
Improving the Area Efficiency of Heterogeneous FPGAs

with Shadow Clusters

by

Peter Andrew Jamieson

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

The Edward S. Rogers Sr. Department of Electrical and Computer
Engineering

University of Toronto

c© Copyright by Peter Andrew Jamieson 2007

Improving the Area Efficiency of Heterogeneous FPGAs

with Shadow Clusters

Peter Andrew Jamieson

Doctor of Philosophy, 2007
The Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto

Abstract

Field Programmable Gate Arrays (FPGAs) serve the microchip market for designs that

need to be created quickly, in small volume, or that need to be updated in the field.

FPGAs have not taken over the market for large capacity, high-volume Application-

Specific Integrated Circuits (ASICs) since the FPGA cost is too high. This cost is

mainly due to the large area gap between FPGAs and ASICs.

One approach to improve the area efficiency of FPGAs is with the inclusion of hard

“specific” circuits on the FPGA fabric. These circuits can implement functionality in

designs in less silicon area, at a faster speed, and with less power consumption compared

to implementing the same functionality in the programmable elements of an FPGA.

Common examples include hard multipliers and hard memories.

The fundamental question in FPGA architecture research is determining which hard

circuits to include on an FPGA. Every included hard circuit needs to be used and

provide a benefit to the range of designs mapped to FPGAs.

ii

In this work, we seek to improve the utilization of hard circuits on FPGAs to make

these devices more area efficient. To do this we develop an architecture concept called

“shadow clusters” that combines the programmable aspect of an FPGA with a hard

circuit such that a hard circuit and its routing resources can always be used. In the

best case we measured, it improves the FPGA area efficiency by 12.5%.

We combine shadow clusters with less popular hard circuits, such as a crossbar, that

haven’t been included on industrial FPGAs because designs in the target market do

not sufficiently target these hard circuits to justify their inclusion. Shadow clusters

significantly change the area impact of these hard circuits making these FPGAs more

area efficient and more likely to be included on industrial FPGAs.

We, also, explore the algorithms in the flow that maps designs to FPGAs with hard

circuits. The goal is to efficiently map designs to FPGAs with hard circuits and to

maximize their utilization where these algorithms are designed to flexibly and efficiently

target a wide range of hard circuits on FPGAs.

iii

Acknowledgements

Don’t put your trust in revolutions. They always come

around again. That’s why they’re called revolutions.

Terry Pratchett

The three most important people in getting me this far are my supervisor, Jonathan

Rose, my father, Andrew Jamieson, and my mother, Georgie Jamieson. Each has

contributed significantly to this work through their support, mentor-ship, and advice.

In the case of Jonathan Rose, I’m thrilled to have worked with him, and the lessons I

have learned over the past few years have truly transformed me and my understanding

of not only the small world of FPGAs, but the world itself (and arguably even my

Ultimate career).

If I had the chance to choose my parents and family (which includes my sisters

Patricia and Jennifer), I can’t think of a better choice than what came to be. We

have all walked through life together and even though geography currently separates

us, your constant support kept me going through the ups and downs.

To my good friends, the past few years have been spectacular because of you. We

could argue, and I’m sure we would, that our discussions, debates, and adventures are

where the true growth of an individual occurs. There are a number of names to mention

as I have met so many people and in no specific order: Kirk, Ian, Inian, Navid, Lexi,

Shawn, Jason, Lisa, Lesley, Guy, Norm, Marcius, Taylor, Kapil, Sasha, Peyton, Pam,

Dave, Rahil, Ajay, Rob, Dion, Kevin, Alexis, Alison, Scott, Warren, Mike, Ali, Mark,

Wei, Aaron, Josh, Paul, Frank, Andrew, and the list continues.

The sport Ultimate has made Toronto a special place for me. To the teams I’ve played

with and the success we’ve had from winning local tournaments in the winter to taking

a University National Championship with the University of Toronto, to travelling vast

iv

Acknowledgements

distances throughout the North East and beyond to throw plastic - the experience was

amazing and kept me in Toronto longer than I would have ever guessed.

v

Contents

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Motivation . 1
1.2 Modern FPGAs and the Central Question in FPGA Architecture . . . 3
1.3 Thesis Organization . 6

2 Background and Related Work 9

2.1 Introduction . 9
2.2 FPGA Basics . 9
2.3 Modern Heterogeneous FPGAs . 11

2.3.1 Soft Fabric Heterogeneity . 13
2.3.2 Tile-based Heterogeneity . 15

2.4 CAD for Heterogeneous FPGAs . 19
2.5 Improving Heterogeneous FPGAs . 26

2.5.1 Improving the Utilization of Hard Circuits 26
2.5.2 Creating Heterogeneous FPGAs 29

2.6 Summary . 31

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency 32

3.1 Introduction . 32
3.2 Design of Heterogeneous FPGAs . 33

3.2.1 Routing Architecture for Hard Circuits 37
3.3 Measurement Methodology . 39

3.3.1 Benchmark Circuit Mapping Flow 39
3.3.2 Transistor and Cell Area Estimation of Tiles 41

3.4 Benchmarks . 43
3.5 Experimental FPGA . 45
3.6 Measuring the Benefit of Hard Multipliers 46

3.6.1 Measuring the Benefit of Different Hard Multiplier Architectures 49

vi

Contents

3.6.2 Best Architecture . 52

3.7 Summary . 55

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clus-

ters 56

4.1 Introduction . 56

4.2 Shadow Clusters . 57

4.3 Shadow Cluster Benefit . 61

4.4 Measurement Methodology . 62

4.4.1 Circuit Mapping Flow . 62

4.4.2 Transistor and Cell Area Estimation of Tiles 63

4.5 Benchmarks . 64

4.5.1 Synthetic Benchmarks . 66

4.6 Results: Effect of Shadow Cluster on FPGA Area Efficiency 68

4.6.1 Avg. Demand Ratio Equal to Commercial Supply Ratio 69

4.6.2 Effect of Differing Average Demand Ratios 70

4.6.3 Best Shadowed and Non-Shadowed Architectures 71

4.6.4 Effect of Demand Ratios . 74

4.6.5 Demand Ratio Variance within Benchmark Suites 75

4.6.6 Effect of a Larger BLE . 76

4.6.7 Effect of a Larger BLE only in the Soft Logic Cluster Tile . . . 77

4.7 Summary . 79

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits 80

5.1 Introduction . 80

5.2 Architecting Hard Crossbars for FPGAs 81

5.2.1 Definition of Crossbar Terms included on a FPGA 82

5.2.2 Hard Crossbar Pin Demand and Number of Tiles 86

5.2.3 Hard Crossbar Benefit over Soft Logic Implementation 88

5.3 Measurement Methodology . 90

5.3.1 Mapping Benchmarks to Architectures 91

5.3.2 Transistor Area Estimation of Tiles 93

5.4 Benchmarks . 95

5.5 Results . 98

5.5.1 Effectiveness of Hard Crossbars with and without Shadow Clusters 99

5.5.2 Effect of a Better Soft Fabric for Crossbars 102

5.5.3 Effectiveness of Bus-based Hard Crossbars 104

5.5.4 Effectiveness of Bus-based Hard Crossbars with Shadow Clusters 106

vii

Contents

5.5.5 Effectiveness of Bus-based Hard Crossbars with Shadow Clusters
in terms of Market Demand . 108

5.6 General Equation for Area Efficiency of Shadow Clusters 111

5.7 Summary . 112

6 A Verilog RTL Front-End Synthesis Tool for Heterogeneous FPGAs 114

6.1 Introduction . 114

6.2 Overview of the flow for Front-end Synthesis 115

6.3 Mapping Techniques . 118

6.3.1 Mapping Soft Structures to an Field-Programmable Gate Array
(FPGA) . 119

6.3.2 Mapping to Soft Fabric Heterogeneity on FPGAs 123

6.3.3 Mapping to Tile-based Heterogeneity on FPGAs 124

6.4 CAD Flow and Verification . 127

6.5 Results . 128

6.5.1 Benchmarking Methodology . 128

6.5.2 Comparison between Odin and Quartus’ Front-End Synthesis Tool128

6.5.3 Value of Specific Mapping Techniques in Odin 132

6.6 Summary . 134

7 Conclusions 135

7.1 Summary and Contributions . 135

7.2 Future Work . 137

7.2.1 Shadow Clusters with Multiple Hard Circuits 137

7.2.2 Heterogeneous Soft Logic . 138

7.2.3 Extension of Shadow Clusters Employed with Low-Demand Hard
Circuits . 139

7.3 Concluding Remarks . 140

A Automatic Transistor Sizing of FPGAs 141

A.1 Introduction . 141

A.1.1 Method for Automatic Transistor Sizing 141

A.2 Automatic Transistor Sizing Constraints 143

A.2.1 Converting Transistor Sizes to Tile Area 144

A.2.2 Quality of Sizing Tool . 145

A.3 Summary . 147

viii

Contents

B Benchmark Details 148

B.1 Introduction . 148
B.2 Benchmark Details . 148
B.3 Synthetic Benchmarks with Multipliers 151
B.4 Synthetic Benchmarks with Crossbars 176
B.5 Summary . 179

References 180

ix

List of Figures

1.1 Per chip price of FPGAs and ASICs versus volume [BFRV92] 2
1.2 Representation of a heterogeneous FPGA 3
1.3 Illustration of shadow cluster concept 5

2.1 Representation of a tiled homogeneous FPGA 10
2.2 Sample BLE built of a LUT and flip-flop 10
2.3 Soft logic cluster tile including architecture parameters 12
2.4 Block diagram of a Logic Element in Xilinx’s Virtex-II Pro [Xil03] . . . 14
2.5 High level view of the 18-bit Digital Signal Processing (DSP) block on

the Stratix I [Alt03] . 16
2.6 Computer Aided Design (CAD) flow for converting a design to a bit stream 19
2.7 An example Verilog HDL design . 20
2.8 Initial HDL design and Elaboration CAD flow Stages. 22
2.9 The partial mapping stage of front-end synthesis 23
2.10 Technology mapping stage of the CAD flow 24
2.11 The placement and routing stages and the final output bit-stream . . . 26

3.1 An FPGA with a supply ratio equal to 1:2 33
3.2 Pin distribution for hard circuit tiles 38
3.3 The measurement methodology . 40
3.4 Area efficiency for varying supply ratios on an architecture with hard

multipliers . 53

4.1 Illustration of shadow cluster concept 56
4.2 Multiplier combined with a shadow cluster in a tile 58
4.3 A 4 by 4 array with “stretched” 18x18 hard multipliers. 60
4.4 A design mapped to a shadowed and non-shadowed FPGA with supply

ratio of 1:4. 61
4.5 Demand ratios from our benchmarks 65
4.6 Demand ratio distribution for SB15 V0. 67
4.7 Example of demand Ratio distribution for SB15 V1. 67
4.8 Demand Ratio distribution for SB15 V3. 68
4.9 Area efficiency for varying supply ratios 72

x

List of Figures

5.1 A full-way crossbar . 82
5.2 4-4 full-way crossbar implemented with multiplexers 83
5.3 4-4 crossbar implemented with 2-2 crossbars 84
5.4 A bus-based crossbar consisting of four 2-2 crossbars 85
5.5 Example distribution crossbar demand in synthetic benchmarks 96

6.1 General flow to convert HDL design to a logic netlist 116
6.2 The partial mapping process . 117
6.3 Two examples of simple arithmetic optimizations 120
6.4 Control statements in Verilog, which become multiplexers 121
6.5 Example in Figure 6.4 collapses into a lower number of multiplexer levels 122
6.6 Verilog design with registers and a possible implementation 123
6.7 Library describing hard circuits on an FPGA and matching them in a

netlist . 126
6.8 An industrial CAD flow and Odin joined into an industrial CAD flow . 129
6.9 Impact on results for each of 5 optimization configurations 133

A.1 This is the flow for the automatic transistor sizer. 142
A.2 Logic schematic of a soft logic cluster tile 144

xi

List of Tables

2.1 Soft and Hard implementation area and speed results for a 9x9 multiplier 17

2.2 Virtex 4 sub-families and their intended target designs 28

3.1 Average Multiplier Supply Ratios for Industrial FPGAs 36

3.2 Summary of the two mapping algorithm choices. 42

3.3 Benchmarks Details . 44

3.4 FPGA Architectural Parameters for Two Experimental Architectures . 45

3.5 Results for individual benchmarks on FPGAs without hard multipliers
and with hard multipliers (supply ratio equal to 1:8) 48

3.6 Hard Multiplier Architectures . 49

3.7 Results for area efficiency of hard multiplier architectures 51

3.8 Results for the points in Figure 3.4 . 54

4.1 Percentage area within a tile and relative area 64

4.2 Details of real and synthetic benchmark suites 66

4.3 Results for individual benchmarks on shadowed and non-shadowed FPGAs
with supply ratio equal to 1:15 . 69

4.4 Area efficiency of different benchmarks on architectures with different
supply ratios . 71

4.5 Smallest implementation architecture for benchmark suites 74

4.6 Smallest implementation architecture for different demand variances . . 75

4.7 Effect of increasing relative percentage area of the BLE in the soft logic
cluster tile and the multiplier tile . 77

4.8 Effect of increasing relative percentage area of only the BLE in the soft
logic cluster tile . 78

5.1 Crossbars included on an FPGA . 83

5.2 Tiles per single bit crossbar . 87

5.3 Tiles per bus-based crossbar . 87

5.4 Relative benefit of hard crossbars over soft crossbars 89

5.5 Relative benefit of 4-bit bus-based 32-32 hard crossbar over soft crossbar
implementation . 89

xii

List of Tables

5.6 A comparison between the gain factors of a single bit and bus-based
32-32 hard crossbar . 90

5.7 Percentage area within a tile and relative area for Architecture 1 94
5.8 Relative tile area for hard crossbars compared to a soft logic cluster tile 95
5.9 Examples of synthetic benchmark suites with crossbars 96
5.10 Area break-even demand points for architectures including hard single

bit crossbars . 100
5.11 Area efficiency for architectures including hard single bit crossbars . . . 101
5.12 Area break-even points for a better soft fabric and hard single bit crossbars103
5.13 Area-efficiency results for hard 64-64 bus-based crossbars 106
5.14 Area-efficiency results for hard 64-64 bus-based crossbars combined with

shadow clusters . 107
5.15 Area break-even points for hard 64-64 bus-based crossbars 109
5.16 Area break-even points for hard 64-64 bus-based crossbars with shadow

clusters . 110

6.1 Area comparison between designs mapped by Odin and Quartus 130
6.2 Speed comparison between designs mapped by Odin and Quartus . . . 131

B.1 Benchmarks Basic Details . 149
B.2 Multiplier Details for our Benchmarks 150
B.3 Memory Details for our Benchmarks 150

xiii

1 Introduction

They say a little knowledge is a dangerous thing, but it’s

not one half so bad as a lot of ignorance.

Terry Pratchett

1.1 Motivation

FPGAs are a widely used implementation medium for digital circuits that are able

to implement virtually any digital design. An increasing number of applications em-

ploy FPGAs both to avoid dealing with the fabrication process intricacies of designing

Application-Specific Integrated Circuits (ASICs) and the high costs associated with

manufacturing these chips. A designer can, in seconds, program and test their digital

design on a single FPGA without having to handle low-level electrical design lay-

out issues such as Optical Proximity Effect (OPE) [Lie03], power leakage [Bor99], or

crosstalk [BVOP03]. To a lesser extent FPGAs are popular because they can be up-

dated in the field, used to quickly prototype designs, and purchased as needed instead

of keeping a large inventory of ASICs.

FPGAs have failed to take over the market for large capacity, high-volume ASICs for

one main reason: their high cost due to their large silicon area. Figure 1.1 illustrates this

point [BFRV92]; the graph shows the unit manufacturing cost of using either FPGAs

or ASICs to implement a digital design. The dotted line represents the constant unit

cost of an ASIC as volume increases (along the x-axis) and the solid line represents

the unit cost of an FPGA as volume increases. ASICs use less area to implement a

design, but have a high initial cost that decreases as this cost is amortized over a larger

number of units. The value on the x-axis of the crossing point for the two lines is the

1

1 Introduction

M
ill

io
n

s
 o

f

D
o

lla
rs

T
e

n
s
s
 o

f

D
o

lla
rs

Cost Per

Chip

Volume in number of Chips (increasing)
1

FPGA

ASIC

Crossing

Point

Figure 1.1: Per chip price of FPGAs and ASICs versus volume [BFRV92]

volume of chips at which the unit cost to implement the design on FPGAs or ASICs is

equal. For FPGAs to become more broadly applicable in the higher volume markets,

this crossing point must move to the right by making each FPGA cheaper.

FPGA researchers attempt to make FPGAs more capable by improving their area

efficiency resulting in less used silicon and a lower cost per FPGA. To do this, they

try to create FPGA architectures that more efficiently implement the range of designs

that are mapped to this technology.

Recently, the inclusion of what we call hard “specific-purpose” circuits, such as hard

multipliers, adders, and memory blocks [Lat04, Act02, Qui03, Alt04d, Xil06], improve

the area efficiency of designs mapped to these FPGAs. This circuitry is added to

FPGAs so that specific operations in a design can be implemented more area efficiently,

operate faster, and reduce power consumption.

The goal of this dissertation is to improve these kinds of hard circuits (either the hard

circuit itself or how it is mapped) to make FPGAs more area efficient and ultimately

reduce their cost, increasing the availability and accessibility of FPGAs to all.

2

1 Introduction

1.2 Modern FPGAs and the Central Question in FPGA

Architecture

SOFT

LOGIC

M
e
m

o
ry

B

lo
c
k

MULT

MULT

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC
M

e
m

o
ry

B

lo
c
k

MULT

M
e
m

o
ry

B

lo
c
k

MULT

MULT

MULT

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC
SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

Figure 1.2: Representation of a heterogeneous FPGA

Modern FPGAs, such as the one pictured in Figure 1.2, include hard specific-purpose

circuits such as hard multipliers and memories. User’s designs map to these hard

circuits to help reduce the area consumed (among improving other criteria such as the

speed and power consumption of their designs). Instead of using hard circuits, parts of

a design could be mapped to the soft programmable logic, but these implementations

use significantly more area compared to using hard circuits.

Recently, research at the University of Toronto empirically measured the area, speed,

and power benefit of hard circuits. Kuon and Rose [KR06] measured the gap between

FPGAs and ASICs with respect to the area, speed, and power consumption of the same

design. They showed that for their designs the area of an FPGA without hard circuits

is 35 times larger than an ASIC, but this gap is reduced to approximately 21 times

when using an FPGA that contained hard multipliers and memories. The smallest area

gap (between FPGAs with hard circuits and ASICs) in this work was a filter design

3

1 Introduction

that includes both memory and multipliers; here, the design was only 10 times larger

on an FPGA with hard circuits compared to the ASIC implementation.

Clearly, hard circuits can reduce the area gap in a significant way when used, and a

common (but naive) thought is to add more hard circuits to FPGAs to further improve

them. This approach might benefit designs that target these FPGAs if all the hard

circuits are used, but if these hard circuits are not used, then they are wasted silicon

making the area problem worse! Even more, this waste includes the area-expensive

programmable routing that connects into and out from each hard circuit.

Indeed, the central question of FPGA architecture is when to include more hard

specific-purpose circuits on an FPGA [Ros04].

The simple solution is to add a hard circuit when it provides a benefit to most of

the designs that target these FPGAs. More formally, to add a hard circuit to an

architecture it should satisfy two key criteria:

1. The hard circuit provides an area, speed, or power benefit to implement a part

of a design compared to implementing that part in the soft programmable logic.

2. There are a sufficient number of designs, from the FPGA’s target market, that

will use each of the added hard circuits.

If either one of these criteria is not satisfied, then the hard circuit does not make an

FPGA any better. Clearly, if criteria #1 is not satisfied, then the hard circuit provides

no benefit for a mapped design, and if criteria #2 is not satisfied, then the additional

unusable area by the majority of designs (that don’t use the hard circuit) is too costly

compared to the benefits gained by a few designs.

The second criteria has an additional nuance. Not only do many of the designs need

to use a hard circuit, but also depending on the number of hard circuits available on

the FPGA, it is important for all these hard circuits to be used by each design. If any

of these hard circuits are not used, then a designer is paying for silicon that they do

not use. In the best case, designers would like to map their designs to an FPGA that

provides the exact number of resources that matches what their design uses.

These two criteria suggest that the benefit of adding a hard circuit to an FPGA can

be scientifically measured if certain aspects of the market, such as the demand for hard

4

1 Introduction

circuits, are known. In this dissertation, we will present a scientific methodology to

measure the net area benefit of a hard circuit for a set of designs that target FPGAs.

It is unreasonable, however, to expect that an FPGA will contain the exact number

of hard circuits to satisfy the needs of all designs that would use it. For this reason, one

of the goals when creating an FPGA with hard circuits is to maximize the utilization

of added hard circuits.

In this dissertation, the main theme is to improve the area efficiency of FPGAs by

finding more ways, either with CAD for FPGAs or FPGA architecture, to increase the

utilization of hard circuits by designs that target these chips.

Shared

Input
Routing Hard

Circuit

Shadow
Cluster

Shared

Output
RoutingS

h
a
d
o
w

M
u
x

Figure 1.3: Illustration of shadow cluster concept

Our most successful approach to increase the utilization of hard circuits is with

an architectural concept called “shadow clusters” in which a standard FPGA logic

“cluster” (typically consisting of a group of programmable logic elements and flip-

flops) exists within the same logical grouping as a hard circuit such as a multiplier (as

illustrated in Figure 1.3). If the hard circuit is not used by the mapped design, simple

fabric-programmable multiplexers “swap” in the shadow cluster, which can be used

just like the regular soft programmable logic.

The benefit of shadow clusters is that even though the area dedicated for a hard

circuit remains unchanged and we are actually increasing area by combining soft pro-

grammable logic with the hard circuit, this additional circuitry is always usable by any

logic function. This means that the expensive programmable routing that surrounds

5

1 Introduction

the hard circuit (consuming up to 90% of a hard circuit’s area) can always be used.

The shadow cluster concept can be applied to almost any hard circuit. In Chapter 4,

we show that shadow clusters improve the overall area efficiency of FPGAs with hard

multipliers. This work is published in [JR06], and to our knowledge, represents a new

way of improving FPGA area efficiency.

We, also, combine shadow clusters with hard circuits that previously have not been

added to FPGAs, mainly due to their low demand from designs targeting FPGAs.

Here, the metric that we seek to improve is the “frequency” that the need for these hard

circuits must appear in the FPGA’s target designs for the inclusion of the hard circuit

to appear to be area neutral compared to an FPGA with only soft programmable logic.

As an exemplar, we architect and include hard crossbars combined with shadow clusters

in Chapter 5 and measure how shadow clusters change the area-neutrality metric for

an FPGA with hard crossbars compared to an FPGA with only soft programmable

logic.

In this dissertation, we examine how to efficiently map designs to FPGAs with hard

circuits in an effort to maximize hard circuit utilization. In Chapter 6, we present a

front-end Register Transfer Level (RTL) algorithms that are designed to flexibly and

efficiently target a wide range of hard circuits on FPGAs, and a tool that we have built

using these algorithms achieves close to parity when mapping designs to FPGAs with

hard multipliers and memories compared to an industrial tool that performs this same

mapping.

This tool is designed to efficiently target modern FPGAs and interfaces with com-

mercial FPGA CAD flows. To study the quality of this tool, we compare the area and

speed results of designs mapped by this tool against an industrial strength tool. This

work is published in [JR05a], and to our knowledge is the first open source Verilog

HDL tool targeting FPGA CAD flows.

1.3 Thesis Organization

The organization of this dissertation is as follows: Chapter 2 reviews background ma-

terial including the basic structure of an FPGA, definitions for FPGAs including ones

6

1 Introduction

with hard circuits, and CAD for targeting FPGAs that include hard circuits. We also

review previous work that attempts to maximize the utilization of hard circuits.

Next, in Chapter 3, we introduce some new terminology and architecture concepts

that will be used throughout this dissertation. We introduce a scientific methodol-

ogy to measure the area benefit of including hard circuits on an FPGA, and use this

methodology to measure the area benefit of including hard multipliers on an FPGA.

In addition, we present details about the benchmarks that we have collected and use

in most of the chapters in this dissertation to measure the quality of our ideas.

The research contributions described in the previous section are presented in detail in

chapters 4, 5, and 6. Each chapter includes an introduction, discussion, measurement

methodology, results, and summary. Even though each of these chapters is relatively

self-contained, each chapter contributes to the general theme of this dissertation -

improving utilization of hard circuits to improve the overall area efficiency of FPGAs.

In Chapter 4, we introduce our shadow cluster concept and apply this concept to

hard multipliers. We then measure the area-efficiency improvement of FPGAs with

multipliers combined with shadow clusters compared to FPGAs with only hard multi-

pliers.

In Chapter 5, we present the hard crossbars as a representative of low-demand circuits

that are added to FPGAs. We then proceed to measure the frequency at which hard

crossbars combined with shadow clusters are area neutral with an FPGA that has no

hard crossbars.

In Chapter 6, we describe a front-end RTL elaboration tool and how it efficiently

maps designs to the hard circuits available on an FPGA. We then measure how this

tool compares to an existing industrial tool that performs this same mapping. We, also,

study two types of hard crossbar architectures, single bit and bus based, to determine

how these architectures affect our results.

Chapter 7 concludes the dissertation with some final remarks and a review of the

contributions. We provide some possible future avenues to extend the research.

Finally, there are three appendices that provide additional information about this

work. Appendix A describes an automatic sizing tool used in this research. This

includes how the tool works, what external software is used, and the quality of our

7

1 Introduction

sizing estimations. Appendix B provides additional details about the benchmarks used

in this work. Finally, appendix C provides raw data from our experiments. This is

included in the electronic version of this thesis and represents the data collected and

summarized throughout this dissertation.

8

2 Background and Related Work

The difference between [the hard way] and the easy way

is that the hard way works.

Terry Pratchett

2.1 Introduction

In this chapter, we review previous work and terminology related to FPGAs with a

focus on those with hard circuits. We start with a description of basic FPGAs that

consist only of soft programmable logic, and then we describe and provide examples of

FPGAs with hard circuits. Next, we review an FPGA CAD flow used to map designs

to these FPGAs, and finally, we review previous work that attempts to improve the

utilization of hard circuits.

2.2 FPGA Basics

The simplest type of FPGA consists of logic blocks and routing that each can be

programmed to implement a digital design - we call this the soft logic fabric or soft

programmable logic. A homogeneous FPGA consists of only this soft programmable

fabric and input and output pins that connect to off chip signals.

The soft logic fabric is built using what is commonly called a tile. These tiles are

replicated and connected together creating an array of tiles (which is illustrated in

portions labeled “soft logic” in Figure 2.1). Each tile consists of programmable units

surrounded by programmable routing that allows internal connections and external

connections to other tiles.

9

2 Background and Related Work

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC
SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC
SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

Figure 2.1: Representation of a tiled homogeneous FPGA

Clock

Inputs

Output

FFLUT

Figure 2.2: Sample BLE built of a LUT and flip-flop

The basic programmable unit is a Basic Logic Element (BLE), which is often some

form of Lookup Table (LUT) together with a flip-flop [SMS02] as seen in Figure 2.2.

Other examples of BLEs include NAND gates [Ple90], transistors [MC92], and multi-

plexers [Act96, BCC+91]. Each tile consists of several BLEs and programmable routing,

forming what is commonly called a cluster, and we call the tiles that make up the soft

programmable fabric, soft logic cluster tiles. The programmable routing is used to

connect to both internal and external BLEs.

Paths between BLEs are set by programming switches that connect inputs and out-

puts of BLEs with wire segments (in what are called connection blocks) and wire

segments to other wire segments (in what are called switch blocks). There are many

10

2 Background and Related Work

ways to design a programmable switch. The most popular programmable switch is

composed of static memory cells, pass transistor multiplexers, and a level-restoring

buffer. The memory cells are connected to the control inputs of the multiplexer and

determine which input will be connected to the output of the multiplexer. These

switches form part of a programmable routing architecture that is designed to connect

two different points such that signals move in one predetermined direction (from the

output of a routing multiplexer to the input of another multiplexer). This type of

routing architecture is called direct drive (also known as uni-directional) [LL04].

The architecture of the soft logic fabric is described by many parameters. These

parameters include the number of BLEs per cluster (N), the input size of the LUTs

(K) in a BLE, the number of programmable routing tracks in the vertical and horizontal

channels connecting tiles (W), the input connectivity to the BLEs in a soft logic cluster

(FCin), the output connectivity from the BLEs to the routing tracks (FCout), and the

switch block flexibility connecting routing tracks with each other (Fs) among several

other parameters [BRM99].

Figure 2.3 shows a schematic of a soft logic cluster tile including examples for some

of the parameters listed above. This figure includes all the programmable routing in

the tile connecting in and out of the BLE. Note the large number of multiplexers and

buffers needed to programmably connect the routing tracks to the BLE. These routing

circuits are the main reason why programmable routing takes up most of the area in

FPGAs.

2.3 Modern Heterogeneous FPGAs

We call an FPGA that combines hard circuits with the soft programmable fabric a

heterogeneous FPGA, where a hard circuit is formally defined as:

Definition: A hard circuit is a specific circuit included on an FPGA to perform spe- ⋆

cific logic functions, which could also be implemented using only the soft programmable

fabric.

Hard circuits are included on the FPGA since they implement a logic function either

in less area, greater speed, consuming less power, or a mixture of all three compared

11

2 Background and Related Work

F
Cout

= 2
F

Cin
= 4

BLE
#1

BLE
#2

Direct
Driver

Direct

Driver

Direct
Driver

N

= 2W = 12

Direct

Driver

K = 4

Figure 2.3: Soft logic cluster tile including architecture parameters

to implementing the same logic function in the soft logic fabric. This definition for a

hard circuit does not include some other circuit structures on an FPGA such as the

specialized input and outputs or phase locked loops, which are also included on modern

FPGAs like the Stratix [Alt03] and Virtex [Xil05] FPGAs.

Given this definition, there are two common ways hard circuits are included on

FPGAs. The first is to include them into all the tiles in an FPGA. Here, all the tiles

are the same, and the FPGA remains a homogeneous array of tiles, and we call this type

of heterogeneity, soft fabric heterogeneity. For example, flip-flops are commonly paired

with LUT based FPGAs making designs mapped to these FPGAs faster, more area

efficient, and consuming less power in, arguably, all cases compared to implementing

the flip flop in the soft logic fabric [RFCL89, RFLC90].

The second way of including a hard circuit on an FPGA is by including a hard

circuit as a differentiated tile. In this case, an FPGA no longer has a homogeneous set

of tiles, and we call this kind of heterogeneity, tile-based heterogeneity. An example of

12

2 Background and Related Work

a heterogeneous tile is a multiplier [Alt03, Xil05, Qui03], which is a large circuit that

can be included on an FPGA as a unique tile.

In the following sections, we discuss these two types of heterogeneity in more detail

including examples of these hard circuits in modern FPGAs.

2.3.1 Soft Fabric Heterogeneity

The flip-flop is commonly included in FPGA tiles and is an example of soft fabric hetero-

geneity. Other examples of hard circuits within homogeneous tiles include fine-grained

memory [Xil03, Wil97], connection chains [HBO+93, Xil89], and adder configurabil-

ity [HBO+93], which we will now review.

Many designs use memory for a number of purposes including the storage of incom-

ing, outgoing, and temporary data. Applications benefit from on chip memory since

the paths between memory and logic are short compared to paths that connect to

off chip memory. One example of memories embedded within the homogeneous tile

is Xilinx’s Virtex-II and Virtex-4 FPGAs [Xil03, Xil05], which provide memories by

adding circuitry to the LUT so it can also be configured as a 16-bit memory. These

memory configurable LUTs, LUT RAMs, allow memory usage in the design to map

almost anywhere on an FPGA increasing the chance that memory will be placed close

to circuits it connects to.

Another example of soft fabric heterogeneity that provides quick connections be-

tween neighboring BLEs is called, connection chains. Connection chains exist as carry

chains [HBO+93, HHF98] for building faster arithmetic operations and register chains

for building shift registers [Alt03, Alt04d, Xil03, Xil05, Xil06, Lat07a, Lat07b]. Con-

nection chains could be considered part of the routing fabric, but we classify connection

chains as hard circuits since they are extra circuitry intended to speed up specific func-

tions instead of using the standard programmable routing.

Arithmetic capabilities are also incorporated in a soft logic cluster tile. For example,

in some FPGAs [Alt03, Xil03, Xil05] a 4-input LUT is configurable to act either as

a LUT or a 1-bit adder. Without adder capabilities, it takes two 4-input LUTs to

implement a 1-bit adder; one LUT produces the sum and one LUT produces the carry.

Virtex-5, Stratix II, and Stratix III FPGAs also have adder capabilities in their BLE.

13

2 Background and Related Work

Adder configurability combined with carry chains allows FPGAs to add and subtract

with lower area and greater speed compared with a soft logic implementation.

Figure 2.4: Block diagram of a Logic Element in Xilinx’s Virtex-II Pro [Xil03]

Figure 2.4 shows a picture of a BLE in the Virtex-II Pro chip [Xil03]. This BLE has

many examples of soft fabric heterogeneity including a carry chain labelled by CIN and

COUT, a LUT RAM pictured in the rectangle in the upper left quadrant, a flip-flop

or latch, and a connection chain for a shift register labelled shiftin and shiftout.

Another way of adding soft fabric heterogeneity to an FPGA is using more than

one kind of BLE. For example, each tile could include both 3-LUTs and 4-LUTs,

where by our definition, the 4-LUTs are considered hard circuits since a 4-LUT can be

implemented using 3-LUTs. A mixture of BLEs makes it possible for a circuit to map

to a faster and smaller FPGA implementation. He et. al. [HR93] studied both how to

14

2 Background and Related Work

map designs to a mixture of LUT sizes. Their results show that a mixture of two sizes

of LUTs can lead to area-efficient design mappings compared with architectures with

only one LUT size.

2.3.2 Tile-based Heterogeneity

Hard circuits are also included on the FPGA as differentiated tiles. Examples of in-

dustrial and academic hard circuit tiles include memories, arithmetic blocks, and pro-

cessors.

A common heterogeneous tile included on an FPGA is the block memory. Wilton

et. al. [Wil97, WRV97, WRV96, WRV99, Wil99, WKH99, Nga94] were the first to

publish results and evaluate embedded memories on an FPGA. This work showed that

embedded memories are beneficial to systems on chip designs, and embedded memories

speed up these designs by making paths between memory and logic shorter compared

to connecting to off chip memories. Wilton et. al. also discussed the need for flexibility

in the memory structure since various designs use memories with different bit capacities

and data widths. Finally, Wilton showed how to map circuits to configurable memories

as well as the effectiveness of configurable embedded memories in improving the speed

and area of an FPGA.

Many industrial FPGAs include configurable memories including Actel’s ProASIC [Act02],

Altera’s Stratix I [Alt03], Stratix II [Alt04d] and Stratix III [Alt06], QuickLogic’s

Eclipse [Qui03], Lattice Semiconductor Corporation’s ispXPGA [Lat04], ECP [Lat07a],

and ECP2 [Lat07b], and Xilinx’s Virtex-II [Xil03], Virtex-4 [Xil05] and Virtex-5 [Xil06].

Beyond embedded memories many FPGAs now include hard circuits that help im-

prove the speed and area of computationally-intensive designs. Xilinx includes multi-

pliers in their Virtex-II family [Xil03] among other of their FPGAs. These multipliers,

in the Virtex-II, are 18-bit by 18-bit signed multipliers. Lattice ECP [Lat07a] and

ECP2 [Lat07b] include 18x18 hard multipliers. QuickLogic’s EclipsePlus [Qui03] FP-

GAs and Altera’s Stratix FPGAs [Alt03, Alt04d] include DSP blocks that can perform

operations such as multiply and multiply-accumulate.

Altera’s DSP block (Stratix I, Stratix II, and Stratix III) can be configured as a

multiplier, multiply accumulator, and multiply summing unit. This circuit is an ex-

15

2 Background and Related Work

Figure 2.5: High level view of the 18-bit DSP block on the Stratix I [Alt03]

16

2 Background and Related Work

ample of what we call a functionally flexible hard circuit as it can be configured to

implement a range of functionality and bit widths so that more designs can make use

of this hard circuit. Figure 2.5 shows a representation of the DSP block available on

Stratix I FPGAs; with each operation, different bit widths can be specified [Alt03].

For example, this DSP block can be configured to implement either four 9-bit by 9-bit

multipliers, two 18-bit by 18-bit multipliers, or one 36-bit by 36-bit multiplier.

Table 2.1: Soft and Hard implementation area and speed results for a 9x9 multiplier

Soft Implementation Hard Implementation

Area in Equivalent Max operating Area in Equivalent Max operating
Cluster Tiles frequency Cluster Tiles frequency

9x9 Multiplier 17 150 MHz 2 308 MHz

Table 2.1 shows the potential benefit of mapping 9x9 multiplier to hard circuits on

a Stratix I FPGA (while calculating the real benefit requires that we map the entire

design to an FPGA with multipliers). The 9x9 multiplier runs at 308 MHz and uses

2 equivalent Stratix I soft logic cluster tiles compared to a soft implementation of the

multiplier which uses 17 soft logic cluster tiles and runs at approximately half the

speed.

Xilinx’s Xtreme DSP [Xil05], introduced in the Virtex-4 FPGA family and included

in Virtex-5, is another example of a functionally flexible hard circuit. The Xtreme

DSP block’s main functionality is an 18 by 18 multiplier, but the Xtreme DSP can also

implement multiply accumulation, addition/subtraction, and some bus based multi-

plexing. Also, the tile includes an adder that allows four of these tiles to be combined

to implement a 36 by 36 multiplier without using any additional soft logic. In the

Virtex-5, the Xtreme DSP block also includes a bitwise logical mode [Xil06] that can

be used instead of the multiplier to perform bitwise logical operations.

Beauchamp [BHUH06] et. al. showed the benefit of including a floating point mul-

tiplier to an FPGA to improve the speed and implementation area when targeting

designs that include floating point operations. This work, however, does not address

the effect of including the floating point unit when not all the benchmarks use it, which

is one of the key elements presented in this work.

17

2 Background and Related Work

Another group of researchers, Ho et. al. [HLL+06], investigated floating point units

included on an FPGA using a methodology where they use existing industrial FPGAs

and tools to evaluate the speed of designs mapped to their floating point FPGAs. The

benefit of their work is the results are generated using industrial tools and architectures,

but similar to the previous work the only benchmarks tested using their methodology

used the floating point multipliers. To include hard circuits on an existing industrial

FPGA, they determine the size and speed of the hard circuit externally, and then map

that unit to the FPGA fabric by reserving a rectangular group of soft logic cluster tiles

that uses the equivalent area of the hard circuit. To simulate the speed of the hard

circuit, the carry chains in these reserved tiles are used since carry chains have the

smallest granularity of path delay as each additional BLE hooked up to the carry chain

adds a small delay to the overall carry chain path delay.

Another type of hard circuit that has been included on an FPGA is a processor. Em-

bedded memories and multipliers are somewhat functionally flexible, but a processor

has both a specific function (though that functionality is programmable itself) and a

fixed bit size that may or may not suit designs. Also, the processor is a large circuit

compared to multiplier tiles and most memory tiles, making it even more important

that designs use the processor when mapped to these FPGAs. Industrial FPGA manu-

facturers deal with this rigidity of including a processor by providing sub-families that

either include or don’t include a hard processor.

Examples of a processor on an FPGA include Altera’s Excalibur [Alt04f] and Xilinx’s

Virtex-II Pro, Virtex-4, and Virtex-5 [Xil03, Xil05, Xil06]. The Excalibur can include

200 MHz, 166 MHz, or 133 MHz ARM processors [ARM01] that is embedded in the

APEX FPGA architecture [Alt04a]. Xilinx’s Virtex-II Pro and Virtex-4 have up to four

embedded PowerPCs. This trend will continue in the Virtex-5 FPGA family, and the

FX family will include up to 2 PowerPCs when it is released [Roo06]. Altera, however,

has not included a hard processor on any of its Stratix FPGAs.

We have now reviewed several examples of hard circuits that are included as differ-

entiated tiles and into the soft logic fabric. In all cases, these inclusions are meant to

improve overall speed, area consumption, and power consumption of a design mapped

to these FPGAs. Next, we will discuss a typical CAD flow that maps designs to these

18

2 Background and Related Work

heterogeneous FPGAs.

2.4 CAD for Heterogeneous FPGAs

Routing

Packing

- Register packing
- Clustering

Technology-dependent

mapping

Technology-Independent

Logic Optimization

Front End Synthesis

Optimize RTL

INPUT - HDL Design

Parse

Elaborate

Partial Mapping

Identify Bind

Placement

OUTPUT - Bit-stream

INPUT - Architecture

Description

Figure 2.6: CAD flow for converting a design to a bit stream

Heterogeneous FPGA architectures, which include a variety of hard circuits, can be

programmed to implement a wide range of designs. FPGA designers use CAD tools

to convert their high-level designs into a bit-stream that are then loaded onto these

19

2 Background and Related Work

FPGAs to implement the design. Modern practice has broken CAD process into a

series of smaller tasks as illustrated in Figure 2.6. This section describes how a typical

CAD flow processes designs with a focus on how the hard circuits are handled.

INPUT - Verilog HDL Design

module small (a, b, c, out);
input[5:0] a, b, c;

output [5:0]out;

assign out = ({2'b00,a[2:0]} * b) + (b & ~c));

endmodule

Figure 2.7: An example Verilog HDL design

Throughout this discussion of heterogeneous FPGA CAD flow we will show how a

particular example design (given in Figure 2.7) would be mapped to an FPGA. As we

describe each stage of the CAD flow we will show an illustration representing what

each stage might do to this example.

The goal of the entire process is to map a design to an FPGA. During each stage,

the general goals are to achieve this mapping such that the final design is operating as

fast as possible, using the least amount of silicon, and consuming the least amount of

power on the FPGA.

The initial input to an FPGA CAD flow is a digital design and an architecture de-

scription of the FPGA that is being targeted. A common form for digital designs is

a high-level RTL design that describes the transfer of signals between registers and

the logical operations performed on these signals during transfers. RTL designs are

commonly created using formalized languages that describe electronic circuits. These

languages are called Hardware Description Languages (HDLs), and the two most pop-

ular standardized HDLs are Verilog HDL [Ope93] and VHDL [IEE87].

In the first stage, an elaborator transforms the HDL design into a netlist, which

consists of input and output ports, primitive logic gates, specific functions such as

arithmetic operations, and memory units including registers and memory blocks. Elab-

20

2 Background and Related Work

oration is responsible for preserving as much information from the original HDL design,

meaning that instead of converting constructs such as an arithmetic operation into logic

gates, the arithmetic operation is preserved. Sometimes, elaboration does not preserve

high-level information and instead maps HDL constructs into other forms. For example,

control flow statements, including loop and decision statements, might be converted

into logical implementations. The elaborator may also convert storage statements into

registers or larger memory units. The main task for the elaboration tool is to con-

vert high-level HDL designs to a netlist while preserving the useful high-level design

information (for later optimization).

Figure 2.8 shows how the initial input is passed through the first few stages of the

front-end synthesis tool. A parser reads in the design, an elaborator creates a netlist

representation of the design, and a simple RTL optimizer improves the quality of the

netlist. In this example, the original design consisting of a multiplication, an addition,

and some logic is converted into a netlist by the elaboration stage. The RTL optimizer,

in this example, eliminates some of the most significant bits of the multiplier since these

bits are a constant of zero and are not needed.

After elaborating the original HDL design, a stage converts the high-level netlist to

a lower-level netlist that more closely conforms to both the FPGAs’ hard circuits and

soft logic fabric; we call this stage partial mapping since pieces of the design are bound

to hard circuits available on the FPGA. The partial mapper uses the library of prede-

fined components available on an FPGA (which is included in the input architecture

description) and determines whether parts of the high-level netlist should map to hard

circuits or programmable logic. Partial mapping performs this mapping in two steps.

First, an identification stage determines the function of each part of the circuit, and

second, partial mapping binds functions in the design to hard circuits available on the

FPGA or primitive logic gates. After partial mapping, all circuits in the netlist bind

either to hard circuits on the FPGA or to logic gates that still must be mapped to the

FPGA’s soft logic fabric.

To our knowledge, existing CAD flows perform the identification stage of partial

mapping in three different ways. The first method involves the designer explicitly

instantiating an element from a library of standardized logic functions. An example

21

2 Background and Related Work

Parse
MODULE = small
PARAMATERS = {

{a, input, 5},

{b, input, 5},

{c, input, 5},

{out, output, 5}}
NETS = {{out, {a1}}}

EXPRESSIONS = {

{e0 = op cat, 2'b00,

a},

{e1 = op*, e0, b},
{e2 = op~, c},

{e3 = op&, b, e2},

{e4 = op+, t1, t3}}

LEFT_ASSIGNMENT = {

{a1 = e4}

Elaborate

*

!
&

+

a

b

c

out

2'b00

Optimize RTL

*

!
&

+

a

b

c

out

2'b00

Figure 2.8: Initial HDL design and Elaboration CAD flow Stages.

of this kind of library is the Library Parametrized Modules (LPMs) [LPM93]. LPMs

provide designers with simple methods to instantiate complex logic functions, and

LPMs also benefit designs since manufacturers optimize LPM instantiations for their

specific FPGA architectures.

In the second method, designers follow specified rules for writing HDL descriptions

of complex circuits so that the partial mapper can easily identify what circuits the

designer intends to use. For example, some synthesis tools specify how to write HDL

statements so that flip-flops are identified by the partial mapper [Syn03]. The third

22

2 Background and Related Work

method of identifying functions is an open-ended approach in which the synthesis tool

uses matching techniques to extract complex circuits.

Partial Mapping

Identify

*

!
&

+

a

b

c

out

2'b00

HETEROGENEOUS FPGA LIBRARY

*
+

*
+

*

Binding

M
u

ltip
ly

 A

c
c
u

m
u

la
te

!
&

+

a

b

c

out

Figure 2.9: The partial mapping stage of front-end synthesis

Figure 2.9 shows the two stages of partial mapping. In the example, the identification

stage finds that either the multiplier or the multiplier combined with the adder can

be mapped to a hard circuit on the FPGA. In this stage, there is a heterogeneous

FPGA library that describes which hard circuits are available on the FPGA and what

these hard circuits can be used to implement. The binding stage shows that only the

multiplier is mapped to a hard circuit on the FPGA, and this netlist will be passed

onto the next stages of the CAD flow.

Once the netlist more closely resembles circuits available on the FPGA, any remain-

ing logic gates must be converted to the FPGA’s soft logic fabric. Before mapping

logic gates into the soft logic fabric, a technology-independent logic optimizer trans-

forms logic functions within the netlist to improve speed, area, or power implementation

23

2 Background and Related Work

of the overall design [BHSV90, Mic94, BL90, DMNSV87, Bry86]. Next, technology-

dependent mapping converts the logic gates into a BLE implementation for the targeted

FPGA [CD94, CX00, YW94, CCD+92, FRV91]. After these two steps, a netlist exists

in a form that closely matches the circuits available on the FPGA.

For cluster based FPGA architectures, clustering or packing algorithms combine

different FPGA elements together. For example, in many FPGAs a LUT and a flip-

flop are joined in the tile to form a BLE, and a packing algorithm combines connected

LUTs and flip-flops in the netlist into BLEs. Similarly, in some FPGAs, BLEs are

grouped together to form clusters. Clustering algorithms are responsible for grouping

BLEs together into clusters [SMS02, MBR99].

Logic Optimize and Technology Mapping
4
-L

U
T

4
-L

U
T

M
u

ltip
ly

A

c
c

u
m

u
la

te

a

b

c
out

6

6

6

6

6

6

6

Figure 2.10: Technology mapping stage of the CAD flow

Figure 2.10 shows how our example has been mapped into a hard circuit and 6 two

LUTs pairings. In this example, signal c goes through an inverter before it is input

into an AND gate along with signal b. In the figure, these two operations have been

combined into one 4-LUT. Our example does not show any technology-independent

logic optimization or clustering and packing results.

24

2 Background and Related Work

At this stage, the netlist consists entirely of circuits available on the FPGA. Place-

ment and routing algorithms now map this netlist onto an FPGA. Once clustered

and packed, the placer chooses the physical location of both the clusters and hard

circuits on the FPGA. These choices are made to minimize overall wire length and

maximize speed [SRRJ00, DK85, HK97, KSJA91, SDJ91, ACH+97, KGV83]. Finally,

the router chooses wire segments and activates the programmable switches as connec-

tion paths between placed elements. The goal of routing is to achieve connectivity

while optimizing speed [CTZW94, BRV92, LW95, LB93, BRV90, SBR98]. With the

successful completion of placement and routing, the final output of the CAD flow is a

configuration bit-stream that specifies the programming of the FPGA.

Figure 2.11 shows the result of our example design going through the placement and

routing stages. The final output is a bit-stream that will be loaded onto the FPGA to

implement the original design.

The focus in this dissertation with respect to a heterogeneous CAD flow is the front-

end synthesis including the elaboration and partial mapping. There are a number of

commercial front-end synthesis tools that target heterogeneous FPGAs. Both Altera

and Xilinx incorporate front-end synthesis into their FPGA CAD flow tools called

Quartus [Alt04c] and ISE [Xil04] respectively. Other popular front-end synthesis tools

for FPGAs include Synplify [Syn03], Blast FPGA [Mag05], LeonardoSpectrum [Men01],

and Design Compiler FPGA [Syn04].

To our knowledge, there are no available open source front-end synthesis tools, but

some HDL parsers do exist. For example, Icarus [Wil07] is a front-end Verilog parser,

which does have a simple back-end implementation that targets Xilinx’s “xnf” format

for describing netlists. This back-end implementation is incomplete and can only map

to the soft logic fabric on Xilinx FPGAs. We, however, use the front-end of Icarus as

the parsing portion of our own front-end synthesis tool that is presented in Chapter 6.

25

2 Background and Related Work

Output - Bitstream

0001010011110101001001001001010010010100010010

1111110101011111111010100101010010001010001001
0111100000101011011101001000101000100100101001

0011111111111100100000000000000000000000000000

00

0000000

Routing

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

MULT

MULT

MULT

SOFT

LOGIC

SOFT

LOGIC

Placement

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC
SOFT

LOGIC

M
e
m

o
ry

B

lo
c
k

MULT

M
e
m

o
ry

B

lo
c
k

MULT

MULT

MULT

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC
SOFT

LOGIC

SOFT
LOGIC

SOFT

LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT
LOGIC

SOFT

LOGIC

Figure 2.11: The placement and routing stages and the final output bit-stream

2.5 Improving Heterogeneous FPGAs

2.5.1 Improving the Utilization of Hard Circuits

Now we review previous work that attempts to make heterogeneous FPGAs better by

maximizing the utilization of hard circuits. Again, the general theme of this disser-

26

2 Background and Related Work

tation is increasing the utilization of hard circuits to improve the area efficiency of

heterogeneous FPGAs. This entails:

1. Improving the flexibility of the hard circuit so it can be used more often

2. Using CAD tools to effectively target hard circuits on the FPGA

In this section, we review previous research in these two areas.

The first approach is to combine different functionality in hard circuits to make

them more useful, so they can be used by a larger range of design functionality. This

increased flexibility costs more in silicon area, but makes a hard circuit more useful

potentially improving the overall area efficiency of an FPGA.

Both Altera’s DSP block [Alt03] and Xilinx’s Xtreme DSP block [Xil05], previously

reviewed in section 2.3.2, are examples of improving the flexibility of a hard circuit

so more functions can target these multi-purpose circuits. We called this flexibility

functional flexibility.

In each new generation of Xilinx FPGAs, the flexibility has been increased in the hard

multiplier. The Virtex-II included a simple 18 by 18 multiplier. The Virtex-4 FPGAs

improve on this simple multiplier and introduce the Xtreme DSP, which can flexibly

implement a range of multiplication operations and even bus multiplexing. From the

Virtex-4 to Virtex-5, more flexibility was introduced to include bitwise logical mode

that can be used for logic operations when the multiplier is unused.

In the second approach, there exist CAD techniques to utilize hard circuits in an

FPGA to implement functionality not normally intended for these circuits. For ex-

ample, memories can implement large logic functions by acting as large LUTs [Wil02,

CX00]. Hard memories can also implement multiplication operations, and these imple-

mentations perform particularly well when the width of the multiplicand is small [Kna99].

The hard multipliers in an FPGA can also implement barrel shifters with significant

area and speed savings [Gig04].

We have done work in this area with a CAD technique in which we introduce a

method to map multiplexers to unused hard multipliers on an FPGA during front-end

synthesis. We show that this technique can improve the utilization of hard multipliers

27

2 Background and Related Work

while not significantly decreasing the speed of designs that already contain multipliers.

This work is published in [JR05b], and is not included in this dissertation.

Similar to this work, Morris et. al. [MCC05] presented a novel method to use the

multipliers on a Stratix II to implement ROM memories. In this work, the address

selection of a ROM is mapped to hard multipliers instead of using the soft logic fab-

ric. This work is similar to our multiplexer to multiplier transformation since memory

addressing is a multiplexing operation in which stored data is passed through multi-

plexers, which are controlled by the memory address.

In each of these cases, the approach is to develop CAD tools that take advantage of

unused hard circuits and transform design functionality to use these hard circuits.

The previous two techniques attempt to use existing hard circuits on the FPGA so

that they are not wasted. Xilinx takes another approach to improve the utilization

of their hard circuits so that they are not wasted. Instead of providing one family of

FPGAs with a set number of hard circuits, they provide 3 sub-families each with a

different number of hard circuits. This allows designers to pick an FPGA with the

number of hard circuits that more closely matches what their design uses.

Table 2.2: Virtex 4 sub-families and their intended target designs

Virtex-4 Family Target Designs

SX Ultra-high performance signal processing
FX Embedded processing and serial connectivity
LX High-performance logic

Table 2.2 shows the three sub-families of Virtex-4 FPGAs in column one (in order of

decreasing number of available multipliers per chip) and their intended target designs

in column two. The SX Virtex-4 FPGAs, for example, would be used for designs that

demand many multipliers, while the FX and LX FPGAs are meant for designs that

mostly use the soft logic fabric and other resources (including hard processors in the

case of the FX).

Both the Virtex-5 and Stratix III follow this trend of diversifying an FPGA family

based on supplying a range of FPGA resources to try to match designer’s specific needs

with what is available on the chip [Xil06, Alt06]. The drawback of this approach is that

28

2 Background and Related Work

these FPGA companies now have to create many FPGAs, which can take significant

engineering resources and time. Additionally, these companies need to maintain an

even larger inventory of FPGAs to ensure that each sub-family of FPGA is available

to their customers.

2.5.2 Creating Heterogeneous FPGAs

The work by Smith et. al. [Smi06] considers the creation of heterogeneous FPGAs

to implement a set of digital designs. Instead of an architect specifying the FPGA

and experimenting with that FPGA, their methodology creates an algorithm to select

the best circuit structures and number of these structures to include on an FPGA to

implement the original set of designs. This algorithm has constraints on the area of

the FPGA and tries to optimize the architecture for the fastest operating frequencies.

This flow begins with inputs consisting of a set of digital designs, a set of possible

circuit structures that can make up an FPGA, and an area constraint for the maximum

size of the FPGA. The final output is a heterogeneous FPGA that can implement the

original set of input designs and an estimate of the size and operating frequency of

this output FPGA. An additional input includes estimates of the speed and area to

implement each part of the input designs from which an optimization engine selects

the best circuit structures to implement all parts of each design (assuming that circuit

structures will be shared since only one design will be mapped to an FPGA at a time)

while satisfying the global area constraint.

The specific set of circuit structures that is used to create the FPGAs include ba-

sic soft logic, multipliers, and memories of fixed granularity. The input designs are

described in terms of these circuit structures, and each piece can be mapped to a

combination of these circuit structures. The design inputs include timing and area

estimates, generated by an industrial CAD tool, for each possible implementation of a

piece of the design.

The goal of the methodology is to select what circuit structures to include on the

FPGA to map all pieces in the designs and to determine the overall speed and area of

this FPGA that will implement all the designs. This FPGA must satisfy the global area

constraint while being created to maximize operating frequency. They point out that

29

2 Background and Related Work

designing FPGAs using the traditional empirical flow is limited by both the quality of

the synthesis algorithms in the CAD flow needed to map a design to the architecture

and by the lack of design space exploration. Their work attempts to remove these

limitations by using formal optimization methods and estimates of speed and area to

decide, during architecture generation, the best mix of circuit structures to be included

on an FPGA.

The constraints for the optimizer are expressed as linear constraint equations that can

be passed to integer linear problem solvers. These constraints are input to an integer

linear program solver as the optimization engine that selects the circuit structures to

include on the FPGA. With an additional constraint on the ratio in which circuit

structures must appear on the FPGA in relation to one another, the flow can model

an industrial FPGA that can be compared to other generated architectures.

To study the tradeoff between area and speed for FPGAs created by their methodol-

ogy they change the global area constraint. Each architecture is compared to an optimal

architecture in terms of speed where this optimal architecture has no constraint on area

and is assumed to produce the fastest operating FPGA. They measure the speed and

area benefits of hard multipliers and memories for a set of 6 DSP benchmark circuits

claiming hard circuits (multipliers and memories) make their designs 1.6 times faster

and 7 times smaller compared to an architecture that only has soft logic.

An FPGA, similar to Xilinx’s Virtex-II [Xil03], is created by using a constraint on the

ratio of the number of hard circuits to the number of soft logic cluster tiles. Their results

show that the Virtex-II is composed of a very different set of circuit structures compared

to the optimal architectures the flow generates without this additional constraint. This

is not surprising since the target set of benchmarks is focused on DSP applications as

opposed to a larger group of designs that the Virtex-II needs to serve.

Our architectural work in Chapter 3 and Chapter 4 uses a measurement methodology

in which we measure the area efficiency of an FPGA architecture where the ratio of soft

logic cluster tiles to hard circuits is varied to find the best ratio. Our method cannot

handle two types of hard circuits, and we study architectures containing either hard

multipliers or hard crossbars (we do not consider memory). Our goal is to not only find

the smallest heterogeneous FPGA, but also to improve the hard circuits themselves by

30

2 Background and Related Work

increasing their utilization. It is possible to combine our ideas with theirs, but the

empirical measurement methodology that we use is sufficient for our needs.

2.6 Summary

In this chapter, we reviewed the state of the art of homogeneous and heterogeneous

FPGAs. This includes a description of a homogeneous FPGA, definitions for different

types of heterogeneity in FPGAs, and a review of a typical CAD flow to map designs

to them. We also reviewed previous work that attempts to increase the utilization of

hard circuits.

In the next chapter, we describe how to include hard circuits as differentiated tiles

in the fabric of an experimental FPGA, and we provide details about the benchmarks

among other parts of the experimental setup that will be used throughout this work.

31

3 Design of Heterogeneous FPGAs and

Measuring their Area Efficiency

Too many people, when listing all the perils to be found

in the search for lost treasure or ancient wisdom, had

forgotten to put at the top of the list the man who

arrived just before you.

Terry Pratchett

3.1 Introduction

The focus of this research is to improve the area efficiency of heterogeneous FPGAs.

In this chapter, we introduce a methodology that measures the implementation area

of a set of benchmarks mapped to an FPGA with and without hard circuits so we can

compare different architectures.

In this measurement methodology, a benchmark is mapped to an architecture de-

scribed by its FPGA architectural parameters and the resulting area of each FPGA is

measured. We introduce a new architectural parameter that describes the economical

supply of hard circuits, and a similar economical concept of demand that characterizes

a benchmark’s use of hard circuits. Both supply and demand of hard circuits are useful

when discussing how a hard circuit may benefit target markets and the FPGAs that

would serve these markets.

At the end of this chapter, we demonstrate the use of our measurement methodology

with experiments that measures the area efficiency of FPGAs with hard multipliers

compared to FPGAs without hard multipliers.

32

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

3.2 Design of Heterogeneous FPGAs

In this section, we define the supply ratio and the demand ratio and discuss how these

parameters affect the mapping to experimental FPGAs. We also examine existing

commercial FPGAs and their supply ratio, and outline a few principles on how hard

circuit tiles are integrated with an FPGA’s soft logic and programmable routing.

Supply Ratio

A heterogeneous tile-based FPGA consists of soft logic cluster tiles as defined in Sec-

tion 2.2 and hard circuit tiles among other tiles such as I/O pads. These FPGAs are

created by designing each type of tile so that they can be abutted to one another to

form the heterogeneous array.

We call the ratio of the number of hard circuit tiles to the number of soft logic cluster

tiles on an FPGA, the supply ratio, RS. The supply ratio is useful in determining the

number of hard circuits based on the number of soft logic cluster tiles in the FPGA.

SOFT

LOGIC

SOFT
LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT
LOGIC

SOFT

LOGIC

MULT

MULT

MULT

Figure 3.1: An FPGA with a supply ratio equal to 1:2

For example, Figure 3.1 shows a small FPGA with 3 multiplier tiles and 6 soft logic

cluster tiles. This FPGA has a supply ratio equal to 1:2, meaning there is 1 multiplier

tile for every 2 soft logic cluster tiles.

33

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

Demand Ratio

We can also describe a given benchmark in terms of its demand for hard circuits. We

define the demand ratio, RD, as the number of hard circuit tiles to the number of soft

logic cluster tiles that a digital benchmark requires when implemented on an FPGA,

if all circuits capable of being implemented in the hard circuit tile actually are.

When discussing either ratio (supply or demand) we will say that a certain architec-

ture or benchmark has a greater supply or demand compared to some other architecture

or benchmark. This means that there are more multipliers available on the architecture

with greater supply or desired by the circuit with greater demand. For example, an

architecture with a supply ratio of 1:8 has a greater supply of multipliers compared to

an architecture with a supply ratio of 1:10.

Throughout this dissertation, we represent the supply or demand ratio in terms of

one hard circuit tile to a fractional number of soft logic cluster tiles. For example, we

would represent a supply ratio of 2:3 as 1:1.5 in this work. For cases when there are

no hard circuits supplied or demanded we define these ratios as one to infinity, which

in symbol form is 1:∞. This representation is not perfect, and there are several ways

to represent these ratios such as fractional or decimal form. We find that representing

the ratio with the colon is the most intuitive way to display either ratio.

A benchmark suite, which is a collection of benchmarks, can be described in terms

of its average demand ratio. The average demand ratio is calculated by arithmetically

averaging the demand ratios of each benchmark in the suite. The average demand ratio

is calculated by using the decimal equivalent of the demand ratio for each benchmark

and arithmetically averaging all of these values. For those benchmarks which demand

no multipliers, we convert their demand ratio of 1:∞ to zero for this average demand

ratio calculation. This method is used any time we calculate the average demand ratio.

Mapping to floating FPGA sizes

The supply ratio is used when following the common practice in FPGA architecture

research [RFCL89]; to allow the FPGA size to change to accommodate a mapped

benchmark. As the FPGA size changes all the architectural parameters are maintained,

34

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

and when an FPGA with hard circuits is changing in size, the supply ratio is kept

constant. If we wanted to increase the size of the FPGA in Figure 3.1 to accommodate

a larger benchmark with 4 multipliers, then the FPGA increases in size to 4 hard

multiplier tiles and 8 soft logic cluster tiles to maintain the supply ratio of 1:2.

We use a ratio instead of a fixed constant of supplied hard circuits because using the

supply ratio and fine grained fitting of benchmarks to FPGAs allows us to create an

FPGA for each benchmark that closely matches the needs of the benchmark while pro-

viding a fractionally equal amount of hard circuit resources for each of these mappings.

This avoids large quantization errors with fixed size FPGAs that have a set number

of hard circuits since this may hide the affects of a CAD technique or an architecture

improvement, which we are measuring.

Commercial FPGAs Supply Ratio

We now use supply ratio to look at existing commercial FPGAs and trends within these

FPGAs with respect to hard multipliers included in their fabric.

We measure the supply ratio for existing commercial FPGAs; Table 3.1 provides the

average hard multiplier supply ratios for several FPGA families where each ratio is

calculated by geometrically averaging the supply ratios for each FPGA in the family.

For all the FPGA families, other than the Virtex-4 LX and Virtex-5 LX family, the

supply ratio remains relatively constant over each member of the family. This is shown

in the third and fourth column of Table 3.1 where we show the upper and lower limit

of the supply ratio. These limits show the biggest and smallest supply ratios in the

family.

For each FPGA, the supply ratios are normalized to a cluster size of 10 BLEs (each

BLE consists of a 4-LUT and a flip-flop) and a size 18x18 multiplier. Normalizing the

Stratix I [Alt03], VirtexII [Xil03], Cyclone II [Alt07a], Cyclone III [Alt07b], Virtex-

4 [Xil05], Spartan-3A [Xil07], and Lattice [Lat07a, Lat07b] FPGAs are simple since

each of these FPGAs is built using 4-LUT BLEs, and we divide the total number of

BLEs in each FPGA by ten. All the FPGAs in Table 3.1 include 18x18 multipliers

except the Virtex-5 [Xil06]. In the case of the Virtex-5, the extreme DSP block is

a 25x18 hard multiplier, and we do not normalize to an 18x18 when calculating the

35

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

Table 3.1: Average Multiplier Supply Ratios for Industrial FPGAs

FPGA Average Upper limit Lower limit
FPGA Supply Ratio of supply ratios of supply ratios

Stratix I 1:66 1:79 1:44
Stratix II 1:45 1:53 1:32
Stratix III SL 1:42 1:58 1:21
Stratix III SE 1:12 1:12 1:12
Cyclone II 1:53 1:95 1:35
Cyclone III 1:33 1:44 1:22
VirtexII 1:23 1:26 1:23
Virtex-4 SX 1:15 1:18 1:11
Virtex-4 FX 1:60 1:87 1:38
Virtex-4 LX 1:104 1:208 1:43
Virtex-5 SX 1:19 1:20 1:16
Virtex-5 LX 1:166 1:194 1:108
Spartan-3A DSP 1:44 1:45 1:42
Lattice ECP 1:59 1:102 1:38
Lattice ECP2 1:66 1:100 1:50

supply ratio.

The Stratix II [Alt04d], Stratix III [Alt06], and the Virtex-5 do not contain 4-LUTs

and to normalize their supply ratio takes one additional step. For the Stratix II FPGAs,

we convert to Altera’s latest BLE, which is called an Adaptive Logic Module (ALM)

and can implement a 6-LUT among other combinations of 4-LUTs and 5-LUTs, to

4-LUT BLEs by multiplying the number of ALMs in the FPGA by 2.5 [Alt04e] a fact

that Altera gives. Similarly, for the Virtex-5 FPGAs that use 6-LUT BLEs, we convert

each 6-LUT into equivalent number of 4-LUTs by multiplying the number of 6-LUTs

in these FPGAs by 1.8 [Xil06]. Once these architectures are described in terms of

4-LUTs, we divide the total number of equivalent 4-LUTs by ten.

One trend to notice in Table 3.1 is that newer generations of FPGAs tend to have

an increased supply of hard multipliers. For example, the Stratix II includes 50%

more multipliers compared to the previous generation, Stratix I FPGAs. It is hard to

predict whether this trend will continue especially since both Altera and Xilinx are now

36

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

breaking their FPGA families into sub-families, each of which has a different multiplier

supply ratio.

3.2.1 Routing Architecture for Hard Circuits

The supply ratio describes the number of hard circuit tiles and soft logic cluster tiles

on a heterogeneous FPGA, but it does not describe how to build the programmable

routing to connect to them. In this section, we describe how we architect an FPGA

with hard circuit tiles based on both our intuition and observations made in industrial

FPGA architectures.

A homogeneous soft logic fabric FPGA with a given soft logic cluster size (N) and

LUT size (K) in each tile will require a specific number of tracks per channel (W) to

route most benchmark circuits. The parameters N, K, and the routing architecture

parameters can be used to calculate the number of pins that could be routed from the

BLEs in a cluster to the programmable routing, which we call the pin demand. Pin

demand includes both the input pins entering and output pins emanating from the

cluster.

The number of tracks needed in an architecture (W) is a function of pin demand

and the other routing architecture parameters described in section 2.2. This number

is usually determined experimentally by an FPGA architect [LAB+05].

To include a hard circuit with higher pin demand than the soft logic tile means an

architecture needs more tracks per channel. If the hard circuit is implemented on the

FPGA in one logical tile then the number of tracks in the channel (W) would need to

increase. The reason for this can be explained using an equation that determines the

width of a channel for designs first described by El Gamal [Gam81] and later applied

to the channel width and routability in FPGA’s by Brown et. al. [BFRV92]. The form

of the equation is:

W =
λR̄

2
(3.1)

In this equation, λ is the total number of connections to a tile, which we call pin

demand, and R̄ is the average connection length between tiles for the set of designs

mapped to this FPGA. To include a hard circuit that has more input and output

37

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

connections than λ for the other tiles on an FPGA means that W will need to be

increased if we want designs mapped to this FPGA to be routable.

Alternatively, the hard circuit could be stretched over multiple logical tiles distribut-

ing the number of incoming and outgoing connections to keep the total per tile pin

demand less than λ. We choose this solution, and any hard circuits implemented on

the FPGA will have a per tile pin demand that approximately matches the pin demand

of the soft logic cluster tiles. For example, in an FPGA with a soft logic cluster tile

with pin demand equal to 32 (22 input pins plus 10 output pins), if we include a hard

circuit that has a total pin demand of 62 then the hard circuit will be implemented

over two tiles, and each tile will have a pin demand of approximately 31.

MULT

18x18

36 output

pins

Pin Demand ~ 72

Pin Demand ~ 36 if split

over two logical tiles

36 input

pins

MULT

9x9

18 input

pins

18 output

pins

Pin Demand ~ 36

SOFT

LOGIC

N = 10

22 input

pins

10 output

pins

Pin Demand ~ 32

Figure 3.2: Pin distribution for hard circuit tiles

Figure 3.2 shows the pin demand of a soft logic cluster tile, a 9x9 multiplier, and an

18x18 multiplier. The pin demand of the 9x9 multiplier and the soft logic cluster tile is

roughly the same, meaning that they could share the same global routing architecture

without an increase in track count. The 18x18 multiplier, however, needs to be imple-

mented in the equivalent of 2 soft logic cluster tiles so that the pin demand for each

half of the multiplier is roughly the same as the pin demand of the soft logic cluster

tile.

This does not mean that the 18x18 multiplier will use the equivalent area of two

soft logic cluster tiles. Instead, the multiplier when stretched over two tiles will have

38

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

different area dimensions but the same pin demand. For example, tiles in Stratix

FPGAs [Alt03] have equal vertical dimensions and have roughly the same pin demand,

but the DSP blocks in this architecture have a larger horizontal dimension compared

to the soft logic cluster tiles. Stretching a tile is in terms of equivalent logical tiles and

not area equivalent tiles.

3.3 Measurement Methodology

To determine the area effectiveness of a hard circuit we employ an empirical approach:

measure the area consumed by a set of benchmarks after mapping them into FPGAs

with and without hard circuits. The following sections describe the mapping of bench-

marks into a heterogeneous FPGA and then the determination of its area. Subsequent

sections describe the set of benchmarks and the architectural parameters of the soft

logic fabric that we use in this chapter and the rest of this dissertation.

3.3.1 Benchmark Circuit Mapping Flow

Figure 3.3 gives the experimental flow we use to measure the area for implementing

benchmarks on an FPGA architecture. The first step is to map a benchmark design

to the different FPGA tiles available on the FPGA, and then, calculate the area of

the FPGA based on the tiles used. We discuss the calculation of the area in the next

section.

A benchmark is modeled as requiring a number of soft logic cluster tiles and multiplier

tiles. A mapping step is required because the FPGA’s multiplier supply ratio (defined

in Section 3.2) will rarely be the same as the benchmark’s multiplier demand ratio.

Depending on the supply ratio, the appropriate size of FPGA is determined.

There are two ways to approach the mapping of hard circuits in a benchmark to

an FPGA. In the first algorithm, we initially set the number of hard circuits on the

FPGA equal to the number present in the benchmark. We then size the FPGA by

finding the amount of soft logic cluster tiles needed. An alternative is to start with

one hard circuit and then increase the number of hard circuits until the benchmark fits

39

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

Library of areas

- Routing

- BLE

- Multiplier

Implementation

Area of FPGA

Resource

Mapper

FPGA Architecture

- Multiplier size

- Shadow Clusters

presence

- Supply Ratio

Benchmark

Circuit

Area

Calculation

Figure 3.3: The measurement methodology

the FPGA. In this approach, it is necessary to map hard circuits in the design to hard

circuits or convert them to soft logic implementations. In both cases, the supply ratio

is maintained as the FPGA is sized.

The main difference between the two algorithms is the second algorithm might result

in a slower circuit, because if there are less hard circuits on the FPGA compared to what

the benchmark would use, then hard circuits in the benchmark that are converted to

soft logic might become critical paths and decrease the maximum operating frequency

of the benchmark. In this dissertation, we use both algorithms choosing the first if we

believe the hard circuit is used both for its area and speed benefits.

Algorithm 1 and Algorithm 2 show the steps taken for each algorithm.

Each algorithm is built with a simple incremental search method to find the number

of tiles needed to map a benchmark. These algorithms can be accelerated by using

better search methods instead of simply incrementing the number of hard circuits by

one, and we actually use a binary search method for this purpose.

Table 3.2 summarizes the differences between the two choices of mapping algorithms.

Column two describes the initial conditions and column three shows if the algorithm

40

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

Input: Design (#hard circuits, #soft logic cluster tiles), Supply Ratio, Size and
Architecture of Hard Circuit

Output: Number of each type of tiles in FPGA
numHardCircuits = numHardCircuitsIn(Design);
notMapped = TRUE;
while notMapped do

softLogicAvailableOnFPGA = numHardCircuits * supplyRatio;
totalSoftLogicNeededByDesign = (soft logic in design);
if softLogicAvailableOnFPGA > totalSoftLogicNeededByDesign then

notMapped = FALSE;
end

else
numHardCircuits++;

end

end

Algorithm 1: Our first algorithm for mapping a design to an FPGA

will possibly convert some of the hard circuits to soft logic implementations.

Once the number of tiles of each type is known and the area of each tile is known,

the total area for each benchmark can be calculated.

3.3.2 Transistor and Cell Area Estimation of Tiles

The area calculations require the relative area between regular multiplier tiles and

regular soft logic cluster tiles. These sizes are determined in a 90nm CMOS process

that was available to us [STM05, Mic07]. Two methods to estimate size were used as

follows:

1. For all the FPGA-specific components (programmable routing in the multiplier

tile and soft logic cluster tiles as well as the LUT-based logic) we carefully sized

a transistor-level circuit using an automated transistor sizing approach. This

method is described in detail in Appendix A.

2. The multiplier size was estimated by mapping multiplier designs through a stan-

dard cell design flow. The area of the multiplier portion of the multiplier tile

is determined by using a cell-based approach with commercial standard cells in

41

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

Input: Design (#hard circuits, #soft logic cluster tiles), Supply Ratio, Size and
Architecture of Hard Circuit

Output: Number of each type of tile in FPGA
numHardCircuits = 1;
notMapped = TRUE;
while notMapped do

softLogicAvailableOnFPGA = numHardCircuits * supplyRatio;
A - Map hard circuits in the benchmark to available hard circuits on the
FPGA;
totalSoftLogicNeededByDesign = (soft logic in design) + (design’s circuits not
mapped to hard circuits);
if softLogicAvailableOnFPGA > totalSoftLogicNeededByDesign then

notMapped = FALSE;
end

else
numHardCircuits++;

end

end

Algorithm 2: Another algorithm for mapping a design to an FPGA

Table 3.2: Summary of the two mapping algorithm choices.

Initial Conditions Will hard circuits
be converted to

a soft implementation

Algorithm 1 Each hard circuit in No
benchmark is mapped to a

hard circuit on FPGA

Algorithm 2 Start with one hard Yes
circuit

the 90nm process [STM05]. A multiplier is described in Verilog and synthesized

using Synopsys Design Compiler V-2004.06-SP1.

The area of the multiplier tile includes the cell-based multiplier and the programmable

routing area. The programmable routing is built to match the input and output pin

42

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

demand of the multiplier. For example, a 9x9 multiplier has 18 input pins, so the input

programmable routing area is determined for 18 inputs. This area is obtained using

the results generated by the same sizing tool described in Appendix A.

3.4 Benchmarks

In this chapter along with each of the following chapters of this dissertation, one com-

mon set of benchmarks is used for many of our experiments, and we review the makeup

of these benchmarks. Additional details are provided in Appendix B including the num-

ber and size of multipliers, the number of I/O pins, and the number of memory bits in

each benchmark.

We have collected 32 real benchmarks applications coded in the Verilog HDL [Ope93]

and gathered from various sources including: The Opencores organization [ope07],

SCU-RTL [scu98], Texas-97 [tex97], and the Benchmarks for Placement 2001 [Pla01].

Some of our benchmarks come from applications developed locally at the University

of Toronto that we converted from VHDL to Verilog. These benchmarks include, Ray-

trace [FR03] (separated into 4 benchmarks called rayTraceA, rayTraceB, rayTraceC,

and rayTraceD), Stereo Vision [DRM03] (separated into 4 benchmarks called stere-

oVisionA, stereoVisionB, stereoVisionC, and stereoVisionD), and Molecular Dynamic

system [AKE+04]. Both the Raytrace and Stereo Vision applications were implemented

on an experimental FPGA prototyping board that used 4 separate FPGAs, and this is

the reason each of these applications is broken into four benchmarks.

Table 3.3 shows the number of Stratix BLEs (mapped by Quartus 5.0 to the Stratix

I FPGA) and the number and size range of multipliers in each benchmark. In some

cases, the benchmark name has the suffix “ no mem”; this means that the memory was

removed from the benchmark so that we can use these benchmarks in academic CAD

flows that do not support memories.

43

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

Table 3.3: Benchmarks Details
Benchmark BLEs Multipliers Size Range Multipliers

fft 2374 32 8x8
iirA 289 5 8x8 to 10x10
iirB 297 5 8x16 to 16x16
firA 84 4 8x8
firB 1598 25 16x16
firC 998 17 8x8
diffeqA 221 5 32x32
diffeqB 512 5 32x32
stereoVisionA 17765 152 8x8
stereoVisionB 35554 528 4x7 to 16x9
stereoVisionB no mem 34279 528 4x7 to 16x9
rayTraceA 2622 18 7x8 to 16x16
rayTraceA no mem 2118 18 7x8 to 16x16
rayTraceB 25056 31 16x16 to 29x33
rayTraceB no mem 21557 31 16x16 to 29x33
oc45 cpu 2191 1 16x16
reedSolDecoderA 1151 13 4x4
reedSolDecoderB 1799 9 8x8
moleculeDynamics 10542 19 38x38 to 43x50
cordicA 591 0 -
cordicB 2830 0 -
MACA 2864 0 -
MACB 9828 0 -
crc33 d264 102 0 -
desArea 1481 0 -
desPerf 4592 0 -
stereoVisionC 12433 0 -
stereoVisionC no mem 7281 0 -
stereoVisionD 170 0 -
rayTraceC 766 0 -
rayTraceC no mem 546 0 -
rayTraceD 1807 0 -

44

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

3.5 Experimental FPGA

Each of the FPGAs used in this work must be specified in terms of their soft fabric

architectural parameters. We will define experimental FPGAs and use them in this

chapter, Chapter 4, and Chapter 5 to evaluate our new architectural concepts.

The architecture of the soft logic fabric includes many parameters, including the

number of BLEs per cluster (N), the input size of a LUT (K) in a BLE, the number

of routing tracks per channel (W), the input connectivity to the BLEs in a soft logic

cluster (FCin), the output connectivity from the BLEs to the routing tracks (FCout),

logical wire length in terms of the number of soft logic clusters spanned (L), and the

switch block flexibility connecting routing tracks with each other (Fs).

For the soft logic fabric we use in this dissertation, we select two sets of parameters

chosen to be close to the typical parameters of modern FPGAs. The parameters we

use in this dissertation are given in Table 3.4.

Table 3.4: FPGA Architectural Parameters for Two Experimental Architectures

Parameter W N K Fcin Fcout Fs L

Architecture 1 180 10 4 0.17 0.1 3 4
Architecture 2 188 8 6 0.17 0.1 3 4

Architecture 1 (from Table 3.4) is used in the majority of our experiments, but we

provide Architecture 2 because later in this dissertation we will measure how area-

efficiently FPGAs implement crossbars in the soft logic fabric. Architecture 2 imple-

ments crossbars more efficiently than Architecture 1 because Architecture 2 has 6-

LUTs that implement crossbars of size greater than 6 inputs more area efficiently than

4-LUTs. Also, Architecture 2 is similar to modern FPGAs such as Stratix II [Alt04d],

Stratix III [Alt06], and Virtex-5 [Xil06] and their 6-LUT based BLEs.

In Table 3.4, the track count (W) is chosen by averaging the horizontal and vertical

channel widths in Stratix I and II FPGAs. The cluster size (N) and LUT size (K)

were selected for Architecture 1 and 2 to match the values in Stratix I [Alt03] and

Stratix II [Alt04d] clusters respectively. These parameters fall into the range provided

in [AR00] where their work shows that the number of BLEs in a cluster should be

45

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

between 3 to 10 and the size of the LUT should be between 4 to 6 to build FPGAs

with low area-delay products.

The routing parameters are selected based on the ranges given in Lemieux’s work

in [LL01] and Ahmed’s work in [AR00]. To determine these ranges they run experiments

on routing parameters to find values that result in the lowest area-delay for a set

of benchmarks mapped to these FPGAs. For example, parameter FC is studied in

Lemieux’s work and for a cluster size of 6 they state that a reasonable FC is equal

to 0.366. The routing architecture used is direct-drive [LL04, Ye06] as discussed in

Chapter 2 Section 2.2.

Finally, the experimental FPGAs in this dissertation use a wire segment length of

4 meaning each wire segment travels either in a horizontal or vertical direction for a

distance of 4 clusters (see [BRM99] for details on different segment lengths and the

impact on FPGAs).

3.6 Measuring the Benefit of Hard Multipliers

In our first experiment, we want to measure the area benefit of including a hard mul-

tiplier on an FPGA expecting that since all the industrial FPGAs include hard mul-

tipliers that there is an area benefit. We use the above measurement methodology,

benchmarks, and experimental FPGAs to measure the area effect of including a hard

multiplier on an FPGA compared to an FPGA with purely soft logic fabric.

The benchmark suites are mapped to an FPGA with hard multipliers and an FPGA

without hard multipliers to compare their area. The benchmarks after logic synthesis

need only be represented as the number and size of multipliers and the number of

BLEs (which determines the number of soft logic cluster tiles) in each benchmark. To

obtain the number of BLEs, 27 of our real benchmarks without memories (given in

Figure 3.3) are passed through Altera’s Quartus tool [Alt04c] Version 5.0. We deter-

mine the number of multipliers in each circuit by manually counting and identifying

multipliers.

For this experiment, Algorithm 1 (summarized in Table 3.2) is used when mapping

the hard circuits to the FPGA algorithm 1. Each benchmark is mapped to an FPGA

46

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

with the soft logic parameters of Architecture 1 (shown in Table 3.4) and the FPGA

with hard multipliers will have a hard multiplier supply ratio of 1:8. Here, we are

matching the supply ratio to the average demand ratio of our benchmark suite. This

choice may show the hard multipliers in its best light. Each hard multiplier included

on an FPGA is a simple 18x18 hard multiplier (meaning it is not functionally flexible

and cannot be broken up to implement smaller multipliers). The area for soft logic

cluster tiles and multiplier tiles is estimated as described in Section 3.3.2.

Table 3.5 shows the results for all 27 benchmarks with an average demand ratio of

1:8 mapped to both an FPGA with and without hard 18x18 multipliers. The table first

gives the benchmark name and the calculated demand ratio based on the number of

multipliers and soft logic cluster tiles of size 10 from Table 3.3. The next column gives

the area of the FPGA without hard multipliers required to implement the benchmark,

assuming, as discussed above, that the FPGA can grow to accommodate the size of

the benchmark. The next column gives the area required for an FPGA with hard

multipliers, and the final column gives the ratio between the “with” and “without”

hard multipliers area.

When a benchmark does not use any multipliers there is an area penalty, and this

penalty is related both to the size of the hard multiplier and the supply ratio. For

example, desArea needs no multipliers and when mapped to the FPGA with hard mul-

tipliers is 1.5 times bigger than when it is mapped to the soft logic FPGA. Conversely,

those benchmarks that contain multipliers have a reduced area implementation when

mapped to FPGAs with hard multipliers. For example, moleculeDynamics is 1.2 times

smaller when mapped to the FPGA with hard multipliers than an FPGA without.

Overall, the benchmark suite is implemented 1.024 times smaller on an FPGA with

hard multipliers compared to the FPGA without hard multipliers. This result is ob-

tained by geometrically averaging the area-efficiency metric for each benchmark in the

suite.

This result is a small area benefit compared to what the hard multiplier could po-

tentially improve FPGA area efficiency. The potential benefit hard multipliers could

have is based on the area improvement multipliers provide and the multipliers tile area

compared to the soft logic cluster tile. An 18x18 multiplier is implemented in 47 soft

47

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

Table 3.5: Results for individual benchmarks on FPGAs without hard multipliers and
with hard multipliers (supply ratio equal to 1:8)

Benchmark Demand FPGA Area FPGA Area Area
Name Ratio Without Hard with Hard Efficiency

(N = 10) Multipliers Multipliers Metric
(104

um
2) (104

um
2)

fft 1:7.4 482 464 1.038
iirA 1:5.8 75 72 1.037
iirB 1:5.9 160 73 2.205
firA 1:2.1 45 58 0.780
firB 25 1:6.4 807 362 2.224
firC 17 1.5.9 237 246 0.963
diffeqA 1:1.1 502 290 1.732
diffeqB 1:2.6 523 290 1.804
stereoVisionA 1:11.7 2762 2204 1.253
stereoVisionB no mem 1:6.5 11478 7657 1.499
rayTraceA no mem 1:11.8 489 261 1.876
rayTraceB no mem 1:13.1 4635 2393 1.937
oc45 cpu 1:219 184 203 0.924
reedSolDecoderA 1:8.9 114 188 0.608
reedSolDecoderB 1:20 218 174 1.234
moleculeDynamics 1:3.5 5460 4409 1.239
cordicA 1:∞ 44 58 0.755
cordicB 1:∞ 207 261 0.791
MACA 1:∞ 210 261 0.802
MACB 1:∞ 718 899 0.798
crc33 d264 1:∞ 8 15 0.554
desArea 1:∞ 109 145 0.750
desPerf 1:∞ 336 421 0.798
stereoVisionC no mem 1:∞ 532 667 0.798
stereoVisionD 1:∞ 12 29 0.428
rayTraceC no mem 1:∞ 56 73 0.775
rayTraceD 1:∞ 130 174 0.759

Average 1:8 1.024

logic cluster tiles with 10 4-LUTs, and the hard 18x18 multiplier is about 4 times the

size of this soft logic cluster tile. Therefore, the hard 18x18 multipliers could improve

the area efficiency of the FPGA by 11.75 times.

48

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

However, the conditions for this improvement are that the benchmarks only contain

18x18 multipliers. The small benefit of 1.024 times that we get for our real benchmark

collection is due to several factors such as the presence of soft logic not used for mul-

tiplication, the mismatch of design multiplier size and the hard multipliers available

on the FPGA, and the nature of waste due to a fixed supply ratio. The area benefit

is also dependent on both the average demand ratio and distribution of demand in

the benchmark suite and the relationship between demand and supply on the FPGA

mapped to. We will see more of this economic interaction in the following experiments

and the next chapter.

3.6.1 Measuring the Benefit of Different Hard Multiplier

Architectures

In this experiment, we explore how the choice of a hard circuit’s architecture affect

the area-efficiency results. Specifically, we measure the area-efficiency effect of a hard

multiplier architecture where the architecture choices are the bit-width and functional

flexibility of the hard multiplier.

Earlier, we discussed how the functional flexibility of a hard circuit means that

the hard circuit can be utilized more often by targeting designs reducing wasted tiles.

Similarly, the bit-width of a hard circuit affects utilization since designs will use different

sized hard circuits and may under utilize a hard circuit resulting in inefficient use of a

tile. Here, we study how both flexibility of a hard multiplier and the bit-widths it can

implement affects the area efficiency of an FPGA that includes these hard circuits.

Table 3.6: Hard Multiplier Architectures

Multiplier Maximum Input Implements these Relative Size
Name Bit-width Multipliers to 9x9

9x9 9 one 9x9 1.0
18x18 18 one 18x18 1.73
Dynamic-18x18 18 one 18x18 or two 9x9 2.24
Dynamic-36x36 36 one 36x36, two 18x18, or four 9x9 4.08

49

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

In this experiment, we will map our collection of benchmarks to FPGAs with four

different types of multiplier architectures listed in Table 3.6. Column 1 of Table 3.6

shows the name of the hard multiplier, column 2 shows the maximum input bit-width

of one of the operands, column 3 shows the multipliers that can be implemented in the

hard circuit through its internal configurability, and column 4 shows the relative area

difference between a single tile of a 9x9 multiplier compared to a single tile of the other

3 hard multipliers. The hard multipliers, Dynamic-18x18 and Dynamic-36x36, can only

implement one size of multiplication per hard circuit determined at programming time;

for example, one Dynamic-36x36 cannot implement one 18x18 and two 9x9 multipliers.

The difference between the 18x18 hard multiplier and the Dynamic-18x18 multi-

plier includes both the flexibility that the Dynamic-18x18 hard multiplier has and the

physical size of the hard circuit. Both Dynamic-18x18 and Dynamic-36x36 can be con-

figured to implement different size multipliers more efficiently, but this flexibility does

cost area. The flexibility means that the Dynamic-18x18 hard multiplier is composed of

9x9 multipliers and programmable switches to select which size of multipliers the hard

multiplier will implement, and this flexibility is less area efficient than implementing

a 18x18 hard multiplier that is not configurable. The Dynamic-18x18 hard multiplier

tile is 2.24 times larger than the 9x9 hard multiplier tile as opposed to the 18x18 hard

multiplier tile, which is only 1.73 times bigger than the 9x9 hard multiplier tile.

For our experiment, each FPGA with hard multipliers has a supply ratio of 1:8.

We divide the area of a benchmark mapped to a purely soft FPGA by the area of

the same benchmark mapped to an experimental FPGA containing hard multipliers

to get an area-efficiency metric. When this ratio is greater than one it shows that

the experimental FPGA is smaller. We summarize the results for a benchmark suite

using a geometric average of the area-efficiency metrics for all the benchmarks in our

collection and show the results for the benchmark suite mapped to each experimental

architecture.

Table 3.7 shows the results for each benchmark mapped to each of the experimental

FPGAs compared to a purely soft FPGA. Column 1 shows the benchmark, and columns

2, 3, 4, and 5 shows the ratio of the area for a benchmark mapped to a soft FPGA

divided by the area of the same benchmark mapped to architectures with the 9x9,

50

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

Table 3.7: Results for area efficiency of hard multiplier architectures
Benchmark 9x9 18x18 Dynamic-18x18 Dynamic-36x36
Name Area-efficiency Area-efficiency Area-efficiency Area-efficiency
Name metric metric metric metric

fft 2.175 1.038 2.051 1.976
iirA 0.987 1.037 0.931 0.897
iirB 1.155 2.205 1.089 1.049
firA 1.634 0.780 1.541 1.485
firB 1.165 2.225 1.099 1.059
firC 2.016 0.962 1.901 1.832
diffeqA 0.907 1.732 0.855 1.648
diffeqB 0.945 1.805 0.891 1.717
stereoVisionA 1.789 1.253 1.687 1.625
stereoVisionB no mem 1.291 1.499 1.218 1.173
rayTraceA no mem 1.572 1.876 1.483 1.429
rayTraceB no mem 1.014 1.937 0.957 1.748
oc45 cpu 0.934 0.924 0.913 0.879
reedSolDecoderA 1.104 0.608 1.041 1.003
reedSolDecoderB 1.371 1.254 1.293 1.246
moleculeDynamics 0.649 1.239 0.612 1.179
cordicA 0.791 0.755 0.746 0.719
cordicB 0.829 0.791 0.782 0.729
MACA 0.841 0.803 0.793 0.764
MACB 0.843 0.798 0.795 0.742
crc33 d264 0.580 0.554 0.547 0.512
desArea 0.827 0.750 0.780 0.751
desPerf 0.836 0.798 0.789 0.760
stereoVisionC no mem 0.835 0.798 0.788 0.759
stereoVisionD 0.597 0.428 0.564 0.543
rayTraceC no mem 0.812 0.775 0.766 0.716
rayTraceD 0.830 0.759 0.783 0.754

Average 1.020 1.024 0.964 1.022

18x18, Dynamic-18x18, and Dynamic-36x36 multipliers respectively. In the final row

of Table 3.7, the geometrically average ratios are shown for each architecture.

The best hard multiplier architecture for the benchmark suite is a simple 18x18

multiplier that implements the benchmark suite 1.024 times smaller than an FPGA

with no hard multipliers. In comparison, the simple 9x9 multiplier improves area

efficiency over a purely soft design, but is not as beneficial as the 18x18 since only 6

of the 19 benchmarks contain multipliers that all fit in a 9x9 multiplier; in most other

benchmarks, the mapped multipliers use both the hard 9x9 multiplier and soft logic

cluster tiles, which can be more costly compared to using a hard 18x18 multiplier.

The functionally flexible multipliers, Dynamic-18x18 and Dynamic-36x36, have ad-

ditional bit-width flexibility that comes at an area cost to implement this flexibility.

51

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

Our collection of benchmarks do not have enough variety of multiplier use to gain a

significant benefit from these functionally flexible hard multipliers. The small benefit

that some of the benchmarks get is offset by those benchmarks that cannot use the

flexibility and incur the additional area cost.

Note that these results show the best multiplier architecture is a simple 18x18 hard

multiplier for our collection of benchmarks. This does not mean that a simple 18x18

hard multiplier is the best type of hard multiplier to include on an FPGA, and instead,

this depends on the multiplier bit-width demand of the benchmarks. In this experiment,

the overall area benefit for any hard multiplier architecture is still small, but in the

next section we will see how the supply ratio is a major factor for the area benefit of

a hard circuit.

3.6.2 Best Architecture

The area benefit for hard multipliers in the two previous experiments is very small

where the FPGA with hard multipliers only implements the benchmark suite, in the

best case, in 1.024 times less area than a purely soft FPGA. One of the reasons for

this is in these experiments the supply ratio is set for the FPGA to match the average

demand ratio of the benchmark suite. Instead, the supply ratio can be varied to find

the best ratio. In the following experiment, we will determine how the supply ratio

affects the area efficiency of an FPGA that includes hard multipliers.

To find the supply ratio that results in the smallest FPGA with hard multipliers, we

will vary the supply ratio and measure the area efficiency of these FPGAs to find the

most area efficient one. We will use FPGAs containing simple 18x18 hard multipliers.

For each experimental FPGA we will vary the supply ratio and compare the benchmarks

mapped to this experimental architecture to an architecture without multipliers. This

non-multiplier FPGA will be called the base, and the area-efficiency metric is the area

of the experimental multiplier FPGA to map a benchmark divided by the area of the

base FPGA. We geometrically average the area-efficiency metrics for all the benchmarks

in a suite on each experimental architecture using the result to evaluate the quality of

that architecture.

Figure 3.4 plots the results of this experiment with bars marking the standard de-

52

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

-0.5

0

0.5

1

1.5

2

2.5

Supply Ratio

(A
re

a
 B

a
s
e
)/

(A
re

a
 F

P
G

A
)

1:5 1:10 1:15 1:20

Figure 3.4: Area efficiency for varying supply ratios on an architecture with hard mul-
tipliers

viation for each point. The supply ratio of the architecture is on the x-axis and the

area-efficiency metric of the experimental architecture is on the y-axis. Each data point

in this graph, represented by a diamond, shows the area-efficiency metric of an archi-

tecture with hard multipliers and a set supply ratio compared to the base architecture.

A value greater than 1 means that the architecture specified by the supply ratio on the

x-axis has better area efficiency than the base.

Table 3.8 shows each of the data points in Figure 3.4. Column 1 contains the sup-

ply ratio of the architecture, and column 2 contains the geometrically averaged area-

efficiency metric for the benchmark suite mapped to this FPGA.

The data in Figure 3.4 shows that for our collection of benchmarks the most area-

efficient architecture has a supply ratio of 1:3 and results in an area-efficiency metric of

1.18. The main reason the best supply ratio, 1:3, is significantly larger than a supply

ratio of 1:8, is due to the variance in the demand ratio distribution in the benchmarks.

What this means is that there are benchmarks in the suite with a demand closer to

1:3 which will gain significant area benefits when mapped to an FPGA with a higher

supply ratio outweighing the area increase for the lower demand benchmarks. For

53

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

Table 3.8: Results for the points in Figure 3.4

Supply Area-efficiency
ratio metric

1:1 0.71
1:2 1.02
1:3 1.18
1:4 1.18
1:5 1.14
1:6 1.12
1:7 1.07
1:8 1.02
1:9 0.99
1:10 0.94
1:11 0.91
1:12 0.86
1:13 0.84
1:14 0.80
1:15 0.77
1:16 0.75
1:17 0.72
1:18 0.69
1:19 0.68
1:20 0.66

example, moleculeDynamics is 1.2 times smaller on an FPGA with multipliers and a

supply ratio of 1:8 compared to the soft FPGA, but the same benchmark is 4.9 times

smaller on an FPGA with multipliers and a supply ratio of 1:3. Similarly, a low demand

benchmark, stereoVisionC no mem, is 1.3 times larger on the FPGA with supply ratio

of 1:8 and is only 1.7 times larger on an FPGA with supply ratio of 1:3. In this case,

the benchmarks that get an area benefit outweigh the benchmarks that lose resulting

in an overall area efficiency improvement for a supply ratio of 1:3 compared to 1:8.

54

3 Design of Heterogeneous FPGAs and Measuring their Area Efficiency

3.7 Summary

In this chapter, we introduced a scientific methodology for measuring the area benefit

of hard circuits in FPGAs. This included the introduction of a new FPGA architectural

parameter, called the supply ratio and a benchmark characteristic called demand ratio.

We described the benchmarks and experimental FPGA architectures that will be used

throughout this dissertation.

Finally, we demonstrated how this methodology measures the area benefit of includ-

ing a hard circuit on an FPGA. For these experiments, we compared the implemen-

tation area of an FPGA with and without hard multipliers when implementing our

benchmark suite. We also showed how to determine what is the best hard multiplier

architecture for our suite of benchmarks, and how large an effect supply ratio has on

the area efficiency of a hard circuit included on an FPGA. In our last experiment,

an FPGA with a supply ratio of 1:3 for hard multipliers resulted in the benchmark

suite being implemented 1.2 times smaller than a purely soft logic FPGA compared

to an FPGA with a supply ratio of 1:8 which resulted in the benchmark suite being

implemented only 1.02 times smaller than a purely soft logic FPGA.

It is clear that a hard circuit like the hard multiplier provides an area benefit for

FPGAs that include them even if not all the benchmarks targeting the FPGA use

these hard circuits. In the next chapter, we focus on the theme of this dissertation

and introduce an architectural concept that further improves the area efficiency of

heterogeneous FPGAs by improving the utilization of these hard circuits.

55

4 Enhancing Area Efficiency of FPGAs using

Hard Circuits and Shadow Clusters

Sometimes, the best answer is a more interesting question

Terry Pratchett

4.1 Introduction

We have discussed how hard circuits can reduce the area gap between FPGAs and

ASICs if these circuits are actually used. If the hard circuits are not used, however,

then the silicon is wasted including the expensive programmable routing that surrounds

them. The central question of FPGA architecture is when to include hard circuits on

the FPGA, and how to make them as flexible as possible so that most application

circuits can use them.

Shared

Input
Routing Hard

Circuit

Shadow
Cluster

Shared

Output
RoutingS

h
a
d
o
w

M
u
x

Figure 4.1: Illustration of shadow cluster concept

56

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

In this chapter, we propose a new architectural concept, called shadow clusters, that

is a way to create this flexibility and is illustrated in Figure 4.1. A shadow cluster

is a standard FPGA logic “cluster” that is combined with a hard circuit, such as a

multiplier, in the same logical tile. In the event that the hard circuit cannot be used by

an application circuit, simple fabric-programmable multiplexers “swap” in the shadow

cluster, which can be used just like the regular soft logic fabric. While this may seem

like a waste of area itself (because the shadow cluster goes unused when the hard

circuit is used), the additional area is very small: well over 70% of the area of the soft

logic of an FPGA is dedicated to the routing that would be shared between these two

structures, and more importantly, this routing can always be used in an FPGA with

shadow clusters.

We study this architectural concept by modeling the area of FPGAs with and without

shadow clusters and mapping benchmark suites (characterized by their demand for soft

and hard logic) to these FPGAs. The efficacy of this concept turns on the correct

measurement of FPGA area, and so we carefully size the transistors in the FPGA and

the hard circuits.

Two other key concepts are needed to correctly implement the idea: architecting

the soft logic cluster tile and hard circuit tile that includes a shadow cluster so that

their pin demand for programmable routing is about the same, and making the correct

choice of how to map application circuits into hard or soft logic. These topics were

addressed in Chapter 3, and will be revisited in this chapter as they apply to shadow

clusters.

To concretize our measurements we focus on multiplier-based hard circuits, which

are now common in modern FPGAs, but the concepts will be applicable to many kinds

of circuits where the programmable routing consumes a significant amount of the hard

circuit tile area.

4.2 Shadow Clusters

Our goal is to improve the area efficiency of an FPGA with hard circuits by reducing

the penalty in area for unused hard circuits. The proposed technique leverages the fact

57

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

that the largest area cost in FPGAs is in the programmable routing. The idea is to

add soft logic, which we call a shadow cluster, in combination with the hard circuit, so

that either the hard circuit or the soft logic will be used ensuring that the expensive

programmable routing is used. In this section, we discuss the architectural design of a

hard circuit combined with a shadow cluster.

Shared

Output

Routing

Shared

Input

Routing

BLE

BLE

S
h
a
d
o
w

M
u
x

M
U

L
T

SHADOW

CLUSTER

Figure 4.2: Multiplier combined with a shadow cluster in a tile

Figure 4.2 illustrates the shadow cluster concept with a tile containing a shadow

cluster and a multiplier. In this figure, the logic block’s programmable input routing

drives both the BLEs of the shadow cluster and the multiplier, and a multiplexer

selects which output to employ, under the usual programmable control. Only one of

the multiplier and shadow cluster will be active after programming (i.e. for a given

programming configuration file). The input and output routing for both hard circuits

and soft logic cluster tiles are almost identical since both are designed to flexibly route

to specific pins, and this allows us to combine the two circuits together without having

to make significant changes to either circuit or the programmable routing.

There is an architectural question to deal with here: the size of the shadow cluster

to place within the multiplier tile. As discussed in Chapter 3, it makes sense to match

58

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

the pin demand of a hard circuit to the pin demand of the soft logic cluster tile. If

the hard circuit’s pin demand is significantly greater than the soft logic cluster tiles,

Section 3.2.1 argues the need to stretch the hard circuit over multiple logic tiles so that

each logical tile has a pin demand that is roughly the same as the soft logic cluster

tiles.

For example, an FPGA architecture with ten 4-input LUTs (such as that in Table 3.4)

typically has an input pin demand of 22 [BRM99] and an output pin demand of 10

(usually the same as N) for a total pin demand of 32. To match this soft logic cluster

tile’s pin demand to that of an n by n multiplier suggests setting n to 8, because an

8 by 8 multiplier (which has 16 inputs and 16 outputs for a total of 32 pins) exactly

matches the soft logic cluster tile’s pin demand.

Slightly larger multipliers, such as a 9 by 9 with a total pin demand of 36, could be

added to the FPGA fabric without affecting the global routing architecture. This is

because routing is architected to route all the designs that target them, which typically

exert wildly varying demand for tracks. This tolerance of wide variation will also

tolerate small perturbations in the total pin demand.

In this chapter, we will use an 18x18 multiplier as our example multiplier. This

common size is used in both the Stratix II [Alt04d] and Virtex-4 [Xil05] architectures.

Since this multiplier has 36 input pins and 36 output pins, and our soft logic cluster

tile has 22 inputs pins and 10 output pins, the multiplier is “stretched” over two logical

tiles to approximately match the pin demand.

This same argument, in reverse form, tells us that the shadow cluster should be the

same size (number of BLEs) as the soft logic cluster tile. So, each of the two tiles

together implementing the 18x18 multiplier will each have a 10 BLE shadow cluster.

Figure 4.3 shows a 4x4 array and a column of 18x18 multipliers combined with

shadow clusters. Note how the 18x18 multiplier is stretched over two tiles.

As an aside, we believe that the extra multiplexing and area required to implement

a shadow cluster will incur a minor speed penalty. As can be seen in Figure 4.2, there

is no extra active path on the input side (and so only a minor capacitive load increase

may occur), and only a 2:1 multiplexer is added on the output side, which is just one

of many such multiplexers. This additional 2:1 multiplexer results in approximately a

59

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT
LOGIC

SOFT

LOGIC

SOFT
LOGIC

SOFT

LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT

LOGIC

SOFT
LOGIC

SOFT
LOGIC

18x18

Mult

SOFT
LOGIC

SOFT

LOGIC

18x18

Mult

SOFT

LOGIC

SOFT
LOGIC

Figure 4.3: A 4 by 4 array with “stretched” 18x18 hard multipliers.

1% critical path delay increase for a path through the multiplier. These results were

obtained using our automatic sizing tool (which we will discuss later). It is also possible

to incorporate the 2:1 mux into the final output switch resulting in an area increase

for additional control bits, but at no cost in speed.

Similarly, there is some concern that additional power will be consumed when the

shadow cluster is being used instead of the multiplier. Here, the shared inputs drive

both the shadow cluster and the multiplier, and dynamic power may be dissipated in

the unused but electrically driven multiplier or shadow cluster, and static power will

be consumed by the electrically active unused multiplier or shadow cluster. This loss,

due to shared inputs, can be dealt with using simple power saving techniques such as

gating [MDM+95], but is not addressed in this work.

60

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

4.3 Shadow Cluster Benefit

The key benefit with the shadow cluster concept is that the waste of unused pro-

grammable routing is mitigated in hard circuit tiles since a shadow cluster always

allows the programmable routing designed for hard circuits to be used. Mapped de-

signs that do not use all the available hard circuits on the FPGA for their primary

purpose will benefit from shadow clusters. In these cases, a circuit’s demand ratio

is lower than the supply ratio for hard circuits on an FPGA. In this section, we will

describe and show simple illustrations of the cases when shadow clusters do and do not

provide a benefit.

In the cases when a benchmark’s demand ratio is equal to or is greater than the

supply ratio of the FPGA, all the hard circuits are used for their primary purpose.

FPGAs that include shadow clusters will be less area efficient since in each hard circuit

tile the area for the shadow cluster is not used by the design.

SOFT

LOGIC
= 10

MULT = 0

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC
SOFT

LOGIC

SOFT

LOGIC

MULT

MULT

MULT

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

DESIGN
FPGA - Without Shadow

Clusters

SOFT

LOGIC
= 10

MULT = 0

SOFT

LOGIC

SOFT

LOGIC

SOFT
LOGIC

SOFT
LOGIC

MULT

SOFT

LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT

LOGIC

DESIGN FPGA - With Shadow Clusters

SOFT

LOGIC

MULT

SOFT
LOGIC

KEY

SOFT
LOGIC

MULT

SOFT

LOGIC

MULT

= USED

= UNUSED

Figure 4.4: A design mapped to a shadowed and non-shadowed FPGA with supply
ratio of 1:4.

Figure 4.4 shows an example when shadow clusters potentially provide a benefit

depending on the details of the area cost of the programmable routing and shadow

clusters. Here, the benchmark’s demand ratio (RD = 1:∞) is less than the FPGA’s

61

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

supply ratio (RS = 1:4). This means that an FPGA with shadow clusters has hard

circuit tiles that are not being used for their primary purpose and can, instead, be used

to implement logic in the design. In the figure, the shadow cluster FPGA (the FPGA

on the bottom of Figure 4.4) is more area efficient compared to the FPGA without

shadow clusters and results in a smaller implementation.

The overall benefit in area efficiency of FPGAs with shadow clusters depends on

how often these two cases occur in the benchmarks that target FPGAs and the area

cost of shadow clusters. Before analyzing this benefit, in the next section, we describe

modifications to the measurement methodology, described in Chapter 3, as it relates

to shadow clusters.

4.4 Measurement Methodology

To determine the effectiveness of the shadow cluster concept we employ an empirical

approach: we measure the area consumed by a set of benchmarks after mapping into

a heterogeneous FPGA with hard multipliers, with and without shadow clusters. The

following sections describe the mapping of benchmarks into the heterogeneous FPGA

and then the determination of the FPGA’s area. The subsequent section describes the

set of benchmarks we employ.

4.4.1 Circuit Mapping Flow

Figure 3.3 in Chapter 3 shows the experimental flow used to measure the area for

implementing benchmarks on an FPGA architecture. The first step in this flow maps a

benchmark design to the different FPGA tiles available on the FPGA, and the second

step calculates the area of the FPGA based on the tiles used. We discuss the calculation

of the area in the next section.

A benchmark is modeled as requiring a number of soft logic cluster tiles and multiplier

tiles. Depending on the supply ratio, the appropriate size of an FPGA is determined,

and whenever the FPGA size must be increased, it is done by adding hard tiles and

soft logic clusters tiles in this ratio.

62

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

Note that the multiplier hard circuit we employ in this work is a simple 18x18 multi-

plier. It is not decomposable into smaller multipliers such as the DSP block in Stratix

FPGAs [Alt03], and so no special mapping is needed. This multiplier architecture

choice is based on our results in Chapter 3, Section 3.6.1.

The mapping of a benchmark to an FPGA is determined by setting the number of

multipliers equal to the number present in the benchmark, and then determining the

number of soft logic clusters based on the supply ratio. This is mapping algorithm 1

(see Table 3.2), which we previously discussed in Chapter 3. This mapping algorithm

is used when circuit speed is one of the key factors for employing a hard circuit, which

is often the case for designs with multipliers.

In the case when the architecture has shadow clusters, the mapping algorithm takes

this into account, by having each multiplier converted to use as a cluster if that benefits

the final area.

Once the number of tiles of each type is known, and the area of each tile is known

the total area for each benchmark can be calculated. The next section describes how

the area of each tile type is determined.

4.4.2 Transistor and Cell Area Estimation of Tiles

The area-efficiency calculation requires the relative area between regular multiplier tiles,

multiplier tiles with shadow clusters, and regular soft logic cluster tiles. As described

in Chapter 3, Section 3.3.2 these sizes were determined in a 90nm CMOS process that

was available to us [STM05, Mic07]

The area estimations for tiles are obtained using the results generated by the same

sizing tool described in Appendix A. The area of a multiplier tile that contains a

shadow cluster will contain, in addition, the area for the logic, programmable SRAM

bits, and extra multiplexers needed to add the shadow cluster.

Relative Tile Area

Table 4.1 shows the area profile of different tiles (the soft logic cluster tile, the pure

hard multiplier tile, and the shadowed multiplier tile) on a percentage basis. The final

63

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

Table 4.1: Percentage area within a tile and relative area

Tile Type BLEs Mult. Routing Relative Size
per Tile

Cluster (N=10) 13% - 87% 1.0

Multiplier - 55% 45% 1.9
18x18 (1 of 2 tiles)

Multiplier + Shadow 6% 52% 42% 2.0
18x18 (1 of 2 tiles)

column shows the size of each tile relative to the 10 by 4-LUT soft logic cluster tile.

Note that the 18x18 multiplier is stretched over two tiles to match its pin demand

with that of the soft logic cluster tile, and 1.9x represents how much one half of the

multiplier is larger compared to the area of a soft logic cluster tile. This profile was

obtained using the FPGA architecture parameters for Architecture 1 given in Table 3.4.

Notice for the soft logic cluster tile that the programmable routing takes over 80%

of the area! Also, the shadow cluster increases the area of the hard multiplier tile by

only 5% relative to the soft logic cluster tile. For the shadow concept to be useful, it

must earn more than this back through an architectural gain when mapping a set of

benchmarks to the FPGA.

In discussions with FPGA architects from both Xilinx and Altera [Roo06, Lew06],

it appears these relative areas are reasonable compared to older industrial numbers.

However, these architects claim that modern BLEs can account for as much as 40%

of the soft logic cluster tile area. These BLEs include all the soft-fabric heterogeneity

that exists in modern FPGAs. In the results section of this chapter, we perform an

experiment that explores the effect of the relative size of logic and routing.

4.5 Benchmarks

The benchmarks need only be represented as the number and size of multipliers and

the number of BLEs (which determines the number of soft logic cluster tiles) in each

design. To obtain the number of BLEs, we pass 27 of our real benchmarks without

memories (as described in Figure 3.3) through Altera’s Quartus tool [Alt04c] Version

64

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

5.0. We determine the number of multipliers in each circuit by manually counting and

identifying multipliers.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Benchmarks Numbers

D
e
m

a
n

d
 R

a
ti

o
 (

#
M

u
lt

s
:#

C
lu

s
te

rs
)

1:10

1:5

1:3

1:2

1:1.5

1:1.25

1:1.1

1:1

1:

1:2.5

1:1.7

8

Figure 4.5: Demand ratios from our benchmarks

Figure 4.5 shows the demand ratios of the real benchmarks ordered from least to

greatest. The ratio is calculated based on a soft logic cluster size of N=10 and multiplier

size of 18 by 18. In these real benchmarks, there are multipliers that are both smaller

and larger than 18x18 multipliers. To normalize the demand ratio in terms of 18x18

multipliers, we map every multiplier in the design to equivalent soft logic cluster tiles

and total how many soft logic cluster tiles is needed to implement all the multipliers

in a design. Next, we divide this total by the number of soft logic cluster tiles needed

to implement an 18x18 multiplier giving us a number, which represents the normalized

number of 18x18 multipliers in a design.

We choose this method to normalize multipliers since it is flexible enough to normalize

a range of multiplier sizes such as a 9x15. Note that this method is dependent on the

CAD tool used to map these multipliers circuits, but we use the same tool for all

designs. Possible alternatives to multiplier normalization are transistor counts of a

hard instantiation of these multipliers (which is very similar to our approach and is,

again, dependent on the CAD tools) or using a scaling approach assuming that one

4x4 multiplier is 4 times as small as an 8x8 multiplier. The latter approach is captured

65

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

in our approach and becomes difficult to use when normalizing multipliers that are not

bit width multiples of two.

Figure 4.5 shows that 12 of 27 of these benchmarks have no multipliers (Rd = 1:∞),

which we believe is realistic because only a subset of applications require multiplication.

The remainder of the benchmarks have demand ratios ranging between roughly 1:20

to 1:1. The arithmetic average of demand ratio for all the circuits is approximately Rd

= 1:8, which is significantly larger than any of the supply ratios for existing industrial

FPGAs (as shown in Table 3.1). The average demand is greater than even the Virtex-

4 SX [Xil05] which has the greatest supply ratio of industrial FPGAs providing 1

multiplier tile for every 15 soft logic cluster tiles (with a cluster size of 10). This suggests

that the characteristics of our collection of benchmarks is different compared to the

benchmarks that were used to architect industrial FPGAs. We address this issue by

synthetically generating a range of benchmarks with differing demand characteristics.

4.5.1 Synthetic Benchmarks

Synthetic benchmarks are used to analyze the effect of different statistics of demand

on the shadow cluster architectural concept. These benchmark suites are drawn from a

distribution either based on the demand ratios shown in Figure 4.5, which is our most

realistic model to draw from, or a distribution that we have created (to experiment

with demand ratio variance). We do this to postulate the effect of different application

domains.

Table 4.2: Details of real and synthetic benchmark suites

Name
Num. Avg. Variance BLE Mult.

Bmarks Demand Range Range

B8 27 1:8 1:41 10542 to 34379 0 to 528
SB45 250 1:45 1:83 10000 to 25000 0 to 145
SB15 V0 250 1:15 0 10000 to 25000 0 to 350
SB15 V1 250 1:15 1:1111 10000 to 25000 0 to 350
SB15 V2 250 1:15 1:333 10000 to 25000 0 to 350
SB15 V3 250 1:15 1:128 10000 to 25000 0 to 350
SB15 V4 10 1:15 1:131 10000 to 25000 0 to 350

Table 4.2 describes the benchmark suites used in the experiments in this chapter.

66

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

Within the table, we report the average demand ratio of the benchmark suite, the

variance among the benchmark’s demand ratios, the range of BLEs, and the range of

multipliers.

The benchmark suite, B8, consists of our original benchmarks in which small bench-

marks are artificially inflated in size (by multiplying the number of multipliers and

BLEs by a constant) to eliminate quantization noise in the experiments. The bench-

mark suites SB45 and SB15 V2 are synthetically created using a distribution based on

our original benchmarks (shown in Figure 4.5). To create the synthetic benchmarks

from this existing distribution, we simply stretch the distribution based on the desired

number of benchmarks and then either amplify or dampen the demand ratio for each

benchmark to get the desired average demand ratio.

D
e
m

a
n
d

R
a
ti
o

Benchmarks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1:15

1:
8

Figure 4.6: Demand ratio distribution for SB15 V0.

D
e
m

a
n
d

R
a
ti
o

Benchmarks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1:15

1:

8

Figure 4.7: Example of demand Ratio distribution for SB15 V1.

67

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

D
e
m

a
n
d

R
a
ti
o

Benchmarks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1:15

1:

8

Figure 4.8: Demand Ratio distribution for SB15 V3.

The remaining benchmark suites all have an average demand ratio of 1:15 (the largest

supply ratio present in the industrial FPGAs), but these benchmarks were drawn from

different distribution curves to change the variance, where greater variance (a larger

demand ratio for variance) means that the benchmark’s demand ratios are more widely

distributed from the average: SB15 V0 has no variance and is drawn from a distribution

like the one illustrated in Figure 4.6. SB15 V1 is drawn from the distribution in

Figure 4.7 where this distribution represents the case when the market has a large

number of benchmarks that use a similar number of hard circuits. SB15 V3 is drawn

from the distribution in Figure 4.8, which represents the case where a small number of

benchmarks use many hard circuits.

4.6 Results: Effect of Shadow Cluster on FPGA Area

Efficiency

In this section, we measure the effectiveness (in terms of area efficiency) of adding

shadow clusters to heterogeneous FPGAs with multiplier tiles, under various scenarios

of FPGA architectures (as expressed by the supply ratio), and demand for multipliers

(as expressed by the demand ratio statistics of a particular benchmark suite).

We begin by exploring FPGAs that have supply ratios of modern FPGAs ranging

from 1:15 at the high end and 1:104 at the low end as shown in Table 3.4. We will

measure the effectiveness of adding shadow clusters to these FPGAs under two demand

68

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

scenarios: the first assumes that the average demand ratio is the same as the supply

ratio (under the assumption that this is how industrial FPGA architects target their

applications). The second (in Section 4.6.2 below) will use demands that are plausible,

but different from those predicted by the commercial architects.

4.6.1 Avg. Demand Ratio Equal to Commercial Supply Ratio

In the first scenario, the average demand ratio of the benchmarks is set to be the same

as the supply ratio of the FPGA. Consider the supply ratio of the Virtex-4 SX, which

is 1:15 [Xil05]. Table 4.3 shows the results for a suite of 10 benchmarks (suite SB15 V4

from Table 4.2) that have an average demand ratio of 1:15.

Table 4.3: Results for individual benchmarks on shadowed and non-shadowed FPGAs
with supply ratio equal to 1:15

Benchmark # Soft Logic # Multipliers Demand Area no Area with Area-Efficiency
Name Clusters (18x18) Ratio Shadow Clusters Shadow Clusters Metric

(105 um2) (105 um2)

SB15 V4 1 1849 0 1:∞ 170 152 1.12
SB15 V4 2 1904 0 1:∞ 174 156 1.12
SB15 V4 3 1420 0 1:∞ 131 117 1.12
SB15 V4 4 1042 0 1:∞ 96 87 1.11
SB15 V4 5 1638 19 1:97.6 147 135 1.09
SB15 V4 6 1925 89 1:21.6 175 171 1.02
SB15 V4 7 1523 141 1:10.8 204 207 0.99
SB15 V4 8 1304 121 1:10.8 175 177 0.99
SB15 V4 9 1528 284 1:5.4 411 417 0.99
SB15 V4 10 1502 349 1:4.3 506 513 0.99

Average 1:15 1.05

The table first gives the benchmark name, the number of soft logic cluster tiles in

the benchmark, the number of 18x18 multipliers it requires, and the calculated demand

ratio. The next column gives the area of the FPGA without shadow clusters required to

implement the benchmark, assuming, as discussed previously, that the FPGA can grow

to accommodate the size of the benchmark. The next column gives the area required

for an FPGA with shadow clusters and the final column gives the calculation of the

area “without” shadow clusters divided by the area “with” shadow clusters where a

value greater than 1 means a shadow cluster architecture is smaller.

Table 4.3 illustrates when shadow clusters give a benefit - if the demand ratio is less

than the supply ratio of the architecture, they allow the multiplier tiles’ routing to be

69

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

used and result in an area-efficiency gain: the first 6 circuits in Table 4.3 gain 2% to

12% area efficiency. These benchmarks all use the available shadow clusters to decrease

the overall area needed to implement them.

When the supply and demand ratios are equal or the demand ratio is greater than

the supply then the shadow clusters cause a loss of efficiency because the shadow logic

goes wasted. In each case where we lose area efficiency, the ratio is the same (0.986).

The reason the ratio is the same is that each benchmark is mapped to shadow and

non-shadow clustered FPGAs with enough hard multipliers for each multiplier in the

benchmark. This means that both the shadow and non-shadow cluster architectures

will have the same number of multipliers and soft logic clusters due to the supply ratio.

In the shadow cluster architecture, each multiplier wastes space for each shadow cluster

in a multiplier, and this waste is proportional to the supply ratio.

Overall, for benchmark suite (SB15 V4), the shadow cluster FPGA has a 1.054 area-

efficiency metric meaning it is more area efficient than the non-shadow clustered FPGA.

Note that the shadow cluster concepts wins, if slightly, under the scenario in which the

average demand ratio matches the supply ratio, and therefore shows promise. The

win arises because there is variance about the demand, which is clearly true for any

realistic set of designs targeting FPGAs. The area improvement is a function of the

supply ratio (which determines the amount of potential waste with unused multipliers),

the average demand ratio (as discussed above) and the variance of the demand. In the

next section, we explore the effect of varying supply ratio and demand ratio, keeping

the variance constant.

4.6.2 Effect of Differing Average Demand Ratios

In this experiment, we explore the effect of the average demand ratio when mapped to

an FPGA with fixed supply ratio to observe how the area benefit of shadow clusters

changes. As the average demand increases, shadow clusters will not provide as great a

benefit.

Table 4.4 illustrates the results of a series of experiments, each one like that given

in Table 4.3, but with different supply ratio architectures and average demand ratios

for the synthetic benchmarks. Each number in the table is the geometric average of

70

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

Table 4.4: Area efficiency of different benchmarks on architectures with different supply
ratios

Area-efficiency Metric

Rs Rd=1:8 Rd=1:15 Rd=1:45
(B8) (SB15 V2) (SB45)

1:15 1.043 1.047 1.083
1:23 1.027 1.025 1.046
1:45 1.013 1.012 1.017
1:60 1.011 1.009 1.011
1:66 1.007 1.007 1.010
1:104 1.004 1.004 1.006

the area ratios (without shadow clusters/with shadow clusters) across all the circuits

in a given benchmark suite. Recall that Table 4.2 shows the characteristics of different

suites, with different demand ratios. For example, the Table 4.4 entry with Rs = 1:15

tested under a average demand ratio of 1:45 has an area-efficiency metric of 1.083,

showing that a shadow cluster architecture is about 8.3% more area efficient than a

non-shadowed architecture.

It is remarkable to note that every ratio in Table 4.4 is greater than one, indicat-

ing that shadow clusters never reduce area efficiency under all these scenarios! This

suggests that the shadow cluster concept has merit.

These experiments compare FPGAs with fixed supply ratios with and without shadow

clusters. Of more interest is to determine the best shadow clustered architecture (across

all supply ratios) against the best non-shadowed cluster architecture (across all supply

ratios), which follows below.

4.6.3 Best Shadowed and Non-Shadowed Architectures

In this section, we measure the area efficiency of FPGAs with supply ratios that vary

for both shadowed and non-shadowed architectures. We will compare a suite of ar-

chitectures with different supply ratios against a non-shadowed architecture with a

fixed supply ratio of 1:15. We will refer to this 1:15 non-shadowed architecture as

71

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

the base non 15 architecture. Its purpose is to provide normalization, which allows

comparison across different architectures.

This experiment represents an architectural exploration in which the supply ratio is

the FPGA architectural parameter that is explored.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35

Rs

(A
re

a
 F

P
G

A
 R

s
 =

 1
:1

5
)/

(A
re

a
 F

P
G

A
)

Shadow Clusters, SB15_V2 Non-shadow Clusters, SB15_V2

1:5 1:10 1:15 1:20 1:25 1:30 1:351:

8

Figure 4.9: Area efficiency for varying supply ratios
Figure 4.9 shows data points in two curves where supply ratio of the architecture

is on the x-axis and the area-efficiency metric (defined as the area of the base non 15

divided by the area of the experimental FPGA) of the experimental architecture is

on the y-axis. The data points marked by triangles compares shadowed architectures

against base non 15. Each triangle point represents an experiment, and shows the

average area required to implement the benchmark suite, SB15 V2, on the base non 15

architecture divided by the average implementation area on a shadow architecture with

a specific supply ratio (given on the x-axis). A value greater than 1 means that the

architecture specified by the x-axis has better area efficiency than base non 15. We

72

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

do not include bars on this graph to represent the variance, but in Appendix C in

Table C.47 we provide these values.

Similarly, the data points marked by diamonds compares non-shadowed architectures

against base non 15. Each diamond point represents an experiment comparing the

average area required to implement the same benchmark suite on base non 15 divided

by a non-shadowed architecture with a specific supply ratio.

The triangle data of Figure 4.9 shows that the shadow cluster architectures with

supply ratios ranging from 1:4 through 1:16 have better area efficiency than base non 15

since the area-efficiency metric is greater than one.

Of these architectures, the one with a supply ratio equal to 1:9 is, on average, the

most area-efficient shadow cluster architecture. The diamond data points, representing

non-shadow clustered architectures with a supply ratio equal to 1:11 implements the

benchmarks in the smallest area. When we compare the best shadow architecture and

the best non-shadow architecture the shadow architecture is 7.2% smaller showing the

benefit of including shadow clusters with the hard circuits. The next section will look

at this area win with shadow clusters in more detail.

It is interesting to note how the shadowing concept changes the best supply ratio,

in shadowed architectures vs. non-shadowed, and how shadowing appears to support

a greater supply of multipliers.

For both shadow and non-shadow architectures, the supply ratio of the best archi-

tecture is greater than the average demand ratio of the benchmark suite. It might be

expected that for a non-shadow architecture the supply ratio would match the average

demand ratio of the benchmark suite. This would be true for some distributions where

the variance is zero, but this is not the case in the above experiment (more details

about variance in the demand distribution will be looked at later in this chapter).

The main reason that the best supply ratio is higher than the average demand ratio

is the same as the explanation in Chapter 3, Section 3.6.2 where we showed that the

benefit some benchmarks in the suite get for an increased supply of hard multipliers

outweighs the loss for circuits that don’t use them. Including shadow clusters in the

architecture means that circuits that don’t use the hard multipliers have an even lower

loss factor and the higher supply ratio is beneficial to those circuits that can use the

73

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

additional hard multipliers.

4.6.4 Effect of Demand Ratios

In this section, we study how the distribution of demand ratios in our benchmark

suites affects the area efficiency of FPGAs with shadow clusters. We measure the area

efficiency of benchmark suites with different average demand ratios mapped to shadow

and non-shadow FPGAs with varying supply ratios.

Table 4.5: Smallest implementation architecture for benchmark suites

Non-shadow Shadow Cluster
Cluster Best Best Non-shadow
Supply Ratio Supply Ratio vs Shadow

B8 1:11 1:9 1.125
SB15 V2 1:11 1:10 1.072
SB45 1:28 1:19 1.046

Table 4.5 shows a summary of the results in which we record the supply ratio of

shadow and non-shadow architectures which result in, on average, the smallest area

implementation for each benchmark suite. Column 1 names the benchmark suites;

Columns 2 and 3 show the supply ratio at which the non-shadow cluster architecture

and shadow architecture achieve the smallest implementation area, and Column 4 shows

an area ratio where the area of the smallest non-shadow cluster architecture is divided

by the area of the smallest shadow cluster architecture.

For our original benchmark suite (B8), the smallest shadow cluster architecture is

12.5% smaller than the smallest non-shadow architecture. The benchmark suite SB45

implemented on the smallest shadow cluster architecture is 4.6% smaller than the

smallest non-shadow cluster architecture. This decrease in benefit is because as the

benchmarks average demand decreases the non-shadowed and shadowed architecture

have a best supply ratio that is also lower. As supply decreases, the benefit of shadow

clusters also decreases since there are fewer multipliers and consequently shadow clus-

ters to benefit from.

For each benchmark suite, the smallest shadow cluster architecture is more area

74

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

efficient than the smallest non-shadow cluster architecture, and in general, shadow

cluster architectures improve implementation area for each benchmark suite.

4.6.5 Demand Ratio Variance within Benchmark Suites

Next, we measure the effectiveness of shadow clusters for benchmark suites with the

same average demand ratio but different variances.

Table 4.6: Smallest implementation architecture for different demand variances

Non-shadow Shadow Cluster
Variance Cluster Best Best Non-shadow

Supply Ratio Supply Ratio vs Shadow

SB15 V0 1:15 1:15 0.960
SB15 V1 1:10 1:10 1.045
SB15 V2 1:13 1:11 1.072
SB15 V3 1:11 1:9 1.114

Table 4.6 shows a summary of our results, similar to the previous table, in which we

report supply ratios of the architectures that on average result in the smallest imple-

mentation of benchmark suites with average demand ratio equal to 1:15 and different

variances. In the second row of the table, benchmark suite SB15 V0 has no variance,

and as we continue down the rows in the table, variance increases, meaning the demand

ratios of each benchmark within the benchmark suite are more widely distributed from

the average. In general, as variance within the benchmark suite increases (as we go

down the table) the area improvement for shadow cluster architectures compared to

non-shadow cluster architecture increases.

This happens because greater variance means there are more circuits with demand

ratios further from the mean. Therefore, there are more circuits with demand ratios

lower than supply ratio, including benchmarks with no demand for multipliers that will

benefit from the presence of shadow clusters. In addition, increased variance means

there will be more circuits with demand ratio greater than supply, but as explained

earlier, in this case, the small area increase for wasted shadow clusters is dominated by

those circuits that decrease area.

75

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

For SB15 V0 with a variance of 0 (meaning that all benchmarks have a demand ratio

equal to 1:15) we can see that the shadow cluster architecture results in a larger imple-

mentation area. This 1.4% larger area for the shadow cluster architecture represents

the area cost for adding shadow clusters to an architecture with a 1:15 supply ratio.

4.6.6 Effect of a Larger BLE

Recall that, in Section 4.4.2 our discussion with two commercial FPGA architects

and their comments that our area ratio between BLEs and programmable routing in

a soft logic cluster tile and a shadow cluster is unrealistic compared to their modern

architectures. In this section, we explore the effect of a larger BLE in comparison to the

routing area and how the area benefit of shadow clusters is affected. This experiment

and the next one provide a quick analysis of how the area-efficiency benefit changes if

the area ratio between the BLE and the programmable routing in a tile changes.

To do this, we artificially increase the relative size of a BLE to the programmable

routing in both the soft logic cluster tile and the shadow cluster. The original size

of a BLE in our experimental architecture is 13% of the tile. In this experiment, we

will increase percentage of the tile area dedicated to the BLE from 15% to 50% in

increments of 5%.

We will map benchmark suite SB15 V2 to an FPGA with and without shadow clus-

ters, and these FPGA’s all have a supply ratio of 1:15. This setup is used since it

represents an industrial FPGA supply ratio and a benchmark suite that would target

such an FPGA.

Table 4.7 shows the new relative percentage area of the BLE in the soft logic cluster

tile in column one, the relative percentage area of the BLE in the hard multiplier in

column 2, and the geometrically averaged area-efficiency metric in column 3 (area of the

non-shadow architecture divided by the area of the experimental architecture). Note

that as we increase the size of the BLE we increase its size in both the soft logic cluster

tile and the shadow cluster.

From Table 4.7 we can see that even if the BLE takes up half the area of the soft

logic cluster tile (more than that of modern FPGAs), the shadow cluster concept still

improves the area efficiency of an FPGA and still provides an overall area win. The

76

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

Table 4.7: Effect of increasing relative percentage area of the BLE in the soft logic
cluster tile and the multiplier tile

BLE percentage BLE percentage (Area of purely soft
Area of soft Area of hard FPGA) / (Area of shadow
logic cluster tile multiplier tile cluster FPGA)

15% 7% 1.041
20% 10% 1.038
25% 13% 1.034
30% 16% 1.030
35% 19% 1.027
40% 23% 1.023
45% 27% 1.019
50% 31% 1.015

benefit, however, has decreased from a 4.2% area-efficiency improvement to 1.5%.

4.6.7 Effect of a Larger BLE only in the Soft Logic Cluster Tile

In the previous experiment, the results are somewhat disappointing since the area

benefit of shadow clusters decreases as the area of the BLE increases compared to

the programmable routing. It is, however, possible to conceive of an architecture in

which the soft logic cluster tile consists of a modern and larger BLE as in the previous

experiment, but the shadow clusters can be architected as small simple BLEs consisting

of a LUT and a flip-flop. One assumption when considering an architecture like this

is that the CAD tools targeting it have the ability to map designs to a heterogeneous

soft fabric in which BLEs have different functionality.

We measure the area effect of increasing the size of the BLE in only the soft logic

cluster tiles while keeping the size of the shadow cluster constant. We follow a similar

method as the previous experiment and only increase the relative size of the BLE to the

programmable routing in the soft logic cluster tile. This means we will keep a simple

BLE that consists of only a LUT and flip-flop for the shadow clusters included with

hard multipliers.

In this experiment, we assume that CAD tools can map simple logic to shadow

77

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

clusters with 100% logic utilization. This assumption is optimistic. Again, we will map

SB15 V2 to an FPGA (Rs = 1:15) with and without shadow clusters since it represents

an industrial FPGA and its targeting market.

Table 4.8: Effect of increasing relative percentage area of only the BLE in the soft logic
cluster tile
BLE percentage BLE percentage (Area of purely soft
Area of soft Area of hard FPGA) / (Area of shadow
logic cluster tile multiplier tile cluster FPGA)

15% 6% 1.043
20% 6% 1.044
25% 6% 1.045
30% 6% 1.046
35% 6% 1.048
40% 6% 1.049
45% 6% 1.051
50% 6% 1.052

Table 4.8 has the same structure as in the previous section. Column 1 contains the

relative percentage area of the BLE in the soft logic cluster tile, column 2 contains the

relative percentage area of the BLE in the hard multiplier, and column 3 contains the

geometrically averaged area-efficiency metric (comparing the Non-shadow architecture

to the shadow architecture).

Here, the results are better for including simple shadow clusters. The reason for

this is as the soft logic cluster tile is more complicated and using a simple shadow

cluster is a more area-efficient structure to implement simple logic in a design. These

results suggest that it might be interesting to look at modern FPGAs and determine if

a heterogeneous soft fabric that has a mixture of complex and simple soft logic cluster

tiles might also improve FPGA area efficiency.

78

4 Enhancing Area Efficiency of FPGAs using Hard Circuits and Shadow Clusters

4.7 Summary

In this chapter, we presented an architectural concept called shadow clusters that when

employed by existing hard circuits improves the overall area efficiency of the FPGA.

The reason this concept works is that it tackles the main question in FPGA architecture

by making hard circuits more flexible, and therefore, more likely to be used. The main

saving, using this technique, is the programmable routing used to connect to the hard

circuit.

We measured the effectiveness of shadow clusters showing that, under realistic scenar-

ios, they always improve the area efficiency of existing industrial FPGAs that include

simple 18x18 hard multipliers. Additionally, our results show that shadow clusters

improve area efficiency to various degrees as a function of the supply ratio and its re-

lation to the average demand ratio and variance of demand ratios within a benchmark

suite. Our best results show that a shadow cluster architecture is 12.5% smaller than a

non-shadow architecture when we map our real benchmark suite to these architectures

and allow the supply ratio to vary.

In the next chapter, we will use shadow clusters to include new hard circuits and

measure how this concept changes the frequency at which hard circuits need to appear

in targeting benchmark suites.

79

5 Increasing FPGA Area Efficiency of

Lower-Demand Hard Circuits

The way to deal with an impossible task was to chop it

down into a number of merely very difficult tasks, and

break each one of them into a group of horribly hard

tasks, and each of them into tricky jobs, and each of

them...

Terry Pratchett

5.1 Introduction

One of the main benefits of hard circuits in FPGAs is that they reduce area when used

by a design targeting heterogeneous FPGAs. However, when a design does not target

these hard circuits there is an area penalty for not only the unused logic needed to

implement the hard circuit, but the programmable routing needed to connect to it.

Only those hard circuits that are frequently used by designs and that provide a large

area (or other) benefit should be included on the FPGA fabric.

In this chapter, we investigate how shadow clusters change the needed “frequency”

of a hard circuit appearing in a design such that an FPGA with this new hard circuit

is area neutral compared to an FPGA without the hard circuit. This study shows how

hard circuits that are not currently included on FPGAs (due to low demand) might

now practically be included if the hard circuit is combined with a shadow cluster.

Shadow clusters, described in Chapter 4 and reprised in Figure 4.1, improve the area

efficiency of FPGAs as demonstrated in the last chapter. By incorporating a shadow

cluster with a hard circuit, the high cost for wasted routing is mitigated since either

80

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

the hard circuit or the shadow cluster can be used by a design. From the perspective

of a design that does not use a hard circuit, an FPGA with shadow clusters appears

to have more expensive soft logic, while designs that use hard circuits gain most of the

hard circuit’s area, speed, and power benefits.

In this chapter, we show that shadow clusters make it more practical to include hard

circuits with lower demand in the target market by reducing the penalty incurred in

those application circuits that cannot make use of the hard circuit. This concept is

illustrated by focusing on crossbar hard circuits, which up to now, have been considered

to have a demand too low for inclusion on FPGAs. Both a single bit crossbar and bus-

based crossbar, the later having a greater area benefit than the first when fully utilized,

are included on FPGAs in this study.

The metric that we seek to improve (by decreasing it) is the “frequency” that the

need for hard crossbars must appear in the FPGA’s target application suite for the

inclusion of the hard crossbar to appear to be area neutral. This kind of change could

have significant impact on the architecture “argument” that goes on inside FPGA

companies on which hard circuits to include on the device.

To appropriately prepare for this discussion we will also architect the features and

parameters of a hard crossbar, including varying the bit-width of the hard crossbar and

using either a bus-based crossbar or a single bit crossbar.

The remainder of this chapter is organized as follows: In section 5.2, we develop

the architecture of the hard crossbars to be used including bus-based crossbars. In

section 5.3, we describe the changes to the experimental methodology that is used to

measure the area efficiency of our architectures including the synthetic benchmarks

used to model different FPGA target markets, and section 5.5 presents the results of

these experiments and analysis.

5.2 Architecting Hard Crossbars for FPGAs

We are using hard crossbars as an exemplar of a circuit currently not included on

FPGAs likely due to the fact that there are not a sufficient number of designs in the

FPGAs target market that would benefit from its inclusion. Crossbars, also known as

81

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

crosspoint switches, are circuits commonly used in communication applications as well

as other digital circuits such as the interconnect for a multiprocessor system [ZJC+06].

FPGAs are used to implement crossbars in their soft logic with published works in

both academia [BL03, KN02] and industry [Alt04b, Alt02, Xil00, YAF+03].

Jones and Wilton [JW04, JW03] published two patents on adding a bus-based cross-

bar to a programmable device. The structure of their bus-based crossbar is very sim-

ilar to the one that we will present in this chapter. Their bus-based crossbar design

is included on the FPGA as tiles in the programmable fabric hooked up to the pro-

grammable routing. These crossbars are built using pass transistor multiplexers. This

is the same as the crossbars presented in this chapter, but the Jones and Wilton cross-

bar is cascading, meaning larger crossbars (than the bit width of the hard crossbar)

can be built by connecting smaller units together. The bus-based crossbar presented

in this chapter can be used to build larger crossbars, but will require the use of the

standard programmable routing and soft logic to implement the larger crossbar.

In this section, we will describe the design of the hard crossbars we include on FPGAs.

This description includes the range of crossbar sizes that can be implemented on each

crossbar, the number of logical tiles the crossbar is stretched across, and the crossbar

architecture including a single bit crossbar and a bus-based crossbar.

5.2.1 Definition of Crossbar Terms included on a FPGA

{ Control

Signals

Y inputs {

Z outputs

Y-Z

CROSSBAR

{

Figure 5.1: A full-way crossbar

Figure 5.1 shows a crossbar in which Y inputs pins can be routed to Z output pins.

82

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

Z

outputs

{

Y inputs

{

Control

Signals

{

Figure 5.2: 4-4 full-way crossbar implemented with multiplexers

We will consider a full-way crossbar that can be dynamically controlled to broadcast

one input to all outputs, unicast each input to a unique output, or a mixture of both.

This type of crossbar can be implemented as Z multiplexers where each multiplexer is

a Y to 1 multiplexer. Figure 5.2 shows a 4-4 crossbar implemented with multiplexers.

Table 5.1: Crossbars included on an FPGA
Crossbar Max Size Num. 16-16 Num. 32-32 Num. 64-64
Name Crossbars Crossbars Crossbars

16-16 16 1 NA NA
32-32 32 2 1 NA
64-64 64 4 2 1

We will consider three different crossbars on an FPGA; Table 5.1 summarizes these

three crossbars. Column 1 shows the type and name we will use to identify the crossbar;

column 2 shows the maximum size crossbar that the hard circuit can implement using

just the hard circuit. Columns 3, 4, and 5 show how each hard circuit can potentially

be configured to implement different sized crossbars. For example, the 64-64 crossbar

can be configured to implement either four 16-16 crossbars, two 32-32 crossbars, or one

64-64 crossbar.

83

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

2x2

 CROSSBAR

2x2

 CROSSBAR

2x2

 CROSSBAR

2x2

 CROSSBAR

2x2

Outputs

2x2

Outputs

4x4
Outputs

Control

Signals

Control

Signals

Inputs

Inputs

Figure 5.3: 4-4 crossbar implemented with 2-2 crossbars

To build a flexible hard crossbar like the 32-32 and 64-64 in Table 5.1, the design

includes some shared inputs and additional multiplexers. Figure 5.3 shows an example

of a 4-4 crossbar that can also be used to implement two 2-2 crossbars. In this figure,

it takes four 2-2 crossbars to implement one 4-4 crossbar, and if this crossbar is in 4-4

mode then the first four control signals control selection in each of the 2-2 crossbars,

and the last 4 control signals control the multiplexers at the output of the 2-2 crossbars.

If this structure is used to implement two 2-2 crossbars then the top and bottom 2-2

crossbars implement these operations, and this mode only uses the first four control

signals.

When this circuit is included on an FPGA the 2-2 outputs and 4-4 outputs would

be combined together so that the final outputs, which drive into the programmable

84

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

routing, are shared. Either this could be done by using an additional stage of 2 to 1

multiplexers that would be programmably controlled to select the correct mode, or the

second stage of control signals controlling the multiplexers for the 4-4 crossbar could

be used to select between 2-2 mode and 4-4 mode by inputting constants in the 2-2

mode.

This sharing construction principle is used for both the 32-32 and 64-64 crossbar

noting that some active area (making up the multiplexers) will be wasted depending

on the mode of the crossbar.

2-2

 CROSSBAR

2-2

 CROSSBAR

2-2

 CROSSBAR

2-2

 CROSSBAR

 Control

Signals

Y
0
 inputs Z

0
 outputs

Y
1
 inputs Z

1
 outputs

Y
2
 inputs Z

2
 outputs

Y
3
 inputs Z

3
 outputs

Figure 5.4: A bus-based crossbar consisting of four 2-2 crossbars

The most straightforward crossbar is one that allows individual control of each data

bit. We call this a a single bit crossbar. As an alternative, more than one data bit

can be controlled by a single set of control signals, which we call a bus-based crossbar.

Figure 5.4 shows the structure of bus-based crossbar with a bus size of 4. In this

85

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

figure, Y0 can be routed to Z0 outputs sharing the control signals with the other 2-2

crossbars. Since the control signals are shared in the bus-based crossbar this reduces

its pin demand and increases the area-benefit of these crossbars if the circuit is highly

utilized.

5.2.2 Hard Crossbar Pin Demand and Number of Tiles

Given these hard crossbars to include on an FPGA and using the architecture param-

eters for Architecture 1 and Architecture 2 described in Table 3.4 for our experimental

FPGAs, we now determine how many logical tiles the hard crossbars will be stretched

over by dividing the total number of pins used by the crossbar divided by the pin

demand of the soft logic cluster tile. This concept was addressed in section 4.2. The

total number of pins needed to implement a Y-Z crossbar equals:

totalpins = Y + Z + (Z⌈log2Y ⌉) (5.1)

In this equation, Y and Z represent the input and output pins. The final term represents

the number of pins needed for the control signals to select paths through the crossbar.

The total number of pins needed to implement X Y-Z crossbars where X represents

the bit-width of a bus-based crossbar equals:

totalpins = X ∗ (Y + Z) + (Z⌈log2Y ⌉) (5.2)

The major pin cost in the single bit crossbar is the number of control pins, and this

is due to the choice that crossbars are full-way needing many control pins to make each

possible switch pattern. It is possible to implement a crossbar with less flexibility and

consequently less control pins, but without detailed knowledge on how targeting FPGA

designs use crossbars, we take a worst case approach and use fully flexible crossbars.

Some of the pin cost is reduced in the bus-based crossbar since the control signals are

shared between all the crossbars in the hard circuit.

Table 5.2 shows the number of tiles each of the single bit hard crossbars will be

stretched over for the two architectures as described in Table 3.4. Column 1 shows the

86

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

Table 5.2: Tiles per single bit crossbar

Architecture 1 Architecture 2
Crossbar Pins in Soft Logic Number Tiles Soft Logic Number Tiles
Name (Y-Z) Crossbar Pin Demand Pin Demand

16-16 96 32 3 35 3
32-32 224 32 7 35 7
64-64 512 32 16 35 15

name of the crossbar, and column 2 shows the total number of pins in each crossbar.

Columns 3 and 5 show the soft logic cluster tile pin demand for Architecture 1 and

Architecture 2 respectively, and columns 4 and 6 show how many logical tiles are needed

to implement one hard crossbar for Architecture 1 and Architecture 2.

Table 5.3: Tiles per bus-based crossbar

Architecture 1 Architecture 2
Bus Crossbar Pins in Soft Logic Number Tiles Soft Logic Number Tiles
Size (X) Name (Y-Z) Crossbar Pin Demand Pin Demand

4 16-16 192 32 6 35 6
8 16-16 320 32 10 35 10
12 16-16 448 32 14 35 13
16 16-16 576 32 18 35 17
4 32-32 416 32 13 35 12
8 32-32 672 32 21 35 20
12 32-32 928 32 29 35 27
16 32-32 1184 32 37 35 34
4 64-64 896 32 28 35 26
8 64-64 672 32 44 35 41
12 64-64 1920 32 60 35 55
16 64-64 2432 32 76 35 70

Table 5.3 shows the number of tiles each of the hard bus-based crossbars will be

stretched over for the two architectures (as described in Table 3.4). Column 1 shows

the bit-width of the crossbar, column 2 shows the bit-width of each crossbar in the

hard circuit, and column 3 shows the total number of pins in each crossbar. Columns 4

and 6 show the soft logic cluster tile pin demand for Architecture 1 and Architecture 2

respectively, and columns 5 and 7 show how many logical tiles are needed to implement

one hard crossbar for Architecture 1 and Architecture 2.

87

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

From these values we can see that a bus-based crossbar will implement many more

crossbars in less tiles. For example, bit-width 4, 16-16, hard bus-based crossbar in

Table 5.3 uses 192 less pins and 6 less logical tiles to implement a bus-based crossbar

compared to using 4 single bit hard crossbars from Table 5.2. This means the bus-based

crossbar will provide a greater area-efficiency improvement when implementing designs

that use bus-based crossbars, but this depends on how much of the bus is utilized.

If a design maps to hard bus-based crossbars of bit-width 2 and the FPGA includes

bus-based crossbars of bit-width 4 then part of the hard bus-based crossbar is wasted.

5.2.3 Hard Crossbar Benefit over Soft Logic Implementation

With a description of the architectures and sizes of the hard crossbars that we will

include on an FPGA we can make preliminary calculations as to what area benefit

using a hard crossbar will have over implementing a crossbar in soft logic cluster tiles.

This benefit is calculated by taking the number of soft logic cluster tiles needed to

implement the crossbars in a design multiplied by the size of the soft logic cluster tile

divided by the number of tiles a hard crossbar is stretched over multiplied by the size

of the hard crossbar tile.

Hard crossbar tiles and soft logic cluster tiles use approximately the same area since

the dominating area component in both tiles is the programmable routing (both a LUT

and crossbar are essentially a few pass transistors that implement multiplexers). In this

case, we can simplify the calculations and simply divide the number of soft logic cluster

tiles needed to implement a crossbar by the number of tiles in a hard crossbar.

To calculate the number of soft logic cluster tiles needed to implement a crossbar

in a design, we use Altera’s Quartus CAD tool [Alt04c] to map crossbars to the soft

logic of a Stratix I FPGA [Alt03] (similar to the architecture parameters we use in this

chapter).

Table 5.4 shows different sized crossbars in a design and what benefit these crossbars

will have when implemented on a 16-16, 32-32, and 64-64 hard single bit crossbar. For

example, Table 5.4 shows that a 32-32 crossbar in a design uses 7 hard logical tiles

and 77 soft logic cluster tiles. In this example, using a hard crossbar to implement the

crossbar in a design will save a total 70 soft logic cluster tiles.

88

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

Table 5.4: Relative benefit of hard crossbars over soft crossbars
Hard Crossbar

Design Crossbar Soft Cost in 16-16 Gain 32-32 Gain 64-64 Gain
Size (Y-Z) clusters (N=10) tiles Factor tiles Factor tiles Factor

8-8 4 3 1.33 7 0.57 16 0.24
16-16 18 3 6.00 7 2.57 16 1.13
24-24 41 - - 7 5.86 16 2.56
32-32 77 - - 7 11 16 4.81
48-48 154 - - - - 16 9.63
64-64 308 - - - - 16 19.3

This example, and the others in the table, shows that a hard crossbar can provide a

significant area benefit over implementing the crossbar in a design in an FPGA’s soft

logic; however, a proper measurement needs to be performed over a suite of realistic

applications, as we describe in the next section. This is needed since those applications

that do not contain crossbars will pay an area penalty for including hard crossbars on

an FPGA.

Table 5.5: Relative benefit of 4-bit bus-based 32-32 hard crossbar over soft crossbar
implementation

Hard Crossbar
Design Crossbar Bus Soft Cost in 16-16 Gain
Size (Y-Z) Utilization clusters (N=10) Factor

32-32 1 77 17 4.53
32-32 2 154 17 9.06
32-32 3 231 17 13.59
32-32 4 308 17 18.11

Table 5.5 shows the gains of a 4-bit bus-based, 32-32 hard crossbar implementing 32-

32 crossbars in a design with different bus width utilization compared to implementing

those same crossbars in soft logic. Column 1 and column 2 show the size of the crossbars

in the design and how many bits of the bus these circuits use. Column 3 and 4 shows

how many soft logic cluster tiles and how many hard bus-based crossbar tiles it takes

89

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

to implement each bus-based crossbar respectively. Column 5 shows the gain factor

of the hard bus-based crossbar included on an FPGA over implementing a design’s

bus-based crossbar in soft logic.

Table 5.6: A comparison between the gain factors of a single bit and bus-based 32-32
hard crossbar

Bus-Based Single Bit
Design Crossbar Bus Gain Gain
Size (Y-Z) Utilization Factor Factor

32-32 1 4.53 11
32-32 2 9.06 11
32-32 3 13.59 11
32-32 4 18.11 11

Table 5.6 compares a 32-32 hard single bit crossbar’s gain factor (which is equal to

11) to the results in Table 5.5. We can see that the bus-based crossbar provides an area

benefit when more than 50% of the bits in the bus-based crossbar are used. When the

bus-based crossbar is fully utilized there is a significant area benefit, but these gains

will only be seen for an FPGA architecture when all of the hard bus-based crossbars

are fully utilized by the designs representing the FPGA’s target market, and this, we

believe, is highly unlikely.

5.3 Measurement Methodology

As in the previous two chapters, our goal is to measure the area effectiveness of hard

crossbars. The measurement methodology is the same as first described in Chapter 3,

and involves a step to map a benchmark designs to the different FPGA tiles available

on the FPGA, and then, calculating the area of the FPGA based on the tiles used.

In the experiments in this chapter we use both soft Architecture 1 and Architecture 2

described in Table 3.4 in Chapter 3. As described earlier (in Section 3.5), Architecture

2 implements crossbars in less area than Architecture 1 because Architecture 2 includes

6-LUTs that implement crossbars more area-efficiently than 4-LUTs. The inclusion of

90

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

Architecture 2 allows us to fairly evaluate hard crossbars combined with shadow clusters

because of the more efficient modern soft logic fabric for implementing crossbars.

5.3.1 Mapping Benchmarks to Architectures

To measure the area consumed by a design, we map a benchmark to tiles available on

the FPGA. We will map benchmarks to three types of FPGA architectures: without

hard crossbars, with hard crossbars, and with hard crossbars including shadow clusters.

The benchmarks to be mapped to these architectures are modelled as requiring a

number of soft logic cluster tiles and crossbars. The mapping step assigns crossbars

to either hard crossbar tiles, soft logic cluster tiles, or a mixture of both. This is

necessary since an FPGA may either not have enough or any hard crossbars, or the

design crossbars may be of a size larger than the hard crossbars can implement. In the

case that the design crossbar is larger than the hard crossbar, a combination of hard

crossbar tiles and soft logic cluster tiles can be used to implement the design crossbar

in less area than soft logic cluster tiles alone.

In the same fashion as Chapter 3, we will follow the usual practice in FPGA archi-

tecture research [RFCL89], and allow the size of the FPGA to be matched to the size

of each benchmark, while maintaining the key FPGA architectural parameters.

The number and type of tiles required for a benchmark on a particular FPGA ar-

chitecture is determined by increasing the number of soft logic cluster tiles and hard

crossbar tiles until the benchmark design fits the FPGA. This is done by incrementally

increasing the number of hard crossbar tiles, mapping the crossbars in the design to

either available hard crossbars or soft logic cluster tiles, and determining if there is

enough soft logic cluster tiles (calculated with the supply ratio) for the design.

When mapping the tiles in the design to an FPGA that includes hard crossbars we

take a different approach compared to Chapter 3 and 4. Instead of mapping every

crossbar in the design to a hard crossbar on the FPGA (where multipliers were used

in Chapters 3 and 4), we take the other approach in which crossbars can be mapped

to either hard crossbars or the soft logic cluster tiles. The reason for this is we do not

consider speed to be a major factor in the mapping process as we do when mapping

multipliers.

91

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

To do this mapping we use algorithm 3 described earlier in Chapter 3 and replicated

here.

Input: Design (#hard circuits, #soft logic cluster tiles), Supply Ratio, Size and
Bus-based or Single bit hard crossbar

Output: Number of each type of tile in FPGA
numHardCircuits = 1;
notMapped = TRUE;
while notMapped do

softLogicAvailableOnFPGA = numHardCircuits * supplyRatio;
A - Map hard circuits in the benchmark to available hard circuits on the
FPGA;
totalSoftLogicNeededByDesign = (soft logic in design) + (design’s circuits not
mapped to hard circuits);
if softLogicAvailableOnFPGA > totalSoftLogicNeededByDesign then

notMapped = FALSE;
end

else
numHardCircuits++;

end

end

Algorithm 3: The algorithm we use for mapping a design with crossbars to an FPGA
with hard crossbars

The actual mapping of crossbars (denoted as step A within Algorithm 3) to hard

crossbars on the FPGA is done in the following way. Given the set of crossbars in the

design and a table similar to Table 5.4, which is extended for all crossbar sizes found

in the designs, we rank each design crossbar in order of the largest gain factor to least.

Table 5.4 describes the area benefits for each design crossbar depending on its size, the

size of the hard crossbar, and the architecture. Once the crossbars in the designs are

ranked in order of benefit, we start mapping the crossbars starting with the crossbar

that gets the greatest area benefit.

Our crossbar allocation also takes into account crossbars that are bigger than a hard

crossbar available on an FPGA and a number of smaller crossbars in a design that

can all be mapped into one hard crossbar (such as the 64-64 hard crossbar that can

implement four 16-16 crossbars). In both cases, the gain factor is calculated based on

92

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

the situation. In the case of a large design crossbar, the gain factor takes into account

the need for multiple hard crossbars and soft logic. In the case of multiple small design

crossbars fitting into one hard crossbar, the gain factors for each crossbar are totalled

together.

After all the hard crossbars have been used on the FPGA, the remaining unmapped

crossbars in the design are mapped to soft logic cluster tiles using a simple lookup from

a table generated by mapping crossbars of all sizes to soft logic implementations on a

Stratix FPGA [Alt03]. In the case where the architecture has shadow clusters, then the

mapping algorithm uses the shadow clusters when a hard crossbar is not being used.

After this mapping, the number of each type of tile is known, and the area of the

FPGA is calculated by multiplying the tile requirements by each tiles area. The fol-

lowing section discusses how we determine the area of each tile.

5.3.2 Transistor Area Estimation of Tiles

Similar to Chapter 3 and 4, the relative area of the soft logic cluster tile and the crossbar

tile are determined using a 90nm CMOS process [STM05, Mic07] and an automated

transistor sizing method, as discussed in Appendix A. We size the programmable

routing, the LUT-based logic, and the crossbar tiles.

For the hard crossbar, multiplexers are implemented using pass transistors, and any

wires that connect across one logical tile or the connections between the crossbars used

to build larger crossbars (such as the crossbar in Figure 5.3) use a level restoring buffer.

These circuits are included in our automatic sizing method. Additionally, the 32-32

and 64-64 crossbars are implemented using 16-16 crossbars that are combined together

to form a functionally flexible hard circuit.

Table 5.7 shows the area profile of different tiles (including the soft logic tile, the

hard crossbar tile, and the shadowed hard crossbar tile) on a percentage basis for our

experimental architecture. The final columns show the size of each tile relative to the

soft logic cluster size N=10. For each crossbar, the values represent only one of the

logical tiles used to make the entire crossbar. For example, the 16-16 hard single bit

crossbar is stretched over 3 logic tiles and the size comparison only compares one of

these three tiles.

93

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

Table 5.7: Percentage area within a tile and relative area for Architecture 1

Tile Type BLEs Crossbar Routing Relative Size
soft logic cluster tile (N=10)

vs.

Cluster (N=10) 18% - 82% 1.00

Single bit Crossbar 16-16 - 2% 98% 0.97
(1 of 3 tiles)

Single bit Crossbar 16-16 15 % 1% 84% 1.15
+ shadow cluster (1 of 3 tiles)

Single bit Crossbar 32-32 - 4% 96% 1.09
(1 of 7 tiles)

Single bit Crossbar 32-32 15% 3% 82% 1.24
+ shadow cluster (1 of 7 tiles)

Single bit Crossbar 64-64 - 6% 94% 1.10
(1 of 16 tiles)

Single bit Crossbar 64-64 15% 4% 81% 1.27
+ shadow cluster (1 of 16 tiles)

Table 5.8 shows the size of each tile relative to the soft logic cluster size N=10 for

all the hard bus-based crossbars we explore in our experimental FPGAs. The hard

bus-based crossbars tile’s area slightly increases in size as bit-width increases. This

per tile area increase is due to two factors. First, the buffers that drive the shared

control signals grow in size since both the physical wire distance and capacitive load

are increasing. Second, as the bus bit-width increases more transistors are packed into

each logical tile that makes up the hard bus-based crossbar.

The most interesting thing about hard crossbars is they are relatively cheap to build

in silicon (a crossbar tile without shadow clusters is roughly the same size as a soft

logic cluster tile), and yet, their soft logic cost, seen in Table 5.4, is high. The low cost

of implementing hard crossbars is because the high pin demand of the hard crossbar

means it is spread over multiple logical tiles. The high cost to implement a crossbar in

soft logic cluster tiles is due to the FPGA’s inefficiency in implementing multiplexers.

94

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

Table 5.8: Relative tile area for hard crossbars compared to a soft logic cluster tile

Tile Type Bus bit-width Relative Size per N=10 Relative Size per N=10
with Shadow Cluster

Cluster (N=10) 1 1.0 -

16-16 (1 of 3) 1 0.97 1.15
16-16 (1 of 6) 4 1.03 1.15
16-16 (1 of 10) 8 1.05 1.18
16-16 (1 of 14) 12 1.08 1.20
16-16 (1 of 18) 16 1.10 1.21

32-32 (1 of 7) 1 1.07 1.24
32-32 (1 of 13) 4 1.17 1.29
32-32 (1 of 21) 8 1.19 1.32
32-32 (1 of 29) 12 1.20 1.34
32-32 (1 of 37) 16 1.22 1.35

64-64 (1 of 16) 1 1.10 1.27
64-64 (1 of 28) 4 1.21 1.35
64-64 (1 of 44) 8 1.23 1.36
64-64 (1 of 60) 12 1.25 1.37
64-64 (1 of 76) 16 1.27 1.39

5.4 Benchmarks

We now discuss the model used to describe benchmark applications that include cross-

bars. Our measurements only require the number of soft logic tiles required in a circuit,

and the number and type of crossbars in a design including how many bus bits they

use if they are bus-based crossbars. This allows us to model the benchmarks with just

these numbers, but leaves us with the problem of validating whether any of these num-

bers realistically represent actual FPGA markets. Part of this problem is solved by the

way we posed the question in the introduction - we wanted to show the effect on the

demand of crossbars in the target market required for the area-efficiency measurement

to break even. To answer this, we vary the benchmark crossbar demand, and so our

results give that demand as an output rather than an input. Within each benchmark,

however, there are different possibilities for how the circuit can demand the crossbar

- they could be small or large, and therefore have a specific internal distribution of

demand that needs to be realistic as well.

95

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

D
e
m

a
n
d
 o

f

C
ro

s
s
b
a
rs

 i
n

D
e
s
ig

n

Benchmarks

1 2 3 4 5 6 7 8 9 10 11 12

X% of benchmarks

containing

crossbars

Figure 5.5: Example distribution crossbar demand in synthetic benchmarks

Figure 5.5 shows the general form of benchmark distributions we generate to repre-

sent the benchmarks targeting FPGAs. It is based on our observations of real bench-

marks that suggest that only subset of circuits will have non-zero demand for crossbars.

There is support for this observation in the fact that no widely used commercial FPGA

yet contains crossbars of the nature we have described. The two key parameters of the

distribution are the percentage of benchmarks containing crossbars and the average

demand ratio for crossbars within those benchmarks. Creating our benchmarks in this

fashion allows us to change the percentage of benchmarks containing crossbars so that

we can model a range of benchmark distributions.

Table 5.9: Examples of synthetic benchmark suites with crossbars

Name
Num. Percent with Avg. Avg. BLE Crossbar

Bmarks Crossbars Demand of Bmarks Demand Range Range
with Crossbars

SB 5 100 5% 1:15 1:300 10000 to 25000 0 to 350
SB 10 100 10% 1:15 1:150 10000 to 25000 0 to 350
SB 15 100 15% 1:15 1:100 10000 to 25000 0 to 350
SB 20 100 20% 1:15 1:75 10000 to 25000 0 to 350

96

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

Table 5.9 shows some examples of synthetic benchmark suites used in our experi-

ments. Within this table, we report the benchmark name, the number of benchmarks,

the percentage of benchmarks containing crossbars, the average demand ratio of bench-

marks containing crossbars, the benchmark suite’s average demand ratio, the range of

BLEs per benchmark, and the range of the number of crossbars per benchmark.

In all benchmarks, the size of the design crossbars are either all 16-16, 32-32, or

64-64. Regardless of the size of the crossbars, the demand ratio remains the same per

benchmark since demand ratio is normalized to 64-64 hard crossbars and a soft logic

cluster size of 10 LUTs per cluster. For example, a design with 2400 soft logic cluster

tiles and a demand ratio equal to 1:15 will include either 160 16-16 hard crossbars, 40

32-32 hard crossbars, or 10 64-64 hard crossbars.

Each individual benchmark that contains crossbars has a demand ratio between 1:1

(representing a design similar to a digital router with a primary function to route

packets to destinations) to 1:227 (representing a design that needs very few crossbars

such as a multi processor system that needs a network to communicate with each

processor in the system). The average demand ratio for each benchmark suite depends

on the percentage of benchmarks containing crossbars, and for the benchmarks that do

contain hard crossbars the average demand ratio for these benchmarks is set to 1:15.

For example, if 10% of the benchmarks in a benchmark suite (with 100 benchmarks)

have crossbars in them, these benchmarks will have an average demand of roughly 1:15,

but the entire benchmark suite will have an average demand ratio of 1:150 (as seen in

Table 5.9) since the other 90% of the benchmarks in the suite have a demand ratio of

1:∞.

The last parameter that we vary within our synthetic benchmarks is the bus uti-

lization of the benchmarks that use crossbars. We do not create a benchmark suite in

which each design has different bus bit-width demands, and instead, for all benchmarks

in the suite and for all crossbars used each bus-based crossbar has the same bus bit-

width. For example, one of the benchmark suites will consist of 12% of the benchmarks

that use hard bus-based crossbars of bit-width 5.

Our approach is to create a range of benchmark suites based on demand for crossbars,

bus utilization for bus-based crossbars, and crossbar size to represent a range of possible

97

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

markets that would target FPGAs. In this way, we can make observations of the

area efficiency of different FPGA architectures serving markets with different demand

characteristics. Given the characteristics of a target market, we can then state what

are the FPGA architectures that result in the most area-efficient implementation of the

designs within each market. This approach is not the most desirable approach (which

would use real benchmarks), but generating a wide range of target markets based on

synthetic benchmarks is a reasonable method to at least observe architectural trends

based on possible market characteristics.

In summary, we have created benchmark suites with similar characteristics as those

described in Table 5.9. These benchmark suites range from 1% of benchmarks con-

taining crossbars all the way to 100% of benchmarks containing crossbars. We create

benchmark suites that contain 16-16, 32-32, and 64-64 crossbars and bus utilization

ranging from bus bit-widths of 1 to 16. For example, one benchmark suite includes

17% of the benchmarks with 3 bit 64-64 crossbars. There are a total of 4800 bench-

mark suites each with 100 benchmarks, and these suites are used to determine what

demand for crossbars results in a break-even area point for implementation area when

comparing hard crossbar architectures to purely soft fabric FPGAs under a variety of

market characteristics.

5.5 Results

We now measure the relative area efficiency of FPGAs with hard crossbars, and FPGAs

with hard crossbars combined with shadow clusters compared to purely soft FPGAs

to determine the area effectiveness of hard crossbars. As described above, this is done

by mapping suites of benchmark circuits into each type of FPGA (which grows in a

consistent architectural manner to accommodate each benchmark) and then measuring

the area of the resulting FPGAs.

The benchmark suites will be mapped to the soft logic architectures described by

the parameters in Table 3.4. We also map these benchmarks to FPGAs that contain

16-16, 32-32, or 64-64 hard crossbars (as shown in Table 5.1) that in some cases will

be bus-based and include shadow clusters.

98

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

We will use the area for of the pure soft logic FPGA as the basis for comparison for

the crossbar-based architectures - normalizing by dividing the soft logic-only area by

the area for the other architectures. Thus, if this area ratio is greater than one it means

that the experimental architecture is using less area than the pure soft logic FPGA.

Finally, we will geometrically average all these area ratios for a set of benchmarks

implemented on a particular architecture, and the average represents how well the

experimental architecture compares to a soft logic FPGA when implementing that

particular benchmark suite.

In each experiment, for each heterogeneous FPGA with crossbars, we vary the supply

ratio (the number of hard crossbar tiles to the number of soft logic cluster tiles) and

select the supply ratio that implements the benchmark suite in the smallest average

area. In Chapter 4, section 4.6.1, we showed how the best supply ratio differs between

shadow and non-shadow multiplier architectures.

One of the metrics that we seek for each experimental FPGA architecture is the

“frequency” that the need for hard crossbars must appear in the benchmark suite for

the inclusion of the hard crossbar to appear to be area neutral. This “frequency” is

determined by the area break-even point where this break-even point is determined as

follows. We will map the benchmark SB 1 (which has 1% of the benchmarks that use

crossbars) to the architecture under study, where the mapping includes varying the

supply ratio for hard crossbars and finding the best supply ratio as described above. If

the geometrically averaged area ratio is greater than one than the break-even point is

1% for this particular architecture. Otherwise, we now map SB 2 to the architecture

and repeat the process. This is continued until we find the percentage of benchmarks

containing hard crossbars at which the experimental and soft logic FPGAs are area

neutral.

5.5.1 Effectiveness of Hard Crossbars with and without Shadow

Clusters

In our first experiment, we will look at how a shadow cluster changes the area efficiency

of an FPGA that includes hard crossbars to determine how this changes the argument

99

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

for including hard crossbars on FPGAs. We will measure the area effectiveness of

an FPGA with hard single bit crossbars and an FPGA with hard single bit crossbars

combined with shadow clusters. The required demand is determined by the “frequency”

of the use of crossbars in the designs which results in an area-neutral architecture

compared to a purely soft FPGA as described above.

Table 5.10: Area break-even demand points for architectures including hard single bit
crossbars

Crossbar Architecture Crossbar+Shadow Architecture

Hard Design Percent of Average Percent of Average
Crossbar Crossbar Benchmarks with Demand Benchmarks with Demand
Type Size Crossbars Ratio Crossbars Ratio

16-16 16-16 18% 1:83 3% 1:500
16-16 32-32 10% 1:150 2% 1:750
16-16 64-64 18% 1:83 3% 1:500

32-32 16-16 32% 1:47 9% 1:167
32-32 32-32 12% 1:125 3% 1:500
32-32 64-64 6% 1:300 2% 1:750

64-64 16-16 49% 1:30 12% 1:125
64-64 32-32 15% 1:100 5% 1:300
64-64 64-64 8% 1:188 2% 1:750

Table 5.10 shows the percentage of benchmarks containing crossbars at which the

average implementation area is the same (meaning the area-efficiency metric is greater

than or equal to 1.0) for both a soft logic FPGA and an FPGA with hard crossbars

(with or without shadow clusters). Column 1 shows the type of hard crossbar included

on the FPGA and column 2 shows the size of the crossbar in the benchmarks within

each benchmark suite. Columns 3 and 4 show the area break-even point and average

demand ratio of the benchmark suite that is area neutral for an FPGA that includes

hard crossbars. Similarly, Columns 5 and 6 show the area break-even point and average

demand ratio of the benchmark suite that is area neutral for an FPGA that includes

hard crossbars combined with shadow clusters.

For example, for an FPGA with 16-16 hard crossbars and no shadow clusters im-

plementing benchmarks with 16-16 crossbars, 18% of the benchmarks must contain

crossbars (with an average demand ratio of 1:83) for that FPGA to have the same area

100

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

efficiency as the pure soft logic FPGA.

The shadow cluster architectures always “break even” with significantly less demand

for crossbars than those without shadow clusters. This result is similar to the previous

chapter for hard multipliers. For example, the 16-16 shadowed architecture implement-

ing benchmarks with 16-16 crossbars requires only 3% of the benchmarks to demand

crossbars and an average demand ratio of 1:215 compared to 18% and 1:83 average

demand ratio for the same architecture without shadow clusters.

These results show that shadow clusters make it far more practical to include lower-

demand circuits on FPGAs, and have potential to alter the architecture argument in

FPGA companies in a substantial way.

One other observation from these results is that it appears the best type of hard

crossbar to implement a crossbar in a design is not necessarily the same size as the

crossbars included on the FPGA. A 16-16 hard crossbar included on an FPGA im-

plements a benchmark with 32-32 crossbars at a lower area break-even point than a

hard 32-32 hard crossbar (where the frequency values are 10% versus 12% respectively).

The break-even metric, however, is not the most suitable way to compare hard crossbar

architectures, and instead, we will use area-efficiency values to compare architectures

with hard crossbars to a purely soft FPGA fabric. In this experiment, we set the av-

erage demand ratio of the benchmarks to 1:25 and pick the FPGA architecture supply

ratio that results in the most area-efficient architecture.

Table 5.11: Area efficiency for architectures including hard single bit crossbars

Hard Crossbar Design Crossbar Area-efficiency Best Supply
Type Size Metric Ratio

16-16 16-16 1.43 1:2
16-16 32-32 1.56 1:5
16-16 64-64 1.05 1:30

32-32 16-16 1.27 1:3
32-32 32-32 1.50 1:4
32-32 64-64 1.53 1:8

64-64 16-16 1.20 1:3
64-64 32-32 1.41 1:5
64-64 64-64 1.51 1:7

101

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

Table 5.11 shows these results. Column 1 shows the type of hard crossbar included

on the FPGA and column 2 shows the size of the crossbar used by the benchmarks

within each benchmark suite. Column 3 shows the area efficiency of a hard crossbar

architecture compared to a purely soft architecture, and column 4 shows the supply

ratio of the FPGA at which this best area-efficiency result is achieved.

These results show that an FPGA with 16-16 hard crossbar implements 32-32 cross-

bars with an area-efficiency metric of 1.56. This is more area efficient than an FPGA

with 32-32 hard crossbars with its area-efficiency metric of 1.50. To understand why,

we look at the cost of implementing a 32-32 crossbar on each FPGA. It takes four 16-16

hard crossbars and 3.2 soft logic cluster tiles for a total of 17.2 tiles to implement a

32-32 crossbar in a design as opposed to 7 32-32 hard crossbar tiles. In the cases where

the hard crossbars are used by the benchmarks in the suite, an FPGA with 32-32 hard

crossbars are more than twice as small implementing these crossbars. However, this

benefit will be offset by the benchmarks that do not use crossbars, since in these cases,

the 16-16 hard crossbar tile is physically smaller compared to the 32-32 hard crossbar

tile meaning that there is less of an area penalty for the unused smaller crossbars. It

turns out that in this case (which is determined by the benchmark demand) the differ-

ence between crossbar tile areas is a larger factor than the area benefit for mapping to

the more efficient 32-32 hard crossbars.

If we increase the size of the crossbars in the benchmark to 64-64, then the gain

factors for larger hard crossbars like the 32-32 and 64-64 are big enough to dominate

the increased size of these tiles. In this case, the 16-16 crossbar is not the best hard

crossbar choice.

5.5.2 Effect of a Better Soft Fabric for Crossbars

Next, we explore the effect of the soft fabric architecture of an FPGA. If the soft fabric

is more area efficient at implementing crossbars then the gain in using hard crossbars

is reduced. We seek to determine if this reduction in hard crossbar benefit changes the

previous analysis, and if shadow clusters still provide an improvement in area efficiency.

We perform the same experiment as above using the soft logic fabric of Architecture

2 (described in Table 3.4), which implements crossbars more efficiently than the soft

102

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

logic fabric of Architecture 1. This will help us validate if shadow clusters combined

with hard crossbars are still a practical architectural inclusion on these more efficient

soft fabric architectures.

Architecture 2 is modeled after the Altera Stratix II [Alt04d] and the Virtex-5 [Xil06]

and implements crossbars in the soft logic cluster tiles on average in 28% less area than

Architecture 1 (using our tile area measurements). We will measure how this improved

soft logic implementation of crossbars changes our measurements of the area benefit of

hard crossbars combined with shadow clusters.

We include hard crossbars in our experimental FPGA and evaluate the benefits of

these crossbars in the same manner as described in Section 5.2.

To make our results a fair comparison with the previous sections results, we do

two conversions to the synthetic benchmarks when mapping them to this architecture

to normalize the benchmarks. First, the lookup table to calculate the soft cost of a

crossbar is generated using a Stratix II ALUT. Second, in each benchmark the total

number of Logic Elements (LEs) required by the benchmark is first divided by 1.25

where 1.25 is Altera’s quoted Stratix II improvement in logic utilization over Stratix I

chips [Alt04e].

Table 5.12: Area break-even points for a better soft fabric and hard single bit crossbars

Crossbar Architecture Crossbar+Shadow Architecture

Hard Design Percent of Average Percent of Average
Crossbar Crossbar Benchmarks with Demand Benchmarks with Demand
Type Size Crossbars Ratio Crossbars Ratio

16-16 16-16 27% 1:56 9% 1:167
16-16 32-32 15% 1:100 3% 1:500
16-16 64-64 23% 1:65 15% 1:100

32-32 16-16 37% 1:41 14% 1:107
32-32 32-32 19% 1:79 7% 1:214
32-32 64-64 11% 1:136 3% 1:500

64-64 16-16 40% 1:38 20% 1:75
64-64 32-32 21% 1:71 9% 1:167
64-64 64-64 12% 1:125 3% 1:500

Table 5.12 shows the same information as Table 5.10 except the benchmark suites

103

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

are mapped to FPGAs with Architecture 2’s soft logic parameters. Columns 3 and

5 show the percentage of benchmarks containing crossbars at which the average im-

plementation area is the same for both a soft logic FPGA and an FPGA with hard

crossbars (with and without shadow clusters).

In general, we can see that because Architecture 2 implements crossbars more area

efficiently in the soft logic that the area benefit of hard crossbars combined with or

without shadow clusters is reduced. For example, implementing 32-32 crossbars on an

Architecture 1 with 16-16 hard crossbars results in an area break-even point of 10%

compared to Architecture 2 with 16-16 hard crossbars resulting in a break-even point

of 15%. The break-even point demand increases for Architecture 2 since the purely

soft FPGA implements crossbars more area efficiently than Architecture 1.

These results still show that shadow clusters reduce the area penalty for unused hard

crossbars, and shadow clusters combined with hard crossbars provide a needed demand

to be area-neutral that is lower than that of an architecture without shadow clusters.

These results, however, do suggest that as the soft logic fabric improves the inclusion

of a hard circuit may become less desirable.

5.5.3 Effectiveness of Bus-based Hard Crossbars

In the above work, we focussed on single-bit crossbars. Here, we will compare the hard

crossbar architectures by measuring the area efficiency of hard bus-based crossbars and

hard single bit hard crossbars. As discussed in section 5.2 hard bus-based crossbars

share the control pins between each crossbar in the bus thus reducing the pin demand

of the hard circuit and increasing the area benefit if more than one of the bits in the

bus are used.

In this experiment, we will fix the benchmark suite to 20% of the benchmarks contain-

ing crossbars, which is equivalent to an average demand ratio of 1:75 for the benchmark

suite. For each FPGA that includes hard bus-based crossbars with a specified bus size,

we will map each our benchmark suite, SB 20, with a specified crossbar bus utilization

ranging from 1 bit to 16 bits. When we map each benchmark to the architecture, we

pick the supply ratio that results in the most area-efficient architecture. This was first

seen in Chapter 3, Section 3.6.2.

104

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

We use the area-efficiency metric to compare each of the architectures implementing

the benchmark suite. In each case, an area-efficiency metric is calculated as the area

used to implement the benchmarks on a purely soft FPGA divided by the area to im-

plement the same benchmarks on an experimental architecture, and an area-efficiency

metric greater than one means that the experimental FPGA is smaller than the purely

soft FPGA. These area-efficiency metric are geometrically averaged for each benchmark

in the benchmark suite.

We use an FPGA with the soft logic architectural parameters for Architecture 1

noting that the general results are similar for both Architecture 1 and Architecture

2 with similar affects as described in the previous experiments. Similarly, we have

performed these experiments for hard bus-based crossbars of size 16-16 and 32-32 with

similar results as described below.

Table 5.13 shows the area-efficiency metrics for FPGAs with 64-64 hard bus-based

crossbars. Column 1 and column 2 shows the size of the hard bus-based crossbars and

the bus bit-width. Column 3 and column 4 show the size and bus utilization of the

crossbars in the benchmark. Column 5 shows the supply ratio that results in the best

area-efficiency metric for the given benchmark suite mapped to this architecture, and

column 6 shows the area-efficiency metric.

These results show that hard bus-based crossbars provide an area-efficiency benefit

over a hard single bit crossbar depending on the how much of the bus is utilized. The

4-bit hard bus-based crossbar needs to have a bus utilization of 2 or more to be more

area-efficient compared to the hard single bit crossbar. Similarly, the 8-bit hard based

crossbar with a bus utilization of 3 and the 16-bit hard based crossbar with a bus

utilization of 5 are more area-efficient than the hard single bit crossbar.

We can conclude that the hard bus-based crossbar is a more area-efficient architecture

for a hard crossbar included on an FPGA if the designs have sufficient bus utilization

in the target market.

105

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

Table 5.13: Area-efficiency results for hard 64-64 bus-based crossbars

Crossbar Type Bus Size Design Bus utilization Best Area-
on FPGA crossbar by benchmark Supply Efficiency

size Ratio Metric

64-64 1 64-64 1 1:14 1.075

64-64 4 64-64 1 1:14 1.030
64-64 4 64-64 2 1:14 1.088
64-64 4 64-64 3 1:18 1.119
64-64 4 64-64 4 1:18 1.139

64-64 8 64-64 1 1:72 0.996
64-64 8 64-64 2 1:13 1.047
64-64 8 64-64 3 1:14 1.082
64-64 8 64-64 4 1:16 1.105
64-64 8 64-64 5 1:18 1.121
64-64 8 64-64 6 1:18 1.134
64-64 8 64-64 7 1:20 1:144
64-64 8 64-64 8 1:20 1:153

64-64 16 64-64 1 1:40 0.980
64-64 16 64-64 2 1:20 1.002
64-64 16 64-64 3 1:15 1.033
64-64 16 64-64 4 1:15 1.056
64-64 16 64-64 5 1:14 1.076
64-64 16 64-64 6 1:15 1.091
64-64 16 64-64 7 1:13 1.099
64-64 16 64-64 8 1:18 1.113
64-64 16 64-64 9 1:20 1.201
64-64 16 64-64 10 1:18 1.128
64-64 16 64-64 11 1:18 1.135
64-64 16 64-64 12 1:20 1.141
64-64 16 64-64 13 1:20 1.146
64-64 16 64-64 14 1:20 1.149
64-64 16 64-64 15 1:20 1.154
64-64 16 64-64 16 1:20 1.157

5.5.4 Effectiveness of Bus-based Hard Crossbars with Shadow

Clusters

Next, we include shadow clusters with the hard crossbars on an FPGA to measure

how shadow clusters change the quality of an architecture that includes either the hard

single bit or hard bus-based crossbar.

106

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

We perform the same experiment as described in the last section, but here, we

combine shadow clusters with the hard crossbars to observe what effect shadow clusters

have on the area efficiency of these hard circuits.

Table 5.14: Area-efficiency results for hard 64-64 bus-based crossbars combined with
shadow clusters

Crossbar Type Bus Size Design Bus utilization Best Area-
on FPGA crossbar by benchmark Supply Efficiency

size Ratio Metric

64-64 1 64-64 1 1:7 1.149

64-64 4 64-64 1 1:5 1.111
64-64 4 64-64 2 1:7 1.161
64-64 4 64-64 3 1:9 1.185
64-64 4 64-64 4 1:12 1.197

64-64 8 64-64 1 1:4 1.071
64-64 8 64-64 2 1:5 1.128
64-64 8 64-64 3 1:7 1.156
64-64 8 64-64 4 1:8 1.174
64-64 8 64-64 5 1:10 1.185
64-64 8 64-64 6 1:11 1.193
64-64 8 64-64 7 1:13 1.200
64-64 8 64-64 8 1:15 1.204

64-64 16 64-64 1 1:5 1.017
64-64 16 64-64 2 1:5 1.078
64-64 16 64-64 3 1:5 1.112
64-64 16 64-64 4 1:6 1.134
64-64 16 64-64 5 1:7 1.149
64-64 16 64-64 6 1:8 1.160
64-64 16 64-64 7 1:8 1.170
64-64 16 64-64 8 1:9 1.177
64-64 16 64-64 9 1:10 1.183
64-64 16 64-64 10 1:11 1.188
64-64 16 64-64 11 1:12 1.191
64-64 16 64-64 12 1:13 1.195
64-64 16 64-64 13 1:14 1.198
64-64 16 64-64 14 1:14 1.200
64-64 16 64-64 15 1:15 1.202
64-64 16 64-64 16 1:17 1.204

Table 5.14 shows the area-efficiency metrics for hard crossbars combined with shadow

cluster, and this table has the same structure as Table 5.13.

107

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

Overall, the shadow cluster improves the area efficiency of the hard bus-based cross-

bar compared to including a hard bus-based crossbar on an FPGA, as expected. In

each of the 4-bit, 8-bit, and 16-bit hard bus-based crossbars they are more area-efficient

than the hard single bit crossbar if the bus utilization is 2, 3, and 5 bits respectively.

This bus utilization result is the same result as in the previous experiment.

5.5.5 Effectiveness of Bus-based Hard Crossbars with Shadow

Clusters in terms of Market Demand

The previous two experiments (crossbars with and without shadow clusters) indicate

that a hard bus-based crossbar with sufficient bus utilization is more area efficient

compared to a hard single bit crossbar regardless if the hard crossbar contains shadow

clusters or not. In this experiment, we will study what market demand is needed to

include either a hard single bit crossbar or a hard bus-based crossbar on an FPGA. In

this way, we are asking, regardless of area-efficiency improvement of a hard crossbar,

what type of hard crossbar architecture is best to include on an FPGA given the

demand for crossbars in the target markets?

This experiment follows the same procedure as section 5.5.1 in which we measure

the area effectiveness of each architecture determining the “frequency” of the use of

crossbars in the designs which results in an area-neutral architecture compared to a

purely soft FPGA.

Table 5.15 shows the area break-even points for FPGAs with hard 64-64 hard bus-

based crossbars. Column 1 and column 2 shows the size of the hard bus-based crossbars

and the bus bit-width. Column 3 and column 4 show the size of the crossbars in the

benchmark and the bus utilization. Column 5 and 6 show the percentage of benchmarks

containing crossbars and the average demand of the benchmark suite at the break-even

point.

If we compare the break-even points of the hard bus-based crossbar architectures to

the hard single bit crossbar architectures, then hard bus-based crossbar have a lower

market demand when the benchmarks have a demand of at least 50% bus utilization.

When the bus utilization is less than 50%, the hard single bit crossbar has a lower

108

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

Table 5.15: Area break-even points for hard 64-64 bus-based crossbars

Crossbar Type Bus Size Design Bus utilization Percent of Average
on FPGA crossbar by benchmark Benchmarks with Demand

size Crossbars Ratio

64-64 1 64-64 1 8% 1:188

64-64 4 64-64 1 13% 1:115
64-64 4 64-64 2 8% 1:188
64-64 4 64-64 3 5% 1:300
64-64 4 64-64 4 4% 1:375

64-64 8 64-64 1 21% 1:71
64-64 8 64-64 2 12% 1:125
64-64 8 64-64 3 9% 1:167
64-64 8 64-64 4 6% 1:250
64-64 8 64-64 5 5% 1:300
64-64 8 64-64 6 5% 1:300
64-64 8 64-64 7 4% 1:375
64-64 8 64-64 8 4% 1:375

64-64 16 64-64 1 45% 1:33
64-64 16 64-64 2 19% 1:79
64-64 16 64-64 3 14% 1:107
64-64 16 64-64 4 12% 1:125
64-64 16 64-64 5 10% 1:150
64-64 16 64-64 6 9% 1:167
64-64 16 64-64 7 8% 1:188
64-64 16 64-64 8 6% 1:250
64-64 16 64-64 9 6% 1:250
64-64 16 64-64 10 5% 1:300
64-64 16 64-64 11 5% 1:300
64-64 16 64-64 12 5% 1:300
64-64 16 64-64 13 5% 1:300
64-64 16 64-64 14 4% 1:375
64-64 16 64-64 15 4% 1:375
64-64 16 64-64 16 4% 1:375

required demand.

Next, we include shadow clusters with the hard bus-based crossbars to measure how

these circuits change the needed market demand.

Table 5.15 shows the same results as Table 5.16 except these area break-even points

are for FPGAs with hard 64-64 hard bus-based crossbars combined with shadow clus-

ters.

109

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

Table 5.16: Area break-even points for hard 64-64 bus-based crossbars with shadow
clusters

Crossbar Type Bus Size Design Bus utilization Percent of Average
on FPGA crossbar by benchmark Benchmarks with Demand

size Crossbars Ratio

64-64 1 64-64 1 3% 1:500

64-64 4 64-64 1 13% 1:115
64-64 4 64-64 2 6% 1:250
64-64 4 64-64 3 4% 1:300
64-64 4 64-64 4 3% 1:375

64-64 8 64-64 1 13% 1:115
64-64 8 64-64 2 6% 1:250
64-64 8 64-64 3 4% 1:300
64-64 8 64-64 4 4% 1:300
64-64 8 64-64 5 4% 1:300
64-64 8 64-64 6 4% 1:300
64-64 8 64-64 7 3% 1:375
64-64 8 64-64 8 3% 1:375

64-64 16 64-64 1 38% 1:39
64-64 16 64-64 2 16% 1:94
64-64 16 64-64 3 11% 1:136
64-64 16 64-64 4 9% 1:167
64-64 16 64-64 5 6% 1:250
64-64 16 64-64 6 6% 1:250
64-64 16 64-64 7 5% 1:300
64-64 16 64-64 8 4% 1:375
64-64 16 64-64 9 4% 1:375
64-64 16 64-64 10 4% 1:375
64-64 16 64-64 11 4% 1:375
64-64 16 64-64 12 4% 1:375
64-64 16 64-64 13 4% 1:375
64-64 16 64-64 14 4% 1:375
64-64 16 64-64 15 4% 1:375
64-64 16 64-64 16 4% 1:375

Shadow clusters combined with the hard crossbars change the break-even points even

more significantly. With shadow clusters, the hard bus-based crossbar compared to the

hard single bit crossbar is area-beneficial when almost 100% of the bits are used in

the bus. This is true for a 4-bit and 8-bit bus-based crossbar, and a 16-bit bus based

crossbar is never as good as a hard single bit crossbar combined with shadow clusters.

110

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

This is the case for one reason; a shadow cluster allows each tile of the hard crossbars,

bus-based or not, to be used. The gain factor area benefits previously observed for

hard bus-based crossbars is dominated by the fact that the hard single bit crossbar is

small, provides an area benefit, and can always be used when combined with a shadow

cluster.

The conclusion here is that if the architect is concerned with the market demand

needed to include a hard crossbar on an FPGA, then a hard single-bit crossbar com-

bined with a shadow cluster is the hard circuit that results in the lowest needed market

demand for an architecture to be area neutral with a purely soft FPGA and this may

be a factor when deciding to include a hard crossbar on an FPGA.

5.6 General Equation for Area Efficiency of Shadow

Clusters

We now discuss the equations that calculate the area efficiency of an FPGA with

and without shadow clusters for a particular benchmark given demand ratio. These

equations calculates the area efficiency metric we have been generating using our mea-

surement methodology in the last two chapters. There are two equations needed; the

first equation applies when the demand ratio of the benchmark is greater than or equal

to the supply ratio of the FPGA:

AreaEfficiencyMetric =
AreaHardCircuit + 1

Rs
AreaSoftLogicT ile

AreaHardCircuit+ShadowCluster + 1
Rs

AreaSoftLogicT ile

(5.3)

The second equation applies when the demand ratio is less the supply ratio:

AreaEfficiencyMetric =
AreaHardCircuit + 1

Rs
AreaSoftLogicT ile

AreaHardCircuit+ShadowCluster + 1
(Rs−Rd)

AreaSoftLogicT ile

(5.4)

In both equations, the area of the hard circuit (with or without shadow clusters) is

111

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

added to the area of the soft logic cluster tile multiplied by the amount of soft logic

needed, and the area of an FPGA without shadow clusters is divided by the area of an

FPGA with shadow clusters. These two equations apply when a benchmark is mapped

using algorithm 1 first introduced in Chapter 5, Section 3.3.1.

The area of the soft logic cluster tile in the divisor of the second equation, which

represents and architecture with shadow clusters and a demand lower than the supply,

is multiplied by the supply ratio subtracted by the demand ratio. The reasoning here

is that the additional unused hard circuits that are used as shadow clusters will reduce

the number of soft logic cluster tiles needed in the architecture, thus changing the

observed supply ratio. In a way, some of the hard circuits with shadow clusters are

acting as soft logic cluster tiles.

For any arbitrary hard circuit, the area efficiency benefit of such a hard circuit

combined with shadow clusters can be calculated using the the above equations for a

given benchmark and the area costs for the programmable routing, the shadow cluster,

and the logic for the hard circuit. This allows for an upfront analysis of the benefit of

shadow clusters for a given hard circuit.

5.7 Summary

In this chapter, we introduced a hard crossbar as a hard circuit to include on an FPGA.

Hard crossbars have not been included in FPGAs since there are not sufficient number

of designs that use hard crossbars. We measured how hard crossbars combined with

shadow clusters improve these FPGA’s area efficiency such that the frequency of hard

crossbars appearing in designs is reduced so that the FPGA is area neutral with a

purely soft programmable logic FPGA.

Our measurements show that in all cases, the combination of a shadow cluster and a

hard crossbar results in an architecture that needs much fewer of the designs to employ

hard crossbars. Our results show that a hard bus-based crossbar will provide a greater

area-efficiency benefit over hard single bit crossbars if minimum bus utilization is met

in the target market. When an architect is concerned with the demand needed by the

market to achieve an area-neutral architecture compared to a purely soft logic FPGA,

112

5 Increasing FPGA Area Efficiency of Lower-Demand Hard Circuits

then a hard single bit crossbar combined with shadow clusters is the best choice.

The reason shadow clusters are so effective when combined with hard crossbars is that

in terms of area this hard circuit is very similar to a soft logic cluster tile. Arguably,

the hard crossbar combined with shadow cluster represents soft fabric heterogeneity

more than tile-based heterogeneity meaning the tile is always useable as a piece of soft

logic with additional specific functionality that comes at a small area increase in the

tile.

In the next chapter, we shift our attention from architectural improvement of hetero-

geneous FPGAs to the CAD tools targeting heterogeneous FPGAs. We will describe a

tool that we have created to efficiently target heterogeneous FPGAs at the RTL level.

113

6 A Verilog RTL Front-End Synthesis Tool for

Heterogeneous FPGAs

The trouble with having an open mind, of course, is that

people will insist on coming along and trying to put

things in it.

Terry Pratchett

6.1 Introduction

The previous three chapters in this dissertation have focused on creating heterogeneous

FPGAs that are more area efficient by building them with the correct number of hard

circuits and increasing the utilization of those hard circuits. In this chapter, the focus

changes from heterogeneous FPGA architecture to heterogeneous FPGA CAD flow.

Regardless of how well we design the heterogeneous FPGA architecture the quality of

our mapped designs will only be as good as the CAD tools that map them to these

architectures.

FPGAs with hard circuits increase the need for quality CAD algorithms to target

these structures. Traditional “soft” logic mapping into LUTs [CC04, CH00, FRV91,

CCD+92] is done after technology-independent logic optimization [CPD96, BL90, Bry86],

but the mapping into coarse-grain structures such as multipliers and memories is much

more appropriately done at the RTL synthesis level where these structures are more

directly recognizable as discussed in Chapter 2, Section 2.4.

The purpose of this chapter is to present the algorithms to flexibly target different

hard circuits on an FPGA. These hard circuits are either tile-based heterogeneity or soft

fabric heterogeneity, which we previously defined in Chapter 2, Section 2.3. Recall that

114

6 A Verilog RTL Front-End Synthesis Tool for Heterogeneous FPGAs

soft fabric heterogeneity is defined as the presence of hard circuits included in every tile

in the programmable fabric and tile-based heterogeneity is defined as a differentiated

tile(s) included on the FPGA as opposed to general programmable tiles. We will

demonstrate that the front-end synthesis tool we have built achieves approximate parity

with the quality of industrial-class RTL synthesis tools.

Previous work in targeting heterogeneous FPGAs with a front-end synthesis tool has

been the work of industry. Both Altera and Xilinx incorporate front-end synthesis into

their FPGA CAD flow tools called Quartus [Alt04c] and ISE [Xil04] respectively. Other

popular front-end synthesis tools for FPGAs include Altera’s Quartus [Alt04c], Xilinx’s

ISE [Xil04], Synplify [Syn03], Blast FPGA [Mag05], LeonardoSpectrum [Men01], and

Design Compiler FPGA [Syn04]. To our knowledge this work is the first academic

effort to build a front-end tool to target heterogeneous FPGAs.

This chapter is organized as follows: Section 6.2 describes the basic flow of the tool.

Section 6.3 describes the mapping techniques needed in a high quality tool including

the algorithm to flexibly target different hard circuits. In Section 6.5, we present

comparison results for our tool versus Altera’s Quartus RTL synthesis tool [Alt04c].

6.2 Overview of the flow for Front-end Synthesis

In this chapter, we present an HDL synthesis tool that converts a Verilog design into

a flattened structural netlist. The input to this flow is a Verilog design [Ope93] and

a description of the targeted FPGA including a hard circuit library that describes the

functionality of the tile-based heterogeneous hard circuits. The output is a flattened

netlist consisting of structures available on the targeted FPGA: either hard circuits or

primitive gates. The output netlist can be passed into Quartus’ [Alt04c] FPGA CAD

flow.

Figure 6.1 shows the major stages of the tool flow. First, a public-domain front-end

parser, Icarus [Wil07], parses the Verilog [Ope93] design and generates a hierarchical

representation of the design. This hierarchical representation is a tree structure where

the leaves of the tree represent computational primitives such as memory, addition,

and logic, and nodes in the tree represent a combination of primitives and other nodes

115

6 A Verilog RTL Front-End Synthesis Tool for Heterogeneous FPGAs

Optimize RTL

OUTPUT - Flat Netlist

INPUT - HDL Design

Parse

Elaborate

Partial Mapping

Identify Bind

Figure 6.1: General flow to convert HDL design to a logic netlist

in what is called a module in Verilog.

An elaboration stage traverses this hierarchical representation of the design to create

a flat netlist that consists of structures including logic blocks, memory blocks, if and

case blocks, arithmetic operations, and registers. We call these netlist structures,

primitives.

The next stage in the flow performs simple optimizations on this netlist. These

optimizations include examining adders and multipliers for constant inputs to pos-

sibly shrink the size of the computation, collapsing multiplexers, and detecting and

re-encoding finite state machines to be more efficient. These mappings are discussed

in more detail in Section 6.3.1.

The next stage in the flow is partial mapping where parts in the netlist are first

identified and then bound to available hard circuits on the FPGA. In the identification

phase of partial mapping, the algorithm searches for parts of the design that could be

116

6 A Verilog RTL Front-End Synthesis Tool for Heterogeneous FPGAs

>
&

!
<

&
+

||
&

&&
&

&

& &

&

&

&
&

*

**
+

!

!

*

HARD CIRCUIT LIBRARY

+
+

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT

LOGIC

SOFT

LOGIC

HARD

CIRCUIT

HARD

CIRCUIT

HARD

CIRCUIT

HARD
CIRCUIT

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT

LOGIC

SOFT

LOGIC

SOFT

LOGIC

IDENTIFY

IDENTIFY
*

*

*

M
A
P

M
A
P

M
A

P

IDENTIFY

FLATTENED NETLIST

HETEROGENEOUS FPGA

*

Figure 6.2: The partial mapping process

mapped to hard circuits on the target FPGA. These hard circuits include registers,

adders, multipliers, and memories. In section 6.3.2, we discuss how important it is

to identify and map registers and adders to an efficient implementation on the target

FPGA.

Figure 6.2 shows an abstract illustration of the partial mapping process for identifying

and mapping multipliers and more complex circuits that include multipliers. A hard

circuit library, which is included with the input architectural description of the FPGA,

117

6 A Verilog RTL Front-End Synthesis Tool for Heterogeneous FPGAs

is used to identify parts of the netlist that could be mapped to the hard circuits on the

FPGA. The binding stage then determines how to map these identified circuits to the

heterogeneous FPGA. Complex hard circuits, such as the two multipliers joined by an

addition seen in Figure 6.2, are searched for in the netlist using a matching algorithm,

and this algorithm is discussed in Section 6.3.3.

The binding stage determines how each part of the netlist will be implemented. This

is done by mapping parts of the netlist to hard circuits, soft programmable logic, or

a mixture of both. In our experience, the binding stage only needs to make simple

decisions; if a hard circuit exists that implements a piece of the netlist then bind it to

that hard circuit. This choice always results in a faster and smaller mapped design for

the designs we have experimented with. In Figure 6.2 the three identified multiplier

circuits can be bound to hard circuits on the example FPGA since this FPGA includes

four hard circuits, and therefore, the binding occurs. The specific location of these

hard circuits is not determined at the binding stage and the decision is left to the

downstream placement algorithm.

The output from our flow is a flat netlist consisting of connected complex logic

structures and primitive gates.

6.3 Mapping Techniques

One of the key goals in the work in this chapter is to create a tool that achieves quality

of results comparable to an industrial front-end synthesis tool. To achieve this we

present several of the key optimizations discovered in the process of creating the high-

quality tool. First, we discuss optimizations that are done immediately after flattening

the original design. These include arithmetic optimizations, finite state machine re-

encoding, and multiplexer collapsing optimizations. In subsequent sections, we discuss

the partial mapper and how it efficiently maps registers and additions to a target FPGA

and the steps that explicitly identify and bind tile-based hard circuits.

118

6 A Verilog RTL Front-End Synthesis Tool for Heterogeneous FPGAs

6.3.1 Mapping Soft Structures to an FPGA

We perform three optimizations that affect the final speed and area results of a de-

sign mapped to a heterogeneous FPGA. Specifically, these optimizations are arithmetic

operations, detect and re-encode state machines to one-hot encoded, and collapse mul-

tiplexers.

Arithmetic Optimizations

For multiplications and additions, it is possible to shrink the size of the arithmetic

operation by pushing constant values of one and zero through logic and computation

if possible in a optimization called, constant propagation [Kil73]. These operations are

best done at RTL synthesis instead of logic synthesis since the result of this optimization

affects partial mapping decisions since a smaller arithmetic operation might fit into a

smaller fraction of hard circuits on the FPGA.

Figure 6.3 (a) shows how additions can be improved by replacing “0” constant bits

for low order bits with a wire. Similarly, Figure 6.3 (b) shows how “0” constants at

most significant bits can shrink the size of an unsigned multiplier by simply eliminating

these most significant constant bits. These optimizations can save significant numbers

of hard multiplier units on the target FPGA. For example, if an 11x11 unsigned

multiplier is to be implemented on a Stratix I, and the multiplier can be shrunk by 2

bits, then only one 9x9 multiplier is needed as opposed to two 9x9 multipliers.

We also look for arithmetic operations with constant inputs. Some of these arithmetic

operations can be implemented more efficiently in soft logic as opposed to simply

mapping them to hard circuits. For example, a multiplier with a constant input can be

more efficiently implemented using a Read Only Memory (ROM) or shift operations

depending on the bit-width and value of the constant. We also implement A + B + 1

or A−B + 1 in one adder using the carry in signal that commonly exists in the adder

capabilities of a BLE.

119

6 A Verilog RTL Front-End Synthesis Tool for Heterogeneous FPGAs

a[1]a[2]a[3] a[0]b[0]b[1]

carry
out

o[1]o[2]o[3] o[0]

Original Circuit Optimized Circuit

lsbmsb lsbmsb

lsbmsb

a[1]a[2]0 a[0] 0 b[0]b[1]0

o[1]o[2]o[3] o[0]o[5]o[6]o[7] o[4]

a[1]a[2] a[0] b[0]b[1]

o[1]o[2]o[3] o[0]o[4]

a[1]a[2]a[3] a[0] 0b[0]b[1] 0

carry
out

o[1]o[2]o[3] o[0]

lsbmsb lsbmsb

lsbmsb

a[1]a[2]a[3] a[0]

0b[0]b[1] 0

o[1]o[2]o[3] o[0]

+

a[1]

a[2]a[3]

a[0]

b[0]b[1]

o[2]o[3]

+

a[1]a[2]0 a[0]

0 b[0]b[1]0

o[1]o[2]o[3] o[0]o[5]o[6]o[7] o[4]
*

a[1]a[2] a[0]

b[0]b[1]

o[1]o[2]o[3] o[0]o[4]

*

(a)

(b)

Original Circuit Optimized Circuit

Figure 6.3: Two examples of simple arithmetic optimizations

One-hot Re-Encoding of Finite State Machines

The implementation of finite state machines can benefit from being one-hot encoded

when implemented on an FPGA [Gol93]. This results in one flip-flop per state, which

reduces the number of bits needed to be written during each calculation of the next

state. Since less bits are written per cycle, the amount of multiplexing and routing is

also reduced, which often makes the finite state machine implementation both faster

and smaller.

In the tool flow, finite state machines are first detected, and then states are re-

encoded to a one hot-encoding. We identify state machines by checking if 3 character-

istics of a potential state machine are satisfied. These characteristics are:

120

6 A Verilog RTL Front-End Synthesis Tool for Heterogeneous FPGAs

1. There is a case statement in a Verilog combinational always block.

2. The signal being compared in the combinational case statement comes from a

register. This register is the state register.

3. There is a feedback loop to the state register through a multiplexer, and the

only inputs to this multiplexer come from either a feedback loop from the state

register or constant inputs that represent state encoded values.

These rules are sufficient, but not necessary. Therefore, not all finite state machines

will be detected using these characteristics.

Multiplexer Collapsing

module control (clock, a, b, c, d, reg1, reg2);

input [1:0]a, b, c, d, clock;

output reg1, reg2;

reg reg2;

assign reg1 = (b == 0) ? d : c;

always @(posedge clock)
case(a)

2'b00: reg2<=1'b0;

2'b01: reg2<=1'b1;

2'b10: reg2<=reg1;

endcase

endmodule

Verilog HDL

Figure 6.4: Control statements in Verilog, which become multiplexers

Multiplexers are frequently used in circuit designs. Figure 6.4 shows Verilog code,

which has both a case and an if structure and both of these structures are commonly

implemented as decoded multiplexers.

We can collapse case and if structures together and group common signals together to

reduce the number of logic levels in the data path potentially speeding up these paths.

121

6 A Verilog RTL Front-End Synthesis Tool for Heterogeneous FPGAs

0

1 reg2

a[0]a[1]

ff

0

1

reg2

a[1]

ff

d

c

(b)(a)

d

c

b

a[0]

b

a[1]

Figure 6.5: Example in Figure 6.4 collapses into a lower number of multiplexer levels

Figure 6.5(a) shows the initial implementation of the Verilog code in Figure 6.4, and

Figure 6.5(b) shows how the two multiplexers can be collapsed at the cost of moving

the logic to the control signals. This optimization increases the depth of logic for the

control signals, with the benefit of amortizing logic and decreasing the number of logic

levels on the data path.

We collapse multiplexers assuming that the additional logic complexity added to

the control signals will not affect the overall speed of the design. This is not always

the case, and to improve multiplexer collapsing, the algorithm would need to estimate

path delays of the circuit and determine if the additional delay on the control paths

will affect the overall speed of the design. These optimizations are similar to Metzgen

et. al.’s work [MN05] in which they use a technique called compression to collapse 2:1

multiplexers together into 4:1 multiplexers so that they can be efficiently implemented

on a 4-LUT FPGA. We, however, do not just collapse 2:1 multiplexers and compress

all multiplexers.

122

6 A Verilog RTL Front-End Synthesis Tool for Heterogeneous FPGAs

6.3.2 Mapping to Soft Fabric Heterogeneity on FPGAs

To achieve industrial-quality results on modern FPGAs it is essential to correctly target

the special-purpose adder structures that exist on all modern FPGAs and the features

of the flip-flops that are provided within the soft fabric of the FPGA. We assume, for

this discussion, that the target BLEs have one register and can implement either a logic

function or one or more bits of addition or subtraction. This is similar to the BLEs on

modern FPGAs available from both Altera [Alt03] and Xilinx [Xil05]. Mapping to soft

fabric heterogeneity is done at the partial mapping stage in the tool flow.

module reg1 (clock, reset, a, b, reg1, reg2);

input [1:0]a, b, reset, clock;
output [1:0]reg1, [1:0]reg2;

reg out[1:0]reg1, [1:0]reg2;

always @(posedge clock or negedge reset)

if (~reset)

reg1 <= 0;

else

reg1 <= a;

always @(posedge clock)
if (b)

reg2 <= a;

endmodule

REGISTER

a[0]

a[1]

reset

clock

reg1[1]

reg1[0]

en

rst
clk

REGISTER

a[0]

a[1]

b

clock

reg2[1]

reg2[0]

en

rst
clk

Verilog HDL

Synthesized RTL Circuit

Figure 6.6: Verilog design with registers and a possible implementation

For example, when mapping parts of a design to flip-flops it is important to detect

123

6 A Verilog RTL Front-End Synthesis Tool for Heterogeneous FPGAs

logic that can be used for a flip-flop’s enable and reset signals, which, if undetected,

will result in an FPGA implementation that is both larger and slower. Figure 6.6

shows Verilog code that implements one 2-bit register with a reset signal, which if not

detected correctly will cause the synthesis of extra multiplexer logic. Figure 6.6 also

shows a Verilog design along with a logic schematic of a design in which the signal b

is a clock enable signal for the flip-flop. If b is not properly detected and connected

to the enable signal pin on the flip-flop, then a feedback loop through a multiplexer is

needed to implement equivalent logic functionality.

6.3.3 Mapping to Tile-based Heterogeneity on FPGAs

Proper use of hard circuits is important since they can considerably decrease the effec-

tive area and improve speed of a design implemented on an FPGA. The most common

tile-based hard circuits included on modern FPGAs are multipliers and block memories.

We call the process of mapping parts of a design to the hard circuits on an FPGA,

partial mapping, because portions of the circuit are mapped to circuits available on

the FPGA. Some logic is in a form that still needs to be technology mapped into BLEs

and clustered into soft logic cluster tiles using downstream CAD algorithms. Partial

mapping consists of an identification stage and a binding stage where the identification

stage identifies pieces of the netlist that can be mapped to hard circuits and the binding

stage makes the decision of how to map all pieces in the design to the downstream CAD

flow. The following is a discussion of both of these stages for identifying and binding

parts of the netlist that will map to tile-based hard circuits.

The initial inputs to the identification stage are a hard circuit library (which is

included as part of the input architectural description to the entire front-end synthesis

flow) and the flattened netlist. The hard circuit library describes what each hard circuit

can implement. The output of the identification stage is the same flattened netlist with

labels that describe what hard circuits each part of the netlist could be mapped to.

Identifying memories and multipliers in the input netlist is simple since these exist

as primitives in the flattened netlist. Multipliers are instantiated in Verilog with the

“*” symbol, which is treated as a primitive within the design netlist by the parser and

elaborator. Similarly, memories in Verilog are array accesses where the array accessing

124

6 A Verilog RTL Front-End Synthesis Tool for Heterogeneous FPGAs

signal represents the address signal, and most parsers and elaborators treat memories

as primitives. Since both of these structures are simple, no additional processing is

needed to identify them.

If a hard circuit has additional (typically programmable) functionality, it is a more

difficult problem to identify these structures in the netlist. For example, the Altera

DSP block [Alt03] can be configured to implement multiplication, multiply accumu-

lation, and multiply summation. Multiply summation is the addition of two or more

multiplications.

Input: Flattened netlist and hard circuit library
Output: Flattened netlist with identified possible hard circuit mappings
foreach f = function available on a hard circuit do

seed = a unique part of f;
foreach e = element in netlist of type seed do

if subgraph match(f, e) then
label subgraph(e) with f;

end

end

end

Algorithm 4: The matching algorithm

A matching algorithm searches for instances of these complex hard circuits in the

netlist. The initial input to the matching algorithm is a flattened netlist consisting of

logic and computation and the hard circuit library. The goal of the algorithm is to

find all parts of the input design that could make use of a hard circuit available on

the FPGA. Algorithm 4 shows the steps in the matching algorithm. In this algorithm,

a unique part of each complex hard circuit is used as a seed primitive in the netlist

that allows us to quickly search candidate matches in the design netlist. The output

of this algorithm is the netlist labelled with possible hard circuit implementations for

each piece of the netlist.

Figure 6.7 shows a sample netlist and a hard circuit library. In the figure, the dotted

lines surrounding multiplier and additions in the netlist represent matchings of hard

circuits included in the library.

This matching problem is a form of sub-graph isomorphism, which has been used in

125

6 A Verilog RTL Front-End Synthesis Tool for Heterogeneous FPGAs

a

b

c

out[0]

d REG out[1]

HARD CIRCUIT LIBRARY

REG

Figure 6.7: Library describing hard circuits on an FPGA and matching them in a netlist

instruction generation for reconfigurable and processor systems [KOMBS01, CFHZ04]

and sub-circuit extraction for technology mapping [OEGS93].

We have found matching to be simple and successful for our purposes since the

size of the sub-graphs representing complex hard circuits is very small consisting of at

most five primitives - which makes the matching very fast. Secondly, while matching

complex hard circuits, which all include multipliers, we use a multiply primitive as a

seed to start each search, and multiplies appear infrequently in designs meaning that

the matching is only run a small number of times.

Once the identification stage is complete, the next stage is binding, which decides

how to map all pieces in the netlist to either soft logic or hard circuits.

Input: Flattened netlist with labelled possible hard circuit mappings
Output: Flattened netlist with each primitive marked either soft or hard
foreach n = node of the netlist do

if n not yet bound then

foreach p = possible hard circuit mapping type for n do
count how many un-bound nodes in p there are;
bind n and all nodes of p with the greatest count to p;

end

end

end

Algorithm 5: The binding algorithm

The input to the binding algorithm is the netlist labelled with the possible hard

126

6 A Verilog RTL Front-End Synthesis Tool for Heterogeneous FPGAs

circuits each of the pieces of the netlist can be mapped to. The output is the same

netlist, but each piece of the netlist has, at most, one label indicating what that piece

will be mapped to - either soft logic (which means no label), hard circuits, or a mixture

of both. Note that a mixture of both means the computation is larger than what can

fit in a hard circuit and its implementation on the FPGA will need to use possibly

several hard circuits and soft logic. For multipliers, memories, and complex structures

that can be implemented in a tile-based heterogeneous hard circuit we will choose the

hard circuit that covers the largest portion of the netlist. Algorithm 5 shows the steps

taken to bind all the primitives in the netlist to hard circuits.

When a tool implementing this algorithm outputs a netlist, the pieces of the netlist

that are bound to complex hard circuits, multipliers, or memories are mapped to a

macro circuit structure that later stages of an industrial CAD flow will implement on

the FPGA. An example of a macro circuit structure supported by an industrial flow

is LPMs [LPM93]; LPMs are used in the Quartus [Alt04c] flow so that designers can

describe specific circuits they want to use. For example, there exists an LPM describing

a multiply accumulator available on a Stratix I [Alt03].

6.4 CAD Flow and Verification

We have built a front-end HDL synthesis tool that implements the algorithms presented

here and is designed to interface with Altera’s Quartus CAD flow [Alt04c]. To attach

to a CAD flow, first, our tool converts Verilog designs into structural Verilog netlists

consisting of gate primitives and LPMs (or the equivalent of LPMs) targeted for a

particular flow. These outputs are passed to the industrial flow that follows with

downstream synthesis, placement, and routing to generate area and timing results.

One of the major benefits of targeting industrial CAD flows, such as Quartus, is that

it allows us to obtain real speed and area results on an industrial FPGA.

To verify that we generate functionally correct designs, we have built test benches for

three of the benchmarks. These test benches include both the original Verilog design

and a Verilog gate/LPM-level netlist mapped by our tool. The test bench generates

inputs to both designs from one common source, and the outputs are joined through

127

6 A Verilog RTL Front-End Synthesis Tool for Heterogeneous FPGAs

XOR gates so that during simulation if any of the outputs generate a “1” it means that

the two designs are not generating the same values, and there is an error in the design

mapped by our tool. Our tool has been verified by simulating benchmarks cordicB,

moleculeDynamics, and firB in ModelSim with random vectors. Aside from testing

these three benchmarks, we have verified many Verilog structures including logic gates,

control statements, arithmetic operations, and storage units.

6.5 Results

One of the key goals of this work is to build a front-end synthesis tool that generates

results comparable to industrial front-end synthesis tools that target FPGAs. In this

section, we describe our benchmarking methodology, and then we present and discuss

the head-to-head comparison. Finally, we show the specific value of each of the different

mapping optimizations described in Section 6.5.3.

The name of our front-end synthesis tool is Odin, and for the remainder of this

chapter we will refer to it when distinguishing between the results generated by our

tool and other tools.

6.5.1 Benchmarking Methodology

For this comparison, we use Quartus’ CAD flow and map a set of benchmarks to Stratix

I FPGAs [Alt03]. We use version 4.1 of Quartus and run our benchmarks through two

CAD flows consisting of Quartus alone and Odin interfaced with Quartus. Figure 6.8

shows the two CAD flows.

Our benchmarks are Verilog HDL designs described in Chapter 3, Table 3.3 and

Appendix B.

6.5.2 Comparison between Odin and Quartus’ Front-End Synthesis

Tool

Table 6.1 and Table 6.2 show the comparison of speed and area of both CAD flows

for each benchmark. To reduce the experimental “noise” associated with placement

128

6 A Verilog RTL Front-End Synthesis Tool for Heterogeneous FPGAs

Quartus - Logic optimization

Quartus - Technology map

Quartus - Pack logic blocks

Quartus - Place logic blocks

Quartus - Route logic blocks

FPGA programming file

HDL Description

Odin - Elaborate

Odin - Partial Map

Quartus - Logic optimization

Quartus - Technology map

Quartus - Pack logic blocks

Quartus - Place logic blocks

Quartus - Route logic blocks

FPGA programming file

HDL Description

Quartus - Elaborate

Quartus - Partial Map

Quartus Flow Odin + Quartus Flow

Figure 6.8: An industrial CAD flow and Odin joined into an industrial CAD flow

and routing, the results are averaged over 5 random seeds (where using random seeds

attempts to average out the noise in the results found when using CAD optimization

algorithms). In Table 6.1, columns 2 and 3 show a comparison between the number of

LEs (which is Altera’s BLE) used on a Stratix I FPGA mapped by Quartus and mapped

by Odin interfaced with Quartus. Column 4 is a ratio that indicates how Odin performs

compared to Quartus. For any comparison ratio, when it is less than one means that

Odin is performing better than Quartus. Similarly, in Table 6.1 column 5, 6, and 7

show the number of 9-bit by 9-bit DSP blocks and a comparison ratio. Table 6.2 shows

a speed comparison where column 2 and 3 show the maximum operating frequency of

each circuit mapped by a pure Quartus and the Odin+Quartus flow. Column 4 shows

the comparison ratio.

Overall, these results show that Odin generates comparable results to Quartus’ front-

end as it is only slightly worse in all cases. For the Stratix I FPGA the geometrically

129

6 A Verilog RTL Front-End Synthesis Tool for Heterogeneous FPGAs

Table 6.1: Area comparison between designs mapped by Odin and Quartus

Number of Logic Elements Number of 9x9 DSP blocks

Designs A - B - Odin Ratio C - D - Odin Ratio
Quartus with Quartus (B/A) Quartus with Quartus (D/C)

fft 2374 3190 1.34 28 32 1.14
iirA 289 501 1.73 7 7 1.00
iirB 297 338 1.14 12 10 0.83
firA 84 84 1.00 4 4 1.00
firB 1598 1591 1.00 48 48 1.00
firC 998 548 0.55 0 17 0.00
diffeqA 221 271 1.23 24 40 1.67
diffeqB 512 369 0.72 24 40 1.67
stereoVisionA 17765 17145 0.97 80 96 1.20
stereoVisionB 35554 36194 1.02 176 144 0.82
stereoVisionB no mem 34279 33803 0.98 176 144 0.82
rayTraceA 2622 2679 1.02 27 27 1.00
rayTraceA no mem 2118 2815 1.33 27 27 1.00
rayTraceB 25056 28653 1.14 112 112 1.00
rayTraceB no mem 21557 29507 1.37 112 112 1.00
oc45 cpu 2191 3101 1.42 2 2 1.00
reedSolDecoderA 1151 1183 1.03 13 13 1.00
reedSolDecoderB 1799 1957 1.09 9 9 1.00
molecularDynamics 10542 14867 1.41 112 112 1.00
cordicA 591 838 1.42 0 0
cordicB 2830 4104 1.45 0 0
MACA 2864 2812 0.98 0 0
MACB 9828 9720 0.99 0 0
crc33 d264 102 102 1.00 0 0
desArea 1481 1305 0.88 0 0
desPerf 4592 3838 0.84 0 0
stereoVisionC 12433 12729 1.02 0 0
stereoVisionC no mem 7281 7122 0.98 0 0
stereoVisionD 170 134 0.79 0 0
rayTraceC 766 909 1.19 0 0
rayTraceC no mem 546 784 1.44 0 0
rayTraceD 1519 2266 1.49 0 0

Average 1.10 Average 1.01

averaged area comparison ratio is 1.10 and the geometrically averaged speed ratio is

1.04. These ratios indicate that Odin is generating only slightly poorer mapped designs

compared to Quartus, but for many of the benchmarks, we have quite comparable

130

6 A Verilog RTL Front-End Synthesis Tool for Heterogeneous FPGAs

Table 6.2: Speed comparison between designs mapped by Odin and Quartus

Speed in MHz

Designs E - Quartus F - Odin Ratio
with Quartus (E/F)

fft 258 6 101 146 0.70
iirA 85 83 1.03
iirB 116 109 1.06
firA 251 252 1.00
firB 84 75 1.11
firC 150 110 1.37
diffeqA 45 41 1.10
diffeqB 38 30 1.26
stereoVisionA 116 122 0.95
stereoVisionB 48 50 0.97
stereoVisionB no mem 53 57 0.97
rayTraceA 135 127 1.06
rayTraceA no mem 134 137 0.98
ratTraceB 45 52 0.87
rayTraceB no mem 48 54 0.89
oc45 cpu 86 61 1.40
reedSolDecoderA 86 83 1.04
reedSolDecoderB 68 54 1.27
molecularDynamics 42 35 1.20
cordicA 212 256 0.83
cordicB 167 223 0.75
MACA 107 99 1.09
MACB 83 75 1.11
crc33 d264 0 0 0.00
desArea 235 194 1.21
desPerf 200 199 1.00
stereoVisionC Won’t Fit 120.16 NA
stereoVisionC no mem 163 146 1.11
stereoVisionD no mem 321 329 0.98
rayTraceC 120 128 0.94
rayTraceC no mem 125 139 0.90
rayTraceD 187 134 1.29

Average 1.04

results. One of the main reasons our tool generates results that are close to Quartus’

front-end tool is because we have built Odin to deal with mapping functionality to both

soft fabric and tile-based heterogeneity, and we have added the optimizations described

131

6 A Verilog RTL Front-End Synthesis Tool for Heterogeneous FPGAs

above.

6.5.3 Value of Specific Mapping Techniques in Odin

To see the effect the optimizations have on the quality of results generated by Odin

we ran an experiment in which we turn on and off different mapping techniques. The

mapping techniques for this experiment are:

1. Partial Mapping to the DSP block on the Stratix I

2. Arithmetic Optimizations

3. State Machine Identification and one-hot recoding

4. Multiplexer collapsing

We ran Odin on all the benchmarks for five different configurations and pass the

mapped designs into the Quartus CAD flow to get speed and area results. Each config-

uration consists of different mapping techniques turned on or off. We use five configu-

rations for this experiment where each subsequent configuration includes the mapping

techniques of the previous configuration. The first configuration has all mapping tech-

niques turned off. The second configuration only has mapping technique 1 turned on.

The third technique has both mapping technique 1 and 2 turned on, and so on for the

remaining three configurations where the fifth configuration has all techniques turned

on.

In Figure 6.9(a), the bar graph shows how each mapping technique contributes to

decreasing the number of LEs used to map the benchmarks to a Stratix I FPGA. All

the mappings together provide a 4% decrease in the number of LEs used compared

with the first configuration. We can see that Multiplexer collapsing contributes most

of the LE savings at 81% of the 4% improvement.

Figure 6.9(b) shows the improvement of the number of mapped DSP blocks used.

This metric is only affected by Arithmetic optimizations, where shrinking the size of

multiplication decreases the number of DSP blocks by a total of 27%. This emphasizes

132

6 A Verilog RTL Front-End Synthesis Tool for Heterogeneous FPGAs

(a) Percentage of LE reduction

for each mapping technique
(Overall = 4% improvement)

(b) Percentage of DSP-block

reduction for each mapping
technique (Overall = 27.8%

improvement)

(c) Percentage of Speed
Improvement for each mapping

technique (Overall = 5.6%

improvement)

��20%

40%

60%

80%

3%
5%

11%

81%

P
e

rc
e

n
ta

g
e

 I
m

p
ro

v
e

m
e

n
t

20%

40%

60%

80%

100%�20%

40%

13% 15%

27%

45%

P
e

rc
e

n
ta

g
e

 I
m

p
ro

v
e

m
e

n
t

P
e

rc
e

n
ta

g
e

 I
m

p
ro

v
e

m
e

n
t

4. Multiplexer collapsing
��3. One hot state machine

encoding

2. Arithmetic

Optimizations

1. Partial mapping to

DSP-blocks

LEGEND

Figure 6.9: Impact on results for each of 5 optimization configurations

how important it is to propagate constants at front-end synthesis to ensure multipliers

are mapped to the smallest implementation possible.

Figure 6.9(c) shows how the mapping techniques in Odin affect the speed of the

benchmarks. The total speed improvement due to these techniques is 5.6%. Multiplexer

collapsing results in the greatest improvement in speed at 2.5%.

133

6 A Verilog RTL Front-End Synthesis Tool for Heterogeneous FPGAs

6.6 Summary

In this chapter, we have presented a front-end Verilog RTL synthesis tool called Odin

with publicly available source code. Our flow uses various mapping techniques to gener-

ate designs that are comparable in area and speed to Quartus’ front-end tool. We have

also shown how certain mapping techniques improve our results. These techniques,

though simple, are important in mapping designs automatically and efficiently to mod-

ern FPGAs. Finally, we provide this software to the academic community hoping that

the availability of this tool will allow researchers to pursue other avenues in front-end

synthesis for FPGAs (www.eecg.toronto.edu/∼jayar/odin/).

134

7 Conclusions

In the second scroll of Wen the Eternally Surprised a

story is written concerning one day when the apprentice

Clodpool, in a rebellious mood, approached Wen and

spake thusly: “Master, what is the difference between a

humanistic, monastic system of belief in which wisdom is

sought by means of an apparently nonsensical system of

questions and answers, and a lot of mystic gibberish

made up on the spur of the moment?” Wen considered

this for some time, and at last said: ”A fish!” And

Clodpool went away, satisfied.

Terry Pratchett

7.1 Summary and Contributions

The modern FPGA consists of both soft logic fabric and hard circuits where the latter

have been included on FPGAs to improve the speed, area, and power consumption of

FPGAs for designs that map functionality to these circuits. The central question in

FPGA architecture is which hard circuits to include. Each potential hard circuit needs

to provide some sort of benefit (area, speed, or power), and have sufficient demand in

the designs created by the intended users of the FPGAs.

In this dissertation, we have investigated ideas on how to increase the utilization of

hard circuits to improve the quality of FPGAs in terms of area efficiency. Our approach

is to architect better hard circuits or create efficient algorithms to map to these hard

circuits.

This dissertation includes the following contributions:

135

7 Conclusions

In Chapter 3, we introduced heterogeneous FPGA definitions and terminology. Be-

sides classifying the different types of hard circuits added to an FPGA, Chapter

3 introduces key architectural parameters: supply ratio, which describes an ex-

perimental FPGA in terms of contained hard circuits and soft logic, and demand

ratio, which describes the same ratio but in terms of a circuit characteristic.

These definitions were first published in [Ros04] with additional definitions in my

thesis proposal as well as [JR05a]. In this chapter, we introduce a scientific mea-

surement methodology to measure the benefit of hard circuits and we perform

some basic experiments on the benefit of including hard multipliers on FPGAs.

In Chapter 4, we introduce a new architectural concept called shadow clusters. In this

chapter, we describe how to create an FPGA with a hard circuit combined with a

shadow cluster, we provided a measurement methodology to measure the area ef-

ficiency of this new concept, and we described the created synthetic benchmarks

to statistically analyze our architectural concept under different market condi-

tions. Some of the relevant results show that a modern commercial architecture

(with a fixed ratio of multipliers to soft logic) would gain 4.7% in area efficiency

by employing shadow clusters. In addition, every architecture we studied under

“reasonable” conditions never show a loss of area efficiency when shadow clusters

are used. Furthermore, we show that our most area-efficient architecture that

employs shadow clusters is 12.5% better than the most area-efficient architecture

without shadow clusters. This work was published in [JR06].

In Chapter 5, we extended our shadow cluster idea, employing the concept with hard

circuits that were previously impractical to add to FPGAs because there are in-

sufficient designs in the FPGA target market demanding the hard circuit. In this

chapter, we use crossbars as the hard circuit to combine with shadow clusters, we

show how to architect a hard crossbar, and we modify our measurement method-

ology to map crossbars in designs to hard crossbars on an FPGA. Additionally,

there is significant focus placed on how to synthetically generate benchmarks

to test out our idea and model a range of possible target markets. Our results

show that it is more practical to add hard crossbars to FPGAs only if they are

136

7 Conclusions

combined with shadow clusters. For example, we show that the need for hard

32 full-way crossbars in the FPGA’s target benchmark suite for its inclusion to

appear area neutral changes from 12% of benchmarks needing to have crossbars

to 3% for FPGAs with hard crossbars combined with shadow clusters.

In Chapter 6, we describe the algorithms in a front-end synthesis tool targeting het-

erogeneous FPGAs. We show that designs mapped by a tool that employs these

algorithms generates area and speed results that are almost in parity with an in-

dustrial strength tool. This work was published in [JR05a], and the software has

been made available to the general public under an open source license. Presently,

the software has been downloaded over 150 times by unique users. This tool was

also used in our work to implement a technique that maps multiplexers in the

design to unused multipliers. Though this technique does not provide meaningful

area savings, it provides the means to maximize utilization of an FPGA’s hard

multipliers. This work was published in [JR05b].

7.2 Future Work

There are several potential research directions this work could take in the future. In

this section, we suggest a few directions that could be considered.

7.2.1 Shadow Clusters with Multiple Hard Circuits

We have examined how shadow clusters affect the area efficiency with respect to only

one type of hard circuit included on an architecture. In this dissertation, the hard

circuit included on an FPGA was either a multiplier or crossbar. An extension of this

is to consider an FPGA in which there are more than one type of hard circuit. For

example, consider an FPGA with both multipliers and crossbars.

The challenge in such research is how to model the FPGAs and the targeting bench-

marks. In both cases, we need to re-examine how to define supply ratio and demand

ratio to deal with multiple hard circuits. This work becomes even more complex when

we consider that a hard circuit might be designed to implement two different types of

137

7 Conclusions

functions. For example, a multiplier and crossbar might be combined together in one

tile and could be output programmed using multiplexers similar to our shadow cluster

concept. Here, the mapping algorithms need to determine how to allocate functionality

of a design to the hard circuits such that the optimization goals are satisfied.

This extension would bring our study of shadow clusters closer to industrial FPGAs

that contain multiple types of hard circuits. This work is also necessary since FPGAs

will arguably contain more hard circuits in the future. For example, both Xilinx’s and

Altera’s FPGAs include both multiplier and memory tiles. Extending our methodology

will determine what type of benefit we can expect by employing shadow clusters on

these architectures.

7.2.2 Heterogeneous Soft Logic

In Chapter 4, we performed two experiments in which we artificially changed the size

of the BLE to study what effects this would have on architectures with and without

shadow clusters. These experiments were motivated when FPGA architects, at Altera

and Xilinx, noted that modern soft logic cluster tiles have about 40% of the tile area

dedicated to logic and 60% of the area is for programmable routing.

In the first of these experiments in section 4.6.6, the size of a shadow cluster and

a regular soft logic cluster were artificially increased together to determine how this

affected our shadow cluster architectures, and in the second experiment we kept the

shadow cluster size constant while increasing the size of the normal soft logic cluster.

Stepping away from the shadow cluster concept, one can imagine an FPGA in which

soft logic cluster tiles include different soft-fabric heterogeneity and consume different

amount of silicon area. A similar track of research examined the affect of different

sizes of LUTs and their effect on area [HR93], but no research has looked at a soft

fabric that has, for example, some soft logic cluster tiles that include adder capabilities

including carry chains and other tiles that do not have this capability. This research

has become more relevant as the ratio between logic and routing area consumption

changes in modern FPGAs.

One of the key assumptions to study before proceeding with this work is the quality

of our automatic sizing of transistors. The accuracy of our tool will have significant

138

7 Conclusions

impact on this research. From discussions with Ian Kuon [Kuo07], the LUT and flip-

flop are the main contributors to the 40% tile area in industrial FPGAs, meaning the

additional functionality in the logic (such as adders) takes up a small portion of the

area. Since this is the case, a heterogeneous fabric would probably included differently

sized tiles as opposed to different functional capabilities, but the concept is similar.

A heterogeneous soft logic fabric will trade-off speed for area, but in this case using

transistor sizing.

The question remains, would a heterogeneous soft logic fabric provide an improve-

ment in FPGA area efficiency while maintaining performance?

7.2.3 Extension of Shadow Clusters Employed with Low-Demand

Hard Circuits

In Chapter 5, we examined how shadow clusters make it possible to add new hard

circuits to an FPGA where previously these hard circuits would not be added since

there are insufficient designs targeting these structures. We chose to use crossbars as

the example circuit to demonstrate this concept.

With respect to area efficiency, the two factors affecting to the benefit of an included

hard circuit on an FPGA are:

1. Soft logic savings - how many BLEs or soft logic cluster tiles a hard circuit saves

when implementing design functionality.

2. Hard circuit size - the silicon area of a hard circuit.

The interesting thing with hard crossbars is that they take up relatively little silicon

area (as per point 2), especially when compared to a circuit like a multiplier. Hard

crossbars, however, save about the same amount of FPGA soft logic compared to a

hard multiplier and an equivalent soft implementation.

It would be interesting to study other types of hard circuits that save a different

amount of soft logic resources to get a complete picture of how different hard circuits

will benefit FPGAs. For example, imagine a hard circuit that only saved 3 to 4 times

139

7 Conclusions

the soft logic compared to the 6 to 20 times soft logic saving provided by hard crossbars

and hard multipliers.

7.3 Concluding Remarks

We believe over time FPGAs will include more and more hard circuits in the fabric to

narrow the area gap between FPGAs and ASICs. The ideas proposed in this disser-

tation provide both a methodology to study these inclusions on an FPGA, as well as

some concepts to make hard circuits more area efficient. The most promising idea is

the shadow cluster, and hopefully, using this concept will allow a new range of hard

circuits to be introduced to FPGAs and will increase their usefulness to an even larger

part of society.

140

A Automatic Transistor Sizing of FPGAs

A.1 Introduction

Due to the time and labour intensive work needed to create modern FPGAs, efforts

have been made to automate the creation of such devices [KER05, Egi05, Kuo04]. In

this appendix, we describe an automated transistor sizing methodology that plays a key

role in the circuit lead design of FPGAs. This tool plays a key role in the work presented

in chapters 3, 4, and 5, as one of the integral parts of the measurement methodology

that requires an estimate of the area of FPGA-specific components. These components

include programmable routing in the hard circuit tile and soft logic cluster tiles as well

as the LUT-based logic. In this appendix, we provide details about our methodology.

A.1.1 Method for Automatic Transistor Sizing

We use a simple flow to automatically size transistors in an FPGA to optimize the tile

in terms of area and speed. Figure A.1 shows the flow.

The inputs to the automatic transistor sizer are a description of the FPGA architec-

ture, the order in which to size the transistors, the range of transistors sizes to try, and

a set of important paths (which we usually extract from benchmarks). The number

of benchmark paths can be large and using them directly for transistor sizing might

be excessively time consuming. Instead, we create representative paths from the set of

input paths by first collecting statistics about these paths. These statistics are used to

generate a specified number of paths that have characteristics similar to those of the

input paths.

The final output of the automated transistor sizer is the widths for each type of

transistor.

141

A Automatic Transistor Sizing of FPGAs

Benchmarks -or- Path(s) FPGA Architecture

Transistor

Sizes to try

Create Representative path(s)

Create Spice Deck

Spice Deck

Select transistor to

size

Run through Spice or

Nanosim

Have we simulated all

sizes for this transistor?

Order of

transistors to

size

Size transistor

Record Speed of

paths

No

Find the best sizing

for given transistor

Yes

Have we sized all
transistors?

No

Yes

Size of transistors and FPGA

tile area

Figure A.1: This is the flow for the automatic transistor sizer.

Once there are a set of paths to size, we size the transistors based on the provided

order of sizing. For each transistor type, we choose the size of the transistor, create

a spice deck, simulate the spice deck using HSPICE [Syn99] or NanoSim [Syn01], and

142

A Automatic Transistor Sizing of FPGAs

record the resulting speed for each of the paths. With all the speeds for each transistor

sizing, we determine which transistor size results in the best satisfaction of our criteria

and set this transistor type size as the size for subsequent sizings. We proceed to the

next transistor type and repeat this process.

The criteria we use to determine the best transistor sizing for a transistor type is area-

delay product. To calculate the speed for a given transistor type size, we first normalize

the speed of the path by dividing it by the speed of the path with a minimum width

transistor for the current transistor type. We then geometrically average the speeds for

all the paths in the set of representative paths. The area is calculated by summing up

the minimum width transistor area of the entire FPGA tile [BRM99]. The area and

speed results are multiplied together to give an area-delay product that is compared

against other area-delay products for the same transistor type. The transistor sizing

that yielded the smallest area-delay product is selected as the best transistor size for a

given transistor type.

A.2 Automatic Transistor Sizing Constraints

Transistor sizing of an FPGA involves determining appropriate sizes for all the tran-

sistors used to create the structures shown in Figure A.2. Various optimization goals

such as speed, area, power consumption, or a combination thereof, can be used to

guide this optimization. There has been significant amounts of prior work aimed at

automating transistor sizing for custom (i.e. non-programmable) designs [NRSVT88,

CEWWM+99, FD85]. These past approaches demonstrated the benefits of automation

but purely for custom designs.

In Figure A.2, there are many repeated structures in the FPGA tile and it is typically

desired that these groups of structures are sized together. When a transistor size grows,

all transistors in that architectural class grow, which could include many transistors.

For example, if one transistor in the first stage of the multiplexer that implements the

LUT is sized to twice a minimum width transistor size, then all the transistors in the

first stage of the multiplexer implementing every LUT in the FPGA is similarly sized

to two times the size of a minimum width transistor.

143

A Automatic Transistor Sizing of FPGAs

F
Cout

= 2F
Cin

= 4
{

F
cin

_bufs

{

F
cin

_mux

{

F
I
_bufs

I = 6

BLE
#1

BLE
#2

Direct
Driver

Direct

Driver

Direct

Driver

Direct
Driver

N

= 2W = 12

F
S
= 3

{

F
I
_muxes

{

LUT_bufs

{

F
Cout

_bufs

SRAMs

Figure A.2: Logic schematic of a soft logic cluster tile

With FPGAs it is worth noting that transistor sizing is different from regular transis-

tor sizing because an FPGA may have many different near critical paths using different

circuit structures when actually programmed with a design, so we are required to size

multiple paths. It is difficult to select which path to size in an FPGA since it is

not known which set of transistors are most important for a design’s speed when it

is actually mapped to an FPGA. Note that a path is a register to register series of

components.

There have been no past automated approaches for the circuit design of FPGAs.

Previous academic work that has focused on either layout [CSR+99, KER05] or accurate

CAD estimation of speed and area [BRM99] use a manual approach to size transistors.

A.2.1 Converting Transistor Sizes to Tile Area

After using our automatic transistor sizing tool to determine the widths of the transis-

tors within a tile, we use these widths to estimate the area of a tile in square microns.

144

A Automatic Transistor Sizing of FPGAs

To do this conversion we adapted a method from [Egi05] to 90nm technology. This

involves first converting each transistor into a measurement of the number of minimum

width transistors occupying the same area as the sized transistor using the following

equation [BRM99]:

area(minWidthTransistors) = 0.5 +
driveStrength

2
(A.1)

Once each transistor is converted into a unit of minimum width transistors, we sum

the minimum transistor widths for all the transistors in buffers, SRAMs, or multiplex-

ers. To estimate the actual layout area, we model the area in terms of grid units where

a grid unit is a square with height and width equal to the area required between metal

vias adjacent to one another in the given technology. The number of layout grid units

needed is estimated using the following equation [Egi05]:

cellArea(gridSquares) = complexity × 3.3

×cellArea(minWidthTransistors) (A.2)

The complexity factor is 1.455 for SRAMs and multiplexers and 1.0 for all other struc-

tures, which reflects the difficulty of laying out SRAMs and multiplexers. Finally, we

sum the number of grid units for all the structures in the tile and multiply this by the

grid size for the 90nm technology. The final estimated layout area is in square microns.

A.2.2 Quality of Sizing Tool

To verify that our automatic transistor sizing tool is generating an FPGA tile with

area similar to modern industrial FPGA tiles, we compared the area of two of our tiles

with the area of Altera’s Stratix I [Alt03] and Stratix II [Alt04d] tiles.

Table 3.4 in chapter 3 shows the parameters that we selected to make our comparison.

Architecture 1 is similar to the Stratix I FPGA and Architecture 2 has parameters

similar to the Stratix II FPGAs. To select our track width (W) we looked at the

Stratix I and Stratix II architecture and took an average of the horizontal and vertical

routing tracks. For the Stratix II we chose N to be 8 and K to be 6, which is an

145

A Automatic Transistor Sizing of FPGAs

estimation of Altera’s ALM [Alt04d].

Due to non-disclosure agreements, the absolute area numbers cannot be reported.

Comparing the measurements relatively, we found that both of our automatically sized

tiles for the Stratix I and Stratix II are approximately one third the size of the actual

industrial tile areas. We account for our smaller area for the following reasons:

1. Our modeled cluster does not include all the elements present in a Stratix Lab

(also known as a cluster) including clock buffers, registers with control signals

such as enable and reset, adder capabilities, and carry chains. Many of these

additional units add significantly to the silicon area required to implement the

structure. From discussions with industrial architects [Lew06] we know that

the area in a modern tile is approximately 40% for the logic and 60% for the

programmable routing. This is due to the additional structures within a modern

soft logic cluster tile.

2. The clusters that we model do not completely capture the Stratix architectures.

While the size and number of LUTs in a cluster, the channel width, and various

other routing parameters are set to be similar to the Stratix architectures, these

parameters do not fully describe the Stratix devices. For example, our model of

the Stratix devices uses only length four wire segments while the actual devices

have a range of wire lengths. Longer wire segments will significantly impact the

size of buffers that drive these segments.

3. The methodology we use to convert minimum width transistor counts to square

microns only provides an estimate of layout area, and this method was originally

created for a different CMOS technology.

4. Sizing is determined by finding a minimum area-delay product iteratively for

each transistor. This cost function is not necessarily the criteria that FPGA

designers use to size transistors, and instead, designers may be mainly concerned

about speed or yield on paths through the FPGA resulting in the use of larger

transistors than would be selected by our transistor sizer. In our discussions with

industrial FPGA design experience, we now know that the primary sizing criteria

is speed, which will significantly impact the sizing of all transistors in the cluster.

146

A Automatic Transistor Sizing of FPGAs

5. From discussions [Kuo07] we have learned that initial conditions, in terms of the

size of each transistor, is a major factor in getting good results from an automated

transistor sizing algorithm. Our initial sizings for all transistors was minimum

width, and this has been shown to be poor starting conditions.

A.3 Summary

In chapters 3, 4, and 5 we measure the quality of architectural concepts that depend on

the quality of our area estimation of FPGA tiles. In this appendix, we reviewed details

on how we automatically size transistors and how we convert our transistor sizes into

area measurements in square microns. We compared our final results to industrial tiles

and provided reasons why our tiles are approximately three times smaller.

147

B Benchmark Details

B.1 Introduction

Throughout this dissertation we use a set of benchmarks that is first introduced in

Chapter 2, section 3.4. In this appendix, we provide additional information about

these benchmarks. This information includes the number and sizes of multipliers, the

number of input and output pins, and the number of memory bits in each benchmark.

In addition to these benchmarks, we have created a number of synthetic benchmarks,

and we provide details of these benchmarks in this appendix.

B.2 Benchmark Details

As described earlier, our benchmarks are a collection of Verilog designs from around

the Internet from various sources including: The Opencores organization [ope07], SCU-

RTL [scu98], Texas-97 [tex97], and the Benchmarks for Placement 2001 [Pla01].

We have also made a considerable effort to convert applications developed locally

from VHDL to Verilog. These designs include, Raytrace [FR03], Stereo Vision [DRM03],

and Molecular Dynamic system [AKE+04]. The conversion process used both an au-

tomated tool (called X-HDL which was produced by a now defunct company) to start

the conversion from VHDL to Verilog, and the remainder of the design was converted

by hand.

Table B.1 shows the number of BLEs and the number of input and output pins.

These numbers were obtained by mapping these circuits to Stratix I FPGAs [Alt03]

using Quartus version 4.1 [Alt04c].

Table B.2 gives a breakdown of each benchmark in terms of how many and what

are the sizes of the multipliers. These statistics were gathered by going into each

148

B Benchmark Details

Table B.1: Benchmarks Basic Details
Benchmark BLEs I/O Pins

fft 2374 69
iirA 289 59
iirB 297 38
firA 84 60
firB 1598 455
firC 998 20
diffeqA 221 162
diffeqB 512 258
stereoVisionA 17765 213
stereoVisionB 35554 331
stereoVisionB no mem 34279 331
rayTraceA 2622 560
rayTraceA no mem 2118 560
rayTraceB 25056 337
rayTraceB no me 21557 337
oc45 cpu 2191 140
reedSolDecoderA 1151 20
reedSolDecoderB 1799 32
moleculeDynamics 10542 362
cordicA 591 51
cordicB 2830 111
MACA 2864 211
MACB 9828 415
crc33 d264 102 330
desArea 1481 190
desPerf 4592 190
stereoVisionC 12433 367
stereoVisionC no me 7281 367
stereoVisionD 170 53
rayTraceC 766 103
rayTraceC no me 546 103
rayTraceD 1807 468

149

B Benchmark Details

Table B.2: Multiplier Details for our Benchmarks
Benchmark Number of Mults Number of Multipliers and their Size

fft 32 32 8x8
iirA 5 2 10x10 3 8x8
iirB 5 2 16x16 3 8x16
firA 4 4 8x8
firB 25 25 16x16
firC 17 17 8x8
diffeqA 5 5 32x32
diffeqB 5 5 32x32
stereoVisionA 152 152 8x8
stereoVisionB 528 24 7x3 12 7x4 72 7x5

36 7x6 36 7x7 72 7x8 24 7x9 252 16x9
stereoVisionB no mem 528 24 7x3 12 7x4 72 7x5

36 7x6 36 7x7 72 7x8 24 7x9 252 16x9
rayTraceA 18 9 16x16 9 8x7
rayTraceA no mem 18 18 9 16x16 9 8x7
rayTraceB 31 6 16x16 6 29x16 3 16x33

3 29x33 6 14x46 3 16x16 3 24x16 1 1x16
rayTraceB no me 31 6 16x16 6 29x16 3 16x33

3 29x33 6 14x46 3 16x16 3 24x16 1 1x16
oc45 cpu 1 1 16x16
reedSolDecoderA 13 13 4x4
reedSolDecoderB 9 9 8x8
moleculeDynamics 19 1 36x51 3 47x38

3 38x38 2 22x51 3 22x43 3 2x43 3 50x43

benchmark and extracting the size and number of multipliers.

Table B.3: Memory Details for our Benchmarks

Benchmark Number of Memory bits

fft 73278
firC 96
stereoVisionB 143360
rayTraceA 1008
rayTraceB 1043
oc45 cpu 256
stereoVisionC 457280
rayTraceC 24192

Table B.3 shows the benchmarks that contain memory. In this table, column 2 shows

how many bits are in each benchmark. These numbers were obtained by mapping these

150

B Benchmark Details

benchmarks to Stratix I FPGAs using Quartus version 4.1.

B.3 Synthetic Benchmarks with Multipliers

We have created a set of synthetic benchmarks that use multipliers to test our con-

cepts in Chapter 3 and Chapter 4. In this section, we show each of these benchmarks

including the number of multipliers in each benchmark suite and the demand ratio.

These benchmarks are summarized in Chapter 4 in Table 4.2, and the benchmark suite

details are provided in the following tables B.4, B.5, B.6, and B.7.

Table B.4: Benchmark suite SB45 containing multipliers and with a Demand Ratio of 1:45

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 0 4066 28 1:14

BM 1 2920 8 1:36

BM 2 285 0 1:∞

BM 3 698 4 1:17

BM 4 660 0 1:∞

BM 5 995 3 1:33

BM 6 4656 0 1:∞

BM 7 4482 11 1:40

BM 8 1364 1 1:136

BM 9 4868 1 1:486

BM 10 2203 9 1:24

BM 11 3777 19 1:19

BM 12 2968 14 1:21

BM 13 3706 6 1:61

BM 14 2813 0 1:∞

BM 15 755 0 1:∞

BM 16 1858 0 1:∞

BM 17 2021 14 1:14

BM 18 4731 16 1:29

BM 19 1346 0 1:∞

BM 20 4642 9 1:51

BM 21 405 1 1:40

BM 22 4946 17 1:29

BM 23 1494 5 1:29

BM 24 2774 20 1:13

BM 25 2643 8 1:33

BM 26 2450 7 1:35

Continued on next page

151

B Benchmark Details

Table B.4: Benchmark suite SB45 containing multipliers and with a Demand Ratio of 1:45

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 27 4358 15 1:29

BM 28 3146 13 1:24

BM 29 3748 31 1:12

BM 30 1146 0 1:∞

BM 31 215 0 1:∞

BM 32 2583 6 1:43

BM 33 2267 0 1:∞

BM 34 2325 0 1:∞

BM 35 1609 2 1:80

BM 36 3004 5 1:60

BM 37 1002 2 1:50

BM 38 3089 0 1:∞

BM 39 3091 0 1:∞

BM 40 3189 9 1:35

BM 41 1118 2 1:55

BM 42 251 1 1:25

BM 43 1312 0 1:∞

BM 44 1503 2 1:75

BM 45 1756 8 1:21

BM 46 1674 3 1:55

BM 47 2414 0 1:∞

BM 48 3131 11 1:28

BM 49 531 1 1:53

BM 50 1393 0 1:∞

BM 51 3660 1 1:366

BM 52 3778 0 1:∞

BM 53 2244 2 1:112

BM 54 2070 0 1:∞

BM 55 1070 0 1:∞

BM 56 968 0 1:∞

BM 57 2368 7 1:33

BM 58 2735 13 1:21

BM 59 398 1 1:39

BM 60 4912 0 1:∞

BM 61 659 2 1:32

BM 62 1760 11 1:16

BM 63 1608 6 1:26

BM 64 4079 14 1:29

BM 65 1836 5 1:36

BM 66 220 1 1:22

BM 67 1393 0 1:∞

BM 68 1428 3 1:47

BM 69 1080 0 1:∞

Continued on next page

152

B Benchmark Details

Table B.4: Benchmark suite SB45 containing multipliers and with a Demand Ratio of 1:45

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 70 2783 4 1:69

BM 71 3102 2 1:155

BM 72 4453 4 1:111

BM 73 2511 10 1:25

BM 74 1293 2 1:64

BM 75 1798 8 1:22

BM 76 3382 13 1:26

BM 77 1183 1 1:118

BM 78 578 2 1:28

BM 79 1027 0 1:∞

BM 80 3087 0 1:∞

BM 81 750 0 1:∞

BM 82 4449 0 1:∞

BM 83 225 0 1:∞

BM 84 3856 13 1:29

BM 85 2161 8 1:27

BM 86 2230 6 1:37

BM 87 4525 4 1:113

BM 88 1373 0 1:∞

BM 89 1915 1 1:191

BM 90 3374 0 1:∞

BM 91 712 1 1:71

BM 92 1855 2 1:92

BM 93 2449 8 1:30

BM 94 2111 4 1:52

BM 95 3874 6 1:64

BM 96 2700 12 1:22

BM 97 1189 2 1:59

BM 98 1286 7 1:18

BM 99 3294 11 1:29

BM 100 1797 3 1:59

BM 101 4033 15 1:26

BM 102 1325 5 1:26

BM 103 3354 14 1:23

BM 104 240 0 1:∞

BM 105 994 3 1:33

BM 106 1886 0 1:∞

BM 107 2367 11 1:21

BM 108 4008 4 1:100

BM 109 2577 11 1:23

BM 110 3751 18 1:20

BM 111 4321 4 1:108

BM 112 3748 30 1:12

Continued on next page

153

B Benchmark Details

Table B.4: Benchmark suite SB45 containing multipliers and with a Demand Ratio of 1:45

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 113 2614 1 1:261

BM 114 893 3 1:29

BM 115 2461 4 1:61

BM 116 619 2 1:30

BM 117 4537 13 1:34

BM 118 3088 15 1:20

BM 119 872 1 1:87

BM 120 4550 9 1:50

BM 121 809 1 1:80

BM 122 2197 8 1:27

BM 123 3407 4 1:85

BM 124 853 0 1:∞

BM 125 4083 4 1:102

BM 126 4098 7 1:58

BM 127 2514 0 1:∞

BM 128 3543 0 1:∞

BM 129 635 2 1:31

BM 130 993 1 1:99

BM 131 2907 6 1:48

BM 132 4126 4 1:103

BM 133 1414 1 1:141

BM 134 1251 4 1:31

BM 135 2236 5 1:44

BM 136 1384 4 1:34

BM 137 3666 5 1:73

BM 138 1135 0 1:∞

BM 139 2102 1 1:210

BM 140 2535 3 1:84

BM 141 4881 0 1:∞

BM 142 1165 4 1:29

BM 143 372 0 1:∞

BM 144 3685 19 1:19

BM 145 2008 2 1:100

BM 146 4269 15 1:28

BM 147 4538 1 1:453

BM 148 3155 5 1:63

BM 149 2501 5 1:50

BM 150 2455 1 1:245

BM 151 2674 14 1:19

BM 152 2807 10 1:28

BM 153 4121 12 1:34

BM 154 4386 3 1:146

BM 155 3740 0 1:∞

Continued on next page

154

B Benchmark Details

Table B.4: Benchmark suite SB45 containing multipliers and with a Demand Ratio of 1:45

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 156 2933 12 1:24

BM 157 3679 0 1:∞

BM 158 4972 9 1:55

BM 159 2182 4 1:54

BM 160 3455 1 1:345

BM 161 1236 6 1:20

BM 162 2160 5 1:43

BM 163 2578 7 1:36

BM 164 2580 7 1:36

BM 165 2329 4 1:58

BM 166 449 0 1:∞

BM 167 2487 7 1:35

BM 168 869 2 1:43

BM 169 3975 18 1:22

BM 170 695 0 1:∞

BM 171 2035 8 1:25

BM 172 1863 5 1:37

BM 173 586 1 1:58

BM 174 2147 0 1:∞

BM 175 805 5 1:16

BM 176 2820 0 1:∞

BM 177 368 1 1:36

BM 178 1868 10 1:18

BM 179 2576 9 1:28

BM 180 306 0 1:∞

BM 181 1931 1 1:193

BM 182 3094 3 1:103

BM 183 2846 15 1:18

BM 184 4203 3 1:140

BM 185 3275 1 1:327

BM 186 3270 0 1:∞

BM 187 3719 9 1:41

BM 188 3274 3 1:109

BM 189 2505 14 1:17

BM 190 2131 4 1:53

BM 191 2276 14 1:16

BM 192 631 3 1:21

BM 193 4802 7 1:68

BM 194 554 2 1:27

BM 195 1801 2 1:90

BM 196 4675 0 1:∞

BM 197 4632 0 1:∞

BM 198 1757 10 1:17

Continued on next page

155

B Benchmark Details

Table B.4: Benchmark suite SB45 containing multipliers and with a Demand Ratio of 1:45

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 199 1595 6 1:26

BM 200 2629 18 1:14

BM 201 918 3 1:30

BM 202 4774 26 1:18

BM 203 348 0 1:∞

BM 204 3848 0 1:∞

BM 205 4535 9 1:50

BM 206 1771 2 1:88

BM 207 2399 10 1:23

BM 208 2424 6 1:40

BM 209 4680 1 1:468

BM 210 2736 1 1:273

BM 211 4245 13 1:32

BM 212 3861 12 1:32

BM 213 2257 11 1:20

BM 214 3117 7 1:44

BM 215 3450 12 1:28

BM 216 3748 0 1:∞

BM 217 4844 0 1:∞

BM 218 4332 16 1:27

BM 219 2500 4 1:62

BM 220 802 2 1:40

BM 221 4975 15 1:33

BM 222 2725 0 1:∞

BM 223 1749 0 1:∞

BM 224 4219 11 1:38

BM 225 4292 0 1:∞

BM 226 4093 17 1:24

BM 227 2020 7 1:28

BM 228 2475 13 1:19

BM 229 4526 0 1:∞

BM 230 3360 13 1:25

BM 231 1399 0 1:∞

BM 232 2347 10 1:23

BM 233 3844 0 1:∞

BM 234 927 2 1:46

BM 235 1974 2 1:98

BM 236 4490 24 1:18

BM 237 1119 0 1:∞

BM 238 4861 3 1:162

BM 239 1477 4 1:36

BM 240 320 0 1:∞

BM 241 3478 19 1:18

Continued on next page

156

B Benchmark Details

Table B.4: Benchmark suite SB45 containing multipliers and with a Demand Ratio of 1:45

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 242 4065 9 1:45

BM 243 4764 8 1:59

BM 244 561 1 1:56

BM 245 2008 2 1:100

BM 246 4269 15 1:28

BM 247 4538 1 1:453

BM 248 3155 5 1:63

BM 249 2501 5 1:50

Table B.5: Benchmark suite SB15 V1 containing multipliers and with a Demand Ratio of 1:15 and Variance of 1:1111

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 0 18347 93 1:19

BM 1 15343 0 1:∞

BM 2 17224 174 1:9

BM 3 12603 64 1:19

BM 4 13350 67 1:19

BM 5 18719 95 1:19

BM 6 12435 63 1:19

BM 7 12895 130 1:9

BM 8 12345 0 1:∞

BM 9 18486 93 1:19

BM 10 12863 130 1:9

BM 11 14578 74 1:19

BM 12 10971 111 1:9

BM 13 19892 202 1:9

BM 14 15224 0 1:∞

BM 15 10892 55 1:19

BM 16 13547 68 1:19

BM 17 13912 70 1:19

BM 18 14054 142 1:9

BM 19 16573 168 1:9

BM 20 19675 99 1:19

BM 21 14831 75 1:19

BM 22 10636 53 1:20

BM 23 17462 88 1:19

BM 24 14745 149 1:9

BM 25 14806 150 1:9

BM 26 19567 99 1:19

Continued on next page

157

B Benchmark Details

Table B.5: Benchmark suite SB15 V1 containing multipliers and with a Demand Ratio of 1:15 and Variance of 1:1111

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 27 10776 109 1:9

BM 28 12726 129 1:9

BM 29 15940 161 1:9

BM 30 10160 51 1:19

BM 31 14226 72 1:19

BM 32 15772 160 1:9

BM 33 10830 55 1:19

BM 34 17359 176 1:9

BM 35 13582 68 1:19

BM 36 19049 0 1:∞

BM 37 19144 194 1:9

BM 38 18844 191 1:9

BM 39 19019 96 1:19

BM 40 18907 96 1:19

BM 41 17549 89 1:19

BM 42 15914 80 1:19

BM 43 15366 78 1:19

BM 44 15346 155 1:9

BM 45 15646 158 1:9

BM 46 17194 87 1:19

BM 47 15566 158 1:9

BM 48 14364 145 1:9

BM 49 12793 64 1:19

BM 50 10152 103 1:9

BM 51 18757 190 1:9

BM 52 17494 88 1:19

BM 53 15239 77 1:19

BM 54 17211 87 1:19

BM 55 16280 82 1:19

BM 56 10787 54 1:19

BM 57 14594 74 1:19

BM 58 18507 0 1:∞

BM 59 14397 73 1:19

BM 60 10322 52 1:19

BM 61 15711 0 1:∞

BM 62 19917 101 1:19

BM 63 10483 106 1:9

BM 64 14026 71 1:19

BM 65 12356 125 1:9

BM 66 12357 62 1:19

BM 67 19732 100 1:19

BM 68 11718 118 1:9

BM 69 12541 63 1:19

Continued on next page

158

B Benchmark Details

Table B.5: Benchmark suite SB15 V1 containing multipliers and with a Demand Ratio of 1:15 and Variance of 1:1111

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 70 11933 121 1:9

BM 71 15048 152 1:9

BM 72 19003 96 1:19

BM 73 12126 123 1:9

BM 74 18658 189 1:9

BM 75 10419 52 1:20

BM 76 12919 131 1:9

BM 77 12849 65 1:19

BM 78 10112 102 1:9

BM 79 13469 68 1:19

BM 80 19313 98 1:19

BM 81 11020 111 1:9

BM 82 13290 0 1:∞

BM 83 17873 90 1:19

BM 84 18427 0 1:∞

BM 85 13938 141 1:9

BM 86 11940 121 1:9

BM 87 12137 123 1:9

BM 88 11333 115 1:9

BM 89 11157 56 1:19

BM 90 17138 174 1:9

BM 91 18972 96 1:19

BM 92 14059 0 1:∞

BM 93 19246 195 1:9

BM 94 11505 58 1:19

BM 95 11013 111 1:9

BM 96 18541 94 1:19

BM 97 15193 0 1:∞

BM 98 19138 97 1:19

BM 99 13192 66 1:19

BM 100 16186 164 1:9

BM 101 16982 86 1:19

BM 102 12469 63 1:19

BM 103 15422 78 1:19

BM 104 19734 200 1:9

BM 105 10145 51 1:19

BM 106 14508 147 1:9

BM 107 13282 67 1:19

BM 108 17290 175 1:9

BM 109 15442 78 1:19

BM 110 11597 58 1:19

BM 111 12319 62 1:19

BM 112 18488 93 1:19

Continued on next page

159

B Benchmark Details

Table B.5: Benchmark suite SB15 V1 containing multipliers and with a Demand Ratio of 1:15 and Variance of 1:1111

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 113 14674 74 1:19

BM 114 16931 171 1:9

BM 115 17896 181 1:9

BM 116 11349 57 1:19

BM 117 17596 89 1:19

BM 118 10349 105 1:9

BM 119 13972 0 1:∞

BM 120 15949 80 1:19

BM 121 13307 67 1:19

BM 122 19587 198 1:9

BM 123 11728 59 1:19

BM 124 15471 157 1:9

BM 125 18378 93 1:19

BM 126 19977 101 1:19

BM 127 13558 137 1:9

BM 128 14561 147 1:9

BM 129 18796 95 1:19

BM 130 12452 126 1:9

BM 131 17314 0 1:∞

BM 132 14274 144 1:9

BM 133 13972 141 1:9

BM 134 17928 182 1:9

BM 135 17410 88 1:19

BM 136 18414 93 1:19

BM 137 17039 173 1:9

BM 138 13660 69 1:19

BM 139 17584 178 1:9

BM 140 12290 62 1:19

BM 141 12551 127 1:9

BM 142 13011 66 1:19

BM 143 17086 86 1:19

BM 144 17046 86 1:19

BM 145 11769 59 1:19

BM 146 15279 77 1:19

BM 147 13300 67 1:19

BM 148 10346 105 1:9

BM 149 16881 85 1:19

BM 150 17920 182 1:9

BM 151 14857 75 1:19

BM 152 11361 115 1:9

BM 153 17041 173 1:9

BM 154 17016 86 1:19

BM 155 16856 85 1:19

Continued on next page

160

B Benchmark Details

Table B.5: Benchmark suite SB15 V1 containing multipliers and with a Demand Ratio of 1:15 and Variance of 1:1111

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 156 10587 53 1:19

BM 157 17927 182 1:9

BM 158 18221 92 1:19

BM 159 17522 88 1:19

BM 160 19951 101 1:19

BM 161 11118 56 1:19

BM 162 14728 74 1:19

BM 163 17488 177 1:9

BM 164 14394 73 1:19

BM 165 19701 100 1:19

BM 166 15012 76 1:19

BM 167 15001 76 1:19

BM 168 12807 65 1:19

BM 169 17747 0 1:∞

BM 170 13019 132 1:9

BM 171 15482 78 1:19

BM 172 10363 52 1:19

BM 173 13556 137 1:9

BM 174 17478 177 1:9

BM 175 16556 84 1:19

BM 176 13075 66 1:19

BM 177 19012 193 1:9

BM 178 18444 187 1:9

BM 179 12877 65 1:19

BM 180 17221 87 1:19

BM 181 11504 116 1:9

BM 182 19841 100 1:19

BM 183 14960 151 1:9

BM 184 11252 0 1:∞

BM 185 18824 0 1:∞

BM 186 13663 69 1:19

BM 187 14230 144 1:9

BM 188 16772 85 1:19

BM 189 11667 59 1:19

BM 190 11570 58 1:19

BM 191 18032 91 1:19

BM 192 15897 161 1:9

BM 193 18800 95 1:19

BM 194 16249 164 1:9

BM 195 19883 0 1:∞

BM 196 16960 86 1:19

BM 197 12057 122 1:9

BM 198 16950 86 1:19

Continued on next page

161

B Benchmark Details

Table B.5: Benchmark suite SB15 V1 containing multipliers and with a Demand Ratio of 1:15 and Variance of 1:1111

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 199 12154 61 1:19

BM 200 12428 63 1:19

BM 201 15178 77 1:19

BM 202 14341 72 1:19

BM 203 12823 65 1:19

BM 204 19900 101 1:19

BM 205 11715 118 1:9

BM 206 19066 193 1:9

BM 207 18819 191 1:9

BM 208 13145 66 1:19

BM 209 12009 60 1:20

BM 210 12000 60 1:20

BM 211 19217 97 1:19

BM 212 12336 62 1:19

BM 213 18467 187 1:9

BM 214 10995 55 1:19

BM 215 13841 70 1:19

BM 216 14304 72 1:19

BM 217 15868 80 1:19

BM 218 11132 113 1:9

BM 219 19758 0 1:∞

BM 220 15885 0 1:∞

BM 221 15206 154 1:9

BM 222 17573 178 1:9

BM 223 12619 0 1:∞

BM 224 17996 91 1:19

BM 225 12817 130 1:9

BM 226 19224 195 1:9

BM 227 11662 59 1:19

BM 228 16013 162 1:9

BM 229 17199 87 1:19

BM 230 17102 0 1:∞

BM 231 16784 85 1:19

BM 232 12764 64 1:19

BM 233 16403 166 1:9

BM 234 17695 89 1:19

BM 235 11281 57 1:19

BM 236 13987 142 1:9

BM 237 14884 75 1:19

BM 238 16865 171 1:9

BM 239 11335 57 1:19

BM 240 14835 150 1:9

BM 241 11210 56 1:20

Continued on next page

162

B Benchmark Details

Table B.5: Benchmark suite SB15 V1 containing multipliers and with a Demand Ratio of 1:15 and Variance of 1:1111

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 242 18890 0 1:∞

BM 243 18325 186 1:9

BM 244 19353 98 1:19

BM 245 14616 148 1:9

BM 246 19269 97 1:19

BM 247 14214 72 1:19

BM 248 10405 52 1:20

BM 249 18633 94 1:19

Table B.6: Benchmark suite SB15 V2 containing multipliers and with a Demand Ratio of 1:15 and variance of 1:333

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 0 4066 85 1:4

BM 1 2920 26 1:11

BM 2 285 0 1:∞

BM 3 698 13 1:5

BM 4 660 0 1:∞

BM 5 995 10 1:9

BM 6 4656 0 1:∞

BM 7 4482 33 1:13

BM 8 1364 4 1:34

BM 9 4868 3 1:162

BM 10 2203 30 1:7

BM 11 3777 57 1:6

BM 12 2968 44 1:6

BM 13 3706 18 1:20

BM 14 2813 0 1:∞

BM 15 755 0 1:∞

BM 16 1858 1 1:185

BM 17 2021 43 1:4

BM 18 4731 48 1:9

BM 19 1346 0 1:∞

BM 20 4642 29 1:16

BM 21 405 3 1:13

BM 22 4946 51 1:9

BM 23 1494 15 1:9

BM 24 2774 60 1:4

BM 25 2643 24 1:11

BM 26 2450 22 1:11

Continued on next page

163

B Benchmark Details

Table B.6: Benchmark suite SB15 V2 containing multipliers and with a Demand Ratio of 1:15 and variance of 1:333

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 27 4358 48 1:9

BM 28 3146 40 1:7

BM 29 3748 94 1:3

BM 30 1146 0 1:∞

BM 31 215 2 1:10

BM 32 2583 18 1:14

BM 33 2267 0 1:∞

BM 34 2325 0 1:∞

BM 35 1609 6 1:26

BM 36 3004 17 1:17

BM 37 1002 6 1:16

BM 38 3089 0 1:∞

BM 39 3091 0 1:∞

BM 40 3189 29 1:10

BM 41 1118 7 1:15

BM 42 251 3 1:8

BM 43 1312 1 1:131

BM 44 1503 6 1:25

BM 45 1756 24 1:7

BM 46 1674 12 1:13

BM 47 2414 0 1:∞

BM 48 3131 34 1:9

BM 49 531 4 1:13

BM 50 1393 0 1:∞

BM 51 3660 4 1:91

BM 52 3778 0 1:∞

BM 53 2244 6 1:37

BM 54 2070 0 1:∞

BM 55 1070 0 1:∞

BM 56 968 2 1:48

BM 57 2368 23 1:10

BM 58 2735 41 1:6

BM 59 398 3 1:13

BM 60 4912 0 1:∞

BM 61 659 7 1:9

BM 62 1760 33 1:5

BM 63 1608 19 1:8

BM 64 4079 43 1:9

BM 65 1836 15 1:12

BM 66 220 3 1:7

BM 67 1393 0 1:∞

BM 68 1428 11 1:12

BM 69 1080 0 1:∞

Continued on next page

164

B Benchmark Details

Table B.6: Benchmark suite SB15 V2 containing multipliers and with a Demand Ratio of 1:15 and variance of 1:333

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 70 2783 13 1:21

BM 71 3102 8 1:38

BM 72 4453 13 1:34

BM 73 2511 30 1:8

BM 74 1293 6 1:21

BM 75 1798 24 1:7

BM 76 3382 39 1:8

BM 77 1183 5 1:23

BM 78 578 9 1:6

BM 79 1027 0 1:∞

BM 80 3087 0 1:∞

BM 81 750 1 1:75

BM 82 4449 0 1:∞

BM 83 225 2 1:11

BM 84 3856 39 1:9

BM 85 2161 25 1:8

BM 86 2230 18 1:12

BM 87 4525 14 1:32

BM 88 1373 0 1:∞

BM 89 1915 5 1:38

BM 90 3374 0 1:∞

BM 91 712 4 1:17

BM 92 1855 8 1:23

BM 93 2449 25 1:9

BM 94 2111 12 1:17

BM 95 3874 18 1:21

BM 96 2700 38 1:7

BM 97 1189 7 1:16

BM 98 1286 21 1:6

BM 99 3294 34 1:9

BM 100 1797 11 1:16

BM 101 4033 47 1:8

BM 102 1325 15 1:8

BM 103 3354 44 1:7

BM 104 240 0 1:∞

BM 105 994 9 1:11

BM 106 1886 0 1:∞

BM 107 2367 34 1:6

BM 108 4008 12 1:33

BM 109 2577 33 1:7

BM 110 3751 56 1:6

BM 111 4321 13 1:33

BM 112 3748 90 1:4

Continued on next page

165

B Benchmark Details

Table B.6: Benchmark suite SB15 V2 containing multipliers and with a Demand Ratio of 1:15 and variance of 1:333

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 113 2614 5 1:52

BM 114 893 9 1:9

BM 115 2461 13 1:18

BM 116 619 8 1:7

BM 117 4537 39 1:11

BM 118 3088 47 1:6

BM 119 872 4 1:21

BM 120 4550 29 1:15

BM 121 809 4 1:20

BM 122 2197 25 1:8

BM 123 3407 13 1:26

BM 124 853 0 1:∞

BM 125 4083 12 1:34

BM 126 4098 23 1:17

BM 127 2514 0 1:∞

BM 128 3543 0 1:∞

BM 129 635 6 1:10

BM 130 993 4 1:24

BM 131 2907 18 1:16

BM 132 4126 14 1:29

BM 133 1414 5 1:28

BM 134 1251 13 1:9

BM 135 2236 15 1:14

BM 136 1384 14 1:9

BM 137 3666 15 1:24

BM 138 1135 1 1:113

BM 139 2102 4 1:52

BM 140 2535 9 1:28

BM 141 4881 1 1:488

BM 142 1165 12 1:9

BM 143 372 0 1:∞

BM 144 3685 58 1:6

BM 145 2008 6 1:33

BM 146 4269 46 1:9

BM 147 4538 4 1:113

BM 148 3155 17 1:18

BM 149 2501 17 1:14

BM 150 2455 3 1:81

BM 151 2674 44 1:6

BM 152 2807 30 1:9

BM 153 4121 37 1:11

BM 154 4386 10 1:43

BM 155 3740 0 1:∞

Continued on next page

166

B Benchmark Details

Table B.6: Benchmark suite SB15 V2 containing multipliers and with a Demand Ratio of 1:15 and variance of 1:333

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 156 2933 38 1:7

BM 157 3679 0 1:∞

BM 158 4972 28 1:17

BM 159 2182 13 1:16

BM 160 3455 3 1:115

BM 161 1236 19 1:6

BM 162 2160 16 1:13

BM 163 2578 24 1:10

BM 164 2580 21 1:12

BM 165 2329 13 1:17

BM 166 449 1 1:44

BM 167 2487 21 1:11

BM 168 869 7 1:12

BM 169 3975 55 1:7

BM 170 695 2 1:34

BM 171 2035 24 1:8

BM 172 1863 15 1:12

BM 173 586 5 1:11

BM 174 2147 0 1:∞

BM 175 805 15 1:5

BM 176 2820 0 1:∞

BM 177 368 5 1:7

BM 178 1868 31 1:6

BM 179 2576 28 1:9

BM 180 306 2 1:15

BM 181 1931 5 1:38

BM 182 3094 11 1:28

BM 183 2846 46 1:6

BM 184 4203 9 1:46

BM 185 3275 5 1:65

BM 186 3270 0 1:∞

BM 187 3719 29 1:12

BM 188 3274 11 1:29

BM 189 2505 44 1:5

BM 190 2131 13 1:16

BM 191 2276 44 1:5

BM 192 631 9 1:7

BM 193 4802 23 1:20

BM 194 554 8 1:6

BM 195 1801 8 1:22

BM 196 4675 0 1:∞

BM 197 4632 0 1:∞

BM 198 1757 32 1:5

Continued on next page

167

B Benchmark Details

Table B.6: Benchmark suite SB15 V2 containing multipliers and with a Demand Ratio of 1:15 and variance of 1:333

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 199 1595 19 1:8

BM 200 2629 54 1:4

BM 201 918 9 1:10

BM 202 4774 80 1:5

BM 203 348 0 1:∞

BM 204 3848 0 1:∞

BM 205 4535 27 1:16

BM 206 1771 7 1:25

BM 207 2399 31 1:7

BM 208 2424 20 1:12

BM 209 4680 4 1:117

BM 210 2736 4 1:68

BM 211 4245 39 1:10

BM 212 3861 37 1:10

BM 213 2257 34 1:6

BM 214 3117 22 1:14

BM 215 3450 37 1:9

BM 216 3748 0 1:∞

BM 217 4844 0 1:∞

BM 218 4332 50 1:8

BM 219 2500 14 1:17

BM 220 802 8 1:10

BM 221 4975 45 1:11

BM 222 2725 0 1:∞

BM 223 1749 0 1:∞

BM 224 4219 36 1:11

BM 225 4292 0 1:∞

BM 226 4093 52 1:7

BM 227 2020 24 1:8

BM 228 2475 39 1:6

BM 229 4526 0 1:∞

BM 230 3360 41 1:8

BM 231 1399 0 1:∞

BM 232 2347 31 1:7

BM 233 3844 1 1:384

BM 234 927 6 1:15

BM 235 1974 8 1:24

BM 236 4490 73 1:6

BM 237 1119 1 1:111

BM 238 4861 11 1:44

BM 239 1477 14 1:10

BM 240 320 0 1:∞

BM 241 3478 60 1:5

Continued on next page

168

B Benchmark Details

Table B.6: Benchmark suite SB15 V2 containing multipliers and with a Demand Ratio of 1:15 and variance of 1:333

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 242 4065 29 1:14

BM 243 4764 26 1:18

BM 244 561 3 1:18

BM 244 3685 58 1:6

BM 245 2008 6 1:33

BM 246 4269 46 1:9

BM 247 4538 4 1:113

BM 248 3155 17 1:18

BM 249 2501 17 1:14

169

B Benchmark Details

Table B.7: Benchmark suite SB15 V3 containing multipliers and with a Demand Ratio of 1:15 and a variance of 1:128

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 0 10750 0 1:∞

BM 1 15864 0 1:∞

BM 2 18054 416 1:4

BM 3 14428 0 1:∞

BM 4 18211 0 1:∞

BM 5 19846 458 1:4

BM 6 19576 0 1:∞

BM 7 17607 135 1:13

BM 8 17232 0 1:∞

BM 9 12679 0 1:∞

BM 10 18074 278 1:6

BM 11 18918 0 1:∞

BM 12 17269 398 1:4

BM 13 19768 0 1:∞

BM 14 15055 0 1:∞

BM 15 10766 0 1:∞

BM 16 16062 0 1:∞

BM 17 13105 100 1:13

BM 18 10465 0 1:∞

BM 19 18714 288 1:6

BM 20 15839 0 1:∞

BM 21 16320 125 1:13

BM 22 13174 101 1:13

BM 23 14165 327 1:4

BM 24 11607 0 1:∞

BM 25 15582 239 1:6

BM 26 12204 93 1:13

BM 27 16950 0 1:∞

BM 28 17904 275 1:6

BM 29 10197 78 1:13

BM 30 16280 375 1:4

BM 31 11468 352 1:3

BM 32 13945 0 1:∞

BM 33 12810 98 1:13

BM 34 18458 142 1:12

BM 35 15790 243 1:6

BM 36 16436 126 1:13

BM 37 12417 0 1:∞

BM 38 12390 95 1:13

BM 39 16369 125 1:13

BM 40 19778 760 1:2

BM 41 13678 315 1:4

Continued on next page

170

B Benchmark Details

Table B.7: Benchmark suite SB15 V3 containing multipliers and with a Demand Ratio of 1:15 and a variance of 1:128

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 42 12803 394 1:3

BM 43 14160 436 1:3

BM 44 13699 105 1:13

BM 45 10018 0 1:∞

BM 46 11672 359 1:3

BM 47 18673 0 1:∞

BM 48 12411 382 1:3

BM 49 12731 196 1:6

BM 50 15711 241 1:6

BM 51 11518 88 1:13

BM 52 16983 0 1:∞

BM 53 18110 418 1:4

BM 54 16869 129 1:13

BM 55 16074 247 1:6

BM 56 19134 147 1:13

BM 57 14982 0 1:∞

BM 58 13085 302 1:4

BM 59 18996 0 1:∞

BM 60 16203 249 1:6

BM 61 13115 0 1:∞

BM 62 16852 259 1:6

BM 63 16196 0 1:∞

BM 64 15975 0 1:∞

BM 65 16484 380 1:4

BM 66 13800 0 1:∞

BM 67 10186 0 1:∞

BM 68 14642 225 1:6

BM 69 12861 99 1:12

BM 70 11831 0 1:∞

BM 71 14511 335 1:4

BM 72 15041 463 1:3

BM 73 19254 296 1:6

BM 74 11340 0 1:∞

BM 75 11263 0 1:∞

BM 76 13616 104 1:13

BM 77 11771 0 1:∞

BM 78 18871 0 1:∞

BM 79 16083 495 1:3

BM 80 13247 203 1:6

BM 81 19237 148 1:12

BM 82 16921 0 1:∞

BM 83 14184 218 1:6

BM 84 10423 240 1:4

Continued on next page

171

B Benchmark Details

Table B.7: Benchmark suite SB15 V3 containing multipliers and with a Demand Ratio of 1:15 and a variance of 1:128

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 85 19427 0 1:∞

BM 86 12333 94 1:13

BM 87 19571 0 1:∞

BM 88 16136 0 1:∞

BM 89 11853 182 1:6

BM 90 17075 262 1:6

BM 91 17725 0 1:∞

BM 92 13846 106 1:13

BM 93 17511 0 1:∞

BM 94 13816 106 1:13

BM 95 13916 321 1:4

BM 96 18865 0 1:∞

BM 97 10464 0 1:∞

BM 98 15280 0 1:∞

BM 99 10054 0 1:∞

BM 100 18045 138 1:13

BM 101 14309 0 1:∞

BM 102 16123 124 1:13

BM 103 14105 0 1:∞

BM 104 19057 0 1:∞

BM 105 12441 287 1:4

BM 106 15426 0 1:∞

BM 107 19527 0 1:∞

BM 108 19662 151 1:13

BM 109 14694 0 1:∞

BM 110 13336 205 1:6

BM 111 13247 101 1:13

BM 112 18115 0 1:∞

BM 113 14339 0 1:∞

BM 114 11063 0 1:∞

BM 115 15450 0 1:∞

BM 116 10226 0 1:∞

BM 117 12191 0 1:∞

BM 118 12695 0 1:∞

BM 119 14962 115 1:13

BM 120 18607 0 1:∞

BM 121 10588 81 1:13

BM 122 13921 0 1:∞

BM 123 16011 0 1:∞

BM 124 19857 458 1:4

BM 125 19766 152 1:13

BM 126 15668 120 1:13

BM 127 18098 0 1:∞

Continued on next page

172

B Benchmark Details

Table B.7: Benchmark suite SB15 V3 containing multipliers and with a Demand Ratio of 1:15 and a variance of 1:128

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 128 19428 0 1:∞

BM 129 19883 306 1:6

BM 130 19535 0 1:∞

BM 131 12304 94 1:13

BM 132 17797 136 1:13

BM 133 12464 0 1:∞

BM 134 17144 0 1:∞

BM 135 14949 230 1:6

BM 136 17533 0 1:∞

BM 137 18842 145 1:12

BM 138 18357 282 1:6

BM 139 17741 273 1:6

BM 140 11910 91 1:13

BM 141 14112 217 1:6

BM 142 13225 305 1:4

BM 143 14066 108 1:13

BM 144 17352 0 1:∞

BM 145 15849 0 1:∞

BM 146 11986 184 1:6

BM 147 13002 0 1:∞

BM 148 19001 0 1:∞

BM 149 12980 199 1:6

BM 150 11948 0 1:∞

BM 151 14601 337 1:4

BM 152 19818 305 1:6

BM 153 13639 0 1:∞

BM 154 14648 0 1:∞

BM 155 12742 98 1:13

BM 156 17944 414 1:4

BM 157 16841 0 1:∞

BM 158 11768 90 1:13

BM 159 16528 0 1:∞

BM 160 17560 0 1:∞

BM 161 12361 0 1:∞

BM 162 16883 129 1:13

BM 163 12034 92 1:13

BM 164 13533 208 1:6

BM 165 18381 0 1:∞

BM 166 12943 199 1:6

BM 167 17666 543 1:3

BM 168 12778 98 1:13

BM 169 10937 84 1:13

BM 170 15389 0 1:∞

Continued on next page

173

B Benchmark Details

Table B.7: Benchmark suite SB15 V3 containing multipliers and with a Demand Ratio of 1:15 and a variance of 1:128

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 171 16690 0 1:∞

BM 172 13237 0 1:∞

BM 173 10856 83 1:13

BM 174 10791 0 1:∞

BM 175 10479 80 1:13

BM 176 16113 124 1:12

BM 177 14250 0 1:∞

BM 178 10907 0 1:∞

BM 179 15232 0 1:∞

BM 180 17651 271 1:6

BM 181 18977 146 1:12

BM 182 16597 127 1:13

BM 183 19709 151 1:13

BM 184 10652 81 1:13

BM 185 19506 750 1:2

BM 186 17030 0 1:∞

BM 187 15727 0 1:∞

BM 188 19728 0 1:∞

BM 189 11625 268 1:4

BM 190 16671 256 1:6

BM 191 11574 0 1:∞

BM 192 14000 0 1:∞

BM 193 18485 0 1:∞

BM 194 14814 342 1:4

BM 195 12051 0 1:∞

BM 196 13684 0 1:∞

BM 197 19412 0 1:∞

BM 198 14023 107 1:13

BM 199 12360 0 1:∞

BM 200 16120 124 1:13

BM 201 17069 0 1:∞

BM 202 14415 0 1:∞

BM 203 16121 0 1:∞

BM 204 18436 0 1:∞

BM 205 17366 133 1:13

BM 206 12555 0 1:∞

BM 207 10596 244 1:4

BM 208 17470 134 1:13

BM 209 17815 0 1:∞

BM 210 15504 0 1:∞

BM 211 14749 0 1:∞

BM 212 13599 104 1:13

BM 213 18525 0 1:∞

Continued on next page

174

B Benchmark Details

Table B.7: Benchmark suite SB15 V3 containing multipliers and with a Demand Ratio of 1:15 and a variance of 1:128

Benchmark Num BLEs Number of Multipliers Demand Ratio

Name

BM 214 19635 604 1:3

BM 215 15002 0 1:∞

BM 216 15456 118 1:13

BM 217 15257 0 1:∞

BM 218 17572 270 1:6

BM 219 10367 0 1:∞

BM 220 15478 0 1:∞

BM 221 17467 134 1:13

BM 222 13027 0 1:∞

BM 223 17293 0 1:∞

BM 224 19850 305 1:6

BM 225 19133 0 1:∞

BM 226 17680 136 1:13

BM 227 13598 0 1:∞

BM 228 14396 110 1:13

BM 229 11606 0 1:∞

BM 230 19360 0 1:∞

BM 231 16139 124 1:13

BM 232 15032 231 1:6

BM 233 11041 84 1:13

BM 234 19128 147 1:13

BM 235 14964 0 1:∞

BM 236 15494 357 1:4

BM 237 15343 0 1:∞

BM 238 16848 259 1:6

BM 239 11722 360 1:3

BM 240 10450 0 1:∞

BM 241 11108 0 1:∞

BM 242 17442 0 1:∞

BM 243 15761 121 1:13

BM 244 13181 202 1:6

BM 245 12222 0 1:∞

BM 246 10329 158 1:6

BM 247 10062 77 1:13

BM 248 12463 0 1:∞

BM 249 14318 0 1:∞

175

B Benchmark Details

B.4 Synthetic Benchmarks with Crossbars

We have created a set of synthetic benchmarks that use crossbars to test our concepts

in Chapter 5. In this section, we show each of these benchmark suites including the

number of crossbars and the demand ratio in each benchmark. Note that for each of

these 100 benchmark suites we are showing the number of 16-16 crossbars, and for

32-32 or 64-64 you simply divide this number by four or sixteen respectively.

All the data for the other benchmarks, such as SB 1, can be extracted from Ta-

ble B.8. For example, Benchmark suite SB 1 has the same data as Table B.8 except

that benchmarks BM 1 through BM 99 have 0 crossbars and 1:∞ demand ratio.

Table B.8: Benchmark suite SB 100 containing crossbars and with a Demand Ratio of 1:15

Benchmark Num BLEs Number of Crossbars Demand Ratio

Name

BM 0 1811784 11323 1:15

BM 1 1156971 96163 1:19

BM 2 1038038 143812 1:11

BM 3 1546097 64916 1:38

BM 4 1123256 170881 1:10

BM 5 1129751 115938 1:15

BM 6 1966727 164269 1:19

BM 7 1980449 76249 1:41

BM 8 1908872 152542 1:20

BM 9 1431429 107700 1:21

BM 10 1804627 100636 1:28

BM 11 1723559 96867 1:28

BM 12 1336816 105814 1:20

BM 13 1091996 62706 1:27

BM 14 1240360 34262 1:57

BM 15 1041397 81651 1:20

BM 16 1737804 16144 1:172

BM 17 1252973 70188 1:28

BM 18 1087754 1956 1:891

BM 19 1466427 10218 1:229

BM 20 1476901 81801 1:28

BM 21 1821685 74414 1:39

BM 22 1970330 183079 1:17

BM 23 1335776 74107 1:28

BM 24 1059936 8121 1:209

BM 25 1831120 33094 1:88

Continued on next page

176

B Benchmark Details

Table B.8: Benchmark suite SB 100 containing crossbars and with a Demand Ratio of 1:15

Benchmark Num BLEs Number of Crossbars Demand Ratio

Name

BM 26 1285459 114373 1:17

BM 27 1880349 59442 1:50

BM 28 1487814 73011 1:32

BM 29 1379676 84929 1:25

BM 30 1101072 161461 1:10

BM 31 1296672 147986 1:14

BM 32 1135793 16748 1:108

BM 33 1131071 88130 1:20

BM 34 1381420 141160 1:15

BM 35 1467263 34751 1:67

BM 36 1710028 29746 1:91

BM 37 1334654 116206 1:18

BM 38 1607435 145668 1:17

BM 39 1592264 97691 1:26

BM 40 1953988 131447 1:23

BM 41 1564638 138222 1:18

BM 42 1010769 84606 1:19

BM 43 1894427 13352 1:227

BM 44 1933684 80501 1:38

BM 45 1743110 120347 1:23

BM 46 1727880 43493 1:63

BM 47 1906336 23398 1:130

BM 48 1622132 106063 1:24

BM 49 1603573 71596 1:35

BM 50 1151257 8114 1:227

BM 51 1894577 96730 1:31

BM 52 1876137 109890 1:27

BM 53 1057996 169493 1:9

BM 54 1416015 197449 1:11

BM 55 1183647 155684 1:12

BM 56 1589998 39729 1:64

BM 57 1642155 76322 1:34

BM 58 1709624 125048 1:21

BM 59 1615702 92416 1:27

BM 60 1843389 68828 1:42

BM 61 1710768 79706 1:34

BM 62 1431299 44490 1:51

BM 63 1434942 134489 1:17

BM 64 1170864 142760 1:13

BM 65 1089687 96905 1:17

BM 66 1142056 101270 1:18

BM 67 1699759 51588 1:52

BM 68 1729849 13732 1:201

Continued on next page

177

B Benchmark Details

Table B.8: Benchmark suite SB 100 containing crossbars and with a Demand Ratio of 1:15

Benchmark Num BLEs Number of Crossbars Demand Ratio

Name

BM 69 1534469 23626 1:103

BM 70 1924369 104513 1:29

BM 71 1548571 97476 1:25

BM 72 1499105 73330 1:32

BM 73 1147838 87700 1:20

BM 74 1760012 30601 1:92

BM 75 1368389 187033 1:11

BM 76 1638705 63141 1:41

BM 77 1174670 28796 1:65

BM 78 1728966 120899 1:22

BM 79 1639788 32973 1:79

BM 80 1680833 121292 1:22

BM 81 1738303 124351 1:22

BM 82 1230093 10348 1:190

BM 83 1873787 176561 1:16

BM 84 1228523 76079 1:25

BM 85 1138510 42139 1:43

BM 86 1159077 99118 1:18

BM 87 1699963 76877 1:35

BM 88 1910512 108541 1:28

BM 89 1866912 67851 1:44

BM 90 1644045 119467 1:22

BM 91 1273926 36654 1:55

BM 92 1347163 88407 1:24

BM 93 1869108 143389 1:20

BM 94 1090913 98651 1:17

BM 95 1492311 10518 1:227

BM 96 1754724 75435 1:37

BM 97 1627340 89692 1:29

BM 98 1185029 151092 1:12

BM 99 1977463 65088 1:48

178

B Benchmark Details

B.5 Summary

In this appendix, we have provided more of the details of the benchmarks used through-

out this dissertation. This includes not only the size of these benchmarks in terms of

BLEs, but also details about the number of multipliers or crossbars, the number of

memory bits, and the number of input and output pins in the benchmarks.

179

References

[ACH+97] Charles J. Alpert, Tony F. Chan, Dennis Huang, Andrew Kahnh, Igor
Markov, Pep Mulet, and Kenneth Yan. Faster Minimization of Lin-
ear Wirelength for Global Placement. In International Symposium on
Physical Design, pages 4–11, Napa Valley, CA, 1997.

[Act96] Actel. ACT 1 Series FPGAs, 1996.

[Act02] Actel. ProASIC 500K Family, 2002.

[AKE+04] Navid Azizi, Ian Kuon, Aaron Egier, Ahmad Darabiha, and Paul
Chow. Reconfigurable Molecular Dynamics Simulator. In Proceedings
of the IEEE Symposium on Field-Programmable Custom Computing
Machines, pages 197–206, April 2004.

[Alt02] Altera. Using Stratix GX in Switch Fabric Systems, 2002. Altera White
Paper.

[Alt03] Altera. Stratix Device Handbook, Jul 2003.

[Alt04a] Altera. APEX 20K, Programmable Logic Device Family, March 2004.

[Alt04b] Altera. Crosspoint Switch Matrices in MAX II & MAX 2000A Devices,
2004. Altera Application Note 294.

[Alt04c] Altera. Quartus II Handbook, Volumes 1, 2, and 3, 2004.

[Alt04d] Altera. Stratix II Device Handbook, 2004.

[Alt04e] Altera. Stratix II Performance and Logic Efficiency Analysis. Feb 2004.

[Alt04f] Altera. www.altera.com/products/devices/arm/overview/arm-
overview.html, 2004.

[Alt06] Altera. Stratix III Device Handbook, 2006.

[Alt07a] Altera. Cyclone III Device Handbook, 2007.

180

B References

[Alt07b] Altera. Cyclone III Device Handbook, 2007.

[AR00] E. Ahmed and J. Rose. The Effect of LUT and Cluster Size on Deep-
Submicron FPGA Performance and Density. In ACM/SIGDA Inter-
national Symposium on FPGAs, pages 3–12, Feb 2000.

[ARM01] ARM. ARM922T System-on-Chip Platform OS Processor, 2001.

[BCC+91] J. Birkner, A. Chan, H.T Chua, A. Chao, K. Gordon, B. Kleinman,
P. Kolze, and R. Wong. A Very High-Speed Field Programmable Gate
Array Using Metal-to-Metal Anti-Fuse Programmable Elements. In
New Hardware Product Introduction at CICC ’91, 1991.

[BFRV92] Stephen D. Brown, Robert J. Francis, Jonathan Rose, and Zvonko G.
Vranesic. Field-Programmable Gate Arrays. Kluwer Academic Pub-
lishers, Boston, 1992.

[BHSV90] R. K. Brayton, G. D. Hachtel, and A. L. Sangionvanni-Vincentelli.
Multilevel Logic Synthesis. Proceedings of the IEEE, 78(2):264–300,
February 1990.

[BHUH06] M. J. Beauchamp, S. Hauck, K.D. Underwood, and K.S. Hemmert.
Embedded Floating Point Units in FPGAs. In ACM/SIGDA Interna-
tional Symposium on FPGAs, pages 12–20, Feb 2006.

[BL90] J. Bhasker and Huan-Chih Lee. An Optimizer for Hardware Synthesis.
IEEE Design & Test, 7(5):20–36, October 1990.

[BL03] G. Brebner and D. Levi. Networking on Chip with Platform FPGAs.
In IEEE International Conference on Field-Programmable Technology,
pages 13–20, Dec 2003.

[Bor99] S. Borkar. Design challenges of technology scaling. IEEE MICRO,
19(4):23–29, July–August 1999.

[BRM99] Vaughn Betz, Jonathan Rose, and Alexander Marquardt. Architecture
and CAD for Deep-Submicron FPGAs. Kluwer Academic Publishers,
1999.

[BRV90] S. Brown, J. Rose, and Z. G. Vranesic. A Detailed Router for Field-
Programmable Gate Arrays. In Proceedings of the International Con-
ference on Computer Aided Design, pages 382–385, 1990.

181

B References

[BRV92] S. Brown, J. S. Rose, and Z. Vranesic. A Detailed Router for Field
Programmable Gate Arrays. IEEE Transactions on Computer-Aided
Design of Circuits and Systems, 11(5):620–628, May 1992.

[Bry86] Randal E. Bryant. Graph-Based Algorithms for Boolean Function Ma-
nipulation. IEEE Transactions on Computers, C-35(8):677–691, Au-
gust 1986.

[BVOP03] Murat Becer, Radi Vaidyanathan, Chanchee Oh, and Rajendra Panda.
Signal Integrity Management in an SoC Physical design Flow. In In-
ternational Symposium on Physical Design, pages 110–117, Monterey,
CA, 2003.

[CC04] D. Chen and J. Cong. DAOmap: a depth-optimal area optimization
mapping algorithm for FPGA designs. In IEEE International Confer-
ence on Computer Aided Design, pages 752–759, Nov 2004.

[CCD+92] K. Chen, J. Cong, Y. Ding, A. Kahng, and P. Trajmar. DAG-Map:
Graph-based FPGA Technology Mapping for Delay Optimization. In
IEEE Design and Test of Computers, pages 7–20, September 1992.

[CD94] J. Cong and Y. Ding. FlowMap: An Optimal Technology Mapping Al-
gorithm for Delay Optimizationin Lookup-Table Based FPGA Designs.
IEEE Trans. Computer-aided Design, 13(1):1–12, 1994.

[CEWWM+99] A. R. Conn, I. M. Elfadel, Jr. W. W. Molzen, P. R. O’Brien, P. N.
Strenski, C. Visweswariah, and C. B. Whan. Gradient-based opti-
mization of custom circuits using a static-timing formulation. In Pro-
ceedings of Design Automation Conference, pages 452–459, New York,
NY, USA, 1999.

[CFHZ04] Jason Cong, Yiping Fan, Guoling Han, and Zhiru Zhang. Application-
specific instruction generation for configurable processor architectures.
In ACM/SIGDA International Symposium on FPGAs, pages 183–189,
2004.

[CH00] Jason Cong and Yean-Yow Hwang. Structural gate decomposition for
depth-optimal technology mapping in LUT-based FPGA designs. ACM
Transactions on Design Automation of Elctronic Systems, 5(2):193–
225, 2000.

182

B References

[CPD96] Jason Cong, John Peck, and Yuzheng Ding. RASP: A General Logic
Synthesis System for SRAM-Based FPGAs. In ACM/SIGDA Interna-
tional Symposium on FPGAs, pages 137–143, 1996.

[CSR+99] Paul Chow, Soon Ong Seo, Jonathan Rose, Kevin Chung, Gerard Paez
Monzon, and Immanuel Rahadja. The Design of a SRAM-Based
Field-Programmable Gate Array - Part II: Circuit Design and Layout.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
7(3):321–331, September 1999.

[CTZW94] Y.-W. Chang, S. Thakur, K. Zhu, and D. F. Wong. A New Global
Routing Algorithm for FPGAs. In Proceedings of the IEEE Interna-
tional Conference on Computer Aided Design, pages 356–361, 1994.

[CX00] J. Cong and S. Xu. Performance-Driven Technology Mapping for Het-
erogeneous FPGAs. IEEE Transaction on Computer Aided Design of
Integrated Circuits and Systems, 19(11):1268–1280, November 2000.

[DK85] Alfred E. Dunlop and Brian W Kernighan. A Procedure for Placement
of Standard-Cell VLSI Circuits. IEEE Transactions on Computer-
Aided Design, 4(1):92–98, January 1985.

[DMNSV87] Srinivas Devada, Hi-Keung Ma, A. Newton, and A. Sangiovanni-
Vincentelli. MUSTANG: State Assignment of Finite State Machines
Targeting Multilevel Logic Implementations. IEEE Transactions on
Computer-Aided Design, (12):1290–1300, December 1987.

[DRM03] A. Dharabiha, J. Rose, and W.J. MacLean. Video-Rate Stereo Depth
Measurement on Programmable Hardware. In IEEE Computer Society
Conference on Computer Vision & Pattern Recognition, pages 203–210,
2003.

[Egi05] Aaron C. Egier. Enhancing and Using an Automatic Design System
for Creating FPGAs. Master’s thesis, University of Toronto, 2005.

[FD85] J. P. Fishburn and A.E. Dunlop. TILOS: A Posynomial Programming
Approach to Transistor Sizing. In International Conference on Com-
puter Aided Design, pages 326–328, November 1985.

[FR03] J. Fender and J. Rose. A High-Speed Ray TRacing Engine Built on a
Field-Programmable System. In IEEE International Conf. On Field-
Programmable Technology, pages 188–195, 2003.

183

B References

[FRV91] R. J. Francis, J. Rose, and Z. Vranesic. Chortle-crf: Fast technol-
ogy mapping for lookup table-based FPGAs. In Proceedings of Design
Automation Conference, pages 613–619, 1991.

[Gam81] A. El Gamal. Two-dimensional stochastic model for interconnections
in master slice integrated circuits. IEEE Transactions on Circuits and
Systems, 28(2):127–138, 1981.

[Gig04] Paul Gigliotti. Implementing Barrel Shifters Using Multipliers. XAPP
- Application Note: Virtex-II Family, pages 1–4, August 2004.

[Gol93] Steve Golson. One-hot state machine design for FPGAs. In 3rd PLD
Design Conference, pages 1–6, Santa Clara, CA, March 1993.

[HBO+93] D. Hill, B. Britton, B. Oswald, N-S Woo, S. Singh, C-T Chen, and
B Krambeck. Optimized Reconfigurable Cell Array Architecture for
High-performance Field Programmable Gate Arrays. In Proceeding of
IEEE Custom Integrated Circuits Conference 1993, pages 7.2.1–7.2.5,
1993.

[HHF98] Scott Hauck, Matthew M. Hosler, and Thomas W. Fry. High-
Performance Carry Chains for FPGAs. In ACM/SIGDA International
Symposium on FPGAs, pages 223–233, 1998.

[HK97] Dennis Huang and Andrew Khang. Partitioning-Based Standard-cell
global placement with an Exact Objective. In International Symposium
on Physical Design, pages 18–25, Napa Valley, CA, 1997.

[HLL+06] C.H Ho, P.H.W. Leong, W. Luk, S.J.E. Wilton, and S. Lopex-Buedo.
Virtual Embedded Blocks: A methodology for evaluating embedded
elements in FPGAs. In Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 35–44, 2006.

[HR93] Jianshe He and Jonathan Rose. Advantages of Heterogeneous Logic
Block Architectures for FPGAs. In IEEE Custom Integrated Circuits
Conf., pages 7.4.1–7.4.5, San Diego, CA, 1993.

[IEE87] IEEE. IEEE Standard VHDL Language Reference Manual, 1987.

[JR05a] Peter Jamieson and Jonathan Rose. A Verilog RTL Synthesis Tool for
Heterogeneous FPGAs. In Field-Programmable Logic and Applications,
pages 305–310, 2005.

184

B References

[JR05b] Peter Jamieson and Jonathan Rose. Mapping Multiplexers onto Hard
Multipliers in FPGAs. In 3rd International IEEE Northeast Workshop
on Circuits & Systems, pages 215–226, 2005.

[JR06] Peter Jamieson and Jonathan Rose. Enhancing the area-efficiency of
FPGAs with hard circuits using shadow clusters. In IEEE International
Conference on Field-Programmable Technology, pages 1–8, 2006.

[JW03] C. Jones and S. Wilton. Cascadable bus based crossbar switch in a
Programmable Logic Device. U.S. Patent 6,590,417. Issued July 8th,
2003.

[JW04] C. Jones and S. Wilton. Cascadable bus based crossbar switching in
a Programmable Logic Device. U.S. Patent 6,710,623. Issued March
23rd, 2004.

[KER05] Ian Kuon, Aaron Egier, and Jonathan Rose. Design, Layout, and
Verification of an FPGA using Automated Tools. In ACM/SIGDA
International Symposium on FPGAs, pages 215–226, Feb 2005.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Sim-
ulated Annealing. Science, 220(4598):671–680, May 1983.

[Kil73] G. A. Kildall. A unified approach to global program optimization.
In Annual Symposium on Principles of Programming Laguages, pages
194–206, 1973.

[KN02] H. Kariniemi and J. Numi. A Crossbar-Based ATM Switch on FPGA
for 2.488 Gbits/s CATV Network with Scaleable Header Remapping
Function. In Communication Systems, Networks, and Digital Signal
Processing Symposium, pages 82–85, July 2002.

[Kna99] Steve Knapp. Constant-coeficient multipliers save FPGA space, time.
Personal Engineering, pages 45–48, July 1999.

[KOMBS01] Ryan Kastner, Seda Ogrenci-Memik, Elaheh Bozorgzadeh, and Majid
Sarrafzadeh. Instruction Generation for Hybrid Reconfigurable Sys-
tems. In IEEE International Conference on Computer Aided Design,
pages 127–131, San Jose, CA, 2001.

[KR06] Ian Kuon and Jonathan Rose. Measuring the Gap Between FPGAs
and ASICs. In ACM/SIGDA International Symposium on FPGAs,
pages 21–30, Feb 2006.

185

B References

[KSJA91] Jurgen Kleinhans, George Sigl, Frank M. Johannes, and Kurt J. Antre-
ich. GORDIAN: VLSI Placement by Quadratic Programming and
Slicing Optimization. IEEE Transactions on Computer-Aided Design,
10(3):356–365, March 1991.

[Kuo04] Ian Kuon. Automated FPGA Designs. Verification and Layout. Mas-
ter’s thesis, University of Toronto, 2004.

[Kuo07] Ian Kuon. Private Communications with Ian Kuon. 2007.

[LAB+05] David Lewis, Elias Ahmed, Gregg Baeckler, Vaughn Betz, Mark
Bourgeault, David Cashman, David Galloway, Mike Hutton, Chris
Lane, Andy Lee, Paul Leventis, Sandy Marquardt, Cameron McClin-
tock, Ketan Padalia, Bruce Pedersen, Giles Powell, Boris Ratchev,
Srinivas Reddy, Jay Schleicher, Kevin Stevens, Richard Yuan, Richard
Cliff, and Jonathan Rose. The Stratix II Logic and Routing Archi-
tecture. In ACM/SIGDA International Symposium on FPGAs, pages
14–20, Feb 2005.

[Lat04] Lattice. ispXPGA Family, Jan 2004.

[Lat07a] Lattice. LatticeECP, Feb 2007.

[Lat07b] Lattice. LatticeECP2, Apr 2007.

[LB93] G. Lemieux and S. Brown. A Detailed Routing Algorithm for Allocat-
ing Wire. In ACM/SIGDA Physical Design Workshop, pages 215–226,
1993.

[Lew06] David Lewis. Private Communications with David Lewis. 2006.

[Lie03] Lars Liebmann. Layout Impact of Resolution Enhancement techniques:
Impediment or Opportunity? In International Symposium on Physical
Design, pages 110–117, Monterey, CA, 2003.

[LL01] G. Lemieux and D. Lewis. Using Sparse Crossbars within LUT clusters.
In ACM/SIGDA International Symposium on FPGAs, pages 59–68,
Feb 2001.

[LL04] G. Lemieux and D. Lewis. Directional and Single-Driver Wires in
FPGA Interconnect. In IEEE International Conference on Field-
Programmable Technology, pages 41–48, Dec 2004.

186

B References

[LPM93] Electronic Industries Association standard for Library Parametrized
Modules. www.edif.org/lpmweb/intro/what is lpm.htm, 1993.

[LW95] Y.-S. Lee and A. Wu. A Performance and Routability Driven Router for
FPGAs Considering Path Delay. In Proceedings of Design Automation
Conference, pages 557–561, 1995.

[Mag05] Magma Design Automation Inc. Blast FPGA. 2005.

[MBR99] Alexander Marquardt, Vaughn Betz, and Jonathan Rose. Using
Cluster-Based Logic Blocks and Timing-Driven Packing to Improve
FPGA Speed and Density. In ACM/SIGDA International Symposium
on FPGAs, pages 37–46, Monterey, CA, 1999.

[MC92] D. Marple and L. Cooke. An MPGA Compatible FPGA Architecture.
In ACM/SIGDA Workshop on FPGAs, pages 39–44, 1992.

[MCC05] G. Morris, G. Constantinides, and P. Cheung. Using DSP Blocks for
ROM Replacement: A Novel Synthesis Flow. In Field-Programmable
Logic and Applications, pages 77–82, Aug 2005.

[MDM+95] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Ya-
mada. 1-V power supply high-speed digital circuit technology with
multithreshold-voltage CMOS. IEEE Journal of Solid-State Circuits,
30(8):847–854, 1995.

[Men01] Mentor Graphics. LeanardoSpectrum. 2001.

[Mic94] Giovanni Micheli. Synthesis and Optimization of Digital Circuits.
McGraw-Hill, New York, 1994.

[Mic07] CMC Microsystems, 2007. http://www.cmc.ca.

[MN05] Paul Metzgen and Dominic Nancekievill. Multiplexer restructuring
for FPGA implementation cost reduction. In Proceedings of Design
Automation Conference, pages 421–426, 2005.

[Nga94] T. Ngai. An SRAM-programmable Field-Reconfigurable Memory. PhD
thesis, University of Toronto, 1994.

[NRSVT88] William Nye, David C. Riley, Alberto Sangiovanni-Vincentelli, and An-
dre L. Tits. DELIGHT.SPICE: An Optimization-Based System for the
Design of Integrated Circuits. IEEE Transactions on CAD, 7(4):501–
519, 1988.

187

B References

[OEGS93] Miles Ohlrich, Carl Ebeling, Eka Ginting, and Lisa Sather. SubGemini:
Identifying SubCircuits using a Fast Subgraph Isomorphism Algorithm.
In Proceedings of Design Automation Conference, pages 31–37, 1993.

[Ope93] Open Verilog International. Verilog Hardware Description Reference,
March 1993.

[ope07] www.opencores.org. 2007.

[Pla01] www.cs.nthu.edu.tw/∼ylin/, 2001.

[Ple90] Plessey. Plessey Semiconductor ERA60100 Advance Information, Data
Sheet, 1990.

[Qui03] QuickLogic. Eclipse Family Data Sheet, 2003.

[RFCL89] J. S. Rose, R. J. Francis, P. Chow, and D. Lewis. The Effect of Logic
Block Complexity on Area of Programmable Gate Arrays. In IEEE
Custom Integrated Conference, pages 5.3.1 – 5.3.5, May. 1989.

[RFLC90] J.S. Rose, R. J. Francis, D. Lewis, and P. Chow. Architecture of Field-
Programmable Gate Arrays: The Effect of Logic Block Functionality
on Area Efficiency. IEEE Journal of Solid-State Circuits, 25(5):1217–
1225, October 1990.

[Roo06] Ajay Roopchansingh. Private Communications with Ajay Roopchans-
ingh. 2006.

[Ros04] Jonathan Rose. Hard vs. Soft: The Central Question of Pre-Fabricated
Silicon. In 34th International Symposium on Multiple-Valued Logic
(ISMVL’04), pages 2–5, Toronto, ON, May 2004.

[SBR98] Jordan S. Swartz, Vaughn Betz, and Jonathan Rose. A fast routability-
driven router for FPGAs. In Proceedings of the ACM/SIGDA Interna-
tional symposium on Field programmable gate arrays, pages 140–149,
1998.

[scu98] www.engr.scu.edu/mourad/benchmark/RTL-Bench.html, 1998.

[SDJ91] Georg Sigl, Konrad Doll, and Frank M. Johannes. Analytical Place-
ment: A Linear or a Quadratic Objective Function? In Proceedings of
Design Automation Conference, pages 427–432, 1991.

188

B References

[Smi06] A. M. Smith. Heterogeneous Reconfigurable Architecture Design: An
Optimisation Approach. PhD thesis, Imperial College, 2006.

[SMS02] Amit Singh and Malgoratza Marek-Sadowska. Efficient Circuit Clus-
tering for Area and Power Reduction in FPGAs. In ACM/SIGDA
International Symposium on FPGAs, pages 59–66, 2002.

[SRRJ00] Guenter Stenz, Bernhard M. Reiss, Bernhard Rohfleisch, and Frank M.
Johannes. Performance Optimization by Interacting Netlist Transfor-
mations and Placement. IEEE Transactions On Computer-Aided De-
sign of Integrated Circuits and Systems, 19(3):350–358, March 2000.

[STM05] STMicroelectronics. 90nm CMOS090 Design Platform, 2005.
http://www.st.com/stonline/prodpres/dedicate/soc/asic/90plat.htm.

[Syn99] Synopsys. Star-Hspice Manual, 1999.

[Syn01] Synopsys. Nanosim Reference Guide, 2001.

[Syn03] Synplicity. Synplify Pro. 2003.

[Syn04] Synopsys. Design Compiler FPGA. 2004.

[tex97] www-cad.eecs.berkeley.edu/Respep/Research/vis/texas-97/, 1997.

[Wil97] S. Wilton. Architectures and Algorithms for Field-Programmable Gate
Arrays with Embedded Memories. PhD thesis, Toronto, ON, 1997.

[Wil99] S.J.E. Wilton. FPGA Embedded Memory Architectures: Recent Re-
search Results. In IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing, 1999.

[Wil02] Steven J.E. Wilton. Implementing Logic in FPGA Memory Arrays:
Heterogeneous Memory Architectures. In IEEE Custom Integrated Cir-
cuits Conference, pages 142–149, May 2002.

[Wil07] Stephen Williams. ICARUS Verilog at www.icarus.com/eda/verilog/.
2007.

[WKH99] Steven J.E. Wilton William K.C. Ho. Logical-to-Physical Memory
Mapping for FPGAs with Dual-Port Embedded Arrays. In Interna-
tional Workshop on Field Programmable Logic and Applications, 1999.

189

B References

[WRV96] S.J.E. Wilton, J. Rose, and Z.G. Vranesic. Memory/Logic Interconnect
Flexibility in FPGAs with Large Embedded Memory Arrays. In IEEE
Custom Integrated Circuits Conference, 1996.

[WRV97] S.J.E. Wilton, J. Rose, and Z.G. Vranesic. Memory-to-Memory Con-
nection Structures in FPGAs with Embedded Memory Arrays. In
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pages 10–16, 1997.

[WRV99] S.J.E. Wilton, J. Rose, and Z.G. Vranesic. The Memory/Logic Inter-
face in FPGA’s with Large Embedded Memory Arrays. IEEE Trans-
actions on Very-Large Scale Integration Systems, 7(1), March 1999.

[Xil89] Xilinx. The Programmable Gate Array Data Book, 1989.

[Xil00] Xilinx. High-Speed Buffered Crossbar Switch Design Using Virtex-EM
Devices, 2000. Xilinx Application Note 240.

[Xil03] Xilinx. Virtex-II Pro Platform FPGAs: Functional Description, Oct
2003.

[Xil04] Xilinx. Xilinx ISE 6 Software Manuals and Help, 2004.

[Xil05] Xilinx. Virtex-4 Family Overview, March 2005.

[Xil06] Xilinx. Virtex-5 Family Overview, June 2006.

[Xil07] Xilinx. Spartan-3A DSP FPGA FAmily: Complete Data Sheet, Apr
2007.

[YAF+03] S. Young, P. Alfke, C. Fewer, S. McMillan, B. Blodget, and D. Levi.
A high I/O reconfigurable crossbar switch. In Proceedings of the
IEEE Symposium on Field-Programmable Custom Computing Ma-
chines, pages 3–10, April 2003.

[Ye06] Andy Ye. Private Communications with Andy Ye. 2006.

[YW94] Honghua Yang and D. F. Wong. Edge-Map: Optimal Performance
Driven Technology Mapping for Iterative LUT Based FPGA Designs.
In Proceedings of the International Conference on Computer Aided De-
sign, pages 150–155, 1994.

190

B References

[ZJC+06] Y. Zhang, T. Jeong, F. Chen, H. Wu, R. Nitzsche, and G. Gao. A
study of the on-chip interconnection network for the IBM Cyclops64
multi-core architecture. In IEEE International Parallel & Distributed
Processing Symposium, pages 1–10, April 2006.

191

