
Technology Mapping and

Architecture of Heterogeneous

Field-Programmable Gate Arrays

by

Jianshe He

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science in the

Dept. of Electrical and Computer Engineering
University of Toronto, Toronto

Ontario, Canada

c©Jianshe He 1993

Abstract

As Field-Programmable Gate Arrays (FPGAs) become more accepted
and integral to the digital design process, there will be a strong drive to
produce faster and higher-density devices. One architectural dimension that
needs to be explored for its speed and density benefits is that of heterogenous
FPGAs which employ more than one basic kind of logic block instead of the
common homogeneous FPGA with identical logic blocks. There are two ar-
chitectural reasons to believe that an FPGA with a selection of heterogenous
blocks will provide superior speed and density:
1. Different logic may be more efficiently implemented with different kinds
of blocks.
2. Previous studies have shown that coarse grain blocks exhibit superior
speed to

fine grain blocks, yet the smaller blocks have better density. A mixture
of the two

may provide superior speed-area tradeoff.
This thesis makes two contributions in the area of heterogeneous FPGAs.

First it presents a technology mapping algorithm for heterogenous FPGAs
with two different sizes of lookup table (LUT) logic block. Synthesis for
this type of FPGA is more difficult than for homogeneous FPGAs because
the cost function is not a linear count of the number of LUTs used. To
solve this problem a general optimization approach is proposed and applied
at the tree-level and across multiple trees. The latter algorithm is shown
to be optimal. Experimental results show that this approach is superior
to synthesizing heterogeneous FPGAs from a post-process of a homogenous
mapper.

Secondly, the thesis also presents an architectural investigation into the
area-efficiency of heterogeneous FPGAs. Experimental results on a set of
benchmark circuits indicate that several heterogeneous architectures achieve
significant reduction in the number of programming bits and logic block pins
compared to the best homogeneous FPGA: a 4-input lookup table (4-LUT)
FPGA. Furthermore, a 6-LUT/4-LUT combination will likely exhibit better
performance with nearly equivalent area to a homogeneous 4-LUT FPGA.

1

Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Jonathan
Rose, for his guidance and support. His patience, wisdom, and advice have
provided me with a continuous source of inspiration and encouragement. I
also thank Jonathan for introducing me to the exciting FPGA world and
later to the heterogeneous FPGA area.

I would like to thank Dr. Bob Francis, Kevin Chung, Qing Zheng, Qiang
Wang, and Keith Farkas for many helpful discussions. Many thanks to
the Ph.D and Master’s students and staff of the Computer and Electron-
ics Groups for their cooperation.

Financial assistance from Information Technology Research Center is
gratefully acknowledged.

Last but not the least, I thank my wife, Yingchun, for her continuous un-
derstanding, encouragement, and especially wholehearted support in bringing
up our son, George, while she was studying.

2

Contents

1 Introduction 1
1.1 Field-Programmable Gate Arrays 1
1.2 Thesis Motivation . 2
1.3 Thesis Organization . 4

2 Background and Previous Work 6
2.1 LUT and LUT-Based FPGAs 6
2.2 Technology Mapping for LUT-Based FPGAs 7

2.2.1 The Chortle Technology Mapper 9
2.3 Previous Work on Heterogeneous FPGAs 11

2.3.1 Heterogeneous NAND Gates 11
2.3.2 Investigation of LUT-based Heterogeneous FPGAs . . 13

2.4 Commercial FPGAs with Heterogeneity 16
2.4.1 Xilinx’s FPGAs . 16
2.4.2 The Architecture of AT & T ORCA FPGAs 17
2.4.3 The Altera’s LAB Architecture 18
2.4.4 Actel’s Act2 FPGAs 20

2.5 Summary . 21

3 Heterogeneous Technology Mapping 22
3.1 Notation and Problem Definition 23
3.2 General Approach and Overall Flow 24
3.3 Mapping on a Single Tree . 25

3.3.1 Mapping a Node . 25
3.3.2 Packing Fanin Lists into Heterogeneous LUTs 27
3.3.3 Forming a Tree . 29

3.4 Multi-tree Optimization . 30
3.4.1 The Multi-tree Optimization Procedure 30
3.4.2 Proof of Optimality of The Multi-tree Optimization . . 32
3.4.3 Complexity of the Multi-tree Optimization Algorithm . 37

3.5 Comparison with PPH Mapping 38
3.6 Summary . 43

i

4 Architectural Investigation of Heterogeneous FPGAs 46
4.1 Architectural Questions . 46
4.2 Experimental Procedures . 47
4.3 Experimental Results . 49
4.4 Summary . 55

5 Conclusions and Future Work 56
5.1 Conclusions . 56
5.2 Future Work . 56

Bibliography 59

ii

Chapter 1

Introduction

1.1 Field-Programmable Gate Arrays

The Field-Programmable Gate Array(FPGA) is a new implementation medium
for Application Specific Integrated Circuits (ASICs). It provides the user
with large scale integration and user programmability. An FPGA consists
of a general array of uncommitted logic blocks that are interconnected by
programmable routing switches. The user can program and sometimes re-
program an FPGA into different devices by turning on or turning off these
switches in the “field”. The user-programmability of the FPGA results in
a reduction of the turn-around time from months to minutes and cuts the
manufacturing costs of a prototype of ASIC by a factor of a thousand over
traditional fabrication techniques.

While the FPGA offers significant advantages over traditional ASIC fab-
rication technologies, such as Mask-Programmable Gate Arrays (MPGAs),
it has lower density and slower speed due to the technology used in the pro-
grammable switches. In commercial architectures this programming technol-
ogy is one of pass transistors driven by static RAM, anti-fuses, or floating
gate transistors [Brow92]. In all cases these programming technologies have
large resistance and capacitance which require much larger area and cause
more delay than the metal wires used in an MPGA to make connections. As
a result, an FPGA has lower logic density and is slower than an MPGA. The
effect of these two drawbacks can be reduced by careful choice of the FPGA
architecture.

iii

1.2 Thesis Motivation

Most FPGAs consist of an array of identical logic blocks [Cart86] [Hsie90]
[ElGa89] [Ahre90] [Wong89] [Wils92] [Algo89], or logic blocks that have very
similar levels of functionality. Such an FPGA is termed homogeneous. Pre-
vious studies on logic block architecture [Rose90] [Koul92] have concluded
that while 4-input lookup tables (4-LUTs) make efficient use of area, more
coarse-grained blocks such as 5-LUTs, 6-LUTs and 7-LUTs are superior in
terms of system speed [Koul91] [Sing91] [Sing92]. These results suggest that
a mixture of different size LUTs (for example 4-LUTs and 6-LUTs) may
provide a better tradeoff between speed and density.

Furthermore, all such studies have considered only the homogeneous case;
it is possible that a heterogeneous mixture of logic blocks may provide su-
perior area-efficiency (which relates to logic density) because some parts of
logic may simply be more efficiently implemented with one particular type
of logic block than another. For example, consider the boolean network pic-
tured in Figure 1.1a. Figure 1.1b is a mapping of that network using 4-LUTs
and Figure 1.1c is a mapping of that network using 3-LUTs. As shown in
Table 1.1, the 4-LUT solution uses one-third more lookup table bits (64 vs
48) but 20% fewer pins than the 3-LUT solution. Note that a single 3-LUT
has 8 bits and 4 pins and a single 4-LUT uses 16 bits and 5 pins. Pin counts
and bit counts are common metrics of area cost in a LUT-based FPGA. We
will discuss these metrics in more detail in Chapter 4.

Now suppose that the network is mapped into a heterogeneous FPGA that
contains 3-LUTs and 4-LUTs in equal numbers, as illustrated in Figure 1.1d.
This circuit uses exactly two 3-LUTs and two 4-LUTs and hence requires
only 48 bits and 18 pins. This heterogeneous FPGA requires 25% fewer bits
and 10% fewer pins than the 4-LUT homogenous FPGA implementation.
It also has the same number of bits and 25% fewer pins than the 3-LUT
homogenous FPGA to implement this example. While this is a “cooked”
example, it demonstrates that a heterogeneous mixture of logic blocks may
exhibit superior area-efficiency. In practice, this situation often occurs.

One difficulty with heterogeneous FPGAs is that there are no CAD tools
aimed at solving the heterogeneous mapping problem. Although many tech-
nology mappers have been developed for homogeneous architectures [Fran90]
[Fran91] [Fran91b] [Murg90] [Murg91a] [Murg91b], [Abou90] [Filo91] [Karp91]
[Woo91] [Chen92] [Cong92] [Sawk92], to our knowledge there is no prior re-

iv

*

k

t

(a)

b c ga d e f h i j

Original Boolean Network

3−LUT

3

4−LUT

4

*

t

 (c)

k

i j

a b c d e f g h

Mapped with Homogeneous 3−LUT

3

*

a b c

d e f
g h i j

k

t

(b) Mapped with Homogeneous 4−LUT

4

(d) Mapped with Heterogeneous
3−LUT/4−LUT in a 1:1 Ratio

*

t

k

a b c
d e f

i jg h

3

4

3

4

44

3

3

3

33

4

Figure 1.1: An illustration of homogeneous and heterogeneous mappings

v

LUT types #LUTs #Bits #Pins
Homogeneous only 3-LUT 6 48 24

only 4-LUT 4 64 20
Heterogeneous 3-LUT/4-LUT 2/2 48 18

Table 1.1: Comparison of Hetero. vs. Homo. FPGAs for Circuit in Figure
1.1

search on the heterogeneous problem.
It should be noted that Xilinx’s 4000 series FPGA does use two sizes of

lookup table. However, in the Xilinx 4000, two 4-LUTs are hardwired to a
3-LUT and so are tightly linked. The notion of heterogeneity used in this
thesis is that the different logic blocks must be completely independent in
the routing.

The goal of this thesis is two-fold:
1. Develop a technology mapping algorithm for heterogeneous FPGAs

and
implement it.

2. Use this new CAD tool to investigate the advantages of heterogeneous
FPGAs

using an empirical approach: implementing benchmark circuits in a
variety of

heterogeneous FPGAs and measuring their area-efficiency.

1.3 Thesis Organization

This thesis is organized as follows: Chapter 2 provides the necessary back-
ground and discusses previous related work. Chapter 3 describes a new
technology mapping algorithm for heterogeneous FPGAs and compares the
algorithm’s effectiveness with a modified homogeneous mapper. Chapter 4
presents the experimental method used to evaluate a set of heterogeneous
architectures and gives the experimental results and conclusions. The final

vi

chapter contains the conclusions of the thesis work and suggestions for future
work.

vii

Chapter 2

Background and Previous Work

This chapter presents the background and previous related work on hetero-
geneous FPGAs. This includes lookup table (LUT)-based FPGA technology
mapping and previous work on heterogeneous FPGA architecture. Finally,
the architectures of commercial FPGAs with some heterogeneity are briefly
described.

2.1 LUT and LUT-Based FPGAs

The logic block of an FPGA is used to implement combinational and se-
quential logic. Logic blocks can be designed in many different ways. Some
FPGA logic blocks are as simple as 2-input NAND gates, while other blocks
have more complex structures, such as lookup tables, multiplexers, or very
wide-input AND-OR structures.

Previous studies have shown that lookup tables are a good choice due to
their high functionality [Sing91] and now LUT-based FPGAs are the most
common type of commercial FPGAs [Hsie90] [Wils92] [Brit93]. A K-input
lookup table (K-LUT) is a digital memory with K address lines and a one-bit
output. This memory contains 2K bits and is capable of implementing any
boolean function of K variables. A lookup table of K inputs can implement
22K

different boolean functions.
A simple example of a 2-input lookup table implementing a function

f = a + b̄ is shown in Figure 2.1, where the LUT is described in terms of a

viii

multiplexer. In the lookup table, there are two address lines (a and b) and 4
(22) memory cells. The inputs to the lookup table are the select lines of the
multiplexer and the memory cells serve as the inputs to the multiplexer. If
a = 0 and b = 1, for example, then the memory cell corresponding to select
line 01 will be connected to the output f . The contents of the memory cells
are calculated from the evaluation of f = a + b̄ for all the combinations of
logic values of a and b.

1

0

1

1

a b

10

1 0

1 1

00

f

LUT in

LUT out

Figure 2.1: An Illustration of 2-LUT Implementing f = a + b̄

2.2 Technology Mapping for LUT-Based FP-

GAs

As logic design becomes more complicated, there is an increasing need for
automatic synthesis of logic. Logic synthesis is the process of translat-
ing a register-transfer-level description of a design into a gate-level repre-
sentation. Typically, there are two separate phases in the logic synthesis:

ix

technology-independent logic optimization and technology mapping [Bray90].
The technology-independent logic optimization step optimizes a network by
algebraic and boolean simplifications such as removing redundancy and elim-
inating common sub-expressions to reduce the complexity of the network. As
shown in Figure 2.2, the inputs to the logic synthesis or logic optimization
step are boolean equations or its graph representation, the directed acyclic
graph (DAG). The output of this step is an optimized network. Since this
phase doesn’t consider the type of block that will be used for the final circuit,
it is called technology-independent logic optimization.

Logic Optimization

Technology Mapping

Logic Optimization

Inputs

Logic Synthesis

Outputs

Boolean Eqn’s or DAG

FPGA Logic Blocks

Figure 2.2: The Flow of Logic Synthesis

For FPGAs, the technology mapping step transforms the optimized boolean
expressions into a circuit using the FPGA’s particular logic blocks. The goal
of technology mapping is to optimize the resulting netlist of logic blocks for
area, delay, or some combination of area and delay constraints. Technology
mapping for lookup table-based FPGAs is the problem of mapping a given
DAG into LUTs with a fixed set of sizes. The technology mapping problem is
called homogeneous if only one size of LUT is used in the mapping; otherwise
it is called heterogeneous.

x

Many LUT technology mappers have been developed in the past few
years, including Chortle [Fran90] [Fran91a] [Fran91b], MIS-pga [Murg90]
[Murg91a] [Murg91b], Asyl [Abou90], Hydra [Filo901], Xmap [Karp91a],
VISMAP [Woo91a], and DAG-Map [Cong92]. All of these map a boolean
network into a homogeneous circuit of K-input LUTs, attempting to mini-
mize either the total number of LUTs or the number of levels of LUTs (to
improve speed). In the following section, only the Chortle technology map-
per is described. A summary of other algorithms is provided in [Brow92] and
[Fran92a].

2.2.1 The Chortle Technology Mapper

Chortle has two versions, Chortle-crf and Chortle-d. The former is used to
minimize the total number of lookup tables, while the latter minimizes the
number of levels of logic blocks. Only Chortle-crf is described below.

The input to Chortle is a boolean network in the form of a DAG of only
AND, OR, and NOT nodes. The DAG is first partitioned into a forest of
fanout-free trees and each tree is separately mapped into a K-input lookup
table circuit using dynamic programming. Each tree is traversed from its leaf
nodes to its root. At each node, an optimal circuit of LUTs is constructed
implementing the cone rooted at this node and extending to the leaves of the
tree. To find the solution at the current node, only the immediate fanin infor-
mation is important. The order of the traversal ensures that these immediate
fanin circuits have been previously constructed.

At each node during the traversal, the problem solved by Chortle is how
to implement the current node and its fanin LUTs by using the fewest number
of LUTs possible. Chortle converts this problem into a bin-packing problem.
Given the previously mapped fanin LUTs (called “boxes” in [Fran91a]) to
each node, the bin-packing problem is to find the smallest number of “bins”
(the set of resulting LUTs) that the boxes can be fitted into.

Figure 2.3 illustrates how a node is mapped. In the figure, each dashed
rectangle represents a lookup table whose size is K = 5. The figure illustrates
the point where all of the fanins to the current node have already been
mapped, but the node itself has not yet been mapped. Clearly, the LUTs in
Figure 2.3a are not used to their full capacity. These LUTs can be packed
into a set of “bins” to achieve higher utilization. Figure 2.3b shows such a

xi

re-arrangement. The fanin LUTs O1 and O2 have been packed into a new
LUT output at O7, and the fanin LUTs O3 and O4 are packed into the LUT
output at O8. Note that the packing process is accompanied by a gate-level
decomposition of the current node.

The bin-packing is a process for re-arranging the fanin LUTs with a
decomposition of the current node. To this point the current node has not
been completely implemented. In realizing the current node, Chortle makes
further use of the unused inputs of the packed LUTs by placing a LUT’s
output into another LUT’s input if possible. In figure 2.3c the node is further
decomposed to connect all the packed LUTs. Output O7 is placed into the
LUT that produces output O8. As few used inputs as possible are packed
into the root LUT to benefit implementation of the next stage, since the root
LUT of the current node will be the fanin LUT of the next stage.

[Fran92a] proves that for each input tree, Chortle generates an optimal
tree implementation provided that the value of K is less than or equal to
5. However, partitioning the original DAG into a set of fanout free trees
makes the final solution sub-optimal. To improve the quality of the mapping,
Chortle exploits reconvergent paths and replicates logic at fanout nodes after
each mapped tree is assembled into a circuit [Fran91a].

2.3 Previous Work on Heterogeneous FP-

GAs

There were two previous projects that performed initial investigations of het-
erogeneous FPGA architecture. Carl Mizuyabu’s Bachelor’s thesis [Mizu92]
looked at heterogeneous LUTs and Keith Farkas investigated heterogeneous
NAND gates [Fark92], in a course project.

2.3.1 Heterogeneous NAND Gates

Technology Mapping

[Fark92] employed an experimental approach to investigate heterogeneous
NAND gates based FPGAs. One key issue here is the technology mapping
problem for heterogeneous NAND gates. Since there are no existing software

xii

O1 O2 O3 O4 O5

O6

O1 O2

O8

O3 O4

O7 O5

O6

(a) Circuit Before Bin−Packing

(b) Circuit After Bin−Packing

O1 O2

O3 O4

O7

O8

O5

O6

(c) Circuit After Further Decomposition

Figure 2.3: An Illustration of Node-Mapping in Chortle

xiii

tools, as an approximation, the MIS [Bray87] software package was used as
a technology mapper to map the input boolean network into a circuit of two
sizes of NAND gates. In this work, the concept of a supertile was introduced.
A supertile is defined as a group of a single primary gate (p-NAND) plus
a number of secondary gates (s-NANDs), where p > s. Another important
parameter is the ratio of the number of s-NANDs to p-NANDs, r, in each
supertile. The heterogeneous nature of an FPGA is thus characterized by
p, s, and r. The goal of the mapping is to minimize the number of supertiles
to implement a boolean network, given p, s, and r. The mapping process
used was as follows:

First, logic minimization and technology mapping was performed by using
MIS to implement the given network into an FPGA of p-NANDs and s-
NANDs. This is done by creating a library of p-NAND and s-NAND, each
of which has a different cost. MIS will map the nodes of the network into
either a p-NAND or an s-NAND or a mixture of them depending on their
cost. The cost can affect the use of the NANDs, but the ratio r cannot be
controlled, because the MIS algorithm cannot be constrained in this way.

After mapping, the number of p-NANDs and the number of s-NANDs are
counted. If the number of p-NANDs used is Np and the number of s-NANDs
used is Ns, then the number of supertiles, Nsup, for a given value of r, can
be calculated from equation (2.1):

Nsup = max(Np, d
Ns

r
e) (2.1)

To minimize Nsup, the two terms in the max function of equation (2.1)
should be equalized. In case Np 6= d

Ns

r
e, conversion of a p-NAND into an

s-NAND or a set of s-NANDs into a p-NAND is made. Figure 2.4 illustrates
such a conversion where five 2-NANDs are used to replace a 4-NAND. Note
that the conversion procedure will always improve or maintain the supertile
count, never making it worse.

Architectural Investigation

To test the hypothesis that a heterogeneous NAND-gate FPGA will have
superior density to a homogeneous one, 57 MCNC benchmark circuits were
mapped into heterogeneous FPGAs with different combinations of p and s

and then the number of supertiles were counted. Since supertiles for different

xiv

=>>

Figure 2.4: A set of 2-NANDs used to make a 4-NAND

p, s, and r have different sizes, comparison of number of supertiles cannot be
used for the evaluation of area. Thus [Fark92] uses an area cost function
based on the total number of gate pins as the routing area from pins is far
more important than the active area used by logic blocks. The total number
of pins of an FPGA is calculated by multiplying the total number of supertiles
by the number of I/O pins per supertile.

[Fark92] finds that in the best case a 17% reduction in pins is achieved
by using heterogeneous logic blocks. The best (p, s) is found to be (3, 2), (4,
2), or (5, 2), with ratios of three to five 2-NANDs to one of the larger size
NAND gate.

2.3.2 Investigation of LUT-Based Heterogeneous FP-

GAs:

Heterogeneous architectural investigation of LUT-based FPGAs was first
tried in [Mizu92]. Since there was no heterogeneous technology mapper avail-
able then, the investigation was done using the Chortle homogeneous mapper
[Fran92a] and some post-processing of the output. After running the homo-
geneous mapper, a mapped circuit consisting of homogeneous K-LUTs was
obtained. Since not all inputs of the LUTs will be completely used, those
LUTs whose number of used inputs is fewer than K may be replaced by
LUTs with fewer than K inputs. In this way a heterogeneous FPGA circuit
may be realized from processing a homogeneous mapping. This method of
mapping is called post-process-homo (PPH). In the following discussion, the
same terminology is used as those in mapping the NAND gates in section
2.3.1 except that it is applied to lookup table logic blocks.

Technology Mapping: Post-Process of a Homogeneous Mapper

xv

The post-process-homo method works as follows: to map a network with
a given p, s, and r, the homogeneous mapper is executed to map the network
into LUTs of size p. For each LUT produced by the homogeneous mapper,
let the number of inputs that are actually used be u. The LUTs for which
u ≤ s, are mapped directly into s-LUTs, resulting in Ns s-LUTs. The LUTs
for which s < u ≤ p are mapped into p-LUTs, resulting in Np p-LUTs. The
number of supertiles Nsup can be calculated from equation (2.1). Whenever
there is an imbalance of Np and dNs

r
e, a transformation between p-LUTs and

s-LUTs can always be beneficial. The transformation process is described as
follows:

When the post-process-homo results in fewer p-LUTs than dNs

r
e s-LUTs,

that is, if Np < dNs

r
e, then some of the p-LUTs will be left unused if we take

an FPGA with max(Np, d
Ns

r
e) supertiles. In this case the extra p-LUTs in

the supertiles can be used to implement s-LUTs to reduce the number of
supertiles. Note that each p-LUT can be used to replace one and only one
s-LUT. Let 4s be the total number of s-LUTs converted from p-LUTs, then
to minimize the number of supertiles we have

Np +4s = dNs−4s

r
e

Solving this equation for 4s results in
4s = bNs−rNp

r+1
c.

In the case that Np > dNs

r
e, however, more p-LUTs are needed to achieve

a balance and some of the s-LUTs can be transformed into p-LUTs. Since
an s-LUT has less functionality than a p-LUT, several s-LUTs are needed to
implement a p-LUT. The number of s-LUTs needed for a p-LUT depends on
both s and p. Figure 2.5 shows how three 3-LUTs are converted to a 4-LUT,
where the last LUT serves as a 2-input multiplexer with selection input d.
Table 2.1 gives the number of s-LUTs needed to implement a p-LUT for
various combinations of p and s [Mizu92]. We refer to this number as n.

Given p, s, r, and n, the number of p-LUTs needed to be transformed
from s-LUTs can be easily calculated. Let 4p be the total number of p-
LUTs converted from s-LUTs, then we have

Np −4p = d
Ns+n4p

r
e

Further solving for 4p gives 4p = b rNp−Ns

r+n
c.

Architectural Results

Based on the method described in the previous subsection, [Mizu92] con-

xvi

3−LUT

3−LUT

3−LUT

a

b

c

d

f

Figure 2.5: Realization of a 4-LUT by using three 3-LUTs

p
n 3 4 5 6 7

2 5 13 29 61 125
3 3 7 15 31

s 4 3 7 15
5 3 7
6 3

Table 2.1: Number of s-LUTs required to implement a p-LUT

xvii

ducted many experiments using the Chortle technology mapper to make an
area comparison between homogeneous and heterogeneous FPGAs. The over-
all conclusion is that there is no advantage in using heterogenous FPGA for
area. [Mizu92] attributed this failure to the poor quality of the heteroge-
neous mapper. However, from Table 2.1 it is clear that the transformation of
small LUTs to a large LUT will cause a significant increase in the number of
pins and bits. For example, to make one 5-LUT, three 4-LUTs are needed.
However, using one 5-LUT requires only 6 pins and 25 = 32 bits, while 3
4-LUTs costs 3× (4+1) = 15 pins and 3×24 = 48 bits, which is much worse
than an individual 5-LUT.

This method can be improved by translating s-LUTs into an u-LUT in-
stead of a p-LUT when Np > dNs

r
e, where u is the number of used inputs of

a p-LUT after homogeneous mapping and u ≤ p. Detailed discussion of this
improvement is postponed to Chapter 3.

2.4 Commercial FPGAs with Heterogeneity

2.4.1 Xilinx FPGAs

Xilinx FPGAs are a symmetrical array of logic blocks called Configurable
Logic Blocks (CLBs). There are three generations of Xilinx FPGAs, the
XC2000, XC3000, and XC4000. The core component of the CLBs of all
the three generation FPGAs are lookup tables. As shown in Figure 2.6 (a),
the XC4000 CLB contains two kinds of LUT, two 4-LUTs hardwired into a
3-LUT [Hsie90].

This kind of architecture contains limited heterogeneity. By “limited” it
is meant that the LUTs are not entirely independent, since outputs of the
two 4-LUTs must be hardwired to a 3-LUT. This constraint may prevent the
free selection of LUTs in the mapping.

It is interesting that the Xilinx 3000 FPGAs also has an aspect of hetero-
geneity. As shown in Figure 2.6 (b), the XC3000 logic blocks are made of two
4-LUTs fed into a multiplexer. The two 4-LUTs can be either used as sepa-
rate LUTs or made into a 5-LUT as in Figure 2.7. This kind of architecture
can be used to make a heterogeneous FPGA provided that a mapper can
make use of the heterogeneous property. Note that the XC2000 has similar
heterogeneous property of the XC3000 except that the XC2000 logic block is

xviii

4−LUT

F4

F3

F2
F1

F

4−LUT

G1
G2

G3

G4

G

3−LUT HH1
Mux

4−LUT

G1
G2

G3

G4

G

4−LUT

F4

F3

F2
F1

F

H1

H

(a) XC3000(b)XC4000

Figure 2.6: XC3000 and XC4000 Logic Block Architectures.

made of two 3-LUTs fed into a multiplexer.

2.4.2 The Architecture of AT&T ORCA FPGAs

AT&T’s second generation of SRAM-based FPGAs, the Optimized Recon-
figurable Cell Array (ORCA) [Brit93], also contains some aspects of hetero-
geneity. While the ORCA FPGA consists of array of identical, symmetrical
logic blocks, called Programmable Logic Cells (PLCs), the PLCs can be used
to implement different functions. Figure 2.8 shows a PLC block diagram.
There are four 4-LUTs and four registers in each PLC. The four 4-LUTs can
be used individually as 4-LUTs or used as into two 5-LUTs or one 6-LUT by
properly programming the multiplexers shown in Figure 2.7.

This property of variable functionality of the logic block offers some of the
advantages of heterogeneity. In the critical paths, PLCs can be made into
coarse-grain blocks (6-LUTs, for example) to reduce the number of levels of
logic blocks, while in the non-critical paths PLCs can be used as 4-LUTs
to improve density (since 4-LUT is best for area [Rose90] [Koul92]). The

xix

4−LUT

4−LUT

Mux O

G1

G2

G3

G4

H1

H

Figure 2.7: Two 4-LUTs is transformed into a 5-LUT

ORCA architecture has the significant advantage that during the technology
mapping it is not necessary to control the ratio of the number of coarse-
grained LUTs and the number of fine-grained LUTs. The conversion of
4-LUTs into larger-than 4-LUTs is done only when needed. However, the
architecture also has a significant drawback: to make a 6-LUT from four
4-LUTs, the routing resources needed to connect to the many more pins of
the four 4-LUTs are still in place, making this 6-LUT very expensive in area.

2.4.3 The Altera MAX Architecture

The logic block architecture of the Altera MAX EPLD family [Wong89] offers
another example of a heterogeneous FPGA. The MAX FPGAs consist of an
array of Logic Array Blocks (LABs), interconnected by a routing resource
called the Programmable Interconnect Array (PIA). The general architecture
of Altera FPGAs is shown in Figure 2.9 [Wong89].

Each LAB contains two kinds of logic blocks, the macrocells and the ex-
panders, as illustrated in Figure 2.10. There are between 16 and 32 macrocells
in a LAB. In each of the macrocells three product terms are ORed together
to feed into a register or bypass it. Expanders are single product terms with
inverted outputs feeding back into the LAB. A simplified diagram of the
macrocell and expander is given in Figure 2.11. The expanders are shared
by all the macrocells in a LAB. If there are more than three product terms
are required, the expanders will meet such a need. This kind of architecture

xx

Mux

Mux
Mux

Mux

Reg

CE
D

CK
S/R

Reg

CE
D

CK
S/R

Reg

CE
D

CK
S/R

Reg

CE
D

CK
S/R

Mux

4−LUT

4−LUT

4−LUT

4−LUT

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

CE
S/R

CK

DIN0

C0

B1/A0

B0
B2/CIN0
B3/B0

B1
B2/CIN1

B3/A1
B4/B0

B4

DIN1

A1/CIN2
A2
A3/B2
A0

A1/CIN3
A2/B3
A3
A4/A0

A4

DIN2

DIN3

C_OUT (From PFU’s CARRY LOGIC)

Q3

L3

Q2

L2

O4

Q1

L1

O3

O2

O1

O0

L0

Q0

Figure 2.8: AT&T PLC Block Diagram

xxi

Block
LAB = Logic Array

Array
Interconnect

PIA = Programmable

I/O Control Block

I/O Control Block

PIA

LAB

LAB

LAB

LAB LAB

LAB

LAB

LAB

LAB

LAB

LAB LAB

LAB

LAB

LAB

LAB

l

k
c
o
l
B

C
I/O

t
r

n
o

o o

o
n

r
t

I/O
C

B
l
o
c
k

l

Figure 2.9: Altera FPGA Architecture (Figure From [Brow92])

Macrocells
Array of

Expander
Product Term

Array

A
I
P

Figure 2.10: Altera Logic Array Blocks (Figure From [Brow92])

xxii

is heterogeneous.

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

To Register

Macrocell

Expander

Figure 2.11: An Illustration of the Altera Macrocells and Expanders

2.4.4 Actel’s Act2 FPGAs

Actel FPGAs are row-based devices. Its logic blocks, called Logic Modules
(LM), and horizontal routing channels are alternated in rows, as depicted in
Figure 2.12.

There are two generations of Actel FPGAs, Act-1 and Act-2. The Act-1
device uses only one general purpose module (and hence is homogeneous)
which can implement all combinational functions of 2 inputs, many of 3 or
4 inputs, and others ranging up to 8 inputs. A sequential macro can be
configured from one or more modules by using appropriate feedback routing.

The Act-2 FPGA, an enhanced version of the Act-1, contains two kinds
of blocks, the C (Combinational) module which is used to implement com-
binational logic and the S (Sequential) module which is optimized to realize
sequential elements.

Actel claimed that by using heterogeneous scheme, the number of modules
required for a block of logic can be reduced by up to a factor of 3 [Ahre90].
On average, logic density per module is increased by over 50%. Furthermore,
because the density is increased, the number of routed nets in a typical crit-
ical path is reduced. This heterogeneous architecture significantly improves

xxiii

Routing
Channels

Logic
Module Rows

I/O

k
s

c
o
l
BB
l
o
c

s
k

I/O

k
s

c
o
ll
o
c

s
k

BB

I/O Blocks

I/O Blocks

Figure 2.12: General Architecture of Actel FPGAs (Figure From [Brow92])

speed. Note that the functionalities of the combinational parts of the C and
S modules are almost identical, and so this is not the kind of heterogeneity
discussed in this thesis.

2.5 Summary

In this Chapter, we first introduced LUT and LUT-based FPGA technology
mapping. A technology mapper for LUT was then described. Two previ-
ous initiatives of heterogeneous architecture were discussed for NAND and
LUT-based FPGAs. A method for technology mapping of heterogeneous
FPGAs based on a post-process of a homogeneous mapper was described.
This method suffers from serious deterioration when the resulting number of
heterogeneous blocks are heavily unbalanced.

Commercial FPGA architectures with heterogeneity were also outlined in
this chapter.

In the next chapter, an algorithm designed specifically for heterogeneous
FPGA technology mapping will be described and it will be shown that it
overcomes the difficulties with the PPH mapping.

xxiv

Chapter 3

Heterogeneous Technology

Mapping

This chapter presents a technology mapping algorithm for heterogenous FP-
GAs with two different sizes of lookup table (LUT) logic blocks. Synthesis
for such FPGAs is more difficult than for homogeneous FPGAs. For exam-
ple, if there are two kinds of LUT which are present in equal numbers then
the mapper must use the LUTs in equal proportion. This leads to a cost
function that is not a linear count of the number of LUTs used and hence is
difficult to optimize.

In this chapter a general method to solve problems of this nature is pre-
sented. This encompasses three steps. First, partition the input boolean
network, in the form of a Directed Acyclic Graph (DAG), into a forest of
fanout-free trees, then map each tree, and finally conduct an optimization
amongst these trees. The cross-tree optimization algorithm will be shown to
be optimal.

This chapter is organized as follows: the next section describes the ba-
sic notation and defines the technology mapping problem. Section 2 gives
an overall strategy to solve the heterogeneous mapping problem. Section 3
describes the heterogeneous technology mapping algorithm on a single tree,
while Section 4 provides the multi-tree algorithm and a proof of its optimal-
ity. The last section compares the quality of the proposed algorithm with a
post-process of a homogeneous mapper.

xxv

3.1 Notation and Problem Definition

In this work we will consider heterogeneous FPGAs with only two sizes of
lookup table. The larger lookup table will be referred to as the p-LUT, and
the smaller as the s-LUT (p > s). An important architectural parameter
of a heterogenous FPGA is the ratio r which is defined as the number of s-
LUTs to the number of p-LUTs in the FPGA. This ratio is fixed for a given
FPGA, because FPGAs are pre-fabricated. For simplicity, r is assumed to
be either an integer, when r ≥ 1, or the reciprocal of an integer, when r <

1. Thus if r ≥ 1 then there are r s-LUTs for each p-LUT, and if r < 1 there
are 1

r
p-LUTs for every s-LUT. Therefore, the tuple H = (p, s, r) defines a

heterogeneous FPGA block architecture.
The heterogenous technology mapping problem can be stated as follows:

given a boolean network, G, produce a mapped circuit M, which is a network
of p-LUTs and s-LUTs of equivalent functionality to G. We are interested in
minimizing the size of the FPGA needed to implement the boolean network.
Since r is fixed for heterogenous FPGAs, the basic unit of size of a het-
erogenous FPGA is r s-LUTs and one p-LUT for r ≥ 1 (r ≥ 1 will usually
be assumed for the sake of brevity, but similar definitions apply when r <

1). Hence we wish to minimize the number of these units, which we call a
supertile.

Figure 3.1(a) gives an example of supertile with H = (3, 2, 2). Fig-
ure 3.1(b) illustrates an array of such supertiles.

FPGA = Array of SuperTiles

(b)

3−LUT

2−LUT

2−LUT

(a)

SuperTile, p = 3, s = 2, r = 2

Figure 3.1: Example Supertile and Heterogenous FPGA

xxvi

If we designate the number of p-LUTs in the mapped network M to be
Np, and the number of s-LUTs to be Ns, then the number of supertiles, Nsup,
is given by:

Nsup = max(Np, d
Ns

r
e) (r ≥ 1)

The max function makes it a non-linear cost function and hence it is
difficult to minimize. For example, if r = 1, then for every p-LUT that is
used in M, an s-LUT must be used by the mapper, or else it is wasted.
This is different from standard technology mapping into an ASIC library, in
which a mapper is free to choose any number of each kind of library element.

It is important to note that Figure 3.1 displays only the abstraction of a
supertile, and is not meant to speak to the actual positioning or interconnec-
tion of the lookup tables. While this is an important issue, our purpose in
this work is to explore the benefits of heterogenous architectures at the logic
level. Should it prove successful, this will motivate subsequent work on the
actual physical design of such an FPGA.

3.2 General Approach and Overall Flow

To solve the non-linear optimization problem, the general approach used here
is to break it up into a set of linear optimization problems, each of which
is more tractable. The essence of the approach is that we map the network
several times, with different constraints each time. In the first mapping
the number of p-LUTs (Np) in the circuit is constrained to be zero and
the number of s-LUTs (Ns) is minimized. In the second mapping, Np is
constrained to be exactly one, and Ns is again minimized. This process
continues with the fixed value of Np increasing by one until the value of
Ns achieved reaches zero. This process results in several mappings. Given
the value of r, one of these mappings will result in the minimum number
of supertiles, as defined above, and the number of supertiles can be easily
determined by calculating Nsup for each mapping.

The overall flow of the algorithm is as follows: as in [Keut87], it begins by
breaking the boolean network into a forest of maximal fanout-free trees, and
thereafter each tree is mapped separately. Each tree is mapped several times
as described above, resulting in multiple implementations for each tree. This
is followed by an algorithm which optimally selects the set of mappings, one
for each tree, that minimizes the number of supertiles in the entire circuit.

xxvii

The mapping flow is depicted in Figure 3.2.

Logic Optimization

Partitioning of DAG

Mapping Each Tree

Multitree Optimization

p
s
r

G

M

()

Network of p−LUTs & s−LUTs()

Boolean Network

()Into Fanout−Free Trees

Figure 3.2: Overall Flow of the Heterogeneous FPGA Synthesis

3.3 Mapping a Single Tree

The principal tree mapping technique used in the algorithm is a generalized
version of dynamic programming [Corn87]. As in dynamic programming for
technology mapping, the combinational network is traversed from the inputs
of the tree and proceeds to the root. Every node is mapped based on the
mapped fanin information. The ordering of traversal guarantees that the
fanin circuits have already been constructed.

xxviii

3.3.1 Mapping a Node

At each node, a list of best circuits is constructed, each of which has a different
number of p-LUTs. That is, each node is implemented several times, for Np =
0, 1, 2 and so on, while the number of s-LUTs, Ns, is minimized. The circuit
list terminates when Ns = 0. Each circuit implements the cone extending
from the node to the inputs of the tree.

If the node is a leaf, an s-LUT is used since it is smaller than a p-LUT
and can always be changed into a p-LUT later if that is beneficial. For a
non-leaf node, a set of best circuits are constructed from the list of circuits
that have already been constructed on its fanin edges. Figure 3.3 gives the
pseudo-code to illustrate the mapping of a single tree.

MapTree(tree,p,s)

{ Traverse tree from leaves to root, at each node:

{ if node is a leaf

BestList[node]← s-LUT

else BestList[node]← MapNode(node)

// BestList contains one circuit for each Np

}

return(BestList[root])

}

Figure 3.3: Pseudo-code of Dynamic Programming for Mapping a Tree

Figure 3.4 gives a pseudo-code description for mapping a single non-leaf
node. The input is a list of best circuits (one circuit for each value of Np)
for each fanin edge. The output is a similar list describing the best circuits
(with the fewest s-LUTs) for each value of Np.

Notice that many different combinations of the fanin circuits will lead to
a node circuit that has a fixed value of Np. For example, suppose there are
two fanin edges, a and b, to a node and each of the edges has a list of two
circuits, {C0

a, C1
a} and {C0

b, C1
b}, where subscript in each circuit represents

its number of p-LUTs. There are three combinations of these fanin circuits
that may lead to a node circuit with Np = 1: C1

a & C0
b, or C0

a & C1
b, or

C0
a & C0

b. In the last case the p-LUT would be created in the mapping of

xxix

the node itself; in the two former cases the p-LUTs are inherited from the
fanins and no p-LUTs are created in these two cases. Note that once a p-LUT
is created it cannot turn back into an s-LUT, because p > s. However, an
s-LUT can later become a p-LUT.

Since it is not known which of the fanin circuits will result in the very best
value of Ns, every possible combination of the input circuit lists is evaluated,
and the best is selected.

While this could result in a large number of combinations, experience
on a range of benchmark circuits indicates that the number is tractable. In
the worst case the total number of combinations did not exceed 414,724 and
only 13 cases fall in the range 104 − 106 for 40 MCNC benchmark circuits.
Over 98.7% of the nodes required fewer than 50 combinations of input fanin
circuits. This happens likely because we operate on fanout-free trees, which
are typically small.

The outer loop in procedure MapNode is to enumerate each such com-
bination. In each inner loop iteration in procedure MapNode, the desired
number of p-LUTs is fixed. The lower limit on this value is the sum of the
number of p-LUTs in the immediate fanin circuits. The loop runs until the
number of s-LUTs is reduced to zero.

Inside the inner loop, the following problem is solved: given a fixed num-
ber of p-LUTs to create, Np create, and a fixed set of mapped fanin circuits,
map the current node using exactly Np create p-LUTs and the minimum
number of s-LUTs.

At this point the algorithm uses a bin-packing strategy similar to [Fran91a].
The problem to be solved is more difficult, however, because there are two
kinds of LUTs to pack the logic into. The following sections describe the
packing of the fanin circuits into two different sizes of bins, and the final
construction of the tree at the current node.

3.3.2 Packing Fanin Lists into Heterogeneous LUTs

Francis’ Chortle algorithm [Fran91a] makes use of a bin-packing algorithm to
pack the root LUTs of the fanin circuits and the current node into an optimal
tree circuit with the best possible decomposition of the current node. This is
based on the observation that only the number of used inputs in the LUTs is
important in determining if logic will fit into a LUT. In [Fran91a] the fanin

xxx

MapNode(node)

{ BestList[node] ← empty

For each combination of fanin circuits to node {

Np in ← total #p-LUTs of immediate fanins

Np create ← Np in

While (Ns 6= 0) {

// pack into Np create p-LUTs and minimum #s-LUTs

Packing ← BinPack(node,Np create)

// make packed LUTs into a tree

Tree ← TreeForm(Packing)

if Tree best so far with value of Np, then

record it in BestList[node]

Np create ← Np create + 1

}

}

}

Figure 3.4: Pseudo-code for Mapping a Node

root LUTs correspond to “boxes” to be packed, and the resulting LUTs are
the receiving “bins”, of size K. We apply the same approach, except that
the problem is more difficult because there are now two sizes of bin, p and s.

An illustration of heterogeneous bin packing is given in Figure 3.7(a) and
3.7(b), for Np create = 2, where p = 5 and s = 4.

The heterogeneous bin packing problem can be stated as follows: given a
number of p-LUTs to create (Np create), and the fanin circuits’ root LUTs,
pack the fanin root LUTs into exactly Np create p-LUTs and a minimum
number of additional s-LUTs.

We apply a variation of the First-Fit Decreasing algorithm: first create
the number of p-LUTs that already exist in the fanin root LUTs. Then
sort the remaining fanin root LUTs (“boxes”) into decreasing order and put
them into the first LUTs fitted. If a new “bin” is needed, create a p-LUT

xxxi

if Np create p-LUTs have not yet been created, and otherwise create an s-
LUT. Figure 3.5 gives the pseudo-code outline of this packing algorithm.
Although not shown in Figure 3.5, we also apply the re-convergent fanout
optimization by using the Maximum Share Decreasing algorithm described
in [Fran92a] and [Brow92]. However, replication of logic is not exploited due
to the complexity of such a procedure.

3.3.3 Forming a Tree

After the packing of the fanin root LUTs is completed, these packed LUTs
are connected to form a tree to realize the current node and its fanins. The
LUTs are sorted by decreasing order of number of used inputs and the output
of the largest is connected to any unused inputs in the subsequent bins. The
purpose of this procedure is to make the root node have as many unused
inputs as possible. This is beneficial because the unused inputs can be utilized
by subsequent nodes, as described in [Fran91a].

If there are insufficient inputs to connect all the LUTs together, then new
s-LUTs are created. Figure 3.6 gives the pseudo code of the tree forming
procedure and Figure 3.7(c) illustrates the tree forming procedure for the
packed circuit of Figure 3.7(b).

3.4 Multi-tree Optimization

3.4.1 The Multi-tree Optimization Procedure

After each tree Ti (i=1, 2,· · ·, m) has been mapped, the algorithm has pro-
duced a set of circuits { Cj

i } where i is the tree number, and j is the number
of p-LUTs in the mapped solution for that tree. For each circuit, Cj

i, let
Si

j be its number of s-LUTs. Table 3.1 gives an example of several typical
values of Si

j for p = 5 and s = 4.
Recall that the optimization goal is to find the minimum number of su-

pertiles given by: Nsup = max(Np, d
Ns

r
e), where for Table 3.1, Np = j and

Ns = Si
j.

For each tree, Nsup can be easily calculated simply from Np and Ns in
each mapped solution, and the best selected. For example, from Table 3.1,

xxxii

j (= Np) 0 1 2 3 4 5 6 7
Si

j (= Ns) 11 9 7 6 4 2 1 0

Table 3.1: Example mapping counts of p-LUTs and s-LUTs for one tree

if r = 1, then the solution with Np = 4, Ns = 4 (4 supertiles) table entry
is minimal and the corresponding circuit should be selected. If r = 2, then
Np = 3, Ns = 6 (3 supertiles) is minimal.

While this is simple for a single tree, the problem becomes more difficult
when optimizing the number of supertiles across a number of trees. It may
be that one tree is efficiently implemented using mostly s-LUTs and a second
tree is better with mostly p-LUTs. If the number of supertiles in the trees
were optimized individually, as above, this advantage may never be realized,
since such a procedure seeks to balance the s-LUTs and p-LUTs according
to ratio r on an individual tree basis.

A naive algorithm, however, that evaluates all possible combinations of
table entries across all trees has enormous complexity. If the number of table
entries per tree is n, and there are m trees, then the number of different
combinations of tree solutions is nm. In the following we will present an
algorithm to solve this problem optimally with complexity O((m× n)2).

We will first illustrate the basic algorithm on the combination of two
trees, with family of solutions {Cj

1} and {Cj
2}. Let the number of s-LUTs

be S0
1, S1

1, S2
1, ... Sn1

1 for Tree 1, and S0
2, S1

2, S2
2, ... Sn2

2 for Tree 2,
where n1 and n2 are integers. When the two trees are taken together, we need
to determine MSn

1∪2, the smallest number of s-LUTs for a fixed number of
p-LUTs, n, where n = 0, 1, 2, ... n1 +n2 and MSn

1∪2 = min(Sn
1∪2). MS0

1∪2

can be found by summing S0
1 and S0

2. The value of MS1
1∪2 is given by

min(S0
1 + S1

2, S1
1 + S0

2). Similarly, for higher values of n, MSk
1∪2 can be

determined by finding the minimum sum of all possible pairs of Sx
1 and Sy

2,
for which x + y = n.

Table 3.2 gives an example of this calculation for two small trees, in which
n1 = 3 and n2 = 2. The rows labelled T1 and T2 provide the values of {Sj

1}
and {Sj

2}. The next three rows show the possible combinations that provide
the corresponding entries of Sj

1∪2. The final row gives the best of these
combinations (that with the smallest number of s-LUTs). Note that if there

xxxiii

S0 S1 S2 S3 S4 S5

T1 5 (C1
0) 3 (C1

1) 2 (C1
2) 0 (C1

3)
T2 4 (C2

0) 2 (C2
1) 0 (C2

2)
5 (C1

0) 3 (C1
1) 2 (C1

2) 0 (C1
3)

4 (C2
0) 4 (C2

0) 4 (C2
0) 4 (C2

0)
T1 combined 5 (C1

0) 3 (C1
1) 2 (C1

2) 0 (C1
3)

with T2 2 (C2
1) 2 (C2

1) 2 (C2
1) 2 (C2

1)
5 (C1

0) 3 (C1
1) 2 (C1

2) 0 (C1
3)

0 (C2
2) 0 (C2

2) 0 (C2
2) 0 (C2

2)
MS1∪2 9 7 5 3 2 0
Circuit (C1

0C
2
0) (C1

1C
2
0) (C1

1C
2
1) (C1

1C
2
2) (C1

3C
2
1) (C1

3C
2
2)

Table 3.2: Example of Tree Combination

is a tie, the circuit first encountered is chosen.
This algorithm can be extended to multiple trees by combining, in turn,

a subsequent tree with the results of the previous trees. This forms, in
turn, MS1∪2∪3, MS1∪2∪3∪4, , and MS1∪2∪...∪m. Using this final table,
the optimal number of supertiles can be determined for a given ratio, r,
by applying the above equation for Nsup, and choosing the entry with the
minimal numbers. This choice implies a set of choices of a specific Cj

i from
each tree, and hence a complete mapping. This algorithm is optimal with
respect to the number of supertiles, as shown below.

3.4.2 Proof of Optimality of The Multi-tree Optimiza-

tion

In this section, we will prove that the multi-tree combination algorithm is
optimal. Recall that the input to this step is m mapped trees T1, T2, · · ·, Tm.
Let C i

j be the mapped circuit in Ti with j p-LUTs and Si
j be the number of

s-LUTs in C i
j. Then, the multi-tree optimization problem can be stated as

follows:
Given: m trees:

T1 : S1
0 , S

1
1 , S

1
2 , · · · , S

1
n1

xxxiv

T2 : S2
0 , S

2
1 , S

2
2 , · · · , S

2
n1

, · · · , S2
n2

.
Tm : Sm

0 , Sm
1 , Sm

2 , · · · , Sm
nm

where n1, n2, · · · , nm are integers and Si
j is the number of s-LUTs

in the solution for tree i constrained to have j p−LUTs.
Find: A final table MS∗ 1∪2∪···∪m which has minimal number of s−LUTs

for a given number of p−LUTs for the entire circuit, i.e., find:

MS∗ 1∪2∪···∪m = MS∗ 1∪2∪···∪m
0 , MS∗ 1∪2∪···∪m

1 , · · · , MS∗ 1∪2∪···∪m
km

.

where km =
m

∑

t=1

nt,

MS∗ 1∪2∪···∪m
jm

= min
(∀its.t.

∑m

t=1
it)=jm

(
m

∑

t=1

St
it
)

where 0 ≤ it ≤ nt, jm = 0, 1, · · · , km.

The multi-tree optimization algorithm described in the previous
section can

be re-written as the following calculation steps:

xxxv

1. MS1∪2 = MS1∪2
0 , MS1∪2

1 , · · · , MS1∪2
k2

where k2 = n1 + n2,

MS1∪2
j2

= min
∀i1,i2,s.t.i1+i2=j2

(S1
i1

+ S2
i2
)

where i1 = 0, 1, · · · , n1, i2 = 0, 1, · · · , n2, and

j2 = 0, 1, · · · , k2.

2. MS1∪2∪3 = MS1∪2∪3
0 , MS1∪2∪3

1 , · · · , MS1∪2∪3
k3

where k3 = n1 + n2 + n3,

MS1∪2∪3
j3

= min
∀j2,i3,s.t.j2+i3=j3

(MS1∪2
j2

+ S3
i3
),

where j2 = 0, 1, · · · , k2, i3 = 0, 1, · · · , n3, and

j3 = 0, 1, · · · , k3.

...

m. MS1∪2∪···∪m = MS1∪2∪···∪m
0 , MS1∪2∪···∪m

1 , · · · , MS1∪2∪···∪m
km

where km =
m

∑

t=1

nt,

MS1∪2∪···∪m
jm

= min
∀jm−1,im,s.t.jm−1+im=jm

(MS
1∪2∪···∪(m−1)
jm−1

+ Sm
im

),

where jm−1 = 0, 1, · · · , km−1, im = 0, 1, · · · , nm, and

xxxvi

jm = 0, 1, · · · , km.

where MS1∪2···∪m represents the solution obtained in the multi-tree opti-
mization procedure.

Theorem: The multi-tree optimization algorithm described above is op-
timal. The solution, MS1∪2···∪m, obtained in the multi-tree optimization pro-
cedure, has the minimal number of s−LUTs for a given number of p−LUTs
for the entire circuit. That is, MS1∪2···∪m = MS∗ 1∪2···∪m.

Proof:
We prove the optimality of the above algorithm by induction.

m = 2 (the base case): m = 2 is trivial since the calculation of MS1∪2 is
exhaustive. Therefore, MS1∪2 = MS∗ 1∪2.

To make the induction step simple and more intuitive we first show how
m = 2 optimality implies m = 3 optimality, by contradiction.
m = 3:

Assume that when m = 2, MS1∪2 = MS∗ 1∪2.
Suppose, for contradiction, that for some j3, MS1∪2∪3

j3
(where 0 ≤ j3 ≤ k3)

is not the optimum (minimum); the optimum value is MS∗ 1∪2∪3
j3

, which im-
plies MS1∪2∪3

j3
> MS∗ 1∪2∪3

j3
.

Since MS∗ 1∪2∪3
j3

must have one of the S3
i3

as its component, where
i3 = 0, 1, · · · , n3, let that number be S3

i∗
3

.

Thus, MS∗ 1∪2∪3
j∗
3

= MS1∪2
j∗
2

+ S3
i∗
3

, where

i∗3 ∈ {0, 1, · · · , n3}, j
∗
2 ∈ {0, 1, · · · , k2} and k2 = n1+n2, and j∗3 ∈ {0, 1, · · · , k3}.

Since MS1∪2 = MS∗ 1∪2 and

MS1∪2∪3
j3

= min∀j2,i3,s.t.j2+i3=j3(MS1∪2
j2

+ S3
i3
) = min∀j2,i3,s.t.j2+i3=j3(MS∗ 1∪2

j2
+

S3
i3
),

we can show the contradiction MS1∪2
j∗
2

< MS∗ 1∪2
j∗
2

from the following ar-
guments

xxxvii

Since we have: MS1∪2∪3
j3

> MS∗ 1∪2∪3
j3

, forsomej3 ∈ {0, 1, · · · , k3}

⇒MS1∪2∪3
j∗
3

> MS∗ 1∪2∪3
j∗
3

, for j3 = j∗3 ∈ {0, 1, · · · , k3}

⇒MS1∪2∪3
j∗
3

> MS∗ 1∪2∪3
j∗
3

|∀i3,j2s.t.i3+j2=j∗
3

⇒MS∗ 1∪2
j∗
2

+ S3
i∗
3

> MS1∪2
j∗
2

+ S3
i∗
3

⇒ MS∗ 1∪2
j∗
2

> MS1∪2
j∗
2

.

Contradiction! since MS∗ 1∪2 is the minimum. Therefore, MS1∪2∪3 =
MS∗ 1∪2∪3.

Now we prove the general case in a similar way [Hutt93].

m = K-1: assume that when m = K - 1, MS
1∪2···∪(K−1)
jK−1

= MS
∗ 1∪2···∪(K−1)
jK−1

,
then we will prove the optimality for m = K (very similar to the proof for
m = 3).

m = K: proof by contradiction.

Suppose that MS1∪2∪···∪K
jK

6= MS∗ 1∪2∪···∪K
jK

which implies that

MS1∪2∪···∪K
jK

> MS∗ 1∪2∪···∪K
jK

.

Let SK
i∗
K

be the component for MS∗ 1∪2∪···∪K
jK

and

MS∗ 1∪2∪···∪K
jK

= MS
1∪2∪···∪(K−1)
j∗
K−1

+ SK
i∗
K
, where

kK−1 =
∑K−1

t=1 nt, kK =
∑K

t=1 nt, i
∗
K ∈ {0, 1, · · · , nK}, j

∗
K−1 ∈ {0, 1, · · · , kK−1},

and
j∗K ∈ {0, 1, · · · , kK}.

Then we have MS
∗ 1∪2∪···∪(K−1)
j∗
K−1

> MS
1∪2∪···∪(K−1)
j∗
K−1

since

xxxviii

∀jK ∈ {0, 1, · · · , kK}, MS1∪2∪···∪K
jK

> MS∗ 1∪2∪···∪K
jK

⇒ MS1∪2∪···∪K
jK

> MS∗ 1∪2∪···∪K
jK

|jK=j∗
K

⇒ MS1∪2∪···∪K
j∗
K

> MS∗ 1∪2∪···∪K
j∗
K

⇒ MS1∪2∪···∪K
j∗
K

> MS∗ 1∪2∪···∪K
j∗
K

|∀iK ,jK−1s.t.iK+jK−1=j∗
K

⇒ MS
∗ 1∪2∪···∪(K−1)
jK−1

+ SK
iK

> MS
1∪2∪···∪(K−1)
j∗
K−1

+ SK
i∗
K
|iK=i∗

K
,jK−1=j∗

K−1

⇒ MS
∗ 1∪2∪···∪(K−1)
j∗
K−1

+ SK
i∗
K

> MS
1∪2∪···∪(K−1)
j∗
K−1

+ SK
i∗
K

⇒ MS
∗ 1∪2∪···∪(K−1)
j∗
K−1

> MS
1∪2∪···∪(K−1)
j∗
K−1

Contradiction! since MS∗ 1∪2∪···∪(K−1) is optimal for m = K - 1. There-
fore, MS1∪2···∪m = MS∗ 1∪2···∪m.

3.4.3 Complexity of the Multi-tree Optimization Al-

gorithm

Let N be the complexity of the multi-tree optimization algorithm, Ni be
the complexity of each step in the calculation of S ′

c in section 3.4.2, and
n = maxi=1,2,···,m(ni). Then

N1 = (n1 + 1)× (n2 + 1)

N2 = (n1 + n2 + 1)× (n3 + 1)

N3 = (n1 + n2 + n3 + 1)× (n4 + 1)

· · · = · · · · · ·

Nm−1 = (
m−1
∑

t=1

nt + 1)× (nm + 1)

and

N =
m−1
∑

i=1

Ni

xxxix

=
m−1
∑

i=1

(
i

∑

t=1

nt + 1)(ni+1 + 1)

≤
m−1
∑

i=1

(
i

∑

t=1

n + 1)(n + 1)

= (n + 1)
m−1
∑

i=1

(i× n + 1)

= (n + 1)× (n
m−1
∑

i=1

i + m− 1)

= (n + 1)× (n×
m× (m− 1)

2
+ m− 1)

= (n + 1)× (m− 1)× (
(m× n + 2)

2
)

= O(m2n2)

3.5 Comparison with PPH Mapping Algorithm

This section gives a comparison between the quality of the heterogenous
mapping algorithm with the best alternative approach that could be found:
a post-process of output from a homogenous LUT mapper, which takes the
non-homogeneity into account.

As mentioned in Chapter 2, the post-process-homo (PPH) was developed
in [Mizu92]. To generate a heterogeneous FPGA, this method first used a
homogeneous mapper (Chortle) [Fran91a] to map a given network into p-
LUTs and then convert those LUTs whose number of used inputs are less
than or equal to s into s-LUTs.

Following this step the number of supertiles used in this mapping was
calculated using Nsup = max(Np, d

Ns

r
e) where Np is the number of p-LUTs,

Ns the number of s-LUTs, and r the ratio of number of s-LUTs to the
number of p-LUTs. In the case that there is an imbalance between Np and
dNs

r
e, a transformation of p-LUTs and s-LUTs is performed in the following

way. If Np < dNs

r
e, then p-LUTs will be transformed to s-LUTs on a one-

to-one basis. When Np > dNs

r
e, several s-LUTs will be used to make a

p-LUT, as described in section 2.3.2 of Chapter 2. This algorithm assumed
that every p-LUT had all its inputs used. Hence to make a p-LUT from a

xl

network of s-LUTs requires many s-LUTs, as shown in Table 2.1. In this
section we compare the heterogeneous mapper with an improved version of
this algorithm which is described below [Fran92b]:

After the homogeneous mapping step, the result is a set of LUTs. The
number of inputs actually used on each LUT will range from 1 to p, where
p is the size of a homogeneous LUT. Let D = {D1, D2, · · · , Du, · · · , Dp}
describe the distribution of this number, where Du is the number of p-LUTs
having u used inputs. As before the number of supertiles is calculated as
Nsup = max(Np, d

Ns

r
e), where Ns =

∑s
u=1 Du and Np =

∑p
u=s+1 Du. If

Np > dNs

r
e, instead of transforming a network of s-LUTs into p-LUT, we

transform s-LUTs into (s + 1)-LUTs to achieve a balance. If there are not
enough (s + 1)-LUTs, then we transform s-LUTs into (s + 2)-LUTs and so
on. This is better than the previous algorithm because the LUTs with fewer
inputs require fewer s-LUTs in the implementation.

The Chortle-crf homogeneous mapper [Fran92a] was used as the basis
for comparison since both the homogeneous mapper and the heterogeneous
one have a similar mapping process. Both the new heterogenous mapper
and the post-process-homo mapper were run on 40 MCNC logic synthesis
benchmarks circuits, and for many different values of s and p. The total
number of supertiles obtained for each case was calculated, and these are
illustrated in the plot in Figure 3.8. The Y-axis is the total number of
supertiles for all the circuits and the X-axis gives the different combinations
of s and p, with the ratio r = 1 for all cases. It is clear that the new algorithm
is superior to the PPH algorithm. On average, for r = 1, the new algorithm
produces 0.3% to 11.7% fewer supertiles than PPH. As will be shown below,
for r > 1 the new algorithm provides even greater advantage over PPH.

The trends in Figure 3.8 (in particular, the large ”jumps”) can be ex-
plained as follows.

First, for each given p , as s increases, the number of supertiles decreases.
This makes sense since for the same p increasing s will increase functionality
of a supertile and this will decrease the number of supertiles needed.

Secondly, for each increase in p, there is a jump in the supertile count.
For the heterogeneous FPGAs, this is likely caused by the decrease in func-
tionality of a supertile. For example, supertile (p, s, r) = (6, 2, 1) has less
functionality than (5, 4, 1) and a (7, 2, 1) is less than a (6, 5, 1).

For the PPH algorithm, however, there is another important reason to
cause these increases besides the one just mentioned. Recall that in the

xli

post-processing of homogeneous FPGAs, there is a transformation between
the p-LUTs and the s-LUTs. In the combinations where a big increase occurs,
p and s differ significantly. In such cases, when a p-LUT is converted to an
s-LUT or s-LUTs to a p-LUT, there can be a significant waste. For example,
for p = 6 and s = 2. If we transform a 6-LUT into a 2-LUT (i.e. to use a
6-LUT to implement a 2-LUT), there will be a large waste of functionality.
On the other hand, however, if we implement a 6-LUT using 2-LUTs, a total
of 61 2-LUTs are needed (see Table 2.1). The cost is even more since one
6-LUT uses 7 pins and 64 bits but 61 2-LUTs require 183 pins and 244 bits.
Therefore, the increase is bigger for PPH than for heterogeneous FPGA at
each change of p values.

Figure 3.9 gives another view of the comparison of the heterogeneous and
the PPH mappings. This figure presents the improvement percentage of the
number of supertiles versus ratio r for combination (p, s) = (5, 2) which is
typical of all the (p, s) combinations. The improvement is calculated using
equation 3.1.

Improve pct = −
(Nsup of Het)− (Nsup of PPH)

Nsup of PPH
× 100 (3.1)

where Nsup is the total number of supertiles needed for implementing the
40 benchmark circuits for combination (p, s, r) = (5, 2, r). Observe that for
larger values of r, the new algorithm achieves more than 30% fewer supertiles
than PPH.

Figure 3.9 can be explained as follows. First, when r is very small (e.g.
r = 1

10
), the difference between the heterogeneous and the PPH mappings

is not very great. This is because the problem being solved is close to the
homogeneous problem for p−LUTs. Both homogeneous and heterogeneous
mappings are optimized at this point. Note that the PPH algorithm is tuned
for this case, but the heterogeneous algorithm is tuned for all r. Thus as r

increases, the relative improvement increases greatly. This increase is largely
due to the fact that as r increases, there are more s-LUTs in each supertile in
a given FPGA, while the number of s-LUTs and the number of p-LUTs after
a PPH mapping are fixed for a fixed combination (p, s). This implies that we
will need to transform more s-LUTs into p-LUTs for an implementation if r

is large. As mentioned previously in this section, this kind of transformation
is very costly.

xlii

s \ p 7 6 5 4 3
post-homo 2066 2263 2532 2954 3748

2 hetero. 1892 2035 2242 2607 3366
decrease (%) 8.4 10.1 11.5 11.7 10.2
post-homo 1798 1927 2140 2414

3 hetero. 1750 1868 2058 2301
decrease (%) 2.7 3.1 3.8 4.7
post-homo 1738 1838 2017

4 hetero. 1716 1805 1985
decrease (%) 1.3 1.8 1.6
post-homo 1708 1799

5 hetero. 1693 1793
decrease (%) 0.9 0.3
post-homo 1702

6 hetero. 1689
decrease (%) 0.8

Table 3.3: Comparison with Post-Process of Homogeneous Mapping (r = 1)

Data values corresponding to Figure 3.8 are presented in Table 3.3. Aver-
age improvement for each combination (also for r = 1) is listed on the third
row of each cell of the table. Note that this average improvement is based on
the total number of supertiles of the 40 benchmark circuits used, implying
that the calculation for the average has unequal weights for different circuits.
Larger circuits have larger weights. Table 3.4 gives the average improvement
of heterogeneous mapping over the PPH algorithm on an equal weight basis
for each circuit. The average improvements in Table 3.4 are calculated by
computing the improvement of each circuit and then averaging these num-
bers. Standard deviations of the improvements are also presented in the
same table. The formula for calculating the standard deviation is shown in
equation 3.2 below:

Std Dev =

√

√

√

√

40
∑

i=1

(improve i− improve avg)2

40
(3.2)

xliii

s \ p 7 6 5 4 3
2 improve (%) 6.7 7.7 9.3 9.8 8.1

std. dev (%) 5.8 6.3 7.4 6.2 5.1
3 improve (%) 2.6 2.4 2.7 3.8

std. dev (%) 5.4 6.5 5.3 6.0
4 improve (%) 1.3 1.6 0.8

std. dev (%) 4.9 5.0 3.0
5 improve (%) 0.4 0.2

std. dev (%) 1.7 1.2
6 improve (%) 0.8

std. dev (%) 4.0

Table 3.4: Equal Weight Comparison with PPH Mapping and Standard De-

viation

where improve avg =
∑40

i=1
improve i

40
and improve i is the improvement on

the i-th benchmark circuit.
In general, the standard deviations have the same magnitudes as the

improvement averages.
Table 3.5 gives detailed sample results for the heterogenous architecture

p = 5, s = 2, and r = 1. The first column of this table gives the circuit name
and the second column gives the number of supertiles using the algorithm
described in this paper. The third column gives the supertile count for the
post-process-homo algorithm, and the fourth column gives the percentage
difference between the two. The fifth column gives the running time of the
new algorithm on a Sun Sparcstation 2. The running times are usually in a
few seconds and rarely more than a minute.

It should be pointed out that since the heterogeneous algorithm does not
replicate logic at fanout nodes, the homogeneous mapping algorithm we use
is also prevented from this replication. It is possible that this may affect
these comparisons.

xliv

Circuit #Supertiles #Supertiles Difference Run Time

Names (Hetero Algo) (Post-Homo) (%) (in Sec.)

C1355 82 82 0.0 1.6

C432 55 59 -6.8 10.0

C880 63 72 -12.5 4.2

alu2 72 80 -10.0 93.8

alu4 124 138 -10.1 92.9

apex6 136 161 -15.5 19.9

apex7 42 48 -12.5 0.8

b9 24 24 -0.0 0.4

c8 23 25 -8.0 0.5

cht 30 35 -14.3 0.4

cm150a 9 10 -10.0 0.3

cm151a 5 5 0.0 0.1

cm85a 7 8 -12.5 0.1

cmb 10 12 -16.7 0.1

count 23 23 0.0 0.4

example2 57 64 -10.9 1.1

frg1 21 24 -12.5 18.1

frg2 150 171 -12.3 3.7

i1 10 10 0.0 0.1

i6 64 67 -4.5 3.2

i7 95 112 -15.2 9.2

i8 181 225 -19.6 12.6

i9 106 123 -13.1 9.8

k2 187 207 -9.7 11.5

my-adder 32 32 0.0 0.4

parity 8 8 0.0 0.1

pcler 16 16 0.0 0.2

pm1 9 10 -10.0 0.1

rot 124 135 -8.1 2.5

sct 14 15 -6.7 0.1

t481 6 6 0.0 0.1

term1 24 28 -14.3 1.2

ttt2 30 33 -9.1 0.5

unreg 18 29 -37.9 0.7

vda 105 114 -7.9 1.7

x1 57 63 -9.5 4.5

x2 9 10 -10.0 0.1

x3 145 163 -11.0 9.0

x4 63 78 -19.2 1.5

z4ml 6 6 0.0 0.1

total 2242 2532 -11.5 317

Table 3.5: Comparison of Hetero-Mapper & Post-Process-Homo for (5, 2, 1)

xlv

3.6 Summary

A technology mapping algorithm designed specifically for a heterogeneous
FPGA was described in this chapter. This algorithm maps a boolean network
into a heterogeneous FPGA that has two kinds of logic block in a fixed ratio.

This algorithm first partitions a given DAG into a set of fanout-free trees
and then maps each tree into a list of best circuits. These circuits are func-
tionally equivalent, but have different number of p-LUTs. The number of
p-LUTs used in each circuit ranges from zero (the tree is mapped all with
s-LUTs) to the number where the tree is mapped all with p-LUTs. In this
way, we can find out which LUT is most suitable for implementing a portion
of network and make advantageous use of the LUTs.

The circuit for the whole DAG must be found by choosing one circuit from
each tree. There are a large number of possible combinations of selections of
the final circuits. If there are m trees and n circuit choices in each tree, there
are nm possible choice combinations. We solved this combination problem
by using a multi-tree optimization algorithm which has a complexity of only
O((m× n)2). The algorithm is proven to be optimal.

The algorithm was shown to be superior to a previous method for gen-
erating heterogeneous FPGAs from post-process of homogeneous mapping,
providing 11% improvement for r = 1 and up to 50% for large r. It was also
shown to be a reasonably fast algorithm.

xlvi

BinPack(node,Np create)

{ BoxList ← fanin root LUTs sorted by decreasing size

Np in ← number of p-LUTs in BoxList

// pack p-LUTs into bins of size p because

// they will not fit into s-LUTs, by definition

BinList ← Np in p-LUTs in BoxList

Np created ← Np in // Np created is #p-LUTS created

while (BoxList not empty)

{ box ← largest LUT in BoxList

find first bin in BinList such that

usedInputs(bin) + usedInputs(box) ≤ size(bin)

if such a bin doesn’t exist create a new bin:

{ if (Np created < Np create)

{ create a bin of size p

Np created++

}

else create a bin of size s

}

pack box into bin

}

return (BinList)

}

Figure 3.5: Pseudo-code for Bin Packing

xlvii

TreeForm(Packing)

{ sort BinList by number of unused inputs in increasing order

while there is more than one bin in BinList

{ src ← first bin from BinList

find first bin in the remaining bins such that

usedInputs(bin) + 1 ≤ size(bin)

if such a bin doesn’t exist

create a new bin of size s

put src output into new bin

}

}

Figure 3.6: Pseudo-code for TreeForm

p = 5 s = 4,

Np_ create = 2

Np_ in = 1

(a) Fanin LUTs

5
4 4 4

(b) Packed Fanin LUTs

5 5
4

 5−LUT

4−LUT

(c) LUTs After Tree is Formed

5

5

4

Figure 3.7: Illustrations of Bin Packing and Tree Forming

xlviii

1.80

2.00

2.20

2.40

2.60

2.80 ratio, r = 1

Heterogeneous
 mapping

4
2

4
3

5
2

5
3

5
4

6
2

6
3

6
4

6
5

7
2

7
3

7
4

7
5

p
s

7
6

3 x 10()

Total # of
Supertiles

Post−Process−Homo

(p, s) Combination

Figure 3.8: A Comparison with Post-Process of Homogeneous Mapping

xlix

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

Mostly
p−LUTs

Mostly
s−LUTs

2 51 10
1
−
10 5

1
−

2
1−

r #s−LUTs
#p−LUTs

=()

of Het over PPH
Improvement % in #Supertiles

Figure 3.9: Improvement of Heterogeneous over PPH for (5, 2, r)

l

Chapter 4

Architectural Investigation of

Heterogeneous FPGAs

To investigate the architectural advantages of heterogeneous FPGAs, a set
of experiments using the heterogeneous mapper presented in Chapter 3 were
conducted. This chapter describes the architectural questions investigated,
the experimental methods used, and the results of these experiments.

4.1 Architectural Questions

As mentioned in section 3.1, a heterogeneous FPGA architecture is charac-
terized by the tuple H = (p, s, r), which describes the size of p-LUT, the size
of s-LUT, and the ratio in which they are present. The first architectural
question that arises is: what are good values of (p, s, r)? By “good” it is
meant able to achieve higher density. The second question is to determine
if a heterogeneous architecture has less area to a homogeneous architecture.
In the current work, for simplicity and as the first step of investigation into
heterogeneous FPGA, only optimization for area is concerned. No speed
performance is considered.

The following section describes the experimental method for answering
these architectural questions and Section 4.3 presents experimental results.

li

4.2 Experimental Procedure

The above architectural questions will be answered using an experimental
approach: a set of benchmark combinational circuits will be synthesized into
a set of heterogeneous FPGAs, each with different values of s, p and r. We
can measure the area-efficiency of each such architecture for each circuit and
so address the above questions. We first describe the synthesis procedure,
and then describe the way in which the results are used to indicate area-
efficiency.

The key issue in synthesizing for heterogenous FPGAs comes in the tech-
nology mapping step. As shown in Figure 4.1, combinational circuits are
first optimized using technology-independent logic optimization, which pro-
duces an optimized boolean network. Then the technology mapping step
maps the optimized network into a heterogeneous FPGA with given archi-
tectural parameters p, s, and r. The heterogeneous mapper, as described in
Chapter 3, produces a heterogeneous FPGA netlist with minimized number
of supertiles.

To determine the area of a netlist of logic blocks, one could perform the
placement and global routing, and measure the amount of wiring needed,
as well as estimate the size of the logic blocks. That approach was taken
in previous studies on other aspects of FPGAs [Rose90] [Brow92] and has
shown that simple measures, such as counting the number of lookup table
bits and logic block pins used in the design, lead to the same architectural
conclusions. So, rather than going through full placement and routing, we
calculate the number of pins and the number of bits to “measure” the area
of a netlist in the following way:

First, calculate the number of supertiles. If the number of p-LUTs in the
netlist is Np and the number of s-LUTs is Ns, then the number of supertiles
is given by:

Nsup = max(Np, d
Ns

r
e) (4.1)

where r is the ratio of the number of s-LUTs to the number of p-LUTs in a
supertile.

For a single K-LUT, the number of bits is 2K. In a supertile the number
of bits is given by

Nbit = 2p + r × 2s, if r ≥ 1

lii

Count #PinsCount #Bits

p
s
r

Tech−Independent Opt

Network of p−LUTS and s−LUTs
Hetero FPGA with #Supertiles Minimized()

Heterogeneous Mapping

Boolean Network

Figure 4.1: Experimental Steps for Heterogeneous FPGA Investigation

liii

or

Nbit = 2s +
1

r
× 2p, if 0 < r < 1 (4.2)

If the total number of supertiles used in a circuit is Nsup, then the total
number of bits is given by

TotalBits = Nsup ×Nbit (4.3)

Routing area is very important in determining the FPGA area, because it
often requires from 50% to over 90% of the total area [Rose90]. For optimized
placement and routing, the total number of pins of a circuit directly relates
to the total amount of required routing area. For this reason we count the
total number of pins in evaluating the routing area.

Similar to the calculation of the number of bits, we can calculate the total
number of pins of a circuit. For a supertile, the number of I/O pins, Npin, is
a function of p, s, and r and is given by

Npin = (p + 1) + r(s + 1), if r ≥ 1

or

Npin = (s + 1) +
1

r
(p + 1), if 0 < r < 1 (4.4)

where (p + 1) is for the p inputs and one output for a p-LUT and (s + 1) is
for the s inputs and one output for an s-LUT.

From equations (4.1) and (4.4) we have

TotalP ins = Nsup ×Npin (4.5)

4.3 Experimental Results

A total of 40 benchmark circuits from the MCNC logic synthesis benchmark
suite were used as the basis for experimentation. Each was synthesized into a
heterogeneous FPGA through the procedure described above. We chose p to
range from 3 to 7, and s to vary from 2 to p - 1. The ratio r was varied between
0.1 and 10, and was constrained to be either an integer or the reciprocal of an
integer. These selections of p, s, and r provide all the practical combinations
of (p, s, r). There are a total of 285 combinations of p, s and r and so for 40
circuits the total number of FPGA circuit implementation is 11400.

liv

Figure 4.2 plots the total number of bits versus r for several combinations
of (p, s), where the number of bits is normalized with respect to the total
number of bits of the same circuits implemented with homogenous 4-LUTs
as the basic block. We use the 4-LUT as the basis for normalization as it has
shown to be the most area-efficient architecture for homogeneous LUT-based
FPGAs [Rose90] [Koul92].

0.50

1.00

1.50

2.00

2.50

3.00

Mostly
p−LUTs

(6, 4)

(5, 2)

Mostly
s−LUTs

YNormalized
Bits#

(4, 2)

2 51 101
−
10 5

1
−

2
1−

(p, s)

(
#Bits of 40 Homo 4−LUT FPGAs
#Bits of 40 Heterogeneous FPGAs)=

r #s−LUTs
#p−LUTs

=()

Homo
4−LUT

Figure 4.2: Normalized bit count vs r for different (p, s)

Observe that the total number of bits is a decreasing function of r. This
is consistent with previous results for homogeneous FPGAs because as r

increases, there are more s-LUTs which require significantly fewer bits to
implement the same logic function of a circuit. Note that for some combina-
tions of (p, s, r), the heterogeneous FPGAs require fewer bits than the best
homogeneous FPGA. The number of LUT bits, however, is not the domi-
nant factor in total area (unless the lookup table size is larger than about
7). The number of pins to be connected is far more important as indicated
in [Rose90].

lv

Mostly
p−LUTs

(6, 4)
(5, 2)

Mostly
s−LUTs

(4, 2)

0.90

0.95

1.00

1.05

1.10

1.15

1.20

0.85

2 51 101
−
10 5

1
−

2
1
−

YNormalized
#Pins

r

Homo
4−LUT

Figure 4.3: Normalized pin count vs r for the same set of (p, s) as in Fig. 4.2

lvi

Figure 4.3 illustrates the normalized total number of pins with respect
to homogeneous 4-LUTs for the same set of combinations of p and s as in
Figure 4.2. These curves have similar shapes for all combinations of p and s.
They present several interesting results.

First, observe the shape of the curves in Figure 4.3. They exhibit (as do
all the pin count curves of heterogeneous FPGAs) a “U” shape. There is a
minimum between the homogeneous extremes, indicating that heterogeneous
architectures are always superior to homogeneous architectures in the number
of pins used. This shows that, as in the case of the example given in Chapter
1, most circuits benefit from having the choice of two different kinds of blocks.

The “U” shape curves can be explained by using the example of p = 4 and
s = 3. Suppose we employ heterogeneous FPGAs in the following way: first,
map the given network into a homogeneous 3-LUT FPGA. Then, introduce
a single 4-LUT to the mapped 3-LUT circuit. If we can find a portion of
the Boolean network such that one 4-LUT can replace two 3-LUTs (as often
occurs), then we will save 3 pins with the number of bits unchanged (because
two 3-LUTs have 8 pins and 1 4-LUT has 5 pins). However, as we continue to
increase the number of 4-LUTs, this 1 for 2 trade will be less likely to occur.
If one 4-LUT can replace only one 3-LUT, then we will use 1 more pin and
double the number of bits needed. Therefore, the minimum of the number
of pins is usually in between the two extremes of homogeneous 3-LUT and
homogeneous 4-LUT.

Secondly, consider the combination of 4-LUT and 2-LUT. The pin curve
and bit curve are redrawn together in Figure 4.4. With this combination, for
most values of r, we can achieve a reduction in both the number of pins and
the number of bits, compared to a homogeneous 4-LUT. At ratio r = 1

2
, for

example, with this heterogeneous architecture, the number of bits is reduced
by about 20% and the number of pins is reduced by 10%, compared to a
homogeneous 4-LUT FPGA.

The above example is one case where a heterogeneous FPGA has superior
area measures than a homogeneous FPGA. Table 4.1 gives the minimum
value of pin count (normalized to the pin count of homogeneous 4-LUT) and
its corresponding bit count (normalized to the homogeneous bit count) for
all the combinations of p and s. These are the minimum pin counts over
all values of r. Table 4.3 gives the actual values of r that results in the
minimum. We observe from this Table that for some of the combinations,
we can achieve significant pin and bit reduction. Some combinations, such

lvii

0.60

0.70

0.80

0.90

1.00

1.10

1.20

2 51 101
−
10 5

1
−

2
1
−

YNormalized
#Pins

YNormalized
Bits#

Homogeneous
4−LUT FPGA

Mostly
4−LUTs

Mostly
2−LUTsr

(4, 2) vs Best Homo

Figure 4.4: Normalized pin and bit count for combination (4, 2)

lviii

as (5, 2), has significant pin reduction with slight increase in bits (again we
emphasize here that pins are much more important than bits).

These data again illustrate the conclusion that some heterogeneous ar-
chitectures are more area-efficient than the best homogeneous architecture.

s \ p 7 6 5 4 3
2 pins 0.92 0.90 0.89 0.90 1.00

bits 2.78 1.91 1.11 0.78 0.57
3 pins 0.90 0.89 0.91 0.91

bits 2.54 1.49 1.13 0.76
4 pins 0.94 0.92 0.94

bits 2.25 1.47 1.12
5 pins 1.00 1.01

bits 2.49 2.01
6 pins 1.09

bits 3.76

Table 4.1: Normalized minima of pin and corresponding bit, for best value

of r

We believe that the heterogeneous combinations such as (4, 2), (4, 3), (5,
2) are superior in area to homogeneous 4-LUT FPGAs because many logic
circuits have a significant number of small fanin functions that have fanout
greater than one. These can be efficiently implemented by 2 or 3-input
LUTs. Note that these results again are based on the comparison of the
total number of pins (and the total number of bits) between heterogeneous
and homogeneous FPGAs, indicating that different circuits have different
weights.

Table 4.1 presents the average improvements on the pin count with each
circuit having an equal weight. We first calculated the improvement of the
heterogeneous mapping on each individual circuit over the same implementa-
tion with homogeneous 4-LUT FPGA and then averaged the improvements
over all the circuits. Along with the average improvements in the Table are
the standard deviations with respect to these averages. Note that a negative
improvement reflects the fact that heterogeneous mapping does worse at that
combination than homogeneous mapping of 4-LUT FPGAs.

lix

s \ p 7 6 5 4 3
2 avg % improve 5.89 9.5 8.7 22.0 8.9

std. dev 13.2 10.3 9.2 6.0 9.4
3 avg % improve 7.2 9.3 7.3 8.1

std. dev 11.9 9.8 6.9 3.5
4 avg % improve 2.4 4.5 2.8

std. dev 10.9 9.6 8.2
5 avg % improve -6.0 -5.4

std. dev 14.4 12.4
6 avg % improve 14.2

std. dev 19.0

Table 4.2: Equal weight improvement averages and standard deviations for

pin count

The best ratios, r, that produce the smallest value of pin count are differ-
ent for different combinations of p and s. Table 4.3 gives the value or range
(within 1% difference of pin count from the minimum) of r that achieved
the minimal total pin count for each combination (p, s), corresponding to
Table 4.2. When p and s are both small, the ratios are also small, favoring
large p-LUTs since r is the ratio of the number of s-LUTs to the number
of p-LUTs. If p and s are large, the best value of r increases, favoring the
s-LUTs. The ratio r at minimal pin count in all cases favors the LUT size
that is closest to 4, which makes sense since that is the best homogeneous
block.

The combination of (6, 4) is also worth noting. In this combination, with
ratios 3 and 4, the total numbers of pins are reduced by 8% and 7% with
bit number increasing by about 50% and 40%, respectively. The increase in
the number of bits roughly offsets the decrease in the number of pins since
pins dominate the area. Thus this architecture has nearly equivalent area
as homogeneous 4-LUT FPGA. From previous research [Sing92], however,
we expect a 6-LUT FPGA to provide roughly 25% less delay, at the system
level, than a 4-LUT and so we can expect this combination to exhibit superior
speed to the homogeneous 4-LUT FPGA.

lx

s \ p 7 6 5 4 3
2 1− 2 1 1 0.5 0.5
3 2− 3 2 1 1− 2
4 2− 4 2− 4 2− 4
5 2− 6 2− 5
6 2− 6

Table 4.3: Ratio r with respect to Table 4.1

4.4 Summary

In this chapter, we have described the experimental procedures, the measures
of goodness for area-efficiency, and experimental results for an investigation
into heterogeneous architecture of FPGAs. A large set of industrial bench-
mark circuits are mapped into different heterogeneous FPGAs by using the
heterogeneous mapper described in Chapter 3, to determine the best hetero-
geneous architectures. From the experiments, we conclude that:

1. Some heterogeneous FPGAs have superior logic density than the best
homogeneous FPGAs.

2. For the (p, s, r) combinations (4, 2, 1
2
) and (4, 3, 1−2), both significant

pin and significant bit reduction have been achieved in comparison with
the best homogeneous architecture.

3. Some combinations of (p, s, r), such as (5, 2, 1), have reached significant
pin reduction with slight bit increase. These combinations are also
considered good for area, since pins have a greater effect on area.

4. Certain combinations, such as (6, 4, 2−4), have nearly equivalent area
to the best homogeneous 4-LUT FPGA, but are superior in speed.

lxi

Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis has made two major contributions:

1. Developed an algorithm and software tool suitable for heterogeneous
LUT-based FPGA technology mapping.

The main features of the mapper are its ability to handle heterogenous
logic blocks directly, and the optimal solution to the sub-problem of the
selection of mapping solution from a family of fanout-free trees. The
new heterogeneous mapper is superior to the heterogeneous mapping
from a post-process of a homogenous mapper.

2. Investigated the heterogeneous architectures for area-efficiency, and
demonstrated that heterogeneous architectures have superior area-efficiency
to homogeneous architectures.

The thesis investigated the area-efficiency advantages of heterogeneous
logic block FPGA architectures in terms of the new mapper. We con-
clude that certain heterogeneous FPGAs exhibit better area than the
most area-efficient homogeneous FPGA. The best ratio r correspond-
ing to these minima differs depending on the size of the lookup tables.
We also demonstrated that some heterogeneous mixtures may deliver
superior speed with equivalent area to the best homogeneous FPGA.

lxii

5.2 Future Work

This work is just a beginning in exploiting the advantages of heterogeneous
FPGAs. There are many further issues that need to be investigated. We list
a few of them as follows:

1. To exploit the best speed-area tradeoff. Speed-area tradeoff is
the most important issue of the heterogeneous FPGAs. Previous work
has shown that while 4-LUT is best for area, larger (than 4) LUTs
have better speed performance since with large LUTs, the number of
LUTs in the critical paths of a circuit will be less than that with small
LUTs. If we mix larger LUTs, such as 6-LUT, with small LUTs, it
may be possible to improve both speed and area. Recall that when
we compared our results with homogeneous ones, we compared with
the heterogeneous mappings which were optimized for area. However,
when speed is considered as the optimization goal. It is usually the
case that there will be an increase in area, indicating that the LUTs
used will have lower utilization on their used inputs. In such a case,
heterogeneous FPGAs may find themselves the best alternatives to the
homogeneous FPGAs. For example, we can first map a boolean network
into a circuit of homogeneous p-LUT FPGA (e.g. p = 6) and optimize
it for speed. Then we replace the LUTs in the non-critical paths with
area-efficient LUTs and keep the same number of levels of LUTs in the
critical paths. In this way, it may be possible to gain improvement on
both area and time delay of a mapping.

2. Issues in heterogeneous FPGA physical design. Although with
heterogeneous FPGAs, one can gain improvement in area and speed,
the non-heterogeneity of LUTs will increase the complexity in place-
ment and routing (as well as in technology mapping). More routing
resources may be required to make a connection with heterogeneous
LUTs than with homogeneous ones. Is there any difference in routing
a heterogeneous FPGA and a homogeneous FPGA? If there is any dif-
ference, how much is it? What is the best routing architecture for the
heterogeneous FPGAs? Investigations into these aspects will be very
useful to validate the usability of the heterogeneous FPGAs.

lxiii

3. A superior method for post-process-homogeneous mapping of
heterogeneous FPGAs. As we mentioned in Section 3.6, one major
reason to cause the post-process-homo to do worse is the transforma-
tions between the two LUTs, particularly, when we need a transforma-
tion from s-LUTs to p-LUTs. For example, we need three 4-LUTs to
make a 5-LUT (refer to Table 2.1). This is usually unnecessary for a
given circuit. When we want to replace a p-LUT using a set of s-LUTs,
we could instead map the subnetwork inside the p-LUT into a set of
homogeneous s-LUTs. It is believed that the number of s-LUTs needed
to make a p-LUT this way is fewer than or equal to (at most) the num-
ber given in Table 2.1 since the number given in this Table is for the
worst case. It should be pointed out that although this re-mapping
can improve the quality of post-process-homogeneous mapping, it is a
local optimization and it can not improve the quality of transforming
p-LUTs into s-LUTs.

lxiv

Bibliography

[Abou90] P. Abouzeid, L. Bouchet, K. Sakouti, G. Saucier, and P. Sicard,
“Lexicographical Expression of Boolean Function for Multilevel Synthesis
of High Speed Circuits,” Proc. SASHIMI 90, Oct. 1990, pp.31-39.

[Ahre90] M. Ahren, A. El Gamal, D. Galbraith, J. Greene, S. Kaptanoglu,
K. Djarmarajan, L. Hutchings, S. Ku, P. McGibney, J. McGowan,
A. Samie, K. Shaw, N. Stiawalt, T. Whitney, T. Wong, W. Wong, and
B. Wu, “An FPGA Family Optimized for High Densities and Reduced
Routing Delay,” Proc. 1990 CICC, May 1990, pp.31.5.1 - 31.5.4.

[Algo89] CAL 1024 Datasheet, Algotronix Ltd. Edinburgh, Scotland, 1989.

[Bray90] R. Brayton, G. Hachtel, and A. Sangiovanni-Vincentelli, “Multi-
level Logic Synthesis,” Proc. IEEE, Vol.78, No.2, Feb. 1990, pp.264-300.

[Brit93] B. Britton, D. Hill, W. Oswald, N.-S. Woo, and S. Singh, “Op-
timized Reconfigurable Cell Array Architecture for High-Performance
Field-Programmable Gate Arrays,” Proc. 1993 CICC, May 1993, pp.
7.2.1-7.2.5.

[Cart86] W. Carter, K. Duong, R. Freeman, H. Hsieh, J. Ja, J. Mahoney,
L. Ngo, and S. Sze, “A user Programmable Reconfigurable Gate Array,”
Proc. 1986 CICC, May 1986, pp.233-235.

[Chen92] K. Chen, “Logic Minimization of Lookup-Table Based FPGAs,”
Proc. FPGA’92, Feb. 1992, pp.71-76.

[Cong92] J. Cong, A. Kahng, P. Trajmar, K. Chen, “Graph Based FPGA
Technology Mapping for Delay Optimization,” Proc. FPGA’92, Feb.
1992, pp. 77-81.

lxv

[Corn87] D. Corneil and J. Keil, “A Dynamic Programming Approach to the
Dominating Set Problem on k-Trees”, SIAM J. ALG. Disc Meth., Vol.8,
No.4, Oct.1987, pp. 535-543.

[ElGa89] A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. El-Ayat and
A. Mohsen, “An Architecture for Electrically Configurable Gate Arrays,”
IEEE J. Solid State Circuits. Vol. 24, No. 2, April 1989, pp.394-398.

[Fark92] K. Farkas, “Non-homogeneous FPGA Logic Block Architectures”,
Graduate Course Project, University of Toronto, January, 1992.

[Filo91] D. Filo, J. Yang, F. Mailhot, and G. De Micheli,“Technology
Mapping for a Two-Output RAM-based Field Programmable Gate Ar-
ray”,Proc. EDAC91, Feb. 1991,pp. 534-538.

[Fran90] R. Francis, J. Rose, and K. Chung, “Chortle: A Technology Map-
ping Program for Lookup Table-Based Field-Programmable Gate Ar-
rays,” Proc. 27th Design Automation Conference, June 1990, pp. 613-619.

[Fran91a] R. Francis, J. Rose, and Z. Vranesic, “Chortle-crf:Fast Technology
Mapping for Lookup Table-Based FPGAs”, Proc. 28th Design Automa-
tion Conference, June, 1991, pp. 227 - 233.

[Fran91b] R. Francis, J. Rose, and Z. Vranesic, “Technology Mapping of
Lookup Table-Based FPGAs for Performance,” Proc. ICCAD-91, Nov.,
1991.

[Fran92a] R. Francis, “Technology Mapping for Lookup Table-Based Field-
Programmable Gate Arrays,” Ph.D Thesis, University of Toronto, 1992.

[Fran92b] R. Francis, “A Better Method for Post-Process-Homogeneous
Technology Mapping of LUT-Based FPGAs,” Private Communications,
University of Toronto, 1992.

[He93] J. He and J. Rose, “Advantages of Heterogeneous Logic Blocks in
FPGAs,” Proc. 1993 Custom Integrated Circuits Conference, May 1993.

[He94] J. He and J. Rose, “Technology Mapping for Heterogeneous FP-
GAs,” Proc. 1994 ACM/SIGDA International WorkShop on Field-
Programmable Gate Arrays, Feb. 1994.

lxvi

[Hill91] D. Hill and N-S Woo, “The Benefits of Flexibility in Look-up Table
FPGAs“, in FPGAs, W. Moore and W. Luk Eds., Abingdon 1991, edited
from the Oxford 1991 International Workshop on Field Programmable
Logic and Applications, pp.127-136.

[Hsie90] H. Hsieh, W. Carter, J. Ja, E. Cheung, S. Schreifels, C. Erickson,
P. Freidin, L. TinKey, and R. Kanazawa, “Third-Generation Architecture
Boosts Speed and Density of Field-Programmable Gate Arrays,” Proc.
1990 CICC, May 1990, pp. 31.2.1-31.2.7

[Hutt93] M. Hutton, “Combining Independent Two-Parameter Optimization
Subproblems,” University of Toronto, Private Communication, 1993.

[Karp91] K. Karplus, “Xmap: A Technology Mapper for Table-Lookup
Field- Programmable Gate Arrays”,Proc. 28th Design Automation Con-
ference,June 1991,pp. 240-243.

[Keut87] K. Keutzer, “DAGON: Technology Binding and Local Optimiza-
tion by DAG Matching”,Proc. 24th Design Automation Conference, June
1987, pp. 341-347.

[Koul91] J. Kouloheris and A. El Gamal “FPGA Performance vs. Cell Gran-
ularity,” Proc. 1991 CICC, May 1991, pp. 6.2.1 - 6.2.4.

[Koul92] J. Kouloheris and A. El Gamal, “FPGA Area vesus Cell Granular-
ity - lookup Tables and PLA Cells,” ACM/SIGDA Workshop on FPGAs
(FPGA’92), Feb. 1992, pp.9-14.

[Mizu92] C. Mizuyabu, “Heterogeneous Lookup Table Logic Blocks in Field-
Programmable Gate Arrays”, B.Sc. Thesis, University of Toronto, April,
1992.

[Murg90] R. Murgai, Y. Nishizaki, N. Shenay, R. Brayton, and
A. Sangiovanni-Vincentelli, “Logic Synthesis for Programmable Gate Ar-
rays,” Proc. 27th Design Automation Conference, June 1990, pp. 620-625.

[Murg91a] R. Murgai, N. Shenay, R. Brayton, and A. Sangiovanni-
Vincentelli, “Improved Logic Synthesis Algorithms for Table Look Up
Architectures,” ICCAD, 1991.

lxvii

[Murg91b] R. Murgai, N. Shenay, and R. Brayton, “Performance Directed
Synthesis for Table Look Up Programmable Gate Arrays,” ICCAD, 1991.

[Murg91c] R. Murgai, N. Shenay, R. Brayton, and A. Sangiovanni-
Vincentelli, “Improved Logic Synthesis Algorithms for Table Look Up
Architecture”, Proc. ICCAD, Nov. 1991.

[Rose90] J. Rose, R.J. Francis, D. Lewis, and P. Chow, “Architecture of
Field-Programmable Gate Arrays: The Effect of Logic Block Function-
ality on Area Efficiency,” IEEE JSSC, Vol. 25 No. 5, October 1990, pp.
1217-1225.

[Sava76] J. Savage, “The Complexity of Computing”, Wiley Inter-science
Publication, 1976.

[Sawk92] P. Sawkar and D. Thomas, “Technology Mapping for Table-Look-
Up based Field-Programmable Gate Arrays,” Proc. FPGA’92, Feb. 1992,
pp. 83-88.

[Sing91] S. Singh, “The Effect of Logic Block Architecture on the Speed
of Field-Programmable Gate Arrays,” M.A.Sc. Thesis, University of
Toronto, 1991.

[Sing92] S. Singh, J. Rose, P. Chow, D. Lewis, “The Effect of Logic Block
Architecture on FPGA Performance,” IEEE JSSC, Vol. 27 No. 3, March
1992, pp. 281-287.

[Toua92] H. Touati, N. Shenoy, A. Sangiovanni-Vincentelli, “Re-timing for
Table-Lookup Field-Programmable Gate Arrays,” Proc. FPGA’92, Feb.
1992, pp. 89-94.

[Wils92] R. Wilson, “Altera Flexes Programmable Logic Muscles,” Elec-
tronic Engineering Times, Oct.5, 1992.

[Wong89] S. Wong, H. So, J. Ou, and J. Costello, “A 5000-Gate CMOS
EPLD with Multiple Logic and Interconnect Arrays,” Proc. 1989 Custom
Integrated Circuits Conference, May 1989, pp. 5.8.1-5.8.4.

[Woo91] N. Woo, “A Heuristic Method for FPGA Technology Mapping
Based on Edge Visibility,” Proc. 28th Design Automation Conference,
June, 1991,

lxviii

Appendix A

Appendix

Heterogeneous Mapping Results

for Individual Circuits

In this appendix, we list the performance of the heterogeneous mapper on
the basis of individual circuits. The list includes a large set of selected tu-
ples of H = (p, s, r), where H = (4, 2, r), (4, 3, r), (5, 2, r), and (6, 4, r), where
r = 1

10
, 1

9
, · · · , 1, 2, · · · , 9, 10. For each (p, s, r), the number of supertiles gen-

erated by the heterogeneous mapper for a specific circuit is given in a table
form. In the vertical direction of the tables are the circuit names. All 40
MCNC benchmark circuits that was used in the experiments are listed. In
the horizontal direction is the combination of (p, s, r). Note that from the
number of supertiles plus the information of (p, s, r), one can easily calculate
the number of pins and the number of bits as in Chapter 4. For the compar-
ison purpose, the number of supertiles from the post-process-homogeneous
mapping (PPH) and difference between the heterogeneous and PPH mapping
are also presented, in parallel with the heterogeneous results.

lxix

Circuit Nsup (4, 2, 1

10
) Nsup (4, 2, 1

9
) Nsup (4, 2, 1

8
)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 16 16 0.0 17 17 0.0 19 19 0.0

C432 11 11 0.0 12 12 0.0 13 13 0.0

C880 12 12 0.0 13 13 0.0 14 14 0.0

alu2 14 14 0.0 16 16 0.0 17 18 5.9

alu4 24 24 0.0 27 27 0.0 30 30 0.0

apex6 24 24 0.0 26 26 0.0 29 29 0.0

apex7 9 9 0.0 9 9 0.0 10 10 0.0

b9 5 5 0.0 5 5 0.0 6 6 0.0

c8 5 5 0.0 5 5 0.0 5 6 20.0

cht 5 5 0.0 5 5 0.0 6 6 0.0

cm150a 2 2 0.0 2 2 0.0 2 2 0.0

cm151a 1 1 0.0 1 1 0.0 1 1 0.0

cm85a 2 2 0.0 2 2 0.0 2 2 0.0

cmb 2 2 0.0 2 2 0.0 2 2 0.0

count 5 5 0.0 5 5 0.0 6 6 0.0

example2 12 12 0.0 13 13 0.0 14 14 0.0

frg1 4 4 0.0 5 5 0.0 5 5 0.0

frg2 30 30 0.0 33 33 0.0 36 36 0.0

i1 2 2 0.0 2 2 0.0 3 3 0.0

i6 14 14 0.0 15 15 0.0 17 16 -5.9

i7 17 17 0.0 19 19 0.0 21 21 0.0

i8 33 33 0.0 37 37 0.0 41 41 0.0

i9 20 19 -5.0 22 21 -4.5 24 24 0.0

k2 35 35 0.0 38 38 0.0 42 42 0.0

my-adder 6 6 0.0 7 7 0.0 8 8 0.0

parity 2 2 0.0 2 2 0.0 2 2 0.0

pcler 3 3 0.0 4 4 0.0 4 4 0.0

pm1 2 2 0.0 2 2 0.0 2 2 0.0

rot 23 23 0.0 26 26 0.0 28 29 3.6

sct 3 3 0.0 3 3 0.0 3 3 0.0

t481 2 2 0.0 2 2 0.0 2 2 0.0

term1 5 5 0.0 5 5 0.0 6 6 0.0

ttt2 6 6 0.0 6 6 0.0 7 7 0.0

unreg 4 4 0.0 4 4 0.0 5 4 -20.0

vda 20 20 0.0 22 22 0.0 24 24 0.0

x1 12 12 0.0 13 13 0.0 14 14 0.0

x2 2 2 0.0 2 2 0.0 2 2 0.0

x3 27 27 0.0 29 29 0.0 32 32 0.0

x4 13 13 0.0 14 14 0.0 16 16 0.0

z4ml 2 2 0.0 2 2 0.0 2 2 0.0

total 436 435 -0.2 474 473 -0.2 522 523 0.2

Table A.1: Comparison of Hetero-Mapper & Post-Process-Homo
lxiv

Circuit Nsup (4, 2, 1

7
) Nsup (4, 2, 1

6
) Nsup (4, 2, 1

5
)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 21 21 0.0 25 24 -4.0 28 28 0.0

C432 15 15 0.0 17 17 0.0 20 20 0.0

C880 16 16 0.0 18 18 0.0 21 21 0.0

alu2 20 20 0.0 22 22 0.0 26 26 0.0

alu4 33 33 0.0 38 38 0.0 44 44 0.0

apex6 33 33 0.0 37 37 0.0 44 43 -2.3

apex7 12 12 0.0 13 13 0.0 15 15 0.0

b9 7 7 0.0 7 7 0.0 9 9 0.0

c8 6 6 0.0 7 7 0.0 8 8 0.0

cht 6 6 0.0 7 7 0.0 8 8 0.0

cm150a 2 2 0.0 3 2 -33.3 3 3 0.0

cm151a 1 1 0.0 2 2 0.0 2 2 0.0

cm85a 2 2 0.0 3 3 0.0 3 3 0.0

cmb 3 3 0.0 3 3 0.0 3 3 0.0

count 6 6 0.0 7 7 0.0 8 8 0.0

example2 16 16 0.0 18 18 0.0 21 21 0.0

frg1 6 6 0.0 7 7 0.0 8 8 0.0

frg2 41 41 0.0 46 46 0.0 54 54 0.0

i1 3 3 0.0 3 3 0.0 4 4 0.0

i6 19 18 -5.3 22 21 -4.5 27 24 -11.1

i7 23 23 0.0 26 26 0.0 31 31 0.0

i8 46 46 0.0 52 52 0.0 61 61 0.0

i9 28 27 -3.6 32 31 -3.1 38 36 -5.3

k2 48 48 0.0 54 54 0.0 63 63 0.0

my-adder 8 8 0.0 10 10 0.0 11 11 0.0

parity 2 2 0.0 3 3 0.0 3 3 0.0

pcler 4 4 0.0 5 5 0.0 6 6 0.0

pm1 3 3 0.0 3 3 0.0 3 3 0.0

rot 32 32 0.0 36 37 2.8 42 43 2.4

sct 4 4 0.0 4 4 0.0 5 5 0.0

t481 2 2 0.0 2 2 0.0 3 3 0.0

term1 7 7 0.0 7 8 14.3 9 9 0.0

ttt2 8 8 0.0 9 9 0.0 10 10 0.0

unreg 5 5 0.0 6 6 0.0 7 7 0.0

vda 27 27 0.0 31 31 0.0 36 36 0.0

x1 16 16 0.0 18 18 0.0 21 21 0.0

x2 3 3 0.0 3 3 0.0 3 3 0.0

x3 36 36 0.0 41 41 0.0 48 48 0.0

x4 18 18 0.0 20 20 0.0 23 23 0.0

z4ml 2 2 0.0 2 2 0.0 2 2 0.0

total 590 588 -0.3 669 667 -0.3 781 776 -0.6

Table A.2: Comparison of Hetero-Mapper & Post-Process-Homo
lxv

Circuit Nsup (4, 2, 1

4
) Nsup (4, 2, 1

3
) Nsup (4, 2, 1

2
)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 34 34 0.0 42 42 0.0 56 56 0.0

C432 24 24 0.0 29 30 3.4 40 39 -2.5

C880 25 25 0.0 31 31 0.0 45 44 -2.2

alu2 31 31 0.0 39 39 0.0 54 52 -3.7

alu4 53 53 0.0 66 66 0.0 92 90 -2.2

apex6 52 52 0.0 66 65 -1.5 96 91 -5.2

apex7 18 18 0.0 23 23 0.0 32 30 -6.2

b9 10 10 0.0 13 13 0.0 17 17 0.0

c8 9 10 11.1 12 12 0.0 15 16 6.7

cht 10 10 0.0 13 12 -7.7 19 18 -5.3

cm150a 4 3 -25.0 5 4 -20.0 6 6 0.0

cm151a 2 2 0.0 2 2 0.0 3 3 0.0

cm85a 3 3 0.0 4 4 0.0 5 5 0.0

cmb 4 4 0.0 5 5 0.0 7 7 0.0

count 10 10 0.0 12 12 0.0 16 16 0.0

example2 25 25 0.0 31 31 0.0 41 41 0.0

frg1 9 9 0.0 12 11 -8.3 17 16 -5.9

frg2 65 65 0.0 81 81 0.0 108 108 0.0

i1 4 4 0.0 5 5 0.0 7 7 0.0

i6 33 29 -12.1 43 36 -16.3 62 50 -19.4

i7 37 37 0.0 46 46 0.0 65 64 -1.5

i8 75 73 -2.7 99 94 -5.1 143 132 -7.7

i9 47 44 -6.4 61 57 -6.6 89 79 -11.2

k2 76 76 0.0 95 95 0.0 128 126 -1.6

my-adder 13 13 0.0 16 16 0.0 22 22 0.0

parity 3 3 0.0 4 4 0.0 5 5 0.0

pcler 7 7 0.0 8 8 0.0 11 11 0.0

pm1 4 4 0.0 5 5 0.0 6 6 0.0

rot 51 51 0.0 63 64 1.6 84 85 1.2

sct 6 6 0.0 7 7 0.0 9 9 0.0

t481 3 3 0.0 4 4 0.0 5 5 0.0

term1 10 10 0.0 13 13 0.0 18 17 -5.6

ttt2 12 12 0.0 15 15 0.0 22 20 -9.1

unreg 9 8 -11.1 11 10 -9.1 16 14 -12.5

vda 43 43 0.0 54 54 0.0 72 72 0.0

x1 25 25 0.0 31 31 0.0 42 41 -2.4

x2 4 4 0.0 5 5 0.0 6 6 0.0

x3 58 58 0.0 72 72 0.0 105 100 -4.8

x4 28 28 0.0 35 35 0.0 49 47 -4.1

z4ml 3 3 0.0 3 3 0.0 4 4 0.0

total 939 929 -1.1 1181 1162 -1.6 1639 1577 -3.8

Table A.3: Comparison of Hetero-Mapper & Post-Process-Homo
lxvi

Circuit Nsup (4, 2, 1) Nsup (4, 2, 2) Nsup (4, 2, 3)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 84 84 0.0 56 56 0.0 42 42 0.0

C432 72 65 -9.7 62 51 -17.7 57 43 -24.6

C880 82 72 -12.2 71 56 -21.1 62 47 -24.2

alu2 99 88 -11.1 88 70 -20.5 83 59 -28.9

alu4 168 150 -10.7 148 120 -18.9 139 100 -28.1

apex6 175 156 -10.9 158 125 -20.9 148 104 -29.7

apex7 58 49 -15.5 50 39 -22.0 44 32 -27.3

b9 28 26 -7.1 24 20 -16.7 21 17 -19.0

c8 27 25 -7.4 23 20 -13.0 20 17 -15.0

cht 35 30 -14.3 33 24 -27.3 31 20 -35.5

cm150a 11 10 -9.1 11 8 -27.3 10 7 -30.0

cm151a 6 5 -16.7 5 4 -20.0 5 4 -20.0

cm85a 8 8 0.0 7 6 -14.3 7 5 -28.6

cmb 13 11 -15.4 11 8 -27.3 10 7 -30.0

count 30 26 -13.3 28 20 -28.6 27 16 -40.7

example2 72 65 -9.7 62 51 -17.7 54 42 -22.2

frg1 30 27 -10.0 28 22 -21.4 27 19 -29.6

frg2 197 178 -9.6 169 140 -17.2 152 117 -23.0

i1 10 10 0.0 9 8 -11.1 8 6 -25.0

i6 114 83 -27.2 98 65 -33.7 85 55 -35.3

i7 126 112 -11.1 117 89 -23.9 110 75 -31.8

i8 262 224 -14.5 229 179 -21.8 215 150 -30.2

i9 163 132 -19.0 140 106 -24.3 128 88 -31.2

k2 235 210 -10.6 201 158 -21.4 176 131 -25.6

my-adder 32 32 0.0 28 24 -14.3 24 20 -16.7

parity 8 8 0.0 5 5 0.0 4 4 0.0

pcler 17 17 0.0 15 13 -13.3 13 11 -15.4

pm1 11 10 -9.1 9 8 -11.1 8 6 -25.0

rot 152 138 -9.2 131 105 -19.8 114 88 -22.8

sct 16 15 -6.2 14 11 -21.4 12 9 -25.0

t481 7 7 0.0 5 5 0.0 4 4 0.0

term1 33 29 -12.1 29 23 -20.7 26 19 -26.9

ttt2 40 33 -17.5 34 25 -26.5 30 21 -30.0

unreg 29 23 -20.7 25 17 -32.0 22 14 -36.4

vda 130 118 -9.2 111 89 -19.8 97 74 -23.7

x1 76 69 -9.2 69 56 -18.8 64 46 -28.1

x2 11 10 -9.1 10 8 -20.0 9 7 -22.2

x3 192 168 -12.5 165 134 -18.8 155 112 -27.7

x4 89 78 -12.4 76 59 -22.4 67 48 -28.4

z4ml 6 6 0.0 6 5 -16.7 5 4 -20.0

total 2954 2607 -11.7 2560 2032 -20.6 2315 1690 -27.0

Table A.4: Comparison of Hetero-Mapper & Post-Process-Homo
lxvii

Circuit Nsup (4, 2, 4) Nsup (4, 2, 5) Nsup (4, 2, 6)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 34 34 0.0 28 28 0.0 24 24 0.0

C432 54 37 -31.5 51 32 -37.3 48 29 -39.6

C880 58 40 -31.0 55 35 -36.4 52 31 -40.4

alu2 78 50 -35.9 73 44 -39.7 70 39 -44.3

alu4 131 86 -34.4 123 75 -39.0 117 67 -42.7

apex6 140 89 -36.4 132 78 -40.9 125 70 -44.0

apex7 39 28 -28.2 36 24 -33.3 34 22 -35.3

b9 19 14 -26.3 17 13 -23.5 16 11 -31.2

c8 19 15 -21.1 18 13 -27.8 17 12 -29.4

cht 29 18 -37.9 28 15 -46.4 26 14 -46.2

cm150a 9 6 -33.3 9 6 -33.3 9 5 -44.4

cm151a 5 3 -40.0 4 3 -25.0 4 3 -25.0

cm85a 7 5 -28.6 6 4 -33.3 6 4 -33.3

cmb 9 6 -33.3 8 5 -37.5 7 5 -28.6

count 25 14 -44.0 24 13 -45.8 23 11 -52.2

example2 48 36 -25.0 43 32 -25.6 40 28 -30.0

frg1 25 16 -36.0 24 14 -41.7 23 13 -43.5

frg2 143 100 -30.1 135 88 -34.8 128 78 -39.1

i1 7 6 -14.3 6 5 -16.7 6 4 -33.3

i6 76 48 -36.8 68 43 -36.8 62 39 -37.1

i7 104 64 -38.5 98 57 -41.8 93 52 -44.1

i8 202 128 -36.6 191 112 -41.4 181 100 -44.8

i9 120 76 -36.7 114 66 -42.1 108 59 -45.4

k2 157 113 -28.0 146 99 -32.2 138 88 -36.2

my-adder 22 16 -27.3 20 14 -30.0 18 13 -27.8

parity 3 3 0.0 3 3 0.0 3 3 0.0

pcler 12 9 -25.0 11 8 -27.3 11 7 -36.4

pm1 7 5 -28.6 7 5 -28.6 6 4 -33.3

rot 102 75 -26.5 94 66 -29.8 89 59 -33.7

sct 11 8 -27.3 10 7 -30.0 9 6 -33.3

t481 3 3 0.0 3 3 0.0 3 3 0.0

term1 25 16 -36.0 23 14 -39.1 22 13 -40.9

ttt2 27 18 -33.3 24 16 -33.3 22 14 -36.4

unreg 19 12 -36.8 17 11 -35.3 16 10 -37.5

vda 87 63 -27.6 82 55 -32.9 77 49 -36.4

x1 61 40 -34.4 57 35 -38.6 54 31 -42.6

x2 9 6 -33.3 8 5 -37.5 8 5 -37.5

x3 146 96 -34.2 138 84 -39.1 131 75 -42.7

x4 59 41 -30.5 53 36 -32.1 49 32 -34.7

z4ml 4 3 -25.0 4 3 -25.0 4 3 -25.0

total 2135 1446 -32.3 1991 1269 -36.3 1879 1135 -39.6

Table A.5: Comparison of Hetero-Mapper & Post-Process-Homo
lxviii

Circuit Nsup (4, 2, 7) Nsup (4, 2, 8) Nsup (4, 2, 9)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 21 21 0.0 19 19 0.0 17 17 0.0

C432 46 26 -43.5 44 24 -45.5 42 22 -47.6

C880 49 29 -40.8 47 26 -44.7 45 24 -46.7

alu2 66 35 -47.0 63 32 -49.2 60 30 -50.0

alu4 111 60 -45.9 106 55 -48.1 101 50 -50.5

apex6 119 63 -47.1 113 57 -49.6 108 52 -51.9

apex7 33 20 -39.4 31 18 -41.9 30 16 -46.7

b9 15 10 -33.3 14 9 -35.7 14 9 -35.7

c8 16 10 -37.5 15 10 -33.3 15 9 -40.0

cht 25 12 -52.0 24 11 -54.2 23 10 -56.5

cm150a 8 5 -37.5 8 4 -50.0 7 4 -42.9

cm151a 4 3 -25.0 4 2 -50.0 4 2 -50.0

cm85a 6 3 -50.0 5 3 -40.0 5 3 -40.0

cmb 7 4 -42.9 7 4 -42.9 6 4 -33.3

count 21 10 -52.4 20 10 -50.0 20 9 -55.0

example2 36 26 -27.8 34 23 -32.4 33 21 -36.4

frg1 21 11 -47.6 20 10 -50.0 20 10 -50.0

frg2 122 70 -42.6 116 64 -44.8 111 59 -46.8

i1 6 4 -33.3 6 4 -33.3 5 3 -40.0

i6 57 35 -38.6 53 32 -39.6 49 30 -38.8

i7 88 47 -46.6 84 43 -48.8 80 40 -50.0

i8 172 90 -47.7 164 82 -50.0 156 75 -51.9

i9 102 53 -48.0 98 48 -51.0 93 44 -52.7

k2 131 79 -39.7 125 72 -42.4 119 66 -44.5

my-adder 16 12 -25.0 16 11 -31.2 15 10 -33.3

parity 2 2 0.0 2 2 0.0 2 2 0.0

pcler 10 7 -30.0 10 6 -40.0 9 6 -33.3

pm1 6 4 -33.3 6 4 -33.3 5 3 -40.0

rot 85 53 -37.6 81 48 -40.7 77 44 -42.9

sct 9 6 -33.3 8 5 -37.5 8 5 -37.5

t481 3 2 -33.3 2 2 0.0 2 2 0.0

term1 21 12 -42.9 20 11 -45.0 19 10 -47.4

ttt2 21 13 -38.1 20 12 -40.0 19 11 -42.1

unreg 15 9 -40.0 15 8 -46.7 14 7 -50.0

vda 74 44 -40.5 70 40 -42.9 67 37 -44.8

x1 52 28 -46.2 49 26 -46.9 47 23 -51.1

x2 7 4 -42.9 7 4 -42.9 7 4 -42.9

x3 124 67 -46.0 118 61 -48.3 113 56 -50.4

x4 46 29 -37.0 44 26 -40.9 42 24 -42.9

z4ml 3 3 0.0 3 2 -33.3 3 2 -33.3

total 1776 1021 -42.5 1691 930 -45.0 1612 855 -47.0

Table A.6: Comparison of Hetero-Mapper & Post-Process-Homo
lxix

Circuit Nsup (4, 2, 10) Nsup (4, 3, 1

10
) Nsup (4, 3, 1

9
)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 16 16 0.0 16 16 0.0 17 17 0.0

C432 40 20 -50.0 11 11 0.0 12 12 0.0

C880 43 23 -46.5 12 12 0.0 13 13 0.0

alu2 58 27 -53.4 14 14 0.0 16 16 0.0

alu4 97 47 -51.5 24 24 0.0 27 27 0.0

apex6 103 48 -53.4 24 24 0.0 26 26 0.0

apex7 28 15 -46.4 9 9 0.0 9 9 0.0

b9 13 8 -38.5 5 5 0.0 5 5 0.0

c8 14 8 -42.9 5 5 0.0 5 5 0.0

cht 22 10 -54.5 5 5 0.0 5 5 0.0

cm150a 7 4 -42.9 2 2 0.0 2 2 0.0

cm151a 4 2 -50.0 1 1 0.0 1 1 0.0

cm85a 5 3 -40.0 2 2 0.0 2 2 0.0

cmb 6 3 -50.0 2 2 0.0 2 2 0.0

count 19 8 -57.9 5 5 0.0 5 5 0.0

example2 31 20 -35.5 12 12 0.0 13 13 0.0

frg1 19 9 -52.6 4 4 0.0 5 5 0.0

frg2 106 54 -49.1 30 30 0.0 33 33 0.0

i1 5 3 -40.0 2 2 0.0 2 2 0.0

i6 46 28 -39.1 14 14 0.0 15 15 0.0

i7 77 37 -51.9 17 17 0.0 19 19 0.0

i8 149 69 -53.7 33 33 0.0 37 37 0.0

i9 89 41 -53.9 19 19 0.0 21 21 0.0

k2 114 61 -46.5 35 35 0.0 38 38 0.0

my-adder 14 9 -35.7 6 6 0.0 7 7 0.0

parity 2 2 0.0 2 2 0.0 2 2 0.0

pcler 9 5 -44.4 3 3 0.0 4 4 0.0

pm1 5 3 -40.0 2 2 0.0 2 2 0.0

rot 74 41 -44.6 23 23 0.0 26 26 0.0

sct 8 5 -37.5 3 3 0.0 3 3 0.0

t481 2 2 0.0 2 2 0.0 2 2 0.0

term1 18 9 -50.0 5 5 0.0 5 5 0.0

ttt2 18 10 -44.4 6 6 0.0 6 6 0.0

unreg 13 7 -46.2 4 4 0.0 4 4 0.0

vda 64 34 -46.9 20 20 0.0 22 22 0.0

x1 45 22 -51.1 12 11 -8.3 13 13 0.0

x2 6 4 -33.3 2 2 0.0 2 2 0.0

x3 108 52 -51.9 27 27 0.0 29 29 0.0

x4 40 22 -45.0 13 13 0.0 14 14 0.0

z4ml 3 2 -33.3 2 2 0.0 2 2 0.0

total 1540 793 -48.5 435 434 -0.2 473 473 0.0

Table A.7: Comparison of Hetero-Mapper & Post-Process-Homo
lxx

Circuit Nsup (4, 3, 1

8
) Nsup (4, 3, 1

7
) Nsup (4, 3, 1

6
)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 19 19 0.0 21 21 0.0 25 24 -4.0

C432 13 13 0.0 15 15 0.0 17 17 0.0

C880 14 14 0.0 16 16 0.0 18 18 0.0

alu2 17 17 0.0 20 20 0.0 22 22 0.0

alu4 30 30 0.0 33 33 0.0 38 38 0.0

apex6 29 29 0.0 33 33 0.0 37 37 0.0

apex7 10 10 0.0 12 12 0.0 13 13 0.0

b9 6 6 0.0 7 7 0.0 8 7 -12.5

c8 5 5 0.0 6 6 0.0 7 7 0.0

cht 6 6 0.0 6 6 0.0 7 7 0.0

cm150a 2 2 0.0 2 2 0.0 2 2 0.0

cm151a 1 1 0.0 1 1 0.0 2 2 0.0

cm85a 2 2 0.0 2 2 0.0 3 3 0.0

cmb 2 2 0.0 3 3 0.0 3 3 0.0

count 6 6 0.0 6 6 0.0 7 7 0.0

example2 14 14 0.0 16 16 0.0 18 18 0.0

frg1 5 5 0.0 6 6 0.0 7 7 0.0

frg2 36 36 0.0 41 41 0.0 47 46 -2.1

i1 3 3 0.0 3 3 0.0 3 3 0.0

i6 16 16 0.0 18 18 0.0 21 21 0.0

i7 21 21 0.0 23 23 0.0 26 26 0.0

i8 41 41 0.0 46 46 0.0 52 52 0.0

i9 23 23 0.0 26 26 0.0 29 29 0.0

k2 42 42 0.0 48 48 0.0 54 54 0.0

my-adder 8 8 0.0 8 8 0.0 10 10 0.0

parity 2 2 0.0 2 2 0.0 3 3 0.0

pcler 4 4 0.0 4 4 0.0 5 5 0.0

pm1 2 2 0.0 3 3 0.0 3 3 0.0

rot 28 28 0.0 32 32 0.0 36 36 0.0

sct 3 3 0.0 4 4 0.0 4 4 0.0

t481 2 2 0.0 2 2 0.0 3 2 -33.3

term1 6 6 0.0 7 7 0.0 8 7 -12.5

ttt2 7 7 0.0 8 8 0.0 9 9 0.0

unreg 4 4 0.0 5 5 0.0 5 5 0.0

vda 24 24 0.0 27 27 0.0 31 31 0.0

x1 14 14 0.0 16 16 0.0 18 18 0.0

x2 2 2 0.0 3 3 0.0 3 3 0.0

x3 32 32 0.0 36 36 0.0 41 41 0.0

x4 16 16 0.0 18 18 0.0 20 20 0.0

z4ml 2 2 0.0 2 2 0.0 2 2 0.0

total 519 519 0.0 587 587 0.0 667 662 -0.7

Table A.8: Comparison of Hetero-Mapper & Post-Process-Homo
lxxi

Circuit Nsup (4, 3, 1

5
) Nsup (4, 3, 1

4
) Nsup (4, 3, 1

3
)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 28 28 0.0 34 34 0.0 42 42 0.0

C432 20 20 0.0 24 24 0.0 29 29 0.0

C880 21 21 0.0 25 25 0.0 31 31 0.0

alu2 26 26 0.0 31 31 0.0 39 39 0.0

alu4 44 44 0.0 53 53 0.0 66 66 0.0

apex6 43 43 0.0 52 52 0.0 65 65 0.0

apex7 15 15 0.0 18 18 0.0 23 23 0.0

b9 9 9 0.0 10 10 0.0 13 13 0.0

c8 8 8 0.0 9 9 0.0 12 12 0.0

cht 8 8 0.0 10 10 0.0 12 12 0.0

cm150a 3 3 0.0 3 3 0.0 4 4 0.0

cm151a 2 2 0.0 2 2 0.0 2 2 0.0

cm85a 3 3 0.0 3 3 0.0 4 4 0.0

cmb 3 3 0.0 4 4 0.0 5 5 0.0

count 8 8 0.0 10 10 0.0 12 12 0.0

example2 21 21 0.0 25 25 0.0 31 31 0.0

frg1 8 8 0.0 9 9 0.0 11 11 0.0

frg2 54 54 0.0 65 65 0.0 81 81 0.0

i1 4 4 0.0 4 4 0.0 5 5 0.0

i6 24 24 0.0 29 29 0.0 36 36 0.0

i7 31 31 0.0 37 37 0.0 46 46 0.0

i8 61 61 0.0 73 73 0.0 91 91 0.0

i9 34 34 0.0 41 41 0.0 51 51 0.0

k2 63 63 0.0 76 76 0.0 95 95 0.0

my-adder 11 11 0.0 13 13 0.0 16 16 0.0

parity 3 3 0.0 3 3 0.0 4 4 0.0

pcler 6 6 0.0 7 7 0.0 8 8 0.0

pm1 3 3 0.0 4 4 0.0 5 5 0.0

rot 42 42 0.0 51 51 0.0 63 63 0.0

sct 5 5 0.0 6 6 0.0 7 7 0.0

t481 3 3 0.0 3 3 0.0 4 4 0.0

term1 9 9 0.0 10 10 0.0 13 13 0.0

ttt2 10 10 0.0 12 12 0.0 15 15 0.0

unreg 6 6 0.0 7 7 0.0 9 9 0.0

vda 36 36 0.0 43 43 0.0 54 54 0.0

x1 21 21 0.0 25 25 0.0 31 31 0.0

x2 3 3 0.0 4 4 0.0 5 5 0.0

x3 48 48 0.0 58 58 0.0 72 72 0.0

x4 23 23 0.0 28 28 0.0 35 35 0.0

z4ml 2 2 0.0 3 3 0.0 3 3 0.0

total 772 772 0.0 924 924 0.0 1150 1150 0.0

Table A.9: Comparison of Hetero-Mapper & Post-Process-Homo
lxxii

Circuit Nsup (4, 3, 1

2
) Nsup (4, 3, 1) Nsup (4, 3, 2)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 56 56 0.0 84 84 0.0 56 56 0.0

C432 39 39 0.0 59 58 -1.7 47 41 -12.8

C880 42 42 0.0 62 62 0.0 50 43 -14.0

alu2 51 51 0.0 84 78 -7.1 67 56 -16.4

alu4 88 88 0.0 141 133 -5.7 113 95 -15.9

apex6 86 86 0.0 147 134 -8.8 118 96 -18.6

apex7 30 30 0.0 45 45 0.0 33 31 -6.1

b9 17 17 0.0 25 25 0.0 17 17 0.0

c8 15 15 0.0 23 23 0.0 17 15 -11.8

cht 18 17 -5.6 30 28 -6.7 24 21 -12.5

cm150a 5 5 0.0 9 7 -22.2 7 5 -28.6

cm151a 3 3 0.0 5 4 -20.0 4 3 -25.0

cm85a 5 5 0.0 8 8 0.0 6 5 -16.7

cmb 6 6 0.0 9 9 0.0 7 6 -14.3

count 16 16 0.0 28 24 -14.3 22 16 -27.3

example2 41 41 0.0 61 61 0.0 41 41 0.0

frg1 15 15 0.0 26 23 -11.5 21 17 -19.0

frg2 108 108 0.0 161 161 0.0 127 113 -11.0

i1 7 7 0.0 10 10 0.0 7 7 0.0

i6 48 48 0.0 72 72 0.0 48 48 0.0

i7 64 61 -4.7 111 92 -17.1 89 66 -25.8

i8 121 121 0.0 207 183 -11.6 165 131 -20.6

i9 68 68 0.0 117 107 -8.5 94 77 -18.1

k2 126 126 0.0 189 189 0.0 136 126 -7.4

my-adder 22 22 0.0 32 32 0.0 22 22 0.0

parity 5 5 0.0 8 8 0.0 5 5 0.0

pcler 11 11 0.0 16 16 0.0 12 11 -8.3

pm1 6 6 0.0 9 9 0.0 6 6 0.0

rot 84 84 0.0 126 126 0.0 90 85 -5.6

sct 9 9 0.0 13 13 0.0 9 9 0.0

t481 5 5 0.0 7 7 0.0 5 5 0.0

term1 17 17 0.0 26 25 -3.8 21 18 -14.3

ttt2 20 20 0.0 30 30 0.0 21 20 -4.8

unreg 12 12 0.0 17 17 0.0 14 13 -7.1

vda 72 72 0.0 108 108 0.0 78 73 -6.4

x1 41 41 0.0 66 62 -6.1 53 44 -17.0

x2 6 6 0.0 9 9 0.0 8 7 -12.5

x3 96 96 0.0 155 144 -7.1 124 102 -17.7

x4 46 46 0.0 69 69 0.0 47 46 -2.1

z4ml 4 4 0.0 6 6 0.0 4 4 0.0

total 1531 1527 -0.3 2410 2301 -4.5 1835 1602 -12.7

Table A.10: Comparison of Hetero-Mapper & Post-Process-Homo
lxxiii

Circuit Nsup (4, 3, 3) Nsup (4, 3, 4) Nsup (4, 3, 5)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 42 42 0.0 34 34 0.0 28 28 0.0

C432 39 32 -17.9 34 26 -23.5 30 22 -26.7

C880 41 33 -19.5 36 27 -25.0 31 23 -25.8

alu2 56 44 -21.4 48 36 -25.0 42 31 -26.2

alu4 94 74 -21.3 81 61 -24.7 71 52 -26.8

apex6 98 77 -21.4 84 64 -23.8 74 55 -25.7

apex7 28 24 -14.3 24 20 -16.7 21 17 -19.0

b9 14 13 -7.1 12 11 -8.3 11 9 -18.2

c8 14 12 -14.3 12 10 -16.7 11 8 -27.3

cht 20 17 -15.0 18 14 -22.2 15 12 -20.0

cm150a 6 4 -33.3 5 3 -40.0 5 3 -40.0

cm151a 3 2 -33.3 3 2 -33.3 3 2 -33.3

cm85a 5 4 -20.0 5 4 -20.0 4 3 -25.0

cmb 6 5 -16.7 5 4 -20.0 4 4 0.0

count 19 13 -31.6 16 11 -31.2 14 9 -35.7

example2 32 31 -3.1 28 25 -10.7 24 22 -8.3

frg1 18 13 -27.8 15 11 -26.7 13 9 -30.8

frg2 106 88 -17.0 91 73 -19.8 79 63 -20.3

i1 6 5 -16.7 5 5 0.0 4 4 0.0

i6 39 37 -5.1 34 31 -8.8 29 26 -10.3

i7 74 51 -31.1 64 42 -34.4 56 36 -35.7

i8 138 102 -26.1 118 84 -28.8 104 71 -31.7

i9 78 60 -23.1 67 49 -26.9 59 42 -28.8

k2 114 98 -14.0 97 80 -17.5 85 68 -20.0

my-adder 16 16 0.0 14 14 0.0 12 12 0.0

parity 4 4 0.0 3 3 0.0 3 3 0.0

pcler 10 9 -10.0 8 7 -12.5 7 6 -14.3

pm1 5 5 0.0 5 4 -20.0 4 4 0.0

rot 75 66 -12.0 64 54 -15.6 56 47 -16.1

sct 8 7 -12.5 7 6 -14.3 6 5 -16.7

t481 4 4 0.0 3 3 0.0 3 3 0.0

term1 18 14 -22.2 15 12 -20.0 13 10 -23.1

ttt2 18 16 -11.1 15 13 -13.3 13 12 -7.7

unreg 11 10 -9.1 10 9 -10.0 9 8 -11.1

vda 65 57 -12.3 56 47 -16.1 49 40 -18.4

x1 44 35 -20.5 38 28 -26.3 33 24 -27.3

x2 6 5 -16.7 6 4 -33.3 5 4 -20.0

x3 104 81 -22.1 89 68 -23.6 78 58 -25.6

x4 39 37 -5.1 34 31 -8.8 30 26 -13.3

z4ml 3 3 0.0 3 3 0.0 3 3 0.0

total 1520 1250 -17.8 1306 1033 -20.9 1141 884 -22.5

Table A.11: Comparison of Hetero-Mapper & Post-Process-Homo
lxxiv

Circuit Nsup (4, 3, 6) Nsup (4, 3, 7) Nsup (4, 3, 8)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 24 24 0.0 21 21 0.0 19 19 0.0

C432 26 19 -26.9 24 17 -29.2 22 15 -31.8

C880 28 20 -28.6 25 18 -28.0 23 16 -30.4

alu2 37 27 -27.0 34 24 -29.4 31 21 -32.3

alu4 63 45 -28.6 57 40 -29.8 52 36 -30.8

apex6 66 48 -27.3 59 43 -27.1 54 39 -27.8

apex7 19 15 -21.1 17 14 -17.6 15 12 -20.0

b9 9 8 -11.1 9 7 -22.2 8 7 -12.5

c8 10 7 -30.0 9 7 -22.2 8 6 -25.0

cht 14 11 -21.4 12 10 -16.7 11 9 -18.2

cm150a 4 3 -25.0 4 2 -50.0 4 2 -50.0

cm151a 2 2 0.0 2 1 -50.0 2 1 -50.0

cm85a 4 3 -25.0 3 3 0.0 3 2 -33.3

cmb 4 3 -25.0 4 3 -25.0 3 3 0.0

count 13 8 -38.5 11 7 -36.4 10 7 -30.0

example2 22 19 -13.6 20 17 -15.0 18 15 -16.7

frg1 12 8 -33.3 11 7 -36.4 10 7 -30.0

frg2 71 55 -22.5 64 49 -23.4 58 44 -24.1

i1 4 3 -25.0 4 3 -25.0 3 3 0.0

i6 26 23 -11.5 24 21 -12.5 22 19 -13.6

i7 50 31 -38.0 45 28 -37.8 41 25 -39.0

i8 92 62 -32.6 83 55 -33.7 75 50 -33.3

i9 52 36 -30.8 47 32 -31.9 43 29 -32.6

k2 76 59 -22.4 68 53 -22.1 62 47 -24.2

my-adder 11 10 -9.1 10 9 -10.0 9 8 -11.1

parity 3 3 0.0 2 2 0.0 2 2 0.0

pcler 7 5 -28.6 6 5 -16.7 6 4 -33.3

pm1 4 3 -25.0 3 3 0.0 3 3 0.0

rot 50 41 -18.0 45 36 -20.0 41 33 -19.5

sct 5 5 0.0 5 4 -20.0 4 4 0.0

t481 2 2 0.0 2 2 0.0 2 2 0.0

term1 12 9 -25.0 11 8 -27.3 10 7 -30.0

ttt2 12 10 -16.7 11 9 -18.2 10 8 -20.0

unreg 8 7 -12.5 7 6 -14.3 6 5 -16.7

vda 43 34 -20.9 39 30 -23.1 36 27 -25.0

x1 30 21 -30.0 27 19 -29.6 24 17 -29.2

x2 4 3 -25.0 4 3 -25.0 4 3 -25.0

x3 69 51 -26.1 62 45 -27.4 57 41 -28.1

x4 26 23 -11.5 24 21 -12.5 22 19 -13.6

z4ml 2 2 0.0 2 2 0.0 2 2 0.0

total 1016 768 -24.4 917 686 -25.2 835 619 -25.9

Table A.12: Comparison of Hetero-Mapper & Post-Process-Homo
lxxv

Circuit Nsup (4, 3, 9) Nsup (4, 3, 10) Nsup (4, 3, 1

10
)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 17 17 0.0 16 16 0.0 15 15 0.0

C432 20 14 -30.0 18 13 -27.8 10 10 0.0

C880 21 15 -28.6 19 14 -26.3 11 11 0.0

alu2 28 19 -32.1 26 18 -30.8 12 12 0.0

alu4 47 33 -29.8 44 30 -31.8 21 21 0.0

apex6 49 35 -28.6 46 32 -30.4 22 22 0.0

apex7 14 11 -21.4 13 10 -23.1 7 7 0.0

b9 7 6 -14.3 7 6 -14.3 5 5 0.0

c8 7 5 -28.6 7 5 -28.6 4 4 0.0

cht 10 8 -20.0 10 7 -30.0 5 5 0.0

cm150a 3 2 -33.3 3 2 -33.3 1 1 0.0

cm151a 2 1 -50.0 2 1 -50.0 1 1 0.0

cm85a 3 2 -33.3 3 2 -33.3 2 2 0.0

cmb 3 2 -33.3 3 2 -33.3 2 2 0.0

count 10 6 -40.0 9 6 -33.3 5 5 0.0

example2 16 14 -12.5 15 13 -13.3 10 10 0.0

frg1 9 6 -33.3 8 5 -37.5 4 4 0.0

frg2 53 40 -24.5 49 37 -24.5 26 26 0.0

i1 3 3 0.0 3 2 -33.3 2 2 0.0

i6 20 17 -15.0 18 16 -11.1 11 11 0.0

i7 37 23 -37.8 34 21 -38.2 14 14 0.0

i8 69 45 -34.8 64 42 -34.4 27 27 0.0

i9 39 26 -33.3 36 24 -33.3 14 14 0.0

k2 57 43 -24.6 53 40 -24.5 31 31 0.0

my-adder 8 8 0.0 8 7 -12.5 6 6 0.0

parity 2 2 0.0 2 2 0.0 2 2 0.0

pcler 5 4 -20.0 5 4 -20.0 3 3 0.0

pm1 3 3 0.0 3 2 -33.3 2 2 0.0

rot 38 30 -21.1 35 27 -22.9 21 21 0.0

sct 4 4 0.0 4 3 -25.0 3 3 0.0

t481 2 2 0.0 2 2 0.0 2 2 0.0

term1 9 7 -22.2 8 6 -25.0 4 4 0.0

ttt2 9 8 -11.1 8 7 -12.5 5 5 0.0

unreg 6 5 -16.7 6 5 -16.7 4 4 0.0

vda 33 25 -24.2 30 23 -23.3 18 18 0.0

x1 22 15 -31.8 21 14 -33.3 10 10 0.0

x2 3 3 0.0 3 2 -33.3 2 2 0.0

x3 52 37 -28.8 48 34 -29.2 22 22 0.0

x4 20 17 -15.0 18 16 -11.1 11 11 0.0

z4ml 2 2 0.0 2 2 0.0 2 2 0.0

total 762 565 -25.9 709 520 -26.7 379 379 0.0

Table A.13: Comparison of Hetero-Mapper & Post-Process-Homo
lxxvi

Circuit Nsup (5, 2, 1

9
) Nsup (5, 2, 1

8
) Nsup (5, 2, 1

7
)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 17 17 0.0 19 19 0.0 21 21 0.0

C432 11 11 0.0 12 12 0.0 13 13 0.0

C880 12 12 0.0 13 13 0.0 14 14 0.0

alu2 13 14 7.7 15 15 0.0 16 17 6.2

alu4 23 23 0.0 25 26 4.0 29 29 0.0

apex6 24 24 0.0 26 26 0.0 30 30 0.0

apex7 8 8 0.0 9 9 0.0 10 10 0.0

b9 5 5 0.0 5 6 20.0 6 6 0.0

c8 4 4 0.0 5 5 0.0 5 5 0.0

cht 5 5 0.0 6 6 0.0 6 6 0.0

cm150a 2 2 0.0 2 2 0.0 2 2 0.0

cm151a 1 1 0.0 1 1 0.0 1 1 0.0

cm85a 2 2 0.0 2 2 0.0 2 2 0.0

cmb 2 2 0.0 2 2 0.0 2 2 0.0

count 5 5 0.0 6 6 0.0 6 6 0.0

example2 11 11 0.0 12 12 0.0 14 14 0.0

frg1 4 4 0.0 4 4 0.0 5 5 0.0

frg2 29 29 0.0 32 32 0.0 36 36 0.0

i1 2 2 0.0 2 2 0.0 3 3 0.0

i6 12 12 0.0 13 13 0.0 15 15 0.0

i7 15 15 0.0 17 17 0.0 19 19 0.0

i8 30 29 -3.3 33 32 -3.0 38 36 -5.3

i9 15 15 0.0 17 17 0.0 19 19 0.0

k2 34 34 0.0 38 38 0.0 43 43 0.0

my-adder 7 7 0.0 8 8 0.0 8 8 0.0

parity 2 2 0.0 2 2 0.0 2 2 0.0

pcler 4 4 0.0 4 4 0.0 4 4 0.0

pm1 2 2 0.0 2 2 0.0 2 2 0.0

rot 23 24 4.3 26 26 0.0 29 29 0.0

sct 3 3 0.0 3 3 0.0 4 4 0.0

t481 2 2 0.0 2 2 0.0 2 2 0.0

term1 5 5 0.0 5 5 0.0 6 6 0.0

ttt2 6 6 0.0 6 6 0.0 7 7 0.0

unreg 4 4 0.0 5 4 -20.0 5 5 0.0

vda 20 20 0.0 22 22 0.0 25 25 0.0

x1 11 11 0.0 12 12 0.0 13 13 0.0

x2 2 2 0.0 2 2 0.0 2 2 0.0

x3 24 24 0.0 27 27 0.0 30 30 0.0

x4 12 12 0.0 14 14 0.0 15 15 0.0

z4ml 2 2 0.0 2 2 0.0 2 2 0.0

total 415 416 0.2 458 458 0.0 511 510 -0.2

Table A.14: Comparison of Hetero-Mapper & Post-Process-Homo
lxxvii

Circuit Nsup (5, 2, 1

6
) Nsup (5, 2, 1

5
) Nsup (5, 2, 1

4
)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 24 24 0.0 28 28 0.0 33 33 0.0

C432 15 15 0.0 17 17 0.0 21 21 0.0

C880 16 16 0.0 19 19 0.0 23 23 0.0

alu2 19 19 0.0 22 22 0.0 26 27 3.8

alu4 33 33 0.0 38 38 0.0 45 46 2.2

apex6 34 34 0.0 39 39 0.0 47 47 0.0

apex7 11 11 0.0 13 13 0.0 15 15 0.0

b9 7 7 0.0 8 8 0.0 9 10 11.1

c8 6 6 0.0 7 7 0.0 8 8 0.0

cht 7 7 0.0 8 8 0.0 10 10 0.0

cm150a 2 2 0.0 2 2 0.0 3 3 0.0

cm151a 1 1 0.0 1 1 0.0 2 2 0.0

cm85a 2 2 0.0 2 2 0.0 3 3 0.0

cmb 3 3 0.0 3 3 0.0 4 4 0.0

count 7 7 0.0 8 8 0.0 10 10 0.0

example2 16 16 0.0 18 18 0.0 22 22 0.0

frg1 5 5 0.0 6 6 0.0 7 7 0.0

frg2 41 41 0.0 48 48 0.0 57 57 0.0

i1 3 3 0.0 3 3 0.0 4 4 0.0

i6 17 17 0.0 20 20 0.0 23 23 0.0

i7 22 22 0.0 26 26 0.0 32 31 -3.1

i8 44 42 -4.5 52 48 -7.7 65 58 -10.8

i9 22 22 0.0 27 26 -3.7 33 32 -3.0

k2 49 49 0.0 57 57 0.0 68 68 0.0

my-adder 10 10 0.0 11 11 0.0 13 13 0.0

parity 3 3 0.0 3 3 0.0 3 3 0.0

pcler 5 5 0.0 6 6 0.0 7 7 0.0

pm1 3 3 0.0 3 3 0.0 4 4 0.0

rot 33 33 0.0 39 39 0.0 46 47 2.2

sct 4 4 0.0 5 5 0.0 5 5 0.0

t481 2 2 0.0 2 2 0.0 3 3 0.0

term1 7 7 0.0 8 8 0.0 9 9 0.0

ttt2 8 8 0.0 9 9 0.0 11 11 0.0

unreg 6 5 -16.7 7 6 -14.3 9 7 -22.2

vda 28 28 0.0 33 33 0.0 39 39 0.0

x1 15 15 0.0 18 18 0.0 21 21 0.0

x2 3 3 0.0 3 3 0.0 4 4 0.0

x3 34 34 0.0 40 40 0.0 48 48 0.0

x4 18 18 0.0 21 20 -4.8 24 24 0.0

z4ml 2 2 0.0 2 2 0.0 3 3 0.0

total 587 584 -0.5 682 675 -1.0 819 812 -0.9

Table A.15: Comparison of Hetero-Mapper & Post-Process-Homo
lxxviii

Circuit Nsup (5, 2, 1

3
) Nsup (5, 2, 1

2
) Nsup (5, 2, 1)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 41 41 0.0 55 55 0.0 82 82 0.0

C432 26 26 0.0 34 34 0.0 59 55 -6.8

C880 28 28 0.0 39 38 -2.6 72 63 -12.5

alu2 32 33 3.1 44 44 0.0 80 72 -10.0

alu4 57 57 0.0 75 76 1.3 138 124 -10.1

apex6 61 59 -3.3 88 80 -9.1 161 136 -15.5

apex7 19 19 0.0 26 26 0.0 48 42 -12.5

b9 12 12 0.0 15 16 6.7 24 24 0.0

c8 10 10 0.0 14 13 -7.1 25 23 -8.0

cht 13 12 -7.7 19 17 -10.5 35 30 -14.3

cm150a 4 4 0.0 5 5 0.0 10 9 -10.0

cm151a 2 2 0.0 3 3 0.0 5 5 0.0

cm85a 3 3 0.0 4 4 0.0 8 7 -12.5

cmb 5 4 -20.0 7 6 -14.3 12 10 -16.7

count 12 12 0.0 16 16 0.0 23 23 0.0

example2 27 27 0.0 36 36 0.0 64 57 -10.9

frg1 9 9 0.0 13 12 -7.7 24 21 -12.5

frg2 71 71 0.0 95 95 0.0 171 150 -12.3

i1 5 5 0.0 6 6 0.0 10 10 0.0

i6 29 29 0.0 39 39 0.0 67 64 -4.5

i7 42 40 -4.8 61 56 -8.2 112 95 -15.2

i8 85 75 -11.8 123 105 -14.6 225 181 -19.6

i9 43 41 -4.7 63 59 -6.3 123 106 -13.8

k2 85 85 0.0 113 113 0.0 207 187 -9.7

my-adder 16 16 0.0 22 22 0.0 32 32 0.0

parity 4 4 0.0 5 5 0.0 8 8 0.0

pcler 8 8 0.0 11 11 0.0 16 16 0.0

pm1 4 4 0.0 6 6 0.0 10 9 -10.0

rot 58 58 0.0 77 77 0.0 135 124 -8.1

sct 7 7 0.0 9 9 0.0 15 14 -6.7

t481 3 3 0.0 4 4 0.0 6 6 0.0

term1 11 11 0.0 15 15 0.0 28 24 -14.3

ttt2 14 14 0.0 18 18 0.0 33 30 -9.1

unreg 11 9 -18.2 16 12 -25.0 29 18 -37.9

vda 49 49 0.0 65 65 0.0 114 105 -7.9

x1 26 26 0.0 35 35 0.0 63 57 -9.5

x2 4 4 0.0 6 6 0.0 10 9 -10.0

x3 62 61 -1.6 89 85 -4.5 163 145 -11.0

x4 30 30 0.0 43 40 -7.0 78 63 -19.2

z4ml 3 3 0.0 4 4 0.0 6 6 0.0

total 1031 1011 -1.9 1418 1368 -3.5 2531 2242 -11.4

Table A.16: Comparison of Hetero-Mapper & Post-Process-Homo
lxxix

Circuit Nsup (5, 2, 2) Nsup (5, 2, 3) Nsup (5, 2, 4)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 55 55 0.0 41 41 0.0 33 33 0.0

C432 51 42 -17.6 45 36 -20.0 42 32 -23.8

C880 61 49 -19.7 54 42 -22.2 48 37 -22.9

alu2 72 58 -19.4 68 50 -26.5 64 44 -31.2

alu4 118 99 -16.1 111 84 -24.3 105 74 -29.5

apex6 140 109 -22.1 132 91 -31.1 124 79 -36.3

apex7 41 34 -17.1 39 28 -28.2 37 24 -35.1

b9 21 18 -14.3 18 15 -16.7 16 13 -18.8

c8 21 18 -14.3 19 15 -21.1 17 13 -23.5

cht 33 24 -27.3 31 20 -35.5 29 17 -41.4

cm150a 9 7 -22.2 9 6 -33.3 8 5 -37.5

cm151a 5 4 -20.0 5 3 -40.0 4 3 -25.0

cm85a 7 6 -14.3 7 5 -28.6 6 4 -33.3

cmb 10 7 -30.0 9 6 -33.3 8 5 -37.5

count 16 16 0.0 16 14 -12.5 15 13 -13.3

example2 55 45 -18.2 48 38 -20.8 43 32 -25.6

frg1 22 18 -18.2 21 15 -28.6 21 13 -38.1

frg2 148 120 -18.9 139 100 -28.1 131 86 -34.4

i1 9 7 -22.2 8 6 -25.0 7 5 -28.6

i6 65 55 -15.4 63 48 -23.8 61 43 -29.5

i7 100 76 -24.0 93 64 -31.2 88 57 -35.2

i8 198 149 -24.7 186 128 -31.2 175 112 -36.0

i9 119 88 -26.1 115 76 -33.9 111 66 -40.5

k2 177 141 -20.3 155 116 -25.2 138 99 -28.3

my-adder 28 24 -14.3 24 20 -16.7 22 16 -27.3

parity 5 5 0.0 4 4 0.0 3 3 0.0

pcler 13 12 -7.7 11 9 -18.2 10 8 -20.0

pm1 8 7 -12.5 7 6 -14.3 7 5 -28.6

rot 116 94 -19.0 102 79 -22.5 90 68 -24.4

sct 13 10 -23.1 12 9 -25.0 10 8 -20.0

t481 4 4 0.0 3 3 0.0 3 3 0.0

term1 24 19 -20.8 22 16 -27.3 21 14 -33.3

ttt2 29 22 -24.1 25 19 -24.0 23 16 -30.4

unreg 25 14 -44.0 22 12 -45.5 19 11 -42.1

vda 97 79 -18.6 85 65 -23.5 76 56 -26.3

x1 56 46 -17.9 53 39 -26.4 50 34 -32.0

x2 8 7 -12.5 7 6 -14.3 7 6 -14.3

x3 150 116 -22.7 141 97 -31.2 133 83 -37.6

x4 67 48 -28.4 59 40 -32.2 52 35 -32.7

z4ml 6 5 -16.7 5 4 -20.0 4 3 -25.0

total 2202 1757 -20.2 2014 1475 -26.8 1861 1278 -31.3

Table A.17: Comparison of Hetero-Mapper & Post-Process-Homo
lxxx

Circuit Nsup (5, 2, 5) Nsup (5, 2, 6) Nsup (5, 2, 7)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 28 28 0.0 24 24 0.0 21 21 0.0

C432 40 28 -30.0 38 25 -34.2 37 23 -37.8

C880 46 33 -28.3 43 30 -30.2 41 27 -34.1

alu2 61 39 -36.1 60 35 -41.7 58 32 -44.8

alu4 99 66 -33.3 94 59 -37.2 91 54 -40.7

apex6 117 70 -40.2 111 63 -43.2 105 57 -45.7

apex7 35 22 -37.1 33 20 -39.4 31 18 -41.9

b9 15 11 -26.7 14 10 -28.6 14 9 -35.7

c8 17 12 -29.4 16 10 -37.5 15 10 -33.3

cht 28 15 -46.4 26 14 -46.2 25 12 -52.0

cm150a 8 5 -37.5 7 4 -42.9 7 4 -42.9

cm151a 4 3 -25.0 4 2 -50.0 4 2 -50.0

cm85a 6 4 -33.3 6 3 -50.0 5 3 -40.0

cmb 7 5 -28.6 7 4 -42.9 6 4 -33.3

count 15 11 -26.7 15 10 -33.3 14 10 -28.6

example2 39 28 -28.2 36 25 -30.6 34 23 -32.4

frg1 20 12 -40.0 20 11 -45.0 19 10 -47.4

frg2 124 76 -38.7 117 68 -41.9 111 62 -44.1

i1 6 5 -16.7 6 4 -33.3 5 4 -20.0

i6 59 39 -33.9 57 35 -38.6 56 32 -42.9

i7 83 52 -37.3 79 47 -40.5 75 43 -42.7

i8 165 100 -39.4 156 90 -42.3 149 82 -45.0

i9 108 59 -45.4 105 53 -49.5 102 48 -52.9

k2 128 88 -31.2 122 79 -35.2 116 72 -37.9

my-adder 20 14 -30.0 18 13 -27.8 16 12 -25.0

parity 3 3 0.0 3 3 0.0 2 2 0.0

pcler 9 7 -22.2 8 7 -12.5 8 6 -25.0

pm1 6 4 -33.3 6 4 -33.3 6 4 -33.3

rot 85 59 -30.6 81 53 -34.6 77 49 -36.4

sct 9 7 -22.2 9 6 -33.3 8 5 -37.5

t481 2 2 0.0 2 2 0.0 2 2 0.0

term1 20 13 -35.0 19 12 -36.8 18 11 -38.9

ttt2 22 14 -36.4 21 13 -38.1 20 12 -40.0

unreg 17 10 -41.2 16 9 -43.8 15 8 -46.7

vda 71 49 -31.0 67 44 -34.3 64 40 -37.5

x1 47 31 -34.0 45 28 -37.8 42 25 -40.5

x2 7 5 -28.6 6 5 -16.7 6 4 -33.3

x3 125 74 -40.8 119 67 -43.7 113 61 -46.0

x4 49 32 -34.7 46 28 -39.1 44 26 -40.9

z4ml 4 3 -25.0 4 3 -25.0 3 3 0.0

total 1754 1138 -35.1 1666 1022 -38.7 1585 932 -41.2

Table A.18: Comparison of Hetero-Mapper & Post-Process-Homo
lxxxi

Circuit Nsup (5, 2, 8) Nsup (5, 2, 9) Nsup (5, 2, 10)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 19 19 0.0 17 17 0.0 15 15 0.0

C432 36 21 -41.7 35 20 -42.9 35 18 -48.6

C880 39 25 -35.9 38 23 -39.5 37 21 -43.2

alu2 56 29 -48.2 55 27 -50.9 54 25 -53.7

alu4 89 49 -44.9 86 46 -46.5 84 42 -50.0

apex6 100 53 -47.0 96 49 -49.0 92 45 -51.1

apex7 30 16 -46.7 28 15 -46.4 27 14 -48.1

b9 13 8 -38.5 12 8 -33.3 12 7 -41.7

c8 14 9 -35.7 14 8 -42.9 13 8 -38.5

cht 24 11 -54.2 23 10 -56.5 22 10 -54.5

cm150a 7 4 -42.9 6 4 -33.3 6 3 -50.0

cm151a 4 2 -50.0 3 2 -33.3 3 2 -33.3

cm85a 5 3 -40.0 5 3 -40.0 5 3 -40.0

cmb 6 4 -33.3 6 3 -50.0 5 3 -40.0

count 14 9 -35.7 13 8 -38.5 13 8 -38.5

example2 32 21 -34.4 31 20 -35.5 30 18 -40.0

frg1 18 9 -50.0 18 8 -55.6 18 8 -55.6

frg2 106 57 -46.2 101 53 -47.5 97 49 -49.5

i1 5 3 -40.0 5 3 -40.0 5 3 -40.0

i6 54 30 -44.4 53 28 -47.2 52 26 -50.0

i7 71 40 -43.7 68 37 -45.6 66 35 -47.0

i8 142 75 -47.2 137 69 -49.6 133 64 -51.9

i9 99 44 -55.6 97 41 -57.7 94 38 -59.6

k2 110 66 -40.0 105 61 -41.9 101 57 -43.6

my-adder 16 11 -31.2 15 10 -33.3 14 9 -35.7

parity 2 2 0.0 2 2 0.0 2 2 0.0

pcler 8 6 -25.0 8 5 -37.5 8 5 -37.5

pm1 5 3 -40.0 5 3 -40.0 5 3 -40.0

rot 73 45 -38.4 70 41 -41.4 67 38 -43.3

sct 8 5 -37.5 7 5 -28.6 7 4 -42.9

t481 2 2 0.0 2 2 0.0 2 2 0.0

term1 17 10 -41.2 16 9 -43.8 16 8 -50.0

ttt2 19 11 -42.1 18 10 -44.4 17 9 -47.1

unreg 15 7 -53.3 14 7 -50.0 13 6 -53.8

vda 61 37 -39.3 58 34 -41.4 55 32 -41.8

x1 41 23 -43.9 40 21 -47.5 39 20 -48.7

x2 6 4 -33.3 6 4 -33.3 6 3 -50.0

x3 108 56 -48.1 103 52 -49.5 98 48 -51.0

x4 42 24 -42.9 40 22 -45.0 38 20 -47.4

z4ml 3 2 -33.3 3 2 -33.3 3 2 -33.3

total 1519 855 -43.7 1459 792 -45.7 1409 733 -48.0

Table A.19: Comparison of Hetero-Mapper & Post-Process-Homo
lxxxii

Circuit Nsup (6, 4, 1

10
) Nsup (6, 4, 1

9
) Nsup (6, 4, 1

8
)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 15 15 0.0 17 17 0.0 19 19 0.0

C432 9 9 0.0 10 10 0.0 11 11 0.0

C880 10 10 0.0 11 10 -9.1 12 12 0.0

alu2 11 11 0.0 12 12 0.0 13 13 0.0

alu4 19 19 0.0 21 21 0.0 23 23 0.0

apex6 19 19 0.0 21 21 0.0 23 23 0.0

apex7 7 7 0.0 7 7 0.0 8 8 0.0

b9 4 4 0.0 4 4 0.0 5 5 0.0

c8 4 4 0.0 4 4 0.0 5 5 0.0

cht 5 5 0.0 5 5 0.0 6 6 0.0

cm150a 1 1 0.0 1 1 0.0 1 1 0.0

cm151a 1 1 0.0 1 1 0.0 1 1 0.0

cm85a 2 2 0.0 2 2 0.0 2 2 0.0

cmb 2 2 0.0 2 2 0.0 2 2 0.0

count 3 3 0.0 4 4 0.0 4 4 0.0

example2 10 10 0.0 11 11 0.0 12 12 0.0

frg1 3 3 0.0 3 3 0.0 4 4 0.0

frg2 24 24 0.0 26 26 0.0 29 29 0.0

i1 2 2 0.0 2 2 0.0 2 2 0.0

i6 8 7 -12.5 8 8 0.0 9 9 0.0

i7 14 14 0.0 15 15 0.0 16 16 0.0

i8 23 23 0.0 26 25 -3.8 28 28 0.0

i9 13 13 0.0 15 15 0.0 16 16 0.0

k2 29 29 0.0 32 32 0.0 35 35 0.0

my-adder 6 6 0.0 7 7 0.0 8 8 0.0

parity 2 2 0.0 2 2 0.0 2 2 0.0

pcler 3 3 0.0 3 3 0.0 4 4 0.0

pm1 2 2 0.0 2 2 0.0 2 2 0.0

rot 20 20 0.0 22 22 0.0 24 24 0.0

sct 3 3 0.0 3 3 0.0 3 3 0.0

t481 2 2 0.0 2 2 0.0 2 2 0.0

term1 4 4 0.0 4 4 0.0 5 5 0.0

ttt2 5 5 0.0 5 5 0.0 6 6 0.0

unreg 2 2 0.0 2 2 0.0 2 2 0.0

vda 17 17 0.0 19 19 0.0 21 21 0.0

x1 9 9 0.0 10 10 0.0 11 11 0.0

x2 2 2 0.0 2 2 0.0 2 2 0.0

x3 21 21 0.0 23 23 0.0 26 26 0.0

x4 9 9 0.0 10 10 0.0 11 11 0.0

z4ml 2 2 0.0 2 2 0.0 2 2 0.0

total 347 346 -0.3 378 376 -0.5 417 417 0.0

Table A.20: Comparison of Hetero-Mapper & Post-Process-Homo
lxxxiii

Circuit Nsup (6, 4, 1

7
) Nsup (6, 4, 1

6
) Nsup (6, 4, 1

5
)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 21 21 0.0 24 24 0.0 28 28 0.0

C432 12 12 0.0 14 14 0.0 16 16 0.0

C880 13 13 0.0 15 15 0.0 17 17 0.0

alu2 14 14 0.0 16 16 0.0 19 19 0.0

alu4 26 26 0.0 29 29 0.0 34 34 0.0

apex6 26 26 0.0 30 30 0.0 35 35 0.0

apex7 9 9 0.0 10 10 0.0 12 12 0.0

b9 5 5 0.0 6 6 0.0 7 7 0.0

c8 5 5 0.0 6 6 0.0 7 7 0.0

cht 6 6 0.0 7 7 0.0 8 8 0.0

cm150a 1 1 0.0 1 1 0.0 1 1 0.0

cm151a 1 1 0.0 1 1 0.0 1 1 0.0

cm85a 2 2 0.0 2 2 0.0 2 2 0.0

cmb 2 2 0.0 2 2 0.0 3 3 0.0

count 4 4 0.0 5 5 0.0 6 6 0.0

example2 13 13 0.0 15 15 0.0 17 17 0.0

frg1 4 4 0.0 5 5 0.0 5 5 0.0

frg2 32 32 0.0 37 37 0.0 43 43 0.0

i1 3 3 0.0 3 3 0.0 3 3 0.0

i6 10 10 0.0 12 12 0.0 14 14 0.0

i7 18 18 0.0 21 21 0.0 24 24 0.0

i8 32 32 0.0 36 36 0.0 42 42 0.0

i9 18 18 0.0 21 21 0.0 24 24 0.0

k2 39 39 0.0 45 45 0.0 52 52 0.0

my-adder 8 8 0.0 10 10 0.0 11 11 0.0

parity 2 2 0.0 3 3 0.0 3 3 0.0

pcler 4 4 0.0 4 4 0.0 5 5 0.0

pm1 2 2 0.0 3 3 0.0 3 3 0.0

rot 27 27 0.0 31 31 0.0 36 36 0.0

sct 3 3 0.0 4 4 0.0 4 4 0.0

t481 2 2 0.0 2 2 0.0 2 2 0.0

term1 5 5 0.0 6 6 0.0 7 7 0.0

ttt2 6 6 0.0 7 7 0.0 8 8 0.0

unreg 3 3 0.0 3 3 0.0 4 4 0.0

vda 23 23 0.0 26 26 0.0 31 31 0.0

x1 12 12 0.0 14 14 0.0 16 16 0.0

x2 2 2 0.0 2 2 0.0 3 3 0.0

x3 29 29 0.0 33 33 0.0 38 38 0.0

x4 13 13 0.0 14 14 0.0 17 17 0.0

z4ml 2 2 0.0 2 2 0.0 2 2 0.0

total 459 459 0.0 527 527 0.0 610 610 0.0

Table A.21: Comparison of Hetero-Mapper & Post-Process-Homo
lxxxiv

Circuit Nsup (6, 4, 1

4
) Nsup (6, 4, 1

3
) Nsup (6, 4, 1

2
)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 33 33 0.0 41 41 0.0 55 55 0.0

C432 19 19 0.0 24 24 0.0 32 32 0.0

C880 20 20 0.0 25 25 0.0 34 34 0.0

alu2 23 23 0.0 28 28 0.0 38 38 0.0

alu4 41 41 0.0 51 51 0.0 67 67 0.0

apex6 42 42 0.0 52 52 0.0 69 69 0.0

apex7 14 14 0.0 18 18 0.0 23 23 0.0

b9 8 8 0.0 10 10 0.0 14 14 0.0

c8 8 8 0.0 10 10 0.0 13 13 0.0

cht 10 10 0.0 12 12 0.0 16 16 0.0

cm150a 2 2 0.0 2 2 0.0 3 3 0.0

cm151a 1 1 0.0 1 1 0.0 2 2 0.0

cm85a 3 3 0.0 3 3 0.0 4 4 0.0

cmb 3 3 0.0 4 4 0.0 5 5 0.0

count 7 7 0.0 8 8 0.0 11 11 0.0

example2 21 21 0.0 26 26 0.0 34 34 0.0

frg1 6 6 0.0 8 8 0.0 10 10 0.0

frg2 51 51 0.0 64 64 0.0 85 85 0.0

i1 4 4 0.0 5 5 0.0 6 6 0.0

i6 17 16 -5.9 22 21 -4.5 31 29 -6.5

i7 29 29 0.0 36 36 0.0 48 48 0.0

i8 50 50 0.0 63 63 0.0 84 84 0.0

i9 29 29 0.0 36 36 0.0 48 48 0.0

k2 63 63 0.0 78 78 0.0 104 104 0.0

my-adder 13 13 0.0 16 16 0.0 22 22 0.0

parity 3 3 0.0 4 4 0.0 5 5 0.0

pcler 6 6 0.0 7 7 0.0 10 10 0.0

pm1 4 4 0.0 4 4 0.0 6 6 0.0

rot 43 43 0.0 54 54 0.0 71 71 0.0

sct 5 5 0.0 6 6 0.0 8 8 0.0

t481 3 3 0.0 3 3 0.0 4 4 0.0

term1 8 8 0.0 10 10 0.0 13 13 0.0

ttt2 10 10 0.0 12 12 0.0 16 16 0.0

unreg 4 4 0.0 6 5 -16.7 8 7 -12.5

vda 37 37 0.0 46 46 0.0 61 61 0.0

x1 19 19 0.0 24 24 0.0 31 31 0.0

x2 3 3 0.0 4 4 0.0 5 5 0.0

x3 46 46 0.0 57 57 0.0 76 76 0.0

x4 20 20 0.0 25 25 0.0 33 33 0.0

z4ml 3 3 0.0 3 3 0.0 4 4 0.0

total 731 730 -0.1 908 906 -0.2 1209 1206 -0.2

Table A.22: Comparison of Hetero-Mapper & Post-Process-Homo
lxxxv

Circuit Nsup (6, 4, 1) Nsup (6, 4, 2) Nsup (6, 4, 3)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 82 82 0.0 55 55 0.0 41 41 0.0

C432 47 47 0.0 33 32 -3.0 27 24 -11.1

C880 50 50 0.0 35 34 -2.9 29 26 -10.3

alu2 57 56 -1.8 46 40 -13.0 41 31 -24.4

alu4 101 101 0.0 73 68 -6.8 66 53 -19.7

apex6 103 103 0.0 69 69 0.0 57 53 -7.0

apex7 35 35 0.0 23 23 0.0 19 18 -5.3

b9 20 20 0.0 14 14 0.0 11 10 -9.1

c8 19 19 0.0 13 13 0.0 10 10 0.0

cht 23 23 0.0 16 16 0.0 12 12 0.0

cm150a 5 4 -20.0 4 3 -25.0 4 3 -25.0

cm151a 2 2 0.0 2 2 0.0 2 2 0.0

cm85a 6 6 0.0 4 4 0.0 3 3 0.0

cmb 7 7 0.0 5 5 0.0 4 4 0.0

count 16 16 0.0 14 12 -14.3 13 10 -23.1

example2 51 51 0.0 34 34 0.0 26 26 0.0

frg1 16 16 0.0 14 12 -14.3 12 9 -25.0

frg2 128 128 0.0 85 85 0.0 67 65 -3.0

i1 9 9 0.0 6 6 0.0 5 5 0.0

i6 53 48 -9.4 43 36 -16.3 37 29 -21.6

i7 72 72 0.0 56 48 -14.3 46 37 -19.6

i8 146 126 -13.7 117 91 -22.2 98 73 -25.5

i9 71 72 1.4 61 51 -16.4 55 41 -25.5

k2 156 156 0.0 104 104 0.0 79 78 -1.3

my-adder 32 32 0.0 22 22 0.0 16 16 0.0

parity 8 8 0.0 5 5 0.0 4 4 0.0

pcler 14 14 0.0 10 10 0.0 8 7 -12.5

pm1 8 8 0.0 6 6 0.0 4 4 0.0

rot 107 107 0.0 71 71 0.0 54 54 0.0

sct 12 12 0.0 8 8 0.0 6 6 0.0

t481 6 6 0.0 4 4 0.0 3 3 0.0

term1 19 19 0.0 13 13 0.0 11 10 -9.1

ttt2 24 24 0.0 16 16 0.0 13 12 -7.7

unreg 15 12 -20.0 13 9 -30.8 12 7 -41.7

vda 91 91 0.0 61 61 0.0 46 46 0.0

x1 47 47 0.0 34 32 -5.9 29 25 -13.8

x2 7 7 0.0 5 5 0.0 5 4 -20.0

x3 114 114 0.0 76 76 0.0 59 58 -1.7

x4 49 49 0.0 36 35 -2.8 30 28 -6.7

z4ml 6 6 0.0 4 4 0.0 3 3 0.0

total 1834 1805 -1.6 1310 1234 -5.8 1067 950 -11.0

Table A.23: Comparison of Hetero-Mapper & Post-Process-Homo
lxxxvi

Circuit Nsup (6, 4, 4) Nsup (6, 4, 5) Nsup (6, 4, 6)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 33 33 0.0 28 28 0.0 24 24 0.0

C432 25 20 -20.0 23 17 -26.1 21 15 -28.6

C880 26 21 -19.2 24 18 -25.0 22 16 -27.3

alu2 37 26 -29.7 34 22 -35.3 31 19 -38.7

alu4 60 44 -26.7 55 38 -30.9 51 33 -35.3

apex6 49 44 -10.2 43 37 -14.0 39 32 -17.9

apex7 16 15 -6.2 14 13 -7.1 13 11 -15.4

b9 9 9 0.0 8 7 -12.5 8 7 -12.5

c8 9 8 -11.1 8 7 -12.5 8 6 -25.0

cht 10 10 0.0 8 8 0.0 7 7 0.0

cm150a 4 2 -50.0 3 2 -33.3 3 2 -33.3

cm151a 2 2 0.0 2 1 -50.0 2 1 -50.0

cm85a 3 3 0.0 3 3 0.0 2 2 0.0

cmb 3 3 0.0 3 3 0.0 3 3 0.0

count 12 8 -33.3 11 7 -36.4 10 6 -40.0

example2 22 21 -4.5 19 18 -5.3 17 16 -5.9

frg1 11 8 -27.3 10 7 -30.0 10 6 -40.0

frg2 58 54 -6.9 53 46 -13.2 49 41 -16.3

i1 4 4 0.0 3 3 0.0 3 3 0.0

i6 33 24 -27.3 31 21 -32.3 28 18 -35.7

i7 40 31 -22.5 36 26 -27.8 33 23 -30.3

i8 84 61 -27.4 74 52 -29.7 69 46 -33.3

i9 50 34 -32.0 46 29 -37.0 42 26 -38.1

k2 68 64 -5.9 62 54 -12.9 57 48 -15.8

my-adder 13 13 0.0 11 11 0.0 10 10 0.0

parity 3 3 0.0 3 3 0.0 3 3 0.0

pcler 7 6 -14.3 6 5 -16.7 6 4 -33.3

pm1 4 4 0.0 3 3 0.0 3 3 0.0

rot 45 43 -4.4 39 37 -5.1 35 32 -8.6

sct 5 5 0.0 4 4 0.0 4 4 0.0

t481 3 3 0.0 2 2 0.0 2 2 0.0

term1 9 8 -11.1 9 7 -22.2 8 6 -25.0

ttt2 11 10 -9.1 10 9 -10.0 9 8 -11.1

unreg 11 6 -45.5 10 5 -50.0 9 5 -44.4

vda 40 37 -7.5 35 32 -8.6 32 27 -15.6

x1 27 20 -25.9 25 18 -28.0 23 15 -34.8

x2 4 3 -25.0 4 3 -25.0 4 3 -25.0

x3 51 48 -5.9 44 41 -6.8 40 36 -10.0

x4 26 23 -11.5 22 20 -9.1 21 18 -14.3

z4ml 3 3 0.0 2 2 0.0 2 2 0.0

total 930 784 -15.7 830 669 -19.4 763 589 -22.8

Table A.24: Comparison of Hetero-Mapper & Post-Process-Homo
lxxxvii

Circuit Nsup (6, 4, 7) Nsup (6, 4, 8) Nsup (6, 4, 9)

Names PPH Het Dif % PPH Het Dif % PPH Het Dif %

C1355 21 21 0.0 19 19 0.0 17 17 0.0

C432 20 13 -35.0 18 12 -33.3 17 11 -35.3

C880 20 14 -30.0 19 13 -31.6 18 12 -33.3

alu2 29 17 -41.4 27 16 -40.7 26 14 -46.2

alu4 47 29 -38.3 44 26 -40.9 41 24 -41.5

apex6 36 29 -19.4 34 26 -23.5 32 23 -28.1

apex7 12 10 -16.7 11 9 -18.2 10 8 -20.0

b9 7 6 -14.3 7 5 -28.6 6 5 -16.7

c8 7 5 -28.6 7 5 -28.6 6 5 -16.7

cht 6 6 0.0 6 6 0.0 5 5 0.0

cm150a 3 2 -33.3 3 2 -33.3 3 2 -33.3

cm151a 2 1 -50.0 2 1 -50.0 1 1 0.0

cm85a 2 2 0.0 2 2 0.0 2 2 0.0

cmb 3 2 -33.3 3 2 -33.3 2 2 0.0

count 9 6 -33.3 9 5 -44.4 8 5 -37.5

example2 15 14 -6.7 14 13 -7.1 13 12 -7.7

frg1 9 5 -44.4 8 5 -37.5 8 4 -50.0

frg2 46 36 -21.7 43 33 -23.3 40 30 -25.0

i1 3 3 0.0 3 2 -33.3 2 2 0.0

i6 26 16 -38.5 25 15 -40.0 23 14 -39.1

i7 31 21 -32.3 29 19 -34.5 27 17 -37.0

i8 64 41 -35.9 60 37 -38.3 56 33 -41.1

i9 39 23 -41.0 37 21 -43.2 34 19 -44.1

k2 53 42 -20.8 50 38 -24.0 47 35 -25.5

my-adder 8 8 0.0 8 8 0.0 7 7 0.0

parity 2 2 0.0 2 2 0.0 2 2 0.0

pcler 6 4 -33.3 5 4 -20.0 5 3 -40.0

pm1 2 2 0.0 2 2 0.0 2 2 0.0

rot 32 28 -12.5 29 26 -10.3 28 23 -17.9

sct 3 3 0.0 3 3 0.0 3 3 0.0

t481 2 2 0.0 2 2 0.0 2 2 0.0

term1 7 6 -14.3 7 5 -28.6 7 5 -28.6

ttt2 8 7 -12.5 8 6 -25.0 7 6 -14.3

unreg 9 4 -55.6 8 4 -50.0 8 4 -50.0

vda 29 24 -17.2 28 22 -21.4 26 20 -23.1

x1 21 14 -33.3 20 12 -40.0 19 11 -42.1

x2 3 2 -33.3 3 2 -33.3 3 2 -33.3

x3 36 32 -11.1 32 29 -9.4 30 26 -13.3

x4 19 16 -15.8 18 14 -22.2 17 13 -23.5

z4ml 2 2 0.0 2 2 0.0 2 2 0.0

total 699 520 -25.6 657 475 -27.7 612 433 -29.2

Table A.25: Comparison of Hetero-Mapper & Post-Process-Homo
lxxxviii

