

An FPGA-Based Hardware Development System with Multi-Gigabyte Memory Capacity

And High Bandwidth

by

Joshua Fender

A thesis submitted in conformity with the requirements

For the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

 Copyright by Joshua Fender 2005

 ii

 iii

An FPGA-Based Hardware Development System with Multi-Gigabyte Memory Capacity

And High Bandwidth

Joshua Fender

Masters of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2005

Abstract

FPGA-based hardware development systems are extremely useful for exploring exciting

applications in vision, graphics, and many other computationally intensive problems.

Experience with previous systems has shown that memory capacity, inter-FPGA

bandwidth, host-to-FPGA bandwidth, and memory bandwidth are all critical to the

successful implementation of high performance systems. This thesis presents the design,

and implementation, of a new FPGA-based development system that was created with the

goal of providing as much performance in these four areas as feasible. The design was

built with 8GB of memory and its bandwidth performance was measured. The system

has 17.6GB/s total aggregate memory bandwidth, and 154MB/s (read) and 266MB/s

(write) host-to-FPGA bandwidth. The result is a working development system that is

capable of implementing the applications of the future.

 iv

 v

ACKNOWLEDGMENTS

 I would like to thank my supervisor Jonathan Rose for the guidance, motivation,

and even the funding, he provided over the last several years. Also deserving thanks are

Dave Galloway and Marcus van Ierssel for providing their experiences with previous

Transmogrifiers to help guide the design of the TM-4.

 I would also like to acknowledge the support, in knowledge, FPGAs, and project

funding, that Altera provided, as well as the funding providing by Micronet. I would also

like to recognize Altera’s FAE Cheug Ng for both attending the specification review and

for providing helpful information about using Altera’s FPGAs.

 Everyone who has passed through the LP392 lab over the last few years

including: Anish, Peter Y, Peter J, Tom, Leslie, Navid, Ahmad, Ian, Aaron, Jason, Andy,

Reza, Rubil, Imad, Denis, and Paul, also deserve acknowledgement. I would also like to

acknowledge as honorary LP392ers: Andrew, Frank, and Blair, not so much for

contributing to the Transmogrifier but for providing the distractions that turned a simple

Masters into a twenty nine month affair.

TABLE OF CONTENTS

 vii

List of Tables .. xiii

List of Figures.. xv

List of Acronyms ... xvii

1 Introduction... 1

1.1 FPGA-Based Rapid Prototyping .. 1

1.2 FPGA-Based Rapid Prototyping Limitations.. 1

1.3 Key Objectives .. 3

1.4 Organization.. 5

2 Background.. 6

2.1 Introduction ... 6

2.2 A Taxonomy of FPGA Development Systems ... 6

2.2.1 Purpose: Prototyping/verification .. 7

2.2.2 Multi-FPGA Interconnect Topology ... 8

2.2.3 FPGA Interconnect Implementation ... 11

2.2.4 External interface/Host .. 12

2.2.5 Memory.. 13

2.2.6 Summary.. 14

2.3 The Transmogrifier Project .. 15

2.3.1 Transmogrifier-1.. 15

2.3.2 Transmogrifier-2.. 16

2.3.3 Transmogrifier-3.. 16

2.4 Commercial Development Systems.. 17

2.5 Background Technologies.. 18

2.5.1 Altera Stratix FPGA... 18

TABLE OF CONTENTS

 viii

2.5.2 Source-Synchronous Clocking.. 19

2.5.3 DDR SDRAM... 21

2.5.4 LVDS High-Speed Serial Communication .. 22

2.6 Summary ... 25

3 Design... 26

3.1 Introduction ... 26

3.2 Requirement Identification .. 26

3.2.1 Past Transmogrifier Requirements ... 27

3.2.2 Past Application Driven Requirements... 28

3.2.2.1 Ray Tracing on the TM-3.. 28

3.2.2.2 Protein Identification on the TM-3 ... 30

3.2.2.3 Stereo Vision on the TM-3.. 31

3.2.3 Anticipated Application Space Requirements.................................... 31

3.2.4 The TM-4 Design Requirements ... 32

3.3 The TM-4 Design .. 33

3.3.1 Design Overview.. 34

3.3.2 Programmable Logic ... 34

3.3.2.1 FPGA Selection.. 35

3.3.2.2 FPGA Interconnect Structure ... 36

3.3.3 External Memory Selection .. 37

3.3.4 User Peripherals.. 38

3.3.5 The Host To FPGA Communication Channel 40

3.3.5.1 Physical Hardware Communication Links.................................... 41

3.3.5.2 Host to Development Bridge... 41

3.3.5.3 Parameterizable Bus Interface Logic Cores.................................. 42

3.3.5.4 Host Software... 42

3.3.5.5 The Complete Host To FPGA Bus .. 43

TABLE OF CONTENTS

 ix

3.3.6 TM-4 Controller... 44

3.3.6.1 Development FPGA Configuration... 44

3.3.6.2 Temperature Monitors.. 45

3.3.6.3 The Clocking Subsystem... 45

3.3.6.4 Interface FPGA Block Diagram ... 47

3.3.7 The Power Subsystem... 48

3.4 Hardware Design Validation..48

3.4.1 Data Entry Validation .. 49

3.4.2 Functional Validation .. 51

3.5 Summary ... 53

4 Circuit Board Design... 54

4.1 Introduction ... 54

4.2 PCB Stack up .. 54

4.2.1 PCB Stack Up Physical Considerations.. 55

4.2.2 PCB Stack Up Electrical Considerations.. 56

4.3 PCB Component Placement... 57

4.4 PCB Routing ... 60

4.4.1 Breakout Pattern Creation ... 61

4.4.2 Equivalent Pin Swapping ... 63

4.5 PCB Routing ... 64

4.6 PCB Signal Integrity Simulation.. 65

4.6.1 DDR SDRAM Timing-Driven Design ... 65

4.6.2 DDR SDRAM Timing Simulation.. 66

4.6.3 DDR SDRAM Signal Integrity Simulation .. 68

4.7 Summary ... 71

5 Results.. 72

TABLE OF CONTENTS

 x

5.1 Introduction ... 72

5.2 Memory... 72

5.2.1 Theoretical Maximum Memory Performance.................................... 73

5.2.2 Measuring Actual Memory Performance.. 73

5.2.3 Actual Memory Performance.. 74

5.3 Inter-FPGA Performance ... 75

5.3.1 Theoretical Maximum Inter-FPGA Bandwidth 75

5.3.2 Measuring Actual Inter-FPGA Bandwidth.. 76

5.3.3 Actual Inter-FPGA Bandwidth ... 77

5.4 Host-To-FPGA Performance ... 78

5.4.1 Theoretical Maximum Host-FPGA Bandwidth 78

5.4.2 Measuring Actual Host-To-FPGA Bandwidth 79

5.4.3 Actual Host-To-FPGA Bandwidth .. 81

5.5 Summary ... 83

6 Conclusions .. 84

6.1 Summary ... 84

6.2 Contributions... 85

6.3 Future Work .. 85

7 References.. 86

A Schematic ... 90

B PCB Layout ... 109

C Interface FPGA VHDL Code.. 119

C.1 top.vhd .. 119

C.2 commandregisters.vhd ... 122

C.3 dev_jtag.vhd .. 125

TABLE OF CONTENTS

 xi

C.4 devbusinterface.vhd... 126

C.5 devconfigure.vhd ... 129

C.6 mastercontroller.vhd .. 129

C.7 pll_reconfig_interface.vhd ... 133

C.8 readfifo.vhd ... 134

C.9 targecontroller.vhd... 134

C.10 tempmc_interface.vhd.. 136

C.11 writefifo.vhd.. 137

D Development Bus VHDL Code.. 139

D.1 devread.vhd ... 139

D.2 devreadburst.vhd ... 140

D.3 devwrite.vhd.. 142

D.4 devwriteack.vhd .. 143

E Linux Device Driver .. 145

E.1 tm4driver.c .. 145

E.2 ioctlcmd.h.. 153

F DC-DC Converter Spice Model .. 154

 xii

 xiii

L IST OF TABLES

Table 1: FPGA Development System Characteristics .. 15

Table 2: Available Commercial Development Systems ... 17

Table 3: DDR SDRAM Module Capacity and Price .. 72

Table 4: Memory Bandwidth Results... 74

Table 5: Measured Host-Write-To-FPGA Bandwidth.. 81

Table 6: Measure Host-Read-From-FPGA Bandwidth... 81

Table 7: Time Spent Working On Each Step Of TM-4 Design Process.......................... 84

 xiv

 xv

L IST OF FIGURES

Figure 1: Stereo Vision Input [4] ... 3

Figure 2: Stereo Vision Output [4] .. 3

Figure 3: Scene From The TM-4 Ray Tracer ... 4

Figure 4: Interconnect Topologies ... 8

Figure 5: Splash 2 Crossbar Interconnect Architecture .. 9

Figure 6: Prism II Tree Interconnect Topology.. 10

Figure 7: Bee's Interconnection Topology Hierarchy ... 12

Figure 8: Stratix I/O Banks.. 18

Figure 9: Source-synchronous Clocking .. 20

Figure 10: DDR SDRAM Memory Organization... 22

Figure 11: LVDS Communication Channel ... 23

Figure 12: A Simple Ray Tracing Example .. 28

Figure 13: Top Level System Diagram.. 34

Figure 14: Development FPGA Interconnect Structure.. 36

Figure 15: User Peripheral Connections .. 39

Figure 16: Simplified Host to FPGA Communication Channel 40

Figure 17: Host Communication Channel Bridge Functions .. 42

Figure 18: Development Communication Bus ... 44

Figure 19: Development FPGA Clocking Structure ... 46

Figure 20: Housekeeping Chip Logic Core.. 47

Figure 21: 1.5v DC-DC Converter Simulation... 52

Figure 22: Sample PCB Stack Up.. 54

Figure 23: The TM-4's PCB Stack Up ... 57

Figure 24: PCB Floor Plan .. 58

Figure 25: PCB Component Placement Top .. 59

Figure 26: PCB Component Placement Bottom...60

Figure 27: Stratix FPGA Landing Pattern.. 61

 xvi

Figure 28: Stratix FPGA Partial Breakout Pattern.. 62

Figure 29: Pin Swapping Example... 63

Figure 30: DDR Serpentine Delay Pattern ... 66

Figure 31: Sample DDR SDRAM Delay Simulation ... 67

Figure 32: Sample Coupled Propagation Delay Simulation.. 70

Figure 33: LVDS Performance Test Circuit ... 76

Figure 34: Host-To-FPGA Bandwidth Test Circuit..80

Figure 35: Handshaking Protocol .. 82

 xvii

L IST OF ACRONYMS

API .. Application Program Interface

CMOS..Complementary Metal Oxide Semiconductor

CPU... Central Processing Unit

DDR ... Dual Data Rate

DRC.. Design Rule Check

FIFO ...First In First Out

FPGA.. Field Programmable Gate Array

FPP ...Fast Passive Parallel

IBIS ... I/O Buffer Information Specification

IC.. Application Specific Integrated Circuit

IO ... Input/Output

IP ...Intellectual Property

ISA ... Industry Standard Architecture

LUT .. Lookup Table

LVDS ... Low Voltage Differential Signalling

PCI... Peripheral Component Interconnect

PCI-X .. Peripheral Component Interconnect eXtended

PLL.. Phase Locked Loop

RAM..Random Access Memory

SDRAM...Synchronous Dynamic Random Access Memory

SRAM.. Static Random Access Memory

TM...Transmogrifier

TTL ..Transistor-Transistor Logic

USB.. Universal Serial Bus

VHDL.. VHSIC Hardware Description Language

VHSIC..Very High Speed Integrated Circuits

VME..Versa Module Eurocard

 xviii

 1

1 INTRODUCTION

1.1 FPGA-BASED RAPID PROTOTYPING

 An FPGA-based rapid prototyping system is a set of hardware and software

components that enable hardware engineers to design and implement high speed digital

systems both quickly and cheaply. Typically, the hardware components consist of a

number of programmable FPGAs, some memory, some peripherals, and a link to a host

computer. The software components usually consist of a design tool flow, such as

synthesis, placement and routing tools, and an IP library. Through the use of a properly

designed hardware platform, an engineer can design and test many different digital

systems without having to design a physical hardware platform for each. The only

limitations on what is possible are those that arise from the hardware platform itself.

 It is the goal of this research to design a next generation FPGA-based prototyping

system that removes a number limitations found in existing prototyping systems. In

particular this thesis will focus on improving four key areas: memory depth, memory

bandwidth, inter-FPGA bandwidth, and host computer bandwidth.

1.2 FPGA-BASED RAPID PROTOTYPING L IMITATIONS

 The primary limitation of early single FPGA-based prototyping systems was the

small size of circuits that they could implement. FPGA logic capacity lags behind semi-

custom ASIC technology by an order of magnitude, or more. This meant that a single

FPGA-based prototyping system could only handle circuits one-tenth the size of what

could be implemented using an ASIC. Incorporating multiple FPGAs on a single

hardware platform has been employed to address this issue.

 These multi-FPGA systems provided ample amounts of usable logic but it came at

a cost. While each of the different FPGAs can provide high-speed and high-bandwidth

 2

intra-FPGA connections, the inter-FPGA board level connections have much less

bandwidth and much greater latency. Once systems grew to span multiple circuit boards

the inter-board bandwidth only exaggerated this problem. This means that an engineer

must either design their circuits to run at the lower speed, dictated by the inter-FPGA

connections, or must segment their designs in such a way to account for the

heterogeneous nature of the development system. Either way this inter-FPGA bandwidth

is another limitation provided by multi-FPGA development systems.

 Another factor that can limit the usability of such prototyping systems is

peripherals and interfaces provided on the hardware platform. A development platform is

typically designed towards a specific market with specific interface needs. Some

examples of such markets, and the interfaces they require, are listed below:

• Computer Vision

o Computer vision applications require one, or possibly more, video

input peripherals.

• Computer Networking

o Networking devices require peripherals that interface with the physical

network media.

• Embedded Application

o Since embedded systems often employ standard bus interfaces, such as

PCI, or I2C, development systems must include the same.

It is the inclusion, or absence, of these interfaces that limits the types of systems that a

prototyping system can implement. In addition to these specific interfaces, almost all

development boards contain some amount of on-board memory. Once again the amount

of memory and its speed is also a limitation on what a prototyping system can implement.

 The combination of all of these different factors: the amount of usable digital

logic, the inter-FPGA bandwidth, the available peripherals, the memory bandwidth and

the memory depth, dictate the limitations on the types of systems that can be

implemented using modern FPGA-based prototyping systems. The goal of this research

 3

is to develop a state-of-the-art multi-FPGA development system that maximizes usability

of the system by enhancing many of these key limitations.

1.3 KEY OBJECTIVES

 The prototyping system described in this thesis, the Transmogrifier-4 (or TM-4

for short), is the fourth generation development system designed at the University of

Toronto. The previous three systems [1,2,3], the details of which can be found in chapter

2, focused on providing sufficient amounts of programmable digital logic, combined with

useful peripherals and interfaces. The most recent version of these systems, the TM-3,

provided both video-in and video-out, links to a PC-class host computer, and several

megabytes of on-board SRAM.

The TM-3 system has been successfully used to implement a number of different

applications including stereo vision [4], ray tracing [5], and a protein identification

system [6]. While each project was successful, they also provided new insight into what

could be improved in the Transmogrifier design.

Figure 1: Stereo Vision Input [4]

Figure 2: Stereo Vision Output [4]

The stereo vision application [4] was a computation-heavy design that was

segmented between several different FPGAs. The purpose of the application was to take

video from two cameras and determine the distance to each object in the video. Figure 1

shows a sample input from one of the stereo cameras. Figure 2 shows the resulting depth

map as generated by the stereo vision hardware. The lighter colours indicate pixels that

are closer to the camera and the darker colours indicate pixels that are further away. It

 4

was found that the amount of available bandwidth between FPGAs was such that the

inter-FPGA buses had to be carefully designed to transfer sufficient amounts of data.

Without that constraint, this effort could have been better spent on designing the core

stereo vision algorithms and implementations instead.

The ray-tracing project [5] used the TM-3 to render 3D images from data

describing a virtual scene. This data was generated by a host PC and sent to the TM-3

where it would render the images. A sample image is shown in Figure 3. It was found

that the amount of bandwidth available on this host-to-Transmogrifier link was a serious

bottleneck to performance. Although the TM-3 could render a 3D scene in well under a

second, it would take the host link several seconds just to transfer the scene data and

completed image out of memory.

Figure 3: Scene From The TM-4 Ray Tracer

The final application, the protein identification system [6], implemented a

bioinformatics algorithm that identified proteins through the use of the human genome.

The desired system would take data from a mass spectrometer sample and then perform a

linear search through the gigabytes of human genome data to identify the protein sample.

A prototype was implemented on the TM-3 that showed that searching the genome this

way is feasible but would require a development system with more memory.

These three systems illustrate the limitations inherent in any prototyping systems,

those of inter-FPGA bandwidth, host computer bandwidth, and memory bandwidth and

depth. It is the goal of the TM-4 project to design a development platform that

 5

maximizes the inter-FPGA, host computer, and memory bandwidth as well as the

available memory depth.

1.4 ORGANIZATION

The remaining chapters of this thesis are organized as follows. Chapter 2 will

provide some background information on past and current FPGA-based development

systems along with a brief primer on some of the key technologies being used in the

design of the TM-4. Chapter 3 will describe the design methodology, and the circuit

design itself of the TM-4. Chapter 4 will describe the design of the printed circuit board

for the TM-4. Chapter 5 will measure the performance of each of the four key goals, and

Chapter 6 will conclude.

 6

2 BACKGROUND

2.1 INTRODUCTION

 The first half of this chapter will examine the history of FPGA-based

development systems to provide a context for the research presented here. First, a

representative set of systems will be described and their functionality divided into a

taxonomy of the entire space of FPGA-based development systems. Next, the history of

the previous Transmogrifier systems will be described and finally a description of recent,

commercially-available, development system will be given.

 The second half of the chapter will provide a brief description of some of the

technologies that are incorporated into the presented work. These include a discussion of

source-synchronous clocking, the Altera Stratix FPGA, dual data rate SDRAM, and low

voltage differential signalling, or LVDS, high-speed serial communication.

2.2 A TAXONOMY OF FPGA DEVELOPMENT SYSTEMS

 Over the history of FPGAs there have been many of different development

systems that are based on FPGAs. These range from simple single-FPGA systems to

huge multi-board, multi-FPGA systems with the software tool flows to match. Of these

different development systems there are a number of key characteristics that differentiate

them from each other. This section will present these characteristics and use them to

categorize a sample of development systems.

 The first categorization is the number of FPGAs comprising the development

system. The simplest development system is composed of only one FPGA. These

systems are typically designed to allow very simple development to be done on a given

generation of FPGA. As such, single FPGA-based development systems will not be

examined in further detail. The following subsections will provide classifications that are

 7

applicable to multi-FPGA-based systems. Although some of these classifications apply

equally to both single and multi-FPGA systems, only multi-FPGA examples will be

provided.

2.2.1 PURPOSE: PROTOTYPING /VERIFICATION

 There are two distinct classes of development systems, those that allow the user to

prototype an algorithm or a system and those that only allow verification. The primary

difference between the two different classes is that a designer typically uses a prototyping

system to design a system that will ultimately end up targeting FPGAs, whereas

verification systems are used to validate a design that will target an ASIC. This

distinction is important as each type of system has very different needs.

 The designs that can be prototyped on a given system are dictated by the

architecture of the system itself. For example, if a designer wishes to prototype a video-

processing system, the prototyping system must have the proper video interfaces and

must be able to operate at the desired speed. If the final design will run at 200Mhz then

the prototyping system must also be able to handle this speed. This is directly contrary to

a verification system where speed is not a driving factor.

 It is typically impossible to prototype an ASIC design running at full speed on an

FPGA-based prototyping system. This is because an FPGA’s speed lags that of a custom

ASIC chip manufactured in the same fabrication process. However, FPGA development

systems can still be used in the design of ASICs. There are a number of commercial

systems, such as Aptix’s system explorer [7], Emulation and Verification Engineering’s

ZeBu-XL [8], Mentor Graphics’ VStationPRO [9], Cadence Palladium II [10] and AMO

GmbH’s Venux-X Emulator [11], that enable such high-speed designs to be emulated

using FPGAs running at a much lower speed. These systems are designed to abstract

away the underlying FPGA structure to allow easy verification. This is quite different

from a prototyping system in which the structure of the system is very important.

 To allow for an easy transition between a prototyping system and a production

system, both systems typically have a similar architecture. If the designer is targeting a

production system with two FPGAs and a certain amount of memory, the prototyping

 8

system should also have at least two FPGAs and sufficient memory. A designer could

then directly target their design to the architecture without the need for the abstraction

layer provided in an emulation system. By removing this abstraction layer the prototype

system is able to operate at a much higher speed than an emulation system.

2.2.2 MULTI -FPGA INTERCONNECT TOPOLOGY

 A design targeting a multi-FPGA-based development system must be split across

the various FPGAs. The way this is done is dependent on the interconnection topology

between the different FPGAs that the system provides. The topology can either be tuned

for a specific class of application or designed to be flexible enough to implement most

applications. Figure 4 shows several common topologies used by various development

systems.

A B C

D E F

Figure 4: Interconnect Topologies

 Topology A consists of a crossbar style interconnection scheme. Each FPGA is

connected to a central crossbar. This crossbar allows any FPGA to communicate with

any other FPGA. This crossbar might be a specialized crossbar chip, or another FPGA

that is used for routing. The crossbar topology is quite common in academic

development systems as it allows the topology to be configured to emulate any other

style. Crossbars can be found in many development systems including the following [1,

 9

2, 14, 16, 19, 22, 27]. Figure 5 shows how this topology was used in the Splash 2 [27]

development system. The Splash 2 architecture consists of 16 FPGAs all connected to a

central crossbar with the crossbar’s programmable connection controlled by a 17th FPGA.

FPGA FPGA FPGA FPGA FPGA FPGA FPGA FPGA

FPGA FPGA FPGA FPGA FPGA FPGA FPGA FPGA

Cross Bar
Ctrl

FPGA

Figure 5: Splash 2 Crossbar Interconnect Architecture

 A slight variation of the crossbar style interconnect is to fully connect all the

FPGAs to each other, as show in Topology B, instead of using a programmable

connection scheme. This scene has the advantage of removing the crossbar latency from

interconnects but requires many more wires to achieve the same connectivity. Examples

of systems that use this topology are [3, 25]. Since both topologies A and B have each

FPGA connected to every other FPGA they are the most flexible topologies. However,

this flexibility comes at a cost. As the number of FPGAs increases in a system the

number of connections required grows with O(n^2) and with fixed interconnects, the

number of connections between any 2 FPGAs is reduced..

 Topology C, a 2D or 3D interconnection mesh, is a slightly less flexible

connection scheme then the crossbar scheme. This mesh allows a given FPGA to

communicate directly with its neighbours. Communication between more distant FPGAs

must be relayed through an intermediate node. This topology is good in systems with a

large number of FPGAs, due to the fact that the inter-FPGA connection requirements

scale linearly as the FPGA count is increased. This comes at the cost of having less total

interconnection resources and increased connection delay between distant FPGAs, but as

long as applications are designed to localize inter-FPGA communication this topology

works well. Examples of systems that use 2D meshes are [20, 22] and systems that use a

3D mesh are [21].

 10

 There is a common class of application for which a crossbar or mesh topology is

excessive. Many algorithms operate in a pipelined manor. That is there is a data source

for which a series of independent algorithms are applied. Topology D, which consists of

a linear interconnection scheme between FPGA, can efficiently implement pipelined

applications. Data is fed into the system from one end of the chain for each FPGA to

process in turn. The result is then output from the last FPGA. This topology can be

extended slightly by connecting the first and last nodes of the chain, as shown in

Topology E, the ring. A linear topology is used by the Anyboard system [17] and a ring

topology is used by the ARMen system [18].

 Another class of application, which is common, are those with a series of

algorithms that increase in complexity. Topology F, a tree structure, can implement some

of these classes of applications. Data is fed into the system at the root node and is

processed by nodes downward along the tree. The deeper the data flows down the tree,

the more processing power is available. Figure 6 shows the 3 FPGA tree structure used

by the Prism II [24] system.

FPGA

FPGA FPGA

Figure 6: Prism II Tree Interconnect Topology

 Systems with very large numbers of FPGA tend to use a combination of the above

topologies. Typically a small group of FPGAs are connected tightly using either a

crossbar or mesh approach. This allows single algorithms to span across several FPGAs.

 11

These groups of FPGAs are then connected with other groups through either a linear, tree

or larger mesh structure.

 In addition to these flexible interconnection schemes, there are also a number of

development systems that consist of application specific interconnections. For example,

the functional memory computer [12] is designed to explore a very specific type of

computational paradigm. It consists of a number of FPGAs that are connected using a

common memory-mapped bus. Another development system, Ganglion [13], was

designed to explore neural network style processing. As such, the interconnections are

optimized for this specific requirement.

2.2.3 FPGA INTERCONNECT IMPLEMENTATION

 As described in the previous section, there are a number of different possible

interconnection topologies. In addition to this, the way these topologies are implemented

can also vary between development systems. The types of interconnections typically

falls into one of four different categories: fixed, programmable, switched and hybrid.

 A fixed interconnect structure is one where the connections between different

FPGAs is hardwired into the systems circuit board. A programmable interconnect

structure has the various FPGA signals feeding into one, or more, switching chips. These

chips provide the ability to connect the various FPGA signals programmably. Typically

these chips are either a crossbar or an additional FPGA itself.

 The third classification, switched interconnect, is a connection method that allows

the interconnections to be changed while the development system is operational.

Typically, this is done using packet switching, as commonly used in the networking

world. An example of a switched interconnection network can be found in the form of

either an FPGA controlled crossbar, as found in Splash 2 [27], or as a packet switched

network, as found in the Bee 2 system [14].

 12

FF FFFF FF FF FF FF FFa) b) FPGA FPGAFPGA FPGAXBARFFFF FFFFFFFF FFFF FFFF FFFF FF FF FFFF FFFFa) b) FPGAFPGA FPGAFPGAFPGA FPGAFPGAXBAR

Figure 7: Bee's Interconnection Topology Hierarchy

 The final classification, hybrid, combines several of the previous interconnection

structures. For example, the Bee system [14], consists of an interconnect hierarchy,

shown in Figure 7. The lowest level of the hierarchy consists of a fixed nearest neighbour

grid of interconnected FPGAs. This fixed grid provides local connections. The next

level in the hierarchy provides global connections through the use of programmable

crossbar switches.

2.2.4 EXTERNAL INTERFACE /HOST

 A development system does not exist in complete isolation. For a design to

perform a useful task, it must have some interface to the outside world. This interface

might consist of a specific type of interface, such as video I/O or a network port, or a

more general interface, such as a CPU or general-purpose expansion IO. The general-

purpose interfaces allow more flexibility, since they could also provide a video stream,

but the bandwidth provided is not optimized towards a specific application, as a dedicated

video I/O port would be. This means that the available bandwidth on a general interface

will ultimately limit the rate, and type of data can that can be provided to the

development system.

 The bandwidth of general-purpose expansion I/O is limited by the number of

FPGA pins dedicated to expansion as well as the maximum data rate each pin can operate

at. A host CPU interface’s bandwidth is limited by the method used to connect the

development system to the host computer. The simplest, and slowest, method is to

 13

provide a parallel or serial port interface as [2] does. This method can provide at most a

few megabytes per second of bandwidth due to the low operating performance of both

parallel and series ports. A method with much higher bandwidth is to connect the

development board directly to a CPU’s expansion bus, such as SBUS, SCSI, PCI [15], or

VME. This type of connection can provide anywhere from a few dozen megabytes per

second to several hundred megabytes per second.

 Systems that use an SBUS host computer interconnect include [16, 18, 20, 25,

27], a SCSI interface [28], a PCI interface [3, 12] and a VME interface [13,21].

2.2.5 MEMORY

 Many important applications require a large amount of memory. Most modern

FPGAs include moderate amounts of on-chip ram, up to 10Mb in state-of-the-art FPGAs,

but this amount is usually not sufficient. Most development systems augment this

memory by adding additional external memory.

 The speed, type, and configuration of the memory can have a substantial effect on

the performance of circuits using it. For example, the simplest memory for a circuit to

interface with is SRAM. This type of memory does not require refreshes and typically

has very low latency. The primary drawback is that the memory capacity is low. Using

DRAM can increase this memory capacity and bandwidth, but this comes at a cost. A

DRAM interface is much more complex than an SRAM one due to the fact that DRAM

must be refreshed. In addition to this the memory latency is also increased. Where an

SRAM’s latency could be a low as 2 cycles, a DRAM’s latency is often closer to 10, or

more, cycles.

 Which type of memory is best depends upon the type of application using it. If an

application is very latency-dependent, and only requires a small amount of memory, then

SRAM is ideal. If an application requires high bandwidth or a large amount of memory

then DRAM is the best choice.

 In the past development systems have usually used SRAM, as it is easier to

interface with. The few systems that do incorporate DRAM, such as Enable++[22] and

 14

RPM [26], do so to provide more memory then SRAM can provide. However, both of

these systems also include a small amount of SRAM as well.

2.2.6 SUMMARY

 A development system can be defined by a number of different characteristics, as

discussed in the previous section. These include the system’s purpose, the

interconnection topology, the interconnection implementation, the external interfaces,

and the amount and type of system ram. Table 1 summarizes the last four characteristics

for a number of historical and modern prototyping systems.

 FPGA Count
And Type Memory

Host
Interface Interconnect

ACME [16] 14 Xilinx XC4010 28K SRAM SBUS Programmable

Anyboard [17] 5 Xilinx 3042 384K SRAM ISA Fixed

ARMen [18] 8 Xilinx 3090 512K SRAM SBUS Ring

Bee [14] 20 Virtex 2000E 16MB SRAM Ethernet Mesh Hierarchy

Borg [19] 4 Xilinx 30XX 2K SRAM ISA Programmable

Chameleon [20] 3 Xilinx 4010 1.25M SBUS Fixed Mesh

DFFC [21] 512 Custom FPOA 8M VME 3D Grid

Enable++ [22] ~50 Xilinx 40XX 12M SRAM

384M DRAM

Custom Programmable

FMC [12] 11 Xilinx 40XX 1M SRAM PCI Bus

Ganglion [13] 24 Xilinx 3090 None VME Fixed Custom

Marc 1 25 Xilinx 4005 6M SRAM SBUS Programmable

Morrph-ISA 6 Xilinx 40XX Fixed Mesh

Perle-0 25 Xilinx 3020 500K SRAM VME Fixed Mesh

Prism [23] 4 Xilinx 3090 None 16bit Bus None

Prism II [24] 3 Xilinx 4010 1.5M SRAM 64bit Bus Tree

Race [25] 4 Xilinx XC4013 512K SRAM SBUS Fixed Mesh

 15

 FPGA Count
And Type Memory

Host
Interface Interconnect

RPM [26] 63 Xilinx XC4013 90M SRAM

864M DRAM

SCSI Fixed

Splash 2 [27] 16 Xilinx 4010 8M SRAM SBUS Crossbar

Spyder 5 Xilinx 4003 128K SRAM SBUS/VME Fixed

Teramac [28] 1728 Custom FPGA 512M SRAM SCSI Crossbar

TM-1 [1] 4 Xilinx 4010 144K SRAM SUN Programmable

TM-2 [2] 32 Altera 10K100 128M SRAM Parallel Crossbar

TM-3 [3] 4 Virtex 2000E 6M SRAM PCI Fixed Mesh

Table 1: FPGA Development System Characteristics

2.3 THE TRANSMOGRIFIER PROJECT

 While the global goal of the Transmogrifier Project has always been to create an

easy-to-use development platform for researching algorithms and implementations, the

goal of each specific Transmogrifier, or TM for short, has varied.

 The goal of the TM-1 [1] was to provide an initial research platform to serve as a

starting point for future development. Next came the TM-2 [2] with the goal of designing

a system that could handle very large circuits. This was achieved through the use of a

large number of FPGAs in a scaleable design. By the time the TM-3 [3] was designed,

FPGA technology had improved sufficiently so that a single FPGA could now do the job

of the entire TM-2. This led to a new goal, a goal of performance, instead of just size.

The TM-3 was thus designed to enable circuits to operate at a high clock rate, up to

100MHz.

 The following three subsections will provide an overview of the first three

Transmogrifiers.

2.3.1 TRANSMOGRIFIER -1

 The Transmogrifier-1 was designed at the University of Toronto in 1991. The

TM-1 consisted of four Xilinx 4010 FPGAs connected using Aptix programmable

 16

crossbars with an Aptix programmable board. These four FPGAs provided 3200 4 input

lookup tables, or LUTs, for use as programmable digital logic. Each of the four FPGAs

was connected to a 32Kx9 SRAM.

2.3.2 TRANSMOGRIFIER -2

 The Transmogrifier-2 was designed at the University of Toronto in 1996. The

TM-2 incorporated a scalable multi-board design for which systems where built

consisting of two, four and sixteen boards. Each board on the TM-2 consists of two

Altera 10K100 FPGAs, 8MB of SRAM, and a programmable crossbar. In the largest

configuration there are 32 FPGAs providing a total of 160,000 LUTs, and 128MB of ram.

The TM-2 also introduced a parallel port interface to a Sun host computer. This interface

allowed programming of the FPGAs as well as communication with the circuit under test.

Communication was facilitated through the use of parameterizable bus hardware

interfaces, combined with a software package on the Sun computer. The TM-2 was used

successfully for a number of applications including face detection [29], and procedural

texture mapping [30].

2.3.3 TRANSMOGRIFIER -3

 The Transmogrifier-3 abandons the multi-board approach due to the effort

involved in effectively building and using multi-board prototyping systems. The TM-3

system consists of four Xilinx Virtex 2000E FPGAs each with 2MB of SRAM. This

provides a total of 150,000 LUTs and 8MBs of SRAM. The interface with the host

computer has also been improved by using a direct SBUS or PCI link instead of the

parallel port connection provided by the TM-2. This link is once again used to program

and communicate with the development FPGAs.

 The TM-3 was used for a number of different applications including stereovision

[4], ray-tracing [5] and a protein identification proof of concept system [6].

 17

2.4 COMMERCIAL DEVELOPMENT SYSTEMS

 Purpose FPGA Count Memory Host Interface

HAPS [31] Prototype 4 Virtex II 8000 per
board (Stackable)

1GB DRAM /
FPGA
0.5GB SRAM
/ FPGA

PCI-X 133Mhz

Venux-X [9] Emulation 6 Virtex II 6000 < 1 G SRAM Custom
ZeBu-XL [8] Emulation 64 Virtex II 8000 < 1 G DRAM Custom
PROCStar II [32] Prototype 4 Stratix S80 2 GB DDR II PCI 66 Mhz
DN6000k10 [33] Emulation 9 Virtex II Pro 100 1.5 GB DDR USB
System Explorer [7] Emulation 8 Virtex 2000E
Wildstar II PRO [34] Prototype 3 Virtex II Pro 528MB DDR VME
Pro 3100 [35] Prototype 4 Virtex II 8000 512MB DDR PCI 66 Mhz

Table 2: Available Commercial Development Systems

There are a number of commercially available development systems that have a

comparable level of functionality to the Transmogrifier-4 (the system described in this

dissertation). To understand what sets the TM-4 apart from these systems, this section

will summarize the capabilities of competitive commercial systems.

 Table 1 summarizes the available commercial development systems with similar

amounts of FPGA development resources. The first system, the HAPS, is a modular

system that allows scalability. The base configuration consists of 4 Virtex II 8000

FPGAs and up to 4 GB of DDR SDRAM. However the memory subsystem does not use

RAM modules and instead requires 6 individual expansion boards with discrete RAM

chips. This solution is more expensive and slower then using standard RAM modules but

fits with the systems goal of being modular.

 The next two systems, Venux-X and ZeBU-XL, are both very large ASIC

emulation systems. Although the amount of available logic will be greater than that of

the TM-4 the systems are only designed to run in the several Mhz range. The Gidel

PROCStar II board consists of 4 Stratix S80s and a 66MHz PCI interface, the same as the

TM-4. What the PROCStar lacks is memory bandwidth. There are only two channels of

DDR II available.

 18

 The next two systems, the Dini Group DN6000K10 and the Aptix System

Explorer are also only emulation systems. They are also designed to only run in the few

megahertz speed range. The remaining development system, the Pro 3100, is also similar

to the design of the TM-4. It consists of 4 Virtex II 8000 chips and a PCI 66MHz host

computer connection. However once again lacks both memory bandwidth and memory

depth.

2.5 BACKGROUND TECHNOLOGIES

 Many of the different decisions involved in the design of the TM-4 were the result

of various technical requirements or limitations. The following subsections will provide

some background technical information relating to FPGA technology, external memory

and high-speed inter-chip signalling in order to provide suitable context for the design

presented in Chapter 3.

2.5.1 ALTERA STRATIX FPGA

The largest chip in the Altera Stratix line of FPGAs, the EP1S80, consists of

several different types of programmable logic blocks. Its core programmable

functionality is provided through 79,040 four-input programmable lookup tables, or

LUTs, and is supplemented with other blocks such as multipliers, on-chip memories,

phase locked loops, and specialized I/O hardware. Of particular relevance to the TM-4

project is the structure of the Stratix FPGA.

12

3

4

5 6

7

8

D
D

R

D
D

R

Figure 8: Stratix I/O Banks

 19

 The Stratix FPGA pins are grouped into eight different banks, as shown in Figure

8. The I/O pins in each bank are connected to a common I/O voltage and reference. This

restriction limits what types of I/O standards can be operated in any given bank. For

example, it is not possible to have both a 2.5v and 3.3v output I/O standard operating in

the same bank since the bank must have a common I/O voltage. A similar restriction

exists for reference voltage as well. In addition to voltage restrictions, the Stratix

FPGA’s I/O banks are also limited in which I/O standards they can implement.

Only I/O banks 1, 2, 5, and 6 can support the LVDS differential standard. These

banks provide dedicated serialization/deserialization hardware that help enable LVDS

communication at up to 840Mbps. The remaining banks 3, 4, 7, and 8 only support single

ended output standards. However, these banks do contain dedicated hardware that allow

for easy DDR SDRAM interfaces. These banks incorporate a delay locked loop for use

in properly aligning the clock and data received from a DDR SDRAM memory.

As will be discussed in Chapter 3 these bank restrictions are very significant when

it comes to routing the TM-4’s circuit board.

2.5.2 SOURCE-SYNCHRONOUS CLOCKING

 Transmitting data at a high rate is a very difficult problem. As data rates increase

the effect of skew and IC fabric and circuit board process variation become very

signification. Skew directly reduces system-timing margins, and process variations

increase the uncertainty of inter-chip delays. These two factors make it uneconomical to

use a simple global clocking method to transmit data. To compensate for this problem a

clocking method known as source-synchronous clocking is often used.

 20

Data

Clock

Synchro-
nization

Flop

Transmitter Interchip
Connection

Receiver

Figure 9: Source-synchronous Clocking

 Source-synchronous clocking is designed to eliminate most of the effects of

process variation to enable higher-speed signalling. Figure 9 illustrates how this works.

A transmitter drives both a data and clock signal. The receiver can then uses this clock

signal to synchronize the provided data. Provided that the data signal meets the setup and

hold time requirements relative to the clock signal the flip-flop will successfully capture

the data. It is easy to see that if sufficient skew is introduced between the clock and data

signals that synchronization will fail.

 To limit the amount of skew introduced, the two signals traces are designed in

such away as to minimize the sources of skew. For example, the transmitter would

typically place the data and clock pins physically very close together on the die and use

the same branch of the clock distribution tree. The goal in this design is to remove

process-variation-induced clock skew. Similarly, the physical circuit board inter-chip

connections would be routed similar to each other in order to reduce skew. Finally, the

receiver chip would try to match the delays between the internal clock distribution

network and the input time of the data signal. If all these sources of skew are sufficiently

controlled, then the data can be successfully captured in the receiving device. However,

the data must still be transferred to the receiver’s clock domain.

 There are two different ways to handle this problem depending on the situation.

In the most difficult situation, where the phase of the data clock is completely unrelated

to the internal clock, it is necessary to treat the output of the synchronization register as

asynchronous. The means that all metastability issues [36, 37, 38] must be addressed. In

the easier case, where there is some relationship between the data and internal clocks, the

resynchronization can be handled by buffering the received data while still in the data

 21

clock domain. Periodically this data can then be transferred into the local clock domain

at a much lower rate.

2.5.3 DDR SDRAM

 DDR SDRAM, or dual data-rate synchronous dynamic random access memory, is

a dynamic RAM standard that incorporates double data rate signalling, with source-

synchronous clocking, to achieve high data rates. Double data rate means that data is

transferred on both the rising and falling edges of the clock. The DDR SDRAM standard

supports speeds of up to 200Mhz. To meet these speeds, while still being inexpensive to

implement, the standard uses source-synchronous data strobes for transmitting data. A

number of data bits, usually 4 or 8, have a strobe signal that is routed along with them.

This strobe is then used as a source-synchronous clock as described in the previous

section. The only difference between DDR SDRAM, and the example provided in the

previous section, is that the strobes and data signals driven by the memory have

coincident edges. To meet setup and hold requirements the strobe must be delayed by the

receiver. This can be accomplished on the Stratix FPGA through the use of a specialized

delay-locked loop.

 Like many DRAMs before it, DDR SDRAM memory is organized into a

hierarchy. Figure 10 shows a subset of the hardware contained in a DDR SDRAM chip.

Memory is stored in four different memory arrays, or banks. Each array consists of a

fixed number of rows and columns. In order to read or write a memory element, it is

necessary to first have the internal DDR SDRAM controller “open” the row. This means

that the controller will read an entire row of data from the 2D memory array into a buffer.

This buffer can then be read or written into by selecting which column to access. Upon

completion the row must be “closed”. This means that the buffer data is written back to

the 2D array.

 22

I/O GATING

COLUMN
DECODER

BANK0
MEMORY
ARRAY

BANK0
ROW-

ADDRESS
DECODER

SENSE AMPLIFIERS

BANK1
BANK2

BANK3

BUFFER

Figure 10: DDR SDRAM Memory Organization

 This process of opening and closing rows takes a significant number of cycles.

Although the exact time varies between memory modules, typically each process takes

around 3 cycles. In order to mask some of this time, DDR SDRAM allows one bank to

be opening or closing a row while another bank is performing a read or a write. Through

the use of clever access patterns, DDR SDRAM can sustain burst transfers very near the

theoretical maximum of two words per clock cycle.

2.5.4 LVDS HIGH -SPEED SERIAL COMMUNICATION

 Electrical signalling standards have a strong effect on the speed performance of a

communication link. One such standard is known as low voltage differential signalling,

 23

or LVDS for short. This standard belongs to a family of standards known as differential

standards, which use two wires to transmit data. One wire carries a data signal and the

other carries the data signal’s complement. This is in contrast to more conventional

signalling that uses only one wire called a single-ended standard. It should be noted that

both differential and single-ended standards have an implied return current, or ground,

path.

 LVDS signalling has two primary advantages over conventional single-ended

standards, and one major drawback. The first advantage is that LVDS involves very little

voltage swing. Whereas TTL or CMOS might have 2.5V or 3.3V voltage swings

between high and low, LVDS signal swing is between 240mV and 450mV. This

decreased voltage swing means that there will be less inter-trace coupling between

different inter-chip LVDS signals, thereby helping reduce signal integrity issue. The

second advantage arises from the fact that LVDS is a differential standard.

Data
In

Transmitter Interchip
Connection

Receiver

Data
Out

Circuit Board

Figure 11: LVDS Communication Channel

 A differential topology consists of three different components: the transmitter, the

interconnection, and the receiver. Figure 11 illustrates these components. Each of these

components benefit from the differential nature of LVDS.

 The benefit to the transmitter is in the form of reducing the inductance caused

voltage drops. When a conventional single ended transmitter switches between output

states there is a corresponding supply current step. This step will cause a voltage drop

due to the inductance between the driver and the power source. At low speeds this

problem can be reduced by capacitors on the circuit board. At higher-speeds it is the

responsibility of on-chip capacitance to prevent excessive voltage drops, but at

 24

sufficiently high speeds even on-chip capacitors cannot help with this problem.

Differential signalling reduces the effect of inductive induced voltage drop by trying to

eliminate voltage steps. When one wire of the differential signal is switching in a given

direction, the other wire is switching in the opposite direction. Ideally, these two voltage

swings will cancel each other out and eliminate the effect of the power supply network’s

inductance completely.

 The interconnection signal integrity is helped by the differential nature of LVDS

as well. Ideally the two wires are switching in opposite directions at the exact same time.

This means that the return current of one wire will flow through the other wire, as

opposed to a ground plane or neighbouring trace. This is an ideal situation as it helps

reduce the signal integrity effects of holes and slots in the ground plane. Unfortunately,

in practice the LVDS wires are not perfectly matched and the transmitters’ drivers will

have some skew. This will lead to the non-ideal situation where some current will still

flow through the ground plane. However the situation is still better than a single ended

wire.

 The final piece of the communication channel is the receiver. The receiver

benefits from differential signalling in two ways. The first is that differential signalling

makes a small voltage swing seem twice as large. That is, even though one wire is

switching only 400mV, the other wire is switching 400mV in the other direction. When

put through a differential amplifier the voltage swing is effectively doubled to 800mV.

Another advantage is that common mode noise between the two signals will cancel each

other out. Ideally both wires in a differential pair will run very close together on a circuit

board, the idea being that any noise will couple into both wires. This noise will then be

filtered out at the receivers’ differential amplifier. Once again reality is not as friendly as

the ideal case in that differential pairs tend to be only loosely coupled. This means that

noise will not be equally coupled into each wire but once again this situation is still better

than a single ended wire.

The major drawback of LVDS is that it requires twice the number of wires of a

single ended standard. To achieve the same bandwidth it is necessary that an LVDS pair

run at twice the data rate as a single ended standard. In the case of a long cable

connection this is almost always possible; the common noise rejection can often easily

 25

out perform single ended standards by a factor of 2 or more. However, in the case of

short onboard connections the case is not as strong. LVDS still wins out performance

wise but the margin is much smaller.

2.6 SUMMARY

 This chapter described a set of both commercial and academic FPGA-based

development systems, in terms of taxonomy of the entire space of development systems.

A description of the previous generations of Transmogrifier systems was then presented

followed by a technical introduction to some of the key technologies employed in the

TM-4.

 The next chapter will describe the design of the TM-4 by examining the design

methodology employed in creating the TM-4.

 26

3 DESIGN

3.1 INTRODUCTION

 This chapter presents the design of the Transmogrifier-4 by examining the design

methodology used in creating the TM-4 and then describing important parts of each step

of the design. These steps include the identification of the requirements for the TM-4,

the hardware design of the circuitry and the verification of the circuitry. An additional

step, the design of the circuit board, is examined in detail in the next chapter.

 The requirement identification section, Section 3.2, identifies the high level

requirements of the TM-4 by examining past experiences and predicting future needs.

These requirements are then used to create a complete hardware design for the TM-4,

described in Section 3.3. Prior to actually fabricating the TM-4 hardware a number of

different verification test were performed. These tests are described in Section 3.4.

3.2 REQUIREMENT IDENTIFICATION

 The first step in designing the TM-4 was the identification of a set of key desired

characteristics for it. These requirements were identified from three different sources.

The first source was the previous Transmogrifier, the TM-3 [3]. Many of the same

requirements that drove its design were still applicable to the TM-4. Next, experience

gained through the use of the TM-3, in creating applications was used to provide new

requirements and finally a number of forward-looking requirements were identified by

anticipating the future application space of the TM-4.

 The following three subsections will examine each of these different sources of

design requirements and one additional subsection will summarize the final design

requirements.

 27

3.2.1 PAST TRANSMOGRIFIER REQUIREMENTS

 Many of the decisions made in the design of the previous Transmogrifier, the TM-

3, are still relevant today. In particular, experience using the TM-3 has shown that the

selection of the number of FPGAs, the FPGA interconnection topology, and the choice of

the external interface was well suited for the TM-3 and suggests that similar selections

would also suit the TM-4. The remainder of this section will present the selections made

in the design of the TM-3 and examine the reasoning behind them.

 The choice of the number of FPGAs that a development system contains is a

trade-off between complexity and capacity. An arbitrary amount of capacity can be

added to a system by increasing the number of FPGAs that the system contains.

However, this comes at a cost of complexity, as users of the system must now partition

designs over a large number of FPGAs. The design of the TM-3 selected a trade-off

point of having four FPGAs. This was found to provide a large amount of logic capacity

while still being usable by designers. The selection of only four FPGAs also simplified

the interconnection topology selection.

 Since the number of FPGAs was limited to only four, it became feasible to fully

interconnect the FPGAs to each other, similar to Topology B in Section 2.2.2. This

topology allowed for the lowest latency interconnections, as there were no programmable

elements to introduce delay.

 The final relevant choice made in the design of the TM-3 was the selection of an

external interface. The purpose of an external interface on a prototyping system is to

provide a mechanism for communicating with the circuit operating within the system

itself. The mechanism employed on the TM-3 was a simple bus protocol between the

four FPGAs and a fifth “housekeeping” chip. This “housekeeping” chip provided a

bridge between the four FPGAs and a host computer via a PCI bus. Experience has

shown that this simple bus, combined with parameterizable soft IP modules, provides a

very easy-to-use communication channel for designers to use.

 Since past experience has shown the basic organization structure of the TM-3 to

be reasonably good the same structure was employed in the TM-4. The TM-3 provided

the basic requirements of having four of the largest FPGAs, each that is fully

 28

interconnected to each other, and each that is connected to a host computer via a

“housekeeping” bridge.

3.2.2 PAST APPLICATION DRIVEN REQUIREMENTS

 The previous generation of Transmogrifiers, the TM-3, was used to implement a

variety of applications including: ray tracing [5], protein identification [6], stereo vision

[4], and a molecular dynamic simulator [39]. The process of designing these applications

brought to light a number of different shortcomings in the architecture of the TM-3. In

particular it was found that the TM-3 lacked host computer bandwidth, memory

bandwidth, inter-chip bandwidth and memory depth. To better understand how these

shortcomings were found, three of the applications implemented on the TM-3, ray

tracing, protein identification, and stereo vision will be examined in more detail.

3.2.2.1 RAY TRACING ON THE TM-3

 Ray tracing is a method of rendering 2D images of a virtual 3D scene. The

algorithm renders a 2D projection of a 3D scene by approximating the way that light rays

propagate around the scene and end up hitting the viewer’s eye. The light ray

propagation model involves “tracing” the path that light rays travel back from the

viewpoint, through the projection point and in to the scene. Figure 12 shows an example

of how this works.

Plane P

Ray R

Figure 12: A Simple Ray Tracing Example

 29

 The three triangles in the upper right represent the virtual 3D scene. The eye in

the lower left represents where the 2D projection should be viewed from. The plane, in

the middle, is what the 3D scene should be projected on. The ray tracing algorithm first

generates a ray from the eye point through each pixel in the projection plane. These rays

are then used to determine what objects are visible and which object should be projected

onto a given pixel in the plane P. Intersecting the rays with the 3D scene, a

computationally intensive procedure makes this determination. It is this process that was

accelerated using the TM-3.

 The ray tracing implementation [5] was limited several ways by the architecture

of the TM-3. First, the available memory on the TM-3 was limited to only 6 megabytes.

This allowed only relatively small 3D scenes to be rendered on the TM-3. The second

limitation was memory bandwidth. The TM-3’s memory subsystem was built to run at

50Mhz. At this clock speed the memory could not provide 3D data as fast as the

hardware could process it. This turned out to be the performance-limiting factor in the

design of the hardware ray tracer. The final limitation of the TM-3 was the amount of

host computer bandwidth. Both the dataset, which represents the 3D scene, and the

resulting rendered image needed to be transferred between the TM-3 and its host

computer. However, the available bandwidth, less the 2MB/s, meant that the TM-3 could

process data much faster than it could communicate its results.

 Experience from the ray tracing application suggested that the TM-4 should have

more memory, more memory bandwidth, and more host computer bandwidth. To

address the question of exactly how much more of each, a more in-depth look at how a

3D scene can be stored is necessary.

 In its simplest form a 3D scene consists of a set of triangles that are arbitrarily

positioned in three-dimensional space. Each vertex of the triangle is represented by three

numbers defining its position in space. If we assume that 32-bit numbers are used then

each triangle will require 36 bytes to store. For a scene of 1,000,000 triangles the storage

requirements will be 36MB. If a more complicated 3D scene is used, one that includes

texture maps, and other such data, the memory requirement could easily exceed 100MB

or more.

 30

 The issue of how much memory bandwidth is difficult to address. Since ray

tracing can be parallized extensively, it is possible to consume any available memory

bandwidth, with the only limitation being logic area. The remaining issue of host

bandwidth is also difficult to address as this link is utilized to load scene data. During

this time the system is idle and the host link is the bottleneck. Ideally, the bandwidth on

this link should be as high as possible to limit the performance impact.

 The experience from this application, combined with the simple calculations

above, suggest that the TM-4 must have at least 100MB of memory and as much memory

bandwidth and host computer bandwidth as feasible.

3.2.2.2 PROTEIN IDENTIFICATION ON THE TM-3

 An active area of research in proteomics involves the identification of biological

proteins contained in a physical sample. The current approach attempts to identify the

molecular make up of the proteins using a device known as a mass spectrometer. This

device can take a protein, break it up into small pieces and identify the molecular make

up of these small pieces. It is then necessary to assemble these “fragments” into a

completed protein. One approach to assembling the fragments involves searching the

human genome [6].

 The human genome contains a description of every possible protein, and as such

can be used to reassemble the protein fragments previously obtained. The algorithm to

accomplish this involves searching the entire human genome dataset, several gigabytes of

data, and matching the fragments to certain proteins. Successive fragment searches each

reduce the set of possible protein matches until only one protein is left. This protein

should be the same as the protein in the physical sample.

 A prototype created on the TM-3 [6] showed that the algorithm could be easily

parallized to consume all available memory bandwidth. In addition it was found that a

large amount of memory was also required to store genomic data. It takes around 1

gigabyte of data to store the 3.3 billion base pairs that make up the human genome. In

addition there is evidence that it might be necessary to search several different genome

 31

datasets at the same time. This would push the amount of RAM required to between 2-

4GB.

 The experience from this application suggests that the TM-4 should have between

2-4GB of RAM and as much bandwidth as feasible.

3.2.2.3 STEREO VISION ON THE TM-3

 One of the fundamental problems facing computer vision is the problem of

extracting depth information from an image or images of a scene. Stereo vision is one

approach to this problem that works by mimicking the way human vision works.

 The stereo vision approach uses two cameras that are aligned side-by-side. Each

of the cameras sees a slightly different version of the scene and these differences can be

used to extract depth information. By utilizing simple geometric relationships between

corresponding objects in each image, depth can be calculated. The hard part of the

problem is identifying the matching points between each image. One solution to the

matching problem is to perform a large number of correlations between the pixels in each

image. This approach works well but is very computationally intensive.

 The TM-3 was used to accelerate the stereo vision computation to the point where

it could operate in real time [4]. However, the logic area requirements necessary to meet

real time performance were very high. The implementation of the stereo vision algorithm

needed to be spread across all four FPGAs of the TM-3. It was found that the lack of

communication bandwidth between each FPGA made partitioning the design difficult but

in the end a functional stereo vision system was created.

 The experience from this application suggests that the TM-4 should have as much

inter-FPGA bandwidth as possible in order to simplify the problem of partitioning

designs.

3.2.3 ANTICIPATED APPLICATION SPACE REQUIREMENTS

 The TM-4 was designed with several different future application spaces in mind,

each space with its own requirements. These spaces include stereo vision [4], genome [1]

 32

based algorithms, reconfigurable computing, and others. In order to meet the demands of

these applications several additional design requirements were necessary.

 Stereo vision applications require two video sources as input and some method of

output. This resulted in the requirement that the TM-4 have two analog video-in

channels, two digital IEEE-1394 channels (to provide alternative video input and output

channels through a standard digital interface), and a VGA video-out channel.

Reconfigurable computing applications might require the prototyping system to be

rapidly reprogrammable. This added the requirement of having the development FPGAs

configured using the fastest method possible.

3.2.4 THE TM-4 DESIGN REQUIREMENTS

 The following list summarizes the different design requirements of the TM-4. It

includes all the requirements identified in the previous three sections as well as two

additional requirements. The requirement that the TM-4 be designed to minimize the risk

of a design error causing a complete system failure, and the requirement that the TM-4 fit

into a standard PC case.

 The first requirement is important since the TM-4 is a piece of physical hardware

it cannot be easily changed after it has been fabricated. If a critical mistake is made in

the design process the entire system will be useless. To reduce the risk of a complete

failure of the TM-4, any system that is critical to functionality must have a simple

redundant backup. For example the power supply, the FPGA programming subsystem,

and the PCI interface all require a backup contingeny plan.

 The second requirement, that the TM-4 fit into a standard PC case, is important as

this means that the TM-4 can be easily implemented as a self-contained system while

using off-the-shelf parts. The self-contained system will allow for easy portability and

easy compatibility with the host computer.

When all of the requirements are tabulated, the following list of requirements

results:

1. Logic capacity

a. Four of the largest available FPGAs

 33

2. Interconnect Topology

a. Fixed point-to-point

b. As much bandwidth as feasible

3. Memory

a. 4GB or more

b. As much bandwidth as feasible

4. External Interfaces

a. 2 analog video in channels

b. 2 digital video channels (IEEE-1394)

c. VGA video out DAC

5. Host Computer Interface

a. As much bandwidth as possible

b. Simple to use for designers

6. Miscellaneous

a. Must have a mechanism for remote access to the development platform.

b. Should be reconfigurable as fast as possible

c. Designed to minimize the risk of a design error induced system failure

d. Circuit board should conform to extended ATX form factor specification

It should be noted that there are other practical limitations on these requirements.

This means that there needs to be an engineering trade-off between the various

requirements and other external factors. These factors include things such as: cost, power

requirement, and any space limitations of the circuit board.

3.3 THE TM-4 DESIGN

 The following sections present the design of the TM-4, as motivated by the

previously identified design requirements. A system-level block diagram will be

introduced for the TM-4 and each block will then be examined in more detail. The

complete schematics for the TM-4 can be found in Appendix 7.

 34

3.3.1 DESIGN OVERVIEW

 The design of the TM-4 consists of two major subsystems: the development

subsystem, and the interface subsystem. The development subsystem contains the

portion of the TM-4 that is directly usable by designers in implementing their designs.

The interface subsystem is not directly usable by designers but instead provides support

functionality. This functionality includes both controlling the TM-4 and providing a

communication channel with the development system.

Development
FPGAs

External
Memory

Host
Interface

Host
Computer

User
Peripherals

Interface Sub System Development Subsystem

Figure 13: Top Level System Diagram

 Figure 13 shows the division between development and interface in slightly more

detail. The development subsystem is composed of programmable logic, external

memory, and user peripherals that are all available for designers to use. The interface

subsystem consists of a host computer and a host interface.

 Each of these five components, the programmable logic, the external memory, the

user peripherals, the host interface and the TM-4 controller will all be examined in the

following subsections.

3.3.2 PROGRAMMABLE LOGIC

 The programmable logic subsystem of the TM-4 is comprised of two different

items: the FPGAs and the interconnection between them. The first two design

requirements, 1 and 2 identified in Section 3.2.4, specified that the TM-4 should contain

 35

four of the largest FPGAs available, be fully interconnected using point-to-point

connections and provide as much bandwidth as possible. These requirements leave the

question of which FPGAs to select and exactly how to connect them unanswered.

 Each of the questions will be examined in the following two subsections.

3.3.2.1 FPGA SELECTION

 The selection of which FPGA to use for the TM-4 was a choice between two

different companies flag ship products: Altera’s Stratix FPGA, and Xilinx’s Virtex II Pro

FPGA. Each FPGA had their own benefits and disadvantages. For example, the Virtex

II Pro had more multipliers and more flexibility in the configurability of its I/O pins,

whereas the Stratix had hardware support for certain types of RAM and termination

schemes. In the end, neither FPGA was found to be clearly better then the other and the

decision came down to the more practical consideration of availability. The largest

Altera Stratix chip was available, whereas it was not clear if the Xilinx Virtex II Pro

FPGA would be released in time, and as such, the Stratix was chosen for the TM-4.

 Each of the four Altera Stratix S80 chips selected for the TM-4 provide 79,040

four-input lookup tables, 7.4Mb of on-chip SRAM, 176 embedded 9x9 multipliers and

1203 I/O pins. When combined the total usable development area of the TM-4 is

316,160 four-input LUTS, 29.6Mb of on-chip SRAM, and 704 embedded 9x9

multipliers.

 36

3.3.2.2 FPGA INTERCONNECT STRUCTURE

Development
FPGA

Development
FPGA

Development
FPGA

Development
FPGA

142 SE

20 Diff

142 SE

20 Diff

64 SE

40 Diff

64 SE

40 Diff

64 SE
40 Diff

64 SE
40 Diff

Figure 14: Development FPGA Interconnect Structure

 The design requirements specified that the four development FPGA be fully

interconnected, with each other, and have as much inter-FPGA bandwidth as possible. In

order to meet these goals it was necessary to determine the number and type of

connections between each of the FPGAs.

 The Stratix FPGA supports two types of signalling standards, differential and

single ended. The differential standards use two wires and can provide a theoretical data

rate of 840Mbps, whereas the single ended standards use only one wire but only provide

a data rate of 350Mbps. Of the two options, differential signalling provides the greatest

throughput per pin.

 The final decision of how many inter-FPGA signals to use and what standards

they should be were based on a combination of Stratix hardware limitations and physical

circuit board issues. Since the Stratix architecture supports only a limited number of

differential signals it was necessary to use of both differential and signal ended signals.

Figure 14 illustrates how the four development FPGAs are connected to each other and

how many signals of each standard are used (where “SE” refers to single ended and

“diff” refers to differential).

 The differential signals are implemented using pairs of LVDS signal lines, and the

SE, or single ended, signals are implemented using 2.5.v and 3.3v CMOS standards.

 37

The total available bandwidth between pairs of FPGAs varies between 56Gb/s and

66.5Gb/s. This variation is the result of certain asymmetries in the Stratix architecture

and the relative positions of the four FPGAs.

3.3.3 EXTERNAL MEMORY SELECTION

 The design requirements of the TM-4 specified that the TM-4 should have at least

4GB of memory and have as much memory bandwidth as possible, item 3 in Section

3.2.4. This requirement raises the questions of what type of memory technology to use,

how it should be connected to the development FPGAs, and exactly how much.

 The selection of what memory technology to use was driven primarily by

practical considerations. The amount of memory required, 4GB or more, meant that it

was impractical to use SRAM, because of the number of components it would require.

This meant that DRAM needed to be used, as it provides much greater memory capacity

for the same number of components then SRAM. Once again the memory requirement

suggested that it would be impractical to use discrete memory chips and that memory

modules needed to be used instead. There were two types of memory module technology

available at the time the TM-4 was being designed: DDR SDRAM and RAMBUS. Both

technologies provided similar memory densities and bandwidths but DDR SDRAM could

be easier incorporated in the TM-4, due to the Stratix’s hardware support for this type of

RAM.

 Once DDR SDRAM was decided upon there was still the question of how many

memory modules to use and how to connect the memory to the development FPGAs.

The answer to this question needed to balance performance with cost. The total amount

of memory bandwidth is proportional to the number of independent memory modules

provided. However, each module comes at the cost of power, space, and expense. Since

the Stratix FPGA has hardware support for up to two DDR SDRAM modules, the

question became one of either using 1 or 2 independent RAM banks per FPGA. Since

memory bandwidth was one of the driving goals of the TM-4 it was decided to use two

DDR SDRAM modules per FPGA, for a total of 8 modules in total.

 38

 The use of standard memory modules allows for the TM-4 be populated with

various amounts of memory. Each module can be populated with between 512MB and

2GB of ram running at upto 166MHz, the maximum specified speed for the Stratix

FPGA. The standard configuration will contain 8 1GB modules and provide a total peak

bandwidth of 17.8GB/s. In addition the TM-4 is designed to support future RAM

modules up to 4GB in size.

3.3.4 USER PERIPHERALS

 The design requirements for the TM-4 identified video applications as one

possible use for the TM-4, and as such, specified several different peripheral

requirements, item 4 in Section 3.2.4. The requirements indicated that the TM-4 should

contain two NTSC analog video-in channels, one VGA video-out channel and two

independent IEEE-1394 buses.

 Since the first two peripherals, analog video-in and video-out, were both present

on the TM-3, the same proven design was brought forward to the TM-4. The NTSC

video-in channels were implemented using two Phillips SAA7111 decoder chips, and the

VGA video-out channel was provided by an Analog Devices ADV7123 triple 10bit video

DAC.

 39

Development
FPGA

Development
FPGA

Development
FPGA

Development
FPGA

NTSC Video
In

RGB Video
Out

IEEE-1394
Firewire

Expansion
IO Header

Expansion
IO Header

NTSC Video
In

IEEE-1394
Firewire

Figure 15: User Peripheral Connections

 The IEEE-1394 bus is a new interface, which was not present on the TM-3. Its

implementation is also more complicated due to the complicated communication

protocols that it uses. The TM-4 was designed to implement as much functionality in

hardware as possible, while still remaining flexible. This included using a 2 chip IEEE-

1394 solution. These chips provide both the physical and link layers of the IEEE-1394

networking protocol. Users of the TM-4 must implement the remaining layers using the

development FPGA. This division, between hardware components and logic within the

development FPGA, was selected to allow the user of the TM-4 sufficient flexibility to

control the bus how they see fit. This meant allowing the user to fully control all

networking layers above the link layer.

 Figure 15 shows how the different peripherals are connected to the four FPGAs.

The top left FPGA handles all the analog video peripherals, include 2 video-in channels

and one VGA out channel, the top right FPGA handles the two independent IEEE-1394

buses. The two remaining FPGA do not have any specialized peripherals but do have

I/O headers available for future expansion.

 40

3.3.5 THE HOST TO FPGA COMMUNICATION CHANNEL

 The design of the communication link between the host computer and the

development FPGAs was driven by two design requirements, the requirement for as

much bandwidth as possible, and the requirement that it be easy for designers to use the

channel. The latter requirement was already solved in the design of the TM-3 by

providing a set of IP blocks, and software [40] running on the host computer, that abstract

away the complexities of communicating with a host computer. This left the first

requirement, maximizing bandwidth, as the focus of the TM-4’s communication channel

design.

Bridge
User

Circuit
Development

FPGA
Software Host

Computer

Development
Bus

Host
Computer

Bus

Figure 16: Simplified Host to FPGA Communication Channel

 The communication channel between the development FPGAs and the host

computer consists of a number of different components. Figure 16 shows a simplified

view of the communication channel. For communication from the host computer to the

development FPGAs there are several steps. First a piece of software must request that

data be transferred to the development FPGAs. This data must then be transmitted from

the host computer to a bridge within the TM-4 itself. This bridge must then pass the data

onto the development FPGAs and ultimately to the circuit running within it. Transfers in

the other direction must take the same steps, only in reverse.

 The communication channel consists of four major components: the physical

hardware links between the host computer, the bridge chip, and the development FPGAs,

the IP core which implements the bridge, the IP cores running on the development

FPGAs and the software running on the host computer. Each of these components will

be examined in the following sections.

 41

3.3.5.1 PHYSICAL HARDWARE COMMUNICATION L INKS

 The host communication channel contains two physical hardware links, the link

between the host computer and the bridge chip, and the link between the bridge chip and

the development FPGAs. Each of these links was designed to meet the design

requirement of having as much host computer bandwidth as feasible.

 The first link, between the host computer and the bridge chip, needed to use a

standard interface that was available in commodity computers. The links considered

were links such as Firewire [41], USB [42], gigabit Ethernet [43], and PCI [15]. The

selected link, was the link that provided the greatest bandwidth, PCI. In particular

66Mhz 64bit PCI was selected. This link provides a theoretical peak bandwidth of

528MB/s.

 The second link, between the bridge chip and the development FPGAs, need not

have been a standard interface and was custom designed. The link selected was a bus

consisting of 32 data bits that could run at a data rate up to a 100Mhz. The result was a

communication link that could sustain transfers of nearly 400MB/s. The reasoning

behind the bus width and speed were that the bus needed to be easily combinable into

64bit PCI words, by combining two 32-bit words, and that the bus should still run

synchronously, by keeping the clock below 100MHz. The resulting 400MB/s bandwidth

was not expected to be a bottleneck to system performance due to the fact that the PCI

bus’s overhead prevents it from reaching its theoretical peak bandwidth.

3.3.5.2 HOST TO DEVELOPMENT BRIDGE

 The connection between the host computer’s PCI bus and the development

FPGAs communication bus is bridged through the use of an Interface FPGA. This FPGA

contains a custom design logic core that performs the translation between the two buses.

Figure 17 shows a block level diagram of the tasks that are performed. The PCI interface

is implemented using an Altera PCI IP core [44]. This core interfaces with two FIFO

buffers, a read and a write buffer. These FIFO buffers allow for clock domain

translation, between the PCI buses 66Mhz clock and the development FPGAs

programmable clock, and buffer data for more efficient burst transfers. The two buffers

 42

are also connected to the development FPGA interface circuit. This simple circuit

decodes requests sent by the host computer and communicates with whichever of the four

development FPGAs is required.

A
lte

ra
's

 M
a
st

e
r/

T
a
rg

e
t

P
C

I
IP

 L
o
g
ic

 C
o
re

Read FIFO

Write FIFO

PCI Target
Controller

Development
FPGA Bus
Interface

PCI Clock Domain Development Clock Domain

To
Development

FPGAs

To
Host

Computer

PCI
66 Mhz
64 Bit 100 Mhz

32 Bit

Figure 17: Host Communication Channel Bridge Functions

 The complete VHDL code for the Interface FPGA can be found in Appendix 0.

3.3.5.3 PARAMETERIZABLE BUS INTERFACE LOGIC CORES

 The physical communication link between the FPGA and the interface bridge

incorporates a custom design bus protocol. In order to hide the complexity of interfacing

with this bus, a set of parameterizable logic cores were created. These modules

encapsulate all the functionality required to interface with the bus while presenting a

simple handshaking based interface to the user. Instead of dealing with multi-cycle bus

transactions the user only needs to interface with a simple three-wire handshake interface

of one of the parameterizable cores.

3.3.5.4 HOST SOFTWARE

 The last component of the host communication channel is the software that runs

on the host computer. This software provides for a method for communication with the

 43

TM-4 hardware. The functionality is divided into two components. There is a kernel-

mode Linux device driver, which handles the details of setting up and sending raw data to

the TM-4, and there is a library API that provides an easy way to communicate with the

parameterizable bus interface logic cores running on the development FPGA.

 The kernel mode driver is implemented as a character device that accepts read and

write requests. These requests are directly translated in PCI DMA transfers between the

host computer and the FIFO buffers in the TM-4’s interface chip. It is the responsibility

of the library API to send the correctly formatted data to the device driver.

 The library API takes a description of development bus logic cores that reside in a

design and provide a simple interface for communication with them. For example,

transferring data from the host computer to the simple handshaking logic core, is as easy

as issuing a single write call to the API. Likewise calls exist for reads and for error

detection.

3.3.5.5 THE COMPLETE HOST TO FPGA BUS

 Figure 18 provides an overview of the components that comprise the host

computer to development FPGA communication bus. On the left of the figure is the

development FPGAs. These FPGAs contain the user circuits and a library interface

component. The library component implements the necessary protocols to communicate

across the 32-bit development bus to the bridge within the Interface FPGA. This bridge

buffers the data using FIFOs, performs the necessary clock domain translations, and

transfers data between the FIFOs and the host computer over a 66MHz 64bit PCI bus.

The host computer’s kernel driver interfaces with the PCI bus and provides the data to a

user’s C program. This program incorporates an interface API that provides an easy

abstract interface for communication with the library interface component on the

development FPGA.

 The only steps of this process that a user of the TM-4 must understand are the

interface to the parameterizable bus interface logic cores, and the interface API. All the

rest is hidden away.

 44

PCI Bus
Interface

Clock
Translation

FIFO

Interface FPGA

User
Circuit

Library
Interface

Component

Development FPGA

D
e

ve
lo

p
m

e
n

t
B

u
s

Kernel
Driver

Dev Bus
Interface

API

Host Computer

6
4

/6
6

 P
C

I
B

u
s

User's
C

Code

Figure 18: Development Communication Bus

3.3.6 TM-4 CONTROLLER

 In order for the TM-4 to function there are a number of different basics functions

that must be performed. These include things such as programming the development

FPGAs, configuring the clocks, monitoring the FPGA temperatures, and several others.

This functionality is provided by the same interface FPGA that provides the bridge

functionality of the host to development FPGA communication bus.

 The following sections will describe how these important functions are performed

by the interface FPGA and will be followed by a complete system diagram of how the

interface FPGA is connected to each of these functions.

3.3.6.1 DEVELOPMENT FPGA CONFIGURATION

 One of the secondary goals of the TM-4 is to have it configurable as fast as

possible. To achieve this the TM-4 was designed to utilize the fastest configuration mode

available in the Stratix FPGA, the fast passive parallel, or FPP mode. In this mode each

FPGA can be provided 8 configuration bits at a maximum rate of 100Mhz. In addition to

this, each of the four FPGAs can be configured in parallel to further reduce the

configuration time.

 45

 A secondary method to configure the development FPGAs is through a JTAG

chain. This chain can provide one bit of configuration, to one FPGA, per clock cycle and

acts as a backup in case a design error prevents the use of FPP mode. Using JTAG,

configuration of the TM-4 requires tens of seconds.

3.3.6.2 TEMPERATURE MONITORS

 A useful function for the TM-4 to have is the ability to detect a potentially

dangerous overheat situation, caused by a flaw in a users design, and to safely stop

operation. This can be accomplished through the use of each of the five FPGAs in the

TM-4 internal temperature diode. These probes are connected to the interface FPGA

using two temperatures probe chips from Maxim. The chips consist of a 4 channel

MAX1668 temperature monitor chip, and a MAX1618 single channel monitor chip. The

interface FPGA monitors both of these chips and automatically shutdown any chip whose

temperature exceeds a safe threshold.

3.3.6.3 THE CLOCKING SUBSYSTEM

 Incorporating all the different components necessary to meet the design

requirements introduced the need for a large number of different clocks. Each of the

DDR SDRAM banks, and each of the peripherals all require their own clocks. In

addition the PCI bus required a clock, as did the buses between the four development

FPGAs and the bridge within the interface FPGA. In addition to just providing these

clocks, there was also a need to provide a way to perform globally synchronous

transactions between various components of the TM-4.

 The clocking architecture for the TM-4 was selected to be as easy-to-use as

possible, while not adversely affecting the other core goals. This meant that globally

synchronous clocking would be used whenever possible, and that peripheral clocking

would be handled completely by the user of the TM-4.

 46

Development
FPGA

DDR SDRAM
DIMM

DDR SDRAM
DIMM

Peripherals

G
L
B

C
L
K

D
E

V
C

L
K

8
0
M

h
z

L
V

D
S

 C
lk

3 Clocks
9 Strobes

3 Clocks
9 Strobes

1-3 Clocks

 Figure 19 shows the clocking architecture that was selected and how it is

connected to a development FPGA. There are two independent board wide synchronous

clocks called DEVCLK and GLBCLK. Since the Stratix FPGA has multiple PLLs, each

that require an external clock input, each global clock is connected several times to the

same FPGA. Both these global clocks are driven by a programmable PLL in the interface

FPGA. These PLLs can generate any frequency between 1 and 100MHz.

 The development FPGAs are also each connected to an 80MHz low-jitter

reference clock. The purpose of this clock is to provide a low jitter reference clock for

use in high-speed serial LVDS communication. This reference can be used to generate

precision source-synchronous clocks for use in the inter-FPGA LVDS communication

channels. Each development FPGA has three such clocks, one from each of the

remaining FPGAs, driving on chip PLLs.

 Each of the development FPGAs is also connected to two independent DDR

SDRAM modules. The module requires three clocks each, to be generated by the

development FPGA. These clocks act as a source-synchronous clock for transmitting

data and commands to the modules. The development FPGAs are also connected to

various peripherals that require clocking. These clocks are typically fairly slow and are

generated by the development FPGAs internal PLLs.

 The interface FPGA clocking structure is simpler than that of the development

FPGAs. Since its primary function is to act as a bridge between the PCI bus, with a fixed

Figure 19: Development FPGA Clocking Structure

 47

66Mhz clock, and the development FPGA’s programmable clock domain, DEVCLK, it

only needs to be connected to those two clocks.

3.3.6.4 INTERFACE FPGA BLOCK DIAGRAM

 The interface FPGA is responsible for communicating with the development

FPGAs, configuring the development FPGAs, generating the programmable clocks,

accessing the JTAG chain of the development FPGAs, and performing clock domain

translation, all under the control of the host board computer. Figure 20 shows a block

diagram of the logic contained in the house keeping chip and Appendix 0 contains the

VHDL code that implements it.

A
lte

ra
's

 M
a

st
e

r/
T

a
rg

e
t
P

C
I
IP

 L
o

g
ic

 C
o

re

Read FIFO

Write FIFO

Control
Registers

PCI Master
Controller

PCI Target
Controller

Devclk
PLL

Glbclk
PLL

Development
FPGA

Configuration

Development
FPGA Bus
Interface

Development
FPGA

JTAG Chain

PCI Clock Domain Development Clock Domain

Figure 20: Housekeeping Chip Logic Core

 The entire FPGA logic core is built around an Altera master/target 66Mhz/64bit

PCI IP core. This core provides a simplified interface to the PCI bus. Access to the

housekeeping chip is provided through two PCI memory regions. The first region allows

access to a set of control registers. These registers control various aspects of the TM-4

such as the programmable clock frequencies and the temperature monitors.

 48

 The second memory region provides access to two FIFOs, the read FIFO and the

write FIFO used to bridge the PCI bus to the development bus. The FIFOs are

implemented using a dual ported ram with independent clocks on each port.

 The two FIFOs provide data communication between either the development

FPGA bus interface or the development FPGA configuration logic. The development bus

interface is a small state machine that transmits write data and read requests to the

corresponding bus interfaces on the development FPGAs and returns any read results to

the read FIFO. The VHDL code for the development FPGA side bus interfaces can be

found in Appendix A.

 The development FPGA configuration unit contains the logic necessary to

program the development FPGAs using the FPP mode. The unit is designed to run at

100Mhz, the maximum rate at which Stratix FPGAs can be configured.

3.3.7 THE POWER SUBSYSTEM

 The design of the TM-4 calls for a large number of different components to be

integrated together. Each of these components have there own power requirements. In

total there is a need for 1.25v, 1.5v, 2.5v, 3.3v, 5v and 12v power supplies. The 1.25v

supply is used for transmission line termination in the DDR SDRAM subsystem. The

1.5v supply provides the core power to the FPGAs, the 2.5v and 3.3v supplies are used

for inter-chip signalling and the 12v supply is used for powering the Firewire bus.

 The design selected for the TM-4 consisted of two layers of power conversion.

The first layer is a standard ATX power supply. This supply is capable of providing

3.3v, 5v and 12v power. The second layer of power conversion consists of on-board DC-

DC converter to generate the 1.5v and 2.5v supplies and 8 linear converters for the 1.25v

termination voltage, one for each DDR SDRAM module. This style of power

distribution system was selected as it met the needs of the TM-4 while still using low cost

standard parts.

3.4 HARDWARE DESIGN VALIDATION

 The TM-4’s design is very large and very complicated; there are 17,279 pins and

4,238 different nets. It was quite likely that there would be some number of mistakes

 49

made in the design process and a great deal of time was spent attempting to validate

portions of the design. The process used to validate the hardware design was fairly

simple. It consisted of first identifying possible sources of errors and then applying

various checks to try and verify that these sources did not produce actual errors.

 The identified potential sources of design error were as follows:

1. Electrical functionality errors

a. Mistake in the schematic

b. Designer misunderstanding of devices functionality

2. Incorrect component database information

a. Component value (i.e. resistance capacitance)

b. Schematic pin to physical package pin mapping

c. Physical component shape for circuit board mounting

3. Schematic or component revision mismatch

4. Exceeding passive components voltage or power ratings

5. Signal integrity problems

a. Termination topology

 The validation process of the TM-4 design flow consisted of two types of

validation methods. The first set of validation methods tries to find mistakes arising from

errors in entering the schematic data into the design software, this method will be called

data entry validation. This type of validation method attempts to find errors generated by

sources 1a, 2, and 3 in the list above. The second set of validation methods tried to find

errors in the actual design itself by verifing that the circuits are functionally correct. This

method will be called functional validation. Functional validation attempts to find errors

generated by sources 1b and 5. Each of these two methods will be described in the

following two subsections and example of how they were applied will be presented.

3.4.1 DATA ENTRY VALIDATION

 In a design as large as the TM-4, the probability of having a piece of information

incorrectly entered into a software design tool is quite large. These types of errors might

 50

be as simple as a typographical error in a part number or an unintentional short in a

schematic diagram. In both cases the design entered into the software tools is not as the

designer intended. The method employed to try and catch these types of errors was to

check the entered designs against a set of validation rules in a process known as design

rule checking, or a DRC test. In total three different types of DRC tests were performed.

 The first types of DRC tests were those that the design entry tool, Mentor’s Board

Station Software, contained. These tests were designed to detect common schematic

errors. For example, one test would verify that every pin in the design is connected to

another pin. If a given pin in the design were meant to be floating, it would need to be

explicitly defined as such. Another type of DRC test was designed to find different

types of shorts between nets, for example between power nets, or explicitly named nets.

Over all, Board Station’s DRC tests were very good at finding errors without actually

having any direct knowledge of what the designer had intended. In order to find cases

where the designer had entered erroneous data, but in a correct format, custom DRC tests

had to be designed.

 The second type of DRC tests, custom DRC tests, incorporated more information

than just the entered design. For example there was a custom DRC test designed, using

the scripting language within Board Station, that verified that the pin mappings for large

components was correct. The component at greatest risk for a mapping error was the

large 1508 pin FPGAs. To ensure that this component was correctly mapped, a script

was written to compare the mapping described in the net list, to a pin out file provided by

the device’s manufacturer.

 The remaining possible schematic entry errors, such as value mismatches and

package mismatches, could not be validated using an automated script. Instead these

possible errors were check by hand using validation checklists. These check lists

contained a number of possible errors that each component in the designed needed to be

verified against.

 The data validation phase successfully detected a number of different errors.

 51

3.4.2 FUNCTIONAL VALIDATION

 The process of functional validation was much more difficult to perform than the

simple schematic entry checks. The typical way of verifying electrical functionality is

through simulation. In order to simulate a circuit each component in the system must

have a functional model. Unfortunately, this was not the case for many devices in the

TM-4.

 The primary problem with simulating the TM-4 is that, by itself, the TM-4 does

not do very much. Most of the complex subsystems, such as DDR SDRAM and IEEE-

1394, are connected to the four main development FPGAs. In order to simulate the

functionality of either the DDR SDRAM or the IEEE-1394 bus, it would be necessary to

simulate the functionality of a circuit running in the FPGA. This is not feasible, as any

test circuit would also need to be verified to be functional, only further complicating the

issue.

 The approach that was taken to verify the TM-4 electrically was two-pronged.

First, subsystems for which models existed were simulated and second, subsystems

without models were carefully scrutinized by hand. For both cases the physical

interconnect topology was simulated to verify their signal integrity.

 The only subsystem that was simulated was the power conversion system. This

system is particularly prone to error as it is primarily analog in nature. It was possible

that the system might be unstable, or otherwise unusable. In order to validate

functionality a spice model was created for the DC-DC controller and this model was

tested under expected operating conditions. Appendix F contains the spice models used

in simulation.

 52

V
o

lta
g

e
 (

1
.5

v
 L

o
a

d
)

0

100m

200m

300m

400m

500m

600m

700m

800m

900m

1000m

1.1

1.2

1.3

1.4

1.5

Time (Sec)
0 20u 40u 60u 80u 100u 120u 140u 160u 180u 200u 220u 240u

260u

TM-4: 1.5v DC-DC Converter (15-25-15 Amp Step)

15->25 Amp
Step

25->15 Amp
Step

Figure 21: 1.5v DC-DC Converter Simulation

 Figure 21 shows the result of one simulation test of the 1.5v DC-DC converter

subsystem of the TM-4. The graph shows the output voltage of the DC-DC convertor

while simulating several events. The first event is power-up under a load current of

15Amps. Under these conditions the DC-DC converter reaches a stable voltage after

130uSec. The next event, shown on the graph, is a load current step from 15 to 25 amps.

This step was modelled by changing the load resistance from 0.1ohm to 0.06ohm. The

result was a slight voltage drop with no ringing or other problems. Similarly, the step

from 25 back down to 15 amps shows an equally good result.

 53

3.5 SUMMARY

 This chapter presented the first three steps of the design processed used to create

the TM-4. These steps consisted of requirement identification, schematic design of the

circuitry and verification of the schematic. The requirements were first presented as

directed by past experience and anticipated future needs. These requirements were then

used to motivate the presented design. This chapter concluded with a brief discussion

about the verification techniques used to validate the schematic.

 The next chapter will look at the final step in the design process of the TM-4, the

design of the printed circuit board.

 54

4 CIRCUIT BOARD DESIGN

4.1 INTRODUCTION

 Once the schematic design and all the validation tests had been completed, the

next step in the design process of the TM-4 was to design the printed circuit board (PCB).

The PCB design process involved the following steps. First, a stack up, or description of

the different layer thicknesses of the PCB, was defined. Next, the various components

that made up the TM-4 were placed on the circuit board. An iterative routing process

then wired the components up to each other and finally, the signal integrity was simulated

for all high-speed nets to insure that both timing and electrical requirements were met.

 Each of these steps will be described in the following subsections. The final PCB

layout can be found in Appendix A.

4.2 PCB STACK UP

Prepeg

FR-4 Core

FR-4 Core

Prepeg

FR-4 Core

Gnd

VCC

Signal 1

Signal 2

Signal 3

Signal 4

Figure 22: Sample PCB Stack Up

 The term PCB stack up refers to a description of the different layers that make up

a circuit board and must be defined before any additional PCB design can be completed.

To help understand what a PCB stack up is, consider Figure 22. The figure shows the

cross section of a simple 6-layer board. Each one of the grey boxes represents a layer of

 55

copper in the PCB, and the white boxes represent the insulator that keeps the copper

layers apart. Each of the 6 layers is assigned a specific purpose. The four layers marked

as “signal” are used for inter-chip connections. The other two layers, “gnd” and “vcc”,

perform a dual purpose. The first purpose is to provide power to the components on the

board and the second is to shield layers from electrically coupling to each other.

 The design of such a PCB stack up must take a number of considerations into

account. These considerations include electrical issues, such as electrical impedance of

traces, power handling, inter-layer coupling and inter-plane capacitance of power planes,

as well as physical construction issues, such as board warpage, and minimum feature

size. Each of these considerations is discussed below.

4.2.1 PCB STACK UP PHYSICAL CONSIDERATIONS

 The design of a PCB stack up is restricted by a number of physical requirements.

In order to manufacture a PCB reliably, these requirements must be obeyed. The

simplest requirements are related to minimum feature sizes. For example, there is a limit

on how small a copper wire, or track, can be created and how far from another track it

can be placed. The exact values of these limitations are related to cost. A typical volume

PCB process can easily handle wires as small a 5 mils with a separation of only 5 mils

from other wires. A more expensive PCB process could generate wires even smaller,

down to only 3 mils width, with 3 mils separation. In order to limit the cost of the TM-4,

wire size and spacing were both limited to 5 mils.

 Another requirement that a PCB stack up design must meet is one of layer

symmetry. Basically, the stack up of a PCB can be thought of as a heterogeneous

material in which each layer has a different coefficient of thermal expansion. A solid

copper plane layer will have a much different expansion coefficient than a signal layer,

which is made up of both copper and dielectric materials. If the plane layers of the PCB

are not designed symmetrically then the different expansion coefficients can cause the

PCB to warp.

 56

4.2.2 PCB STACK UP ELECTRICAL CONSIDERATIONS

 A design of a PCB must meet a number of different electrical requirements in

order to be functional. The design must provide traces that have the proper impedance,

which is important in high-speed signalling, be designed to limit the amount of inter-layer

coupling, or cross-talk, and provide the necessary power distribution functionality,

including current handling, and high-frequency decoupling.

 The variables that can be changed in a PCB stack up design are the inter-layer

separation, the size, or width, of wires in a layer, the thickness of copper in a layer, the

dielectric material and the types of copper layers, either signal or plane layers. The first

step in actually designing a stack up is to determine the number of layers and decide

which layers are plane layers and which are signal layers. In the case of the TM-4, there

were 16 layers total, with 10 signal layers and 6 plane layers. The layers are ordered in

such a way that the power planes can provide cross talk shielding between different

signal layers.

 Once the layer ordering was determined, the next step was to specify the layer

spacing and nominal trace widths, such that the correct trace impedance results were

obtained and the traces were as tightly coupled to a ground plane as possible. The layer

separation of the TM-4 was first selected by using the closed form relationships between

the various parameters described in [45]. The equations provided a general idea of how

thick the PCB would be, for a given trace size, and allowed the parameters to be adjusted.

Once an acceptable solution was found, the PCB stack up information was sent to the

PCB manufacturer. The manufacturer then used their knowledge of their manufacturing

process and a 3D field solver to further refine the stack up. Figure 23 shows a description

of the TM-4’s stack up returned by the PCB fabrication house.

 57

50 ohm single ended 100 ohm differential
geometry geometry

line line / space
soldermask 0.0010

plating 0.0011
plating (bv) 0.0011

1 signal 0.5oz 0.0007 6 mil 5 mil / 8 mil
dielectric 0.0040

2 plane B 0.5oz T 0.0007 - -
dielectric L H 0.0050

3 signal I 0.5oz R 0.0007 6 mil 5 mil / 8 mil
dielectric N U 0.0050

4 signal D 0.5oz 0.0007 6 mil 5 mil / 8 mil
dielectric H 0.0050

16 layer 5 plane V 0.5oz O 0.0007 - -
dielectric I L 0.0050

Getek/N4000-13 6 signal A 0.5oz E 0.0007 6 mil 5 mil / 8 mil
Megtron material dielectric S 0.0050

7 signal 1 0.5oz 0.0007 6 mil 5 mil / 8 mil
dielectric | 0.0050

Dk=3.85 8 plane 15 2.0oz 1 0.0028 - -
dielectric | 0.0050

9 plane 2.0oz 16 0.0028 - -
dielectric 0.0050

10 signal 0.5oz 0.0007 6 mil 5 mil / 8 mil
dielectric 0.0050

11 signal 0.5oz 0.0007 6 mil 5 mil / 8 mil
dielectric 0.0050

12 plane 0.5oz 0.0007 - -
dielectric 0.0050

13 signal 0.5oz 0.0007 6 mil 5 mil / 8 mil
dielectric 0.0050

14 signal 0.5oz 0.0007 6 mil 5 mil / 8 mil
dielectric 0.0050

15 plane 0.5oz 0.0007 - -
plating 0.0011

dielectric 0.0040
16 signal 0.5oz 0.0007 6 mil 5 mil / 8 mil

plating 0.0011
soldermask 0.0010

0.0948 +/- 10% overall

Figure 23: The TM-4's PCB Stack Up

4.3 PCB COMPONENT PLACEMENT

 The goal of the PCB component placement step of the TM-4’s PCB design

process was to assign a physical location to every component that made up the TM-4.

The components needed to be located either on the top, or on the bottom, of the PCB with

a given orientation, such that the amount of routing necessary to inter-connect

 58

components could be minimized. In addition to this, the design requirements, discussed

in Section 3.2.4, specified that the TM-4 must fit into a standard computer case. This

constraint introduced both a size limitation on the PCB and restricted where certain

components could be placed.

 Placement was also constrained by electrical requirements. Certain components,

such as bypass capacitors and termination resistors, had to be located in specific locations

for electrical reasons. The entire placement step was performed by hand.

 Figure 24 shows a floor plan diagram of the PCB. Figure 25 shows the placement

of those components located on the top of the PCB and Figure 26 shows the placement of

those components located on the bottom of the PCB, as viewed from the top.

DDR SDRAM

D
D

R
 S

D
R

A
M

Development FPGAs

FirewireNTSC In

VGA
Out

2.5v DC-DC

1.5v
DC-DC

JTAG IO
Headers

Status
LEDs

S
in

g
le

 B
o

a
rd

C
o

m
p

u
te

r

Interface
FPGA

DDR SDRAM

D
D

R
 S

D
R

A
M

Figure 24: PCB Floor Plan

 59

Host Computer SocketInterface FPGA

Development FPGA DDR SDRAM

Figure 25: PCB Component Placement Top

 60

Figure 26: PCB Component Placement Bottom

4.4 PCB ROUTING

 The purpose of the PCB routing stage of the TM-4’s PCB design process was to

design the physical copper layout needed to connect the different components. The

routing process consisted of four different stages that were iteratively applied. The first

 61

stage consisted of hand routing a breakout pattern for every component. The second

stage performed equivalent pin swapping in order to eliminate unnecessary signal

crossing. The next stage used both auto and hand routing to interconnect the

component’s breakout patterns and the final stage performed signal integrity simulations

to insure electrical correctness. These stages were each iteratively applied, as the results

from later stages revealed better solutions to earlier stages.

 Each of these four stages, and the coupling between them, will be examined in the

following sections.

4.4.1 BREAKOUT PATTERN CREATION

 Many components used in the TM-4 utilize surface mount technology. That

means that the component only connects to the top or bottom layer of the board and does

not have any direct connection to the internal layers. A breakout refers to a routing

pattern that defines how each surface mount component is connected to internal board

layers.

Figure 27: Stratix FPGA Landing Pattern

 To better understand this, consider Figure 27. This figure shows the PCB

“landing pattern” for the 1508 pin Stratix FPGAs used in the TM-4. Each circle

represents a copper pad on the PCB for which a pin of the FPGA will be soldered. The

pads are spaced on approximately 40-mil centres and are 18 mils in diameter. This leaves

only 22 mils of space between adjacent pads. This space is only large enough for one 5-

mil trace to pass through, while maintaining a minimum clearance of 5 mils. In order for

 62

each pad to be able to escape, or breakout of the array of pads, it is necessary to use a

multiple layer breakout pattern.

 The first step in designing a breakout pattern is to provide a connection from each

surface pad to the internal layers of the PCB. This is accomplished using what is called a

“via”. A via is a copper plated hole in the PCB that provides a connection between

layers. Once the pads have been connected to the internal layers, the signals can then be

routed out of the array.

Figure 28: Stratix FPGA Partial Breakout Pattern

 Figure 28 illustrates how multiple layers can be used to allow signals to escape

the array. The figure shows two layers of the breakout for the 1508pin Stratix FPGA.

The left image is that of the top layer. The two rows of pins on the top and left can be

directly routed out of the array without violating any spacing requirements. However, the

traces used to break these pads out now block the rest of the pads. These pads are instead

connected to internal layers using vias, represented by the larger circles in the figure.

 The figure on the right shows an internal layer of the breakout pattern. The pads

are no longer visible, as they are only on the surface. Instead, only the circular vias are

seen. This layer is not blocked by the escaping signals on the top layer and consequently,

is used to break several more signals out. In total, 7 additional layers are used to

completely breakout all 1508 pins of the Stratix FPGA.

 63

4.4.2 EQUIVALENT PIN SWAPPING

 Equivalent pin swapping is the process of modifying a design’s net list, by

swapping equivalent pins, in order to minimize the number of unnecessary signal

crossings in the routing stage. To understand why this can be safely done consider a

simple AND gate. Both of the inputs of an AND gate are functionally equivalent. If the

input connections are swapped with each other, the function of the AND gate will be

unchanged. The equivalency is even more prevalent in FPGAs, as almost any pin can be

exchanged by only changing the circuit running within it.

 Having this amount of flexibility in pin selection allows for pins to be connected

in ways that simplifies the PCB routing. To better understand this, consider Figure 29.

Figure 29 shows a bus between two FPGAs. It can be clearly seen that the wires running

between each other are straight and therefore do not need to cross over each other. This

was accomplished by careful pin swapping, such that the two FPGAs breakout patterns

would breakout connecting signals to the same layer, in the proper order.

Figure 29: Pin Swapping Example

 64

 Accomplishing this was very time consuming due to the coupled nature of the

problem. Both pin swapping and changes to the breakout pattern were performed so that

the inter-FPGA connections would line up correctly.

4.5 PCB ROUTING

 The next stage of routing the PCB was the board-wide routing stage. This stage

involved the physical routing of all the connections between the broken out components.

A combination of hand routing and computer-driven auto routing was used to accomplish

this, with the emphasis on hand routing.

 The routing process employed two different auto routers, both the Board Station

RE [46] and ICX’s auto router. Neither router was able to handle traces that travel in

arbitrary directions particularly well, which led to difficulties in completing routing.

Both pieces of software used the common approach of routing signals using pairs of

layers. The first layer would allow horizontal connections, while the second layer would

provide vertical connections. If a signal needed to travel diagonally it would do so by

first travelling horizontally and then transferring to the other layer, using a via, and

finally, travelling vertically. This approach simplifies the search space for the auto

router, but comes at the cost of a large number of vias.

 The size constraints placed on the TM-4’s PCB meant that it could not be routed

using this layer pair approach, due to the number of vias it would require. Since each via

is a hole that passes through a number of different layers of the PCB, each via prevents

routing on all the layers it passed through. There were locations on the TM-4’s PCB

where the number of vias necessary to route using pairs would not have not fit in the

space provided, while still allowing for routing room on internal layers.

 The approach that was used to route the board was to come up with a high level

floor plan of the desired PCB. This floor plan consisted of a description of what layers

and regions of the circuit board certain signals should traverse. These regions were then

individually routed by an auto router, when possible, and by hand, when not.

 In total, the routing stage of the TM-4 took between 4 and 6 months.

 65

4.6 PCB SIGNAL INTEGRITY SIMULATION

 The circuit board is responsible for providing more than just connectivity between

components; it must also meet certain timing and signal integrity requirements. Both

timing issues, such as trace delay and skew, as well as signal integrity issues, such as

crosstalk and termination, were considered when designing the circuit board for the TM-

4. The way that these requirements were verified was through simulation.

 The PCB simulation process used a combination of IBIS device models and

Mentor’s ICX tool to model and simulate PCB interconnects. The ICX tool allowed

different signal integrity parameters, such as cross talk, overshoot, ringing, etc., and

timing parameters, both minimum and maximum, to be verified.

 To better describe the simulation procedure used in the TM-4, the DDR SDRAM

subsystem will be used as a case study. The following three sections will examine the

process used to design the DDR SDRAM portion of the PCB. The first section will

examine how the design of the DDR SDRAM section of the PCB was driven by timing

requirements. This will be followed by a description of the timing simulation used in

designing the PCB to meet these requirements. The last section will examine signal

integrity simulations that were used to verify the DDR SDRAM signal integrity

requirements

4.6.1 DDR SDRAM TIMING -DRIVEN DESIGN

 The DDR SDRAM standard uses a source-synchronous clocking scheme. This

scheme depends on the skew between signals and as such, is dependent on both the

minimum and maximum timing of a path. In order for the memory to work correctly, it

was necessary to insure that all 72 data bits and 9 data strobe signal lines had as little

skew as possible. This requirement translated into the restriction that the delay of each

signal line needed to be closely matched.

 The method used to achieve the goal of limiting skew was to iteratively perform

timing simulations, to determine trace delays, and to use the result to change the lengths

of the traces to more closely match. After a large number of iterations, the routing

pattern shown in Figure 30 resulted.

 66

 The component in the bottom left of the figure is one of the four development

FPGAs. The two components at the top are the DDR SDRAM modules and the smaller

components around the DDR SDRAM are termination resisters. The trace pattern shown

has been tuned such that the delay along each trace is tightly matched. This tuning took

the form of the serpentine patterns in which the trace backtracks to increase its length.

4.6.2 DDR SDRAM TIMING SIMULATION

 The process of routing the DDR SDRAM signal traces, described in the previous

section, required extensive use of delay simulations. The goal of the simulations was to

determine the propagation delay from a pin on the FPGA to a pin on the DDR SDRAM

for a given trace configuration. The information available for use in simulations was

IBIS models of the FPGA and DDR SDRAM drivers and the trace configuration itself.

 These two pieces of information were applied to a timing simulation tool called

Mentor Graphics’ ICX [46]. This tool had the ability to extract transmission line models

Figure 30: DDR Serpentine Delay Pattern

 67

from the specified trace configuration and perform simulations using the IBIS models.

The result of the timing simulation was a minimum and maximum delay number.

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6
V

o
lta

g
e

(V
)

VMeasVMeas

Vinl

Vinh

VMeas

VHmax

VLmin

4n 0.6n 0.8n 1.0n 1.2n 1.4n 1.6n 1.8n 2.0n 2.2n 2.4n 2.6n 2.8n 3.0n 3.2n 3.4n 3.6n 3.8

Time (s)
0.4

Max Delay
Min Delay

FPGA Pin
(Test Load)

FPGA Pin
(Trace Load)

DDR SDRAM
Pin

Figure 31: Sample DDR SDRAM Delay Simulation

 Figure 31 shows an annotated result of a delay simulation for a DDR SDRAM

trace. The graph plots the voltages at various points along the trace versus time. The

horizontal lines in the graph represent thresholds specific to the signalling standard used

 68

by the traces. In particular, Vinl and Vinh are the receiver’s voltage input thresholds for

both low and high values. The three voltage charted lines represent the voltages at three

different points. The first line, labelled FPGA pin (test load), shows the voltage response

of the driver IBIS model when connected to a standard test load. The next line, labelled

FPGA pin (trace load), shows the voltage response of the driver IBIS model when

connected to the extracted transmission line. The final line, labelled DDR SDRAM pin,

shows the voltage response where the transmission line meets the DDR SDRAM pin.

 The minimum delay is calculated from this graph by measuring the time between

when the test load graph crosses the Vmeas threshold, set at 50% of the voltage swing,

until the DDR SDRAM pin crosses the Vinl threshold. Similarly, the maximum delay is

calculated by measuring the time between the test load Vmeas crossing and the DDR

SDRAM pin Vinh threshold crossing.

 The same process is also repeated for a falling edge transition to obtain the true

maximum and minimum delays.

4.6.3 DDR SDRAM SIGNAL INTEGRITY SIMULATION

 Signal integrity issues affect the functionality of a circuit by a number of different

means. First, an improperly terminated transmission line can cause unwanted reflections,

ringing, undershot and overshoot, which can corrupt a signal. Secondly, cross talk can, at

worst, cause unwanted edges to be coupled into clock signals, or at best, change the delay

along a trace. In order to insure that none of these problems were introduced in the

design of the TM-4, three different simulation types were used. The first type verified

that the transmission lines were properly terminated. The next type verified that coupling

would not cause unwanted edges in clock signals and the final type verified that the affect

of cross talk induced timing variations were within acceptable limits.

 Verification of signal termination was accomplished through the use of the

transmission line simulation functionality of Mentor Graphics’ ICX [46] tool. This tool

combined IBIS models, extracted transmission line data and termination resistor

information together to perform a complete electrical simulation. The simulation

generated a voltage versus time curve for the signal at the receiving end of the

 69

transmission line and also automatically calculated the rise and fall times, the over and

undershoot and a measurement of ringing. These parameters allowed for the verification

of proper termination.

 The second type of simulation that was performed was to verify that cross talk did

not induce unwanted edges in edge sensitive signals. Once again, Mentor’s ICX tool was

used. The ICX tool has a function that allows coupled transmission line models to be

extracted from a PCB layout. These coupled models are then combined with IBIS

models and are used to determine the maximum voltage that is coupled into a trace. The

method ICX uses to calculate cross talk for a given net, or target net, is to consider the

group of nets that are coupled to the target net, called aggressor nets. ICX performs a

time domain simulation where the aggressor nets are all switching at the same time and

the resulting voltage change on the target net is observed. The resulting induced voltage

value can then be checked against a noise margin for the trace to ensure that unwanted

edges are not a problem.

 The third type of simulation performed to verify the DDR SDRAM design was a

coupled delay simulation. Cross talk from neighbouring traces affects the delay on a

target trace because it induces additional voltage into the trace. The resulting voltage at

the receiver pin is a superposition of the induced voltage and the voltage wave from the

transmitter. If the two voltages are in phase, then they reinforce each other and cause the

resulting edge to be faster, thereby reducing the time necessary for the voltage to cross

the switching threshold of the receiver, which reduces the trace’s propagation delays.

Similarly, if the two voltages are out of phase then they will destructively interfere with

each other. This results in a slower edge and an increased propagation delay. Mentor’s

ICX tools provided a simulation mode that combined a timing simulation with a cross

talk simulation. The results were a minimum and maximum delay number for each trace.

 70

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

Vinl

Vinh

VMeas

Vinl

VMeas

Vinh

0n 0.5n 1.0n 1.5n 2.0n 2.5n 3.0n 3.5n 4.0n 4.5n0.0

T
im

e
 (

S
)

Voltage (V)

1.14

1.16

1.18

1.20

1.22

1.24

1.26

1.28

1.30

V
ol

ta
ge

(V
)

V inl

V inh

V M eas

V inl

V M eas

V inh

98n 2.00n 2.02n 2.04n 2.06n 2.08n 2.10n 2.12n 2.14n

Time (s)
1.9

97ps

117ps

Legend

Uncoupled Trace

Coupled w/ Active Neighbours

Figure 32: Sample Coupled Propagation Delay Simulation

 Figure 32 shows a sample simulation result that illustrates the effect that coupling

has on delay. The graph plots voltage versus time for the signal received at the end of a

transmission line. The left most line shows the result of an uncoupled simulation,

whereas the right most line shows the result of a coupled simulation, in which the

neighbouring traces are switching in the same direction. The exploded view, of the

portion of the graph where the waveforms cross the switching threshold of the receiver,

clearly illustrates the effect of coupling. The coupled trace crosses into the switching

threshold sooner then the uncoupled trace, by 20 ps. This results in the total time the

signal remains in the switching region to increase from 97 ps, when only the uncoupled

simulation is considered, and to 117 ps, when both coupled and uncoupled are

considered. This results in a change of 20%.

 71

 When similar coupled delay simulations were performed on the TM-4’s critical

nets, it was found that the amount of induced uncertainty, usually in the range of 20-40

ps, was not sufficient to harm functionality.

4.7 SUMMARY

 This chapter presented the final step of the TM-4’s design process, the design of

the printed circuit board. Each of the different phases of PCB design was discussed,

including the stack up design, the component placement, the trace routing, and the signal

integrity and timing validation. A case study of the design and simulation process

involved in implementing the DDR SDRAM subsystem of the TM-4 was also presented.

 The next chapter will examine the performance of an actual assembled prototype

of the TM-4.

 72

5 RESULTS

5.1 INTRODUCTION

 The TM-4 was designed with the goals of having as much memory depth and

bandwidth, inter-FPGA bandwidth and host-to-FPGA bandwidth as possible. This

Chapter will describe how well the TM-4 system meets each of these goals and examine

what factors affected the achieved system performance with respect to each goal.

 Each of the major goals, memory performance, inter-FPGA performance, and

host-to-FPGA performance, will be discussed in the following three sections.

5.2 MEMORY

 There were two primary goals of the TM-4 in regards to memory. First, that the

TM-4 must contain at least 4GB of memory and second, that the memory must provide as

much bandwidth as feasible. The approach taken to meet this goal in the design of the

TM-4 was to provide 8 independent 72bit DDR SDRAM modules. This allowed for the

goal of memory capacity to easily be reached and provided a large amount of memory

bandwidth.

Individual
Module

Capacity

Price
Each

Total
Board

Memory

Total
Price

256MB $80 2GB $640

512MB $140 4GB $1120

1024MB $525 8GB $4200

2048MB $1200 16GB $9600

Table 3: DDR SDRAM Module Capacity and Price

 73

 Table 3 shows the size of available DDR SDRAM memory modules that are

usable in the TM-4. The table also shows the current market price, as listed by Crucial

RAM [47], for each module, as well as the total cost and total memory capacity of the

TM-4, if it was fully populated with 8 such modules.

 The remaining goal of memory bandwidth will be examined in the following

subsections. First, the theoretical maximum performance of the memory system will be

examined, then a description of the experimental measurement procedure employed to

determine the actual performance of the system will be presented and then the results will

be discussed.

5.2.1 THEORETICAL MAXIMUM MEMORY PERFORMANCE

 The performance of the memory subsystem of the TM-4 is theoretically limited

by the bandwidth of the memory used and the ability of the FPGAs to communicate with

the memory. Although DDR SDRAM is available with clock rates well above 200MHz,

the FPGAs used in the TM-4 were only specified to run at 166MHz.

 The performance of a 72bit 166MHz DDR SDRAM module is limited by the

number of data transfers that it can perform per second. In this case, where each of these

modules has a theoretical clock rate of 166MHz and can transfer data on both the rising

and falling edges of the clock, the resulting theoretical maximum data transfer rate is 144

bits per clock cycle, or 2.8GB per second. If all eight modules are used simultaneously,

the total available peak theoretical memory bandwidth is 22.9GB per second.

 In practice, the sustained bandwidth will be somewhat lower due to the need for

DRAM to stop transferring data while it receives a refresh command.

5.2.2 MEASURING ACTUAL MEMORY PERFORMANCE

 Measuring memory performance is a very difficult task, due to the fact that the

performance is significantly dependent on the data access patterns that the test uses. For

example, a test consisting of reads to random addresses will return a relatively low

bandwidth number because of the need to constantly switch pages, whereas a test that

 74

reads only consecutive addresses will have a much higher bandwidth because of the fact

that burst transactions can be used.

 The access pattern selected for measuring the performance of the memory

subsystem on the TM-4 was a block address pattern. In this pattern, an entire page of

data, consisting of 32KBs, is read from the memory in one large burst. This pattern was

an appropriate selection because the same pattern can be found in applications that work

with data streams, such as video processing or genome searching.

 To measure the actual performance of the TM-4’s memory subsystem, a circuit

was placed in the development FPGAs that implemented a DDR SDRAM controller, a

simple memory test circuit, a timer and an interface to the host computer. The memory

test circuit was designed to initiate 10,000 complete page memory transfers at the request

of the host computer. At the same time that the memory test circuit was activated, the

timer circuit would commence counting clock cycles. At the end of the test, the timer

would stop and its value was then read back to the host computer.

5.2.3 ACTUAL MEMORY PERFORMANCE

 Table 4 shows the memory performance results of a single DDR SDRAM

module, as measured using the procedure described in the previous section. The actual

measured performance of a single memory module in the TM-4 was 2.3GB per second;

somewhat lower then the theoretical maximum of 2.8GB per second. The large

discrepancy was due to the fact that timing mismatches between the delays of the DDR

data traces prevented the memory from being run at a full 166MHz.

Transaction Time
Clock Rate

Data Set
Size Clock Cycles Seconds

Transfer Bandwidth

133.3MHz ~351MB 20920132 0.16s 2.3 GB / Second

Table 4: Memory Bandwidth Results

 Contrary to the simulations results from validating the design of the memory

subsystem’s PCB traces, the skew between data bits was large enough to violate

necessary setup and hold time and prevented the system from operating at 166MHz. The

 75

fact that the surface mount pins of the FPGA were not accessible for probing means, it

was not possible to perform actual timing measurements on the traces. Ergo, without

these measurements, it was not possible to determine the exact nature of the failure.

 To combat the skew problem, the memory needed to be clocked at only 133MHz

instead of 166MHz. However, even at this lower speed, the total memory bandwidth of

the TM-4’s eight memory modules reaches 17.6GB per second.

 The effect of memory refresh and controller overhead can be examined by

comparing the theoretical maximum transfer rate, at 133.3Mhz, to the actual measured

transfer rate. The 2.30 GB/s actual measured memory bandwidth is only slightly lower

then the 2.39 GB/s peak theoretical bandwidth. The measured value is only 4% below

the theoretical peak value.

5.3 INTER-FPGA PERFORMANCE

 One of the goals of the TM-4 was to provide as much communication bandwidth

between the four development FPGAs as possible. The design of the TM-4 provides this

bandwidth through the use of point-to-point buses between each pair of FPGAs. These

buses are comprised of a combination of CMOS single-ended signals and LVDS

differential signals. An actual detailed description of the bus architecture can be found in

Section 3.3.2.2.

 The theoretical maximum performance of these inter-FPGA buses will be

examined in the following subsection. This is followed by a description of the

experimental measurement procedure employed to determine the actual inter-FPGA

bandwidth. A discussion of the results is then presented.

5.3.1 THEORETICAL MAXIMUM INTER-FPGA BANDWIDTH

 Two things govern the theoretical maximum inter-FPGA bandwidth: the number

of signals connecting each pair of FPGAs and the data rate that each signal can sustain.

Between each pair of FPGAs there is either 20 or 40 high-speed LVDS communication

channels, in addition to some single-ended signals, as illustrated in Figure 14 in Section

 76

3.3.2.2. Each of these LVDS channels has a maximum data rate of 840 Mbps, or 105 MB

per second, as specified by the manufacturer.

 When taken together, the total aggregate LVDS bandwidth between each pair of

FPGAs is either 2.1 or 4.2 GB/s, depending on the number of channels providing the

connection.

5.3.2 MEASURING ACTUAL INTER-FPGA BANDWIDTH

 The method used to determine the actual inter-FPGA bandwidth of the TM-4 was

to measure the maximum data rate of a single LVDS channel and then to extrapolate this

result to the entire set of channels. The procedure used to measure the data rate of a

single channel consisted of a small test circuit running on two of the development

FPGAs, under the control of software running on the host computer.

LVDS
Transmitters

LVDS
Receiver

Channel Under Test

De-
SerializerSerializer

Clock
Alignment

Host
Interface

PLL

Host
Interface

FPGA 1FPGA 0

Figure 33: LVDS Performance Test Circuit

 Figure 33 shows the test circuit used to measure the performance of an LVDS

channel. The circuit consisted of all the components necessary to transmit data across an

LVDS channel. This included serialization/deserialization hardware, a transmitter, a

receiver and clock alignment hardware. An interface was provided that allowed for the

host computer to provide an 8-bit test vector to the transmitter side of the LVDS channel,

which it could then read back from the receiver side.

 77

 In order to further simulate the conditions of an LVDS channel in a real system,

the LVDS channels that ran adjacent to the channel under test were also driven by the test

circuit. The goal of this was to insure that any performance limiting effects of crosstalk

were taken into account.

 The testing procedure consisted of verifying the functionality of the test circuit at

a set of different clock frequencies. For each frequency, every possible test vector was

transmitted across the LVDS channel being validated, while the adjacent channels were

being randomly driven. If the resulting received vectors were correct, the frequency was

increased and the circuit was tested again. This process was repeated until the test finally

failed. At this point, the maximum operating frequency of the LVDS link was revealed.

5.3.3 ACTUAL INTER-FPGA BANDWIDTH

 The actual inter-FPGA communication bandwidth was measured with the

procedure described above. The test circuit was found to be operational up to a data rate

of 462 Mbps. Unfortunately, an error in the design of the clocking system for the LVDS

channels meant that the Stratix FPGAs could not generate a clock with a sufficient edge

rate necessary to transmit data faster than 462 Mbps. The problem arose from the fact

that the Stratix architecture has two types of LVDS transmitters, slow transmitters and

fast transmitters.

 In order to use as many fast transmitters as possible, to transmit data, the design

of the TM-4 called for a slower transmitter to be used to transmit the clock between

FPGAs. The idea behind this was that since the clock transmitting between FPGAs is

only a fraction of the data rate, it could be transmitted using a slow LVDS transmitter.

The error in this approach was that the clock distribution architecture within the Stratix

was not designed to provide a sufficiently low skew clock to these types of transmitters.

This meant that in order to have an acceptable amount of skew between the clock and

data transmitters, the data rate could not be higher than 462 MBps.

 A related problem in the design of the LVDS inter-FPGA connections was that

the clocking architecture, within the Stratix FPGA, could only drive half of the available

 78

high-speed LVDS transmitters when it was also driving a slow speed transmitter. This

meant that half of the LVDS channels could not be used at all.

 Combining the 462 Mbps data rate with the 10 or 20 functional LVDS signals,

between each FPGA, resulted in a total aggregate inter-FPGA bandwidth of 577 or 1155

MB per second, respectively. It is the intention of the author to fix this design error by

changing the clock output from a slow to a fast LVDS transmitter in the next revision of

the TM-4. This should then allow 19 LVDS channels to be functional, as one is now

used for the clock, possibly up to their theoretical maximum data rate of 840 Mbps per

channel.

5.4 HOST-TO-FPGA PERFORMANCE

 The final key goal of the TM-4 was to provide as much host-to-FPGA

communication bandwidth as feasible. The design of the TM-4 implemented this

communication channel using the system described in Section 3.3.5. The channel

consists of software running on a host computer that communicates with the TM-4 via a

PCI bus that is bridged to the custom design development communication bus. The

theoretical maximum performance of this channel will be examined in the next

subsection. This is then followed by a description of the experimental measurement

procedure employed to determine the actual channel bandwidth. The section concludes

with a presentation and discussion of the results. a discussion of the results is presented.

5.4.1 THEORETICAL MAXIMUM HOST-FPGA BANDWIDTH

 The host-to-FPGA communication channel consists of many different

components, each of which has the potential to be the limiting factor of performance. At

one end of the channel is software running on a Pentium III 1.4 GHz processor. This

processor is connected to the interface FPGA by a 64-bit 66 Mhz PCI bus. The interface

FPGA bridges the PCI bus to a local 32 bit 100 Mhz bus that is connected to the

development FPGAs. The channel then ends with a logic circuit within the development

FPGAs.

 79

 If we assume that both the host computer and the development FPGAs are able to

generate and consume data at a sufficient rate that they are not the bottleneck, then the

performance of the channel will be limited by the maximum data throughput of the two

buses.

 The maximum theoretical performance of a 64 bit 66 Mhz PCI bus is 528 MB per

second. In practice, this number cannot be achieved due to the overhead of addressing,

and the shared nature of the PCI bus.

 The maximum theoretical performance of the 32 bit 100 Mhz local development

bus is 400 MB per second. In practice, this level of performance can be sustained for

writes from the host to the FPGAs, due to the fact that the bus utilizes separate command

and data lines. However, the maximum performance of read from the FPGAs to the host

will be less than the theoretical maximum, due to the overhead of issuing the read

command.

 When considered together, the local development bus will limit the theoretical

maximum performance at a rate of 400 MB per second. However, in practice, the

overhead of the PCI bus will likely be the limiting factor.

5.4.2 MEASURING ACTUAL HOST-TO-FPGA BANDWIDTH

 There were two separate procedures used to measure the actual host-to-FPGA

communication channel bandwidth. The first measured write bandwidth to the FPGAs

from the host and the other measured read bandwidth from the FPGA to the host. Each

procedure consisted of an identical hardware circuit, running on the development FPGAs,

and a unique software component, running on the host computer.

 80

Host
Interface

Up Counter

Count Out

Enable

Reset

Command
Register

0 0 01

Figure 34: Host-To-FPGA Bandwidth Test Circuit

 Figure 34 shows the simple hardware circuit involved in the test. The circuit

consists of a resetable cycle counter, with a host computer interface. The interface allows

the host computer to treat the circuit as a 32bit data sink, in the form of the command

register, and a 32bit data source, in the form of the current count output. The software

component of the testing procedure consisted of a program that would read or write a

large amount of data to the TM-4 and use the cycle counter to measure the transfer time.

In order to try to decouple the measurement from either the hard drive or network

bandwidth limitations, the communication transactions were performed between the TM-

4 and a buffer in the host computer’s memory.

 To test the write bandwidth from the host to the FPGAs, the software first writes a

32 bit reset command to the command register in the test circuit. This resets the cycle

counter to zero. The software then issues the counter enable command to the command

register, starting the cycle counter counting. Next, the software transfers 4 million more

enable commands in one burst. The burst will not affect the counter as it is already

enabled. Once the burst is complete, a single read of the counter’s value is made. The

resulting cycle count indicates the number of clock cycles it took to perform the 4 million

32bit command-burst. By combining this information with knowledge of the clock rate,

a resulting transfer data rate can be calculated.

 To test the read bandwidth from the FPGAs to the host, the software issues a reset

command to the command register in the development FPGAs. This is then followed by

 81

a single count enable command. The software then performs 4 million burst reads of the

current cycle counter value from the hardware circuit. Upon completion of a fixed

number of reads, the value of the cycle counter is read back and used to calculate the

transfer data rate using the same method as for writes.

5.4.3 ACTUAL HOST-TO-FPGA BANDWIDTH

 The actual host-to-FPGA communication channel bandwidth was measured using

the procedure described above, using a test dataset of 125MB. Table 5 and Table 6

present the measured results, for both writing from the host to the FPGAs and reading

from the FPGAs to the Host.

Run

Dataset Size Write
Cycles

Write
Time

Write
Data Rate

1 125MB 49080384 0.49sec 267.04MB/s
2 125MB 49197584 0.49sec 266.40MB/s
3 125MB 49082848 0.49sec 267.03MB/s
 Average 266.8MB/s

Table 5: Measured Host-Write-To-FPGA Bandwidth

Run

Dataset Size Read Cycles Read
Time

Read
Data Rate

1 125MB 84683792 0.85sec 154.78MB/s
2 125MB 84620688 0.85Sec 154.89MB/s
3 125MB 84712320 0.85Sec 154.73MB/s
 Average 154.8MB/s

Table 6: Measure Host-Read-From-FPGA Bandwidth

 The first column indicates the test set run number, the second indicates the dataset

size, and the third and fourth columns indicate the number of cycles and the time it took

to transfer the data set, respectively.

 The average bandwidth for writing data to the FPGAs from the host computer is

266 MB per second. This data rate is just over 50 percent of the peak bandwidth of the

PCI bus. Through the use of a logic analyzer it was determined that the performance loss

was due to two factors. The first factor was that the PCI bus was often left idle while the

host computer’s bridge chip retrieved data from the memory. The second factor was

found to be software related. In order to perform a DMA transfer it was necessary to

 82

have a fixed memory buffer in the host computer. However, due to Linux memory

protection, it is not possible to have a user mode program directly access such a buffer.

Instead, every byte of data needed to be transferred between a user-mode buffer and a

kernel-mode DMA buffer. While this transfer was occurring, the PCI bus remained idle.

 The effect of this memory protection problem could be reduced through the use of

multiple buffers. While one buffer is being transferred across the PCI bus, via DMA, the

other buffer could be copied between user and kernel space, effectively masking the cost

of the copy.

 The average bandwidth for reading data from the FPGAs to the host computer

was found to be 154 MB/s. The data rate is somewhat below that of the writing rate, but

is still respectable. Once again, a logic analyzer was used to determine the source of the

performance loss. In this case, it was determined that the performance-limiting factor was

the parameterizable bus interface logic core’s ability to provide data to the local

development bus. Although the development bus can sustain a transfer rate of 400 MB

per second, the logic core could not. The reason for this is that the logic core uses a

handshaking protocol to interface with the rest of the logic in the development FPGA.

Figure 35 shows the waveform of the handshaking protocol.

Data Ready

Data Ack

Figure 35: Handshaking Protocol

 The handshaking protocol consists of a full, four-step handshake. This approach

was taken, as it would allow a slow circuit to easily interface with a fast development

bus. This benefit came with a performance cost, however, because there are four

different handshaking steps that must be taken in order to transfer a single word of data.

The handshaking protocol could be changed to provide higher communication bandwidth

but would come at the cost of a more complicated user interface.

 Overall, the performance of the host-to-FPGA communication channel is 266 MB

per second for writes, and a very respectable 154 MB per second for reads.

 83

5.5 SUMMARY

 The three measurement procedures, presented in this chapter, show how the TM-4

design meets the goals of providing significant memory bandwidth, inter-FPGA

bandwidth, and host-to-FPGA bandwidth. In total, the system has a measured memory

bandwidth of 17.6 GB per second, an inter-FPGA LVDS communication channel

bandwidth, between each pair of FPGAs, of up to 1.15 GB per second, and a host-to

FPGA bandwidth of 266 MB per second for writes and 154 MB per second for reads.

 84

6 CONCLUSIONS

6.1 SUMMARY

 In this thesis, the design of an FPGA-based rapid prototyping system was

presented. The objective of this work was to provide a development platform with as

much memory capacity, memory bandwidth, inter-FPGA bandwidth and host-to-FPGA

bandwidth as feasible. The resulting tests, on a physical prototype system, showed that

the TM-4 was able to deliver large amounts of bandwidth in all of these categories.

Table 7 summarizes each of the seven design steps undertaken in the creation of the TM-

4, along with the approximate time that each stage took to complete.

 It is the hope of this author that the creation of this prototyping system will enable

future researchers to implement designs not possible with previous technologies.

Task Time (Months)
Requirement Identification 4

Circuit Design 7
Placement 1
Routing 6

Verification 3
Software Design 1

Integration/Testing 5
Total 27

Table 7: Time Spent Working On Each Step Of TM-4 Design Process

 85

6.2 CONTRIBUTIONS

This thesis provides the following significant contributions:

1. The design of an FPGA-based rapid prototyping system that provides:

a. Multi-gigabyte memory capacity

b. Significant memory bandwidth

c. Significant inter-FPGA bandwidth

d. Significant host-to-FPGA bandwidth

2. A design procedure for creating FPGA based systems

3. A verification procedure for validating large system designs

6.3 FUTURE WORK

 There are a number of different ways that the performance of the TM-4 could be

refined, both through hardware and software changes. The first step would clearly be to

repair the design flaw that causes half the LVDS channels to not function and the other

half to run much lower then their specified data rate. The other improvements would

require more significant work, but could be implemented without changing the existing

hardware of the TM-4.

 The host-to-FPGA communication link runs at well below its theoretical

maximum speed. In particular, retrieving data from the FPGAs runs quite slowly relative

to its theoretical maximum speed. As noted, this is a result of the fact that protocols

were designed to ensure easy use of the TM-4,while still providing relatively high

performance. Further research and subsequent use of a better bus protocol could provide

higher communication bandwidth, while maintaining a simple interface for users.

 86

7 REFERENCES

[1] D. Galloway, D. Karchmer, D. Chow, D. Lewis, J. Rose, “The Transmogrifier: The

University of Toronto Field-Programmable System,” Second Canadian Workshop

on Field-Programmable Devices, Kingston, June 1994.

[2] D. Lewis, D. Galloway, M. van Ierssel, J. Rose, P. Chow, “The Transmogrifier-2: A

1 Million Gate Rapid Prototyping System,” in IEEE Transactions on VLSI, Vol. 6,

No. 2, June 1998. pp 188-198.

[3] Transmogrifier 3A, University of Toronto, “http://www.eecg.toronto.edu/~tm3”,

Jan 2005.

[4] A. Darabiha, J. Rose, W. J. MacLean “Video-Rate Stereo Depth Measurement on

Programmable Hardware,” Proceedings of the 2003 IEEE Computer Society

Conference on Computer Vision & Pattern Recognition, June 2003, Madison, Vol.

1, pp. 203-210.

[5] J. Fender, J. Rose, "A High-Speed Ray Tracing Engine Built on a Field-

Programmable System," in IEEE International Conf. On Field-Programmable

Technology, December 2003, pp. 188-195

[6] A. Alex, J. Rose, R. Isserlin-Weinberger, C. Hogue, "Hardware Accelerated Novel

Protein Identification," in Int'l Symp. on Field-Programmable Logic, Aug 2004, pp.

13-22.

[7] Aptix’s System Explorer, “http://www.aptix.com/products/mp4.htm”, Jan 2005.

[8] Emulation and Verification Engineering’s ZeBu-XL, “http://www.eve-

team.com/zebu-xl.html”, Jan 2005.

[9] Mentor Graphics’ VStationPRO,

“http://www.mentor.com/products/fv/emulation/vstation_pro/index.cfm”, Jan 2005.

 87

[10] Cadence’s Palladium II,

“http://www.cadence.com/products/functional_ver/palladiumII/index.aspx”, Jan

2005.

[11] AMO GmbH’s Venus-X Emulator, “http://www.amo.de/venus.html”, Jan 2005.

[12] A. Lew, R. Halverson, Jr., "Dynamic programming, decision tables, and the Hawaii

parallel computer," Computer Math w/Applications, 1994.

[13] V. Salapura, M. Gschwind, O. Maischberger, “A fast FPGA implementation of a

general purpose neuron”. In Proc. of the Fourth International Workshop on Field

Programmable Logic and Applications, Prag, Czech Republic, Sept 1994.

[14] Bee, “http://bwrc.eecs.berkeley.edu/Research/BEE/”, Jan 2005.

[15] PCI Special Interest Group, “http://www.pcisig.com/”, Jan 2005.

[16] A. Ferrucci, M. Martin, T. Geocaris, M. Schlag, P. K. Chan, "ACME: A Field-

Programmable Gate Array Implementation of a Self-Adapting and Scalable

Connectionist Network", 2nd International ACM/SIGDA Workshop on Field-

Programmable Gate Arrays, 1994.

[17] T. A. Petersen, D. A. Thomae, D. E. Van den Bout. “The AnyBoard: A Rapid-

Prototyping System for Use in Teaching Digital Circuit Design,” In Proceedings,

The First IEEE International Workshop on Rapid System Prototyping RSP-90,

Computer Society Press, 1991. pp. 25-32.

[18] K. Bouazza, J. Champeau, P. Ng, B. Pottier, and S. Rubini. “Implementing cellular

automata on the ArMen machine,” In P. Quinton and Y. Robert, editors,

Proceedings of the Workshop on Algorithms and Parallel VLSI Architectures II,

Bonas, France, June 1991. pp. 317-322.

[19] P. K. Chan, M. Schlag, M. Martin, "BORG: A Reconfigurable Prototyping Board

Using Field-Programmable Gate Arrays", Proceedings of the 1st International

ACM/SIGDA Workshop on Field-Programmable Gate Arrays, 1992. pp. 47-51.

[20] W. Eatherton, T. Schiefelbein, H. Pottinger. “An FPGA-based Reconfigurable

Coprocessor Board Utilizing a Mathematics of Arrays,” Technical report,

University of Missouri--Rolla, Computer Science Department, 1995.

 88

[21] G.M. Quenot, I.C. Kraljic, J. Serot, and B. Zavidovique. “A Reconfigurable

Compute Engine for Real-Time Vision Automata Prototyping,” In IEEE Workshop

on FPGAs for Custom Computing Machines, 1994. pp. 91-100

[22] H. Hogl, A. Kugel, J. Ludvig, R. Manner, K. H. Noffz, and R. Zoz. “Enable++: A

Second Generation FPGA-Processor for ATLAS,” ATLAS internal note DQS-NO-

026, CERN, 1994.

[23] L. Agarwal, M. Wazlowski, S. Ghosh. “An asynchronous approach to efficient

execution of programs on adaptive architectures utilizing FPGAs,” In D. A. Buell

and K. L. Pocek, editors, Proceedings of IEEE Workshop on FPGAs for Custom

Computing Machines, Napa, California, April 1994. pp. 101-110.

[24] M. Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam, P. Athanas, H. Silverman, S.

Ghosh. “PRISM-II compiler and architecture”. In Proceedings of IEEE Workshop

on FPGAs for Custom Computing Machines, Napa, California, April 1993. pp. 9-

16.

[25] D. Smith and D. Bhatia. “RACE: Reconfigurable and Adaptive Computing

Environment,” In 6th International Workshop 117 on Field-Programmable Logic

and Applications, Darmstadt, Germany, September 1996. pp. 87-95.

[26] K. Oner, L. A. Barroso, S. Iman, J. Jeong, K. Ramamurthy, M. Dubois, “The

Design of RPM: An FPGA-based Multiprocessor Emulator,” Proc. 3rd ACM

International Symposium on Field-Programmable Gate Arrays (FPGA'95),

Monterey, CA, February 1995.

[27] J.M. Arnold et al., "The Splash 2 Processor and Applications," Proc. Int'l Conf.

Computer Design, CS Press, Los Alamitos, Calif.. 1993, pp. 482-485.

[28] R. Amerson, R. J. Carter, W. B. Culbertson, P. Kuekes, G. Snider, “Teramac --

Configurable Custom Computing”, Proceedings of the 1995 IEEE Symposium on

FPGA's for Custom Computing Machines, 1995. pp 32-38.

[29] R. Mccready, "Real-Time Face Detection on a Configurable Hardware Platform,"

M.A.Sc. Thesis, University of Toronto, 2000.

[30] A. G. Ye, D. M. Lewis, "Procedural Texture Mapping on FPGAs," ACM/SIGDA

International Symposium on Field Programmable Gate Arrays, Monterey, CA,

February 1999, pp. 112-120

 89

[31] Hardi ASIC Prototyping System, “http://www.hardi.se/haps/haps.htm”, Jan 2005.

[32] Gidel’s PROCStar II, “http://www.gidel.com/PROCStar%20II.htm”, Jan 2005.

[33] Dini Group’s DN600K10,

“http://www.dinigroup.com/index.php?product=DN6000k10”, Jan 2005.

[34] Annapolis Micro Systems’ WILDSTAR II Pro,

“http://www.annapmicro.com/wsiipro.html”, Jan 2005.

[35] Spectrum Signal’s PRO 3100,

“http://www.spectrumsignal.com/products/sdr/pro_3100.asp”, Jan 2005.

[36] T.J. Chaney, C.E. Molnar, “Anomalous behavior of synchronizer and arbiter

circuits,” IEEE Transactions on Computers, vol. C-22, April 1973. pp.421-422.

[37] D.J. Kinniment, J.V. Woods, “Synchronisation and arbitration circuits in digital

systems,” Proceedings of Institute of Electrical Engineers, vol.123, Oct. 1976.

pp.961-966.

[38] H.J. Veendrick, “The behavior of flip-flops used as synchronizers and prediction of

their failure rate,” IEEE Journal of Solid-State Circuits, vol. SC-15, April 1980. pp.

169-176.

[39] N. Azizi, I Kuon, A. Egier, A. Darabiha, and P. Chow, “Reconfigurable Molecular

Dynamics Simulator”, Proceedings of the Internation Symposium on Field-

Programmable Gate Arrays 2004, Feb 2004. pp. 190-199.

[40] TM-3 Ports Package Information, “http://www.eecg/~tm3/”, Jan 2005.

[41] The IEEE-1394 Trade Association, “http://www.1394ta.org/”, Jan 2005.

[42] Universal Serial Bus Information, “http://www.usb.org/”, Jan 2005.

[43] Gigabit Ethernet Alliance, “http://www.10gea.org/”, Jan 2005.

[44] Altera’s 64-Bit Master/Target IP Core,

“http://www.altera.com/products/ip/iup/pci/m-alt-pci_mt64.html”, Jan 2005.

[45] H. Johnson and M. Graham, High-speed digital design: A handbook of black magic.

New Jersey: Prentice Hall. 1993.

[46] Mentor Graphics, “http://www.mentor.com”, Jan 2005.

[47] Crucial RAM, “http://www.crucial.com”, Jan 2005.

 90

A SCHEMATIC

DC- DC Conver t er (1. 5v 50A)

Josh Fender
University of Toronto

 91

DC- DC Conver t er (2. 5v 100A Peak)

Josh Fender
University of Toronto

DDR Module Socket s

Josh Fender
University of Toronto

 92

DDR Ter mi nat i on Regul at or / Cl ock Buf f er / Ter mi nat i on

Josh Fender
University of Toronto

Devel opment FPGA Bypass Capaci t or s

Josh Fender
University of Toronto

 93

Devel opment FPGA Conf i gur at i on

Josh Fender
University of Toronto

Devel opment FPGAs 0, 1 I O/ PLL Power & Ref er ences

Josh Fender
University of Toronto

 94

Devel opment FPGAs 2, 3 I O/ PLL Power & Ref er ences

Josh Fender
University of Toronto

Devel opment FPGAs 0, 1 PLL Connect i ons

Josh Fender
University of Toronto

 95

Devel opment FPGAs 2, 3 PLL Connect i ons

Josh Fender
University of Toronto

Devel opment FPGAs I nt er nal Power

Josh Fender
University of Toronto

 96

Devel opment FPGA 0 Banks 1 and 2

Josh Fender
University of Toronto

Devel opment FPGA 0 Banks 3 and 4

Josh Fender
University of Toronto

 97

Devel opment FPGA 0 Banks 5 and 6

Josh Fender
University of Toronto

Devel opment FPGA 0 Banks 7 and 8

Josh Fender
University of Toronto

 98

Devel opment FPGA 1 Banks 1 and 2

Josh Fender
University of Toronto

Devel opment FPGA 1 Banks 3 and 4

Josh Fender
University of Toronto

 99

Devel opment FPGA 1 Banks 5 and 6

Josh Fender
University of Toronto

Devel opment FPGA 1 Banks 7 and 8

Josh Fender
University of Toronto

 100

Devel opment FPGA 2 Banks 1 and 2

Josh Fender
University of Toronto

Devel opment FPGA 2 Banks 3 and 4

Josh Fender
University of Toronto

 101

Devel opment FPGA 2 Banks 5 and 6

Josh Fender
University of Toronto

Devel opment FPGA 2 Banks 7 and 8

Josh Fender
University of Toronto

 102

Devel opment FPGA 3 Banks 1 and 2

Josh Fender
University of Toronto

Devel opment FPGA 3 Banks 3 and 4

Josh Fender
University of Toronto

 103

Devel opment FPGA 3 Banks 5 and 6

Josh Fender
University of Toronto

Devel opment FPGA 3 Banks 7 and 8

Josh Fender
University of Toronto

 104

I EEE- 1394 (Fi r ewi r e) Channel A

Josh Fender
University of Toronto

I EEE- 1394 (Fi r ewi r e) Channel B

Josh Fender
University of Toronto

 105

I nt er f ace FPGA Devi ce Conf i gur at i on

Josh Fender
University of Toronto

I nt er f ace FPGA I O Banks (PCI & Devi ce Pr ogr ammi ng)

Josh Fender
University of Toronto

 106

I nt er f ace FPGA " Ni bbl e" Bus I O

Josh Fender
University of Toronto

I nt er f ace FPGA Power & PLLs

Josh Fender
University of Toronto

 107

Mi scel l aneous Ci r cui t s

Josh Fender
University of Toronto

Josh Fender
University of Toronto

PCI Expansion Slot and Interface FPGA Voltage Converters

 108

Si ngl e Boar d Comput er and PCI

Josh Fender
University of Toronto

Josh Fender
University of Toronto

NTSC Video In / RGB Video Out

 109

B PCB LAYOUT

Layer 1

 110

Layer 3

 111

Layer 4

 112

Layer 6

 113

Layer 7

 114

Layer 10

 115

Layer 11

 116

Layer 13

 117

Layer 14

 118

Layer 16

 119

C INTERFACE FPGA VHDL C ODE

C.1 TOP.VHD

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

LIBRARY work;
USE work.complib.all;

ENTITY top IS
 PORT (
 -- Clock Inputs
 hpll_glbclk : IN STD_LOGIC; -- Board wide pha se aligned clocks
 hpll_nibclk : IN STD_LOGIC;
 clk80 : IN STD_LOGIC; -- 80Mhz Oscillat or backup
 spci_clk : IN STD_LOGIC; -- Secondary PCI clock input
 -- Clock Outputs
 nibclk : OUT STD_LOGIC;
 glbclk : OUT STD_LOGIC;

 -- Development JTAG Chain
 devcfg_TCK : INOUT STD_LOGIC;
 devcfg_TDO : IN STD_LOGIC;
 devcfg_TDI : INOUT STD_LOGIC;
 devcfg_TMS : INOUT STD_LOGIC;
 -- Dipswitchs/LEDS
 dip : IN STD_LOGIC_VECTOR(7 downto 0);
 led : OUT STD_LOGIC_VECTOR(3 downto 0);
 panled : OUT STD_LOGIC_VECTOR(3 downto 0);
 -- Nibble/Development Bus Signals
 nib0 : INOUT STD_LOGIC_VECTOR(49 downto 0);
 nib1 : INOUT STD_LOGIC_VECTOR(49 downto 0);
 nib2 : INOUT STD_LOGIC_VECTOR(49 downto 0);

 nib3 : INOUT STD_LOGIC_VECTOR(49 downto 0);
 -- Backup IO Headers
 bkupio : OUT STD_LOGIC_VECTOR(63 downto 0);
 -- Temp Monitors
 smb_clk : INOUT STD_LOGIC;
 smb_data : INOUT STD_LOGIC;
 smb_alertn : IN STD_LOGIC;
 -- Video Enables
 vid_ceA : OUT STD_LOGIC;
 vid_ceB : OUT STD_LOGIC;
 vid_psaven : OUT STD_LOGIC;
 -- Development FPGA 0 FPP programming signals
 fpga0_data : OUT STD_LOGIC_VECTOR(7 downto 0);
 fpga0_nconfig : OUT STD_LOGIC;
 fpga0_dclk : OUT STD_LOGIC;
 fpga0_conf_done : IN STD_LOGIC;
 fpga0_nstatus : IN STD_LOGIC;
 -- Development FPGA 1 FPP programming signals
 fpga1_data : OUT STD_LOGIC_VECTOR(7 downto 0);
 fpga1_nconfig : OUT STD_LOGIC;
 fpga1_dclk : OUT STD_LOGIC;
 fpga1_conf_done : IN STD_LOGIC;
 fpga1_nstatus : IN STD_LOGIC;
 -- Development FPGA 2 FPP programming signals
 fpga2_data : BUFFER STD_LOGIC_VECTOR(7 downto 0);
 fpga2_nconfig : OUT STD_LOGIC;
 fpga2_dclk : BUFFER STD_LOGIC;
 fpga2_conf_done : IN STD_LOGIC;
 fpga2_nstatus : IN STD_LOGIC;
 -- Development FPGA 3 FPP programming signals
 fpga3_data : OUT STD_LOGIC_VECTOR(7 downto 0);
 fpga3_nconfig : OUT STD_LOGIC;
 fpga3_dclk : OUT STD_LOGIC;
 fpga3_conf_done : IN STD_LOGIC;
 fpga3_nstatus : IN STD_LOGIC;

 -- PCI Bus Signals
 clk : IN STD_LOGIC;
 gntn : IN STD_LOGIC;

 120

 rstn : IN STD_LOGIC;
 idsel : IN STD_LOGIC;
 framen : INOUT STD_LOGIC;
 irdyn : INOUT STD_LOGIC;
 devseln : INOUT STD_LOGIC;
 trdyn : INOUT STD_LOGIC;
 stopn : INOUT STD_LOGIC;
 req64n : INOUT STD_LOGIC;
 ack64n : INOUT STD_LOGIC;
 intan : OUT STD_LOGIC;
 intbn : OUT STD_LOGIC;
 intcn : OUT STD_LOGIC;
 intdn : OUT STD_LOGIC;
 lockn : OUT STD_LOGIC;
 reqn : OUT STD_LOGIC;
 serrn : OUT STD_LOGIC;
 ad : INOUT STD_LOGIC_VECTOR (63 DOWNTO 0);
 cben : INOUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 par : INOUT STD_LOGIC;
 par64 : INOUT STD_LOGIC;
 perrn : INOUT STD_LOGIC;
 m66en : INOUT STD_LOGIC;
 pmen : INOUT STD_LOGIC
);
END;

ARCHITECTURE rtl of top IS
 -- Local side PCI core signal declarations
 SIGNAL l_cbeni : STD_LOGIC_VECTOR (7 DOWNTO 0);
 SIGNAL l_adi : STD_LOGIC_VECTOR (63 DOWNTO 0);
 SIGNAL lm_req32n, lm_req64n, lm_lastn, lm_rdyn, l t_rdyn : STD_LOGIC;
 SIGNAL lt_abortn, lt_discn, lirqn : STD_LOGIC;
 SIGNAL l_adro, l_dato : STD_LOGIC_VECTOR (63 DOWN TO 0);
 SIGNAL l_beno : STD_LOGIC_VECTOR (7 DOWNTO 0);
 SIGNAL l_cmdo : STD_LOGIC_VECTOR (3 DOWNTO 0);
 SIGNAL l_ldat_ackn, l_hdat_ackn, lm_adr_ackn, lm_ ackn : STD_LOGIC;
 SIGNAL lm_dxfrn : STD_LOGIC;
 SIGNAL lm_tsr : STD_LOGIC_VECTOR (9 DOWNTO 0);
 SIGNAL lt_framen, lt_ackn, lt_dxfrn : STD_LOGIC;
 SIGNAL lt_tsr : STD_LOGIC_VECTOR (11 DOWNTO 0);
 SIGNAL cmd_reg, stat_reg : STD_LOGIC_VECTOR (6 DO WNTO 0);
 SIGNAL cache : STD_LOGIC_VECTOR (7 DOWNTO 0);
 SIGNAL master_l_adi, target_l_adi : STD_LOGIC_VEC TOR(63 downto 0);
 SIGNAL master_l_adi_enable : STD_LOGIC;
 -- PLL signals
 SIGNAL pll_reconfig_reset : STD_LOGIC;
 SIGNAL nib_locked, glb_locked : STD_LOGIC;
 SIGNAL nib_pci_data_out, glb_pci_data_out : STD_L OGIC_VECTOR(31 downto
0);
 SIGNAL nib_pci_we, glb_pci_we : STD_LOGIC;
 -- Write Fifo signals
 SIGNAL writeFIFOdata : STD_LOGIC_VECTOR(31 downto 0);
 SIGNAL writeFIFOdatain : STD_LOGIC_VECTOR(63 down to 0);
 SIGNAL writeFIFOrdreq, writeFIFOempty : STD_LOGIC ;

 SIGNAL writeFIFOnearlyfull, writeFIFOwrhigh, writ eFIFOwrlow :
STD_LOGIC;
 SIGNAL writeFIFO_wrused : STD_LOGIC_VECTOR(12 dow nto 0);
 SIGNAL target_writeFIFOwrlow, target_writeFIFOwrh igh : STD_LOGIC;
 -- Read FIFO signals
 SIGNAL readFIFO_level : STD_LOGIC_VECTOR(12 downt o 0);
 SIGNAL readFIFOdata : STD_LOGIC_VECTOR(31 downto 0);
 SIGNAL readFIFOwrreq : STD_LOGIC;
 SIGNAL readFIFO_get32bits, readFIFO_get64bits : S TD_LOGIC;
 SIGNAL readFIFO_data32ready, readFIFO_data64ready : STD_LOGIC;
 SIGNAL readFIFO_nearlyempty : STD_LOGIC;
 SIGNAL readFIFO_Dataout : STD_LOGIC_VECTOR(63 dow nto 0);
 -- Development Bus Interface Signals
 SIGNAL devbus_enable : STD_LOGIC;
 SIGNAL devbus_writeFIFOrdreq : STD_LOGIC;
 SIGNAL devbus_peekstate : STD_LOGIC_VECTOR(2 down to 0);
 -- Dev Configure signals
 SIGNAL devcfg_enable : STD_LOGIC;
 SIGNAL devcfg_writeFIFOrdreq : STD_LOGIC;
 -- Double speed clocks
 SIGNAL clk133 : STD_LOGIC;
 -- 22Mhz PCI derived clock
 SIGNAL clk22 : STD_LOGIC;
 -- Control register file signals
 SIGNAL reg_data_in, reg_data_out : STD_LOGIC_VECT OR(31 downto 0);
 SIGNAL reg_data_addr : STD_LOGIC_VECTOR(7 downto 0);
 SIGNAL reg_read_ack, reg_wrreq : STD_LOGIC;
 -- Reset Signals
 SIGNAL force_resetn : STD_LOGIC;
 SIGNAL local_resetn : STD_LOGIC;
 -- Temperature Monitor Signals
 SIGNAL tempmc_pci_data_out : STD_LOGIC_VECTOR(31 downto 0);
 SIGNAL tempmc_pci_we : STD_LOGIC;
 SIGNAL alert_override : STD_LOGIC;
 -- Dev FPGA nConfig register signals
 SIGNAL fpga0_nconfig_reg, fpga1_nconfig_reg : STD _LOGIC;
 SIGNAL fpga2_nconfig_reg, fpga3_nconfig_reg : STD _LOGIC;
 -- Development JTAG controller signals
 SIGNAL jtag_enable : std_logic;
 SIGNAL jtag_dataout : STD_LOGIC_VECTOR(31 downto 0);
 SIGNAL jtag_we : STD_LOGIC;
 -- Nibble bus reset signals
 SIGNAL nib0_resetn, nib1_resetn : STD_LOGIC;
 SIGNAL nib2_resetn, nib3_resetn : STD_LOGIC;
 -- Error catchers
 SIGNAL fifo_overflow_error : STD_LOGIC;
 SIGNAL m_fifo_overflow_error : STD_LOGIC;
 SIGNAL t_fifo_overflow_error : STD_LOGIC;
 -- Flashing LED counter
 SIGNAL flash_counter : STD_LOGIC_VECTOR(24 downto 0);
 -- DMA Control Signals
 SIGNAL master_control_data : STD_LOGIC_VECTOR(31 downto 0);
 SIGNAL master_control_addr : STD_LOGIC;
 SIGNAL master_control_we : STD_LOGIC;

 121

 SIGNAL writeFIFOwrite32, writeFIFOwrite64 : STD_L OGIC;
 SIGNAL readFIFOread32 : STD_LOGIC;
 SIGNAL target_readFIFO_get32bits : STD_LOGIC;
 SIGNAL master_length_counter : STD_LOGIC_VECTOR(1 5 downto 0);
 SIGNAL intn : STD_LOGIC;
 -- DEBUG
 SIGNAL masterstatepeek : STD_LOGIC_VECTOR(1 downt o 0);
 SIGNAL peakwritelowbuffer : STD_LOGIC;
 SIGNAL peakwritehighbuffer : STD_LOGIC;
 SIGNAL peakwritereq : STD_LOGIC;
 -- PCI Transaction Counter Signals
 SIGNAL pciread32, pciread64 : STD_LOGIC;
 SIGNAL pciwrite32, pciwrite64 : STD_LOGIC;
 SIGNAL write_fifo_has_space : STD_LOGIC;
 SIGNAL read_FIFO_has2 : STD_LOGIC;
 SIGNAL debug_delayed_read : STD_LOGIC;
BEGIN
 PROCESS (hpll_nibclk)
 BEGIN
 IF rising_edge(hpll_nibclk) THEN
 flash_counter <= flash_counter + 1;
 END IF;
 END PROCESS;
 -- Assign LEDS
 led(0) <= not fifo_overflow_error;
 led(1) <= not (nib_locked AND glb_locked);
 led(2) <= flash_counter(24);
 led(3) <= '0';

 -- Place holder PCI local side signals

 intan <= '1';
 intbn <= intn;
 intcn <= '1';
 intdn <= '1';

 -- Instantiate Target Controller
 target : targetcontroller
 PORT MAP(lt_abortn, lt_discn, lt_rdyn, lt_fram en, lt_ackn,
lt_dxfrn,
 lt_tsr, target_l_adi, l_adro, l_dato, l_beno,
 l_cmdo, l_ldat_ackn, l_hdat_ackn, reg _data_in,
reg_data_out,
 reg_data_addr, reg_read_ack, reg_wrre q,
 writeFIFOdatain, target_writeFIFOwrlo w,
target_writeFIFOwrhigh,
 writeFIFOnearlyfull, readFIFO_dataout ,
target_readFIFO_get32bits,
 readFIFO_get64bits, readFIFO_nearlyem pty,
readFIFO_data32ready,
 readFIFO_data64ready, t_fifo_overflow _error, local_resetn,
rstn, clk);

 -- Instantiate Master Controller
 master : mastercontroller
 PORT MAP (lm_req64n, lm_req32n, lm_adr_ackn, l m_tsr, lm_dxfrn,
lm_lastn,
 lm_rdyn, l_hdat_ackn,l_ldat_ackn,
 master_l_adi, master_l_adi_enable, l _cbeni, lirqn,
 master_control_data, master_control_ addr,
master_control_we,
 writeFIFOnearlyfull, write_fifo_has_ space,
 writeFIFOwrite64, writeFIFOwrite32,
 readFIFO_data32ready, readFIFO_datao ut, readFIFOread32,
 read_FIFO_has2,
 masterstatepeek, master_length_count er,
debug_delayed_read,
 m_fifo_overflow_error, local_resetn, rstn, clk);

 fifo_overflow_error <= m_fifo_overflow_error OR t _fifo_overflow_error;

 master_control_data <= reg_data_out;

 l_adi <= master_l_adi when master_l_adi_enable = '1' else
target_l_adi;
 writeFIFOwrlow <= target_writeFIFOwrlow OR writeF IFOwrite32 OR
 writeF IFOwrite64;
 writeFIFOwrhigh <= target_writeFIFOwrhigh OR writ eFIFOwrite64;

 readFIFO_get32bits <= target_readFIFO_get32bits O R readFIFOread32;

 -- Instantiate PCI Core
 core : mega_pci
 PORT MAP (clk, rstn, gntn, l_cbeni,idsel,l_adi, lm_req32n,
 lm_req64n, lm_lastn, lm_rdyn, lt_rdyn , lt_abortn,
lt_discn,
 lirqn, framen, irdyn, devseln, trdyn, stopn,
 req64n, ack64n, intn, reqn, serrn, l_ adro,
 l_dato, l_beno, l_cmdo, l_ldat_ackn, l_hdat_ackn,
lm_adr_ackn,
 lm_ackn, lm_dxfrn, lm_tsr, lt_framen, lt_ackn, lt_dxfrn,
lt_tsr,
 cmd_reg, stat_reg, cache, ad, cben, p ar, par64,
 perrn);

 -- Instantiate PLL / reconfiguration circuitry / pci interface
 nibPLL : pll_reconfig_interface
 PORT MAP(clk, nibclk, l_dato, nib_pci_data_out, nib_pci_we,
 clk, nib_locked, pll_reconfig_reset,cl k22);
-- DEBUG NOTE: check if l_dato should really be re g_data_out
 glbPLL : pll_reconfig_interface
 PORT MAP(spci_clk, glbclk, l_dato, glb_pci_data _out, glb_pci_we,
 clk, glb_locked, pll_reconfig_reset,cl k22);

 pll_reconfig_reset <= NOT rstn;

 -- Instantiate development JTAG interface

 122

 dev_jtag_inst : dev_jtag
 PORT MAP(devcfg_TCK, devcfg_TDO, devcfg_TDI, de vcfg_TMS,
 jtag_enable, reg_data_out, jtag_dataou t, jtag_we,
 local_resetn, clk);

 -- Instantiate temperature monitor SMB circuitry
 tempmc_interface_inst : tempmc_interface
 PORT MAP(reg_data_out, tempmc_pci_data_out, te mpmc_pci_we,
 smb_clk, smb_data, smb_alertn, clk, l ocal_resetn);

 -- Instantiate clock doubling fast PLL for 64 <-> 32 conversions
 clk133pll : fastpll133 PORT MAP(clk, clk133,clk22);

 -- Instantiate read FIFO and 32 -> 64 convertor
 readFIFOinst : readFIFO
 PORT MAP (readFIFOdata, readFIFOwrreq, hpll_ni bclk,
 readFIFO_get32bits, readFIFO_get64bi ts,
 readFIFO_data32ready, readFIFO_data6 4ready,
 readFIFO_nearlyempty, readFIFO_datao ut, readFIFO_level,
 read_FIFO_has2,clk133, clk, local_re setn);

 -- Instantiate write FIFO and 64 -> 32 convertor
 writeFIFOinst : writeFIFO
 PORT MAP (writeFIFOdata, writeFIFOrdreq, writeF IFOempty,
hpll_nibclk,
 writeFIFOnearlyfull, write_fifo_has_s pace,
writeFIFOdatain,
 writeFIFOwrhigh, writeFIFOwrlow,
 clk, clk133, local_resetn, writeFIFO_ wrused,
 peakwritelowbuffer, peakwritehighbuff er,peakwritereq);

 writeFIFOrdreq <= devcfg_writeFIFOrdreq OR devbus _writeFIFOrdreq;

 -- Instantiate the development FPGA programmer
 devcfg : devconfigure
 PORT MAP (devcfg_enable, writeFIFOdata, writeFI FOempty,
 devcfg_writeFIFOrdreq, hpll_nibclk, f pga0_data,
 fpga0_dclk, fpga1_data, fpga1_dclk, f pga2_data,
fpga2_dclk,
 fpga3_data, fpga3_dclk, local_resetn) ;

 -- Disable the development FPGAs in an overheat s ituation
 fpga0_nconfig <= fpga0_nconfig_reg AND (smb_alert n OR alert_override);
 fpga1_nconfig <= fpga1_nconfig_reg AND (smb_alert n OR alert_override);
 fpga2_nconfig <= fpga2_nconfig_reg AND (smb_alert n OR alert_override);
 fpga3_nconfig <= fpga3_nconfig_reg AND (smb_alert n OR alert_override);

 -- Instantiate Development Bus Interface
 devbusinter : DevBusInterface
 Port Map (devbus_enable, readFIFOdata, readFIFO wrreq, writeFIFOdata,
 writeFIFOempty, devbus_writeFIFOrdreq , hpll_nibclk,
 local_resetn, nib0, nib1, nib2, nib3, devbus_peekstate,
 nib0_resetn, nib1_resetn, nib2_resetn , nib3_resetn);

 -- Instantiate the command register file
 cmdreg : commandRegisters
 Port Map (fpga0_nconfig_reg, fpga0_conf_done, f pga0_nstatus,
 fpga1_nconfig_reg, fpga1_conf_done, f pga1_nstatus,
 fpga2_nconfig_reg, fpga2_conf_done, f pga2_nstatus,
 fpga3_nconfig_reg, fpga3_conf_done, f pga3_nstatus,
 devcfg_enable, devbus_enable, force_r esetn,
 vid_ceA, vid_ceB, vid_psaven, jtag_en able,
 nib0_resetn, nib1_resetn, nib2_resetn , nib3_resetn,
 jtag_dataout, jtag_we,
 nib_pci_we, glb_pci_we, nib_pci_data_ out,
glb_pci_data_out,
 tempmc_pci_data_out, tempmc_pci_we, a lert_override,
 writeFIFO_wrused, readFIFO_level,
 fifo_overflow_error, smb_alertn, nib_ locked, glb_locked,
 master_control_addr, master_control_w e,
 pciread32, pciread64, pciwrite32, pci write64, lirqn,
 reg_data_in, reg_data_out, reg_data_a ddr, reg_read_ack,
 reg_wrreq, clk, rstn);

 pciwrite32 <= writeFIFOwrhigh XOR writeFIFOwrlow;
 pciwrite64 <= writeFIFOwrhigh AND writeFIFOwrlow;
 pciread32 <= readFIFO_get32bits;
 pciread64 <= readFIFO_get64bits;

 local_resetn <= rstn AND force_resetn;

bkupio <= (others => '1');

END rtl;

C.2 COMMANDREGISTERS .VHD

-- Writable Register Map
-- Reg Bit Description
-- # Field
-- 0 0 Dev FPGA 0 nConfig signal
-- 0 1 Dev FPGA 1 nConfig signal
-- 0 2 Dev FPGA 2 nConfig signal
-- 0 3 Dev FPGA 3 nConfig signal
--
-- 1 0 Development bus interface enable
-- 1 1 Development configuration mode
-- 1 2 NTSC video in A chip enable
-- 1 3 NTSC video in B chip enable
-- 1 4 RGB video out chip enablen
-- 1 5 JTAG controller enable
-- 1 6 Temperature alert override
-- 1 31 Force resetn
--
-- 2 0 Nibble Bus 0 ResetN signal

 123

-- 2 1 Nibble Bus 1 ResetN signal
-- 2 2 Nibble Bus 2 ResetN signal
-- 2 3 Nibble Bus 3 ResetN signal
--
-- fc 0 Development JTAG controller TDI
-- fc 1 Development JTAG controller TMS
--
-- fd 7-0 Temp Monitors SMB: command
-- fd 15-8 Temp Monitors SMB: writedata
-- fd 16 Temp Monitors SMB: rd_req
-- fd 17 Temp Monitors SMB: wr_req
-- fd 18 Temp Monitors SMB: clr_alert_req
-- fd 31 Temp Monitors SMB: chip_sel
--
-- fe 0 Global clock PLL: reconfig
-- fe 1 Global clock PLL: read_en
-- fe 2 Global clock PLL: write_en
-- fe 7-4 Global clock PLL: counter_type
-- fe 16-8 Global clock PLL: data_in
-- fe 26-24 Global clock PLL: counter_param
--
-- ff 0 Nibble clock PLL: reconfig
-- ff 1 Nibble clock PLL: read_en
-- ff 2 Nibble clock PLL: write_en
-- ff 7-4 Nibble clock PLL: counter_type
-- ff 16-8 Nibble clock PLL: data_in
-- ff 26-24 Nibble clock PLL: counter_param

-- Readable Register Map
-- Reg Bit Description
-- # Field
-- 0 0 DEV FPGA 0 Conf_Done signal
-- 0 1 DEV FPGA 0 nStatus signal
-- 0 2 DEV FPGA 1 Conf_Done signal
-- 0 3 DEV FPGA 1 nStatus signal
-- 0 4 DEV FPGA 2 Conf_Done signal
-- 0 5 DEV FPGA 2 nStatus signal
-- 0 6 DEV FPGA 3 Conf_Done signal
-- 0 7 DEV FPGA 3 nStatus signal
--
-- 1 8-0 Nibble clock PLL: data_out
-- 1 31 Nibble clock PLL: busy
--
-- 2 8-0 Global clock PLL: data_out
-- 2 31 Global clock PLL: busy
--
-- 3 7-0 Temp Monitors SMB: readdata
-- 3 8 Temp Monitors SMB: rd_ack
-- 3 9 Temp Monitors SMB: wr_ack
-- 3 10 Temp Monitors SMB: clr_alert_ack
--
-- 4 31-0 TM-4 Identification
--
-- 5 12-0 Write FIFO level

--
-- 6 0 Fifo overflow timeout error
-- 6 1 Temperature Alarm
-- 6 2 Development clock pll lock
-- 6 3 Global clock pll lock
--
-- 7 0 Development JTAG TDO
-- 7 31 Development JTAG controller busy
--
-- 8 Readable copy of reg 0
-- 8 0 Development bus interface enable
-- 8 1 Development configuration mode
-- 8 2 NTSC video in A chip enable
-- 8 3 NTSC video in B chip enable
-- 8 4 RGB video out chip enablen
-- 8 5 JTAG controller enable
-- 8 6 Temperature alert override
-- 8 31 Force resetn
--
-- 9 12-0 Read FIFO Level
--
-- 10 31-0 PCI 32bit Read Counter
--
-- 11 31-0 PCI 64bit Read Counter
--
-- 12 31-0 PCI 32bit Write Counter
--
-- 13 31-0 PCI 64bit Write Counter
--
-- 14 0 IRQ status (0 = asserted interrupt)
--

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

LIBRARY work;
USE work.complib.all;

ENTITY commandregisters IS
 PORT (
 -- Development configuration signals
 fpga0_nconfig : OUT STD_LOGIC;
 fpga0_conf_done : IN STD_LOGIC;
 fpga0_nstatus : IN STD_LOGIC;
 fpga1_nconfig : OUT STD_LOGIC;
 fpga1_conf_done : IN STD_LOGIC;
 fpga1_nstatus : IN STD_LOGIC;
 fpga2_nconfig : OUT STD_LOGIC;
 fpga2_conf_done : IN STD_LOGIC;
 fpga2_nstatus : IN STD_LOGIC;
 fpga3_nconfig : OUT STD_LOGIC;
 fpga3_conf_done : IN STD_LOGIC;
 fpga3_nstatus : IN STD_LOGIC;

 124

 -- TM-4 Ctrl Register signals
 devcfg_enable : OUT STD_LOGIC;
 devbus_enable : OUT STD_LOGIC;
 force_resetn : OUT STD_LOGIC;
 vid_ceA : OUT STD_LOGIC;
 vid_ceB : OUT STD_LOGIC;
 vid_psaven : OUT STD_LOGIC;
 jtag_enable : OUT STD_LOGIC;
 -- Nibble Bus Resetn signals
 nib0_resetn : OUT STD_LOGIC;
 nib1_resetn : OUT STD_LOGIC;
 nib2_resetn : OUT STD_LOGIC;
 nib3_resetn : OUT STD_LOGIC;
 -- JTAG controller signals
 jtag_datain : IN STD_LOGIC_VECTOR(31 downto 0);
 jtag_we : OUT STD_LOGIC;
 -- PLL reconfiguration interface signals
 nib_pci_we : OUT STD_LOGIC;
 glb_pci_we : OUT STD_LOGIC;
 nib_data_in : IN STD_LOGIC_VECTOR(31 downto 0);
 glb_data_in : IN STD_LOGIC_VECTOR(31 downto 0);
 -- Temperature monitor signals
 tempmc_data_in : IN STD_LOGIC_VECTOR(31 downto 0);
 tempmc_pci_we : OUT STD_LOGIC;
 alert_override : OUT STD_LOGIC;
 -- Write FIFO status
 writeFIFO_wrused : IN STD_LOGIC_VECTOR(12 downt o 0);
 readFIFO_level : IN STD_LOGIC_VECTOR(12 downto 0);
 -- FIFO error
 fifo_overflow_error : IN STD_LOGIC;
 temp_alertn : IN STD_LOGIC;
 devpll_locked : IN STD_LOGIC;
 glbpll_locked : IN STD_LOGIC;
 -- DMA control signals
 master_control_addr : OUT STD_LOGIC;
 master_control_we : OUT STD_LOGIC;
 -- PCI Transaction Counter Signals
 pciread32 : IN STD_LOGIC;
 pciread64 : IN STD_LOGIC;
 pciwrite32 : IN STD_LOGIC;
 pciwrite64 : IN STD_LOGIC;
 -- Other signals
 lirqn : IN STD_LOGIC;
 -- PCI Interface signals
 reg_data_out : OUT STD_LOGIC_VECTOR(31 downto 0);
 reg_data_in : IN STD_LOGIC_VECTOR(31 downto 0);
 reg_data_addr : IN STD_LOGIC_VECTOR(7 downto 0) ;
 reg_read_ack : IN STD_LOGIC;
 reg_wrreq : IN STD_LOGIC;
 clk : IN STD_LOGIC;
 rstn : IN STD_LOGIC);
END;

ARCHITECTURE rtl OF commandRegisters IS

 TYPE writeregarray is array(255 downto 0) of STD_ LOGIC_VECTOR(31
downto 0);
 TYPE readregarray is array(14 downto 0) of STD_LO GIC_VECTOR(31 downto
0);

 SIGNAL writeregisters : writeregarray;
 SIGNAL readregisters : readregarray;
BEGIN
 --
 -- Assign readable register connections --
 --

 -- Connect the development configuration signals to registers
 readregisters(0)(0) <= fpga0_conf_done;
 readregisters(0)(1) <= fpga0_nstatus;
 readregisters(0)(2) <= fpga1_conf_done;
 readregisters(0)(3) <= fpga1_nstatus;
 readregisters(0)(4) <= fpga2_conf_done;
 readregisters(0)(5) <= fpga2_nstatus;
 readregisters(0)(6) <= fpga3_conf_done;
 readregisters(0)(7) <= fpga3_nstatus;
 readregisters(0)(31 downto 8) <= (others => '0');

 readregisters(1) <= nib_data_in;
 readregisters(2) <= glb_data_in;
 readregisters(3) <= tempmc_data_in;
 readregisters(4) <= "0101010001001110001011010011 0100";
 readregisters(5)(12 downto 0) <= writeFIFO_wrused ;
 readregisters(5)(31 downto 13) <= (others => '0') ;
 readregisters(6)(0) <= fifo_overflow_error;
 readregisters(6)(1) <= NOT temp_alertn;
 readregisters(6)(2) <= devpll_locked;
 readregisters(6)(3) <= glbpll_locked;

 readregisters(6)(31 downto 4) <= (others => '0');
 readregisters(7) <= jtag_datain;
 readregisters(8) <= writeregisters(1);

 readregisters(9)(12 downto 0) <= readFIFO_level;
 readregisters(9)(31 downto 13) <= (others => '0') ;

 readregisters(14)(0) <= lirqn;
 readregisters(14)(31 downto 1) <= (others => '0') ;

 -- Assign writeable register connections --

 -- Connect the development configuration signals to registers
 fpga0_nconfig <= writeregisters(0)(0);
 fpga1_nconfig <= writeregisters(0)(1);
 fpga2_nconfig <= writeregisters(0)(2);
 fpga3_nconfig <= writeregisters(0)(3);

 -- Connect TM-4 control register signals

 125

 devbus_enable <= writeregisters(1)(0);
 devcfg_enable <= writeregisters(1)(1);
 vid_ceA <= writeregisters(1)(2);
 vid_ceB <= writeregisters(1)(3);
 vid_psaven <= writeregisters(1)(4);
 jtag_enable <= writeregisters(1)(5);
 alert_override <= writeregisters(1)(6);
 force_resetn <= writeregisters(1)(31);

 nib0_resetn <= writeregisters(2)(0);
 nib1_resetn <= writeregisters(2)(1);
 nib2_resetn <= writeregisters(2)(2);
 nib3_resetn <= writeregisters(2)(3);

 -- PLL reconfiguration interface signals
 master_control_addr <= reg_data_addr(0);
 master_control_we <= '1' WHEN reg_data_addr(7 dow nto 1) = "1111101"
AND
 reg_wrreq = '1' ELS E '0';
 jtag_we <= '1' WHEN reg_data_addr = "111111 00" and reg_wrreq =
'1' else '0';
 tempmc_pci_we <= '1' WHEN reg_data_addr = "111111 01" and reg_wrreq =
'1' else '0';
 glb_pci_we <= '1' WHEN reg_data_addr = "111111 10" and reg_wrreq =
'1' else '0';
 nib_pci_we <= '1' WHEN reg_data_addr = "111111 11" and reg_wrreq =
'1' else '0';
 -- Handle updating the register array
 reg_data_out <= readregisters(conv_integer(reg_da ta_addr));
 PROCESS (clk,rstn)
 BEGIN
 IF rstn = '0' THEN
 writeregisters <= (others => (others => '0'));
 readregisters(10) <= (others => '0');
 readregisters(11) <= (others => '0');
 readregisters(12) <= (others => '0');
 readregisters(13) <= (others => '0');
 ELSIF rising_edge(clk) THEN
 IF pciread32 = '1' THEN
 readregisters(10) <= readregisters(10) + 1;
 END IF;
 IF pciread64 = '1' THEN
 readregisters(11) <= readregisters(11) + 1;
 END IF;
 IF pciwrite32 = '1' THEN
 readregisters(12) <= readregisters(12) + 1;
 END IF;
 IF pciwrite64 = '1' THEN
 readregisters(13) <= readregisters(13) + 1;
 END IF;

 IF (reg_wrreq = '1') THEN
 writeregisters(conv_integer(reg_data_addr)) <= reg_data_in;
 END IF;

 END IF;
 END PROCESS;
END rtl;

C.3 DEV_JTAG.VHD

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.all;

ENTITY dev_jtag IS
 PORT (
 -- JTAG signals
 TCK : INOUT std_logic;
 TDO : IN std_logic;
 TDI : INOUT std_logic;
 TMS : INOUT std_logic;
 -- Control signals
 enable : IN std_logic;
 -- Data interface
 datain : IN std_logic_vector(31 downto 0);
 dataout : OUT std_logic_vector(31 downto 0);
 datawe : IN std_logic;

 rstn : IN std_logic;
 clk : IN std_logic);
END dev_jtag;

ARCHITECTURE rtl OF dev_jtag IS
 SIGNAL ltck, ltdo, ltdi, ltms, busy : std_logic;
 SIGNAL count : std_logic_vector(2 downto 0);
BEGIN
 tck <= ltck when enable = '1' else 'Z';
 tdi <= ltdi when enable = '1' else 'Z';
 tms <= ltms when enable = '1' else 'Z';

 dataout(0) <= ltdo;
 dataout(30 downto 1) <= (others => '0');
 dataout(31) <= busy;

 PROCESS (clk,rstn)
 BEGIN
 IF rstn = '0' THEN
 ltdo <= '0';
 ltdi <= '0';
 ltms <= '0';
 busy <= '0';
 ltck <= '0';
 count <= "000";
 ELSIF rising_edge(clk) THEN
 ltdo <= tdo;

 126

 IF datawe = '1' then
 busy <= '1';
 ltdi <= datain(0);
 ltms <= datain(1);
 count <= "000";
 ELSIF busy = '1' THEN
 IF count = "101" THEN
 count <= "000";
 IF ltck = '1' THEN
 busy <= '0';
 END IF;
 ltck <= not ltck;
 ELSE
 count <= count + 1;
 END IF;
 END IF;
 END IF;
 END PROCESS;
END rtl;

C.4 DEVBUSINTERFACE .VHD

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

LIBRARY work;
USE work.complib.all;

ENTITY DevBusInterface IS
 PORT (
 enable : IN STD_LOGIC;
 -- PCIreadFIFO
 readFIFOdata : OUT STD_LOGIC_VECTOR(31 downto 0);
 readFIFOwrreq : OUT STD_LOGIC;
 -- PCIwriteFIFO
 writeFIFOdata : IN STD_LOGIC_VECTOR(31 downto 0);
 writeFIFOempty : IN STD_LOGIC;
 writeFIFOrdreq : OUT STD_LOGIC;
 clk : IN STD_LOGIC;
 rstn : IN STD_LOGIC;
 -- Development bus signals
 nib0 : INOUT STD_LOGIC_VECTOR(49 downto 0);
 nib1 : INOUT STD_LOGIC_VECTOR(49 downto 0);
 nib2 : INOUT STD_LOGIC_VECTOR(49 downto 0);
 nib3 : INOUT STD_LOGIC_VECTOR(49 downto 0);
 -- Current State Peek
 peek_state : OUT STD_LOGIC_VECTOR(2 downto 0);
 -- Nibble Bus Resetn signals

 nib0_resetn : IN STD_LOGIC;
 nib1_resetn : IN STD_LOGIC;
 nib2_resetn : IN STD_LOGIC;
 nib3_resetn : IN STD_LOGIC);
END;

ARCHITECTURE rtl OF DevBusInterface IS
 FUNCTION is_zero(SIGNAL input : IN STD_LOGIC) RET URN boolean IS
 BEGIN
 IF input = '0' THEN
 RETURN TRUE;
 ELSE
 RETURN FALSE;
 END IF;
 END is_zero;

 FUNCTION getTackn (signal tackn0, tackn1 : IN ST D_LOGIC;
 signal tackn2, tackn3 : IN ST D_LOGIC;
 signal fpganum : IN STD_LOGIC _VECTOR(1 downto 0))
 return boolean IS
 BEGIN
 return is_zero(tackn0) or is_zero(tackn1) or
 is_zero(tackn2) or is_zero(tackn3);
-- CASE fpganum IS
-- WHEN "00" => return is_zero(tackn0);
-- WHEN "01" => return is_zero(tackn1);
-- WHEN "10" => return is_zero(tackn2);
-- WHEN "11" => return is_zero(tackn3);
-- END CASE;
 END getTackn;

 FUNCTION getDataIn (signal data0in,data1in : IN STD_LOGIC_VECTOR;
 signal data2in,data3in : IN STD_LOGIC_VECTOR;
 signal fpganum : IN STD_LOGI C_VECTOR(1 downto 0))
 return std_logic_vector IS
 BEGIN
 CASE fpganum IS
 WHEN "00" => return data0in;
 WHEN "01" => return data1in;
 WHEN "10" => return data2in;
 WHEN "11" => return data3in;
 END CASE;
 END getDataIn;

 PROCEDURE AssertFrame(signal framen0, framen1 : OUT std_logic;
 signal framen2, framen3 : OUT std_logic;
 signal fpganum : IN std_lo gic_vector(1 downto
0)) IS
 BEGIN
 CASE fpganum IS
 WHEN "00" => framen0 <= '0';
 WHEN "01" => framen1 <= '0';
 WHEN "10" => framen2 <= '0';
 WHEN "11" => framen3 <= '0';

 127

 END CASE;
 END PROCEDURE;

 PROCEDURE WriteData(signal data0, data1 : OUT st d_logic_vector(31
downto 0);
 signal data2, data3 : OUT st d_logic_vector(31
downto 0);
 signal data : IN std_logic_v ector(31 downto 0);
 signal fpganum : IN std_logi c_vector(1 downto 0))
IS
 BEGIN
 data0 <= data;
 data1 <= data;
 data2 <= data;
 data3 <= data;
-- CASE fpganum IS
-- WHEN "00" => data0 <= data;
-- WHEN "01" => data1 <= data;
-- WHEN "10" => data2 <= data;
-- WHEN "11" => data3 <= data;
-- END CASE;
 END PROCEDURE;

 TYPE states IS (S_IDLE, S_READ, S_READWAIT, S_WRI TE, S_ACKWAIT,
S_WRITEWAIT);
 SIGNAL curr_state : states;
 SIGNAL address : STD_LOGIC_VECTOR(7 downto 0);
 SIGNAL address0, address1 : STD_LOGIC_VECTOR(7 do wnto 0);
 SIGNAL address2, address3 : STD_LOGIC_VECTOR(7 do wnto 0);
 SIGNAL count : STD_LOGIC_VECTOR(15 downto 0);
 SIGNAL ackrequired : STD_LOGIC;
 SIGNAL framen0, framen1, framen2, framen3 : STD_L OGIC;
 SIGNAL data0, data1, data2, data3 : STD_LOGIC_VEC TOR(31 downto 0);
 SIGNAL tackn0, tackn1, tackn2, tackn3 : STD_LOGIC ;
 SIGNAL rst, counterload : STD_LOGIC;
 SIGNAL count_enable : STD_LOGIC;
 SIGNAL data0in, data1in, data2in, data3in : STD_L OGIC_VECTOR(31 downto
0);
 SIGNAL transactionCFG : STD_LOGIC_VECTOR(31 downt o 0);
 SIGNAL widthCFG, widthCounter : STD_LOGIC_VECTOR(5 downto 0);
BEGIN
 PROCESS (curr_state)
 BEGIN
 CASE (curr_state) IS
 WHEN S_IDLE => peek_state <= "000";
 WHEN S_READ => peek_state <= "001";
 WHEN S_WRITE => peek_state <= "010";
 WHEN S_ACKWAIT => peek_state <= "011";
 WHEN S_READWAIT => peek_state <= "100";
 WHEN S_WRITEWAIT => peek_state <= "101";
 END CASE;
 END PROCESS;

 -- Assign development bus signals mappings

 -- Address1..address3 are all identical registers
 -- Four seperate registers are used as a Quartus bug work around
 PROCESS (CLK)
 BEGIN
 IF rising_edge(clk) THEN
 nib0(37 downto 32) <= address0(5 downto 0);
 nib1(37 downto 32) <= address1(5 downto 0);
 nib2(37 downto 32) <= address2(5 downto 0);
 nib3(37 downto 32) <= address3(5 downto 0);

 nib0(38) <= framen0;
 nib1(38) <= framen1;
 nib2(38) <= framen2;
 nib3(38) <= framen3;
 IF curr_state /= S_READ THEN
 nib0(31 downto 0) <= data0;
 nib1(31 downto 0) <= data1;
 nib2(31 downto 0) <= data2;
 nib3(31 downto 0) <= data3;
 ELSE
 nib0(31 downto 0) <= (others => 'Z');
 nib1(31 downto 0) <= (others => 'Z');
 nib2(31 downto 0) <= (others => 'Z');
 nib3(31 downto 0) <= (others => 'Z');
 END IF;
 END IF;
 END PROCESS;

 -- Tristate the TACKn lines
 nib0(39) <= 'Z'; nib1(39) <= 'Z';
 nib2(39) <= 'Z'; nib3(39) <= 'Z';

 nib0(40) <= nib0_resetn;
 nib1(40) <= nib1_resetn;
 nib2(40) <= nib2_resetn;
 nib3(40) <= nib3_resetn;

 nib0(49 downto 41) <= (others => '0');
 nib1(49 downto 41) <= (others => '0');
 nib2(49 downto 41) <= (others => '0');
 nib3(49 downto 41) <= (others => '0');

 -- Latch the bus signals as they come into the FP GA
 PROCESS (CLK)
 BEGIN
 IF rising_edge(clk) THEN
 tackn0 <= nib0(39);
 tackn1 <= nib1(39);
 tackn2 <= nib2(39);
 tackn3 <= nib3(39);
 data0in <= nib0(31 downto 0);
 data1in <= nib1(31 downto 0);
 data2in <= nib2(31 downto 0);
 data3in <= nib3(31 downto 0);

 128

 END IF;
 END PROCESS;

 -- Acknowledge the data from the fifo when we rea d it
 writeFIFOrdreq <= '1' when (enable = '1' and writ eFIFOempty = '0' and
 (curr_state = S_IDLE o r curr_state =
S_WRITE))
 else '0';

 -- Connect to the PCIreadFIFO
 readFIFOdata <= getDataIn(data0in, data1in, data 2in, data3in,
 address(7 downto 6));
 readFIFOwrreq <= '1' when curr_state = S_READ AND
 getTackn(tackn0, tackn1, tackn2, tackn3,addre ss(7 downto 6)) else
'0';

 -- Instantiate word counter
 counter : counter16
 PORT MAP (clk,count_enable, counterload, rst, w riteFIFOdata(23
downto 8), count);
 rst <= NOT rstn;
 counterload <= '1' when (curr_state = S_IDLE) els e '0';
 count_enable <= '1' when (curr_state = S_WRITE AN D writeFIFOempty =
'0') or
 (curr_state = S_READ AND
 getTackn(tackn0, tackn1, tackn2, tackn3,addre ss(7 downto 6))) else
'0';

 -- Setup stuff
 transactionCFG <= "0000000000000000" & writeFIFOd ata(23 downto 8);

 PROCESS(clk,rstn,enable)
 BEGIN
 IF rstn = '0' THEN
 curr_state <= S_IDLE;
 framen0 <= '1'; framen1 <= '1';
 framen2 <= '1'; framen3 <= '1';
 widthCFG <= (others => '0');
 widthcounter <= (others => '0');
 ELSIF rising_edge(clk) THEN
 IF enable = '1' THEN
 -- Default to deasserted frame
 framen0 <= '1'; framen1 <= '1';
 framen2 <= '1'; framen3 <= '1';
 CASE curr_state IS
 WHEN S_IDLE =>
 -- Constantly latch the new address and ack request
 address <= writeFIFOdata(7 downto 0);
 address0 <= writeFIFOdata(7 downto 0);
 address1 <= writeFIFOdata(7 downto 0);
 address2 <= writeFIFOdata(7 downto 0);
 address3 <= writeFIFOdata(7 downto 0);

 ackrequired <= writeFIFOdata(30);

 widthCFG <= writeFIFOdata(29 downto 24) ;
 widthcounter <= "000001";

 IF (writeFIFOempty = '0') THEN
 IF (writeFIFOdata(31) = '0') THEN
 curr_state <= S_WRITE;
 ELSE
 curr_state <= S_READWAIT;
 AssertFrame(framen0, framen1, frame n2, framen3,
 writeFIFOdata(7 downto 6));
 writeData(data0,data1,data2,data3, transactionCFG,
 writeFIFOdata(7 downto 6));
 END IF;
 END IF;
 WHEN S_READWAIT =>
 curr_state <= S_READ;
 WHEN S_WRITE =>
 IF (writeFIFOempty = '0') THEN
 widthcounter <= widthcounter + 1;
 writedata(data0,data1,data2,data3,wri teFIFOdata,
 address(7 downto 6));
 assertFrame(framen0, framen1, framen2 , framen3,
 address(7 downto 6));
 IF (widthcounter = widthCFG) THEN
 IF (ackrequired = '1') THEN
 curr_state <= S_ACKWAIT;
 ELSE
 IF count = CONV_STD_LOGIC_VECTOR(1,16) THEN
 curr_state <= S_IDLE;
 ELSE
 widthcounter <= "000001";
 END IF;
 END IF;
 END IF;
 END IF;
 WHEN S_ACKWAIT =>
 widthcounter <= "000001";
 IF getTackn(tackn0, tackn1, tackn2, tac kn3,address(7 downto
6)) THEN
 IF count = CONV_STD_LOGIC_VECTOR(0,16) THEN
 curr_state <= S_IDLE;
 ELSE -- Need to deassert frame for on e cycle
 curr_state <= S_WRITEWAIT;
 END IF;
 ELSE
 assertFrame(framen0, framen1, framen2 , framen3,
 address(7 downto 6));
 END IF;
 WHEN S_WRITEWAIT =>
 curr_state <= S_WRITE;
 WHEN S_READ =>
 IF getTackn(tackn0, tackn1, tackn2, tac kn3,address(7 downto
6)) THEN
 IF count = CONV_STD_LOGIC_VECTOR(1,16) THEN

 129

 curr_state <= S_IDLE;
 END IF;
 END IF;
 END CASE;
 END IF;
 END IF;
 END PROCESS;

END rtl;

C.5 DEVCONFIGURE .VHD

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY work;
USE work.complib.all;

ENTITY devConfigure IS
 PORT (
 enable : IN STD_LOGIC;
 -- FIFO Input Signals
 FIFOdata : IN STD_LOGIC_VECTOR(31 downto 0);
 FIFOempty : IN STD_LOGIC;
 FIFOrdreq : OUT STD_LOGIC;
 clk : IN STD_LOGIC;
 -- FPGA Configuration Outputs
 fpga0_data : OUT STD_LOGIC_VECTOR(7 downto 0);
 fpga0_dclk : OUT STD_LOGIC;
 fpga1_data : OUT STD_LOGIC_VECTOR(7 downto 0);
 fpga1_dclk : OUT STD_LOGIC;
 fpga2_data : OUT STD_LOGIC_VECTOR(7 downto 0);
 fpga2_dclk : OUT STD_LOGIC;
 fpga3_data : OUT STD_LOGIC_VECTOR(7 downto 0);
 fpga3_dclk : OUT STD_LOGIC;
 rstn : IN STD_LOGIC);
END;

ARCHITECTURE rtl OF devConfigure IS
 SIGNAL dclk : STD_LOGIC;
 SIGNAL dclkgo : STD_LOGIC;
BEGIN
 -- Using look ahead fifo so ack when we have used the data
 FIFOrdreq <= '1' WHEN (enable = '1') AND (FIFOemp ty = '0') else '0';

 PROCESS (clk,enable,FIFOempty)
 BEGIN
 IF rising_edge(clk) THEN
 IF (enable = '1') AND (FIFOempty = '0') THEN
 fpga0_data <= FIFOdata(7 downto 0);
 fpga1_data <= FIFOdata(15 downto 8);

 fpga2_data <= FIFOdata(23 downto 16);
 fpga3_data <= FIFOdata(31 downto 24);
 dclkgo <= '1';
 ELSE
 dclkgo <= '0';
 END IF;
 END IF;
 END PROCESS;

 fpga0_dclk <= dclk;
 fpga1_dclk <= dclk;
 fpga2_dclk <= dclk;
 fpga3_dclk <= dclk;

 dclk <= (NOT clk) AND dclkgo;

END rtl;

C.6 MASTERCONTROLLER .VHD

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

LIBRARY work;
USE work.complib.all;

ENTITY mastercontroller IS
 PORT (
 -- PCI Controller interface signals
 lm_req64n : BUFFER STD_LOGIC;
 lm_req32n : OUT STD_LOGIC;
 lm_adr_ackn : IN STD_LOGIC;
 lm_tsr : IN STD_LOGIC_VECTOR(9 downto 0);
 lm_dxfrn : IN STD_LOGIC;
 lm_lastn : BUFFER STD_LOGIC;
 lm_rdyn : OUT STD_LOGIC;
 l_hdat_ackn : in std_logic; -- loca l high data
acknowledge
 l_ldat_ackn : in std_logic; -- loca l low data
acknowledge
 l_adi : OUT STD_LOGIC_VECTOR(63 downto 0);
 l_adi_enable : OUT STD_LOGIC;
 l_cbeni : OUT STD_LOGIC_VECTOR(7 downto 0);
 lirqn : OUT STD_LOGIC;

 -- Control Register Interface
 control_data : IN STD_LOGIC_VECTOR(31 downto 0) ;
 control_addr : IN STD_LOGIC;
 control_we : IN STD_LOGIC;

 130

 -- Write FIFO signals
 write_FIFO_nearly_full : IN STD_LOGIC;
 write_fifo_has_space : IN STD_LOGIC;
 write_FIFO_wr64 : BUFFER STD_LOGIC;
 write_FIFO_wr32 : BUFFER STD_LOGIC;

 -- Read FIFO Signals
 read_FIFO_dataready : IN STD_LOGIC;
 read_FIFO_data : IN STD_LOGIC_VECTOR(63 downto 0);
 read_FIFO_readack : BUFFER STD_LOGIC;
 read_FIFO_has2 : IN STD_LOGIC;

 -- Debug Signal
 debug_statepeek : OUT STD_LOGIC_VECTOR(1 downto 0);
 debug_length_counter : OUT STD_LOGIC_VECTOR(15 downto 0);
 debug_delayed_read : OUT STD_LOGIC;

 fifo_overflow_error : OUT STD_LOGIC;
 local_rstn : IN STD_LOGIC;
 rstn : IN STD_LOGIC;
 clk : IN STD_LOGIC);
END;

ARCHITECTURE rtl OF mastercontroller IS
 -- State Machine Variables
 TYPE states IS (S_IDLE, S_REQ, S_ADDR, S_ACTIVE);

 SIGNAL curr_state, next_state : states;

 SIGNAL target_address : STD_LOGIC_VECTOR(31 downt o 2);
 SIGNAL read : STD_LOGIC; -- Read / Not Write
 SIGNAL pci_command : STD_LOGIC_VECTOR(3 downto 0) ;

 -- Transaction Length Counter
 SIGNAL clear_lirqn, trans_load, count_1, count_2 : BOOLEAN;
 SIGNAL trans_length_counter : STD_LOGIC_VECTOR(15 downto 0);
 SIGNAL trans_eq_0, trans_eq_1, trans_eq_2, trans_ eq_4, trans_eq_6 :
boolean;

 SIGNAL transaction_pending : BOOLEAN;
 -- PCI Controller status register bits
 SIGNAL addr_phase, data_phase, trans64, requestgn t_phase : BOOLEAN;
 SIGNAL read_from_tm4, write_to_tm4 : BOOLEAN;
 SIGNAL last_override : BOOLEAN;
 -- Fifo over/under flow counter signals
 SIGNAL disc_counter : INTEGER RANGE 0 TO 16777215 ;
 SIGNAL disc_count_enable : STD_LOGIC;
 SIGNAL disc_count_reset : STD_LOGIC;
 SIGNAL fifo_override : STD_LOGIC;
 SIGNAL delayed_read : boolean;
BEGIN
 -- Debugging Output Connections
 PROCESS(curr_state)

 BEGIN
 CASE(curr_state) IS
 WHEN S_IDLE => debug_statepeek <= "00";
 WHEN S_REQ => debug_statepeek <= "01";
 WHEN S_ADDR => debug_statepeek <= "10";
 WHEN S_ACTIVE => debug_statepeek <= "11";
 END CASE;
 END PROCESS;
 debug_length_counter <= trans_length_counter;
 debug_delayed_read <= '1' WHEN delayed_read else '0';

 -- Actual Module Code Starts Here

 -- FIFO over/under flow error catcher
 disc_count_enable <= '1' WHEN NOT transaction_pen ding AND
(trans_length_counter /= 0)
 ELSE '0';

 disc_count_reset <= '1' WHEN curr_state = S_IDLE ELSE '0';
 fifo_overflow_error <= fifo_override;

 PROCESS (clk,local_rstn)
 BEGIN
 IF (local_rstn = '0') THEN
 disc_counter <= 0;
 fifo_override <= '0';
 ELSIF rising_edge(clk) THEN
 IF disc_count_reset = '1' THEN
 disc_counter <= 0;
 ELSIF (disc_count_enable = '1') THEN
 disc_counter <= disc_counter + 1;
 END IF;

 IF (disc_counter = 16777215) THEN
 fifo_override <= '1';
 END IF;
 END IF;
 END PROCESS;

 -- Assign PCI Core signals
 lm_req64n <= '0' WHEN curr_state = S_REQ AND writ e_to_tm4 ELSE '1';
 lm_req32n <= '0' WHEN curr_state = S_REQ AND read _from_tm4 ELSE '1';

 l_adi(31 downto 0) <= target_address & "00" WHEN lm_adr_ackn = '0'
 ELSE read_FIFO_data(31 down to 0);

 l_adi(63 downto 32) <= read_FIFO_data(63 downto 3 2);

 l_adi_enable <= '1' WHEN (curr_state /= S_IDLE) E LSE '0';

 l_cbeni(3 downto 0) <= pci_command WHEN (lm_adr_a ckn = '0') ELSE
"0000";
 l_cbeni(7 downto 4) <= "0000";

 131

 -- Decode Read / Not Write into a equivalent PCI command nibble
 -- then 32bytes before disconnect

 pci_command <= "1100" WHEN write_to_tm4 ELSE "011 1";

 -- Provide easier to read names for status bits

 write_to_tm4 <= (read = '0');
 read_from_tm4 <= (read = '1');

 requestgnt_phase <= (lm_tsr(0) = '1' OR lm_tsr(1) = '1');
 addr_phase <= (lm_tsr(2) = '1');
 data_phase <= (lm_tsr(3) = '1');
 trans64 <= (lm_tsr(9) = '1');

 transaction_pending <= (trans_length_counter /= 0) AND (
 ((write_to_tm4 AND write_f ifo_has_space = '1')
OR
 (read_from_tm4 AND read_f ifo_dataready = '1'))
OR
 fifo_override = '1');

 -- Configuration register loading
 PROCESS (clk, rstn)
 BEGIN
 IF rstn = '0' THEN
 curr_state <= S_IDLE;

 ELSIF rising_edge(clk) THEN
 curr_state <= next_state;
 IF control_we = '1' THEN
 IF control_addr = '0' THEN
 target_address <= control_data(31 downto 3) & "0";
 ELSE
 read <= control_data(31);
 END IF;
 ELSIF count_1 THEN
 target_address <= target_address + 1;
 ELSIF count_2 THEN
 target_address <= target_address + 2;
 END IF;
 END IF;
 END PROCESS;
 trans_load <= (control_we = '1' and control_addr = '1');
 clear_lirqn <= (control_we = '1' and control_addr = '0');

 -- Transaction Length Counter
 PROCESS (clk, rstn)
 BEGIN
 IF rstn = '0' THEN
 trans_length_counter <= (others => '0');
 lirqn <= '1';
 ELSIF rising_edge(clk) THEN
 IF clear_lirqn THEN

 lirqn <= '1';
 ELSIF trans_load THEN
 trans_length_counter <= control_data(15 dow nto 0);
 ELSIF count_1 THEN
 trans_length_counter <= trans_length_counte r - 1;
 IF trans_eq_1 THEN
 lirqn <= '0';
 END IF;
 ELSIF count_2 THEN
 trans_length_counter <= trans_length_counte r - 2;
 IF trans_eq_2 THEN
 lirqn <= '0';
 END IF;
 END IF;
 END IF;
 END PROCESS;

 trans_eq_0 <= (trans_length_counter = 0);
 trans_eq_1 <= (trans_length_counter = 1);
 trans_eq_2 <= (trans_length_counter = 2);
 trans_eq_4 <= (trans_length_counter = 4);
 trans_eq_6 <= (trans_length_counter = 6);

 -- Note: Currently performing 32bit Master writes only
 count_1 <= (write_FIFO_wr32 = '1') OR (read_FIFO_ readack = '1');
 count_2 <= (write_FIFO_wr64 = '1');

 -- Data FIFO Transfer Logic
 write_FIFO_wr32 <= '1' WHEN write_to_tm4 AND (lm_ dxfrn = '0') AND NOT
trans64
 ELSE '0';
 write_FIFO_wr64 <= '1' WHEN write_to_tm4 AND (lm_ dxfrn = '0') AND
trans64
 ELSE '0';
 read_FIFO_readack <= '1' WHEN read_from_tm4 AND (data_phase OR
addr_phase) AND (
 ((lm_dxfrn = '0') AND ((read_fifo_has2 =
'1') OR (fifo_override = '1'))) OR
 (delayed_read AND ((r ead_fifo_has2 = '1')
or (fifo_override = '1'))) OR
 (lm_dxfrn = '0' AND t rans_eq_1)) ELSE '0';

 PROCESS (clk,rstn)
 BEGIN
 if rstn = '0' THEN
 delayed_read <= false;
 ELSIF rising_edge(clk) THEN
 IF delayed_read AND (read_fifo_has2 = '1') TH EN
 delayed_read <= false;
 ELSIf lm_dxfrn = '0' AND read_from_tm4 AND (r ead_fifo_has2 = '0')
THEN
 delayed_read <= true;
 END IF;
 END IF;

 132

 END PROCESS;

 -- Last Rdyn Override
 PROCESS(clk,rstn)
 BEGIN
 IF rstn = '0' THEN
 last_override <= FALSE;
 ELSIF rising_edge(clk) THEN
 IF lm_lastn = '0' THEN
 last_override <= TRUE;
 ELSIF NOT data_phase THEN
 last_override <= FALSE;
 END IF;
 END IF;
 END PROCESS;

 -- Local side wait/ data ready logic
 lm_rdyn <= '0' WHEN (write_to_tm4 AND curr_state = S_ACTIVE AND
 (write_FIFO_nearly_full = '0 ' OR last_override or
fifo_override = '1')) OR
 (read_from_tm4 AND
 (lm_adr_ackn = '0' OR
 (data_phase AND NOT trans_ eq_1 AND NOT
trans_eq_0 AND
 ((read_fifo_has2 = '1') O R fifo_override =
'1'))
)
)
 ELSE '1';

-- lm_rdyn <= '0' WHEN (write_to_tm4 AND curr_stat e = S_ACTIVE AND
-- (write_FIFO_nearly_full = ' 0' OR last_override
or fifo_override = '1')) OR
-- (read_from_tm4 AND
-- (curr_state = S_ACTIVE OR curr_state = S_ADDR)
AND
-- ((read_fifo_dataready = ' 1' AND readFIFOlast =
'0')
-- OR fifo_override = '1') AND
-- NOT last_override)
-- ELSE '1'; -- AND NOT trans_eq_2

 -- Local side transaction termination logic
-- last : last_gen PORT MAP
-- (lm_lastn => lm_lastn,
-- clk => clk,
-- rstn => rstn,
-- wr_rdn => read, -- Make sure this is correc t
-- lm_req64n => lm_req64n,
-- lm_dxfrn => lm_dxfrn,
-- l_hdat_ackn => l_hdat_ackn,
-- l_ldat_ackn => l_ldat_ackn,
-- lm_tsr => lm_tsr,

-- xfr_length => trans_length_counter);

 lm_lastn <= '0' WHEN (write_to_tm4 AND
 (((lm_adr_ackn = '0') AN D (trans_eq_2 OR
trans_eq_4)) OR
 (curr_state = S_ACTIVE AN D (lm_dxfrn = '0')
AND
 ((trans_eq_6 AND trans64) OR (trans_eq_4 AND
NOT trans64))
)
)
)OR
 (read_from_tm4 AND (lm_dxfrn = '0') AND
trans_eq_1)
 ELSE '1';

 -- Control Statemachine
 PROCESS(curr_state, transaction_pending, requestg nt_phase, addr_phase,
 data_phase)
 BEGIN
 CASE (curr_state) IS
 WHEN S_IDLE =>
 IF transaction_pending THEN
 next_state <= S_REQ;
 ELSE
 next_state <= S_IDLE;
 END IF;
 WHEN S_REQ =>
 IF requestgnt_phase THEN
 next_state <= S_ADDR;
 ELSE
 next_state <= S_REQ;
 END IF;
 WHEN S_ADDR =>
 IF addr_phase THEN
 next_state <= S_ACTIVE;
 ELSE
 next_state <= S_ADDR;
 END IF;
 WHEN S_ACTIVE =>
 IF NOT data_phase THEN
 next_state <= S_IDLE;
 ELSE
 next_state <= S_ACTIVE;
 END IF;
 END CASE;
 END PROCESS;

END rtl;

 133

C.7 PLL _RECONFIG_INTERFACE .VHD

-- TM4: Bridge FPGA - Reconfigurable PLLs & PCI in terface circuit
--
-- Author: Josh Fender
--
--
--
-- Description:
--
-- Instantiates both an enhanced PLL and PLL_REC ONFIG megafunction
--
-- and provides wrapper circuitry to interface w ith the PCI core
--
--
--
-- TODO:
--
-- - Finish documentation about signal ports
--
--
--

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY work;
USE work.complib.all;

ENTITY pll_reconfig_interface IS
 PORT (
 -- PLL clocks
 clk_in : IN STD_LOGIC;
 clk_out : OUT STD_LOGIC;
 -- Bus interface signals
 pci_data_in : IN STD_LOGIC_VECTOR(63 downto 0);
 pci_data_out : OUT STD_LOGIC_VECTOR(31 downto 0);
 pci_we : IN STD_LOGIC;
 pci_clk : IN STD_LOGIC;
 -- Misc signals
 locked : OUT STD_LOGIC;
 reset : IN STD_LOGIC;
 clk22 : IN STD_LOGIC);
END;

ARCHITECTURE rtl OF pll_reconfig_interface IS
 -- PLL signals
 SIGNAL scanaclr, scandata, scanclk : STD_LOGIC;
 SIGNAL c0_clk, scandataout : STD_LOGIC;
 -- PLL_reconfig signals
 SIGNAL reconfig, read_en : STD_LOGIC;

 SIGNAL write_en, busy : STD_LOGIC;
 SIGNAL counter_type : STD_LOGIC_VECTOR (3 downto 0);
 SIGNAL data_in, data_out : STD_LOGIC_VECTOR (8 do wnto 0);
 SIGNAL counter_param : STD_LOGIC_VECTOR (2 downto 0);
 SIGNAL command_wait : STD_LOGIC_VECTOR(1 downto 0);
BEGIN
 PLL : enhancedpll
 PORT MAP (clk_in, scanaclr, scandata, scanclk, c0_clk,
 scandataout, locked, clk_out);

 reconfig_inst : pll_reconfig
 PORT MAP (reconfig, counter_type, scandataout, read_en,
 reset, data_in, clk22, counter_param, write_en,
 scanclk, scanaclr, busy, data_out, sc andata);

 -- Combine the necessary signals into a single PC I read
 -- only register
 pci_data_out(8 downto 0) <= data_out;
 pci_data_out(30 downto 9) <= (others => '0');
 pci_data_out(31) <= busy;

 -- Extract the control signals from a PCI write r egister
 -- request and register results. The registering is redundant
 -- but helps to meet timing
 PROCESS (pci_clk)
 BEGIN
 IF rising_edge(pci_clk) THEN
 IF (pci_we = '1') THEN
 reconfig <= pci_data_in(0);
 read_en <= pci_data_in(1);
 write_en <= pci_data_in(2);
 counter_type <= pci_data_in(7 downto 4);
 data_in <= pci_data_in(16 downto 8);
 counter_param <= pci_data_in(26 downto 24);
 command_wait <= "11";
 ELSIF (command_wait = "00") THEN
 -- We need to clear the enable signals once the configuration
 -- circuitry sees it to insure the command only executes once
 read_en <= '0';
 write_en <= '0';
 reconfig <= '0';
 ELSE
 command_wait(1) <= command_wait(0);
 command_wait(0) <= '0';
 END IF;
 END IF;
 END PROCESS;

END rtl;

 134

C.8 READFIFO .VHD

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY work;
USE work.complib.all;

ENTITY readfifo IS
 PORT (
 -- Input side signals (nib domain)
 dataIn : IN STD_LOGIC_VECTOR(31 downto 0);
 wrreq : IN STD_LOGIC;
 nibclk : IN STD_LOGIC;
 -- Output side signals (PCI domain)
 get32bits : IN STD_LOGIC;
 get64bits : IN STD_LOGIC;
 data32ready : OUT STD_LOGIC;
 data64ready : OUT STD_LOGIC;
 nearlyempty : OUT STD_LOGIC;
 dataOut : OUT STD_LOGIC_VECTOR(63 downto 0);
 fifolevel : OUT STD_LOGIC_VECTOR(12 downto 0);
 readFIFOhas2 : OUT STD_LOGIC;

 pciclk2x : IN STD_LOGIC;
 pciclk : IN STD_LOGIC;
 rstn : IN STD_LOGIC);
END;

ARCHITECTURE rtl OF readfifo IS
 -- FIFO Signals
 SIGNAL fifo_data_out : STD_LOGIC_VECTOR(31 downto 0);
 SIGNAL rdreq, rdempty, wrfull : STD_LOGIC;
 SIGNAL aclr : STD_LOGIC;
 -- State Signals
 SIGNAL data_lo_valid, data_hi_valid : STD_LOGIC;
 SIGNAL pause : STD_LOGIC;
 -- Data signals
 SIGNAL data_lo, data_hi : STD_LOGIC_VECTOR(31 dow nto 0);
 SIGNAL l_fifolevel : STD_LOGIC_VECTOR(12 downto 0);
BEGIN
 process(pciclk)
 BEGIN
 IF rising_edge(pciclk) THEN
 fifolevel <= l_fifolevel;
 END IF;
 END PROCESS;

 -- Instantiate fifo
 fifo : lpm_read_fifo
 PORT MAP(datain, wrreq, rdreq, pciclk, nibclk, aclr,

 fifo_data_out, rdempty, l_fifolevel,w rfull);
 aclr <= NOT rstn;

 nearlyempty <= rdempty;
-- rdreq <= '1' WHEN (rdempty = '0') AND (get32bit s = '1') else '0';
 rdreq <= '1' WHEN (get32bits = '1') else '0';
 readFIFOhas2 <= '1' when l_fifolevel /= "00000000 00001" AND
 l_fifolevel /= "00000000 00000" AND
 rdempty = '0' ELSE '0';

 dataout(63 downto 32) <= fifo_data_out;
 dataout(31 downto 0) <= fifo_data_out;
 data32ready <= NOT rdempty;
 data64ready <= '0';

END rtl;

C.9 TARGECONTROLLER .VHD

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY work;
USE work.complib.all;

ENTITY targetcontroller IS
 PORT (
 -- Altera PCI Core Local Side Target Signals
 lt_abortn : OUT STD_LOGIC;
 lt_discn : OUT STD_LOGIC;
 lt_rdyn : OUT STD_LOGIC;
 lt_framen : IN STD_LOGIC;
 lt_ackn : IN STD_LOGIC;
 lt_dxfrn : IN STD_LOGIC;
 lt_tsr : IN STD_LOGIC_VECTOR(11 downto 0);

 -- Altera PCI Core Local Side Addr/Data Signals
 l_adi : OUT STD_LOGIC_VECTOR(63 downto 0);
 l_adro : IN STD_LOGIC_VECTOR(63 downto 0);
 l_dato : IN STD_LOGIC_VECTOR(63 downto 0);
 l_beno : IN STD_LOGIC_VECTOR(7 downto 0);
 l_cmdo : IN STD_LOGIC_VECTOR(3 downto 0);
 l_ldat_ackn : IN STD_LOGIC;
 l_hdat_ackn : IN STD_LOGIC;

 -- Control register interface
 reg_data_in : IN STD_LOGIC_VECTOR(31 downto 0);
 reg_data_out : OUT STD_LOGIC_VECTOR(31 downto 0);
 reg_data_addr : OUT STD_LOGIC_VECTOR(7 downto 0);
 reg_read_ack : OUT STD_LOGIC;
 reg_wrreq : OUT STD_LOGIC;

 135

 -- Bar1 FIFO interface signals
 writeFIFOdata : OUT STD_LOGIC_VECTOR(63 downto 0);
 writeFIFOlow : OUT STD_LOGIC;
 writeFIFOhigh : OUT STD_LOGIC;
 writeFIFOnearlyfull : IN STD_LOGIC;

 readFIFOdata : IN STD_LOGIC_VECTOR(63 downto 0) ;
 readFIFO_get32 : OUT STD_LOGIC;
 readFIFO_get64 : OUT STD_LOGIC;
 readFIFOnearlyempty : IN STD_LOGIC;
 readFIFO_data32ready : IN STD_LOGIC;
 readFIFO_data64ready : IN STD_LOGIC;

 -- Other signals
 fifo_overflow_error : OUT STD_LOGIC;
 local_rstn : IN STD_LOGIC;
 rstn : IN STD_LOGIC;
 clock : IN STD_LOGIC);
END;

ARCHITECTURE rtl OF targetcontroller IS
 TYPE states IS (S_IDLE, S_ASSERTREADY,S_ACTIVE, S _DISCONNECT);

 SIGNAL curr_state, next_state : states;
 SIGNAL memread, memwrite, bar0, bar1, burst,tran s64 : STD_LOGIC;
 SIGNAL bar0write,bar0read : STD_LOGIC;
 SIGNAL bar1write,bar1read : STD_LOGIC;
 SIGNAL readFIFOdataready : STD_LOGIC;
 SIGNAL highTransfer : STD_LOGIC;
 SIGNAL temp : STD_LOGIC_VECTOR(63 downto 0);
 -- Fifo over/under flow counter signals
 SIGNAL disc_counter : INTEGER RANGE 0 TO 16777215 ;
 SIGNAL disc_count_enable : STD_LOGIC;
 SIGNAL disc_count_reset : STD_LOGIC;
 SIGNAL fifo_override : STD_LOGIC;
BEGIN
 -- Setup the BAR1 fifo writes
 writeFIFOdata <= l_dato(63 downto 0);
 writeFIFOlow <= bar1write AND (NOT l_beno(0));
 writeFIFOhigh <= bar1write AND trans64 AND (NOT l _beno(4));

 -- Setup the register write/read signals
 highTransfer <= (NOT l_beno(4) AND trans64) OR l_ adro(2);

 reg_data_out <= l_dato(63 downto 32) when highTra nsfer = '1' else
 l_dato(31 downto 0);
 reg_data_addr <= l_adro(9 downto 3) & (highTransf er or l_adro(2));
 reg_wrreq <= bar0write;

 -- Setup the read connections
 PROCESS (Clock)
 BEGIN
 IF rising_edge(clock) THEN

 IF bar0 = '1' THEN
 l_adi(31 downto 0) <= reg_data_in;
 l_adi(63 downto 32) <= reg_data_in;
 ELSE -- IF bar1 = '1' THEN
 l_adi <= readFIFOdata;
 END IF;

 -- Setup the register read ack signal
 reg_read_ack <= bar0read;
 readFIFO_get32 <= bar1read AND (NOT l_beno(0));
 readFIFO_get64 <= bar1read AND trans64 AND (N OT l_beno(4));
 END IF;
 END PROCESS;

 -- Command decoder
 memread <= '1' when (l_cmdo = "0110") or (l_cmdo = "1100") or (l_cmdo
= "1110") else '0';
 memwrite <= '1' when (l_cmdo = "0111") or (l_cmdo = "1111") else '0';
 burst <= lt_tsr(9); -- Need to know so we can is sue a disconnect
 trans64 <= lt_tsr(7);

 -- Decode addressing phase
 bar0 <= '1' when (lt_tsr(0) = '1') and (lt_framen = '0') else '0';
 bar1 <= '1' when (lt_tsr(1) = '1') and (lt_framen = '0') else '0';

 -- Drive local side control signals
 lt_rdyn <= '0' WHEN (curr_state = S_ACTIVE OR
 curr_state = S_ASSERTREADY) ELSE '1';
 lt_abortn <= '1';

 -- Backend interface signals
 bar0write <= bar0 AND memwrite AND NOT lt_dxfrn;
 bar0read <= bar0 AND memread AND NOT lt_dxfrn;
 bar1write <= bar1 AND memwrite AND NOT lt_dxfrn;
 bar1read <= bar1 AND memread AND NOT lt_dxfrn;

 -- FIFO over/under flow error catcher
 disc_count_enable <= '1' WHEN curr_state = S_DISC ONNECT ELSE '0';
 disc_count_reset <= '1' WHEN curr_state = S_ASSE RTREADY ELSE '0';
 fifo_overflow_error <= fifo_override;

 PROCESS (clock,local_rstn)
 BEGIN
 IF (local_rstn = '0') THEN
 disc_counter <= 0;
 fifo_override <= '0';
 ELSIF rising_edge(clock) THEN
 IF disc_count_reset = '1' THEN
 disc_counter <= 0;
 ELSIF (disc_count_enable = '1') THEN
 disc_counter <= disc_counter + 1;
 END IF;

 IF (disc_counter = 16777215) THEN

 136

 fifo_override <= '1';
 END IF;
 END IF;
 END PROCESS;

 -- BAR0 Statemachine
 PROCESS (clock,rstn)
 BEGIN
 IF (rstn = '0') THEN
 curr_state <= S_IDLE;
 ELSIF rising_edge(clock) THEN
 curr_state <= next_state;
 END IF;
 END PROCESS;

 -- Some simplification signals
 readFIFOdataready <= readFIFO_data32ready AND (re adFIFO_data64ready OR
NOT trans64);

 PROCESS (curr_state, lt_ackn, burst, bar0,bar1,me mread,
 readfifodataready,memwrite,writefifonear lyfull,
 readfifonearlyempty, lt_framen, fifo_ove rride)
 BEGIN
 lt_discn <= '1';
 CASE (curr_state) IS
 WHEN S_IDLE =>
 -- Check if we have fifo data/space for a b ar1 access
 IF (bar1 = '1') AND
 ((memread = '1' AND readFIFOdataready = '0') OR
 (memwrite = '1' AND writeFIFOnearlyful l = '1')) AND
 (fifo_override = '0') THEN
 -- Issue a PCI retry
 lt_discn <= '0';
 next_state <= S_DISCONNECT;
 ELSIF (bar0 = '1' OR bar1 = '1') THEN
 next_state <= S_ASSERTREADY;
 ELSE
 next_state <= S_IDLE;
 END IF;
 WHEN S_ASSERTREADY =>
 IF (bar0 = '1') AND (burst = '1') THEN
 next_state <= S_DISCONNECT;
 lt_discn <= '0';
 ELSE
 next_state <= S_ACTIVE;
 END IF;
 WHEN S_ACTIVE =>
 IF (bar1 = '1') AND burst = '1' and
 ((memread = '1' AND readFIFOnearlyempty = '1') OR
 (memwrite = '1' AND writeFIFOnearlyfull = '1')) AND
 (fifo_override = '0') THEN
 next_state <= S_DISCONNECT;
 lt_discn <= '0';
 ELSIF (lt_framen = '1') THEN

 next_state <= S_IDLE;
 ELSE
 next_state <= S_ACTIVE;
 END IF;
 WHEN S_DISCONNECT =>
 IF (lt_framen = '1') THEN
 next_state <= S_IDLE;
 ELSE
 next_state <= S_DISCONNECT;
 END IF;
 END CASE;
 END PROCESS;

END rtl;

C.10 TEMPMC _INTERFACE .VHD

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY work;
USE work.complib.all;

ENTITY tempmc_interface IS
 PORT (
 -- PCI interface signals
 pci_data_in : IN STD_LOGIC_VECTOR(31 downto 0);
 pci_data_out : OUT STD_LOGIC_VECTOR(31 downto 0);
 pci_we : STD_LOGIC;
 -- Temp Monitors Signals
 smb_clk : INOUT STD_LOGIC;
 smb_data : INOUT STD_LOGIC;
 smb_alertn : IN STD_LOGIC;

 clk : IN STD_LOGIC;
 rstn : IN STD_LOGIC);
END tempmc_interface;

ARCHITECTURE rtl OF tempmc_interface IS
 SIGNAL command, writedata, readdata : std_logic_v ector(7 downto 0);
 SIGNAL rd_req, rd_ack, wr_req, wr_ack : STD_LOGIC ;
 SIGNAL clr_alert_req, clr_alert_ack : STD_LOGIC;
 SIGNAL chip_sel : STD_LOGIC;
BEGIN
 tempmc_inst : tempmc
 PORT MAP(rstn, smb_clk, smb_data, command, re addata, writedata,
rd_req,
 rd_ack, wr_req, wr_ack, clr_alert_re q, clr_alert_ack,
 clk, chip_sel, smb_alertn);
 -- Combine outputs to pci_data_out

 137

 pci_data_out(7 downto 0) <= readdata;
 pci_data_out(8) <= rd_ack;
 pci_data_out(9) <= wr_ack;
 pci_data_out(10) <= clr_alert_ack;
 pci_data_out(31 downto 11) <= (others => '0');

 -- Process the data writes
 PROCESS (clk)
 BEGIN
 IF rising_edge(clk) THEN
 IF pci_we = '1' THEN
 command <= pci_data_in(7 downto 0);
 writedata <= pci_data_in(15 downto 8);
 rd_req <= pci_data_in(16);
 wr_req <= pci_data_in(17);
 clr_alert_req <= pci_data_in(18);
 chip_sel <= pci_data_in(31);
 END IF;
 END IF;
 END PROCESS;
END rtl;

C.11 WRITEFIFO .VHD

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY work;
USE work.complib.all;

ENTITY writefifo IS
 PORT (
 -- Output side signals (nib domain)
 dataout : OUT STD_LOGIC_VECTOR(31 downto 0);
 rdreq : IN STD_LOGIC;
 rdempty : OUT STD_LOGIC;
 nibclk : IN STD_LOGIC;
 -- Input side signals (PCI domain)
 wrnearlyfull : OUT STD_LOGIC;
 write_fifo_has_space : OUT STD_LOGIC;
 datain : IN STD_LOGIC_VECTOR(63 downto 0);
 writehigh : IN STD_LOGIC;
 writelow : IN STD_LOGIC;
 pciclk : IN STD_LOGIC;
 pciclk2x : IN STD_LOGIC;
 rstn : IN STD_LOGIC;
 wrused : BUFFER STD_LOGIC_VECTOR(12 downto 0);
 -- DEBUG Signals
 peakwritelowbuffer : OUT STD_LOGIC;
 peakwritehighbuffer : OUT STD_LOGIC;
 peakwritereq : OUT STD_LOGIC);

END;

ARCHITECTURE rtl OF writefifo IS
 -- Fifo signals
 SIGNAL fifo_data_in : std_logic_vector(31 downto 0);
 SIGNAL wrreq, aclr : std_logic;
 -- Other signals
 SIGNAL databuffer : STD_LOGIC_VECTOR(63 downto 0) ;
 SIGNAL writehighbuffer : STD_LOGIC;
 SIGNAL writelowbuffer : STD_LOGIC;
BEGIN
 peakwritelowbuffer <= writelowbuffer;
 peakwritehighbuffer <= writehighbuffer;
 peakwritereq <= wrreq;

 -- Instantiate fifo
 fifo : lpm_write_fifo
 PORT MAP(fifo_data_in, wrreq, rdreq, nibclk, p ciclk2x, aclr,
dataout,
 rdempty, wrused);
 aclr <= NOT rstn;

 -- FIFO control signals
-- fifo_data_in <= databuffer(31 downto 0) WHEN (w ritelowbuffer = '1')
ELSE
-- databuffer(63 downto 32);
 fifo_data_in <= databuffer(31 downto 0) WHEN (pci clk = '1') ELSE
 databuffer(63 downto 32);

 write_fifo_has_space <= '1' when wrused(12) = '0' else '0';

 wrreq <= '1' WHEN (writelowbuffer = '1') OR (writ ehighbuffer = '1' AND
pciclk = '0') ELSE '0';
 wrnearlyfull <= '1' WHEN (wrused(12 downto 2) = " 11111111111") else
'0';

 -- Buffer the input signal using the slow clock
 PROCESS(pciclk)
 BEGIN
 IF rising_edge(pciclk) THEN
 databuffer <= datain;
 END IF;
 END PROCESS;

 PROCESS(pciclk2x,rstn)
 BEGIN
 IF (rstn = '0') THEN
 writelowbuffer <= '0';
 writehighbuffer <= '0';
 ELSIF rising_edge(pciclk2x) THEN
 IF (writelowbuffer = '1') AND (pciclk = '1') THEN
 writelowbuffer <= '0';
 ELSIF pciclk = '0' THEN
 writelowbuffer <= writelow;

 138

 writehighbuffer <= writehigh;
 END IF;

 END IF;
 END PROCESS;

END rtl;

 139

D DEVELOPMENT BUS VHDL C ODE

D.1 DEVREAD .VHD

-- TM4: Development Bus Parameterized Bus Abstract ion Module --
-- Author: Gary Pong / Josh Fender --
-- --
-- Command: Direct Read (no handshake) --
-- --
-- Description: --
-- Provides a parameterized width register on a development FPGA --
-- that user circuits can use as a handshake fre e output --
-- --
-- User Signals: --
-- data : std_logic_vector(dataWidth - 1 downto 0) --
-- - parameterized width register's output --
-- --
-- Module Parameters: --
-- dataWidth Width, in bits, of desired regi ster --
-- readCycles Number of 32bit development bus transactions --
-- necessary for a dataWidth read --
-- = Ceiling(dataWidth/32) --
-- readPow2 A flag indicated if readCycles i s a power of 2 --
-- - 1 if power of 2 --
-- - 0 if not a power of 2 --
-- portAddr An 6 bit std_logic_vector that indicates the --
-- address of the abstracted regis ter port --
-- --
-- Bus Protocol --
-- The direct read transaction consists of [read Cycles] different --
-- 32bit read cycles. Reads are ordered from LS B to MSB. The bus --
-- master drives the address lines and asserts t he FRAMEn signal for --
-- one cycle. After a variable number of idle b us cycles, possibly --
-- zero, the target device assert TACKn, latches the data input port --
-- into an internal buffer and transmits the val ues 32 bits at a time --
-- across the development bus. --

LIBRARY ieee;

USE ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

ENTITY DevRead IS
 GENERIC (
 dataWidth : natural;
 readCycles : natural; -- = CEIL(Datawidth/32)
 readPow2 : natural; -- = 1 if readCycles i n a power of 2
 portAddr : natural
);
 PORT (
 -- Development Bus Signals
 resetn : in std_logic;
 address : in std_logic_vector(5 downto 0);
 datain : in std_logic_vector(31 downto 0);
 dataout : out std_logic_vector(31 downto 0);
 oe : out std_logic;
 framen : in std_logic;
 tackn : out std_logic;
 devclk : in std_logic;
 -- User interface signals
 data : in std_logic_vector(datawidth - 1 downt o 0)
);
END;

ARCHITECTURE rtl of DevRead IS
 SIGNAL databuffer : std_logic_vector((readCycles -1)*32 downto 0);
 SIGNAL readcount : natural range 0 to readCycles- 1;
 SIGNAL readEn : std_logic;
BEGIN
 -- Control Logic
 readEn <= '1' WHEN (framen = '0') AND (address = portaddr) ELSE '0';

 PROCESS (resetn,devclk,readEn)
 BEGIN
 IF (resetn = '0') THEN
 readcount <= 0;
 databuffer <= (others => '0');
 tackn <= '1';
 oe <= '0';

 140

 dataout <= (others => '0');
 ELSIF (rising_edge(devclk)) THEN
 IF (readEn = '1' or readcount /= 0) THEN
 tackn <= '0';
 oe <= '1';

 -- Handle data transmission and buffering
 IF (readcount = 0) THEN
 IF (readCycles > 1) THEN
 -- if multiple cycles required, buffer data
 databuffer(datawidth - 1 - 32 downto 0) <= data(datawidth - 1
downto 32);
 dataout <= data(31 downto 0);
 ELSE
 -- directly output all data
 dataout(datawidth - 1 downto 0) <= data ;
 END IF;
 ELSE
 -- map databuffer contents to dataout, 32 bits at a time
 readloop : FOR k IN 1 TO readCycles-1 LOO P
 IF (readcount = k) THEN
 dataout <= databuffer(k*32-1 downto (k-1)*32);
 END IF;
 END LOOP readloop;
 END IF;

 -- Update the read cycle counters
 IF (readcount = readCycles-1) THEN
 -- If readCycles is power of 2 the counte r will auto wrap
 IF (readPow2 = 1) THEN
 readcount <= readcount + 1;
 ELSE
 readcount <= 0;
 END IF;
 ELSE
 readcount <= readcount + 1;
 END IF;
 ELSE
 tackn <= '1';
 oe <= '0';
 dataout <= (others => '0');
 END IF;
 END IF;
 END PROCESS;

END rtl;

D.2 DEVREADBURST.VHD

-- TM4: Development Bus Parameterized Bus Abstract ion Module --
-- Author: Gary Pong / Josh Fender --

-- --
-- Command: Direct Read (with handshake) --
-- --
-- Description: --
-- Provides a parameterized width port on a deve lopment FPGA --
-- that user circuits can use as an output with flow control. --
-- --
-- User Signals: --
-- data : std_logic_vector(dataWidth - 1 downto 0); --
-- - parameterized width register's output --
-- --
-- Module Parameters: --
-- dataWidth Width, in bits, of desired regis ter --
-- readCycles Number of 32bit development bus transactions --
-- necessary for a dataWidth write --
-- = Ceiling(dataWidth/32) --
-- readPow2 A flag indicated if readCycles i s a power of 2 --
-- - 1 if power of 2 --
-- - 0 if not a power of 2 --
-- portAddr An 6 bit std_logic_vector that indicates the --
-- address of the abstracted regis ter port --
-- --
-- Bus Protocol --
-- The direct read transaction consists of [read Cycles] different --
-- 32bit read cycles. Reads are ordered from LS B to MSB. The --
-- direct read transaction continuously --

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY DevReadBurst IS
 GENERIC (
 dataWidth : natural := 64;
 readCycles : natural := 2; -- = CEIL(Datawid th/32)
 readPow2 : natural := 1; -- = 1 if readCyc les in a power of 2
 portAddr : natural := 0
);
 PORT (
 -- Development Bus Signals
 resetn : in std_logic;
 address : in std_logic_vector(5 downto 0);
 datain : in std_logic_vector(31 downto 0);
 dataout : out std_logic_vector(31 downto 0);
 oe : out std_logic;
 framen : in std_logic;
 tackn : out std_logic;
 devclk : in std_logic;
 -- User interface signals
 data : in std_logic_vector(datawidth - 1 downt o 0);
 dataReq : out std_logic;
 dataReady : in std_logic
);

 141

END;

ARCHITECTURE rtl of DevReadBurst IS
 PROCEDURE BufferData(SIGNAL data : IN std_logic_v ector(datawidth - 1 downto
0);
 SIGNAL readcount : INOUT nat ural;
 SIGNAL dataout : OUT std_log ic_vector(31 downto 0);
 SIGNAL databuffer : OUT std_ logic_vector((readCycles-
1)*32 downto 0)) IS
 BEGIN
 IF readCycles > 1 THEN
 -- Need to buffer a multicycle transfer
 databuffer(datawidth - 1 - 32 downto 0) <= da ta(datawidth - 1 downto
32);
 dataout <= data(31 downto 0);
 readcount <= 1;
 ELSE
 dataout(datawidth - 1 downto 0) <= data;
 databuffer(0) <= '-';
 readcount <= 0;
 END IF;
 END BufferData;

 PROCEDURE SendData(SIGNAL databuffer : IN std_lo gic_vector((readCycles-
1)*32 downto 0);
 SIGNAL readcount : INOUT natu ral;
 SIGNAL dataout : OUT std_logi c_vector(31 downto 0)) IS
 BEGIN
 SendLoop : FOR k IN 1 TO readCycles-1 LOOP
 IF (readcount = k) THEN
 dataout <= databuffer(k*32-1 downto (k-1)*3 2);
 END IF;
 END LOOP SendLoop;

 IF readcount = (readCycles - 1) THEN
 -- We need to reset the counter to zero
 IF (ReadPow2 = 1) THEN
 readcount <= readcount+1;
 ELSE
 readcount <= 0;
 END IF;
 ELSE
 readcount <= readcount+1;
 END IF;

 END SendData;

 TYPE states IS (S_IDLE, S_FRAME, S_HANDSHAKEWAIT, S_TRANSFER);

 SIGNAL curr_state : states;

 SIGNAL framecycle : BOOLEAN;
 SIGNAL cyclelength : STD_LOGIC_VECTOR(15 downto 0);
 SIGNAL databuffer : std_logic_vector((readCycles -1)*32 downto 0);

 SIGNAL readcount : natural range 0 to readCycles- 1;
BEGIN
 framecycle <= (framen = '0') AND (address = porta ddr);

 PROCESS (resetn,devclk)
 BEGIN
 IF (resetn = '0') THEN
 curr_state <= S_IDLE;
 cyclelength <= (others => '0');
 dataReq <= '0';
 oe <= '0';
 tackn <= '1';
 ELSIF (rising_edge(devclk)) THEN
 oe <= '0';
 tackn <= '1';
 dataout <= (others => '0');
 CASE (curr_state) IS
 WHEN S_IDLE =>
 IF framecycle THEN
 IF dataReady = '0' THEN
 curr_state <= S_FRAME;
 cyclelength <= datain(15 downto 0);
 ELSE
 cyclelength <= datain(15 downto 0) -
CONV_STD_LOGIC_VECTOR(1,16);
 dataReq <= '1';
 -- Perform transfer
 oe <= '1';
 tackn <= '0';
 BufferData(data,readcount,dataout,dat abuffer);
 IF readCycles > 1 THEN
 curr_state <= S_TRANSFER;
 ELSE
 curr_state <= S_HANDSHAKEWAIT;
 END IF;
 END IF;
 END IF;
 WHEN S_FRAME =>
 IF dataReady = '1' THEN
 dataReq <= '1';
 cyclelength <= cyclelength - 1;
 -- Perform transfer
 oe <= '1';
 tackn <= '0';
 BufferData(data,readcount,dataout,datab uffer);
 IF readCycles > 1 THEN
 curr_state <= S_TRANSFER;
 ELSE
 curr_state <= S_HANDSHAKEWAIT;
 END IF;
 END IF;
 WHEN S_TRANSFER =>
 oe <= '1';
 tackn <= '0';

 142

 cyclelength <= cyclelength - 1;
 SendData(databuffer,readcount,dataout);
 IF readcount = (readCycles - 1)THEN
 -- We are at the end of a transfer
 IF dataReady = '1' THEN
 curr_state <= S_HANDSHAKEWAIT;
 ELSE
 dataReq <= '0';
 IF cyclelength = CONV_STD_LOGIC_VECTO R(0,16) THEN
 curr_state <= S_IDLE;
 ELSE
 curr_state <= S_FRAME;
 END IF;
 END IF;
 END IF;
 WHEN S_HANDSHAKEWAIT =>
 dataReq <= dataReady;
 IF dataReady = '0' THEN
 IF cyclelength = CONV_STD_LOGIC_VECTOR(0,16) THEN
 curr_state <= S_IDLE;
 ELSE
 curr_state <= S_FRAME;
 END IF;
 END IF;
 END CASE;
 END IF;
 END PROCESS;

END rtl;

D.3 DEVWRITE .VHD

-- TM4: Development Bus Parameterized Bus Abstract ion Module --
-- Author: Josh Fender --
-- --
-- Command: Direct Write (no handshake) --
-- --
-- Description: --
-- Provides a parameterized width register on a development FPGA --
-- that user circuits can use as a handshake fre e input. --
-- --
-- User Signals: --
-- data : out std_logic_vector(dataWidth - 1 do wnto 0); --
-- - parameterized width register's output --
-- dataNew : out std_logic; --
-- - Asserted by module for one cycle at the same time new data --
-- is available on the data output lines --
-- --
-- Module Parameters: --
-- dataWidth Width, in bits, of desired regi ster --
-- writeCycles Number of 32bit development bus transactions --

-- necessary for a dataWidth write --
-- = Ceiling(dataWidth/32) --
-- writePow2 A flag indicated if writeCycles is a power of 2 --
-- - 1 if power of 2 --
-- - 0 if not a power of 2 --
-- portAddr An 6 bit natural that indicates the --
-- address of the abstracted regis ter port --
-- --
-- Bus Protocol --
-- The direct write transaction consists of [wri teCycles] different --
-- 32bit write cycles. Writes are ordered from LSB to MSB. The --
-- direct write transaction accepts any number o f idle bus states --
-- between different write cycles in a multiwrit e transaction. The --
-- abstract port register is only updated when a ll [writeCycles] --
-- write cycles have been completed. --
-- --
-- A single write cycle consists of the bridge c hip driving the --
-- address and data lines as well as asserting t he framen signal for --
-- one cycle. --
-- --
-- Waveform --
-- CLOCK ____|````|____|````|____|````|____| ````| --
-- ADDRESS -[Address]--1--[Address]--- --
-- FRAMEn `|_________|`````|_________________ _|``` --
-- DATA -[Data LSB]------[Data][Data]--- --
-- TACKn ``````````````````````````````````` ````` --
-- --
-- Notes: 1 There can be any number of bus idle states between --
-- different 32bit write cycles. An i dle state consists --
-- of a bus cycle where FRAMEn is not asserted. --

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY DevWrite IS
 GENERIC (
 dataWidth : natural;
 writeCycles : natural; -- = CEIL(Datawidth/3 2)
 writePow2 : natural; -- = 1 if writecycles in a power of 2
 portAddr : natural);
 PORT (
 -- Development Bus Signals
 resetn : in std_logic;
 address : in std_logic_vector(5 downto 0);
 datain : in std_logic_vector(31 downto 0);
 dataout : out std_logic_vector(31 downto 0);
 oe : out std_logic;
 framen : in std_logic;
 tackn : out std_logic;
 devclk : in std_logic;
 -- User interface signals

 143

 data : out std_logic_vector(datawidth - 1 down to 0);
 dataNew : out std_logic);
END;

ARCHITECTURE rtl of DevWrite IS
 -- Note: databuffer made one too large to handle case where no data
 -- buffer is required (ie single cycle tran sactions)
 SIGNAL databuffer : std_logic_vector((writecycles -1)*32 downto 0);
 SIGNAL writecount : natural range 0 to writecycle s-1;
 SIGNAL writeEn : std_logic;
BEGIN
 -- Set Dev Bus outputs
 tackn <= '1'; oe <= '0'; dataout <= (others => '0');
 -- Control Logic
 writeEn <= '1' WHEN (framen = '0') AND (address = portaddr) ELSE '0';

 PROCESS (resetn,devclk,writeEn)
 BEGIN
 IF (resetn = '0') THEN
 databuffer <= (others => '0');
 writecount <= 0; data <= (others => '0');
 dataNew <= '0';
 ELSIF (rising_edge(devclk)) THEN
 dataNew <= '0';
 IF (writeEn = '1') THEN
 -- If multicycle write then buffer the init ial cycles data
 IF (writecycles > 1) THEN
 writeloop : FOR k IN 0 TO writecycles-2 L OOP
 IF (writecount = k) THEN
 databuffer((k+1)*32-1 downto k*32) <= datain;
 END IF;
 END LOOP writeloop;
 END IF;

 -- If this is the last cycle of write updat e data output
 -- with buffered data and current bus trans action data
 IF (writecount = writecycles-1) THEN
 dataNew <= '1';
 data(datawidth-1 downto (writecycles-1)*3 2) <=
 datain(datawidth - (writecycles-1)* 32-1 downto 0);
 IF (writecycles > 1) THEN
 data((writecycles-1)*32-1 downto 0) <=
 databuffer((writecycles-1)*32-1 dow nto 0);
 END IF;

 -- If writecycles is power of 2 the count er will auto wrap
 IF (writePow2 = 1) THEN
 writecount <= writecount + 1;
 ELSE
 writecount <= 0;
 END IF;
 ELSE
 writecount <= writecount + 1;
 END IF;

 END IF;
 END IF;
 END PROCESS;

END rtl;

D.4 DEVWRITEACK .VHD

-- TM4: Development Bus Parameterized Bus Abstract ion Module --
-- Author: Josh Fender --
-- --
-- Command: Acked Write (with dataNew output) --
-- --
-- Description: --
-- Provides a parameterized width register on a development FPGA --
-- that user circuits can use as a flow controll ed input port --
-- --
-- User Signals: --
-- data : out std_logic_vector(dataWidth - 1 do wnto 0); --
-- - parameterized width register's output --
-- dataReq : in std_logic; --
-- - Asserted by user when they want new dat a --
-- dataNew : out std_logic; --
-- - Asserted by module when data is valid a nd is held asserted --
-- until the user deasserts dataReq --
-- --
-- Module Parameters: --
-- dataWidth Width, in bits, of desired regi ster --
-- writeCycles Number of 32bit development bus transactions --
-- necessary for a dataWidth write --
-- = Ceiling(dataWidth/32) --
-- writePow2 Unused legacy parameter --
-- portAddr An 6 bit std_logic_vector that indicates the --
-- address of the abstracted regis ter port --
-- --
-- Bus Protocol --
-- The acked write transaction consists of [writ eCycles] different --
-- 32bit write cycles followed by an acknowledge ment cycle. Writes --
-- are ordered from LSB to MSB. The acked write transaction accepts --
-- any number of idle bus states between differe nt write cycles in --
-- a multiwrite transaction. The abstract port register is only --
-- updated when all [writeCycles] write cycles h ave been completed --
-- and the user circuit has asserted dataReq. --
-- --
-- A single write cycle consists of the bridge c hip driving the --
-- address and data lines as well as asserting t he framen signal for --
-- one cycle. --
-- --
-- An acknowledgement cycle must follow, without any idle cycles, --
-- immediately after a write cycle. The cycle c onsists of the master --
-- device holding the target address, write data and continuing to --

 144

-- assert frame until it detects a target acknow ledgement. The --
-- master will then deassert frame for one cycle before continuing --
-- with further transactions. --
-- --
-- Waveform --
-- CLOCK ____|````|____|````|____|````|____| ````|____|~~~~| --
-- ADDRESS -[Address]--1--[Address]-------- --
-- FRAMEn `|_________|`````|_________________ ______|```````` --
-- DATA -[Data LSB]------[Data MSB]-------- --
-- TACKn `````````````````````````````|_____ ___|``````````` --
-- --
-- Notes: 1 There can be any number of bus idle states between --
-- different 32bit write cycles. An i dle state consists --
-- of a bus cycle where FRAMEn is not asserted. --
-- --
-- User Circuit Handshake --
-- dataReq [User Driven] _______`````````````` ````````________ --
-- dataNew [Port Driven] _________________```` ```````````_____ --
-- dataOut [Port Driven] -----------------<Dat a Valid>-------- --
-- --
-- - User circuit asserts dataReq --
-- - When data is ready the port asserts dataNe w and outputs the --
-- newly received data --
-- - Once the user circuit is finished with the data it deasserts --
-- dataReq. From this time dataOut is consid ered no longer valid --
-- - Upon seeing that the user circuit has deas serted dataReq the --
-- port will deassert dataNew --

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY DevWriteAck IS
 GENERIC (
 dataWidth : natural := 53;
 writeCycles : natural := 2; -- = CEIL(Datawi dth/32)
 writePow2 : natural := 1; -- = 1 if writec ycles in a power of 2
 portAddr : natural := 0);
 PORT (
 -- Development Bus Signals
 resetn : in std_logic;
 address : in std_logic_vector(5 downto 0);
 datain : in std_logic_vector(31 downto 0);
 dataout : out std_logic_vector(31 downto 0);
 oe : out std_logic;
 framen : in std_logic;
 tackn : out std_logic;
 devclk : in std_logic;
 -- User interface signals
 data : out std_logic_vector(datawidth - 1 down to 0);
 dataReq : in std_logic;
 dataNew : out std_logic);
END;

ARCHITECTURE rtl of DevWriteAck IS
 SIGNAL databuffer : std_logic_vector(writecycles* 32-1 downto 0);
 SIGNAL writecount : natural range 0 to writecycle s;
 SIGNAL writeEn, pause : boolean;
 SIGNAL dataReady : std_logic;
BEGIN
 data <= databuffer(datawidth - 1 downto 0);
 dataNew <= dataReady;

 -- Set Dev Bus outputs
 dataout <= (others => '0');
 oe <= '0';

 writeEn <= (framen = '0') AND (address = portaddr);
 tackn <= '0' WHEN (writeCount = writeCycles) AND (dataReq = '0')
 AND (dataReady = '1') ELSE '1';

 PROCESS (resetn, devclk)
 BEGIN
 IF (resetn = '0') THEN
 databuffer <= (others => '0');
 writeCount <= 0;
 dataReady <= '0';
 pause <= false;
 ELSIF rising_edge(devclk) THEN
 -- Pause until the framen is deasserted
 IF pause THEN
 pause <= (framen = '0');
 -- If we have data ready then handle the hand shake
 ELSIF (writeCount = writeCycles) THEN
 dataReady <= dataReq;
 IF (dataReq = '0') AND (dataReady = '1') TH EN
 writeCount <= 0;
 pause <= true;
 END IF;
 -- If the devbus is handling a write then buf fer to the shift register
 ELSIF writeEn THEN
 writeCount <= writecount + 1;
 -- Load 32bit parallel shift register
 databuffer(writecycles*32-1 downto (writecy cles -1)*32) <= dataIn;
 IF (writecycles > 1) THEN
 writeloop : FOR k IN 1 TO writecycles-1 L OOP
 databuffer((k*32)-1 downto (k-1)*32) <=
 databuffer((k+1)*32-1 downto k*32);
 END LOOP writeloop;
 END IF;
 END IF;
 END IF;
 END PROCESS;

END rtl;

 145

E L INUX DEVICE DRIVER

E.1 TM 4DRIVER .C

#define MODULE
#define __KERNEL__

#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <asm/uaccess.h>

#include "ioctlcmd.h"
#include "clockparam.h"

#ifndef CONFIG_PCI
error "This driver needs PCI support to be avail able"
#endif

#define TM4_VENDOR 0x1172
#define TM4_DEVICE 0x0004

#define TM4WREG_NCONFIG 0*4
#define TM4WREG_MODE 1*4
#define TM4WREG_NIBRESET 2*4
#define TM4WREG_DMAADDR 0xfa*4
#define TM4WREG_DMACTRL 0xfb*4
#define TM4WREG_JTAG 0xfc*4
#define TM4WREG_TEMPMON 0xfd*4
#define TM4WREG_GLBCLK 0xfe*4
#define TM4WREG_NIBCLK 0xff*4

#define TM4RREG_NSTATUS 0*4
#define TM4RREG_NIBCLK 1*4
#define TM4RREG_GLBCLK 2*4

#define TM4RREG_TEMPMON 3*4
#define TM4RREG_WFIFO 5*4
#define TM4RREG_ERROR 6*4
#define TM4RREG_JTAG 7*4
#define TM4RREG_RFIFO 9*4
#define TM4RREG_LIRQ 14*4

#define TEMPMON_DATAMASK 0xff
#define TEMPMON_RDACK 0x100
#define TEMPMON_WRACK 0x200
#define TEMPMON_CLRACK 0x400

#define TM4_MODEREG_DEVBUS_ENABLE 0x0001
#define TM4_MODEREG_DEVCFG_ENABLE 0x0002
#define TM4_MODEREG_VIDEO_OUT 0x0010
#define TM4_MODEREG_VIDEO_IN_A 0x0004
#define TM4_MODEREG_VIDEO_IN_B 0x0008
#define TM4_MODEREG_JTAG 0x0020
#define TM4_MODEREG_ALERT_OVER 0x0040
#define TM4_MODEREG_FORCE_RESETN 0x80000000

#define JTAG_BUSY 0x80000000

#define PLLCFG_N 0
#define PLLCFG_M 1
#define PLLCFG_G0 4
#define PLLCFG_G1 5
#define PLLCFG_G2 6
#define PLLCFG_G3 7
#define PLLCFG_L0 8
#define PLLCFG_L1 9
#define PLLCFG_E0 0xc
#define PLLCFG_E1 0xd
#define PLLCFG_E2 0xe
#define PLLCFG_E3 0xf

#define PLLCFG_NOMINAL 0
#define PLLCFG_HIGHCOUNT 0
#define PLLCFG_LOWCOUNT 1
#define PLLCFG_COUNTERBYPASS 4

 146

/* Stratix JTAG Commands */
#define JTAG_EXTEST 0x000
#define JTAG_PULSE_NCONFIG 0x001
#define JTAG_PROGRAM 0x002
#define JTAG_STARTUP 0x003
#define JTAG_CHECK_STATUS 0x004
#define JTAG_SAMPLE 0x005
#define JTAG_IDCODE 0x006
#define JTAG_USERCODE 0x007
#define JTAG_CLAMP 0x00A
#define JTAG_HIGHZ 0x00B
#define JTAG_CONFIG_IO 0x00D
#define JTAG_BYPASS 0x3ff

int tm4_open (struct inode *inode, struct file *fil p);
int tm4_release(struct inode *inode, struct file * filp);
int tm4_ioctl(struct inode *inode, struct file *fi lp,
 unsigned int cmd, unsigned long arg);
ssize_t tm4_read (struct file *filp, char *buff, si ze_t count,
 loff_t *offp);

ssize_t tm4_write (struct file *filp, const char *b uff,
 size_t count, loff_t *offp);

struct file_operations tm4_fops = {
 open : tm4_open,
 release : tm4_release,
 write : tm4_write,
 read : tm4_read,
 ioctl : tm4_ioctl,
 owner : THIS_MODULE,
};

int tm4_debug=0;
int major;
u32 tm4_modereg=0;
int devclock=66;
int glbclock=66;

struct pci_dev *tm4pci;
dma_addr_t dma_bus_addr;
void *dma_virtual_addr;

/** *************/
/* TM-4 PCI Memory space interface routines */
/** *************/

void *bar0virtual, *bar1virtual;

inline void bar0writel(u32 value, u32 offset) {
 writel(value,bar0virtual+offset);
}

inline u32 bar0readl(u32 offset) {

 return readl(bar0virtual+offset);
}

inline u32 bar1readl() {
 return readl(bar1virtual);
}

inline void bar1writel(u32 value) {
 writel(value,bar1virtual);
}

/** *************/

void enable_devcfg() {
 tm4_modereg |= TM4_MODEREG_DEVCFG_ENABLE;
 tm4_modereg |= TM4_MODEREG_FORCE_RESETN;
 tm4_modereg &= ~TM4_MODEREG_DEVBUS_ENABLE;

 bar0writel(tm4_modereg,TM4WREG_MODE);
 wmb();
}

int enable_devbus() {
 int i;

 for (i=0; i < 1000000; i++) {
 if (bar0readl(TM4RREG_WFIFO) == 0) break;
 }
 if (bar0readl(TM4RREG_WFIFO) != 0) return -1;

 tm4_modereg |= TM4_MODEREG_DEVBUS_ENABLE;
 tm4_modereg |= TM4_MODEREG_FORCE_RESETN;
 tm4_modereg &= ~TM4_MODEREG_DEVCFG_ENABLE;

 bar0writel(tm4_modereg,TM4WREG_MODE);
 bar0writel(0, TM4WREG_NIBRESET);
 wmb();
 bar0writel(0xf, TM4WREG_NIBRESET);
 return 0;
}

void tm4_alertoverride() {
 tm4_modereg |= TM4_MODEREG_ALERT_OVER;
 bar0writel(tm4_modereg,TM4WREG_MODE);
 wmb();
}

void set_mode_reg(int bit) {
 tm4_modereg |= bit;
 bar0writel(tm4_modereg,TM4WREG_MODE);
 wmb();
}

 147

void unset_mode_reg(int bit) {
 tm4_modereg &= ~bit;
 bar0writel(tm4_modereg,TM4WREG_MODE);
 wmb();
}

int set_devclk(int rate) {
 if ((rate < 1) || (rate > 100)) return -1;

 devclock = rate;

 if (clkparam[rate-1][0] == 1)
 write_nib_pll_reconfig_word(PLLCFG_N, PLLCFG_CO UNTERBYPASS, 1);
 else {
 write_nib_pll_reconfig_word(PLLCFG_N, PLLCFG_NO MINAL, clkparam[rate-
1][0]);
 write_nib_pll_reconfig_word(PLLCFG_N, PLLCFG_CO UNTERBYPASS, 0);
 }

 if (clkparam[rate-1][1] == 1)
 write_nib_pll_reconfig_word(PLLCFG_M, PLLCFG_CO UNTERBYPASS, 1);
 else {
 write_nib_pll_reconfig_word(PLLCFG_M, PLLCFG_NO MINAL, clkparam[rate-
1][1]);
 write_nib_pll_reconfig_word(PLLCFG_M, PLLCFG_CO UNTERBYPASS, 0);
 }

 write_nib_pll_reconfig_word(PLLCFG_E0, PLLCFG_HIG HCOUNT, clkparam[rate-
1][2]/2);
 write_nib_pll_reconfig_word(PLLCFG_E0, PLLCFG_LOW COUNT, clkparam[rate-
1][2]/2);
 write_nib_pll_reconfig_word(PLLCFG_G0, PLLCFG_HIG HCOUNT, clkparam[rate-
1][2]/2);
 write_nib_pll_reconfig_word(PLLCFG_G0, PLLCFG_LOW COUNT, clkparam[rate-
1][2]/2);

 return initiate_nib_pll_reconfig();
}

int make_temp_cmd(int command, int data, int rd_req , int wr_req,
 int clr_alert, int chip_sel) {
 return (command & 0xff) |
 ((data & 0xff) << 8) |
 ((rd_req & 1) << 16) |
 ((wr_req & 1) << 17) |
 ((clr_alert & 1) << 18) |
 ((chip_sel & 1) << 31);
}

int write_temp_smbus(int arg) {
 int command, data, chip_sel;
 int i,value;

 command = (arg & 0xff);

 data = (arg >> 8) & 0xff;
 chip_sel = (arg >> 16) & 0x01;
 bar0writel(make_temp_cmd(command, data,0,1,0, c hip_sel),
TM4WREG_TEMPMON);
 wmb();

 for (i = 0; i < 1000000; i++) {
 value = bar0readl(TM4RREG_TEMPMON);
 if ((value & TEMPMON_WRACK) == TEMPMON_WRACK) b reak;
 }

 if ((value & TEMPMON_WRACK) == 0) return -1;

 bar0writel(0, TM4WREG_TEMPMON);
 for (i = 0; i < 1000000; i++) {
 if ((bar0readl(TM4RREG_TEMPMON) & TEMPMON_WRACK) == 0)
 return 0;
 }
 return -1;
}

int read_temp_smbus(int *arg) {
 int i, value;
 int argin, command, chip_sel;

 // Read arguments from user space
 get_user(argin,arg);
 command = argin & 0xff;
 chip_sel = (argin >> 8) & 0x01;

 bar0writel(make_temp_cmd(command, 0, 1,0,0,chip_ sel), TM4WREG_TEMPMON);
 wmb();

 for (i = 0; i < 1000000; i++) {
 value = bar0readl(TM4RREG_TEMPMON);
 if ((value & TEMPMON_RDACK) == TEMPMON_RDACK) b reak;
 }

 if ((value & TEMPMON_RDACK) == 0) {
 printk(KERN_INFO "TM-4: Error: SMBUS Interface did not assert
Ack\n");
 return -1;
 }

 bar0writel(0, TM4WREG_TEMPMON);
 for (i = 0; i < 1000000; i++) {
 value=bar0readl(TM4RREG_TEMPMON);
 if ((value & TEMPMON_RDACK) == 0) break;
 }

 if ((value & TEMPMON_RDACK) == TEMPMON_RDACK) {
 printk(KERN_INFO "TM-4 Error: SMBUS Interface did not deassert
Ack\n");
 return -1;

 148

 }

 return put_user(value & TEMPMON_DATAMASK, arg);
}

void tm4_reset() {
 // Unconfigure the chips
 bar0writel(0x00000000,TM4WREG_NCONFIG);
 wmb();

 // Reset the the housekeeping FIFOs and devbus in terfaces
 unset_mode_reg(TM4_MODEREG_FORCE_RESETN);
 set_mode_reg(TM4_MODEREG_FORCE_RESETN);

 // Setup the DMA address
 bar0writel(dma_bus_addr,TM4WREG_DMAADDR);
}

int write_jtag(int arg) {
 int i, result;

 bar0writel(arg, TM4WREG_JTAG);
 wmb();
 for (i = 0; i < 1000000; i++) {
 result = bar0readl(TM4RREG_JTAG);
 if ((result & JTAG_BUSY) == 0) break;
 }
 return result;
}

int jtag_issue(int tms, int tdo) {
 return write_jtag((tms << 1) | tdo);
}

int get_config_status() {
 return bar0readl(TM4RREG_NSTATUS);
}

int read_reg(int *arg) {
 (*arg) = bar0readl((*arg)*4);
 return 0;
}

int get_clock_rate(int arg) {
 switch (arg) {
 case 0: return devclock;
 case 1: return glbclock;
 default: return -1;
 }
}

// Must issue start read and end read commands to i ssue correct TAP state
int jtag_read32() {
 int i, result;

 result = 0;
 for (i = 0; i < 32; i++) {
 result = result | (jtag_issue(0,0) << i);
 }

 return result;
}

int tm4_ioctl(struct inode *inode, struct file *fi lp,
 unsigned int cmd, unsigned long arg) {
 int num = MINOR(inode->i_rdev);

 if (num != 1) return -1;

 if (tm4_debug > 0)
 printk(KERN_INFO "IOCTL cmd %08x\n",cmd);

 switch (cmd) {
 case IOCTL_ENABLE_VIDEO_OUT: set_mode_reg(TM4_ MODEREG_VIDEO_OUT);
break;
 case IOCTL_DISABLE_VIDEO_OUT: unset_mode_reg(TM 4_MODEREG_VIDEO_OUT);
break;
 case IOCTL_ENABLE_VIDEO_IN_A: set_mode_reg(TM4_ MODEREG_VIDEO_IN_A);
break;
 case IOCTL_DISABLE_VIDEO_IN_A: unset_mode_reg(T M4_MODEREG_VIDEO_IN_A);
break;
 case IOCTL_ENABLE_VIDEO_IN_B: set_mode_reg(TM4_ MODEREG_VIDEO_IN_B);
break;
 case IOCTL_DISABLE_VIDEO_IN_B: unset_mode_reg(T M4_MODEREG_VIDEO_IN_B);
break;
 case IOCTL_ENABLE_JTAG: set_mode_reg(TM4_MODERE G_JTAG); break;
 case IOCTL_DISABLE_JTAG: unset_mode_reg(TM4_MOD EREG_JTAG); break;
 case IOCTL_SET_DEVCLK: return set_devclk(arg);
 case IOCTL_READ_TEMP_SMBUS: return read_temp_sm bus((int *)arg);
 case IOCTL_WRITE_TEMP_SMBUS: return write_temp_ smbus(arg);
 case IOCTL_RESET: tm4_reset(); break;
 case IOCTL_JTAG: return write_jtag(arg);
 case IOCTL_GET_CONFIG_STATUS: return get_config _status();
 case IOCTL_NIB_RESET: bar0writel(arg, TM4WREG_N IBRESET); break;
 case IOCTL_GET_WRITE_LEVEL: return bar0readl(TM 4RREG_WFIFO);
 case IOCTL_GET_ERROR: return bar0readl(TM4RREG_ ERROR);
 case IOCTL_SET_NCONFIG : bar0writel(arg,TM4WREG _NCONFIG); break;
 case IOCTL_REGISTER_READ: return read_reg((int *)arg);
 case IOCTL_GET_CLOCKRATE: return get_clock_rate (arg);
 case IOCTL_SET_DEBUG_LEVEL: tm4_debug = arg; br eak;
 case IOCTL_ALERT_OVERRIDE: tm4_alertoverride(); break;
 default: return -1;
 }
 return 0;
}

u32 make_pll_reconfig_word(u32 reconfig, u32 read_e n, u32 write_en,

 149

 u32 counter_type, u32 data_in, u32 counter_par am) {
 return (reconfig & 0x1) |
 ((read_en & 0x1) << 1) |
 ((write_en & 0x1) << 2) |
 ((counter_type & 0xf) << 4) |
 ((data_in & 0x1ff) << 8) |
 ((counter_param & 0x7) << 24);
}

int write_nib_pll_reconfig_word(u32 counter_type, u 32 counter_param, u32
data) {
 int i, result;

 bar0writel(make_pll_reconfig_word(0,0,1,counter_ type, data,
counter_param),
 TM4WREG_NIBCLK);
 wmb();

 for (i = 0; i < 100000; i++) {
 result = bar0readl(TM4RREG_NIBCLK);
 rmb();
 if ((result & 0x80000000) == 0) return 0;
 }
 return -1;
}

int read_nib_pll_reconfig_word(u32 counter_type, u3 2 counter_param) {
 int i, result;

 bar0writel(make_pll_reconfig_word(0,1,0,counter_ type,0, counter_param),
 TM4WREG_NIBCLK);
 wmb();

 for (i = 0; i < 100000; i++) {
 result = bar0readl(TM4RREG_NIBCLK);
 rmb();
 if ((result & 0x80000000) == 0) break;
 }

 return result;
}

int initiate_nib_pll_reconfig() {
 int i,result;

 bar0writel(1,TM4WREG_NIBCLK);

 for (i = 0; i < 1000000; i++) {
 result = bar0readl(TM4RREG_NIBCLK);
 rmb();
 if ((result & 0x80000000) == 0) return 0;
 }
 return -1;
}

void dump_nib_pll_configuration() {
 int i, value;

 for (i = 0; i <= 0xf; i++) {
 value = read_nib_pll_reconfig_word(i,0);
 if (value < 0) {
 printk(KERN_INFO "TM-4: Timeout reading regis ter 0x%x\n",i);
 } else {
 printk(KERN_INFO "TM-4: Nib PLL Cfg Reg 0x%x Value 0x%x\n",i,value);
 }
 }

}

int init_config() {
 int i;

 // We need to assert nCONFIG until nSTATUS is ass erted
 bar0writel(0x00000000,TM4WREG_NCONFIG);
 wmb();

 // Test nSTATUS
 for (i=0; (i < 1000000) && (bar0readl(TM4RREG_NST ATUS) != 0); i++);

 if (bar0readl(TM4RREG_NSTATUS) != 0) {
 printk(KERN_INFO "TM-4 ERROR: Device did not as sert nStatus\n");
 return -1;
 }

 // Now deassert nCONFIG and wait for nSTATUS to r elease
 bar0writel(0x0000000f,TM4WREG_NCONFIG);
 wmb();

 // Test nSTATUS for release
 for (i=0; (i < 1000000) && (bar0readl(TM4RREG_NST ATUS) != 0xaa); i++);

 if (bar0readl(TM4RREG_NSTATUS) != 0xaa) {
 printk(KERN_INFO "TM-4 ERROR: Device did not re lease nStatus
0x%08x\n",
 bar0readl(TM4RREG_NSTATUS));
 return -1;
 }

 // Now set the write FIFOs to feed the dev FPGA c onfiguration circuit
 enable_devcfg();
 wmb();

 return 0;
}

 150

int finish_config() {
 int i;

 for(i=0; i < 136; i++) {
 bar1writel(0);
 wmb();
 }

 return enable_devbus();
}

/* Insure that TAP controller is in state RUN/IDLE */
void jtag_reset() {
 jtag_issue(1,0);
 jtag_issue(1,0);
 jtag_issue(1,0);
 jtag_issue(1,0);
 jtag_issue(1,0);
 jtag_issue(0,0);
}
void jtag_setIR(int inst0, int inst1, int inst2, in t inst3) {
 int i,bit;

 jtag_issue(1,0); // State: SELECT_DR_SCAN
 jtag_issue(1,0); // State: Select_IR_scan
 jtag_issue(0,0); // State: capture_IR

 jtag_issue(0,0); // State: shift_IR

 // Issue command 3
 bit = inst3;
 for (i = 0; i < 10; i++) {
 jtag_issue(0,bit & 1);
 bit = bit >> 1;
 }

 // Issue command 2
 bit = inst2;
 for (i = 0; i < 10; i++) {
 jtag_issue(0,bit & 1);
 bit = bit >> 1;
 }

 // Issue command 1
 bit = inst1;
 for (i = 0; i < 10; i++) {
 jtag_issue(0,bit & 1);
 bit = bit >> 1;
 }

 // Issue command 0
 bit = inst0;
 for (i = 0; i < 9; i++) {
 jtag_issue(0,bit & 1);

 bit = bit >> 1;
 }

 jtag_issue(1,bit & 1); // State: Exit1_IR
 jtag_issue(1,0); // State: Update_IR
 jtag_issue(0,0); // State: Run_test/Idle
}

void jtag_startread() {
 jtag_issue(1,0); // State: Select_DR_Scan
 jtag_issue(0,0); // State: Capture DR
}

void jtag_endread() {
 jtag_issue(1,0); // State: Exit1_Dr
 jtag_issue(1,0); // State: Update_Dr
 jtag_issue(0,0); // State: Run_Test/idle
}

ssize_t tm4_jtag_read (struct file *filp, char *buf f, size_t count,
 loff_t *offp) {
 int I, value;

 for (i=0; i < count; i+=4) {
 value = jtag_read32();
 __put_user(value,(u32 *)(buff+i));
 }

 return count;
}

int init_jtag(struct file * filp) {
 // Point read procedure to correct function
 filp->f_op->read = &tm4_jtag_read;
 // Enable JTAG
 set_mode_reg(TM4_MODEREG_JTAG);

 // Reset JTAG controller
 jtag_reset();

 // Set Instruction
 jtag_setIR(JTAG_SAMPLE, JTAG_SAMPLE,
 JTAG_SAMPLE, JTAG_SAMPLE);

 jtag_startread();
 return 0;
}

void finish_jtag() {
 jtag_reset();
 unset_mode_reg(TM4_MODEREG_JTAG);
}

 151

int tm4_open (struct inode *inode, struct file * fi lp) {
 int num = MINOR(inode->i_rdev);

 filp->f_op->read = &tm4_read;

 switch (num) {
 case 0: return init_config(); break;
 case 1: break;
 case 2: return init_jtag(filp); break;
 default: return -1;
 }
 return 0;
}

void start_dma_write_to_tm4(u32 count) {
 if (tm4_debug > 0)
 printk(KERN_INFO "DMA Write Setup: 0x%08x addr, 0x%08x command\n",
 dma_bus_addr, (count >> 2) & 0xfffe);

 bar0writel((count >> 2) & 0xFFFE, TM4WREG_DMACTRL);
 wmb();
}

void start_dma_read_from_tm4(u32 count) {
 u32 command = ((count >> 2) & 0xFFFE) | 0x8000000 0;

 if (tm4_debug > 0)
 printk(KERN_INFO "DMA Read Setup: 0x%08x addr, 0x%08x command\n",
 dma_bus_addr, command);

 bar0writel(command, TM4WREG_DMACTRL);
 wmb();
}

wait_queue_head_t tm4_wait_queue;

int interrupt_arrived;

void interrupt_handler(int irq, void *dev_id, struc t pt_regs *regs) {
 if (tm4_debug > 0)
 printk(KERN_INFO "Interrupt!\n");

 if (bar0readl(TM4RREG_LIRQ) == 1) return;

 // Clear the interrupt from the TM-4
 bar0writel(dma_bus_addr,TM4WREG_DMAADDR);
 wmb();
 while (bar0readl(TM4RREG_LIRQ) == 0);

 interrupt_arrived = 1;

 // Wake up the blocked task
 wake_up(&tm4_wait_queue);
}

ssize_t tm4_read (struct file *filp, char *buff, si ze_t count,
 loff_t *offp) {

 u32 i;
 u32 value;

 // Clear the low bits to insure we only write mul tiples of 32bits
 count = count & 0xfffffffc;

 // Don't bother with DMA for small transfers
 if (count <= 0xf) {
 for (i=0; i < count; i+=4) {
 value = bar1readl();
 __put_user(value,(u32 *)(buff+i));
 }
 } else {

 if (count > 4) {
 if (tm4_debug > 0)
 printk(KERN_INFO "Adding to wait queue(read)\n");

 interrupt_arrived = 0;
 start_dma_read_from_tm4(count);

 wait_event_interruptible(tm4_wait_queue,(inte rrupt_arrived==1));

 if (tm4_debug > 0)
 printk(KERN_INFO "We have been awakened\n") ;
 }

 if ((count & 0x4) == 0x4) {
 if (tm4_debug > 0)
 printk(KERN_INFO "Performing Lone 32bit rea d\n");

 value = bar1readl();
 __put_user(value,(u32 *)(buff+count-4));
 copy_to_user((u32 *)buff,dma_virtual_addr, c ount-4);
 } else {
 copy_to_user((u32 *)buff,dma_virtual_addr, c ount);
 }

 }
 return count;

}

int writecounter = 0;

ssize_t tm4_write (struct file *filp, const char *b uff,
 size_t count, loff_t *offp) {

 u32 value;

 152

 if (tm4_debug > 0)
 printk(KERN_INFO "Devbus Write: 0x%08x bytes\n" , count);
 if (tm4_debug > 1) {
 get_user(value,(u32 *)buff);
 printk(KERN_INFO " - First Value 0x%08x\n",val ue);
 }

 // Clear the low bits to insure we only write mul tiples of 32bits
 count = count & 0xfffffffc;

 // Don't bother with DMA for small transfers
 if (count <= 0xf) {
 if (count > 0) copy_from_user(bar1virtual, buff , count);
 } else {
 if ((count & 0x4) == 0x4) {
 if (tm4_debug > 0)
 printk(KERN_INFO "Performing Lone 32bit wri te\n");

 get_user(value, (u32 *)buff);
 bar1writel(value);
 copy_from_user(dma_virtual_addr, (buff+4), co unt-4);
 } else {
 copy_from_user(dma_virtual_addr, buff, count) ;
 }

 if (count > 4) {
 if (tm4_debug > 0)
 printk(KERN_INFO "Adding to wait queue %x\n ",writecounter++);

 interrupt_arrived = 0;
 start_dma_write_to_tm4(count);

 wait_event_interruptible(tm4_wait_queue,(inte rrupt_arrived==1));

 if (tm4_debug > 0)
 printk(KERN_INFO "We have been awakened\n") ;
 }
 }
 return count;
}

int tm4_release(struct inode *inode, struct file * filp) {
 int num = MINOR(inode->i_rdev);

 // Restore the standard write just in case we wer e in JTAG mode
 filp->f_op->read = &tm4_read;

 switch (num) {
 case 0: return finish_config(); break;
 case 1: break;
 case 2: finish_jtag(); break;
 default: return -1;
 }

 return 0;
}

u8 tm4irq;

int init_module(void) {
 u32 bar0;
 u32 bar1;

 // Register the device driver
 major = register_chrdev(0, "tm4", &tm4_fops);
 if (major < 0) return -1;

 printk(KERN_INFO "TM-4: Device Driver Init\n");
 if (!pci_present()) return -1;

 tm4pci = pci_find_device(TM4_VENDOR, TM4_DEVICE, NULL);
 if (tm4pci != NULL)
 printk(KERN_INFO "TM-4: Found TM4 PCI controlle r\n");
 else
 return -1;

 pci_enable_device(tm4pci);

 bar0 = pci_resource_start(tm4pci,0);
 bar1 = pci_resource_start(tm4pci,1);

 bar0virtual = ioremap_nocache(bar0,1024);
 bar1virtual = ioremap_nocache(bar1,64*1024);

 if ((bar0virtual == 0) || (bar1virtual == 0)) {
 printk(KERN_INFO "TM-4 ERROR: Unable to allocat e BAR memory space\n");
 return -1;
 }

 if(pci_read_config_byte(tm4pci, PCI_INTERRUPT_LIN E, &tm4irq)) {
 printk(KERN_INFO "TM-4 ERROR: Unable to determi ne IRQ number\n");
 return -1;
 }

 printk(KERN_INFO "TM-4: Detected IRQ # %x\n", tm4 irq);

 if (request_irq(tm4irq, interrupt_handler, SA_SHI RQ,
"tm4",&dma_virtual_addr)) {
 printk(KERN_INFO "TM-4 ERROR: Unable to install interrupt handler\n");
 return -1;
 }

 printk(KERN_INFO "TM-4: Interrupt Handler Install ed\n");

 // Setup the wait queue so we can sleep during bl ocks
 init_waitqueue_head(&tm4_wait_queue);

 // Allocate a 64K PCI DMA Buffer

 153

 dma_virtual_addr = pci_alloc_consistent(tm4pci, 0 x10000, &dma_bus_addr);

 printk(KERN_INFO "TM-4: DMA buffer allocated\n");

 // Reset TM-4
 tm4_reset();

 printk(KERN_INFO "TM-4: Driver load complete\n");

 return 0;
}

void cleanup_module(void) {

 free_irq(tm4irq, &dma_virtual_addr);
 pci_free_consistent(tm4pci, 0x10000, dma_virtual_ addr, dma_bus_addr);
 iounmap(bar1virtual);
 iounmap(bar0virtual);
 unregister_chrdev(major,"tm4");
 printk(KERN_INFO "TM-4: Driver removed\n");
}

MODULE_AUTHOR("Josh Fender");
MODULE_DESCRIPTION("Transmogrifier-4 Interface Driv er");
MODULE_LICENSE("Not Free");

E.2 IOCTLCMD .H

#define IOCTL_MAGIC '4'
#define IOCTL_ENABLE_VIDEO_OUT _IO(IOCTL_MAGIC, 0)
#define IOCTL_DISABLE_VIDEO_OUT _IO(IOCTL_MAGIC, 1)
#define IOCTL_ENABLE_VIDEO_IN_A _IO(IOCTL_MAGIC, 2)
#define IOCTL_DISABLE_VIDEO_IN_A _IO(IOCTL_MAGIC, 3)
#define IOCTL_ENABLE_VIDEO_IN_B _IO(IOCTL_MAGIC, 4)
#define IOCTL_DISABLE_VIDEO_IN_B _IO(IOCTL_MAGIC, 5)
#define IOCTL_SET_DEVCLK _IO(IOCTL_MAGIC, 6)
#define IOCTL_NIB_RESET _IO(IOCTL_MAGIC, 7)
#define IOCTL_RESET _IO(IOCTL_MAGIC, 8)
#define IOCTL_READ_TEMP_SMBUS _IOWR(IOCTL_MAGIC, 9,4)
#define IOCTL_WRITE_TEMP_SMBUS _IO(IOCTL_MAGIC, 1 0)
#define IOCTL_ENABLE_JTAG _IO(IOCTL_MAGIC, 1 1)
#define IOCTL_DISABLE_JTAG _IO(IOCTL_MAGIC, 1 2)

#define IOCTL_JTAG _IO(IOCTL_MAGIC, 1 3)
#define IOCTL_GET_CONFIG_STATUS _IO(IOCTL_MAGIC, 1 4)
#define IOCTL_GET_WRITE_LEVEL _IO(IOCTL_MAGIC, 1 5)
#define IOCTL_GET_ERROR _IO(IOCTL_MAGIC, 1 6)
#define IOCTL_SET_NCONFIG _IO(IOCTL_MAGIC, 1 7)
#define IOCTL_REGISTER_READ _IOWR(IOCTL_MAGIC, 18,4)
#define IOCTL_GET_CLOCKRATE _IO(IOCTL_MAGIC, 1 9)
#define IOCTL_ALERT_OVERRIDE _IO(IOCTL_MAGIC, 2 0)
#define IOCTL_SET_DEBUG_LEVEL _IO(IOCTL_MAGIC, 2 1)
#define MAX_IOCTL_COMMAND 21

#ifdef TM4SET

char *ioctl_text[] = {
"enable_video_out", "disable_video_out", "enable_vi deo_in_a",
"disable_video_in_a",
"enable_video_in_b", "disable_video_in_b", "set_dev clk", "nib_reset",
"reset",
"read_temp_smbus", "write_temp_smbus", "enable_jtag ", "disable_jtag",
"write_jtag",
"get_config_status", "get_write_fifo_level", "get_e rror", "set_nconfig",
"reg_read",
"get_clockrate", "alert_override", "debug_level"};

int ioctl_mapping[] = {
 IOCTL_ENABLE_VIDEO_OUT, IOCTL_DISABLE_VIDEO_OUT,
IOCTL_ENABLE_VIDEO_IN_A,
 IOCTL_DISABLE_VIDEO_IN_A, IOCTL_ENABLE_VIDEO_IN_ B,
IOCTL_DISABLE_VIDEO_IN_B,
 IOCTL_SET_DEVCLK, IOCTL_NIB_RESET, IOCTL_RESET,
IOCTL_READ_TEMP_SMBUS,
 IOCTL_WRITE_TEMP_SMBUS, IOCTL_ENABLE_JTAG, IOCT L_DISABLE_JTAG,
IOCTL_JTAG,
 IOCTL_GET_CONFIG_STATUS, IOCTL_GET_WRITE_LEVEL, IOCTL_GET_ERROR,
 IOCTL_SET_NCONFIG, IOCTL_REGISTER_READ, IOCTL_G ET_CLOCKRATE,
 IOCTL_ALERT_OVERRIDE, IOCTL_SET_DEBUG_LEVEL};

#endif

 154

F DC-DC CONVERTER SPICE MODEL

TM4: Power Subsystem: 1.5v

.options NOMOD NOPAGE POST=1 PARHIER=local BRIEF
.options METHOD=GEAR

.include "irf6602.inc"
.include "irf6601.inc"
.include "MBR0520L.mod"
.include "MBRS340T3.mod"

.options BRIEF=0

*** NOTES:
* - Assumes Ideal PCB trace (0uH, 0uF, 0uOhm)
* - Boost Diode and capacitor replaced with Voltage Source

* V1.5v Holdup Capacitors
Cb1 b1 0 470u
Rb1 b1 vload 8m
Cb2 b2 0 470u
Rb2 b2 vload 8m
Cb3 b3 0 470u
Rb3 b3 vload 8m
Cb4 b4 0 470u
Rb4 b4 vload 8m
Cb5 b5 0 470u
Rb5 b5 vload 8m
Cb6 b6 0 470u
Rb6 b6 vload 8m
Cb7 b7 0 470u
Rb7 b7 vload 8m
Cb8 b8 0 470u
Rb8 b8 vload 8m

* Fixed Load 50Amps
*Rload vload 0 0.03

* Fixed Load 2Amps
*Rload vload 0 0.75

* Step Load 15-25Amps
Gr vload 0 VCR rvolt 0 1
Vr rvolt 0 PULSE(0.1v 0.06v 160u 0.1u 0.1u 40u 300u)

* Vin Bulk Bypassing Capacitors
*Cc1 c1 0 82uf
*Rc1 c1 vin 39m
*Cc2 c2 0 82uf
*Rc2 c2 vin 39m
*Cc3 c3 0 82uf
*Rc3 c3 vin 39m
*Cc4 c4 0 82uf
*Rc4 c4 vin 39m
*Cc5 c5 0 82uf
*Rc5 c5 vin 39m

*Vvcc12 vcc12r 0 DC 12v $ Simulate 12v supply ind uctance
*Rvcc12 vcc12r vcc12 100m $ Supply Series Resistan ce
*Lvcc12 vcc12 vin 0u
Vin vin 0 DC 12v

Vcc vcc 0 DC 5v $ Ignore MAX4038s Voltage Regu lator

X1 clp1 csp1 csn1 dl1 dh1 lx1 bst1
+ clp2 csp2 csn2 dl2 dh2 lx2 bst2
+ vsp vsn diff ean eaout MAX5038EAI15

*C30 clp1 0 470p IC=1v $ Phase 1 Compensation Netwo rk
*R6 clp1 1 1k
*C29 1 0 6.8n

*C28 clp2 0 470p IC=1v $ Phase 2 Compensation Netwo rk
*R5 clp2 2 1k
*C27 2 0 6.8n

C30 clp1 0 47p IC=1v $ Phase 1 Compensation Network
R6 clp1 1 10k
C29 1 0 0.68n

C28 clp2 0 47p IC=1v $ Phase 2 Compensation Network

 155

R5 clp2 2 10k
C27 2 0 0.68n

X2 vin dh1 lx1 irf6602 $ Phase 1 Discrete Componen ts
X3 lx1 dl1 0 irf6601
D1 lx1 0 MBRS340T3
L1 lx1 csp1 0.69uH
R2 csp1 csn1 1.58m $ Inflated to compensate fo r PCB resistance
V3 csn1 vload DC 0v
*C12 bst1 lx1 0.1u IC=5v
*D3 bst1 vcc MBR0520L
V10 bst1 lx1 DC 5v

X4 vin dh2 lx2 irf6602 $ Phase 2 Discrete Componen ts
X5 lx2 dl2 0 irf6601
D2 lx2 0 MBRS340T3
L2 lx2 csp2 0.69uH
R3 csp2 csn2 1.58m
V4 csn2 vload DC 0v
*C13 bst2 lx2 0.1u IC=5v
*D4 bst2 vcc MBR0520L
V20 bst2 lx2 DC 5v

Rin ean diff 5.11k $ Feed Back Resistors
Rf eaout ean 51.1k
Rx ean vcc 75k
*Rf eaout ean 100k
*Rx ean vcc 200k

V1 vsn 0 DC 0v $ Sense Connections
V2 vsp vload DC 0v

* MAX5038 PWM Controller *

* NOTES:
* - Set for 1.5v operation
* - 250Khz Clock
.subckt MAX5038EAI15
+ clp1 csp1 csn1 dl1 dh1 lx1 bst1
+ clp2 csp2 csn2 dl2 dh2 lx2 bst2
+ vsp vsn diff ean eaout
.param clkfreq=250000
.param clkrise=5n
.param clk2delay='1/(2*clkfreq)'

v1 clk1 0 dc PULSE(0 5v 0 clkrise clkrise 200n '1/c lkfreq')
v2 ramp1 0 dc PULSE(0 2v 0 '1/clkfreq-clkrise' clkr ise 0 '1/clkfreq')
v3 clk2 0 dc PULSE(0 5v clk2delay clkrise clkrise 2 00n '1/clkfreq')
v4 ramp2 0 dc PULSE(0 2v clk2delay '1/clkfreq-clkri se' clkrise 0 '1/clkfreq')

Xphase1 clp1 csp1 csn1 eaout ramp1 clk1 dl1 dh1 lx1 bst1 ICLC

Xphase2 clp2 csp2 csn2 eaout ramp2 clk2 dl2 dh2 lx2 bst2 ICLC
Xdiff vsp vsn diff DIFF
Xvea ean eaout VEA
.ends MAX5038EAI15

* Voltage Error Amp *

* NOTES:
* - No current drive limits
* - Frequency response incorrect (Should be unity Gain freq)
.subckt VEA inn out
.param GAIN='pow(10,70/20)'
.param POLE=3000000
.param VHIGH='900mv+600mv'
.param VLOW=0v
.param VREF='1.5v+0.6v'

E1 1 0 VOL='(VREF-v(inn))*GAIN'
R1 2 1 100
C1 2 0 '1/(6.28*100*POLE)'
E2 out 0 VOL='v(2)' MAX=VHIGH MIN=VLOW
.ends VEA

* Differential Amplifier *

* NOTES:
* - No current drive limits
.subckt DIFF inp inn out
.param GAIN=1
.param POLE=3000000
.param RIN=100k
.param VHIGH=5v
.param VLOW=0v
.param VOFFSET=0.6v

Rin inp inn RIN
E1 1 0 VOL='(v(inp)-v(inn))*GAIN'
R1 2 1 100
C1 2 0 '1/(6.28*100*POLE)'
E2 out 0 VOL='v(2)+VOFFSET' MAX='VHIGH+VOFFSET' MIN ='VLOW+VOFFSET'
.ends DIFF

* Inner Current Loop *

* NOTES:
* - No Peak Current Comparator
* - No Shdn
.subckt ICLC clp csp csn gmin ramp clk dl dh lx bst
X1 csp csn 1 CSA
X2 gmin 1 clp CEA
X3 ramp clp 2 CMP

 156

X4 2 clk q qn FFLOP
X5 dl qn LOWDRV
X6 dh bst lx q HIGHDRV
.ends ICLC

* Highside FET Driver *

.subckt HIGHDRV dh bst lx en
E1 on 0 en 0 1 MAX=1 MIN=0
E2 dhi 0 VOL='v(lx)+(v(bst)-v(lx))*v(on)'
R1 dh dhi 1
.ends HIGHDRV

* Lowside FET Driver *

.subckt LOWDRV dl en
E1 dli 0 VOL='v(en)'
R1 dl dli 1
.ends LOWDRV

* Current Error Amplifier *

.subckt CEA inp inn out
.param GM=550uS
.param CHIGH=320u
.param CLOW=-320u

G1 0 out inp inn GM MAX=CHIGH MIN=CLOW
.ends CEA

* Current Sense Amplifier *

.subckt CSA inp inn out
.param GAIN=18
.param POLE=4000000
.param RIN=4k
.param VHIGH=5v
.param VLOW=0v

Rin inp inn RIN
E1 1 0 VOL='(v(inp)-v(inn))*GAIN'
R1 2 1 100
C1 2 0 '1/(6.28*100*POLE)'
E2 out 0 VOL='v(2)' MAX=VHIGH MIN=VLOW
.ends CSA

* Nonlinear Comparator *

.subckt CMP inp inn out

Eopamp out 0 inp inn 100000 MAX=5 MIN=0
.ends CMP

* Linear Flipflop Approximation *

.subckt FFLOP S R Q QN
X1 S Sn INV
X2 R Rn INV
X3 Rn Qn Q0 NAND2
X4 Sn Q Qn0 NAND2

R1 Q Q0 100
R2 Qn Qn0 100
C1 Q 0 100p IC=0v
C2 Qn 0 100p IC=5v
.ends FFLOP

* Linear Nand Approximation *

.subckt NAND2 in1 in2 out
E1 out 0 NAND(2) in1 0 in2 0 0v 5v 5v 0v
.ends NAND2

* Linear Or Approximation *

.subckt OR2 in1 in2 out
E1 out 0 OR(2) in1 0 in2 0 0v 0v 5v 5v
.ends OR2

* Linear Invertor Approximation *

.subckt INV in out
E1 out 0 VOL='5-v(in)'
.ends INV

* Generate transient data
.probe I(Gr)
.tran 1us 250us UIC

.end

