Technology Mapping
for

Lookup-Table Based

Field-Programmable Gate Arrays

Robert J. Francis

A thesis
submitted in conformity with the requirements
for the degree of
Doctor of Philosophy

Graduate Department of Electrical Engineering
Computer Group
University of Toronto
Toronto, Ontario
Canada

(©Robert J. Francis 1993

Abstract

Field Programmable Gate Arrays (FPGAs) provide a new approach to Applica-
tion Specific Integrated Circuit (ASIC) implementation that features both large scale
integration and user programmability. The logic capacity of these devices is large
enough to make automated synthesis essential for the efficient design of FPGA cir-
cuits. This thesis focuses on the class of FPGAs that use lookup tables (LUTs) to
implement combinational logic. A K-input lookup table is a digital memory that can
implement any Boolean function of K variables. Lookup table circuits present new
challenges for logic synthesis, particularly technology mapping, which is the phase of
logic synthesis directly concerned with the selection of the circuit elements to imple-
ment the final circuit. Conventional library-based technology mapping has difficulty
with lookup table circuits because each lookup table can implement a large number
of different functions.

This thesis presents two new technology mapping algorithms that construct cir-
cuits of K-input lookup tables from networks of ANDs, ORs and NOTs. The first
algorithm, referred to as the area algorithm, minimizes the number of LUTs in the
final circuit, and the second algorithm, referred to as the delay algorithm, minimizes
the number of levels of LUTs. The key feature of both algorithms is the application
of bin packing to the decomposition of nodes in the original network. The original
network is first partitioned into a forest of trees, each of which is mapped separately.
For each tree, the circuit constructed by the area algorithm is shown to be an optimal
tree of LUTs for values of K <5 and the circuit constructed by the delay algorithm
is an optimal tree of LUTs for values of K < 6. Both algorithms also include op-
timizations that exploit reconvergent paths, and the replication of logic at fanout
nodes to further optimize the final circuit. The algorithms described in this thesis
are implemented in a software program called Chortle and experimental results for a

set of benchmark networks demonstrate the effectiveness of the algorithms.

Acknowledgements

First and foremost, I would like to thank Dr. Jonathan Rose and Dr. Zvonko
Vranesic. This thesis could not have been completed without their advice and guid-
ance. | owe a unique debt to Jonathan for introducing me to the new and exciting
world of FPGAs. I would also like to thank Dr. David Lewis for encouraging me to
return to graduate school.

Rejoining the community of students in the Sandford Fleming and Pratt labs has
been one of the greatest rewards of the last five years. I thank you all for providing
inspiration and friendship.

I can only begin to express my gratitude to Ming-Wen Wu for her constant under-
standing and encouragement. Thank you Ming. I would also like to thank my parents
and Ann, Jyrki, Bill, and Cathy, for their wholehearted support, and Emily, Laura,
Naomi, and Gillian. for the joy and wonder that helped me keep it all in perspective.
A special thanks goes to Ya-Ya for sharing her strength and warmth when she herself
faced adversity.

Finally, I would like to thank the Natural Sciences and Engineering Research
Council, the Information Technology Research Centre, the University of Toronto,
and my parents for the financial support that permitted me to pursue a full-time
degree.

This thesis is dedicated to the memory of Gladys Clara Adams.

i

Contents

1 Introduction

2 Background
2.1 Logic Optimization L
2.2 Technology Mapping
2.2.1 Rule-based Technology Mapping
2.2.2 Library-based Technology Mapping
2.2.3 Cell Generator Technology Mapping
2.3 Lookup Table Technology Mapping
2.3.1 Xilinx 3000 CLBs L o
232 Mis-pga
233 Asyl oo
234 Hydra
235 XmMap . ..o v e e e
23.6 VISMAP.
237 DAG-Map

24 SUmmaryo e e e e

3 The Area Algorithm
3.1 Mapping Fach Tree0
3.1.1 Constructing the Decomposition Tree
3.1.2 Optimality

3.2 Exploiting Reconvergent Fanout

i1

O e =~ O

11
13
15
16
16
19
20
21
23
24
25

3.3 Replication of Logic at Fanout Nodes

3.4 Summary ... e

The Delay Algorithm

4.1 Mapping Each Tree L
4.1.1 Constructing the Decomposition Tree
4.1.2 Optimality

4.2 Exploiting Reconvergent Paths

4.3 Replication of Logic at Fanout Nodes

4.4 Reducing the Area Penalty L.
4.4.1 Avoiding Unnecessary Replication
4.4.2 Merging LUTs into their Fanout LUTs
4.4.3 Mapping for Area on Non-Critical Paths

4.5 Summary ... e

Area Optimality

5.1 Outline for Proof of Lemma 5.2
5.1.1 Notation for the Circuit A
5.1.2 Transforming the Circuit B
5.1.3 Proof of Lemma 5.2.

5.2 Circuits with Fanout 0oL

5.3 SUMMATY .« v v v v v vt e e e e e e e e e

Delay Optimality

6.1 Outline for Proof of Lemma 6.2
6.1.1 Notation for the Circuit A
6.1.2 Transforming the Circuit B
6.1.3 Proof of Lemma 6.3 L.
6.1.4 Proof of Lemma 6.2. L.

6.2 SUMMmMary e e

v

48
30
52
)
56
56
57
38
39
60
62

63
64
65
66
70
73
73

7 Experimental Evaluation 84

7.1 Results for the Area Algorithm 84
7.1.1 Circuits of 5-input LUTs 84
7.1.2 Circuits of Xilinx 3000 CLBs. 88
7.1.3 Chortle vs. Mis-pga L. 93
7.1.4 Chortle vs. Xmapo 95
7.1.5 Chortle vs. Hydra. 95
7.1.6 Chortle vs. VISMAP 98

7.2 Results for the Delay Algorithm 99
7.2.1 Circuits of 5-input LUTs 99
7.2.2 Reducing the Area Penalty 103
7.2.3 Chortle vs. Mis-pga oL 107
7.2.4 Chortle vs. DAG-Map 108

7.3 SUMIMATY o o v et e e e e e e 109

8 Conclusions 111

8.1 Future Worko 112

A Optimality of the First Fit Decreasing Algorithm 114

Al Bin Packing 114

A2 Outlineof Proof 116

A3 Notation oL 118

A4 Deriving a Complete Set of Cases 121
A.4.1 Eliminating Holes Greater than H 121

A5 Howto Provea Case 124
AS51 AnExampleo oo 125
A.5.2 The General Case 128
A.5.3 Finding the Required Linear Combination 130

A.6 Reducing the Number of Cases 131

A.7 Presentation of the Cases 132

A8 K =2 . e 133

A9 K =3 . e 136

ATOK =4 .. 140
ALLK =5 oo e 147
AI2K =6 . . . o e 161
A.13 Counter Examples Lo 171
A4 Summaryo e 171
Bibliography 172

vi

Chapter 1

Introduction

Field-Programmable Gate Arrays (FPGAs) provide a new approach to Application
Specific Integrated Circuit (ASIC) implementation that features both large scale
integration and user programmability. An FPGA consists of a regular array of
logic blocks that implement combinational and sequential logic functions and a user-
programmable routing network that provides connections between the logic blocks.
In conventional ASIC implementation technologies, such as Mask Programmed Gate
Arrays and Standard Cells, the connections between logic blocks are implemented by
metalization at a fabrication facility. In an FPGA the connections are implemented in
the field using the user-programmable routing network. This reduces manufacturing
turn-around times from weeks to minutes and reduces prototype costs from tens of
thousands of dollars to hundreds of dollars [Rose90].

There are, however, density and performance penalties associated with user-
programmable routing. The programmable connections, which consist of metal wire
segments connected by programmable switches, occupy greater area and incur greater
delay than simple metal wires. To reduce the density penalty, FPGA architectures
employ highly functional logic blocks, such as lookup tables, that reduce the total
number of logic blocks and hence the number of programmable connections needed
to implement a given application. These complex logic blocks also reduce the perfor-
mance penalty by reducing the number of logic blocks and programmable connections

on the critical paths in the circuit.

The high functionality of FPGA logic blocks presents new challenges for logic
synthesis. This thesis focuses on new approaches to technology mapping for FPGAs
that use lookup tables to implement combinational logic. A K-input lookup table
(LUT) is a digital memory that can implement any Boolean function of K variables.
The K inputs are used to address a 2% by 1-bit memory that stores the truth table of
the Boolean function. Lookup table-based FPGAs account for a significant portion
of the commercial FPGA market [Rohl91] and recent studies on FPGA logic block
architectures have suggested that lookup tables are an area-efficient method of im-
plementing combinational functions [Rose89], [Rose90], [Koul92] and that the delays
of LUT-based FPGAs are at least comparable to the delays of FPGAs using other
types of logic blocks [Sing91], [Sing92].

The level of integration available in FPGAs is large enough to make manual circuit
design impractical and therefore automated logic synthesis is essential for the efficient
design of FPGA circuits. In addition, the development of FPGA architectures requires
effective logic synthesis to evaluate the benefits of alternative logic blocks. Logic
synthesis, in general, takes a functional description of the desired circuit, and using
the set of circuit elements available in the ASIC implementation technology, produces
an optimized circuit. For an FPGA the set of available circuit elements consists of
the array of logic blocks.

Technology mapping is the logic synthesis task that is directly concerned with
selecting the circuit elements used to implement the optimized circuit. Previous
approaches to technology mapping have focused on using circuit elements from a
limited set of simple gates. However, such approaches are inappropriate for complex
logic blocks where each logic block can implement a large number of functions. A
K-input lookup table can implement 22" different functions. For values of K greater
than 3 the number of different functions becomes too large for conventional technology
mapping. Therefore, new approaches to technology mapping are required for LUT-
based FPGAs.

This thesis presents two technology mapping algorithms that are among the ear-

liest work specifically addressing technology mapping for LUT circuits. Both of these

a) Boolean network

1

b) Lookup table circuit

Figure 1.1: Network and Circuit

algorithms implement a Boolean network as a circuit of K-input LUTs. For exam-
ple, consider the network shown in Figure 1.1a. This network can be implemented
by the circuit of 5-input lookup tables shown in Figure 1.1b. In this figure, dotted
boundaries indicate the function implemented by each lookup table.

The original motivation for this thesis was an architectural investigation into LUT-
based FPGA architectures [Rose89], [Rose90]. To support this investigation, a simple
LUT technology mapping program called chortle ! was developed. This program
used a greedy algorithm to decompose large functions into smaller functions and
pack these into K-input LUTs. Experience with chortle lead to the development of
a more effective program called Chortle-z [Fran90]. The key feature of this program
was the decomposition of nodes in the network to reduce the number of LUTs in the

final circuit. The network was first partitioned into a forest of trees and dynamic

!This program was based on the parsing and data structures of the Tortle [Lewi91] functional
simulator, and used a chewing action to decompose functions too large to fit into a single LUT,
hence the name chortle.

programming was used to find the minimum number of K-input LUTSs required to
implement each tree. The optimal decomposition of each node in the tree was found
by an exhaustive search.

This thesis focuses on the algorithms used in two subsequent programs, Chortle-crf
[Fran9la] and Chortle-d [Fran91b]. The goal of Chortle-crf is to minimize the number
of K-input LUTSs required to implement a network. This increases the size of designs
that can be realized with the fixed number of lookup tables available in a given LUT-
based FPGA. The major innovation in Chortle-crf is the application of a bin packing
approximation algorithm to the construction of effective decompositions. For values
of K less than or equal to 5, this bin packing approach constructs an optimal tree of
K-input LUTs implementing a network that is a fanout-free tree. The bin packing
approach is much faster than the exhaustive search used in Chortle-x. This increase
in speed makes it practical to consider optimizations exploiting reconvergent paths
and the replication of logic at fanout nodes to further reduce the number of lookup
tables. The algorithm used in Chortle-crf will be referred to as the area algorithm.

The goal of Chortle-d is to minimize the number of levels of K-input LUTs in the
final circuit. This can improve circuit performance by reducing the contribution of
logic block delays to the total delay on the critical paths in the circuit. Chortle-d uses
bin packing to construct effective decompositions and is able to construct an optimal
depth tree of LUTs implementing a network that is a fanout-free tree, for values of K
less than or equal to 6. It also exploits reconvergent paths and the replication of logic
at fanout nodes to reduce the number of levels. The algorithm used in Chortle-d will
be referred to as the delay algorithm.

Chortle and the program Mis-pga [Murg90], which was developed concurrently
with Chortle, represent the first research to specifically address technology mapping
for LUT circuits. Several other LUT technology mappers have been developed sub-
sequently, and the synthesis of LUT circuits is currently an active area of research.

This dissertation is organized as follows: Chapter 2 presents background material
on logic synthesis and technology mapping in general, and discusses other approaches

to technology mapping for LUT circuits that have been developed concurrently with,

or subsequent to the work presented in this thesis. Chapters 3 and 4 describe the
details of the area and delay algorithms. Chapters 5 and 6 present proofs that the
area and delay algorithms are optimal for restricted classes of networks, and Chapter
7 presents experimental results for both algorithms including comparisons to other
LUT technology mapping algorithms. Finally, Chapter 8 draws some conclusions and

suggests directions for future research.

Chapter 2

Background

This chapter presents background material on logic synthesis. It begins with a brief
description of logic optimization and then describes conventional approaches to tech-
nology mapping. The limitations of these previous approaches when applied to LUT
circuits provide the motivation for the LUT technology mapping algorithms presented
in this thesis. The chapter concludes by discussing other research that also addresses
technology mapping for LUT circuits.

The goal of logic synthesis is to produce a minimum cost circuit that implements
a desired combinational function. The cost of the circuit is typically a measure of its
area or delay, or a function of both. The combinational function can be represented
by a Directed Acyclic Graph (DAG) known as a Boolean network. Nodes in this
network represent Boolean functions, and each node has an associated variable and
local function. The support of this local function is the set of variables corresponding
to the node’s predecessors in the DAG. The global function represented by the node
is determined by applying the local function to the global functions represented by its
support. FExamples of local functions include ANDs, ORs, sum-of-products expres-
sions. In the network shown in Figure 2.1 the local functions are sum-of-products.
The support of node z is {y,d, e}, the local function is 2 = yd + ¢ and the global
function is z = (a + be)d + e.

The net-list for the final circuit can also be represented by a Boolean network. In

this case, each node corresponds to one circuit element and each edge corresponds

Y4

Figure 2.1: Boolean Network

to a wire. The function implemented by a circuit element is specified by the local
function of its corresponding node. In this thesis the term network will be used to
refer to a Boolean network representing a combinational function and the term circuit
will be used to refer to a Boolean network representing a circuit net-list.

Logic synthesis, as illustrated in Figure 2.2, can be conceptually divided into
technology-independent logic optimization and technology-dependent optimization
which is known as technology mapping [Detj87], [Rude89]. Logic optimization takes
the network describing the desired combinational function and produces a functionally
equivalent network optimized for some cost function. Technology mapping then con-
structs an optimized circuit that realizes the optimized network using the restricted

set of circuit elements available in the implementation technology.

2.1 Logic Optimization

In many logic synthesis systems such as misll [Bray87] and BOLD [Bost87], the
original network is first restructured to reduce a cost function that is calculated
directly from the network itself. The intention is to improve the final circuit by
reducing the complexity of the network. However, this technology-independent logic
optimization does not consider which circuit elements will implement the circuit.
The modifications applied to the network typically include redundancy removal and
common sub-expression elimination. Logic optimization may also exploit don’t cares
in the specification of the desired combinational function to simplify the network.

In the mislII logic synthesis system the complexity of a network is measured by

original network

Logic Optimization

optimized network

Technology Mapping

optimized circuit

Figure 2.2: Logic Synthesis

Logic Synthesis

counting the number of literals in the local function for each node. Each local function
is a sum-of products expression and each instance of a variable in this expression
counts as one literal. For example, the following 4-input, 2-output network has 11

literals

f=ac+ad+ be+ bd

g=a+b+ec

The complexity of this network can be reduced by the following modifications. The
expression (a + b) can be factored out of the equations for nodes f and ¢, and a new
node e, implementing the function a + b created. The variable e is resubstituted into

the equations for nodes f and g, resulting in the following 7-literal network:

e=a-+b
f=clctd)
g=e+c

2.2 Technology Mapping

After logic optimization has produced the optimized network, technology mapping
selects circuit elements to implement sub-functions within this network. When wired
together, these circuit elements form a circuit implementing the entire network. This
circuit is optimized to reduce a cost function that typically incorporates area and
delay. Conventional approaches to technology mapping can be categorized as rule-
based, library-based and cell generator approaches. The following sections briefly

describe each of these approaches.

2.2.1 Rule-based Technology Mapping

In early logic synthesis systems, such as SOCRATES [Greg86] and LSS [Joyn86],
technology mapping is performed by a series of local transformations to a circuit net-
list. The net-list is initially constructed by implementing each node in the original
network by a single circuit element. The area and delay of the circuit are then
optimized by selecting the appropriate sequence of transformations.

In SOCRATES, a rule-based expert system is used to select the sequence of local
transformations. Each transformation is expressed as a rule that consists of a target
configuration and a functionally equivalent replacement configuration. Figure 2.3a
illustrates the target and replacement configurations of two rules. Figure 2.3b illus-
trates an original circuit and the optimized circuit that results from applying these
two rules in sequence.

The first step in applying a rule to the circuit consists of finding a sub-circuit that
matches the target configuration. A complete match consists of a series of partial
matches that proceed from the output to the inputs of the target configuration.
The matching algorithm uses backtracking to recover from failed partial matches.
When a matching sub-circuit is found, the cost benefit of substituting the target
configuration with the replacement configuration is calculated using area and delay
estimates extracted from the resulting circuit. The decision to apply the rule is then

based on this incremental cost.

ﬁ rule 1 @ rule 2
? ?

target replacement target replacement

a) Two rules

; rule 1, rule 2

original circuit optimized circuit

b) Applying the rules sequentially

Figure 2.3: Rule-based Technology Mapping, from [Greg86]

The key to optimizing the circuit is the selection of the next rule to apply. One
strategy is to consider the rules in a fixed order and to always apply the first beneficial
rule. This approach is effective for area optimization, because the effect of each rule
on circuit area can be predicted locally. However, the strategy is less effective for
delay optimization, because it is difficult to make a local prediction of the effect of
each transformation on the overall delay of the circuit.

A second approach considers short sequences of rules rather than individual rules.
The extent of this search is controlled by limiting its depth and breadth. The depth is
the number of rules in the short sequence and the breadth is the number of alternative
rules to be considered at any point in the sequence. The search is also restricted to
sequences of rules that only apply to a limited neighborhood in the circuit to avoid
sequences of rules that could be applied independently. This approach improves the
quality of the final circuit, but it is computationally expensive. The computational
cost is reduced by using meta-rules that modify the depth, breadth, and neighborhood
of the search depending upon the current rule in the search sequence.

A major obstacle for rule-based expert systems is the acquisition of the knowledge

base. In the SOCRATES system, knowledge acquisition is semi-automated. An

10

expert user first generates the target and replacement configurations specifying a rule
and then the system verifies that the two configurations are equivalent and extracts
the characteristics that are used to calculate the incremental cost when the rule is

applied.

2.2.2 Library-based Technology Mapping

An important advance in technology mapping was the formalization introduced by
Keutzer in DAGON [Keut87] and used in mislI [Detj87]. In this formalization the
set of available circuit elements is represented as a library of functions and the con-
struction of the optimized circuit is divided into three sub-problems: decomposition,
matching and covering.

In DAGON;, the original network is first decomposed into a canonical representa-
tion that uses limited-fanin NAND nodes. This decomposition guarantees that there
will be no nodes in the network that are too large to be implemented by any library
element, provided the library includes NAND gates that reach the fanin limit. Note,
however, that there can be many possible NAND decompositions and that the one
selected may not be the best decomposition.

After decomposition, the network is partitioned into a forest of trees. The op-
timal sub-circuit covering each tree is constructed, and finally the circuit covering
the entire network is assembled from these sub-circuits. To form the forest of trees,
the decomposed network is partitioned at fanout nodes into a set of single-output
sub-networks. Each of these sub-networks is either a tree or a leaf-DAG. A leat-DAG
is a multi-input single-output DAG where only the input nodes have fanout greater
than one. Fach leaf-DAG is converted into a tree by creating a unique instance of
every input node for each of its multiple fanout edges.

The optimal circuit implementing each tree is constructed using a dynamic pro-
gramming traversal that proceeds from the leaf nodes to the root node. For every
node in the tree an optimal circuit implementing the sub-tree extending from the
node to the leaf nodes is constructed. This circuit consists of a library element that

matches a sub-function rooted at the node and previously constructed circuits imple-

11

menting its inputs. The cost of the circuit is calculated from the cost of the matched
library element and the cost of the circuits implementing its inputs. To find the lowest
cost circuit, DAGON first finds all library elements that match sub-functions rooted
at the node. The cost of the circuit using each of these candidate library elements is
then calculated and the lowest cost circuit is retained. The set of candidate library
elements is found by searching through the library and using tree matching [Aho85]
to determine if each library element matches a sub-function rooted at the node.

As an example of the above procedure, consider the library shown in Figure 2.4a
and the circuit shown in Figure 2.4b. The circuit elements are standard cells and
their costs are given in terms of the area of the cells. The cost of the INV, NAND-2
and AOI-21 cells are 2, 3, and 4, respectively. In Figure 2.4b. the only library element
matching at node E is the NAND-2 and the cost of the optimal circuit implementing
node F is therefore 3. At node C the only matching library element is also the NAND-
2. The cost of the NAND-2 is 3 and the cost of the optimal circuits implementing its
input £ is also 3. Therefore, the cumulative cost of the optimal circuit implementing
node C' is 6.

Eventually, the algorithm will reach node A. For node A there are two matching
library elements, the INV as used in Figure 2.4b and the AOI-21 as used in Figure 2.4c.
The circuit constructed using the INV matching A includes a NAND-2 implementing
node B, a NAND-2 implementing node €', an INV implementing node D, and a
NAND-2 implementing node F. The cumulative cost of this circuit is 13. The circuit
constructed using the AOI-21 matching A includes a NAND-2 implementing node F.
The cumulative cost of this circuit is 7. The circuit using the AOI-21 is therefore the
optimal circuit implementing node A.

The tree matching algorithm represents each library function using limited-fanin
NAND nodes. For some functions, however, there are many possible decompositions
into limited-fanin NAND ndoes. The inclusion of all decompositions can significantly
increase the size of the library and the computational cost of the matching algorithm.

General graph matching was considered as an alternative to tree matching in mislI

[Detj87], and Ceres [Mail90] used Boolean matching by recursive Shannon decompo-

12

| 1

B L

INV, cost =2 NAND-2, cost =3 AOI-21, cost=4
a) Library
[
E—

T
H

b) INV at node A, cost = 13

||

=

E 4

"A

c) AOI-21 at node A, cost =7

Figure 2.4: Dynamic Programming, from [Keut87]

sition. These approaches produced small improvements in the final circuits, but were

computationally more expensive than tree matching.

2.2.3 Cell Generator Technology Mapping

In ASIC implementation technologies that use cell generators to create circuit ele-
ments, the set of available circuit elements consists of a parameterized family of cells

rather than a specific library of functions. This cell family contains all members of a

13

class of functions, such as AndOrInverts (AOIs), that do not exceed parameters defin-
ing the family. Library-based technology mapping is inappropriate for cell generator
technologies when the number of cells in the family is too large to be practically ex-
pressed in a library. Examples of technology mapping that deals specifically with cell
generators are the approaches of Berkelaar and Jess [Berk88] and Liem and Lefebvre
[Liem91].

The key to cell generator technology mapping is the completeness of the cell family.
This simplifies the matching of network sub-functions to circuit elements. If a sub-
function does not exceed the parameters defining the family, it can be implemented
by a cell in the family. In addition, simplified matching makes it possible to improve
the final circuit by combining decomposition and matching.

Berkelaar addresses technology mapping for a cell generator that creates NMOS
or CMOS AndOrlInvert gates. The set of available circuit elements includes all AOI
gates that meet limits on the maximum number of transistors in series and in parallel.
The network is first partitioned into a forest of trees and a circuit implementing each
tree is then constructed by traversing the tree proceeding from the root node to the
leaf nodes. The decomposition of each AND or OR node in the tree is determined by
the parameters defining the cell family. When the in-degree of the node exceeds the
limits of the cell family, the node is decomposed into a tree of nodes that match the
largest available cell. When the in-degree of the node does not exceed these limits,
the node is implemented by a single cell. If this cell is not the largest cell in the
family, then the remaining unused capacity is passed on to the fanin nodes. In this
case, the cell also implements part of the functions of the fanin nodes.

The goal of the ROSSINI technology mapper [Liem91] is the delay minimization
of circuits implemented using a cell generator for complex CMOS gates. The family of
cells is defined by limits on the number of series n-transistors and series p-transistors
as well as the total number of inputs to the cell. The original network is first par-
titioned into a forest of trees and each tree is decomposed into a minimum-depth
binary tree. The circuit implementing each tree is then constructed using a dynamic

programming approach similar to the DAGON approach. At each node, the set of

14

matching circuit elements is constructed using a recursive traversal that is pruned by

the limits defining the cell family.

2.3 Lookup Table Technology Mapping

A major obstacle in applying conventional technology mapping approaches to LUT
circuits is the large number of different functions that a LUT can implement. A
K-input LUT can implement 22" different Boolean functions. Rule-based systems
lack a systematic method of developing a set of rules that encapsulates the complete
functionality of a LUT. For library-based systems, the library representing a K-
input LUT need not include all 22 different functions. Input permutations, input
inversions and output inversions can be used to reduce the number of functions in the
library. For example, there are 256 different 3-input functions, but considering input
permutations there are 80 different functions and considering input permutations
input inversions and output inversions there are 14 different functions. However, the
matching algorithms used in library-based technology mappers require the expansion
of the library to include all possible decompositions of each function. For values of
K greater than 3 the size of a library required to represent a K-input LUT becomes
impractically large.

Cell generator technology mapping avoids the problems of large libraries by using
matching algorithms that simply test network sub-functions against the parameters
defining the cell family. The number of sub-functions that must be considered is
reduced by using the network itself to direct the search. However, the cell families
used by these approaches do not completely encompass the functionality of a K-input
LUT.

The limitations of previous technology mapping approaches provide the motiva-
tion for technology mapping that deals specifically with LUT circuits. The first LUT
technology mappers were Chortle-x [Fran90] and Mis-pga [Murg90]. Improvements to
Chortle-x were incorporated in the program Chortle-crf [Fran9lal, and the program

Chortle-d [Fran91b] was the first technology mapper to optimize the delay perfor-

15

mance of LUT circuits by minimizing the number of levels of LUT in the final circuit.
The next two chapters of this dissertation present the details of the area and delay
algorithms used in Chortle-crf and Chortle-d.

Subsequent to Chortle and Mis-pga, several other LUT technology mappers have
been reported [Abou90], [Filo91], [Karp9l], [Woo91], [Cong92]. The remainder of
this chapter briefly describes these LUT technology mappers and Mis-pga. A common
feature of these programs is the ability to map Boolean networks into circuits of Xilinx
3000 series Configurable Logic Blocks (CLBs). The Xilinx 3000 series FPGAs are
examples of commercial LUT-based FPGAs. The following section briefly describes
the Xilinx 3000 series CLB.

2.3.1 Xilinx 3000 CLBs

An important motivation for LUT technology mapping has been the commercial
success of the Xilinx 3000 series FPGAs. The Configurable Logic Blocks in these
devices use LUTs to implement combinational logic. Each CLB can implement a
single function of up to 5 inputs or two separate functions of up to 4 inputs that
together have at most 5 distinct inputs.

A network can be mapped into a circuit of CLBs in two steps. The first step
uses LUT technology mapping to map the original Boolean network into functions
using at most 5 inputs. The second step then assigns these functions to CLBs. Each
CLB in the final circuit will either implement a single 5-input function or two 4-input
functions that together have at most 5 distinct inputs. The programs described in the
following sections use various methods to maximize the number of CL.Bs implementing

two functions and thereby minimize the total number of CLBs in the final circuit.

2.3.2 Mis-pga

The Mis-pga technology [Murg90] mapper minimizes the number of K-input LUTs
required to implement a Boolean network in two phases. The first phase decomposes

the original network to ensure that every node can be implemented by a single K-

16

input LUT and the second phase solves a covering problem to reduce the number
of LUTs in the final circuit. Nodes that can be implemented by a single LUT are
referred to as feasible nodes and a network consisting entirely of feasible nodes is
referred to as a feasible network.

In the first phase, two approaches are used to decompose infeasible nodes in the
original network into feasible nodes. The first approach is based on Roth-Karp de-
composition [Roth62] and the second approach is based on kernel extraction. The
first approach searches for a disjoint decomposition using the necessary and sufficient
conditions provided by Roth and Karp. To avoid the computational expense of the
complete search required to find the best decomposition, Mis-pga accepts the first
bound set that meets the Roth-Karp conditions.

The second approach decomposes an infeasible node by extracting its kernels
[Bray82] and calculating a cost for each kernel. The lowest cost kernel determines the
decomposition of the infeasible node. If a kernel and its residue are both feasible then
its cost is the number of variables shared by the kernel and its residue. This provides
an estimate of the number of new edges added to the network by the decomposition
using this kernel. The number of edges in the network is used as a measure of the
routing complexity of the final circuit. If either the kernel or its residue are infeasible,
then they are recursively decomposed using kernel extraction. If kernels cannot be
extracted, then a decomposition into 2-input ANDs and ORs is used.

The kernel-based decomposition also includes a greedy heuristic to collapse nodes
into their fanouts. All single-fanout nodes are collapsed if the resulting node is fea-
sible. For multiple fanout nodes each fanout is considered in turn and the node is
collapsed if the resulting node is feasible. The order in which the fanouts are consid-
ered is determined by an estimate of the number of edges that will be added to the
network.

The second phase of Mis-pga minimizes the number of nodes in the feasible net-
work produced by the first phase. A cluster of nodes, referred to as a supernode,
that has at most K inputs can be collapsed into a single feasible node. Reducing the

number of supernodes required to cover the network is expressed as a binate covering

17

problem [Rude89]. For small networks an exact solution to this covering problem is
used, however, for larger networks the computational cost of the exact solution is
prohibitive and a heuristic solution is used.

Mis-pga addresses technology mapping for Xilinx 3000 CLBs by first mapping
the Boolean network into 5-input functions and then assigning these functions to
CLBs. Fach CLB can implement one 5-input function or two functions of up to 4
inputs that together have no more than 5 inputs. Maximizing the number of CLBs
that implement two functions, and thereby minimizing the total number of CLBs, is
restated and solved as a Maximum Cardinality Matching problem.

A newer version of Mis-pga [Murg9la] includes two additional approaches to de-
composition. The first adapts a bin packing approach introduced in Chortle-crf
[Fran91b], and described in this dissertation, and the second is based on Shannon
cofactoring. The first decomposition approach decomposes an infeasible function into
a tree of feasible nodes. The cubes of the function are treated as items and the nodes
in the tree are treated as bins. The size of each item is the number of variables in
the cube and the capacity of every bin is K. Minimizing the number of nodes in the
tree is expressed as a bin packing problem and solved using the Best Fit Decreasing
heuristic.

The second decomposition approach uses Shannon cofactoring to decompose infea-
sible functions. An infeasible function f(x1, ..., #,) is decomposed into three functions:
fery fem and f = @y f., + T1fm. The function f now depends on three variables x4,
fu,. and fz= and is therefore feasible for values of K greater than or equal to 3. The
functions f,, and fz each depend on at most n — 1 variables and if n — 1 equals K
then they are feasible. If n — 1 is greater than K then the functions f,, and fz are
recursively decomposed.

The new version of Mis-pga also includes optimizations that improve performance
by reducing the number of levels of LUTs in the final circuit [Murg91b]. The original
network is first decomposed into a depth-reduced network of 2-input nodes [Sing88]
and then the critical paths are traversed from the primary inputs to the primary

outputs. A critical node at depth d is collapsed into its fanout nodes, at depth d + 1,

18

whenever the resulting node is feasible, or can be redecomposed with a reduction in

depth.

2.3.3 Asyl

The Asyl logic synthesis system incorporates technology mapping for Xilinx 3000
CLBs [Abou90]. The technology mapping phase of Asyl depends upon a reference
ordering of the primary input variables that is determined by the logic optimization
phase. The Boolean network produced by the logic optimization phase is a lexico-
graphical factorization. If this network is collapsed into a sum-of-products expression,
then the order of variables within the product terms defines the reference ordering.
The technology mapping phase of Asyl consists of two steps. The first step uses the
reference ordering to decompose the Boolean network into 4 and 5-input functions
and the second step assigns these functions to CLBs.

The first step considers slices of 4 variables within the reference ordering, beginning
with the last variable and proceeding slice by slice toward the first variable. Within
each slice, cut points are introduced to produce sub-functions of 4 or 5 inputs in
the following order: first, sub-functions of 4 variables from the current slice, next,
sub-functions of 4 variables where three variables are from the current slice and one
variable is from a preceding slice, and finally sub-functions of 5 variables beginning
with those having the maximum number of variables from the current slice.

The second step in the Asyl technology mapping phase assigns the functions pro-
duced by the first step to CLBs. First, each 5-input function is assigned to a single
CLB. Next, a greedy heuristic is used to maximize the number of CLBs implementing
two 4-input functions and thereby reduce the total number of CLBs. This heuristic
sorts the 4-input functions into a list and iteratively assigns pairs of functions to
CLBs. Two functions can be paired if together they have at most 5 distinct inputs.
The list is sorted by the number of potential partners each function has. The first
function in this list, which has the least number of partners, is assigned to a CLB
along with its first available partner in the remainder of the list. If a partner cannot

be found then the function is assigned to a CLB without a partner.

19

2.3.4 Hydra

The Hydra technology mapper [Filo91] addresses two-output RAM-based logic blocks
such as the Xilinx 3000 series CLLBs. The two-phase strategy employed by Hydra to
minimize the number of CLBs in the final circuit emphasizes the use of both CLB
outputs. The first phase decomposes nodes in the original network to ensure that
every node can be implemented by a single CLB and the second phase then finds
pairs of nodes that can be implemented by two-output CLBs.

The principal decomposition technique used in the first phase searches for disjoint
decompositions that increase the number of functions that can be paired into single
CLBs by the second phase. The first phase begins with an AND-OR decomposition
that limits the in-degree of nodes in the network and thereby reduces the computa-
tional cost of the search for disjoint decompositions. After the disjoint decompositions
are found another AND-OR decomposition limits the in-degree of every node to 5,
thereby ensuring that every node can be implemented by a single CLB.

The search for simple disjoint decompositions considers pairs of nodes beginning
with the pair having the greatest number of shared inputs and proceeding to the pair
with the least number of shared inputs. For each pair, an exhaustive search is used
to find disjoint decompositions. Once a disjoint decomposition is found, the decision
to accept it is based on the number of shared inputs and the total number of inputs
in the extracted functions.

The AND-OR decomposition is used to ensure that the in-degree of every node is
less than or equal to a specified limit. If the in-degree of a node exceeds this limit,
then it is factored into a tree of AND and OR nodes. This tree is traversed from the
leaves to the root and at each node if the combined support of the predecessor nodes
exceeds the limit, then a group of predecessor nodes with combined support less than
or equal to the limit is replaced by a new node. The group is selected by a heuristic
that considers the size of the support for the group, the maximum support of any
node in the group, and the number of nodes in the group.

A local optimization at the end of the first phase reduces the number of nodes by

collapsing nodes into their successors if the resulting node can still be implemented

20

by a single CL.B. For nodes with only one successor, the elimination is allowed if the
resulting node has in-degree less than or equal to 5. For nodes with more than one
successor, the elimination is allowed if the resulting node has in-degree less than or
equal to 4. This preserves opportunities for the second phase to pair functions into
two-output CLBs.

The second phase of Hydra uses a greedy heuristic to find pairs of functions that
can be implemented by two-output CLBs. Two functions can be paired if they each
have no more than 4-inputs and if together they have at most 5-inputs. The benefit of
pairing two functions is calculated as aNgpgreq + F Niotar, where Ngporeq 1s the number
of shared inputs and N, is the total number of inputs. The values of o and 3
are tuned to control the tradeoff between input sharing and input utilization. The
heuristic iteratively assigns pairs of functions to CLBs. Each iteration begins by
assigning the function with the greatest in-degree to the first output of a CLB. If this
function can be paired with any of the remaining functions then the partner resulting

in the greatest benefit is assigned to the second output of the CLB.

2.3.5 Xmap

The Xmap technology mapper [Karp91] uses two passes to minimize the number of
K-input LUTs required to implement a Boolean network and a third pass to produce
a circuit of Xilinx 3000 CLBs. The first pass decomposes nodes in the network to
ensure that all nodes have in-degree less than or equal to K, and the second pass
marks nodes to be implemented by single-output LUTs. The third pass assigns 5-
input functions produced by the first two passes to CLBs.

The first pass decomposes the original network into an if-then-else DAG. Fach
node in the if-then-else DAG is a 2 to 1 selector. For example, the node with inputs
a, b, and ¢ implements the Boolean function (if a then b else ¢). Every sum-of-
products node in the original network is decomposed into the following if-then-else

expression:

if (Eq) then (TRUE) else (if (v) then (Eq) else (Eop))

21

The variable v is the variable that appears most often in the product terms and the
expressions Fy and Fy consist of the product terms that contain v and T respec-
tively. The expression £, consists of the product terms that use neither v nor v. If
the expressions Fy, Ey and E; depend upon more than one variable, then they are
recursively decomposed using the same procedure.

For values of K greater than 2, every node in the if-then-else DAG can be imple-
mented by a single K-input LUT. When K is equal to 2, every 3-input node (z = ifa
then b else ¢) is replaced with the three 2-input nodes « = ab, y =dc, and z = x + y.

The second pass in Xmap marks nodes in the decomposed network that are im-
plemented as outputs of K-input LUTs in the final circuit. Initially, only the primary
outputs are marked. The network is then traversed from the primary inputs to the
primary outputs. At each node the set of previously marked nodes and primary in-
puts required to compute the node is referred to as the node’s signal set. If necessary,
additional nodes are marked to ensure that the size of the signal set is less than or
equal to K. These newly marked nodes reduce the size of the signal set by hiding
previously marked nodes. When the size of the signal set for the current node is
greater than K, the first additional nodes that are marked are preceding nodes with
high fanout. If further reduction of the signal set is required, then the support nodes
of the current node are marked in decreasing order of their own signal set sizes.

The final pass of Xmap minimizes the number of CLBs required to implement
the 5-input functions produced by the marking pass by iteratively assigning pairs of
functions to two-output CLBs. Each iteration assigns the function with the greatest
number of inputs to the first output of a CLB. The second output can be assigned
to another function provided that both functions have at most 4 inputs and that
together they have at most 5 inputs. From the remaining functions that satisfy these
conditions, the function with the greatest number of inputs is assigned to the second

output of the CLB.

22

2.3.6 VISMAP

The VISMAP technology mapper [Woo91] focuses on the covering problem in LUT
technology mapping. It assumes that the original network has been previously de-
composed to ensure that every node has in-degree less than or equal to K. Therefore,
every node can be directly implemented by a K-input LUT.

Reducing the number of LUTs required to cover the network is addressed by
labelling every edge in the network as either wisible or invisible. A visible edge is
implemented by a wire in the final circuit. Its source is the output of one LUT, and
its destination is the input of a different LUT. For an invisible edge both the source
and destination node are implemented in the same LUT. In this case, the network can
be simplified by merging the source node into the destination node. If the resulting
node has in-degree no greater than K., then it can still be implemented by a single
K-input LUT.

The assignment of visibility labels to edges is performed by first dividing the
original network into a collection of subgraphs that each contain at most m edges.
Within each subgraph, every edge can be labelled as either visible or invisible. The
optimal assignment is found by exhaustively searching all possible combinations of
edge labels. For a subgraph containing m edges there are 2™ different combinations.
For each combination, a simplified subgraph is formed by merging the source and
destination nodes of invisible edges. When the simplification of an invisible edge
results in a node with in-degree greater than K, the combination is rejected because
the node cannot be implemented by a K-input LUT. Otherwise, the combination
resulting in the simplified subgraph having the fewest nodes is retained as the optimal
label assignment for the subgraph.

The computational cost of the search is controlled by the limit on the number of
edges in each subgraph. In addition, the order in which the combinations are con-
sidered allows the search to be pruned by skipping over some combinations whenever
the simplification of an invisible edge results in a node with in-degree greater than
K.

VISMAP can map a Boolean network into a circuit of two-output LUT-based

23

logic blocks by first mapping the network into K-input functions and then iteratively
assigning pairs of these functions to logic blocks. It is assumed that each logic block
can implement two functions that each have at most 5 inputs. Each iteration begins
by assigning the function with the least number of potential partners to a logic block.
The function assigned to the second output of the logic block, from the potential

partners of the first function, is the function that has the fewest potential partners.

2.3.7 DAG-Map

The DAG-Map [Cong92] technology mapper addresses the delay optimization of LUT
circuits. The delay of each LUT is modeled as a unit delay, and DAG-Map minimizes
the delay of the circuit by minimizing the number of levels of LUTs in the final circuit.
DAG-Map also addresses the minimization of the total number of LUTSs as a secondary
objective. The original network, which is a graph of AND, OR and INVERT nodes,
is mapped into a circuit of K-input LUTs in four phases: decomposition, labelling,
covering, and area optimization.

The first phase decomposes nodes in the original network into trees of 2-input
nodes. This phase proceeds from the primary inputs to the primary outputs, and
at each node, given the depth of its immediate fanin nodes, decomposes the current
node into a minimum-depth tree of 2-input nodes.

The second phase labels nodes in the 2-input network to determine the level of
the LUT implementing each node. The label at primary inputs is set to 1, and the
label for any other node is calculated from the labels of its immediate fanin nodes. If
p is the maximum label at any of the fanin nodes, then the label at the current node
will be either p or p + 1. If the total number of distinct inputs to the current node
and the set of preceding nodes with label p is less than or equal to K, then the label
of the current node is also set to p. Otherwise, the label is p 4 1.

The third phase covers the labelled network with K-input LUTs. Initially, a
LUT is created to implement each of the primary outputs. This LUT implements all
preceding nodes that have the same label as the LUT’s output node. Additional LUTs

are then created to implement the inputs to each LUT. This process continues until the

24

primary inputs have been reached. Note that this covering phase will replicate logic
at fanout nodes if necessary to achieve the labeled depth. The labelling and covering
algorithms produce an optimal depth circuit provided the network is a fanout-free
tree, and that the maximum fanin at any node in the network is K.

The final step attempts to reduce the total number of LUTSs in the circuit, without
increasing the number of levels, by using two local optimizations. The first optimiza-
tion searches for a pair of LUTs that generate inputs for a third LUT that implements
an associative function such as AND and OR. The associative function can be decom-
posed to produce an intermediate node implementing the same associative operation
for these two inputs. If these two LUTs together have at most K distinct inputs, then
they can be combined into one LUT that also implements the intermediate node. The
one output of this merged LUT replaces the two inputs to the third LUT, without
increasing the number of levels in the circuit. The second optimization searches for a
LUT that can be combined with a LUT that uses its output as an input. If the two
LUTs together have at most K distinct inputs, then the LUTs can be combined into

a single LUT without an increase in the number of levels.

2.4 Summary

This chapter has presented a brief introduction to logic synthesis, and discussed
the motivation for technology mapping algorithms that deal specifically with LUT
cirucits. The following chapters present the details of the area and delay algorithms

used in Chortle.

25

Chapter 3

The Area Algorithm

A circuit can be implemented by a given FPGA only if the number of logic blocks
in the circuit does not exceed the available number of logic blocks and the required
connections between the logic blocks do not exceed the capacity of the routing net-
work. This chapter describes a technology mapping algorithm, referred to as the area
algorithm, that minimizes the total number of K-input LUTs in the circuit imple-
menting a given network. Minimizing the number of LUTSs in the circuit allows larger
networks to be implemented by the fixed number of logic blocks available in a given
LUT-based FPGA.

The algorithm takes the original network and produces a circuit of K-input LUTs
implementing the network. The nodes in the original network represent AND or OR
functions and inversion is represented by labeling edges. For example, in Figure 3.1a,
nodes a to m are the primary inputs of the network, and node z is the primary output.
In this figure, inverted edges are represented by a circle at the destination of the edge.

The function specified for the primary output z is
z = (abc+def)(g+h+0)(jk+ Im)

Figure 3.1b illustrates a circuit of 5-input LUTs implementing the network shown
in Figure 3.1a. The dotted boundaries indicate the functions implemented by each

LUT, and each LUT is referred to by the name of the node it implements. LUT y

implements the local function y = 7k 4 Im and LUT z implements the local function

26

z

a) Boolean network

z

b) Circuit of 5-input LUTs

Figure 3.1: Mapping a Network

z = x(g + h+1)y. Note that the LUT y uses only 4 of the 5 available inputs. All
examples in the remainder of this chapter will assume that the value of K is equal to
3.

The overall strategy employed by the area algorithm is similar to the library-based
approach introduced by DAGON [Keut87]. The original network is first partitioned
into a forest of trees and then each tree is separately mapped into a circuit of K-input
LUTs. The final circuit is then assembled from the circuits implementing the trees.

The major innovation of the area algorithm is that it simultaneously addresses the
decomposition and matching problems using a bin-packing approximation algorithm.
The correct decomposition of network nodes can reduce the number of LUTs required
to implement the network. For example, consider the circuit of 5-input LUTs shown
in Figure 3.2a. The shaded OR node is not decomposed and four 5-input LUTs are

required to implement the network. However, if the OR node is decomposed into the

27

I

a) Without decomposition, 4 LUTs

w

b) With decomposition, 2 LUTs

Figure 3.2: Decomposition of a Node

two nodes shown in Figure 3.2b, then only two LUTs are required. The challenge is
to find the decomposition of every node in the network that minimizes the number
of LUTs in the final circuit.

The original network is partitioned into a forest of trees by dividing it at fanout
nodes. The resulting sub-networks are either trees or leaf-DAGs. A leaf-DAG is a
multi-input single-output DAG where the only nodes with fanout greater than one
are the input nodes [Deva9l]. The leaf-DAGs are converted into trees by creating a
unique instance of every input node for each of its fanout edges.

The following section describes how dynamic programming and bin packing are
used to construct the circuit of K-input LUTs implementing each tree. Later sections
will consider local optimizations at fanout nodes that further reduce the number of
LUTs in the circuit by exploiting reconvergent paths and the replication of logic at

fanout nodes.

28

3.1 Mapping Each Tree

After the original network has been partitioned into a forest of trees, each tree is
separately mapped into a circuit of K-input LUTs. Before each tree is mapped a pre-
processor applies DeMorgan’s Theorem and AND-OR associativity rules to ensure
that the only inverted edges in the tree originate from leaf nodes and that there are
no consecutive AND nodes and no consecutive OR nodes in the tree. The presence
of consecutive AND or consecutive OR nodes would restrict the decompositions that
the area algorithm could use. Provided the above conditions are satisfied, Chap-
ter 5 proves that the area algorithm constructs an optimal tree of K-input LUTs
implementing the tree for values of K less than or equal to 5.

After preprocessing, each tree is mapped using the dynamic programming ap-
proach outlined as pseudo-code in Figure 3.3. The tree is traversed in a postorder
depth-first fashion and at each node a circuit of LUTs implementing the sub-tree ex-
tending to the leaf nodes is constructed. For leaf nodes, this circuit is simply a single
LUT implementing a buffer function. At non-leaf nodes, the circuit is constructed
from the circuits implementing the node’s immediate fanin nodes. The order of the
traversal ensures that these fanin circuits have been previously constructed.

The circuit implementing a non-leaf node consists of two parts. The first part,
referred to as the decomposition tree, is a tree of LUTs that implements the functions
of the root LUTSs of the fanin circuits and a decomposition of the non-leaf node. The
second part is the non-root LUTs of the fanin circuits. For example, Figure 3.4a
illustrates the circuits implementing the three fanin nodes of node z. The root LUTs
of the fanin circuits are referred to as the fanin LUTs. In this example, the LUTs
w, x, and y are the fanin LUTs and the LUTs s, ¢, u, and v, are the non-root LUTs
of the fanin circuits. Figure 3.4b illustrates the circuit implementing node z that is
constructed from the fanin circuits. It includes the non-root LUTs s, ¢, u, and v, and
the decomposition tree consisting of LUTs w, z.1, and z. Note that the node z has
been decomposed and that the node z.1 has been introduced.

The essence of the dynamic programming approach is to construct the optimal

29

MapTree (tree)
/* construct circuit implementing tree */

{

traverse tree from leaves to root, at each node

{

/* construct circuit implementing node */
if node is a leaf

circuit <= single LUT buffering node
else

circuit <= MapNode (node)

}

/* return circuit implementing root node */
return (circuit)

}

MapNode (node)

/* construct circuit implementing sub-tree rooted at node */

{

/* separate fanin LUTs */
faninLUTs <= root LUTs of circuits for all fanin nodes
precedingL UTs <= non-root LUTs of circuits for all fanin nodes

/* construct decomposition tree */
decomposition Tree <= DecomposeArea (node, faninl UTs)

/* join decomposition tree and preceding LUTs */
circuit <= decompositionTree U precedingl UT's

return (circuit)

}

Figure 3.3: Pseudo-code for Mapping a Tree

circuit implementing each non-leaf node using the optimal circuit implementing its
fanin nodes. The key to the area algorithm is the definition of the optimal circuit.
The principal optimization goal is to minimize the number of LUTs in the circuit,
and the secondary optimization goal is to minimize the number of inputs the circuit’s

root LUT uses. This secondary optimization goal is the key to ensuring that the op-

30

b) Circuit implementing node =z

Figure 3.4: Mapping a Node

timal circuit implementing the non-leaf node is constructed from the optimal circuits
implementing its fanin nodes. The following example illustrates the importance of
the secondary optimization goal.

The number of LUTSs in the circuit implementing the non-leaf node is the sum of
the number of LUTSs in the decomposition tree and the number of non-root LUTs in
the fanin circuits. Given that the fanin circuits each contain the minimum number
of LUTs, minimizing the number of LUTs in the decomposition tree minimizes the
number of LUTs in the circuit implementing the non-leat node. The secondary opti-

mization goal is the key to minimizing the number of LUTs in the decomposition tree.

31

b) Circuit implementing node =z

Figure 3.5: Fanin Circuit Satisfying Both Optimization Goals

Consider the fanin circuits shown in Figure 3.5a. These fanin circuits satisfy both
optimization goals. The fanin circuit at node = contains 2 LUTs and its root LUT
uses 2 inputs. The fanin circuit at node y consists of one LUT using 3 inputs. Figure
3.5b shows the best circuit implementing node z that can be constructed using these
fanin circuits. The circuit contains two LUTs and the decomposition tree consists of
the one LUT z.

Figure 3.6a shows an alternative fanin circuit at node x. This fanin circuit also
contains 2 LUTs, but its root LUT now uses 3 inputs. The best circuit implementing
node z that can be constructed using this fanin circuit, shown in Figure 3.6b, contains
3 LUTs. The decomposition tree in this circuit consists of the LUTs z and =.

The success of the dynamic programming approach requires that the circuits con-
structed at every node satisfy both of the optimization goals. Given that the fanin
circuits satisfy both goals, the circuit constructed at the non-leaf node will satisty
both optimization goals provided that the decomposition tree contains the minimum
number of LUTs and that its root LUT uses as few inputs as possible. The following

section describes how the decomposition tree is constructed.

32

z

b) Circuit implementing node =z

Figure 3.6: Fanin Circuit Satisfying Only Primary Optimization Goals

3.1.1 Constructing the Decomposition Tree

At each node, the decomposition tree implementing the fanin LUTs and a decompo-
sition of the node is constructed in two steps. The first step packs the fanin LUTs
into what are called second-level LUTs. The second step connects these LUTs to form
the complete decomposition tree.

Consider the node z and its fanin LUTs shown in Figure 3.7a. Note that in this
example each fanin LUT implements a single AND gate; however, in general the fanin
LUTs can implement more complicated functions. Figure 3.7b shows the second-level
LUTs constructed by the first step and Figure 3.7c shows the complete decomposition
tree. The second-level LUTs specify a two-level decomposition of the node z. Each
second-level LUT implements some subset of the fanin LUTs and the corresponding
decomposition of the node z. In Figure 3.7b the LUT 2.1 implements the functions
of the fanin LUTs uv and v. In Figure 3.7c the output of LUT 2.1 has been connected
to an input of LUT 2.2 and the output of LUT 2.2 has been connected to an input
of LUT z to form the complete decomposition tree.

For a given set of fanin LUTSs, the optimal decomposition tree contains the mini-

33

ooy oy oo s
u v w X y

z

a) Fanin LUTs

z

b) Two-level decomposition

¢) Multi-level decomposition

Figure 3.7: Constructing the Decomposition Tree

mum number of LUTSs, and its root LUT uses the minimum number of inputs. The
key to the construction of the optimal decomposition tree is to find the two-level
decomposition that contains the minimum number of second-level LUTs. The major
innovation of the area algorithm is to restate this as a bin-packing problem. This
approach is based on the observation that the function of a fanin LUT cannot be
split across more than one second-level LUT.

In general, the goal of bin packing is to find the minimum number of subsets into

which a set of items can be partitioned such that the sum of the sizes of the items

34

FirstFitDecreasing (node, faninL UTs)
/* construct two level decomposition */

{

boxList <= faninL UTs sorted by decreasing size
binList < ()

while (boxzList is not 0)

{

boxLUT <« largest lookup table from boxzList
find first binL UT in binList such that size (binL UT) + size (bozLUT) < K

if such a binLUT does not exist

{

binLUT < a new lookup table
add binL UT to end of binList

}

pack bozLUT into binLUT,
/* implies decomposition of node */

}

return (binlist)

}

Figure 3.8: Pseudo-code for Two-Level Decomposition

in every subset is less than or equal to a constant C. Each subset can be viewed as
a set of boxes packed into a bin of capacity C. In the construction of the two-level
decomposition, the boxes are the fanin LUTs, and the bins are the second-level LUTs.
The size of each box is its number of used inputs and the capacity of each bin is K.
For example, in Figure 3.7a the boxes have sizes 3, 2, 2, 2, and 2. In Figure 3.7b the
final packed bins have filled capacities of 5, 4, and 2.

Bin packing is known to be an NP-hard problem [Gare79], but there exist several
effective approximation algorithms. The procedure used to construct the two-level
decomposition, outlined as pseudo-code in Figure 3.8, is based on the First Fit De-

creasing algorithm. The fanin LUTs are referred to as boxes and the second-level

35

LUTs are referred to as bins. The procedure begins with an empty list of bins. The
boxes are first sorted by size, and then packed into bins one at a time, beginning
with the largest box and proceeding in order to the smallest box. Fach box is packed
into the first bin in the list having an unused capacity greater than or equal to the
size of the box. If no such bin exists, then a new bin is added to the end of the bin
list and the box is packed into this new bin. Note that packing more than one box
into a bin requires the introduction of a decomposition node. For example, in Figure
3.7b, when boxes u and v are packed into one bin this requires the introduction of
the decomposition node z.1.

The procedure used to convert the two-level decomposition into the multi-level de-
composition is outlined as pseudo-code in Figure 3.9. The second-level LUTSs are first
sorted by their size. Then, while there is more than one second-level LUT remaining,
the output of the LUT with the greatest number of used inputs is connected to the
first available unused input in the remaining LUTs. If no unused inputs remain then
an extra LUT is added to the decomposition tree. Note that the decomposition node
in the destination LUT is altered, and now implements part of the first level node.
For example, in Figure 3.7c, when LUT z.1 is connected to LUT 2.2, the decompo-
sition node z.2 is altered. This procedure constructs an optimal decomposition tree
provided that the two-level decomposition contains the minimum number of LUTs,
and that its least filled LUT is as small as possible. Appendix A presents a proof that
the First Fit Decreasing bin-packing algorithm constructs a two-level decomposition
satisfying both of these requirements when the box and bin sizes are restricted to

integers less than or equal to 5.

3.1.2 Optimality

The goal of the area algorithm is to reduce the number of K-input LUTs required to
implement the original network. The original network is first partitioned into a forest
of trees and each of these is mapped separately into a tree of LUTs. The final circuit
implementing the original network is assembled from the circuits implementing the

trees. Chapter 5 proves that the circuit constructed for each tree is an optimal tree

36

DecomposeArea (node, faninl UTs)
/* construct tree of LUTs implementing decomposition of node and fanin LUTs */

{

/* construct two level decomposition */
packedLUTs = FirstFitDecreasing (node, faninl UTs)

lookList <= packedL UTs sorted by decreasing size

while (lookList contains more than one lookup table)

{

source LUT < largest lookup table from lookList
find first destinationL UT in lookList such that size (destinationLUT) +1 < K

if such a destinationL UT does not exist

{

destinationLUT <= a new lookup table
add destinationL UT to end of lookList

}

connect sourceLUT output to destinationL UT input,
/* implies decomposition of node */

}

return (lookList)

}

Figure 3.9: Pseudo-code for Multi-Level Decomposition

of LUTs implementing that tree, provided that the value of K is less than or equal
to 5. For these values of K, the FFD bin-packing algorithm results in the two-level
decomposition with the minimum number of LUTs and the smallest possible least
filled LUT. This two-level decomposition leads to an optimal decomposition tree,
which in turn leads to an optimal circuit implementing each non-leaf node including
the root node of the tree being mapped.

It f is the number of fanin edges at a given node in the tree, and bucket sorts are
used in the implementation of the above algorithm, then the time taken to construct

the decomposition tree is bounded by K f. The dynamic programming traversal visits

37

each node in the tree once. If there are n nodes in the tree, and the maximum fanin
at any node is F', then the time taken to map the entire tree is bounded by n K F'.
Even though the tree of LUTs implementing each tree in the forest is optimal, the
final circuit implementing the entire network that is assembled from these circuits is
not necessarily optimal. Partitioning the original network into a forest of fanout-free
trees precludes LUTs that realize functions containing reconvergent paths and assem-
bling the final circuit from the separate circuits implementing each tree precludes the
replication of logic at fanout nodes. The following sections describe local optimiza-
tions that exploit reconvergent paths and the replication of logic at fanout nodes to

further reduce the number of LUTs in the final circuit.

3.2 Exploiting Reconvergent Fanout

When the original network is partitioned at fanout nodes into single-output sub-
networks, the resulting sub-networks are either trees or leaf-DAGs. In a leaf-DAG, a
leaf node with out-degree greater than one is the source of reconvergent paths that
terminate at some other node in the leaf-DAG. This section describes two alternative
optimizations that exploit the reconvergent paths to improve the circuit implement-
ing the terminal node. These optimizations replace the FFD algorithm and improve
the two-level decomposition used to construct the decomposition tree. The first opti-
mization uses an exhaustive search that repeatedly invokes the FFD algorithm. The
second optimization uses a greedy heuristic that simplifies to the FFD algorithm when
there are no reconvergent paths.

Both optimizations exploit reconvergent paths that begin at the inputs to the fanin
LUTs and that terminate at the node being mapped. In the following description, the
fanin LUTs are again referred to as boxes and the second-level LUTs are referred to
as bins. Consider the set of boxes shown in Figure 3.10a. Two of the boxes share the
same input and so there exists a pair of reconvergent paths terminating at the shaded
OR node. Each of these boxes has two inputs, for a total of four inputs. However,

when they are packed into the same bin, as in Figure 3.10b, only three inputs are

38

a) Fanin LUTs with shared inputs

b) Reconvergent paths realized within one LUT

Figure 3.10: Local Reconvergent Paths

needed. The reconvergent paths are realized within the LUT and the total number
of inputs used is less than the sum of the sizes of the two boxes. The decrease in
the number of bin inputs that are used may allow additional boxes to be packed into
the same bin and may therefore improve the final two-level decomposition. Figure
3.11a illustrates the two-level decomposition constructed by applying the FFD bin-
packing algorithm after the reconvergent paths have been realized within one LUT.
By contrast, Figure 3.11b shows the result if the reconvergent paths are ignored, and
the bin-packing algorithm is applied directly to the fanin LUTs. In this case, the
two-level decomposition that realizes the reconvergent paths within a LUT contains
fewer second-level LUTs.

The reconvergent paths can only be realized within one LUT if the two boxes with
the shared input are packed into the same bin. To ensure that the boxes are packed
together they can be merged before the FFD bin-packing algorithm constructs the
two-level decomposition. However, forcing the two boxes into one bin can interfere
with the FFD algorithm and actually produce an inferior two-level decomposition.
To find the best two-level decomposition, the bin-packing algorithm is applied both

with and without the forced merging of the two boxes and the superior two-level

39

a) With forced merge, 2 LUTs

b) Without forced merge, 3 LUTs

Figure 3.11: Exploiting Reconvergent Paths

decomposition is retained.

When more than one pair of fanin LUTs share inputs, there are several pairs
of reconvergent paths. To determine which pairs of reconvergent paths to realize
within LUTSs, an exhaustive search is used to find the best two-level decomposition,
as outlined as pseudo-code in Figure 3.12. The search begins by finding all pairs of
boxes that share inputs. Next, every possible combination of these pairs is considered.
For each combination a two-level decomposition is constructed by first merging the
respective boxes of the chosen pairs and then proceeding with the FFD bin-packing
algorithm. The two-level decomposition with the fewest bins and the smallest least
filled bin is retained.

The exhaustive search becomes impractical when there is a large number of pairs
of boxes that share inputs. In this case, a heuristic, referred to as the Maximum Share
Decreasing (MSD) algorithm, is used to construct the two-level decomposition. This
heuristic, outlined as pseudo-code in Figure 3.13, is similar to the FFD algorithm,
but it attempts to improve the two-level decomposition by maximizing the sharing of

inputs when boxes are packed into bins. The MSD algorithm iteratively packs boxes

40

Reconverge (node, faninL UTs)

/* construct two level decomposition */
/* exploit reconvergent paths */

/* exhuastive search */

{

pairList <= all pairs of faninl UTs with shared inputs
bestLUTs < ()
for all possible chosenPairs from pairList
inergedL UTs <= copy of faninL UTs with forced merge of chosenPairs

packed.UTs < FirstFitDecreasing (node, merged UTs)

if packed.UTs are better than bestL UTs
bestLUTs <= packedLUTs

}

return (bestL UTs)
1

Figure 3.12: Pseudo-code for Exhaustive Reconvergent Search

41

MaxShare (node, faninL UTs)
/* construct two level decomposition */
/* exploit reconvergent paths */
/* greedy heuristic */
{
boxList <= faninL UTs
binList < ()

while (boxzList is not 0)

{
boxLUT <= highest priority LUT from boxList

/* precedence of rules for highest priority boxL UT */
/* 1) most inputs */

/* 2) most inputs shared with a bin in binList */

/* 3) most inputs shared with a box in bozList */

find binLUT in binList that shares most inputs with boxLook

if such a binLUT does not exist

{
binLUT < a new LUT

add binL UT to end of binlList
}

pack bozL UT into binL UT exploiting shared inputs,
/* implies decomposition of node */

}

return (binlist)

}

Figure 3.13: Pseudo-code for Maximum Share Decreasing

42

into bins until all the boxes have been packed. Each iteration begins by choosing
the next box to be packed and the bin into which it will be packed. The chosen box
satisfies three criteria: first it has the greatest number of inputs, second it shares
the greatest number of inputs with any existing bin, and third it shares the greatest
number of inputs with any of the remaining boxes. The first criterion ensures that
the MSD algorithm simplifies to the FFD algorithm when there are no reconvergent
paths. The second and third criteria encourage the sharing of inputs when the box is
packed into a bin. The chosen box is packed into the bin with which it shares the most
inputs while not exceeding the capacity of the bin. If no such bin exists, then a new
bin is created and the chosen box is packed into this new bin. Note that the second
and third criteria for choosing the box to be packed only consider combinations of
boxes and bins that will not exceed the bin capacity.

Both reconvergent optimizations only find local reconvergent paths that begin at
the inputs of the fanin LUTs. However, when the fanin circuits are constructed, no
consideration is given to reconvergent paths that terminate at subsequent nodes. The
propagation of these reconvergent paths through the fanin LUTSs is therefore depen-
dent upon the network traversal order. This is demonstrated by the experimental
results presented in Chapter 7, where some circuits produced with the MSD algo-
rithm contain fewer LUTs than circuits produced using the exhaustive reconvergent

search.

3.3 Replication of Logic at Fanout Nodes

This section describes how the replication of logic at fanout nodes can reduce the
number of LUTs required to implement a network. Recall that the original network
is partitioned into a forest of trees and that each tree is separately mapped into a
circuit of K-input LUTs. When these separate circuits are assembled to form the
circuit implementing the entire network, the replication of logic at fanout nodes can
reduce the total number of LUTs in the final circuit. For example, in Figure 3.14a,

three LUTSs are required to implement the network when the fanout node is explicitly

43

b) With replicated logic, 2 LUTs

Figure 3.14: Replication of Logic at a Fanout Node

implemented as the output of a LUT. In Figure 3.14b, the AND gate implementing the

fanout node is replicated and only two LUTs are required to implement the network.

When the original network is partitioned into a forest of trees, each fanout node
is the root of one source tree and a leaf of several destination trees. For example, in
Figure 3.15a the source and destination trees are represented by large triangles. The
fanout node «a is the root of the source tree A and is a leaf in each of the destination
trees B and C.

The replication optimization considers replicating the function of the root LUT of
the circuit implementing the source tree. In Figure 3.15a, the small shaded triangle at
the root of the source tree represents the root LUT. The root LUT can be eliminated
if a replica of its function is added to each of the destination trees, as illustrated in
Figure 3.15b. If the total number of LUTs required to implement the destination
trees does not increase, then eliminating the root LUT results is an overall reduction
in the number of LUTs in the final circuit.

The Root Replication procedure, outlined as pseudo-code in Figure 3.16, begins
by constructing the circuit implementing the source tree. The destination trees are

first mapped without the replication of logic and are then re-mapped with a replica

44

a) Without replication

b) With replication

Figure 3.15: Replication of the Root LUT

of the function of the source tree’s root LUT added to each destination tree. If the
total number of LUTSs required to implement the destination trees with replication is
less than or equal to the number without replication, then the replication is retained
and the source tree’s root LUT is eliminated.

If the replication at the fanout node is retained, there is a reduction of one LUT in
the total number of LUTs. When the original network contains many fanout nodes,
the replication optimization is a greedy local optimization that is applied at every
fanout node. If the destination tree of one fanout node is the source tree or destination
tree of a different fanout node, there can be interactions between the replication of
logic at the two fanout nodes. In this case, the replication of logic at the first fanout
node can preclude the replication of logic at the second fanout node. The overall
success of the replication optimization depends upon the order in which it is applied
to the fanout nodes.

In addition to the interaction among the local replication optimizations, there can

be interactions between the replication optimization and the reconvergent optimiza-

45

RootRep (source Tree)

{

sourceCircuit = mapTree (source Tree)
rootLUT = root LUT of sourceCircuit

/* find cost without replication */
noRepTotal = 0

for all fanout destinationTrees

{

noRepCircuit = mapTree (destinationTree)
noRepTotal = noRepTotal + number of lookup tables in noRepClircuit

}

/* find cost with replication */
repTotal = 0

for all fanout destinationTrees

{

add replica of rootLook to destination Tree

repCircuit = mapTree (destination Tree)
repTotal = repTotal + number of lookup tables in repClircuit

}

if (repTotal < noRepTotal)

{

retain repCircuits
eliminate rootL UT from sourceCircuit

}

else

{

retain noRepCircuits

}

Figure 3.16: Pseudo-code for Root-LUT Replication

46

tion. The replication of logic at fanout nodes can expose reconvergent paths and

thereby create additional opportunities for the reconvergent optimization.

3.4 Summary

The area algorithm presented in this chapter maps a network into a circuit of K-
input LUTs. The algorithm uses bin packing to find decompositions of each node
in the network that minimize the number of LUTSs in the final circuit. Chapter 5
will prove, for values of K < 5, that the area algorithm produces an optimal tree
of LUTs implementing a network that is a fanout-free tree. General networks are
mapped by first partitioning them at fanout nodes into a forest of trees, and then
mapping each tree separately. Additional optimizations exploit reconvergent paths,
and the replication of logic at fanout nodes, to further reduce the number of LUTs
in the final circuit. Chapter 7 will present some experimental results using the area
algorithm. The following chapter presents the delay algorithm which minimizes the

number of levels of LUTs in the final circuit.

47

Chapter 4

The Delay Algorithm

The FPGA implementation of a typical circuit is roughly three times slower than
an MPGA implementation [Brow92]. Since circuit performance is a critical issue in
many ASIC applications, this speed disadvantage increases the importance of perfor-
mance optimization in logic synthesis for FPGAs. One approach to improving the
performance of an FPGA circuit is to reduce the number of levels of logic blocks in
the circuit. This is one aspect of performance optimization that can be addressed
by technology mapping without considering detailed routing. Even though routing
delays are a significant portion of total delay in an FPGA circuit, a recent study
indicates that minimizing the number of levels of LUTs in a circuit of lookup tables
minimizes the total delay of the circuit [Murg91b]. This chapter presents a technology
mapping algorithm, referred to as the delay algorithm, that minimizes the number of
levels of K-input lookup tables in the circuit implementing the Boolean network.
The key feature of the delay algorithm is the application of a bin-packing ap-
proximation algorithm to the decomposition problem. Unlike the area algorithm,
which decomposed nodes to reduce the total number of LUTs, the delay algorithm
decomposes nodes to minimize the number of levels in the final circuit. For example,
consider the circuit of 5-input LUTs shown in Figure 4.1a. In this figure, the number
in the lower right hand corner of a LUT indicates its depth, which is the maximum
number of LUTSs along any path from a primary input to the output of the LUT. The
LUTs preceding the AND nodes are not shown in this figure, but they are assumed to

48

b) With decomposition, depth = 4

Figure 4.1: Decomposition of a Node

contribute to the overall depth as indicated. In Figure 4.1a the shaded OR node is not
decomposed, and 5 levels of LUTs are required to implement the network. However,
if the OR node is decomposed into the two nodes shown in Figure 4.1b then only 4
levels of LUTs are required. The challenge is to find the decomposition of every node
in the network that minimizes the number of levels in the final circuit.

The delay algorithm, like the area algorithm, first partitions the original network
into a forest of trees, maps each tree separately into a circuit of K-input LUTs, and
then assembles the circuit implementing the entire network from the circuits imple-
menting the trees. The trees are mapped in a breadth-first order proceeding from
the primary inputs toward the primary outputs. This ensures that when each tree is
mapped that the trees implementing its leaf nodes have already been mapped. The
following section describes how dynamic programming and bin packing are used to
construct the circuit of K-input LUTs implementing each tree in the forest. Sections
4.2 and 4.3 describe local optimizations at fanout nodes that further reduce the num-
ber of levels in the final circuit by exploiting reconvergent paths and the replication
of logic at fanout nodes.

The overall strategy employed by the delay algorithm is to minimize the number

49

of levels of LUTs by minimizing the depth of every path in the final circuit. This can
result in a circuit that contains a large number of LUTs. The final section of this

chapter discusses methods of reducing this area penalty.

4.1 Mapping Each Tree

Like the area algorithm, the delay algorithm begins mapping each tree in the forest
by applying DeMorgan’s Theorem and AND-OR associativity rules to ensure that
the only inverted edges in the tree originate from the leaf nodes and that there are no
consecutive AND nodes and no consecutive OR nodes. The presence of consecutive
AND or consecutive OR nodes would restrict the decompositions that the delay algo-
rithm could use. Provided the above conditions are satisfied, Chapter 6 proves that
the delay algorithm produces an optimal depth tree of K-input LUTs implementing
the tree for values of K less than or equal to 6.

The overall approach taken by the delay algorithm to mapping the tree, outlined
as pseudo-code in Figure 4.2, is similar to that used by the area algorithm. Beginning
at the leaf nodes and proceeding to the root node, the delay algorithm constructs a
circuit at each node that implements the sub-tree extending to the leaf nodes. At leaf
nodes, this circuit is simply a single LUT implementing a buffer. Each leat node is
either a primary input or a fanout node that is the root of another tree in the forest.
If the leaf node is a primary input the depth of the buffer LUT is one. If the leaf node
is the root of another tree, then the depth of the buffer LUT is one greater than the
depth of the root LUT of the circuit implementing the leaf node. The order in which
the trees in the forest are mapped ensures that the tree rooted at the leaf node has
already been mapped.

The circuit implementing a non-leat node is constructed from the circuits imple-
menting its fanin nodes and consists of two parts. The first part is the decomposition
tree implementing the functions of the root LUTs of the fanin circuits and a decom-
position of the non-leaf node. The second part is the non-root LUTs of the fanin

circuits. The key difference between the delay algorithm and the area algorithm is

30

MapTree (tree)
/* construct circuit implementing tree */

{

traverse tree from leaves to root, at each node

{

/* construct circuit implementing node */
if node is a leaf

circuit <= single LUT buffering node
else

circuit <= MapNode (node)

}

/* return circuit implementing root */
return (circuit)

}

MapNode (node)

/* construct circuit implementing sub-tree rooted at node */

{

/* separate fanin LUTs */
faninLUTs <= root LUTs of circuits for all fanin nodes
precedingL UTs <= non-root LUTs of circuits for all fanin nodes

/* construct decomposition tree */
decomposition Tree <= DecomposeDelay (node, faninL UTs)

/* join decomposition tree and preceding LUTs */
circuit <= decompositionTree U precedingl UT's

return (circuit)

}

Figure 4.2: Pseudo-code for Mapping a Tree

the procedure used to construct the decomposition tree at each node.

Once again, there are two optimization goals for the circuit implementing each
non-leaf node. The primary goal is to minimize the depth of the root LUT of the
circuit, and the secondary goal is to minimize the number of inputs used by the

root LUT. The secondary optimization goal is the key to ensuring that the optimal

51

decomposition tree, and therefore the optimal circuit implementing the non-leaf node,
is constructed from the optimal fanin circuits. The following section describes how

the decomposition tree is constructed.

4.1.1 Constructing the Decomposition Tree

At each non-leaf node, the decomposition tree is constructed in three steps. The first
step separates the root LUTSs of the fanin circuits according to their depth into strata,
the second step packs the LUTs within each stratum to minimize the number of LUTs
in the stratum, and the final step connects the strata together to form the complete
decomposition tree. The remainder of this section will refer to the root LUTs of the
fanin circuits as the fanin LUTs.

Consider the node z and its fanin LUTs shown in Figure 4.3a. Initially, stratum 3
contains the fanin LUTs u, v and w, and stratum 4 contains the fanin LUTs x and y.
Figure 4.3b shows the result of minimizing the number of LUTs within each stratum,
and Figure 4.3¢ shows the complete decomposition tree. In Figure 4.3b each LUT in
a given stratum implements some subset of the fanin LUTs at that stratum’s depth
and the corresponding decomposition of the node z. For example, the stratum-4 LUT
z.2 implements the functions of the fanin LUTs x and y. In Figure 4.3¢ the outputs
of the stratum-3 LUTs w and z.1 are connected to the existing stratum-4 LUT 2.2
and the new stratum-4 LUT 2.3, and the outputs of these stratum-4 LUTs are in
turn connected to a new stratum-5 LUT to form the complete decomposition tree.

The decomposition tree is optimal if its root LUT is at the minimum depth and
uses the minimum number of inputs. Minimizing the number of LUTs within each
stratum, using the FFD bin-packing algorithm outlined in Section 3.2 is the key to
constructing the optimal decomposition tree. The procedure used to construct the
decomposition tree is outlined as pseudo-code in Figure 4.4. This procedure begins
by separating the fanin LUTs into strata according to their depth and using the FFD
bin-packing algorithm to minimize the number of LUTs within each stratum. Note
that packing more than one fanin LUT (box) into a stratum LUT (bin) requires the

introduction of a decomposition node. For example in Figure 4.3b when boxes = and

52

\ stratum.3.

stratum.4

[[[
B
u \Y W
3
Z-l\ stratum.3
stratum.4
z

stratum.4

z stratum.5

¢) The complete decomposition tree

Figure 4.3: Constructing the Decomposition Tree

33

DecomposeDelay (node, faninl UTs)
/* construct tree of LUTs implementing decomposition of node and faninLUTs */
/* minimize depth of decomposition tree */

{

minD < minimum depth of faninLUTs
mazD < maximum depth of faninl Uts

for all d from minD to maxD

{
stratuml UTs [d] < FirstFitDecreasing (node, faninL UT's at depth d)

}

lookList <= ()
d <= minD

until (only one LUT in stratumLUTs [d] & d > mazD)

{
/* connect LUTs in stratumLUTs [d] to LUTs in stratumLUTs [d+ 1] */

for all source LUT in stratumLUTs [d]
{

destinationLUT < first LUT with unused input in stratumLUTs [d+ 1]

if such a destinationL UT does not exist

{

destinationLUT < new LUT
add destinationL UT to end of stratumLUTs [d + 1]

}

connect sourceLUT output to destinationl UT input
/* implies decommposition of node */

add sourceL UT to lookList

}
d<=d+1

}

add stratumLUT [d] to lookList

return (lookList)

}

Figure 4.4: Pseudo-code for Constructing Decomposition Tree

o4

y are packed into one bin this requires the introduction of the node z.2.

After minimizing the number of LUTs within each stratum the algorithm proceeds
from the uppermost stratum to the deepest stratum connecting the outputs of LUT's
in stratum D to unused inputs in stratum D+ 1. The decomposition tree is complete
when the deepest stratum contains only one LUT. Connecting the output of a LUT
in stratum D to an unused input of a LUT in stratum D + 1 alters the decomposition
node in the stratum D + 1 LUT. For example, in Figure 4.3¢c when the stratum-3
LUT w is connected to the stratum-4 LUT 2.2 the decomposition of the OR node
is altered. It may be necessary to add extra LUTs to stratum D 4 1 if there are
more LUTs in stratum D than unused inputs in stratum D + 1. For example, in
Figure 4.3¢ the output of the stratum-3 LUT z.1 is connected to the new stratum-4
LUT z.3. Note that in this example the extra LUT is simply a buffer and it can be
eliminated after the decomposition tree is completed. This procedure produces an
optimal decomposition tree provided that the FFD bin-packing algorithm packs the

fanin LUTs (boxes) within each stratum into the minimum number of stratum LUTs

(bins).

4.1.2 Optimality

The goal of the delay algorithm is to minimize the number of levels of K-input
LUTs in the circuit implementing the original Boolean network. The network is first
partitioned into a forest of trees, each of these is mapped separately and the circuit
implementing the entire network is assembled from these separate circuits. Section
5.3 of Chapter 5 proves that the tree of LUTs constructed for each tree is optimal,
provided that the value of K is less than or equal to 6.

It f is the number of fanin edges at a given node in the tree, and bucket sorts
are used, then the time taken to construct the decomposition tree is bounded by K f.
Each node in the tree is visited once by the dynamic programming traversal. If there
are n nodes in the tree, and the maximum fanin at any node is F', then the time
taken to map the entire tree is bounded by nK F'.

As in the area algorithm, the circuit implementing the entire network that is

)

assembled by the delay algorithm from the separate circuits implementing each tree
is not necessarily optimal, even if the separate circuits are optimal. Partitioning
the original network into a forest of fanout-free trees precludes LUTs that realize
functions containing reconvergent paths and assembling the final circuit from the
separate circuits implementing each tree precludes the replication of logic at fanout
nodes. The following sections describe local optimizations that exploit reconvergent
paths and the replication of logic at fanout nodes to further reduce the number of

levels in the final circuit.

4.2 Exploiting Reconvergent Paths

As discussed in Section 3.3 of Chapter 3, shared inputs among the fanin LUTs indicate
the presence of local reconvergent paths. The key to a better decomposition tree is
minimizing the number of LUTs within each stratum. When two fanin LUTs with a
shared input are packed into one stratum LUT, the number of inputs used is less than
the sum of the number of inputs used by each LUT. This can allow the number of
LUTs in the stratum to be reduced, which in turn can improve the decomposition tree.
Either the exhaustive search, or the Maximum Share Decreasing heuristic, described
in Section 3.3 of Chapter 3, can be used to replace the FFD bin-packing algorithm

in the procedure used to construct the decomposition tree.

4.3 Replication of Logic at Fanout Nodes

This section describes how the replication of logic at fanout nodes can reduce the
depth of the final circuit. After the original network has been partitioned into a
forest of trees, every fanout node is the root of one source tree and the leaf of several
destination trees. As in the area algorithm, the delay algorithm first maps the source
tree into a circuit of K-input LUTs and then determines if a replica of the function of
the root LUT of this circuit should be added to each of the destination trees. Consider

the circuit shown in Figure 4.5a. In this circuit the fanout node is implemented as

56

b) With replication, depth = 1

Figure 4.5: Replicating Logic at a Fanout Node

the output of a LUT and the circuit contains two levels of LUTs. In Figure 4.5b the
function of the LUT implementing the fanout node has been replicated for each of
the fanout edges and the resulting circuit contains only one level.

The delay algorithm adds a replica of the root LUT for every fanout edge of
every fanout node. Provided the minimum depth circuit is constructed for each
destination tree, this simple replication optimization will either leave the number of
levels unchanged, or reduce the number of levels. However, replication of logic can
increase the number of LUTs in the final circuit. The following section will discuss a
replication optimization that avoids replications that increase area when they do not

decrease depth.

4.4 Reducing the Area Penalty

The delay algorithm presented so far is concerned solely with minimizing the number
of levels in the final circuit, and does not attempt to minimize the number of LUTs in
the circuit. Compared to the area algorithm, the construction of the decomposition
tree and the replication optimization in the delay algorithm significantly increase the

number of LUTs in the circuit. The following sections describe three optimizations

57

b) With leaf replication

Figure 4.6: Replication at a Leaf Node

that attempt to reduce this area penalty. The first optimization avoids replications
that increase the number of LUTs without decreasing the number of levels in the
circuit. The second optimization searches for LUTs that can be merged into their
fanout LUTs. The third optimization uses the area algorithm decomposition to reduce

the number of LUTs on non-critical paths.

4.4.1 Avoiding Unnecessary Replication

At each fanout node, the replication optimization described in Section 4.3 creates a
replica of the function of the LUT implementing the fanout node for every fanout
edge. For some fanout edges the addition of the replica can increase the number of
LUTs in the circuit without decreasing the number of levels. Recall that in the area
algorithm, the Root Replication procedure created a replica for either all or none of
the fanout edges. This section describes a Leaf Replication procedure that determines
if a replica should be added to each edge independently.

Consider the forest of trees shown in Figure 4.6a. In this figure each large triangle

38

represents one tree. For the tree D the two leaf nodes leaf nodes a and b are fanout
nodes that are also the roots of trees A and B. When the Leaf replication procedure
maps the tree D, the order in which the trees are mapped ensures that the trees A
and B have already been mapped. At each leaf node, the root LUT of the circuit
implementing the node is referred to as the fanout LUT at that node. In figure
4.6a, the fanout LUT at node a is represented by the small shaded triangle. At each
leaf node, the procedure determines it a replica of the function of the fanout LUT
should replace the leaf node as the source of the fanout edge leading to the tree being
mapped. Figure 4.6b shows the result of replicating the fanout LUT at node «a for the
fanout edge leading to tree D. Note that the decision to add a replica to the other
fanout edge from a is made independently when the tree C' is mapped.

Since the goal of the delay algorithm is to minimize the number of levels in the
final circuit, the Leaf Replication procedure outlined as pseudo-code in Figure 4.7
first maps the tree with replication at all leaf nodes. Next the procedure determines
at which nodes the replica can be removed without increasing the depth of the circuit.
It considers each leaf node in sequence, removing the replica of the fanout LUT at
that leaf node and re-mapping the tree. If the resulting circuit does not increase in
depth and contains fewer LUTs, then the new circuit is greedily retained. Otherwise,

the replica is restored at the leaf node.

4.4.2 Merging LUTSs into their Fanout LUTs

As shown in Figure 4.3c the decomposition tree constructed by the delay algorithm
can include LUTs that implement simple buffer functions. These are examples of
LUTs that can be merged with their fanout LUTs without increasing the depth of
the circuit. Provided that the result is a LUT with at most K-inputs, merging any
single-fanout LUT into its fanout LUT eliminates one LUT from the circuit without
increasing the depth of the circuit. After the original network has been mapped into
a circuit of K-input LUTs, a peephole optimization proceeds from the primary inputs
to the primary outputs merging single-fanout LUTs with their fanout LUTs whenever
the result is a LUT with at most K-inputs.

39

LeafRep (tree)
{

/* begin by replicating at every leaf node */
for all leaf nodes of tree

{

fanoutLUT [leaf] < root LUT of circuit implementing leaf
add replica of fanoutLUT [leaf] to tree

}

bestCircuit <= mapTree (tree)

for all leaf nodes of tree

{

/* remap tree without the replica at the leaf */
remove replica of fanoutL UT [leaf] from tree
circuit < mapTree (tree)

if (area of circuit < area of bestCircuit & depth of circuit < depth of bestCircuit)

{

/* update bestClircuit */
bestClircuit < circuit

}

else {
/* restore replica */
add replica of fanoutLUT [leaf] to tree

}

Figure 4.7: Pseudo-code for Replication

4.4.3 Mapping for Area on Non-Critical Paths

To minimize the depth of the critical path, the delay algorithm described so far has
minimized the depth of all LUTs. This section refers to the deepest LUTs in the circuit
as the critical LUTs. In addition, any other LUT is critical if an increase in its depth
increases the number of levels in the circuit. Minimizing the depth of non-critical
LUTs may unnecessarily increase the number of LUTs in the circuit. This section
describes an optimization that reduces the number of LUTSs in the circuit without

increasing the number of levels. The depth of a non-critical LUT can be increased by

60

mapCritical (network)

{

for all nodes in network
decompositionMode [node] < DelayDecomposition

circuit <= mapNetwork (network)
targetDepth < depth of circuit

for all nodes in network
decompositionMode [node] <= AreaDecomposition

circuit <= mapNetwork (network)

while (depth of circuit exceeds targetDepth)

{

find super critical LUTs

for all nodes implemented by super critical LUTs
decompositionMode [node] < DelayDecomposition

circuit <= mapNetwork (network)

}

Figure 4.8: Pseudo-code for Critical

an amount referred to as its slack without increasing the depth of subsequent LUTs.
This slack represents an opportunity to reduce the number of LUTs in the circuit
by locally increasing depth. The overall strategy is to construct the decomposition
tree for each node in the network using one of two modes. Nodes implemented
by critical LUTs are decomposed using the delay decomposition described in this
chapter, and nodes implemented by non-critical LUTs are decomposed using the area
decomposition described in the previous chapter.

Before the original network is mapped, it is not readily apparent which nodes
will be implemented by critical LUTs. The optimization, outlined as pseudo-code

in Figure 4.8, therefore uses an iterative approach to determine in which mode each

61

node should be decomposed. The procedure first maps the network using the delay
decomposition for all nodes. This establishes a target depth for the final circuit. Next
the network is re-mapped using the area decomposition for all nodes. This minimizes
the number of LUTSs, however, the circuit may now contain LUTs that exceed the
target depth. These LUTs are referred to as super-critical LUTs. In addition, any
LUT is super-critical if increasing its depth increases the depth of another super
critical LUT. To restore the number of levels in the circuit to the target depth the
procedure uses an iterative approach. Each iteration changes the decomposition mode
of nodes implemented by super-critical LUTs from the area decomposition to delay
decomposition and then re-maps the network. The network is iteratively re-mapped
until there are no LUTs in the circuit that exceed the target depth. An iterative
approach is required because reducing the depth of existing super-critical LUTs can

result in other LUTs becoming super-critical.

4.5 Summary

The delay algorithm presented in this chapter maps Boolean networks into circuits
of K-input LUTs. The algorithm uses bin packing to find decompositions of each
node in the network that minimize the number of levels in the final circuit. Chapter
6 will prove, for values of K < 6, that the delay algorithm produces an optimal tree
of LUTs implementing a network that is a fanout-free tree. Chapter 7 will present

some experimental results produced with the delay algorithm.

62

Chapter 5

Area Optimality

This chapter presents a proof that the area algorithm constructs an optimal tree
of K-input LUTs implementing a network that is a fanout-free tree, for values of
K < 5. In this chapter script letters, such as A, are used to represent circuits of
K-input LUTs, and the number of LUTSs in the circuit A is denoted by |A|. If A is a
single-output circuit then the number of inputs used at the root (output) LUT of A
is denoted by (A). The area-optimal circuit implementing a single-output network is

defined as follows:

The circuit A is area optimal if and only if for all circuits B implementing

the same function, |B| > |A| and (B) > (A) whenever |B| = | A|.

The remainder of this chapter will prove the following theorem.

Theorem 5.1

Given an original network that is a fanout-free tree, an area algorithm con-
structs an area-optimal tree of K-input LUTs implementing the network

for values of K < 3.

As described in Chapter 3, the area algorithm traverses the original tree beginning at
the leaf nodes and proceeds to the root node. At every node, a circuit implementing
the sub-tree rooted at that node is constructed. Section 5.1 will prove the following

lemma:

63

Lemma 5.2

At each non-leaf node, the area algorithm constructs an area-optimal tree
of LUTs implementing that node, for values of K' < 5, if the circuits

implementing its fanin nodes are area-optimal.

Theorem 5.1 is proved by induction using Lemma 5.2. The basis of the induction
is the circuit constructed by the area algorithm at each leaf node. This circuit consists
of a single LUT implementing a buffer. Since no other circuit implementing the leaf
node can have fewer LUTSs, or use fewer inputs at its root LUT, this buffer LUT 1is
by definition an area-optimal circuit implementing the leaf node.

Since the circuits implementing the leaf nodes are area-optimal, it follows by
induction from Lemma 5.2 that the circuit constructed at every node, including the
root node of the tree, is area-optimal. Therefore, Theorem 5.1 follows from Lemma

5.2. The remainder of this chapter presents a proof of Lemma 5.2.

5.1 Outline for Proof of Lemma 5.2

To prove Lemma 5.2 the following notation is introduced: Let A be the circuit con-
structed by the area algorithm and let B be an arbitrary tree of LUTs implementing
the same function. To prove that A is area-optimal, it is sufficient to show that
|B| > |A] and (B) > (A) whenever |B| = |A|. Note that the proof only considers
circuits that are trees of LUTs.

The proof proceeds by transforming the circuit B without changing its function, or
increasing |B| or (B), and then showing for the transformed circuit B that |B| > |A]
and that (B) > (A) if |B| = |A|. The following section introduces notation that
describes the circuit A constructed by the area algorithm, and Section 5.1.2 describes
how the circuit B is transformed without changing its function, or increasing |B| or

(B). Finally, Section 5.1.3 proves Lemma 5.2.

64

Figure 5.1: The Optimal Fanin Circuits, O;

5.1.1 Notation for the Circuit A

This section introduces the notation to describe the non-leaf node being mapped, the
area-optimal circuits implementing its fanin nodes, and the circuit constructed by the
area algorithm.

Let n be the non-leaf node and let p; to ps be its fanin nodes. Without loss of
generality this section assumes that the non-leaf node is an OR node and that its
fanin nodes are AND nodes or primary inputs. The case where n is an AND node
is the dual of the case considered here, and the first step in the area algorithm uses
DeMorgan’s Law and AND-OR associative rules to ensure that the fanin nodes of an
OR node are either AND nodes, or primary inputs.

Let O; be an optimal circuit implementing the fanin node p;. As illustrated in
Figure 5.1 each fanin circuit O; consists of a root LUT R; and the non-root LUTs N;.
In this figure, LUTSs are represented by solid rectangles, each optimal fanin circuit,
O;, is bounded by a dotted rectangle and the non-root LUTs ,N;, are bounded by a
dotted ellipse. In this example, |O1| = 3, |O2| = 4, |Os] = 3, (O1) = 2, (O3) = 3,
and (O3) = 2. Note that (R;) = (O;), and that |O;| = |NV;| + 1.

The circuit A, constructed by the area algorithm, is illustrated in Figure 5.2. This
circuit consists of the decomposition tree, D, and the non-root LUTs, N, for all ¢
from 1 to f. The root LUT of the decomposition tree D is the root LUT of the circuit
A. Therefore, (A) = (D). In the example shown in Figure 5.2, (D) = 3.

As described in Chapter 3, the decomposition tree is constructed from the fanin

LUTs {R;} in two steps. The first step uses the FFD bin packing algorithm to pack

65

Figure 5.2: The Circuit A

the fanin LUTs into second-level LUTs. The fanin LUTs correspond to boxes of
size (R;) = (O;) and the second-level LUTs correspond to bins of capacity K. The
second step connects the second-level LUTs to form the final decomposition tree. The
procedure begins by sorting the second-level LUTSs into a list ordered by increasing
number of unused inputs. Then, while more than one LUT remains in the list the
procedure iteratively removes the first LUT from the list and connects its output to
the first available unused input in the list. If there are no unused inputs in the list,
then an empty LUT is added to the end of the list and the output of the first LUT
is connected to an input of this new LUT.

Note that whenever the first LUT in the list has at least one unused input that
all the remaining LUTSs in the list must have at least one unused input. In this case,
the output of each LUT in the list, except the last LUT, is connected to an input
of the next LUTs in the list. No new LUTs are added and the last LUT in the list
becomes the root LUT of the decomposition tree.

From the above observation, it follows that a new bin is added only when all of
the previously removed bins have no unused inputs, and all of the remaining bins
have no unused inputs. Therefore, when a new bin is added all non-root LUTs in the

final decomposition tree will have no unused inputs.

5.1.2 Transforming the Circuit B

Recall that B is a tree of LUTs implementing the same function as the circuit A.

This section describes how the arbitrary circuit B is transformed, without changing

66

its function, or increasing |B| or (B). The objective of the transformation is to
produce in the circuit B a sub-circuit that is comparable to the decomposition tree
D in the circuit A. The transformations incorporate in the circuit B the non-root
LUTs N, for all ¢, and connect the (R;) outputs of the sub-circuit N; to one LUT
in the circuit B. This is a structure that is similar to the circuit A where the (R;)
outputs of the non-root LUTs N; are connected to the LUT R;. After the circuit
B has been transformed this observation is used to prove Lemma 5.2. Note that the
transformations must not change the function of the circuit B, or increase |B| or (5).

The circuit B is assumed to be a tree of LUTs. The key to the transformation
that incorporates the non-root LUTs AN; is finding a sub-tree of LUTs in B that
implements the function

pi Yo p
JEA

or its complement, for some subset A of the fanin nodes. The following argument
shows that such a sub-circuit must exist. The notation ®; is introduced to represent
the set of primary inputs that are the leaf nodes of the sub-tree rooted at the fanin
node p;. Let £ be the root LUT of the smallest sub-tree in the circuit B that contains
all the primary inputs in ®;. Let ®4 be the primary inputs for this sub-tree, and
&5 be the primary inputs for the remainder of the circuit. Because the circuit B is
a tree, the function implemented by the circuit can be represented by the disjoint

decomposition
F(G(®q), ®F)

where G() is the function implemented by the sub-tree rooted at the LUT L, and F()
is the function implemented by the remainder of the circuit.

The node n, in the network being mapped, is an OR node and all of its fanin nodes
are AND nodes. Since the network rooted at n is a tree, it is easy to show that &y
cannot include any primary inputs from ®;, for 7 # ¢, if ®¢ includes primary inputs
from both ®; and ®;. The proof is a simple application of the necessary and sufficient
conditions on disjoint decompositions stated by Kohavi [Koha70]. In informal terms,

it is not possible to split the AND node p; across the OR node n. It is known from

67

Figure 5.3: Decomposition of £

the definition of £ that ®4 contains all inputs in ®;. Therefore, & contains either
all or none of the primary inputs in ®;, for all j # ¢. If X is the set of j for which @,
is contained in ®«. then

P =0, U] P,

JEA

and the function at the output of £, or its complement, must be

L=pi+ p;

JEA

Note that £ is a LUT in the circuit B, and that p; and p; are the fanin nodes of node
n in the network being mapped.

From the assumption that £ is the root of the smallest sub-tree that includes all
of ®;, it follows that at least two of the sub-trees rooted at the inputs of £ include
primary inputs from ®;. Therefore, any sub-tree rooted at an input of £ that includes
any primary inputs from ®; must include only primary inputs from ®;, or else there
would be a splitting of the AND node p; across the OR node n. Therefore, the LUT
L can be decomposed into the disjoint functions @ and M as illustrated in Figure
5.3. The output of Q is the function p;, the output of M is the function }_ p;, for
J € A, and the output of £ is the function Q + M.

Let P be the sub-tree of LUTs, bounded by the dotted rectangle in Figure 5.4,
that contains the LUT £ and all LUTs in the sub-trees rooted at the inputs of the
function Q. By setting the inputs to the function M to values that result in p; = 0,
for j € A, this sub-circuit can implement the function of the fanin node p;. It is given
that O; is an optimal circuit implementing the fanin node p;. Therefore, |P| > |O;|
and if |P| = |O;] then (Q) > (O;) Two different transformations are applied to
the circuit B when |P| = |O,| and when |P| > |O;|. The case where |P| = |O,] is

63

T

(0]
07

pi
L
T
|

Figure 5.4: The sub-circuit P
P
|||
o
pi V
L

T
[

Figure 5.5: Modification when || = |R,|

considered first.

Case 1: |P| = |O,]

If |P| = |O;| then (Q) > (O;). In this case, the function Q@ can be replaced with
the function R;, and the non-root LUTs in P can be replaced with the LUTs A, as
illustrated in Figure 5.5. Because |P| = |O;] it follows that the number of non-root
LUTs in P is the same as the number of LUTs in A;, Therefore, this transformation
does not increase the number of LUTs in the circuit, and because (Q) > (O;) it does

not increase (L).

Case 2: |P| > |O;]

If |P| > |O;| then the function @ can be replaced by a single input connected to
the output of the circuit O; as illustrated in Figure 5.6. Because |P| > |O;| this
transformation does not increase the number of LUTs in the circuit, and because

(Q) > 11t does not increase (L£). Note that the circuit O; includes the root LUT R;

69

N

o] [v] |
A

Figure 5.6: Modification when || > |R,|

and the non-root LUTs N;.

In either case, the transformation does not change the function of £, and does
not increase the number of LUTs in the circuit, or increase (L£). Therefore these
transformations will not change the function of B, or increase |B| or (B). The end

result of these transformations is that the circuit B includes the non-root LUTs N,

for all 7, and all {R;) outputs of N; are connected to one LUT.

5.1.3 Proof of Lemma 5.2

This section completes the proof of Lemma 5.2. After the transformations described
in Section 5.1.2, the circuits A and B both include the non-root LUTs N, for all s.
These non-root LUTs can be eliminated from the circuits A and B without affecting
the comparison of the number of LUTSs in the circuit. The decomposition tree D is
all that remains of the circuit A, and the LUTs that remain from the circuit B are
referred to as the sub-circuit £. To prove Lemma 5.2 it is sufficient to show, for values
fo K <5, that |€| > |D| and that (£) > (D) whenever |E| = |D|.

Two cases are considered, based on the decomposition tree D described in section
5.1.1. If at least one LUT in D, other than the root LUT, has an unused input, then
the decomposition tree is said to be bin limited. If none of the non-root LUTs has an
unused input, then D is said to be pin limited. Note that it D contains a single LUT,

then it is considered to be pin limited.

70

The Bin Limited Case

It D is bin limited, then no extra LUTs were added when the second-level LUTs
were connected together to form the decomposition tree. Therefore the LUTs in D
correspond to the bins that the FFD algorithm produces for the set of boxes of size
(R;) for all ¢. The number of bins is equal to |D|.

For all 7, the {(R;) outputs of the non-root LUTs N; are connected to one LUT in
E. Therefore, the LUTs in & also correspond to a set of bins containing boxes of size
(R;) for all ¢, and the number of bins is equal to |E]. The sets of bins corresponding
to the LUTs in D and & both contain the same set of boxes. Appendix B shows that
the FFD algorithm packs any set of integer sized boxes into the minimum number of
bins of capacity K for integer values of K < 6. Therefore for K <6, |E| > |D|. All
that remains to prove Lemma 5.2 is to show that (£) > (D) whenever |E| = |D].

The unused capacity of any bin corresponding to a LUT in D or £ is referred to
as a hole. The key to showing that (£) > (D), is the comparison of the largest holes
in £, and D.

In order to be bin limited, there must be more than one LUT in D. If |D| =1
then by definition D would be pin limited. The bin corresponding to the root LUT
of D contains the largest hole of any of the bins, because the bins are ordered by
size before they are connected to form the decomposition tree. If the decomposition
tree is bin limited, then by definition at least one non-root LUT in D has an unused
input, and when the bins are connected, exactly one input of the root LUT of D is
connected to the output of another LUT in D. This input is not accounted for by
the boxes of size (R;), for all ¢, and can be considered part of the hole in the bin
corresponding to the root LUT. Therefore, the size of the largest hole in any of the
bins is K + 1 — (D).

The sub-circuit £ is a tree of LUTs and |E] > |D| > 2. Therefore at least one
input of the root LUT of £ is connected to the output of another LUT in &. This
input can be considered as part of the hole in the bin corresponding to the root
LUT. The size of the hole in this bin is therefore at least K + 1 — (£). Appendix
B shows, for values of K' < 5, that the set of bins produced by the FFD algorithm

71

includes a bin with the largest hole possible for any set of bins that contains the same
set of boxes in the same number of bin. Therefore if || = |D|, and K < 5, then
K+1—(D) > K+1— (&) This inequality can be simplified to show that (£) > (D)

whenever |E| = |D|, Therefore Lemma 5.2 is true if D is bin limited.

The Pin Limited Case

When D is pin limited, Lemma 5.2 can be proved by counting the number of used
inputs in D and £. For all i, the decomposition tree D has (R;) inputs connected to
outputs from the non-root LUTs N;. In addition, the output of every LUT, except
the root LUT, is connected to the input of another LUT in the tree. Therefore the
total number of used inputs in D is 3 (R;) + |D| — 1. The total number of inputs
available is K|D|. If D is pin limited, then by definition all unused inputs in D are
at the root LUT. The number of LUTs in D is the minimum integer such that the
number of inputs available is greater than or equal to the number of inputs used.

Therefore
KID|= 3 (R + D]~ 1

Using the notation [x] to indicate the smallest integer greater than or equal to x, the

number of LUTs in D can be expressed as

D] = [(X_(Ri) = /(K = 1)]

The sub-circuit £ is also a tree of K-input LUTs, and for all ¢ it also has (R;)
inputs connected to outputs from the non-root LUTs N;. Using the argument that

the output of every LUT in &, except the root LUT, is connected to the input of
another LUT in &, it follows that

€] = [(Q_ (Ri) = D/(K = 1)]

Therefore |E] > |D|, and all that remains to prove Lemma 5.2 is to show that (£) >
(D) whenever |E| = |D|.

If |€] = |D|, then the total number of inputs available in &, is the same as the
number of inputs in D. Counting the inputs connected to the LUTs N, for all 2, and

72

the inputs connected to the outputs of other LUTSs in each tree it follows that the
number of used inputs in £ is greater than or equal to the number of used inputs
in D. Therefore the number of unused inputs in &€ is no greater than the number
of unused inputs in D. The number of used inputs at the root LUT of £ cannot be
smaller than K less the total number of unused inputs in &, and by definition, all
unused inputs in D are at the root LUT of D. Since the number of unused inputs in
£ is no greater than the number of unused inputs in D it follows that (£) > (D) if
|€| = |D|. Therefore, Lemma 5.2 is true if D is pin limited.

The decomposition tree D must be either bin limited or pin limited, and in either
case Lemma 5.2 is true. It therefore follows by the earlier inductive argument that

Theorem 5.1 is true.

5.2 Circuits with Fanout

Since technology mapping addresses decomposition and covering, the above proof has
assumed that the circuit implementing a fanout-free tree must itself be a tree of LUTs.
It is possible, however, that the optimal tree of LUTs is not the smallest circuit im-
plementing the Boolean function represented by the original network. Restructuring
the original network to introduce fanout, while implementing the same function, may
permit a superior circuit. For example, consider the circuit shown in Figure 5.7a.
This 4-LUT circuit is the optimal tree of 5-input LUTs implementing the underlying
tree. However, if the underlying tree is restructured, as shown in Figure 5.7b, then

the same function can be implemented using 3 LUTs.

5.3 Summary

This chapter has shown that the area algorithm, described in Chapter 3, constructs
an optimal tree of LUTs implementing a network that is a tree, for values of K < 5.

The following chapter presents a similar result for the delay algorithm.

73

X

a) Optimal Tree of LUTs, 4 LUTs

gh

abc def

b) Restructured circuit, 3 LUTs

Figure 5.7: Restructuring a Tree to Introduce Fanout

74

Chapter 6
Delay Optimality

This chapter presents a proof that the delay algorithm constructs a minimum-depth
tree of K-input LUTs implementing a network that is a fanout-free tree if K is less
than or equal to 6. The following notation is used in this chapter: Script letters, such
as A are used to represent circuits of K-input LUTs. The number of LUTs in the
circuit A is denoted by |A| and the maximum depth of any LUT in A is denoted by
LAl . If Ais a single-output circuit, then (A) is the the number of inputs used at
the root LUT of A. The depth-optimal circuit implementing a single-output network

is defined as follows:

The circuit A is depth-optimal if and only if for all circuits B implementing
the same function, |[B| > [A] and (B) > (A) whenever |B| = |A|

The remainder of this chapter will prove the following theorem:

Theorem 6.1

Given an original network that is a fanout-free tree, a delay algorithm con-
structs a depth-optimal tree of K-input LUTs implementing the network

for values of K < 6.

As described in Chapter 4, the delay algorithm traverses the original tree begin-

ning at the leaf nodes and proceeding to the root node. At every node, a circuit

75

implementing the sub-tree rooted at that node is constructed. Section 6.1 will prove

the following lemma:

Lemma 6.2

At each non-leaf node, the delay algorithm constructs the depth-optimal
tree of LUTs implementing that node, for values of K’ < 6, if the circuits

implementing its fanin nodes are depth-optimal.

Theorem 6.1 is proved by induction using Lemma 6.2. The basis of the induction is
the circuit constructed by the delay algorithm at each leaf node. This circuit consists
of a single LUT implementing a buffer. The depth of this buffer LUT is one greater
than the depth of the leaf node, and only a single input of the LUT is used. No other
circuit implementing the leat node can have lower depth or use fewer inputs at its
root LUT. Therefore, this buffer LUT is the depth-optimal circuit implementing the
leaf node.

Since the circuits implementing the leat nodes are depth-optimal, it follows by
induction from Lemma 6.2 that the circuit constructed at every node, including the
root node of the tree, is depth-optimal. Therefore Theorem 6.1 is true. The remainder

of this chapter presents a proof of Lemma 6.2.

6.1 Outline for Proof of Lemma 6.2

To prove Lemma 6.2, the following notation is introduced: Let A be the circuit con-
structed by the delay algorithm and let B be an arbitrary tree of LUTs implementing
the same function. By definition, the circuit A is depth-optimal if |[B] > |.A] and
(B) > (A) whenever |[B] = |A|.

Both circuits A and B consist of a series of strata, where each stratum contains
all LUTs at a given depth. The proof proceeds by transforming the circuit B without
changing its function, or increasing |B| or (B). To prove Lemma 6.2 the number

of LUTs at a given depth in the transformed circuit B is compared to the number

76

of LUTs in the corresponding stratum of the circuit A. Section 6.1.3 will prove the

following lemma:

Lemma 6.3

For values of K < 6, the number of LUTs at any fixed depth in the
transformed circuit B is greater than or equal to the number of LUTs at

the same depth in the circuit A.

If d,,., is defined as the depth of circuit A, then because the stratum at depth d,,,,
in the circuit A contains exactly one LUT, it follows that the transformed circuit B
contains at least one LUT at depth d,,,,. Therefore |B| > |A|, and all that remains
to prove Lemma 6.2 is to show that (B) > (A) if |[B] = |A|.

The following sections present the details of the proof of Lemma 6.2. Section 6.1.1
introduces notation that describes the circuit A constructed by the delay algorithm,
and Section 6.1.2 describes how the circuit B is transformed without changing its
function, or increasing |B| or (B). Section 6.1.3 proves Lemma 6.3 and then Section

6.1.4 proves Lemma 6.2.

6.1.1 Notation for the Circuit A

This section introduces the notation to describe the non-leaf node being mapped,
the depth-optimal circuits implementing its fanin nodes, and the circuit constructed
by the delay algorithm. For convenience, the discussion reiterates some of the nota-
tion presented in Section 5.1.1 of Chapter 5. Note however, that the decomposition
tree constructed by the delay algorithm differs from that constructed by the area
algorithm.

Let n be the non-leaf node and let p; to ps be its fanin nodes. Without loss of
generality this section assumes that the non-leaf node is an OR node and that its
fanin nodes are AND nodes or primary inputs. The case where n is an AND node
is the dual of the case considered here, and the first step in the delay algorithm uses

DeMorgan’s Law and the associative rule to ensure that the fanin nodes of an OR

77

Figure 6.2: The Circuit A

node are either AND nodes, or primary inputs.

Let O; be an optimal circuit implementing the fanin node p;. As illustrated in
Figure 6.1 each fanin circuit O; consists of a root LUT R; and the non-root LUTs N;.
In this figure, LUTSs are represented by solid rectangles, each optimal fanin circuit,
O;, is bounded by a dotted rectangle and the non-root LUTs ,N;, are bounded by a
dotted ellipse. In this example, |O1] =2, [Oy] =2, |O3] =2, (01) =2, (03) =3,
and (Os) = 2. Note that |[R;| = |O;|, and that (R;) = (O;).

The circuit A, constructed by the delay algorithm, is illustrated in Figure 6.2.
This circuit consists of the decomposition tree, D, and the non-root LUTs, A;, for
all 2 from 1 to f. As described in Chapter 4, the decomposition tree is constructed as
a series of strata {Sy}, for d from d,,;,, the minimum value of [R;|, to dpe = [A] .
The first step in constructing the stratum &y uses the FFD bin packing algorithm to
pack the fanin LUTs {R;}, for all ¢ where |R;| = d, into K-input LUTs. Each fanin
LUT R; corresponds to a box of size (R;), and the LUTs in the stratum correspond

78

to bins of capacity K. After the first step is completed the LUTs in stratum &y can
be thought of as the set of bins, produced by the FFD algorithm, containing a box
of size (R;), for all ¢ where |[R;| =d.

The second step in constructing the decomposition tree D proceeds from the

uppermost stratum, Sy to the deepest stratum connecting the outputs of LUTs

min
in stratum S; to unused inputs in stratum Syiq. If there are insufficient unused
inputs, then new LUTs are added to stratum S;y1. Connecting the output of each
LUT in stratum S, to an unused input in stratum S441 corresponds to packing |S,|
extra unit boxes into the set of bins in the stratum Syi1;. These unit boxes are
added on a first fit basis after the other boxes have been packed into stratum &y44.
Therefore, for d > d,,;, the LUTs in the stratum S, are the set of bins, produced
by the FFD algorithm, containing |S4—1| unit boxes and a box of size (R;), for all ¢
where |R;| =d.

The root LUT of the decomposition tree D is the root LUT of the circuit A.
Therefore, | Al = |D], and (A) = (D). In the example shown in Figure 6.2,

D] =3, and (D) = 3.

6.1.2 Transforming the Circuit B

This section describes how the circuit B is transformed, without changing its function,
or increasing |B| or (B). The transformations are similar to those described in
Section 5.1.2 of Chapter 5, but they preserve |B| rather than |B|. The next section
proves that the end result is a circuit B where every stratum in B has at least as
many LUTs as the corresponding stratum in the circuit A.

The objective of the transformations is to incorporate in the circuit B the non-root
LUTs N, for all 7, and to connect the (R;) outputs of the sub-circuit A; to one LUT
at depth |R;|. The transformations must not change the function of the circuit B,
or increase [B| or (B). Note that in the circuit A the (R;) outputs of the non-root
LUTs N are also connected to the LUT R; at depth |R;|. This observation is the
key to the proot of Lemma 6.3.

The node n is an OR node, and its fanin nodes are AND nodes. The circuit B is

79

Figure 6.4: Modification when |[L£| = |R;]

assumed to be a tree of LUTs, and using the argument described in Section 5.1.2 of
Chapter 5 there must be a sub-tree of LUTs in B that implements the function
pi+ D
JEA

or its complement, for some subset A of the fanin nodes. In addition, the root LUT,
L, of this tree can be decomposed into the disjoint functions @ and M as illustrated
in Figure 6.3. The output of Q is the function p;, the output of M is the function
> p;, for j € A, and the output of £ is the function Q + M.

It is given that O; is an optimal circuit implementing the fanin node p;. Therefore,
Ll > 10| and if [L] = |O;] then (Q) > (O;). The case where |[L| = |O,;] is
considered first, followed by the case where |[L| > |O;].

Case 1: |[L] = |O;]

If £l = |0, then (Q) > (O;), and the function Q can be replaced with the
function R;, as illustrated in Figure 6.4, without increasing [L] , or (£). To generate
the inputs for R; the non-root LUTs N; are added to B.

80

Figure 6.5: Modification when [L£] > |[R;|

Case 2: |[L] > |O;]

It |[£] > |O;| then the function @ can be replaced by a single input connected to
the output of the circuit O; as illustrated in Figure 6.5, without increasing |L| or
(L£). Note that the circuit O; includes the root LUT R; and the non-root LUTs N;.

In either case, the transformation does not change the function of £, and does not
increase [L] or (L£). Therefore these transformations will not change the function of
B, or increase [B| or (B). The end result of these transformations is that the circuit
B includes the non-root LUTs N, for all 7, and all (R;) outputs of A; are connected
to one LUT at depth |[R;|.

One final transformation to the circuit B is required before the following section
can deduce that the number of LUTs at any fixed depth in B is greater than or equal
to the number of LUTs at the same depth in the circuit A. Whenever the output
of a LUT at depth d,. is connected to the input of a LUT at depth dy > dgeq1 a
chain of (dgst — dsr. — 1) buffer LUTs is introduced between the output of the source
LUT and the input of the destination LUT. This transformation ensures that if the
output of a LUT is connected to the input of another LUT, then the depth of the
destination LUT is exactly one greater than the depth of the source LUT. Note that

this does not change the function B, or increase |B|, or (B).

81

6.1.3 Proof of Lemma 6.3

This section shows that, for values of K < 6, the number of LUTs at any fixed depth
in the transformed circuit B is greater than or equal to the number of LUTs at the
same depth in the circuit A. From this observation it is possible to deduce that A is
a depth-optimal tree of LUTs implementing the node n.

After the transformations described in Section 6.1.2, the circuits A and B both
include the non-root LUTs N, for all 7. The first step in the proof of Lemma 6.3
eliminates these non-root LUTs from the circuits A and B. Note that this does not
affect the comparison of the number of LUTs at any given depth. After eliminating
the non-root LUTs from the circuit A, what remains is the decomposition tree D.
The LUTs that remain from the circuit B are referred to as the circuit &.

Recall that the decomposition tree D consists of a series of strata {S;} for all d
from di t0 dppar = |Al. The notation 7, is introduced to represent the LUTs at
depth d in the circuit &.

The LUTs in the stratum S,
box of size (R;) for all ¢ where |R;| = dyin. The LUTs in T4

can be thought of as a set of bins containing a

correspond to a

min

set of bins containing the same boxes. The bins in the stratum Sy . are produced

by the FFD algorithm, and Appendix B shows that the FFD bin packing algorithm
packs any set of integer sized boxes into the minimum number of bins of capacity K,

for integer values of K < 6. Therefore, for K <6, |74

> |8y

For d > d,;;, the LUTs in stratum Sy in D correspond to a set of bins containing
|S4—1] unit boxes, and a box of size (R;), for all ¢ where |R;| = d. The inputs
to a LUT in stratum 74 are connected to either outputs from A, or the outputs
of LUTs in stratum 7 4_;. Therefore, the LUTs in stratum 7, correspond to a set
of bins containing |7 4—;| unit boxes, and a box (R;), for all ¢ where |[R;| = d. If
|7 4-1| > |Sa-1] then the boxes in the stratum S, are a subset of boxes in stratum
T 4. Since the set of bins in stratum S,y are produced by the FFD algorithm, and the
FFD algorithm is optimal for values of K < 6, it can be deduced that |7 4| > |S4| if

|7 4-1| > |Sa-1]- It has already been shown that |7 > |Sa

. i |, and therefore by

induction, for all d > d,in, |7 4| > |S4|. Therefore Lemma 6.3 is true.

82

6.1.4 Proof of Lemma 6.2

This section uses Lemma 6.3 to prove that the circuit A is depth-optimal. In the delay
algorithm, the procedure that connects the strata {S;} to form the decomposition
tree D terminates when |S,, . | = 1, and therefore |7, .. | > 1. From Lemma 6.3 it
follows that B contains at least one LUT at depth d,,,., and therefore |[B| > |A]

To prove that A is optimal, all that remains is to show that (B) > (A) whenever
Bl = |A]l. The LUTs in stratum S, ,, correspond to bins containing |Sy,, .. 1|
unit boxes, and a box of size (R;) for all ¢ where |R;| = dy4.. Since the stratum
Sy, consists of a single LUT it follows that (S4,,..) = [Sapne—1] + > (R;) for all ¢
where |R;| = daz-

The LUTs in stratum 7,4, correspond to bins containing |7 4, 1| unit boxes,
and a box of size (R;), for all ¢ where |R;| = dpar. If [B] = [A] then the stratum
7 4,0 consists of a single LUT, and (7 4,,..) = |7 dpea—1| + 2 (R,), for all ¢ where
IRl = dmaw. It is known that |74,...-1| > |Sae—1|, and therefore (T4, ..} >
(Sdpe.) if Bl = [A]l. Since (A) = (Sq4,,..) and (B) = (T4,..), it follows that
(B) > (A) if IB] = LAL.

Thus, for values of K <6, |[B] > |A]l,and (B) > (A)if |[B] = |.A|. Therefore,
the delay algorithm constructs a depth-optimal tree of LUTs implementing a non-
leaf node, if the circuits implementing its fanin nodes are depth-optimal. Therefore
Lemma 6.2 is true, and Theorem 6 follows by the induction described at the beginning

of this chapter.

6.2 Summary

The delay algorithm, described in Chapter 4, maps a general network into a circuit
of K-input LUTs by first partitioning the network into a forest of trees, and then
mapping each tree separately. This chapter has shown that the algorithm used to
map each tree, produces a depth-optimal tree of LUTs implementing that tree, for
values of K' < 6. The following chapter presents experimental results for the both

the area and delay algorithms.

83

Chapter 7

Experimental Evaluation

The area and delay algorithms described in Chapters 3 and 4 have been implemented
in a program called Chortle. This chapter presents experimental results for Chortle.
The purpose of these experiments is to investigate the effectiveness of the divide and
conquer strategy which partitions the original network into a forest of trees and then
separately maps each tree. These experiments also evaluate the effectiveness of the
optimizations that exploit reconvergent paths and the replication of logic at fanout
nodes. In addition, these results are compared with other LUT technology mappers.
The following section presents the experimental results for the area algorithm, and

Section 7.2 presents results for the delay algorithm.

7.1 Results for the Area Algorithm

7.1.1 Circuits of 5-input LUTs

This section presents the results for a series of experiments where the area algorithm
maps 29 networks from the MCNC two-level and multi-level logic synthesis benchmark
suite [Yang91] into circuits of 5-input LUTs. The goal for these experiments is to
reduce the number of LUTs in the final circuits implementing each network.

The first step in the experimental procedure is logic optimization using the mislI

logic synthesis system [Bray87]. The misll script shown in Figure 7.1 is used to

84

rl BLIF

SwW
el 5
siml *
asb

gkx -abt 30
asb; sw
gex -bt 30

asb; sw

gkx -abt 10
asb; sw
gex -bt 10
asb; sw

gkx -ab
asb; sw
gex -b

asb; sw

el 0
gd *

wl OPT
rl OPT
simplify

sweep

we EQN

Figure 7.1: misll script

89

optimize the original network "BLIF” into the optimized network "EQN”. This script
is the standard misll script [Bray87] with the addition of the commands ”simplify”
and "sweep” and a format change at the end of the script. The intermediate step of
writing to and reading from the file 7OPT” alters the network order, and is retained
for historical reasons.

After logic optimization by misIl, the optimized networks are mapped into circuits
of 5-input LUTs using Chortle. Five sets of experiments were performed, using the

following optimization options:

(-A) basic area algorithm

(-Ar) area algorithm with exhaustive reconvergent search

(-Af) area algorithm with Root Replication

(-Arf) with exhaustive reconvergent search, and Root Replication

(-Asf) with Maximum Share Decreasing (MSD) and Root Replication

The number of LUTs in the circuit produced by each option and the execution time
on a SparcStation-IPC are recorded in Table 7.1.

Separately, the exhaustive reconvergent (-Ar) and Root Replication (-Af) opti-
mizations never produce circuits containing more LUTs than the basic area algorithm
(-A). In total, the (-Ar) circuits contain 3.7% fewer LUTs than the (-A) circuits and
the (-Af) circuits contain 3.5% fewer LUTs than the (-A) circuits. Note that there is
only a small increase in execution time for the (-Ar) circuits. This indicates that each
tree (leaf-DAG) resulting from the partitioning of the original circuit into a forest
of trees contains a limited number of reconvergent paths. The total execution time
for the (-Af) circuits is an order of magnitude greater than the execution time for
the (-A) circuits. This is a result of the Root Replication optimization repeatedly
mapping trees to determine when to replicate logic at a fanout node.

The circuits produced by combining the exhaustive reconvergent search and the
Root Replication optimizations (-Arf) are never worse than the (-Ar) circuits and

the (-Af) circuits. In total, the (-Arf) circuits contain 15% fewer LUTs than the

86

network -A -Ar -Af -Arf -Asf
LUTs | sec. T || LUTs | sec. T || LUTs [sec. T || LUTs | sec. T || LUTs | sec. !
bxpl 34 0.2 31 0.2 34 1.2 27 1.4 27 1.2
9sym 69 0.3 65 0.4 67 21.2 62 27.6 60 22.5
9symml 63 0.3 59 0.3 62 20.6 54 28.3 55 21.8
C499 166 0.7 164 0.9 158 3.3 70 5.8 70 5.1
Ch315 666 3.5 611 3.8 653 39.4 513 54.2 512 43.4
C880 115 0.6 110 0.7 112 4.9 86 5.7 86 5.3
alu2 131 0.6 121 0.7 125 23.6 116 27.6 116 25.2
alu4d 238 1.1 218 1.3 227 38.6 191 51.6 194 41.9
apex2 123 0.6 123 0.6 121 18.3 120 19.3 120 19.2
apex4 602 2.3 599 2.7 578 47.9 561 | 254.8 562 63.0
apex6 232 1.2 219 1.5 230 5.4 212 8.5 212 5.7
apex7 72 0.4 71 0.4 71 1.2 63 1.3 63 1.2
b9 39 0.1 39 0.2 38 0.4 38 0.5 38 0.4
bw 65 0.2 62 0.3 61 1.1 54 1.7 54 1.3
clip 41 0.2 37 0.2 38 1.8 33 2.5 33 1.8
count 47 0.2 45 0.2 40 0.6 31 0.8 31 0.7
des 1073 5.6 1060 6.1 1050 68.1 945 83.1 947 75.2
duke2 138 0.5 136 0.5 127 2.8 122 3.2 122 3.1
e64 95 0.3 95 0.3 80 0.6 80 0.6 80 0.6
f51m 41 0.2 39 0.2 40 1.8 35 2.0 35 1.8
misex1 20 0.1 20 0.1 19 0.3 19 0.3 19 0.3
misex2 35 0.1 35 0.1 31 0.2 30 0.3 30 0.3
misex3 160 0.7 156 0.8 157 10.6 142 14.7 139 11.5
rd73 42 0.2 35 0.2 38 3.1 30 4.3 30 3.3
rd84 76 0.3 76 0.3 73 8.1 70 8.5 70 8.4
rot 215 1.0 203 1.1 206 5.1 189 5.6 189 5.6
sa02 48 0.3 42 0.2 45 2.2 38 2.6 38 2.3
vg?2 24 0.1 24 0.1 23 0.2 22 0.2 22 0.2
z4ml 9 0.0 9 0.1 9 0.2 5 0.3 5 0.2
total 4679 21.9 4504 24.5 4513 | 332.6 3958 | 617.3 3959 | 372.5

execution time on a SparcStation-TPC (13.5 Specmarks)

Table 7.1: Area Algorithm 5-input LUT Results

87

(-A) circuits. This reduction exceeds the sum of the reductions realized for the (-
Ar) circuits and (-Af) circuits. This indicates that the replication of logic at fanout
nodes exposes additional reconvergent paths that can be exploited by the exhaustive
reconvergent search. The opportunity to exploit these additional reconvergent paths
can improve the final circuit, but it also increases the computational cost of the
exhaustive reconvergent search. The total execution time for the (-Arf) circuits is
almost twice that of the (-Af) circuits.

The computational cost of exploiting reconvergent paths can be reduced by using
the MSD algorithm instead of the exhaustive reconvergent search. The results in
Table 7.1 indicate that the (-AsF) results are similar to the (-Arf) results. For 4 of
the 29 networks, the (-Asf) circuits contain more LUTs than the (-Arf) circuits, but
for 3 networks they contain fewer LUTs. In total, the (-Asf) circuits contain only
1 more LUT than the (-Arf) circuits. The MSD algorithm is able to occasionally
outperform the exhaustive reconvergent search because the exhaustive search only
finds a locally optimal solution. For some networks, the local decisions made by the
MSD algorithm can lead to a superior global solution. The total execution time for
the (-Asf) circuits is similar to the execution time for (-Af) circuits, indicating the

efficiency of the MSD algorithm.

7.1.2 Circuits of Xilinx 3000 CLBs

This section presents experimental results for Chortle mapping networks into Xilinx
3000 CLBs. As described in Chapter 2, each Xilinx CLB can implement any single
function of 5 variables, or any two 4-input functions that together have at most 5
distinct inputs. To realize a circuit of CLBs, a network can be first mapped into
a circuit of 5-input LUTs, and then the Maximum Cardinality Matching (MCM)
strategy described in Section 2.3.2 of Chapter 2, can be used to pair single-output
functions into two-output CLBs.

Five sets of experiments were performed on the 29 networks from the previous
section, using the options (-A), (-Ar), (-Af), (-Arf), and (-Asf) to optimize the LUT

circuit. Table 7.2 presents the number of CLBs in the circuits produced by these

88

network -A -Ar -Af -Arf -Asf
CLBs [sec. ' || CLBs [sec. ' || CLBs | sec. T || CLBs | sec. T || CLBs | sec. T
5xpl 23 0.2 22 0.2 23 1.2 21 1.5 21 1.2
9sym 52 0.4 53 0.4 54 20.9 52 27.3 52 22.4
9symml 50 0.3 49 0.4 49 20.3 47 28.5 47 21.5
C499 84 2.0 84 2.2 85 4.3 50 6.0 50 5.1
Ch315 413 61.1 401 53.1 416 71.2 389 87.8 387 73.7
C880 74 0.9 76 0.9 76 4.9 75 5.8 75 5.2
alu2 94 1.0 94 0.9 96 24.2 93 28.0 93 25.1
alu4d 166 2.9 157 2.8 165 40.2 152 52.6 153 42.1
apex2 94 0.8 94 0.9 96 18.1 95 19.9 95 19.2
apex4 456 30.6 454 29.0 463 70.0 449 | 275.0 448 83.3
apex6 162 2.4 159 2.4 176 6.6 173 9.4 173 6.5
apex7 48 0.5 48 0.5 49 1.2 45 1.3 45 1.2
b9 26 0.2 27 0.2 26 0.5 26 0.5 26 0.5
bw 39 0.3 39 0.3 39 1.2 38 1.7 38 1.3
clip 27 0.2 25 0.2 28 1.7 25 2.5 24 1.8
count 32 0.2 31 0.3 32 0.6 27 0.8 27 0.7
des 714 | 154.5 713 | 1164 806 | 195.0 758 | 175.2 758 | 187.2
duke2 88 1.0 88 1.0 92 3.2 92 3.4 92 3.3
e64 48 0.7 48 0.6 54 0.7 54 0.7 54 0.7
f51m 29 0.2 29 0.2 28 1.8 26 2.0 26 1.8
misex1 13 0.1 13 0.1 13 0.3 13 0.3 13 0.3
misex2 22 0.1 22 0.1 25 0.2 25 0.3 25 0.3
misex3 120 1.3 121 1.3 123 11.1 119 15.0 117 11.9
rd73 29 0.2 27 0.2 30 3.2 24 4.3 23 3.3
rd84 52 0.4 52 0.4 54 8.0 50 8.6 50 8.5
rot 135 2.8 131 2.4 141 6.3 130 6.6 130 6.3
sa02 37 0.2 34 0.3 37 2.2 33 2.6 33 2.3
vg?2 20 0.1 20 0.1 19 0.2 19 0.2 19 0.2
z4ml 5) 0.0 5) 0.1 5) 0.2 4 0.2 4 0.2
total 3152 | 265.6 3116 | 217.9 3300 | 519.5 3104 768 3098 | 537.1

1

Table 7.2: Area Algorithm Xilinx 3000 CLBs Results

89

execution time on a SparcStation-TPC (13.5 Specmarks)

experiments, and the execution time on a SparcStation-IPC. Note that the execution
time for each circuit includes the time to map the network into a circuit of 5-input
LUTs and the time to pair these LUTs into CLBs.

The first observation from Table 7.2 is that optimizations that reduced the number
of 5-input LUTSs in the previous section do not always reduce the number of two-
output CLBs. In the previous section the (-Ar) circuits never contained more LUTs
than the (-A) circuits. In Table 7.2, 12 of the (-Ar) circuits contain fewer CLBs than
the (-A) circuits, but for 4 networks the (-Ar) circuit contains more CLBs. In total,
the (-Ar) circuits uses 1.1% fewer CLBs than the (-A) circuits. Note also that the
total execution time for the (-Ar) circuits is less than the execution time for the (-A)
circuits. The execution time for CLB circuits is dominated by the time taken by the
MCM algorithm. Even though it takes more time to produce the (-Ar) LUT circuits
than the (-A) LUT circuits, using these smaller (-Ar) circuits reduces the size of the
MCM problem and reduces the overall execution time.

The next observation is that the Root Replication optimization generally increases
the number of CLBs in the final circuit, even though it reduces the number of LUTs.
For 18 of the 29 networks, the (-Af) circuit contains more CLBs than the (-A) circuit,
and for 4 of the networks the (-Af) circuit contains fewer CLBs. In total, the (-
Af) circuits use 4.7% more CLBs than the (-A) circuits. The replication of logic at
fanout nodes generally increases the number of inputs used by the LUTs containing
the replicated logic, and makes it more difficult to pair these LUTs into a two-output
CLB. The availability of the second CLB output can often eliminate the need for the
replication of logic. If a CLB contains a single LUT that implements replicated logic,
then the second output of this CLB can often be used to explicitly implement the
function of the replicated logic with no additional cost. This second output can be
used as an input to all other CLBs that replicate logic at the fanout, and thereby
eliminate the need for the replication of logic in these CLBs.

Combining the exhaustive reconvergent search and the Root Replication optimiza-
tion often reduces the number of CLBs in the final circuit. For 19 of the 29 networks,
the (-Arf) circuit contains fewer CLBs than the (-A) circuit, and for 7 of the networks

90

the (-Arf) circuit contains more CLBs. In total, the (-Arf) circuits use 1.5% fewer
CLBs than the (-A) circuits. The reduction in the number of LUTs resulting from the
combination of the exhaustive reconvergent search and Root Replication optimiza-
tion can overcome the disadvantage of the replication of logic at fanout nodes when
pairing LUTs into CLBs. Note that the (-Arf) circuits are never worse than the (-Af)
circuits. However, the (-Arf) circuits are worse than the (-Ar) circuits for 6 of the 29
networks.

As discussed in the previous section, the computational cost can be reduced by
using the MSD algorithm instead of exhaustive reconvergent search. For all networks,
the number of CLBs in the (-Asf) circuits differs from the (-Arf) circuits by at most
2 CLBs, and in total, the (-Asf) circuits actually use 6 fewer CLBs than the (-
Arf) circuits. The total execution time for (-Asf) circuits is 70% that of the (-Arf)
circuits. This reduction in execution time is not as significant as the reduction for
LUT circuits presented in the previous sections, because the execution time for CLB
circuits is dominated by the time taken by the MCM algorithm.

The above results indicate that it is advantageous to use both outputs of a CLB.
To increase the opportunities to pair two functions into one CLB the original network
can be first mapped into a circuit of 4-input LUTs and then the MCM strategy can
be used to pair these functions into two-output CLBs. The 4-input LUT circuit may
contain more LUTs than the 5-input LUT circuit, but may result in an increase in the
number of pairs of functions that can be implemented by two-output CLBs, and a net
reduction in the number of CLBs in the final circuit. Table 7.3 gives the number of
5-input and 4-input LUTs in the circuits produced using the (-Arf) options, and the
number of CLBs in the circuits derived from these intermediate circuits. Comparing
the number of CLBs in the circuits derived from 4-input LUT circuits and 5-input
LUT circuits, there is no consistent pattern. The circuits derived from the 4-input
LUTs contain fewer CLBs than the circuits derived from the 5-input LUTs for 13 of
the 29 networks, and for 12 of the networks they contain more CLBs. In total, the
results derived from the 4-input LUT circuits contain 0.4% fewer CLBs. The circuits

derived from the 4-input LUT circuits are smaller if the increase in the number of

91

network 5-input, -Arf 4-input, -Arf
LUTs | CLBs [sec. I || LUTs | CLBs | sec. !
bxpl 27 21 1.5 35 19 1.4
9sym 62 52 27.3 80 56 22.8
9symml 54 47 28.5 71 47 24.0
499 70 50 6.0 91 55 5.3
Ch315 513 389 87.8 645 410 | 370.3
C880 86 75 5.8 110 76 5.6
alu2 116 93 28.0 142 92 27.0
alud 191 152 52.6 236 154 48.6
apex2 120 95 19.9 148 100 19.3
apex4 561 449 | 275.0 682 466 | 105.2
apex6 212 173 9.4 241 161 7.7
apex7 63 45 1.3 73 47 1.3
b9 38 26 0.5 45 25 0.5
bw 54 38 1.7 66 34 1.6
clip 33 25 2.5 41 26 2.1
count 31 27 0.8 39 23 0.7
des 945 758 | 175.2 1149 724 | 286.7
duke?2 122 92 3.4 144 82 3.4
e64 80 54 0.7 94 47 0.8
f51m 35 26 2.0 40 25 2.0
misex 1 19 13 0.3 22 14 0.4
misex?2 30 25 0.3 36 22 0.3
misex3 142 119 15.0 186 131 14.9
rd73 30 24 4.3 41 24 3.7
rd84 70 50 8.6 84 50 8.2
rot 189 130 6.6 223 127 7.4
sa02 38 33 2.6 53 34 2.5
vg?2 22 19 0.2 27 19 0.2
z4ml 5 4 0.2 6 3 0.2
total 3958 | 3104 768 4850 | 3093 | 974.1

! execution time on a SparcStation-IPC (13.5 Specmarks)

Table 7.3: Intermediate Circuits of 4-input and 5-input LUTSs

92

LUTs, compared to the 5-input LUT circuits, is offset by a larger increase in the
number of LUTSs that can be paired into two-output CLBs. The total execution time
to derive CLB circuits from 4-LUT circuits is larger than that from 5-input LUT
circuits. The intermediate 4-input LUT circuits are larger than the intermediate 5-
input LUT circuits, and therefore the MCM problem is larger. This increases the size
of the MCM problem, and since the time taken to solve this problem dominates the

execution time, the 4-input LUT approach is slower.

7.1.3 Chortle vs. Mis-pga

This section presents a comparison of the Chortle area algorithm and the two versions
of the Mis-pga technology mapper described in Section 2.3.2 of Chapter 2. The
original version is referred to as Mis-pga(1) [Murg90], and the improved version is
referred to as Mis-pga(2) [Murg91la]. Table 7.4 reports experimental results published
in [Murg9la]. In these experiments 27 networks from the MCNC logic synthesis
benchmark suite were mapped into circuits of 5-input LUTs. The Chortle results were
produced using the Chortle-crf [Fran91a] program which implemented the basic area
algorithm, the exhaustive reconvergent search and the Root Replication optimization.
To permit a direct comparison of the technology mappers, the Chortle-crf, Mis-pga(1)
and Mis-pga(2) experiments all started with the same optimized networks. Chortle-
crf was run with the exhaustive reconvergent optimization, and the Root Replication
optimizations (-Arf).

For 20 of the 27 networks, the circuits produced by Mis-pga(1) contain more LUTSs
that the circuits produced by Chortle-crf, and for 3 of the networks the Mis-pga(1)
circuits contain fewer LUTs. In total, the Mis-pga(1) circuits contain 20% more LUTs
than the Chortle-crf circuits.

Mis-pga(2) incorporates a bin packing strategy for decomposition similar to the
strategy introduced in Chortle-crf [Fran9la]. For 20 of the 27 networks, the circuit
produced by Mis-pga(2) contains fewer LUTs that the circuit produced by Chortle-
crf, and for 2 of the networks the Mis-pga(2) circuit contains more LUTs. In total, the
Mis-pga(2) circuits contain 14% fewer LUTs than the Chortle-crf circuits. Note that

93

network -Axf Mis-pga(1) Mis-pga(2)
LUTs | sec. T LUTs || LUTs | sec. !
5xpl 28 0.4 31 18 22.4
9sym 59 12.8 72 7 339.7
9symml 44 6.4 56 7 127.2
C499 89 2.6 66 68 | 1074.4
C880 88 2.2 103 82 546.8
alu2 116 7.1 129 109 773.8
alu4 70 2.5 235 55 887.5
apex2 64 2.9 80 67 | 388.5
apex4 579 98.9 765 412 198.7
apex6 198 2.9 243 182 243.9
apex7 60 0.6 64 60 18.7
b9 41 0.4 42 39 27.6
bw 39 0.3 39 28 17.3
clip 31 0.7 28 28 58.4
count 31 0.3 31 31 5.8
des 927 35.4 1016 904 | 3186.3
duke2 111 1.7 128 110 203.7
e64 80 0.3 80 80 14.7
f51m 27 0.4 19 17 14.4
misex1 11 0.1 11 11 2.7
misxe2 28 0.1 35 28 3.4
rd73 16 0.3 19 6 24.0
rd84 35 1.3 40 10 73.7
rot 188 2.7 200 181 282.1
sa02 27 0.5 37 28 41.9
vg2 21 0.1 30 20 7.4
z4ml 7 0.1 8 5 5.0
total 3015 184 3607 2593 8590

L execution time on a DEC-5500 (27.3 Specmarks)

Table 7.4: Chortle vs. Mis-pga(1) and Mis-pga(2)

94

Mis-pga(2) produces significantly smaller circuits than Chortle-crf for networks such
as "9sym” that have a large number of reconvergent paths, where Shannon decompo-
sition is particularly effective. Both the Chortle-crf and Mis-pga(2) experiments were
run on a DEC-5500, and in total, Mis-pga(2) was 47 times slower than Chortle-crf.
Compared to the (-Arf) results presented in Section 7.1 the Chortle-crf circuits
recorded in Table 7.4 use fewer LUTs for 17 of the 27 networks, more LUTs for 6 of
the networks, and in total 8.7% fewer LLUTs. The optimized networks used as input
to Chortle-crf in these experiments differ from those described in Section 7.1, and are

the source of this improvement.

7.1.4 Chortle vs. Xmap

This section presents an experimental comparison of the Chortle-crf area algorithm
and the Xmap [Karp91] technology mapper described in Section 2.3.5 of Chapter 2.
Table 7.4 reports experimental results published in [Murg9la). In these experiments
27 networks from the MCNC logic synthesis benchmark suite are mapped into circuits
of 5-input LUTs. Both the Chortle-crf and Xmap experiments use the optimized
networks described in the previous section. Chortle-crf was run with the exhaustive
reconvergent optimization, and the Root Replication optimizations (-Arf).

For 22 of the 27 networks, the circuit produced by Xmap contains more LUTs
that the circuit produced by Chortle-crf, and for 1 of the networks the Xmap circuit
contains fewer LUTs. In total, the Xmap circuits contain 14% more LUTs than the
Chortle-crt circuits. The Chortle-crf experiments were run on a DEC5500 and the
Xmap experiments were run on a SUN-4/370. Taking the relative performance of

these machines into account Xmap was 16 times faster than Chortle-crf.

7.1.5 Chortle vs. Hydra

This section presents an experimental comparison of the Chortle area algorithm and
the Hydra [Filo91] technology mapper described in Section 2.3.4 of Chapter 2. In

these experiments 19 networks from the MCNC logic synthesis benchmark suite were

95

network -Arf Xmap
LUTs | sec. I || LUTs | sec. 2
5xpl 28 0.4 31 0.3
9sym 59 12.8 73 0.5
9symml 44 6.4 55 0.4
C499 89 2.6 75 0.5
C880 88 2.2 103 0.8
alu2 116 7.1 126 0.9
alu4 70 2.5 98 0.7
apex2 64 2.9 81 0.7
apex4 579 98.9 664 6.4
apex6 198 2.9 231 1.6
apex7 60 0.6 65 0.5
b9 41 0.4 48 0.4
bw 39 0.3 43 0.3
clip 31 0.7 38 0.3
count 31 0.3 31 0.2
des 927 35.4 1042 6.8
duke2 111 1.7 127 0.8
e64 80 0.3 80 0.5
f51m 27 0.4 33 0.3
misex1 11 0.1 11 0.2
misxe2 28 0.1 28 0.2
rd73 16 0.3 21 0.1
rd84 35 1.3 36 0.4
rot 188 2.7 212 1.4
sa02 27 0.5 37 0.4
vg?2 21 0.1 24 0.2
z4ml 7 0.1 9 0.2
total 3015 184 3422 26

L execution time on a DEC-5500 (27.3 Specmarks)
2 execution time on a SUN-4/370 (12 Specmarks est.)

Table 7.5: Chortle vs. Xmap

96

network -Arf Hydra
CLBs | sec. T || CLBs | sec. 2
bxpl 21 1.5 21 0.5
9sym 52 27.3 57 2.9
9symml 47 28.5 33 1.1
499 50 6.0 51 1.8
Ch315 389 87.8 229 23.0
880 75 5.8 71 9.0
alu2 93 28.0 94 2.9
alu4 152 52.6 105 4.8
apex2 95 19.9 67 3.5
apex6 173 9.4 131 35.9
apex7 45 1.3 43 0.9
count 27 0.8 26 0.5
duke2 92 3.4 79 1.9
e64 54 0.7 47 0.7
misex1 13 0.3 8 0.2
rd84 50 8.6 27 0.6
rot 130 6.6 134 6.4
vg?2 19 0.2 20 0.3
z4ml 4 0.2 4 0.4
total 1581 | 288.9 1247 97.3

! execution time on a SparcStation-IPC (13.5 Specmarks)

2 execution time on a DEC-3100 (11.3 Specmarks)

Table 7.6: Chortle vs. Hydra

mapped into circuits of Xilinx 3000 CLBs.

Table 7.6 displays the number of logic blocks in the circuits produced by the
Chortle area algorithm and the Hydra results published in [Filo91]. For Hydra, logic
optimization preceding technology mapping was performed by misII using the stan-
dard script. The Chortle results are the (-Arf) results presented in Section 7.1.2.

The circuits produced by Hydra contain fewer logic blocks than the Chortle circuits
for 12 of the 19 networks, and in total contained 21% fewer CLBs. Table 7.6 also
shows the execution times for Hydra and Chortle. The Hydra experiments were run
on a DECstation-3100 and the Chortle experiments were run on a SparcStation-IPC.
Taking the relative performance of these machines into account Hydra is 3 times faster
than Chortle.

Hydra achieves better results than Chortle when mapping into CLBs because
the decomposition strategy used in Hydra anticipates the pairing of single-output
functions into two-output logic blocks, and selects decompositions that encourage the

sharing of inputs in addition to reducing the number of single-output functions.

97

network -Arf VISMAP
blocks | sec. T || blocks [sec. ?
5xpl 16 1.5 28 1.0
9sym 48 27.5 63 0.9
9symml 42 28.6 52 0.7
C499 46 5.9 50 2.0
C880 68 5.9 78 2.6
apex6 164 10.0 155 12.7
apex7 43 1.4 54 1.5
b9 25 0.5 31 0.6
misex1 12 0.3 14 0.4
misex2 20 0.3 35 0.6
misex3 113 15.3 156 9.5
rd73 20 4.4 26 10.8
z4ml 3 0.2 18 0.6
total 620 | 101.8 760 43.9

L execution time of a SparcStation-IPC (13.5 Specmarks)

2 execution time of a SparcStation-2 (25.0 Specmarks)

Table 7.7: Chortle vs. VISMAP

7.1.6 Chortle vs. VISMAP

This section presents an experimental comparison of the Chortle area algorithm and
the VISMAP [Wo091] technology mapper described in Section 2.3.6 of Chapter 2.
In these experiments 13 networks from the MCNC logic synthesis benchmark suite
were mapped into circuits of two-output logic blocks. Each of these logic blocks can
implement any two 5-input functions that together have at most 5 distinct inputs.
Note that these two-output logic blocks are not equivalent to Xilinx 3000 CLBs.

Table 7.7 reports the number logic blocks in the circuits produced by the Chortle
area algorithm and the VISMAP results published in [Woo91]. For the VISMAP ex-
periments, logic optimization and decomposition preceding VISMAP were performed
by Mis-pga(l). The Chortle experiments started with the optimized networks de-
scribed in Section 7.1. The optimized networks were mapped into circuits of 5-input
LUTs using the exhaustive reconvergent and the Root Replication optimizations.
These single-output functions were then paired into two-output logic blocks using the
MCM strategy described in Chapter 3.

The effectiveness of the covering algorithm implemented by VISMAP is limited by
the decomposition chosen by Mis-pga(1l) preceding VISMAP. The circuits produced
by VISMAP contain more logic blocks than the Chortle circuits for 12 of the 13

98

networks, and in total contain 23% more logic blocks. Table 7.7 also shows the
execution times for VISMAP and Chortle. The VISMAP experiments were run on a
SparcStation-2 and the Chortle experiments were run on a SparcStation-IPC. Taking

the relative performance of these machines into account VISMAP is 1.25 times faster

than Chortle.

7.2 Results for the Delay Algorithm

7.2.1 Circuits of 5-input LUTs

This section presents experimental results for the delay algorithm described in Chap-
ter 4. These experiments are intended to evaluate the effectiveness of the basic delay
algorithm, the exhaustive reconvergent search and the replication of logic at every
fanout node.

The goal of these experiments is the minimization of the number of levels of LUTs
in the final circuits. The experimental procedure begins with logic optimization to
reduce the depth of the network. The networks described in Section 7.1 are further
optimized using the misll "speed_up -m unit” command [Sing88] before technology
mapping by Chortle. The networks are mapped into circuits of 5-input LUTs using
Chortle with the following options

(-Arf) area algorithm with exhaustive reconvergent search
and Root Replication
(-D) basic delay algorithm
(-Dr) with exhaustive reconvergent search
(-DF) with replication at every fanout node
(-DrF) with both exhaustive reconvergent and replication
Table 7.8 displays the number of LUTs and the number of levels of LUTs in the

circuits produced by these options. The (-Arf) results provide a basis for evaluating

the ability of the basic delay algorithm and the various options to reduce the number

99

of levels of LUTs in the final circuit. Note that the (-Arf) results recorded in this
table differ from the results presented in Section 7.1 because these experiments started
with networks that were optimized to reduce delay. Table 7.9 shows the execution
time for these experiments on a SparcStation-IPC. To limit the execution time when
mapping the network "alu4” with the options (-Arf) any node with more than 12
pairs of reconvergent paths was optimized using the MSD algorithm rather than the
exhaustive reconvergent search.

The basic delay algorithm (-D), and the delay algorithm with the exhaustive
reconvergent search (-Dr) provide minor reduction in the number of levels in the
mapped circuits. For 12 of the 29 networks, the (-D) circuit has fewer levels than the
(-Arf) circuit, but for 9 of the networks the (-D) circuit has more levels. In total, the
(-D) circuits have 3.2% fewer levels than the -(Arf) circuits, but contain 65% more
LUTs.

For 14 of the 29 networks, the (-Dr) circuit has fewer levels than the (-Arf) circuit,
but for 9 of the networks the (-Dr) circuit has more levels. In total, the (-Dr) circuits
have 6% fewer levels than the -(Arf) circuits, but contain 62% more LUTs.

For those networks where the (-Arf) circuit has fewer levels than the (-D) or (-Dr)
circuits, the combination of the reconvergent and replication optimizations has found
reconvergent paths that not only reduce the total number of LUTSs, but also reduce
number of levels in the final circuit.

The replication of logic at all fanout nodes in the (-DF) circuits decreases the
number of levels, but substantially increases the number of LUTSs in the circuits. For
25 of the 29 networks, the (-DF) circuit has fewer levels than the (-Arf) circuit, and
for only 1 of the networks the (-DF) circuit has more levels. In total, the (-DF)
circuits have 37% fewer levels than the -(Arf) circuits, but contain 150% more LUTs.

Combining the exhaustive reconvergent search with replication at every fanout
node further decreases the number of levels in the circuits, and reduces the area
penalty. For 28 of the 29 networks, the (-DrF) circuit has fewer levels than the (-Arf)
circuit. In total, the (-DrF) circuits have 43% fewer levels than the -(Arf) circuits,
and contain 121% more LUTs. Note that the total execution time for the (-DrF)

100

network -Arf -D -Dr -DF -DrF
LUTs | levels || LUTs | levels || LUTs | levels || LUTs | levels || LUTs | levels
5xpl 28 4 56 5 53 5 60 4 31 3
9sym 65 8 98 6 96 6 99 5 70 5
9symml 61 8 93 6 92 6 97 5 57 4
C499 112 9 272 12 270 12 496 9 420 6
Ch315 543 13 938 16 915 16 1697 10 1380 9
C880 163 13 286 15 275 14 393 8 367 8
alu2 128 17 214 14 203 13 322 9 271 9
alu4d 214 * 19 397 18 370 17 655 11 590 10
apex2 123 9 210 9 205 8 220 6 223 6
apex4 597 11 830 9 828 9 1430 6 1389 6
apex6 232 7 361 7 352 7 496 4 358 4
apex7 75 6 132 7 132 7 147 4 125 4
b9 40 4 62 4 61 4 61 3 58 3
bw 57 4 94 5) 94 5 116 3 28 1
clip 34 5) 54 5 54 5 69 4 66 4
count 64 5 115 6 112 6 135 3 120 3
des 953 12 1399 10 1394 10 2720 6 2614 6
duke2 150 8 253 8 248 7 287 4 270 4
e64 138 7 267 7 267 7 247 3 247 3
f51m 39 5 66 5 63 5 61 3 38 3
misex1 17 3 36 4 36 4 30 3 19 2
misex2 32 6 61 4 61 4 56 3 52 3
misex3 247 27 455 22 446 22 555 14 510 13
rd73 34 6 55 5 53 5 70 4 36 3
rd84 41 8 77 7 69 6 125 5 81 4
rot 209 12 339 10 332 10 421 7 351 6
sa02 38 7 78 5 74 5 73 4 51 4
vg?2 37 5 62 5 60 5 65 4 54 4
z4ml 13 3 30 7 28 6 25 4 21 3
total 4484 251 7390 243 7243 236 || 11228 158 9897 143

MSD for some nodes

Table 7.8: Delay Algorithm 5-input LUT Results

circuits is less than the execution time for the (-Arf) circuits. This is a result of the

-Arf) option having to repeatedly map trees to determine when to replicate logic at
p g p y p g

fanout nodes, whereas the (-DrF) option simply replicates at every fanout node.

101

network -Arf -D -Dr -DF -DrF
LUTs [sec. I || LUTs [sec. T || LUTs [sec. ' || LUTs | sec. T || LUTs | sec. !
bxpl 28 1.3 56 0.8 53 0.9 60 1.0 31 2.0
9sym 65 25.8 98 3.1 96 3.3 99 3.6 70 5.4
9symml 61 28.1 93 2.8 92 3.4 97 3.5 57 10.9
C499 112 12.5 272 5.3 270 7.4 496 7.8 420 9.9
Ch315 543 82.3 938 19.4 915 22.3 1697 27.0 1380 34.4
C880 163 14.3 286 5.2 275 6.2 393 6.8 367 7.8
alu2 128 17.7 214 3.9 203 4.3 322 5.7 271 6.5
alu4d 214 * 48.2 397 8.0 370 9.5 655 12.3 590 14.9
apex2 123 16.0 210 4.1 205 4.5 220 5.2 223 5.6
apex4 597 48.4 830 26.5 828 30.0 1430 74.4 1389 89.3
apex6 232 9.6 361 6.9 352 7.4 496 9.0 358 10.7
apex7 75 2.1 132 1.8 132 2.0 147 2.2 125 2.5
b9 40 0.8 62 0.8 61 0.9 61 0.9 58 1.0
bw 57 1.7 94 1.3 94 1.4 116 1.9 28 25.9
clip 34 2.1 54 1.0 54 1.1 69 1.3 66 1.4
count 64 15.0 115 1.8 112 2.4 135 2.1 120 3.4
des 953 78.9 1399 42.7 1394 45.4 2720 70.9 2614 93.1
duke2 150 5.6 253 3.7 248 4.2 287 5.4 270 6.2
e64 138 1.8 267 2.4 267 2.4 247 3.1 247 3.2
f51m 39 5.2 66 1.2 63 1.3 61 1.5 38 2.1
misex1 17 0.3 36 0.4 36 0.4 30 0.4 19 1.1
misex2 32 0.4 61 0.5 61 0.5 56 0.6 52 0.6
misex3 247 25.7 455 6.1 446 6.5 555 8.7 510 23.4
rd73 34 5.4 55 1.4 53 1.5 70 1.8 36 4.0
rd84 41 3.2 77 1.5 69 1.7 125 2.2 81 3.7
rot 209 7.3 339 5.1 332 5.6 421 6.6 351 7.3
sa02 38 3.0 78 1.4 74 1.5 73 1.6 51 2.1
vg2 37 1.5 62 0.9 60 1.3 65 1.1 54 1.2
z4ml 13 14.7 30 0.4 28 0.6 25 0.5 21 0.8
total 4484 | 478.9 7390 | 160.4 7243 | 179.9 || 11228 | 269.1 9897 | 380.4

execution time on a SparcStation-TPC (13.5 Specmarks)
* MSD for some nodes

Table 7.9: Delay Algorithm Execution Times

102

7.2.2 Reducing the Area Penalty

The results of the previous section show that the delay algorithm incurs a substantial
area penalty while reducing the number of levels. This section presents results for
experiments evaluating the optimizations, described in Chapter 4, that reduce the
area penalty associated with the delay algorithm. These optimizations include: the
single-fanout LUT peephole optimization, the Leaf Replication optimization, and the
critical path optimization.

The experimental procedure takes the optimized networks used in the previous
section and maps them into circuits of 5-input LUTs using Chortle with the following

options:
(-DrFp) peephole optimization
(-DrLp) peephole, and Leaf Replication
(-DrLpc) as above, with the critical path optimization

(-DsLpc) as above, with MSD replacing the exhaustive reconvergent

search

Table 7.10 presents the number of LUTs, and the number of levels in each of the
circuits mapped by the different options. The (-DrF) results presented in the previous
section are also included in this table to provide a basis for comparison. Table 7.11
gives the execution times for these experiments on a SparcStation-IPC.

The first observation is that none of the options increased the number of levels
or the number of LUTSs in any of the circuits. Using the peephole optimization, the
(-DrFp) circuits, in total, have 7.9% fewer LUTs than the (-DrF) circuits. Replacing
replication at every fanout node with the Leaf Replication algorithm further decreases
the number of LUTs. In total, the (-DrLp) circuits have 14% fewer LUTs than the
(-DrF) circuits.

The critical path optimization reduces the number of LUTSs, but substantially
increases the execution time. To limit the execution time for the (-DrLpc) circuits for
the networks "f51m” and ”z4ml” the exhaustive reconvergent search was replaced by

the MSD algorithm, for any nodes where the number of pairs of reconvergent paths

103

exceeded 12. In total, the (-DrLpc) circuits contain 18% fewer LUTs than the (-DrF)
circuits, and need 6.7 times the execution time. The increase in execution time is a
result of the critical path optimization repeatedly mapping the network.

The increase in execution time can be reduced by replacing the exhaustive recon-
vergent search with the MSD algorithm, for all nodes. In total, the (-DsLpc) circuits
use half the execution time of the (-DrLpc) circuits. For 9 of the 29 networks, the
(-DsLpc) circuits have more LUTs than the (-DrLpc) networks, but for 7 of the net-
works the (-DsLpc) circuits have fewer LUTs. In total, the (-DsLpc) circuits actually
have 8 fewer LUTs than the (-DrLpc) circuits. As described in Section 7.1, the ability
of the MSD algorithm to occasionally outperform the exhaustive reconvergent search

can be explained by the fact that both approaches are local optimizations.

104

network -DrF -DrFp -DrLp -DrLpc -DsLpc
LUTs | levels || LUTs | levels || LUTs | levels || LUTs | levels || LUTs | levels
5xpl 31 3 27 3 27 3 27 3 27 3
9sym 70 5 63 5 63 5 57 5 57 5
9symml 57 4 54 4 54 4 54 4 53 4
C499 420 6 389 6 321 6 305 6 304 6
Ch315 1380 9 1275 9 1248 9 1124 9 1128 9
C880 367 8 341 8 318 8 306 8 307 8
alu2 271 9 244 9 239 9 219 9 232 9
alu4 590 10 548 10 517 10 493 10 476 10
apex2 223 6 202 6 200 6 184 6 183 6
apex4 1389 6 1322 6 1078 5 1050 5 1052 5
apex6 358 4 306 4 301 4 303 4 303 4
apex7 125 4 109 4 107 4 99 4 103 4
b9 58 3 52 3 52 3 47 3 48 3
bw 28 1 28 1 28 1 28 1 28 1
clip 66 4 58 4 56 4 43 4 43 4
count 120 3 107 3 107 3 100 3 101 3
des 2614 6 2448 6 2334 6 2243 6 2246 6
duke2 270 4 250 4 230 4 226 4 218 4
e64 247 3 213 3 182 4 175 4 175 4
f51m 38 3 33 3 33 3 31 3 31 3
misex1 19 2 17 2 17 2 17 2 17 2
misex2 52 3 38 3 38 3 37 3 37 3
misex3 510 13 465 13 452 13 442 13 432 13
rd73 36 3 31 3 31 3 26 3 25 3
rd84 81 4 75 4 75 4 63 4 63 4
rot 351 6 311 6 300 6 302 6 302 6
sa02 51 4 47 4 47 4 46 4 48 4
vg?2 54 4 52 4 52 4 51 4 51 4
z4ml 21 3 15 3 15 3 14 * 3 14 3
total 9897 143 9120 143 8522 143 8112 143 8104 143

MSD for some nodes

Table 7.10: Reducing the Area Penalty of the Delay Algorithm

105

network -DrF -DrFp -DrLp -DrLpc -DsLpc
LUTs | sec. I || LUTs | sec. I || LUTs [sec. ' || LUTs | sec. I || LUTs | sec. !
bxpl 31 2.0 27 2.0 27 2.0 27 2.4 27 1.4
9sym 70 5.4 63 5.4 63 5.4 57 13.1 57 10.0
9symml 57 10.9 54 10.9 54 11.0 54 18.7 53 9.9
C499 420 9.9 389 9.9 321 10.2 305 21.1 304 19.0
Ch315 1380 34.4 1275 34.6 1248 34.4 1124 152.7 1128 123.7
C880 367 7.8 341 7.9 318 7.8 306 24.5 307 23.5
alu2 271 6.5 244 6.7 239 6.5 219 18.8 232 20.8
alu4 590 14.9 548 15.0 517 14.9 493 95.8 476 50.5
apex? 223 5.6 202 5.7 200 5.6 184 14.5 183 14.2
apex4 1389 89.3 1322 89.9 1078 | 159.7 1050 | 1558.3 1052 364.2
apex6 358 10.7 306 10.6 301 11.2 303 27.2 303 23.4
apex7 125 2.5 109 2.6 107 2.5 99 4.9 103 4.3
b9 58 1.0 52 1.0 52 1.0 47 1.8 48 1.7
bw 28 25.9 28 26.0 28 26.0 28 26.7 28 2.7
clip 66 1.4 58 1.4 56 1.4 43 2.9 43 2.6
count 120 3.4 107 3.4 107 3.4 100 6.5 101 4.4
des 2614 93.1 2448 93.5 2334 98.2 2243 349.1 2246 341.2
duke2 270 6.2 250 6.2 230 6.4 226 16.6 218 11.4
e64 247 3.2 213 3.2 182 3.0 175 5.3 175 5.5
f51m 38 2.1 33 2.1 33 2.1 31 63.1 31 3.1
misex1 19 1.1 17 1.0 17 1.1 17 1.8 17 0.9
misex2 52 0.6 38 0.6 38 0.6 37 0.8 37 0.7
misex3 510 23.4 465 23.4 452 23.4 442 69.1 432 311
rd73 36 4.0 31 4.1 31 4.1 26 12.3 25 2.8
rd84 81 3.7 75 3.7 75 3.7 63 10.5 63 6.6
rot 351 7.3 311 7.5 300 7.4 302 22.0 302 16.3
sa02 51 2.1 47 2.1 47 2.1 46 3.9 48 3.3
vg2 54 1.2 52 1.2 52 1.1 51 2.3 51 2.0
z4ml 21 0.8 15 0.8 15 0.8 14 * 1.1 14 0.9
total 9897 | 380.4 9120 | 382.4 8522 457 8112 | 2547.6 8104 | 1102.1

1

execution time on a SparcStation-TPC (13.5 Specmarks)

* MSD for some nodes

Table 7.11: Execution Times for Reducing the Area Penalty

106

network -DrlLpc Mis-pga(3)
LUTs | depth [sec. ! || LUTs | depth | sec. 2
bxpl 27 3 2.4 21 2 3.5
9sym 57 5 13.1 7 3 15.2
9symml 54 4 18.7 7 3 9.9
C499 305 6 21.1 199 8 58.4
Ch315 1124 9 | 1562.7 643 10 | 282.2
C880 306 8 24.5 259 9 39.0
alu2 219 9 18.8 122 6 42.6
alud 493 10 95.8 155 11 15.4
apex2 184 6 14.5 116 6 9.8
apex6 303 4 27.2 274 5 60.0
apex’7 99 4 4.7 95 4 8.4
b9 47 3 1.8 47 3 2.3
bw 28 1 26.7 28 1 8.3
clip 43 4 2.9 54 4 3.7
count 100 3 6.5 81 4 5.1
des 2243 6 | 349.1 1397 11| 937.8
duke2 226 4 16.6 164 6 16.4
e64 175 4 5.3 212 5 15.7
f51m 31 3 63.1 23 4 5.9
misex1 17 2 1.8 17 2 1.7
misex?2 37 3 0.8 37 3 1.4
rd73 26 3 12.3 8 2 4.4
rd84 63 4 10.5 13 3 9.8
rot 302 6 22.0 322 7 50.0
sa02 46 4 3.9 45 5 9.5
vg?2 51 4 2.3 39 4 1.7
z4ml 14 3 1.1 10 2 2.1
total 6620 125 | 920.2 4395 133 | 1620.2

! execution time on a SparcStation-IPC (13.5 Specmarks)

2 execution time on a DEC-5500 (27.3 Specmarks)

Table 7.12: Chortle vs. Mis-pga(3)

7.2.3 Chortle vs. Mis-pga

This section compares the ability of the latest version of Mis-pga [Murg91b], described
in Section 2.3.2 of Chapter 2, and the Chortle delay algorithm to reduce the number
of levels of LUTs. This version of Mis-pga is referred to as Mis-pga(3). Table 7.12
shows experimental results for Mis-pga(3) and Chortle mapping 28 networks from the
MCNC logic synthesis benchmark suite into circuits of 5-input LUTs. The Mis-pga(3)
results were published in [Murg91b], and the Chortle results are the (-DrLpc) results
presented in Section 7.2.2. Note that for these experiments, Mis-pga(3) and Chortle
start with different optimized networks.

Generally, the Mis-pga(3) circuits contain fewer LUTs, but more levels, than the

107

network -DrLpc DAG-Map
LUTs | depth | sec. ' || LUTs | depth
bxpl 27 3 2.4 28 3
9sym 57 5 13.1 63 5
9symml 54 4 18.7 61 5
C499 305 6 21.1 204 5
C880 306 8 24.5 246 8
alu2 219 9 18.8 199 9
alud 493 10 95.8 303 10
apex2 184 6 14.5 164 5
apex4 1050 5 | 1558.3 780 6
apex6 303 4 27.2 284 5
apex7 99 4 4.7 95 4
count 100 3 6.5 87 3
des 2243 6 | 349.1 1480 6
duke?2 226 4 16.6 195 4
e64 175 4 5.3 167 3
misex 1 17 2 1.8 17 2
rd84 63 4 10.5 48 4
rot 302 6 22.0 328 6
vg?2 51 4 2.3 42 3
z4ml 14 3 1.1 17 3
total 6288 100 | 2214.3 4808 99

! execution time on a SparcStation-IPC (13.5 Specmarks)

Table 7.13: Chortle vs. DAG-Map

Chortle circuits. For 12 of the 28 networks, the Mis-pga(3) circuits contain more levels
than the Chortle circuits, and for 7 networks the Mis-pga(3) circuits contain fewer
levels. In total, the Mis-pga(3) circuits contain 6.4% more levels and 34% fewer LUTs
than the Chortle circuits. In these experiments, Mis-pga(3) was run on a DEC-5500
and the Chortle was run on a SparcStation-IPC. Taking the relative performance of

these machines into account, Mis-pga(3) is 3 times slower than Chortle.

7.2.4 Chortle vs. DAG-Map

This section compares the performance of the Chortle delay algorithm and DAG-Map
[Cong92] technology mapper, described in Section 2.3.7 of Chapter 2. These two pro-
grams were used to map 20 networks from the MCNC logic synthesis benchmark suite
into circuits of 5-input LUTs. Table 7.13 displays the DAG-Map results published in
[Cong92]. These experiments used the same starting networks as described in Sec-

tion 7.2. The Chortle results recorded in this table are the Chortle (-DrLpc) results

108

presented in Section 7.2.2.

DAG-Map and Chortle have nearly identical performance in terms of the number
of levels in the final circuit, but DAG-Map uses significantly fewer LUTs. For 4 of the
20 networks, the DAG-Map circuits have one fewer level of LUTs than the Chortle
circuits, and for 3 networks, the DAG-Map circuits have one more level. In total, the

DAG-Map circuits contain 24% fewer LLUTs than the Chortle circuits.

7.3 Summary

This chapter has presented experimental results that investigate the effectiveness of
the area and delay algorithms. In addition, these results were used to compare Chor-
tle to other LUT technology mappers. Combinations of the following optimization
options were used in the experiments:

(A) basic area algorithm

(D) basic delay algorithm

(r) exhaustive reconvergent search

(s) Maximum Share Decreasing

(f) Root Replication
(F) replication at every fanout node

(L) Leaf Replication

(p) peephole optimization

(c) critical path optimization

Section 7.1.1 presented results for the area algorithm using the options (-A), (-Ar),
(-Af), (-Arf), and (-Asf). Section 7.2.1 presented results for the delay algorithm
using the options (-D), (-Dr), (-DF), and (-DrF). The reduction of the area penalty

109

associated with the delay algorithm was addressed in Section 7.2.2, which presented
results using the options (-DrFp), (-DrLp), (-DrLpc), and (-DsLpc).

From the area algorithm experiments it was observed that the reduction in the
number of LUTs with the combination of the exhaustive reconvergent search and the
root replication optimization exceeds the sum of the separate reductions for these two
optimizations. This indicates that the replication of logic at fanout nodes exposes
additional reconvergent paths for the exhaustive search to exploit.

The Xilinx 3000 CLB experiments showed that networks can be mapped into
circuits of two-output logic blocks by first mapping the networks into circuits of single-
output LUTs, and then pairing these LUTs into CLBs. Minimizing the number of
LUTs in the intermediate circuit does not, however, necessarily minimize the total
number of two-output logic blocks in the final circuit. In particular, the replication
of logic at fanout nodes, which can reduce the number of LUTSs, is seldom beneficial
if the logic block has a second output that can explicitly implement the replicated
function at little additional cost.

The delay algorithm experiments showed that a key factor in the reduction of the
number of levels of LUTs in the delay algorithm is the replication of logic at fanout
nodes. In addition, there is a large area penalty associated with the delay algorithm,
and the optimizations intended to reduce this penalty have limited success.

For both the area and delay algorithm, when the exhaustive reconvergent search
is replaced by the MSD algorithm there is little change in the number of LUT or the
number of levels, but there is a significant reduction in execution time.

When compared to other LUT technology mappers, the area algorithm outper-
forms Mis-pga(1) and Xmap in terms of the number of LUTs in the final circuit, but
Mis-pga(2) outperforms the area algorithm. Hydra produces circuits that contain
fewer Xilinx 3000 CLBs than those produced by Chortle, whereas VISMAP produces
circuits that contain more two-output logic blocks. In terms of the number of levels
in the final circuits, the delay algorithm outperforms Mis-pga(3) and produces results
similar to DAG-Map. However, the circuits produced by the delay algorithm contain
substantially more LUTs than the Mis-pga(3) and DAG-Map circuits.

110

Chapter 8

Conclusions

Lookup table-based FGPAs, because of their user-programmability and large scale in-
tegration, have become an attractive vehicle for the realization of Application Specific
Integrated Circuits (ASICs). These devices present new challenges for logic synthe-
sis, particularly technology mapping, which is the phase of logic synthesis directly
concerned with the selection of the circuit elements in the final circuit. This thesis
has presented some of the earliest research that addresses technology mapping into
lookup-table (LUT) circuits. Two algorithms that map a network of ANDs, ORs
and NOTs into a circuit of K-input LUTs were presented. The area algorithm mini-
mizes the number of LUTs in the final circuit, and the delay algorithm minimizes the
number of levels of LUTs.

The overall strategy of both algorithms is to first partition a general network at
fanout nodes into a forest of trees, and then to map each tree separately. Each tree is
mapped using a dynamic programming strategy similar to conventional library-based
technology mapping. The major innovation is the combination of the decomposition
of nodes in the network, and the matching of the network to LUTs into one problem
that is solved using the First Fit Decreasing bin-packing algorithm. For each tree,
the circuit constructed by the area algorithm has been shown to be an optimal tree of
LUTs for values of K < 5. In addition, the circuit constructed by the delay algorithm
is an optimal tree of LUTs for values of K < 6. The area and delay algorithms also

include optimizations that exploit reconvergent paths and the replication of logic at

111

fanout nodes to further improve the final circuit.

The two algorithms were implemented in a technology mapping program called
Chortle, and their effectiveness was evaluated in a series of experiments that mapped
networks from the MCNC logic synthesis benchmark suite into circuits of 5-input

LUTs. The MCNC networks were also mapped into circuits of Xilinx 3000 CLBs, by

pairing LUTs from the LUT circuits into two-output logic blocks.

8.1 Future Work

This thesis has focused on technology mapping for LUT circuits. In the experimen-
tal evaluation, logic optimization preceding technology mapping was performed using
existing techniques originally developed for Masked-Programmed Gate Arrays and
Standard Cell circuits. Future investigations should determine if logic optimization
can be tuned to improve the final LUT circuits produced by technology mapping.
In particular, the basic area and delay algorithms presented here are computation-
ally inexpensive, and could provide preliminary LUT circuits to evaluate alternative
networks during logic optimization.

The optimizations that exploit reconvergent paths and the replication of logic are
both greedy heuristics that consider only local information. There is potential for
improvement if more global information is used to determine how reconvergent paths
should be covered, and where logic should be replicated.

The decomposition strategy employed in the area algorithm considers only the
reduction of the number of LUTSs, and the strategy employed in the delay algorithm
considers only the reduction of the number of levels. Compared to the circuits pro-
duced by the area algorithm, the circuits produced by the delay algorithm incur a
substantial increase in the number of LUTs. The decomposition strategies in both
algorithms are based on two separate phases that first pack LUTs together and then
connect LUT outputs to inputs. Future work should consider how these two phases
could be organized to permit a continuous tradeoff between the number of LUTs and

the number of levels.

112

The delay algorithm minimized the number of levels of LUTs in order to re-
duce delays in the final circuit, by reducing the contribution of logic block delays.
In LUT-based FPGAs, the delays incurred in programmable routing account for a
substantial portion of total delay. The actual delays in the final FPGA circuit are
therefore, dependent upon the placement of logic blocks and the routing of connec-
tions between the logic blocks. A recent study has indicated that a correlation exists
between the number of levels of LUTs and the actual delays in a LUT-based FPGA
circuit [Murg91b]. However, future research could consider placement and routing in
conjunction with technology mapping to better address the minimization of delay in
LUT-based FPGAs.

The optimality results presented in this thesis are based on the ability of a K-
input LUT to implement any function of K variables. The completeness of the set
of functions may also lead to additional optimality results for LUT circuits. The
area and delay algorithms were able to produce optimal trees of LUTs implementing
fanout-free trees. Considering the divide and conquer strategy used to map general
networks, two types of sub-networks that merit future investigation for optimality
results are leaf-DAGs, and single-output networks.

The experimental results for two-output logic blocks indicate that the minimiza-
tion of the number of LUTs in the intermediate circuit does not necessarily reduce
the number of logic blocks in the final circuit. In some instances, an increase in the
number of LUTs in the circuit permits an increase in the number of paired LUTs,
and produces a net reduction in the number of two-output logic blocks. The Hydra
technology mapper [Filo91] has demonstrated that the optimization goal for the in-
termediate circuit can be tuned to anticipate the pairing of LUTs into two-output
logic blocks. To improve the circuits produced for two-output logic blocks, future re-
search could consider integrating this tuned optimization goal with the decomposition

techniques presented here.

113

Appendix A

Optimality of the First Fit

Decreasing Algorithm

This appendix proves two theorems about the First Fit Decreasing bin packing algo-
rithm that are used in the optimality proofs presented in Chapters 5 and 6.

A.1 Bin Packing

The one-dimensional packing problem is a well-known combinatorial optimization

problem that can be stated as follows:

Given a finite set of items, of positive size, and an integer K partition the
items into the minimum number of disjoint subsets such that, the sum of

the sizes of the items in every subset is less than or equal to K.

The problem is commonly known as the bin packing problem, because each subset
can be viewed as a set of boxes packed into a bin of capacity K. In this appendix,
the unused capacity of a bin is referred to as a hole, and the set of bins containing
the boxes is referred to as a packing of the boxes.

The bin packing problem is known to be NP-hard [Gare79], however, performance
bounds have been presented for several polynomial-time approximation algorithms.

The First Fit Decreasing (FFD) algorithm begins with an infinite sequence of empty

114

bins. The given boxes are first sorted by size, and then packed into bins, one at a
time, beginning with a largest box and proceeding in order to a smallest box. Each
box is packed into the first bin in the sequence having a hole greater than or equal to
the size of the box. The FFD packing consists of the non-empty bins in the sequence
after all the boxes have been packed.

It has been shown by Johnson [John74] that if the optimal packing of an arbitrary
set of boxes requires n bins, then the number of bins in the FFD packing of the same
boxes will be less than or equal to 11 *n/9 + 4. In general, the box sizes and bin
capacity are rational numbers. The remainder of this appendix will consider the bin
packing problem where the box sizes and the bin capacity are restricted to integer
values. Under these conditions, it will be shown that First Fit Decreasing algorithm

is optimal for bins of capacity less than or equal to 6.

Theorem A.1

For values of K from 2 to 6, the FFD packing of an arbitrary set of boxes

into bins of capacity K uses the fewest number of bins possible.

The proof of optimality for the area algorithm in Chapter 5 not only requires that
FFD produce the minimum number of bins, but also that it produce a bin with the
largest hole size possible. This can shown to be true for bins of capacity less than or

equal to 5.

Theorem A.2

For values of K from 2 to 5, the FFD packing of an arbitrary set of boxes
into bins of capacity K includes a bin with the largest hole possible for
any packing of the boxes that has the same number of bins as the FFD
packing.

115

A.2 Outline of Proof

For any set of boxes, the existence of a packing with fewer bins than the FFD packing
would imply that there exists another packing having the same number of bins as the
FFD packing that includes at least one empty bin. Therefore to prove Theorem A.1

for a given value of K it is sufficient to show that

Given the FFD packing of an arbitrary set of boxes into bins of capacity
K there does not exists a re-packing of the same boxes into the same

number of bins that includes an empty bin.

Because the bin capacity and the box sizes are restricted to integers, the hole sizes
in any packing must be an integer. Therefore to prove Theorem A.2 it is sufficient to

prove the following lemma for the values of K and H:

K=2 =01
K=3 =012
K=4,1=0,1,23
K=5 H=01234

Lemma A.3

It the FFD packing of a set of boxes into bins of capacity K does not
include a hole of size greater than H, then there does not exist a re-
packing of the same boxes into the same number of bins that includes a

hole of size greater than H.

Proving Lemma A.3 for the appropriate values of K and H will also prove Theorem
A.1. Note that the hole size of an empty bin is K and that every FFD packing is
guaranteed to not include a hole of size greater than K — 1. Therefore, to prove

Theorem A.1 it is sufficient to prove Lemma A.3 for the following values of K and H.

116

To prove Lemma A.3 for given values of K and H all possible FFD packings into
bins of capacity K that do not include a hole of size greater than H are categorized
into a finite number of cases. Each case is defined by a set of conditions imposed on
the FFD packings that are members of the case. The formal definition of a case is
given in the following section. The proof of Lemma A.3 consists of a series of separate

proofs of the following lemma for each of the cases.

Lemma A.4

It the FFD packing of a set of boxes into bins of capacity K is a member
of the case then there does not exists a re-packing of the same boxes into

the same number of bins that includes a hole of size greater than H.

The key to the proof of Lemma A.4 is that the re-packing must have the same number
of bins as the FFD packing. This allows a system of equations relating the two
packings to be developed. Using this system of equations and the conditions imposed
on the FFD packing by membership in the particular case it is possible to deduce
that the re-packing cannot include a hole of size greater than H.

The proofs for Theorem A.1 and Theorem A.2 require the proof of Lemma A.4 for
a large number of separate cases, however, the derivation of the cases, and the proof
of each case can be automated.

The following section introduces the notation required to describe the contents of
a bin, a packing, and a case. Section A.4 shows how, for a given value of K" and a given
value of H, to derive the finite set of cases that includes all possible FFD packings
into bins of capacity K that do not include a hole of size greater than H, and Section
A.5 shows how to prove Lemma A.4 for one of these cases. Section A.6 shows how
to reduce the number of separate cases that must be considered to prove Theorem

A.1 and Theorem A.2. Sections A.7 to A.12 present the details of the proofs for the

117

individual cases required to prove Theorem A.l and Theorem A.2. Finally, Section
A.13 presents counter examples that show that Theorem A.1 cannot be extended to
values of K greater than 6 and that Theorem A.2 cannot be extended to values of K

greater than 5.

A.3 Notation

A case consists of a possibly infinite set of packings. In order to describe a case, the

notation to describe a bin and to describe a packing is first introduced.
Definition: Content Vector
The contents of a bin can be described by a content vector a where:

a=(ag...ax)

for all 7, (1 < < K)

a; = number of boxes of size 7 in the bin

and ag = K — Y1 1% a; = hole size

Note that the content vector describing a bin does not depend upon the order of the

boxes.

Example: Content Vector

If K =5, then the bin {2, 1, 1} and the bin {1, 2, 1} are both described
by the content vector (1,2,1,0,0,0). Both bins contain a hole of size 1,

two boxes of size 1, and one box of size 2.

Because the only box sizes possible are the integers from 1 to K, the number of
combinations of boxes with total size less than or equal to K is also finite. Each of
these combinations specifies a distinct vector. Therefore, there is a finite number of

distinct content vectors a; to a,,.

118

Example: Content Vectors for A =3

For K = 3 there are 7 different content vectors.

content vector

bin

a; = (0,0,0,1) {3}
a,=(0,1,1,0) {2,1}
as = (1,0,1,0) {2}

a; = (0,3,0,0) {1,1,1}
as = (1,2,0,0) {1,1}
as = (2,1,0,0) {1}

ar =(3,0,0,0) {}

Note that the construction of all different content vectors for a given bin capacity
K can be automated.
Definition: Type Vector

An arbitrary set of bins can be described by the type vector y where:

y=(Y1- Ymn)
for all 7, (1 <¢ < m)

y; = number of bins in the set with contents described by a;

Note that for all 2, y; is an integer and y; > 0. In addition, the type vector describing
a set of bins does not depend upon the order of the bins.
Example: Type Vector

Using the set of previously shown content vectors for K = 3, the set of bins

{2, 1}, {2, 1}, {1, 1, 1} is described by the type vector (0,2,0,1,0,0,0).
Definition: Case

Each case is defined by a set of conditions on the type vector, y, describing

any packing that is a member of the case. Every component of y must

119

satisfy a separate condition. Note that the condition applied to one com-

ponent is independent of the conditions applied to the other components.

These conditions on the components of y are described by the two Boolean
vectors o and u. For all 7, if o, = 1 then y; may be equal to 1, and if
u; = 1 then y; may be greater than 1. There are four possible conditions

for the component, y;, that are specified as follows:

0 Uy Y
0 0 |lyi=0
10|y, =1
0 1 |y;>1
L1 jy=>1

Example: Case

Using the content vectors a; to a; shown previously for K = 3, consider

the case defined by the two Boolean vectors:

o=(1,1,0,1,0,1,0)
(1,1,0,1,0,0,0)

[

A set of bins, described by the type vector y, is a member of this case if
and only if:

To be a member of this case a set of bins must contain at least one

instance of a bin described by the each of the three content vectors ay,

120

ay, and a4, exactly one bin described by the content vector ag, and no
bins described by the content vectors as, as, and a;. The set of bins {3},
(31, {2, 11, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1} described by the type
vector, (2, 1, 0, 3,0, 1, 0), is a member of this case, but the set of bins
{3}, {3}, {2, 1}, {2}, {1, 1, 1}, {1, 1, 1}, {1} described by the type vector,
(2,1,1,2,0,1,0), is not a member of this case.

A.4 Deriving a Complete Set of Cases

This section shows how to derive, for given values of K and H, the finite set of cases
that includes all FFD packings that do not have a hole of size greater than H. First
a finite set of cases that includes all possible packings, including non-FFD packings
and packings with holes of size greater than H, is derived. This set of cases is then
reduced to the desired set of cases by excluding all packings that contain a hole of
size greater than H, and all packings that are not FFD packings.

For the given value of K there are m distinct content vectors. The initial set of
cases consists of 27 separate cases. Each case is defined by a set of conditions on
the m components of the type vector describing any member of the case. For each
component y; there are cases where y; must equal zero and cases where y; must be
greater than or equal to one. Taking all possible combinations of the two conditions,
y; = 0 and y; > 1, on the m components results in a set of 2" cases. Note that this
initial set of cases includes all possible packings, including non-FFD packings and

packings with a hole of size greater than H.

A.4.1 Eliminating Holes Greater than H

The next step in constructing the desired set of cases is to exclude any packing that
contains a hole of size greater than H. For any value of ¢, where a bin described by
the content vector a; has a hole of size greater than H, consider any of the initial cases
that requires that y; > 1. Every packing that is a member of this case must contain

at least one bin described by the content vector a;. Therefore, every member of the

121

case contains a hole of size greater than H, and the entire case can be eliminated

from further consideration.

Eliminating non-FFD Packings

The next step in constructing the desired set of cases is to exclude any packing that
is not an FFD packing. In order to identify non-FFD packings the concept of FFD

compatibility and the Compatibility Lemma are introduced.

Definition: FFD Compatible

The contents of two arbitrary bins are FFD compatible if and only if
re-packing all the boxes contained in the two bins using the First Fit
Decreasing algorithm results in two bins with the same contents as the

original bins.

Example: FFD Compatible

For example, if K = 4, the pair of bins {2, 2} and {1, 1, 1} are FFD
compatible and the pair of bins {2, 1, 1} and {2, 1} are FFD incompatible.
Both pairs of bins contain the same boxes, {2, 2, 1, 1, 1}, however, only

the first pair of bins is the FFD packing of this set of boxes.
Compatibility Lemma
Every bin in an FFD packing is FFD compatible with every other bin in
the packing.
Proof of Compatibility Lemma

From the definition of the First Fit Decreasing algorithm an ordered set
of bins is an FFD packing if and only if the size of every box in every
bin exceeds the sum of the hole size and the total size of smaller boxes in

every preceding bin.

122

Given an arbitrary FFD packing containing n bins, consider the gth bin
and the rth bin, where 1 < ¢ < r < n. From the definition of an FFD
packing, the size of every box in the rth bin will exceed the sum of the
hole size and the total size of smaller boxes in the ¢th bin. Therefore,
the ordered set of bins consisting of the ¢th bin followed by the rth bin
is also an FFD packing. Therefore, the ¢th bin and the rth bin are FFD

compatible.

Corollary 1

If a bin described by a content vector a; and a bin described by a differ-
ent content vector a; are incompatible, then any packing that contains a
bin described by the content vector a, and another bin described by the

content vector a;, is not an FFD packing.

Corollary 2

If two bins described by the same content vector a, are incompatible, then
an FFD packing can contain at most one bin described by the content

vector a;.

Using these corollaries, the non-FFD packings can be eliminated from the remain-
ing set of cases. Recall that initially there were 2™ cases that included all possible
packings, including non-FFD packings and packings with holes of size greater than H.
From this initial set of cases all packings with holes greater than H were eliminated.
The next step is the elimination of non-FFD packings from the remaining set of cases.

For any value of ¢ and j # ¢, where a bin described by the content vector a; is
FFD incompatible with a bin described by the content vector a;, consider any of the
remaining cases that requires that y; > 1 and y; > 1. Every packing that is a member
of this case must contain at least one bin described by the content vector a;, and at
least one bin described by the content vector a;. Therefore, applying Corollary 1,
every member of the case is not an FFD packing, and the entire case can be eliminated

from further consideration.

123

For some of the remaining cases, more restrictive conditions on the type vector,
y, describing any member of the case can be deduced by applying Corollary 2 of the
Compatibility Lemma. For any value of i, where two bins described by the same
content vector a; are FFD incompatible, consider any of the remaining cases that
requires that y; > 1. FEvery packing that is a member of this case must contain
at least one bin described by the content vector a;. However, Corollary 2 of the
Compatibility Lemma states that any packing with more than one bin described by
the content vector a; is not an FFD packing. Therefore, all packings in the case that
do not contain exactly one bin described by the content vector a; can be eliminated
from further consideration. This leaves only those packings where y; = 1. In this case,
the condition 3; > 1 has been replaced with the more restrictive condition y; = 1.

Note that the process of deriving the finite set of cases that includes all FFD
packings into bins of capacity K that do not include a hole of size greater than H

can be automated.

A.5 How to Prove a Case

The proofs of Theorem A.1 and Theorem A.2 consist of a series of separate proofs
of Lemma A.3 for various values of K and H. The previous section showed how for
given values of K and H all possible FFD packings into bins of capacity K without
a hole of size greater than H are categorized into a finite set of cases. The proof of
Lemma A.3 consists of a series of separate proofs of the Lemma A.4 for each of these
cases. Each case is defined by the two Boolean vectors o and u. The case includes
all packings that satisfy a set of conditions specified by these vectors.

The key to the proof of Lemma A.4 for each case is a system of equations relating
an arbitrary FFD packing that is a member of the case to an arbitrary re-packing
of the same boxes into the same number of bins. Let the type vector y describe the
original FFD packing and let the type vector x describe the re-packing of the same
set of boxes into the same number of bins. To show that the re-packing does not

include any bins with a hole of size greater than H, it will suffice to show for all ¢

124

where the content vector a; has a hole of size greater than H that the component z;
must be equal to zero.

The system of equations relating the original FFD packing to the re-packing arises
from the following observations. Because both packings contain the same set of boxes,
for all z from 1 to K the total number of boxes of size ¢ in each packing is the same,
and because the two packings have the same number of bins the total unused capacity
in the each of the packings is the same.

Because the original FFD packing is a member of the case defined by the Boolean
vectors o and u, this imposes conditions on the components of y. By taking an
appropriate linear combination of the system of equations it is possible to deduce
from these conditions on the components of y that the required components x are

equal to zero.

A.5.1 An Example

This section demonstrates how to develop the system of equations for a given case
and how to prove Lemma A.4 using this system of equations. Recall that for K = 3
the set of all distinct content vectors consists of

content vector bin
)3
a = () {21}
as = () {2}
a; = (0,3,0,0) {1,1,1}
as = (1,2,0,0) {1, 1}
ag = ()
ar = ()

a; = (0,0,0,1
=(0,1,1,0
1,0,1,0

2,1,0,0) {1}
{}

Consider the original FFD packing described by the type vector y. The component

= (3,0,0,0

y1 1s the number of bins in the packing described by the content vector a;. Similarly,
for all ¢ from 1 to 7, the component y; is the number of bins in the packing described
by the content vector a;. Remember that the zeroth component of a content vector

specifies the hole size of a bin described by the content vector. In this example, the

125

content vectors a;, as, and ay specify a hole of size 0, the content vectors az and aj
specify a hole of size 1, the content vector ag specifies a hole of size 2, and the content
vector a; specifies a hole of size 3. Therefore the total unused capacity in the original

FFD packing is simply
total unused capacity = ys + ys + 2y + 3y

The observation that the original FFD packing and the re-packing, described by the

type vector x, both have the same total unused capacity is expressed by the equation.

T3+ x5 + 226 + 3x7 = ys + ys + 2ys + 3yr

Similarly, the observation that both packings have the same total number of boxes of

size 1 leads to the equation.
Ty + 304 + 205 + 26 = Y2 + 3Ya + 2y5 + Y
Making the same observation for boxes of size 2 and 3 leads to the following equations

Ty + T3 = Y2+ Y3

1 =4
Now consider the case defined by the Boolean vectors

o

(1,1,0,1,0,1,0)
u=(1,1,0,1,0,0,0)

The remainder of this section proves that if the original FFD packing is a member
of the case that the re-packing does not include any bins with a hole of size greater
than 2. Because the only content vector with a hole size greater than 2 is a7 it will
suffice to show that =7 = 0.

The definition of a case states that if the original FFD packing is a member of
this case defined by the Boolean vectors o and u, then the components of y must

satisfy the following conditions

yp > 1

126

ys =0
ya 2> 1
Ys =
ye = 1
yr =0

The key observation is that the exact values of ys, y5, yg and y; are known. However,
there are no upper bounds on the components y1, y2, and yy.
Consider the single equation from the system of equations that equates the total

unused capacity in the original FFD packing and the re-packing.
r3+ x5 + 226 + 3x7 = Y3 + ys + 2y6 + 3yr

An important property of this equation is that it does not include the unbounded
components y1, ¢y, and y4. These components have been zeroed out. Substituting in

the known values of components ys, s, y6 and y7 results in the equation
3+ x5 + 226 + 327 = 2

Eliminating the unbounded components of y is the key to the remainder of the proof.
In this case, a single equation from the system of equations zeroed out the unbounded
components of y. In general, to zero out the unbounded components of y requires a
linear combination of more than one equation in the system of equations.
Continuing on with the example, because x3, x5, v¢ and 7 are all non-negative it

follows that
3x7 <2
Obviously, because 3 is greater than 2 it follows that
rr <1
However, 7 must be a non-negative integer, therefore
zr =10
Because 27 = 0, the re-packing cannot have a hole of size greater than 2.

127

A.5.2 The General Case

This section describes how to prove Lemma A.4 for a general case defined by the
Boolean vectors o and u. Remember that the original FFD packing is described by
the type vector y and that the re-packing is described by the type vector x. The
proof will show for all ¢ where the content vector a; has a hole of size greater than
H, that the component x; must be equal to zero.

The system of equations relating the original FFD packing to the re-packing will

be expressed in matrix notation using the Content Matrix.

Definition: Content Matrix

The Content Matrix A is defined as

ag a9 e 1K

Ay, dmo .. AmK

where aq to a,, are all the distinct content vectors for bins of capacity K.

Using the Content Matrix, the observation that the packings described by x and y
contain the same boxes and have the same total unused capacity can be expressed by

the system of equations
xA =yA

Because the original FFD packing is a member of the case defined by the Boolean
vectors o and u the components y; must satisty one of the following conditions as

specified by o; and u;.

0; U Yi

0 0 |y=0
1 0|y =1
I 1|y 2>1

128

The key to the remainder of the proof is the observation that for all ¢ if u; = 0 then
y; = 0;, but if u; = 1 then there is no upper bound on y;.

The unbounded components of y are zeroed out by taking the appropriate linear
combination of the equations in the system of equations. This linear combination is
described by the vector v. After taking the linear combination the resulting equation

18
xAv! = yAvT

To ensure that the linear combination zeroes out the unbounded components of

y requires that v satisfies the following condition

forall 2,1 <:<m

if w; =1 then (AVT)Z' =0

where (Av?); is the ith component of the column vector Av’. Knowing that
(AVT)Z' = 0 if u; = 1, and observing that y; = o; if u; = 0, allows the above equation

to be simplified to
xAv’ = 0Av’
It is assumed that the vector v satisfies the following conditions

forall 2,1 <:<m

if u; = 0 then (AVT)Z' >0

By definition, xAv’ = Y7 2:(Av?T);. Therefore, for all i, the components (Av”);

are non-negative, and it follows that
:z;i(AvT)i < oAvT
In addition, it is assumed that the vector v satisfies the following conditions

forall 2,1 <:<m

if aip > H then (Av'); > oAV’

129

This leads to the deduction, for all ¢+ where the content vector a; has a hole of size
greater than H, that z; < 1 and therefore that z; = 0.
Therefore, to prove the case it is sufficient to present a vector v satisfying the

three conditions

forall 2,1 <:<m
if u; =1 then (Av?); =0
if u; = 0 then (AVT)Z' >0
if aip > H then (Av'); > oAV’

A.5.3 Finding the Required Linear Combination

Candidates for the linear combination required to prove the case are found by solving

for the basis vectors of the nullspace of the matrix D, where D is defined as
for all 7, (1 <¢ < m)
for all j,(1 <j < K)
if U; = 0 then dij =0
if U, = 1 then dij = iy
If the vector v is a basis vector for the nullspace of D then
Dv' = (0...0)"
and from the definition of D it can be deduced that

for all 7, (1 <¢ < m)
if w; =1 then (AVT)Z' =0

This is the first of the three conditions that the linear combination must satisfy to
prove the case.
Each basis vector of the nullspace of D is tested in turn to see if it satisfies the

two remaining conditions on the linear combination.

for all 7, (1 <¢ < m)
if u; = 0 then (AVT)Z' >0
if ajo > H then (Av'); > oAv”

130

If any basis vector v of the nullspace of D satisfies these two conditions then any
repacking of the original FFD packing that is a member of the case defined by the
Boolean vectors o and u does not contain a hole of size greater than H.

Note that solving for the basis vectors of the nullspace of D and testing for the

last two conditions can be automated for each case.

A.6 Reducing the Number of Cases

This section will show how to reduce the number of separate cases that must be
proved for a given value of K and a given value of H. It will be shown that the proof
of one case can imply the proof of another case. The first case is said to dominate

the second case.

Definition: Dominant Case

A case A, defined by the Boolean vectors o4 and uy is said to dominate

another case B, defined by the Boolean vectors og and up if and only if

for all 7, (1 <¢ < m)

if UA; — 0 then up; = 0 and 0OA; Z OB;

Consider a case, A, defined by the Boolean vectors o4 and u4, and another case,
B, defined by the Boolean vectors og and ug. To prove case A requires a vector v

that satisfies the three conditions

forall 2,1 <:<m
if uy; = 1 then (AVT)Z' =
if uy; = 0 then (AVT)Z' >
if aio > H then (Av'); > o4 AV’

Similarly, to prove case B requires a vector v that satisfies the three conditions

forall 2,1 <:<m

if Up; = 1 then (AVT)Z' =0

131

if up; = 0 then (AVT)Z' Z 0

if aio > H then (Av'); > ogAv’

It will be shown that if case A dominates case B then the vector v that satisfies
the conditions required to prove case A also satisfies the conditions required to prove
case B. First note that because the vector v satisfies the conditions required to prove
case A that for all ¢, (AVT)Z' >0

Because case A dominates case B it follows for all ¢ that if u4; = 0 then ug; = 0.
Therefore if ug; = 1 then uy; = 1, and because v satisfies the conditions required to
prove case A it can be deduced that (Av?'); = 0.

Next note that because (AVT)Z' =0 when uy, =1, (AVT)Z' > 1 when uy; =0, and

o4; > og; when u4; = 0 that o4Av? > ogAv’. Therefore

forall 2,1 <:<m

if ug; =1 then (AVT)

;i =0
;>0

if ug; = 0 then (AVT)

v

if a;o > H then (AVT)Z' > 04Av! > ogAvT

The vector v satisfies the conditions required to prove case B. Note that the process

of finding dominant cases can be automated.

A.7 Presentation of the Cases

The following sections present the details of the proofs of Theorems 1 and 2. For each
value of K, the Content Matrix A is presented, and a table records the compatibility
of the content vectors in A. In this table an entry of 1 at column ¢ of row j indicates
that the content vectors a; and a; are FF'D compatible, and an entry of 0 indicates
that they are incompatible. For each combination of K and H, the vectors o, and u
defining each of the dominant cases are presented, and for each of these cases Lemma

A4 is proved by presenting a vector v satisfying the conditions given in Section A.5.2.

132

A8 K=2

Content Matrix, A, for K =2

N = O OO
(el el
o OO =N

1
2
3
4

FFD Compatibility for K =2

‘al Az az a4

aj
ag
as

—_ = = =

1
10
ay 1 11

133

A81 K=2 H=1

Cases for K =2, H =1

1

ou

yr | 11
Yo | 11
ys | 10
ys4 | 00

Casel, K =2, H=1

134

A82 K=2 H=0

Cases for K =2, H =0

hn
Y2
Y3
Ya

1
ou
11
11
00
00

135

A9 K=3

Content Matrix, A, for K =3

1

0 0 0

2 0 0

1

1

410 3 0 0

5

713 0 0 0

FFD Compatibility for K =3

aj az az a4 as ag ar

1
11
1101

1
1
1

11010

110100

aj
ag
as

ay

as

ag

a;(1 1 11111

136

A91 K=3 H=2

Cases for K =3, H =2

1 2 3
ou ou ou
yi | 11 11 11
g | 11 11 11
ys | 00 00 11
ya | 11 11 00
ys | 00 10 00
v | 10 00 00
yr | 00 00 00

Case 1, K =3, H=2

v =(1,0,0,0)
Avl =(0,0,1,0,1,2,3)"
oAvl =2

Case 2, K =3, H=2

o=(1,1,0,1,1,0,0)
w=1(1,1,0,1,0,0,0)
v =(1,0,0,0)

Avl =(0,0,1,0,1,2,3)T
oAvl =1

Case 3, K =3, H=2

o=(1,1,1,0,0,0,0)
w=1(1,1,1,0,0,0,0)

v=(1,1,-1,0)
Avl =1(0,0,0,3,3,3,3)7
oAvl =

137

A92 K=3 H=1

Cases for K =3, H=1

1 2

ou ou
v | 11 11
yo | 11 11
Y3 00 11
ya | 11 00
ys | 10 00
ye | 00 00
y- | 00 00

Casel, K =3, H=1

o=(1,1,0,1,1,0,0)
w=1(1,1,0,1,0,0,0)
v =(1,0,0,0)

Avl =(0,0,1,0,1,2,3)"

oAv! =

Case 2, K =3, H=1

(? 7 70707070)
u:(? 7 0707070)
(1 1,0)

oAvT

I
A = (0,0 0,3,3,3,3)T
=0

138

A93 K=3,H=0
Cases for K =3, H =0

1
ou
yr | 11
Yo | 11
ys | 00
ya | 11
ys | 00
ye | 00
y7 | 00

Case 1, K =3, H=0

v =(1,0,0,0)
Avl =(0,0,1,0,1,2,3)"
oAvl =

139

=4

K

A.10

Content Matrix, A, for K =4

1 2 3 4
0 0 0 0O

0

1

0 0 1 0
0 0 2 0 0

1

0 4 0 0 0

3 0 0 0

1

1 0 0 0

3

1

3

8
9

1012 2 0 0 0

11

1214 0 0 0 0

FFD Compatibility for K =4

aj az az a4 as ag a7y ag agAajpad11ai12

1
11
1111

1
1
1

11010

110100

1111000

11011001

110110010

1101100100

11011001000

111111111111

aj
ag
as

ay

as

ag

ar

ag

ag

ajo
aj
ajz

140

A101 K =4, H=3
Cases for K =4, H =3

1 2 3 4 5
ou ou ou ou ou
yi | 11 11 11 11 11
yo |11 11 11 11 11
ys |00 00 00 00 11
ye |11 11 11 11 11
ys |00 10 10 10 00
y6 | 10 00 00 00 00
y- |00 00 00 00 10
ys | 00 11 11 11 00
yo |00 00 00 10 00
yio | 00 00 10 00 00
yi1 | 00 10 00 00 00
yi2 | 000 00 00 00 00

Case 1, K =4, H=3

v =(1,0,0,0,0)
Avl =(0,0,1,0,0,1,2,0,1,2,3,4)7
oAv! =1

Case 2, K =4, H=3

0 1,0,0,1,0,0,1,0)
u:(b b b 7070707170707070)

v =(1,0,0,0,0)
Avl =(0,0,1,0,0,1,2,0,1,2,3,4)7
oAv! =3

Case 3, K =4, H=3

o=(1,1,0,1,1,0,0,1,0,1,0,0)
w=1(1,1,0,1,0,0,0,1,0,0,0,0)
v =(1,0,0,0,0)

Avl =(0,0,1,0,0,1,2,0,1,2,3,4)7
oAv! =2

141

v =(1,0,0,0,0)

AvT = (0,0, 1,0,0,1,2,071727374)T
oAvI =1

Case 5, K =4, H =3

(1,1,1,1,0,0,1,0,0,0,0,0)
(1,1,1,1,0,0,0,0,0,0,0,0)

= O
ll

v=(1,1,0,-1,0)
AVT = (O,0,0,0,2,2,27474747474)T
oAvl =2

142

A102 K =4, H=2
Cases for K =4, H =2

1 2 3 4
ou ou ou ou
i 11 11 11 11
Yo 11 11 11 11
ys | 00 00 00 11
Y4 11 11 11 11
ys | 00 10 10 00
¥s | 10 00 00 00
yr | 00 00 00 10
ys | 00 11 11 00
¥o | 00 00 10 00
Y10 | 00 10 00 00
y11 | 00 00 00 00
2 | 00 00 00 00

Case 1, K =4, H=2

v =(1,0,0,0,0)
Avl =(0,0,1,0,0,1,2,0,1,2,3,4)7
oAvl =1

Case 2, K =4, H=2
o=1(1,1,0,1,1,0,0,1,0,1,0,0)
w=(1,1,0,1,0,0,0,1,0,0,0,0)
v =(1,0,0,0,0)

Avl =(0,0,1,0,0,1,2,0,1,2,3,4)7
oAv! =2

Case 3, K =4, H=2

o=(1,1,0,1,1,0,0,1,1,0,0,0)
w=1(1,1,0,1,0,0,0,1,0,0,0,0)

v =(1,0,0,0,0)

Avl =(0,0,1,0,0,1,2,0,1,2,3,4)7
oAv! =1

143

Case 4, K =4, H =2

o=(1,1,1,1,0,0,1,0,0,0,0,0)
u=(1,1,1,1,0,0,0,0,0,0,0,0)

v = (171707_170)

AvT =(0,0,0,0,2,2,2,4,4,4,4,4)T
oAvl =2

144

A10.3 K=4, H=1

Cases for K =4, H =1

1 2 3

ou ou ou
v | 11 11 11
yp | 11 11 11
ys | 00 00 11
ya |11 11 11
ys | 00 10 00
y¥s | 10 00 00
yz | 00 00 00
ye | 00 11 00
Yo | 00 10 00
10 | 00 00 00
v | 00 00 00
12 | 00 00 00

Case 1, K =4, H=1

v =(1,0,0,0,0)

Avl =(0,0,1,0,0,1,2,0,1,2,3,4)7

oAvl =1

Case 2, K =4, H

o=(1,1,0,1,1,0,0
w=1(1,1,0,1,0,0,0
v =(1,0,0,0,0)

Avl =(0,0,1,0,0,1,2,0,1,2,3,4)7

oAvl =1

Case 3, K =4, H=1

(
(

= O
ll

v
Av
OAvV

L1,
L1,

=0

=(1,1,0,—1,0)
T'=1(0,0,0,0,2,2,2,4,4,4,4,4)7
T

1,1,0,0,0,0,0,0,0,0)
1,1,0,0,0,0,0,0,0,0)

145

A104 K=4,H=0

Cases for K =4, H =0

1
ou
vy | 11
y2 | 11
ys | 00
ya | 11
ys | 10
ye | 00
yr | 00
ys | 11
Yo | 00
yi0 | 00
yi1 | 00
yi2 | 00
Case 1, K =4, H=0
o=(1,1,0,1,1,0,0,1,0,0,0,0)
w=(1,1,0,1,0,0,0,1,0,0,0,0)
v = (1,0,0,0,0)

Avl =(0,0,1,0,0,1,2,0,1,2,3,4)7
oAv! =0

146

5

K =

A.11

Content Matrix, A, for K =5

1 2 3 4 5
0 0 0 0 O

0

1
0
0

1
1

1 0 0

0
1

0 0 0

0

1

0 2 0

0

1
2 0 0 0

2 0 0

1

0
1

0 2 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0

1
1
1
1

2
1

4 0 0 0 O

1

0 0 0 0O

1

1

3

5

7

1010 3

11

12| 2

1313 0

410 5 0 0 0 O

15

612 3 0 0 0 0
1713 2 0 0 0 0

18 | 4

1915 0 0 0 0 O

FFD Compatibility for K =5

aj az az a4 as ag a7y ag AgA10a11212a413414A15816A217418A19

1
11
1111

1
1
1

11011

110110

1111111

11010001

111100011

1101000100

11010001000

110100010000

1111000110000

1101100101O0001

1101100101O00010

1101100101 O000100

1101100101000100O0°T0
111111111111 1111111

aj
ag
as

ay

as

ag

ar

ag

ag

ajo
ari
a2
ajs
azq
ajs
aje

a1 101 1001010001000

ajsg
ajg

147

A.11.1

Cases for K =5, H =141

K=5 H=4

1 2 3 4) 6 7 8 9 10 11 12 13 14

ou ou ou ou ou ou ou ou ou ou ou ou ou ou
i 1 1t 1r 1r 10 11 1t 11 1t 11 11 11 11 11
Yo 1 1t 1r 1r 10 11 1t 11 1t 11 11 11 11 11
y3 (00 00 00 OO 00O 00 OO OO 00 OO0 00 00 11 11
Y4 1 1t 1r 1r 10 11 1t 11 1t 11 11 11 11 11
ys |00 00 00 00 00 0O OO 11 11 11 11 11 00 QO
¥v¢ |00 00 00 00O 00O 00 OO OO OO OO0 OO 10 00 00
y: (00 00 00 00O 00 00 OO OO 00 OO0 OO0 11 00 11
yg |11 11 11 11 11 11 11 00 00 00 00 00 00 Q0
¥ (00 00 00 00O 00 00 11 00O 00 00 OO0 00 11 00
Y0 | 00 00 10 10 10 10 OO0 OO OO OO OO OO 00 00
vz | 00 10 00 00O OO0 00 OO0 OO OO OO0 OO0 00 00 00
vz | 10 00 00 00 00 00 OO0 OO OO0 OO0 OO 00 00 00
vz | 00 00 00 OO 00 00 10 OO 00O 00 OO 00 10 00
Y14/ 00 0O 11 11 11 11 00 11 11 11 11 00 00 Q0
»ns | 00 00 00 00 00 10 00 OO OO0 OO0 10 00 00 00
e | 00 00 00 00 10 00 OO0 OO 00 10 OO 00 00 00
vz | 00 00 00 10 00 00 OO0 OO 10 00 OO OO0 00 00
s | 00 00 10 00 00 00 00 10 00 OO0 OO OO0 00 00
e | 00 00 00 00 00 00 OO0 OO 00O OO0 OO 00 00 00

Case 1, K =5, H=141

o=1(1,1,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0)
w=(1,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0)

v =(1,0,0,0,0,0)
Av! =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)7
oAv! =2

Case 2, K =5, H =14

o=(1,1,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0)
w=(1,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0)

v =(1,0,0,0,0,0)

Av! =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)T
oAvl =1

148

,0,0,0,1,0,0,0,1,0)
,0,0,0,1,0,0,0,0,0)

v =(1,0,0,0,0,0)

Av!' =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)"
oAvT =4

Case 4, K =5, H =14

o=(1,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,1,0,0)
w=1(1,1,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0)

v =(1,0,0,0,0,0)
Av' =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)T

v =(1,0,0,0,0,0)

Av!' =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)"
oAvT =2

Case 6, K =5, H =4

o=(1,1,0,1,0,0,0,1,0,1,0,0,0,1,1,0,0,0,0)
w=1(1,1,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0)

v =(1,0,0,0,0,0)

Av!' =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)7
oAvT =1

Case 7, K =5, H=14

b

(
—~
—_ =
—_ =
o <@
—_ =

,0,0,0, 0,0,1,0,0,0,0,0,0)
0,0,0 0,0,0

1,1,0,
b b b 7171707070707070707 b b)

v=(2,2,-1,1,-2,0)
AvT = 0,0,0,0,5,5,5,0,0,5,5,5,5,10,10,10,10, 10, 10)T
oAvl =5

149

,0,0,0,0,0,0,1,0,0,0,1,0)
0,0,0,0,0,0,1,0,0,0,0,0)

v =(1,0,0,0,0,0)
Av!' =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)"
oAvT =4

Case 9, K =5, H =14

=(1,1,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0)
=(1,1,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0)

v =(1,0,0,0,0,0)

Av! =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)T
oAvl =3

Case 10, K =5, H =4

v =(1,0,0,0,0,0)
Av' =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)"
oAv! =2

Case 11, K =5, H =14

=(1,1,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0)
=(1,1,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0)

v =(1,0,0,0,0,0)

Av! =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)T
oAvl =1

Case 12, K =5, H =14

(1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)
(1,1,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0)
=(1,1,2,-2,-1,0)

v 1,
AvT = (0,0,0,0,0,0,0,5,5,5,5,5,5,5,5,5,5,5,5)T
oAvl =

9 My My My My My My My My My My

150

Case 13, K =5, H =14

= (17 717 707070707 1707 07071707070707070)
=(1,1,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0)

v=1(2,2,-1,1,-2,0)
Avl =(0,0,0,0,5,5,5,0,0,5,5,5,5,10,10,10, 10,10, 10)"
oAv! =5

Case 14, K =5, H =4

:(1 1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0)
=(1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0)

(1,1 2,-2,-1,0)
(,0,070,0,0,5,5,5,5,5,5,575,5,5,5,5)T

151

Al112 K=5 H=3

Cases for K =5, H =3

1 2 3 4) 6 7 8 9 10 11 12

ou ou ou ou ou ou ou ou ou ou ou ou
i 1 1t 1r 1+ 1t 11 1t 11 11 11 11 11
Yo 1 1t 1r 1+ 1t 11 1t 11 11 11 11 11
ys |00 00 00 00 00 00O OO 00 00 00 11 11
Y4 1 1t 1r 1+ 1t 11 1t 11 11 11 11 11
ys |00 00 00O 00 00 00O 11 11 11 11 00 00
v¢ (00 00 00 OO 00 OO0 OO OO0 00 10 00 00
yr |00 00 00 00 00 00O OO0 00 00 11 o00 11
yg |11 11 11 11 11 11 00 00 00 00 00 00
¥y |00 00 00 00 00 11 00 00 OO0 00 11 00
Y10 00 00 10 10 10 00 OO0 00 OO0 00 00 00
vz | 00 10 00 00O 00 00 OO 00 00 00 00 00
vz | 10 00 00 00 00 00 OO0 00 00 00 00 00
13|00 00 00 00 00 10 00 00 OO0 OO0 10 00
14| 00 0O 11 11 11 00 11 11 11 00 00 00
15| 00 00 00 00 10 00 OO0 00 10 00 00 00
e | 00 00 00 10 00 00 00 10 00 00 00 00
17|00 00 10 00 00 00 10 00 OO0 00 00 00
s | 00 00 00 OO0 00 00 OO 00 00 00 00 00
e | 00 00 00 00 00 00 OO0 00 00 00 00 00
Case 1, K =5, H=3
o=(1,1,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0)
w=(1,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0)

v =(1,0,0,0,0,0)
Av! =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)7
oAv! =2

Case 2, K =5, H =3

o=(1,1,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0)
w=(1,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0)

v =(1,0,0,0,0,0)

Av! =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)T
oAvl =1

152

,0,0,0,1,0,0,1,0,0)
,0,0,0,1,0,0,0,0,0)

v =(1,0,0,0,0,0)
Av! =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)7
oAvl =3

Case 4, K =5, H =3

o=(1,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0)
w=1(1,1,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0)

v =(1,0,0,0,0,0)
Av! =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)T
oAvl =2

v =(1,0,0,0,0,0)
Av! =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)7
oAvl =1

Case 6, K =5, H =3

o=(1,1,0,1,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0)
w=1(1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0)

v =(2,2-1,1,-2,0)
AvT =(0,0,0,0,5,5,5,0,0,5,5,5,5,10, 10, 10, 10, 10, 10)”
oAv! =5

Case 7, K =5, H =3

=(1,1,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0)
1,1,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0)

v =(1,0,0,0,0,0)

Av! =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)7
oAvl =3

153

v =(1,0,0,0,0,0)
Av! =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)7
oAvl =2

Case 9, K =5, H =3

o=(1,1,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0)
w=1(1,1,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0)

v =(1,0,0,0,0,0)

Av! =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)T
oAvl =1

Case 10, K =5, H =3

= O
ll

(1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)
(1,1,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0)

9 My My My My My My My My My My

v=(1,1,2,-2,-1,0)
AvT = (0,0,0,0,0,0,0,5,5,5,5,5,5,5,5,5,5,5,5)T
oAvl =

Case 11, K =5, H =3

=(1,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0)

0 1,1,
v=(1,1,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0)

v=(2,2,-1,1,-2,0)
AvT = (0,0,0,0,5,5,5,0,0,5,5,5,5,10,10, 10, 10, 10, 10)T
oAvl =5

Case 12, K =5, H =3

1
AvT = (0, ,0,0,0,0,0,5,5,5,5,5,5,5,5,5,5,5,5)T
oAvl =

154

Al113 K=5, H=2

Cases for K =5, H =2

1 2 3 4) 6 7 8 9 10

ou ou ou ou ou ou ou ou ou ou
i 1 1t 1t 1t 1t 11 11 11 11 11
Yo 1 1t 1t 1t 1t 11 11 11 11 11
y3 (00 00 00 OO 00 00 OO 00 11 11
Y4 1 1t 1t 1t 1t 11 11 11 11 11
ys (00 00 00 OO0 00 11 11 11 00 00
v |00 00 00 00 00 00 OO0 10 00 00
yr (00 00 00 OO0 00 00 OO 11 00 11
yg | 11 11 11 11 11 00 00 00 00 Q0
¥ (00 00 00 00 11 00 00 OO0 11 00
0 | 00 00 10 10 00 00 00 OO0 00 00
vz | 00 10 00 00 00 00 00 OO0 00 00
vz | 10 00 00 00 00 00 00 OO0 00 00
vz | 00 00 00 00 00 00 00 OO0 00 00
y14 | 00 00 11 11 00 11 11 00 00 QO
s | 00 00 00 10 00 00 10 00 00 00
e | 00 00 10 00 00 10 00 00 00 00
vz | 00 00 00 00 00 00 00 OO0 00 00
s | 00 00 00 00 00 00 00 OO0 00 00
e | 00 00 00 00 00 00 00 OO0 00 00
Case 1, K =5, H=2
o=1(1,1,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0)
w=(1,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0)

v =(1,0,0,0,0,0)
Av! =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)7
oAv! =2

Case 2, K =5, H =2

o=(1,1,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0)
w=(1,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0)

v =(1,0,0,0,0,0)

Av! =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)T
oAvl =1

155

v =(1,0,0,0,0,0)
Av! =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)7
oAvl =2

Case 4, K =5, H =2

o=(1,1,0,1,0,0,0,1,0,1,0,0,0,1,1,0,0,0,0)
w=1(1,1,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0)

v =(1,0,0,0,0,0)
Av! =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)T
oAvl =1

v=(2,2,-1,1,-2,0)
AvT = 0,0,0,0,5,5,5,0,0,5,5,5,5,10,10,10,10, 10, 10)T
oAvl =

Case 6, K =5, H =2

o=(1,1,0,1,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0)
w=1(1,1,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0)

v =(1,0,0,0,0,0)
Av! =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)T
oAvl =2

Case 7, K =5, H=2

v =(1,0,0,0,0,0)
Av! =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)7
oAvl =1

156

v=(1,1,2,-2,-1,0)
AvT = (0, ,0,0,0,0,0,5,5,5,5,5,5,5,5,5,5,5,5)T
oAvl =

Case 9, K =5, H =2

o
u

=(1,1,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0)
(1,1,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0)

v=1(2,2,-1,1,-2,0)
AvT =(0,0,0,0,5,5,5,0,0,5,5,5,5,10,10, 10, 10,10,10)T

oAvl =

Case 10, K =5, H =2

<
ll
—~
—_
[N
|
[N
|
[
<<
~—

1
AvT = (0, ,0,0,0,0,0,5,5,5,5,5,5,5,5,5,5,5,5)T
oAvl =

157

All4 K=5 H=1
Cases for K =5, H=1

1 2 3 4 5 6
ou ou ou ou ou ou
yr | 11 11 11 11 11 11
yo |11 11 11 11 11 11
ys |00 00 00 00 00 11
ya |11 11 11 11 11 11
ys |00 00 00 11 11 00
ye |00 00 00 00 10 00
y- |00 00 00 00 00 00
ys |11 11 11 00 00 00
yo |00 00 11 00 00 11
yio | 00 10 00 00 00 00
yir | 10 00 00 00 00 00
y12 | 00 00 00 00 00 00
y1s | 00 00 00 00 00 00
yia |00 11 00 11 00 00
g5 | 00 10 00 10 00 00
y16 | 00 00 00 00 00 00
y17 | 00 00 00 00 00 00
y1s | 00 00 00 00 00 00
yro | 00 00 00 00 00 00

Case 1, K =5, H=1

o=(1,1,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0)
w=1(1,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0)

v =(1,0,0,0,0,0)
Av' =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)7

oAv! =1

Case 2, K =5, H=1

o=(1,1,0,1,0,0,0,1,0,1,0,0,0,1,1,0,0,0,0)
w=1(1,1,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0)

v =(1,0,0,0,0,0)

Av! =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)T
oAvl =1

158

v=(2,2,-1,1,-2,0)
AvT = (0,0,0,0,5,5,5,0,0,5,5,5,5,10,10, 10, 10, 10, 10)T
oAvl =

Case 4, K =5, H=1

o=(1,1,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0)
w=1(1,1,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0)

v =(1,0,0,0,0,0)
Av! =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)T
oAvl =1

v =(1,0,0,0,0,0)
Av! =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)7
oAvl =1

Case 6, K =5, H=1

o=(1,1,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0)
w=1(1,1,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0)

v=(2,2-1,1,-2,0)

AvT = (0,0,0,0,5,5,5,0,0,5,5,5,5,10,10, 10, 10, 10, 10)T
oAvl =

159

Al115 K=5 H=0

Cases for K =5, H =0

1 2
ou ou
i | 11 11
yp | 11 11
ys | 00 00
ya | 11 11
Ys 00 11
¥s | 00 00
yr | 00 00
ys | 11 00
¥o | 00 00
y10 | 10 00
y11 | 00 00
y12 | 00 00
y13 | 00 00
s | 11 11
y15 | 00 00
16 | 00 00
yi7 | 00 00
y1s | 00 00
Y19 | 00 00
Case 1, K =5, H=0
o=(1,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0)
v=(1,1,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0)

v =(1,0,0,0,0,0)
Av! =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)7
oAv! =0

Case 2, K =5, H=0

=(1,1,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0)
=(1,1,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0)

v =(1,0,0,0,0,0)

Avl =(0,0,1,0,0,1,2,0,1,0,1,2,3,0,1,2,3,4,5)T
oAvl =

160

§

K =

A.12

Content Matrix, A, for K =6

2 3 4 5 6

1
0 00 0 0 O

0

1
0
0

10 0 0 1
0 0 0 0 1

0
1

0
0
0

1

0 2 0 0

1 0 0
2 0 0 0

1

1

0 00 2 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

1
1
1
1
1
1

1
1

0 3 0

2 0

1

0

1

2 0 0 0 O

1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1
1
1
1
1

3
2 2

1

5 0 0 0 0 0

1

0 0 0 0 O

1

1

3

5

7
8

10
11
12

13| 2

1413 0 0

1510 0 3 0 0 0 O

6|0 2 2 0 0 0 0

17

1812 0 2 0 0 0 0

1910 4
20
21

22| 3

2314 0

240 6 0 0 0 0 O

25

262 4 0 0 0 0 O

2703 3 0 0 0 0 O

2804 2 0 0 0 0 O

29 |5

3006 0 0 0 0 0 O

161

FFD Compatibility for K =6

aj az az a4 as ag a7y ag AgA10a11412413A714A15816A17818A19820821222823A24825A26A27A28A2983(0

1
11
1111

1
1
1

11011

110110

1111111

11111111

110100010

1111000100

11011001000

110110010000

1101100100000

1 1111111000000
111100011 10000O01

1101000110000O0O010

111100011 1000O01O0O0TO0
11010001 1000O0O01O0O0°O00

11010001 10000O01O0O00O00O0°0O0

11010001 10000O01O0O00O0O0O00O0

1101000110000O01O000O0O0O0°O0

111100011 100O0O01O0O0O0O0O0O0O0TO0
11011001101 00011001O00O0O0°O001

11011001101 00011001O0O0O00160

11011001101 000110010O000100

11011001 10100011001000O01O0O0O0TO0

11011001 1010001100100001O0O0O0°O00

111111111111111111111111111111

aj
ag
as

ay

as

ag

ar

ag

ag

ajo
ari
a2
ajs
azq
ajs
aje

a1 101 0001100000100

asg
azg
aso
aszy
ago
ags
agyg
ags
age

aar{1 1011001 1010001100100O001O0©00

ass
azg
aso

162

A.12.1

Cases for K =6, H =5

K=6 H=5

1 2 3 4 5 6 7 8 9 10 11 12 13 14

oOu ou OuU OU OU OU OU OU OuU OUu OU Oou ou ou
v |11 1 11 11 11 11 11 11 11 11 11 11 11 11
¥ |11 1 11 11 11 11 11 11 11 11 11 11 11 11
y3 |00 00 00 00 00O OO0 OO0 00 00 00 00 00 00 00
¥4 |11 11 11 11 11 11 11 11 11 11 11 11 11 11
ys |00 00 00 00 00O OO OO0 00 00 00 00 00 00 00
ys | 00 00 00 00 00 OO0 OO0 00 00 00 00 00 00 00
y; |00 00 00 00 00 OO0 OO0 00 00 00 00 00 00 00
yg |11 11 11 11 11 11 11 11 11 11 11 11 11 11
Y |10 10 10 10 10 10 10 10 10 10 10 10 10 10
yio | 00 00 00 00 00 00 00 00 00 00 00 00 00 00
vz | 00 00 00 00 00 OO0 00 00 00 00 00 00 00 00
yi2 | 00 00 00 00 00 OO0 OO0 00 00 00 00 OO0 00 00
1z | 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00
v14 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00
s | 11 11 11 11 1 11 11 11 11 11 11 11 11 11
e | 00 00 00 00 00 00 00 00 00 OO0 OO0 10 10 10
nr | 00 00 00 00 00 00 00 00 00 00 10 00 00 00
g | 00 00 00 00 00 00O 00 00 00 10 00 OO0 00 00
e | 00 00 00 00 10 10 10 10 10 00 00 OO0 00 OO0
yo | 00 00 00 10 00 00 00 00 00 00 00 00 00 00
y21 | 00 00 10 00 00 00 00 00 00 00 00 00 00 00
y2 | 00 10 00 00 00 00 00 00 00 00 00 00 00 00
y23 | 10 00 00 00 00 00 00 00 00 00 00 00 00 00
y24 | OO 00 0O OO 11 11 11 11 11 00 OO0 11 11 11
y5 | 00 00 00 00 00 00 00 00 10 00 00 00 00 00
y26 | 00 00 00 00 00 OO0 00 10 00 00 00 00 00 00
yar | 00 00 00 00 00 OO0 10 00 00 00 00 00 00 10
yg | 00 00 00 00 00 10 00 00 00 00 00 00 10 00
Y9 | 00 00 00 00 10 00 00 00 00 00 00 10 00 00
ysp | 00 00 00 00 00O 00 00 00 00 00 00 00 00 00

163

15 16 17 18 19 20 21 22 23 24 25 26 27
ou ou ou ou ou ou ou ou ou ou ou ou ou
i 1 1t 1r 1 1t 11 11 1r 1r 11t 11 11 11
Yo 1 1t 1r 1 1t 11 11 1r 1r 11t 11 11 11
ys |00 00 00 00 00 00 OO 00 OO0 OO0 11 11 11
Y4 1 1t 1r 1 1t 11 11 1r 1r 11t 11 11 11
Ys oo o0 11 11 11 11 11 11 11 11 00 00 00
v (00 00 00 OO 00 OO0 OO OO0 00 10 00 00 00
yr |00 00 00 00 00 00 OO OO0 OO0 11 00 00 11
ys 1 1t 1r 1 1t 11 11 1r 1r 11t 11 11 11
¥y | 10 10 00 00 00 00 OO0 00 00 OO0 00 00 00
Y10 | 00 00 00 00 00 OO OO 00 00 OO0 10 10 00
y11 /100 00 00 00 10 10 10 10 10 OO0 OO0 00 00
y12 | 00 00 00 10 00 00 OO 00 00 OO0 00 00 00
»nn3 {00 00 10 00 00 00 OO 00 00 00 OO0 00 00
14 [00 00 00 OO 00 00 OO 00 00 10 00 00 10
s | 11 11 00 00 00 00 OO0 00 00 00 11 11 00
e | 10 10 00 00 00 00 OO0 00 00 00 OO0 00 00
vz | 00 00 00 OO0 00 00 OO OO0 00 OO0 OO0 00 00
s | 00 00 00 OO0 00 00 OO 00O 00 OO0 OO0 10 00
e [00 00 00 00 00 00 OO 00O 00 00 OO0 00 00
y20 | 00 00 00 OO 00 00 OO 00O 00 OO0 OO0 00 00
y21 [00 00 00 OO 00 OO0 OO 00O 00 00 OO0 00 00
y22 [00 00 00 OO 00 00 OO 00O 00 OO0 OO0 00 00
y23 | 00 00 00 OO 00 00 OO OO0 00 OO0 10 00 00
¥4 | 11 11 00 00 11 11 11 11 11 00 00 00 00
y25 [00 10 00 OO0 00 00 OO 00 10 00 OO0 00 00
ye | 10 00 00 OO 00 00 OO 10 00 00 OO 00 00
yor | OO 00 00 OO 00 00 10 00 00 00 OO0 00 00
y8 | 00 00 00 00 00 10 00 00 00 OO0 00 00 00
y20 | 00 00 00 00 10 00 OO0 00 00 OO0 00 00 00
ys0 | 00 00 00 OO 00 OO0 OO OO0 00 00 OO0 00 00
Case 1, K =6, H=5
o=(1,1,0,1,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0)
u=(1,1,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

v =(1,0,0,0,0,0,0)

Av’ =(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)"

oAv! =4

164

1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0)
,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

v =(1,0,0,0,0,0,0)
Av! =1(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)"
oAvl =3

Case 3, K =6, H =5

o=(1,1,0,1,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0)
w=1(1,1,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

v =(1,0,0,0,0,0,0)
Av!' =1(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)7
oAvl =2

1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0)
,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

v =(1,0,0,0,0,0,0)
Av!' =1(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)"
oAvl =1

Case 5, K =6, H =5

o=(1,1,0,1,0,0,0,1,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0)
w=1(1,1,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0, 1,0,0,0,0,0,0)

v =(1,0,0,0,0,0,0)
Av!' =1(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)7
oAvl =5

Il
ot

Case 6, K =6, H

1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0)
,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0)

v =(1,0,0,0,0,0,0)

Av!' =1(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)"
oAv! =4

165

1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0)
,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0)

v =(1,0,0,0,0,0,0)
Av! =1(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)"
oAvl =3

Case 8, K =6, H =5

o=(1,1,0,1,0,0,0,1,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0)
w=1(1,1,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0, 1,0,0,0,0,0,0)

v =(1,0,0,0,0,0,0)
Av!' =1(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)7
oAvl =2

1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,1
70707070707071707070707070707071707 b b b b

v =(1,0,0,0,0,0,0)
Av!' =1(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)"
oAvl =1

Case 10, K =6, H =5

o=(1,1,0,1,0,0,0,1,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0)
w=1(1,1,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

v =(1,0,0,0,0,0,0)

Av' =1(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)"
oAv! =2

Case 11, K =6, H =5

,0,0,0,0,0,0,0,0,0,0,0,0,0)
,0,0,0,0,0,0,0,0,0,0,0,0,0)

v =(1,0,0,0,0,0,0)

Av!' =1(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)"
oAvl =1

166

Case 12, K =6, H =5

v =(1,0,0,0,0,0,0)
Av! =1(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)"
oAvl =5

Case 13, K =6, H =5

o=(1,1,0,1,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0)
w=1(1,1,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0, 1,0,0,0,0,0,0)

v =(1,0,0,0,0,0,0)

Av' =1(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)"
oAv! =4

Case 14, K =6, H =5

1,0,0,0,0,0,0,0,1,0,0,1,0,0,0)
,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0)

v =(1,0,0,0,0,0,0)

Av' =(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)"
oAv! =3

Case 15, K =6, H =5

o=(1,1,0,1,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0)
w=1(1,1,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0, 1,0,0,0,0,0,0)

v =(1,0,0,0,0,0,0)
Av!' =1(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)7
oAvl =2

Case 16, K =6, H =5

v =(1,0,0,0,0,0,0)
Av!' =1(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)"
oAvl =1

167

Case 17, K =6, H =5

=(1,1,0,1,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
=(1,1,0,1,1,0,0,1,0)

v =(1,0,0,0,0,0,0)

Av! =1(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)"
oAvl =2

Case 18, K =6, H =5

o=(1,1,0,1,1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
w=1(1,1,0,1,1,0,0,1,0)
v =(1,0,0,0,0,0,0)

Av!' =1(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)7
oAvl =1

Case 19, K =6, H =5

=(1,1,0,1,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0)
=(1,1,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0)
v =(1,0,0,0,0,0,0)

Av!' =1(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)"
oAvl =5

Case 20, K =6, H =5
o=(1,1,0,1,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0)
u=(1,1,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0)
v =(1,0,0,0,0,0,0)

Av!' =1(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)7
oAv! =4

Case 21, K =6, H =5

=(1,1,0,1,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0)
=(1,1,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0)
v =(1,0,0,0,0,0,0)

Av!' =1(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)"
oAvl =3

168

Case 22, K =6, H =5

(1,1,0,1,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,
1,1,0,1,1,0,0

o
U (Py My Sy o M 71707070707070707070707070707

=(1,0,0,0,0,0,0)

Av!' =(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)"
oAvT =

Case 23, K =6, H =5

o=(1,1,0,1,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0)
w=1(1,1,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,0,0,0,0,0,0)

v =(1,0,0,0,0,0,0)

Av!' =1(0,0,1,0,0,1,2,0,0,1,0,1,2,3,0,0,1,2,0,1,2,3,4,0,1,2,3,4,5,6)7
oAv! =

Case 24, K =6, H =5

o=(1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
w=1(1,1,0,1,1,0,1,1,0)
:(17172707 7_170)

(0 0,0,0,0,0,0,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6)7

Case 25, K =6, H =5
::(1,1, ,1,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0, 1,0,0,0,0,0,0,0)
(1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

= (1,0,0,0,—1,0)
(,0,0,0,2,2,2,0,1,1,3,3,3,3,0,2,2,2,4,4,4,4,4,6,6,6,6,6,6,6)7

oA

Case 26, K =6, H =5

(
(

v =(1,1,0,0,0,-1,0)

Avl =1(0,0,0,0,2,2,2,0,1,1,3,3,3,3,0,2,2,2,4,4,4,4,4,6,6,6,6,6,6,6)”
oAvl =3

=
—_ =

b

717
1

= O
ll

1,0,0,0,1,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0)
,1,1,0,0,0,1,0,0,0, 0,0,0,1,070,0,0,0,0,0,0,0,0,070,0,0,0)

b

169

Case 27, K =6, H =5
=(1,1,1,1,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

1,1,1,1,0,0,1,1,0)
= (17172707 7_170)

(0 ,0,0,0,0,0,0,3,3,3,3,3,3,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6 6)T
oA =3

170

A.13 Counter Examples

The following counter examples show that Theorem A.1 and Theorem A.2 cannot be

extended to all values of K.

Counter Example 1, K =6

The FFD packing of the boxes {3, 2, 2, 2} into bins of capacity 6 consists
of the two bins {3, 2}, {2, 2}. The first bin has a hole of size 1 and the
second bin has a hole of size 2. The boxes can also be packed into the two
capacity 6 bins {3}, {2, 2, 2}. The first bin of this packing has a hole of
size 3, which is larger than the biggest hole in the FFD packing.

Counter Example 2, K =7

The FFD packing of the boxes {3, 3, 2, 2, 2, 2} into bins of capacity 7
consists of the three bins {3, 3}, {2, 2, 2}, {2}. The boxes can also be
packed into the two capacity 7 bins {3, 2, 2}, {3, 2, 2}. This packing uses
fewer bins than the FFD packing.

A.14 Summary

This appendix has presented proofs for two theorems concerning the FFD bin-packing
algorithm. These results are used in Chapters 5 and 6 to prove the optimality of the
area and delay algorithms. The proofs considered a large number of separate cases,

but the derivation of these cases and the proof of each case were automated.

171

Bibliography

[Abou90]

[Aho85]

[Berk88|

[Bost87]

[Bray82]

[Bray87]

[Brow92]

P. Abouzeid, L. Bouchet, K. Sakouti, G. Saucier, P. Sicard, “Lexico-
graphical Expression of Boolean Function for Multilevel Synthesis of

high Speed Circuits,” Proc. SASHIMI 90, Oct. 1990, pp. 31-39.

A. Aho, M. Ganapathi, “Efficient tree pattern matching: an aid to
code generation,” 12th ACM Symposium on Principles of Program-
ming Languages, Jan. 1985, pp.334-340.

M. Berkelaar, J. Jess, “Technology Mapping for Standard Cell Gener-
ators”, Proc. ICCAD-88, Nov 1988, pp. 470-473.

D. Bostick, G. D. Hachtel, R. Jacoby, M. R. Lightner, P. Moceyunas,
C. R. Morrison, D. Ravenscroft, “The Boulder Optimal Logic Design
System,” Proc. ICCAD-87, Nov. 1987, pp. 62-65.

R. K. Brayton, C. McMullen, “The Decomposition and Factorization
of Boolean Expressions,” Proc. Int. Symp. Circ. Syst. ISCAS, May
1982, pp. 49-54

R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, A. Wang, “MIS:
a Multiple-Level Logic Optimization System,” IEEE Tr. CAD, Vol
CAD-6, No. 6, Nov. 1987, pp. 1062-1081.

S. D. Brown, R. J. Francis, J. Rose, 7. G. Vranesic, Field-
Programmable Gate Arrays, Kluwer Acedemic Publishers, June 1992.

172

[Cong92]

[Deva9l]

[Det;87]

[Filo91]

[Fran90]

[Fran91a]

[Fran91b]

[GareT79]

[Greg86]

J. Cong, A. Kahng, P. Trjmar, K. C. Chen, “Graph Based FPGA Tech-
nology Mapping For Delay Optimization,” Proc. 1st Intl. Workshop
on FPGAs, Fep. 1992, pp. 77-82.

S. Devadas, K. Keutzer, S. Malik, “Path Sensitization Conditionts
and Delay Computation in Combinational Logic Circuits,” MCNC
International Workshop on Logic Synthesis, May 1991.

E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, A.
Wang, “Technology Mapping in MIS”, Proc. ICCAD-87, Nov 1987,
pp. 116-119.

D. Filo, J. C. Yang, F. Mailhot, G. De Micheli, “Technology Mapping
for a Two-Output RAM-based field Programmable Gate Array,” Proc.
EDAC 91, Feb, 1991, pp. 534-538.

R. J. Francis, J. Rose, K. Chung, “Chortle: A Technology Mapping
Program for Lookup Table-Based Field Programmable Gate Arrays,”
Proc. 27th DAC, June 1990, pp. 613-619.

R. J. Francis, J. Rose, Z. Vranesic, “Chortle-crf: Fast Technology
Mapping for Lookup Table-Based FPGAs,” Proc. 28th DAC, June
1991 pp. 227-233.

R. J. Francis, J, Rose, 7. Vranesic, “Technology Mapping of Lookup
Table-Based FPGAs for Performance,” Proc. [ICCAD-91, Nov, 1991,
pp- H68-571.

M. R. Garey, D. S. Johnson, Computers and Intractability, A Guide to
the Theory of NP-Completeness, W. H. Freeman and Co., New York,
1979.

D. Gregory, K. Bartlett, A. de Geus, G. Hachtel, “Socrates: a system
for automatically synthesizing and optimizing combinational logic,”

Proc. 23rd DAC, June 1986, pp. 79-85.

173

[John74]

[Joyn86]

[Karp91]

[Keut87]

[Koha70]

[Koul92]

[Lewi9l]

[Liem91]

[Mail90]

[Murg90]

D. S. Johnson, A. Demers, J. F. Ullman, M. R. Garey, R. .. Graham,
“Worst-case performance bounds for simple one-dimensional packing

algorithms,” STAM Journal of Computing, Vol. 3 1974, pp. 299-325.

W.H. Joyner Jr., L.H. Trevillyan, D. Brand, T. A. Nix, S.C.Gundersen,
“Technology Adaptation in Logic Synthesis,” Proc. 23rd DAC, 1986,
pp- 94-100.

K. Karplus, “Xmap: a Technology Mapper for Table-lookup Field-
Programmable Gate Arrays,” Proc, 28th DAC, June 1991, pp. 240-
243.

K. Keutzer, “DAGON: Technology Binding and Local Optimization
by DAG Matching,” Proc. 24th DAC, June 1987, pp. 341-347.

7. Kohavi, Switching and Finite Automata Theory, McGraw-Hill Inc.,
1970.

J. L. Kouloheris, A. El Gamal “FPGA Area versus Cell Granularity -
Lookup tables and PLA Cells,” FPGA-92 Feb. 1992, pp. 9-14.

D. M. Lewis, Tortle User’s Manual, University of Toronto, Sept. 1991.

C. Liem, M. Lefebvre, “Perfromacne Directed Technology Mapping us-
ing Constructive Matching,” MCNC International Workshop on Logic
Synthesis, May 1991.

F. Mailhot, G. de MlIcheli, “Technology Mapping Using Boolean
Matching and Don’t Care Sets,” Proc. EDAC, 1990, pp. 212-216.

R. Murgai, Y, Nishizaki, N. Shenay, R. K. Brayton, A. Sangiovanni-
Vincentelli, “Logic Synthesis for Programmable Gate Arrays,” Proc.
27th DAC, June 1990, pp. 620-625.

174

[Murg91al

[Murg91b]

[Rohl91]

[Rose89]

[Rose90]

[Roth62]

[Rude89]

[Sing88]

[Sing91]

R. Murgai, N. Shenoy, R.K. Brayton, A. Sangiovanni-Vincentelli, “Im-
proved Logic Synthesis Algorithms for Table Look Up Architectures,”
Proc. ICCAD, Nov. 1991, pp. 564-567

R. Murgai, N. Shenoy, R.K. Brayton, “Performance Directed Synthesis
for Table Look Up Programmable Gate Arrays,” Proc. [CCAD, Nov.
1991, pp. 572-575.

R. Rohleder, “Marker Overview: User-Programmable Logic,” In-Stat
Services Research Report, March 1991.

J.S. Rose, R.J. Francis, P. Chow, and D. Lewis, “The Effect of Logic
Block Complexity on Area of Programmable Gate Arrays,” Proc.
CICC, May 1989, pp. 5.3.1-5.3.5.

J. Rose, R. J. Francis, D. Lewis, P. Chow, “Architectures of Field-
Programmable Gate Arrays: The effect of Logic Block Functionality
of Area Efficiency,” IEEE Journal of Solid-State Circuits, Vol. 25, No.
5, Oct. 1990, pp. 1217-1225.

J. P. Roth, R. M. Karp, “Minimization over Boolean Graphs,” IBM
Journal of Research and Development, vol. 6 no. 2, April 1962, pp.
227-238.

R. Rudell, Logic Synthesis for VLSI Design, Ph.D. Thesis, U.C. Berke-
ley, Memorandum No. UCB/ERL M89/49, April 1989.

K. J. Singh, A. R. Wang, R. K. Brayton, A. Sangiovanni-Vincentelli,
“Timing Optimization of Combinational Logic” Proc. [CCAD-88, Nov
1988, pp.282-285.

S. Singh, J. Rose, D. Lewis, K. Chung, P. Chow “Optimization of
Field-Programmable Gate Array Logic Block Architecture for Speed.”
Proc. CICC, May 1991, pp. 6.1.1 - 6.1.6.

175

[Sing92]

[Wo091]

[Yang9l]

S. Singh, J. Rose, P.Chow, D. Lewis, “The Effect of Logic Block Archi-
tecture on FPGA Performance,” IEEE Journal of Solid-State Circuits,
Vol. 27 No. 3, March 1992, pp. 281-287.

N. Woo, “A Heuristic Method for FPGA Technology Mapping Based
on Edge Visibility,” Proc. 28th DAC, June 1991 pp. 248-251.

S. Yang, Logic Synthesis and Optimization Benchmarks User Guide,

Version 2.0, Microelectronics Center of North Carolina, Jan. 1991.

176

