
Appendix B

Abbreviated User's Guide.

1 Overview

This document introduces two tools, circ and gen.

The �rst tool, circ reads an input netlist and performs analysis upon it, outputting

either statistical information, or acting as a �lter to convert the netlist to an alternative

format.

The second tool, gen, takes a parameterization of a circuit as a program written in the

symple language and creates a netlist which corresponds to the parameterization program.

Though gen and circ are separate tools, their usage is highly related. Many of the

most useful products of the research from which they arise is the interaction between the

characterization of a circuit and the subsequent generation of a similarly parameterized

circuit. Thus, it is more appropriate to document their usage in a single document.

This user's guide is organized as follows. Section 2 discusses the \characteristics" of a

circuit. These characteristics then form the basis for the output of circ and for the input to

gen. Section 3 describes how to use circ to analyze or �lter a circuit. Section 4 describes

basic usage of gen to create combinational and sequential circuits. Section 5 discusses more

advanced usage of gen such as the problems involved in modifying existing scripts or scripts

from circ.

2 Circuit Characteristics

This section de�nes the terms which will be used throughout the document to describe

characteristics and parameters of circuits.

The most basic parameters of a circuit are the following:

name The �lename in which the netlist is stored. circ will look for name.blif, name.blf,

or $MCNCDIR/k/name.blif.

k The lut-size (maximum fanin) of the design.

size The size of a circuit. The size of a circuit is de�ned as the number of \countable

functional nodes" in a graph-theoretic sense, hence it is the sum of the number of (see

below) PIs (primary inputs), LUTs (or logic nodes), and DFFs (
ip-
ops). Primary

outputs are not counted, because we consider this to be an attribute rather than a

separately named node.

B.1

APPENDIX B. ABBREVIATED USER'S GUIDE. B.2

nPI The number of primary inputs designated in the .inputs line of the input or output

netlist.

nPO The number of primary inputs designated in the .inputs line of the input or output

netlist.

nDFF The number of D-type
ip-
ops which are de�ned in the input or output netlist.

Currently the only type of sequential logic element which is understood by circ and

gen is the DFF with no de�ned preset or clear.

nEdges The number of edges in the circuit-graph. Equivalently either the sum over all

nodes x of fanin(x), or the sum over all nodes of fanout(x).

Currently the tools recognize only a single clock. In the case of circ this means that

all clock-inputs are ignored, and replaced by a single primary-input called \clock,"

e�ectively forcing all DFF to use the same clock regardless of the design speci�cation.

Similarly, gen will output circuits of the same form.

nCC The number of connected components: essentially the number of completely separate

circuits which are de�ned in the same �le. This value is output by circ but gen will

only output circuits which are fully connected (one component).

unusable nodes The number of nodes which do not a�ect any PO in an input design.

These are deleted by circ before processing, and should not every be produced by

gen.

unreachable nodes The number of nodes which (recursively) cannot be reached from a

PI, and hence will never have a logical value. These are also deleted by circ before

processing, and should not be produced by gen.

The basic element in circ and gen processing is the combinational circuit, using the

combinationl delay of the circuit as an important point of reference. Thus we have several

items de�ned on the basis of combinational delay.

delay Combinational delay is de�ned, for all nodes x in a circuit, as follows: delay(x) =

0 if x is either a PI or a DFF. delay(x) = 1 + MAXfdelay(y)g, for all fanins y to x;

essentially a standard unit-delay model of combinational delay. The delay of a circuit

is then the maximum combinational delay over all nodes x in the circuit.

shape The combinational shape of a circuit is de�ned as the distribution of node combi-

national delays. It is vector of length delay + 1 (0..delay). In a purely combinational

circuit, shape[0] is necessarily nPI, and shape[delay] is no more than nPO (though it

need not be nPO, because nodes of earlier delay can be designated as POs). Thus a

shape of [4, 8, 3, 2] speci�es a circuit with 4 PIs, 8 nodes which have inputs only from

the PIs, 3 which have at least fanin from delay level 1, and 2 which have at least one

fanin from level 3.

nBot The number of \bottom" nodes in the shape distribution. Though nBot is redundant

information in general, it is referred to in various places, and is used as an intermediate

calculation in the creation of a default/random shape vector by gen.

APPENDIX B. ABBREVIATED USER'S GUIDE. B.3

POshape In the same way that shape[] is de�ned, we can have a vector to represent the

distribution of POs in the circuit. This is both reported by circ and used as a

parameter by gen.

edges Also given the combinational delay of each node in the circuit-graph, we can de�ne

a distribution based on the edges of the graph. The length of an edge (x; y) is de�ned

as delay(y) - delay(x), yielding a vector [0..delay] with sum the number of edges in

the graph.

Fanout is also both an important characteristic of a circuit and parameter to generation.

We have

max-fanout The maximum fanout (number of edges leaving) any node x in the circit-

graph.

outs A vector representing the distribution of fanouts in the circuit. The vector is of

length [0..max-fanout], is non-zero in the last element (or max-fanout is incorrect),

and outs[0] � nPO necessarily.

We also have a number of statistics which are output by circ which are calculated from

the above metrics. For example, the average fanin/fanout, and the average fanin/fanout

of each combinational delay level and associated standard deviations. These are not docu-

mented further at this time. However, they appear in the gen defaults �les as intermediate

calculations when creating a default out-degree distribution.

Throughout circ and gen, sequential circuits are described as a collection of combi-

national circuits. Within circ, a circuit is processed into sequential levels and we de�ne

\ghost" edges which cross the boundary between one combinational sub-circuit (sequential

level) and another.

level The sequential level of a node x in a sequential circuit is de�ned as the minimum

number of DFF on a directed path from any primary input. More formally, level(x)

= 0 if x is a PI, level(x) = 1 + level(fanin d) if x is a DFF, and MIN(level(y), over

all fanins y to x) otherwise.

back-edge An edge in the circuit which connects x to a node y at a preceeding, di�erent

sequential level. In other words, a feedback edge.

bottom-node A node which has all fanout-edges as back-edges is at the \bottom" of its

combinational sub-circuit. The number of such nodes is relevant in the understanding

of sequential circuits and how to generate them.

invisible-node Sometimes, especially when building a clock splitter or similar structures,

it is possible to have a set of registers and logic which is self-contained and feed purely

from itself (no PIs a�ect the output) and just outputs values. This is di�erent from

being unreachable (see above), because the value is a�ected by the clock. These nodes

are not deleted by circ, becasuse they are important to the understanding of circuits,

but they have to be treated as special cases to our basic model of a circuit because

they have no real concept of sequential level.

APPENDIX B. ABBREVIATED USER'S GUIDE. B.4

forward-edge A forward edge is one which follows the normal rules of combinational delay

when level is ignored, or which connects to a DFF at the next sequential level. That

is, an edge which is not a back edge as previously de�ned.

This allows us the concept of level-shape and a distribution of back edges between levels

(i.e. di�erence in sequential levels), but this will not be discussed at this time.

Because sequential circuits are generated at the base level as combinational circuits, we

need a mechanism to de�ne future back edges and forward edges to a DFF. This is done in

terms of ghost input and output edges:

GI, nGI Each node in a hierarchically de�ned circuit or sequential input design will have

its fanin divided into nodes which appear in the same sub-circuit and those which do

not, called ghost inputs (GI). The number of ghost inputs to a node (nGI) is de�ned

for each node, and the total number of ghost inputs over all nodes is nGI for the

circuit. nGI(x) is always strictly less than kin, as one input to each node must be

\real" for it to belong to one sub-circuit.

GO, nGO Similarly, we have ghost outputs, and nGO.

GIshape In the same way that shape[] is de�ned above, we have the concept of a distri-

bution vector of GIs. Note that, when talking about sequential sub-circuits, we count

nDFF in the shape pro�le, not in the GI shape pro�le, mainly due to internal details

of shape generation beyond the scope of this document.

GOshape Similarly, we can store the combinational delay of each ghost output edge. as

the delay of its source. Note, though it is required that any ghost edge has either

dst.type == DFF or delay(src) < delay(dst), it is not necessarily true that delay(src)

== delay(dst) - 1, because of the MAX relationship in the de�nition of delay.

Note that for a �nal circuit nGO(C) == nDFF + nGI(C) necessarily, as each ghost

output corresponds to exactly one ghost input, or else eventually feeds one DFF.

It is important to note that PI and PO refer to nodes, whereas GI and GO refer to

ports in or out of nodes, more like edges in a graph.

One �nal characteristic of circuits is the reconvergence number, or rnum. This is

output by circ, but is not used by gen so will not be discussed further here. Details on

reconvergence calculation are contained in the published papers.

3 Using circ.

Circ is a command-line based tool. The calling sequence is as follows:

circ in=<name> [k=<kin>] [options] [xnf | verilog | tdf | adl | gen] [out=<file>]

The only required parameter is the name of the �le to be analyzed. The input format

to circ is exclusively blif, so all �les must be externally converted to blif before processing.

circ will search in the current directory for the �les name, name.blif, or name.blf, then

search in the MCNCDIR (environment variable) directory in the `k' subdirectory (k defaults

to 4 if not speci�ed).

The output of circ is to stdout. This can be overridden with the out= option. Note

that the xnf,verilog,tdf,gen options automatically set out to `name' with the appropriate

�le extension.

APPENDIX B. ABBREVIATED USER'S GUIDE. B.5

3.1 Using circ for format conversion.

To use circ as a �lter to convert test.blif to either xnf, verilog or ahdl (tdf) formats, use

the following syntax:

circ in=test <format>

where format is one of fxnf, xnfROM, verilog, tdf, ahdlg (tdf and ahdl are the same

thing).

Note that k will automatically be set to 4, because all formats are output using the

4-LUT primitive. The program will fail if any node exists in test.blif which has fanin>4.

Currently, the ahdl and verilog formats output only NAND gates for LUTs. The xnf

option will output ROM-based output if the option is speci�ed as \xnfROM," but input

which originated from gen will still have only NAND gates de�ned (i.e. will simply be

ROMs which de�ne a NAND gate).

3.2 Using circ for statistical output.

Currently the \dump" format is the most stable form of output. There are other options

available, but they are obsolete. The command:

circ in=test dump

will output a complete description of the design test. The output format is such that it

is easy to use awk, sed or grep to extract and build tabular information from the output

�les of multiple circuits.

We will go through the output for an MCNC circuit, bbrtas:

First, there is some informational output to stderr (which does not appear in the output

�le). This gives the version and compile date of the software, and warning/error conditions

encountered. In this case, bbrtas has a single unusable node \pclock." This is not a problem,

circ is just noting that it dropped pclock as an unusable input when it replaced all clocks

by the global signal 'clock.'

CIRC 2.2, compiled Fri May 24 12:04:30 PDT 1996.

Analysis of bbrtas beginning at Mon May 27 14:07:13 1996

Warning: Deleting PI pclock because it does not drive a primary output

Warning: (For further such nodes, use verbose option)

Warning: Circuit has 1 unusable nodes

Note the mention of a command-line option \verbose" to see more detailed information,

especially about error and warning messages.

Within the output �le, we begin with introductory output, listing the options and the

actual �le name used. The �lename is important because we used an MCNC circuit; this

shows that we picked up the correct circuit. If we had a bbrtas in the current directory,

circ would have used that instead.

File options: in=bbrtas out=<stderr> err=<stderr>

Output options:

Displaying:

Reading input from file '/users/mdhutton/mcnc/4/bbrtas.blif' (k=4)

APPENDIX B. ABBREVIATED USER'S GUIDE. B.6

The next section of the output �le gives basic statistics, as de�ned in Section 2. Note that

there is actually an internally represented \service" (0th) component reported in parenthesis

in the component list. This can be ignored.

name: bbrtas

size: 417

edges: 1440

levels: 1

delay: 18

nPI: 4

nPO: 2

nDFF: 7

nLOG: 406

num_unusable: 1

num_unreachable: 0

ncomponents: 1 ((4) 417)

The degree information comes next. We have the average in-degree of LUTs, average

out of LUTs + DFFs + PIs, and each separately; the average and total fanin and fanout by

combinational delay level, the max-fanout, nodes with fanout beyond 1 standard deviation

of the mean, and larger than 10 in absolute value, and the fanin and fanout vectors as sparse

vectors and in full form.

avgin_log: 3.55 (0.46)

avgout: 3.47 (10.28)

avgout_dff: 74.43 (12.48)

avgout_pi: 26.00 (6.00)

avgout_log: 2.02 (3.39)

avgin_vec: (0.00 3.34 3.58 3.67 3.81 3.22 3.94 3.54 3.00 3.73 3.00

3.97 3.50 3.00 3.95 3.40 3.80 3.50 4.00)

avgout_vec: (0.00 1.74 1.00 5.33 2.62 3.67 2.83 1.11 6.40 1.73 18.00

1.24 2.67 12.67 1.10 5.60 1.10 1.00 1.00)

totin_vec: (0 454 283 33 61 58 71 99 15 56 9 115 21 9 83 17 38 14 4)

totout_vec: (625 236 79 48 42 66 51 31 32 26 54 36 16 38 23 28 11 4 1)

visible_edges: 1449

max_out: 90

high_degree_log: 14

high_degree_pi: 4

high_degree_dff: 7

degree_10plus_log: 17

degree_10plus_pi: 4

degree_10plus_dff: 7

fanin: (0,4) (1,7) (2,34) (3,116) (4,256)

fanout: (1,345) (2,12) (3,6) (4,4) (5,7) (6,9) (8,2) (9,4) (10,1)

(13,2) (14,5) (15,1) (16,2) (17,3) (20,2) (21,1) (24,1) (29,1)

(32,2) (53,1) (60,1) (75,1) (76,1) (81,1) (86,1) (90,1)

fanin_vec: (4 7 34 116 256)

fanout_vec: (0 345 12 6 4 7 9 0 2 4 1 0 0 2 5 1 2 3 0 0 2 1 0 0 1 0 0 0 0 1

0 0 2 0 1 0 0 0 0 0 0 1

APPENDIX B. ABBREVIATED USER'S GUIDE. B.7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1)

Next we have sequential information, since bbrtas is a sequential circuit. This informa-

tion would not be displayed were it purely combinational.

We have the number of bottom nodes (over all levels), the number of invisible nodes

(total and broken into DFF, LOG and PO), the number of nodes at each sequential level

(sequential shape), the number of back-edges (number of GOs from level 1 to level 0) and

their shape-like distribution, and the maximum combinational delay of each level.

bot_nodes: 89

invis_nodes: 0

invis_DFF: 0

invis_LOG: 0

invis_PO: 0

seq_shape: (304 113)

back_edges: 325

where-back: (0 325)

level_maxdelays: (18 2)

Combinational shape vectors follow. These are over the entire circuit, summed. This

section is of limited value for sequential circuits.

shape 417: (11 136 79 9 16 18 18 28 5 15 3 29 6 3 21 5 10 4 1)

POshape 2: (. 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

edge-length: (0 1035 179 30 35 39 30 25 6 21 6 24 6 4 0 0 0 0 0)

forward-edge-length: (0 889 89 27 25 25 16 14 3 13 3 4 4 3 0 0 0 0 0)

back-edge-orig: (196 116 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

back-edge-dest: (0 67 159 5 11 15 6 24 0 10 0 24 1 0 3 0 0 0 0)

back-edge-length: (0 146 90 3 10 14 14 11 3 8 3 20 2 1 0 0 0 0 0)

Then the vectors for each individual level are presented. The input design has 1 sequen-

tial level (beyond the 0th level, the combinational part).

At level 0, we see the number of nodes, GI, GO, PO and shapes of each, as well as the

fanout distribution for L0 alone. Note again that the GI/GO counts will seem high, but

they count ports/edges not actual nodes. It is quite common, for example, to have a level

1, such as shown, with 120 nodes and 325 ghost outputs.

n0 = 308;

L0shape = (4,43,66,9,16,18,18,28,5,15,3,29,6,3,21,5,10,4,1)

nGI0 = 325;

L0GIshape = (67,159,5,11,15,6,24,0,10,0,24,1,0,3,0,0,0,0,0)

nGO0 = 7;

L0GOshape = (0,0,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1)

nPO0 = 2;

L0POshape = (0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

nEdges0 = 769;

L0edges = (0,566,66,27,25,25,16,14,3,13,3,4,4,3,0,0,0,0,0)

L0out = (4,250,8,4,3,2,6,1,1,4,1,0,0,2,5,1,2,3,0,0,2,1,0,0,1,

0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

APPENDIX B. ABBREVIATED USER'S GUIDE. B.8

Similarly for level 1:

n1 = 120;

L1shape = (7,93,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

nGI1 = 0;

L1GIshape = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

nGO1 = 325;

L1GOshape = (196,116,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

nPO1 = 0;

L1POshape = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

nEdges1 = 346;

L1edges = (0,323,23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

L1out = (88,16,1,1,0,

0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,

0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

And, �nally, we close with a statement of the time and memory used for the analysis.

Circuit Analysis complete. cpu: 7.21 sec, mem: 888K, time: 8 sec

3.3 Using circ as input to gen.

circ is also able to output a gen program in the symple language which can be then run

through gen to make a \clone" circuit of the original input circuit.

For example, the output of

circ in=bbrtas gen

appears in bbrtas.gen as the following:

/* CIRC 2.2, compiled Mon May 27 14:13:55 PDT 1996.

*/

X = {

name="bbrtasclone";

L0 = (@.comb_circ) { exact=1;

name="L0"; n=304; kin=4; nPI=4; nDFF=0; level=0; delay=18;

nBot=1;

shape=(4,43,66,9,16,18,18,28,5,15,3,29,6,3,21,5,10,4,1);

nGI=325; GIshape=(67,159,5,11,15,6,24,0,10,0,24,1,0,3,0,0,0,0,0);

nGO=7; GOshape=(0,0,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1);

nPO=2; POshape=(0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

nEdges=769;

edges=(0,566,66,27,25,25,16,14,3,13,3,4,4,3,0,0,0,0,0);

outs=(4,250,8,4,3,2,6,1,1,4,1,0,0,2,5,1,2,3,0,0,2,1,0,0,1,

0,0,0,0,1,0,0,2);

max_out=32; nZeros=4;

};

APPENDIX B. ABBREVIATED USER'S GUIDE. B.9

L1 = (@.comb_circ) { exact=1;

name="L1"; n=113; kin=4; nPI=0; nDFF=7; level=1; delay=2;

nBot=13;

shape=(7, 93, 13);

nGI=0; GIshape=(0, 0, 0);

nGO=325; GOshape=(196, 116, 13);

nPO=0; POshape=(0, 0, 0);

nEdges=346;

edges=(0, 323, 23);

outs=(88,16,1,1,0,

0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,

0,1,0,0,0,0,0,0,0,1,0,1);

max_out=61; nZeros=88;

};

glue=(L0, L1);

};

output(circuit(X));

We will discuss the parameterization �le further in Section 4 of the document.

4 Using gen to generate circuits.

Gen has some command-line options, but the vast majority of the parameterization is too

complicated to be speci�ed at the command line. gen is augmented with a rich speci�cation

language with which parameter-programs can be written.

4.1 Generating a simple combinational circuit

Thus far we have only talked about how parameters are evaluated in the symple language.

This doesn't actually create a circuit. To have the parameters passed to gen, and a circuit

generated, we use the \output circuit" command in our script \x.gen" which we invoke with

\gen x.gen"

X = comb_circ { n = 500; };

output(circuit(X));

Output from gen is split into two streams. In the stdout stream, the output blif-

formatted netlist is printed to x.blif, as speci�ed. The log of information and errors goes to

stderr, and is described as follows:

GEN Development Version 2, compiled Thu May 23 09:59:10 PDT 1996.

Parsing parameters for circuit 'C'

Random shape with n=500 nTop=9 nBot=2 delay=11 width=182 jumps=5 expand=9.00:

Generating combinational specs for C

-- n = 500 nPI=9 nDFF=0 kin = 4 delay = 11 seed=833239250

-- Shape (500): 9 60 182 105 57 42 16 7 7 7 6 2

-- PO Shape (3): 0 0 0 0 0 0 0 0 0 1 0 2

APPENDIX B. ABBREVIATED USER'S GUIDE. B.10

-- GO Shape (0): 0 0 0 0 0 0 0 0 0 0 0 0

-- GI Shape (0): 0 0 0 0 0 0 0 0 0 0 0 0

-- Edges (1172): 0 950 141 46 29 4 0 2 0 0 0 0

-- Out-degrees (max=18): 3 311 48 44 18 22 16 14 8 2 6 3 0 0 1 1 0 1 2

Building the circuit level-graph

Graph passed steps one and two. Best was method 3

Splitting nodes to generate the complete circuit-graph.

Degrees fudged: 461, edges fudged 56, edges lost 0 (of 1672 total)

Warning: Forced to add 1 extra outputs at delay level 11

Warning: Fixing IO dist'n results in 1 extra nodes, 1 extra outputs.

Graph generated, converting to a circuit.

(Sub)circuit 'C' has been generated.

Circuit generation successful

Elapsed time 3 seconds

We have the version and compilation date of the program. Another important parameter

is the random number seed (taken from the clock). To get exactly the same circuit again,

we should specify \seed=833239250" on the command line.

The defaults.gen �le (hence comb.gen) is read for default information, then x.gen is

processed. We speci�ed n=500, from which comb circ speci�ed 9 PIs and the remaining

LUTs, with combinational delay 11 and 3 POs). The number of edges was 1172, so the

average fanin was about 2.2 (not a particularly dense circuit). Similarly, the combinational

delay and distribution of nodes, edges and fanouts are shown. If we run the command line

again without specifying the same seed, we will get both a di�erent parameterization and a

di�erent circuit. Had we speci�ed the complete parameterization, we would get a di�erent

circuit with the same parameterization.

Generating a combinational clone:

To generate a clone of an MCNC (or other) circuit (in xnf), do the following (for example,

we use the circuit 5xp1):

circ in=5xp1 gen

gen 5xp1.gen

circ in=5xp1clone.blif xnf

4.2 Generating a hierarchical or sequential circuit

Sequential circuits are speci�ed in gen as hierarchical circuits with \glue" ports to combine

them together. For example, a �nite state machine is viewed as two or more combinational

circuits, one of which has primary inputs, and the others of which have DFFs as its primary

inputs. gen will make a sequential circuit in this way by generating the two combinational

circuits separately, then gluing them together following a number of rules beyond the current

scope of this document.

The user has control over the type of sequential circuit that is generated in the input

script. At the simplest level, the user can specify the size of the circuit and the number of

I/Os and DFFs and let the rest come from the defaults. For example

X = fsm_circ {

APPENDIX B. ABBREVIATED USER'S GUIDE. B.11

name = "example5";

n=500;

};

output(circuit(X));

will generate a \fsm-like" circuit with 500 nodes directly from the defaults. On my

machine, with seed=834610821, I got a circuit with 6 PIs, 471 nodes, combinational delay

10, 2 POs, 29 DFFs and 145 back-edges (GOs at level 1).

You can also specify the amount of interaction between the levels by giving values for

nGI, nDFF and so on. For example

X = fsm_circ {

name = "example2";

nPI=63; nPO=36;

nDFF=120;

n=450+nDFF+nPI;

kin=4;

n0=n/2;

n1=n/2;

nBack=n/3;

};

output(circuit(X));

Above we have speci�ed the number of back-edges in terms of the size of the circuit,

and specify the number of DFFs and I/Os exactly. We have asked for 450 LUTs, giving a

size 450+nDFF+nPI for the entire circuit.

It is possible to make more di�cult hierarchical circuits, but this part of the code is

very new, and there will be problems when you try to do it.

For example, see gendir/5-way.gen, which generates 5 separate sequential circuits with

a speci�ed number of ghost I/Os, and then glues all 5 together simultaneously.

See also 40K.gen, which generates a large circuit (40000 4-LUTs) from several smaller

circuits, with a speci�ed cut-size (for example, to test a partitioner). Here the result is

seen as a combination of several state-machines which provide control into a combinational

circuit at the next level. By manipulating the parameters it is possible to make a number

of di�erent con�gurations.

Note that the probability of errors increases multiplicatively with the number of circuits

in the hierarchy. Whereas there is a 85% or more chance of success at generating a circuit

with 5000 nodes, generating 5 such circuits to glue together will only succeed about 44% of

the time. This means that multiple runs are often required. However, I have successfully

generated circuits with this amount of hierarchy to 150000 4-LUTs within about 10 tries.

It is expected that as we re�ne the parameterization scripts and build more error handling

and correction into gen that this will disappear, and we will be able to generate circuits

with a great deal of hierarchy.

