
Chapter 6

Validation of Circuit Quality

As discussed earlier, heuristic algorithms such as gen are best compared on the basis

of their actual results. The primary applications of the benchmark circuits produced by

gen are FPGA architectural exploration and software tools for computer-aided design.

Thus, our method of validation will use well accepted metrics of routability to compare

\real" benchmark circuits with clone circuits produced by gen. Because the gen algorithm

contains a number of random and probabilistic techniques, it is also interesting to compare

the gen-circuits against standard random graphs of the same size.

In the case of combinational circuits, we use the MCNC benchmarks as our real circuits.

For sequential circuits, the author was able to use industrial circuits provided by the Altera

Corporation while employed there on an internship.

Our validation process is outlined in Figure 6.1. We take a real circuit, its clone circuit

from gen, and a random graph of the same size. These are individually placed and routed,

and comparisons are made based on reconvergence number (from circ), track-count and

wirelength (from vpr), and the \wiring resources" used on an Altera 10K20RC240 com-

mercial FPGA (from max+plus2).

In Section 6.1 we show how to create reasonable random graphs for this comparison.

Section 6.2 then gives a number of examples to visually indicate the di�erences between

random graphs, gen-circuits and real benchmarks, itself a form of validation. In Section 6.3

we discuss the empirical results for the combinational MCNC circuits, and in Section 6.4

we discuss empirical results for sequential industrial circuits.

Because gen creates circuits using only a small parameter list, the goal is to show how

85

CHAPTER 6. VALIDATION OF CIRCUIT QUALITY 86

Benchmark
Circuit

Clone
Circuit

Random
Graph

Track
Count

 Total
Wirelength

10K20 Wire
Resources

Place and Route

Figure 6.1: The validation process.

close they are to existing circuits. For a method such as proposed by Iwama et. al. [43]

(See Section 2.2.3), where new circuits are generated by repeated small transformations or

mutations, it would be equally important to show that the result was signi�cantly di�erent.

It is important to point out that the default parameterizations and the benchmark

circuits produced by gen are not at all restricted to the existence of an initial circuit to

clone, other than for this validation process. We are able to generate benchmark circuits of

up to 200,000 LUTs, well beyond the level of current FPGAs or ASIC circuits, but we can

only validate the process up to the largest circuits in the MCNC and industrial collections,

currently about 4500 LUTs.

6.1 Generating Comparison Random Graphs.

As mentioned earlier in Section 2.2.3, there are several natural models under which it

is relatively easy to generate uniform random graphs. The most common model used is

G(n; p): a graph on n nodes where each edge exists independently with probability p.

However, these graphs have either too many edges, or are disconnected (depending on p|

see Section 2.2.3), so they are too unrealistic even to form a basis for comparison. The

closest form of random graph that we can generate as a fair comparison is a random t-

regular undirected graph, which we then force to be directed.

CHAPTER 6. VALIDATION OF CIRCUIT QUALITY 87

6.1.1 Random Directed Acyclic Graphs.

To generate a random graph the same size as a combinational circuit with n nodes and

m edges, we calculate the largest t such that t � n < 2m, generate a t-regular graph, then

add the required number of leftover edges by random sampling. We direct the edges by

taking a random ordering of the nodes and directing each edge from the lower to the higher

numbered vertex.

A random t-regular graph can be generated as follows1:

1. Create a random permutation � of size 2 � t � n, to represent 2 � t � n nodes of a new

graph (with no edges).

2. Join the nodes �2i and �2i+1 with a new edge, i = 0::(t � n)� 1. This creates a graph

on 2 � t � n nodes with t � n edges, where each node is connected to exactly one other,

i.e. a random matching.

3. Collapse (i.e. \identify") all nodes labeled �ti::�(t+1)i�1 into a single node xi, for

i = 0::n� 1.

The result of this process is an n node undirected graph where the degree of each node

is exactly t. The algorithm does not, however, guarantee that the graph is simple (contains

no double-edges or self-loops). The expected number of loops (edges from vertex v to itself)

is given by

�1 = Pr(edge is loop) � edges in G

=
#pairs which produce a loop

pairs
� edges in G

=

�
t
2

�
� n�

nt
2

� �

nt

2

=
t(t � 1)n

(nt)(nt� 1)
�

nt

2

=
t� 1

2
(n >> 1)

1Thanks to Mike Molloy [53] for showing me this construction and the analysis of it. The con�gura-

tion model was introduced in this form by Bollob�as[9] and motivated in part by the work of Bender and

Can�eld[7]. This model arose in a somewhat di�erent form in the work of Bekessy, Bekessy and Koml�os[6]

and Wormald[71, 72].

CHAPTER 6. VALIDATION OF CIRCUIT QUALITY 88

and the expected number of double connections (multiple uv edges) is given by

�2 =
possible double edges

possible edge-pairs
� edges in G

=

�n
2

��t
2

��t
2

�
� 2�nt

2

��nt�2
2

� �

�
nt

2
�

nt � 2

2

�

=
n(n� 1)t2(t� 1)2

nt(nt � 1)(nt� 2)(nt� 3)
�

nt(nt � 2)

4

=
(t� 1)2

4
(n >> 1):

It is quite interesting that the expected number of loops and double edges is a function

purely of t, independent of n. The distribution of the events is Poisson, so the probability

that a given G generated by the construction is loop-free, double-edge-free is e�(�1+�2).

For t = 5 the probability that G is simple is 0.006. Thus we can expect to �nd a simple

t-regular graph within a couple of hundred iterations. In practice, however, we can (and

do) just delete the loops and multi-edges and choose new edges when adding the m � tn

other edges. Constructions due to Frieze [28] and McKay and Wormwald [51] allow this to

be done without sacri�cing perfect uniformity, but this is not necessary for our purposes.

For the direction of edges, we just use the (natural) ordering which comes from the

random permutation �. To add the extra edges, we uniformly choose a node with low

fanin, uniformly choose a node from those with lesser numbers, and add an edge. We

repeat this process until the number of edges in the graph is m.

One problem with these random graphs is that they have an overly high number of I/Os.

For any random ordering of the nodes used to choose the edge directions, the probability

that the i'th node x has all its edges directed forward (i.e. is a PI) is approximately (i
n
)t,

so the expected number of PIs is

E[nPI] =
nX
i=1

�
i

n

�t

=
O(nt+1)

nt

= O(n):

Empirically, we calculate that for t = 5, about 8% of nodes are primary inputs, and by

symmetry 8% are primary outputs.

CHAPTER 6. VALIDATION OF CIRCUIT QUALITY 89

6.1.2 Random Directed Graphs with Cycles.

For sequential circuits, we also want to have a given number of ip-ops and back edges.

The introduction of back-edges also o�ers the opportunity to \repair" the I/O bias in the

acyclic circuits.

We generate a random directed graph on n nodes and m edges with nPI primary inputs,

nPO primary outputs, with nDFF available ip-ops (for breaking combinational cycles, as

we want only synchronous designs) and k-bounded fanin. The algorithm is as follows.

1. Generate a t-regular graph as in the combinational case.

2. Randomly label nPI fanin-zero nodes as PI (similarly nPO fanout-zero nodes as PO).

3. Randomly connect unlabeled fanout-zero and fanin-zero nodes by new edges until they

are exhausted. When it is necessary to connect a node to a node of a lower number,

separate the two by a ip-op if one remains to allocate, otherwise ignore this choice

and restart the search for an alternate connection that does not involve a back-edge.

This reduces the number of unwanted I/Os in the circuit, while also adding back edges

and ip-ops.

4. Continue randomly connecting random nodes to random nodes with fanin less than k

until the graph contains exactly m edges.

The graphs generated by this process could be seen as a \�rst pass" version of gen

which takes fewer parameters into account. In fact, this algorithm alone would be an

improvement over most naive approaches to generating random graphs for benchmarks,

and thus represents an extremely fair comparison of gen circuits to \random graphs."

Comparing real circuits to clones and these random graphs is essentially measuring how far

along the scale from \random" to \real" the current gen approach has traveled.

6.2 Visual Validation: Examples.

For smaller circuits, we can observe the output of gen pictorially. One command-line option

of circ causes a dot script to be output. The dot program [47] takes this description of

the graph and generates a drawing in postscript. We show a number of these drawings here.

Further examples are shown in Appendix C.

CHAPTER 6. VALIDATION OF CIRCUIT QUALITY 90

6.2.1 Gen Circuits from Defaults.

Figure 6.2 shows four di�erent combinational circuits produced by gen using the default

parameter distributions. We note that these circuits appear to be \normal" circuits, and

include many features such as areas of high fanout. The visual \quality" of the circuits is

most striking when one observes the similarity to MCNC circuits, shown in Figure 6.3, and

the contrast between MCNC circuits and the random graphs shown in Figure 6.4.

1

35 202754 88

91

2

2930 6266 102

4

174080

7

3739

13 34

8

1011 19 36 7275

9

16

79

15

2641 53

25

48 52

33

47

60 86

61

84

64

97 99 101 104

612 55 59

77

18 21 858749

22

28 63100317638

43

42 6773 98 103

50

51 57

5681 89

14

68

23

32

9244 69

74

35 657882 90

24 45 587083 93

46 7194

96

95

1

3

2

31

4

5

6

10

7

9

8 12

14

1315

17

1622

24

2325

26

27

29

2830 48

50

4951

52

47 5760 62

18

19

32

5311 33

21

2034

39 35 5436 58 61

4042

38

37 5559

43 41 56

45

44

46

1

5

2

4

3

8 1113 18263640 4549 5162 6469 82 8590 100104 115 123127135144147 151156166168 171 191 196 200

46 176 192

6

9

7 12 16

19

1721

24

22

23

2534

37

3538

41

39 4447

50

4857

60

58

59

61

63

67

70

68 71

74

72

73

80

83

8184

86

88

91

89 98

101

99102

105

103106

109

107

108

111

112

114 121

124

122 125

128

126 133

136

134 137

140

138

139

142

145

143 146

148

149

152

150 154

157

155165 169

172

170 174

175

189

193

190 195 198

201

199

188 194 203

15

14 2752 65 113116167

173

197

10

20

29

28

43

42

55

53

78

66

76

75

87

92 120

110

118

117

129 141

160

153

158

179

177

202

79

3394 180

32

5477

93

119 130

161

15917830

131

56

132

31

162

183

164184

163181

96

95

182

97 185

186

187

1

349 69

2

53 142159

4

6 125

106

5

8

139 183

7

12115 185

11

88104

13

15 68

127

14

108

17

19 155182

18

112 153

20

2243 8284

21

96

200

23

25

37 154

24

138

26

141184

27 89

32

3379

34

36 126

110

35

105128

201

39

41

113

40

151

42

55109

44

46

48 95

47

150

80

50

52

87

51

140

54

137

70

64

66199

152

65

83

143

67 75

77

76

114

78 124

186

123 167 174180 194 198207

10

9 16

29

2838 45

91

60

58

57

56

72 188

7181 86

85

90

98

97107 111

117

116

131

129

147

145

144

156160

187

30 59 16192118 130 146157 189

31

62

6194

93

120

119 190158

202

7399

162

63

132 148 163

191

178

100

205121

203 74102 135

195

101 133

177103

136 176 192

168

197

204 149 181134 164 169171 175

122

165 196172

206

170

193166 173179

Figure 6.2: Varied circuits produced by gen, using the default pro�le.

1

173514

28

11 29344 38 40

2

23

22 161512 25

3

27

132030

5

9

6

21

36

7 8

26

10

31

33 37 39 41

18

32

24 19

1

615918 30 67

72

27 46 2126153 38

2

71

4

88 84221270

62

35

3231

40

13

5

19

55

81

11

73

50 49

4854 63

7896 3692 983 57

6

79 56

7

29

74 68

9323 80 9516 8699

28

20 5853

45

8

33

47

9034

10

41

52

14

37 89

17

39

82

44 6677 104

60

76

98

24

101

85

7525

102

100 87 51

42

43

6469

65

97 94

91

103

Figure 6.3: MCNC combinational circuits sqrt8 and sa02.

CHAPTER 6. VALIDATION OF CIRCUIT QUALITY 91

1

5

60 126

2

119 123

3

434 101

7

836 41

9

115

10

93

11

12 57

102

13

1471 91

15

81

16

121

19

20

21

22

46

23

24 84

112

26

27 114

85

30

32104

120

31

53

35

107

37

38

43

44 75

88

48

49 64

50

51

106

55

83

58

56

6796

62

105

66

63

89

69

70

116 124

98

109

99

6 1829 3340 47 545961 6568748082 86 9094 97100 103 108110 113 118122 125127

45 92 52

17

72

28

77 9539 42

73

8776

117

111

25

79

78

1

2

170

154

4

639 227

5

129140

8

9 255

167

10

11 222

225

15

212

20

16

18

173

17

251

69

19

108 220

22

23152 210

24

216

28

50

25

27

192

123

26

194

206

29

31 160245

30

190

121

34

37

57114

35

145 239

36

234

104

40

122 157

41

43

119

44

45 89253

46

48

47

202

52

186

58

53

54

68 217

55

56

132

60

198

63 164

61

62 228 238

65 66

67118

229

71

72

73

74

236

76

77

78

79176

83

84 166

85

199

91

116

86

87 211

88

182 224

93

94 243

98

203

105

99

171233

100

103

207

101

102

209

107

137

110

127

111

183

115

112

113242

196

125

126

133

180

136

134

135153

139

169

142

144

231

146

148

150

149

188

156

247

159162

163

177

175

249

179185

14 21 333842 51 5964 7082 9297 106 109117120124 128130 138143147 151 155158 161165168 174178 181184 187 189191193 197201 205208 215 219 221223226230 232 235237 241244 246250 252254 256

37 12

32

49 131

81

75

218

80 90 141 195200

172

240

204 214

213248

13 95

96

Figure 6.4: Random 4-regular digraphs

6.2.2 Gen Clone-Circuits.

Figures 6.5 and 6.6 show two MCNC circuits, each original circuit pictured with two dif-

ferent clone circuits generated from its characterization by circ. Notice that the clones

have a similar structure in terms of the parameters given to gen, but are di�erent in the

implementation of that structure, just as they are di�erent from the original.

0

0 00 00 0 00 00000 0 00

0

0

0

0

0

00 0

0 0

0

0

0 0

0

0 00 00 000

0 0 0

0

0

0 0

(original)

0

0 00 00 000 0 0 00 00

000

0

0 0000

0

0

0 0 00

0

0

0

0

0 000 0 0 00

0 0

0 0

0

0

0 0 0000 00 00 00

0 00

0

0000 00 0

0

0

0

0

0

00 0

0

0 00 0000 0

0

0 0

00

0

Figure 6.5: MCNC combinational circuit squar5 and two clone circuits from gen.

Figure 6.7 shows the MCNC sequential circuit dk15 and two clone circuits produced

by gen. Unfortunately, dot is only designed to display directed acyclic graphs, so we are

unable to automatically display graphs according to our sequential model. To generate

CHAPTER 6. VALIDATION OF CIRCUIT QUALITY 92

0

0 00 0 000 00 0

00

00

00

0 0

00

0

00

0 00

0 0 0 0

0

0 00 000

0

0

0

0

0

(original)

0

0 0 00

0

0

0

0

00 0 0

0

0

000

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0 00 0

0

0 00

0

0

0

00 0 0

0 0

0

0

0 00 000

00 0

0

0

00

0

0

0

0

0

0

0

00

00 0 0

00 0

0

0

0

0

0

Figure 6.6: MCNC combinational circuit sqrt8ml and two clone circuits from gen.

acceptable input for dot, circ reverses all back-edges and gives instructions for dot to

display them as dotted in the drawing.

6.3 Combinational MCNC Circuits.

In this section we deal with the validation question for combinational circuits. We judge

the quality of the generated circuits with respect to parameters not speci�ed in generation:

reconvergence, and post-placement and routing wirelength and track count. We note that

a validation process for other characteristics such as node activity in simulation or timing

analysis could also be performed; we leave this for future work.

We constructed the clone scripts (See Section 5.4.3) for 42 combinational MCNC circuits2

with circ (i.e. n, nPI, nPO, d, shape, fanout and edge length distributions), and generated

corresponding circuits meeting those pro�les with gen. Our method of validation is to com-

pare unspeci�ed characteristics of the MCNC circuits against those of the corresponding

2There are actually 109 combinational circuits in the LGSynth93 benchmark suite, but the majority are

too small to be useful. We have restricted the experiments to circuits with 100 LUTs or more.

CHAPTER 6. VALIDATION OF CIRCUIT QUALITY 93

0

00 0 00 00 00

00 0

0

0 0

0

0

00 000

0

00 0

0

0

00

0 00

(original)

0

0 0 000 0 0 00 0 00

0

0 00 0

0

0 00 0

00 0

0 00 00 00

0

0

0 00 0 0 000 0 00 0

0

00 0 0

0

0 00 0

000

00 0 00 0 0

0

Figure 6.7: MCNC sequential circuit dk15 and two clone circuits by gen.

generated circuits and against random graphs of the same size (as discussed in the previous

section).

Validating Reconvergence.

Reconvergence (from Section 3.4), R, is not a parameter to gen. Reconvergence captures

numerous properties of a circuit, including high fanout, and the interaction between shape,

edge length and fanout distribution, all of which a�ect the ability to place and route the

circuit. We calculated R for the generated circuits and compared them to those of the

original circuits from which the generation pro�les were extracted and to those of random

graphs of the same size. The results for the MCNC circuits and their corresponding gen-

clones and random graphs are shown in Table 6.1. Recall that 0 � R � 2 for 4-LUT mapped

circuits.

We found that, for over half of generated circuits, R was within 0.1 of the value for

the corresponding MCNC circuit. On average R di�ered by 22% in absolute value (if

cancellation is allowed the di�erence is only 9%). This indicates that the correlation for an

important descriptive parameter, R, did carry through the generation process.

CHAPTER 6. VALIDATION OF CIRCUIT QUALITY 94

Reconvergence Tracks Wirelength
size mcnc gen rnd mcnc gen rnd mcnc gen rnd

sao2 100 0.48 0.57 0.45 4 4 6 616 602 879
cht 102 0.10 0.17 0.10 3 3 5 353 445 572

9symml 106 0.41 0.57 0.44 4 4 7 606 582 867
C1355 115 0.80 0.56 0.21 5 4 6 677 655 825
C499 115 0.80 0.56 0.22 5 4 6 668 655 831
bw 137 0.67 0.66 0.67 4 4 9 842 794 1342
clip 149 0.59 0.63 0.79 4 4 9 978 896 1579

9sym 153 0.45 0.51 0.44 4 4 8 950 858 1424
C432 160 0.96 0.95 0.15 4 4 7 855 895 1347
rd84 165 0.53 0.78 0.60 5 4 9 1171 999 1927
o64 176 0.00 0.00 0.05 3 3 5 395 375 1204

C1908 178 0.84 0.95 0.28 5 6 8 1196 1249 1777
i3 178 0.00 0.00 0.05 3 3 6 332 344 1209

alu2 207 0.88 0.97 0.64 5 5 10 1425 1425 2591
i5 221 0.00 0.16 0.06 3 3 5 655 1180 1620

exmpl2 223 0.36 0.30 0.05 4 4 6 1053 1289 1523
toolrg 225 0.31 0.46 0.37 5 5 9 1520 1417 2494
t481 230 0.62 0.76 0.62 6 6 10 1763 1728 3071
C880 234 0.57 0.64 0.16 5 6 7 1419 1655 2233
duke2 273 0.56 0.56 0.36 6 5 10 2169 2008 3277

i2 275 0.02 0.06 0.02 3 3 6 727 716 2203
i4 290 0.00 0.01 0.03 3 3 6 592 639 2393

vda 305 0.72 0.77 0.55 7 5 12 2787 2557 4613
i6 320 0.24 0.21 0.05 3 3 7 1181 1262 2501
i7 402 0.20 0.20 0.03 3 3 6 1352 1403 4114
i9 464 1.07 0.72 0.22 5 5 12 2770 3072 6913

C3540 481 0.86 0.84 0.38 6 8 15 3726 4887 8321
cordic 489 0.80 0.89 0.39 7 7 15 4279 4859 8891
table3 494 0.73 0.87 0.49 8 6 15 5442 4847 8840
table5 500 0.78 0.86 0.39 8 7 15 5612 5018 9159

x3 512 0.26 0.24 0.08 4 5 10 3454 4289 7029
ex4p 514 0.41 0.25 0.23 4 5 12 3425 3914 8604
apex6 528 0.25 0.21 0.08 4 6 10 3217 4331 7115
C6288 559 0.90 1.16 0.45 4 8 16 2900 6207 10287

k2 559 0.60 0.60 0.18 7 7 14 5190 5191 9139
misex3c 563 0.53 0.63 0.37 6 5 15 4841 4493 10989

dalu 575 0.46 0.48 0.19 5 6 13 3827 4871 9547
i8 614 0.77 0.43 0.18 5 7 15 5729 6391 10181

apex1 740 0.67 0.56 0.36 8 7 19 8124 7725 15326
apex3 921 0.66 0.59 0.30 8 7 19 10658 9831 34423
C7552 945 0.53 0.45 0.05 5 6 13 5751 10384 15918
ex5p 1072 1.12 1.20 0.27 10 8 21 14343 12615 27904
i10 1252 0.72 0.55 0.09 6 8 19 15085 23915 28738

apex4 1270 0.90 0.69 0.23 9 8 23 16312 14279 34423
misex3 1411 0.55 0.77 0.24 8 7 24 16139 14799 40152

alu4 1536 0.50 0.62 0.22 7 6 26 15818 13561 45177
seq 1791 0.48 0.67 0.21 8 7 27 21348 19796 57040
des 1847 0.50 0.39 0.07 6 9 23 17898 33925 50294

apex2 1916 0.47 0.64 0.20 8 8 29 23203 22742 63418
spla 3706 0.97 1.07 0.13 10 9 19 49724 52583 167832
pdc 4591 1.01 1.27 0.10 11 10 19 74553 66131 225679

signed di�erence 9% -45% 3% 123% 10% 119%

absolute di�erence 22% 48% 14% 123% 17% 119%

Table 6.1: Empirical validation using combinational MCNC circuits.

In contrast, the reconvergence numbers of the random graphs did not match the MCNC

circuits well at all. We observe that these random graphs also exhibit diminishing R as n

increases. This is partly due to the two factors mentioned earlier: the absence of high-fanout

nodes and the large number of I/Os. Thus any generator which does not take these factors

into account will fail to emulate crucial behaviour of real circuits.

CHAPTER 6. VALIDATION OF CIRCUIT QUALITY 95

Validating Routability.

To test the \routability" of our output circuits, we used a locally available tool, vpr [8], to

place and global route the sets of MCNC circuits, generated circuits, and random graphs

described above. The circuits are compared on two di�erent metrics: the maximum number

of tracks per channel required to successfully route, and the total wirelength of the global

routing. Vpr is a high-quality tool, currently the best academic global router available, so

it provides a good quality solution for our comparisons.

Vpr [8] chooses a minimal square grid to support the size of the circuit, and minimizes

both maximum track-count per channel and total wirelength (by re-routing with successively

fewer tracks per channel until failure occurs).

Table 6.1 also shows the routing statistics for the MCNC circuits, clones and random

graphs with summary statistics (percentage pairwise di�erences) on the last line. We see

that the track count for the generated circuits di�ered by 14%, on average, from the corre-

sponding MCNC circuit, whereas the random graphs di�ered by 123%. Wirelength di�ered

by 17% for the generated circuits and 119% for random graphs.

For both track-count and wirelength, we note that the variation for gen clones lies in

both directions whereas random graphs were universally harder to place and route. Thus,

the signed di�erences for the gen clones were only 3% in track-count and 10% in wirelength,

meaning that the di�erence applies as much to the variance of gen circuits as to an inherent

speci�cation bias. The random graphs, on the other hand, showed an obvious and consistent

bias.

Though not shown in the table, we note that there is a corresponding increase in the

cpu time required place and route the gen circuits and random graphs, which is roughly

proportional to the increase in wirelength (i.e. small for gen circuits, and double or more

for random graphs).

These results clearly show the circuits produced by gen are very similar to the MCNC

originals and signi�cantly more realistic than random graphs as benchmark circuits.

Locality Revisited.

The above empirical results are all for the original method of producing locality|using the

locality parameter L described in Chapter 5.

CHAPTER 6. VALIDATION OF CIRCUIT QUALITY 96

As mentioned in the description of the algorithm there, our hope is to eventually use

a form of locality generation which is based on the locality characterization in Section 3.5.

We are pursuing ongoing work to that end, and have made changes to gen which use spread

and span to parameterize edge connections in Step 5 of the generation algorithm.

Unfortunately, these e�orts have not yet shown any numerical improvements over simply

using the locality parameter L. There are several possible explanations for this. One is that,

although the span of a node models the distance between nodes in the delay based layout,

it does not model the interaction between edges, i.e. crossings. It is possible that edges

are at the correct distance, but exhibit a balanced (rather than clustered) distribution of

crossing numbers across horizontal slices of the layout, making the place and route problem

more di�cult.

Though the empirical results show that we already have an excellent method of pro-

ducing circuits, it is theoretically displeasing to not tie the issue of locality characterization

into the generation algorithm. For this reason, we feel that further characterizations of

locality, especially the ability to parameterize locality generation in ways such as described

in Section 3.5, are an important direction for ongoing and future work.

6.4 Sequential MCNC Circuits.

We validate the sequential gen-circuits by generating clones of 22 industrial benchmark cir-

cuits (provided by the Altera Corporation), and comparing the post-placement and routing

statistics from vpr and Altera's max+plus2 for the original circuit with that of the clone

circuit and a equivalently sized (in terms of nodes, edges, ip-ops and I/O) random graph.

The benchmark circuits3 were output as BLIF after synthesis and �tting with Altera's

commercial place-and-route tool MAX+PLUS2 into an Altera 10K20RC240 FPGA, and

all analysis by circ, including the extraction of clone scripts, takes place from that point.

Given industrial criticisms of the MCNC circuits, it is extremely useful to be able to compare

our results with real industrial circuits.

Table 6.2 shows the comparison between the original, gen and random circuits after

placement and global routing by vpr and implementation on an Altera 10K20-RC240 FPGA

[4] by max+plus2. The benchmarks used are all of the appropriate size (between 60 and

3Use of Altera circuits was made while the author was a summer intern there and had access to proprietary

data and software.

CHAPTER 6. VALIDATION OF CIRCUIT QUALITY 97

vpr wire vpr tracks 10K20 tracks

clone rand clone rand clone rand

Circuit orig %di� %di� orig %di� %di� %di� %di�

A 5102 21 144 6 16 83 14 132

B 7719 64 215 5 80 160 71 .

C 6344 27 160 6 16 116 30 .

D 6818 20 147 6 16 133 32 .

E 6609 53 266 5 60 160 35 .

F 4293 57 188 5 40 140 41 197

G 4147 2 158 5 0 140 16 208

H 5107 21 137 5 40 120 0 123

I 4692 19 155 5 40 160 23 132

J 6087 34 153 5 60 120 51 165

K 9313 42 202 6 33 133 38 .

L 6546 36 222 6 33 100 55 .

M 7748 86 248 5 100 220 85 .

N 10794 -43 52 10 -40 30 -41 .

O 8070 17 140 7 14 100 25 .

P 5562 88 268 5 80 180 90 .

Q 6460 71 167 5 80 160 . .

S 6417 29 166 5 40 140 24 .

T 4662 28 170 6 0 83 16 108

U 8828 2 156 6 16 150 53 .

V 4876 81 201 4 75 175 63 174

W 4837 28 143 4 50 150 34 117

mean 6358 35% 175% 5.5 38% 134% 36% 151%

Table 6.2: Empirical validation using sequential circuits from industry.

100% logic utilization, with most in the higher end of the range) for exercising this 10K20

part, which has 1152 LCELLS (logic blocks or LUT+FF combinations) and 240 user I/O

pins.

The �rst column identi�es the circuit. The second column gives the total wirelength

after global routing. Then we give the percentage of extra wiring (beyond that required

for the original) required by the corresponding clone circuit and random graph. Similarly,

we then have the track-count (channel width) followed by the percentage increase in track-

count for the corresponding clone circuit and random graph. The last two columns show

the percentage increase in \routing resources" used by the clone circuit and the random

circuit when implemented on the 10K20 FPGA. To respect information about the bench-

mark circuits which is proprietary to Altera the actual resource usage in the device is not

displayed|for this study it is only the percentage di�erence that is of interest.

For our metric of FPGA resource usage, we count the total number of full-horizontal,

CHAPTER 6. VALIDATION OF CIRCUIT QUALITY 98

half-horizontal and vertical lines used by the design in a 10K20, as reported by max+plus2.

Because we are using an actual device, it is possible that a design does not \�t" (see

Section 2.1.2). Though all original circuits do �t in the 10K20, one of the clone circuits and

thirteen of the random graphs did not, and these are indicated by a `.' in the table.

The last row of the table indicates the averages for each column. For the last two

columns, the missing data is not included in the average, which means that the numbers

for random circuits are deceptively low.

We �nd that the clone circuits are, in general, harder to place and route than are the

original circuits we took the speci�cations from, though a given clone is always closer to

the original than the corresponding random graph. On average, the clone circuits used

35% more wirelength and 38% more tracks than the original circuit, whereas the random

graphs used 175% more wirelength and 134% more tracks. This is further reected in the

implementation of the clone and random circuits on the commercial FPGA where (when

they did �t) the clone circuits used an average of 36%more routing resources and the random

graphs used 151%more routing resources. We also �nd that about half of the random graphs

do not �t at all in the part, whereas only one clone failed to �t. In Section 4.3 we gave the

de�nition of a measure quantifying generalized reconvergence for sequential circuits. By this

measure, gen circuits di�er by about 0.19 on average, while random graphs di�er by 0.28

on average. The di�erence in the average wirelength and track count between the original

and clone circuits likely results from as yet unknown parameters. We hope to address the

issue with future work on local structure in circuits.

These empirical results show that the gen circuits are signi�cantly more realistic than

even carefully generated random graphs. Though not perfectly close, the gen is able to

generate circuits which are quite similar to the original benchmark circuits. We remark

that, due to the proprietary nature of the circuits, we are not able to update the empirical

results to take into account the new locality characterizations discussed in Sections 3.5,

5.2.2 and 6.3.

