
Chapter 5

The Generation Algorithm

This chapter applies the knowledge gained in the previous chapters to the problem of gen-

erating benchmark circuits. Our fundamental goal is to be able to automatically create

synthetic circuits which are good proxies for real circuits.

5.1 Overall Approach to Circuit Generation.

Before deciding on a method for generating circuits, it is necessary to re�ne our primary

goal of \generating good circuits," by introducing a number of speci�c requirements:

Requirement 1. The generation algorithm must scale, and must be fast enough to

generate very large circuits.

Put simply, the user should be able to specify the circuit-size, and the algorithm should

react accordingly to generate a reasonable circuit of the requested size. Since state of the art

large ASIC circuits are in the one million gate range, the algorithm cannot use more than

O(n logn) time or space|quadratic time for 10,000 LUT-nodes would amount to weeks of

processing time for one circuit.

Requirement 2. The generation algorithm must use reasonable input parameters.

Later, we will discuss the concept of cloning an existing circuit, by extracting its exact

parameterization for input to the generation tool. This begs the question of \how much"

information should be included in such a parameterization. We will restrict our generation

algorithm to taking a constant amount of information, that is the parameterization cannot

grow arbitrarily with the size of the circuit being generated. To do otherwise would not only

violate the spirit of benchmark generation, but would simply introduce too many variables

57

CHAPTER 5. THE GENERATION ALGORITHM 58

into the problem. For the purposes of this restriction, we assume that combinational delay

and maximum fanout are no more than logarithmic in circuit size, since they must be close

to constant for electrical and performance reasons (with a small number of exceptions for

clocks, clears and presets, which we consider special cases).

So, the Rent exponent r (a single number) or the shape vector from Chapter 3 (a vector

of length d+ 1) would be considered reasonable in this sense. However, a mincut partition

tree, an initial placement, or a \seed" circuit would be prohibited as input parameters.

Requirement 3. The circuits that we generate must have reasonable behaviour with

respect to unspeci�ed metrics.

If the method generates circuits with a speci�c size, shape and delay, it should have

reasonable expectations on, for example, wirelength after global routing, even if wirelength

is not a parameter. Similarly, if the circuit is generated simply as a graph with a speci�ed

wirelength, it must have reasonable combinational delay and fanout, and must not have

undesirable properties such as combinational loops or pathological properties such as large

cliques in the underlying graph.

With these requirements in mind, there are a number of approaches to generating ran-

dom circuits:

One method is to simply use random graphs, generated by known methods (one of which

is discussed in Section 6.1). This method is attractive in the sense that it is relatively easy

to generate random undirected graphs, or random undirected graphs with restrictions on

degree under a natural model. Such graphs have been used in famous partitioning papers

by Kernighan and Lin [46] and Johnson [45]. However, random graphs from natural models

are known to exhibit behaviour such as having too many edges [64] and inordinately high

cut-sizes [2, 3]. There are few known methods for generating directed acyclic graphs under

natural models, and no known ability to control longest path and cycles in such graphs,

such as would be needed for Requirement 3.

A second approach would be to work from a geometric placement, independent nodes on

a grid, and add edge-connections based on statistical wirelength distributions and cut-sizes,

essentially working from the wireability studies of El Gamal, Donath, Feuer and others (see

Chapter 2). The di�culty with this method again lies with the realism of the circuits for

anything other than the placement or partitioning problems. The e�ects of combinational

delay and combinational cycles cannot be controlled, because the method inherently has no

CHAPTER 5. THE GENERATION ALGORITHM 59

concept of directed edges or combinational delay. In a modern CAD system delay is often

the most important consideration in layout, so we require an approach which models delay

appropriately.

Another approach is o�ered by Rent's Rule. Darnauer and Dai took this approach

in their work, previously mentioned in Section 2.2.3. Though this can yield reasonable

undirected graphs for partitioning, it su�ers, as does the previous method, from an inability

to control delay, fanout and other important electrical features of the circuit.

Our method will be to generate a circuit according to the model which we have developed

in the previous two chapters. Doing so provides a number of desirable properties. By making

delay and fanout an intrinsic part of the circuit, we obviate dealing with the above problems

in other methods. However, we then lose other physical properties of the circuit, namely the

existence of a good partition tree as would be guaranteed by Darnauer and Dai, or a known

wireability distribution as per the second method. The locality discussion of Section 3.5

addresses this issue, and our empirical validation will illustrate our success in dealing with

both delay and locality at the same time.

5.1.1 How We Generate Circuits.

Our algorithm for generating circuits is divided into three topics: combinational circuits,

sequential circuits and implementation details.

In the next section, Section 5.2, we discuss how to generate purely combinational circuits.

We model combinational circuits using the descriptions of delay, shape and fanout from

Chapter 3, and build combinational circuits to that model.

In Section 5.3 we expand on the algorithm to generate sequential circuits using the model

of Chapter 4. This involves two aspects: how to modify the combinational algorithm to deal

with new sequential parameters, and how to generate complete circuits from sub-circuits.

Section 5.4 discusses some implementation details for the algorithm and the tool gen

which realizes it. We discuss the issues of parameterization scripts, circuit \clones," run-

time of the algorithm and the ability of the tool to meet its speci�cation. The issue of the

quality of circuits (empirical validation) is left to a separate Chapter 6.

CHAPTER 5. THE GENERATION ALGORITHM 60

5.2 Combinational Circuit Generation.

We begin with an example. Figure 5.1 shows the output from gen for the parameteriza-

tion: n=23, nedges = 32, k=2, nPI=7, nPO=2, d=4, shape=(.38,.31,.19,.12), max out=4,

fanouts=(.09,.65,.13,.04,.09), edges=(0,.9,.1) and L=6. (Note that L has not yet been de-

�ned.)

1

5

2

4 79 16

3 6

1519

8 1418

13 25

10 2022 17

2311

12

21

24

n = 23

nedges = 32

k = 2

nPI = 7

nPO = 2

d = 4

shape = (7; 6; 5; 3; 2)

edges = (0; 29; 3)

max out = 4

fanouts = (2; 15; 3; 1; 2)

L = 6

Figure 5.1: Example of a completely parameterized combinational circuit.

The combinational portion of the gen algorithm consists of two functional stages.

The �rst stage is to determine an exact and complete parameterization of the circuit

to be generated, using partially-speci�ed user parameters and default distributions|the

exact parameterization shown to the right of Figure 5.1 is such an instantiation of the more

general parameters just given. This issue of de�ning statistical relationships between circuit

characteristics (the \pro�le") has been discussed in the previous two chapters, and we will

remark further on it in Section 5.4.2 and Appendix A.

The second stage is to create and output a circuit-graph with that exact parameteriza-

tion, and we deal with this below.

5.2.1 The Combinational Generation Algorithm.

Here we give the details of the generation algorithm for combinational circuits.

The inputs to gen are n, nedges, nPI, nPO, d (delay), k (LUT-size), max out (maximum

allowable fanout of any node), the shape function, the fanout and edge length distributions

CHAPTER 5. THE GENERATION ALGORITHM 61

and the locality parameter L (not yet de�ned). The output is a netlist of k-input lookup-

tables. Reconvergence is not a generation parameter but we use the reconvergence number

of generated circuits in the validation process of Section 6.3.

Since parameter expansion has already taken place, we know the distributions are exact,

meaning that

Pd
i=0 shape[i] =

Pmax out
i=0 fanouts[i] = n, and

Pd
i=0 edges[i] =

Pmax out
i=0 i � fanouts[i] = nedges.

Using the shape distribution, shape[1..d], we are immediately able to de�ne the number

of nodes at each combinational delay level. Fanouts[1..max out] gives us the exact set of

fanouts available (but not yet assigned to nodes). Edges[1..d] gives us the set of edges to be

assigned between nodes. Our problem is then, as illustrated in Figure 5.2, to determine a

one to one assignment of fanout values to nodes, and an assignment of edges between nodes

such that the number of out-edges from a node equals its assigned fanout, and the number

of edges in to a node is no more than the bound, k, on fanin. We have a number of further

constraints: the resulting graph must be acyclic (as the circuit is to be combinational);

every node must have at least one fanin from the previous delay level, and no fanins from

later delay levels (so that combinational delay of the node as speci�ed by the shape function

is correct); all nodes at delay-0 (i.e. the inputs) have no fanins, and all other nodes have at

least 2 fanins; and all fanins to a node must come from distinct nodes (no duplicate inputs).

We need the following de�nitions:

(a) Ni, i=0::d is the set of nodes at delay level i, where N =
S
fNig,

(b) ni = jNij,

(c) F = ffj , j= 1::ng, is the set of node fanouts, and

(d) E = feh, h=1::nedgesg, is the set of edge-lengths (abstractly, the set of all

edges).

We formally de�ne the generation problem in Figure 5.2.

This assignment problem appears to be computationally di�cult and we conjecture it is

NP-complete. The existence of a polynomial time algorithm would be relatively uninterest-

ing, however, unless it was both O(n logn) time or less and still allowed us to have di�erent

(i.e. random) outputs on each execution. We require a nearly linear time algorithm in

order to generate large circuits. Therefore we solve the problem heuristically, as described

in detail in the subsections which follow.

CHAPTER 5. THE GENERATION ALGORITHM 62

Circuit Generation Problem

4

3

N

2

1

0

N

N

N

N

node setsedge setfanout set

EF

4 4

1

0

32
2 2

1
1

1
1

1
1

1

11
1

01

1
1 1

Given: F , E, Ni.

Find: assignments of nodes in N to each fj 2 F , and pairs of nodes for each

eh 2 E such that:

1. The number of edges leaving any x 2 N is exactly its corresponding fanout

fx.

2. All x 2 Ni have at least one fanin from Ni�1 (i > 0). (i.e. the calculated

delay(x) equals its assigned value.)

3. Fanin(x) � k for all x 2 N .

4. Fanins of x 2 N are distinct (i.e. no two fanouts of gate y are both inputs

to x.)

Figure 5.2: The generation/construction problem.

The general line of approach is as follows: First we determine an assignment of edges

and out-degree to levels Ni, but not yet to individual nodes within each level. We call theNi

level-nodes and the graph at this point the level-graph. We then split each level into nodes

and assign �rst fanouts and then edges, previously assigned only to levels, to the individual

nodes. A post-processing step designates any additional primary outputs required.

There are 5 major steps in the algorithm for generating a combinational circuit from

an exact speci�cation. We provide enough detail here to understand the important aspects

of the algorithm. Readers who are interested in the more detailed aspects of the software

are referred to the external documentation and the freely available implementation and

source-code [40]. Throughout the description of the algorithm, we will follow through the

small example of Figure 5.1, from the exact parameterization to the �nal circuit. For each

major step we indicate the module name in the implementation.

The �nal algorithm shown here is the result of a great deal of experimentation. Earlier

versions broke up the problem di�erently, or did steps in a di�erent order. Some of the major

decisions which lead to the better performance of the �nal algorithm were the boundary

CHAPTER 5. THE GENERATION ALGORITHM 63

calculations in Step 1 and the decision to divide the allocation of edges to both before and

after degree assignment.

Step 1: Compute bounds on in and out degree for each level (pre degree.c).

When we (later) assign actual edges between levels, we implicitly set the total fanin and

fanout for each level. Because we want to do edge assignment quickly, with no backtracking,

it is useful to have upper and lower bounds on fanin and fanout for each level.

As a result, the �rst step of the algorithm is to determine the maximum and minimum

fanin (in-degree) and fanout (out-degree) for each delay level: vectors min in[i], max in[i],

min out[i] and max out[i]. While the number of nodes at each level is known, the total

fanin is not known exactly because a four input LUT may only have two or three inputs in

many cases. For 2-LUTs (as in our example) the fanin bound is deterministic, because we

enforce the rule of no single-input nodes.

We require each node at level i to have between two and k fanins, one of which must come

from the preceding delay level to establish combinational delay. This gives immediate rough

bounds of min in[i] = 2 �ni and max in[i] = k �ni. Similarly, each non-primary-output node

must have at least one fanout, providing an initial lower-bound min out[i]=ni�(nPO�nd).

Max out[i] is calculated heuristically using the fanout distribution and the previously

calculated vectors for later levels, based on a number of rules: max out[i] is bounded above

by
Pd

j=i+1max in[j] -
Pd�1

j=i+1min out[j] representing the remaining inputs in the LUTs at

later levels less the reserved output edges for later levels; max out[i] is also bounded by

ni
Pd

j=i+1 nj to avoid double connections and by the sum of the ni largest elements in the

fanout list F (i.e. the maximum fanout of any ni nodes regardless of location).

The initial bounds are improved iteratively: the bounds on max out just determined

necessitate an updated calculation of max in and min in for later levels which in turn a�ect

max out[i]. We continue until no more tightening of the boundaries is possible, which is no

more than d2 iterations: we iterate d times, and iteration i �xes (at least) the bounds for

level i by looking at the d other levels.

The result of this step is the determination of the boundary vectors min in[i], max in[i],

min out[i] and max out[i], i=0::d, as pictured in Figure 5.3 (Step 1). Each level-node Ni is

labeled with ni and its fanin boundaries (upper left corner) and fanout boundaries (lower

left corner). Sometimes, in particular for small circuits, these bounds can be very tight.

CHAPTER 5. THE GENERATION ALGORITHM 64

In general, however, the upper and lower bound for fanout will di�er by about 10-15%. In

the case of fanin, the di�erence is dependent on the average fanin / number of edges in the

circuit: for fanin 2 the bounds will be exact, and the upper and lower bounds will diverge

to about 10% as the average-fanin hits k = 4.

Step 2: Assign edges between levels (levels.c).

Now that we have some idea of the number of edges to be assigned to and from each level,

we will proceed with initial edge assignment. In this step, we will assign most, but not all

edges. Recall that we are not assigning edges between nodes, just allocating them between

combinational delay levels.

There are three phases to Step 2. As edges are assigned, we calculate two new vectors,

assigned in[i] and assigned out[i] to represent the \used up" in and out-degree for level i.

The available in and out-degree to a level is de�ned as the di�erence between the assigned

and the maximum, and the required in and out-degree is de�ned as the di�erence between

the assigned and the minimum (or 0 when assigned is larger than minimum).

Step 2(a). We �rst consider the \critical" unit edges, edges which lie on the boundary

of the �rst and last levels of the circuit or which are required to ensure that combinational

delay constraints can be met. We assign MAX(min out[0], min in[1]) edges between levels

0 and 1, and MAX(min out[d�1], min in[d]) edges between levels d�1 and d. Then we

establish the combinational delay for each other level i, i= 2::d�1, by assigning ni edges

between levels i�1 and i.

Step 2(b). Secondly, we assign the long (length > 1) edges. This is a crucial step,

because if these are assigned poorly it becomes di�cult or impossible to complete the

graph construction without violating the shape or edge-length distributions. Long edges

are assigned probabilistically. We calculate the number of possible level to level starting and

ending point combinations for edges of length l at each level i, MIN(avail out[i], avail in[i+l]),

and sample the resulting discrete probability distribution to assign the edges, updating the

distribution after each assignment1. It is an important feature of gen that we sample from

1
Given the discrete probability density function, we can sample by generating the cumulative density

function, choosing an integer randomly and uniformly, scaling it to the sum of the cdf (area of the pdf),

and indexing into the appropriate value. Because the pdf is created in order to do allocation, rather than

a single sample, we want to emulate the idea of sampling without replacement, so once we have sampled

a value, we then have to adjust the pdf to lower the probability of taking the same value again. Often

we often have to modify the pdf further. For example, choosing a fanout value of 20 and 30 might be

equally likely in the pdf, but it might not be possible to have both in the same circuit. Thus, when one is

CHAPTER 5. THE GENERATION ALGORITHM 65

6..6

5..7

3..4
3

2

5

6

7
0..0

0..0

12..12

10..10

4..4

10..11

12..13

Step 1

7

6

5

2

3

Step 2

(3)
1 1 1

1 1 4 1 4 1 1

1 1 2 3 2 1

(13)

(10)

(5)

0 0

1 1 1 1 1

Step 3

111

1 1 1

11

2

22 3

1

1

4 111 411

Step 4

Figure 5.3: Example at the conclusion of Steps 1 to 4.

this distribution rather than just choosing the \optimal" assignment, because we want to

produce circuits with di�erent features on each execution with the same parameterization.

Step 2(c). We have only unit edges left. The last part of this step is to assign

the remaining required edges|those necessary in order to meet the required min in[i] and

min out[i] for each level i. This part is purely deterministic. Any remaining unit edges are

held back for assignment later in Step 3. Typically, these remaining edges are about 10-25%

of the original unit edges (or 7-18% of all edges).

The output of Step 2, shown in Figure 5.3 (Step 2), is a modi�cation to each level-

node Ni in the level-graph, this being a vector (though shown pictorially in the �gure)

indicating the number of assigned fanout edges of each length that have been assigned to

the level. Step 2 also guarantees that the assignment has met the minimum in and out

degree requirements for each level.

Step 3: Partition the total fanout at each level (degree.c).

We have the vectors assigned in[i], assigned out[i], max in[i] and max out[i]. However, the

assigned out-degree is a total for the level, not a list of individual node values from the

fanout distribution.

In this step we partition the total out-degree (e.g. 10) of level i into ni (e.g. 4) individual

values taken from the fanouts distribution (e.g. f4, 3, 2, 1g, summing to 10).

First calculate target fanouts, target[i], i = 0::d� 1, in the range assigned out[i] to

chosen, the probability of the second also goes to zero. We implement this sometimes by direct calculation,

and sometimes by re-smoothing the distribution to a given sum. This basic method is used, with di�erent

objectives, throughout the algorithm.

CHAPTER 5. THE GENERATION ALGORITHM 66

max out[i], such that
Pd

i=0 target[i] = nedges. Again, we sample a probability distribu-

tion calculated as in Step 2(b), rather than performing a deterministic allocation. The

goal is to assign the target out-degrees which are, on average, proportional to the amount

of slack between the minimum and maximum fanout values for each level, but probabilis-

tically rather than in exact proportion so that the resulting circuit is di�erent with each

execution of gen with the same inputs.

We are left with the problem of partitioning each target[i] into ni values taken from

the fanout distribution. Even for a single level, this integer partitioning problem is NP-

complete [29, page 223] to compute exactly, so we can only manage a heuristic solution.

Fortunately, this is made easier because of the remaining unassigned unit-edges|target[i] is

exible within the range min out[i] to max out[i], so we typically need only an approximate

integer partition for each level, and can allocate the remaining unit edges as required to

make the result exact.

Before entering the main operation of the degree-allocation step, we examine the low

fanout levels, de�ned as levels which have a total fanout less than 2ni. Assigning a high-

fanout value to such a level could result in later di�culties as we \run out" of edges for

giving individual nodes at least one fanout. To dispose of these levels, assign fanouts of

0, 1, and 2 deterministically, based on the availability of fanout-0 values in the fanout set

(some, but not all PO nodes will have fanout 0).

The main operation of this step is probabilistic and iterative. For each level, compute

average out[i]=target[i]/ni, and the values min possible out[i] and max possible out[i] in-

dicating the degrees which could feasibly be assigned to any node at level i (using the rules

of Step 1 applied to individual nodes). Then iterate through the values in the fanout dis-

tribution F from largest to smallest (the largest being usually the more restrictive, hence

more di�cult to place). Among the levels that can accept the current fanout fj (based on

min possible out and max possible out) we sample average out[i] as a probability distribu-

tion (with the same goals as just mentioned for targets) to choose the level to which fj will be

assigned. (See the footnote in Step 3 for more detail on probabilistic sampling.) Each time

we update the status vectors (assigned out, available out, average out, minimum fanout,

maximum fanout, min possible fanout and max possible fanout) for the chosen level.

Because of the probabilistic assignment, some levels will receive more than the target

number of edges (based on the sum of their fanouts) and some will receive fewer. However,

CHAPTER 5. THE GENERATION ALGORITHM 67

the details of the assignment do guarantee that all levels will receive between their minimum

and maximum total fanout. We also note that we do not always return the exact fanout

distribution that is given to us, but the di�erences are very minor.

On the relatively rare occasion that a fanout cannot be accepted by any level, we decre-

ment the fanout value by 1 and continue. This can lead to a minor modi�cation of the

input speci�cation, as discussed further in Section 5.4.1.

At the completion of Step 3, all edges have been assigned to levels, and the level-node for

each level i contains a list of edges (and their length) which leave that level, and a list of ni

fanout values fij , j=1::ni, which sum to the total fanout of the level. Figure 5.3 illustrates

this situation: the breakdown of total fanout into an (unordered) set of out-degrees is shown

above Step 3, and the edge-length distribution is as in Step 2. (Unfortunately, to get an

edge-length distribution which di�ers from Steps 2 to 3, we would need to use k > 2 and a

larger n, which would make the main operation of the algorithm more di�cult to view.)

Step 4: Split levels into nodes (nodes.c).

For this step, levels are treated independently. We need to split each level-node Ni into ni

individual nodes, and assign each of these a fanout from the list of available fanouts fij now

assigned to level i. This would be trivial, were it not for the necessity to introduce locality

(clustering and local structure) into the resulting circuit, and so we �rst discuss how we

impose locality in the generation.

Our approach to introducing locality into the generation algorithm is to impose an

ordering on the nodes at each level, and use proximity within this ordering between nodes

at di�erent levels as a metric of locality when we later choose the edge-connections between

nodes. This can also be viewed as trying to generate graphs which will \look good" when

displayed as pictures such as Figure 5.1, because minimization of edge lengths in a graph

drawing also has the e�ect of reducing crossings and of displaying any inherent locality in the

graph [30]|by creating a circuit with one known good ordering/drawing we have simulated

this form of locality in the generation. The ordering we will use is simply the sorted order

within the linear list of nodes within each level (this ordering is arbitrary until we have

associated distinguishing features such as fanout or edges to the individual nodes). The

measure of goodness of an edge is then the distance between the source and destination

nodes in their levels node-lists, relative to competitors. As a result, the order in which

CHAPTER 5. THE GENERATION ALGORITHM 68

fanouts are assigned within the node list becomes important, because placing high-fanout

nodes in an unbalanced way into the node list will skew the e�ects of locality measurement

in Step 5.

The locality index assigned to each of the ni nodes in the nodelist for level i is a scaled

proportion of the maximum sized level. Thus if the level with the largest number of nodes

contains 100 nodes, and the current level 10 nodes, then the latter will have nodes at locality

indices 5, 15, 25, ..., 95. Before fanout allocation the order of nodes is arbitrary, so the

nodes are now indistinguishable other than for this index.

Our goal in assigning fanouts to nodes in the list is to distribute the high fanout nodes

well for maximum locality generation. To do this, we sample a binary tree distribution to

allocate fanouts, in order from the highest to lowest fanout. To calculate the distribution,

label the nodes of a balanced binary tree on ni nodes with the number of leaves in its

subtree. Then perform an inorder traversal of the tree, and place the labels in (proba-

bility density function) pdf[i], i= 1::ni. For example, the binary tree pdf of length 15 is

[1,2,1,4,1,2,1,8,1,2,1,4,1,2,1]. In the most likely case, then, the highest fanout node would be

assigned in the middle, the next two highest fanouts at the quartiles, and so on. Another

way to view this distribution is to take an ordered list of ni nodes, assign a value p to

the middle node ni=2, a value p=2 to the nodes ni=4 and 3ni=4, p=8 to the middle nodes

in the resulting ranges and so on, then scale the resulting distribution to integers. The

point of this operation is to (on average) place the highest fanout node in the middle of

the ordering, the next two highest fanout nodes at the quartile points, and so on. Again,

probabilistic sampling means that we don't get exactly the same result each time, and just

as importantly, that we don't generate arti�cially symmetric circuits.

This step in the algorithm assigns to each node xj in level i, a value fanout(xj) from ffijg

and a value index(xj) to each xj , j= 1::ni. A further calculation assigns pj , 0 � pj � fj ,

the long-edge fanout of node xj , de�ned as the number of edges of length greater than one

from xj
2. This is again probabilistic, sampled uniformly over all long out-edges in the level.

At the conclusion of Step 4, each node x in the circuit has an assigned delay, fanout,

long-fanout and index, but no actual edges have been assigned between nodes at di�erent

levels in the graph. The fanout values are shown in Figure 5.3 (Step 4). This information,

plus the edge-length assignments elsewhere in the �gure comprise the input to Step 5 of the

2
There are not enough long edges to warrant storing a vector of lengths

CHAPTER 5. THE GENERATION ALGORITHM 69

algorithm.

Step 5: Assign edges to nodes (edges.c).

The major remaining step is to connect the fanout edges on each node to a corresponding

input port on a node on a later delay level, as speci�ed by the edge-length. We proceed

from level 1 to level d, connecting the edges to each level i.

To connect the in-edges to level i, we �rst calculate the source list, of unconnected edges

preceding level i which are of the correct length to connect to level i. Nodes with multiple

fanouts are inserted only once in the list, and nodes are deleted as their fanout is exhausted.

The destination list consists of all nodes at level i. Both these lists are maintained in sorted

order by node index (de�ned in Step 4).

Step 5(a). If the size (in edges) of the source list is more than twice the number of

available nodes in the destination list, we pre process the high-fanout nodes (those with

fanout more than 1/8 the number of nodes in the destination list) separately. To process a

single high-fanout node x, we randomly choose a range of nodes of size between fanout(x)

and 3�fanout(x)/2, centered at the closest index node y in the destination list to index(x).

Choosing a random set of fanout(x) nodes from this set, we make the physical edge con-

nections, and update all status vectors. This process is repeated for all high-fanout nodes

in the source list. The purpose of this step is to avoid a situation where we have a large

number of out-edges from the same source node x later in the edge-assignment phase which

cannot be assigned without creating double connections from node x to some node y|this

would otherwise be common because of the greedy nature of the algorithm.

Step 5(b). Establish combinational delay by connecting each node in the destination

list which does not already have a fanin edge from 5(a) to one node from the source list.

To choose the fanin for node y, we sample the source list L times, where L is the locality

parameter of generation (discussed below), choosing the result x with the closest index to

index(y). For this step, even though long-edge candidates exist in the source list, only

source-nodes at the preceding combinational delay level are considered.

Step 5(c). Perform a second sweep similar to 5(b) (including locality) to ensure that

each node y in the destination list receives a second incoming edge. There is no longer a

restriction on the length of the edge, but we cannot choose the same fanin as is already

attached to y from step 5(b).

CHAPTER 5. THE GENERATION ALGORITHM 70

Step 5(d). Now that the minimum requirements are met for each node in the desti-

nation list, iteratively choose a random node from the destination list, and choose an input

from the source list as per 5(b) and (c). Continue until the source and destination lists are

exhausted.

At the conclusion of Step 5, the circuit is complete, except that we may have fewer out-

degree zero nodes than the required number of primary outputs. We postprocess the circuit

to (randomly) label the required number of additional LUT nodes as primary outputs.

The �nal result of the generation algorithm (for one random seed) on the progression of

Figure 5.3 from the original speci�cation is the original example of Figure 5.1.

5.2.2 The Locality Parameter.

The locality parameter L has not been formally discussed to this point. As mentioned in

Step 4, we �nd that a purely random connection of edges between levels does not model the

type of clustering found in real circuits. At the same time, deterministically connecting the

edges based on aligning index values yields a circuit which is overly local, and is actually

too easy to place and route. We �nd that a reasonable approach in practice is to de�ne a

locality parameter L, and use it to bias the above algorithm towards greater locality; when

choosing an input for a given destination node, we sample L times, and choose the source

node which is closest in index value to the destination node under consideration. For higher

values of L, the probability of directly lining up indices increases; for L=1, the algorithm

is as originally described.

Though L can be speci�ed as a user parameter to generation it does not tie directly

to the characterization of a circuit. That is, we have no way to measure it for a speci�c

given circuit. Through experimentation, we have found that there is no constant locality

parameter which yields the correct results for all circuits (independent of size), but a value

which scales logarithmically with the size, n, of the circuit yields good results. Outside of

n, L is unrelated to the other input parameters of the circuit.

We �nd that the locality parameter can signi�cantly a�ect the properties of the resulting

circuit. Though we can empirically do very well at generating circuits simply by varying

the relationship between L and n, it would be better to tie locality to characterization,

particularly when dealing with generation of \clone" circuits.

CHAPTER 5. THE GENERATION ALGORITHM 71

Improved Locality Generation.

In order to improve the generation of locality in circuits, we have been pursuing work to

reparameterize Step 5 of the gen algorithm to use the spread and span metrics de�ned in

Section 3.5 rather than L.

Algorithmically, this does not signi�cantly change Step 5. Using spread we assign x

coordinates for each node u within the allowable range. Using the average span for the

level, we stochastically choose a span for each node u, and attempt to choose the previous

level edge connections to u to realize this actual span.

To this point, we have not been able to improve on our generated circuits by taking

the new locality information into account. We have several theories on this, and on what

further characterization is required, and we will discuss the issue further in 6.3.

5.3 Sequential Circuit Generation.

In this section, we discuss how to generate sequential circuits.

As per the model of Chapter 4, we de�ne a sequential circuit as a hierarchy of combi-

national subcircuits which are connected together with FF-edges and back-edges. In that

characterization, we decomposed a sequential circuit into its combinational components,

introducing ghost input and output ports. Here we pass new information about the GI and

GO interface into the subcircuit generation, then \glue" the subcircuits together to form a

complete sequential circuit. The �nal circuit will have no ghost inputs or outputs, as they

will have all been glued together into back-edges (a ghost output connected to a ghost input

at a preceding sequential level) or FF-edges (a ghost output connected to a ip-op at the

immediately next level). As mentioned in Section 4.2.3 the model and algorithm actually

generalize to arbitrary forms of hierarchy, given the appropriate parameterization, but here

we will talk only about simple sequential circuits with a single level of hierarchy.

Though the hierarchy and locality in a sequential circuit are partly captured by the

number of ghost inputs and ghost outputs between subcircuits, it is also very important to

know the shape of these connections. This is because we want to retain the combinational

delay of nodes as de�ned in the subcircuits, so we can only connect a ghost output to a ghost

input if the GO is either has a lower combinational delay or the GI is a ip-op. De�ne the

vector GIshape[d] as the number of ghost inputs at combinational delay d, d=0::max delay,

CHAPTER 5. THE GENERATION ALGORITHM 72

and GOshape[d] similarly for ghost outputs. These will introduce a topological constraint on

the connections between di�erent subcircuits in addition to simply specifying the number of

connections. In practice, we �nd that these vectors are important, especially for generating

clones, because they often uncover \quirky" aspects of di�erent circuits. Note that the

GIshape for one level and the GOshape for the other level in a 2-level circuit will roughly

correspond, but will not usually be exact|for MCNC circuits, there is typically some slack

between the combinational delay of the endpoints. It is crucial to have compatible GI and

GO shape vectors between di�erent levels, or the algorithm is forced either to create an

inordinate number of long edges, or to introduce extra ip-ops in order to resolve GI and

GO at incompatible delay levels.

To describe the sequential algorithm, we need to address three issues: how to exactly

parameterize a sequential circuit and its subcircuits; the modi�cations required to the combi-

national algorithm to accommodate new parameters; and the gluing algorithm for creating

the �nal circuit from the subcircuits. These are covered, respectively, in the next three

sections.

5.3.1 Sequential Circuit Parameterization

A sequential circuit is parameterized by levels (the number of sequential levels), nDFF (ip-

ops), nback (back-edges), nPI and nPO , its sequential shape (the number of nodes at each

sequential level), and the parameterizations of its combinational subcircuits.

Adding to the parameterization of combinational circuits, we have nGI , nGO , nlatch (the

number of GO designated for FF-edges), level (the sequential level for this subcircuit), and

the vectors GIshape[i] and GOshape[i], i = 0::d.

In a fully speci�ed parameterization, the combined information in the subcircuit spec-

i�cations completely determines the circuit, so values like nDFF and nback are redundant.

If the subcircuit parameterizations are determined by the default parameterizations (i.e.

fsm circ in Appendix A) then that high-level information is used to generate, for example,

compatible ghost I/O shapes before generation begins.

The de�nitions are best understood with an example. Figures 5.4(a) and 5.4(b) represent

combinational subcircuits which will be glued together into the complete sequential circuit

shown in Figure 5.4(c). The subcircuit in Figure 5.4(a) has parameterization3 fn=7; level=

3
Note that these are partial parameter lists only, as some parameters not relevant to the current discussion

CHAPTER 5. THE GENERATION ALGORITHM 73

Ghost
output
port

Primary
inputs

Primary
output

Back
edge

Flip
flop

Ghost
input
port

Level−1 PI will
become a flip−flop
in gluing stage

(c) Complete sequential circuit

(a) Level−0 sub−circuit

(b) Level−1 sub−circuit

Figure 5.4: Example construction of a 2-level sequential circuit.

0; nPI = 3; nPO = 1; nedges = 6; nGI = 2; nGO = 2; nlatch = 2; shape = (3; 2; 2);GIshape =

(0; 0; 2);GOshape = (0; 0; 2)g. The circuit in Figure 5.4(b) has fn = 4; level = 1; nPI =

2; nGI=0; nGO=2; GOshape=(0; 2); nPO=0; nlatch=0g. The complete circuit is described

by fn=11; nPI =3; nPO=1; levels=2; nDFF =2; nback=2g in addition to the speci�cation

of its subcircuits. Note that the ip-ops serve as primary inputs in the speci�cation of

the subcircuit at level 1, but primary inputs cannot exist at levels greater than zero (by

de�nition) in the �nal circuit, so these are converted to ip-ops as they are glued to ghost

outputs from the previous level. Notice how the GOshape of level one is, when shifted right

by one, equal to GIshape of level zero. In practice the shifted GOshape is lexicographically

less than or equal to the GIshape when looking at back-edges.

5.3.2 Changes to the Combinational Algorithm.

To generate subcircuits, we use a modi�cation of the original combinational algorithm of

Section 5.2. The additional constraints in the model implied by nGI , nGO, nlatch, GIshape,

and GOshape necessitate changes throughout the algorithm, as they change the ratio of

nodes to edges, introduce nodes with no fanout, and nodes with fanin of one when ghost

inputs are present.

of sequential circuits are left out.

CHAPTER 5. THE GENERATION ALGORITHM 74

Identifying Ghost Outputs (Step 1).

One of our primary applications is to generate circuits which are good inputs for FPGA

tools. The typical logic block con�guration in an FPGA is a 4-input LUT followed by a

ip-op. The output signal from the LUT can either be registered through the ip-op,

or not. Thus any LUT we generate which has both a registered and unregistered output

will require two FPGA logic blocks in technology mapping, increasing the size of the circuit

to the place and route tool and ruining our ability to compare circuits on the basis of

routability. Simple experiments show that about 90% of the LUTs which feed a ip-op in

real circuits have no other outputs so we want to, wherever possible, assign fanout values

of 0 to nodes which will have a single ghost output destined for a FF-edge.

To accomplish this goal, we identify the delay location of the nlatch ghost outputs which

will eventually feed a ip-op in Step 1. This allows us to take them into account during the

degree allocation phase. The result of this calculation is to make a new vector latch shape[i],

i = 0..d, available to the degree calculations of Step 1.

We also point out that any LUT which feeds a ip-op will also feed only one ip-op,

since it (usually) makes no sense to register the same signal twice.

Degree Allocation (Step 1).

Recall that Step 1 of the combinational algorithm calculates bounds on the maximum and

minimum fanin and fanout of each combinational delay level. The distribution of GI and

GO ports a�ects this process in several ways.

1. We assume that latch shape[i] nodes at level i will have a minimum fanout of zero,

rather than one (as per the above discussion).

2. We allow (but don't require) shape[i] - GIshape[i] nodes at level i to have minimum

fanin one rather than two. Note that we must still allocate at least one \real" fanin

for each node, or it would not (by de�nition) be in this subcircuit.

3. We subtract GIshape[i] nodes from the maximum fanin of level i, to leave room for

the incoming back-edges.

In addition to these speci�c changes to degree allocation, there are a signi�cant number

of minor modi�cations required in the details of the probabilistic sampling. This is mainly

CHAPTER 5. THE GENERATION ALGORITHM 75

because the loss of 20-50% of the edges in the speci�cation (to GIs and GOs) results in a

more restricted and di�cult problem.

Fanout Assignment (Step 3).

Step 3 of the algorithm, which assigns actual values from the fanout distribution to delay

levels, takes into account latch shape in the allocation of zero-fanout nodes, as per the

above discussion. The number of fanout-0 nodes for any level is bounded by GOshape[i] +

POShape[i].

Ghost I/O Assignment (Step 4).

Recall that Step 4 of the combinational algorithm creates the nodes, and assigns their

fanout values. Previous changes have tried to \make room" for the ghost I/Os, and here

we actually allocate GI and GO ports to individual nodes.

The allocation of ghost inputs is straightforward: we allocate the GIshape[i] ghost inputs

randomly and uniformly to the nodes at delay level i. Looking at the data for real circuits,

we �nd that there is no statistical reason to do otherwise.

We designate latch shape[i] nodes as latched. These nodes will eventually be candidates

for gluing to a ip-op. As much as possible, these will be fanout-0 nodes, and will not be

assigned additional GOs. If there are remaining fanout-0 nodes after this step, we assign

additional GOs. All remaining GOs are kept for a new post-processing step discussed next.

Remaining GO assignment (new Step 6).

Sequential subcircuits usually have fewer available edges than fully combinational circuits,

so we use the ghost outputs, in part, to \repair" any extra zero-fanout nodes which may

exist (usually some, but a small proportion) on the delay level they are assigned to. The

remaining ghost outputs are not assigned uniformly. We want to generate more realistic

circuits which tend to have a smaller number of high-fanout nodes to previous levels, rather

than many nodes with a single ghost output. To do this, we choose a random subset of

the nodes on each delay level requiring ghost outputs, smaller than the number of ghost

outputs available, then assign the ghost outputs uniformly to nodes in the subset.

These modi�cations to the combinational algorithm allow us to generate a combinational

circuit with the correct number of ghost inputs and outputs at the required combinational

CHAPTER 5. THE GENERATION ALGORITHM 76

delay levels so that the gluing process can take multiple circuits and glue them together.

5.3.3 Gluing Subcircuits.

The problem of joining subcircuits together into the �nal sequential circuit C is essentially

one of appropriately matching the ghost ports between the subcircuits into back-edges and

FF-edges.

When gluing begins, we have a list of subcircuits Ci, i = 1::c to be connected, sorted

by increasing sequential level. Each subcircuit contains a list GIlist of ghost inputs, a list

FF outlist of ghost outputs which have been labeled as targeting a ip-op (from nlatch in

the speci�cation), a list GOlist of other ghost outputs intended for back-edges and a list

FF inlist of primary inputs in subcircuits at non zero sequential levels which will become

ip-ops. Each ghost input and output is attached to a node in the subcircuit, and inherits

the combinational delay of that node.

The matching is constrained by combinational delay and sequential levels. We cannot

join a node x at sequential level l to a node y at level l + 1, unless y is a PI (i.e. intended

to become a ip-op). We also cannot join a node x to any node y at a level beyond l + 1

without violating the de�nition of sequential level on the nodes of C. Similarly, we cannot

join a ghost output on a node x to a ghost input on a node y if d(x) � d(y), without

violating the combinational delay of y, and we cannot connect two ghost outputs attached

to x with two ghost inputs to y, or we create a duplicate fanin to y.

This problem reduces to a standard bipartite matching problem and there are known

exact algorithms to solve it. However, the exact approaches are based on network-ow

algorithms which are too slow (i.e. O(n
p
n) time) to allow us to generate large circuits.

Furthermore, in order to apply the geometric locality heuristic used in combinational gen-

eration to gluing, and later to extend the gluing algorithm to one which does not �nd all

connections, but leaves some ghost inputs and outputs disconnected (as would be desired

for multi-level hierarchical generation) we would require weighted matching, which uses

O(n2 logn) time [66]. Since the other parts of gen operate in either linear or O(n logn)

time, this would not be acceptable.

Thus we approach the gluing problem heuristically with a greedy algorithm. The most

important aspect of the operation is to properly order the connections so as to increase the

chances of �nding a good solution. A solution which fails to connect all possible edges will

CHAPTER 5. THE GENERATION ALGORITHM 77

result in gen later having to diverge from its input-speci�cation by creating extra ip-ops

or by moving ghost inputs or outputs to di�erent nodes.

Because registered ghost outputs are labeled separately from the other ghost outputs,

the problems of gluing back-edges and gluing FF-edges are independent. However, di�erent

subcircuits do \compete" for back-edges. We give priority to earlier sequential levels by

processing in the following order (justi�ed later):

for i = 0..c /* c is the number of subcircuits */

connect back-edges from Cj , j 6= i, to GIs of Ci.

connect FF-edges from registered GO nodes in Ci to PIs in Ci+1

end for

Locality of connection.

We have previously discussed the locality metric in making combinational connections be-

tween nodes in Step 5. For sequential gluing, de�ne the index of a node as an integer

proportional to the node's location in the node list for a given delay level in any subcircuit

(the 0..ni � 1 ordering of the ni nodes in delay level i, scaled to the maximum width over

all combinational levels). When edges are connected in Step 5 of the base algorithm, we

probabilistically favour connections between nodes which have closer indices, in order to in-

troduce clustering in the circuit. This form of geometric clustering is evident when viewing

pictures of circuits generated by heuristic graph-drawing packages such as dot [30] (e.g.

see the many drawings in Chapter 6).

In order to generate realistic circuits it is important to continue this process when

connecting nodes to ip-ops and back-edges, or we generate circuits with many crossing

edges which are overly di�cult to place and route. Thus, we continue to use the node index

for sequential gluing.

Gluing back-edges.

The algorithm for gluing back edges to the ghost inputs of one circuit Ci from all other

subcircuits is as follows.

First create a destination list of all ghost inputs in Ci and a source list of all ghost

outputs in the other subcircuits which are at later sequential levels. Sort both lists by

CHAPTER 5. THE GENERATION ALGORITHM 78

increasing index within decreasing delay. The purpose of this order is to use up the highest

delay ghost outputs �rst (because they are more likely to not �nd a matching ghost input

and then require a ip-op or movement later), and to match them to the highest delay

ghost inputs with which they are compatible. Given that, we want to match indices as well

as possible.

Now proceed through the source list in order. De�ne the match value of a source node

x with a destination node y as 1 if (x; y) is an invalid edge (by the constraints above),

and d(y) � d(x) otherwise. We search the destination list for the �rst node with lowest

match value, which also lines up a compatible index by the sorting. Note that we don't

actually have to look at the entire destination list; this can be done in O(d) time, using a few

additional pointers indexed into the destination list. Combinational delay d is essentially a

constant so the algorithm is fast.

The time required for this gluing phase is dominated by the sorting, so we need O(n logn)

time4 per subcircuit, of which there are a constant number. Note that \n" in the algorithmic

complexity refers to the number of back-edges in C, which is typically about 5-10% of the

size of the whole circuit5.

The reason that the main algorithm processes subcircuits in order of their sequential level

is that the earlier levels typically have both many more nodes and greater combinational

delay, and also a more complex overall structure. (Later levels often reduce to a register-�le

with only a couple of logic nodes.)

Gluing Edges to Flip-Flops.

The process for gluing nodes with ghost outputs labeled as latches to primary inputs at the

next sequential level is more straightforward. For each adjacent pair of levels, create a source

and destination list as before, sort the lists by index (independent of delay), and line up

nodes directly (the lists are the same size, by the original speci�cation of the subcircuits).

This is an additive factor of O(n logn) time to the preceding steps, so the entire gluing

algorithm remains O(n logn) time. (In this case, n refers to the number of ip-ops in the

circuit which is, in practice, not the entire size of the circuit.)

4
Due to the fact that the node lists are already sorted, we can reduce this to an O(n � d) algorithm

with appropriate data structures. However, given the tight constants which exist for sorting algorithms, we

believe the constant for doing this would dominate log n for all reasonable n, so it is not of practical interest

to do so. The same applies to most (but not all) sorts which occur in gen.
5
This doesn't change the abstract complexity, but the algorithm runs faster in practice.

CHAPTER 5. THE GENERATION ALGORITHM 79

Note that the order in which subcircuits are considered is unimportant, as the connec-

tions are independent.

Post-processing.

As mentioned earlier, it is not always the case that a perfect matching exists for the back-

edges. A post-processing step is necessary to resolve the remaining incompatible ghost

inputs and ghost outputs. In this step ghost inputs and outputs are moved to suitable

candidates elsewhere in the subcircuits until matches are found. In extreme cases (agged

by warnings from gen) up to 40% of back-edges can be unresolved before post-processing,

but typically only 0-5% of ghost inputs and outputs (which comprise less than 1% of all

edges) remain after the main gluing algorithm.

5.4 Implementation Details.

5.4.1 Meeting the Input Speci�cation.

It is not always the case that gen determines a circuit which meets the input speci�cation.

As with any heuristic algorithm, there exist input possibilities for which the heuristics fail.

In the case of gen, we �nd that we are occasionally (1-2% of the time) unable to complete

a valid circuit. In these cases, the tool reports a \failure to determine a circuit with this

speci�cation." About 2-3% of the time, gen will complete a circuit, but will report that it

was forced to modify the input speci�cation signi�cantly in order to �nish (though this is

necessarily minor enough to not warrant failure). We consider these to be minor problems,

because the user can run the tool again with a new random seed, and typically will get an

acceptable output on the second try.

5.4.2 Parameterization and Default Scripts.

The discussion to this point has involved the generation of a circuit with a completely

speci�ed exact speci�cation. In practice, the user would choose only a small number of

parameters (or possibly just n), and the remaining are chosen from default parameter

distributions.

gen is augmented with a sophisticated C-like language, symple, for parameter gen-

eration. The default distributions are written in this language, and the user can specify

CHAPTER 5. THE GENERATION ALGORITHM 80

1

7

2

6

3

5

35

4 9

12

10

11

16

19

17

18

22

23

30

31

33

34

42

44

46

51

47

48

49

50

64

65

2941 45 5255 57 6063 6769 71

21 70815 58 68

13 662437 54 59

3661 53

43 56

1425

2032 62

2639

38

2740

28

n = 60

1

12

2

11

3

10

4

9

5

7

8

60

53

6 21

22

24

26

36

69

40

63

37

39

42

43

48

50

20 2931 32 3368 72

59

13

2534

49

23

46 57

14 151630

38

5870

1945

1844 47

1735

61

2871

27

51

41

54 64

62 52

55

56

66

65

67

n = 70

1

7

2

6

3

5

48

9

12

13

20

23

24

28

25

26

31

35

32

34

43

44

46

47

57

58

69

70

72

73

84

85

89

90

1930 36374267 758082 8688 91

10

1115 50215159 68 83

16

14 3345

3822 76

39

18

17

40

4179

87

62

7848

81

53

52

61

60 7177

27

29 74

49

54

5563

5664

65

66

n = 80
1

11

2

10

3

9

4

8

5

7

6

50

12

13

15

20

16

17

32

38 79

41

35

36

45

46

48

49

54

55

67

68

77

78

87

88

94

95

2330 31 4244 528486 92 9698 100

1858 9365 6697

6364

14 243399 25 34

3743 61

53

2128

22

19 2657

89

29

2747

40

39

62 59

70

69

90

91

60

72

71 51

5673 80

74

7585

76 81

82

83

n = 90

1

9

2

8

3

7

4

6

5 10

12

20

64 103

24

34

22

23

40

44

41

43

46

48

49

52

54

55

86

73

77

75

76

81

82

95

98

102

105

1819 3637 72 8092 101 106108 110112

111314

5684 85 96 2629 38 74107 109

3950

17

21252728

4793

15111

16

519483

33

32

97

3158

30

66

89

57

104

42 78

67

65

5988 99

90

87

45 35

53

91

100

60 79

6168

6370

6269

71

n = 100

Figure 5.5: A gen circuit family (fk=2; n=60..100 by 10g).

modi�cations in the control script for a circuit. symple provides a great deal of control over

parameters. The complete default scripts for combinational circuits, defaults.gen, comb.gen,

fsm.gen and special.gen are are shown in Appendix A, along with a description of symple.

As an example, observe how nIO is currently de�ned as a set of piecewise Rent-like equa-

tions, each of which has the Rent parameter drawn from a Gaussian distribution (see the

IOFrame of comb.gen).

The current default sets and parameters have been determined from experimentation

with the MCNC benchmark circuits. It would be possible to perform the same experimen-

tation with an alternate set of benchmarks, and generate a modi�ed default script.

Symple allows parameters to be speci�ed as constants, drawn from statistical distri-

butions or chosen as functions of other parameters. Figure 5.5 shows a series of circuits

generated with the varying n but other parameters �xed, to generate a family of related

circuits. Symple scales related parameters (e.g. depth and shape) yet retains the similarity

of other properties. This ability to scale circuits while retaining fundamental similarities

introduces an entirely new paradigm for evaluating the scalability of architectures and al-

gorithms.

5.4.3 Input Scripts and Clone Circuits.

The input to gen takes basically two forms. The user can specify a parameterization which

they create themselves, use circ to extract a parameterization from an existing circuit, then

generate a clone circuit with the same properties, or do a mixture of the two by modifying

CHAPTER 5. THE GENERATION ALGORITHM 81

/* CIRC 3.0, compiled Tue Oct 1 14:30:51 EDT 1996.

*/

X = comb_circ {

name="alu4clone";

n=1536; kin=4; nPI=14; nPO=8; delay=7;

nEdges=5400; edges=(0, 4494, 757, 125, 23, 1, 0, 0);

shape=(14, 692, 518, 198, 80, 21, 11, 2);

outs=(8,1267,67,41,32,33,14,13,11,3,2,9,9,5,4,0,0,1,1,0,

1,0,0,1,0,

0,

0,

0,

0,0,0,1,0,

0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,1,2,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,3,0,1,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1);

max_out=249; nZeros=8;

};

output(circuit(X));

Figure 5.6: A gen clone script for the MCNC circuit alu4, output by circ.

a clone script.

Figure 5.6 shows the second case, in the form of a gen script output from circ given the

MCNC circuit alu46. The object \comb circ" referred in the script to is the default frame

in the script comb.gen, and the speci�cations inside the set brackets indicate modi�cations

to parameters in comb circ which override the defaults.

Figure 5.7, in contrast, shows a user-de�ned gen script to create a 1,000 LUT circuit.

The user has chosen simply to generate a combinational circuit with 1,000 LUTs, 58 PI and

16 PO with combinational delay 9. The remaining, unspeci�ed, parameters (shape, edges,

etc...) are chosen from default distributions which use the speci�ed circuit parameters such

as delay and nPI as input parameters themselves.

To visualize the operation of gen for sequential circuits, and to see the type of variation

that can occur in generating a clone, Figures 5.8 and 5.9 show the clone script produced

by circ for the sequential circuit bbtas, the circuit itself, and two clones produced by gen

given the clone script. Note that we use node labels rather than the actual back-edges to

6
The command line used to generate this clone script is \circ in=alu4 k=4 gen." This takes the 4-LUT

mapped circuit alu4.blif from the default MCNC directory with k = 4, and produces the gen script pictured.

CHAPTER 5. THE GENERATION ALGORITHM 82

X = comb_circ { name="X"; n=1000; nPI=58; nPO=16; delay=9; };

output(circuit(X));

Figure 5.7: A simple user-generated gen script for a 1000 LUT circuit.

/* CIRC 3.1, compiled Wed Aug 28 15:36:17 PDT 1996. */

X = {

name="bbtasclone";

L0=(@.comb_circ) {

name="L0";

n=8; kin=4; nPI=2; nDFF=0; level=0; delay=2;

shape=(2,3,3);

nEdges=7; edges=(0,7,0);

nGI=13; GIshape=(4,9,0);

nGO=3; GOshape=(0,0,3);

nPO=2; POshape=(0,2,0);

outs=(5,0,2,1);

max_out=3; nZeros=5, nBot=3;

};

L1=(@.comb_circ) {

name="L1";

n=3; kin=4; nPI=0; nDFF=3; level=1; delay=0;

shape=(3);

nEdges=0; edges=(0);

nGI=0; GIshape=(0);

nGO=13; GOshape=(13);

nPO=0; POshape=(0);

outs=(3);

max_out=0; nZeros=3; nBot=3;

};

glue=(L0, L1);

};

output(circuit(X));

Figure 5.8: Clone script, produced by circ for bbtas.

improve readability.

One aspect that the parameterization does not necessarily capture is the symmetry of

the original circuit. We observe that neither clone has the symmetry of the original. Note,

however, that recapturing the block structure and symmetry in a at netlist are open (and

very di�cult) research problems of their own.

We point out, as well, that the two clones are di�erent, yet both respect the parameter-

CHAPTER 5. THE GENERATION ALGORITHM 83

a b

c d e

f g h

c f g h e f g h c f g h e

(a) Circuit bbtas

a b

c d e

f g h

c f g h e f g h f g h ee

(b) Clone one

a b

c d e

f g h

c f g h f h f g h ed

(c) Clone two

Figure 5.9: The MCNC sequential circuit bbtas and two clones.

ization of the input script. One of the features of the implementation is that the user can

generate multiple di�erent circuits with the same underlying speci�cation.

5.4.4 Time Complexity of the gen Algorithm.

The theoretical time complexity of the algorithm and its gen implementation is the larger

of O(d2) from Step 1 and O(n logn) from each other step. In practice, we assume that

d<<n, so the complexity reduces to O(n logn). Each step in the algorithm addresses each

element a constant number of times in processing for a linear factor, with possible constant

number of preprocessing sorts or the creations of a random permutation, each of which takes

O(n logn) time. The algorithm uses a constant amount of space per node, hence O(n) for

the algorithm.

In practice gen is very fast. Generation of a 2,000 LUT circuit takes about 7 seconds

on a Sparc-5, using 500K of memory. For perspective, the same circuit requires about 45

minutes and 2M of memory to place and route using even a fast and memory-e�cient tool

such as vpr. A circuit of 30,000 LUTs (beyond the size of current FPGAs) requires about

30 seconds and 1M to generate, versus a half-day or more to place and route.

CHAPTER 5. THE GENERATION ALGORITHM 84

We have successfully generated circuits of up to 200,000 LUTs, well beyond the level

of current FPGAs. The gen implementation is currently limited to about that size, due

simply to the use of 32 bit integers: we need to be able to calculate n2 to determine some

probability distributions. Larger circuits would require special purpose arithmetic, at least

for speci�c parts of the code, or a hierarchical approach to generation.

