
Chapter 3

Characterization of Combinational

Circuits

This chapter describes the statistical and structural characteristics that we have identi�ed

for combinational circuits.

Parts of this work are directly motivated by the generation problem. In order to generate

benchmark circuits, we will need a default parameterization �le, so we want to develop a

statistical pro�le for relationships between parameters. For example, if the user asks simply

for a circuit with 1000 nodes, we will need to choose a reasonable number of primary inputs

and outputs, and a reasonable value for combinational delay. The complete set of default

equations is in the �le \comb.gen" shown in Appendix A of this dissertation.

Characterizations which describe the combinatorial structure of circuits, however, are of

interest in their own right, and we propose a number of them here. Combinational shape,

reconvergence and locality are all structural characterizations that are introduced in this

thesis, and deal with the inherent structure in circuits which separates them from arbitrary

graphs. In addition to becoming data for the circuit pro�le, the structural ideas will form

the basis for the generation algorithm of Chapter 5.

For the empirical work here, we use the MCNC circuits. However, it is important to point

out that the tool circ that we have produced to extract the characterization of a circuit is

independent of the data; the user could use it on any collection of benchmark circuits, then

rede�ne the default pro�le accordingly. Circ is implemented to read circuit netlists in the

Berkeley BLIF format [74], and output numerous statistical and structural characteristics.

23

CHAPTER 3. CHARACTERIZATION OF COMBINATIONAL CIRCUITS 24

As well, circ is able to do netlist translation, and output circuits in a number of other

netlist formats (including Actel ADL [1], Altera AHDL/TDF [4] and Xilinx XNF [73]).

3.1 Empirical Data.

A large portion of the work in Chapters 3 and 4 is empirical, and for this we use the MCNC

benchmark circuits. The use of the MCNC circuits is largely unavoidable, since they are

the only large set of public benchmarks. We note that a user of the tools could pro�le their

own (internal) circuits as the basis for an alternative defaults �le. (See Appendix A.)

The MCNC benchmark circuits are a well-known set of combinational and sequen-

tial benchmarks available from http://www.cbl.ncsu.edu/. The circuits were converted

from EDIF1 to BLIF2 using a modi�ed conversion tool from MCNC. We did technology-

independent optimization with sis [62] (keeping the better result of script.rugged and

script.algebraic) then technology mapped using flowmap [13] into k-input lookup tables,

for k = 2::8. Speci�cally, each circuit was mapped 7 times, into 2-input LUTs, 3-input LUTs

up to 8-input LUTs. We chose to use lookup-tables because of their simplicity, functional

completeness and the ease of changing to di�erent LUT-sizes. We believe that the struc-

tural properties of circuits are su�ciently captured by the use of LUTs to determine valid

characterizations without the added complexity of more technology-dependent libraries.

One issue that we do not fully explore in this work is the e�ect of this early optimization

(CAD ow) on the exact statistical characterization which follows. For example, flowmap

is a delay based technology mapper, and it is not clear whether a di�erent mapper would

have changed some of our statistical results. Similarly, due simply to the volume of data,

we spend most of our analysis on 4-LUT mapped MCNC circuits, largely because this is

the most popular choice in the FPGA industry.

3.2 Basic Parameters of Combinational Circuits.

The characteristics in this �rst section are more for statistical purposes than to provide any

new structural information about circuits.

1EDIF is a \standard" netlist format used in industry.
2BLIF is a format used by the Berkeley sis tool, and commonly used in academia.

CHAPTER 3. CHARACTERIZATION OF COMBINATIONAL CIRCUITS 25

|
8

|
16

|
32

|
64

|
128

|
256

|
512

|
1024

|
2048

|
4096

|
8192

|
16384

|0

|60

|120

|180

|240

|300

|360

|420

|480

 size

 n
IO

All circuits:
log(nIO) = 0.46156 + 0.524 log(size)
RSQ = .4605

� �� ���
� ��� �

�
���
��
���
� �

�
�
�

�
�

�

�

�
��
�

�
�
�
�

�

�

�
��
��

�

�

��

��
�

�

�

�
�

��

�

��

�

�

�

�

����
�
�

�

����
�
�

�

�
�

�

�

�

��

�

�

��

��

��
�

�

��

�

�

�

�

�

�

��

�

�

�
�
�

�

�

�

�

�

�

�

�

�

�
�

�

��

�

�

��

�

�

�

�
����

�

�

�

�

�

�

�
���

��

�
�

�
�

�

�

�

�

�

�

��

�

�

�

�

�

�

�
�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

Figure 3.1: Size (2-LUTs) vs. I/O for MCNC circuits.

3.2.1 Circuit Size and I/O.

The most basic characteristic of a circuit is the relationship between the size of the circuit

(number of LUTs n) and the number of primary inputs (nPI) and outputs (nPO). (De�ne

nIO=nPI + nPO.) Using linear regression and experimentation, we have determined that

a Rent-like functional relationship, log(nIO) = a + b � log(n) best captures the relationship

between IOs and circuit size3. A simple linear relationship best describes the division of

I/Os between inputs and outputs: nPI = c + d � nPO. Figure 3.1 shows a plot of n vs.

nIO, and a least-squares regression line for the log-linear Rent relationship4. We note that

simply determining values for the coe�cients a; b; c; and d does not capture the increase in

variance with n so we model these coe�cients as truncated5 Gaussian distributions around

the best-�t line6. The actual equations are shown in the IOFrame section of comb.gen in

Appendix A.

3Note that Rent's Rule explicitly does not apply uniformly for the circuit as a whole (i.e. to predict I/O

given n), so we use di�erent functional forms for ranges of n, determined empirically. The actual relationship

is a piecewise combination. See Appendix A for the exact equations.
4Notice that the X-axis is shown with a log scale so that all points can be displayed with reasonable

precision. Thus the visual variance around the regression line is deceptively large.
5Though the mean and variance can be determined exactly from the data, we shield ourselves from

outliers by truncating the distribution before unrealistic values (in particular, negative values). It is also

necessary for us to generate reasonably tame values, because a circuit which is an outlier in one parameter is

often an outlier in all parameters, and choosing the parameterization independently cannot model this well.
6The regression line itself is not a strong predictor of the relationship between size and I/O, but this is

not the point. Together with the Gaussian distribution of variance, we get a good probabilistic sample of

a reasonable number of I/Os for a given size. Given the actual variance in the data, this is all that can be
expected.

CHAPTER 3. CHARACTERIZATION OF COMBINATIONAL CIRCUITS 26

3.2.2 Nodes and Edges.

Two other dependent parameters of a circuit are the number of edges and the average fanin

of the circuit. Looking at the data for 4-LUT mapped circuits, we see that average fanin

varies from 2 to nearly 4, with a close to (truncated) Gaussian distribution centered around

3, and this is how we model it in the default pro�le. It is well known from technology-

mapping literature that a circuit mapped to k-LUTs will not use all the inputs in each LUT

unless k = 2, so this is to be expected.

As a byproduct of our experiments, we have observed that the �nal wirelength of a

circuit after placement and global routing is much more highly correlated to the number of

edges (equivalently average fanin) in the circuit than it is to the number of nodes. Though

this might be easy to believe, it is quite interesting that utilization results for FPGAs are

almost always speci�ed in terms of the typical gate size of circuits which �t completely

independent of the number of wires in the circuit. This suggests that a more accurate

metric of \typical utilization" in an FPGA might be the wire utilization used, rather than

the logic utilization, meaning that nedges is probably a more indicative measure of circuit

size than the number of nodes n.

3.2.3 Fanout Distribution.

Recall fanout(x) is the number of edges leaving a node x. A circuit's maximum fanout and

fanout distribution (the number of nodes with fanout 0, 1, 2, etc.) is an important structural

parameter which cannot be modeled by known methods in the theory of random directed

acyclic graphs. Note that the fanin distribution is less interesting for technology-mapped

circuits because they have an a priori constraint on fanin.

The maximum fanout and the fanout distribution for a selection of MCNC circuits is

shown in Table 3.1. The �rst component gives the number of fanout zero nodes, which is

less than or equal to the number of primary outputs (a primary output is not necessarily

of fanout zero). A large proportion of the remaining nodes are fanout 1, with decreasing

incidence as the fanout value gets higher. Most circuits with a reasonable number of nodes

have some higher fanout values. Since these circuits are combinational, we do not have

high-fanout clock, clear or reset signals to deal with, but even when discussing sequential

circuits later we will ignore these special signals.

CHAPTER 3. CHARACTERIZATION OF COMBINATIONAL CIRCUITS 27

Using data from the entire benchmark set, we have developed a simple heuristic algo-

rithm to generate reasonable fanout distributions given the circuit size, number of edges,

max fanout and number of I/Os. Essentially, we choose the n individual fanout values prob-

abilistically from a discretized exponential distribution which is modi�ed online to ensure

that
P

i i � fanout[i] = nedges at completion.

Name Size Max out Fanout Distribution

cht 102 46 36 32 28 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 ...

9symml 106 34 1 94 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 ...

C1355 115 16 32 24 8 32 8 0 0 0 1 8 0 0 0 0 0 0 2

bw 137 66 25 72 17 9 1 4 1 2 0 0 0 0 0 0 0 1 0 0 0 0 ...

C1908 178 25 25 51 31 33 7 11 5 2 3 2 1 1 0 1 0 0 1 1 2 0 ...

C3540 481 66 21 235 88 37 11 21 15 3 9 5 1 1 2 0 1 1 14 2 3 4 ...

x3 512 122 99 250 80 29 12 3 7 2 6 3 3 0 0 0 1 1 3 1 1 1 ...

ex4p 514 26 14 360 27 16 15 11 22 2 5 2 5 5 4 2 5 4 0 1 0 1 ...

C6288 559 43 32 35 450 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

alu4 1536 249 8 1267 67 41 32 33 14 13 11 3 2 9 9 5 4 0 0 1 1 0 ...

Table 3.1: Fanout distribution for selected MCNC circuits.

Though we take a relatively simplistic approach to modeling the fanout distribution,

we note that this type of distribution is nothing like what is seen for random graphs.

For random directed acyclic graphs of the same size (nodes and edges) as the MCNC

circuits cht and ex4p, we see fanout distributions of (23 19 18 23 19) and (79 67 75

66 83 77 67) respectively, which are nearly uniform. We point out that this is largely

by construction, since natural models for such random directed graphs result in bounded

fanin + fanout in order for the graphs to both be connected and to have a linear number

of nodes. However, there are no known ways of generating random directed graphs having

exponentially distributed fanout vectors which are connected and have a reasonable number

of edges.

The heuristic algorithm mentioned above is the model for fanout distribution that we

use in the default pro�le.

To some extent, the average fanout and the distribution of fanout values is dependent

on the LUT size k used in technology mapping. A circuit mapped to 2-LUTs will have a

much lower average fanout than a circuit mapped into 7-LUTs, in general: though more

logic is stored in a LUT (reducing the overall number of edges), the computed value is then

used by more other LUTs in the netlist, increasing the fanout value. As a basic rule, the

CHAPTER 3. CHARACTERIZATION OF COMBINATIONAL CIRCUITS 28

average fanout follows the average fanin, with variations occurring based on the distribution

of I/Os and ip ops.

Circ outputs a number of other degree-related statistics about a circuit, such as the

average fanin and fanout for each combinational delay level, and the average fanout for

primary inputs (and later ip-ops) as opposed to internal nodes. These are not used in the

default pro�le, but we note that the information they provide is useful in the debugging of

CAD tools, and in analyzing place and route anomalies occurring when the tool encounters

outliers in the input.

3.3 Delay-Based Parameters of Combinational Circuits.

For a combinational circuit, de�ne d(x), the delay of node x, as the maximum length over

all directed paths beginning at a PI and terminating at x, corresponding to the unit delay

model. The delay, d(G) (or just d), of a circuit is the maximum delay over all nodes in

G. Using a similar empirical analysis to that previously mentioned, we have determined

a stochastic relationship between delay d and circuit size n in which d is roughly logn on

average.

Figure 3.2 shows a plot of size vs. combinational delay for 83 combinational MCNC

circuits. The dashed function is the line d = log(n), representing the expected delay for a

circuit with n nodes. The lower dotted line is d = log(log(n)), and the upper dotted line is

d = 3 � log(n) + log(log(n)). Together these represent the lower and upper bounds on delay

as modelled in the circuit pro�le7.

3.3.1 Circuit Shape.

Combinational delay is very important in the characterization of circuits, precisely because it

is so important in the design and synthesis process. De�ne the shape distribution, shape(G),

of a circuit as the number of nodes at each combinational delay level. Figure 3.3 shows a

small example circuit (cm151a), and its shape distribution (12, 4, 2, 2) displayed as a

7The dashed line is a best-�t regression line for the expected delay, and the default is to choose from a
Gaussian distribution centered on this line. The two dotted lines represent the imposed truncation on the

Gaussian distribution, i.e. the imposed upper and lower bound on the values which will be chosen. The

imposed lower bound is log(log(n)) and the imposed upper bound is n=3. These upper and lower bounds
given above and shown pictorially in the graph are chosen to include a majority of the points which are

feasible, while excluding outliers (such as negative delay) which might otherwise occur. Note that modeling

in this way underestimates the number of outliers often seen in practice, as evidenced in Figure 3.2.

CHAPTER 3. CHARACTERIZATION OF COMBINATIONAL CIRCUITS 29

| | |
10

| | | | | | | | |
100

| | | | | | | | |
1000

| | | | | | | ||0

|7

|14

|21

|28

|35

|42

|49

|56

 nodes

 d
el

ay

� ��
�� �� ���

����
� �

�

��

�

�

�

�

�
�
��

��

�

�

�

�

�

�����
� �

�
�

��
�

�

�

�

�

�

�

���
�

��

�

�

�

�
�

�

�

�

���

�

�

�

� �

�
�

� �

�

�

�

�

�

Figure 3.2: Size vs. combinational delay for MCNC circuits.

histogram. Note that even though the primary outputs are shown in circuit drawings we do

not count them in determining delay or the shape distribution. Rather, we de�ne \primary

output" as a property on the fanin node. While these examples are mapped to 4-LUTs, the

basic form of the distribution changes only proportionately for di�erent LUT-sizes.

| | | | ||0

|4

|8

|12

 Delay Level

 n
um

 n
od

es �

�

� �

1

19 21

2

18 11

3

7

45

17 14 10

6 8 912131516

20 22

Figure 3.3: Shape distribution.

A characterization such as shape is not an obvious one to a circuit designer, who typically

thinks of a design in terms of block diagrams, physical layout, or a set of boolean equations.

However, looking at circuits from a graph-theoretic point of view, it is natural to try to

draw the circuit in the plane with nodes divided into delay levels, and the importance of

shape becomes clear.

The interesting thing about shape is that most circuits tend to have similar shapes.

Random directed acyclic graphs from natural distributions tend, as a group, to have a

di�erent typical shape. Table 3.2 shows a sample of shape distributions for MCNC circuits,

CHAPTER 3. CHARACTERIZATION OF COMBINATIONAL CIRCUITS 30

0

00

0 0 0 0

0

0 0

0 0

0

0

0 0

0

0

0 0

0 0

0 0 0 0

0

0 0

0 0

0

0

0 0

0 0

0 0 0 0

0

0 0

0 0

0

0

0 0

0 0

0 0 0 0

0

0 0

0

0

0

0

0 00 0

0

0

0

0

00

00

| | | | | | | ||
|

|
|

|
|

|
|

| �

�

�

�
�

�

comp
(36)

\decreasing"

0

00 00 0 00 00 00000 0 0 00 0

0 0000

0

00 00 0 0 00 00 00 000 0 0

00 0

0

0 000 0 00 000

0

0 0 00

0

0 0

0 00 0 0

0

00 0 0

0

00

0 0

000

0 00 00

0

0

0

00

| | | | | | | | ||
|

|
|

|
|

|
|

|

�

�

�

�

�
�

rd73
(53)

\conical histogram"

0

000 0 000 0 0 0

00

00

0 0

0 0

0 0

0

0 0

0 0 0

0

0

00 0

0 0 00 00

0

0

0

0

0

| | | | | | | ||
|

|
|

|
|

|
|

�

�

�

�

�

�

�

sqrt8ml
(12)

\two maxima"

1

4 712 132920 25 48

911 14 163438

44

37

2

61027 22 35

32

19

3

5 17

18 40

53 54 55

55

54

53

43

45

47

50

51

8

15 24

28 30 2123

26

36

49

39

33

4146

42

31

| | | | | | | | | ||
|

|
|

|
|

|
|

|
|

�

�

�

�

�
�

�

�

dk14 (L0)
(8)

\remaining cases"

Figure 3.4: Di�erent shape distributions.

along with a qualitative classi�cation of di�erent shape functions. Figure 3.4 shows four

shape classes and an example of each. Of the 109 combinational multilevel circuits in the

MCNC set, 36 have a shape which is strictly decreasing from the primary inputs (as comp),

53 have a conical shaped histogram, fanning out from the inputs to an extreme point, then

strictly decreasing (as rd73), 12 have the conical shape with a \bump" (as sqrt8ml) and

only 8 did not �t into these categories. This distribution of shapes is fundamentally di�erent

from degree-constrained random graphs (discussed earlier in Section 2.2.3 and in Chapter

6) which tend, as a group, to almost always have a basically \at" shape.

We performed experiments to determine whether there is any relationship between shape

and routability metrics such as wirelength per edge. However, no signi�cant correlation was

found to exist for the MCNC data.

Name Size Delay Shape Distribution

cht 102 2 47 44 11

9symml 106 6 9 57 24 7 6 2 1

C1355 115 4 41 24 8 10 32

bw 137 4 5 57 46 17 12

C1908 178 10 33 23 13 14 22 27 20 6 10 8 2

C3540 481 12 50 82 104 76 44 29 24 22 17 16 10 5 2

x3 512 5 135 202 123 40 10 2

ex4p 514 5 84 245 124 42 14 5

C6288 559 28 32 76 30 30 30 30 30 30 30 30 30 30 30 30 30 29 7 2 2 2 2 2 2 2 2 2 2 3 2

alu4 1536 7 14 692 518 198 80 21 11 2

Table 3.2: Shape distribution for selected MCNC circuits.

Though the example of Figure 3.3 shows both primary inputs at the last combinational

CHAPTER 3. CHARACTERIZATION OF COMBINATIONAL CIRCUITS 31

delay level and having zero fanout, neither is typical. We also extract and use the shape

distribution of primary outputs (POShape) in the default pro�le of circuits. POShape is a

vector of the number of output nodes at each combinational delay level.

3.3.2 Edge-Length Distribution.

Since nodes have a well-de�ned delay, we can de�ne the length of a directed edge by

length(x; y) = d(y) � d(x). Clearly, the edge length is always between 1 and delay(G),

and we de�ne a related edge length distribution.

In the example of Figure 3.3 there are 24 edges of length 1, and 2 each of length 2 and

3, so the edge length distribution is (0,24,2,2,0). (Note the placeholder for absent length-0

edges; this is just so that we can have all vectors indexed similarly from 0).

Table 3.3 shows a sample of edge-lengths from the MCNC circuits. We �nd that almost

all circuits have an edge-length distribution with a very similar structure: a large number

of edges of length 1, and a quickly falling distribution over the combinational delay of the

circuit. This type of distribution is not at all what one would expect of a random graph

where the probability of any two pairs of edges being connected is the same. Empirically,

such an edge length distribution is not common for random directed graphs arising from

natural models (see Section 6.1.).

In the default pro�le, we model the edge length distribution by probabilistically sampling

a discretized exponential distribution, which closely approximates this behaviour8

Name Edges Delay Edge-Length Distribution

cht 102 2 0 202 0

9symml 106 6 0 271 41 6 6 0 0

C1355 115 4 0 216 32 0 32

bw 137 4 0 349 93 11 6

C1908 178 10 0 319 78 37 14 11 11 8 16 15 0

C3540 481 12 0 1017 317 143 28 18 13 14 13 6 0 5 1

x3 512 5 0 1071 139 49 8 2

ex4p 514 5 0 1248 167 8 3 0

C6288 559 28 0 1094 70 66 66 66 66 66 66 66 66 68 70 65 62 63 2 0 0 0 0 0 0 0 0 0 0 1 0

alu4 1536 7 0 4494 757 125 23 1 0 0

Table 3.3: Edge-length distribution for selected MCNC circuits.

8There are no appropriate statistical techniques to formalize this, so \closely approximates" means that

the distributions appear reasonable when compared by hand.

CHAPTER 3. CHARACTERIZATION OF COMBINATIONAL CIRCUITS 32

3.3.3 Fanout Shape.

Another natural shape characterization is the distribution of total fanout by combinational

delay level. The fanout distribution by delay level for our sample circuits is shown in

Table 3.4. It is interesting that fanout by delay level is close to a strictly decreasing function

for all of the circuits sampled. (However, note the exceptions in C1908 and C6288.) Since

the shape is conical for many of these circuits, we make the observation that the average

fanout of primary inputs is higher than for other nodes. In fact, this is largely true when

the number of nodes on a level is smaller than that of its succeeding level in the shape

function.

Even though this distribution provides interesting information about the structure of

combinational circuits, in practice it results in over speci�cation in the pro�le. This is

because the shape, edge-length and fanout distributions already mentioned constrain the

delay-fanout enough that we can calculate tight bounds algorithmically. Thus, we do not

currently generate delay-fanout as part of the statistical pro�le of combinational circuits.

Name Edges Delay Delay-Fanout Distribution

cht 102 2 157 1 0

9symml 106 6 226 60 24 7 6 1 0

C1355 115 4 112 32 72 64 0

bw 137 4 267 124 56 12 0

C1908 178 10 167 53 36 87 67 51 17 19 10 2 0

C3540 481 12 558 338 204 142 85 74 53 42 37 21 18 3 0

x3 512 5 874 297 82 14 2 0

ex4p 514 5 868 376 135 33 14 0

C6288 559 28 1056 119 58 58 58 58 58 58 58 58 58 58 58 58 62 61 6 2 2 2 2 2 2 2 2 2 3 2 0

alu4 1536 7 2867 1700 529 197 79 20 8 0

Table 3.4: Delay-fanout distribution for selected MCNC circuits.

3.4 Reconvergence in Combinational Circuits.

Reconvergence occurs when multiple fanouts from a single node x in the circuit branch back

together at a later point y|we say the circuit is reconvergent at y. Many circuits exhibit

reconvergent fanout, but in widely varied degree, so an appropriate characterization is to

quantify this amount.

De�ne the out-cone of a node x (in a circuit with no directed cycles) to be the recursive

CHAPTER 3. CHARACTERIZATION OF COMBINATIONAL CIRCUITS 33

fanout of x: the subgraph induced by all nodes reachable on a directed path from x.

Figure 3.5 shows out-cone(a). Edges which are not in the out-cone, but are incident with

nodes which are, are shown as bold dashed lines.

a

bc

d

e

f

g

h
i

j

k

m

Figure 3.5: Reconvergence in combinational circuits.

For circuits mapped to 2-LUTs, de�ne the reconvergence number of node x, R(x), as

the ratio of the number of fanin-2 (i.e. \reconvergent") nodes in out-cone(x) to the size of

out-cone(x):

R(x) =
j fy 2 outcone(x) s.t. y has fanin 2 in outcone(x)g j

joutcone(x)j
(3.1)

This value arises from its combinatorial interpretation. By Kircho�'s theorem [31, pp.

49-54], the numerator counts the log2 t where t is the number of spanning out-trees9 rooted

at x in the directed graph representation of the circuit. Essentially, each reconvergent node

represents a choice of two alternatives in the construction of a spanning out-tree, which

multiplies the number of trees by two (adds 1 to log2(t)). Each non-reconvergent node

represents a \required" in-edge, hence does not a�ect the number. The purpose of taking

the logarithm is simply to obtain tractable numbers when dealing with large graphs. The

denominator then scales that value with the size of the out-cone so that di�erent graphs

can be compared based on their relative amount of reconvergence, which otherwise would

be dominated by the size of the circuit10.

The intuitive argument for counting spanning out-trees is clear: a single spanning out-

tree has zero reconvergence, and the number of spanning out-trees scales with the number

9A spanning out-tree rooted at r is a spanning tree such that each node, except the designated root node,

has exactly one fanin. Hence each node lies on a unique directed path from the root.
10Analysis shows that there is no signi�cant statistical correlation between R and n, so this adjustment

is su�cient.

CHAPTER 3. CHARACTERIZATION OF COMBINATIONAL CIRCUITS 34

of ways that reconvergent fanout occurs in the circuit. This is even more compelling when

we generalize the reconvergence calculation to sequential circuits in the next chapter.

For circuits mapped to k-LUTs, k > 2, the reconvergence calculation generalizes, both

algorithmically and combinatorially, if we set the numerator as the sum, over all nodes y in

the out-cone of x, of log2(fanin(y)). Thus 0�R(x)� log2(k).

R(x) =

P
y2outcone(x) log2(fanin(y))

joutcone(x)j
(3.2)

To identify the reconvergence R(G) present in an entire circuit G, we compute the

weighted (by out-cone size) average of R(x) for all primary inputs x in G. Thus 0�R(G)�

log2(k) continues to hold for circuits. In this way, highly reconvergent small portions of a

circuit will not unduly a�ect the overall quanti�cation.

The observed reconvergence numbers for the 198 combinational and sequential 2-LUT-

mapped MCNC circuits vary between 0.0 and 0.92, with a relatively even distribution of

circuits through the range 0.0 to 0.85. R is somewhat a measure of complexity of the

logic|we �nd that intuitively simple, tree-like, logical functions have low R (e.g. parity:

R = 0:00, decod: R = 0:00, mux: R = 0:15), and more complex functions have higher

R (e.g. alu2: R = 0:52, sqrt8ml: R = 0:53). Combinational logic and the combinational

parts of sequential arithmetic logic fall mostly in the range 0.0 to 0.6, whereas the combi-

national parts of �nite state machines are mostly in the range 0.5 to 0.85 (9 of the 10 most

reconvergent circuits are �nite state machines). Table 3.5 shows the reconvergence numbers

for a sample of combinational MCNC circuits for which we have some functionality informa-

tion. Note that this information is inherently biased, because most circuits have no listed

description and were left out of the table. Thus we can make only the vague observations

about relative complexity of the logic.

In a physical sense, there is a high degree of correlation between R and the other char-

acteristics of a circuit; in particular, the number of edges (when k>2), and the shape and

out-degree functions. Using the examples of Figure 3.4, circuits which have an exaggerated

conical shape, such as rd73 (R=0:40) and sqrt8ml (R=0:53) tend to have higher recon-

vergence values, whereas circuits like comp (R=0:22) are lower. This also tends to explain

the di�erence between combinational and sequential circuits because the �rst \sequential

level" of most �nite state machines tends to be very conical. A conical shape arises because

CHAPTER 3. CHARACTERIZATION OF COMBINATIONAL CIRCUITS 35

Name R Description

parity 0.00 parity tree

decod 0.00 simple decoder

count 0.15 counter

mux 0.15 multiplexor

C1355 0.19 error correcting

my adder 0.21 adder

C5315 0.26 ALU and selector

dsip 0.27 sequential encryption

des 0.30 data encryption

z4ml 0.30 2-bit adder

9symml 0.31 count ones in inputs

C2670 0.32 ALU and control logic

C7552 0.34 ALU and control logic

C880 0.36 ALU and control logic

s208 0.38 sequential multiplier

s838 0.41 sequential multiplier

s1196 0.41 sequential \logic"

C1908 0.44 error correcting

i10 0.47 combinational \logic"

sbc 0.47 sequential snooping bus controller

C3540 0.50 ALU and control logic

alu2 0.52 ALU

sqrt8ml 0.53 square root function

mult16a 0.54 sequential 16 bit multiplier

mult32b 0.54 sequential 32 bit multiplier

C432 0.58 priority controller

C6288 0.63 16 bit multiplier

apex4 0.63 combinational logic from a PLA

s400 0.63 sequential FSM: tra�c light controller

clma 0.63 sequential bus interface

bbtas 0.76 �nite state machine

pdc 0.79 �nite state machine

s1488 0.83 �nite state machine (controller)

dk16 0.89 �nite state machine

Table 3.5: Reconvergence for selected MCNC circuits.

of a low I/O to logic ratio, natural because I/Os are \reused" over time in a sequential

circuit.

Figure 3.6 shows examples of three di�erent small circuits. The �rst, cm42a is a decoder,

and has no reconvergence at all. The second, rd53, is combinational control logic, and has

a reconvergence number of 0.40. The third is the �rst level of a �nite state machine (we

just converted ip-ops to primary inputs and primary outputs and dropped any logic past

the ip ops). Its computation of reading the inputs and producing an encoded state has

a reconvergence number of 0.69, the largest of the three.

CHAPTER 3. CHARACTERIZATION OF COMBINATIONAL CIRCUITS 36

0

0 0 0 0 0 0 0 0 0 0

00 0

0 0 0 0 0 0 0 0 0 0

cm42a

R=0.00

0

000

0

0

00

0

0

0

0

0

0

0

0

0

0 0

0

rd53

R=0.40

1

4 712 132920 25 48

911 14 163438

44

37

2

61027 22 35

32

19

3

5 17

18 40

53 54 55

55

54

53

43

45

47

50

51

8

15 24

28 30 2123

26

36

49

39

33

4146

42

31

dk14 (L0)

R=0.69

Figure 3.6: Circuits with Varying Reconvergence.

3.5 Locality in Combinational Circuits.

To this point we have concentrated on delay as the fundamental characteristic of a circuit.

Both the shape and edge length functions are delay based. This di�ers from previous

work on wireability analysis, outlined in Section 2.2.2, which uses Rent's Rule and other

stochastic measures of wirelength to describe the physical characteristics of a circuit.

In the generation process, it is clearly necessary to introduce some form of local clustering

into a synthetic circuit. In this section we visit the issue of local structure in combinational

circuits, with the goal of better understanding wirelength issues in the context of our existing

delay based combinational model. Speci�cally, we will de�ne metrics for wirelength and edge

connections between delay levels and give an algorithm for ordering and positioning nodes

within their combinational delay which allows us to calculate these metrics.

The best method of measuring the real wirelength and other routability parameters

would likely be to execute placement and global routing on a gate array and measure the

Manhattan wirelength, as would be performed by layout tools such as vpr [8], Altera's

max+plus2 [4] or Xilinx ppr [73]. However, our purpose is to quickly determine a small

amount of information necessary to characterize the locality in a circuit, not to do a complete

and expensive physical layout.

Our process for extracting locality information is to determine an ordering of the nodes

within each combinational delay level, and then an integer x-coordinate positioning for each

node which respects the order: in other words, an embedding of the circuit graph on the

integer grid, where the y-coordinate is constrained to be the node's combinational delay.

Given such a positioning u:x for each node u, we can establish a number of metrics:

De�ne spread(i) as the di�erence between the maximum and minimum x coordinates of

CHAPTER 3. CHARACTERIZATION OF COMBINATIONAL CIRCUITS 37

nodes on level i (i.e. the \width" of level i). De�ne span(u) for node u as the maximal dis-

tance between the coordinates of its fanins. De�ne wirelength(u,v), for edge e = (u; v) to be

ju:x�v:xj, wirelength(u), for node u, to be the sum over all fanins u of v of wirelength(u; v),

and wirelength(C) for a combinational circuit C to be the sum, over all nodes u in C, of

wirelength(u).

We note that the wirelength of a circuit in this sense is a layout into a shape structure.

Thus it would be related to, but not necessarily the same value as, wirelength after embed-

ding into a standard cell array, a gate array, or an FPGA. Empirically, though there is a

strong linear relationship between the two forms of wirelength, the variance is large enough

that the version based on shape would not, in itself, be a valid predictor of wirelength or

routability in a gate array or FPGA.

To order and position the nodes for these wirelength and span calculations, we use an ap-

proach similar to that used by Gasner, North and Vo in the DOT package [30], used to draw

many of the pictures in this thesis. The basic approach for ordering is to use the barycentric

heuristic [22] to iteratively reduce crossing number between delay levels. We then diverge

from the DOT approach to perform a more straightforward method of positioning nodes

with integral coordinates which maintain the ordering but reduce wirelength. Sections 3.5.1

and 3.5.2 discuss these two aspects of the algorithm, then Section 3.5.3 discusses the results

of executing the algorithm on combinational MCNC circuits.

3.5.1 Node Ordering Within Delay Levels

The problem of node ordering on a DAG G with delay d is to compute \good" orderings

of the nodes at each level i, 0 � i � d. The word \good" in the context of graph drawings

is itself a new area of research, and there is no uniformly accepted metric of goodness.

However, previous research [5, 22, 47] has determined that minimizing the crossing number

not only yields drawings which are more viewable, but it also tends to illustrate symmetry

and minimize the length of the drawn edges. Furthermore, since our ordering problem is

similar to the placement problem of standard-cell layout, minimizing the crossing number

is clearly desired. The crossing number of a graph and a given ordering is the number of

pairwise crossing edges in the straight-line drawing of the graph when nodes are constrained

in the y coordinate to their delay level and in the x coordinate to the determined ordering.

Figure 3.7 shows a drawing (by dot [47]) of the MCNC circuit comp which illustrates

CHAPTER 3. CHARACTERIZATION OF COMBINATIONAL CIRCUITS 38

0

00

0 0 0 0

0

0 0

0 0

0

0

0 0

0

0

0 0

0 0

0 0 0 0

0

0 0

0 0

0

0

0 0

0 0

0 0 0 0

0

0 0

0 0

0

0

0 0

0 0

0 0 0 0

0

0 0

0

0

0

0

0 00 0

0

0

0

0

00

00

Figure 3.7: Minimizing crossings for a better \drawing."

the local e�ects of minimizing the crossing number. Though this drawing retains many

crossings, a natural e�ect of the algorithm is to separate the loosely connected portions of

logic. Our goal in this section is to take advantage of this separation in order to determine

the amount of local structure present in a circuit. Because a drawing in this way corresponds

to our delay-based model of circuits, this is also a natural way to impose local structure on

a circuit later in the generation algorithm.

The problem of layout to minimize the crossing number is known to be NP-hard [21],

even when d = 1 (i.e. the graph is bipartite and has two levels). Thus only heuristic

algorithms are possible.

We will use a method similar to that originally used by Sugiyama et. al. [65], analyzed

by Eades and Wormald [22] and used by Gasner et. al. [30] for the dot program.

The basic algorithm is as shown in Figure 3.8. Note that \current order" and \best order"

refer to data structures which hold the ordering for all levels of the graph.

On even passes, we treat level i� 1 as �xed, and resort the nodes at level i based on the

average ordinal value of their fanins. For odd passes we use level i+ 1 as �xed and look at

fanouts. The initial order is simply a random ordering of nodes for each level.

The algorithm converges very quickly|about 10 iterations su�ce for even large circuits

(this is pointed out by Gasner et. al. [30] as well). The crossing number typically decreases

by about a factor of 10 from the randomized to the \placed" version. We note that in

random graphs generated as per Section 6.1, the crossing number decreases only by a factor

of about 3.

CHAPTER 3. CHARACTERIZATION OF COMBINATIONAL CIRCUITS 39

best order = a random order

compute crossing(best order)

current order = best order

iter = 0

loop

/* Compute a new current order */

for (j = 0; j < d; j ++)

/* Working on combinational delay level j */

if (iter is even)

compute the average fanin index of each node at level j

resort nodes at level j based on average fanin index

else

compute the average fanout index of each node at level j

resort nodes at level j based on average fanout index

end if

end for

iter++

compute crossing(current order)

exit loop if crossing(current order) > crossing(best order)

best order = current order

end loop

Figure 3.8: Algorithm to compute the crossing number.

Computing the crossing number.

In order to execute the heuristic algorithm above, we need to calculate the crossing number

for edges between two combinational delay levels. The obvious approach is to examine each

pair of edges to see if they cross, which can be accomplished in O(n2) time|we have O(n)

nodes and also O(n) edges between any two delay levels, under the assumption of constant

fanin (otherwise the obvious algorithm becomes O(n4)). For large circuits, a quadratic

algorithm is too expensive. Fortunately, we can give an easy to implement O(n logn)

algorithm. To our knowledge, no such algorithm has been previously given for computing

the crossing number.

Problem: Given a bipartite graph G(X; Y) and sorted orders 1::jX j and 1::jY j for the

nodes of X and Y , determine the number of pairwise crossing edges, that is the number of

pairs of edges (x1; y1) and (x2; y2) such that x1 < x2 and y2 < y1 in the respective orderings

of X and Y .

CHAPTER 3. CHARACTERIZATION OF COMBINATIONAL CIRCUITS 40

Our solution uses a divide and conquer approach which, interestingly enough, actually

allows us to count more crossings than we examine (i.e. we can count O(n2) crossings in

O(n logn) time.

Let nx = jX j and ny = jY j, and let xi (yi) denote the i'th node in the sorted order of

X (Y).

De�ne the following sets of nodes:

A: nodes xi in X such that i � nx
2

B: nodes xi in X such that i > nx
2

C: nodes yi in Y such that i �
ny
2

D: nodes yi in Y such that i >
ny
2

Then we can classify each edge as AC, AD, BC or BD. There are 4 � 4 = 16 types

(combinations) of edge crossings.

We calculate the number of crossings from X (A + B) to Y (C + D) by dividing the

edges into their categories (trivially in O(n) time) and decomposing the problem as follows:

crossings(A+ B;C +D) =

crossings(A+ B;C) /* recursive call */

+ crossings(A+B;D) /* recursive call */

+ num cross(AC �AD) /* separate computation */

+ num cross(BC � BD) /* separate computation */

+ jADj � jBCj /* sizes only */

The recursive call \crossings(A + B;C)" refers to the sub-problem on the nodes (and

induced edges) not incident on D. The call to num cross(AC � AD) will be a separate

routine to count all crossings between an AC and an AD edge, and no others.

Since C and D partition Y evenly, each recursive call is on at most one half of the

maximum edges to the preceding call. Thus, as long as we can �nd a linear time algorithm

for num cross() the entire algorithm will be O(n logn).

The cases for num cross() are symmetric, so we will work on num cross(AC�AD) only.

Assume that the edges have been divided into AC and AD edges already (easily O(n) time),

and are still sorted by xi value in the ordering. Then an AC edge (xi,yj) and AD edge

(xk,yl) cross if and only if i > k. We know that j < l from the edge classes.

We take a single pass through A, and count the number of AC edges at each location i.

Then we scan again, summing, to calculate the number of AC edges to the right of location

CHAPTER 3. CHARACTERIZATION OF COMBINATIONAL CIRCUITS 41

i. In a third pass, we look at every AD edge, which necessarily crosses the number of AC

edges with x coordinate to the right of the current location, which is the previous sum

vector. This correctly calculates num cross(AC �AD) in linear time. Note that we do not

count the AC � AC edges here, or we would be double counting them.

The proof that the algorithm works is a simple case analysis.

AC-AC { counted only in crossings(A+B;C)

AC-AD = AD-AC { counted only in num cross(AC �AD)

AC-BD = BD-AC { cannot cross

AC-BC = BC-AC { counted only in crossings(A+B;C)

AD-AD { counted only in crossings(A+B;D)

AD-BD = BD-AD { counted only in crossings(A+B;D)

AD-BC = BC-AD { must cross; counted in the product

BC-BD = BD-BC { counted only in num cross(BC � BD)

BC-BC { counted only in crossings(A+B;C)

BD-BD { counted only in crossings(A+B;D)

We conclude that crossings(A+ B,C +D) can be calculated in O(n logn) time.

3.5.2 Coordinate Positioning of Nodes

To position nodes, we perform another iterative step.

From the previous step, the order of nodes within each delay level is �xed. De�ne width

to be equal to the maximum size of any delay level, and coordinates u:x for every node u,

which equally proportions the nodes at level i across width.

The iterative step is similar to the ordering algorithm, except that we do not exchange

nodes, just move them closer together or further apart within the ordering. On even iter-

ations we de�ne the centre of a node u as the average x coordinates of its fanins. On odd

iterations we use its fanouts.

For each node u at level i, we compute centre(u), and move u:x as far as possible to

center(u), without going past u's neighbour.

Wirelength, as previously de�ned, is the sum of the lengths of each edge. The length of

an individual edge is the di�erence in the x coordinates of its endpoints.

As in the ordering step, it takes only a small number of iterations for the wirelength to

CHAPTER 3. CHARACTERIZATION OF COMBINATIONAL CIRCUITS 42

* * * * ***

...

...............................

............

......

.

Figure 3.9: Locality placement for rd73.

...

...

......................*.........*................................

..

..................*.....*..*........................

...

...

..........*.....*............

.................

................

...... ..

..

Figure 3.10: Locality placement for C432.

hit a minimum. At that point, we can also calculate the other metrics (span and spread)

mentioned earlier.

3.5.3 Discussion

Though our goal in doing this pseudo placement is to extract metrics like spread and average

span, it is interesting to see the e�ects of the placement on real circuits. We note that a

complete algorithm that takes into account room for edges to be drawn would result in node

coordinates that mimic the results of dot.

Figure 3.9 shows a drawing of the nodes in rd73. A `.' indicates a node position, and

a `*' indicates a node which has fanout greater than ten. We see a very balanced local

structure below the inputs level, but a wide spreading of the primary inputs.

Figure 3.10, on the other hand, shows a circuit which has a slightly less balanced struc-

ture. In addition to high-fanout nodes, we see \holes" in the layout which indicate areas

where nodes are drawn apart from their neighbours by local structure.

Figure 3.11 shows a structure which is further from balanced. We observe the wide

spread of nodes at delay 1, for example.

Our �nal example is shown in Figure 3.12. This is a circuit which exhibits a great deal

of local structure. We observe the tree-like way that terms are collected from the inputs to

CHAPTER 3. CHARACTERIZATION OF COMBINATIONAL CIRCUITS 43

.*. **

.*...***..*.**......... *

...

...................

........

.. .

.

Figure 3.11: Locality placement for rd84.

..

.

.

. . . .

Figure 3.12: Locality placement for i3.

outputs: a wide spread, with lots of holes, as the delay increases. This indicates that nodes

are more closely related to their close neighbours in index value.

The metrics of average in span and spread for each delay level values can be seen as

quanti�cations of the locality present in the circuits: A high average node span indicates

that nodes draw from a wider range of fanins, and that the circuit is less local than would

otherwise be the case. The spread of a level, compared to the number of nodes it has, gives

information about how closely the nodes at a level share fanins and are pushed together by

the wirelength minimization process.

An important aspect of locality that these particular metrics (span and spread) do

not capture is edge crossings, in particular the distribution of crossings over x coordinate

\slices" of the drawing. It would be very useful in the generation algorithm to have more

information of this type, but we leave this particular topic to future work. As well, though

we can extract this information from speci�c existing circuits, we have not yet investigated

methods to model this type of locality in the default pro�le (though this could be done).

Thus it is currently useful only for generating \clone" circuits, as will be discussed in later

chapters.

It is important that the locality algorithm is fast. Extraction of local information from

a medium sized circuit such as alu4 uses one tenth the cpu time of a complete place and

route11.

11This does not necessarily make the method a competitor for standard placement algorithms, because

we are not restricting the placement to a minimal size square grid.

