAM is the best choice.

In the past development systems have usually @AM, as it is easier to
interface with. The few systems that do incorp@@2RAM, such as Enable++[22] and
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RPM [26], do so to provide more memory then SRAM paovide. However, both of
these systems also include a small amount of SRé&NMedl.

2.2.6 LYMMARY

A development system can be defined by a numbdiffefent characteristics, as

discussed in the previous section. These include s$ystem’s purpose, the

interconnection topology, the interconnection innpdatation, the external interfaces,
and the amount and type of system ram. Table Irguires the last four characteristics

for a number of historical and modern prototypiggtems.

FPGA Count Memory Host Interconnect
And Type Interface
ACME [16] 14 Xilinx XC4010 28K SRAM SBUS Programmiab
Anyboard [17] | 5 Xilinx 3042 384K SRAM| ISA Fixed
ARMen [18] 8 Xilinx 3090 512K SRAM | SBUS Ring
Bee [14] 20 Virtex 2000E 16MB SRAM Ethernet Mesletdirchy
Borg [19] 4 Xilinx 30XX 2K SRAM ISA Programmable
Chameleon [20] 3 Xilinx 4010 1.25M SBUS Fixed Mesh
DFFC [21] 512 Custom FPOA 8M VME 3D Grid
Enable++ [22] | ~50 Xilinx 40XX 12M SRAM | Custom Programmable
384M DRAM

FMC [12] 11 Xilinx 40XX 1M SRAM PCI Bus
Ganglion [13] 24 Xilinx 3090 None VME Fixed Custom
Marc 1 25 Xilinx 4005 6M SRAM SBUS Programmable
Morrph-ISA 6 Xilinx 40XX Fixed Mesh
Perle-0 25 Xilinx 3020 500K SRAM| VME Fixed Mesh
Prism [23] 4 Xilinx 3090 None 16bit Bus None
Prism 1l [24] 3 Xilinx 4010 1.5M SRAM | 64bit Bus Tee
Race [25] 4 Xilinx XC4013 512K SRAM| SBUS Fixed bte
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FPGA Count Memory Host Interconnect
And Type Interface
RPM [26] 63 Xilinx XC4013 90M SRAM | SCsSiI Fixed
864M DRAM

Splash 2 [27] 16 Xilinx 4010 8M SRAM SBUS Crossbar
Spyder 5 Xilinx 4003 128K SRAM| SBUS/VME Fixed
Teramac [28] 1728 Custom FPGA  512M SRAM  SCSI Crassb
TM-1 [1] 4 Xilinx 4010 144K SRAM | SUN Programmable
TM-2 [2] 32 Altera 10K100 128M SRAM| Parallel Crossb
TM-3 [3] 4 Virtex 2000E 6M SRAM PCI Fixed Mesh

Table 1: FPGA Development System Characteristics

2.3 THE TRANSMOGRIFIER PROJECT

While the global goal of the Transmogrifier Prajeas always been to create an
easy-to-use development platform for researchiggrahms and implementations, the
goal of each specific Transmogrifier, or TM for dghdas varied.

The goal of the TM-1 [1] was to provide an initi@kearch platform to serve as a
starting point for future development. Next catme TM-2 [2] with the goal of designing
a system that could handle very large circuits.is Was achieved through the use of a
large number of FPGAs in a scaleable design. Bytithe the TM-3 [3] was designed,
FPGA technology had improved sufficiently so thairagle FPGA could now do the job
of the entire TM-2. This led to a new goal, a goperformance, instead of just size.
The TM-3 was thus designed to enable circuits terafe at a high clock rate, up to
100MHz.

The following three subsections will provide aneoxew of the first three

Transmogrifiers.

2.3.1 TRANSMOGRIFIER -1

The Transmogrifier-1 was designed at the Universit Toronto in 1991. The
TM-1 consisted of four Xilinx 4010 FPGAs connectading Aptix programmable
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crossbars with an Aptix programmable board. These FPGAs provided 3200 4 input
lookup tables, or LUTSs, for use as programmabldéalitpgic. Each of the four FPGAs
was connected to a 32Kx9 SRAM.

2.3.2 TRANSMOGRIFIER -2

The Transmogrifier-2 was designed at the Universit Toronto in 1996. The
TM-2 incorporated a scalable multi-board design fehich systems where built
consisting of two, four and sixteen boards. Eachrth on the TM-2 consists of two
Altera 10K100 FPGAs, 8MB of SRAM, and a programmgabtossbar. In the largest
configuration there are 32 FPGASs providing a tofal60,000 LUTs, and 128MB of ram.
The TM-2 also introduced a parallel port interfa@e Sun host computer. This interface
allowed programming of the FPGAs as well as comnaimmn with the circuit under test.
Communication was facilitated through the use ofapeterizable bus hardware
interfaces, combined with a software package orsthe computer. The TM-2 was used
successfully for a number of applications includiage detection [29], and procedural

texture mapping [30].

2.3.3 TRANSMOGRIFIER -3

The Transmogrifier-3 abandons the multi-board epgh due to the effort
involved in effectively building and using multi-bal prototyping systems. The TM-3
system consists of four Xilinx Virtex 2000E FPGAach with 2MB of SRAM. This
provides a total of 150,000 LUTs and 8MBs of SRAMhe interface with the host
computer has also been improved by using a dir8tiSSor PCI link instead of the
parallel port connection provided by the TM-2. §hnk is once again used to program
and communicate with the development FPGAs.

The TM-3 was used for a number of different a@tlans including stereovision

[4], ray-tracing [5] and a protein identificationgof of concept system [6].
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2.4

COMMERCIAL DEVELOPMENT SYSTEMS

Purpose FPGA Count Memory Host Interface
HAPS [31] Prototype | 4 Virtex Il 8000 perlGB DRAM / | PCI-X 133Mhz
board (Stackable) | FPGA

0.5GB SRAM

| FPGA
Venux-X [9] Emulation| 6 Virtex Il 6000 <1 G SRAM Custom
ZeBu-XL [8] Emulation| 64 Virtex Il 8000 <1 G DRAM Custom
PROCStar 1l [32] Prototype| 4 Stratix S80 2 GB DDR|IPCI 66 Mhz
DN6000K10[33] Emulation| 9 Virtex Il Pro 100 1.5 GB DDR USB
System Explorer [7] | Emulation 8 Virtex 2000E
Wildstar 1l PRO [34] | Prototype| 3 Virtex Il Pro 528VDDR | VME
Pro 3100 [35] Prototype| 4 Virtex Il 8000 512MB DDRPCI 66 Mhz

Table 2: Available Commercial Development Systems

There are a number of commercially available dgwalent systems that have a
comparable level of functionality to the Transmdigri4 (the system described in this
dissertation). To understand what sets the TM-4tdpam these systems, this section
will summarize the capabilities of competitive comaigl systems.

Table 1 summarizes the available commercial dgvedmt systems with similar
The fystem, the HAPS, is a modular
system that allows scalability. The base configonaconsists of 4 Virtex 11 8000

amounts of FPGA development resources.

FPGAs and up to 4 GB of DDR SDRAM. However the mgyrsubsystem does not use
RAM modules and instead requires 6 individual exp@m boards with discrete RAM
chips. This solution is more expensive and slowentusing standard RAM modules but
fits with the systems goal of being modular.

The next two systems, Venux-X and ZeBU-XL, arehbetry large ASIC
emulation systems. Although the amount of avagldbyic will be greater than that of
the TM-4 the systems are only designed to run éndéveral Mhz range. The Gidel
PROCStar Il board consists of 4 Stratix S80s a68MHz PCI interface, the same as the
TM-4. What the PROCStar lacks is memory bandwidthere are only two channels of
DDR Il available.
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The next two systems, the Dini Group DN6000K10 dahd Aptix System
Explorer are also only emulation systems. Theyadse designed to only run in the few
megahertz speed range. The remaining developrystens, the Pro 3100, is also similar
to the design of the TM-4. It consists of 4 Virté»8000 chips and a PClI 66MHz host
computer connection. However once again lacks bwmory bandwidth and memory
depth.

2.5 BACKGROUND TECHNOLOGIES

Many of the different decisions involved in thesdg of the TM-4 were the result
of various technical requirements or limitationsheTollowing subsections will provide
some background technical information relating RGA technology, external memory
and high-speed inter-chip signalling in order tovile suitable context for the design

presented in Chapter 3.

25.1 A TERA STRATIX FPGA

The largest chip in the Altera Stratix line of FP§&Ahe EP1S80, consists of
several different types of programmable logic b#ck Its core programmable
functionality is provided through 79,040 four-inpptogrammable lookup tables, or
LUTs, and is supplemented with other blocks suchmagipliers, on-chip memories,
phase locked loops, and specialized 1/0 hardw&geparticular relevance to the TM-4
project is the structure of the Stratix FPGA.

| DDR |
| DDR |

Figure 8: Stratix /0O Banks
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The Stratix FPGA pins are grouped into eight défe¢ banks, as shown in Figure
8. The I/O pins in each bank are connected tananzan I/O voltage and reference. This
restriction limits what types of 1/0O standards dam operated in any given bank. For
example, it is not possible to have both a 2.5v &8d output I/O standard operating in
the same bank since the bank must have a commowoli@ge. A similar restriction
exists for reference voltage as well. In additionvoltage restrictions, the Stratix
FPGA's I/0O banks are also limited in which I/O stards they can implement.

Only 1/0O banks 1, 2, 5, and 6 can support the L\MIX&rential standard. These
banks provide dedicated serialization/deseriabrathardware that help enable LVDS
communication at up to 840Mbps. The remaining b&hiks 7, and 8 only support single
ended output standards. However, these banksmaicaledicated hardware that allow
for easy DDR SDRAM interfaces. These banks incaigoa delay locked loop for use
in properly aligning the clock and data receiveairfra DDR SDRAM memory.

As will be discussed in Chapter 3 these bank &ins are very significant when
it comes to routing the TM-4’s circuit board.

2.5.2 SDURCE-SYNCHRONOUS CLOCKING

Transmitting data at a high rate is a very diffiqaroblem. As data rates increase
the effect of skew and IC fabric and circuit bogbcess variation become very
signification. Skew directly reduces system-timingargins, and process variations
increase the uncertainty of inter-chip delays. sEhievo factors make it uneconomical to
use a simple global clocking method to transmibdalo compensate for this problem a
clocking method known as source-synchronous clgclsoften used.
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Figure 9: Source-synchronous Clocking

Source-synchronous clocking is designed to elmeinmost of the effects of
process variation to enable higher-speed signallifigure 9 illustrates how this works.
A transmitter drives both a data and clock sigiiake receiver can then uses this clock
signal to synchronize the provided data. Provithed the data signal meets the setup and
hold time requirements relative to the clock sigiha! flip-flop will successfully capture
the data. It is easy to see that if sufficientvske introduced between the clock and data
signals that synchronization will fail.

To limit the amount of skew introduced, the twgnsils traces are designed in
such away as to minimize the sources of skew. dxample, the transmitter would
typically place the data and clock pins physicakyy close together on the die and use
the same branch of the clock distribution tree.e Boal in this design is to remove
process-variation-induced clock skew. Similarlye fphysical circuit board inter-chip
connections would be routed similar to each othesrder to reduce skew. Finally, the
receiver chip would try to match the delays betwé#sn internal clock distribution
network and the input time of the data signalallthese sources of skew are sufficiently
controlled, then the data can be successfully cagtin the receiving device. However,
the data must still be transferred to the recesveldck domain.

There are two different ways to handle this probl#epending on the situation.
In the most difficult situation, where the phasetled data clock is completely unrelated
to the internal clock, it is necessary to treatdhgut of the synchronization register as
asynchronous. The means that all metastabilites$36, 37, 38] must be addressed. In
the easier case, where there is some relationsitipeln the data and internal clocks, the
resynchronization can be handled by buffering #eeived data while still in the data
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clock domain. Periodically this data can thenraagferred into the local clock domain

at a much lower rate.

2.5.3 DDR SDRAM

DDR SDRAM, or dual data-rate synchronous dynamipm access memory, is
a dynamic RAM standard that incorporates double date signalling, with source-
synchronous clocking, to achieve high data rat®suble data rate means that data is
transferred on both the rising and falling edgethefclock. The DDR SDRAM standard
supports speeds of up to 200Mhz. To meet thessdspwhile still being inexpensive to
implement, the standard uses source-synchronoasstiatbes for transmitting data. A
number of data bits, usually 4 or 8, have a stigeal that is routed along with them.
This strobe is then used as a source-synchronama& @s described in the previous
section. The only difference between DDR SDRAMJ #ime example provided in the
previous section, is that the strobes and dataaligdriven by the memory have
coincident edges. To meet setup and hold requimesrtbe strobe must be delayed by the
receiver. This can be accomplished on the StRR&A through the use of a specialized
delay-locked loop.

Like many DRAMs before it, DDR SDRAM memory is argzed into a
hierarchy. Figure 10 shows a subset of the hamlwantained in a DDR SDRAM chip.
Memory is stored in four different memory arrays,banks. Each array consists of a
fixed number of rows and columns. In order to readvrite a memory element, it is
necessary to first have the internal DDR SDRAM oali@r “open” the row. This means
that the controller will read an entire row of datam the 2D memory array into a buffer.
This buffer can then be read or written into byesghg which column to access. Upon
completion the row must be “closed”. This meang tha buffer data is written back to
the 2D array.
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Figure 10: DDR SDRAM Memory Organization

This process of opening and closing rows takegj@feant number of cycles.
Although the exact time varies between memory megjulypically each process takes
around 3 cycles. In order to mask some of thigtibDDR SDRAM allows one bank to
be opening or closing a row while another bankeigggming a read or a write. Through
the use of clever access patterns, DDR SDRAM catasuburst transfers very near the

theoretical maximum of two words per clock cycle.

2.5.4 LVDS HGH -SPEED SERIAL COMMUNICATION

Electrical signalling standards have a strongcefte the speed performance of a
communication link. One such standard is knowfoasvoltage differential signalling
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or LVDS for short. This standard belongs to a fgrofl standards known as differential
standards, which use two wires to transmit datae ®@ire carries a data signal and the
other carries the data signal's complement. Thisigontrast to more conventional
signalling that uses only one wire called a sirgyleled standard. It should be noted that
both differential and single-ended standards havérglied return current, or ground,
path.

LVDS signalling has two primary advantages ovenwemtional single-ended
standards, and one major drawback. The first adgans that LVDS involves very little
voltage swing. Whereas TTL or CMOS might have 2.6i 3.3V voltage swings
between high and low, LVDS signal swing is betw&®mV and 450mV. This
decreased voltage swing means that there will B8 ieter-trace coupling between
different inter-chip LVDS signals, thereby helpingduce signal integrity issue. The
second advantage arises from the fact that LVISdigferential standard.

Interchip
Connection

Dataﬂl/? J_L OVgata
In out

] Circuit Board L

Transmitter Receiver

Figure 11: LVDS Communication Channel

A differential topology consists of three diffeta@omponents: the transmitter, the
interconnection, and the receiver. Figure 11 tithtes these components. Each of these
components benefit from the differential naturégDS.

The benefit to the transmitter is in the form eflucing the inductance caused
voltage drops. When a conventional single endedstnitter switches between output
states there is a corresponding supply current stéps step will cause a voltage drop
due to the inductance between the driver and tiveepsource. At low speeds this
problem can be reduced by capacitors on the citmaird. At higher-speeds it is the
responsibility of on-chip capacitance to preventcessive voltage drops, but at
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sufficiently high speeds even on-chip capacitoreinod help with this problem.
Differential signalling reduces the effect of intive induced voltage drop by trying to
eliminate voltage steps. When one wire of theed#htial signal is switching in a given
direction, the other wire is switching in the oppeslirection. Ideally, these two voltage
swings will cancel each other out and eliminatedtfiect of the power supply network’s
inductance completely.

The interconnection signal integrity is helpedtbg differential nature of LVDS
as well. Ideally the two wires are switching irnpogite directions at the exact same time.
This means that the return current of one wire Wiilv through the other wire, as
opposed to a ground plane or neighbouring trackis i an ideal situation as it helps
reduce the signal integrity effects of holes amdssin the ground plane. Unfortunately,
in practice the LVDS wires are not perfectly mattiaand the transmitters’ drivers will
have some skew. This will lead to the non-idefalagion where some current will still
flow through the ground plane. However the sitwais still better than a single ended
wire.

The final piece of the communication channel ie tieceiver. The receiver
benefits from differential signalling in two wayshe first is that differential signalling
makes a small voltage swing seem twice as larghat &, even though one wire is
switching only 400mV, the other wire is switchinQXnV in the other direction. When
put through a differential amplifier the voltageisw is effectively doubled to 800mV.
Another advantage is that common mode noise betéeetwo signals will cancel each
other out. Ideally both wires in a differentialipaill run very close together on a circuit
board, the idea being that any noise will coupte iooth wires. This noise will then be
filtered out at the receivers’ differential ampdifi Once again reality is not as friendly as
the ideal case in that differential pairs tend ¢oolmly loosely coupled. This means that
noise will not be equally coupled into each wiré bace again this situation is still better
than a single ended wire.

The major drawback of LVDS is that it requires twvithe number of wires of a
single ended standard. To achieve the same batidivid necessary that an LVDS pair
run at twice the data rate as a single ended stndén the case of a long cable

connection this is almost always possible; the commoise rejection can often easily
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out perform single ended standards by a factor of fhore. However, in the case of
short onboard connections the case is not as strampS still wins out performance

wise but the margin is much smaller.

2.6 SUMMARY

This chapter described a set of both commercidl arademic FPGA-based
development systems, in terms of taxonomy of th&esapace of development systems.
A description of the previous generations of Tramgnfier systems was then presented
followed by a technical introduction to some of tkey technologies employed in the
TM-4.

The next chapter will describe the design of tihd-4 by examining the design
methodology employed in creating the TM-4.
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3 DESIGN

3.1 INTRODUCTION

This chapter presents the design of the Transiiergdi by examining the design
methodology used in creating the TM-4 and then ril@ag important parts of each step
of the design. These steps include the identificabf the requirements for the TM-4,
the hardware design of the circuitry and the veation of the circuitry. An additional
step, the design of the circuit board, is examimedettail in the next chapter.

The requirement identification section, Sectio2, 3dentifies the high level
requirements of the TM-4 by examining past expeesnand predicting future needs.
These requirements are then used to create a denedware design for the TM-4,
described in Section 3.3. Prior to actually fa#tiing the TM-4 hardware a number of
different verification test were performed. Théssts are described in Section 3.4.

3.2 REQUIREMENT | DENTIFICATION

The first step in designing the TM-4 was the idfeation of a set of key desired
characteristics for it. These requirements wesmntified from three different sources.
The first source was the previous Transmogrifieg TM-3 [3]. Many of the same
requirements that drove its design were still ajglie to the TM-4. Next, experience
gained through the use of the TM-3, in creatingliappons was used to provide new
requirements and finally a number of forward-logkirequirements were identified by
anticipating the future application space of the-4M

The following three subsections will examine eathhese different sources of
design requirements and one additional subsectidinswmmarize the final design

requirements.
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3.2.1 ST TRANSMOGRIFIER REQUIREMENTS

Many of the decisions made in the design of tleipus Transmogrifier, the TM-
3, are still relevant today. In particular, expade using the TM-3 has shown that the
selection of the number of FPGAs, the FPGA intenemtion topology, and the choice of
the external interface was well suited for the TN#®l suggests that similar selections
would also suit the TM-4. The remainder of thest®on will present the selections made
in the design of the TM-3 and examine the reasobétgnd them.

The choice of the number of FPGAs that a developrsgstem contains is a
trade-off between complexity and capacity. An taaoy amount of capacity can be
added to a system by increasing the number of FP@®AS the system contains.
However, this comes at a cost of complexity, aguséthe system must now partition
designs over a large number of FPGAs. The desigheo TM-3 selected a trade-off
point of having four FPGAs. This was found to pdeva large amount of logic capacity
while still being usable by designers. The setectf only four FPGAs also simplified
the interconnection topology selection.

Since the number of FPGAs was limited to only foubecame feasible to fully
interconnect the FPGAs to each other, similar toolagy B in Section 2.2.2. This
topology allowed for the lowest latency intercortiets, as there were no programmable
elements to introduce delay.

The final relevant choice made in the design efTM-3 was the selection of an
external interface. The purpose of an externi@riace on a prototyping system is to
provide a mechanism for communicating with the witroperating within the system
itself. The mechanism employed on the TM-3 wasnaple bus protocol between the
four FPGAs and a fifth “housekeeping” chip. Thisolisekeeping” chip provided a
bridge between the four FPGAs and a host compugeawCl bus. Experience has
shown that this simple bus, combined with parangtble soft IP modules, provides a
very easy-to-use communication channel for desgweuse.

Since past experience has shown the basic orgamziructure of the TM-3 to
be reasonably good the same structure was employée TM-4. The TM-3 provided
the basic requirements of having four of the largeRPGASs, each that is fully
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interconnected to each other, and each that isexb@d to a host computer via a
“housekeeping” bridge.

3.2.2 ST APPLICATION DRIVEN REQUIREMENTS

The previous generation of Transmogrifiers, the-IFMvas used to implement a
variety of applications including: ray tracing [frotein identification [6], stereo vision
[4], and a molecular dynamic simulator [39]. Thegass of designing these applications
brought to light a number of different shortcomingghe architecture of the TM-3. In
particular it was found that the TM-3 lacked hostmputer bandwidth, memory
bandwidth, inter-chip bandwidth and memory depffo better understand how these
shortcomings were found, three of the applicatiomplemented on the TM-3, ray

tracing, protein identification, and stereo viswitl be examined in more detail.

3.2.2.1 RY TRACING ON THE TM-3

Ray tracing is a method of rendering 2D images ofirtual 3D scene. The
algorithm renders a 2D projection of a 3D scenajgyroximating the way that light rays
propagate around the scene and end up hitting thwervs eye. The light ray
propagation model involves “tracing” the path thight rays travel back from the
viewpoint, through the projection point and in be tscene. Figure 12 shows an example
of how this works.

Figure 12: A Simple Ray Tracing Example
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The three triangles in the upper right represkatvirtual 3D scene. The eye in
the lower left represents where the 2D projectiooutd be viewed from. The plane, in
the middle, is what the 3D scene should be pragecte The ray tracing algorithm first
generates a ray from the eye point through eaatl pixhe projection plane. These rays
are then used to determine what objects are visidewhich object should be projected
onto a given pixel in the plane P. Intersecting ttays with the 3D scene, a
computationally intensive procedure makes thisrda@teation. It is this process that was
accelerated using the TM-3.

The ray tracing implementation [5] was limited sl ways by the architecture
of the TM-3. First, the available memory on the -BMvas limited to only 6 megabytes.
This allowed only relatively small 3D scenes torbadered on the TM-3. The second
limitation was memory bandwidth. The TM-3's memabsystem was built to run at
50Mhz. At this clock speed the memory could natvte 3D data as fast as the
hardware could process it. This turned out toHseperformance-limiting factor in the
design of the hardware ray tracer. The final latitn of the TM-3 was the amount of
host computer bandwidth. Both the dataset, whegrasents the 3D scene, and the
resulting rendered image needed to be transferstdelen the TM-3 and its host
computer. However, the available bandwidth, laes2MB/s, meant that the TM-3 could
process data much faster than it could communitatesults.

Experience from the ray tracing application sugggtshat the TM-4 should have
more memory, more memory bandwidth, and more hoshpater bandwidth. To
address the question of exactly how much more oii,ea more in-depth look at how a
3D scene can be stored is necessary.

In its simplest form a 3D scene consists of ao$dtiangles that are arbitrarily
positioned in three-dimensional space. Each vertéle triangle is represented by three
numbers defining its position in space. If we assuhat 32-bit numbers are used then
each triangle will require 36 bytes to store. &mcene of 1,000,000 triangles the storage
requirements will be 36MB. If a more complicatdd 8cene is used, one that includes
texture maps, and other such data, the memoryresgant could easily exceed 100MB

or more.
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The issue of how much memory bandwidth is difticil address. Since ray
tracing can be parallized extensively, it is possio consume any available memory
bandwidth, with the only limitation being logic are The remaining issue of host
bandwidth is also difficult to address as this liskutilized to load scene data. During
this time the system is idle and the host linkhes bottleneck. Ideally, the bandwidth on
this link should be as high as possible to limé gerformance impact.

The experience from this application, combinedhwihe simple calculations
above, suggest that the TM-4 must have at leasviBOSf memory and as much memory

bandwidth and host computer bandwidth as feasible.

3.2.2.2 FROTEIN |IDENTIFICATION ON THE TM-3

An active area of research in proteomics involesidentification of biological
proteins contained in a physical sample. The ctragproach attempts to identify the
molecular make up of the proteins using a devicesnas a mass spectrometer. This
device can take a protein, break it up into smates and identify the molecular make
up of these small pieces. It is then necessargssemble these “fragments” into a
completed protein. One approach to assemblingrdggments involves searching the
human genome [6].

The human genome contains a description of evesgible protein, and as such
can be used to reassemble the protein fragment®opsty obtained. The algorithm to
accomplish this involves searching the entire hugemome dataset, several gigabytes of
data, and matching the fragments to certain preteuccessive fragment searches each
reduce the set of possible protein matches unty one protein is left. This protein
should be the same as the protein in the physicapte.

A prototype created on the TM-3 [6] showed that #@gorithm could be easily
parallized to consume all available memory bandwidin addition it was found that a
large amount of memory was also required to st@eomic data. It takes around 1
gigabyte of data to store the 3.3 billion baseg#iat make up the human genome. In
addition there is evidence that it might be neagsgasearch several different genome
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datasets at the same time. This would push thesained RAM required to between 2-
4GB.

The experience from this application suggeststtiai M-4 should have between
2-4GB of RAM and as much bandwidth as feasible.

3.2.2.3 SEREO VISION ON THE TM-3

One of the fundamental problems facing computsioni is the problem of
extracting depth information from an image or ine@é a scene. Stereo vision is one
approach to this problem that works by mimicking t#tay human vision works.

The stereo vision approach uses two cameras thatligned side-by-side. Each
of the cameras sees a slightly different versiothefscene and these differences can be
used to extract depth information. By utilizingnple geometric relationships between
corresponding objects in each image, depth canabmilated. The hard part of the
problem is identifying the matching points betwesath image. One solution to the
matching problem is to perform a large number ofelations between the pixels in each
image. This approach works well but is very corafiahally intensive.

The TM-3 was used to accelerate the stereo visamputation to the point where
it could operate in real time [4]. However, thgitbarea requirements necessary to meet
real time performance were very high. The impletaigon of the stereo vision algorithm
needed to be spread across all four FPGAs of the3TMt was found that the lack of
communication bandwidth between each FPGA maddipamg the design difficult but
in the end a functional stereo vision system wasted.

The experience from this application suggeststti&ai M-4 should have as much
inter-FPGA bandwidth as possible in order to sifgpthe problem of partitioning

designs.

3.2.3 ANTICIPATED APPLICATION SPACE REQUIREMENTS

The TM-4 was designed with several different fatapplication spaces in mind,
each space with its own requirements. These spadease stereo vision [4], genome [1]
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based algorithms, reconfigurable computing, anérsthin order to meet the demands of
these applications several additional design requents were necessary.

Stereo vision applications require two video sesras input and some method of
output. This resulted in the requirement that fd-4 have two analog video-in
channels, two digital IEEE-1394 channels (to prevédternative video input and output
channels through a standard digital interface), andVGA video-out channel.
Reconfigurable computing applications might requihe prototyping system to be
rapidly reprogrammable. This added the requireroéhiaving the development FPGAs
configured using the fastest method possible.

3.2.4 THE TM-4 DESIGN REQUIREMENTS

The following list summarizes the different desigquirements of the TM-4. It
includes all the requirements identified in thevas three sections as well as two
additional requirements. The requirement thafTtkle4 be designed to minimize the risk
of a design error causing a complete system faiumd the requirement that the TM-4 fit
into a standard PC case.

The first requirement is important since the TN&4 piece of physical hardware
it cannot be easily changed after it has beendatad. If a critical mistake is made in
the design process the entire system will be useld® reduce the risk of a complete
failure of the TM-4, any system that is critical tonctionality must have a simple
redundant backup. For example the power supptyFIRGA programming subsystem,
and the PCI interface all require a backup contiggdan.

The second requirement, that the TM-4 fit intdaadard PC case, is important as
this means that the TM-4 can be easily implemeiea self-contained system while
using off-the-shelf parts. The self-contained eyswill allow for easy portability and
easy compatibility with the host computer.

When all of the requirements are tabulated, thioviahg list of requirements
results:

1. Logic capacity
a. Four of the largest available FPGAs
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2. Interconnect Topology

a.

Fixed point-to-point

b. As much bandwidth as feasible

3. Memory

a.

4GB or more

b. As much bandwidth as feasible

4. External Interfaces

a.
b.

2 analog video in channels
2 digital video channels (IEEE-1394)

c. VGA video out DAC
5. Host Computer Interface

a.
b.

As much bandwidth as possible

Simple to use for designers

6. Miscellaneous

a.

b
C.
d

Must have a mechanism for remote access toetleapment platform.
Should be reconfigurable as fast as possible

Designed to minimize the risk of a design emdiuced system failure
Circuit board should conform to extended AT Xnfidiactor specification

It should be noted that there are other practioatdtions on these requirements.

This means that there needs to be an engineeradp-bff between the various

requirements and other external factors. Thederamclude things such as: cost, power

requirement, and any space limitations of the ditooiard.

3.3

THE TM-4 DESIGN

The following sections present the design of thd-4;, as motivated by the

previously identified design requirements. A sysfevel block diagram will be

introduced for the TM-4 and each block will then d&eamined in more detail. The

complete schematics for the TM-4 can be found ipexulix 7.
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3.3.1 CESIGN OVERVIEW

The design of the TM-4 consists of two major ssbsys: the development
subsystem, and the interface subsystem. The gewelast subsystem contains the
portion of the TM-4 that is directly usable by dgsrs in implementing their designs.
The interface subsystem is not directly usable ésighers but instead provides support
functionality. This functionality includes both miwolling the TM-4 and providing a

communication channel with the development system.

External
Memory

Host Host Development User
Computer Interface FPGAs Peripherals

Interface Sub System Development Subsystem

Figure 13: Top Level System Diagram

Figure 13 shows the division between developmedtiaterface in slightly more
detail. The development subsystem is composedrojrammable logic, external
memory, and user peripherals that are all availédledesigners to use. The interface
subsystem consists of a host computer and a hestace.

Each of these five components, the programmalgie,lthe external memory, the
user peripherals, the host interface and the Th\b#roller will all be examined in the

following subsections.

3.3.2 FRROGRAMMABLE L OGIC

The programmable logic subsystem of the TM-4 imgased of two different
items: the FPGAs and the interconnection betweesmth The first two design
requirements, 1 and 2 identified in Section 3.8pkcified that the TM-4 should contain
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four of the largest FPGAs available, be fully ictmmnected using point-to-point
connections and provide as much bandwidth as pgessibhese requirements leave the
question of which FPGAs to select and exactly howadnnect them unanswered.

Each of the questions will be examined in the feiitg two subsections.

3.3.2.1 FPGA &LECTION

The selection of which FPGA to use for the TM-4swa choice between two
different companies flag ship products: Altera’'sax FPGA, and Xilinx’s Virtex Il Pro
FPGA. Each FPGA had their own benefits and disaidepes. For example, the Virtex
Il Pro had more multipliers and more flexibility the configurability of its 1/0 pins,
whereas the Stratix had hardware support for cetigpes of RAM and termination
schemes. In the end, neither FPGA was found tdzely better then the other and the
decision came down to the more practical consiaeradf availability. The largest
Altera Stratix chip was available, whereas it was clear if the Xilinx Virtex Il Pro
FPGA would be released in time, and as such, tl&iSwas chosen for the TM-4.

Each of the four Altera Stratix S80 chips seledmdthe TM-4 provide 79,040
four-input lookup tables, 7.4Mb of on-chip SRAM,GLémbedded 9x9 multipliers and
1203 1/0 pins. When combined the total usable ldgveent area of the TM-4 is
316,160 four-input LUTS, 29.6Mb of on-chip SRAM, dar704 embedded 9x9

multipliers.
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3.3.2.2 FPGA NTERCONNECT STRUCTURE

Development [142 SE| pevelopment

FPGA FPGA
64 SEX_ XB4 SE
04 SE L a0 Diff Y 40 Diff 94 SF

40 Diff

Development |[142 SE| pevelopment
FPGA FPGA

Figure 14: Development FPGA Interconnect Structure

The design requirements specified that the foweld@ment FPGA be fully
interconnected, with each other, and have as mieh-FPGA bandwidth as possible. In
order to meet these goals it was necessary to ndieeerthe number and type of
connections between each of the FPGAs.

The Stratix FPGA supports two types of signallstgndards, differential and
single ended. The differential standards use twesaand can provide a theoretical data
rate of 840Mbps, whereas the single ended standselsnly one wire but only provide
a data rate of 350Mbps. Of the two options, déftial signalling provides the greatest
throughput per pin.

The final decision of how many inter-FPGA signtdsuse and what standards
they should be were based on a combination ofistnatdware limitations and physical
circuit board issues. Since the Stratix architextsupports only a limited number of
differential signals it was necessary to use ohlmbfferential and signal ended signals.
Figure 14 illustrates how the four development FBG#e connected to each other and
how many signals of each standard are used (wHgE8 fefers to single ended and
“diff” refers to differential).

The differential signals are implemented usinggpaf LVDS signal lines, and the
SE, or single ended, signals are implemented uibgsr and 3.3v CMOS standards.
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The total available bandwidth between pairs of FBGAries between 56Gb/s and
66.5Gb/s. This variation is the result of certasymmetries in the Stratix architecture

and the relative positions of the four FPGAs.

3.3.3 EXTERNAL MEMORY SELECTION

The design requirements of the TM-4 specified thatTM-4 should have at least
4GB of memory and have as much memory bandwidthoasible, item 3 in Section
3.2.4. This requirement raises the questions @twype of memory technology to use,
how it should be connected to the development FR@#Ag exactly how much.

The selection of what memory technology to use wasen primarily by
practical considerations. The amount of memorywireq, 4GB or more, meant that it
was impractical to use SRAM, because of the nunilb@omponents it would require.
This meant that DRAM needed to be used, as it gesvimnuch greater memory capacity
for the same number of components then SRAM. @ugegn the memory requirement
suggested that it would be impractical to use digcmemory chips and that memory
modules needed to be used instead. There werg/pas of memory module technology
available at the time the TM-4 was being desigiddR SDRAM and RAMBUS. Both
technologies provided similar memory densities aavblvidths but DDR SDRAM could
be easier incorporated in the TM-4, due to thet&tsahardware support for this type of
RAM.

Once DDR SDRAM was decided upon there was s#llghestion of how many
memory modules to use and how to connect the menaotiie development FPGAs.
The answer to this question needed to balance npegifice with cost. The total amount
of memory bandwidth is proportional to the numbérnalependent memory modules
provided. However, each module comes at the dqsbwer, space, and expense. Since
the Stratix FPGA has hardware support for up to ®iBR SDRAM modules, the
question became one of either using 1 or 2 indegr@nN@AM banks per FPGA. Since
memory bandwidth was one of the driving goals ef TtM-4 it was decided to use two
DDR SDRAM modules per FPGA, for a total of 8 moduie total.
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The use of standard memory modules allows forTihe4 be populated with
various amounts of memory. Each module can belptgd with between 512MB and
2GB of ram running at upto 166MHz, the maximum #pt speed for the Stratix
FPGA. The standard configuration will contain 8BL@odules and provide a total peak
bandwidth of 17.8GB/s. In addition the TM-4 is deed to support future RAM
modules up to 4GB in size.

3.34 BER PERIPHERALS

The design requirements for the TM-4 identifiedlea applications as one
possible use for the TM-4, and as such, specifiedersl different peripheral
requirements, item 4 in Section 3.2.4. The reaquénets indicated that the TM-4 should
contain two NTSC analog video-in channels, one V@d#eo-out channel and two
independent IEEE-1394 buses.

Since the first two peripherals, analog video+wd aideo-out, were both present
on the TM-3, the same proven design was broughtaiat to the TM-4. The NTSC
video-in channels were implemented using two RIsilBAA7111 decoder chips, and the
VGA video-out channel was provided by an Analog iDes ADV7123 triple 10bit video
DAC.
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Figure 15: User Peripheral Connections

The IEEE-1394 bus is a new interface, which waspmesent on the TM-3. Its
implementation is also more complicated due to toenplicated communication
protocols that it uses. The TM-4 was designedniplement as much functionality in
hardware as possible, while still remaining flegibIThis included using a 2 chip IEEE-
1394 solution. These chips provide both the playsand link layers of the IEEE-1394
networking protocol. Users of the TM-4 must impé&rhthe remaining layers using the
development FPGA. This division, between hardwamaponents and logic within the
development FPGA, was selected to allow the us¢heofTM-4 sufficient flexibility to
control the bus how they see fit. This meant almwnthe user to fully control all
networking layers above the link layer.

Figure 15 shows how the different peripheralscanenected to the four FPGAs.
The top left FPGA handles all the analog videopd®rials, include 2 video-in channels
and one VGA out channel, the top right FPGA hanthestwo independent IEEE-1394
buses. The two remaining FPGA do not have angiaiieed peripherals but do have

I/O headers available for future expansion.
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3.3.5 THE HOSTTO FPGA COMMUNICATION CHANNEL

The design of the communication link between tlwest hcomputer and the
development FPGAs was driven by two design requerégs) the requirement for as
much bandwidth as possible, and the requiremeintttha easy for designers to use the
channel. The latter requirement was already solwethe design of the TM-3 by
providing a set of IP blocks, and software [40]mmg on the host computer, that abstract
away the complexities of communicating with a hesimputer. This left the first
requirement, maximizing bandwidth, as the focushefTM-4’s communication channel

design.

Software Host Bridge User Development
Computer Circuit FPGA
Host

Development
Bus

Computer
Bus

Figure 16: Simplified Host to FPGA Communication Chamel

The communication channel between the developmR&®As and the host
computer consists of a number of different comptserkigure 16 shows a simplified
view of the communication channel. For communaratrom the host computer to the
development FPGASs there are several steps. Fpgca of software must request that
data be transferred to the development FPGAs. ddtis must then be transmitted from
the host computer to a bridge within the TM-4 itsélThis bridge must then pass the data
onto the development FPGAs and ultimately to theudi running within it. Transfers in
the other direction must take the same steps,inmiverse.

The communication channel consists of four majomgonents: the physical
hardware links between the host computer, the brafgp, and the development FPGAS,
the IP core which implements the bridge, the IPesorunning on the development
FPGAs and the software running on the host compuiarch of these components will

be examined in the following sections.
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3.3.5.1 RYsiCAL HARDWARE COMMUNICATION LINKS

The host communication channel contains two plydwrdware links, the link
between the host computer and the bridge chiptlandink between the bridge chip and
the development FPGAs. Each of these links wasgaed to meet the design
requirement of having as much host computer barttiveid feasible.

The first link, between the host computer and lhhdge chip, needed to use a
standard interface that was available in commoddynputers. The links considered
were links such as Firewire [41], USB [42], gigaBithernet [43], and PCI [15]. The
selected link, was the link that provided the geeatbandwidth, PCI. In particular
66Mhz 64bit PCI was selected. This link providesheoretical peak bandwidth of
528MB/s.

The second link, between the bridge chip and theeldpment FPGAS, need not
have been a standard interface and was customneésigThe link selected was a bus
consisting of 32 data bits that could run at a data up to a 100Mhz. The result was a
communication link that could sustain transfersnefrly 400MB/s. The reasoning
behind the bus width and speed were that the bededeto be easily combinable into
64bit PCl words, by combining two 32-bit words, atight the bus should still run
synchronously, by keeping the clock below 100MHhe resulting 400MB/s bandwidth
was not expected to be a bottleneck to system qeaiace due to the fact that the PCI

bus’s overhead prevents it from reaching its thiggakepeak bandwidth.

3.35.2 HOST TO DEVELOPMENT BRIDGE

The connection between the host computer's PCl dnus the development
FPGAs communication bus is bridged through theodisa Interface FPGA. This FPGA
contains a custom design logic core that perfolmstitanslation between the two buses.
Figure 17 shows a block level diagram of the tdkks are performed. The PCI interface
is implemented using an Altera PCI IP core [44]hisTcore interfaces with two FIFO
buffers, a read and a write buffer. These FIFOfdosfallow for clock domain
translation, between the PCI buses 66Mhz clock #mel development FPGAs
programmable clock, and buffer data for more edfitiburst transfers. The two buffers
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are also connected to the development FPGA interfaccuit. This simple circuit
decodes requests sent by the host computer and auioatas with whichever of the four

development FPGAs is required.

- PCI Target
To S o Controller
< o . -
Host EG | ReadFIFO | o
Computer QL |
-l 22 |:| |:| |:| |:| |:||:| Development
pcl | g2 I | Development EPGAS
66 Mhz o Wiite FIFO_ FPGA Bus S
64 Bit 301 e : ﬁ Interface 100 Mhz
o 0O 1 .
£ \pooonn

PCI Clock Domain Development Clock Domain

Figure 17: Host Communication Channel Bridge Funcions

The complete VHDL code for the Interface FPGA barfound in Appendix O.

3.3.5.3 FARAMETERIZABLE BUSINTERFACE LOGIC CORES

The physical communication link between the FPGW #he interface bridge
incorporates a custom design bus protocol. Inraadéide the complexity of interfacing
with this bus, a set of parameterizable logic conese created. These modules
encapsulate all the functionality required to ifaee with the bus while presenting a
simple handshaking based interface to the useaeddsof dealing with multi-cycle bus
transactions the user only needs to interface avsimple three-wire handshake interface

of one of the parameterizable cores.

3.354 HOST SOFTWARE

The last component of the host communication cbkisnthe software that runs

on the host computer. This software provides fonedahod for communication with the
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TM-4 hardware. The functionality is divided intawd components. There is a kernel-
mode Linux device driver, which handles the detaiilsetting up and sending raw data to
the TM-4, and there is a library API that provideseasy way to communicate with the
parameterizable bus interface logic cores runnimghe development FPGA.

The kernel mode driver is implemented as a charafgvice that accepts read and
write requests. These requests are directly atawslin PClI DMA transfers between the
host computer and the FIFO buffers in the TM-4teiiface chip. It is the responsibility
of the library API to send the correctly formatuata to the device driver.

The library API takes a description of developmiaud logic cores that reside in a
design and provide a simple interface for commum@oawith them. For example,
transferring data from the host computer to thepnmandshaking logic core, is as easy
as issuing a single write call to the API. Likesvisalls exist for reads and for error
detection.

3.3.55 THE COMPLETE HOST To FPGA Bus

Figure 18 provides an overview of the componemist tcomprise the host
computer to development FPGA communication bus. tl@nleft of the figure is the
development FPGAs. These FPGAs contain the useuitsi and a library interface
component. The library component implements treesgary protocols to communicate
across the 32-bit development bus to the bridghimvihe Interface FPGA. This bridge
buffers the data using FIFOs, performs the necgssack domain translations, and
transfers data between the FIFOs and the host dempuer a 66MHz 64bit PCI bus.
The host computer’s kernel driver interfaces wite PCI bus and provides the data to a
user's C program. This program incorporates aerfate API that provides an easy
abstract interface for communication with the Iigranterface component on the
development FPGA.

The only steps of this process that a user ofTike4 must understand are the
interface to the parameterizable bus interfaceclogres, and the interface API. All the
rest is hidden away.
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Figure 18: Development Communication Bus

3.3.6 TM-4 CONTROLLER

In order for the TM-4 to function there are a nembf different basics functions
that must be performed. These include things sisclprogramming the development
FPGAs, configuring the clocks, monitoring the FP@#nperatures, and several others.
This functionality is provided by the same intefaEPGA that provides the bridge
functionality of the host to development FPGA comination bus.

The following sections will describe how these impat functions are performed
by the interface FPGA and will be followed by a qiete system diagram of how the
interface FPGA is connected to each of these fonsti

3.3.6.1 [FVELOPMENT FPGA CONFIGURATION

One of the secondary goals of the TM-4 is to haveonfigurable as fast as
possible. To achieve this the TM-4 was designadtitize the fastest configuration mode
available in the Stratix FPGA, the fast passivefi@r or FPP mode. In this mode each
FPGA can be provided 8 configuration bits at a maxn rate of 100Mhz. In addition to
this, each of the four FPGAs can be configured amalel to further reduce the
configuration time.
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A secondary method to configure the development A through a JTAG
chain. This chain can provide one bit of configiara to one FPGA, per clock cycle and
acts as a backup in case a design error preveatasd of FPP mode. Using JTAG,

configuration of the TM-4 requires tens of seconds.

3.3.6.2 TEMPERATURE MONITORS

A useful function for the TM-4 to have is the @Yilto detect a potentially
dangerous overheat situation, caused by a flaw useas design, and to safely stop
operation. This can be accomplished through tleeadsach of the five FPGAs in the
TM-4 internal temperature diode. These probescaremected to the interface FPGA
using two temperatures probe chips from Maxim. Thes consist of a 4 channel
MAX1668 temperature monitor chip, and a MAX1618g#nchannel monitor chip. The
interface FPGA monitors both of these chips andmaatically shutdown any chip whose
temperature exceeds a safe threshold.

3.3.6.3 THE CLOCKING SUBSYSTEM

Incorporating all the different components necasstb meet the design
requirements introduced the need for a large nurobetifferent clocks. Each of the
DDR SDRAM banks, and each of the peripherals ajuire their own clocks. In
addition the PCI bus required a clock, as did theeb between the four development
FPGAs and the bridge within the interface FPGA. atidition to just providing these
clocks, there was also a need to provide a way @dopn globally synchronous
transactions between various components of the TM-4

The clocking architecture for the TM-4 was seldcte be as easy-to-use as
possible, while not adversely affecting the otherecgoals. This meant that globally
synchronous clocking would be used whenever passdoid that peripheral clocking
would be handled completely by the user of the TM-4
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Figure 19: Development FPGA Clocking Structure

Figure 19 shows the clocking architecture that wefected and how it is
connected to a development FPGA. There are twepmadent board wide synchronous
clocks called DEVCLK and GLBCLK. Since the StraiRGA has multiple PLLs, each
that require an external clock input, each globatlcis connected several times to the
same FPGA. Both these global clocks are drivea psogrammable PLL in the interface
FPGA. These PLLs can generate any frequency bativeed 100MHz.

The development FPGAs are also each connectednt@0dHz low-jitter
reference clock. The purpose of this clock is tovge a low jitter reference clock for
use in high-speed serial LVDS communication. Thkierence can be used to generate
precision source-synchronous clocks for use initker-FPGA LVDS communication
channels. Each development FPGA has three sudksglmne from each of the
remaining FPGAs, driving on chip PLLs.

Each of the development FPGAs is also connectetivtoindependent DDR
SDRAM modules. The module requires three clockshe#&o be generated by the
development FPGA. These clocks act as a souraghsymous clock for transmitting
data and commands to the modules. The developnGAE are also connected to
various peripherals that require clocking. Thesels are typically fairly slow and are
generated by the development FPGAs internal PLLs.

The interface FPGA clocking structure is simpleart that of the development
FPGAs. Since its primary function is to act agiddge between the PCI bus, with a fixed

46



66Mhz clock, and the development FPGA’s programmalidsck domain, DEVCLK, it

only needs to be connected to those two clocks.

3.3.6.4 NTERFACE FPGA BLOCK DIAGRAM

The interface FPGA is responsible for communicatwith the development
FPGAs, configuring the development FPGAS, genggatime programmable clocks,
accessing the JTAG chain of the development FP@Ad, performing clock domain
translation, all under the control of the host ldoeomputer. Figure 20 shows a block
diagram of the logic contained in the house keeginigp and Appendix O contains the

VHDL code that implements it.
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PCl Target
Controller PLL PLL
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Controller FPGA
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Control |,/ — L
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D D D D DD Interface
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D D D D D: > Conlf:igli':tion

Altera's Master/Target PCI IP Logic Core

PCI Clock Domain ' Development Clock Domain

Figure 20: Housekeeping Chip Logic Core

The entire FPGA logic core is built around an Adtenaster/target 66Mhz/64bit
PCI IP core. This core provides a simplified ifdee to the PCI bus. Access to the
housekeeping chip is provided through two PCI mgmegions. The first region allows
access to a set of control registers. These eegisbntrol various aspects of the TM-4

such as the programmable clock frequencies antethgerature monitors.
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The second memory region provides access to tWO$;Ithe read FIFO and the
write FIFO used to bridge the PCI bus to the dgwmlent bus. The FIFOs are
implemented using a dual ported ram with independiecks on each port.

The two FIFOs provide data communication betweitihee the development
FPGA bus interface or the development FPGA conéiion logic. The development bus
interface is a small state machine that transmittsewlata and read requests to the
corresponding bus interfaces on the developmentAsPaBid returns any read results to
the read FIFO. The VHDL code for the developmePGRA side bus interfaces can be
found in Appendix A.

The development FPGA configuration unit contaihe fogic necessary to
program the development FPGAs using the FPP mdde unit is designed to run at
100Mhz, the maximum rate at which Stratix FPGAs loarconfigured.

3.3.7 THE POWER SUBSYSTEM

The design of the TM-4 calls for a large numbediffierent components to be
integrated together. Each of these components th@ve own power requirements. In
total there is a need for 1.25v, 1.5v, 2.5v, 38wand 12v power supplies. The 1.25v
supply is used for transmission line terminatiorthe DDR SDRAM subsystem. The
1.5v supply provides the core power to the FPGAs,2.5v and 3.3v supplies are used
for inter-chip signalling and the 12v supply is dider powering the Firewire bus.

The design selected for the TM-4 consisted of aye@rs of power conversion.
The first layer is a standard ATX power supply. isTeupply is capable of providing
3.3v, 5v and 12v power. The second layer of pave@wersion consists of on-board DC-
DC converter to generate the 1.5v and 2.5v supphes8 linear converters for the 1.25v
termination voltage, one for each DDR SDRAM moduleThis style of power
distribution system was selected as it met the ;ieéthe TM-4 while still using low cost

standard parts.

34 HARDWARE DESIGN VALIDATION

The TM-4’s design is very large and very compkchtthere are 17,279 pins and
4,238 different nets. It was quite likely that rdnevould be some number of mistakes
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made in the design process and a great deal of wiasespent attempting to validate
portions of the design. The process used to \alitlkee hardware design was fairly
simple. It consisted of first identifying possibdéeurces of errors and then applying
various checks to try and verify that these soudigsot produce actual errors.
The identified potential sources of design erreravas follows:
1. Electrical functionality errors
a. Mistake in the schematic
b. Designer misunderstanding of devices functibyali
2. Incorrect component database information
a. Component value (i.e. resistance capacitance)
b. Schematic pin to physical package pin mapping
c. Physical component shape for circuit board magnt
Schematic or component revision mismatch
4. Exceeding passive components voltage or poviegs
Signal integrity problems

a. Termination topology

The validation process of the TM-4 design flow sisted of two types of
validation methods. The first set of validationthmels tries to find mistakes arising from
errors in entering the schematic data into thegtesoftware, this method will be called
data entry validation. This type of validation nedhattempts to find errors generated by
sources 1a, 2, and 3 in the list above. The sesendf validation methods tried to find
errors in the actual design itself by verifing tkfa circuits are functionally correct. This
method will be called functional validation. Fuinctal validation attempts to find errors
generated by sources 1b and 5. Each of these ®thons will be described in the

following two subsections and example of how theyevapplied will be presented.

34.1 [A\TA ENTRY VALIDATION

In a design as large as the TM-4, the probalilitiiaving a piece of information
incorrectly entered into a software design toajuge large. These types of errors might
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be as simple as a typographical error in a partbaunor an unintentional short in a
schematic diagram. In both cases the design ehtet@ the software tools is not as the
designer intended. The method employed to trycaidh these types of errors was to
check the entered designs against a set of vaidatiles in a process known as design
rule checking, or a DRC test. In total three déf& types of DRC tests were performed.

The first types of DRC tests were those that #sgh entry tool, Mentor’s Board
Station Software, contained. These tests weregguedito detect common schematic
errors. For example, one test would verify thagrg\pin in the design is connected to
another pin. If a given pin in the design were ni¢a be floating, it would need to be
explicitly defined as such. Another type of DR&3ttwas designed to find different
types of shorts between nets, for example betwegrepnets, or explicitly named nets.
Over all, Board Station’s DRC tests were very gabdinding errors without actually
having any direct knowledge of what the designet indended. In order to find cases
where the designer had entered erroneous data auwtorrect format, custom DRC tests
had to be designed.

The second type of DRC tests, custom DRC testeyporated more information
than just the entered design. For example theseeanaustom DRC test designed, using
the scripting language within Board Station, thartiied that the pin mappings for large
components was correct. The component at greas&sfor a mapping error was the
large 1508 pin FPGAs. To ensure that this componas correctly mapped, a script
was written to compare the mapping described im#tdist, to a pin out file provided by
the device’s manufacturer.

The remaining possible schematic entry errorsh ag value mismatches and
package mismatches, could not be validated usingudomated script. Instead these
possible errors were check by hand using validatbacklists. These check lists
contained a number of possible errors that eactpooamt in the designed needed to be
verified against.

The data validation phase successfully detectedraer of different errors.
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3.4.2 RUNCTIONAL VALIDATION

The process of functional validation was much ndifécult to perform than the
simple schematic entry checks. The typical way erfifying electrical functionality is
through simulation. In order to simulate a circe&ch component in the system must
have a functional model. Unfortunately, this was the case for many devices in the
TM-4.

The primary problem with simulating the TM-4 isathby itself, the TM-4 does
not do very much. Most of the complex subsystesush as DDR SDRAM and IEEE-
1394, are connected to the four main developmei@As? In order to simulate the
functionality of either the DDR SDRAM or the IEEEB94 bus, it would be necessary to
simulate the functionality of a circuit running tine FPGA. This is not feasible, as any
test circuit would also need to be verified to bectional, only further complicating the
iIssue.

The approach that was taken to verify the TM-£teileally was two-pronged.
First, subsystems for which models existed wereulsitad and second, subsystems
without models were carefully scrutinized by hand-or both cases the physical
interconnect topology was simulated to verify thegnal integrity.

The only subsystem that was simulated was the pow@version system. This
system is particularly prone to error as it is pritgaanalog in nature. It was possible
that the system might be unstable, or otherwisesaiple. In order to validate
functionality a spice model was created for the DC-controller and this model was
tested under expected operating conditions. ApgefRdontains the spice models used

in simulation.
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TM-4: 1.5v DC-DC Converter (15-25-15 Amp Step)
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Figure 21: 1.5v DC-DC Converter Simulation

Figure 21 shows the result of one simulation tésthe 1.5v DC-DC converter
subsystem of the TM-4. The graph shows the outplibge of the DC-DC convertor
while simulating several events. The first eventpower-up under a load current of
15Amps. Under these conditions the DC-DC convemtaches a stable voltage after
130uSec. The next event, shown on the graphloadacurrent step from 15 to 25 amps.
This step was modelled by changing the load rewstdrom 0.1ohm to 0.06ohm. The
result was a slight voltage drop with no ringingatner problems. Similarly, the step

from 25 back down to 15 amps shows an equally gesdilt.
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3.5 SUMMARY

This chapter presented the first three stepseofifsign processed used to create
the TM-4. These steps consisted of requirememttifttation, schematic design of the
circuitry and verification of the schematic. Thequirements were first presented as
directed by past experience and anticipated futeezls. These requirements were then
used to motivate the presented design. This chaptecluded with a brief discussion
about the verification techniques used to validaéeschematic.

The next chapter will look at the final step i ttlesign process of the TM-4, the
design of the printed circuit board.
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4 CIRCUIT BOARD DESIGN

4.1 INTRODUCTION

Once the schematic design and all the validateststhad been completed, the
next step in the design process of the TM-4 wategign the printed circuit board (PCB).
The PCB design process involved the following stefpisst, a stack up, or description of
the different layer thicknesses of the PCB, wasnddf Next, the various components
that made up the TM-4 were placed on the circu@rdo An iterative routing process
then wired the components up to each other antlyfitbe signal integrity was simulated
for all high-speed nets to insure that both timingd alectrical requirements were met.

Each of these steps will be described in the ¥atlg subsections. The final PCB
layout can be found in Appendix A.

4.2 PCB SACK UP
Signal 1
FR-4 Core
Gnd
Prepeg
Signal 2
FR-4 Core
Signal 3 | E—
Prepeg
VCC
Signal 4 FR-4 Core
S

Figure 22: Sample PCB Stack Up

The term PCB stack up refers to a descriptiomefdifferent layers that make up
a circuit board and must be defined before anytmhail PCB design can be completed.
To help understand what a PCB stack up is, considgpmre 22. The figure shows the

cross section of a simple 6-layer board. Eachadribe grey boxes represents a layer of
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copper in the PCB, and the white boxes representirisulator that keeps the copper
layers apart. Each of the 6 layers is assigngxkaific purpose. The four layers marked
as “signal” are used for inter-chip connectionshe Dther two layers, “gnd” and “vcc”,
perform a dual purpose. The first purpose is tovile power to the components on the
board and the second is to shield layers from edatly coupling to each other.

The design of such a PCB stack up must take a euwibconsiderations into
account. These considerations include electrgsalds, such as electrical impedance of
traces, power handling, inter-layer coupling aneriplane capacitance of power planes,
as well as physical construction issues, such asdbwarpage, and minimum feature

size. Each of these considerations is discusdewvbe

4.2.1 PCB SAcK Up PHYSICAL CONSIDERATIONS

The design of a PCB stack up is restricted byrabar of physical requirements.
In order to manufacture a PCB reliably, these mesoénts must be obeyed. The
simplest requirements are related to minimum feasimes. For example, there is a limit
on how small a copper wire, or track, can be cceare how far from another track it
can be placed. The exact values of these limitatoa related to cost. A typical volume
PCB process can easily handle wires as small alswith a separation of only 5 mils
from other wires. A more expensive PCB procesddcgenerate wires even smaller,
down to only 3 mils width, with 3 mils separatiolm order to limit the cost of the TM-4,
wire size and spacing were both limited to 5 mils.

Another requirement that a PCB stack up designtmeet is one of layer
symmetry. Basically, the stack up of a PCB can lmught of as a heterogeneous
material in which each layer has a different ceedfit of thermal expansion. A solid
copper plane layer will have a much different exgi@m coefficient than a signal layer,
which is made up of both copper and dielectric niter If the plane layers of the PCB
are not designed symmetrically then the differeqgamsion coefficients can cause the

PCB to warp.
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4.2.2 PCB SACK UPELECTRICAL CONSIDERATIONS

A design of a PCB must meet a number of differdattrical requirements in
order to be functional. The design must providees that have the proper impedance,
which is important in high-speed signalling, beidesd to limit the amount of inter-layer
coupling, or cross-talk, and provide the necesgaswer distribution functionality,
including current handling, and high-frequency desimg.

The variables that can be changed in a PCB stpattesign are the inter-layer
separation, the size, or width, of wires in a laybe thickness of copper in a layer, the
dielectric material and the types of copper layeither signal or plane layers. The first
step in actually designing a stack up is to detezntire number of layers and decide
which layers are plane layers and which are si@yars. In the case of the TM-4, there
were 16 layers total, with 10 signal layers anda&he layers. The layers are ordered in
such a way that the power planes can provide dalksshielding between different
signal layers.

Once the layer ordering was determined, the ne was to specify the layer
spacing and nominal trace widths, such that theecbrtrace impedance results were
obtained and the traces were as tightly couplea goound plane as possible. The layer
separation of the TM-4 was first selected by usimgclosed form relationships between
the various parameters described in [45]. The teusprovided a general idea of how
thick the PCB would be, for a given trace size, altmlved the parameters to be adjusted.
Once an acceptable solution was found, the PCE stpanformation was sent to the
PCB manufacturer. The manufacturer then used kim@wledge of their manufacturing
process and a 3D field solver to further refinestaek up. Figure 23 shows a description

of the TM-4's stack up returned by the PCB fabiamatouse.
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Figure 23: The TM-4's PCB Stack Up

4.3 PCB GOMPONENT PLACEMENT

The goal of the PCB component placement step efTtkl-4’'s PCB design
process was to assign a physical location to esemgponent that made up the TM-4.
The components needed to be located either oph@t on the bottom, of the PCB with
a given orientation, such that the amount of rautimecessary to inter-connect
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components could be minimized. In addition to,ttie design requirements, discussed
in Section 3.2.4, specified that the TM-4 mustiriio a standard computer case. This
constraint introduced both a size limitation on #€B and restricted where certain
components could be placed.

Placement was also constrained by electrical reménts. Certain components,
such as bypass capacitors and termination resistadso be located in specific locations
for electrical reasons. The entire placement si@pperformed by hand.

Figure 24 shows a floor plan diagram of the PEGRyure 25 shows the placement
of those components located on the top of the P@BRigure 26 shows the placement of

those components located on the bottom of the REBiewed from the top.
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Figure 24: PCB Floor Plan
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Figure 26: PCB Component Placement Bottom

4.4 PCB ROUTING

The purpose of the PCB routing stage of the TMRIZB design process was to
design the physical copper layout needed to contiectdifferent components. The
routing process consisted of four different staipas were iteratively applied. The first
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stage consisted of hand routing a breakout pafterrevery component. The second
stage performed equivalent pin swapping in ordereliminate unnecessary signal
crossing. The next stage used both auto and hanting to interconnect the
component’s breakout patterns and the final stag®pned signal integrity simulations
to insure electrical correctness. These stages wath iteratively applied, as the results
from later stages revealed better solutions toezastages.

Each of these four stages, and the coupling betwesam, will be examined in the

following sections.

4.4.1 BREAKOUT PATTERN CREATION

Many components used in the TM-4 utilize surfaceunt technology. That
means that the component only connects to thertdottom layer of the board and does
not have any direct connection to the internal dayeA breakout refers to a routing
pattern that defines how each surface mount commpaseconnected to internal board
layers.

Figure 27: Stratix FPGA Landing Pattern

To better understand this, consider Figure 27.is Tigure shows the PCB
“landing pattern” for the 1508 pin Stratix FPGAsedsin the TM-4. Each circle
represents a copper pad on the PCB for which afpihe FPGA will be soldered. The
pads are spaced on approximately 40-mil centresuisnd8 mils in diameter. This leaves
only 22 mils of space between adjacent pads. §pase is only large enough for one 5-

mil trace to pass through, while maintaining a muam clearance of 5 mils. In order for
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each pad to be able to escape, or breakout ofrthg af pads, it is necessary to use a
multiple layer breakout pattern.

The first step in designing a breakout patteto isrovide a connection from each
surface pad to the internal layers of the PCB.sT$iaccomplished using what is called a
“via”. A via is a copper plated hole in the PCBatitprovides a connection between
layers. Once the pads have been connected tatdreal layers, the signals can then be

routed out of the array.
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Figure 28: Stratix FPGA Partial Breakout Pattern

Figure 28 illustrates how multiple layers can lsedito allow signals to escape
the array. The figure shows two layers of the koe& for the 1508pin Stratix FPGA.
The left image is that of the top layer. The twas of pins on the top and left can be
directly routed out of the array without violatingy spacing requirements. However, the
traces used to break these pads out now bloclehef the pads. These pads are instead
connected to internal layers using vias, represoyehe larger circles in the figure.

The figure on the right shows an internal layethaf breakout pattern. The pads
are no longer visible, as they are only on theam#f Instead, only the circular vias are
seen. This layer is not blocked by the escapiggads on the top layer and consequently,
is used to break several more signals out. Inl,t@taadditional layers are used to
completely breakout all 1508 pins of the StratdGAR
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4.4.2 EQUIVALENT PIN SWAPPING

Equivalent pin swapping is the process of moddym design's net list, by
swapping equivalent pins, in order to minimize thember of unnecessary signal
crossings in the routing stage. To understand thig/can be safely done consider a
simple AND gate. Both of the inputs of an AND gate functionally equivalent. If the
input connections are swapped with each otherfuhetion of the AND gate will be
unchanged. The equivalency is even more prevaldfPGAsS, as almost any pin can be
exchanged by only changing the circuit running with

Having this amount of flexibility in pin selecticallows for pins to be connected
in ways that simplifies the PCB routing. To betimderstand this, consider Figure 29.
Figure 29 shows a bus between two FPGAs. It caridagly seen that the wires running
between each other are straight and therefore toe®nl to cross over each other. This
was accomplished by careful pin swapping, such ttiatwo FPGAs breakout patterns
would breakout connecting signals to the same Jayehe proper order.
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Figure 29: Pin Swapping Example
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Accomplishing this was very time consuming duehe toupled nature of the
problem. Both pin swapping and changes to thekiorggpattern were performed so that
the inter-FPGA connections would line up correctly.

4.5 PCB ROUTING

The next stage of routing the PCB was the boaddwouting stage. This stage
involved the physical routing of all the connectdretween the broken out components.
A combination of hand routing and computer-driveitoarouting was used to accomplish
this, with the emphasis on hand routing.

The routing process employed two different autatecs, both the Board Station
RE [46] and ICX’s auto router. Neither router wddeato handle traces that travel in
arbitrary directions particularly well, which le@ difficulties in completing routing.
Both pieces of software used the common approactowing signals using pairs of
layers. The first layer would allow horizontal e&etions, while the second layer would
provide vertical connections. If a signal neetledravel diagonally it would do so by
first travelling horizontally and then transferring the other layer, using a via, and
finally, travelling vertically. This approach sitifies the search space for the auto
router, but comes at the cost of a large numbeiast

The size constraints placed on the TM-4's PCB m#at it could not be routed
using this layer pair approach, due to the numiberas it would require. Since each via
is a hole that passes through a number of diffdesmrs of the PCB, each via prevents
routing on all the layers it passed through. Thsege locations on the TM-4's PCB
where the number of vias necessary to route usdig pvould not have not fit in the
space provided, while still allowing for routingarm on internal layers.

The approach that was used to route the boardavesme up with a high level
floor plan of the desired PCB. This floor plan sisted of a description of what layers
and regions of the circuit board certain signatsusdhtraverse. These regions were then
individually routed by an auto router, when possilsind by hand, when not.

In total, the routing stage of the TM-4 took beéwel and 6 months.
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4.6 PCB SGNAL INTEGRITY SIMULATION

The circuit board is responsible for providing mdinan just connectivity between
components; it must also meet certain timing agehali integrity requirements. Both
timing issues, such as trace delay and skew, asasedignal integrity issues, such as
crosstalk and termination, were considered wheigdeg the circuit board for the TM-
4. The way that these requirements were verifiad thirough simulation.

The PCB simulation process used a combinationBd$ Idevice models and
Mentor’s ICX tool to model and simulate PCB intamoects. The ICX tool allowed
different signal integrity parameters, such as srtak, overshoot, ringing, etc., and
timing parameters, both minimum and maximum, todréied.

To better describe the simulation procedure usdtld TM-4, the DDR SDRAM
subsystem will be used as a case study. The foitptihree sections will examine the
process used to design the DDR SDRAM portion of R&B. The first section will
examine how the design of the DDR SDRAM sectionhef PCB was driven by timing
requirements. This will be followed by a descoptiof the timing simulation used in
designing the PCB to meet these requirements. [d3tesection will examine signal
integrity simulations that were used to verify tB®OR SDRAM signal integrity

requirements

46.1 DDR SDRAM TIMING -DRIVEN DESIGN

The DDR SDRAM standard uses a source-synchronlmgkicg scheme. This
scheme depends on the skew between signals andchsis dependent on both the
minimum and maximum timing of a path. In order the memory to work correctly, it
was necessary to insure that all 72 data bits addt® strobe signal lines had as little
skew as possible. This requirement translated timtorestriction that the delay of each
signal line needed to be closely matched.

The method used to achieve the goal of limitingaskeas to iteratively perform
timing simulations, to determine trace delays, andse the result to change the lengths
of the traces to more closely match. After a langenber of iterations, the routing
pattern shown in Figure 30 resulted.
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Figure 30: DDR Serpentine Delay Pattern

The component in the bottom left of the figureoize of the four development
FPGAs. The two components at the top are the DDRAM modules and the smaller
components around the DDR SDRAM are terminatiorst&s. The trace pattern shown
has been tuned such that the delay along eachisréightly matched. This tuning took
the form of the serpentine patterns in which thedrbacktracks to increase its length.

46.2 DDR SDRAM TIMING SIMULATION

The process of routing the DDR SDRAM signal trackescribed in the previous
section, required extensive use of delay simulatiohhe goal of the simulations was to
determine the propagation delay from a pin on tR&k to a pin on the DDR SDRAM
for a given trace configuration. The informatiovagable for use in simulations was
IBIS models of the FPGA and DDR SDRAM drivers ahd trace configuration itself.

These two pieces of information were applied tarang simulation tool called
Mentor Graphics’ ICX [46]. This tool had the atylto extract transmission line models
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from the specified trace configuration and perfaimulations using the IBIS models.

The result of the timing simulation was a minimund amaximum delay number.

2.6

Vi

2.4—

FPGA Pin
22 (Test Load)

FPGA Pin
20—

,,,,,,,

1.8—

)

DDR SDRAM

1.6— Pin

Max Délay

T Min Delay ——

Voltage (V)

-0.2

e r-r=r~rr-r-r-r-r=r-r-r-rtrrrt
04n 06n 08n 1.0n 12n 14n 16n 18n 20n 22n 24n 26n 28n 30n 32n 34n 36n 38
Time (s)

Figure 31: Sample DDR SDRAM Delay Simulation

Figure 31 shows an annotated result of a delaylatmon for a DDR SDRAM
trace. The graph plots the voltages at varioustpalong the trace versus time. The
horizontal lines in the graph represent threshefucific to the signalling standard used
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by the traces. In particular,Wand \,, are the receiver’s voltage input thresholds for
both low and high values. The three voltage cldalitees represent the voltages at three
different points. The first line, labelled FPGAdtest load), shows the voltage response
of the driver IBIS model when connected to a stashdest load. The next line, labelled
FPGA pin (trace load), shows the voltage resporfséhe driver IBIS model when
connected to the extracted transmission line. firfaa line, labelled DDR SDRAM pin,
shows the voltage response where the transmise®mieets the DDR SDRAM pin.

The minimum delay is calculated from this graphnibgasuring the time between
when the test load graph crosses th.Mhreshold, set at 50% of the voltage swing,
until the DDR SDRAM pin crosses the,Mhreshold. Similarly, the maximum delay is
calculated by measuring the time between the temi Myeas Crossing and the DDR
SDRAM pin Vin, threshold crossing.

The same process is also repeated for a falligg é&chnsition to obtain the true

maximum and minimum delays.

4.6.3 DDR SDRAM SGNAL INTEGRITY SIMULATION

Signal integrity issues affect the functionalityaocircuit by a number of different
means. First, an improperly terminated transmms8iee can cause unwanted reflections,
ringing, undershot and overshoot, which can coraugignal. Secondly, cross talk can, at
worst, cause unwanted edges to be coupled int& sigoals, or at best, change the delay
along a trace. In order to insure that none o$ehproblems were introduced in the
design of the TM-4, three different simulation tgpgere used. The first type verified
that the transmission lines were properly termittat€éhe next type verified that coupling
would not cause unwanted edges in clock signalgtanénal type verified that the affect
of cross talk induced timing variations were withicceptable limits.

Verification of signal termination was accomplighéhrough the use of the
transmission line simulation functionality of MentGraphics’ ICX [46] tool. This tool
combined IBIS models, extracted transmission liredadand termination resistor
information together to perform a complete eleafrisimulation. The simulation

generated a voltage versus time curve for the bighathe receiving end of the
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transmission line and also automatically calculatexirise and fall times, the over and
undershoot and a measurement of ringing. Thesameders allowed for the verification
of proper termination.

The second type of simulation that was performed e verify that cross talk did
not induce unwanted edges in edge sensitive sigaatee again, Mentor’s ICX tool was
used. The ICX tool has a function that allows dedgdransmission line models to be
extracted from a PCB layout. These coupled modedsthen combined with IBIS
models and are used to determine the maximum \ettaaf is coupled into a trace. The
method ICX uses to calculate cross talk for a gimet) or target net, is to consider the
group of nets that are coupled to the target radked aggressor nets. ICX performs a
time domain simulation where the aggressor netab®vitching at the same time and
the resulting voltage change on the target nebserved. The resulting induced voltage
value can then be checked against a noise margitihdotrace to ensure that unwanted
edges are not a problem.

The third type of simulation performed to veriletDDR SDRAM design was a
coupled delay simulation. Cross talk from neighiomy traces affects the delay on a
target trace because it induces additional voliaggethe trace. The resulting voltage at
the receiver pin is a superposition of the indueeliage and the voltage wave from the
transmitter. If the two voltages are in phasenttiey reinforce each other and cause the
resulting edge to be faster, thereby reducing ithe hecessary for the voltage to cross
the switching threshold of the receiver, which m@shithe trace’s propagation delays.
Similarly, if the two voltages are out of phasenthiey will destructively interfere with
each other. This results in a slower edge andheneased propagation delay. Mentor’s
ICX tools provided a simulation mode that combirgetiming simulation with a cross

talk simulation. The results were a minimum ancimam delay number for each trace.
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Figure 32: Sample Coupled Propagation Delay Simulain

Figure 32 shows a sample simulation result thagtilates the effect that coupling
has on delay. The graph plots voltage versus tanéhe signal received at the end of a
transmission line. The left most line shows theulie of an uncoupled simulation,
whereas the right most line shows the result ofoapted simulation, in which the
neighbouring traces are switching in the same dimec The exploded view, of the
portion of the graph where the waveforms crosssthieching threshold of the receiver,
clearly illustrates the effect of coupling. Theupted trace crosses into the switching
threshold sooner then the uncoupled trace, by 20Tgss results in the total time the
signal remains in the switching region to increisen 97 ps, when only the uncoupled
simulation is considered, and to 117 ps, when bothpled and uncoupled are

considered. This results in a change of 20%.
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When similar coupled delay simulations were pernon the TM-4's critical
nets, it was found that the amount of induced uag#y, usually in the range of 20-40

ps, was not sufficient to harm functionality.

4.7 SUMMARY

This chapter presented the final step of the THdEsign process, the design of
the printed circuit board. Each of the differemtapes of PCB design was discussed,
including the stack up design, the component placenthe trace routing, and the signal
integrity and timing validation. A case study ¢ietdesign and simulation process
involved in implementing the DDR SDRAM subsystentlof TM-4 was also presented.

The next chapter will examine the performancerofetual assembled prototype
of the TM-4.
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5 RESULTS

5.1 INTRODUCTION

The TM-4 was designed with the goals of havingragh memory depth and
bandwidth, inter-FPGA bandwidth and host-to-FPGAdwidth as possible. This
Chapter will describe how well the TM-4 system msesdich of these goals and examine
what factors affected the achieved system perfocenarith respect to each goal.

Each of the major goals, memory performance, 4{REBGA performance, and
host-to-FPGA performance, will be discussed inftilewing three sections.

5.2 MEMORY

There were two primary goals of the TM-4 in regard memory. First, that the
TM-4 must contain at least 4GB of memory and sectivat the memory must provide as
much bandwidth as feasible. The approach takenetet this goal in the design of the
TM-4 was to provide 8 independent 72bit DDR SDRAMdules. This allowed for the
goal of memory capacity to easily be reached andiged a large amount of memory
bandwidth.

Individual . Total
Module Price Board To_tal
) Each Price
Capacity Memory
256MB $80 2GB $640
512MB $140 4GB $1120
1024MB $525 8GB $4200
2048MB $1200 16GB $9600

Table 3: DDR SDRAM Module Capacity and Price

72



Table 3 shows the size of available DDR SDRAM memmodules that are
usable in the TM-4. The table also shows the otimearket price, as listed by Crucial
RAM [47], for each module, as well as the totaltcasd total memory capacity of the
TM-4, if it was fully populated with 8 such modules

The remaining goal of memory bandwidth will be mxa@ed in the following
subsections. First, the theoretical maximum pemnéorce of the memory system will be
examined, then a description of the experimentalsoreanent procedure employed to
determine the actual performance of the systembeilbresented and then the results will
be discussed.

52.1 THEORETICAL MAXIMUM MEMORY PERFORMANCE

The performance of the memory subsystem of the4Tidl-theoretically limited
by the bandwidth of the memory used and the alwlitthe FPGAs to communicate with
the memory. Although DDR SDRAM is available witloak rates well above 200MHz,
the FPGAs used in the TM-4 were only specifieduto at 166MHz.

The performance of a 72bit 166MHz DDR SDRAM modidelimited by the
number of data transfers that it can perform peosé. In this case, where each of these
modules has a theoretical clock rate of 166MHz @aml transfer data on both the rising
and falling edges of the clock, the resulting tletioal maximum data transfer rate is 144
bits per clock cycle, or 2.8GB per second. Ifeaght modules are used simultaneously,
the total available peak theoretical memory bantwisl 22.9GB per second.

In practice, the sustained bandwidth will be soimewower due to the need for
DRAM to stop transferring data while it receiveseitesh command.

52.2 MEASURING ACTUAL MEMORY PERFORMANCE

Measuring memory performance is a very difficak, due to the fact that the
performance is significantly dependent on the datess patterns that the test uses. For
example, a test consisting of reads to random addsewill return a relatively low

bandwidth number because of the need to constanttgh pages, whereas a test that
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reads only consecutive addresses will have a migttehbandwidth because of the fact
that burst transactions can be used.

The access pattern selected for measuring theorpehce of the memory
subsystem on the TM-4 was a block address patthrrthis pattern, an entire page of
data, consisting of 32KBs, is read from the memorgne large burst. This pattern was
an appropriate selection because the same patirrbecfound in applications that work
with data streams, such as video processing omgeisearching.

To measure the actual performance of the TM-4’snarg subsystem, a circuit
was placed in the development FPGAs that implerdeat®DR SDRAM controller, a
simple memory test circuit, a timer and an integfé@ the host computer. The memory
test circuit was designed to initiate 10,000 cortgpfrage memory transfers at the request
of the host computer. At the same time that thenarg test circuit was activated, the
timer circuit would commence counting clock cycleAt the end of the test, the timer
would stop and its value was then read back ttdis& computer.

5.2.3 ACTUAL MEMORY PERFORMANCE

Table 4 shows the memory performance results @ingle DDR SDRAM
module, as measured using the procedure descmbtx iprevious section. The actual
measured performance of a single memory modulbantiM-4 was 2.3GB per second;
somewhat lower then the theoretical maximum of B8@er second. The large
discrepancy was due to the fact that timing mishegdetween the delays of the DDR
data traces prevented the memory from being ranfait 166MHz.

Transaction Time
Clock Rate Dastg Set Transfer Bandwidth
Ize Clock Cycles Seconds
133.3MHz ~351MB 20920132 0.16s 2.3 GB / Second

Table 4: Memory Bandwidth Results

Contrary to the simulations results from validgtithe design of the memory
subsystem’s PCB traces, the skew between datawaits large enough to violate
necessary setup and hold time and prevented thensysom operating at 166MHz. The
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fact that the surface mount pins of the FPGA wereatcessible for probing means, it
was not possible to perform actual timing measurgsnen the traces. Ergo, without
these measurements, it was not possible to detertimenexact nature of the failure.

To combat the skew problem, the memory needea tcdrked at only 133MHz
instead of 166MHz. However, even at this loweresheéhe total memory bandwidth of
the TM-4’s eight memory modules reaches 17.6GBspeond.

The effect of memory refresh and controller ovathean be examined by
comparing the theoretical maximum transfer ratel38.3Mhz, to the actual measured
transfer rate. The 2.30 GB/s actual measured metwangwidth is only slightly lower
then the 2.39 GB/s peak theoretical bandwidth. Mleasured value is only 4% below
the theoretical peak value.

5.3 INTER-FPGA PERFORMANCE

One of the goals of the TM-4 was to provide asimt@mmunication bandwidth
between the four development FPGAs as possible dékign of the TM-4 provides this
bandwidth through the use of point-to-point busesvieen each pair of FPGAs. These
buses are comprised of a combination of CMOS siegled signals and LVDS
differential signals. An actual detailed descaptdf the bus architecture can be found in
Section 3.3.2.2.

The theoretical maximum performance of these iRRGA buses will be
examined in the following subsection. This is foled by a description of the
experimental measurement procedure employed torndieie the actual inter-FPGA
bandwidth. A discussion of the results is therspngéed.

53.1 THEORETICAL MAXIMUM INTER-FPGA BANDWIDTH

Two things govern the theoretical maximum inteGAPbandwidth: the number
of signals connecting each pair of FPGAs and tha date that each signal can sustain.
Between each pair of FPGAs there is either 20 ohigh-speed LVDS communication

channels, in addition to some single-ended sig@alsllustrated in Figure 14 in Section
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3.3.2.2. Each of these LVDS channels has a maxidatarate of 840 Mbps, or 105 MB
per second, as specified by the manufacturer.

When taken together, the total aggregate LVDS Wwaitl between each pair of
FPGAs is either 2.1 or 4.2 GB/s, depending on tinaber of channels providing the

connection.

53.2 MEASURING ACTUAL INTER-FPGA BANDWIDTH

The method used to determine the actual inter-FB&#dwidth of the TM-4 was
to measure the maximum data rate of a single LVBExcel and then to extrapolate this
result to the entire set of channels. The proeedised to measure the data rate of a
single channel consisted of a small test circuitnmmg on two of the development
FPGAs, under the control of software running onhbst computer.

LVDS LVDS
Transmitters Receiver
Host . | De- Host
Interface J |\ Serializer < Serializer /" \ Interface
| Channel Under Test J

Clock
PLL /? Alignment

FPGAO FPGA 1

Figure 33: LVDS Performance Test Circuit

Figure 33 shows the test circuit used to meadueeperformance of an LVDS
channel. The circuit consisted of all the compéserecessary to transmit data across an
LVDS channel. This included serialization/desé&lion hardware, a transmitter, a
receiver and clock alignment hardware. An intexfa@s provided that allowed for the
host computer to provide an 8-bit test vector stthnsmitter side of the LVDS channel,

which it could then read back from the receiveesid

76



In order to further simulate the conditions oflarDS channel in a real system,
the LVDS channels that ran adjacent to the chamnmd¢r test were also driven by the test
circuit. The goal of this was to insure that aeyfprmance limiting effects of crosstalk
were taken into account.

The testing procedure consisted of verifying tinectionality of the test circuit at
a set of different clock frequencies. For eaclguency, every possible test vector was
transmitted across the LVDS channel being validatddle the adjacent channels were
being randomly driven. If the resulting receivexttors were correct, the frequency was
increased and the circuit was tested again. Troisgss was repeated until the test finally
failed. At this point, the maximum operating fregay of the LVDS link was revealed.

5.3.3 ACTUAL INTER-FPGA BANDWIDTH

The actual inter-FPGA communication bandwidth wasasured with the
procedure described above. The test circuit wasddo be operational up to a data rate
of 462 Mbps. Unfortunately, an error in the desidgnhe clocking system for the LVDS
channels meant that the Stratix FPGAs could noéigee a clock with a sufficient edge
rate necessary to transmit data faster than 462M@he problem arose from the fact
that the Stratix architecture has two types of LVID&smitters, slow transmitters and
fast transmitters.

In order to use as many fast transmitters as pessdotransmit data, the design
of the TM-4 called for a slower transmitter to bged to transmit the clock between
FPGAs. The idea behind this was that since thekdioansmitting between FPGAs is
only a fraction of the data rate, it could be traftted using a slow LVDS transmitter.
The error in this approach was that the clock ibistion architecture within the Stratix
was not designed to provide a sufficiently low skaack to these types of transmitters.
This meant that in order to have an acceptable amoluskew between the clock and
data transmitters, the data rate could not be hitjias 462 MBps.

A related problem in the design of the LVDS inEtGA connections was that
the clocking architecture, within the Stratix FPGxauld only drive half of the available
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high-speed LVDS transmitters when it was also dgva slow speed transmitter. This
meant that half of the LVDS channels could not eduat all.

Combining the 462 Mbps data rate with the 10 orflg@tional LVDS signals,
between each FPGA, resulted in a total aggregtee FHPGA bandwidth of 577 or 1155
MB per second, respectively. It is the intentidrthee author to fix this design error by
changing the clock output from a slow to a fast LS/Dansmitter in the next revision of
the TM-4. This should then allow 19 LVDS channglsbe functional, as one is now
used for the clock, possibly up to their theorétivaximum data rate of 840 Mbps per

channel.

5.4 HOST-TO-FPGA PERFORMANCE

The final key goal of the TM-4 was to provide asuam host-to-FPGA
communication bandwidth as feasible. The desigrthef TM-4 implemented this
communication channel using the system describe®eantion 3.3.5. The channel
consists of software running on a host computdr¢benmunicates with the TM-4 via a
PCI bus that is bridged to the custom design deveémt communication bus. The
theoretical maximum performance of this channell vioé examined in the next
subsection. This is then followed by a descriptadnthe experimental measurement
procedure employed to determine the actual chavenadiwidth. The section concludes

with a presentation and discussion of the reswatdiscussion of the results is presented.

54.1 THEORETICAL MAXIMUM HOST-FPGA BANDWIDTH

The host-to-FPGA communication channel consists mény different
components, each of which has the potential tdhédimiting factor of performance. At
one end of the channel is software running on ditenll 1.4 GHz processor. This
processor is connected to the interface FPGA b4-hitt66 Mhz PCI bus. The interface
FPGA bridges the PCI bus to a local 32 bit 100 Miws that is connected to the
development FPGAs. The channel then ends witlgia @rcuit within the development
FPGAs.
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If we assume that both the host computer and ¢keldpment FPGAs are able to
generate and consume data at a sufficient ratetibgitare not the bottleneck, then the
performance of the channel will be limited by thexmaum data throughput of the two
buses.

The maximum theoretical performance of a 64 bivd& PCI bus is 528 MB per
second. In practice, this number cannot be acHiele to the overhead of addressing,
and the shared nature of the PCI bus.

The maximum theoretical performance of the 32160 Mhz local development
bus is 400 MB per second. In practice, this lexeperformance can be sustained for
writes from the host to the FPGAs, due to the tiaat the bus utilizes separate command
and data lines. However, the maximum performaricead from the FPGAs to the host
will be less than the theoretical maximum, due he bverhead of issuing the read
command.

When considered together, the local developmestviall limit the theoretical
maximum performance at a rate of 400 MB per seconHowever, in practice, the
overhead of the PCI bus will likely be the limitifegtor.

54.2 MEASURING ACTUAL HOST-To-FPGA BANDWIDTH

There were two separate procedures used to medwiractual host-to-FPGA
communication channel bandwidth. The first meadwerite bandwidth to the FPGAs
from the host and the other measured read bandivioith the FPGA to the host. Each
procedure consisted of an identical hardware ¢ircunning on the development FPGAs,
and a unique software component, running on thedamsputer.
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Figure 34: Host-To-FPGA Bandwidth Test Circuit

Figure 34 shows the simple hardware circuit inedlin the test. The circuit
consists of a resetable cycle counter, with a bostputer interface. The interface allows
the host computer to treat the circuit as a 32atadink, in the form of the command
register, and a 32bit data source, in the formhefdurrent count output. The software
component of the testing procedure consisted ofogrpm that would read or write a
large amount of data to the TM-4 and use the cyoleter to measure the transfer time.
In order to try to decouple the measurement frotheeithe hard drive or network
bandwidth limitations, the communication transacsiovere performed between the TM-
4 and a buffer in the host computer’'s memory.

To test the write bandwidth from the host to tR&AS, the software first writes a
32 bit reset command to the command register intéle circuit. This resets the cycle
counter to zero. The software then issues theteo@mable command to the command
register, starting the cycle counter counting. tN&he software transfers 4 million more
enable commands in one burst. The burst will ritgcaithe counter as it is already
enabled. Once the burst is complete, a single oédlde counter’s value is made. The
resulting cycle count indicates the number of clogiles it took to perform the 4 million
32bit command-burst. By combining this informatiwith knowledge of the clock rate,
a resulting transfer data rate can be calculated.

To test the read bandwidth from the FPGAs to t&,ithe software issues a reset

command to the command register in the developfB@As. This is then followed by
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a single count enable command. The software teeiogns 4 million burst reads of the
current cycle counter value from the hardware d@ircuJpon completion of a fixed
number of reads, the value of the cycle counteeadsl back and used to calculate the
transfer data rate using the same method as foeswri

54.3 ACTUAL HOST-To-FPGA BANDWIDTH

The actual host-to-FPGA communication channel hédtth was measured using
the procedure described above, using a test dabthsE25MB. Table 5 and Table 6
present the measured results, for both writing ftbe host to the FPGAs and reading
from the FPGAs to the Host.

Run | Dataset Size  Write Write Write
# Cycles Time Data Rate
1 125MB 49080384 0.49sec| 267.04MB/s
2 125MB 49197584 0.49sec| 266.40MB/s
3 125MB 49082848 0.49sec| 267.03MB/s
Average| 266.8MB/s

Table 5: Measured Host-Write-To-FPGA Bandwidth

Run | Dataset Sizel Read Cycles| Read Read
# Time Data Rate
1 125MB 84683792 | 0.85sec 154.78MB/s
2 125MB 84620688 | 0.85Sec 154.89MB/s
3 125MB 84712320 | 0.85Sec 154.73MB/s
Average| 154.8MB/s

Table 6: Measure Host-Read-From-FPGA Bandwidth

The first column indicates the test set run numtier second indicates the dataset
size, and the third and fourth columns indicaterthmber of cycles and the time it took
to transfer the data set, respectively.

The average bandwidth for writing data to the FBG#Am the host computer is
266 MB per second. This data rate is just ovep&@ent of the peak bandwidth of the
PCI bus. Through the use of a logic analyzer & @@termined that the performance loss
was due to two factors. The first factor was that PCl bus was often left idle while the
host computer’s bridge chip retrieved data from iemory. The second factor was

found to be software related. In order to perf@®MA transfer it was necessary to
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have a fixed memory buffer in the host computerowllver, due to Linux memory
protection, it is not possible to have a user mpiggram directly access such a buffer.
Instead, every byte of data needed to be transfdyeéween a user-mode buffer and a
kernel-mode DMA buffer. While this transfer wasoring, the PCI bus remained idle.

The effect of this memory protection problem cbié reduced through the use of
multiple buffers. While one buffer is being tragsed across the PCI bus, via DMA, the
other buffer could be copied between user and kepaee, effectively masking the cost
of the copy.

The average bandwidth for reading data from th&A&#to the host computer
was found to be 154 MB/s. The data rate is somebdlaw that of the writing rate, but
is still respectable. Once again, a logic analyzas used to determine the source of the
performance loss. In this case, it was determihatithe performance-limiting factor was
the parameterizable bus interface logic core’sitgbtio provide data to the local
development bus. Although the development busscatain a transfer rate of 400 MB
per second, the logic core could not. The reasorihis is that the logic core uses a
handshaking protocol to interface with the resthaf logic in the development FPGA.
Figure 35 shows the waveform of the handshakintppoo.

\

Figure 35: Handshaking Protocol

Data Ready

Data Ack

The handshaking protocol consists of a full, fetep handshake. This approach
was taken, as it would allow a slow circuit to Bagiterface with a fast development
bus. This benefit came with a performance costyewer, because there are four
different handshaking steps that must be takenrderao transfer a single word of data.
The handshaking protocol could be changed to peokigher communication bandwidth
but would come at the cost of a more complicatest ugerface.

Overall, the performance of the host-to-FPGA comication channel is 266 MB

per second for writes, and a very respectable 1B4bt second for reads.
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55 SUMMARY

The three measurement procedures, presentediohtapter, show how the TM-4
design meets the goals of providing significant megmbandwidth, inter-FPGA
bandwidth, and host-to-FPGA bandwidth. In totag system has a measured memory
bandwidth of 17.6 GB per second, an inter-FPGA LVDB&mnmunication channel
bandwidth, between each pair of FPGAs, of up td IGB per second, and a host-to
FPGA bandwidth of 266 MB per second for writes 464 MB per second for reads.
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6 CONCLUSIONS

6.1 SUMMARY

In this thesis, the design of an FPGA-based rgpiototyping system was
presented. The objective of this work was to gteva development platform with as
much memory capacity, memory bandwidth, inter-FPi&aAdwidth and host-to-FPGA
bandwidth as feasible. The resulting tests, ohysipal prototype system, showed that
the TM-4 was able to deliver large amounts of badtdwin all of these categories.
Table 7 summarizes each of the seven design steljgstaken in the creation of the TM-
4, along with the approximate time that each stagk to complete.

It is the hope of this author that the creatiothed prototyping system will enable

future researchers to implement designs not p@ssilbh previous technologies.

Task Time (Months)
Requirement Identification 4
Circuit Design 7

Placement 1
Routing 6
3

1

5

Verification
Software Design
Integration/Testing

Total 27

Table 7: Time Spent Working On Each Step Of TM-4 Dsign Process
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6.2 CONTRIBUTIONS

This thesis provides the following significant adltitions:

1. The design of an FPGA-based rapid prototypirggesy that provides:
a. Multi-gigabyte memory capacity
b. Significant memory bandwidth
c. Significant inter-FPGA bandwidth
d. Significant host-to-FPGA bandwidth

2. A design procedure for creating FPGA based syste

3. A verification procedure for validating largessym designs

6.3 FUTURE WORK

There are a number of different ways that thequarnce of the TM-4 could be
refined, both through hardware and software chandée first step would clearly be to
repair the design flaw that causes half the LVD&nciels to not function and the other
half to run much lower then their specified dateeraThe other improvements would
require more significant work, but could be implenas without changing the existing
hardware of the TM-4.

The host-to-FPGA communication link runs at wekldw its theoretical
maximum speed. In particular, retrieving data fritve FPGAS runs quite slowly relative
to its theoretical maximum speed. As noted, thia iresult of the fact that protocols
were designed to ensure easy use of the TM-4,wdtile providing relatively high
performance. Further research and subsequentf askbeatter bus protocol could provide
higher communication bandwidth, while maintainingiraple interface for users.
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C INTERFACE FPGA VHDL C ODE

C.1 TOP.VHD

LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

LIBRARY work;
USE work.complib.all;

ENTITY top IS
PORT (
-- Clock Inputs
hpll_glbclk : IN STD_LOGIC; -- Board wide pha
hpll_nibclk : IN STD_LOGIC;

clk80 : IN STD_LOGIC; -- 80Mhz Oscillat
spci_clk : IN STD_LOGIC;  -- Secondary PCI
-- Clock Outputs

nibclk : OUT STD_LOGIC;
glbclk : OUT STD_LOGIC;

-- Development JTAG Chain

devcfg_TCK : INOUT STD_LOGIC;

devcfg_TDO : IN STD_LOGIC;

devcfg_TDI : INOUT STD_LOGIC;

devcfg_TMS : INOUT STD_LOGIC;

-- Dipswitchs/LEDS

dip : IN STD_LOGIC_VECTOR(7 downto 0);

led : OUT STD_LOGIC_VECTOR(3 downto 0);
panled : OUT STD_LOGIC_VECTOR(3 downto 0);
-- Nibble/Development Bus Signals

nib0 : INOUT STD_LOGIC_VECTOR(49 downto 0);
nibl : INOUT STD_LOGIC_VECTOR(49 downto 0);
nib2 : INOUT STD_LOGIC_VECTOR(49 downto 0);

se aligned clocks

or backup
clock input
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nib3 : INOUT STD_LOGIC_VECTOR(49 downto 0);

-- Backup 10 Headers

bkupio : OUT STD_LOGIC_VECTOR(63 downto 0);

-- Temp Monitors

smb_clk : INOUT STD_LOGIC;

smb_data : INOUT STD_LOGIC;

smb_alertn : IN STD_LOGIC;

-- Video Enables

vid_ceA : OUT STD_LOGIC;

vid_ceB : OUT STD_LOGIC;

vid_psaven : OUT STD_LOGIC;

-- Development FPGA 0 FPP programming signals
fpgaO_data : OUT STD_LOGIC_VECTOR(7 downto 0);
fpgaO_nconfig : OUT STD_LOGIC;

fpgaO_dclk : OUT STD_LOGIC;

fpgaO_conf_done : IN STD_LOGIC;

fpgaO_nstatus : IN STD_LOGIC;

-- Development FPGA 1 FPP programming signals
fpgal_data : OUT STD_LOGIC_VECTOR(7 downto 0);
fpgal_nconfig : OUT STD_LOGIC;

fpgal_dclk : OUT STD_LOGIC;

fpgal_conf_done : IN STD_LOGIC;

fpgal_nstatus : IN STD_LOGIC;

-- Development FPGA 2 FPP programming signals
fpga2_data : BUFFER STD_LOGIC_VECTOR(7 downto O
fpga2_nconfig : OUT STD_LOGIC;

fpga2_dclk : BUFFER STD_LOGIC;

fpga2_conf_done : IN STD_LOGIC;

fpga2_nstatus : IN STD_LOGIC;

-- Development FPGA 3 FPP programming signals
fpga3_data : OUT STD_LOGIC_VECTOR(7 downto 0);
fpga3_nconfig : OUT STD_LOGIC;

fpga3_dclk : OUT STD_LOGIC;

fpga3_conf_done : IN STD_LOGIC;

fpga3_nstatus : IN STD_LOGIC;

-- PCI Bus Signals
clk: IN STD_LOGIC;
gntn : IN STD_LOGIC;



rstn : IN STD_LOGIC;
idsel : IN STD_LOGIC;
framen : INOUT STD_LOGIC;
irdyn : INOUT STD_LOGIC;
devseln : INOUT STD_LOGIC;
trdyn : INOUT STD_LOGIC;
stopn : INOUT STD_LOGIC;
req64n : INOUT STD_LOGIC;
ack64n : INOUT STD_LOGIC;
intan : OUT STD_LOGIC;
intbn : OUT STD_LOGIC;
intcn : OUT STD_LOGIC;
intdn : OUT STD_LOGIC;
lockn : OUT STD_LOGIC;
regn : OUT STD_LOGIC;
serrn : OUT STD_LOGIC;
ad : INOUT STD_LOGIC_VECTOR (63 DOWNTO 0);
cben : INOUT STD_LOGIC_VECTOR (7 DOWNTO 0);
par : INOUT STD_LOGIC;
par64 : INOUT STD_LOGIC;
perrn : INOUT STD_LOGIC;
m66en : INOUT STD_LOGIC;
pmen : INOUT STD_LOGIC
)i
END;

ARCHITECTURE rtl of top IS
-- Local side PCI core signal declarations
SIGNAL |_cbeni : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL I_adi : STD_LOGIC_VECTOR (63 DOWNTO 0);
SIGNAL Im_reg32n, Im_req64n, Im_lastn, Im_rdyn, |
SIGNAL It_abortn, It_discn, lirgn : STD_LOGIC;
SIGNAL I_adro, |_dato : STD_LOGIC_VECTOR (63 DOWN
SIGNAL I_beno : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL |_cmdo : STD_LOGIC_VECTOR (3 DOWNTO 0);
SIGNAL |_ldat_ackn, |_hdat_ackn, Im_adr_ackn, Im_
SIGNAL Im_dxfrn : STD_LOGIC;
SIGNAL Im_tsr : STD_LOGIC_VECTOR (9 DOWNTO 0);
SIGNAL It_framen, It_ackn, It_dxfrn : STD_LOGIC;
SIGNAL It_tsr: STD_LOGIC_VECTOR (11 DOWNTO 0);
SIGNAL cmd_reg, stat_reg : STD_LOGIC_VECTOR (6 DO
SIGNAL cache : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL master_|_adi, target_|_adi: STD_LOGIC_VEC
SIGNAL master_|_adi_enable : STD_LOGIC;
-- PLL signals
SIGNAL pll_reconfig_reset : STD_LOGIC;
SIGNAL nib_locked, glb_locked : STD_LOGIC;

SIGNAL nib_pci_data_out, glb_pci_data_out : STD_L

SIGNAL nib_pci_we, glb_pci_we : STD_LOGIC;

-- Write Fifo signals

SIGNAL writeFIFOdata : STD_LOGIC_VECTOR(31 downto
SIGNAL writeFIFOdatain : STD_LOGIC_VECTOR(63 down
SIGNAL writeFIFOrdreq, writeFIFOempty : STD_LOGIC

t_rdyn : STD_LOGIC;

TO 0);

ackn: STD_LOGIC;

WNTO 0);

TOR(63 downto 0);

OGIC_VECTOR(31 downto

0);
to 0);
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SIGNAL writeFIFOnearlyfull, writeFIFOwrhigh, writ
STD_LOGIC;

SIGNAL writeFIFO_wrused : STD_LOGIC_VECTOR(12 dow

SIGNAL target_writeFIFOwrlow, target_writeFIFOwrh

-- Read FIFO signals

SIGNAL readFIFO_level : STD_LOGIC_VECTOR(12 downt

SIGNAL readFIFOdata : STD_LOGIC_VECTOR(31 downto

SIGNAL readFIFOwrreq : STD_LOGIC;

SIGNAL readFIFO_get32bits, readFIFO_get64bits : S

SIGNAL readFIFO_data32ready, readFIFO_data64ready

SIGNAL readFIFO_nearlyempty : STD_LOGIC;

SIGNAL readFIFO_Dataout : STD_LOGIC_VECTOR(63 dow

-- Development Bus Interface Signals

SIGNAL devbus_enable : STD_LOGIC;

SIGNAL devbus_writeFIFOrdreq : STD_LOGIC;

SIGNAL devbus_peekstate : STD_LOGIC_VECTOR(2 down

-- Dev Configure signals

SIGNAL devcfg_enable : STD_LOGIC;

SIGNAL devcfg_writeFIFOrdreq : STD_LOGIC;

-- Double speed clocks

SIGNAL clk133 : STD_LOGIC;

-- 22Mhz PCI derived clock

SIGNAL clk22 : STD_LOGIC;

-- Control register file signals

SIGNAL reg_data_in, reg_data_out : STD_LOGIC_VECT

SIGNAL reg_data_addr : STD_LOGIC_VECTOR(7 downto

SIGNAL reg_read_ack, reg_wrreq : STD_LOGIC;

-- Reset Signals

SIGNAL force_resetn : STD_LOGIC;

SIGNAL local_resetn : STD_LOGIC;

-- Temperature Monitor Signals

SIGNAL tempmc_pci_data_out : STD_LOGIC_VECTOR(31

SIGNAL tempmc_pci_we : STD_LOGIC;

SIGNAL alert_override : STD_LOGIC;

-- Dev FPGA nConfig register signals

SIGNAL fpgaO_nconfig_reg, fpgal_nconfig_reg : STD

SIGNAL fpga2_nconfig_reg, fpga3_nconfig_reg : STD

-- Development JTAG controller signals

SIGNAL jtag_enable : std_logic;

SIGNAL jtag_dataout : STD_LOGIC_VECTOR(31 downto

SIGNAL jtag_we : STD_LOGIC;

-- Nibble bus reset signals

SIGNAL nib0_resetn, nibl_resetn : STD_LOGIC;

SIGNAL nib2_resetn, nib3_resetn : STD_LOGIC;

-- Error catchers

SIGNAL fifo_overflow_error : STD_LOGIC;

SIGNAL m_fifo_overflow_error : STD_LOGIC;

SIGNAL t_fifo_overflow_error : STD_LOGIC;

-- Flashing LED counter

SIGNAL flash_counter : STD_LOGIC_VECTOR(24 downto

-- DMA Control Signals

SIGNAL master_control_data : STD_LOGIC_VECTOR(31

SIGNAL master_control_addr : STD_LOGIC;

SIGNAL master_control_we : STD_LOGIC;

eFIFOwrlow :

nto 0);
igh : STD_LOGIC;

0 0);
0);

TD_LOGIC;
: STD_LOGIC;

nto 0);

to 0);

OR(31 downto 0);
0);

downto 0);

LOGIC;
"LOGIC;

0);

0);

downto 0);



SIGNAL writeFIFOwrite32, writeFIFOwrite64 : STD_L

SIGNAL readFIFOread32 : STD_LOGIC;

SIGNAL target_readFIFO_get32bits : STD_LOGIC;
SIGNAL master_length_counter : STD_LOGIC_VECTOR(1

SIGNAL intn : STD_LOGIC;
-- DEBUG

SIGNAL masterstatepeek : STD_LOGIC_VECTOR(1 downt

SIGNAL peakwritelowbuffer : STD_LOGIC;
SIGNAL peakwritehighbuffer : STD_LOGIC;
SIGNAL peakwritereq : STD_LOGIC;

-- PCI Transaction Counter Signals
SIGNAL pciread32, pciread64 : STD_LOGIC;
SIGNAL pciwrite32, pciwrite64 : STD_LOGIC;
SIGNAL write_fifo_has_space : STD_LOGIC;
SIGNAL read_FIFO_has2 : STD_LOGIC;
SIGNAL debug_delayed_read : STD_LOGIC;

BEGIN

PROCESS (hplI_nibclk)

BEGIN
IF rising_edge(hpll_nibclk) THEN

flash_counter <= flash_counter + 1;

END IF;

END PROCESS;

-- Assign LEDS

led(0) <= not fifo_overflow_error;

led(1) <= not (nib_locked AND glb_locked);

led(2) <= flash_counter(24);

led(3) <="'0%

-- Place holder PCl local side signals

intan <="'1";
intbn <= intn;
intcn <=1
intdn <="1";

-- Instantiate Target Controller
target : targetcontroller
PORT MAP( It_abortn, It_discn, It_rdyn, It_fram
It_dxfrn,
It_tsr, target_|_adi, |_adro, |_dato,
|_cmdo, I_ldat_ackn, |I_hdat_ackn, reg
reg_data_out,
reg_data_addr, reg_read_ack, reg_wrre
writeFIFOdatain, target_writeFIFOwrlo
target_writeFIFOwrhigh,
writeFIFOnearlyfull, readFIFO_dataout
target_readFIFO_get32bits,
readFIFO_get64bits, readFIFO_nearlyem
readFIFO_data32ready,
readFIFO_data64ready, t_fifo_overflow
rstn, clk);

OGIC;

5 downto 0);

0 0);

en, It_ackn,

|_beno,
_data_in,

q,
W,

pty,

_error, local_resetn,

-- Instantiate Master Controller
master : mastercontroller
PORT MAP (Im_req64n, Im_req32n, Im_adr_ackn, |
Im_lastn,
Im_rdyn, |_hdat_ackn,|_ldat_ackn,
master_|_adi, master_|_adi_enable, |
master_control_data, master_control_
master_control_we,
writeFIFOnearlyfull, write_fifo_has_
writeFIFOwrite64, writeFIFOwrite32,
readFIFO_data32ready, readFIFO_datao
read_FIFO_has2,
masterstatepeek, master_length_count
debug_delayed_read,
m_fifo_overflow_error, local_resetn,

fifo_overflow_error <= m_fifo_overflow_error OR t
master_control_data <= reg_data_out;

|_adi <= master_|_adi when master_|_adi_enable =
target_|_adi;
writeFIFOwrlow <= target_writeFIFOwrlow OR writeF
writeF
writeFIFOwrhigh <= target_writeFIFOwrhigh OR writ

readFIFO_get32bits <= target_readFIFO_get32bits O

-- Instantiate PCI Core
core : mega_pci
PORT MAP (clk, rstn, gntn, |_cbeni,idsel,|_adi,
Im_reg64n, Im_lastn, Im_rdyn, It_rdyn
It_discn,
lirgn, framen, irdyn, devseln, trdyn,
req64n, acké4n, intn, reqn, serrn, |_
|_dato, |_beno, |_cmdo, |_Ildat_ackn,
Im_adr_ackn,
Im_ackn, Im_dxfrn, Im_tsr, It_framen,
It_tsr,
cmd_reg, stat_reg, cache, ad, cben, p
perrn);

-- Instantiate PLL / reconfiguration circuitry /
nibPLL : pll_reconfig_interface
PORT MAP(clk, nibclk, I_dato, nib_pci_data_out,
clk, nib_locked, pll_reconfig_reset,cl
-- DEBUG NOTE: check if |_dato should really be re
glbPLL : pll_reconfig_interface
PORT MAP(spci_clk, glbclk, |_dato, glb_pci_data
clk, glb_locked, pll_reconfig_reset,cl

pll_reconfig_reset <= NOT rstn;

-- Instantiate development JTAG interface
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m_tsr, Im_dxfrn,
_cbeni, lirgn,

addr,

space,

ut, readFIFOread32,
er,

rstn, clk);

_fifo_overflow_error;

1" else
IFOwrite32 OR
IFOwrite64;
eFIFOwrite64;

R readFIFOread32;

Im_req32n,
, It_abortn,

stopn,

adro,
|_hdat_ackn,
It_ackn, It_dxfrn,

ar, paré4,

pci interface

nib_pci_we,
k22);
g_data_out

_out, glb_pci_we,
k22);



dev_jtag_inst : dev_jtag
PORT MAP(devcfg_TCK, devcfg_TDO, devcfg_TDI, de
jtag_enable, reg_data_out, jtag_dataou
local_resetn, clk);

-- Instantiate temperature monitor SMB circuitry
tempmc_interface_inst : tempmc_interface
PORT MAP( reg_data_out, tempmc_pci_data_out, te
smb_clk, smb_data, smb_alertn, clk, |

-- Instantiate clock doubling fast PLL for 64 <->
clk133pll : fastpll133 PORT MAP(clk, clk133,clk22

-- Instantiate read FIFO and 32 -> 64 convertor
readFIFOinst : readFIFO
PORT MAP ( readFIFOdata, readFIFOwrreq, hpll_ni
readFIFO_get32bits, readFIFO_get64bi
readFIFO_data32ready, readFIFO_data6
readFIFO_nearlyempty, readFIFO_datao
read_FIFO_has2,clk133, clk, local_re

-- Instantiate write FIFO and 64 -> 32 convertor
writeFIFOinst : writeFIFO
PORT MAP (writeFIFOdata, writeFIFOrdreq, writeF
hpll_nibclk,
writeFIFOnearlyfull, write_fifo_has_s
writeFIFOdatain,
writeFIFOwrhigh, writeFIFOwrlow,
clk, clk133, local_resetn, writeFIFO_
peakwritelowbuffer, peakwritehighbuff

writeFIFOrdreq <= devcfg_writeFIFOrdreq OR devbus

-- Instantiate the development FPGA programmer
devcfg : devconfigure
PORT MAP (devcfg_enable, writeFIFOdata, writeF|
devcfg_writeFIFOrdreq, hpll_nibclk, f
fpgaO_dclk, fpgal_data, fpgal_dclk, f
fpga2_dclk,
fpga3_data, fpga3_dclk, local_resetn)

-- Disable the development FPGAs in an overheat s

fpgaO_nconfig <= fpga0_nconfig_reg AND (smb_alert
fpgal_nconfig <= fpgal_nconfig_reg AND (smb_alert
fpga2_nconfig <= fpga2_nconfig_reg AND (smb_alert
fpga3_nconfig <= fpga3_nconfig_reg AND (smb_alert

-- Instantiate Development Bus Interface
devbusinter : DevBuslInterface
Port Map (devbus_enable, readFIFOdata, readFIFO
writeFIFOempty, devbus_writeFIFOrdreq
local_resetn, nib0, nibl, nib2, nib3,
nib0_resetn, nib1_resetn, nib2_resetn

vcfg_TMS,
t, jtag_we,

mpmc_pci_we,
ocal_resetn);

32 conversions

)i

belk,

ts,

4ready,

ut, readFIFO_level,
setn);

IFOempty,

pace,

wrused,
er,peakwritereq);

_writeFIFOrdreq;

FOempty,
pga0l_data,
pga2_data,

ituation

n OR alert_override);
n OR alert_override);
n OR alert_override);
n OR alert_override);

wrreq, writeFIFOdata,
, hpll_nibclk,
devbus_peekstate,

, nib3_resetn);
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-- Instantiate the command register file
cmdreg : commandRegisters

Port Map (fpga0_nconfig_reg, fpgaO_conf_done, f pgaOl_nstatus,
fpgal_nconfig_reg, fpgal_conf_done, f pgal_nstatus,
fpga2_nconfig_reg, fpga2_conf_done, f pga2_nstatus,
fpga3_nconfig_reg, fpga3_conf_done, f pga3_nstatus,
devcfg_enable, devbus_enable, force_r esetn,
vid_ceA, vid_ceB, vid_psaven, jtag_en able,
nib0_resetn, nib1_resetn, nib2_resetn , nib3_resetn,
jtag_dataout, jtag_we,
nib_pci_we, glb_pci_we, nib_pci_data_ out,

glb_pci_data_out,
tempmc_pci_data_out, tempmc_pci_we, a lert_override,
writeFIFO_wrused, readFIFO_level,
fifo_overflow_error, smb_alertn, nib_ locked, glb_locked,
master_control_addr, master_control_w e,
pciread32, pciread64, pciwrite32, pci write64, lirgn,
reg_data_in, reg_data_out, reg_data_a ddr, reg_read_ack,

reg_wrreq, clk, rstn);

pciwrite32 <= writeFIFOwrhigh XOR writeFIFOwrlow;
pciwrite64 <= writeFIFOwrhigh AND writeFIFOwrlow;
pciread32 <= readFIFO_get32bits;
pciread64 <= readFIFO_get64bits;

local_resetn <= rstn AND force_resetn;
bkupio <= (others =>'1');

END rtl;

C.2 COMMANDREGISTERS .VHD

-- Writable Register Map

-- Reg Bit Description

- # Field

Dev FPGA 0 nConfig signal
Dev FPGA 1 nConfig signal
Dev FPGA 2 nConfig signal
Dev FPGA 3 nConfig signal

oooo
WN PO

Development bus interface enable
Development configuration mode
NTSC video in A chip enable
NTSC video in B chip enable
RGB video out chip enablen
JTAG controller enable
Temperature alert override

1 Force resetn

\
!

RPRRPRRRRRR

WOUTAWNRO

i
N
o

Nibble Bus 0 ResetN signal



2 1 Nibble Bus 1 ResetN signal
2 2 Nibble Bus 2 ResetN signal
2 3 Nibble Bus 3 ResetN signal

fc 0 Development JTAG controller TDI
fc 1  Development JTAG controller TMS

fd 7-0 Temp Monitors SMB: command
fd 15-8 Temp Monitors SMB: writedata
fd 16 Temp Monitors SMB: rd_req

fd 17 Temp Monitors SMB: wr_req

fd 18 Temp Monitors SMB: clr_alert_req
fd 31 Temp Monitors SMB: chip_sel

fe 0 Global clock PLL: reconfig

fe 1 Global clock PLL: read_en

fe 2 Global clock PLL: write_en

fe 7-4 Global clock PLL: counter_type

fe 16-8 Global clock PLL: data_in

fe 26-24 Global clock PLL: counter_param

ff 0 Nibble clock PLL: reconfig

ff 1 Nibble clock PLL: read_en

ff 2 Nibble clock PLL: write_en

ff 7-4 Nibble clock PLL: counter_type

ff 16-8 Nibble clock PLL: data_in

ff 26-24 Nibble clock PLL: counter_param

Readable Register Map
Reg Bit Description
# Field

0 0 DEVFPGA 0 Conf_Done signal
0 1 DEVFPGA 0 nStatus signal
0 2 DEVFPGA 1 Conf_Done signal
0 3 DEVFPGA 1 nStatus signal
0 4 DEVFPGA 2 Conf_Done signal
0 5 DEVFPGA 2 nStatus signal
0 6 DEVFPGA 3 Conf_Done signal
0 7 DEV FPGA 3 nStatus signal
1 8-0 Nibble clock PLL: data_out

31 Nibble clock PLL: busy
2 8-0 Global clock PLL: data_out
2 31 Global clock PLL: busy
3 7-0 Temp Monitors SMB: readdata
3 8 Temp Monitors SMB: rd_ack
3 9 Temp Monitors SMB: wr_ack
3 10 Temp Monitors SMB: clr_alert_ack
4 31-0 TM-4 Identification

5 12-0 Write FIFO level
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Fifo overflow timeout error
Temperature Alarm
Development clock pll lock
Global clock pll lock

[N N e e}
wWwN PO

-- 7 0 Development JTAG TDO
- 7 31 Development JTAG controller busy

Readable copy of reg 0

0 Development bus interface enable
1 Development configuration mode
2 NTSC video in A chip enable

3 NTSC video in B chip enable

4 RGB video out chip enablen

5 JTAG controller enable

6 Temperature alert override

31 Force resetn

'
i
00 00 CO 0O 0O 0O CO O O

i
©

12-0 Read FIFO Level

-- 10 31-0 PCI 32bit Read Counter
-- 11 31-0 PCI 64bit Read Counter
-- 12 31-0 PCI 32bit Write Counter
-- 13 31-0 PCI 64bit Write Counter

- 14 0 IRQ status (0 = asserted interrupt

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

LIBRARY work;
USE work.complib.all;

ENTITY commandregisters IS
PORT (
-- Development configuration signals
fpgaO_nconfig : OUT STD_LOGIC;
fpgaO_conf_done : IN STD_LOGIC;
fpgaO_nstatus : IN STD_LOGIC;
fpgal_nconfig : OUT STD_LOGIC;
fpgal_conf_done : IN STD_LOGIC;
fpgal_nstatus : IN STD_LOGIC;
fpga2_nconfig : OUT STD_LOGIC;
fpga2_conf_done : IN STD_LOGIC;
fpga2_nstatus : IN STD_LOGIC;
fpga3_nconfig : OUT STD_LOGIC;
fpga3_conf_done : IN STD_LOGIC;
fpga3_nstatus : IN STD_LOGIC;



-- TM-4 Ctrl Register signals

devcfg_enable : OUT STD_LOGIC;

devbus_enable : OUT STD_LOGIC;

force_resetn : OUT STD_LOGIC;

vid_ceA : OUT STD_LOGIC;

vid_ceB : OUT STD_LOGIC;

vid_psaven : OUT STD_LOGIC;

jtag_enable : OUT STD_LOGIC;

-- Nibble Bus Resetn signals

nib0_resetn : OUT STD_LOGIC;

nibl_resetn : OUT STD_LOGIC;

nib2_resetn : OUT STD_LOGIC;

nib3_resetn : OUT STD_LOGIC;

-- JTAG controller signals

jtag_datain : IN STD_LOGIC_VECTOR(31 downto 0);
jtag_we : OUT STD_LOGIC;

-- PLL reconfiguration interface signals

nib_pci_we : OUT STD_LOGIC;

glb_pci_we : OUT STD_LOGIC;

nib_data_in : IN STD_LOGIC_VECTOR(31 downto 0);
glb_data_in : IN STD_LOGIC_VECTOR(31 downto 0);
-- Temperature monitor signals

tempmc_data_in : IN STD_LOGIC_VECTOR(31 downto 0);

tempmc_pci_we : OUT STD_LOGIC;
alert_override : OUT STD_LOGIC;
-- Write FIFO status

TYPE writeregarray is array(255 downto 0) of STD_
downto 0);

TYPE readregarray is array(14 downto 0) of STD_LO
0);

SIGNAL writeregisters : writeregarray;
SIGNAL readregisters : readregarray;
BEGIN

-- Assign readable register connections --

-- Connect the development configuration signals
readregisters(0)(0) <= fpgaO_conf_done;
readregisters(0)(1) <= fpga0_nstatus;
readregisters(0)(2) <= fpgal_conf_done;
readregisters(0)(3) <= fpgal_nstatus;
readregisters(0)(4) <= fpga2_conf_done;
readregisters(0)(5) <= fpga2_nstatus;
readregisters(0)(6) <= fpga3_conf_done;
readregisters(0)(7) <= fpga3_nstatus;
readregisters(0)(31 downto 8) <= (others =>'0");

readregisters(1) <= nib_data_in;
readregisters(2) <= glb_data_in;
readregisters(3) <= tempmc_data_in;

LOGIC_VECTOR(31

GIC_VECTOR(31 downto

to registers

writeFIFO_wrused : IN STD_LOGIC_VECTOR(12 downt 0 0); readregisters(4) <= "0101010001001110001011010011 0100
readFIFO_level : IN STD_LOGIC_VECTOR(12 downto 0); readregisters(5)(12 downto 0) <= writeFIFO_wrused ;
-- FIFO error readregisters(5)(31 downto 13) <= (others =>'0") ;

fifo_overflow_error : IN STD_LOGIC;

temp_alertn : IN STD_LOGIC;

devpll_locked : IN STD_LOGIC;

glbpll_locked : IN STD_LOGIC;

-- DMA control signals

master_control_addr : OUT STD_LOGIC;
master_control_we : OUT STD_LOGIC;

-- PCI Transaction Counter Signals

pciread32 : IN STD_LOGIC;

pciread64 : IN STD_LOGIC;

pciwrite32 : IN STD_LOGIC;

pciwrite64 : IN STD_LOGIC;

-- Other signals

lirgn : IN STD_LOGIC;

-- PCl Interface signals

reg_data_out : OUT STD_LOGIC_VECTOR(31 downto 0 );
reg_data_in : IN STD_LOGIC_VECTOR(31 downto 0);
reg_data_addr : IN STD_LOGIC_VECTOR(7 downto 0) ;
reg_read_ack : IN STD_LOGIC;

reg_wrreq : IN STD_LOGIC;

clk : IN STD_LOGIC;

rstn : IN STD_LOGIC);

readregisters(6)(0) <= fifo_overflow_error;
readregisters(6)(1) <= NOT temp_alertn;
readregisters(6)(2) <= devpll_locked;
readregisters(6)(3) <= glbpll_locked;

readregisters(6)(31 downto 4) <= (others =>'0");
readregisters(7) <= jtag_datain;
readregisters(8) <= writeregisters(1);

readregisters(9)(12 downto 0) <= readFIFO_level;
readregisters(9)(31 downto 13) <= (others =>'0")

readregisters(14)(0) <= lirgn;
readregisters(14)(31 downto 1) <= (others =>'0")

-- Assign writeable register connections --

-- Connect the development configuration signals
fpgaO_nconfig <= writeregisters(0)(0);
fpgal_nconfig <= writeregisters(0)(1);
fpga2_nconfig <= writeregisters(0)(2);

to registers

END; fpga3_nconfig <= writeregisters(0)(3);

ARCHITECTURE rtl OF commandRegisters 1S -- Connect TM-4 control register signals
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devbus_enable <= writeregisters(1)(0);
devcfg_enable <= writeregisters(1)(1);
vid_ceA <= writeregisters(1)(2);
vid_ceB <= writeregisters(1)(3);
vid_psaven <= writeregisters(1)(4);
jtag_enable <= writeregisters(1)(5);
alert_override <= writeregisters(1)(6);
force_resetn <= writeregisters(1)(31);

nib0_resetn <= writeregisters(2)(0);
nibl_resetn <= writeregisters(2)(1);
nib2_resetn <= writeregisters(2)(2);
nib3_resetn <= writeregisters(2)(3);

-- PLL reconfiguration interface signals
master_control_addr <= reg_data_addr(0);
master_control_we <='1' WHEN reg_data_addr(7 dow
AND
reg_wrreq = '1' ELS
jtag_we <="1' WHEN reg_data_addr = "111111
'1' else '0%
tempmc_pci_we <='1' WHEN reg_data_addr = "111111
'1' else '0%
glb_pci_we <='1" WHEN reg_data_addr ="111111
'1' else '0%
nib_pci_we <='1'" WHEN reg_data_addr = "111111
'1' else '0%
-- Handle updating the register array
reg_data_out <= readregisters(conv_integer(reg_da
PROCESS (clk,rstn)
BEGIN
IF rstn ='0' THEN
writeregisters <= (others => (others =>'0")
readregisters(10) <= (others =>"'0");
readregisters(11) <= (others =>"'0");
readregisters(12) <= (others =>"'0");
readregisters(13) <= (others =>'0");
ELSIF rising_edge(clk) THEN
IF pciread32 ='1' THEN
readregisters(10) <= readregisters(10) + 1;
END IF;
IF pciread64 = '1' THEN
readregisters(11) <= readregisters(11) + 1;
END IF;
IF pciwrite32 = '1' THEN
readregisters(12) <= readregisters(12) + 1;
END IF;
IF pciwrite64 = '1' THEN
readregisters(13) <= readregisters(13) + 1;
END IF;

IF (reg_wrreq = '1") THEN
writeregisters(conv_integer(reg_data_addr)
END IF;

nto 1) ="1111101"

E'0";
00" and reg_wrreq =

01" and reg_wrreq =
10" and reg_wrreq =

11" and reg_wrreq =

ta_addr));

) <=reg_data_in;

END IF;
END PROCESS;
END rtl;

C.3 DEV_JTAG.VHD

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.all;

ENTITY dev_jtag IS
PORT (
-- JTAG signals
TCK : INOUT std_logic;
TDO : IN std_logic;
TDI : INOUT std_logic;
TMS : INOUT std_logic;
-- Control signals
enable : IN std_logic;
-- Data interface
datain : IN std_logic_vector(31 downto 0);
dataout : OUT std_logic_vector(31 downto 0);
datawe : IN std_logic;

rstn : IN std_logic;
clk : IN std_logic);
END dev_jtag;

ARCHITECTURE rtl OF dev_jtag IS
SIGNAL ltck, Itdo, Itdi, [tms, busy : std_logic;
SIGNAL count : std_logic_vector(2 downto 0);
BEGIN
tck <= ltck when enable = '1" else 'Z';
tdi <= Itdi when enable ='1' else 'Z';
tms <= Itms when enable ='1' else 'Z’;

dataout(0) <= ltdo;
dataout(30 downto 1) <= (others =>"'0");
dataout(31) <= busy;

PROCESS (clk,rstn)

BEGIN

IF rstn ='0' THEN
ltdo <="'0
Itdi <="'0"
ltms <=0}
busy <="'0%
ltick <="0
count <= "000";

ELSIF rising_edge(clk) THEN
ltdo <= tdo;

125



IF datawe = '1' then
busy <="1"%
Itdi <= datain(0);
ltms <= datain(1);
count <= "000";
ELSIF busy ='1' THEN
IF count ="101" THEN
count <="000";
IF Itck ='1' THEN
busy <="'0%
END IF;
ltck <= not ltck;
ELSE
count <= count + 1;
END IF;
END IF;
END IF;
END PROCESS;
END rtl;

C.4 DEVBUSINTERFACE.VHD

LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

LIBRARY work;
USE work.complib.all;

ENTITY DevBuslnterface IS
PORT (
enable : IN STD_LOGIC;
-- PClreadFIFO
readFIFOdata : OUT STD_LOGIC_VECTOR(31 downto O
readFIFOwrreq : OUT STD_LOGIC;
-- PClwriteFIFO
writeFIFOdata : IN STD_LOGIC_VECTOR(31 downto O
writeFIFOempty : IN STD_LOGIC;
writeFIFOrdreq : OUT STD_LOGIC;
clk: IN STD_LOGIC;
rstn : IN STD_LOGIC;
-- Development bus signals
nib0 : INOUT STD_LOGIC_VECTOR(49 downto 0);
nibl : INOUT STD_LOGIC_VECTOR(49 downto 0);
nib2 : INOUT STD_LOGIC_VECTOR(49 downto 0);
nib3 : INOUT STD_LOGIC_VECTOR(49 downto 0);
-- Current State Peek
peek_state : OUT STD_LOGIC_VECTOR(2 downto 0);
-- Nibble Bus Resetn signals
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nib0_resetn : IN STD_LOGIC;

nibl_resetn : IN STD_LOGIC;

nib2_resetn : IN STD_LOGIC;

nib3_resetn : IN STD_LOGIC);
END;

ARCHITECTURE rtl OF DevBusiInterface 1S
FUNCTION is_zero(SIGNAL input : IN STD_LOGIC) RET
BEGIN
IF input ='0' THEN
RETURN TRUE;
ELSE
RETURN FALSE;
END IF;
END is_zero;

FUNCTION getTackn ( signal tacknO, tacknl1 : IN ST
signal tackn2, tackn3 : IN ST
signal fpganum : IN STD_LOGIC
return boolean IS

BEGIN

return is_zero(tacknO) or is_zero(tacknl) or
is_zero(tackn2) or is_zero(tackn3);

--  CASE fpganum IS
-~ WHEN "00" => return is_zero(tackn0);
-~ WHEN "01" => return is_zero(tacknl);
-~ WHEN "10" => return is_zero(tackn2);
-~ WHEN "11" => return is_zero(tackn3);
-- END CASE;

END getTackn;

FUNCTION getDataln ( signal dataOin,datalin : IN
signal data2in,data3in : IN
signal fpganum : IN STD_LOGI
return std_logic_vector IS

BEGIN

CASE fpganum IS
WHEN "00" => return dataOin;
WHEN "01" => return datalin;
WHEN "10" => return data2in;
WHEN "11" => return data3in;
END CASE;
END getDataln;

PROCEDURE AssertFrame( signal framen0, framenl :
signal framen2, framen3 :
signal fpganum : IN std_lo
0)) IS
BEGIN
CASE fpganum IS
WHEN "00" => framen0 <= '0";
WHEN "01" => framenl <='0";
WHEN "10" => framen2 <='0";
WHEN "11" => framen3 <= '0";

URN boolean IS

D_LOGIC;
D_LOGIC;
_VECTOR(1 downto 0))

STD_LOGIC_VECTOR;
STD_LOGIC_VECTOR;
C_VECTOR(1 downto 0))

OUT std_logic;
OUT std_logic;
gic_vector(1 downto



END CASE;
END PROCEDURE;

PROCEDURE WriteData( signal data0, datal : OUT st
downto 0);
signal data2, data3 : OUT st

downto 0);
signal data : IN std_logic_v
signal fpganum : IN std_logi
IS
BEGIN

data0 <= data;
datal <= data;
data2 <= data;
data3 <= data;
--  CASE fpganum IS
- WHEN "00" => data0 <= data;
- WHEN "01" => datal <= data;
- WHEN "10" => data2 <= data;
- WHEN "11" => data3 <= data;
-- END CASE;
END PROCEDURE;

TYPE states IS (S_IDLE, S_READ, S_READWAIT, S_WRI
S_WRITEWAIT);
SIGNAL curr_state : states;
SIGNAL address : STD_LOGIC_VECTOR(7 downto 0);
SIGNAL address0, address1 : STD_LOGIC_VECTOR(7 do
SIGNAL address2, address3 : STD_LOGIC_VECTOR(7 do
SIGNAL count : STD_LOGIC_VECTOR(15 downto 0);
SIGNAL ackrequired : STD_LOGIC;
SIGNAL framen0, framen1, framen2, framen3 : STD_L
SIGNAL data0, datal, data2, data3 : STD_LOGIC_VEC
SIGNAL tacknO, tacknl, tackn2, tackn3 : STD_LOGIC
SIGNAL rst, counterload : STD_LOGIC;
SIGNAL count_enable : STD_LOGIC;
SIGNAL dataQin, datalin, data2in, data3in : STD_L
0);
SIGNAL transactionCFG : STD_LOGIC_VECTOR(31 downt
SIGNAL widthCFG, widthCounter : STD_LOGIC_VECTOR(
BEGIN
PROCESS (curr_state)
BEGIN
CASE (curr_state) IS
WHEN S_IDLE => peek_state <= "000";
WHEN S_READ => peek_state <= "001";
WHEN S_WRITE => peek_state <= "010";
WHEN S_ACKWAIT => peek_state <= "011";
WHEN S_READWAIT => peek_state <= "100";
WHEN S_WRITEWAIT => peek_state <= "101";
END CASE;
END PROCESS;

-- Assign development bus signals mappings

d_logic_vector(31
d_logic_vector(31

ector(31 downto 0);
c_vector(1 downto 0))

TE, S_ACKWAIT,

wnto 0);
wnto 0);

OGIC;
TOR(31 downto 0);

OGIC_VECTOR(31 downto

0 0);
5 downto 0);
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-- Address1..address3 are all identical registers
-- Four seperate registers are used as a Quartus
PROCESS (CLK)
BEGIN
IF rising_edge(clk) THEN
nib0(37 downto 32) <= address0(5 downto 0);
nib1(37 downto 32) <= address1(5 downto 0);
nib2(37 downto 32) <= address2(5 downto 0);
nib3(37 downto 32) <= address3(5 downto 0);

nib0(38) <= framenO;

nib1(38) <= framen1;

nib2(38) <= framen2;

nib3(38) <= framen3;

IF curr_state /= S_READ THEN
nib0(31 downto 0) <= dataO;
nib1(31 downto 0) <= datal;
nib2(31 downto 0) <= data2;
nib3(31 downto 0) <= data3;

ELSE
nib0(31 downto 0) <= (others =>'Z");
nib1(31 downto 0) <= (others =>'Z");
nib2(31 downto 0) <= (others =>'Z");
nib3(31 downto 0) <= (others =>'Z");

END IF;

END IF;
END PROCESS;

-- Tristate the TACKn lines
nib0(39) <='Z"; nib1(39) <="'Z}
nib2(39) <="Z"; nib3(39) <="'Z}

nib0(40) <= nib0_resetn;
nib1(40) <= nib1_resetn;
nib2(40) <= nib2_resetn;
nib3(40) <= nib3_resetn;

nib0(49 downto 41) <= (others =>"'0");
nib1(49 downto 41) <= (others =>"'0");
nib2(49 downto 41) <= (others =>"'0");
nib3(49 downto 41) <= (others =>'0");

-- Latch the bus signals as they come into the FP
PROCESS (CLK)
BEGIN
IF rising_edge(clk) THEN
tacknO <= nib0(39);
tacknl <= nib1(39);
tackn2 <= nib2(39);
tackn3 <= nib3(39);
data0in <= nib0(31 downto 0);
datalin <= nib1(31 downto 0);
data2in <= nib2(31 downto 0);
data3in <= nib3(31 downto 0);

bug work around

GA



END IF;
END PROCESS;

-- Acknowledge the data from the fifo when we rea
writeFIFOrdreq <= '1' when (enable = '1' and writ
(curr_state = S_IDLE o
S_WRITE))
else '0';

-- Connect to the PClreadFIFO
readFIFOdata <= getDataln( dataOin, datalin, data
address(7 downto 6));
readFIFOwrreq <= '1' when curr_state = S_READ AND
getTackn(tacknO, tacknl, tackn2, tackn3,addre
‘05

-- Instantiate word counter
counter : counterl6
PORT MAP (clk,count_enable, counterload, rst, w

downto 8), count);

rst <= NOT rstn;

counterload <='1' when (curr_state = S_IDLE) els
count_enable <= '1' when (curr_state = S_WRITE AN
‘0" or

(curr_state = S_READ AND

getTackn(tacknO, tacknl, tackn2, tackn3,addre
‘05

-- Setup stuff
transactionCFG <= "0000000000000000" & writeFIFOd

PROCESS(clk,rstn,enable)
BEGIN
IF rstn ='0' THEN
curr_state <= S_IDLE;
framenO <='1'; framenl <="1";
framen2 <='1'; framen3 <="1";
widthCFG <= (others =>'0");
widthcounter <= (others =>'0');
ELSIF rising_edge(clk) THEN
IF enable = '1' THEN
-- Default to deasserted frame
framenO <="1'; framenl <="1";
framen2 <="1'; framen3 <="1";
CASE curr_state IS
WHEN S_IDLE =>
-- Constantly latch the new address and
address <= writeFIFOdata(7 downto 0);
address0 <= writeFIFOdata(7 downto 0);
addressl <= writeFIFOdata(7 downto 0);
address2 <= writeFIFOdata(7 downto 0);
address3 <= writeFIFOdata(7 downto 0);

ackrequired <= writeFIFOdata(30);

dit
eFIFOempty ='0' and
r curr_state =

2in, data3in,

ss(7 downto 6)) else

riteFIFOdata(23

e'0"
D writeFIFOempty =

ss(7 downto 6))) else

ata(23 downto 8);

ack request

widthCFG <= writeFIFOdata(29 downto 24)
widthcounter <= "000001";

IF (writeFIFOempty = '0") THEN
IF (writeFIFOdata(31) = '0') THEN
curr_state <= S_WRITE;
ELSE
curr_state <= S_READWAIT;
AssertFrame(framenO, framenl, frame
writeFIFOdata(7 downto
writeData(data0,datal,data2,data3,
writeFIFOdata(7 downto 6)
END IF;
END IF;
WHEN S_READWAIT =>
curr_state <= S_READ;
WHEN S_WRITE =>
IF (writeFIFOempty = '0") THEN
widthcounter <= widthcounter + 1;
writedata(data0,datal,data2,data3,wri
address(7 downto 6));
assertFrame(framen0O, framen1, framen2
address(7 downto 6));
IF (widthcounter = widthCFG) THEN
IF (ackrequired = '1") THEN
curr_state <= S_ACKWAIT;
ELSE
IF count = CONV_STD_LOGIC_VECTOR(
curr_state <= S_IDLE;
ELSE
widthcounter <= "000001";
END IF;
END IF;
END IF;
END IF;
WHEN S_ACKWAIT =>
widthcounter <= "000001";
IF getTackn(tacknO, tacknl, tackn2, tac
6)) THEN
IF count = CONV_STD_LOGIC_VECTOR(0,16
curr_state <= S_IDLE;
ELSE -- Need to deassert frame for on
curr_state <= S_WRITEWAIT;
END IF;
ELSE
assertFrame(framen0O, framen1, framen2
address(7 downto 6));
END IF;
WHEN S_WRITEWAIT =>
curr_state <= S_WRITE;
WHEN S_READ =>
IF getTackn(tacknO, tacknl, tackn2, tac
6)) THEN
IF count = CONV_STD_LOGIC_VECTOR(1,16
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n2, framen3,

6));

transactionCFG,

);

teFIFOdata,

, framen3,

1,16) THEN

kn3,address(7 downto
) THEN

e cycle

, framen3,

kn3,address(7 downto

) THEN



curr_state <= S_IDLE;
END IF;
END IF;
END CASE;
END IF;
END IF;
END PROCESS;

END rtl;

C.5 DEVCONFIGURE .VHD

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY work;
USE work.complib.all;

ENTITY devConfigure IS
PORT (
enable : IN STD_LOGIC;
-- FIFO Input Signals
FIFOdata : IN STD_LOGIC_VECTOR(31 downto 0);
FIFOempty : IN STD_LOGIC;
FIFOrdreq : OUT STD_LOGIC;
clk : IN STD_LOGIC;
-- FPGA Configuration Outputs
fpgaO_data : OUT STD_LOGIC_VECTOR(7 downto 0);
fpgaO_dclk : OUT STD_LOGIC;
fpgal_data : OUT STD_LOGIC_VECTOR(7 downto 0);
fpgal_dclk : OUT STD_LOGIC;
fpga2_data : OUT STD_LOGIC_VECTOR(7 downto 0);
fpga2_dclk : OUT STD_LOGIC;
fpga3_data : OUT STD_LOGIC_VECTOR(7 downto 0);
fpga3_dclk : OUT STD_LOGIC;
rstn : IN STD_LOGIC );
END;

ARCHITECTURE rtl OF devConfigure 1S
SIGNAL dclk : STD_LOGIC;
SIGNAL dclkgo : STD_LOGIC;
BEGIN
-- Using look ahead fifo so ack when we have used
FIFOrdreq <= '1' WHEN (enable = '1) AND (FIFOemp

the data
ty ='0") else '0";

PROCESS (clk,enable,FIFOempty)
BEGIN
IF rising_edge(clk) THEN
IF (enable ='1') AND (FIFOempty = '0") THEN
fpgaO_data <= FIFOdata(7 downto 0);
fpgal_data <= FIFOdata(15 downto 8);
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fpga2_data <= FIFOdata(23 downto 16);
fpga3_data <= FIFOdata(31 downto 24);
dclkgo <="1";

ELSE
dclkgo <="0";

END IF;

END IF;
END PROCESS;

fpgaO_dclk <= dclk;
fpgal_dclk <= dclk;
fpga2_dclk <= dclk;
fpga3_dclk <= dclk;

dclk <= (NOT clk) AND dclkgo;

END rtl;

C.6 MASTERCONTROLLER

LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

LIBRARY work;
USE work.complib.all;

ENTITY mastercontroller IS
PORT (
-- PCI Controller interface signals
Im_req64n : BUFFER STD_LOGIC;
Im_req32n : OUT STD_LOGIC;
Im_adr_ackn : IN STD_LOGIC;
Im_tsr: IN STD_LOGIC_VECTOR(9 downto 0);
Im_dxfrn : IN STD_LOGIC;
Im_lastn : BUFFER STD_LOGIC;
Im_rdyn : OUT STD_LOGIC;

|_hdat_ackn :in std_logic; -- loca
acknowledge

|_Idat_ackn :in std_logic; -- loca
acknowledge

|_adi : OUT STD_LOGIC_VECTOR(63 downto 0);
|_adi_enable : OUT STD_LOGIC;

|_cbeni : OUT STD_LOGIC_VECTOR(7 downto 0);
lirgn : OUT STD_LOGIC;

-- Control Register Interface

control_data : IN STD_LOGIC_VECTOR(31 downto 0)
control_addr : IN STD_LOGIC;

control_we :IN STD_LOGIC;

.VHD

| high data

| low data



-- Write FIFO signals
write_FIFO_nearly_full : IN STD_LOGIC;
write_fifo_has_space : IN STD_LOGIC;
write_FIFO_wr64 : BUFFER STD_LOGIC;
write_FIFO_wr32 : BUFFER STD_LOGIC;

-- Read FIFO Signals

read_FIFO_dataready : IN STD_LOGIC;

read_FIFO_data : IN STD_LOGIC_VECTOR(63 downto 0);
read_FIFO_readack : BUFFER STD_LOGIC;

read_FIFO_has2 : IN STD_LOGIC;

-- Debug Signal
debug_statepeek : OUT STD_LOGIC_VECTOR(1 downto 0);
debug_length_counter : OUT STD_LOGIC_VECTOR(15 downto 0);

debug_delayed_read : OUT STD_LOGIC;

fifo_overflow_error : OUT STD_LOGIC;
local_rstn : IN STD_LOGIC;
rstn : IN STD_LOGIC;
clk : IN STD_LOGIC);
END;

ARCHITECTURE rtl OF mastercontroller IS
-- State Machine Variables
TYPE states IS (S_IDLE, S_REQ, S_ADDR, S_ACTIVE);

SIGNAL curr_state, next_state : states;

SIGNAL target_address : STD_LOGIC_VECTOR(31 downt 02);
SIGNAL read : STD_LOGIC; -- Read/ Not Write
SIGNAL pci_command : STD_LOGIC_VECTOR(3 downto 0) ;

-- Transaction Length Counter
SIGNAL clear_lirgn, trans_load, count_1, count_2

SIGNAL trans_eq_0O, trans_eq_1, trans_eq_2, trans_
boolean;

SIGNAL transaction_pending : BOOLEAN;
-- PCI Controller status register bits
SIGNAL addr_phase, data_phase, trans64, requestgn
SIGNAL read_from_tm4, write_to_tm4 : BOOLEAN;
SIGNAL last_override : BOOLEAN;
-- Fifo over/under flow counter signals
SIGNAL disc_counter : INTEGER RANGE 0 TO 16777215 ;
SIGNAL disc_count_enable : STD_LOGIC;
SIGNAL disc_count_reset : STD_LOGIC;
SIGNAL fifo_override : STD_LOGIC;
SIGNAL delayed_read : boolean;
BEGIN
-- Debugging Output Connections
PROCESS(curr_state)

: BOOLEAN;
SIGNAL trans_length_counter : STD_LOGIC_VECTOR(15 downto 0);
eq_4, trans_eq_6:

t_phase : BOOLEAN;
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BEGIN
CASE(curr_state) IS
WHEN S_IDLE => debug_statepeek <= "00";
WHEN S_REQ => debug_statepeek <="01";
WHEN S_ADDR => debug_statepeek <= "10";
WHEN S_ACTIVE => debug_statepeek <= "11";
END CASE;
END PROCESS;
debug_length_counter <= trans_length_counter;
debug_delayed_read <= "1 WHEN delayed_read else

-- Actual Module Code Starts Here

-- FIFO over/under flow error catcher
disc_count_enable <="'1' WHEN NOT transaction_pen
(trans_length_counter /= 0)
ELSE '04

disc_count_reset <='1' WHEN curr_state = S_IDLE
fifo_overflow_error <= fifo_override;

PROCESS (clk,local_rstn)
BEGIN
IF (local_rstn ='0") THEN
disc_counter <= 0;
fifo_override <='0";
ELSIF rising_edge(clk) THEN
IF disc_count_reset = '1' THEN
disc_counter <= 0;
ELSIF (disc_count_enable ='1") THEN
disc_counter <= disc_counter + 1;
END IF;

IF (disc_counter = 16777215) THEN
fifo_override <="1";
END IF;
END IF;
END PROCESS;

-- Assign PCI Core signals
Im_req64n <="'0" WHEN curr_state = S_REQ AND writ
Im_req32n <="'0" WHEN curr_state = S_REQ AND read

|_adi(31 downto 0) <= target_address & "00" WHEN
ELSE read_FIFO_data(31 down

|_adi(63 downto 32) <= read_FIFO_data(63 downto 3
|_adi_enable <="1' WHEN (curr_state /= S_IDLE) E
|_cbeni(3 downto 0) <= pci_command WHEN (Im_adr_a

"0000";
|_cbeni(7 downto 4) <= "0000";

ding AND

ELSE 'O,

e_to_tm4 ELSE '1";
_from_tm4 ELSE '1;

Im_adr_ackn ="'0"
to 0);

2);
LSE '0;

ckn='0) ELSE



-- Decode Read / Not Write into a equivalent PCI
-- then 32bytes before disconnect

pci_command <="1100" WHEN write_to_tm4 ELSE "011
-- Provide easier to read names for status bits

write_to_tm4 <= (read = '0');
read_from_tm4 <= (read = '1');

requestgnt_phase <= (Im_tsr(0) = '1' OR Im_tsr(1)
addr_phase <= (Im_tsr(2) = '1");

data_phase <= (Im_tsr(3) = '1');

trans64 <= (Im_tsr(9) = '1');

transaction_pending <= (trans_length_counter /=0
((write_to_tm4 AND write_f
OR
(read_from_tm4 AND read_f
OR
fifo_override = '1);

-- Configuration register loading
PROCESS (clk, rstn)
BEGIN
IF rstn ='0' THEN
curr_state <= S_IDLE;

ELSIF rising_edge(clk) THEN
curr_state <= next_state;
IF control_we ='1' THEN
IF control_addr ='0' THEN
target_address <= control_data(31 downto
ELSE
read <= control_data(31);
END IF;
ELSIF count_1 THEN
target_address <= target_address + 1;
ELSIF count_2 THEN
target_address <= target_address + 2;
END IF;
END IF;
END PROCESS;
trans_load <= (control_we ='1' and control_addr
clear_lirgn <= (control_we = '1' and control_addr

-- Transaction Length Counter
PROCESS (clk, rstn)
BEGIN
IF rstn ='0' THEN
trans_length_counter <= (others =>'0");
lirgn <="1%
ELSIF rising_edge(clk) THEN
IF clear_lirgn THEN

command nibble

1"

) AND (
ifo_has_space ='1')

ifo_dataready = '1"))

3) & "0";

= '1');
= 'O');

lirgn <="1";
ELSIF trans_load THEN
trans_length_counter <= control_data(15 dow
ELSIF count_1 THEN
trans_length_counter <= trans_length_counte
IF trans_eq_1 THEN
lirgn <="0"
END IF;
ELSIF count_2 THEN
trans_length_counter <= trans_length_counte
IF trans_eq_2 THEN
lirgn <="0"
END IF;
END IF;
END IF;
END PROCESS;

trans_eq_0 <= (trans_length_counter = 0);
trans_eq_1 <= (trans_length_counter = 1);
trans_eq_2 <= (trans_length_counter = 2);
trans_eq_4 <= (trans_length_counter = 4);
trans_eq_6 <= (trans_length_counter = 6);

-- Note: Currently performing 32bit Master writes
count_1 <= (write_FIFO_wr32 ='1") OR (read_FIFO_
count_2 <= (write_FIFO_wr64 = '1");

-- Data FIFO Transfer Logic
write_FIFO_wr32 <="1' WHEN write_to_tm4 AND (Im_

trans64
ELSE '0%
write_FIFO_wr64 <="1' WHEN write_to_tm4 AND (Im_
trans64
ELSE '0%

read_FIFO_readack <='1' WHEN read_from_tm4 AND (
addr_phase) AND (
((Im_dxfrn ='0") AND
'1") OR (fifo_override = '1'))) OR
(delayed_read AND ((r
or (fifo_override ='1))) OR
(Im_dxfrn ='0" AND t

PROCESS (clk,rstn)
BEGIN
if rstn ='0' THEN
delayed_read <= false;
ELSIF rising_edge(clk) THEN
IF delayed_read AND (read_fifo_has2 ='1") TH
delayed_read <= false;
ELSIf Im_dxfrn = '0' AND read_from_tm4 AND (r
THEN
delayed_read <= true;
END IF;
END IF;
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nto 0);

only
readack ='1');

dxfrn ='0") AND NOT

dxfrn ='0") AND

data_phase OR
((read_fifo_has2 =
ead_fifo_has2 ='1")

rans_eq_1)) ELSE '0;

EN

ead_fifo_has2 ='0")



END PROCESS;

-- Last Rdyn Override
PROCESS(clk,rstn)
BEGIN
IF rstn ='0' THEN
last_override <= FALSE;
ELSIF rising_edge(clk) THEN
IF Im_lastn ='0' THEN
last_override <= TRUE;
ELSIF NOT data_phase THEN
last_override <= FALSE;
END IF;
END IF;
END PROCESS;

-- Local side wait/ data ready logic
Im_rdyn <="'0' WHEN (write_to_tm4 AND curr_state
(write_FIFO_nearly_full ='0
fifo_override = '1")) OR
(read_from_tm4 AND
(Im_adr_ackn ='0' OR
(data_phase AND NOT trans_
trans_eq_0 AND
((read_fifo_has2 ='1") O
1)

)
)
ELSE ‘1

-- Im_rdyn <="'0' WHEN (write_to_tm4 AND curr_stat
- (write_FIFO_nearly_full ="

or fifo_override = '1')) OR

- (read_from_tm4 AND

- (curr_state = S_ACTIVE OR

- ((read_fifo_dataready ="

- OR fifo_override = '1'
- NOT last_override)
- ELSE '1'; -- AND NOT trans_eq_2

-- Local side transaction termination logic
-- last : last_gen PORT MAP
- (Im_lastn => Im_lastn,
- clk=>clk,
- rstn =>rstn,
- wr_rdn =>read, -- Make sure this is correc
- Im_req64n =>Im_req64n,
- Im_dxfrn => Im_dxfrn,
- |_hdat_ackn =>|_hdat_ackn,
- |_ldat_ackn =>1_Idat_ackn,
- Im_tsr =>Im_tsr,

=S_ACTIVE AND
' OR last_override or

eq_1 AND NOT

R fifo_override =

e =S_ACTIVE AND

0' OR last_override
curr_state = S_ADDR)
1' AND readFIFOlast =

) AND

- xfr_length => trans_length_counter);

Im_lastn <="0" WHEN (write_to_tm4 AND
(((Im_adr_ackn ='0") AN
trans_eq_4)) OR
(curr_state = S_ACTIVE AN

AND
((trans_eq_6 AND trans64
NOT trans64))
)
)
)OR
(read_from_tm4 AND (Im_dxfrn
trans_eq_1)

ELSE '1}

-- Control Statemachine
PROCESS(curr_state, transaction_pending, requestg
data_phase)
BEGIN
CASE (curr_state) IS
WHEN S_IDLE =>
IF transaction_pending THEN
next_state <= S_REQ;
ELSE
next_state <= S_IDLE;
END IF;
WHEN S_REQ =>
IF requestgnt_phase THEN
next_state <= S_ADDR;
ELSE
next_state <= S_REQ;
END IF;
WHEN S_ADDR =>
IF addr_phase THEN
next_state <= S_ACTIVE;
ELSE
next_state <= S_ADDR;
END IF;
WHEN S_ACTIVE =>
IF NOT data_phase THEN
next_state <= S_IDLE;
ELSE
next_state <= S_ACTIVE;
END IF;
END CASE;
END PROCESS;

END rtl;
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D (trans_eq_2 OR
D (Im_dxfrn ='0")

) OR (trans_eq_4 AND

='0)) AND

nt_phase, addr_phase,



C.7 PLL_RECONFIG_INTERFACE .VHD

-- TM4: Bridge FPGA - Reconfigurable PLLs & PCI in terface circuit

-- Author: Josh Fender

-- Description:

-- Instantiates both an enhanced PLL and PLL_REC ONFIG megafunction

-- and provides wrapper circuitry to interface w ith the PCI core

-- TODO:

-- - Finish documentation about signal ports

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY work;
USE work.complib.all;

ENTITY pll_reconfig_interface IS
PORT (
-- PLL clocks
clk_in : IN STD_LOGIC;
clk_out : OUT STD_LOGIC;
-- Bus interface signals
pci_data_in : IN STD_LOGIC_VECTOR(63 downto 0);
pci_data_out : OUT STD_LOGIC_VECTOR(31 downto O );
pci_we : IN STD_LOGIC;
pci_clk : IN STD_LOGIC;
-- Misc signals
locked : OUT STD_LOGIC;
reset: IN STD_LOGIC;
clk22 : IN STD_LOGIC);
END;

ARCHITECTURE rtl OF pll_reconfig_interface IS
-- PLL signals
SIGNAL scanaclr, scandata, scanclk : STD_LOGIC;
SIGNAL c0_clk, scandataout : STD_LOGIC;
-- PLL_reconfig signals
SIGNAL reconfig, read_en : STD_LOGIC;
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SIGNAL write_en, busy : STD_LOGIC;
SIGNAL counter_type : STD_LOGIC_VECTOR (3 downto
SIGNAL data_in, data_out : STD_LOGIC_VECTOR (8 do
SIGNAL counter_param : STD_LOGIC_VECTOR (2 downto
SIGNAL command_wait : STD_LOGIC_VECTOR(1 downto 0
BEGIN
PLL : enhancedpll
PORT MAP (clk_in, scanaclr, scandata, scanclk,
scandataout, locked, clk_out);

reconfig_inst : pll_reconfig
PORT MAP (reconfig, counter_type, scandataout,
reset, data_in, clk22, counter_param,
scanclk, scanaclr, busy, data_out, sc

-- Combine the necessary signals into a single PC
-- only register

pci_data_out(8 downto 0) <= data_out;
pci_data_out(30 downto 9) <= (others =>'0");
pci_data_out(31) <= busy;

-- Extract the control signals from a PCI write r
-- request and register results. The registering
-- but helps to meet timing
PROCESS (pci_clk)
BEGIN
IF rising_edge(pci_clk) THEN
IF (pci_we ='1") THEN
reconfig <= pci_data_in(0);
read_en <= pci_data_in(1);
write_en <= pci_data_in(2);
counter_type <= pci_data_in(7 downto 4);
data_in <= pci_data_in(16 downto 8);
counter_param <= pci_data_in(26 downto 24);
command_wait <= "11";
ELSIF (command_wait = "00") THEN
-- We need to clear the enable signals once
-- circuitry sees it to insure the command
read_en <="0";
write_en <='0";
reconfig <="'0";
ELSE
command_wait(1) <= command_wait(0);
command_wait(0) <="'0";
END IF;
END IF;
END PROCESS;

END rtl;

0);

wnto 0);
0);
)

c0_clk,

read_en,
write_en,
andata);

I read

egister
is redundant

the configuration
only executes once



fifo_data_out, rdempty, |_fifolevel,w rfull);
aclr <= NOT rstn;

C.8 READFIFO.VHD

nearlyempty <= rdempty;

L -- rdreq <= '1' WHEN (rdempty = '0") AND (get32bit s="'1") else '0%
LIBRARY ieee; . rdreq <= '1' WHEN (get32bits = '1') else '0';
USE ieee.std_logic_1164.all; readFIFOhas2 <= '1' when |_fifolevel /= "00000000 00001" AND
|_fifolevel /= "00000000 00000" AND

LIBRARY work;
USE work.complib.all;

ENTITY readfifo IS
PORT (

-- Input side signals (nib domain)
dataln : IN STD_LOGIC_VECTOR(31 downto 0);
wrreq : IN STD_LOGIC;
nibclk : IN STD_LOGIC;
-- Output side signals (PCI domain)
get32bits : IN STD_LOGIC;
get64bits : IN STD_LOGIC;
data32ready : OUT STD_LOGIC;
data64ready : OUT STD_LOGIC;
nearlyempty : OUT STD_LOGIC;
dataOut : OUT STD_LOGIC_VECTOR(63 downto 0);
fifolevel : OUT STD_LOGIC_VECTOR(12 downto 0);
readFIFOhas2 : OUT STD_LOGIC;

pciclk2x : IN STD_LOGIC;

pciclk : IN STD_LOGIC;

rstn : IN STD_LOGIC);
END;

ARCHITECTURE rtl OF readfifo IS
-- FIFO Signals
SIGNAL fifo_data_out : STD_LOGIC_VECTOR(31 downto 0);
SIGNAL rdreq, rdempty, wrfull : STD_LOGIC;
SIGNAL aclr : STD_LOGIC;
-- State Signals
SIGNAL data_lo_valid, data_hi_valid : STD_LOGIC;
SIGNAL pause : STD_LOGIC;
-- Data signals

SIGNAL data_lo, data_hi : STD_LOGIC_VECTOR(31 dow nto 0);
)

SIGNAL |_fifolevel : STD_LOGIC_VECTOR(12 downto O
BEGIN

process(pciclk)
BEGIN

IF rising_edge(pciclk) THEN

fifolevel <= |_fifolevel,

END IF;

END PROCESS;

-- Instantiate fifo
fifo : Ipm_read_fifo
PORT MAP( datain, wrreq, rdreq, pciclk, nibclk, aclr,
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rdempty = '0' ELSE '0

dataout(63 downto 32) <= fifo_data_out;
dataout(31 downto 0) <= fifo_data_out;
data32ready <= NOT rdempty;
data64ready <="0';

END rtl;

C.9 TARGECONTROLLER .VHD

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY work;
USE work.complib.all;

ENTITY targetcontroller IS
PORT (

-- Altera PCI Core Local Side Target Signals
It_abortn : OUT STD_LOGIC;
It_discn : OUT STD_LOGIC;
It_rdyn : OUT STD_LOGIC;
It_framen : IN STD_LOGIC;
It_ackn : IN STD_LOGIC;
It_dxfrn : IN STD_LOGIC;
It_tsr: IN STD_LOGIC_VECTOR(11 downto 0);

-- Altera PCI Core Local Side Addr/Data Signals
|_adi : OUT STD_LOGIC_VECTOR(63 downto 0);
|_adro : IN STD_LOGIC_VECTOR(63 downto 0);
|_dato : IN STD_LOGIC_VECTOR(63 downto 0);
|_beno : IN STD_LOGIC_VECTOR(7 downto 0);
|_cmdo : IN STD_LOGIC_VECTOR(3 downto 0);
|_Idat_ackn : IN STD_LOGIC;

|_hdat_ackn : IN STD_LOGIC;

-- Control register interface

reg_data_in : IN STD_LOGIC_VECTOR(31 downto 0);
reg_data_out : OUT STD_LOGIC_VECTOR(31 downto 0 );
reg_data_addr : OUT STD_LOGIC_VECTOR(7 downto 0 );
reg_read_ack : OUT STD_LOGIC;

reg_wrreq : OUT STD_LOGIC;



-- Barl FIFO interface signals

writeFIFOdata : OUT STD_LOGIC_VECTOR(63 downto 0);
writeFIFOlow : OUT STD_LOGIC;

writeFIFOhigh : OUT STD_LOGIC;

writeFIFOnearlyfull : IN STD_LOGIC;

readFIFOdata : IN STD_LOGIC_VECTOR(63 downto 0)
readFIFO_get32 : OUT STD_LOGIC;

readFIFO_get64 : OUT STD_LOGIC;
readFIFOnearlyempty : IN STD_LOGIC;
readFIFO_data32ready : IN STD_LOGIC;
readFIFO_data64ready : IN STD_LOGIC;

-- Other signals
fifo_overflow_error : OUT STD_LOGIC;
local_rstn : IN STD_LOGIC;
rstn : IN STD_LOGIC;
clock : IN STD_LOGIC);
END;

ARCHITECTURE rtl OF targetcontroller IS
TYPE states IS (S_IDLE, S_ASSERTREADY,S_ACTIVE, S _DISCONNECT);
SIGNAL curr_state, next_state : states;
SIGNAL memread, memwrite, barO, barl, burst,tran
SIGNAL barOwrite,barOread : STD_LOGIC;
SIGNAL barlwrite,barlread : STD_LOGIC;
SIGNAL readFIFOdataready : STD_LOGIC;
SIGNAL highTransfer : STD_LOGIC;
SIGNAL temp : STD_LOGIC_VECTOR(63 downto 0);
-- Fifo over/under flow counter signals
SIGNAL disc_counter : INTEGER RANGE 0 TO 16777215 ;
SIGNAL disc_count_enable : STD_LOGIC;
SIGNAL disc_count_reset : STD_LOGIC;
SIGNAL fifo_override : STD_LOGIC;
BEGIN
-- Setup the BAR1 fifo writes
writeFIFOdata <= |_dato(63 downto 0);
writeFIFOlow <= barlwrite AND (NOT I_beno(0));
writeFIFOhigh <= barlwrite AND trans64 AND (NOT | _beno(4));

s64 : STD_LOGIC;

-- Setup the register write/read signals

highTransfer <= (NOT I_beno(4) AND trans64) OR |_ adro(2);

reg_data_out <=|_dato(63 downto 32) when highTra nsfer ='1' else
|_dato(31 downto 0);

reg_data_addr <=1_adro(9 downto 3) & (highTransf

reg_wrreq <= barOwrite;

er or I_adro(2));

-- Setup the read connections
PROCESS (Clock)
BEGIN

IF rising_edge(clock) THEN
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IF bar0 ='1' THEN
|_adi(31 downto 0) <= reg_data_in;
|_adi(63 downto 32) <= reg_data_in;
ELSE -- IF barl ='1' THEN
|_adi <= readFIFOdata;
END IF;

-- Setup the register read ack signal
reg_read_ack <= barOread;
readFIFO_get32 <= barlread AND (NOT I_beno(0)
readFIFO_get64 <= barlread AND trans64 AND (N
END IF;
END PROCESS;

-- Command decoder

memread <= '1" when (I_cmdo = "0110") or (I_cmdo
"1110") else '0';

memwrite <='1" when (I_cmdo = "0111") or (I_cmdo
burst <= It_tsr(9); -- Need to know so we can is
trans64 <= It_tsr(7);

-- Decode addressing phase
bar0 <="1' when (lt_tsr(0) = '1') and (It_framen
barl <="1"'when (lt_tsr(1) = '1) and (It_framen

-- Drive local side control signals

It_rdyn <='0" WHEN (curr_state = S_ACTIVE OR
curr_state = S_ASSERTREADY)

It_abortn <="1";

-- Backend interface signals

barOwrite <= bar0 AND memwrite AND NOT It_dxfrn;
barOread <= bar0 AND memread AND NOT It_dxfrn;
barlwrite <= barl AND memwrite AND NOT It_dxfrn;
barlread <= barl AND memread AND NOT It_dxfrn;

-- FIFO over/under flow error catcher
disc_count_enable <="1' WHEN curr_state = S_DISC
disc_count_reset <='1' WHEN curr_state = S_ASSE
fifo_overflow_error <= fifo_override;

PROCESS (clock,local_rstn)
BEGIN
IF (local_rstn ='0") THEN
disc_counter <= 0;
fifo_override <='0";
ELSIF rising_edge(clock) THEN
IF disc_count_reset = '1' THEN
disc_counter <= 0;
ELSIF (disc_count_enable ='1") THEN
disc_counter <= disc_counter + 1;
END IF;

IF (disc_counter = 16777215) THEN

)i
OT I_beno(4));

="1100") or (I_cmdo

="1111") else '0';
sue a disconnect

='0") else '0%
='0") else '0%

ELSE '1}

ONNECT ELSE '0;
RTREADY ELSE '0";



fifo_override <="1";
END IF;
END IF;
END PROCESS;

-- BARO Statemachine
PROCESS (clock,rstn)
BEGIN
IF (rstn ='0") THEN
curr_state <= S_IDLE;
ELSIF rising_edge(clock) THEN
curr_state <= next_state;
END IF;
END PROCESS;

-- Some simplification signals
readFIFOdataready <= readFIFO_data32ready AND (re
NOT trans64);

PROCESS (curr_state, It_ackn, burst, bar0,barl,me
readfifodataready,memwrite,writefifonear
readfifonearlyempty, It_framen, fifo_ove

BEGIN

It_discn <="1"
CASE (curr_state) IS
WHEN S_IDLE =>
-- Check if we have fifo data/space for a b
IF (barl ='1") AND
((memread ='1" AND readFIFOdataready =
(memwrite = '1' AND writeFIFOnearlyful
(fifo_override ='0") THEN
-- Issue a PCl retry
It_discn <="0";
next_state <= S_DISCONNECT;
ELSIF (bar0 ='1' OR barl = '1") THEN
next_state <= S_ASSERTREADY;
ELSE
next_state <= S_IDLE;
END IF;
WHEN S_ASSERTREADY =>
IF (bar0 ='1") AND (burst = '1") THEN
next_state <= S_DISCONNECT;
It_discn <="0";
ELSE
next_state <= S_ACTIVE;
END IF;
WHEN S_ACTIVE =>
IF (barl ='1") AND burst ='1' and
((memread = '1' AND readFIFOnearlyempty
(memwrite = '1' AND writeFIFOnearlyfull
(fifo_override ='0") THEN
next_state <= S_DISCONNECT;
It_discn <="0";
ELSIF (It_framen ='1") THEN

adFIFO_data64ready OR

mread,

Iyfull,

rride)

arl access

0') OR
I="1)) AND

='1) OR
='1) AND
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next_state <= S_IDLE;
ELSE

next_state <= S_ACTIVE;
END IF;

WHEN S_DISCONNECT =>
IF (It_framen ='1") THEN
next_state <= S_IDLE;

ELSE
next_state <= S_DISCONNECT;
END IF;
END CASE;
END PROCESS;

END rtl;

C.10 TEMPMC _INTERFACE .VHD

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY work;
USE work.complib.all;

ENTITY tempmc_interface IS

PORT (
-- PCl interface signals
pci_data_in : IN STD_LOGIC_VECTOR(31 downto 0);
pci_data_out : OUT STD_LOGIC_VECTOR(31 downto 0
pci_we : STD_LOGIC;
-- Temp Monitors Signals
smb_clk : INOUT STD_LOGIC;
smb_data : INOUT STD_LOGIC;
smb_alertn : IN STD_LOGIC;

clk : IN STD_LOGIC;
rstn : IN STD_LOGIC);

END tempmc_interface;

ARCHITECTURE rtl OF tempmc_interface IS

SIGNAL command, writedata, readdata : std_logic_v
SIGNAL rd_req, rd_ack, wr_req, wr_ack : STD_LOGIC
SIGNAL clr_alert_req, clr_alert_ack : STD_LOGIC;
SIGNAL chip_sel : STD_LOGIC;

BEGIN

tempmc_inst : tempmc
PORT MAP( rstn, smb_clk, smb_data, command, re

rd_req,

rd_ack, wr_req, wr_ack, clr_alert_re
clk, chip_sel, smb_alertn );
-- Combine outputs to pci_data_out

ector(7 downto 0);

addata, writedata,

q, clr_alert_ack,



pci_data_out(7 downto 0) <= readdata;
pci_data_out(8) <= rd_ack;

pci_data_out(9) <= wr_ack;

pci_data_out(10) <= clr_alert_ack;
pci_data_out(31 downto 11) <= (others =>'0);

-- Process the data writes
PROCESS (clk)
BEGIN
IF rising_edge(clk) THEN
IF pci_we ='1' THEN
command <= pci_data_in(7 downto 0);
writedata <= pci_data_in(15 downto 8);
rd_req <= pci_data_in(16);
wr_req <= pci_data_in(17);
clr_alert_req <= pci_data_in(18);
chip_sel <= pci_data_in(31);
END IF;
END IF;
END PROCESS;
END rtl;

C.11WRITEFIFO .VHD

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY work;
USE work.complib.all;

ENTITY writefifo IS
PORT (

-- Output side signals (nib domain)
dataout : OUT STD_LOGIC_VECTOR(31 downto 0);
rdreq : IN STD_LOGIC;
rdempty : OUT STD_LOGIC;
nibclk : IN STD_LOGIC;
-- Input side signals (PCI domain)
wrnearlyfull : OUT STD_LOGIC;
write_fifo_has_space : OUT STD_LOGIC;
datain : IN STD_LOGIC_VECTOR(63 downto 0);
writehigh : IN STD_LOGIC;
writelow : IN STD_LOGIC;
pciclk : IN STD_LOGIC;
pciclk2x : IN STD_LOGIC;
rstn : IN STD_LOGIC;
wrused : BUFFER STD_LOGIC_VECTOR(12 downto 0);
-- DEBUG Signals
peakwritelowbuffer : OUT STD_LOGIC;
peakwritehighbuffer : OUT STD_LOGIC;
peakwritereq : OUT STD_LOGIC);
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END;

ARCHITECTURE rtl OF writefifo IS
-- Fifo signals
SIGNAL fifo_data_in : std_logic_vector(31 downto
SIGNAL wrreq, aclr : std_logic;
-- Other signals
SIGNAL databuffer : STD_LOGIC_VECTOR(63 downto 0)
SIGNAL writehighbuffer : STD_LOGIC;
SIGNAL writelowbuffer : STD_LOGIC;

BEGIN
peakwritelowbuffer <= writelowbuffer;
peakwritehighbuffer <= writehighbuffer;
peakwritereq <= wrreq;

-- Instantiate fifo
fifo : Ipm_write_fifo
PORT MAP( fifo_data_in, wrreq, rdreq, nibclk, p
dataout,
rdempty, wrused);
aclr <= NOT rstn;

-- FIFO control signals
-- fifo_data_in <= databuffer(31 downto 0) WHEN (w
ELSE
- databuffer(63 downto 32);
fifo_data_in <= databuffer(31 downto 0) WHEN (pci

databuffer(63 downto 32);
write_fifo_has_space <='1' when wrused(12) = '0’

wrreq <= '1' WHEN (writelowbuffer = '1) OR (writ
pciclk ='0") ELSE '0";

wrnearlyfull <= '1' WHEN (wrused(12 downto 2) ="
0"

-- Buffer the input signal using the slow clock
PROCESS(pciclk)
BEGIN
IF rising_edge(pciclk) THEN
databuffer <= datain;
END IF;
END PROCESS;

PROCESS(pciclk2x,rstn)
BEGIN
IF (rstn ='0") THEN
writelowbuffer <= '0;
writehighbuffer <='0";
ELSIF rising_edge(pciclk2x) THEN
IF (writelowbuffer = '1") AND (pciclk ='1")
writelowbuffer <=0’
ELSIF pciclk ='0' THEN
writelowbuffer <= writelow;

0);

ciclk2x, aclr,

ritelowbuffer = '1")

clk ="1) ELSE

else '0';
ehighbuffer ='1' AND

11111111111") else

THEN



writehighbuffer <= writehigh; END rtl;
END IF;

END IF;
END PROCESS;
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D DEVELOPMENT BusVHDL C oDE

D.1 DEVREAD.VHD

-- TM4: Development Bus Parameterized Bus Abstract
-- Author: Gary Pong / Josh Fender

-- Command: Direct Read (no handshake)

-- Description:
--  Provides a parameterized width register on a
-- that user circuits can use as a handshake fre

-- User Signals:
- data: std_logic_vector(datawidth - 1 downto
- - parameterized width register's output

-- Module Parameters:

- datawidth Width, in bits, of desired regi

- readCycles Number of 32bit development bus
- necessary for a dataWidth read

- = Ceiling(dataWidth/32)

- readPow2 A flag indicated if readCycles i

- - 1 if power of 2

- - 0 if not a power of 2

- portAddr An 6 bit std_logic_vector that

- address of the abstracted regis

-- Bus Protocol

- The direct read transaction consists of [read

-~ 32bitread cycles. Reads are ordered from LS
- master drives the address lines and asserts t
- one cycle. After a variable number of idle b

--  zero, the target device assert TACKn, latches
-- into an internal buffer and transmits the val

-- across the development bus.

LIBRARY ieee;

ion Module -

development FPGA
e output -

0) -

ster -
transactions --

indicates the --
ter port -

Cycles] different  --
Bto MSB. The bus -
he FRAMER signal for
us cycles, possibly --
the data input port --
ues 32 bits at a time --

USE ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

ENTITY DevRead IS

GENERIC (
datawidth : natural;
readCycles : natural; -- = CEIL(Datawidth/32
readPow?2 : natural; -- =1 if readCycles i

portAddr : natural

)
PORT (
-- Development Bus Signals
resetn : in std_logic;
address : in std_logic_vector(5 downto 0);
datain : in std_logic_vector(31 downto 0);
dataout : out std_logic_vector(31 downto 0);
oe : out std_logic;
framen : in std_logic;
tackn : out std_logic;
devclk : in std_logic;
-- User interface signals
data : in std_logic_vector(datawidth - 1 downt
)i
END;

ARCHITECTURE rtl of DevRead IS
SIGNAL databuffer : std_logic_vector( (readCycles
SIGNAL readcount : natural range 0 to readCycles-
SIGNAL readEn : std_logic;

BEGIN
-- Control Logic
readEn <="1' WHEN (framen ='0") AND (address =

PROCESS (resetn,devclk,readEn)
BEGIN
IF (resetn ='0") THEN
readcount <= 0;
databuffer <= (others =>'0");
tackn <="'1%
oe <="0",
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)

n a power of 2

00)

-1)*32 downto 0);

portaddr) ELSE '0";



dataout <= (others =>'0");
ELSIF (rising_edge(devclk)) THEN
IF (readEn ='1' or readcount /= 0) THEN
tackn <="'0";
oe <="1",

-- Handle data transmission and buffering
IF (readcount = 0) THEN
IF (readCycles > 1) THEN
-- if multiple cycles required, buffer
databuffer(datawidth - 1 - 32 downto 0)
downto 32);
dataout <= data(31 downto 0);
ELSE
-- directly output all data
dataout(datawidth - 1 downto 0) <= data
END IF;
ELSE
-- map databuffer contents to dataout, 32
readloop : FOR k IN 1 TO readCycles-1 LOO
IF (readcount = k) THEN
dataout <= databuffer(k*32-1 downto (
END IF;
END LOOP readloop;
END IF;

-- Update the read cycle counters
IF (readcount = readCycles-1) THEN
-- If readCycles is power of 2 the counte
IF (readPow2 = 1) THEN
readcount <= readcount + 1;
ELSE
readcount <= 0;
END IF;
ELSE
readcount <= readcount + 1;
END IF;
ELSE
tackn <="'1%
oe <="0",
dataout <= (others =>'0");
END IF;
END IF;
END PROCESS;

END rtl;

D.2 DEVREADBURST.VHD

-- TM4: Development Bus Parameterized Bus Abstract
-- Author: Gary Pong / Josh Fender

data
<= data(datawidth - 1

bits at a time
P

k-1)*32);

r will auto wrap

ion Module -

-- Command: Direct Read (with handshake)

-- Description:
- Provides a parameterized width port on a deve
-- that user circuits can use as an output with

-- User Signals:
- data: std_logic_vector(datawidth - 1 downto
- - parameterized width register's output

-- Module Parameters:

- datawidth Width, in bits, of desired regis

- readCycles Number of 32bit development bus
- necessary for a dataWidth write

- = Ceiling(dataWidth/32)

- readPow2 A flag indicated if readCycles i

- - 1 if power of 2

- - 0 if not a power of 2

- portAddr An 6 bit std_logic_vector that

- address of the abstracted regis

-- Bus Protocol

- The direct read transaction consists of [read

-~ 32bitread cycles. Reads are ordered from LS
-- direct read transaction continuously

LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY DevReadBurst IS

GENERIC (
dataWidth : natural := 64;
readCycles : natural := 2; -- = CEIL(Datawid
readPow?2 : natural := 1; --=1if readCyc

portAddr : natural := 0

)

PORT (
-- Development Bus Signals
resetn : in std_logic;
address : in std_logic_vector(5 downto 0);
datain : in std_logic_vector(31 downto 0);
dataout : out std_logic_vector(31 downto 0);
oe : out std_logic;
framen : in std_logic;
tackn : out std_logic;
devclk : in std_logic;
-- User interface signals
data : in std_logic_vector(datawidth - 1 downt
dataReq : out std_logic;
dataReady : in std_logic
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END;

ARCHITECTURE rtl of DevReadBurst IS
PROCEDURE BufferData(SIGNAL data : IN std_logic_v
0);
SIGNAL readcount : INOUT nat
SIGNAL dataout : OUT std_log
SIGNAL databuffer : OUT std_
1)*32 downto 0)) IS
BEGIN
IF readCycles > 1 THEN
-- Need to buffer a multicycle transfer
databuffer(datawidth - 1 - 32 downto 0) <= da
32);
dataout <= data(31 downto 0);
readcount <= 1;
ELSE
dataout(datawidth - 1 downto 0) <= data;
databuffer(0) <='-
readcount <= 0;
END IF;
END BufferData;

PROCEDURE SendData( SIGNAL databuffer : IN std_lo
1)*32 downto 0);
SIGNAL readcount : INOUT natu
SIGNAL dataout : OUT std_logi
BEGIN
SendLoop : FOR k IN 1 TO readCycles-1 LOOP
IF (readcount = k) THEN
dataout <= databuffer(k*32-1 downto (k-1)*3
END IF;
END LOOP SendLoop;

IF readcount = (readCycles - 1) THEN
-- We need to reset the counter to zero
IF (ReadPow?2 = 1) THEN

readcount <= readcount+1;
ELSE

readcount <= 0;
END IF;

ELSE
readcount <= readcount+1;

END IF;

END SendData;

TYPE states IS (S_IDLE, S_FRAME, S_HANDSHAKEWAIT,
SIGNAL curr_state : states;

SIGNAL framecycle : BOOLEAN;

SIGNAL cyclelength : STD_LOGIC_VECTOR(15 downto 0
SIGNAL databuffer : std_logic_vector( (readCycles

ector(datawidth - 1 downto

ural;
ic_vector(31 downto 0);
logic_vector( (readCycles-

ta(datawidth - 1 downto

gic_vector( (readCycles-

ral;
c_vector(31 downto 0)) IS

2);

S_TRANSFER);

)i
-1)*32 downto 0);

SIGNAL readcount : natural range 0 to readCycles-

BEGIN

framecycle <= (framen ='0") AND (address = porta

PROCESS (resetn,devclk)
BEGIN
IF (resetn ='0') THEN
curr_state <= S_IDLE;
cyclelength <= (others =>'0);
dataReq <="'0";
oe <="0",
tackn <="'1"
ELSIF (rising_edge(devclk)) THEN
oe <='0}
tackn <="'1%
dataout <= (others =>'0");
CASE (curr_state) IS
WHEN S_IDLE =>
IF framecycle THEN
IF dataReady ='0' THEN
curr_state <= S_FRAME;
cyclelength <= datain(15 downto 0);
ELSE
cyclelength <= datain(15 downto 0) -
CONV_STD_LOGIC_VECTOR(1,16);
dataReq <='1';
-- Perform transfer
oe <="1",
tackn <="'0";
BufferData(data,readcount,dataout,dat
IF readCycles > 1 THEN
curr_state <= S_TRANSFER;
ELSE
curr_state <= S_HANDSHAKEWAIT;
END IF;
END IF;
END IF;
WHEN S_FRAME =>
IF dataReady = '1' THEN
dataReq <='1};
cyclelength <= cyclelength - 1;
-- Perform transfer
oe <="1},
tackn <="'0";
BufferData(data,readcount,dataout,datab
IF readCycles > 1 THEN
curr_state <= S_TRANSFER;
ELSE
curr_state <= S_HANDSHAKEWAIT;
END IF;
END IF;
WHEN S_TRANSFER =>
oe <="1"
tackn <="0";
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E

cyclelength <= cyclelength - 1;
SendData(databuffer,readcount,dataout);
IF readcount = (readCycles - 1) THEN
-- We are at the end of a transfer
IF dataReady = '1' THEN
curr_state <= S_HANDSHAKEWAIT;
ELSE
dataReq <='0";
IF cyclelength = CONV_STD_LOGIC_VECTO
curr_state <= S_IDLE;
ELSE
curr_state <= S_FRAME;
END IF;
END IF;
END IF;
WHEN S_HANDSHAKEWAIT =>
dataReq <= dataReady;
IF dataReady = '0' THEN
IF cyclelength = CONV_STD_LOGIC_VECTOR(
curr_state <= S_IDLE;
ELSE
curr_state <= S_FRAME;
END IF;
END IF;
END CASE;
END IF;
END PROCESS;

ND rtl;

D.3 DEVWRITE .VHD

TM4: Development Bus Parameterized Bus Abstract
Author: Josh Fender

Command: Direct Write (no handshake)

Description:
Provides a parameterized width register on a
that user circuits can use as a handshake fre

User Signals:
data : out std_logic_vector(dataWidth - 1 do
- parameterized width register's output
dataNew : out std_logic;
- Asserted by module for one cycle at the
is available on the data output lines

Module Parameters:
dataWidth  Width, in bits, of desired regi
writeCycles Number of 32bit development bus

R(0,16) THEN

0,16) THEN

ion Module -

development FPGA  --
e input. --

wnto 0); --

same time new data --

ster -
transactions --

- necessary for a dataWidth write

- = Ceiling(dataWidth/32)

- writePow2 A flag indicated if writeCycles
- - 1 if power of 2

- - 0 if not a power of 2

- portAddr An 6 bit natural that indicates
- address of the abstracted regis

-- Bus Protocol

--The direct write transaction consists of [wri

-- 32bit write cycles. Writes are ordered from

-- direct write transaction accepts any number o
-- between different write cycles in a multiwrit

-- abstract port register is only updated when a
-- write cycles have been completed.

- Assingle write cycle consists of the bridge ¢
-- address and data lines as well as asserting t
- onecycle.

-- Waveform

- CLOCK ™

- FRAMEn |

- DATA -[Data LSB]
T Tackn NORERETTLRRRM

- Notes: 1 There can be any number of bus idle
- different 32bit write cycles. Ani
- of a bus cycle where FRAMER is not

LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY DevWrite IS

GENERIC (
datawidth : natural;
writeCycles : natural; -- = CEIL(Datawidth/3
writePow2 : natural;  -- = 1 if writecycles
portAddr : natural );

PORT (
-- Development Bus Signals
resetn : in std_logic;
address : in std_logic_vector(5 downto 0);
datain : in std_logic_vector(31 downto 0);
dataout : out std_logic_vector(31 downto 0);
oe : out std_logic;
framen : in std_logic;
tackn : out std_logic;
devclk : in std_logic;
-- User interface signals
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data : out std_logic_vector(datawidth - 1 down
dataNew : out std_logic);
END;

ARCHITECTURE rtl of DevWrite IS
-- Note: databuffer made one too large to handle
- buffer is required (ie single cycle tran
SIGNAL databuffer : std_logic_vector((writecycles
SIGNAL writecount : natural range O to writecycle
SIGNAL writeEn : std_logic;

BEGIN
-- Set Dev Bus outputs
tackn <="'1'; oe <='0"; dataout <= (others =>
-- Control Logic
writeEn <= '1' WHEN (framen ='0") AND (address =

PROCESS (resetn,devclk,writeEn)
BEGIN
IF (resetn ='0") THEN
databuffer <= (others =>'0");
writecount <= 0; data <= (others =>'0");
dataNew <="'0";
ELSIF (rising_edge(devclk)) THEN
dataNew <='0";
IF (writeEn ='1") THEN
-- If multicycle write then buffer the init
IF (writecycles > 1) THEN
writeloop : FOR k IN 0 TO writecycles-2 L
IF (writecount = k) THEN
databuffer((k+1)*32-1 downto k*32) <=
END IF;
END LOOP writeloop;
END IF;

-- If this is the last cycle of write updat
-- with buffered data and current bus trans
IF (writecount = writecycles-1) THEN
dataNew <=1
data(datawidth-1 downto (writecycles-1)*3
datain(datawidth - (writecycles-1)*
IF (writecycles > 1) THEN
data((writecycles-1)*32-1 downto 0) <=
databuffer((writecycles-1)*32-1 dow
END IF,;

-- If writecycles is power of 2 the count
IF (writePow2 = 1) THEN
writecount <= writecount + 1;
ELSE
writecount <= 0;
END IF,;
ELSE
writecount <= writecount + 1;
END IF;

to 0);

case where no data
sactions)

-1)*32 downto 0);
s-1;

'0Y);

portaddr) ELSE '0";

ial cycles data
OOP

datain;

e data output

action data

2) <=
32-1 downto 0);

nto 0);

er will auto wrap

END IF;
END IF;
END PROCESS;

END rtl;

D.4 DEVWRITEACK .VHD

-- TM4: Development Bus Parameterized Bus Abstract

-- Author: Josh Fender
-- Command: Acked Write (with dataNew output)

-- Description:
- Provides a parameterized width register on a
-- that user circuits can use as a flow controll

-- User Signals:

- data: out std_logic_vector(dataWidth - 1 do
- - parameterized width register's output

-- dataReq : in std_logic;

- - Asserted by user when they want new dat
- dataNew : out std_logic;

- - Asserted by module when data is valid a
- until the user deasserts dataReq

-- Module Parameters:

- datawidth Width, in bits, of desired regi

- writeCycles Number of 32bit development bus
- necessary for a dataWidth write

- = Ceiling(dataWidth/32)

- writePow2 Unused legacy parameter

- portAddr An 6 bit std_logic_vector that

- address of the abstracted regis

-- Bus Protocol

- The acked write transaction consists of [writ

-- 32bit write cycles followed by an acknowledge
-- are ordered from LSB to MSB. The acked write
- any number of idle bus states between differe
- amultiwrite transaction. The abstract port

-- updated when all [writeCycles] write cycles h

-- and the user circuit has asserted dataReq.

- Assingle write cycle consists of the bridge ¢
-- address and data lines as well as asserting t
- onecycle.

- An acknowledgement cycle must follow, without

- immediately after a write cycle. The cycle c
-- device holding the target address, write data
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assert frame until it detects a target acknow
master will then deassert frame for one cycle
with further transactions.

Waveform
CLOCK I P ) |
ADDRESS -[ Address ]--1--[ Address
FRAMEn 7| |

DATA -[Data LSB]-- Data MSB
TACKn o R T s |

Notes: 1 There can be any number of bus idle
different 32bit write cycles. Ani
of a bus cycle where FRAMER is not

User Circuit Handshake
dataReq [User Driven]
dataNew [Port Driven]
dataOut [Port Driven] ----------------- <Dat

- User circuit asserts dataReq

- When data is ready the port asserts dataNe
newly received data

- Once the user circuit is finished with the
dataReq. From this time dataOut is consid

- Upon seeing that the user circuit has deas
port will deassert dataNew

LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY DevWriteAck IS

GENERIC (
dataWidth : natural := 53;
writeCycles : natural := 2; -- = CEIL(Datawi
writePow2 : natural :=1; -- =1 if writec

portAddr : natural := 0);

PORT (

-- Development Bus Signals

resetn : in std_logic;

address : in std_logic_vector(5 downto 0);
datain : in std_logic_vector(31 downto 0);
dataout : out std_logic_vector(31 downto 0);
oe : out std_logic;

framen : in std_logic;

tackn : out std_logic;

devclk : in std_logic;

-- User interface signals

data : out std_logic_vector(datawidth - 1 down
dataReq : in std_logic;

dataNew : out std_logic);

END;

ledgement. The --
before continuing  --

states between -
dle state consists -
asserted. --
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ered no longer valid --
serted dataReq the -

dth/32)
ycles in a power of 2

to 0);

ARCHITECTURE rtl of DevWriteAck IS
SIGNAL databuffer : std_logic_vector(writecycles*
SIGNAL writecount : natural range 0O to writecycle
SIGNAL writeEn, pause : boolean;
SIGNAL dataReady : std_logic;

BEGIN
data <= databuffer(datawidth - 1 downto 0);
dataNew <= dataReady;

-- Set Dev Bus outputs
dataout <= (others =>'0");
oe <="0",

writeEn <= (framen ='0") AND (address = portaddr
tackn <="'0" WHEN (writeCount = writeCycles) AND
AND (dataReady ='1") ELSE '1';

PROCESS (resetn, devclk)
BEGIN
IF (resetn ='0") THEN
databuffer <= (others =>'0");
writeCount <= 0;
dataReady <='0";
pause <= false;
ELSIF rising_edge(devclk) THEN
-- Pause until the framen is deasserted
IF pause THEN
pause <= (framen = '0');
-- If we have data ready then handle the hand
ELSIF (writeCount = writeCycles) THEN
dataReady <= dataReq;
IF (dataReq ='0") AND (dataReady = '1") TH
writeCount <= 0;
pause <= true;
END IF;
-- If the devbus is handling a write then buf
ELSIF writeEn THEN
writeCount <= writecount + 1;
-- Load 32bit parallel shift register
databuffer(writecycles*32-1 downto (writecy
IF (writecycles > 1) THEN
writeloop : FOR k IN 1 TO writecycles-1 L
databuffer((k*32)-1 downto (k-1)*32) <=
databuffer((k+1)*32-1 downto k*32);
END LOOP writeloop;
END IF;
END IF;
END IF;
END PROCESS;

END rtl;
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E LINUX DEVICE DRIVER

E.1 TMA4DRIVER.C

#define MODULE
#define _ KERNEL__

#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <asm/uaccess.h>

#include "ioctlcmd.h"
#include "clockparam.h"

#ifndef CONFIG_PCI
# error "This driver needs PCI support to be avail
#endif

#define TM4_VENDOR 0x1172
#define TM4_DEVICE 0x0004

#define TMAWREG_NCONFIG 0*4
#define TMAWREG_MODE  1*4
#define TMAWREG_NIBRESET 2*4
#define TMAWREG_DMAADDR Oxfa*4
#define TMAWREG_DMACTRL Oxfb*4
#define TMAWREG_JTAG  Oxfc*4
#define TMAWREG_TEMPMON Oxfd*4
#define TMAWREG_GLBCLK Oxfe*4
#define TMAWREG_NIBCLK Oxff*4

#define TMARREG_NSTATUS 0*4
#define TMARREG_NIBCLK 1*4
#define TMARREG_GLBCLK 2*4

able"

#define TM4ARREG_TEMPMON 3*4
#define TMARREG_WFIFO 5*4
#define TMARREG_ERROR 6*4
#define TMARREG_JTAG 7*4
#define TMARREG_RFIFO 9*4
#define TMARREG_LIRQ 14*4

#define TEMPMON_DATAMASK Oxff
#define TEMPMON_RDACK  0x100
#define TEMPMON_WRACK  0x200
#define TEMPMON_CLRACK 0x400

#define TM4_MODEREG_DEVBUS_ENABLE 0x0001
#define TM4_MODEREG_DEVCFG_ENABLE 0x0002
#define TM4_MODEREG_VIDEO_OUT  0x0010
#define TM4_MODEREG_VIDEO_IN_A  0x0004
#define TM4_MODEREG_VIDEO_IN_B  0x0008
#define TM4_MODEREG_JTAG 0x0020
#define TM4_MODEREG_ALERT_OVER  0x0040

#define TM4_MODEREG_FORCE_RESETN 0x80000000

#define JTAG_BUSY 0x80000000

#define PLLCFG_N 0
#define PLLCFG_M 1
#define PLLCFG_GO 4
#define PLLCFG_G1 5
#define PLLCFG_G2 6
#define PLLCFG_G3 7
#define PLLCFG_LO 8
#define PLLCFG_L1 9
#define PLLCFG_EO Oxc
#define PLLCFG_E1 Oxd
#define PLLCFG_E2 Oxe
#define PLLCFG_E3 0xf

#define PLLCFG_NOMINAL 0
#define PLLCFG_HIGHCOUNT 0
#define PLLCFG_LOWCOUNT 1
#define PLLCFG_COUNTERBYPASS 4
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[* Stratix JTAG Commands */

#define JTAG_EXTEST 0x000
#define JTAG_PULSE_NCONFIG 0x001
#define JTAG_PROGRAM 0x002
#define JTAG_STARTUP 0x003
#define JTAG_CHECK_STATUS 0x004
#define JTAG_SAMPLE 0x005
#define JTAG_IDCODE 0x006
#define JTAG_USERCODE 0x007
#define JTAG_CLAMP 0x00A
#define JTAG_HIGHZ 0x00B
#define JTAG_CONFIG_IO  0x00D
#define JTAG_BYPASS Ox3ff

int tm4_open (struct inode *inode, struct file *fil p);
int tm4_release( struct inode *inode, struct file * filp);
int tm4_ioctl( struct inode *inode, struct file *fi Ip,
unsigned int cmd, unsigned long arg);
ssize_t tm4_read (struct file *filp, char *buff, si ze_t count,
loff_t *offp);
ssize_t tm4_write (struct file *filp, const char *b uff,

size_t count, loff_t *offp);

struct file_operations tm4_fops = {
open :tm4_open,

release : tm4_release,

write :tm4_write,

read :tm4_read,

ioctl :tm4_ioctl,

owner : THIS_MODULE,

2

int tm4_debug=0;

int major;

u32 tm4_modereg=0;
int devclock=66;

int glbclock=66;

struct pci_dev *tm4pci;
dma_addr_t dma_bus_addr;
void  *dma_virtual_addr;

/ *************/
[* TM-4 PCI Memory space interface routines */
/ *************/

void *barOvirtual, *barlvirtual;

inline void barOwritel(u32 value, u32 offset) {
writel(value,barOvirtual+offset);

inline u32 barOreadl(u32 offset) {

return readl(barOvirtual+offset);

}

inline u32 barlreadl() {
return readl(barlvirtual);

}

inline void barlwritel(u32 value) {
writel(value,barlvirtual);

}

/ Fk kxR IRk |

void enable_devcfg() {
tm4_modereg |= TM4_MODEREG_DEVCFG_ENABLE;
tm4_modereg |= TM4_MODEREG_FORCE_RESETN;
tm4_modereg &= ~TM4_MODEREG_DEVBUS_ENABLE;

barOwritel(tm4_modereg, TM4AWREG_MODE);
wmb();
}

int enable_devbus() {
inti;

for (i=0; i < 1000000; i++) {
if (barOreadl(TM4RREG_WFIFO) == 0) break;

}
if (barOreadl(TM4RREG_WFIFO) != 0) return -1;

tm4_modereg |= TM4_MODEREG_DEVBUS_ENABLE;
tm4_modereg |= TM4_MODEREG_FORCE_RESETN;
tm4_modereg &= ~TM4_MODEREG_DEVCFG_ENABLE;

barOwritel(tm4_modereg, TM4AWREG_MODE);
barOwritel(0, TM4WREG_NIBRESET);

wmb();

barOwritel(0xf, TM4WREG_NIBRESET);
return O;

void tm4_alertoverride() {
tm4_modereg |= TM4_MODEREG_ALERT_OVER,;
barOwritel(tm4_modereg, TM4AWREG_MODE);
wmb();

void set_mode_reg(int bit) {
tm4_modereg |= bit;
barOwritel(tm4_modereg, TM4AWREG_MODE);
wmb();
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void unset_mode_reg(int bit) {
tm4_modereg &= ~bit;
barOwritel(tm4_modereg, TM4AWREG_MODE);
wmb();

}

int set_devclk(int rate) {
if ((rate < 1) || (rate > 100)) return -1;

devclock = rate;

if (clkparam[rate-1][0] == 1)
write_nib_pll_reconfig_word(PLLCFG_N, PLLCFG_CO
else {
write_nib_pll_reconfig_word(PLLCFG_N, PLLCFG_NO
1][0D);
write_nib_pll_reconfig_word(PLLCFG_N, PLLCFG_CO
}

if (clkparam[rate-1][1] == 1)
write_nib_pll_reconfig_word(PLLCFG_M, PLLCFG_CO
else {
write_nib_pll_reconfig_word(PLLCFG_M, PLLCFG_NO
1]D;
write_nib_pll_reconfig_word(PLLCFG_M, PLLCFG_CO
}

write_nib_pll_reconfig_word(PLLCFG_EO, PLLCFG_HIG
1][2/2);

write_nib_pll_reconfig_word(PLLCFG_EO, PLLCFG_LOW
1][2/2);

write_nib_pll_reconfig_word(PLLCFG_GO, PLLCFG_HIG
1][2/2);

write_nib_pll_reconfig_word(PLLCFG_GO, PLLCFG_LOW
1][212);

return initiate_nib_pll_reconfig();

}

int make_temp_cmd(int command, int data, int rd_req
int clr_alert, int chip_sel) {
return (command & Oxff) |
((data & 0xff) << 8) |
((rd_req & 1) << 16) |
((wr_req & 1) << 17) |
((clr_alert & 1) << 18) |
((chip_sel & 1) << 31);
}
int write_temp_smbus(int arg) {
int command, data, chip_sel;
int i,value;

command = (arg & 0xff);

UNTERBYPASS, 1);
MINAL, clkparam[rate-

UNTERBYPASS, 0);

UNTERBYPASS, 1);
MINAL, clkparam[rate-

UNTERBYPASS, 0);

HCOUNT, clkparam[rate-
COUNT, clkparam[rate-
HCOUNT, clkparam[rate-

COUNT, clkparam[rate-

, int wr_req,

data = (arg >> 8) & Oxff;

chip_sel = (arg >> 16) & 0x01;

barOwritel( make_temp_cmd( command, data,0,1,0, c
TMAWREG_TEMPMON );

wmb();

for (i = 0; i < 1000000; i++) {

value = barOread|(TM4ARREG_TEMPMON);

if ((value & TEMPMON_WRACK) == TEMPMON_WRACK) b
}

if ((value & TEMPMON_WRACK) == 0) return -1;

barOwritel(0, TM4AWREG_TEMPMON);
for (i = 0; i < 1000000; i++) {
if ((barOreadl(TM4ARREG_TEMPMON) & TEMPMON_WRACK
return 0;
}

return -1;

}

int read_temp_smbus(int *arg) {
int i, value;
int argin, command, chip_sel;

/I Read arguments from user space
get_user(argin,arg);

command = argin & Oxff;

chip_sel = (argin >> 8) & 0x01;

barOwritel( make_temp_cmd(command, 0, 1,0,0,chip_
wmb();

for (i = 0; i < 1000000; i++) {

value = barOread|(TM4ARREG_TEMPMON);

if ((value & TEMPMON_RDACK) == TEMPMON_RDACK) b
}

if ((value & TEMPMON_RDACK) == 0) {
printk( KERN_INFO "TM-4: Error: SMBUS Interface
Ack\n");
return -1;

barOwritel(0, TM4AWREG_TEMPMON);

for (i = 0; i < 1000000; i++) {
value=barOreadl(TM4RREG_TEMPMON);
if ((value & TEMPMON_RDACK) == 0) break;

if ((value & TEMPMON_RDACK) == TEMPMON_RDACK) {
printk( KERN_INFO "TM-4 Error: SMBUS Interface
Ack\n");
return -1;
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}

return put_user(value & TEMPMON_DATAMASK, arg);
void tm4_reset() {

/I Unconfigure the chips

barOwritel(0x00000000, TMAWREG_NCONFIG);

wmb();

/I Reset the the housekeeping FIFOs and devbus in

unset_mode_reg(TM4_MODEREG_FORCE_RESETN);

set_mode_reg(TM4_MODEREG_FORCE_RESETN);

/I Setup the DMA address
barOwritel(dma_bus_addr, TM4WREG_DMAADDR);
}

int write_jtag(int arg) {
int i, result;

barOwritel(arg, TM4WREG_JTAG);
wmb();
for (i = 0; i < 1000000; i++) {
result = barOreadl(TM4RREG_JTAG);
if ((result & JTAG_BUSY) == 0) break;

return result;

}

int jtag_issue(int tms, int tdo) {
return write_jtag( (tms << 1) | tdo);

}

int get_config_status() {
return barOreadl(TM4RREG_NSTATUS);
}

int read_reg(int *arg) {
(*arg) = barOreadI((*arg)*4);
return 0;

int get_clock_rate(int arg) {
switch (arg) {
case 0O: return devclock;
case 1: return glbclock;
default: return -1;

}

/I Must issue start read and end read commands to i
int jtag_read32() {
inti, result;

result = 0;
for (i=0;i<32;i++) {
result = result | (jtag_issue(0,0) << i);

return result;

}

int tm4_ioctl( struct inode *inode, struct file *fi
terfaces unsigned int cmd, unsigned long arg) {
int num = MINOR(inode->i_rdev);

if (num != 1) return -1;

if (tm4_debug > 0)
printk(KERN_INFO "IOCTL cmd %08x\n",cmd);

switch (cmd) {

case IOCTL_ENABLE_VIDEO_OUT: set_mode_reg(TM4_
break;

case IOCTL_DISABLE_VIDEO_OUT: unset_mode_reg(TM
break;

case IOCTL_ENABLE_VIDEO_IN_A: set_mode_reg(TM4_
break;

case IOCTL_DISABLE_VIDEO_IN_A: unset_mode_reg(T
break;

case IOCTL_ENABLE_VIDEO_IN_B: set_mode_reg(TM4_
break;

case IOCTL_DISABLE_VIDEO_IN_B: unset_mode_reg(T
break;

case IOCTL_ENABLE_JTAG: set_mode_reg(TM4_MODERE

case IOCTL_DISABLE_JTAG: unset_mode_reg(TM4_MOD

case IOCTL_SET_DEVCLK: return set_devclk(arg);

case IOCTL_READ_TEMP_SMBUS: return read_temp_sm

case IOCTL_WRITE_TEMP_SMBUS: return write_temp_

case IOCTL_RESET: tm4_reset(); break;

case IOCTL_JTAG: return write_jtag(arg);

case IOCTL_GET_CONFIG_STATUS: return get_config

case IOCTL_NIB_RESET: barOwritel(arg, TM4AWREG_N

case IOCTL_GET_WRITE_LEVEL: return barOread|(TM

case IOCTL_GET_ERROR: return barOreadl(TM4RREG_

case IOCTL_SET_NCONFIG : barOwritel(arg, TM4AWREG

case IOCTL_REGISTER_READ: return read_reg((int

case IOCTL_GET_CLOCKRATE: return get_clock_rate

case IOCTL_SET_DEBUG_LEVEL: tm4_debug = arg; br

case IOCTL_ALERT_OVERRIDE: tm4_alertoverride();

default: return -1;

return O;
ssue correct TAP state

u32 make_pll_reconfig_word(u32 reconfig, u32 read_e
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MODEREG_VIDEO_OUT);
4_MODEREG_VIDEO_OUT);
MODEREG_VIDEO_IN_A);
M4_MODEREG_VIDEO_IN_A);
MODEREG_VIDEO_IN_B);
M4_MODEREG_VIDEO_IN_B);

G_JTAG); break;
EREG_JTAG); break;

bus((int *)arg);
smbus(arg);

_status();
IBRESET); break;
4RREG_WFIFO);
ERROR);
_NCONFIG); break;
*)arg);
(arg);
eak;

break;

n, u32 write_en,



u32 counter_type, u32 data_in, u32 counter_par
return (reconfig & Ox1) |
((read_en & 0x1) << 1) |
((write_en & 0x1) << 2) |
((counter_type & Oxf) << 4) |
((data_in & Ox1ff) << 8) |
((counter_param & 0x7) << 24);

}

int write_nib_pll_reconfig_word(u32 counter_type, u
data) {
int i, result;

barOwritel( make_pll_reconfig_word(0,0,1,counter_
counter_param),
TM4AWREG_NIBCLK);
wmb();

for (i = 0; i < 100000; i++) {
result = barOreadl(TM4RREG_NIBCLK);
rmb();
if ((result & 0x80000000) == 0) return 0;
}
return -1;

}

int read_nib_pll_reconfig_word(u32 counter_type, u3
int i, result;

barOwritel( make_pll_reconfig_word(0,1,0,counter_
TM4WREG_NIBCLK);
wmb();

for (i = 0; i < 100000; i++) {
result = barOreadl(TM4RREG_NIBCLK);
rmb();
if ((result & 0x80000000) == 0) break;

}

return result;
int initiate_nib_pll_reconfig() {
int i,result;
barOwritel(1, TMAWREG_NIBCLK);
for (i = 0; i < 1000000; i++) {
result = barOreadl(TM4RREG_NIBCLK);
rmb();

if ((result & 0x80000000) == 0) return 0;

return -1,

am) {

32 counter_param, u32

type, data,

2 counter_param) {

type,0, counter_param),

void dump_nib_pll_configuration() {
int i, value;

for (i = 0; i <= Oxf; i++) {
value = read_nib_pll_reconfig_word(i,0);
if (value < 0) {
printk(KERN_INFO "TM-4: Timeout reading regis
}else {
printk(KERN_INFO "TM-4: Nib PLL Cfg Reg 0x%x

}
}

int init_config() {
int i;

/I We need to assert NCONFIG until nSTATUS is ass
barOwritel(0x00000000, TMAWREG_NCONFIG);
wmb();

/I Test nNSTATUS
for (i=0; (i < 1000000) && (barOreadl(TM4RREG_NST

if (barOreadl(TM4RREG_NSTATUS) != 0) {
printk(KERN_INFO "TM-4 ERROR: Device did not as
return -1;

}

/I Now deassert nCONFIG and wait for nSTATUS to r
barOwritel(0x0000000f, TM4WREG_NCONFIG);
wmb();

/I Test nNSTATUS for release
for (i=0; (i < 1000000) && (barOreadl(TM4RREG_NST

if (barOreadl(TM4RREG_NSTATUS) != Oxaa) {
printk(KERN_INFO "TM-4 ERROR: Device did not re
0x%08x\n",
barOreadl(TM4ARREG_NSTATUS));
return -1;

/I Now set the write FIFOs to feed the dev FPGA ¢
enable_devcfg();
wmb();

return O;
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int finish_config() {
int i;

for(i=0; i < 136; i++) {
barlwritel(0);
wmb();

}

return enable_devbus();

}

* Insure that TAP controller is in state RUN/IDLE *
void jtag_reset() {

jtag_issue(1,0);

jtag_issue(1,0);

jtag_issue(1,0);

jtag_issue(1,0);

jtag_issue(1,0);

jtag_issue(0,0);

}
void jtag_setIR(int inst0, int inst1, int inst2, in tinst3) {
int i, bit;

jtag_issue(1,0); // State: SELECT_DR_SCAN
jtag_issue(1,0); // State: Select_IR_scan
jtag_issue(0,0); // State: capture_IR

jtag_issue(0,0); // State: shift_IR

/I lIssue command 3

bit = inst3;

for (i=0;i<10; i++) {
jtag_issue(0,bit & 1);
bit = bit >> 1;

}

/I lIssue command 2

bit = inst2;

for (i=0;i<10; i++) {
jtag_issue(0,bit & 1);
bit = bit >> 1;

/I lIssue command 1

bit = inst1;

for (i=0;i<10; i++) {
jtag_issue(0,bit & 1);
bit = bit >> 1;

/I lIssue command 0

bit = inst0;

for (i=0;i<9;i++) {
jtag_issue(0,bit & 1);

bit = bit >> 1;
}

jtag_issue(1,bit & 1); // State: Exitl_IR
jtag_issue(1,0); // State: Update_IR
jtag_issue(0,0); // State: Run_test/Idle

void jtag_startread() {
jtag_issue(1,0); // State: Select_DR_Scan
jtag_issue(0,0); // State: Capture DR

void jtag_endread() {
jtag_issue(1,0); // State: Exitl_Dr
jtag_issue(1,0); // State: Update_Dr
jtag_issue(0,0); // State: Run_Test/idle

ssize_t tm4_jtag_read (struct file *filp, char *buf
loff_t *offp) {
int I, value;

for (i=0; i < count; i+=4) {
value = jtag_read32();
__put_user(value,(u32 *)(buff+i));

return count;

}

int init_jtag(struct file * filp) {
/I Point read procedure to correct function
filp->f_op->read = &tm4_jtag_read;
/I Enable JTAG
set_mode_reg(TM4_MODEREG_JTAG);

/I Reset JTAG controller
jtag_reset();

/I Set Instruction
jtag_setIROTAG_SAMPLE, JTAG_SAMPLE,
JTAG_SAMPLE, JTAG_SAMPLE);

jtag_startread();
return O;

void finish_jtag() {
jtag_reset();
unset_mode_reg(TM4_MODEREG_JTAG);
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int tm4_open (struct inode *inode, struct file * fi
int num = MINOR(inode->i_rdev);

filp->f_op->read = &tm4_read;

switch (num) {
case 0: return init_config(); break;
case 1: break;
case 2: return init_jtag(filp); break;
default: return -1;

}

return O;

}

void start_dma_write_to_tm4(u32 count) {
if (tm4_debug > 0)
printk(KERN_INFO "DMA Write Setup: 0x%08x addr,
dma_bus_addr, (count >> 2) & Oxfffe );

barOwritel((count >> 2) & OxFFFE, TM4WREG_DMACTRL
wmb();
}

void start_dma_read_from_tm4(u32 count) {
u32 command = ((count >> 2) & OxFFFE) | 0x8000000

if (tm4_debug > 0)
printk(KERN_INFO "DMA Read Setup: 0x%08x addr,
dma_bus_addr, command );

barOwritel( command, TM4AWREG_DMACTRL);
wmb();
}

wait_queue_head_t tm4_wait_queue;
int interrupt_arrived;
void interrupt_handler(int irq, void *dev_id, struc
if (tm4_debug > 0)
printk(KERN_INFO "Interrupti\n");
if (barOreadl(TM4RREG_LIRQ) == 1) return;
/I Clear the interrupt from the TM-4
barOwritel(dma_bus_addr, TM4WREG_DMAADDR);
wmb();
while (barOreadl(TM4RREG_LIRQ) == 0);

interrupt_arrived = 1;

/I Wake up the blocked task
wake_up(&tm4_wait_queue);

1P {

0x%08x command\n",

0x%08x command\n“,

t pt_regs *regs) {

ssize_t tm4_read (struct file *filp, char *buff, si
loff_t *offp) {

u32i;
u32 value;

/I Clear the low bits to insure we only write mul
count = count & Oxfffffffc;

/I Don't bother with DMA for small transfers
if (count <= 0xf) {
for (i=0; i < count; i+=4) {
value = barlreadl();
__put_user(value,(u32 *)(buff+i));

}else {

if (count > 4) {
if (tm4_debug > 0)

printk(KERN_INFO "Adding to wait queue(read

interrupt_arrived = 0;
start_dma_read_from_tm4(count);

wait_event_interruptible(tm4_wait_queue,(inte

if (tm4_debug > 0)

}

if ((count & Ox4) == 0x4) {
if (tm4_debug > 0)

printk(KERN_INFO "We have been awakened\n")

printk(KERN_INFO "Performing Lone 32bit rea

value = barlreadl();
__put_user(value,(u32 *)(buff+count-4));

copy_to_user( (u32 *)buff,dma_virtual_addr, c

}else {

copy_to_user( (u32 *)buff,dma_virtual_addr, c

return count;
}
int writecounter = 0;

ssize_t tm4_write (struct file *filp, const char *b
size_t count, loff_t *offp) {

u32 value;
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if (tm4_debug > 0)

printk(KERN_INFO "Devbus Write: 0x%08x bytes\n"
if (tm4_debug > 1) {

get_user(value,(u32 *)buff);

printk(KERN_INFO " - First Value 0x%08x\n",val
}

/I Clear the low bits to insure we only write mul
count = count & Oxfffffffc;

/I Don't bother with DMA for small transfers
if (count <= 0xf) {
if (count > 0) copy_from_user(barlvirtual, buff
}else {
if ((count & Ox4) == 0x4) {
if (tm4_debug > 0)
printk(KERN_INFO "Performing Lone 32bit wri

get_user(value, (u32 *)buff);

barlwritel(value);

copy_from_user(dma_virtual_addr, (buff+4), co
}else {

copy_from_user(dma_virtual_addr, buff, count)

if (count > 4) {
if (tm4_debug > 0)
printk(KERN_INFO "Adding to wait queue %x\n

interrupt_arrived = 0;
start_dma_write_to_tm4(count);

wait_event_interruptible(tm4_wait_queue,(inte

if (tm4_debug > 0)
printk(KERN_INFO "We have been awakened\n")
}

return count;

int tm4_release( struct inode *inode, struct file *
int num = MINOR(inode->i_rdev);

/I Restore the standard write just in case we wer
filp->f_op->read = &tm4_read;

switch (num) {
case 0: return finish_config(); break;
case 1: break;
case 2: finish_jtag(); break;
default: return -1;

, count);

ue);

tiples of 32bits

, count);

te\n");

unt-4);

" writecounter++);

rrupt_arrived==1));

filp) {

e in JTAG mode

}

return O;

u8 tmdirg;

int init_module(void) {

u32 bar0;
u32 barl;

/I Register the device driver
major = register_chrdev(0, "tm4", &m4_fops);
if (major < 0) return -1;

printk(KERN_INFO "TM-4: Device Driver Init\n");
if (\pci_present()) return -1;

tm4pci = pci_find_device(TM4_VENDOR, TM4_DEVICE,

if (tm4pci != NULL)

printk(KERN_INFO "TM-4: Found TM4 PCI controlle
else

return -1;

pci_enable_device(tm4pci);

bar0 = pci_resource_start(tm4pci,0);
barl = pci_resource_start(tm4pci,1);

barOvirtual = ioremap_nocache(bar0,1024);
barlvirtual = ioremap_nocache(barl,64*1024);

if ((barOvirtual == 0) || (barlvirtual == 0)) {
printk(KERN_INFO "TM-4 ERROR: Unable to allocat
return -1;

}
if(pci_read_config_byte(tm4pci, PCI_INTERRUPT_LIN

printk(KERN_INFO "TM-4 ERROR: Unable to determi
return -1;

}
printk(KERN_INFO "TM-4: Detected IRQ # %x\n", tm4

if (request_irg(tm4irg, interrupt_handler, SA_SHI

"tm4",&dma_virtual_addr)) {
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printk(KERN_INFO "TM-4 ERROR: Unable to install
return -1;
printk(KERN_INFO "TM-4: Interrupt Handler Install

/I Setup the wait queue so we can sleep during bl
init_waitqueue_head(&tm4_wait_queue);

/I Allocate a 64K PCI DMA Buffer

NULL);

nn");

e BAR memory space\n");

E, &m4irqg)) {
ne IRQ number\n");

irq);
RQ,

interrupt handler\n");

ed\n");

ocks



dma_virtual_addr = pci_alloc_consistent(tm4pci, 0 x10000, &dma_bus_addr); #define IOCTL_JTAG _IO(IOCTL_MAGIC, 1 3)
#define IOCTL_GET_CONFIG_STATUS _IO(IOCTL_MAGIC, 1 4)

printk(KERN_INFO "TM-4: DMA buffer allocated\n"); #define IOCTL_GET_WRITE_LEVEL _IO(IOCTL_MAGIC, 1 5)
#define IOCTL_GET_ERROR _IO(IOCTL_MAGIC, 1 6)

I/l Reset TM-4 #define IOCTL_SET_NCONFIG _IO(IOCTL_MAGIC, 1 7)

tm4_reset(); #define IOCTL_REGISTER_READ _IOWR(IOCTL_MAGIC, 18,4)
#define IOCTL_GET_CLOCKRATE  _IO(IOCTL_MAGIC, 1 9)

printk(KERN_INFO "TM-4: Driver load complete\n“); #define IOCTL_ALERT_OVERRIDE _IO(IOCTL_MAGIC, 2 0)
#define IOCTL_SET_DEBUG_LEVEL _IO(IOCTL_MAGIC, 2 1)

return O; #define MAX_IOCTL_COMMAND 21

}

#ifdef TMASET

void cleanup_module(void) {
char *ioctl_text[] = {

free_irg(tm4irq, &dma_virtual_addr); "enable_video_out", "disable_video_out", "enable_vi deo_in_a",
pci_free_consistent(tm4pci, 0x10000, dma_virtual_ addr, dma_bus_addr); "disable_video_in_a",
iounmap(barlvirtual); "enable_video_in_b", "disable_video_in_b", "set_dev clk", "nib_reset",
iounmap(barOvirtual); "reset"”,
unregister_chrdev(major,"tm4"); "read_temp_smbus", "write_temp_smbus", "enable_jtag ", "disable_jtag",
printk(KERN_INFO "TM-4: Driver removed\n“); "write_jtag",
"get_config_status", "get_write_fifo_level", "get_e rror", "set_nconfig",
"reg_read",
MODULE_AUTHOR("Josh Fender"); "get_clockrate”, "alert_override", "debug_level"};
MODULE_DESCRIPTION("Transmogrifier-4 Interface Driv er');
MODULE_LICENSE("Not Free"); int ioctl_mapping][] = {

IOCTL_ENABLE_VIDEO_OUT, I0CTL_DISABLE_VIDEO_OUT,
IOCTL_ENABLE_VIDEO_IN_A,
E.2 10CTLCMD .H IOCTL_DISABLE_VIDEO_IN_A, IOCTL_ENABLE_VIDEO_IN_ B
IOCTL_DISABLE_VIDEO_IN_B,
IOCTL_SET_DEVCLK, IOCTL_NIB_RESET, IOCTL_RESET,
IOCTL_READ_TEMP_SMBUS,
#define I0OCTL_MAGIC 4" - =T
_ IOCTL_WRITE_TEMP_SMBUS, I0CTL_ENABLE_JTAG, IOCT L_DISABLE_JTAG,
#define IOCTL_ENABLE_VIDEO_OUT _IO(IOCTL_MAGIC, 0 ocTL FTAG. ~ T - = - =
#define IOCTL_DISABLE_VIDEO_OUT _IO(IOCTL_MAGIC, 1 IOCTL_GET CONFIG_STATUS, IOCTL_GET WRITE_LEVEL, IOCTL_GET_ERROR
#define IOCTL_ENABLE_VIDEO_IN_A _IO(IOCTL_MAGIC, 2 IOCTL_SET_NCONFIG, IOCTL_REGISTER_READ, IOCTL_G ET_CLOCKRATE,

#define IOCTL_DISABLE_VIDEO_IN_A _IO(IOCTL_MAGIC, 3 IOCTL_ALERT OVERRIDE, IOCTL_SET DEBUG_LEVEL}:
#define IOCTL_ENABLE_VIDEO_IN_B _IO(IOCTL_MAGIC, 4 = - ’ - - ’

— e

#define IOCTL_DISABLE_VIDEO_IN_B _IO(IOCTL_MAGIC, 5 sendif
#define IOCTL_SET DEVCLK _ _IO(IOCTL_MAGIC, 6

#define IOCTL_NIB_RESET _iO(IOCTL_MAGIC, 7

#define IOCTL_RESET _10(IOCTL_MAGIC, 8

#define IOCTL_READ_TEMP_SMBUS _IOWR(IOCTL_MAGIC, 9,4)
#define IOCTL_WRITE_TEMP_SMBUS _IO(IOCTL_MAGIC, 1 0)
#define IOCTL_ENABLE_JTAG _IO(IOCTL_MAGIC, 1 1)
#define IOCTL_DISABLE_JTAG _IO(IOCTL_MAGIC, 1 2)
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F DC-DC CONVERTER SPICE M ODEL

TM4: Power Subsystem: 1.5v

.options NOMOD NOPAGE POST=1 PARHIER=local BRIEF
.options METHOD=GEAR

.include "irf6602.inc"
.include "irf6601.inc"
.include "MBR0520L.mod"
.include "MBRS340T3.mod"

.options BRIEF=0

*** NOTES:
* - Assumes Ideal PCB trace (OuH, OuF, OuOhm)
* - Boost Diode and capacitor replaced with Voltage Source

*V1.5v Holdup Capacitors
Cb1 b1 0470u
Rb1 bl vioad 8m
Cb2 b2 0470u
Rb2 b2 vload 8m
Cb3 b3 0470u
Rb3 b3 vioad 8m
Cb4 b4 0 470u
Rb4 b4 vioad 8m
Cb5 b5 0 470u
Rb5 b5 vioad 8m
Cb6 b6 0 470u
Rb6 b6 vioad 8m
Cb7 b7 0 470u
Rb7 b7 vioad 8m
Cb8 b8 0 470u
Rb8 b8 vioad 8m

* Fixed Load 50Amps
*Rload vload 0 0.03

* Fixed Load 2Amps
*Rload vload 0 0.75

* Step Load 15-25Amps
Gr vload 0 VCR rvolt 0 1
Vr rvolt 0 PULSE(0.1v 0.06v 160u 0.1u 0.1u 40u 300u

*Vin Bulk Bypassing Capacitors
*Ccl c1 0 82uf
*Rcl ¢l vin 39m
*Cc2 c2 0 82uf
*Rc2 ¢2 vin 39m
*Cc3 ¢3 0 82uf
*Rc3 ¢3 vin 39m
*Cc4 c4 0 82uf
*Rc4 ¢4 vin 39m
*Cc5 ¢5 0 82uf
*Rc5 ¢5 vin 39m

*\/vcel2 veel2r 0 DC 12v - $ Simulate 12v supply ind
*Rvcel2 veel2r veel2 100m $ Supply Series Resistan
*Lvcel2 veel2 vin Ou

Vin vin 0 DC 12v

Vccvec 0 DC 5v $ Ignore MAX4038s Voltage Regu

X1 clpl cspl csnl dil dhl Ix1 bstl
+ clp2 csp2 csn2 dI2 dh2 Ix2 bst2
+ vsp vsn diff ean eaout MAX5038EAI15

*C30 clp1 0 470p IC=1v $ Phase 1 Compensation Netwo
*R6 clpl 11k
*C29106.8n

*C28 clp2 0 470p IC=1v $ Phase 2 Compensation Netwo

*R5 clp2 2 1k
*C27206.8n

C30 clp1 0 47p IC=1v $ Phase 1 Compensation Network
R6 clpl 1 10k
C29100.68n

C28 clp2 0 47p IC=1v $ Phase 2 Compensation Network
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R5 clp2 2 10K
C27200.68n

X2 vin dhl Ix1 irf6602 $ Phase 1 Discrete Componen
X3 Ix1 dI1 0 irf6601

D1 Ix1 0 MBRS340T3

L1 Ix1 cspl 0.69uH

R2 cspl csnl 1.58m  $ Inflated to compensate fo
V3 csnl vioad DC Ov

*C12 bstl Ix1 0.1u IC=5v

*D3 bstl vcc MBR0520L

V10 bstl Ix1 DC 5v

X4 vin dh2 Ix2 irf6602 $ Phase 2 Discrete Componen
X5 Ix2 dI2 0 irf6601

D2 Ix2 0 MBRS340T3

L2 Ix2 csp2 0.69uH

R3 csp2 csn2 1.58m

V4 csn2 vload DC Ov

*C13 bst2 Ix2 0.1u IC=5v

*D4 bst2 vec MBR0520L

V20 bst2 Ix2 DC 5v

Rin ean diff 5.11k  $ Feed Back Resistors
Rf eaout ean 51.1k

Rx ean vcc 75k

*Rf eaout ean 100k

*Rx ean vcc 200k

V1vsn 0 DC Ov $ Sense Connections
V2 vsp vload DC Ov

FHAEATIFIKFEFE AT IIIKFE KA

* MAX5038 PWM Controller *
AT
*NOTES:

* - Set for 1.5v operation

* - 250Khz Clock

.subckt MAX5038EAI15

+ clpl cspl csnl di1 dhl Ix1 bstl
+ clp2 csp2 csn2 dI2 dh2 Ix2 bst2
+ vsp vsn diff ean eaout

.param clkfreq=250000

.param clkrise=5n

.param clk2delay="1/(2*clkfreq)'

v1 clk1 0 dc PULSE(O 5v O clkrise clkrise 200n '1/c
v2 rampl 0 dc PULSE(O 2v 0 '1/clkfreg-clkrise’ clkr
v3 clk2 0 dc PULSE(O 5v clk2delay clkrise clkrise 2
v4 ramp2 0 dc PULSE(O 2v clk2delay '1/clkfreqg-clkri

Xphasel clpl cspl csnl eaout rampl clkl di1 dh1 Ix1

ts

r PCB resistance

ts

Ikfreq’)

ise 0 '1/clkfreq’)

00n '1/clkfreq’)

se' clkrise 0 '1/clkfreq’)

bstl ICLC

Xphase2 clp2 csp2 csn2 eaout ramp2 clk2 di2 dh2 Ix2
Xdiff vsp vsn diff DIFF

Xvea ean eaout VEA

.ends MAX5038EAI15

FhAAEFIFIFAE I AR IHHEK

* Voltage Error Amp *
[ ———

*NOTES:

* - No current drive limits

* - Frequency response incorrect (Should be unity
.subckt VEA inn out

.param GAIN="pow(10,70/20)'
.param POLE=3000000

.param VHIGH="900mv+600mv'
.param VLOW=0v

.param VREF="1.5v+0.6V'

E1 1 0 VOL="(VREF-v(inn))*GAIN'

R121 100

C120'1/(6.28*100*POLE)'

E2 out 0 VOL="v(2)' MAX=VHIGH MIN=VLOW
.ends VEA

FRAEFTIFIFFEFA AT IFIKFEFKAKR

* Differential Amplifier *
Sheokkok ek kok ek kok ko ok ok ok kok kokkok
*NOTES:

* - No current drive limits
.subckt DIFF inp inn out
.param GAIN=1

.param POLE=3000000
.param RIN=100k
.param VHIGH=5v
.param VLOW=0v
.param VOFFSET=0.6v

Rin inp inn RIN

E1 1 0 VOL="(v(inp)-v(inn))*GAIN'

R121100

C1 20 '1/(6.28*100*POLE)'

E2 out 0 VOL="v(2)+VOFFSET' MAX='"VHIGH+VOFFSET' MIN
.ends DIFF

FhFEEFIFFFFA AT IIFHHEAK

* Inner Current Loop *

ek kok ok kok ko kok ok kok ok kokkok

*NOTES:

* - No Peak Current Comparator

* - No Shdn

.subckt ICLC clp csp csn gmin ramp clk dI dh Ix bst
X1 cspcsnlCSA

X2 gmin 1 clp CEA

X3 ramp clp 2 CMP
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X4 2 clk g gn FFLOP

X5 dl gn LOWDRV

X6 dh bst Ix g HIGHDRV
.ends ICLC

FRAEATIFIFFEFE AT IFIHHAK

* Highside FET Driver *

Sheokkok ke kokdekokok dok kok ok kkkkok

.subckt HIGHDRYV dh bst Ix en

E1lon 0en01MAX=1MIN=0

E2 dhi 0 VOL="v(Ix)+(v(bst)-v(Ix))*v(on)'
R1 dhdhil

.ends HIGHDRV

FhAEEFIFIFFA AT IIIHFAAK

* Lowside FET Driver *
ek kok ok kok ko kok ok kok ok kkkk
.subckt LOWDRYV dl en
E1 dli 0 VOL="v(en)'
R1dldli1

.ends LOWDRV

* Current Error Amplifier *

.subckt CEA inp inn out
.param GM=550uS
.param CHIGH=320u
.param CLOW=-320u

G1 0 out inp inn GM MAX=CHIGH MIN=CLOW
.ends CEA

* Current Sense Amplifier *

.subckt CSA inp inn out
.param GAIN=18
.param POLE=4000000
.param RIN=4k

.param VHIGH=5v
.param VLOW=0v

Rin inp inn RIN

E1 1 0 VOL="(v(inp)-v(inn))*GAIN'

R121100

C1 20 '1/(6.28*100*POLE)'

E2 out 0 VOL="v(2)' MAX=VHIGH MIN=VLOW
.ends CSA

FhAEETIFIFFAFK AT IHTKFAAKR

* Nonlinear Comparator *

FhAEEFIFIFAAAK AT I FKFAAKR

.subckt CMP inp inn out

Eopamp out 0 inp inn 100000 MAX=5 MIN=0

.ends CMP

* Linear Flipflop Approximation *

.subckt FFLOP S R Q QN
X1'S Sn INV

X2 R Rn INV

X3 Rn Qn Q0 NAND2

X4 Sn Q Qn0 NAND2

R1 Q QO 100

R2 Qn Qn0 100
C1Q0100p IC=0v
C2 Qn 0 100p IC=5v
.ends FFLOP

* Linear Nand Approximation *

.subckt NAND2 inl in2 out
E1 out 0 NAND(2) in1 0 in2 0 Ov 5v 5v Ov
.ends NAND2

* Linear Or Approximation *

.subckt OR2 inl in2 out
E1 out 0 OR(2) in1 0 in2 0 Ov Ov 5v 5v
.ends OR2

* Linear Invertor Approximation *

.subckt INV in out
E1 out 0 VOL='5-v(in)'
.ends INV

* Generate transient data
.probe 1(Gr)
.tran 1us 250us UIC

.end
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