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Abstract

Field Programmable Gate Arrays �FPGAs� provide a new approach to Applica�

tion Speci�c Integrated Circuit �ASIC� implementation that features both large scale

integration and user programmability� The logic capacity of these devices is large

enough to make automated synthesis essential for the e�cient design of FPGA cir�

cuits� This thesis focuses on the class of FPGAs that use lookup tables �LUTs� to

implement combinational logic� A K�input lookup table is a digital memory that can

implement any Boolean function of K variables� Lookup table circuits present new

challenges for logic synthesis� particularly technology mapping� which is the phase of

logic synthesis directly concerned with the selection of the circuit elements to imple�

ment the �nal circuit� Conventional library�based technology mapping has di�culty

with lookup table circuits because each lookup table can implement a large number

of di�erent functions�

This thesis presents two new technology mapping algorithms that construct cir�

cuits of K�input lookup tables from networks of ANDs� ORs and NOTs� The �rst

algorithm� referred to as the area algorithm� minimizes the number of LUTs in the

�nal circuit� and the second algorithm� referred to as the delay algorithm� minimizes

the number of levels of LUTs� The key feature of both algorithms is the application

of bin packing to the decomposition of nodes in the original network� The original

network is �rst partitioned into a forest of trees� each of which is mapped separately�

For each tree� the circuit constructed by the area algorithm is shown to be an optimal

tree of LUTs for values of K � � and the circuit constructed by the delay algorithm

is an optimal tree of LUTs for values of K � 	� Both algorithms also include op�

timizations that exploit reconvergent paths� and the replication of logic at fanout

nodes to further optimize the �nal circuit� The algorithms described in this thesis

are implemented in a software program called Chortle and experimental results for a

set of benchmark networks demonstrate the e�ectiveness of the algorithms�
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Chapter �

Introduction

Field�Programmable Gate Arrays �FPGAs� provide a new approach to Application

Speci�c Integrated Circuit �ASIC� implementation that features both large scale

integration and user programmability� An FPGA consists of a regular array of

logic blocks that implement combinational and sequential logic functions and a user�

programmable routing network that provides connections between the logic blocks�

In conventional ASIC implementation technologies� such as Mask Programmed Gate

Arrays and Standard Cells� the connections between logic blocks are implemented by

metalization at a fabrication facility� In an FPGA the connections are implemented in

the �eld using the user�programmable routing network� This reduces manufacturing

turn�around times from weeks to minutes and reduces prototype costs from tens of

thousands of dollars to hundreds of dollars �Rose���

There are� however� density and performance penalties associated with user�

programmable routing� The programmable connections� which consist of metal wire

segments connected by programmable switches� occupy greater area and incur greater

delay than simple metal wires� To reduce the density penalty� FPGA architectures

employ highly functional logic blocks� such as lookup tables� that reduce the total

number of logic blocks and hence the number of programmable connections needed

to implement a given application� These complex logic blocks also reduce the perfor�

mance penalty by reducing the number of logic blocks and programmable connections

on the critical paths in the circuit�

�



The high functionality of FPGA logic blocks presents new challenges for logic

synthesis� This thesis focuses on new approaches to technology mapping for FPGAs

that use lookup tables to implement combinational logic� A K�input lookup table

�LUT� is a digital memory that can implement any Boolean function of K variables�

The K inputs are used to address a 
K by ��bit memory that stores the truth table of

the Boolean function� Lookup table�based FPGAs account for a signi�cant portion

of the commercial FPGA market �Rohl�� and recent studies on FPGA logic block

architectures have suggested that lookup tables are an area�e�cient method of im�

plementing combinational functions �Rose��� �Rose��� �Koul
� and that the delays

of LUT�based FPGAs are at least comparable to the delays of FPGAs using other

types of logic blocks �Sing��� �Sing
��

The level of integration available in FPGAs is large enough to make manual circuit

design impractical and therefore automated logic synthesis is essential for the e�cient

design of FPGA circuits� In addition� the development of FPGA architectures requires

e�ective logic synthesis to evaluate the bene�ts of alternative logic blocks� Logic

synthesis� in general� takes a functional description of the desired circuit� and using

the set of circuit elements available in the ASIC implementation technology� produces

an optimized circuit� For an FPGA the set of available circuit elements consists of

the array of logic blocks�

Technology mapping is the logic synthesis task that is directly concerned with

selecting the circuit elements used to implement the optimized circuit� Previous

approaches to technology mapping have focused on using circuit elements from a

limited set of simple gates� However� such approaches are inappropriate for complex

logic blocks where each logic block can implement a large number of functions� A

K�input lookup table can implement 
�
K

di�erent functions� For values of K greater

than � the number of di�erent functions becomes too large for conventional technology

mapping� Therefore� new approaches to technology mapping are required for LUT�

based FPGAs�

This thesis presents two technology mapping algorithms that are among the ear�

liest work speci�cally addressing technology mapping for LUT circuits� Both of these






a� Boolean network

b� Lookup table circuit

Figure ���� Network and Circuit

algorithms implement a Boolean network as a circuit of K�input LUTs� For exam�

ple� consider the network shown in Figure ���a� This network can be implemented

by the circuit of ��input lookup tables shown in Figure ���b� In this �gure� dotted

boundaries indicate the function implemented by each lookup table�

The original motivation for this thesis was an architectural investigation into LUT�

based FPGA architectures �Rose��� �Rose��� To support this investigation� a simple

LUT technology mapping program called chortle � was developed� This program

used a greedy algorithm to decompose large functions into smaller functions and

pack these into K�input LUTs� Experience with chortle lead to the development of

a more e�ective program called Chortle�x �Fran��� The key feature of this program

was the decomposition of nodes in the network to reduce the number of LUTs in the

�nal circuit� The network was �rst partitioned into a forest of trees and dynamic

�This program was based on the parsing and data structures of the Tortle �Lewi��� functional
simulator� and used a chewing action to decompose functions too large to �t into a single LUT�
hence the name chortle�

�



programming was used to �nd the minimum number of K�input LUTs required to

implement each tree� The optimal decomposition of each node in the tree was found

by an exhaustive search�

This thesis focuses on the algorithms used in two subsequent programs� Chortle�crf

�Fran�a� and Chortle�d �Fran�b�� The goal of Chortle�crf is to minimize the number

of K�input LUTs required to implement a network� This increases the size of designs

that can be realized with the �xed number of lookup tables available in a given LUT�

based FPGA� The major innovation in Chortle�crf is the application of a bin packing

approximation algorithm to the construction of e�ective decompositions� For values

of K less than or equal to �� this bin packing approach constructs an optimal tree of

K�input LUTs implementing a network that is a fanout�free tree� The bin packing

approach is much faster than the exhaustive search used in Chortle�x� This increase

in speed makes it practical to consider optimizations exploiting reconvergent paths

and the replication of logic at fanout nodes to further reduce the number of lookup

tables� The algorithm used in Chortle�crf will be referred to as the area algorithm�

The goal of Chortle�d is to minimize the number of levels of K�input LUTs in the

�nal circuit� This can improve circuit performance by reducing the contribution of

logic block delays to the total delay on the critical paths in the circuit� Chortle�d uses

bin packing to construct e�ective decompositions and is able to construct an optimal

depth tree of LUTs implementing a network that is a fanout�free tree� for values of K

less than or equal to 	� It also exploits reconvergent paths and the replication of logic

at fanout nodes to reduce the number of levels� The algorithm used in Chortle�d will

be referred to as the delay algorithm�

Chortle and the program Mis�pga �Murg��� which was developed concurrently

with Chortle� represent the �rst research to speci�cally address technology mapping

for LUT circuits� Several other LUT technology mappers have been developed sub�

sequently� and the synthesis of LUT circuits is currently an active area of research�

This dissertation is organized as follows� Chapter 
 presents background material

on logic synthesis and technology mapping in general� and discusses other approaches

to technology mapping for LUT circuits that have been developed concurrently with�

�



or subsequent to the work presented in this thesis� Chapters � and � describe the

details of the area and delay algorithms� Chapters � and 	 present proofs that the

area and delay algorithms are optimal for restricted classes of networks� and Chapter

� presents experimental results for both algorithms including comparisons to other

LUT technology mapping algorithms� Finally� Chapter � draws some conclusions and

suggests directions for future research�
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Chapter �

Background

This chapter presents background material on logic synthesis� It begins with a brief

description of logic optimization and then describes conventional approaches to tech�

nology mapping� The limitations of these previous approaches when applied to LUT

circuits provide the motivation for the LUT technology mapping algorithms presented

in this thesis� The chapter concludes by discussing other research that also addresses

technology mapping for LUT circuits�

The goal of logic synthesis is to produce a minimum cost circuit that implements

a desired combinational function� The cost of the circuit is typically a measure of its

area or delay� or a function of both� The combinational function can be represented

by a Directed Acyclic Graph �DAG� known as a Boolean network� Nodes in this

network represent Boolean functions� and each node has an associated variable and

local function� The support of this local function is the set of variables corresponding

to the node�s predecessors in the DAG� The global function represented by the node

is determined by applying the local function to the global functions represented by its

support� Examples of local functions include ANDs� ORs� sum�of�products expres�

sions� In the network shown in Figure 
�� the local functions are sum�of�products�

The support of node z is fy� d� eg� the local function is z � yd � e and the global

function is z � �a� bc�d� e�

The net�list for the �nal circuit can also be represented by a Boolean network� In

this case� each node corresponds to one circuit element and each edge corresponds

	



a b c d
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a + bc
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Figure 
��� Boolean Network

to a wire� The function implemented by a circuit element is speci�ed by the local

function of its corresponding node� In this thesis the term network will be used to

refer to a Boolean network representing a combinational function and the term circuit

will be used to refer to a Boolean network representing a circuit net�list�

Logic synthesis� as illustrated in Figure 
�
� can be conceptually divided into

technology�independent logic optimization and technology�dependent optimization

which is known as technology mapping �Detj���� �Rude��� Logic optimization takes

the network describing the desired combinational function and produces a functionally

equivalent network optimized for some cost function� Technology mapping then con�

structs an optimized circuit that realizes the optimized network using the restricted

set of circuit elements available in the implementation technology�

��� Logic Optimization

In many logic synthesis systems such as misII �Bray��� and BOLD �Bost���� the

original network is �rst restructured to reduce a cost function that is calculated

directly from the network itself� The intention is to improve the �nal circuit by

reducing the complexity of the network� However� this technology�independent logic

optimization does not consider which circuit elements will implement the circuit�

The modi�cations applied to the network typically include redundancy removal and

common sub�expression elimination� Logic optimization may also exploit don�t cares

in the speci�cation of the desired combinational function to simplify the network�

In the misII logic synthesis system the complexity of a network is measured by
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Figure 
�
� Logic Synthesis

counting the number of literals in the local function for each node� Each local function

is a sum�of products expression and each instance of a variable in this expression

counts as one literal� For example� the following ��input� 
�output network has ��

literals

f � ac� ad� bc� bd

g � a� b� c

The complexity of this network can be reduced by the following modi�cations� The

expression �a� b� can be factored out of the equations for nodes f and g� and a new

node e� implementing the function a� b created� The variable e is resubstituted into

the equations for nodes f and g� resulting in the following ��literal network�

e � a� b

f � e�c� d�

g � e� c
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��� Technology Mapping

After logic optimization has produced the optimized network� technology mapping

selects circuit elements to implement sub�functions within this network� When wired

together� these circuit elements form a circuit implementing the entire network� This

circuit is optimized to reduce a cost function that typically incorporates area and

delay� Conventional approaches to technology mapping can be categorized as rule�

based� library�based and cell generator approaches� The following sections brie�y

describe each of these approaches�

����� Rule�based Technology Mapping

In early logic synthesis systems� such as SOCRATES �Greg�	� and LSS �Joyn�	��

technology mapping is performed by a series of local transformations to a circuit net�

list� The net�list is initially constructed by implementing each node in the original

network by a single circuit element� The area and delay of the circuit are then

optimized by selecting the appropriate sequence of transformations�

In SOCRATES� a rule�based expert system is used to select the sequence of local

transformations� Each transformation is expressed as a rule that consists of a target

con�guration and a functionally equivalent replacement con�guration� Figure 
��a

illustrates the target and replacement con�gurations of two rules� Figure 
��b illus�

trates an original circuit and the optimized circuit that results from applying these

two rules in sequence�

The �rst step in applying a rule to the circuit consists of �nding a sub�circuit that

matches the target con�guration� A complete match consists of a series of partial

matches that proceed from the output to the inputs of the target con�guration�

The matching algorithm uses backtracking to recover from failed partial matches�

When a matching sub�circuit is found� the cost bene�t of substituting the target

con�guration with the replacement con�guration is calculated using area and delay

estimates extracted from the resulting circuit� The decision to apply the rule is then

based on this incremental cost�





target replacementtarget replacement

rule 1 rule 2

a� Two rules

original circuit optimized circuit

rule 1, rule 2

b� Applying the rules sequentially

Figure 
��� Rule�based Technology Mapping� from �Greg�	�

The key to optimizing the circuit is the selection of the next rule to apply� One

strategy is to consider the rules in a �xed order and to always apply the �rst bene�cial

rule� This approach is e�ective for area optimization� because the e�ect of each rule

on circuit area can be predicted locally� However� the strategy is less e�ective for

delay optimization� because it is di�cult to make a local prediction of the e�ect of

each transformation on the overall delay of the circuit�

A second approach considers short sequences of rules rather than individual rules�

The extent of this search is controlled by limiting its depth and breadth� The depth is

the number of rules in the short sequence and the breadth is the number of alternative

rules to be considered at any point in the sequence� The search is also restricted to

sequences of rules that only apply to a limited neighborhood in the circuit to avoid

sequences of rules that could be applied independently� This approach improves the

quality of the �nal circuit� but it is computationally expensive� The computational

cost is reduced by using meta�rules that modify the depth� breadth� and neighborhood

of the search depending upon the current rule in the search sequence�

A major obstacle for rule�based expert systems is the acquisition of the knowledge

base� In the SOCRATES system� knowledge acquisition is semi�automated� An
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expert user �rst generates the target and replacement con�gurations specifying a rule

and then the system veri�es that the two con�gurations are equivalent and extracts

the characteristics that are used to calculate the incremental cost when the rule is

applied�

����� Library�based Technology Mapping

An important advance in technology mapping was the formalization introduced by

Keutzer in DAGON �Keut��� and used in misII �Detj���� In this formalization the

set of available circuit elements is represented as a library of functions and the con�

struction of the optimized circuit is divided into three sub�problems� decomposition�

matching and covering�

In DAGON� the original network is �rst decomposed into a canonical representa�

tion that uses limited�fanin NAND nodes� This decomposition guarantees that there

will be no nodes in the network that are too large to be implemented by any library

element� provided the library includes NAND gates that reach the fanin limit� Note�

however� that there can be many possible NAND decompositions and that the one

selected may not be the best decomposition�

After decomposition� the network is partitioned into a forest of trees� The op�

timal sub�circuit covering each tree is constructed� and �nally the circuit covering

the entire network is assembled from these sub�circuits� To form the forest of trees�

the decomposed network is partitioned at fanout nodes into a set of single�output

sub�networks� Each of these sub�networks is either a tree or a leaf�DAG� A leaf�DAG

is a multi�input single�output DAG where only the input nodes have fanout greater

than one� Each leaf�DAG is converted into a tree by creating a unique instance of

every input node for each of its multiple fanout edges�

The optimal circuit implementing each tree is constructed using a dynamic pro�

gramming traversal that proceeds from the leaf nodes to the root node� For every

node in the tree an optimal circuit implementing the sub�tree extending from the

node to the leaf nodes is constructed� This circuit consists of a library element that

matches a sub�function rooted at the node and previously constructed circuits imple�
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menting its inputs� The cost of the circuit is calculated from the cost of the matched

library element and the cost of the circuits implementing its inputs� To �nd the lowest

cost circuit� DAGON �rst �nds all library elements that match sub�functions rooted

at the node� The cost of the circuit using each of these candidate library elements is

then calculated and the lowest cost circuit is retained� The set of candidate library

elements is found by searching through the library and using tree matching �Aho���

to determine if each library element matches a sub�function rooted at the node�

As an example of the above procedure� consider the library shown in Figure 
��a

and the circuit shown in Figure 
��b� The circuit elements are standard cells and

their costs are given in terms of the area of the cells� The cost of the INV� NAND�


and AOI�
� cells are 
� �� and �� respectively� In Figure 
��b� the only library element

matching at node E is the NAND�
 and the cost of the optimal circuit implementing

node E is therefore �� At node C the only matching library element is also the NAND�


� The cost of the NAND�
 is � and the cost of the optimal circuits implementing its

input E is also �� Therefore� the cumulative cost of the optimal circuit implementing

node C is 	�

Eventually� the algorithm will reach node A� For node A there are two matching

library elements� the INV as used in Figure 
��b and the AOI�
� as used in Figure 
��c�

The circuit constructed using the INV matching A includes a NAND�
 implementing

node B� a NAND�
 implementing node C� an INV implementing node D� and a

NAND�
 implementing node E� The cumulative cost of this circuit is ��� The circuit

constructed using the AOI�
� matching A includes a NAND�
 implementing node E�

The cumulative cost of this circuit is �� The circuit using the AOI�
� is therefore the

optimal circuit implementing node A�

The tree matching algorithm represents each library function using limited�fanin

NAND nodes� For some functions� however� there are many possible decompositions

into limited�fanin NAND ndoes� The inclusion of all decompositions can signi�cantly

increase the size of the library and the computational cost of the matching algorithm�

General graph matching was considered as an alternative to tree matching in misII

�Detj���� and Ceres �Mail�� used Boolean matching by recursive Shannon decompo�
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Figure 
��� Dynamic Programming� from �Keut���

sition� These approaches produced small improvements in the �nal circuits� but were

computationally more expensive than tree matching�

����� Cell Generator Technology Mapping

In ASIC implementation technologies that use cell generators to create circuit ele�

ments� the set of available circuit elements consists of a parameterized family of cells

rather than a speci�c library of functions� This cell family contains all members of a
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class of functions� such as AndOrInverts �AOIs�� that do not exceed parameters de�n�

ing the family� Library�based technology mapping is inappropriate for cell generator

technologies when the number of cells in the family is too large to be practically ex�

pressed in a library� Examples of technology mapping that deals speci�cally with cell

generators are the approaches of Berkelaar and Jess �Berk��� and Liem and Lefebvre

�Liem���

The key to cell generator technology mapping is the completeness of the cell family�

This simpli�es the matching of network sub�functions to circuit elements� If a sub�

function does not exceed the parameters de�ning the family� it can be implemented

by a cell in the family� In addition� simpli�ed matching makes it possible to improve

the �nal circuit by combining decomposition and matching�

Berkelaar addresses technology mapping for a cell generator that creates NMOS

or CMOS AndOrInvert gates� The set of available circuit elements includes all AOI

gates that meet limits on the maximumnumber of transistors in series and in parallel�

The network is �rst partitioned into a forest of trees and a circuit implementing each

tree is then constructed by traversing the tree proceeding from the root node to the

leaf nodes� The decomposition of each AND or OR node in the tree is determined by

the parameters de�ning the cell family� When the in�degree of the node exceeds the

limits of the cell family� the node is decomposed into a tree of nodes that match the

largest available cell� When the in�degree of the node does not exceed these limits�

the node is implemented by a single cell� If this cell is not the largest cell in the

family� then the remaining unused capacity is passed on to the fanin nodes� In this

case� the cell also implements part of the functions of the fanin nodes�

The goal of the ROSSINI technology mapper �Liem�� is the delay minimization

of circuits implemented using a cell generator for complex CMOS gates� The family of

cells is de�ned by limits on the number of series n�transistors and series p�transistors

as well as the total number of inputs to the cell� The original network is �rst par�

titioned into a forest of trees and each tree is decomposed into a minimum�depth

binary tree� The circuit implementing each tree is then constructed using a dynamic

programming approach similar to the DAGON approach� At each node� the set of
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matching circuit elements is constructed using a recursive traversal that is pruned by

the limits de�ning the cell family�

��� Lookup Table Technology Mapping

A major obstacle in applying conventional technology mapping approaches to LUT

circuits is the large number of di�erent functions that a LUT can implement� A

K�input LUT can implement 
�
K

di�erent Boolean functions� Rule�based systems

lack a systematic method of developing a set of rules that encapsulates the complete

functionality of a LUT� For library�based systems� the library representing a K�

input LUT need not include all 
�
K

di�erent functions� Input permutations� input

inversions and output inversions can be used to reduce the number of functions in the

library� For example� there are 
�	 di�erent ��input functions� but considering input

permutations there are �� di�erent functions and considering input permutations

input inversions and output inversions there are �� di�erent functions� However� the

matching algorithms used in library�based technology mappers require the expansion

of the library to include all possible decompositions of each function� For values of

K greater than � the size of a library required to represent a K�input LUT becomes

impractically large�

Cell generator technology mapping avoids the problems of large libraries by using

matching algorithms that simply test network sub�functions against the parameters

de�ning the cell family� The number of sub�functions that must be considered is

reduced by using the network itself to direct the search� However� the cell families

used by these approaches do not completely encompass the functionality of a K�input

LUT�

The limitations of previous technology mapping approaches provide the motiva�

tion for technology mapping that deals speci�cally with LUT circuits� The �rst LUT

technology mappers were Chortle�x �Fran�� and Mis�pga �Murg��� Improvements to

Chortle�x were incorporated in the program Chortle�crf �Fran�a�� and the program

Chortle�d �Fran�b� was the �rst technology mapper to optimize the delay perfor�
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mance of LUT circuits by minimizing the number of levels of LUT in the �nal circuit�

The next two chapters of this dissertation present the details of the area and delay

algorithms used in Chortle�crf and Chortle�d�

Subsequent to Chortle and Mis�pga� several other LUT technology mappers have

been reported �Abou��� �Filo��� �Karp��� �Woo��� �Cong
�� The remainder of

this chapter brie�y describes these LUT technology mappers and Mis�pga� A common

feature of these programs is the ability to map Boolean networks into circuits of Xilinx

���� series Con�gurable Logic Blocks �CLBs�� The Xilinx ���� series FPGAs are

examples of commercial LUT�based FPGAs� The following section brie�y describes

the Xilinx ���� series CLB�

����� Xilinx ���� CLBs

An important motivation for LUT technology mapping has been the commercial

success of the Xilinx ���� series FPGAs� The Con�gurable Logic Blocks in these

devices use LUTs to implement combinational logic� Each CLB can implement a

single function of up to � inputs or two separate functions of up to � inputs that

together have at most � distinct inputs�

A network can be mapped into a circuit of CLBs in two steps� The �rst step

uses LUT technology mapping to map the original Boolean network into functions

using at most � inputs� The second step then assigns these functions to CLBs� Each

CLB in the �nal circuit will either implement a single ��input function or two ��input

functions that together have at most � distinct inputs� The programs described in the

following sections use various methods to maximize the number of CLBs implementing

two functions and thereby minimize the total number of CLBs in the �nal circuit�

����� Mis�pga

The Mis�pga technology �Murg�� mapper minimizes the number of K�input LUTs

required to implement a Boolean network in two phases� The �rst phase decomposes

the original network to ensure that every node can be implemented by a single K�
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input LUT and the second phase solves a covering problem to reduce the number

of LUTs in the �nal circuit� Nodes that can be implemented by a single LUT are

referred to as feasible nodes and a network consisting entirely of feasible nodes is

referred to as a feasible network�

In the �rst phase� two approaches are used to decompose infeasible nodes in the

original network into feasible nodes� The �rst approach is based on Roth�Karp de�

composition �Roth	
� and the second approach is based on kernel extraction� The

�rst approach searches for a disjoint decomposition using the necessary and su�cient

conditions provided by Roth and Karp� To avoid the computational expense of the

complete search required to �nd the best decomposition� Mis�pga accepts the �rst

bound set that meets the Roth�Karp conditions�

The second approach decomposes an infeasible node by extracting its kernels

�Bray�
� and calculating a cost for each kernel� The lowest cost kernel determines the

decomposition of the infeasible node� If a kernel and its residue are both feasible then

its cost is the number of variables shared by the kernel and its residue� This provides

an estimate of the number of new edges added to the network by the decomposition

using this kernel� The number of edges in the network is used as a measure of the

routing complexity of the �nal circuit� If either the kernel or its residue are infeasible�

then they are recursively decomposed using kernel extraction� If kernels cannot be

extracted� then a decomposition into 
�input ANDs and ORs is used�

The kernel�based decomposition also includes a greedy heuristic to collapse nodes

into their fanouts� All single�fanout nodes are collapsed if the resulting node is fea�

sible� For multiple fanout nodes each fanout is considered in turn and the node is

collapsed if the resulting node is feasible� The order in which the fanouts are consid�

ered is determined by an estimate of the number of edges that will be added to the

network�

The second phase of Mis�pga minimizes the number of nodes in the feasible net�

work produced by the �rst phase� A cluster of nodes� referred to as a supernode�

that has at most K inputs can be collapsed into a single feasible node� Reducing the

number of supernodes required to cover the network is expressed as a binate covering
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problem �Rude��� For small networks an exact solution to this covering problem is

used� however� for larger networks the computational cost of the exact solution is

prohibitive and a heuristic solution is used�

Mis�pga addresses technology mapping for Xilinx ���� CLBs by �rst mapping

the Boolean network into ��input functions and then assigning these functions to

CLBs� Each CLB can implement one ��input function or two functions of up to �

inputs that together have no more than � inputs� Maximizing the number of CLBs

that implement two functions� and thereby minimizing the total number of CLBs� is

restated and solved as a Maximum Cardinality Matching problem�

A newer version of Mis�pga �Murg�a� includes two additional approaches to de�

composition� The �rst adapts a bin packing approach introduced in Chortle�crf

�Fran�b�� and described in this dissertation� and the second is based on Shannon

cofactoring� The �rst decomposition approach decomposes an infeasible function into

a tree of feasible nodes� The cubes of the function are treated as items and the nodes

in the tree are treated as bins� The size of each item is the number of variables in

the cube and the capacity of every bin is K� Minimizing the number of nodes in the

tree is expressed as a bin packing problem and solved using the Best Fit Decreasing

heuristic�

The second decomposition approach uses Shannon cofactoring to decompose infea�

sible functions� An infeasible function f�x�� ���� xn� is decomposed into three functions�

fx�� fx� and f � x�fx� � x�fx�� The function f now depends on three variables x��

fx�� and fx� and is therefore feasible for values of K greater than or equal to �� The

functions fx� and fx� each depend on at most n � � variables and if n� � equals K

then they are feasible� If n � � is greater than K then the functions fx� and fx� are

recursively decomposed�

The new version of Mis�pga also includes optimizations that improve performance

by reducing the number of levels of LUTs in the �nal circuit �Murg�b�� The original

network is �rst decomposed into a depth�reduced network of 
�input nodes �Sing���

and then the critical paths are traversed from the primary inputs to the primary

outputs� A critical node at depth d is collapsed into its fanout nodes� at depth d���
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whenever the resulting node is feasible� or can be redecomposed with a reduction in

depth�

����� Asyl

The Asyl logic synthesis system incorporates technology mapping for Xilinx ����

CLBs �Abou��� The technology mapping phase of Asyl depends upon a reference

ordering of the primary input variables that is determined by the logic optimization

phase� The Boolean network produced by the logic optimization phase is a lexico�

graphical factorization� If this network is collapsed into a sum�of�products expression�

then the order of variables within the product terms de�nes the reference ordering�

The technology mapping phase of Asyl consists of two steps� The �rst step uses the

reference ordering to decompose the Boolean network into � and ��input functions

and the second step assigns these functions to CLBs�

The �rst step considers slices of � variables within the reference ordering� beginning

with the last variable and proceeding slice by slice toward the �rst variable� Within

each slice� cut points are introduced to produce sub�functions of � or � inputs in

the following order� �rst� sub�functions of � variables from the current slice� next�

sub�functions of � variables where three variables are from the current slice and one

variable is from a preceding slice� and �nally sub�functions of � variables beginning

with those having the maximum number of variables from the current slice�

The second step in the Asyl technology mapping phase assigns the functions pro�

duced by the �rst step to CLBs� First� each ��input function is assigned to a single

CLB� Next� a greedy heuristic is used to maximize the number of CLBs implementing

two ��input functions and thereby reduce the total number of CLBs� This heuristic

sorts the ��input functions into a list and iteratively assigns pairs of functions to

CLBs� Two functions can be paired if together they have at most � distinct inputs�

The list is sorted by the number of potential partners each function has� The �rst

function in this list� which has the least number of partners� is assigned to a CLB

along with its �rst available partner in the remainder of the list� If a partner cannot

be found then the function is assigned to a CLB without a partner�
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����� Hydra

The Hydra technology mapper �Filo�� addresses two�output RAM�based logic blocks

such as the Xilinx ���� series CLBs� The two�phase strategy employed by Hydra to

minimize the number of CLBs in the �nal circuit emphasizes the use of both CLB

outputs� The �rst phase decomposes nodes in the original network to ensure that

every node can be implemented by a single CLB and the second phase then �nds

pairs of nodes that can be implemented by two�output CLBs�

The principal decomposition technique used in the �rst phase searches for disjoint

decompositions that increase the number of functions that can be paired into single

CLBs by the second phase� The �rst phase begins with an AND�OR decomposition

that limits the in�degree of nodes in the network and thereby reduces the computa�

tional cost of the search for disjoint decompositions� After the disjoint decompositions

are found another AND�OR decomposition limits the in�degree of every node to ��

thereby ensuring that every node can be implemented by a single CLB�

The search for simple disjoint decompositions considers pairs of nodes beginning

with the pair having the greatest number of shared inputs and proceeding to the pair

with the least number of shared inputs� For each pair� an exhaustive search is used

to �nd disjoint decompositions� Once a disjoint decomposition is found� the decision

to accept it is based on the number of shared inputs and the total number of inputs

in the extracted functions�

The AND�OR decomposition is used to ensure that the in�degree of every node is

less than or equal to a speci�ed limit� If the in�degree of a node exceeds this limit�

then it is factored into a tree of AND and OR nodes� This tree is traversed from the

leaves to the root and at each node if the combined support of the predecessor nodes

exceeds the limit� then a group of predecessor nodes with combined support less than

or equal to the limit is replaced by a new node� The group is selected by a heuristic

that considers the size of the support for the group� the maximum support of any

node in the group� and the number of nodes in the group�

A local optimization at the end of the �rst phase reduces the number of nodes by

collapsing nodes into their successors if the resulting node can still be implemented
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by a single CLB� For nodes with only one successor� the elimination is allowed if the

resulting node has in�degree less than or equal to �� For nodes with more than one

successor� the elimination is allowed if the resulting node has in�degree less than or

equal to �� This preserves opportunities for the second phase to pair functions into

two�output CLBs�

The second phase of Hydra uses a greedy heuristic to �nd pairs of functions that

can be implemented by two�output CLBs� Two functions can be paired if they each

have no more than ��inputs and if together they have at most ��inputs� The bene�t of

pairing two functions is calculated as �Nshared ��Ntotal� where Nshared is the number

of shared inputs and Ntotal is the total number of inputs� The values of � and �

are tuned to control the tradeo� between input sharing and input utilization� The

heuristic iteratively assigns pairs of functions to CLBs� Each iteration begins by

assigning the function with the greatest in�degree to the �rst output of a CLB� If this

function can be paired with any of the remaining functions then the partner resulting

in the greatest bene�t is assigned to the second output of the CLB�

����� Xmap

The Xmap technology mapper �Karp�� uses two passes to minimize the number of

K�input LUTs required to implement a Boolean network and a third pass to produce

a circuit of Xilinx ���� CLBs� The �rst pass decomposes nodes in the network to

ensure that all nodes have in�degree less than or equal to K� and the second pass

marks nodes to be implemented by single�output LUTs� The third pass assigns ��

input functions produced by the �rst two passes to CLBs�

The �rst pass decomposes the original network into an if�then�else DAG� Each

node in the if�then�else DAG is a 
 to � selector� For example� the node with inputs

a� b� and c implements the Boolean function �if a then b else c�� Every sum�of�

products node in the original network is decomposed into the following if�then�else

expression�

if �Ed� then �TRUE� else �if �v� then �E�� else �E���
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The variable v is the variable that appears most often in the product terms and the

expressions E� and E� consist of the product terms that contain v and v respec�

tively� The expression Ed consists of the product terms that use neither v nor v� If

the expressions E�� E� and Ed depend upon more than one variable� then they are

recursively decomposed using the same procedure�

For values of K greater than 
� every node in the if�then�else DAG can be imple�

mented by a single K�input LUT� When K is equal to 
� every ��input node �z � if a

then b else c� is replaced with the three 
�input nodes x � ab� y � ac� and z � x� y�

The second pass in Xmap marks nodes in the decomposed network that are im�

plemented as outputs of K�input LUTs in the �nal circuit� Initially� only the primary

outputs are marked� The network is then traversed from the primary inputs to the

primary outputs� At each node the set of previously marked nodes and primary in�

puts required to compute the node is referred to as the node�s signal set� If necessary�

additional nodes are marked to ensure that the size of the signal set is less than or

equal to K� These newly marked nodes reduce the size of the signal set by hiding

previously marked nodes� When the size of the signal set for the current node is

greater than K� the �rst additional nodes that are marked are preceding nodes with

high fanout� If further reduction of the signal set is required� then the support nodes

of the current node are marked in decreasing order of their own signal set sizes�

The �nal pass of Xmap minimizes the number of CLBs required to implement

the ��input functions produced by the marking pass by iteratively assigning pairs of

functions to two�output CLBs� Each iteration assigns the function with the greatest

number of inputs to the �rst output of a CLB� The second output can be assigned

to another function provided that both functions have at most � inputs and that

together they have at most � inputs� From the remaining functions that satisfy these

conditions� the function with the greatest number of inputs is assigned to the second

output of the CLB�







����� VISMAP

The VISMAP technology mapper �Woo�� focuses on the covering problem in LUT

technology mapping� It assumes that the original network has been previously de�

composed to ensure that every node has in�degree less than or equal to K� Therefore�

every node can be directly implemented by a K�input LUT�

Reducing the number of LUTs required to cover the network is addressed by

labelling every edge in the network as either visible or invisible� A visible edge is

implemented by a wire in the �nal circuit� Its source is the output of one LUT� and

its destination is the input of a di�erent LUT� For an invisible edge both the source

and destination node are implemented in the same LUT� In this case� the network can

be simpli�ed by merging the source node into the destination node� If the resulting

node has in�degree no greater than K� then it can still be implemented by a single

K�input LUT�

The assignment of visibility labels to edges is performed by �rst dividing the

original network into a collection of subgraphs that each contain at most m edges�

Within each subgraph� every edge can be labelled as either visible or invisible� The

optimal assignment is found by exhaustively searching all possible combinations of

edge labels� For a subgraph containing m edges there are 
m di�erent combinations�

For each combination� a simpli�ed subgraph is formed by merging the source and

destination nodes of invisible edges� When the simpli�cation of an invisible edge

results in a node with in�degree greater than K� the combination is rejected because

the node cannot be implemented by a K�input LUT� Otherwise� the combination

resulting in the simpli�ed subgraph having the fewest nodes is retained as the optimal

label assignment for the subgraph�

The computational cost of the search is controlled by the limit on the number of

edges in each subgraph� In addition� the order in which the combinations are con�

sidered allows the search to be pruned by skipping over some combinations whenever

the simpli�cation of an invisible edge results in a node with in�degree greater than

K�

VISMAP can map a Boolean network into a circuit of two�output LUT�based
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logic blocks by �rst mapping the network into K�input functions and then iteratively

assigning pairs of these functions to logic blocks� It is assumed that each logic block

can implement two functions that each have at most � inputs� Each iteration begins

by assigning the function with the least number of potential partners to a logic block�

The function assigned to the second output of the logic block� from the potential

partners of the �rst function� is the function that has the fewest potential partners�

����	 DAG�Map

The DAG�Map �Cong
� technology mapper addresses the delay optimization of LUT

circuits� The delay of each LUT is modeled as a unit delay� and DAG�Map minimizes

the delay of the circuit by minimizing the number of levels of LUTs in the �nal circuit�

DAG�Map also addresses the minimization of the total number of LUTs as a secondary

objective� The original network� which is a graph of AND� OR and INVERT nodes�

is mapped into a circuit of K�input LUTs in four phases� decomposition� labelling�

covering� and area optimization�

The �rst phase decomposes nodes in the original network into trees of 
�input

nodes� This phase proceeds from the primary inputs to the primary outputs� and

at each node� given the depth of its immediate fanin nodes� decomposes the current

node into a minimum�depth tree of 
�input nodes�

The second phase labels nodes in the 
�input network to determine the level of

the LUT implementing each node� The label at primary inputs is set to �� and the

label for any other node is calculated from the labels of its immediate fanin nodes� If

p is the maximum label at any of the fanin nodes� then the label at the current node

will be either p or p � �� If the total number of distinct inputs to the current node

and the set of preceding nodes with label p is less than or equal to K� then the label

of the current node is also set to p� Otherwise� the label is p � ��

The third phase covers the labelled network with K�input LUTs� Initially� a

LUT is created to implement each of the primary outputs� This LUT implements all

preceding nodes that have the same label as the LUT�s output node� Additional LUTs

are then created to implement the inputs to each LUT� This process continues until the
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primary inputs have been reached� Note that this covering phase will replicate logic

at fanout nodes if necessary to achieve the labeled depth� The labelling and covering

algorithms produce an optimal depth circuit provided the network is a fanout�free

tree� and that the maximum fanin at any node in the network is K�

The �nal step attempts to reduce the total number of LUTs in the circuit� without

increasing the number of levels� by using two local optimizations� The �rst optimiza�

tion searches for a pair of LUTs that generate inputs for a third LUT that implements

an associative function such as AND and OR� The associative function can be decom�

posed to produce an intermediate node implementing the same associative operation

for these two inputs� If these two LUTs together have at mostK distinct inputs� then

they can be combined into one LUT that also implements the intermediate node� The

one output of this merged LUT replaces the two inputs to the third LUT� without

increasing the number of levels in the circuit� The second optimization searches for a

LUT that can be combined with a LUT that uses its output as an input� If the two

LUTs together have at most K distinct inputs� then the LUTs can be combined into

a single LUT without an increase in the number of levels�

��� Summary

This chapter has presented a brief introduction to logic synthesis� and discussed

the motivation for technology mapping algorithms that deal speci�cally with LUT

cirucits� The following chapters present the details of the area and delay algorithms

used in Chortle�
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Chapter �

The Area Algorithm

A circuit can be implemented by a given FPGA only if the number of logic blocks

in the circuit does not exceed the available number of logic blocks and the required

connections between the logic blocks do not exceed the capacity of the routing net�

work� This chapter describes a technology mapping algorithm� referred to as the area

algorithm� that minimizes the total number of K�input LUTs in the circuit imple�

menting a given network� Minimizing the number of LUTs in the circuit allows larger

networks to be implemented by the �xed number of logic blocks available in a given

LUT�based FPGA�

The algorithm takes the original network and produces a circuit of K�input LUTs

implementing the network� The nodes in the original network represent AND or OR

functions and inversion is represented by labeling edges� For example� in Figure ���a�

nodes a to m are the primary inputs of the network� and node z is the primary output�

In this �gure� inverted edges are represented by a circle at the destination of the edge�

The function speci�ed for the primary output z is

z � �abc� def��g � h� i��jk � lm�

Figure ���b illustrates a circuit of ��input LUTs implementing the network shown

in Figure ���a� The dotted boundaries indicate the functions implemented by each

LUT� and each LUT is referred to by the name of the node it implements� LUT y

implements the local function y � jk� lm and LUT z implements the local function
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Figure ���� Mapping a Network

z � x�g � h � i�y� Note that the LUT y uses only � of the � available inputs� All

examples in the remainder of this chapter will assume that the value of K is equal to

��

The overall strategy employed by the area algorithm is similar to the library�based

approach introduced by DAGON �Keut���� The original network is �rst partitioned

into a forest of trees and then each tree is separately mapped into a circuit of K�input

LUTs� The �nal circuit is then assembled from the circuits implementing the trees�

The major innovation of the area algorithm is that it simultaneously addresses the

decomposition and matching problems using a bin�packing approximation algorithm�

The correct decomposition of network nodes can reduce the number of LUTs required

to implement the network� For example� consider the circuit of ��input LUTs shown

in Figure ��
a� The shaded OR node is not decomposed and four ��input LUTs are

required to implement the network� However� if the OR node is decomposed into the
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a� Without decomposition� � LUTs

b� With decomposition� 
 LUTs

Figure ��
� Decomposition of a Node

two nodes shown in Figure ��
b� then only two LUTs are required� The challenge is

to �nd the decomposition of every node in the network that minimizes the number

of LUTs in the �nal circuit�

The original network is partitioned into a forest of trees by dividing it at fanout

nodes� The resulting sub�networks are either trees or leaf�DAGs� A leaf�DAG is a

multi�input single�output DAG where the only nodes with fanout greater than one

are the input nodes �Deva��� The leaf�DAGs are converted into trees by creating a

unique instance of every input node for each of its fanout edges�

The following section describes how dynamic programming and bin packing are

used to construct the circuit of K�input LUTs implementing each tree� Later sections

will consider local optimizations at fanout nodes that further reduce the number of

LUTs in the circuit by exploiting reconvergent paths and the replication of logic at

fanout nodes�
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��� Mapping Each Tree

After the original network has been partitioned into a forest of trees� each tree is

separately mapped into a circuit of K�input LUTs� Before each tree is mapped a pre�

processor applies DeMorgan�s Theorem and AND�OR associativity rules to ensure

that the only inverted edges in the tree originate from leaf nodes and that there are

no consecutive AND nodes and no consecutive OR nodes in the tree� The presence

of consecutive AND or consecutive OR nodes would restrict the decompositions that

the area algorithm could use� Provided the above conditions are satis�ed� Chap�

ter � proves that the area algorithm constructs an optimal tree of K�input LUTs

implementing the tree for values of K less than or equal to ��

After preprocessing� each tree is mapped using the dynamic programming ap�

proach outlined as pseudo�code in Figure ���� The tree is traversed in a postorder

depth��rst fashion and at each node a circuit of LUTs implementing the sub�tree ex�

tending to the leaf nodes is constructed� For leaf nodes� this circuit is simply a single

LUT implementing a bu�er function� At non�leaf nodes� the circuit is constructed

from the circuits implementing the node�s immediate fanin nodes� The order of the

traversal ensures that these fanin circuits have been previously constructed�

The circuit implementing a non�leaf node consists of two parts� The �rst part�

referred to as the decomposition tree� is a tree of LUTs that implements the functions

of the root LUTs of the fanin circuits and a decomposition of the non�leaf node� The

second part is the non�root LUTs of the fanin circuits� For example� Figure ���a

illustrates the circuits implementing the three fanin nodes of node z� The root LUTs

of the fanin circuits are referred to as the fanin LUTs� In this example� the LUTs

w� x� and y are the fanin LUTs and the LUTs s� t� u� and v� are the non�root LUTs

of the fanin circuits� Figure ���b illustrates the circuit implementing node z that is

constructed from the fanin circuits� It includes the non�root LUTs s� t� u� and v� and

the decomposition tree consisting of LUTs w� z��� and z� Note that the node z has

been decomposed and that the node z�� has been introduced�

The essence of the dynamic programming approach is to construct the optimal






MapTree �tree�
�� construct circuit implementing tree ��

f
traverse tree from leaves to root� at each node

f
�� construct circuit implementing node ��
if node is a leaf

circuit � single LUT bu�ering node

else
circuit � MapNode �node�

g

�� return circuit implementing root node ��
return �circuit�
g

MapNode �node�
�� construct circuit implementing sub�tree rooted at node ��

f
�� separate fanin LUTs ��
faninLUTs� root LUTs of circuits for all fanin nodes
precedingLUTs� non�root LUTs of circuits for all fanin nodes

�� construct decomposition tree ��
decompositionTree� DecomposeArea �node� faninLUTs�

�� join decomposition tree and preceding LUTs ��
circuit � decompositionTree � precedingLUTs

return �circuit�
g

Figure ���� Pseudo�code for Mapping a Tree

circuit implementing each non�leaf node using the optimal circuit implementing its

fanin nodes� The key to the area algorithm is the de�nition of the optimal circuit�

The principal optimization goal is to minimize the number of LUTs in the circuit�

and the secondary optimization goal is to minimize the number of inputs the circuit�s

root LUT uses� This secondary optimization goal is the key to ensuring that the op�
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Figure ���� Mapping a Node

timal circuit implementing the non�leaf node is constructed from the optimal circuits

implementing its fanin nodes� The following example illustrates the importance of

the secondary optimization goal�

The number of LUTs in the circuit implementing the non�leaf node is the sum of

the number of LUTs in the decomposition tree and the number of non�root LUTs in

the fanin circuits� Given that the fanin circuits each contain the minimum number

of LUTs� minimizing the number of LUTs in the decomposition tree minimizes the

number of LUTs in the circuit implementing the non�leaf node� The secondary opti�

mization goal is the key to minimizing the number of LUTs in the decomposition tree�
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Figure ���� Fanin Circuit Satisfying Both Optimization Goals

Consider the fanin circuits shown in Figure ���a� These fanin circuits satisfy both

optimization goals� The fanin circuit at node x contains 
 LUTs and its root LUT

uses 
 inputs� The fanin circuit at node y consists of one LUT using � inputs� Figure

���b shows the best circuit implementing node z that can be constructed using these

fanin circuits� The circuit contains two LUTs and the decomposition tree consists of

the one LUT z�

Figure ��	a shows an alternative fanin circuit at node x� This fanin circuit also

contains 
 LUTs� but its root LUT now uses � inputs� The best circuit implementing

node z that can be constructed using this fanin circuit� shown in Figure ��	b� contains

� LUTs� The decomposition tree in this circuit consists of the LUTs z and x�

The success of the dynamic programming approach requires that the circuits con�

structed at every node satisfy both of the optimization goals� Given that the fanin

circuits satisfy both goals� the circuit constructed at the non�leaf node will satisfy

both optimization goals provided that the decomposition tree contains the minimum

number of LUTs and that its root LUT uses as few inputs as possible� The following

section describes how the decomposition tree is constructed�
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Figure ��	� Fanin Circuit Satisfying Only Primary Optimization Goals

����� Constructing the Decomposition Tree

At each node� the decomposition tree implementing the fanin LUTs and a decompo�

sition of the node is constructed in two steps� The �rst step packs the fanin LUTs

into what are called second�level LUTs� The second step connects these LUTs to form

the complete decomposition tree�

Consider the node z and its fanin LUTs shown in Figure ���a� Note that in this

example each fanin LUT implements a single AND gate� however� in general the fanin

LUTs can implement more complicated functions� Figure ���b shows the second�level

LUTs constructed by the �rst step and Figure ���c shows the complete decomposition

tree� The second�level LUTs specify a two�level decomposition of the node z� Each

second�level LUT implements some subset of the fanin LUTs and the corresponding

decomposition of the node z� In Figure ���b the LUT z�� implements the functions

of the fanin LUTs u and v� In Figure ���c the output of LUT z�� has been connected

to an input of LUT z�
 and the output of LUT z�
 has been connected to an input

of LUT z to form the complete decomposition tree�

For a given set of fanin LUTs� the optimal decomposition tree contains the mini�
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Figure ���� Constructing the Decomposition Tree

mum number of LUTs� and its root LUT uses the minimum number of inputs� The

key to the construction of the optimal decomposition tree is to �nd the two�level

decomposition that contains the minimum number of second�level LUTs� The major

innovation of the area algorithm is to restate this as a bin�packing problem� This

approach is based on the observation that the function of a fanin LUT cannot be

split across more than one second�level LUT�

In general� the goal of bin packing is to �nd the minimum number of subsets into

which a set of items can be partitioned such that the sum of the sizes of the items
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FirstFitDecreasing �node� faninLUTs�
�� construct two level decomposition ��

f
boxList � faninLUTs sorted by decreasing size
binList � �

while �boxList is not ��
f
boxLUT � largest lookup table from boxList

�nd �rst binLUT in binList such that size �binLUT� � size �boxLUT� � K

if such a binLUT does not exist
f
binLUT� a new lookup table
add binLUT to end of binList
g

pack boxLUT into binLUT�
�� implies decomposition of node ��
g

return �binList�
g

Figure ���� Pseudo�code for Two�Level Decomposition

in every subset is less than or equal to a constant C� Each subset can be viewed as

a set of boxes packed into a bin of capacity C� In the construction of the two�level

decomposition� the boxes are the fanin LUTs� and the bins are the second�level LUTs�

The size of each box is its number of used inputs and the capacity of each bin is K�

For example� in Figure ���a the boxes have sizes �� 
� 
� 
� and 
� In Figure ���b the

�nal packed bins have �lled capacities of �� �� and 
�

Bin packing is known to be an NP�hard problem �Gare��� but there exist several

e�ective approximation algorithms� The procedure used to construct the two�level

decomposition� outlined as pseudo�code in Figure ���� is based on the First Fit De�

creasing algorithm� The fanin LUTs are referred to as boxes and the second�level
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LUTs are referred to as bins� The procedure begins with an empty list of bins� The

boxes are �rst sorted by size� and then packed into bins one at a time� beginning

with the largest box and proceeding in order to the smallest box� Each box is packed

into the �rst bin in the list having an unused capacity greater than or equal to the

size of the box� If no such bin exists� then a new bin is added to the end of the bin

list and the box is packed into this new bin� Note that packing more than one box

into a bin requires the introduction of a decomposition node� For example� in Figure

���b� when boxes u and v are packed into one bin this requires the introduction of

the decomposition node z���

The procedure used to convert the two�level decomposition into the multi�level de�

composition is outlined as pseudo�code in Figure ��� The second�level LUTs are �rst

sorted by their size� Then� while there is more than one second�level LUT remaining�

the output of the LUT with the greatest number of used inputs is connected to the

�rst available unused input in the remaining LUTs� If no unused inputs remain then

an extra LUT is added to the decomposition tree� Note that the decomposition node

in the destination LUT is altered� and now implements part of the �rst level node�

For example� in Figure ���c� when LUT z�� is connected to LUT z�
� the decompo�

sition node z�
 is altered� This procedure constructs an optimal decomposition tree

provided that the two�level decomposition contains the minimum number of LUTs�

and that its least �lled LUT is as small as possible� Appendix A presents a proof that

the First Fit Decreasing bin�packing algorithm constructs a two�level decomposition

satisfying both of these requirements when the box and bin sizes are restricted to

integers less than or equal to ��

����� Optimality

The goal of the area algorithm is to reduce the number of K�input LUTs required to

implement the original network� The original network is �rst partitioned into a forest

of trees and each of these is mapped separately into a tree of LUTs� The �nal circuit

implementing the original network is assembled from the circuits implementing the

trees� Chapter � proves that the circuit constructed for each tree is an optimal tree
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DecomposeArea �node� faninLUTs�
�� construct tree of LUTs implementing decomposition of node and fanin LUTs ��

f
�� construct two level decomposition ��
packedLUTs 	 FirstFitDecreasing �node� faninLUTs�

lookList � packedLUTs sorted by decreasing size

while �lookList contains more than one lookup table�
f
sourceLUT� largest lookup table from lookList

�nd �rst destinationLUT in lookList such that size �destinationLUT� �� � K

if such a destinationLUT does not exist
f
destinationLUT� a new lookup table
add destinationLUT to end of lookList
g

connect sourceLUT output to destinationLUT input�
�� implies decomposition of node ��
g

return �lookList�
g

Figure ��� Pseudo�code for Multi�Level Decomposition

of LUTs implementing that tree� provided that the value of K is less than or equal

to �� For these values of K� the FFD bin�packing algorithm results in the two�level

decomposition with the minimum number of LUTs and the smallest possible least

�lled LUT� This two�level decomposition leads to an optimal decomposition tree�

which in turn leads to an optimal circuit implementing each non�leaf node including

the root node of the tree being mapped�

If f is the number of fanin edges at a given node in the tree� and bucket sorts are

used in the implementation of the above algorithm� then the time taken to construct

the decomposition tree is bounded byKf � The dynamic programming traversal visits
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each node in the tree once� If there are n nodes in the tree� and the maximum fanin

at any node is F � then the time taken to map the entire tree is bounded by nKF �

Even though the tree of LUTs implementing each tree in the forest is optimal� the

�nal circuit implementing the entire network that is assembled from these circuits is

not necessarily optimal� Partitioning the original network into a forest of fanout�free

trees precludes LUTs that realize functions containing reconvergent paths and assem�

bling the �nal circuit from the separate circuits implementing each tree precludes the

replication of logic at fanout nodes� The following sections describe local optimiza�

tions that exploit reconvergent paths and the replication of logic at fanout nodes to

further reduce the number of LUTs in the �nal circuit�

��� Exploiting Reconvergent Fanout

When the original network is partitioned at fanout nodes into single�output sub�

networks� the resulting sub�networks are either trees or leaf�DAGs� In a leaf�DAG� a

leaf node with out�degree greater than one is the source of reconvergent paths that

terminate at some other node in the leaf�DAG� This section describes two alternative

optimizations that exploit the reconvergent paths to improve the circuit implement�

ing the terminal node� These optimizations replace the FFD algorithm and improve

the two�level decomposition used to construct the decomposition tree� The �rst opti�

mization uses an exhaustive search that repeatedly invokes the FFD algorithm� The

second optimization uses a greedy heuristic that simpli�es to the FFD algorithm when

there are no reconvergent paths�

Both optimizations exploit reconvergent paths that begin at the inputs to the fanin

LUTs and that terminate at the node being mapped� In the following description� the

fanin LUTs are again referred to as boxes and the second�level LUTs are referred to

as bins� Consider the set of boxes shown in Figure ����a� Two of the boxes share the

same input and so there exists a pair of reconvergent paths terminating at the shaded

OR node� Each of these boxes has two inputs� for a total of four inputs� However�

when they are packed into the same bin� as in Figure ����b� only three inputs are
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a� Fanin LUTs with shared inputs

b� Reconvergent paths realized within one LUT

Figure ����� Local Reconvergent Paths

needed� The reconvergent paths are realized within the LUT and the total number

of inputs used is less than the sum of the sizes of the two boxes� The decrease in

the number of bin inputs that are used may allow additional boxes to be packed into

the same bin and may therefore improve the �nal two�level decomposition� Figure

����a illustrates the two�level decomposition constructed by applying the FFD bin�

packing algorithm after the reconvergent paths have been realized within one LUT�

By contrast� Figure ����b shows the result if the reconvergent paths are ignored� and

the bin�packing algorithm is applied directly to the fanin LUTs� In this case� the

two�level decomposition that realizes the reconvergent paths within a LUT contains

fewer second�level LUTs�

The reconvergent paths can only be realized within one LUT if the two boxes with

the shared input are packed into the same bin� To ensure that the boxes are packed

together they can be merged before the FFD bin�packing algorithm constructs the

two�level decomposition� However� forcing the two boxes into one bin can interfere

with the FFD algorithm and actually produce an inferior two�level decomposition�

To �nd the best two�level decomposition� the bin�packing algorithm is applied both

with and without the forced merging of the two boxes and the superior two�level
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a� With forced merge� 
 LUTs

b� Without forced merge� � LUTs

Figure ����� Exploiting Reconvergent Paths

decomposition is retained�

When more than one pair of fanin LUTs share inputs� there are several pairs

of reconvergent paths� To determine which pairs of reconvergent paths to realize

within LUTs� an exhaustive search is used to �nd the best two�level decomposition�

as outlined as pseudo�code in Figure ���
� The search begins by �nding all pairs of

boxes that share inputs� Next� every possible combination of these pairs is considered�

For each combination a two�level decomposition is constructed by �rst merging the

respective boxes of the chosen pairs and then proceeding with the FFD bin�packing

algorithm� The two�level decomposition with the fewest bins and the smallest least

�lled bin is retained�

The exhaustive search becomes impractical when there is a large number of pairs

of boxes that share inputs� In this case� a heuristic� referred to as the MaximumShare

Decreasing �MSD� algorithm� is used to construct the two�level decomposition� This

heuristic� outlined as pseudo�code in Figure ����� is similar to the FFD algorithm�

but it attempts to improve the two�level decomposition by maximizing the sharing of

inputs when boxes are packed into bins� The MSD algorithm iteratively packs boxes
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Reconverge �node� faninLUTs�
�� construct two level decomposition ��
�� exploit reconvergent paths ��
�� exhuastive search ��

f
pairList � all pairs of faninLUTs with shared inputs

bestLUTs� �

for all possible chosenPairs from pairList

f
mergedLUTs� copy of faninLUTs with forced merge of chosenPairs

packedLUTs� FirstFitDecreasing �node� mergedLUTs�

if packedLUTs are better than bestLUTs
bestLUTs� packedLUTs

g

return �bestLUTs�
g

Figure ���
� Pseudo�code for Exhaustive Reconvergent Search
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MaxShare �node� faninLUTs�
�� construct two level decomposition ��
�� exploit reconvergent paths ��
�� greedy heuristic ��

f
boxList � faninLUTs

binList � �

while �boxList is not ��
f
boxLUT � highest priority LUT from boxList
�� precedence of rules for highest priority boxLUT ��
�� 
� most inputs ��
�� �� most inputs shared with a bin in binList ��
�� �� most inputs shared with a box in boxList ��

�nd binLUT in binList that shares most inputs with boxLook

if such a binLUT does not exist
f
binLUT� a new LUT
add binLUT to end of binList
g

pack boxLUT into binLUT exploiting shared inputs�
�� implies decomposition of node ��
g

return �binList�
g

Figure ����� Pseudo�code for Maximum Share Decreasing
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into bins until all the boxes have been packed� Each iteration begins by choosing

the next box to be packed and the bin into which it will be packed� The chosen box

satis�es three criteria� �rst it has the greatest number of inputs� second it shares

the greatest number of inputs with any existing bin� and third it shares the greatest

number of inputs with any of the remaining boxes� The �rst criterion ensures that

the MSD algorithm simpli�es to the FFD algorithm when there are no reconvergent

paths� The second and third criteria encourage the sharing of inputs when the box is

packed into a bin� The chosen box is packed into the bin with which it shares the most

inputs while not exceeding the capacity of the bin� If no such bin exists� then a new

bin is created and the chosen box is packed into this new bin� Note that the second

and third criteria for choosing the box to be packed only consider combinations of

boxes and bins that will not exceed the bin capacity�

Both reconvergent optimizations only �nd local reconvergent paths that begin at

the inputs of the fanin LUTs� However� when the fanin circuits are constructed� no

consideration is given to reconvergent paths that terminate at subsequent nodes� The

propagation of these reconvergent paths through the fanin LUTs is therefore depen�

dent upon the network traversal order� This is demonstrated by the experimental

results presented in Chapter �� where some circuits produced with the MSD algo�

rithm contain fewer LUTs than circuits produced using the exhaustive reconvergent

search�

��� Replication of Logic at Fanout Nodes

This section describes how the replication of logic at fanout nodes can reduce the

number of LUTs required to implement a network� Recall that the original network

is partitioned into a forest of trees and that each tree is separately mapped into a

circuit of K�input LUTs� When these separate circuits are assembled to form the

circuit implementing the entire network� the replication of logic at fanout nodes can

reduce the total number of LUTs in the �nal circuit� For example� in Figure ����a�

three LUTs are required to implement the network when the fanout node is explicitly
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a� Without replicated logic� � LUTs

b� With replicated logic� 
 LUTs

Figure ����� Replication of Logic at a Fanout Node

implemented as the output of a LUT� In Figure ����b� the AND gate implementing the

fanout node is replicated and only two LUTs are required to implement the network�

When the original network is partitioned into a forest of trees� each fanout node

is the root of one source tree and a leaf of several destination trees� For example� in

Figure ����a the source and destination trees are represented by large triangles� The

fanout node a is the root of the source tree A and is a leaf in each of the destination

trees B and C�

The replication optimization considers replicating the function of the root LUT of

the circuit implementing the source tree� In Figure ����a� the small shaded triangle at

the root of the source tree represents the root LUT� The root LUT can be eliminated

if a replica of its function is added to each of the destination trees� as illustrated in

Figure ����b� If the total number of LUTs required to implement the destination

trees does not increase� then eliminating the root LUT results is an overall reduction

in the number of LUTs in the �nal circuit�

The Root Replication procedure� outlined as pseudo�code in Figure ���	� begins

by constructing the circuit implementing the source tree� The destination trees are

�rst mapped without the replication of logic and are then re�mapped with a replica
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Figure ����� Replication of the Root LUT

of the function of the source tree�s root LUT added to each destination tree� If the

total number of LUTs required to implement the destination trees with replication is

less than or equal to the number without replication� then the replication is retained

and the source tree�s root LUT is eliminated�

If the replication at the fanout node is retained� there is a reduction of one LUT in

the total number of LUTs� When the original network contains many fanout nodes�

the replication optimization is a greedy local optimization that is applied at every

fanout node� If the destination tree of one fanout node is the source tree or destination

tree of a di�erent fanout node� there can be interactions between the replication of

logic at the two fanout nodes� In this case� the replication of logic at the �rst fanout

node can preclude the replication of logic at the second fanout node� The overall

success of the replication optimization depends upon the order in which it is applied

to the fanout nodes�

In addition to the interaction among the local replication optimizations� there can

be interactions between the replication optimization and the reconvergent optimiza�
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RootRep �sourceTree�
f
sourceCircuit 	 mapTree �sourceTree�
rootLUT 	 root LUT of sourceCircuit

�� �nd cost without replication ��
noRepTotal 	 

for all fanout destinationTrees
f
noRepCircuit 	 mapTree �destinationTree�
noRepTotal 	 noRepTotal � number of lookup tables in noRepCircuit
g

�� �nd cost with replication ��
repTotal 	 

for all fanout destinationTrees
f
add replica of rootLook to destinationTree

repCircuit 	 mapTree �destinationTree�
repTotal 	 repTotal � number of lookup tables in repCircuit
g

if �repTotal � noRepTotal�
f
retain repCircuits

eliminate rootLUT from sourceCircuit
g

else
f
retain noRepCircuits

g
g

Figure ���	� Pseudo�code for Root�LUT Replication
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tion� The replication of logic at fanout nodes can expose reconvergent paths and

thereby create additional opportunities for the reconvergent optimization�

��� Summary

The area algorithm presented in this chapter maps a network into a circuit of K�

input LUTs� The algorithm uses bin packing to �nd decompositions of each node

in the network that minimize the number of LUTs in the �nal circuit� Chapter �

will prove� for values of K � �� that the area algorithm produces an optimal tree

of LUTs implementing a network that is a fanout�free tree� General networks are

mapped by �rst partitioning them at fanout nodes into a forest of trees� and then

mapping each tree separately� Additional optimizations exploit reconvergent paths�

and the replication of logic at fanout nodes� to further reduce the number of LUTs

in the �nal circuit� Chapter � will present some experimental results using the area

algorithm� The following chapter presents the delay algorithm which minimizes the

number of levels of LUTs in the �nal circuit�
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Chapter �

The Delay Algorithm

The FPGA implementation of a typical circuit is roughly three times slower than

an MPGA implementation �Brow
�� Since circuit performance is a critical issue in

many ASIC applications� this speed disadvantage increases the importance of perfor�

mance optimization in logic synthesis for FPGAs� One approach to improving the

performance of an FPGA circuit is to reduce the number of levels of logic blocks in

the circuit� This is one aspect of performance optimization that can be addressed

by technology mapping without considering detailed routing� Even though routing

delays are a signi�cant portion of total delay in an FPGA circuit� a recent study

indicates that minimizing the number of levels of LUTs in a circuit of lookup tables

minimizes the total delay of the circuit �Murg�b�� This chapter presents a technology

mapping algorithm� referred to as the delay algorithm� that minimizes the number of

levels of K�input lookup tables in the circuit implementing the Boolean network�

The key feature of the delay algorithm is the application of a bin�packing ap�

proximation algorithm to the decomposition problem� Unlike the area algorithm�

which decomposed nodes to reduce the total number of LUTs� the delay algorithm

decomposes nodes to minimize the number of levels in the �nal circuit� For example�

consider the circuit of ��input LUTs shown in Figure ���a� In this �gure� the number

in the lower right hand corner of a LUT indicates its depth� which is the maximum

number of LUTs along any path from a primary input to the output of the LUT� The

LUTs preceding the AND nodes are not shown in this �gure� but they are assumed to
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Figure ���� Decomposition of a Node

contribute to the overall depth as indicated� In Figure ���a the shaded OR node is not

decomposed� and � levels of LUTs are required to implement the network� However�

if the OR node is decomposed into the two nodes shown in Figure ���b then only �

levels of LUTs are required� The challenge is to �nd the decomposition of every node

in the network that minimizes the number of levels in the �nal circuit�

The delay algorithm� like the area algorithm� �rst partitions the original network

into a forest of trees� maps each tree separately into a circuit of K�input LUTs� and

then assembles the circuit implementing the entire network from the circuits imple�

menting the trees� The trees are mapped in a breadth��rst order proceeding from

the primary inputs toward the primary outputs� This ensures that when each tree is

mapped that the trees implementing its leaf nodes have already been mapped� The

following section describes how dynamic programming and bin packing are used to

construct the circuit of K�input LUTs implementing each tree in the forest� Sections

��
 and ��� describe local optimizations at fanout nodes that further reduce the num�

ber of levels in the �nal circuit by exploiting reconvergent paths and the replication

of logic at fanout nodes�

The overall strategy employed by the delay algorithm is to minimize the number

�



of levels of LUTs by minimizing the depth of every path in the �nal circuit� This can

result in a circuit that contains a large number of LUTs� The �nal section of this

chapter discusses methods of reducing this area penalty�

��� Mapping Each Tree

Like the area algorithm� the delay algorithm begins mapping each tree in the forest

by applying DeMorgan�s Theorem and AND�OR associativity rules to ensure that

the only inverted edges in the tree originate from the leaf nodes and that there are no

consecutive AND nodes and no consecutive OR nodes� The presence of consecutive

AND or consecutive OR nodes would restrict the decompositions that the delay algo�

rithm could use� Provided the above conditions are satis�ed� Chapter 	 proves that

the delay algorithm produces an optimal depth tree of K�input LUTs implementing

the tree for values of K less than or equal to 	�

The overall approach taken by the delay algorithm to mapping the tree� outlined

as pseudo�code in Figure ��
� is similar to that used by the area algorithm� Beginning

at the leaf nodes and proceeding to the root node� the delay algorithm constructs a

circuit at each node that implements the sub�tree extending to the leaf nodes� At leaf

nodes� this circuit is simply a single LUT implementing a bu�er� Each leaf node is

either a primary input or a fanout node that is the root of another tree in the forest�

If the leaf node is a primary input the depth of the bu�er LUT is one� If the leaf node

is the root of another tree� then the depth of the bu�er LUT is one greater than the

depth of the root LUT of the circuit implementing the leaf node� The order in which

the trees in the forest are mapped ensures that the tree rooted at the leaf node has

already been mapped�

The circuit implementing a non�leaf node is constructed from the circuits imple�

menting its fanin nodes and consists of two parts� The �rst part is the decomposition

tree implementing the functions of the root LUTs of the fanin circuits and a decom�

position of the non�leaf node� The second part is the non�root LUTs of the fanin

circuits� The key di�erence between the delay algorithm and the area algorithm is
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MapTree �tree�
�� construct circuit implementing tree ��

f
traverse tree from leaves to root� at each node

f
�� construct circuit implementing node ��
if node is a leaf

circuit � single LUT bu�ering node

else
circuit � MapNode �node�

g

�� return circuit implementing root ��
return �circuit�
g

MapNode �node�
�� construct circuit implementing sub�tree rooted at node ��

f
�� separate fanin LUTs ��
faninLUTs� root LUTs of circuits for all fanin nodes
precedingLUTs� non�root LUTs of circuits for all fanin nodes

�� construct decomposition tree ��
decompositionTree� DecomposeDelay �node� faninLUTs�

�� join decomposition tree and preceding LUTs ��
circuit � decompositionTree � precedingLUTs

return �circuit�
g

Figure ��
� Pseudo�code for Mapping a Tree

the procedure used to construct the decomposition tree at each node�

Once again� there are two optimization goals for the circuit implementing each

non�leaf node� The primary goal is to minimize the depth of the root LUT of the

circuit� and the secondary goal is to minimize the number of inputs used by the

root LUT� The secondary optimization goal is the key to ensuring that the optimal
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decomposition tree� and therefore the optimal circuit implementing the non�leaf node�

is constructed from the optimal fanin circuits� The following section describes how

the decomposition tree is constructed�

����� Constructing the Decomposition Tree

At each non�leaf node� the decomposition tree is constructed in three steps� The �rst

step separates the root LUTs of the fanin circuits according to their depth into strata�

the second step packs the LUTs within each stratum to minimize the number of LUTs

in the stratum� and the �nal step connects the strata together to form the complete

decomposition tree� The remainder of this section will refer to the root LUTs of the

fanin circuits as the fanin LUTs�

Consider the node z and its fanin LUTs shown in Figure ���a� Initially� stratum �

contains the fanin LUTs u� v and w� and stratum � contains the fanin LUTs x and y�

Figure ���b shows the result of minimizing the number of LUTs within each stratum�

and Figure ���c shows the complete decomposition tree� In Figure ���b each LUT in

a given stratum implements some subset of the fanin LUTs at that stratum�s depth

and the corresponding decomposition of the node z� For example� the stratum�� LUT

z�
 implements the functions of the fanin LUTs x and y� In Figure ���c the outputs

of the stratum�� LUTs w and z�� are connected to the existing stratum�� LUT z�


and the new stratum�� LUT z��� and the outputs of these stratum�� LUTs are in

turn connected to a new stratum�� LUT to form the complete decomposition tree�

The decomposition tree is optimal if its root LUT is at the minimum depth and

uses the minimum number of inputs� Minimizing the number of LUTs within each

stratum� using the FFD bin�packing algorithm outlined in Section ��
 is the key to

constructing the optimal decomposition tree� The procedure used to construct the

decomposition tree is outlined as pseudo�code in Figure ���� This procedure begins

by separating the fanin LUTs into strata according to their depth and using the FFD

bin�packing algorithm to minimize the number of LUTs within each stratum� Note

that packing more than one fanin LUT �box� into a stratum LUT �bin� requires the

introduction of a decomposition node� For example in Figure ���b when boxes x and
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Figure ���� Constructing the Decomposition Tree
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DecomposeDelay �node� faninLUTs�
�� construct tree of LUTs implementing decomposition of node and faninLUTs ��
�� minimize depth of decomposition tree ��

f
minD � minimum depth of faninLUTs
maxD � maximum depth of faninLUts

for all d from minD to maxD
f
stratumLUTs �d� � FirstFitDecreasing �node� faninLUTs at depth d�
g

lookList � �
d � minD

until �only one LUT in stratumLUTs �d� � d � maxD�
f
�� connect LUTs in stratumLUTs �d� to LUTs in stratumLUTs �d� �� ��

for all sourceLUT in stratumLUTs �d�

f
destinationLUT� �rst LUT with unused input in stratumLUTs �d� ��

if such a destinationLUT does not exist
f
destinationLUT � new LUT
add destinationLUT to end of stratumLUTs �d� ��
g

connect sourceLUT output to destinationLUT input
�� implies decommposition of node ��

add sourceLUT to lookList
g

d� d� �
g

add stratumLUT �d� to lookList

return �lookList�
g

Figure ���� Pseudo�code for Constructing Decomposition Tree

��



y are packed into one bin this requires the introduction of the node z�
�

After minimizing the number of LUTs within each stratum the algorithm proceeds

from the uppermost stratum to the deepest stratum connecting the outputs of LUTs

in stratum D to unused inputs in stratum D��� The decomposition tree is complete

when the deepest stratum contains only one LUT� Connecting the output of a LUT

in stratum D to an unused input of a LUT in stratum D�� alters the decomposition

node in the stratum D � � LUT� For example� in Figure ���c when the stratum��

LUT w is connected to the stratum�� LUT z�
 the decomposition of the OR node

is altered� It may be necessary to add extra LUTs to stratum D � � if there are

more LUTs in stratum D than unused inputs in stratum D � �� For example� in

Figure ���c the output of the stratum�� LUT z�� is connected to the new stratum��

LUT z��� Note that in this example the extra LUT is simply a bu�er and it can be

eliminated after the decomposition tree is completed� This procedure produces an

optimal decomposition tree provided that the FFD bin�packing algorithm packs the

fanin LUTs �boxes� within each stratum into the minimum number of stratum LUTs

�bins��

����� Optimality

The goal of the delay algorithm is to minimize the number of levels of K�input

LUTs in the circuit implementing the original Boolean network� The network is �rst

partitioned into a forest of trees� each of these is mapped separately and the circuit

implementing the entire network is assembled from these separate circuits� Section

��� of Chapter � proves that the tree of LUTs constructed for each tree is optimal�

provided that the value of K is less than or equal to 	�

If f is the number of fanin edges at a given node in the tree� and bucket sorts

are used� then the time taken to construct the decomposition tree is bounded by Kf �

Each node in the tree is visited once by the dynamic programming traversal� If there

are n nodes in the tree� and the maximum fanin at any node is F � then the time

taken to map the entire tree is bounded by nKF �

As in the area algorithm� the circuit implementing the entire network that is
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assembled by the delay algorithm from the separate circuits implementing each tree

is not necessarily optimal� even if the separate circuits are optimal� Partitioning

the original network into a forest of fanout�free trees precludes LUTs that realize

functions containing reconvergent paths and assembling the �nal circuit from the

separate circuits implementing each tree precludes the replication of logic at fanout

nodes� The following sections describe local optimizations that exploit reconvergent

paths and the replication of logic at fanout nodes to further reduce the number of

levels in the �nal circuit�

��� Exploiting Reconvergent Paths

As discussed in Section ��� of Chapter �� shared inputs among the fanin LUTs indicate

the presence of local reconvergent paths� The key to a better decomposition tree is

minimizing the number of LUTs within each stratum� When two fanin LUTs with a

shared input are packed into one stratum LUT� the number of inputs used is less than

the sum of the number of inputs used by each LUT� This can allow the number of

LUTs in the stratum to be reduced� which in turn can improve the decomposition tree�

Either the exhaustive search� or the Maximum Share Decreasing heuristic� described

in Section ��� of Chapter �� can be used to replace the FFD bin�packing algorithm

in the procedure used to construct the decomposition tree�

��� Replication of Logic at Fanout Nodes

This section describes how the replication of logic at fanout nodes can reduce the

depth of the �nal circuit� After the original network has been partitioned into a

forest of trees� every fanout node is the root of one source tree and the leaf of several

destination trees� As in the area algorithm� the delay algorithm �rst maps the source

tree into a circuit of K�input LUTs and then determines if a replica of the function of

the root LUT of this circuit should be added to each of the destination trees� Consider

the circuit shown in Figure ���a� In this circuit the fanout node is implemented as
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Figure ���� Replicating Logic at a Fanout Node

the output of a LUT and the circuit contains two levels of LUTs� In Figure ���b the

function of the LUT implementing the fanout node has been replicated for each of

the fanout edges and the resulting circuit contains only one level�

The delay algorithm adds a replica of the root LUT for every fanout edge of

every fanout node� Provided the minimum depth circuit is constructed for each

destination tree� this simple replication optimization will either leave the number of

levels unchanged� or reduce the number of levels� However� replication of logic can

increase the number of LUTs in the �nal circuit� The following section will discuss a

replication optimization that avoids replications that increase area when they do not

decrease depth�

��� Reducing the Area Penalty

The delay algorithm presented so far is concerned solely with minimizing the number

of levels in the �nal circuit� and does not attempt to minimize the number of LUTs in

the circuit� Compared to the area algorithm� the construction of the decomposition

tree and the replication optimization in the delay algorithm signi�cantly increase the

number of LUTs in the circuit� The following sections describe three optimizations
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Figure ��	� Replication at a Leaf Node

that attempt to reduce this area penalty� The �rst optimization avoids replications

that increase the number of LUTs without decreasing the number of levels in the

circuit� The second optimization searches for LUTs that can be merged into their

fanout LUTs� The third optimization uses the area algorithm decomposition to reduce

the number of LUTs on non�critical paths�

����� Avoiding Unnecessary Replication

At each fanout node� the replication optimization described in Section ��� creates a

replica of the function of the LUT implementing the fanout node for every fanout

edge� For some fanout edges the addition of the replica can increase the number of

LUTs in the circuit without decreasing the number of levels� Recall that in the area

algorithm� the Root Replication procedure created a replica for either all or none of

the fanout edges� This section describes a Leaf Replication procedure that determines

if a replica should be added to each edge independently�

Consider the forest of trees shown in Figure ��	a� In this �gure each large triangle
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represents one tree� For the tree D the two leaf nodes leaf nodes a and b are fanout

nodes that are also the roots of trees A and B� When the Leaf replication procedure

maps the tree D� the order in which the trees are mapped ensures that the trees A

and B have already been mapped� At each leaf node� the root LUT of the circuit

implementing the node is referred to as the fanout LUT at that node� In �gure

��	a� the fanout LUT at node a is represented by the small shaded triangle� At each

leaf node� the procedure determines if a replica of the function of the fanout LUT

should replace the leaf node as the source of the fanout edge leading to the tree being

mapped� Figure ��	b shows the result of replicating the fanout LUT at node a for the

fanout edge leading to tree D� Note that the decision to add a replica to the other

fanout edge from a is made independently when the tree C is mapped�

Since the goal of the delay algorithm is to minimize the number of levels in the

�nal circuit� the Leaf Replication procedure outlined as pseudo�code in Figure ���

�rst maps the tree with replication at all leaf nodes� Next the procedure determines

at which nodes the replica can be removed without increasing the depth of the circuit�

It considers each leaf node in sequence� removing the replica of the fanout LUT at

that leaf node and re�mapping the tree� If the resulting circuit does not increase in

depth and contains fewer LUTs� then the new circuit is greedily retained� Otherwise�

the replica is restored at the leaf node�

����� Merging LUTs into their Fanout LUTs

As shown in Figure ���c the decomposition tree constructed by the delay algorithm

can include LUTs that implement simple bu�er functions� These are examples of

LUTs that can be merged with their fanout LUTs without increasing the depth of

the circuit� Provided that the result is a LUT with at most K�inputs� merging any

single�fanout LUT into its fanout LUT eliminates one LUT from the circuit without

increasing the depth of the circuit� After the original network has been mapped into

a circuit of K�input LUTs� a peephole optimization proceeds from the primary inputs

to the primary outputs merging single�fanout LUTs with their fanout LUTs whenever

the result is a LUT with at most K�inputs�
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LeafRep �tree�
f
�� begin by replicating at every leaf node ��
for all leaf nodes of tree

f
fanoutLUT �leaf� � root LUT of circuit implementing leaf
add replica of fanoutLUT �leaf� to tree
g

bestCircuit � mapTree �tree�

for all leaf nodes of tree
f
�� remap tree without the replica at the leaf ��
remove replica of fanoutLUT �leaf� from tree

circuit � mapTree �tree�

if �area of circuit � area of bestCircuit � depth of circuit � depth of bestCircuit�
f
�� update bestCircuit ��
bestCircuit � circuit
g

else f
�� restore replica ��
add replica of fanoutLUT �leaf� to tree
g

g
g

Figure ���� Pseudo�code for Replication

����� Mapping for Area on Non�Critical Paths

To minimize the depth of the critical path� the delay algorithm described so far has

minimized the depth of all LUTs� This section refers to the deepest LUTs in the circuit

as the critical LUTs� In addition� any other LUT is critical if an increase in its depth

increases the number of levels in the circuit� Minimizing the depth of non�critical

LUTs may unnecessarily increase the number of LUTs in the circuit� This section

describes an optimization that reduces the number of LUTs in the circuit without

increasing the number of levels� The depth of a non�critical LUT can be increased by
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mapCritical �network�
f
for all nodes in network

decompositionMode �node� � DelayDecomposition

circuit � mapNetwork �network�

targetDepth � depth of circuit

for all nodes in network

decompositionMode �node� � AreaDecomposition

circuit � mapNetwork �network�

while �depth of circuit exceeds targetDepth�
f
�nd super critical LUTs

for all nodes implemented by super critical LUTs
decompositionMode �node� � DelayDecomposition

circuit � mapNetwork �network�
g

g

Figure ���� Pseudo�code for Critical

an amount referred to as its slack without increasing the depth of subsequent LUTs�

This slack represents an opportunity to reduce the number of LUTs in the circuit

by locally increasing depth� The overall strategy is to construct the decomposition

tree for each node in the network using one of two modes� Nodes implemented

by critical LUTs are decomposed using the delay decomposition described in this

chapter� and nodes implemented by non�critical LUTs are decomposed using the area

decomposition described in the previous chapter�

Before the original network is mapped� it is not readily apparent which nodes

will be implemented by critical LUTs� The optimization� outlined as pseudo�code

in Figure ���� therefore uses an iterative approach to determine in which mode each
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node should be decomposed� The procedure �rst maps the network using the delay

decomposition for all nodes� This establishes a target depth for the �nal circuit� Next

the network is re�mapped using the area decomposition for all nodes� This minimizes

the number of LUTs� however� the circuit may now contain LUTs that exceed the

target depth� These LUTs are referred to as super�critical LUTs� In addition� any

LUT is super�critical if increasing its depth increases the depth of another super

critical LUT� To restore the number of levels in the circuit to the target depth the

procedure uses an iterative approach� Each iteration changes the decomposition mode

of nodes implemented by super�critical LUTs from the area decomposition to delay

decomposition and then re�maps the network� The network is iteratively re�mapped

until there are no LUTs in the circuit that exceed the target depth� An iterative

approach is required because reducing the depth of existing super�critical LUTs can

result in other LUTs becoming super�critical�

��� Summary

The delay algorithm presented in this chapter maps Boolean networks into circuits

of K�input LUTs� The algorithm uses bin packing to �nd decompositions of each

node in the network that minimize the number of levels in the �nal circuit� Chapter

	 will prove� for values of K � 	� that the delay algorithm produces an optimal tree

of LUTs implementing a network that is a fanout�free tree� Chapter � will present

some experimental results produced with the delay algorithm�

	




Chapter �

Area Optimality

This chapter presents a proof that the area algorithm constructs an optimal tree

of K�input LUTs implementing a network that is a fanout�free tree� for values of

K � �� In this chapter script letters� such as A� are used to represent circuits of

K�input LUTs� and the number of LUTs in the circuit A is denoted by jAj� If A is a

single�output circuit then the number of inputs used at the root �output� LUT of A

is denoted by hAi� The area�optimal circuit implementing a single�output network is

de�ned as follows�

The circuit A is area optimal if and only if for all circuits B implementing

the same function� jBj � jAj and hBi � hAi whenever jBj � jAj�

The remainder of this chapter will prove the following theorem�

Theorem ���

Given an original network that is a fanout�free tree� an area algorithm con�

structs an area�optimal tree of K�input LUTs implementing the network

for values of K � ��

As described in Chapter �� the area algorithm traverses the original tree beginning at

the leaf nodes and proceeds to the root node� At every node� a circuit implementing

the sub�tree rooted at that node is constructed� Section ��� will prove the following

lemma�
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Lemma ���

At each non�leaf node� the area algorithm constructs an area�optimal tree

of LUTs implementing that node� for values of K � �� if the circuits

implementing its fanin nodes are area�optimal�

Theorem ��� is proved by induction using Lemma ��
� The basis of the induction

is the circuit constructed by the area algorithm at each leaf node� This circuit consists

of a single LUT implementing a bu�er� Since no other circuit implementing the leaf

node can have fewer LUTs� or use fewer inputs at its root LUT� this bu�er LUT is

by de�nition an area�optimal circuit implementing the leaf node�

Since the circuits implementing the leaf nodes are area�optimal� it follows by

induction from Lemma ��
 that the circuit constructed at every node� including the

root node of the tree� is area�optimal� Therefore� Theorem ��� follows from Lemma

��
� The remainder of this chapter presents a proof of Lemma ��
�

��� Outline for Proof of Lemma ���

To prove Lemma ��
 the following notation is introduced� Let A be the circuit con�

structed by the area algorithm and let B be an arbitrary tree of LUTs implementing

the same function� To prove that A is area�optimal� it is su�cient to show that

jBj � jAj and hBi � hAi whenever jBj � jAj� Note that the proof only considers

circuits that are trees of LUTs�

The proof proceeds by transforming the circuit B without changing its function� or

increasing jBj or hBi� and then showing for the transformed circuit B that jBj � jAj

and that hBi � hAi if jBj � jAj� The following section introduces notation that

describes the circuit A constructed by the area algorithm� and Section ����
 describes

how the circuit B is transformed without changing its function� or increasing jBj or

hBi� Finally� Section ����� proves Lemma ��
�
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����� Notation for the Circuit A

This section introduces the notation to describe the non�leaf node being mapped� the

area�optimal circuits implementing its fanin nodes� and the circuit constructed by the

area algorithm�

Let n be the non�leaf node and let p� to pf be its fanin nodes� Without loss of

generality this section assumes that the non�leaf node is an OR node and that its

fanin nodes are AND nodes or primary inputs� The case where n is an AND node

is the dual of the case considered here� and the �rst step in the area algorithm uses

DeMorgan�s Law and AND�OR associative rules to ensure that the fanin nodes of an

OR node are either AND nodes� or primary inputs�

Let Oi be an optimal circuit implementing the fanin node pi� As illustrated in

Figure ��� each fanin circuitOi consists of a root LUT Ri and the non�root LUTs N i�

In this �gure� LUTs are represented by solid rectangles� each optimal fanin circuit�

Oi� is bounded by a dotted rectangle and the non�root LUTs �N i� are bounded by a

dotted ellipse� In this example� jO�j � �� jO�j � �� jO�j � �� hO�i � 
� hO�i � ��

and hO�i � 
� Note that hRii � hOii� and that jOij � jN ij� ��

The circuit A� constructed by the area algorithm� is illustrated in Figure ��
� This

circuit consists of the decomposition tree� D� and the non�root LUTs� N i� for all i

from � to f � The root LUT of the decomposition tree D is the root LUT of the circuit

A� Therefore� hAi � hDi� In the example shown in Figure ��
� hDi � ��

As described in Chapter �� the decomposition tree is constructed from the fanin

LUTs fRig in two steps� The �rst step uses the FFD bin packing algorithm to pack
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the fanin LUTs into second�level LUTs� The fanin LUTs correspond to boxes of

size hRii � hOii and the second�level LUTs correspond to bins of capacity K� The

second step connects the second�level LUTs to form the �nal decomposition tree� The

procedure begins by sorting the second�level LUTs into a list ordered by increasing

number of unused inputs� Then� while more than one LUT remains in the list the

procedure iteratively removes the �rst LUT from the list and connects its output to

the �rst available unused input in the list� If there are no unused inputs in the list�

then an empty LUT is added to the end of the list and the output of the �rst LUT

is connected to an input of this new LUT�

Note that whenever the �rst LUT in the list has at least one unused input that

all the remaining LUTs in the list must have at least one unused input� In this case�

the output of each LUT in the list� except the last LUT� is connected to an input

of the next LUTs in the list� No new LUTs are added and the last LUT in the list

becomes the root LUT of the decomposition tree�

From the above observation� it follows that a new bin is added only when all of

the previously removed bins have no unused inputs� and all of the remaining bins

have no unused inputs� Therefore� when a new bin is added all non�root LUTs in the

�nal decomposition tree will have no unused inputs�

����� Transforming the Circuit B

Recall that B is a tree of LUTs implementing the same function as the circuit A�

This section describes how the arbitrary circuit B is transformed� without changing

		



its function� or increasing jBj or hBi� The objective of the transformation is to

produce in the circuit B a sub�circuit that is comparable to the decomposition tree

D in the circuit A� The transformations incorporate in the circuit B the non�root

LUTs N i� for all i� and connect the hRii outputs of the sub�circuit N i to one LUT

in the circuit B� This is a structure that is similar to the circuit A where the hRii

outputs of the non�root LUTs N i are connected to the LUT Ri� After the circuit

B has been transformed this observation is used to prove Lemma ��
� Note that the

transformations must not change the function of the circuit B� or increase jBj or hBi�

The circuit B is assumed to be a tree of LUTs� The key to the transformation

that incorporates the non�root LUTs N i is �nding a sub�tree of LUTs in B that

implements the function

pi �
X
j��

pj

or its complement� for some subset � of the fanin nodes� The following argument

shows that such a sub�circuit must exist� The notation �i is introduced to represent

the set of primary inputs that are the leaf nodes of the sub�tree rooted at the fanin

node pi� Let L be the root LUT of the smallest sub�tree in the circuit B that contains

all the primary inputs in �i� Let �G be the primary inputs for this sub�tree� and

�F be the primary inputs for the remainder of the circuit� Because the circuit B is

a tree� the function implemented by the circuit can be represented by the disjoint

decomposition

F �G��G���F �

where G�� is the function implemented by the sub�tree rooted at the LUT L� and F ��

is the function implemented by the remainder of the circuit�

The node n� in the network being mapped� is an OR node and all of its fanin nodes

are AND nodes� Since the network rooted at n is a tree� it is easy to show that �F

cannot include any primary inputs from �j� for j �� i� if �G includes primary inputs

from both �i and �j� The proof is a simple application of the necessary and su�cient

conditions on disjoint decompositions stated by Kohavi �Koha���� In informal terms�

it is not possible to split the AND node pj across the OR node n� It is known from
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the de�nition of L that �G contains all inputs in �i� Therefore� �G contains either

all or none of the primary inputs in �j � for all j �� i� If � is the set of j for which �j

is contained in �G� then

�G � �i �
�
j��

�j

and the function at the output of L� or its complement� must be

L � pi �
X
j��

pj

Note that L is a LUT in the circuit B� and that pi and pj are the fanin nodes of node

n in the network being mapped�

From the assumption that L is the root of the smallest sub�tree that includes all

of �i� it follows that at least two of the sub�trees rooted at the inputs of L include

primary inputs from �i� Therefore� any sub�tree rooted at an input of L that includes

any primary inputs from �i must include only primary inputs from �i� or else there

would be a splitting of the AND node pi across the OR node n� Therefore� the LUT

L can be decomposed into the disjoint functions Q and M as illustrated in Figure

���� The output of Q is the function pi� the output of M is the function
P
pj� for

j � �� and the output of L is the function Q�M�

Let P be the sub�tree of LUTs� bounded by the dotted rectangle in Figure ����

that contains the LUT L and all LUTs in the sub�trees rooted at the inputs of the

function Q� By setting the inputs to the function M to values that result in pj � ��

for j � �� this sub�circuit can implement the function of the fanin node pi� It is given

that Oi is an optimal circuit implementing the fanin node pi� Therefore� jPj � jOij

and if jPj � jOij then hQi � hOii Two di�erent transformations are applied to

the circuit B when jPj � jOij and when jPj � jOij� The case where jPj � jOij is
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considered �rst�

Case �	 jPj � jOij

If jPj � jOij then hQi � hOii� In this case� the function Q can be replaced with

the function Ri� and the non�root LUTs in P can be replaced with the LUTs N i� as

illustrated in Figure ���� Because jPj � jOij it follows that the number of non�root

LUTs in P is the same as the number of LUTs in N i� Therefore� this transformation

does not increase the number of LUTs in the circuit� and because hQi � hOii it does

not increase hLi�

Case �	 jPj � jOij

If jPj � jOij then the function Q can be replaced by a single input connected to

the output of the circuit Oi as illustrated in Figure ��	� Because jPj � jOij this

transformation does not increase the number of LUTs in the circuit� and because

hQi � � it does not increase hLi� Note that the circuit Oi includes the root LUT Ri
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and the non�root LUTs N i�

In either case� the transformation does not change the function of L� and does

not increase the number of LUTs in the circuit� or increase hLi� Therefore these

transformations will not change the function of B� or increase jBj or hBi� The end

result of these transformations is that the circuit B includes the non�root LUTs N i�

for all i� and all hRii outputs of N i are connected to one LUT�

����� Proof of Lemma ���

This section completes the proof of Lemma ��
� After the transformations described

in Section ����
� the circuits A and B both include the non�root LUTs N i� for all i�

These non�root LUTs can be eliminated from the circuits A and B without a�ecting

the comparison of the number of LUTs in the circuit� The decomposition tree D is

all that remains of the circuit A� and the LUTs that remain from the circuit B are

referred to as the sub�circuit E� To prove Lemma ��
 it is su�cient to show� for values

fo K � �� that jEj � jDj and that hEi � hDi whenever jEj � jDj�

Two cases are considered� based on the decomposition tree D described in section

������ If at least one LUT in D� other than the root LUT� has an unused input� then

the decomposition tree is said to be bin limited� If none of the non�root LUTs has an

unused input� then D is said to be pin limited� Note that if D contains a single LUT�

then it is considered to be pin limited�
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The Bin Limited Case

If D is bin limited� then no extra LUTs were added when the second�level LUTs

were connected together to form the decomposition tree� Therefore the LUTs in D

correspond to the bins that the FFD algorithm produces for the set of boxes of size

hRii for all i� The number of bins is equal to jDj�

For all i� the hRii outputs of the non�root LUTs N i are connected to one LUT in

E � Therefore� the LUTs in E also correspond to a set of bins containing boxes of size

hRii for all i� and the number of bins is equal to jEj� The sets of bins corresponding

to the LUTs in D and E both contain the same set of boxes� Appendix B shows that

the FFD algorithm packs any set of integer sized boxes into the minimum number of

bins of capacity K for integer values of K � 	� Therefore for K � 	� jEj � jDj� All

that remains to prove Lemma ��
 is to show that hEi � hDi whenever jEj � jDj�

The unused capacity of any bin corresponding to a LUT in D or E is referred to

as a hole� The key to showing that hEi � hDi� is the comparison of the largest holes

in E � and D�

In order to be bin limited� there must be more than one LUT in D� If jDj � �

then by de�nition D would be pin limited� The bin corresponding to the root LUT

of D contains the largest hole of any of the bins� because the bins are ordered by

size before they are connected to form the decomposition tree� If the decomposition

tree is bin limited� then by de�nition at least one non�root LUT in D has an unused

input� and when the bins are connected� exactly one input of the root LUT of D is

connected to the output of another LUT in D� This input is not accounted for by

the boxes of size hRii� for all i� and can be considered part of the hole in the bin

corresponding to the root LUT� Therefore� the size of the largest hole in any of the

bins is K � � � hDi�

The sub�circuit E is a tree of LUTs and jEj � jDj � 
� Therefore at least one

input of the root LUT of E is connected to the output of another LUT in E � This

input can be considered as part of the hole in the bin corresponding to the root

LUT� The size of the hole in this bin is therefore at least K � � � hEi� Appendix

B shows� for values of K � �� that the set of bins produced by the FFD algorithm
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includes a bin with the largest hole possible for any set of bins that contains the same

set of boxes in the same number of bin� Therefore if jEj � jDj� and K � �� then

K ��� hDi � K ���hEi This inequality can be simpli�ed to show that hEi � hDi

whenever jEj � jDj� Therefore Lemma ��
 is true if D is bin limited�

The Pin Limited Case

When D is pin limited� Lemma ��
 can be proved by counting the number of used

inputs in D and E � For all i� the decomposition tree D has hRii inputs connected to

outputs from the non�root LUTs N i� In addition� the output of every LUT� except

the root LUT� is connected to the input of another LUT in the tree� Therefore the

total number of used inputs in D is
P
hRii � jDj � �� The total number of inputs

available is KjDj� If D is pin limited� then by de�nition all unused inputs in D are

at the root LUT� The number of LUTs in D is the minimum integer such that the

number of inputs available is greater than or equal to the number of inputs used�

Therefore

KjDj �
X

hRii� jDj � �

Using the notation dxe to indicate the smallest integer greater than or equal to x� the

number of LUTs in D can be expressed as

jDj � d�
X

hRii � ����K � ��e

The sub�circuit E is also a tree of K�input LUTs� and for all i it also has hRii

inputs connected to outputs from the non�root LUTs N i� Using the argument that

the output of every LUT in E � except the root LUT� is connected to the input of

another LUT in E � it follows that

jEj � d�
X

hRii � ����K � ��e

Therefore jEj � jDj� and all that remains to prove Lemma ��
 is to show that hEi �

hDi whenever jEj � jDj�

If jEj � jDj� then the total number of inputs available in E � is the same as the

number of inputs in D� Counting the inputs connected to the LUTs Ni� for all i� and
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the inputs connected to the outputs of other LUTs in each tree it follows that the

number of used inputs in E is greater than or equal to the number of used inputs

in D� Therefore the number of unused inputs in E is no greater than the number

of unused inputs in D� The number of used inputs at the root LUT of E cannot be

smaller than K less the total number of unused inputs in E � and by de�nition� all

unused inputs in D are at the root LUT of D� Since the number of unused inputs in

E is no greater than the number of unused inputs in D it follows that hEi � hDi if

jEj � jDj� Therefore� Lemma ��
 is true if D is pin limited�

The decomposition tree D must be either bin limited or pin limited� and in either

case Lemma ��
 is true� It therefore follows by the earlier inductive argument that

Theorem ��� is true�

��� Circuits with Fanout

Since technology mapping addresses decomposition and covering� the above proof has

assumed that the circuit implementing a fanout�free tree must itself be a tree of LUTs�

It is possible� however� that the optimal tree of LUTs is not the smallest circuit im�

plementing the Boolean function represented by the original network� Restructuring

the original network to introduce fanout� while implementing the same function� may

permit a superior circuit� For example� consider the circuit shown in Figure ���a�

This ��LUT circuit is the optimal tree of ��input LUTs implementing the underlying

tree� However� if the underlying tree is restructured� as shown in Figure ���b� then

the same function can be implemented using � LUTs�

��� Summary

This chapter has shown that the area algorithm� described in Chapter �� constructs

an optimal tree of LUTs implementing a network that is a tree� for values of K � ��

The following chapter presents a similar result for the delay algorithm�
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Chapter �

Delay Optimality

This chapter presents a proof that the delay algorithm constructs a minimum�depth

tree of K�input LUTs implementing a network that is a fanout�free tree if K is less

than or equal to 	� The following notation is used in this chapter� Script letters� such

as A are used to represent circuits of K�input LUTs� The number of LUTs in the

circuit A is denoted by jAj and the maximum depth of any LUT in A is denoted by

�A� � If A is a single�output circuit� then hAi is the the number of inputs used at

the root LUT of A� The depth�optimal circuit implementing a single�output network

is de�ned as follows�

The circuitA is depth�optimal if and only if for all circuits B implementing

the same function� �B� � �A� and hBi � hAi whenever �B� � �A�

The remainder of this chapter will prove the following theorem�

Theorem ���

Given an original network that is a fanout�free tree� a delay algorithm con�

structs a depth�optimal tree of K�input LUTs implementing the network

for values of K � 	�

As described in Chapter �� the delay algorithm traverses the original tree begin�

ning at the leaf nodes and proceeding to the root node� At every node� a circuit
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implementing the sub�tree rooted at that node is constructed� Section 	�� will prove

the following lemma�

Lemma ���

At each non�leaf node� the delay algorithm constructs the depth�optimal

tree of LUTs implementing that node� for values of K � 	� if the circuits

implementing its fanin nodes are depth�optimal�

Theorem 	�� is proved by induction using Lemma 	�
� The basis of the induction is

the circuit constructed by the delay algorithm at each leaf node� This circuit consists

of a single LUT implementing a bu�er� The depth of this bu�er LUT is one greater

than the depth of the leaf node� and only a single input of the LUT is used� No other

circuit implementing the leaf node can have lower depth or use fewer inputs at its

root LUT� Therefore� this bu�er LUT is the depth�optimal circuit implementing the

leaf node�

Since the circuits implementing the leaf nodes are depth�optimal� it follows by

induction from Lemma 	�
 that the circuit constructed at every node� including the

root node of the tree� is depth�optimal� Therefore Theorem 	�� is true� The remainder

of this chapter presents a proof of Lemma 	�
�

��� Outline for Proof of Lemma ���

To prove Lemma 	�
� the following notation is introduced� Let A be the circuit con�

structed by the delay algorithm and let B be an arbitrary tree of LUTs implementing

the same function� By de�nition� the circuit A is depth�optimal if �B� � �A� and

hBi � hAi whenever �B� � �A� �

Both circuits A and B consist of a series of strata� where each stratum contains

all LUTs at a given depth� The proof proceeds by transforming the circuit B without

changing its function� or increasing �B� or hBi� To prove Lemma 	�
 the number

of LUTs at a given depth in the transformed circuit B is compared to the number

�	



of LUTs in the corresponding stratum of the circuit A� Section 	���� will prove the

following lemma�

Lemma ���

For values of K � 	� the number of LUTs at any �xed depth in the

transformed circuit B is greater than or equal to the number of LUTs at

the same depth in the circuit A�

If dmax is de�ned as the depth of circuitA� then because the stratum at depth dmax

in the circuit A contains exactly one LUT� it follows that the transformed circuit B

contains at least one LUT at depth dmax� Therefore �B� � �A� � and all that remains

to prove Lemma 	�
 is to show that hBi � hAi if �B� � �A� �

The following sections present the details of the proof of Lemma 	�
� Section 	����

introduces notation that describes the circuit A constructed by the delay algorithm�

and Section 	���
 describes how the circuit B is transformed without changing its

function� or increasing �B� or hBi� Section 	���� proves Lemma 	�� and then Section

	���� proves Lemma 	�
�

����� Notation for the Circuit A

This section introduces the notation to describe the non�leaf node being mapped�

the depth�optimal circuits implementing its fanin nodes� and the circuit constructed

by the delay algorithm� For convenience� the discussion reiterates some of the nota�

tion presented in Section ����� of Chapter �� Note however� that the decomposition

tree constructed by the delay algorithm di�ers from that constructed by the area

algorithm�

Let n be the non�leaf node and let p� to pf be its fanin nodes� Without loss of

generality this section assumes that the non�leaf node is an OR node and that its

fanin nodes are AND nodes or primary inputs� The case where n is an AND node

is the dual of the case considered here� and the �rst step in the delay algorithm uses

DeMorgan�s Law and the associative rule to ensure that the fanin nodes of an OR
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node are either AND nodes� or primary inputs�

Let Oi be an optimal circuit implementing the fanin node pi� As illustrated in

Figure 	�� each fanin circuitOi consists of a root LUT Ri and the non�root LUTs N i�

In this �gure� LUTs are represented by solid rectangles� each optimal fanin circuit�

Oi� is bounded by a dotted rectangle and the non�root LUTs �N i� are bounded by a

dotted ellipse� In this example� �O�� � 
� �O�� � 
� �O�� � 
� hO�i � 
� hO�i � ��

and hO�i � 
� Note that �Ri� � �Oi� � and that hRii � hOii�

The circuit A� constructed by the delay algorithm� is illustrated in Figure 	�
�

This circuit consists of the decomposition tree� D� and the non�root LUTs� N i� for

all i from � to f � As described in Chapter �� the decomposition tree is constructed as

a series of strata fSdg� for d from dmin� the minimum value of �Ri� � to dmax � �A� �

The �rst step in constructing the stratum Sd uses the FFD bin packing algorithm to

pack the fanin LUTs fRig� for all i where �Ri� � d� into K�input LUTs� Each fanin

LUT Ri corresponds to a box of size hRii� and the LUTs in the stratum correspond
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to bins of capacity K� After the �rst step is completed the LUTs in stratum Sd can

be thought of as the set of bins� produced by the FFD algorithm� containing a box

of size hRii� for all i where �Ri� � d�

The second step in constructing the decomposition tree D proceeds from the

uppermost stratum� Sdmin � to the deepest stratum connecting the outputs of LUTs

in stratum Sd to unused inputs in stratum Sd��� If there are insu�cient unused

inputs� then new LUTs are added to stratum Sd��� Connecting the output of each

LUT in stratum Sd to an unused input in stratum Sd�� corresponds to packing jSdj

extra unit boxes into the set of bins in the stratum Sd��� These unit boxes are

added on a �rst �t basis after the other boxes have been packed into stratum Sd���

Therefore� for d � dmin the LUTs in the stratum Sd are the set of bins� produced

by the FFD algorithm� containing jSd��j unit boxes and a box of size hRii� for all i

where �Ri� � d�

The root LUT of the decomposition tree D is the root LUT of the circuit A�

Therefore� �A� � �D� � and hAi � hDi� In the example shown in Figure 	�
�

�D� � �� and hDi � ��

����� Transforming the Circuit B

This section describes how the circuit B is transformed� without changing its function�

or increasing �B� or hBi� The transformations are similar to those described in

Section ����
 of Chapter �� but they preserve �B� rather than jBj� The next section

proves that the end result is a circuit B where every stratum in B has at least as

many LUTs as the corresponding stratum in the circuit A�

The objective of the transformations is to incorporate in the circuit B the non�root

LUTs N i� for all i� and to connect the hRii outputs of the sub�circuit N i to one LUT

at depth �Ri� � The transformations must not change the function of the circuit B�

or increase �B� or hBi� Note that in the circuit A the hRii outputs of the non�root

LUTs N i are also connected to the LUT Ri at depth �Ri� � This observation is the

key to the proof of Lemma 	���

The node n is an OR node� and its fanin nodes are AND nodes� The circuit B is
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assumed to be a tree of LUTs� and using the argument described in Section ����
 of

Chapter � there must be a sub�tree of LUTs in B that implements the function

pi �
X
j��

pj

or its complement� for some subset � of the fanin nodes� In addition� the root LUT�

L� of this tree can be decomposed into the disjoint functions Q and M as illustrated

in Figure 	��� The output of Q is the function pi� the output of M is the function
P
pj � for j � �� and the output of L is the function Q�M�

It is given that Oi is an optimal circuit implementing the fanin node pi� Therefore�

�L� � �Oi� and if �L� � �Oi� then hQi � hOii� The case where �L� � �Oi� is

considered �rst� followed by the case where �L� � �Oi� �

Case �	 �L� � �Oi�

If �L� � �Oi� then hQi � hOii� and the function Q can be replaced with the

function Ri� as illustrated in Figure 	��� without increasing �L� � or hLi� To generate

the inputs for Ri the non�root LUTs N i are added to B�
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Case �	 �L� � �Oi�

If �L� � �Oi� then the function Q can be replaced by a single input connected to

the output of the circuit Oi as illustrated in Figure 	��� without increasing �L� or

hLi� Note that the circuit Oi includes the root LUT Ri and the non�root LUTs N i�

In either case� the transformation does not change the function of L� and does not

increase �L� or hLi� Therefore these transformations will not change the function of

B� or increase �B� or hBi� The end result of these transformations is that the circuit

B includes the non�root LUTs N i� for all i� and all hRii outputs of N i are connected

to one LUT at depth �Ri� �

One �nal transformation to the circuit B is required before the following section

can deduce that the number of LUTs at any �xed depth in B is greater than or equal

to the number of LUTs at the same depth in the circuit A� Whenever the output

of a LUT at depth dsrc is connected to the input of a LUT at depth ddst � dsrc�� a

chain of �ddst � dsrc � �� bu�er LUTs is introduced between the output of the source

LUT and the input of the destination LUT� This transformation ensures that if the

output of a LUT is connected to the input of another LUT� then the depth of the

destination LUT is exactly one greater than the depth of the source LUT� Note that

this does not change the function B� or increase �B� � or hBi�

��



����� Proof of Lemma ���

This section shows that� for values of K � 	� the number of LUTs at any �xed depth

in the transformed circuit B is greater than or equal to the number of LUTs at the

same depth in the circuit A� From this observation it is possible to deduce that A is

a depth�optimal tree of LUTs implementing the node n�

After the transformations described in Section 	���
� the circuits A and B both

include the non�root LUTs N i� for all i� The �rst step in the proof of Lemma 	��

eliminates these non�root LUTs from the circuits A and B� Note that this does not

a�ect the comparison of the number of LUTs at any given depth� After eliminating

the non�root LUTs from the circuit A� what remains is the decomposition tree D�

The LUTs that remain from the circuit B are referred to as the circuit E �

Recall that the decomposition tree D consists of a series of strata fSdg for all d

from dmin to dmax � �A� � The notation T d is introduced to represent the LUTs at

depth d in the circuit E �

The LUTs in the stratum Sdmin can be thought of as a set of bins containing a

box of size hRii for all i where �Ri� � dmin� The LUTs in T dmin correspond to a

set of bins containing the same boxes� The bins in the stratum Sdmin are produced

by the FFD algorithm� and Appendix B shows that the FFD bin packing algorithm

packs any set of integer sized boxes into the minimum number of bins of capacity K�

for integer values of K � 	� Therefore� for K � 	� jT dmin j � jSdminj�

For d � dmin the LUTs in stratum Sd in D correspond to a set of bins containing

jSd��j unit boxes� and a box of size hRii� for all i where �Ri� � d� The inputs

to a LUT in stratum T d are connected to either outputs from N i� or the outputs

of LUTs in stratum T d��� Therefore� the LUTs in stratum T d correspond to a set

of bins containing jT d��j unit boxes� and a box hRii� for all i where �Ri� � d� If

jT d��j � jSd��j then the boxes in the stratum Sd are a subset of boxes in stratum

T d� Since the set of bins in stratum Sd are produced by the FFD algorithm� and the

FFD algorithm is optimal for values of K � 	� it can be deduced that jT dj � jSdj if

jT d��j � jSd��j� It has already been shown that jT dmin j � jSdmin j� and therefore by

induction� for all d � dmin� jT dj � jSdj� Therefore Lemma 	�� is true�
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����� Proof of Lemma ���

This section uses Lemma 	�� to prove that the circuitA is depth�optimal� In the delay

algorithm� the procedure that connects the strata fSdg to form the decomposition

tree D terminates when jSdmaxj � �� and therefore jT dmaxj � �� From Lemma 	�� it

follows that B contains at least one LUT at depth dmax� and therefore �B� � �A�

To prove that A is optimal� all that remains is to show that hBi � hAi whenever

�B� � �A� � The LUTs in stratum Sdmax correspond to bins containing jSdmax��j

unit boxes� and a box of size hRii for all i where �Ri� � dmax� Since the stratum

Sdmax consists of a single LUT it follows that hSdmaxi � jSdmax��j �
P
hRii for all i

where �Ri� � dmax�

The LUTs in stratum T dmax correspond to bins containing jT dmax��j unit boxes�

and a box of size hRii� for all i where �Ri� � dmax� If �B� � �A� then the stratum

T dmax consists of a single LUT� and hT dmaxi � jT dmax��j �
P
hRii� for all i where

�Ri� � dmax� It is known that jT dmax��j � jSdmax��j� and therefore hT dmaxi �

hSdmaxi if �B� � �A� � Since hAi � hSdmaxi and hBi � hT dmaxi� it follows that

hBi � hAi if �B� � �A� �

Thus� for values of K � 	� �B� � �A� � and hBi � hAi if �B� � �A� � Therefore�

the delay algorithm constructs a depth�optimal tree of LUTs implementing a non�

leaf node� if the circuits implementing its fanin nodes are depth�optimal� Therefore

Lemma 	�
 is true� and Theorem 	 follows by the induction described at the beginning

of this chapter�

��� Summary

The delay algorithm� described in Chapter �� maps a general network into a circuit

of K�input LUTs by �rst partitioning the network into a forest of trees� and then

mapping each tree separately� This chapter has shown that the algorithm used to

map each tree� produces a depth�optimal tree of LUTs implementing that tree� for

values of K � 	� The following chapter presents experimental results for the both

the area and delay algorithms�
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Chapter �

Experimental Evaluation

The area and delay algorithms described in Chapters � and � have been implemented

in a program called Chortle� This chapter presents experimental results for Chortle�

The purpose of these experiments is to investigate the e�ectiveness of the divide and

conquer strategy which partitions the original network into a forest of trees and then

separately maps each tree� These experiments also evaluate the e�ectiveness of the

optimizations that exploit reconvergent paths and the replication of logic at fanout

nodes� In addition� these results are compared with other LUT technology mappers�

The following section presents the experimental results for the area algorithm� and

Section ��
 presents results for the delay algorithm�

��� Results for the Area Algorithm

	���� Circuits of ��input LUTs

This section presents the results for a series of experiments where the area algorithm

maps 
 networks from the MCNC two�level and multi�level logic synthesis benchmark

suite �Yang�� into circuits of ��input LUTs� The goal for these experiments is to

reduce the number of LUTs in the �nal circuits implementing each network�

The �rst step in the experimental procedure is logic optimization using the misII

logic synthesis system �Bray���� The misII script shown in Figure ��� is used to
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Figure ���� misII script

��



optimize the original network �BLIF� into the optimized network �EQN�� This script

is the standard misII script �Bray��� with the addition of the commands �simplify�

and �sweep� and a format change at the end of the script� The intermediate step of

writing to and reading from the �le �OPT� alters the network order� and is retained

for historical reasons�

After logic optimization by misII� the optimized networks are mapped into circuits

of ��input LUTs using Chortle� Five sets of experiments were performed� using the

following optimization options�


�A� basic area algorithm


�Ar� area algorithm with exhaustive reconvergent search


�Af� area algorithm with Root Replication


�Arf� with exhaustive reconvergent search� and Root Replication


�Asf� with Maximum Share Decreasing �MSD� and Root Replication

The number of LUTs in the circuit produced by each option and the execution time

on a SparcStation�IPC are recorded in Table ����

Separately� the exhaustive reconvergent ��Ar� and Root Replication ��Af� opti�

mizations never produce circuits containing more LUTs than the basic area algorithm

��A�� In total� the ��Ar� circuits contain ���� fewer LUTs than the ��A� circuits and

the ��Af� circuits contain ���� fewer LUTs than the ��A� circuits� Note that there is

only a small increase in execution time for the ��Ar� circuits� This indicates that each

tree �leaf�DAG� resulting from the partitioning of the original circuit into a forest

of trees contains a limited number of reconvergent paths� The total execution time

for the ��Af� circuits is an order of magnitude greater than the execution time for

the ��A� circuits� This is a result of the Root Replication optimization repeatedly

mapping trees to determine when to replicate logic at a fanout node�

The circuits produced by combining the exhaustive reconvergent search and the

Root Replication optimizations ��Arf� are never worse than the ��Ar� circuits and

the ��Af� circuits� In total� the ��Arf� circuits contain ��� fewer LUTs than the
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��A� circuits� This reduction exceeds the sum of the reductions realized for the ��

Ar� circuits and ��Af� circuits� This indicates that the replication of logic at fanout

nodes exposes additional reconvergent paths that can be exploited by the exhaustive

reconvergent search� The opportunity to exploit these additional reconvergent paths

can improve the �nal circuit� but it also increases the computational cost of the

exhaustive reconvergent search� The total execution time for the ��Arf� circuits is

almost twice that of the ��Af� circuits�

The computational cost of exploiting reconvergent paths can be reduced by using

the MSD algorithm instead of the exhaustive reconvergent search� The results in

Table ��� indicate that the ��AsF� results are similar to the ��Arf� results� For � of

the 
 networks� the ��Asf� circuits contain more LUTs than the ��Arf� circuits� but

for � networks they contain fewer LUTs� In total� the ��Asf� circuits contain only

� more LUT than the ��Arf� circuits� The MSD algorithm is able to occasionally

outperform the exhaustive reconvergent search because the exhaustive search only

�nds a locally optimal solution� For some networks� the local decisions made by the

MSD algorithm can lead to a superior global solution� The total execution time for

the ��Asf� circuits is similar to the execution time for ��Af� circuits� indicating the

e�ciency of the MSD algorithm�

	���� Circuits of Xilinx ���� CLBs

This section presents experimental results for Chortle mapping networks into Xilinx

���� CLBs� As described in Chapter 
� each Xilinx CLB can implement any single

function of � variables� or any two ��input functions that together have at most �

distinct inputs� To realize a circuit of CLBs� a network can be �rst mapped into

a circuit of ��input LUTs� and then the Maximum Cardinality Matching �MCM�

strategy described in Section 
���
 of Chapter 
� can be used to pair single�output

functions into two�output CLBs�

Five sets of experiments were performed on the 
 networks from the previous

section� using the options ��A�� ��Ar�� ��Af�� ��Arf�� and ��Asf� to optimize the LUT

circuit� Table ��
 presents the number of CLBs in the circuits produced by these
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experiments� and the execution time on a SparcStation�IPC� Note that the execution

time for each circuit includes the time to map the network into a circuit of ��input

LUTs and the time to pair these LUTs into CLBs�

The �rst observation from Table ��
 is that optimizations that reduced the number

of ��input LUTs in the previous section do not always reduce the number of two�

output CLBs� In the previous section the ��Ar� circuits never contained more LUTs

than the ��A� circuits� In Table ��
� �
 of the ��Ar� circuits contain fewer CLBs than

the ��A� circuits� but for � networks the ��Ar� circuit contains more CLBs� In total�

the ��Ar� circuits uses ���� fewer CLBs than the ��A� circuits� Note also that the

total execution time for the ��Ar� circuits is less than the execution time for the ��A�

circuits� The execution time for CLB circuits is dominated by the time taken by the

MCM algorithm� Even though it takes more time to produce the ��Ar� LUT circuits

than the ��A� LUT circuits� using these smaller ��Ar� circuits reduces the size of the

MCM problem and reduces the overall execution time�

The next observation is that the Root Replication optimization generally increases

the number of CLBs in the �nal circuit� even though it reduces the number of LUTs�

For �� of the 
 networks� the ��Af� circuit contains more CLBs than the ��A� circuit�

and for � of the networks the ��Af� circuit contains fewer CLBs� In total� the ��

Af� circuits use ���� more CLBs than the ��A� circuits� The replication of logic at

fanout nodes generally increases the number of inputs used by the LUTs containing

the replicated logic� and makes it more di�cult to pair these LUTs into a two�output

CLB� The availability of the second CLB output can often eliminate the need for the

replication of logic� If a CLB contains a single LUT that implements replicated logic�

then the second output of this CLB can often be used to explicitly implement the

function of the replicated logic with no additional cost� This second output can be

used as an input to all other CLBs that replicate logic at the fanout� and thereby

eliminate the need for the replication of logic in these CLBs�

Combining the exhaustive reconvergent search and the Root Replication optimiza�

tion often reduces the number of CLBs in the �nal circuit� For � of the 
 networks�

the ��Arf� circuit contains fewer CLBs than the ��A� circuit� and for � of the networks

�



the ��Arf� circuit contains more CLBs� In total� the ��Arf� circuits use ���� fewer

CLBs than the ��A� circuits� The reduction in the number of LUTs resulting from the

combination of the exhaustive reconvergent search and Root Replication optimiza�

tion can overcome the disadvantage of the replication of logic at fanout nodes when

pairing LUTs into CLBs� Note that the ��Arf� circuits are never worse than the ��Af�

circuits� However� the ��Arf� circuits are worse than the ��Ar� circuits for 	 of the 


networks�

As discussed in the previous section� the computational cost can be reduced by

using the MSD algorithm instead of exhaustive reconvergent search� For all networks�

the number of CLBs in the ��Asf� circuits di�ers from the ��Arf� circuits by at most


 CLBs� and in total� the ��Asf� circuits actually use 	 fewer CLBs than the ��

Arf� circuits� The total execution time for ��Asf� circuits is ��� that of the ��Arf�

circuits� This reduction in execution time is not as signi�cant as the reduction for

LUT circuits presented in the previous sections� because the execution time for CLB

circuits is dominated by the time taken by the MCM algorithm�

The above results indicate that it is advantageous to use both outputs of a CLB�

To increase the opportunities to pair two functions into one CLB the original network

can be �rst mapped into a circuit of ��input LUTs and then the MCM strategy can

be used to pair these functions into two�output CLBs� The ��input LUT circuit may

contain more LUTs than the ��input LUT circuit� but may result in an increase in the

number of pairs of functions that can be implemented by two�output CLBs� and a net

reduction in the number of CLBs in the �nal circuit� Table ��� gives the number of

��input and ��input LUTs in the circuits produced using the ��Arf� options� and the

number of CLBs in the circuits derived from these intermediate circuits� Comparing

the number of CLBs in the circuits derived from ��input LUT circuits and ��input

LUT circuits� there is no consistent pattern� The circuits derived from the ��input

LUTs contain fewer CLBs than the circuits derived from the ��input LUTs for �� of

the 
 networks� and for �
 of the networks they contain more CLBs� In total� the

results derived from the ��input LUT circuits contain ���� fewer CLBs� The circuits

derived from the ��input LUT circuits are smaller if the increase in the number of
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LUTs� compared to the ��input LUT circuits� is o�set by a larger increase in the

number of LUTs that can be paired into two�output CLBs� The total execution time

to derive CLB circuits from ��LUT circuits is larger than that from ��input LUT

circuits� The intermediate ��input LUT circuits are larger than the intermediate ��

input LUT circuits� and therefore the MCM problem is larger� This increases the size

of the MCM problem� and since the time taken to solve this problem dominates the

execution time� the ��input LUT approach is slower�

	���� Chortle vs� Mis�pga

This section presents a comparison of the Chortle area algorithm and the two versions

of the Mis�pga technology mapper described in Section 
���
 of Chapter 
� The

original version is referred to as Mis�pga��� �Murg��� and the improved version is

referred to as Mis�pga�
� �Murg�a�� Table ��� reports experimental results published

in �Murg�a�� In these experiments 
� networks from the MCNC logic synthesis

benchmark suite were mapped into circuits of ��input LUTs� The Chortle results were

produced using the Chortle�crf �Fran�a� program which implemented the basic area

algorithm� the exhaustive reconvergent search and the Root Replication optimization�

To permit a direct comparison of the technology mappers� the Chortle�crf� Mis�pga���

and Mis�pga�
� experiments all started with the same optimized networks� Chortle�

crf was run with the exhaustive reconvergent optimization� and the Root Replication

optimizations ��Arf��

For 
� of the 
� networks� the circuits produced by Mis�pga��� contain more LUTs

that the circuits produced by Chortle�crf� and for � of the networks the Mis�pga���

circuits contain fewer LUTs� In total� the Mis�pga��� circuits contain 
�� more LUTs

than the Chortle�crf circuits�

Mis�pga�
� incorporates a bin packing strategy for decomposition similar to the

strategy introduced in Chortle�crf �Fran�a�� For 
� of the 
� networks� the circuit

produced by Mis�pga�
� contains fewer LUTs that the circuit produced by Chortle�

crf� and for 
 of the networks the Mis�pga�
� circuit contains more LUTs� In total� the

Mis�pga�
� circuits contain ��� fewer LUTs than the Chortle�crf circuits� Note that

�
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Mis�pga�
� produces signi�cantly smaller circuits than Chortle�crf for networks such

as �sym� that have a large number of reconvergent paths� where Shannon decompo�

sition is particularly e�ective� Both the Chortle�crf and Mis�pga�
� experiments were

run on a DEC������ and in total� Mis�pga�
� was �� times slower than Chortle�crf�

Compared to the ��Arf� results presented in Section ��� the Chortle�crf circuits

recorded in Table ��� use fewer LUTs for �� of the 
� networks� more LUTs for 	 of

the networks� and in total ���� fewer LUTs� The optimized networks used as input

to Chortle�crf in these experiments di�er from those described in Section ���� and are

the source of this improvement�

	���� Chortle vs� Xmap

This section presents an experimental comparison of the Chortle�crf area algorithm

and the Xmap �Karp�� technology mapper described in Section 
���� of Chapter 
�

Table ��� reports experimental results published in �Murg�a�� In these experiments


� networks from the MCNC logic synthesis benchmark suite are mapped into circuits

of ��input LUTs� Both the Chortle�crf and Xmap experiments use the optimized

networks described in the previous section� Chortle�crf was run with the exhaustive

reconvergent optimization� and the Root Replication optimizations ��Arf��

For 

 of the 
� networks� the circuit produced by Xmap contains more LUTs

that the circuit produced by Chortle�crf� and for � of the networks the Xmap circuit

contains fewer LUTs� In total� the Xmap circuits contain ��� more LUTs than the

Chortle�crf circuits� The Chortle�crf experiments were run on a DEC���� and the

Xmap experiments were run on a SUN������� Taking the relative performance of

these machines into account Xmap was �	 times faster than Chortle�crf�

	���� Chortle vs� Hydra

This section presents an experimental comparison of the Chortle area algorithm and

the Hydra �Filo�� technology mapper described in Section 
���� of Chapter 
� In

these experiments � networks from the MCNC logic synthesis benchmark suite were

�
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Table ��	� Chortle vs� Hydra

mapped into circuits of Xilinx ���� CLBs�

Table ��	 displays the number of logic blocks in the circuits produced by the

Chortle area algorithm and the Hydra results published in �Filo��� For Hydra� logic

optimization preceding technology mapping was performed by misII using the stan�

dard script� The Chortle results are the ��Arf� results presented in Section ����
�

The circuits produced by Hydra contain fewer logic blocks than the Chortle circuits

for �
 of the � networks� and in total contained 
�� fewer CLBs� Table ��	 also

shows the execution times for Hydra and Chortle� The Hydra experiments were run

on a DECstation����� and the Chortle experiments were run on a SparcStation�IPC�

Taking the relative performance of these machines into account Hydra is � times faster

than Chortle�

Hydra achieves better results than Chortle when mapping into CLBs because

the decomposition strategy used in Hydra anticipates the pairing of single�output

functions into two�output logic blocks� and selects decompositions that encourage the

sharing of inputs in addition to reducing the number of single�output functions�

�
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	���� Chortle vs� VISMAP

This section presents an experimental comparison of the Chortle area algorithm and

the VISMAP �Woo�� technology mapper described in Section 
���	 of Chapter 
�

In these experiments �� networks from the MCNC logic synthesis benchmark suite

were mapped into circuits of two�output logic blocks� Each of these logic blocks can

implement any two ��input functions that together have at most � distinct inputs�

Note that these two�output logic blocks are not equivalent to Xilinx ���� CLBs�

Table ��� reports the number logic blocks in the circuits produced by the Chortle

area algorithm and the VISMAP results published in �Woo��� For the VISMAP ex�

periments� logic optimization and decomposition preceding VISMAP were performed

by Mis�pga���� The Chortle experiments started with the optimized networks de�

scribed in Section ���� The optimized networks were mapped into circuits of ��input

LUTs using the exhaustive reconvergent and the Root Replication optimizations�

These single�output functions were then paired into two�output logic blocks using the

MCM strategy described in Chapter ��

The e�ectiveness of the covering algorithm implemented by VISMAP is limited by

the decomposition chosen by Mis�pga��� preceding VISMAP� The circuits produced

by VISMAP contain more logic blocks than the Chortle circuits for �
 of the ��

�



networks� and in total contain 
�� more logic blocks� Table ��� also shows the

execution times for VISMAP and Chortle� The VISMAP experiments were run on a

SparcStation�
 and the Chortle experiments were run on a SparcStation�IPC� Taking

the relative performance of these machines into account VISMAP is ��
� times faster

than Chortle�

��� Results for the Delay Algorithm

	���� Circuits of ��input LUTs

This section presents experimental results for the delay algorithm described in Chap�

ter �� These experiments are intended to evaluate the e�ectiveness of the basic delay

algorithm� the exhaustive reconvergent search and the replication of logic at every

fanout node�

The goal of these experiments is the minimization of the number of levels of LUTs

in the �nal circuits� The experimental procedure begins with logic optimization to

reduce the depth of the network� The networks described in Section ��� are further

optimized using the misII �speed up �m unit� command �Sing��� before technology

mapping by Chortle� The networks are mapped into circuits of ��input LUTs using

Chortle with the following options


�Arf� area algorithm with exhaustive reconvergent search

and Root Replication


�D� basic delay algorithm


�Dr� with exhaustive reconvergent search


�DF� with replication at every fanout node


�DrF� with both exhaustive reconvergent and replication

Table ��� displays the number of LUTs and the number of levels of LUTs in the

circuits produced by these options� The ��Arf� results provide a basis for evaluating

the ability of the basic delay algorithm and the various options to reduce the number





of levels of LUTs in the �nal circuit� Note that the ��Arf� results recorded in this

table di�er from the results presented in Section ��� because these experiments started

with networks that were optimized to reduce delay� Table �� shows the execution

time for these experiments on a SparcStation�IPC� To limit the execution time when

mapping the network �alu�� with the options ��Arf� any node with more than �


pairs of reconvergent paths was optimized using the MSD algorithm rather than the

exhaustive reconvergent search�

The basic delay algorithm ��D�� and the delay algorithm with the exhaustive

reconvergent search ��Dr� provide minor reduction in the number of levels in the

mapped circuits� For �
 of the 
 networks� the ��D� circuit has fewer levels than the

��Arf� circuit� but for  of the networks the ��D� circuit has more levels� In total� the

��D� circuits have ��
� fewer levels than the ��Arf� circuits� but contain 	�� more

LUTs�

For �� of the 
 networks� the ��Dr� circuit has fewer levels than the ��Arf� circuit�

but for  of the networks the ��Dr� circuit has more levels� In total� the ��Dr� circuits

have 	� fewer levels than the ��Arf� circuits� but contain 	
� more LUTs�

For those networks where the ��Arf� circuit has fewer levels than the ��D� or ��Dr�

circuits� the combination of the reconvergent and replication optimizations has found

reconvergent paths that not only reduce the total number of LUTs� but also reduce

number of levels in the �nal circuit�

The replication of logic at all fanout nodes in the ��DF� circuits decreases the

number of levels� but substantially increases the number of LUTs in the circuits� For


� of the 
 networks� the ��DF� circuit has fewer levels than the ��Arf� circuit� and

for only � of the networks the ��DF� circuit has more levels� In total� the ��DF�

circuits have ��� fewer levels than the ��Arf� circuits� but contain ���� more LUTs�

Combining the exhaustive reconvergent search with replication at every fanout

node further decreases the number of levels in the circuits� and reduces the area

penalty� For 
� of the 
 networks� the ��DrF� circuit has fewer levels than the ��Arf�

circuit� In total� the ��DrF� circuits have ��� fewer levels than the ��Arf� circuits�

and contain �
�� more LUTs� Note that the total execution time for the ��DrF�

���
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Table ���� Delay Algorithm ��input LUT Results

circuits is less than the execution time for the ��Arf� circuits� This is a result of the

��Arf� option having to repeatedly map trees to determine when to replicate logic at

fanout nodes� whereas the ��DrF� option simply replicates at every fanout node�

���
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	���� Reducing the Area Penalty

The results of the previous section show that the delay algorithm incurs a substantial

area penalty while reducing the number of levels� This section presents results for

experiments evaluating the optimizations� described in Chapter �� that reduce the

area penalty associated with the delay algorithm� These optimizations include� the

single�fanout LUT peephole optimization� the Leaf Replication optimization� and the

critical path optimization�

The experimental procedure takes the optimized networks used in the previous

section and maps them into circuits of ��input LUTs using Chortle with the following

options�


�DrFp� peephole optimization


�DrLp� peephole� and Leaf Replication


�DrLpc� as above� with the critical path optimization


�DsLpc� as above� with MSD replacing the exhaustive reconvergent

search

Table ���� presents the number of LUTs� and the number of levels in each of the

circuits mapped by the di�erent options� The ��DrF� results presented in the previous

section are also included in this table to provide a basis for comparison� Table ����

gives the execution times for these experiments on a SparcStation�IPC�

The �rst observation is that none of the options increased the number of levels

or the number of LUTs in any of the circuits� Using the peephole optimization� the

��DrFp� circuits� in total� have ��� fewer LUTs than the ��DrF� circuits� Replacing

replication at every fanout node with the Leaf Replication algorithm further decreases

the number of LUTs� In total� the ��DrLp� circuits have ��� fewer LUTs than the

��DrF� circuits�

The critical path optimization reduces the number of LUTs� but substantially

increases the execution time� To limit the execution time for the ��DrLpc� circuits for

the networks �f��m� and �z�ml� the exhaustive reconvergent search was replaced by

the MSD algorithm� for any nodes where the number of pairs of reconvergent paths

���



exceeded �
� In total� the ��DrLpc� circuits contain ��� fewer LUTs than the ��DrF�

circuits� and need 	�� times the execution time� The increase in execution time is a

result of the critical path optimization repeatedly mapping the network�

The increase in execution time can be reduced by replacing the exhaustive recon�

vergent search with the MSD algorithm� for all nodes� In total� the ��DsLpc� circuits

use half the execution time of the ��DrLpc� circuits� For  of the 
 networks� the

��DsLpc� circuits have more LUTs than the ��DrLpc� networks� but for � of the net�

works the ��DsLpc� circuits have fewer LUTs� In total� the ��DsLpc� circuits actually

have � fewer LUTs than the ��DrLpc� circuits� As described in Section ���� the ability

of the MSD algorithm to occasionally outperform the exhaustive reconvergent search

can be explained by the fact that both approaches are local optimizations�
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	���� Chortle vs� Mis�pga

This section compares the ability of the latest version of Mis�pga �Murg�b�� described

in Section 
���
 of Chapter 
� and the Chortle delay algorithm to reduce the number

of levels of LUTs� This version of Mis�pga is referred to as Mis�pga���� Table ���


shows experimental results for Mis�pga��� and Chortle mapping 
� networks from the

MCNC logic synthesis benchmark suite into circuits of ��input LUTs� The Mis�pga���

results were published in �Murg�b�� and the Chortle results are the ��DrLpc� results

presented in Section ��
�
� Note that for these experiments� Mis�pga��� and Chortle

start with di�erent optimized networks�

Generally� the Mis�pga��� circuits contain fewer LUTs� but more levels� than the
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Table ����� Chortle vs� DAG�Map

Chortle circuits� For �
 of the 
� networks� the Mis�pga��� circuits contain more levels

than the Chortle circuits� and for � networks the Mis�pga��� circuits contain fewer

levels� In total� the Mis�pga��� circuits contain 	��� more levels and ��� fewer LUTs

than the Chortle circuits� In these experiments� Mis�pga��� was run on a DEC�����

and the Chortle was run on a SparcStation�IPC� Taking the relative performance of

these machines into account� Mis�pga��� is � times slower than Chortle�

	���� Chortle vs� DAG�Map

This section compares the performance of the Chortle delay algorithm and DAG�Map

�Cong
� technology mapper� described in Section 
���� of Chapter 
� These two pro�

grams were used to map 
� networks from the MCNC logic synthesis benchmark suite

into circuits of ��input LUTs� Table ���� displays the DAG�Map results published in

�Cong
�� These experiments used the same starting networks as described in Sec�

tion ��
� The Chortle results recorded in this table are the Chortle ��DrLpc� results
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presented in Section ��
�
�

DAG�Map and Chortle have nearly identical performance in terms of the number

of levels in the �nal circuit� but DAG�Map uses signi�cantly fewer LUTs� For � of the


� networks� the DAG�Map circuits have one fewer level of LUTs than the Chortle

circuits� and for � networks� the DAG�Map circuits have one more level� In total� the

DAG�Map circuits contain 
�� fewer LUTs than the Chortle circuits�

��� Summary

This chapter has presented experimental results that investigate the e�ectiveness of

the area and delay algorithms� In addition� these results were used to compare Chor�

tle to other LUT technology mappers� Combinations of the following optimization

options were used in the experiments�


A� basic area algorithm


D� basic delay algorithm


r� exhaustive reconvergent search


s� Maximum Share Decreasing


f� Root Replication


F� replication at every fanout node


L� Leaf Replication


p� peephole optimization


c� critical path optimization

Section ����� presented results for the area algorithm using the options ��A�� ��Ar��

��Af�� ��Arf�� and ��Asf�� Section ��
�� presented results for the delay algorithm

using the options ��D�� ��Dr�� ��DF�� and ��DrF�� The reduction of the area penalty
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associated with the delay algorithm was addressed in Section ��
�
� which presented

results using the options ��DrFp�� ��DrLp�� ��DrLpc�� and ��DsLpc��

From the area algorithm experiments it was observed that the reduction in the

number of LUTs with the combination of the exhaustive reconvergent search and the

root replication optimization exceeds the sum of the separate reductions for these two

optimizations� This indicates that the replication of logic at fanout nodes exposes

additional reconvergent paths for the exhaustive search to exploit�

The Xilinx ���� CLB experiments showed that networks can be mapped into

circuits of two�output logic blocks by �rst mapping the networks into circuits of single�

output LUTs� and then pairing these LUTs into CLBs� Minimizing the number of

LUTs in the intermediate circuit does not� however� necessarily minimize the total

number of two�output logic blocks in the �nal circuit� In particular� the replication

of logic at fanout nodes� which can reduce the number of LUTs� is seldom bene�cial

if the logic block has a second output that can explicitly implement the replicated

function at little additional cost�

The delay algorithm experiments showed that a key factor in the reduction of the

number of levels of LUTs in the delay algorithm is the replication of logic at fanout

nodes� In addition� there is a large area penalty associated with the delay algorithm�

and the optimizations intended to reduce this penalty have limited success�

For both the area and delay algorithm� when the exhaustive reconvergent search

is replaced by the MSD algorithm there is little change in the number of LUT or the

number of levels� but there is a signi�cant reduction in execution time�

When compared to other LUT technology mappers� the area algorithm outper�

forms Mis�pga��� and Xmap in terms of the number of LUTs in the �nal circuit� but

Mis�pga�
� outperforms the area algorithm� Hydra produces circuits that contain

fewer Xilinx ���� CLBs than those produced by Chortle� whereas VISMAP produces

circuits that contain more two�output logic blocks� In terms of the number of levels

in the �nal circuits� the delay algorithm outperforms Mis�pga��� and produces results

similar to DAG�Map� However� the circuits produced by the delay algorithm contain

substantially more LUTs than the Mis�pga��� and DAG�Map circuits�
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Chapter �

Conclusions

Lookup table�based FGPAs� because of their user�programmability and large scale in�

tegration� have become an attractive vehicle for the realization of Application Speci�c

Integrated Circuits �ASICs�� These devices present new challenges for logic synthe�

sis� particularly technology mapping� which is the phase of logic synthesis directly

concerned with the selection of the circuit elements in the �nal circuit� This thesis

has presented some of the earliest research that addresses technology mapping into

lookup�table �LUT� circuits� Two algorithms that map a network of ANDs� ORs

and NOTs into a circuit of K�input LUTs were presented� The area algorithm mini�

mizes the number of LUTs in the �nal circuit� and the delay algorithm minimizes the

number of levels of LUTs�

The overall strategy of both algorithms is to �rst partition a general network at

fanout nodes into a forest of trees� and then to map each tree separately� Each tree is

mapped using a dynamic programming strategy similar to conventional library�based

technology mapping� The major innovation is the combination of the decomposition

of nodes in the network� and the matching of the network to LUTs into one problem

that is solved using the First Fit Decreasing bin�packing algorithm� For each tree�

the circuit constructed by the area algorithm has been shown to be an optimal tree of

LUTs for values of K � �� In addition� the circuit constructed by the delay algorithm

is an optimal tree of LUTs for values of K � 	� The area and delay algorithms also

include optimizations that exploit reconvergent paths and the replication of logic at
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fanout nodes to further improve the �nal circuit�

The two algorithms were implemented in a technology mapping program called

Chortle� and their e�ectiveness was evaluated in a series of experiments that mapped

networks from the MCNC logic synthesis benchmark suite into circuits of ��input

LUTs� The MCNC networks were also mapped into circuits of Xilinx ���� CLBs� by

pairing LUTs from the LUT circuits into two�output logic blocks�

	�� Future Work

This thesis has focused on technology mapping for LUT circuits� In the experimen�

tal evaluation� logic optimization preceding technology mapping was performed using

existing techniques originally developed for Masked�Programmed Gate Arrays and

Standard Cell circuits� Future investigations should determine if logic optimization

can be tuned to improve the �nal LUT circuits produced by technology mapping�

In particular� the basic area and delay algorithms presented here are computation�

ally inexpensive� and could provide preliminary LUT circuits to evaluate alternative

networks during logic optimization�

The optimizations that exploit reconvergent paths and the replication of logic are

both greedy heuristics that consider only local information� There is potential for

improvement if more global information is used to determine how reconvergent paths

should be covered� and where logic should be replicated�

The decomposition strategy employed in the area algorithm considers only the

reduction of the number of LUTs� and the strategy employed in the delay algorithm

considers only the reduction of the number of levels� Compared to the circuits pro�

duced by the area algorithm� the circuits produced by the delay algorithm incur a

substantial increase in the number of LUTs� The decomposition strategies in both

algorithms are based on two separate phases that �rst pack LUTs together and then

connect LUT outputs to inputs� Future work should consider how these two phases

could be organized to permit a continuous tradeo� between the number of LUTs and

the number of levels�
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The delay algorithm minimized the number of levels of LUTs in order to re�

duce delays in the �nal circuit� by reducing the contribution of logic block delays�

In LUT�based FPGAs� the delays incurred in programmable routing account for a

substantial portion of total delay� The actual delays in the �nal FPGA circuit are

therefore� dependent upon the placement of logic blocks and the routing of connec�

tions between the logic blocks� A recent study has indicated that a correlation exists

between the number of levels of LUTs and the actual delays in a LUT�based FPGA

circuit �Murg�b�� However� future research could consider placement and routing in

conjunction with technology mapping to better address the minimization of delay in

LUT�based FPGAs�

The optimality results presented in this thesis are based on the ability of a K�

input LUT to implement any function of K variables� The completeness of the set

of functions may also lead to additional optimality results for LUT circuits� The

area and delay algorithms were able to produce optimal trees of LUTs implementing

fanout�free trees� Considering the divide and conquer strategy used to map general

networks� two types of sub�networks that merit future investigation for optimality

results are leaf�DAGs� and single�output networks�

The experimental results for two�output logic blocks indicate that the minimiza�

tion of the number of LUTs in the intermediate circuit does not necessarily reduce

the number of logic blocks in the �nal circuit� In some instances� an increase in the

number of LUTs in the circuit permits an increase in the number of paired LUTs�

and produces a net reduction in the number of two�output logic blocks� The Hydra

technology mapper �Filo�� has demonstrated that the optimization goal for the in�

termediate circuit can be tuned to anticipate the pairing of LUTs into two�output

logic blocks� To improve the circuits produced for two�output logic blocks� future re�

search could consider integrating this tuned optimization goal with the decomposition

techniques presented here�
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Appendix A

Optimality of the First Fit

Decreasing Algorithm

This appendix proves two theorems about the First Fit Decreasing bin packing algo�

rithm that are used in the optimality proofs presented in Chapters � and 	�

A�� Bin Packing

The one�dimensional packing problem is a well�known combinatorial optimization

problem that can be stated as follows�

Given a �nite set of items� of positive size� and an integer K partition the

items into the minimum number of disjoint subsets such that� the sum of

the sizes of the items in every subset is less than or equal to K�

The problem is commonly known as the bin packing problem� because each subset

can be viewed as a set of boxes packed into a bin of capacity K� In this appendix�

the unused capacity of a bin is referred to as a hole� and the set of bins containing

the boxes is referred to as a packing of the boxes�

The bin packing problem is known to be NP�hard �Gare��� however� performance

bounds have been presented for several polynomial�time approximation algorithms�

The First Fit Decreasing �FFD� algorithm begins with an in�nite sequence of empty
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bins� The given boxes are �rst sorted by size� and then packed into bins� one at a

time� beginning with a largest box and proceeding in order to a smallest box� Each

box is packed into the �rst bin in the sequence having a hole greater than or equal to

the size of the box� The FFD packing consists of the non�empty bins in the sequence

after all the boxes have been packed�

It has been shown by Johnson �John��� that if the optimal packing of an arbitrary

set of boxes requires n bins� then the number of bins in the FFD packing of the same

boxes will be less than or equal to �� � n� � �� In general� the box sizes and bin

capacity are rational numbers� The remainder of this appendix will consider the bin

packing problem where the box sizes and the bin capacity are restricted to integer

values� Under these conditions� it will be shown that First Fit Decreasing algorithm

is optimal for bins of capacity less than or equal to 	�

Theorem A��

For values of K from 
 to 	� the FFD packing of an arbitrary set of boxes

into bins of capacity K uses the fewest number of bins possible�

The proof of optimality for the area algorithm in Chapter � not only requires that

FFD produce the minimum number of bins� but also that it produce a bin with the

largest hole size possible� This can shown to be true for bins of capacity less than or

equal to ��

Theorem A��

For values of K from 
 to �� the FFD packing of an arbitrary set of boxes

into bins of capacity K includes a bin with the largest hole possible for

any packing of the boxes that has the same number of bins as the FFD

packing�
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A�� Outline of Proof

For any set of boxes� the existence of a packing with fewer bins than the FFD packing

would imply that there exists another packing having the same number of bins as the

FFD packing that includes at least one empty bin� Therefore to prove Theorem A��

for a given value of K it is su�cient to show that

Given the FFD packing of an arbitrary set of boxes into bins of capacity

K there does not exists a re�packing of the same boxes into the same

number of bins that includes an empty bin�

Because the bin capacity and the box sizes are restricted to integers� the hole sizes

in any packing must be an integer� Therefore to prove Theorem A�
 it is su�cient to

prove the following lemma for the values of K and H�

K � 
� H � �� �

K � �� H � �� �� 


K � �� H � �� �� 
� �

K � �� H � �� �� 
� �� �

Lemma A��

If the FFD packing of a set of boxes into bins of capacity K does not

include a hole of size greater than H� then there does not exist a re�

packing of the same boxes into the same number of bins that includes a

hole of size greater than H�

Proving LemmaA�� for the appropriate values ofK andH will also prove Theorem

A��� Note that the hole size of an empty bin is K and that every FFD packing is

guaranteed to not include a hole of size greater than K � �� Therefore� to prove

Theorem A�� it is su�cient to prove Lemma A�� for the following values of K and H�

K � 
� H � �

K � �� H � 
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K � �� H � �

K � �� H � �

K � 	� H � �

To prove Lemma A�� for given values of K and H all possible FFD packings into

bins of capacity K that do not include a hole of size greater than H are categorized

into a �nite number of cases� Each case is de�ned by a set of conditions imposed on

the FFD packings that are members of the case� The formal de�nition of a case is

given in the following section� The proof of Lemma A�� consists of a series of separate

proofs of the following lemma for each of the cases�

Lemma A��

If the FFD packing of a set of boxes into bins of capacity K is a member

of the case then there does not exists a re�packing of the same boxes into

the same number of bins that includes a hole of size greater than H�

The key to the proof of Lemma A�� is that the re�packing must have the same number

of bins as the FFD packing� This allows a system of equations relating the two

packings to be developed� Using this system of equations and the conditions imposed

on the FFD packing by membership in the particular case it is possible to deduce

that the re�packing cannot include a hole of size greater than H�

The proofs for Theorem A�� and Theorem A�
 require the proof of Lemma A�� for

a large number of separate cases� however� the derivation of the cases� and the proof

of each case can be automated�

The following section introduces the notation required to describe the contents of

a bin� a packing� and a case� Section A�� shows how� for a given value ofK and a given

value of H� to derive the �nite set of cases that includes all possible FFD packings

into bins of capacity K that do not include a hole of size greater than H� and Section

A�� shows how to prove Lemma A�� for one of these cases� Section A�	 shows how

to reduce the number of separate cases that must be considered to prove Theorem

A�� and Theorem A�
� Sections A�� to A��
 present the details of the proofs for the
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individual cases required to prove Theorem A�� and Theorem A�
� Finally� Section

A��� presents counter examples that show that Theorem A�� cannot be extended to

values of K greater than 	 and that Theorem A�
 cannot be extended to values of K

greater than ��

A�� Notation

A case consists of a possibly in�nite set of packings� In order to describe a case� the

notation to describe a bin and to describe a packing is �rst introduced�

Denition	 Content Vector

The contents of a bin can be described by a content vector a where�

a � �a� � � � aK�

for all i� �� � i � K�

ai � number of boxes of size i in the bin

and a� � K �
PK

i�� i � ai � hole size

Note that the content vector describing a bin does not depend upon the order of the

boxes�

Example	 Content Vector

If K � �� then the bin f
� �� �g and the bin f�� 
� �g are both described

by the content vector ��� 
� �� �� �� ��� Both bins contain a hole of size ��

two boxes of size �� and one box of size 
�

Because the only box sizes possible are the integers from � to K� the number of

combinations of boxes with total size less than or equal to K is also �nite� Each of

these combinations speci�es a distinct vector� Therefore� there is a �nite number of

distinct content vectors a� to am�

���



Example	 Content Vectors for K � �

For K � � there are � di�erent content vectors�

content vector bin

a� � ��� �� �� �� f�g

a� � ��� �� �� �� f
� �g

a� � ��� �� �� �� f
g

a� � ��� �� �� �� f�� �� �g

a� � ��� 
� �� �� f�� �g

a� � �
� �� �� �� f�g

a	 � ��� �� �� �� fg

Note that the construction of all di�erent content vectors for a given bin capacity

K can be automated�

Denition	 Type Vector

An arbitrary set of bins can be described by the type vector y where�

y � �y� � � � ym�

for all i� �� � i � m�

yi � number of bins in the set with contents described by ai

Note that for all i� yi is an integer and yi � �� In addition� the type vector describing

a set of bins does not depend upon the order of the bins�

Example	 Type Vector

Using the set of previously shown content vectors forK � �� the set of bins

f
� �g� f
� �g� f�� �� �g is described by the type vector ��� 
� �� �� �� �� ���

Denition	 Case

Each case is de�ned by a set of conditions on the type vector� y� describing

any packing that is a member of the case� Every component of y must

��



satisfy a separate condition� Note that the condition applied to one com�

ponent is independent of the conditions applied to the other components�

These conditions on the components of y are described by the two Boolean

vectors o and u� For all i� if oi � � then yi may be equal to �� and if

ui � � then yi may be greater than �� There are four possible conditions

for the component� yi� that are speci�ed as follows�

oi ui yi

� � yi � �

� � yi � �

� � yi � �

� � yi � �

Example	 Case

Using the content vectors a� to a	 shown previously for K � �� consider

the case de�ned by the two Boolean vectors�

o � ��� �� �� �� �� �� ��

u � ��� �� �� �� �� �� ��

A set of bins� described by the type vector y� is a member of this case if

and only if�

y� � �

y� � �

y� � �

y� � �

y� � �

y� � �

y	 � �

To be a member of this case a set of bins must contain at least one

instance of a bin described by the each of the three content vectors a��

�
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a�� and a�� exactly one bin described by the content vector a�� and no

bins described by the content vectors a�� a�� and a	� The set of bins f�g�

f�g� f
� �g� f�� �� �g� f�� �� �g� f�� �� �g� f�g described by the type

vector� �
� �� �� �� �� �� ��� is a member of this case� but the set of bins

f�g� f�g� f
� �g� f
g� f�� �� �g� f�� �� �g� f�g described by the type vector�

�
� �� �� 
� �� �� ��� is not a member of this case�

A�� Deriving a Complete Set of Cases

This section shows how to derive� for given values of K and H� the �nite set of cases

that includes all FFD packings that do not have a hole of size greater than H� First

a �nite set of cases that includes all possible packings� including non�FFD packings

and packings with holes of size greater than H� is derived� This set of cases is then

reduced to the desired set of cases by excluding all packings that contain a hole of

size greater than H� and all packings that are not FFD packings�

For the given value of K there are m distinct content vectors� The initial set of

cases consists of 
m separate cases� Each case is de�ned by a set of conditions on

the m components of the type vector describing any member of the case� For each

component yi there are cases where yi must equal zero and cases where yi must be

greater than or equal to one� Taking all possible combinations of the two conditions�

yi � � and yi � �� on the m components results in a set of 
m cases� Note that this

initial set of cases includes all possible packings� including non�FFD packings and

packings with a hole of size greater than H�

A���� Eliminating Holes Greater than H

The next step in constructing the desired set of cases is to exclude any packing that

contains a hole of size greater than H� For any value of i� where a bin described by

the content vector ai has a hole of size greater than H� consider any of the initial cases

that requires that yi � �� Every packing that is a member of this case must contain

at least one bin described by the content vector ai� Therefore� every member of the

�
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case contains a hole of size greater than H� and the entire case can be eliminated

from further consideration�

Eliminating non�FFD Packings

The next step in constructing the desired set of cases is to exclude any packing that

is not an FFD packing� In order to identify non�FFD packings the concept of FFD

compatibility and the Compatibility Lemma are introduced�

Denition	 FFD Compatible

The contents of two arbitrary bins are FFD compatible if and only if

re�packing all the boxes contained in the two bins using the First Fit

Decreasing algorithm results in two bins with the same contents as the

original bins�

Example	 FFD Compatible

For example� if K � �� the pair of bins f
� 
g and f�� �� �g are FFD

compatible and the pair of bins f
� �� �g and f
� �g are FFD incompatible�

Both pairs of bins contain the same boxes� f
� 
� �� �� �g� however� only

the �rst pair of bins is the FFD packing of this set of boxes�

Compatibility Lemma

Every bin in an FFD packing is FFD compatible with every other bin in

the packing�

Proof of Compatibility Lemma

From the de�nition of the First Fit Decreasing algorithm an ordered set

of bins is an FFD packing if and only if the size of every box in every

bin exceeds the sum of the hole size and the total size of smaller boxes in

every preceding bin�
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Given an arbitrary FFD packing containing n bins� consider the qth bin

and the rth bin� where � � q � r � n� From the de�nition of an FFD

packing� the size of every box in the rth bin will exceed the sum of the

hole size and the total size of smaller boxes in the qth bin� Therefore�

the ordered set of bins consisting of the qth bin followed by the rth bin

is also an FFD packing� Therefore� the qth bin and the rth bin are FFD

compatible�

Corollary �

If a bin described by a content vector as and a bin described by a di�er�

ent content vector at are incompatible� then any packing that contains a

bin described by the content vector as and another bin described by the

content vector at� is not an FFD packing�

Corollary �

If two bins described by the same content vector as are incompatible� then

an FFD packing can contain at most one bin described by the content

vector as�

Using these corollaries� the non�FFD packings can be eliminated from the remain�

ing set of cases� Recall that initially there were 
m cases that included all possible

packings� including non�FFD packings and packings with holes of size greater than H�

From this initial set of cases all packings with holes greater than H were eliminated�

The next step is the elimination of non�FFD packings from the remaining set of cases�

For any value of i and j �� i� where a bin described by the content vector ai is

FFD incompatible with a bin described by the content vector aj� consider any of the

remaining cases that requires that yi � � and yj � �� Every packing that is a member

of this case must contain at least one bin described by the content vector ai� and at

least one bin described by the content vector aj � Therefore� applying Corollary ��

every member of the case is not an FFD packing� and the entire case can be eliminated

from further consideration�

�
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For some of the remaining cases� more restrictive conditions on the type vector�

y� describing any member of the case can be deduced by applying Corollary 
 of the

Compatibility Lemma� For any value of i� where two bins described by the same

content vector ai are FFD incompatible� consider any of the remaining cases that

requires that yi � �� Every packing that is a member of this case must contain

at least one bin described by the content vector ai� However� Corollary 
 of the

Compatibility Lemma states that any packing with more than one bin described by

the content vector ai is not an FFD packing� Therefore� all packings in the case that

do not contain exactly one bin described by the content vector ai can be eliminated

from further consideration� This leaves only those packings where yi � �� In this case�

the condition yi � � has been replaced with the more restrictive condition yi � ��

Note that the process of deriving the �nite set of cases that includes all FFD

packings into bins of capacity K that do not include a hole of size greater than H

can be automated�

A�� How to Prove a Case

The proofs of Theorem A�� and Theorem A�
 consist of a series of separate proofs

of Lemma A�� for various values of K and H� The previous section showed how for

given values of K and H all possible FFD packings into bins of capacity K without

a hole of size greater than H are categorized into a �nite set of cases� The proof of

Lemma A�� consists of a series of separate proofs of the Lemma A�� for each of these

cases� Each case is de�ned by the two Boolean vectors o and u� The case includes

all packings that satisfy a set of conditions speci�ed by these vectors�

The key to the proof of Lemma A�� for each case is a system of equations relating

an arbitrary FFD packing that is a member of the case to an arbitrary re�packing

of the same boxes into the same number of bins� Let the type vector y describe the

original FFD packing and let the type vector x describe the re�packing of the same

set of boxes into the same number of bins� To show that the re�packing does not

include any bins with a hole of size greater than H� it will su�ce to show for all i

�
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where the content vector ai has a hole of size greater than H that the component xi

must be equal to zero�

The system of equations relating the original FFD packing to the re�packing arises

from the following observations� Because both packings contain the same set of boxes�

for all i from � to K the total number of boxes of size i in each packing is the same�

and because the two packings have the same number of bins the total unused capacity

in the each of the packings is the same�

Because the original FFD packing is a member of the case de�ned by the Boolean

vectors o and u� this imposes conditions on the components of y� By taking an

appropriate linear combination of the system of equations it is possible to deduce

from these conditions on the components of y that the required components x are

equal to zero�

A���� An Example

This section demonstrates how to develop the system of equations for a given case

and how to prove Lemma A�� using this system of equations� Recall that for K � �

the set of all distinct content vectors consists of

content vector bin

a� � ��� �� �� �� f�g

a� � ��� �� �� �� f
� �g

a� � ��� �� �� �� f
g

a� � ��� �� �� �� f�� �� �g

a� � ��� 
� �� �� f�� �g

a� � �
� �� �� �� f�g

a	 � ��� �� �� �� fg

Consider the original FFD packing described by the type vector y� The component

y� is the number of bins in the packing described by the content vector a�� Similarly�

for all i from � to �� the component yi is the number of bins in the packing described

by the content vector ai� Remember that the zeroth component of a content vector

speci�es the hole size of a bin described by the content vector� In this example� the

�
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content vectors a�� a�� and a� specify a hole of size �� the content vectors a� and a�

specify a hole of size �� the content vector a� speci�es a hole of size 
� and the content

vector a	 speci�es a hole of size �� Therefore the total unused capacity in the original

FFD packing is simply

total unused capacity � y� � y� � 
y� � �y	

The observation that the original FFD packing and the re�packing� described by the

type vector x� both have the same total unused capacity is expressed by the equation�

x� � x� � 
x� � �x	 � y� � y� � 
y� � �y	

Similarly� the observation that both packings have the same total number of boxes of

size � leads to the equation�

x� � �x� � 
x� � x� � y� � �y� � 
y� � y�

Making the same observation for boxes of size 
 and � leads to the following equations

x� � x� � y� � y�

x� � y�

Now consider the case de�ned by the Boolean vectors

o � ��� �� �� �� �� �� ��

u � ��� �� �� �� �� �� ��

The remainder of this section proves that if the original FFD packing is a member

of the case that the re�packing does not include any bins with a hole of size greater

than 
� Because the only content vector with a hole size greater than 
 is a	 it will

su�ce to show that x	 � ��

The de�nition of a case states that if the original FFD packing is a member of

this case de�ned by the Boolean vectors o and u� then the components of y must

satisfy the following conditions

y� � �

�
	



y� � �

y� � �

y� � �

y� � �

y� � �

y	 � �

The key observation is that the exact values of y�� y�� y� and y	 are known� However�

there are no upper bounds on the components y�� y�� and y��

Consider the single equation from the system of equations that equates the total

unused capacity in the original FFD packing and the re�packing�

x� � x� � 
x� � �x	 � y� � y� � 
y� � �y	

An important property of this equation is that it does not include the unbounded

components y�� y� and y�� These components have been zeroed out� Substituting in

the known values of components y�� y�� y� and y	 results in the equation

x� � x� � 
x� � �x	 � 


Eliminating the unbounded components of y is the key to the remainder of the proof�

In this case� a single equation from the system of equations zeroed out the unbounded

components of y� In general� to zero out the unbounded components of y requires a

linear combination of more than one equation in the system of equations�

Continuing on with the example� because x�� x�� x� and x	 are all non�negative it

follows that

�x	 � 


Obviously� because � is greater than 
 it follows that

x	 � �

However� x	 must be a non�negative integer� therefore

x	 � �

Because x	 � �� the re�packing cannot have a hole of size greater than 
�

�
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A���� The General Case

This section describes how to prove Lemma A�� for a general case de�ned by the

Boolean vectors o and u� Remember that the original FFD packing is described by

the type vector y and that the re�packing is described by the type vector x� The

proof will show for all i where the content vector ai has a hole of size greater than

H� that the component xi must be equal to zero�

The system of equations relating the original FFD packing to the re�packing will

be expressed in matrix notation using the Content Matrix�

Denition	 Content Matrix

The Content Matrix A is de�ned as

A �

�
������

a�
���

am

�
������
�

�
������

a�� � � � a�K
���

am� � � � amK

�
������

where a� to am are all the distinct content vectors for bins of capacity K�

Using the Content Matrix� the observation that the packings described by x and y

contain the same boxes and have the same total unused capacity can be expressed by

the system of equations

xA � yA

Because the original FFD packing is a member of the case de�ned by the Boolean

vectors o and u the components yi must satisfy one of the following conditions as

speci�ed by oi and ui�

oi ui yi

� � yi � �

� � yi � �

� � yi � �

�
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The key to the remainder of the proof is the observation that for all i if ui � � then

yi � oi� but if ui � � then there is no upper bound on yi�

The unbounded components of y are zeroed out by taking the appropriate linear

combination of the equations in the system of equations� This linear combination is

described by the vector v� After taking the linear combination the resulting equation

is

xAvT � yAvT

To ensure that the linear combination zeroes out the unbounded components of

y requires that v satis�es the following condition

for all i� � � i � m

if ui � � then �AvT �i � �

where �AvT �i is the ith component of the column vector AvT � Knowing that

�AvT �i � � if ui � �� and observing that yi � oi if ui � �� allows the above equation

to be simpli�ed to

xAvT � oAvT

It is assumed that the vector v satis�es the following conditions

for all i� � � i � m

if ui � � then �AvT �i � �

By de�nition� xAvT �
Pm

i�� xi�Av
T �i� Therefore� for all i� the components �AvT �i

are non�negative� and it follows that

xi�Av
T �i � oAvT

In addition� it is assumed that the vector v satis�es the following conditions

for all i� � � i � m

if ai� � H then �AvT �i � oAvT

�




This leads to the deduction� for all i where the content vector ai has a hole of size

greater than H� that xi � � and therefore that xi � ��

Therefore� to prove the case it is su�cient to present a vector v satisfying the

three conditions

for all i� � � i � m

if ui � � then �AvT �i � �

if ui � � then �AvT �i � �

if ai� � H then �AvT �i � oAvT

A���� Finding the Required Linear Combination

Candidates for the linear combination required to prove the case are found by solving

for the basis vectors of the nullspace of the matrix D� where D is de�ned as

for all i� �� � i � m�

for all j� �� � j � K�

if ui � � then dij � �

if ui � � then dij � aij

If the vector v is a basis vector for the nullspace of D then

DvT � �� � � � ��T

and from the de�nition of D it can be deduced that

for all i� �� � i � m�

if ui � � then �AvT �i � �

This is the �rst of the three conditions that the linear combination must satisfy to

prove the case�

Each basis vector of the nullspace of D is tested in turn to see if it satis�es the

two remaining conditions on the linear combination�

for all i� �� � i � m�

if ui � � then �AvT �i � �

if ai� � H then �AvT �i � oAvT
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If any basis vector v of the nullspace of D satis�es these two conditions then any

repacking of the original FFD packing that is a member of the case de�ned by the

Boolean vectors o and u does not contain a hole of size greater than H�

Note that solving for the basis vectors of the nullspace of D and testing for the

last two conditions can be automated for each case�

A�� Reducing the Number of Cases

This section will show how to reduce the number of separate cases that must be

proved for a given value of K and a given value of H� It will be shown that the proof

of one case can imply the proof of another case� The �rst case is said to dominate

the second case�

Denition	 Dominant Case

A case A� de�ned by the Boolean vectors oA and uA is said to dominate

another case B� de�ned by the Boolean vectors oB and uB if and only if

for all i� �� � i � m�

if uAi � � then uBi � � and oAi � oBi

Consider a case� A� de�ned by the Boolean vectors oA and uA� and another case�

B� de�ned by the Boolean vectors oB and uB� To prove case A requires a vector v

that satis�es the three conditions

for all i� � � i � m

if uAi � � then �AvT �i � �

if uAi � � then �AvT �i � �

if ai� � H then �AvT �i � oAAv
T

Similarly� to prove case B requires a vector v that satis�es the three conditions

for all i� � � i � m

if uBi � � then �AvT �i � �
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if uBi � � then �AvT �i � �

if ai� � H then �AvT �i � oBAv
T

It will be shown that if case A dominates case B then the vector v that satis�es

the conditions required to prove case A also satis�es the conditions required to prove

case B� First note that because the vector v satis�es the conditions required to prove

case A that for all i� �AvT �i � �

Because case A dominates case B it follows for all i that if uAi � � then uBi � ��

Therefore if uBi � � then uAi � �� and because v satis�es the conditions required to

prove case A it can be deduced that �AvT �i � ��

Next note that because �AvT �i � � when uAi � �� �AvT �i � � when uAi � �� and

oAi � oBi when uAi � � that oAAv
T � oBAv

T � Therefore

for all i� � � i � m

if uBi � � then �AvT �i � �

if uBi � � then �AvT �i � �

if ai� � H then �AvT �i � oAAv
T � oBAv

T

The vector v satis�es the conditions required to prove case B� Note that the process

of �nding dominant cases can be automated�

A�� Presentation of the Cases

The following sections present the details of the proofs of Theorems � and 
� For each

value of K� the Content Matrix A is presented� and a table records the compatibility

of the content vectors in A� In this table an entry of � at column i of row j indicates

that the content vectors ai and aj are FFD compatible� and an entry of � indicates

that they are incompatible� For each combination of K and H� the vectors o� and u

de�ning each of the dominant cases are presented� and for each of these cases Lemma

A�� is proved by presenting a vector v satisfying the conditions given in Section A���
�
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A�	 K � �

Content Matrix� A� for K � 


� � �

� � � �
� � � �
� � � �
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FFD Compatibility for K � 


a� a� a� a�

a� �
a� � �
a� � � �
a� � � � �
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A�
�� K � �� H � �

Cases for K � 
� H � �

�
ou

y� ��
y� ��
y� ��
y� ��

Case �� K � 
� H � �

o � ��� �� �� ��
u � ��� �� �� ��

v � ��� �� ��

Av
T � ��� �� �� ��T

oAv
T � �
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A�
�� K � �� H � �

Cases for K � 
� H � �

�
ou

y� ��
y� ��
y� ��
y� ��

Case �� K � 
� H � �

o � ��� �� �� ��
u � ��� �� �� ��

v � ��� �� ��

Av
T � ��� �� �� ��T

oAv
T � �
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A�
 K � �

Content Matrix� A� for K � �

� � � �

� � � � �
� � � � �
� � � � �
� � � � �
	 � � � �

 � � � �
� � � � �

FFD Compatibility for K � �

a� a� a� a� a� a� a	

a� �
a� � �
a� � � �
a� � � � �
a� � � � � �
a� � � � � � �
a	 � � � � � � �

��	



A���� K � �� H � �

Cases for K � �� H � 


� � �
ou ou ou

y� �� �� ��
y� �� �� ��
y� �� �� ��
y� �� �� ��
y� �� �� ��
y� �� �� ��
y	 �� �� ��

Case �� K � �� H � 


o � ��� �� �� �� �� �� ��
u � ��� �� �� �� �� �� ��

v � ��� �� �� ��
Av

T � ��� �� �� �� �� �� ��T

oAv
T � �

Case �� K � �� H � 


o � ��� �� �� �� �� �� ��
u � ��� �� �� �� �� �� ��

v � ��� �� �� ��

Av
T � ��� �� �� �� �� �� ��T

oAv
T � �

Case �� K � �� H � 
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A��� Counter Examples

The following counter examples show that Theorem A�� and Theorem A�
 cannot be

extended to all values of K�

Counter Example �� K � 	

The FFD packing of the boxes f�� 
� 
� 
g into bins of capacity 	 consists

of the two bins f�� 
g� f
� 
g� The �rst bin has a hole of size � and the

second bin has a hole of size 
� The boxes can also be packed into the two

capacity 	 bins f�g� f
� 
� 
g� The �rst bin of this packing has a hole of

size �� which is larger than the biggest hole in the FFD packing�

Counter Example �� K � �

The FFD packing of the boxes f�� �� 
� 
� 
� 
g into bins of capacity �

consists of the three bins f�� �g� f
� 
� 
g� f
g� The boxes can also be

packed into the two capacity � bins f�� 
� 
g� f�� 
� 
g� This packing uses

fewer bins than the FFD packing�

A��� Summary

This appendix has presented proofs for two theorems concerning the FFD bin�packing

algorithm� These results are used in Chapters � and 	 to prove the optimality of the

area and delay algorithms� The proofs considered a large number of separate cases�

but the derivation of these cases and the proof of each case were automated�

���
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