
Chapter 2

Background and Previous Work

2.1 Terms and De�nitions.

A graph G = (V;E) has n nodes (vertices) and m edges, unless otherwise speci�ed.

A boolean network G is a directed graph whose nodes, also called gates, are labeled as

primitive boolean functions: typically ^ (and), _ (or) and : (not). Edges are also referred

to as wires. A boolean network is combinational if it is acyclic. A sequential network is

traditionally de�ned as a circuit with memory. We will assume that memory is implemented

by atomic
ip-
op nodes in the representation of the circuit as a graph, rather than built

from gates. All sequential circuits discussed in this thesis will be single-clock synchronous

networks, unless stated otherwise, which means that all directed cycles must be \broken"

by one or more
ip-
ops. We will ignore the issue of pipelining, whereby
ip-
ops are added

for timing reasons but logically function as bu�ers, so we assume that all sequential circuits

have back edges1. When referring to the graphical representation of a practical boolean

network, we will use the term circuit graph or circuit. The term graph will refer to an

arbitrary graph which may or may not arise from a boolean network. A random graph is

one drawn from some natural distribution by a stochastic process. For example, a random

graph G(n; p) is a graph on n nodes such that each potential edge exists with independent

probability p.

In a circuit graph G, nodes with no incoming edges are called primary inputs and nodes

with no outgoing edges primary outputs. The fanin (fanout) of a node is the number of

1A back edge is a \feedback" edge which goes from one sequential level to a previous level. Sequential

levels are formally de�ned later.

6

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 7

incoming (outgoing) edges. The depth of a circuit is the longest input to output directed

path. In a combinational circuit, this distance is the unit combinational delay, delay(G),

of the circuit. The length of a shortest directed path from an input to a particular node x

de�nes the unit combinational delay for x, delay(x). In a sequential circuit, the combina-

tional delay of a node is the length of the shortest directed path from either an input or

a
ip-
op, and the combinational delay of the circuit is the maximum combinational delay

over all nodes.

A circuit is often modeled as a hypergraph, H = (VH ; EH), particularly for the partition-

ing problem. VH = VG and each node and its set of fanouts collectively form a hyperedge in

EH , usually called a net. Electrically, this is the more correct model of a circuit, but most

problems are more easily de�ned in terms of graphs.

The recursive fan-in (fan-out) of a node, also called a cone, is the set of all preceding

(following) nodes in the partial order underlying G (unde�ned for sequential networks).

When two disjoint directed uv paths exist in G, we say that G is a reconvergent network and

that G is \reconvergent at v." In a non-reconvergent combinational network every fanout-

cone is a tree. The increasing presence of reconvergence is known to introduce di�culty

into many CAD problems, as the input graphs become less and less \tree-like."

Circuits are often classi�ed into two distinct types. Datapath circuits are repetitive,

simple sequences where each node is often connected only to immediate physical neighbours.

Arithmetic functions such as an adder or multiplier are typical datapath circuits. Random

logic or control circuits are loosely de�ned as everything else. They typically lack the

regularity of datapath circuits. Since the structure of a datapath circuit is usually well-

known to the designer, and the type of functions computed are typically more generic

(rather then application speci�c), they are often treated as special cases for layout. It is

relatively easy to synthesize a datapath using commercial CAD tools, so we will be primarily

interested in circuits in the random-logic category. Figure 2.1 shows examples of datapath

and random logic, taken from the MCNC benchmark collection.

We will occasionally refer to qualitative size of circuits (small, medium, large). Current

generation FPGAs have one to four thousand 4-input lookup tables (or LUTs)2, and next

2A k-input lookup table is a logic element which can be programmed to implement any single-valued

boolean function on k inputs. Though an FPGA could have a more restrictive type of logic block, or have
di�erent logic functions available throughout the architecture, the industry standard is to use the k-input

LUT uniformly across the chip.

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 8

0

0 0

0

0

0

0 0

0

0

0

0 0

0

0

0

0 0

0

0

0

0 0

0

0

0

0 0

0

0

0

0 0

0

0

0

0 0

0

0

0

0 0

0

0

0

0 0

0

0

0

0 0

0

0

0

0 0

0

0

0

0 0

0

0

0

0 0

0

0

0

0 0

0

0

0

0 0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Datapath logic

MCNC circuit my adder

0

0

0

0

0 0

0

0

0 0

0

00

0

0

00

0

0

0

0

0 0

0

0 0 0 0

00

0

0 00

0

00 0

0

0

0

0

00

0

000

0

0

000

0

0 00

0

0

0

0

0 0 0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0 00 0 000 00 0 000

0

0

0

000

0

0 0

00 0 0 00

0000

0 0

0 0

0 0 000 0 00 0

00

0

0

0

0

0

0

0

0

Random logic

MCNC circuit C432

Figure 2.1: Datapath vs. random logic.

generation devices will have double that. So we will use \small" to refer to circuits with 500

LUTs or fewer, \medium" for 500 to 5,000 LUTs, \large" for up to 10,000 LUTs, and very

large for beyond 10,000 LUTs. Gate-array technology typically quanti�es logic in terms of

standard 2-input gates. Industry typically translates one LUT/
ip-
op pair as comprising

about 12 such gates. State of the art gate arrays are currently in the 1,000,000 gate range,

or about ten times the capacity of current FPGAs.

2.1.1 Computer-Aided Design for Digital Circuits.

It is important to have a common view of what is implied by a particular computer-aided

design software problem. We give enough detail here to be self-contained, and refer the

interested reader to Lengauer's comprehensive book [50] for more detail.

Technology-independent optimization refers to the manipulation of a network to achieve

some common basic requirements for all technologies (such as constraining fan-in/out [32,

38]) or to e�ect a result deemed to be of value for any destination technology; e.g. isolating

and merging common boolean expressions to reduce the size of the network.

Partitioning refers to separating the nodes of a graph into two or more disjoint sets

or modules to minimize some graph-theoretic measure, usually the number of edges or

hyperedges which cross the partition boundaries, subject to such constraints as the minimum

or maximum module size. An equivalent notion to the number of inter-module edges is the

number of vertices in each module that have external connections, often referred to as the

number of logical pins in the module. Standard formulations of the problem are NP-hard.

Various heuristic algorithms exist. One popular approach is the Kernighan-Lin-Fiduccia-

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 9

Mattheyses (KLFM) [46, 26] algorithm, which performs incremental improvements (swaps)

from an initial solution until some predetermined tolerance is reached. In practice, such

algorithms can perform reasonably well, despite theoretical proofs of pathological non-

optimality.

Though primitive boolean functions (^, _, :) are the basic blocks of the abstract de-
scription of a circuit, hardware implementation typically draws from a larger library of

available basic functions, often determined by physical design concerns. Technology map-

ping is the process of converting from a circuit whose nodes are basic blocks of one (e.g. the

generic) type into one whose basic blocks are of another (the technology speci�c) type. For

�eld-programmable gate arrays the basic block is usually a k-input lookup table (LUT), in

which case the problem of �nding a size or depth optimal mapping is somewhat di�erent

from the subgraph matching problem of typical library based mapping. Existing software

to compute such a mapping includes
owmap [13], chortle [27], rmap [60], xnfmap [73] and

mis/sis-pga [54]. For a general reference, see the textbook by Brown et. al. [11].

Placement is the embedding of a graph G into the physical, geometric, world. This is

often abstracted as a mapping of the nodes of G into the nodes of the N � N grid-graph

GN;N (the \host") to minimize some approximation of channel width (see below) or a total

wirelength metric (e.g. sum of Manhattan distances between adjacent nodes in G). In this

thesis we will use both this model, which closely resembles a number of Xilinx FPGAs,

and hierarchical variations such as occur in the Altera 10K programmable device. Once

placement has taken place, we can de�ne the length of a particular edge and the total wire-

length R , average wire-length �R , and distribution of wire lengths R = fRlg , with respect

to the placement. Wireability, which refers to the types and distributions of wire-lengths

which can be supported by a given host (e.g. GN;N) independent of any particular circuit,

will be discussed in more detail in Section 2.2.23. By the term routability we refer to the

\ease" of successfully placing and routing a speci�c network G into a host, using these and

other related metrics.

Given the placement, a global routing is an assignment of the edges of G to paths in

GN;N . Then we have the notion of channel width, W , de�ned as the maximum over all

3Note that the term \wireability" refers mostly to the process of determining statistical relationships on

the connectivity and distribution of wires once circuits are already placed on a grid-like architecture. It
is not usually used in the sense of a quality judgement on a network. In general, we don't use the terms

wireable and unwireable in that sense, rather we use routable and unroutable.

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 10

edges in GN;N of the number of paths using that grid edge. The optimal channel width over

all placements is denoted W �. A detailed routing assigns the paths of the global routing

to realizable electrical connections with respect to the technology. In the case of mask-

programmable technology this means physical wires which can interact (cross) other wires

in only speci�c ways. Field-programmable gate arrays have preexisting wires laid out in

tracks in each channel, each track is broken up into segments (actual wires) connected by

programmable connections with which to select a given path within a track or between

tracks. A detailed routing is then a re�nement of the global routing which speci�es the

settings of the programmable switches to code a physical path in the segments of the coarse

routing (channels only). It is possible to consider global and detailed routing together as

a single problem. For some FPGA architectures the concept of detailed routing makes less

sense, and this approach is taken.

Since known deterministic algorithms for NP-hard problems are considered infeasible,

existing practical algorithmic solutions often have no provable performance (correctness or

quality). For evaluation of competing techniques the community uses various \standard"

benchmark suites. By running a new algorithm on the benchmark circuits a quantitative

measure (run-time, channel width, percent of routable connections, speed of the circuit)

can be obtained for comparison with existing algorithms. The currently accepted standard

in academia is to use the the MCNC benchmarks [74]. We will occasionally refer to and

take examples from this collection of circuits; two such examples have already been shown

in Figure 2.1. Industry would typically use proprietary benchmark sets, and would not

announce results of their experiments.

Some terms with respect to implementation technologies: full-custom VLSI refers to

the layout of a design (transistors and wires) on a totally empty and unconstrained space.

Standard-cell refers to a technology where the basic blocks come from a library of prede-

termined logic elements which can be placed in rows at the speci�cation of the designer.

Detailed routing then reduces to channel routing (with feed-through cells) in the horizontal

channels between the rows. A gate array technology constrains the logic elements to lie on

a rectangular grid with both horizontal and vertical routing channels. Mask programmable

gate array (MPGA) technology then allows the wires to be freely placed on a separate

fabrication layer at manufacturing time.

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 11

2.1.2 Field-Programmable Gate Arrays.

The design of an application speci�c integrated circuit (ASIC) using either gate array or

standard cell technology requires that the wiring is added as one step in the fabrication

process. A recent technological alternative to this type of ASIC is the �eld-programmable

gate array, which has both programmable logic elements and a programmable routing net-

work to connect the logic. FPGAs can be programmed using just a personal computer

and simple hardware interface, giving them
exibility and time-to-market advantages over

traditional ASICs, which must have all wiring completed in a fabrication plant. However,

programmability typically incurs a factor of ten in decreased chip density and a factor of

three in decreased speed for the resulting hardware. This tradeo� is increasingly more ac-

ceptable to designers, and the FPGA industry has grown from an insigni�cant portion of

the ASIC business in 1984 to a 1.4 billion US dollar industry today.

The advent of FPGAs spawns a host of new problems for CAD designers. Because

FPGAs have a �xed routing network instead of \open real estate" the layout problem

becomes more graph theoretic than geometric in nature. For rapid prototyping, it is common

to implement a single design on multiple FPGAs or even boards of FPGAs, creating new

variations on the partitioning problem which do not arise in higher capacity, more �nely

grained, ASICs. While the routing problem for gate arrays is one of minimizing channel

width, CAD software for FPGAs deals with a binary �t/no-�t problem. Because of the

programming logic, FPGAs also produce new challenges for timing estimation.

In addition to these new software problems, there is the issue of the FPGA architecture.

Numerous choices exist in the design of an FPGA: Do I organize the logic and routing

architecture hierarchically, or in a
at grid? How big should logic elements be? How many

tracks should be placed in each row/column and how should they be connected together?

Should the programming be permanent, or stored in a way which is recon�gurable? All

of these issues must be addressed in the context of device cost, routability, timing, power

consumption, noise, and the ability to write e�cient CAD software. The architectural

design process is inherently approximate, so many of these questions can only be answered

empirically with benchmarks.

It is by no means clear which architectural choices are correct, or even if there are correct

choices. The Actel Corporation manufactures FPGAs using a standard-cell like architecture,

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 12

S

C L

C S

C L

C S

C L

C S

C

S

C L

C S

C L

C S

C L

C S

C

S

C L

C S

C

C S

C L

C S

C

S C S C S C S

L

P

P

P

P

P

P

P

P P P P P P

P

P

P

p

p

P

PPPPP

Xilinx 4000

P

P

P

P

P

P

P P P P P P

P PPPPP

P

P

P

P

P

PL|L
L|L
L|L

L|L

L|L
L|L
L|L

L|L

L|L
L|L
L|L

L|L

L|L
L|L
L|L

L|L

L|L
L|L
L|L

L|L

L|L
L|L
L|L

L|L

Altera 10K

Figure 2.2: Di�erent FPGA architectures.

and uses anti-fuse technology for permanent programmability (the only major vendor to do

so). Altera's 10K series of devices organize logic elements into a shallow hierarchy: cliques

of fully connected logic and a more sparse interconnection structure between cliques. Xilinx

uses a \
at" architecture reminiscent of a gate array, with a routing architecture consisting

of multi-track channels with \switch" (S) block modules at the intersection of channels, and

\connection" (C) block modules where logic-block pins enter the routing network (P and L

stand for pin and logic block, respectively). Abstract representations of Xilinx and Altera

architectures are shown in Figure 2.2. Both Altera and Xilinx use SRAM bits to program

the parts, which means the logic can be re-programmed repeatedly, in some cases during

the computation itself though this is not commonly done.

The research described in this thesis applies both to the ASIC and the FPGA world,

but it is of particular interest for FPGAs. As mentioned previously, hardware and software

architects of a \new" 1,000 LUT FPGA have to deal with the discrete �t/no-�t issue rather

than more �ne-grained optimization problems. Typically this means a large number of

circuits in the 900-950 LUT range would be required to exercise the device, while neither

a 400 LUT circuit nor a 1,200 LUT circuit would be an interesting test case. The circuits

must also be representative enough to deal with the vastly di�erent types of circuits that a

user might wish to implement. Thus FPGA vendors consider their benchmark suites to be

closely guarded proprietary information, and universally feel that there are \never enough

benchmarks."

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 13

2.1.3 Graph Classi�cations.

A class of graphs is a set of graphs which are related in some way. A class can be de�ned

by some speci�c graph-theoretic property, for example \A graph is regular if all vertices

have the same degree." The members of the class can sometimes be de�ned by recursive

construction: \A single vertex is a tree, a tree T with a new vertex x and an edge from x to

some vertex v of T is also a tree." The class can be determined by virtue of what it does not

contain, for example a forbidden con�guration or subgraph: \A tree is a connected graph

with no cycles."; \A planar graph is a graph which contains no subgraph \homeomorphic"

to the graphs K5 or K3;3." Any other well de�ned mathematical de�nition would also be

appropriate. Note that often a graph class can be de�ned in multiple equivalent ways. For

example a planar graph is commonly de�ned geometrically as \a graph for which there

exists a embedding which maps vertices to points in the plane and edges to Jordan curves

connecting their respective endpoints that do not intersect except at those endpoints."

If G = (VG; EG) is a graph then any graph H = (VH ; EH) where VH � VG and EH � EG

is a subgraph of G. If xy is an edge of G, and xy is in H whenever both x and y are in H ,

then we say that H is an induced subgraph of G, otherwise it is a partial subgraph. It is

often interesting when the de�nition of a class is closed under the taking of subgraphs; that

is, the de�nition of the class is hereditary. Planarity is hereditary, because any subgraph of

a planar graph is clearly planar.

2.2 Previous Work.

2.2.1 Rent's Rule.

The commonly accepted relationship called \Rent's rule" dates back [49] to E. F. Rent of

IBM, who made an empirical observation regarding the partitioning problem:

Rent's rule: Let G be a circuit with n blocks (nodes) and m wires (edges). Consider a

\reasonable" partition of the blocks of G into modules M1;M2; � � � ;Ml where the modules

each satisfy a pin constraint: the number of external vertices in any Mi is constrained

to some value P �, and the number of modules is no less than �ve. Then the empirical

relationship

P = kBr (2.1)

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 14

is found to hold in general, where

k = the average number of edges incident on a block,

P = the average number of pins (external vertices) in a module,

B = the average number of blocks in a module, and

r = the \Rent exponent", empirically 0:5 � r � 0:8.

Satisfyingly enough, for the trivial \total" partition of G into modules of one block each

Rent's rule with B = 1 correctly gives the average number of pins as the average degree

over the blocks in the network. This does not hold empirically for partitions into only a few

modules, as stated in the de�nition and discussed later.

The algorithm for separating the circuit into modules is unde�ned in the standard

formulation of Rent's rule. Later re�nements by Feuer [25] specify that placement provides

such a \good" partition into modules in terms of geometric proximity in the sense that

from any circle (closed set of grid points of Manhattan distance r from a �xed centre point)

the number of external connections will follow Rent's rule on average. So we can think of

Rent's rule as both a law that holds for a given partition, on average, and at the same time

as the expected relationship for a speci�c module in terms of its terminal and non-terminal

vertices.

It is crucial to note how closely the notion of Rent's rule is tied to that of a good

empirical modularization. For example, it is possible to self-embed GN;N (equivalently, give

a partition) badly so that every wire is of length N
2
, yielding a channel width of O(N)

and Rent exponent r = 1, even though the trivial embedding has W = 1 and r = 0:5.

Thus any discussion of Rent's rule holding in an abstract sense must capture somehow

the existence of some modularization, either in a non-constructive sense or by exhibiting

the modularization directly. Hagen et. al. [35] investigated this in detail, and de�ned the

intrinsic Rent parameter of a circuit as the minimum possible Rent parameter over the set of

all partitioning algorithms. They gave empirical evidence to show that di�erent algorithms

do yield di�erent values for the Rent parameter. We also stress that Rent's rule applies to

modules on average and does not address maximum or minimum behaviour for a particular

module.

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 15

Empirical calculations.

Landman and Russo [49] discuss the historical origins of Rent's rule. They calculate P =

4:17B0:65 for Rent's initial data and cite various other independent con�rmations: A study

by Meade and Geller [52] yields P = 4B0:7. Notz et al. [55] �nd P = kB
2

3 where k is one

plus the average fan-in of the network. Radke [57] also mentions the \common knowledge"

of the rule (attributing it to Rent), noting observations of p varying from 0:5 to 0:7 with

values of k between 3 and 5.

The typical method for calculating r is to perform an empirical partition, sample

modules for values (Pi; Bi), and perform a linear regression on logPi = log k0 + r logBi

(Pi = ck
0

Br
i), usually constraining k = ck

0

as a constant. Landman and Russo speci�cally

point out that Rent's Rule is unstable when the number of modules is less than 5. One

reason that this would be true is that the number of pins on a chip is usually a hard con-

straint in practice, and the engineer must build the design within the given number of I/Os.

Hierarchy inside the chip does not su�er from these hard constraints, and should exhibit

more consistent behaviour.

Russo [58] notes that more parallel \high performance" circuits tend to exhibit larger

r, because they tend to have a higher pins-per-gate ratio, hence Rent exponent.

Theoretical Issues.

In an attempt to understand the determinants underlying Rent's rule, and also to investigate

the tradeo� between logic (control) and memory, Donath [17] developed a model of the

process of designing computer hardware. He models the modular decomposition process

of hardware design, and argues that Rent's Rule is a natural consequence of a structured

design methodology. Donath also investigated the \information content" involved in trading

memory bits for logic (i.e. implementing logic functions as lookup-tables in ROM), and

derived a rough rule of thumb which states that one basic logic element (gate) is equivalent

to 8.5 bits of memory4.

Landman and Russo cite an old unpublished manuscript of Donath [20] in which he

proves that a random graph G, de�ned as \a graph with edges distributed randomly among

4This suggests that a 2K ROM, used as a lookup table, would be expected to implement a boolean

function comprising about 1900 2-input NAND gates (on average). Similarly, a 2K truth table could be

expected (on average) to optimize into about 1900 gates of combinational logic.

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 16

its vertices," exhibits a linear relationship between P and B (i.e. r = 1). The statement is

di�cult to interpret without a concrete random graph model, but the basic property will

also be visible in the theoretical wirelength studies of the next section.

Discussion.

Rent's Rule works well as a predictor of I/O to logic ratios for internal connections to a chip.

Most researchers would use a safe overestimation of r to predict the number of pins required

for a chip, or to generate a theoretical \envelope" on the number of tracks or wirelength

but, in practice, would combine this with empirical analysis.

For our purposes, Rent's Rule is not a good \characterization" of circuits, because of its

reliance on an existing parameterization and on its reference to the average-case behaviour of

the partition hierarchy. However, Rent's Rule is a well accepted guideline in the community,

and important to keep in mind as a general rule of thumb about circuits.

2.2.2 Stochastic Wireability Models.

Routability refers to estimating the wirelength or �ttability of a circuit on a given host graph

or architecture. Early research on gate-arrays gave us a number of statistical properties and

distributions which can be used to predict routability for circuits.

Wire length distributions.

Using random placements [16, 36, 59], or assumptions about stochastic properties of place-

ment [24, 61] and Rent's rule [18, 19, 25] various theoretical models of wire-length have

been proposed.

Donath [16] studied the statistical properties of randomly placing a random graph on a

grid. He developed a lower bound on the average wire-length �R, over all placements, for an

embedding of a given G into GN;N . He showed that this lower bound is dependent only on

n and m (the number of edges), and is independent of the structure of the graph:

�R =
mn

1

2
�

n

2m

e1�
n

2m

(2.2)

=
mn

1

2
�

1

2k

e1�
1

2k

(average vertex degree k): (2.3)

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 17

The bound provides some information, since we expect that any reasonable algorithm does

better than the expected random placement. However, the bound implies an �R of ap-

proximately N
3
and W = O(N) [18], so the bounds are too loose to have any practical

utility: studies have shown both �R and W � to be roughly proportional to logN in prac-

tice. Note that this result also implies the unit Rent exponent for the random graphs in

Donath's construction.

Donath [18] later developed a formula for the upper bound on expected average wire

length �R based on a \pseudo-random" placement. The placement is partly stochastic, but

attempts to \re
ect both the characteristics of logic complexes as they are designed by

engineers and the e�ect of the placement procedure." By assuming that Rent's rule holds

recursively, he developed a new upper bound for the expected average wire-length.

�R � Br� 1

2 ; r > 1

2

�R � logB; r = 1

2

�R � f(r); r < 1

2
(independent of B.)

(2.4)

An important note is that the estimator under the Rent assumption di�ers from that of a

purely random placement, which yields �R �
p
B=3 as mentioned earlier. Donath compares

his upper bound to experiments on �ve real circuits and �nds that the estimate is about

double the average wire length found in practice. The dependence on both B and p is

supported by the experiments.

Feuer [25] does a similar analysis to develop wire length estimators from Rent's rule,

and also calculates the distribution of wire lengths. He derives, from Rent's rule and several

simple geometric assumptions about the placement, an expression

Rl = c(r; B)l2r�4 (2.5)

for the expected number of connections between any two grid points of Manhattan distance

l apart in a placed circuit. The parameters r and B are from Rent's rule, and c is a constant

function of these parameters only, hence constant for a given graph.

This distribution leads to expressions for the average wire length of connections internal

and external to a region of radius d:

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 18

�Ri =
p
2

�(5� �)

(3� �)(4� �)

Br�0:5

(1�Br�1)
; (2.6)

and

�Re =
p
2
(1� �)(5� �)

(3� �)(4� �)
Br�0:5 (2.7)

where � = 2� 2r.

The overall average wire length predicted by the model is

�R =
p
2
(2� �)(5� �)

(3� �)(4� �)

Br�0:5

(1 +Br�1)
: (2.8)

Since (1+Br�1) vanishes for large B, the latter is proportional to Br� 1

2 ; exactly as derived

by Donath for r > 1

2
(Equation 2.4).

Feuer's analysis yields justi�cation that geometric proximity after placement is itself

a \good modularization" for application of Rent's rule, as mentioned earlier, because the

derivation from the proximity assumptions generates Rent's rule, which is then itself as-

sumed for the derivation of the wire-length estimators.

El Gamal and Syed [24] de�ne a purely stochastic model in which wire lengths are

distributed Poisson(�) and wire trajectories are parameterized by
; �; �; p; u. They develop

a formula for average wire length in terms of these parameters, and estimate the parameters

using empirical data. As an application of their model they vary the parameter u, the

percentage of utilized gates, holding other parameters �xed and �nd that \it is better to

use an array of size n
:8
with more tracks (channel width) than a larger array of size n

:5
with

fewer tracks." It is stated that 100% utilization (u = 1) is unrealistic, and implied that the

model bears this out as well.

Sastry and Parker [59] show that \any placement which satis�es Rent's rule, or any

similar pin-to-block relationship," will have a wire-length distribution which is Weibull:

Rl = ��l��1e��l
�

(2.9)

with mean

�R =
1

�

�
1

�

� 1

�

�

�
1

�

�
: (2.10)

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 19

The parameters � and � are calculated from the empirical data by log-linear regression on

empirical data. Though there is de�nitely a relationship between r and these parameters,

the authors do not develop a closed formula, and instead rely on the regression to give

empirical values.

Channel Width.

Wire length alone does not capture the e�ect of di�cult areas or \hot-spots" with high

channel width. What we often would like is to have a prediction of the greatest channel

width in the array. This, of course, would have to be less than the available channel width

if routing is to take place.

El Gamal [23] gives such a model. He calculates W in terms of �R assuming that the

distribution of lengths is geometric and adding the additional assumptions of trajectory

along a minimum (Manhattan) distance path in the array: each lattice point emits Xi

wires of length Lij|given an initial trajectory (up-right, up-left, down-right, down-left)
ip

Lij coins and move up or down on heads and left or right on tails, as appropriate.

The conclusions to be drawn vary with �R. If �R is �nite, then the distribution of channel

densities is Poisson:

Wt = P

� �R

2
; t

!
(2.11)

where Wt is the number of channel segments with width t. The expected maximum channel

density converges to O(lnN) (almost always) when �R � O(lnN) and O(�R) (almost always)

otherwise. Since the former seems the most reasonable occurrence the primary conclusion

is that channel densities are distributed Poisson with a mean channel density of � �R
2
. Brown

et. al. [10, 11] �nd the accord between this prediction and several actual circuits to be very

good. They note, however, that the model becomes less accurate if the FPGA model is

expanded to give segments of more than unit length.

Applying Routability.

Chan, Schlag and Zien [12] recently combined several of the results just discussed to pre-

dict routability for a Xilinx 3000 series FPGA. Circuits are classi�ed as \unroutable",

\marginally routable" and \easily routable" based on the Feuer's expectation of channel

width for the circuit vs. the available channel width, an estimator for the Rent parameter

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 20

r using mincut partitioning and El Gamal's estimator for W .

Another (earlier) model for routability was given by Brown [10]. Here, routing is a

stochastic process with parameters specifying the network for the FPGA (e.g. the number

of connections in the switch and connection blocks, the channel width), several model-

parameters (event probabilities) and basic properties of the circuit to be routed (size, con-

nections and expected wire length �R (from El Gamal)). An expression for the expected

percentage of unrouted connections is generated. The model has been used both as an

indicator of routability and as a vehicle for determining good settings for the parameters

which specify the FPGA; e.g. to determine how much
exibility (how many switches) to

put in a Xilinx C-block or S-block.

Discussion.

The stochastic results cited in this section are the traditional approaches to characterizing

circuits and determining theoretical bounds for architectural parameters. The goals of this

thesis are quite di�erent, in that we want to determine graph-theoretic characteristics taken

from analyzing the circuit graph itself. The purpose of including this previous work is more

to provide context for the current research, and because the terms introduced here are used

elsewhere in the thesis.

2.2.3 Other Generation E�orts.

Random Graphs.

In this thesis, the term a random graph will refer to graphs generated by stochastic methods

which do not take into account the properties of digital circuits. Such random graphs are

drawn uniformly from the set of all graphs, or uniformly from a partially restricted set

of all graphs, such as \all regular graphs." The most common such model is the random

undirected graph G(n; p), de�ned as a graph on G nodes in which each potential edge exists

with uniform independent probability p. These graphs can be easily generated, but are

not realistic as circuits: for p < n logn they are disconnected and otherwise they contain

O(n logn) edges and have most nodes with degree logn, almost always. The former makes

the graph uninteresting, and the latter makes it electrically infeasible as a circuit.

There are also well-known methods for generating random degree-constrained graphs

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 21

uniformly. We use one such method (with modi�cations) for comparison to our circuits

in Chapter 6. However, there are no known methods to uniformly generate directed I/O

constrained graphs, or to generate directed graphs with restricted path-lengths, or which

properly satisfy the electrical constraints of a synchronous sequential circuit.

There is a long history of using random undirected graphs as benchmarks. Kernighan

and Lin [46], Johnson et. al. [45], Krishnamurthy [48] and Hagen and Kahng [34] (for others

see [50]) used random graphs to compare and evaluate partitioning algorithms. Vargese et.

al. [68] and Hauk et. al. [37] also used random graphs to study architectural parameters

and algorithmic issues for logic emulation systems with FPGAs, which require very large

circuits. Random graphs are currently unavoidable for experimentation beyond the size of

existing circuits.

Generating Circuits by Transformation.

Iwama et. al. [43], in independent work, discuss how to apply transformation rules to a

initial seed circuit and create a di�erent structural circuit with the same logic function. This

work applies only to combinational circuits, and is limited to generating variations on the

initial circuit. In a paper to appear later this year [44], they will discuss an improvement

on the work which generates seed circuits from random truth-tables, rather than requiring

an input circuit.

This work is primarily aimed at benchmarking for logic synthesis (logic independent

optimization) algorithms. The authors do not describe any applications of the approach to

dealing with physical design algorithms or architectural issues.

Generating Circuits with Rent's Rule.

In independent work, Darnauer and Dai [15] have recently given an algorithm for generating

random undirected graphs to meet a given Rent parameter. The basic idea is to generate a

random partition hierarchy, and recursively generate a graph from it. The approach has an

obvious attraction for partitioning, which was its primary application. Darnauer and Dai

showed the empirical validity of their algorithm for relatively small combinational circuits

on partitioning problems.

The primary drawbacks of the method are that the tool loses control over combinational

delay and does not have the ability to generate sequential circuits with the properties which

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 22

we concentrate on in this thesis and which are important for FPGA architectures and

all other physical-design CAD problems. We believe it would be possible to incorporate

the most important aspects of the Rent-based method into the high-level hierarchy of our

sequential generation; one area for further work would be to investigate combining our

approach for generating medium-size circuits with a high-level partition hierarchy. We will

remark further on this in Chapter 7.

2.3 \Obvious" Properties of Circuit Graphs.

Based on common knowledge of digital circuits, we can make a number of preliminary

observations about their combinatorial structure.

One obvious property is that the class of circuit-graphs is hereditary: if G is a circuit

then any induced subgraph of G will also be a circuit. Because electrical fanin and fanout are

constrained in all but special circumstances, we observe that the number of edges should be

linear in the number of nodes. For convenience, we will assume that any complete circuit is

connected, since a CAD algorithm could easily check connectivity and signi�cantly decrease

the problem complexity on disconnected graphs.

From Rent's rule, we can expect that circuits exhibit some type of \hierarchical" struc-

ture. However, this is an abstract notion only, since Rent's rule and the wireability studies

mentioned earlier do not give any applicable graph-theoretic restrictions which we can use

directly.

Also from empirical studies of Rent's rule, we note that the number of inputs and outputs

in a circuit is sub-linear in the number of nodes (unless r = 1 for the circuit, which is not

seen empirically). For a chip with a reasonable aspect ratio and packaging constraints this

follows independently of Rent's rule, since the number of I/Os can only be a small constant

multiple of the perimeter.

