
Chapter 1

Introduction

In an ideal world, a �eld-programmable gate array (FPGA) vendor would use hundreds or

thousands of benchmark circuits in determining the architecture of a next generation de-

vice, and in developing the associated automatic placement and routing software for it. In

this way, the architectural design space would be adequately explored and the best software

algorithms would be used and well tested. Similarly, a commercial developer of general

computer-aided design tools would require quality benchmark circuits to evaluate the ef-

fectiveness and e�ciency of various new algorithmic techniques. The use of benchmarks

is crucial for all facets of computer-aided design because the vast majority of interesting

and practical problems are NP-hard and can only be solved by heuristic or approximate

techniques. Similarly, FPGA design is inherently inexact, so architectural questions must

also be answered empirically.

A fundamental problem exists for CAD and FPGA research: Because the device and

its tools are new, there are few large (or correctly sized) designs available to perform these

kinds of exploration and evaluation. In the case of FPGAs, some circuits will always exist

by purchasing benchmarks from customers migrating from larger gate-arrays or synthesis

from high-level design languages but these rarely su�ce. Cutting-edge CAD vendors have

no such luxury, and are forced to expend considerable e�ort creating benchmarks internally.

The proprietary nature of benchmarks, and the rarity of commonly accepted benchmark

standards means that it is often very di�cult to compare competing heuristic solutions for a

given problem. In an e�ort to address this issue, researchers at the Microelectronics Centre

of the University of North Carolina (MCNC) [74] have collected approximately 200 public

1



CHAPTER 1. INTRODUCTION 2

benchmarks and have made them freely available by anonymous ftp. These circuits are very

popular for empirical validation in academic research, but largely spurned by industry as

too small (about half are 100 nodes or fewer).

A related e�ort by the PREP Corporation [56] has de�ned a number of small represen-

tative benchmarks, with the goal of evaluating the logic capacity and speed of FPGAs. The

metric is \how many" of the individual (but joined) circuits can be packed in a given device,

and how fast the resulting compound circuit will run. Most researchers believe that this

method does not address how logic characteristics change with size, especially with respect

to interconnect usage, nor does it yield interesting test-cases for CAD software.

Random graphs are another possibility, particularly attractive because there is an in�nite

supply. Random graphs have often been used for the evaluation of partitioning algorithms

for large circuits (where there are no available benchmarks). In particular, a number of

classic partitioning papers [45, 46, 48] have done empirical validation with random graphs.

One of the contributions of this thesis is to show that arbitrary random graphs are not

realistic proxies for real circuits, and exhibit increasingly bad behaviour as the problem size

increases.

A traditional graph-theoretic approach to NP-hard problems is to restrict the input

domain, then identify an e�cient deterministic algorithm for a subclass of graphs. For

example, it is NP-hard to exactly determine the minimum number of colours �(G) required

to form a \proper colouring" of an arbitrary input graph G [29]. But, if G is known to be

P4-free|for any path xyzw in G it is always the case that one of the edges xz, xw or yw

also exists in G|it has been shown [14] that a straightforward greedy algorithm exists to

determine �(G) exactly in linear time.

One could claim that domain restriction is not directly applicable to practical CAD

problems because a boolean network really is just an arbitrary graph: \for any G, an

orientation of its edges and labeling of its nodes with primitive boolean functions (e.g. ^,

_, :) provides a boolean network computing some function." However, our fundamental

belief, as we will discuss further, is that such an arbitrary labelling of a general graph does

not result in a practical or realistic boolean network as would be produced by a human

designer or an automated synthesis tool. Without necessarily ruling out certain types of

graphs as possible inputs to a software tool, we can perform data analysis to identify the

expected structure of realistic inputs, and tune our tools to the distribution of expected



CHAPTER 1. INTRODUCTION 3

inputs.

It is a well known fact that relatively simple heuristics can often perform well|in prac-

tice the di�culty associated with random or arbitrary graphs does not occur, because real

circuits exhibit much more structure than would be found randomly. For example, channel

routing is known to be NP-hard [33, 50], but the search for more complicated algorithms or

a guaranteed approximation scheme for the basic algorithmic problem is no longer \inter-

esting" because existing heuristic algorithms work well and quickly [50] for all known data.

This situation is analogous to the conclusions of Shew [63] who studied the application of

graph colouring to scheduling with a con
ict graph. He found that, even though arbitrary

con
ict graphs are always possible, real-life input tends to have P4-free or nearly P4-free

structure: the heuristic algorithm was working well in practice because it was optimal for

large subgraphs of the input it was given.

In the design and evaluation of good inexact architectures and heuristic algorithms it

is crucial to understand the type of data that the FPGA or algorithm will be required

to handle and thus to trust the test data that are used in its creation. The goals of this

research are to provide a greater understanding of the graph-theoretic structure of real-life

digital circuits and to apply this knowledge to the generation of high quality benchmark

circuits.

In this thesis, we present a careful methodology for dealing with the benchmarking

problem. We de�ne a number of new graph-theoretic properties of combinational and

sequential circuits. These properties are based on well known and important features of

digital logic such as combinational delay, fanout, and reconvergent fanout. We also propose

metrics that capture the inherent local structure of circuits not seen in random graphs.

Given this better understanding of the combinatorial structure of circuits, we de�ne the

new problem of \parameterized circuit generation" and solve this problem by proposing

and fully implementing a new algorithm. Since both of these e�orts contain a large body of

empirical and heuristic work, the �nal proof is in the resulting circuits themselves. We give

conclusive evidence that the circuits we produce are realistic benchmarks by contrasting

them both to existing benchmarks and to random graphs. As a byproduct of this validation

step, we show the non-viability of purely random graphs as benchmarks.

The software tools circ and gen arising from this work are freely available, and them-

selves form an important contribution to the community. Circ is a tool for performing



CHAPTER 1. INTRODUCTION 4

analysis on an input circuit, and producing statistical and structural information about it.

Gen takes a list of parameters (discussed in Chapters 3 and 4) and produces a circuit which

satis�es the user's speci�cation.

Circ and gen have been downloaded under an academic license by more than 30 persons

representing more than 20 companies and academic institutions, and have been installed by

the author for use at Xilinx, Altera, Actel, and Hewlett Packard Corporations.

1.1 Overview of the Thesis.

The research described in this thesis has three distinct aspects: characterization of digital

circuits, generation of parameterized random benchmarks, and validation of circuit quality.

In Chapter 2, we provide further context and motivation for this work, and discuss

previous work on circuit characterization and wireability, and circuit generation.

Chapters 3 and 4 address the characterization issue, asking the question \What is a

circuit?" Chapter 3 deals with combinational circuits, introducing new characteristics of

circuits based on combinational delay, and proposing a new theoretical characterization of

reconvergent fanout and metrics for capturing the inherent local structure in combinational

circuits. In Chapter 4, we investigate the more complex sequential circuit. We give an

abstract model of a sequential circuit, de�ned in terms of combinational building blocks,

and add a number of new characteristics speci�c to sequential circuits.

In Chapter 5 we formally de�ne the parameterized circuit generation problem for com-

binational and sequential circuits, and give an algorithm to solve it. The algorithm has

been fully implemented in the tool gen, and we discuss a number of implementation details

from this experience.

Chapter 6 deals with the �nal research topic, empirical validation. Using gen to \clone"

existing benchmarks from their parameterization, we can compare post-place and global

route metrics of wireability between real circuits, their gen-clones, and random graphs

of the same size. We use this method to give strong empirical evidence both that our

algorithm and tool provide good benchmarks, and that standard models and methods for

random graphs do not.

We conclude and describe areas for future work in Chapter 7.

The historic development of the research di�ers from how it will be presented herein.



CHAPTER 1. INTRODUCTION 5

The combinational characterization of circuits from Chapter 3, and a predecessor of the

algorithm of Section 5.2 for combinational generation, though without locality characteris-

tics, (gen 1.0) �rst appeared in the 1996 Design Automation Conference [41]. This work

since been submitted for journal publication [42]. The model of Chapter 4 for sequential

circuits, excluding sequential reconvergence (Section 4.3) and the updated algorithm for

sequential generation (gen 3.0) was presented at the 1997 ACM Symposium on Field-

Programmable Gate Arrays [39]. A journal version is in preparation. Sequential recon-

vergence (Section 4.3), the work on locality analysis (Section 3.5) and its e�ects on the

generation algorithm have not yet been published outside of the thesis.


