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Abstract

This thesis describes the construction of a Field-Programmable System (FPS) and a soft-
ware tool for the implementation of memory on the FPS. This FPS, called the Transmogrifier-
1, consists of Field-Programmable Gate Arrays (FPGAs), memory chips and programmable
interconnect components and can be used both as a logic emulation system and as a compute
engine.

This work defines a new optimization problem that arises from the use of Field-Program-
mable Systems. Circuits implemented on the FPS, will require a set of memories which
may not match the number and aspect ratio of the physical memories available on the FPS.
This may require that the physical memories be time-multiplexed to implement the required
memories, in a circuit we call a memory organizer.

A precise definition of the packing optimization problem is given and an algorithm for
its solution is presented. The algorithm has been implemented in a Computer Aided Design
(CAD) tool that automatically produces a memory organizer circuit ready for synthesis by

a commercial FPGA tool set.
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Chapter 1

Introduction

1.1 Motivation

In today’s competitive global economy, the electronic industry is fighting to reach the market
with new products in the shortest possible time. By being able to build a prototype as early
in the development cycle as possible, companies can start testing their products even before

fabrication and hence, reduce time-to-market and financial risks.

Field-Programmable Gate Arrays (FPGAs) have been used as a solution to the above
time-to-market and risk problems. FPGAs provide instant manufacturing and very low cost
prototyping as well as re-programmability [1]. As illustrated in Figure 1.1, an FPGA is a
regular array of programmable logic blocks that can be interconnected by a programmable-
interconnect network. A digital circuit can be emulated by programming the function into

the logic blocks and selecting the way these blocks are interconnected.

Current FPGAs, however, do not have sufficient logic capacity for large designs, and a
system with multiple FPGAs is often needed. Such a Field-Programmable System (FPS), as
shown in Figure 1.2, consists of several FPGAs, auxiliary special-purpose integrated circuits

(e.g. memory chips), and an interconnection network or mechanism.

To date, different types of programmable systems exist for both logic emulation [2, 3, 4]
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and compute engines [5, 6, 7, 8, 9]. A logic emulator is a system of hardware and software
that can take a large gate-level logic design (at least tens of thousands of gates), and emulate
it in hardware form, by configuring a set of FPGAs [2]. A compute engine uses reconfigurable
hardware to create a custom computer architecture for a particular application. It is designed
to accelerate computations which exhibit at least a modest amount of temporal parallelism
(pipelining) or data parallelism [10]. Many interesting issues arise in building these Field-

Programmable Systems:

e How many and what kind of FPGAs should be used 7
e What kind of auxiliary special purpose integrated circuits should be used (if any) ?

e How these chips should be interconnected in order to maximize performance and min-

imize cost 7

Each of the existing Field-Programmable Systems uses different FPGAs and different
interconnected structures. The relative advantages of each system will be described in Chap-

ter 2.

In this thesis, an alternative Field-Programmable System architecture and working sys-

tem are implemented and presented. This FPS, called the Transmogrifier-1 (TM-1), consists
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Figure 1.2: A Conceptual Field-Programmable System

of four 10K-gate FPGAs and four 32k x 9 memories connected together through two Field-
Programmable Interconnect Components (FPIC). An FPIC is a new kind of programmable
device which, like an FPGA, contains programmable routing circuitry that can connect each
I/O pin to any number of other 1/O pins. By programming the FPGAs and the way they
are interconnected together (i.e. by programming the FPGA and FPIC devices), the TM-1

can emulate any digital circuit that does not exceed its logic and memory capacity.

A second contribution of this thesis is a method for dealing with memory in the context
of Field-Programmable Systems. Memory is an essential part of almost any digital system,
and hence forms a key element of an FPS. Each application, however, has vastly different
memory needs. A telecommunication circuit, for example, may require many small queuing
buffers, while a graphics engine will require a few larger frame buffers. Each may, in addition,

require other shapes and sizes of independent memories.

In this thesis, we present a method that allows users to efficiently map the required
set of memories for an application circuit into the available physical memories on an FPS.
The context is a low-cost FPS in which there is a small number of pre-fabricated physical
memories (such as in the TM-1), but with a large number of desired memories. Because the
number and size of the desired memories may not match the number and size of the physical
memories, two or more desired memories may need to share the same physical memory. In
this case the physical memories must be time-multiplexed — each desired memory will have

a different time slot in which it can access a separate portion of the physical memory.

The mapping becomes an optimization problem when the number of required memo-
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ries exceeds the number of physical memories. There may be many different ways that the
required (logical) memories can be packed into the physical memories. If the logical mem-
ories have different access-time requirements, the optimization problem is to find a packing
that meets the timing requirements. Furthermore, different packings will require different
amounts of multiplexing and control, and so it is desirable to minimize the area devoted to

this part of the circuit.

For example, consider an application in which there are five logical memories as illustrated
in Figure 1.3: There are three 3k x 8 memories, each with a required access time of 80ns,
one 4k x 7 memory with a required access time of 20ns and one 32k X 8 memory with a
required access time of 100ns. Assume that the FPS has three 32k x 8 physical memories,
each with an access time of 20ns. Since the logical memories are time-multiplexed, their
final access time is approximately equal to the physical memory’s nominal access time (in

this case 20ns) multiplied by the number of memories sharing the physical memory.

Logical Memories

Figure 1.3: Application with 5 logical Memories and Timing Constraints

Figure 1.4a illustrates a packing in which all the 3k x 8 and 4k x 7 memories have a final
access time of 40ns or less. This implementation does not meet the access time requirement
of the 4k x 7 memory. Figure 1.4b shows the only possible packing that does meet all the
access time constraints. The three 3k x 8 memories have a final access time of 60ns and

both the 4k x 7 and the 32k X & memories have access time of 20ns.

Note that in some cases, a logical memory may be larger than an individual physical

memory, and so will have to be partitioned into smaller pieces before it can be packed.

The multiplexer and controller that implements the memory packing will be referred to as

a Memory Organizer. In a Field-Programmable System, this circuit would be implemented
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Figure 1.4: Possible Packing Solutions for Memories in Figure 1.3

using the FPGAs. Chapter 4 presents an algorithm to solve the optimization problem and
describes a Computer-Aided-Design (CAD) tool which uses this algorithm to generate the

memory-organizer netlist.

1.2 Thesis Overview

This thesis is divided into five chapters. In Chapter 2, some academic and commercially
available Field-Programmable Systems, and the way they use their memory, are introduced.
Chapter 3 describes the Transmogrifier-1 Field-Programmable System built at the University
of Toronto as part of this thesis, along with the software used to program it. In Chapter 4,
the Field-Reconfigurable Memory problem is defined and a solution is presented. Finally,

Chapter 5 concludes this thesis and offers some suggestions for future work.
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Chapter 2

Background

This chapter reviews related work on Field-Programmable Systems (FPS). It provides a
detailed description of academic and commercially available Field-Programmable Systems.
In addition, it describes how memory is used in existing Field-Programmable Gate Arrays

(FPGASs) and Field-Programmable Systems.

The concept of reconfigurable hardware has been present for a number of years. Several
Universities as well as private companies have been building systems with several FPGAs
on it. Although there are many differences between these Field-Programmable Systems,
probably the most important one is the way in which the FPGAs are connected together.

In this thesis, these systems are categorized by their inter-chip connection architecture.

Section 2.1 presents the one-dimensional array interconnect architecture. Section 2.2
describes the two-dimensional nearest-neighbor mesh interconnect architecture. Section 2.3
presents the concentrated programmable-interconnect architecture and describes three vari-

ations of it.

In the final two sections of this chapter, the use of memory in programmable systems is
described: Existing FPGAs with memory are presented in Section 2.4 and existing Field-

Programmable Systems with memory are described in Section 2.5.
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Figure 2.1: The AnyBoard Block Diagram

2.1 One-Dimensional Array

The one-dimensional array architecture is usually used in compute engines in which systolic
processing is needed. A compute engine (as described in Section 1.1), uses reconfigurable

hardware to accelerate the execution speed of an application.

In this architecture, the FPGAs are connected in a linear array. Each FPGA is connected
to its nearest neighbor through a local bus. An additional global bus is usually used to access
common resources such as the host computer’s data bus. There are two notable examples of

Field-Programmable Systems which use this style: The AnyBoard and the Splash-2.

2.1.1 The AnyBoard System

The AnyBoardis an FPGA-based Reconfigurable System built at North Carolina State Uni-
versity [5]. It contains five Xilinx XC3090 [11] FPGAs connected as illustrated in Figure 2.1.
In addition, three of the FPGAs are connected to the data bus of three separate 128k x 8
SRAMs. The leftmost FPGA serves as an address generator. By using one FPGA to provide
the address word to all memory chips, different FPGAs cannot access different memory lo-
cations. This results in less flexibility than connecting both data and address buses between

each FPGA-memory pair. However, it requires fewer FPGA 1/0O pins.

The global bus is used for high fan-out signals, such as clocks, to connect to every

FPGA. The global bus is also used to interface the AnyBoard with external systems. For
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programming and control, the AnyBoard is connected to a PC-compatible computer through

its parallel bus and the rightmost FPGA.

2.1.2 Splash-2

Splash-2 is a compute engine built at the Supercomputing Research Center [12, 10]. This
system, replacing the Splash-1 (a similar system but with older technology), contains 17
Xilinx XC4010 [11] FPGAs connected as shown in Figure 2.2. The systolic data path brings
data from either the previous Splash-2 board, or from the host computer, into the FPGA
labeled X1, through the linear array, and out from FPGA labeled X16 to either the next
Splash-2 board or back to the host computer. Each FPGA is connected to a 256k x 16
RAM (labeled M1 to M16). These RAMs are also connected to a 16-bit global data bus.
This global data bus allows the host computer to directly write or read the memories. The

address lines are generated by the FPGAs.

16 Global Data Bus
| | | | | | | |
M1 M2 M3 M4 M5 M6 M7 M8
T | | | | | | |
2% 34
—— X1 A X2 — X3 — X4 | X5 | X6 — X7 — X8
36
X0 16 x 36 Bit Bidirectional Crossbar
— X16 — X156 — X144 — X13 I X12 |4 X111 — X100 — X9
| | | | | | | |
M16 M15 M14 M13 M12 M1l M10 M9
| | | | | | | |

X - Xilinx 4010
M - 256k x 16 RAM

Figure 2.2: The Splash-2 Block Diagram

As an improvement upon the limited inter-FPGA communication found in other one-
dimensional array systems, each FPGA in the Splash-2 board is connected to a 16 x 36

bi-directional crossbar. This crossbar is formed with nine crossbar chips, each with 16 4-
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bit bi-directional ports. Using the FPGA labeled X0 (Figure 2.2), these crossbars can be
dynamically programmed (i.e. switched cycle by cycle) with eight different configurations.
A 4 x 4 mesh, for example, can be realized if in one of the two dimensions, only half the

needed communication paths are available at one time [12].

Several example applications have been implemented on Splash-2. A text searching pro-
gram is capable of processing text at an estimated rate of 50 million characters per second
with a system clock running at 25M Hz [13]. Also, an implementation of a dynamic program-
ming algorithm for DNA database searching has been implemented [14]. This system can
search a database at a rate of 12 million characters per second, several orders of magnitude

faster than implementations of the same algorithm on conventional computers.

2.1.3 Comments on One-Dimensional Arrays

In cases in which systolic processing arrays are desirable, one-dimensional arrays of FPGAs
are very powerful. However, this architecture is not very efficient when circuits are not

partitionable into an array of functional blocks small enough to fit into each FPGA.

In addition, the one-dimensional arrays suffer from poor chip interconnect flexibility.
Systems with this interconnect architecture have only a single data path and therefore, if the
circuit is not narrow enough to fit in one array of FPGAs, the design cannot be implemented.
Splash-2, however, has much more flexibility than the AnyBoard. This is because in addition
to the linear data path, Splash-2 uses a crossbar to interconnect (to some degree) the FPGAs,

making this system more similar to those described in the following section.

2.2 Nearest-Neighbor Connection Mesh

One way to increase inter-FPGA connectivity is by using a two-dimensional nearest-neighbor
connection mesh. In this architecture, as illustrated in Figure 2.3, each FPGA is hard-wired

to the four closest FPGAs (i.e. to the north, south, east and west).

Below, three Field-Programmable Systems that use the nearest-neighbor connection mesh

are described.
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Figure 2.3: Example of a 3 x 3 array architecture

2.2.1 The DEC PeRLe-0 and PeRLe-1 systems

The PeRLe-0 and PeRLe-1 systems [6], built at the DEC Paris Research Laboratory, are two
Field-Programmable Systems that, when connected to the system bus of a host computer,
work as universal hardware co-processors. The DEC PeRLe-0 is a 5 x 5 matrix of Xilinx
X(C3020 [11] FPGAs with two 32-bit wide RAM banks, and the DEC' PeRLe-1 is four times
bigger than it predecessor. It uses 24 Xilinx XC3090 [11] FPGAs and larger RAMs. It is
important to notice that both systems also have a global bus, used to access the memory

banks in the east and south of the board. The characteristics of the two systems are shown

in Table 2.1

System FPGAs Foux RAM | Host Bus
(MHz) | (MB) (MB/s)
DEC PeRLe-0 | 25 XC3020 25 0.5 8
DEC PeRLe-1 | 24 XC3090 40 4 100

Table 2.1: Characteristics of the DEC PeRLe machines.

The systems are employed as compute engines to speed up many critical software appli-
cations running on the host, by executing part of the instructions in hardware. With this
approach, DEC Paris was able to achieve better performances than a “super-computer” on
several applications. Table 2.2 summarizes the practical DEC PeRLe-1 performance reported
in [6]. The first column of this table gives the application name, the second gives the system

clock speed in M Hz, and the third column gives the computing power in Gbops (Billion of
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binary operations per second).

‘ Design ‘ Clock Speed (MHz) ‘ Performance (Gbops) ‘
Multiplier 33 264
RSA Cryptography 32 256
Discrete Cosine Transform 25 250
Newton’s Mechanics 25 250
Laplace Equation 20 200
Boltzmann Machine 25 200
3D Geometry 25 5

Table 2.2: Example Applications of the DEC PeRLe-1 system.

2.2.2 Quickturn’s RPM Emulation System

The RPM emulation system from Quickturn Systems is the first commercial FPGA-based
emulation system[3]. This system was built to work as an Application Specific Integrated
Circuit (ASIC) emulator or a microprocessor emulator. A logic emulator is a system of
hardware and software, which can take a large gate-level logic design and emulate it in

hardware form [2].

Quickturn also selected high-density FPGAs from Xilinx as the implementation medium.
Each FPGA is hard-wired to all its nearest neighbor FPGAs forming an array of FPGAs,
called an emulation module. Several of these modules are connected together to form a
large array of FPGAs. The RPM includes an interface for connection to the target system.
The complete emulation system can cost several hundred thousand dollars. It is capable of

emulating large ASICs or Microprocessors.

The RPM system runs at very low speeds (approximately between 0.5M Hz and 8M H z).
As an example, a group at Intel Co. have reported that their Quickturn system emulates the
Pentium microprocessor at 0.5M Hz [15]. We note however, that this was sufficient speed

to boot an operating system.
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2.2.3 The MIT Virtual Wires Emulation System

The Virtual Wires System is a sixteen FPGA emulation board built at the Massachusetts
Institute of Technology [4]. The system uses Xilinx XC4005 [11] FPGAs connected in a two-
dimensional array. Each FPGA has eight hard-wired connections to its nearest neighbors

and 22 dedicated lines to a 64k x 4 RAM.

The low number of connections between FPGAs is overcome by using Virtual Wires [16].
The Virtual Wiring approach increases the usable bandwidth between two FPGAs by pipelin-
ing and multiplexing the physical connections between the two FPGAs. Several logical con-
nections can share the same physical pins and wire by clocking this physical resource at the

maximum FPGA frequency.

The Virtual Wires system was used to emulate several designs, including Sparcle [17], an
18k-gate ASIC implementation of the Sparc microprocessor with enhanced multiprocessor
support. Using 24 FPGAs with an average of 718 gates and 119 I/Os per FPGA, the system
was able to run at 0.18M Hz. The Virtual Wires system is capable of simulating/emulating
30K gates.

2.2.4 Comments on Nearest-Neighbor Connection Meshes

Although the two-dimensional nearest-neighbor interconnect architecture is widely used,

there are three drawbacks in using this architecture:

1. The number of signals that can be passed from FPGA to FPGA is limited to the

number of hard-wired connections between these two FPGAs.

2. Long distance communication is slow and expensive, since long connections must travel

through many FPGAs.

3. The FPGA’s place-and-route tool does not have the freedom to choose which 1/0 pins

to use.

In order to pass a signal from one FPGA to another, the FPGA’s place-and-route tool
has to route the signal to one of the pins which are hard-wired to the other FPGA. If for
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example a logic block is in one end of the FPGA and it drives an output pin which is in
the other end of the FPGA, this signal has to be routed across the whole device. This may

result in larger delays and even in the CAD tool’s inability to route.

FPGA | 20, | FPGA FPGA
A 7 B |77 c
174 J2
FPGA | 12, | FPGA FPGA
D 7 E |77 F

Figure 2.4: Example of a two-dimensional array with few hard-wired connections

Also, if the number of signals required to pass from one FPGA to another is greater than
the number of hard-wired connections between these two FPGAs, then additional FPGAs
may be needed for some of the signals. As an example, Figure 2.4 shows a two-dimensional
array in which 32 signals need to pass from FPGA A to FPGA B. Since only 20 hard-wired
connections exist between these two FPGAs, the extra 12 signals need to pass from FPGA
A to FPGA B through FPGAs D and E. These 12 signals are going to have a larger delay
than the 20 signals that pass directly form FPGA A to FPGA B. In addition, there are some
wasted resources inside FPGAs D and E because signals have to pass through the FPGAs

without using their internal logic.

NN|N|N E— N s| E|w N
- B | W | SN
——W| FPGA | E[— L1 E| FPGA | E|
—W E— S W
—w|s[s]ss ><NW|E|5N><

&) Common Topology b) Proposed Topology

Figure 2.5: The commonly used mesh interconnect topology and a more efficient one.

As seen in the above example, a signal entering an FPGA from a given direction might
want to leave in any other direction, wasting internal routing resources. Hauck, Borriello

and Ebeling [18] suggest a method of interconnecting the FPGAs in a two-dimensional array
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in a way that reduces the FPGA-internal routing cost. By intermingling the connections,
as shown in Figure 2.5b, they made sure that a signal entering on a given pin will have a

nearby pin exiting in the direction it wishes to go.

2.3 Concentrated Programmable-Interconnect

One solution to the limited interconnect problems of the one-dimensional and two-dimensional
architectures is found in the concentrated programmable-interconnect architecture. As illus-
trated in Figure 2.6a and 2.6b, in the one-dimensional and two-dimensional interconnect ar-
chitectures, signals can only pass from one FPGA I/0 pin to another pre-defined FPGA 1/0
pin. In the concentrated programmable-interconnect architecture, as shown in Figure 2.6¢,
all the FPGA I/0 pins are hard-wired to a central - programmable chip-interconnect mecha-
nism. The interconnect mechanism must contain a programmable switching circuitry capable
of interconnecting any set of [/O pins. This interconnect mechanism can simply be an FPGA
that links all the other FPGAs (i.e. the ones which are actually implementing the logic).
However, FPGAs were designed to implement logic and not to interconnect chips. Therefore,
the use of special purpose interconnect components may be preferred. These components,
such as Aptix’s FPIC [19] and I-Cube’s FPID [20], have a larger amount of usable 1/O ports

and no logic blocks.

FPGA — FPGA [ FPGA — FPGA FPGA — FPGA rpea| |FPGA| |FPGA| | ppga
e
a) One-dimensional array b) Two-dimensional array c) Concentrated Programmable
Interconnect

Figure 2.6: Inter-chip connection architectures.

In this section, we first describe the commercially available special-purpose interconnect
components and then we present three different concentrated programmable-interconnect
architectures: the full-crossbar interconnect architecture, the partial-crossbar interconnects

architecture and the distributed-crossbar interconnect architecture.



16 An FPS with Reconfigurable Memory

2.3.1 Special-Purpose Interconnect Component

I-Cube’s Field-Programmable Interconnect Devices

The I-Cube’s Field-Programmable Interconnect Device (FPID) [20] has from 96 to 320 usable
I/O ports with 10ns port-to-port delays. With a 0.8um static RAM CMOS process, and
active buffering, FPID devices can support signals switching at close to 100M H z.

Internally, the FPID is a crossbar switch, allowing total flexibility in routing signals. A
crossbar is an interconnect architecture which can connect any pin with any other pin or
pins, without restrictions. In the FPID, only one transistor switch needs to be closed in
order to make a connection between two 1/O ports, allowing predictable delays. Each 1/O in
the device is identical and can be programmed as an input buffer, registered input, tristate
output, registered output or bidirectional port. It is important to note that for bidirectional

signals, the device detects the driving port and passes the signal to the receiving port.

The FPID device is programmed using the JTAG (IEEE 1149.1) serial bus or a parallel

bus in which connections can be changed incrementally in under 40ns.

Aptix’s Field-Programmable Interconnect Component

When larger number of 1/Os is needed, a larger crossbar is required. Aptix’s Field - Pro-
grammable Interconnect Component (FPIC) [19] has 936 usable I/O pins. Each of the I/O
pins can be connected to any number of other 1/O pins through a programmable, routed
array architecture, as illustrated in Figure 2.7. The pins are arranged in a 32 x 32 array with

horizontal and vertical routing channels between rows and columns of pins.

Critical paths can be made with as few as two transistors. However, nets with high
fanout can have more than four transistors. The delay between two pins ranges from 5 to

20ns depending on the number of pass transistors used to interconnect the two pins.

2.3.2 Full-Crossbar Interconnect

It a small number of FPGA pins are to be interconnected in an FPS, we can use a single

programmable-interconnect device to connect all the FPGAs together. The full-crossbar
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Figure 2.7: 1/O array and routing channels of Aptix’s FPIC.

interconnect architecture uses a single central-crossbar to interconnect every FPGA’s 1/0O
pins. As introduced in Section 2.3.1, a crossbar is a chip (or set of chips) which can connect
any pin with any other pin or pins, without restrictions. Figure 2.8 shows how four FP-
G As are connected together using a central-crossbar device. By programming this crossbar,
connections can be made between any set of FPGA 1/0 pins. Because of this, the FPGA’s
place-and-route tool has the freedom of choosing the mapping of internal signals into specific
I/O pins. This freedom results in a much better utilization of internal resources than in the

one-dimensional or two-dimensional architectures.

FPGA FPGA

1/Os «<=——>=| Crosshar |<=—+—>= |/0Os

FPGA FPGA

Figure 2.8: Full-Crossbar Architecture

The programmable-interconnect chips described in Section 2.3.1 can only be used as
full-crossbars for a small FPS. None of them can handle more than four or five FPGAs

with 160 pins each. Therefore, to date, only small Field-Programmable Systems exist with
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full-crossbar architectures.

2.3.3 Partial-Crossbar Interconnects

For systems with a large number of FPGA pins, many programmable-interconnect chips are

needed. In this case, there may be different ways to connect these crossbars.

One way to interconnect several FPGAs is with the use of a partial-crossbar interconnect
architecture [2]. As illustrated in Figure 2.9, it consists of a set of small full-crossbars,
connected to a set of FPGAs, but not to each other. The FPGA’s I/O pins are divided into
subsets of pins. There are as many subset of pins (per FPGA) as there are crossbar chips.

Each FPGA’s subset of pins is connected to a different crossbar.

FPGA FPGA FPGA

Crosshar Crossbar Crosshar Crossbar

Figure 2.9: Partial-Crossbar Architecture

Since each crossbar is connected to a subset of pins on each FPGA, an interconnection
between an FPGA’s I/O pin in one subset and another FPGA’s I/O pin in a different subset
cannot be done. Therefore, the partial-crossbar interconnect will fail to interconnect a net
when the available pin in the source FPGA is hard-wired to a crossbar which has no available

pins connected to the destination FPGA.

The partial-crossbar architecture provides a more predictable routing delay between FP-
GAs, since every inter-FPGA signal moves through exactly one crossbar. This is an advan-
tage of significant use by the system level partitioning tool — the one that subdivides a large

design into the number of subblocks equal or less than the number of available FPGAs.
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2.3.4 Distributed-Crossbar Interconnect

Another way to interconnect several crossbars is with a distributed approach. In a distributed-
crossbar interconnect, the number of FPGAs is divided into the number of available crossbars.
Then, each group of FPGAs is connected to one crossbar. The crossbars are interconnected
using global buses. The crossbars can be interconnected in a linear array like the FPGAs in
the one-dimensional array architecture or in a two-dimensional array like the FPGAs in a
nearest-neighbor connection mesh. Figure 2.10 illustrates an example in which six FPGAs

are interconnected using two crossbars and one global bus.

Like the one-dimensional and two-dimensional array of FPGAs, the distributed-crossbar
interconnect architecture suffers from limited bandwidth between crossbars. This problem
is reduced by increasing the number of global connections, at the cost of connecting fewer

FPGAs per crossbar.

FPGA FPGA

Global Bus

FPGA FPGA

FPGA FPGA

Figure 2.10: Using a global bus to interconnect more than one crossbar.

2.3.5 Comments on Concentrated Programmable-Interconnects

Ideally, a concentrated programmable-interconnect with one large full-crossbar chip is pre-
ferred over any other architecture. However, because of the limited size of commercially
available crossbar devices, a partial-crossbar or distributed-interconnect architecture is re-

quired.

With partial-crossbar interconnect, the place-and-route tool is not as restricted (in terms
of assigning 1/0O pins) as the one-dimensional or the two-dimensional array of FPGAs, but
does not have the freedom of a full-crossbar interconnect. The capacity of a partial-crossbar

interconnect depends on the number and size of the crossbars used. At one extreme, we have
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only one subset of pins per FPGA connected to one full crossbar. At the other extreme, we
have as many subsets (per FPGA) as the number of pins. In this case, we need as many

crossbars as pins in each FPGA. This will have the least flexibility because the FPGA’s

place-and-route tool does not have much freedom in assigning 1/O pins to internal signals.

With distributed-crossbar interconnects, the place-and-route tool has no restriction in
terms of assigning 1/O pins to internal signals. However, in some case, the number of hard-

wired connections between two crossbars may not be enough to pass the required signals.

2.4 FPGAs with memory

Since part of this thesis concerns memory in Field-Programmable Systems. We first describe

how memory is implemented directly on a Field-Programmable Gate Array.

Company | FPGA SRAM Blocks Number of | Maximum
Blocks User Bits

AT&T Orca 2C15 two 16 x 2 or 400 PLCs 25,600
one 16 x 4 per PLC

Xilinx XC4013 two 16 x 1 or 576 CLBs 18,432
one 32 x 1 per CLB

Intel 1F X780 128 x 10 per CFB 8 CFBs 10,240

Crosspoint | CP22000 1 bit per RLM 3,684 RLMs 3,684

Table 2.3: FPGAs with on-chip SRAM.

To date, several commercial FPGAs have the capability to implement small memories.
Both Xilinx 4000 series [11] and AT&T’s Optimized Reconfigurable Cell Array (ORCA) [21]
FPGASs have the option of configuring their logic blocks as memory blocks. Xilinx’s Look-Up
tables (LUTs) can be configured as two 16 x 1 memories or one 32 x 1 memory while AT&T’s

LUTs can be configured as a two 16 X 2 memories or one 16 X 4 memory.

The Crosspoint CP20K series FPGAs use RAM-Logic Tiles (RLM) designed to efficiently
implement memory structures [22]. Intel’s iFX780 [23], the first member of the FLEXlogic
FPGA family, uses eight Configurable Function Blocks (CFBs) which can be configured as
a 24V10-type Programmable Logic Device (PLD) or as a 128 x 10 bit memory.
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Table 2.3 summarized the implementation of memory in these FPGAs. It only shows
one member of each of the FPGA family described above. The only purpose of this table
is to show the amount of memory that can be implemented in each of the FPGAs. It is
important to say that the maximum number of user bits shown in column five does not
necessarily mean that the user can implement a memory of that size. A 4k x 1 bit memory,
for example, can be implemented in a Xilinx FPGA using 244 logic blocks (i.e. 42% of the
CLBs of a XC4013).

2.5 Memory in existing Field-Programmable Systems

As described above, some FPGAs have the capacity to implement memory blocks. However
to date, these FPGAs cannot implement large memories. Therefore, off-the-shelf memory
chips are still needed in Field-Programmable Systems. Most of the systems described in
Section 2.1, 2.2, and 2.3 have some auxiliary memory on board. Both the AnyBoard and
Splash-2 have memory chips with fixed, hard-wired connections to the FPGAs. The Any-
Board provides three 128k x 8 RAMs. As illustrated in Figure 2.1, the data bus of these
RAMs are connected to the three central FPGAs, and the leftmost FPGA serves as an ad-
dress generator. This architecture limits the flexibility of RAM addressing, but saves a large
number of 1/O pins on all FPGA. The Splash-2, as shown in Figure 2.2, has one 256k x 16
memory chip connected to each of the 16 FPGAs, through a 34-bit bus (a 17-bit address
bus and a 16-bit data bus). The memories can also be directly read or written from the Sun

host over the Sbus and the 16-bit global data bus on the Splash-2 board.

Quickturn’s emulation system does not provide any on board memory. However, they do
sell an add-on memory board which can be connected to the emulation-module boards. The
memory on the DEC Paris’ PeRLe system is not directly connected to each FPGA but to a
global bus accessible to any FPGA. This memory block is divided into two memory banks
located on the east and south sides of the FPGA matrix. MIT’s Virtual Wires emulation
system, on the other hand, has a 64k x 4 memory hard-wired to each of the FPGAs on the
board.

The Virtual Wires system is the only one capable of multiplexing (using the virtual wires

approach) the address, data and control signals in order to increase the number of memory
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accesses to the same SRAM chip during each emulation clock cycle.

A serious shortcoming of all of the above Field-Programmable Systems (except, to a
limited degree, the Virtual Wires system) lies in a fact that these systems can only emulate
a number of required memories equal to the number of physical memories. If for some
reason, a larger number is needed, the user is forced to manually map and time-multiplex

the memory access.

2.6 Summary

In this chapter, several Field-Programmable Systems were described and categorized by their

chip interconnect architecture. These architectures are:

The one-dimensional array. FPGAs are connected to their nearest neighbor through a

local bus. The systems have only a single data path.

The nearest-neighbor connection mesh. FPGAs are connected together in a two di-

mensional array. Fach FPGA is hard-wired to the four closest FPGAs.

The concentrated programmable-interconnect. FPGAs are connected to a central-
programmable chip-interconnect mechanism. The mechanism is programmed to con-

nect any set of pins.

Also in this chapter, the memory capabilities of some FPGAs as well as the memory
capabilities of some Field-Programmable Systems was described. It was shown how, none
of the existing Field-Programmable Systems have the capability to emulate a number of

required memories larger than the number of physical memories.
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The Transmogrifier-1

As described in Chapter 1, a Field-Programmable System (FPS) may consist of sev-
eral Field-Programmable Gate Arrays (FPGAs), auxiliary special-purpose integrated cir-
cuits (e.g. memory chips), and an interconnection mechanism. In Chapter 2, several Field-
Programmable Systems were categorized with respect to their chip-interconnect architecture.
We presented three interconnect styles: the one-dimensional array, the nearest-neighbor con-

nection mesh and the concentrated programmable-interconnects.

In this chapter, a Field-Programmable System called the Transmogrifier-1 (TM-1) that
was constructed as part of this thesis is described. Both the hardware and software that were
developed are presented. The TM-1 interconnect architecture belongs to the concentrated

programmable-interconnects class. It is a distributed-crossbar interconnect architecture.

The hardware of this system, including a host computer interface, is presented in Sec-
tion 3.1. Various software programs needed to use the TM-1 are described in Section 3.2.

Finally, some example applications are described in Section 3.3.

3.1 Hardware Description

As described in Chapter 1 and 2, a Field-Programmable Interconnect Component (FPIC) is

a new kind of programmable interconnect device. This device can be programmed to connect

23
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together any set of 1/O pins.
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ield-Programmable

The Transmogrifier-1 (TM-1) [24] is based on the Aptix AXB-GP2 F
Circuit Board [19]. As shown in Figure 3.1, this board contains two Apt

ix AX1024 FPIC

devices [19] hard-wired to 1700 socket holes. These holes can be used to mount standard DIP

packages. By programming the FPIC devices, any set of holes can be connected together.

In the TM-1, four Xilinx 4010 FPGAs [11] and four 32k x 9 SRAM chips [25] are mounted,

-pln con-

1 PGA and PLCC adaptors, to the Aptix board. In addition, two 40

using specia

nectors carry 72 bidirectional signals (and eight grounds) to an interface board. A block
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diagram of the TM-1 is shown in Figure 3.2.

........................................................................

FPGA Mem. Mem. FPGA

i XC4010 32k x 9 SRAM 32k x 9 SRAM XC4010
FPIC = == FPIC
Mem

FPGA FPGA
32k x 9 SRAM v 32k x 9 SRAM

i XC4010 ‘ ‘ XC4010

40-Pin Connector

TM-1 Board

........................................................................

Figure 3.2: Block diagram of the Transmogrifier-1.

The FPGAs can be programmed through a serial interface from the Xilinx Development
System [26]. The FPIC devices can be programmed through the Aptix Field-Programmable
Circuit Board’s Development System [27].

3.1.1 The Interface Board

For the TM-1 to work properly, either as a compute engine or as a logic emulator, it needs
some kind of communication with a host computer. In this way, data can be transferred
back and forth for testing and debugging purposes. The TM-1 system uses two auxiliary
boards in order to interface with a Sparc workstation. Firstly, it uses an S16D interface
from Engineering Design Team, Inc. (EDT) [28]. The S16D is a single-slot, 16-bit parallel
input/output interface for SBus-based computer systems. Secondly, the system uses an
additional interface board, built at the University of Toronto as part of this thesis, that
contains a Xilinx XC4010 FPGA as shown in Figure 3.3. This FPGA acts as a communication
controller, implementing simple protocols that allow a program on the host computer to

communicate with the circuit running on the TM-1.

As described in Section 3.1, the TM-1 board contains two 40-pin connectors. These con-
nectors are used to carry 72 bidirectional signals to the interface board. Two circuit designs
were implemented and tested on the interface board: A 72-bit programmable bidirectional

interface and a 16-bit direct memory access (DMA) [29] interface.
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---- Xchecker connector

Connectors to Sbus Interface

FPGA

Interface

XC4010 Board

_1..» Connectors to TM-1 Board

Figure 3.3: Interface’s Block Diagram.
72-Bit Programmable Bidirectional Interface

This circuit allows the Sparc workstation to communicate to the TM-1 board through six
12-bit ports. Each of these 72 bits can be configured as an input or output by storing the
appropriate data in the configuration registers. Figure 3.4 illustrates the block diagram of
this circuit. When the host computer wants to write to the TM-1, a 16-bit word is placed
in the S16D data-in bus. The four most significant bits (MSB) of this 16-bit word are used
to determine the destination address (either one of the six data ports or one of the six
configuration registers) and the remaining 12 least significant bits (LSB) are used to transfer
the actual data. When the computer wants to read from the TM-1 board, it places the
address of the port to read in the four most significant bits of the 16-bit data-in bus and
then it reads the actual data from the 12 least significant bits of the 16-bit data-out bus.

In order to synchronize the transfers between the interface board and the TM-1 board (if
needed), a software program is required to implement the communication protocol between
these two boards. For example, if the computer wants to write 12 bits of data to the TM-1
board, it can use one port as control. In this way, the computer can send a logical one
as a ready signal through one of the pins and then poll a second pin until it receives an
acknowledge signal from the TM-1 board. At this point, the computer can send the 12-bits
of data through a second port.
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12 LSB datain / =
12 .
/O 6 12-bit pots
12 L SB data out // Ports 72
(To/From S16D board) T (To/From Transmogrifier-1)
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Config.
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Figure 3.4: 72-bit programmable bidirectional interface.

The actual schematics of this circuit as well as instructions for its use are presented in
Appendix A. This circuit was tested by several TM-1 users as described later in Section 3.3.
The 72-bit programmable bidirectional interface can achieve transfer rates up to 320K 12-bit

transfers per second.

16-Bit DMA Interface

The host computer can also use read() and write() system calls to read or write large blocks
of data (using DMA — direct memory access) from or to the S16D board. The 16-bit DMA
interface circuit, illustrated in Figure 3.5, implements the interface handshake between the

S16D board and the TM-1 board.

The interface board’s circuit, as illustrated in Figure 3.5, has a control block, created with
VHDL [30], with a small state machine that performs the necessary handshaking between the
S16D and the interface boards The handshaking between these two boards is as follows [28]:

1. The 516D sends the DMA direction through the DMAINPUT line.

2. To input data to the S16D, the interface board pulses low the DCLK signal as soon as
the data is available in the DIN bus.

3. The output data from the S16D is valid on the DOUT bus 40ns atter OUTVALID goes
low. The interface board pulses low the DCLK signal as soon as it accepts the data.
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4. If the input FIFO on the S16D becomes full, or the output FIFO becomes empty, the
DACK signal stays low until the FIFO or data is again available. The OUTVALID

signal pulses high between data words as long as new data is available.

The actual VHDL code that supports the above handshaking as well as the actual schematic
are shown in Appendix A. Instructions on how to use the DMA interface are also described

in Appendix A.

16-Bit DOUT bus 16-Bit Bi-directional port
= e E——
110
16-Bit DIN bus Ports
-<
(To/From S16D board) T (To/From Transmogrifier-1)

DCLK <=——
DACK ————=

Control
OUTVALID ——=

DMAINPUT

Figure 3.5: 16-bit DMA interface.

The 16-bit DMA interface can be used when unidirectional 16-bit transfers at a rate of

equal or less than 7.14M Bytes/sec are needed.

3.2 Software Description

The CAD Synthesis tools needed for the TM-1 are a mixture of Xilinx’s synthesis tools,

Aptix’s development tools and custom made Unix scripts.

Figure 3.6 illustrates the design flow used to implement a design on the Transmogrifier-
1. The TM-1 user begins by creating a Xilinx Netlist Format file (XNF file) [26] of his/her
design. This task can be done with schematic capture CAD tools, such as ViewLogic [31],

with hardware description languages, such as VHDL [30], or with a mixture of the two.

After a single design is created (one XNF file), the design has to be partitioned into four
XNF files, such that each of the subblocks is small enough to fit into a single XC4010 FPGA.
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Figure 3.6: The Transmogrifier-1’s design flow.

This partitioning can be done manually by creating four individual designs from the very
beginning (e.g. four individual VHDL files or schematic files), or automatically by using a
commercial or university developed partitioner CAD tool '. This partitioner must take an
XNF file as an input and generate four XNF files small enough to fit into the FPGAs. If one
net is broken into two (in order to partition the circuitry), the same name has to be assigned

to each divided net so that the FPIC devices can later join them together.

Once a partitioner successfully generates four XNF files, the Xilinx technology map,
place-and-route tool (ppr) [26] is executed for each of these XNF files. The technology
mapper takes the logic circuit and divides it to fit into the available logic blocks in the

'A partitioner called part is currently under development by Dave Galloway at the University of
Toronto [24].
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FPGA. Afterwards, the placer decides the best location for the blocks, depending on their
connectivity. Finally, the router interconnects the placed blocks. ppr also chooses the
appropriate 1/0O pin for every input and output signal [32]. After ppr, another Xilinx tool:
makebits [26], is executed to create the final bitstream files (BIT files) used to program the
FPGAs.

Using two custom made unix scripts: xtopins and toaptix, the pin assignments are
extracted from the ppr output report file (RPT file [26]). This information is then used to
generate an Aptix netlist format file (SCI file [27]) which describes the inter-chip connectivity.
This SCI file is then taken by the Aptix axess software [27], and used to route the FPIC

devices.

Finally, after the FPGA and FPIC devices are ready to be programmed, the Aptix axess
software is used to program the FPIC devices. The system’s power supply is then turned on
and the Xilinx xchecker software is used to serially program the FPGAs. The xchecker
software uses a Motorola EXORMAX PROM format (EXO file) [26] as the file to download
into the four FPGAs. This EXO file is created by the Xilinx makeprom tool [26], using

the four bitstream files (BIT files), previously generated by ppr.

3.2.1 Custom Made TM-1 programs

As described above, the Transmogrifier-1 requires a number of commercially available soft-
ware tools, such as the software provided by both Xilinx [26] and Aptix [27], and a number
of custom made software tools. The important programs, developed as part of this thesis

are:

xnf2tm1: This Unix script, illustrated in Figure 3.7, is the main program which executes

several other programs in order to generate the final files needed to program both the

FPGA and FPIC devices.

xtopins: This Unix script uses the Unix sed and awk filters [33] to extract the pin assign-
ment from the ppr report file (RPT file). The output arranges the information in a
TM-1 netlist format (NET file) that contains the inter-chip connectivity. The NET file

is created as follows: In the first column, the component name (i.e. fpgal, fpga2, fpga3



The Transmogrifier-1 31

for each FPGA do
{
Technology map, Place and Route ( ppr )
Make Bitstream files ( makebits )
Extract pin locations from RPT file ( xtopins )
1
Generate SCI file (toaptix: Using the output of the above xtopins )
Generate EXO file ( makeprom )

Figure 3.7: xnf2tm1 algorithm

or fpgad) is written. The signal name is written in the second column, and finally the

pin number is written in the third column.

fpgal A C1
fpgal B B5
fpga2 A c7
fpga2 B A4

Figure 3.8: Example of a NET file

Figure 3.8 shows an example of a NET file created by executing xtopins on two files
(one for each of two example FPGAs: fpgal and fpga2). In this example, the shown
NET file represents that signal A passes between pin C1 in FPGA No. 1 and pin C7
in FPGA No. 2 and that signal B passes between pin B5 in FPGA No. 1 and pin A4
in FPGA No. 2.

toaptix: This Unix script written by Dave Galloway, also uses some Unix filters to generate
the appropriate SCI file. The script takes several NET files as input files (with the
same format as the one shown in Figure 3.8) and generates the SCI file in the exact

format as described in Appendix C-1 of the Aptix manual [27].
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3.2.2 Takeme: TM-1’s Design Tool

Even though the Transmogrifier-1 is very easy to use, the design process, as described above,
consist of several steps. In each step, one or multiple commercial or custom made programs
have to be executed. Because of this, a front-end program was developed as part of this

thesis to help an unfamiliar user design with the TM-1.

This design tool, called takeme, was developed to take the user through the complete
design cycle. The X11 windows based program, written in TCL and TK [34], takes some
initial information, such as the name of the design files and the project directory name, and
executes the appropriate Xilinx and custom made programs in order to create the final EXO
file (needed to program the FPGAs) and the SCI file (needed to route and program the
FPIC devices).

The program executes different Unix scripts depending on the number of FPGAs and/or
memory chips used. It also allows the user to manually partition, place and route the FPGAs
(when manual optimization is required) or to use the partitioner. Appendix B describes a

step by step instructions for the takeme software and the TM-1 design cycle.

3.3 Example Applications

3.3.1 A Viterbi Decoder

A multiprocessor Viterbi decoder is currently being built at the University of Toronto [35].
Viterbi decoding is an error correcting algorithm that provides a maximume-likelihood de-
coding scheme for convolutional codes. The system will comprise FPGAs organized to form
a ring of 13 switches and 13 processor chips [36]. For each pair of processor chips, there is a

single RAM controller controlling the RAM associated with each processor.

The processor and memory system have been implemented on the TM-1 by David
Yeh [35]. The test ran at 10M Hz and was limited by the clock distribution through the
interconnect chips. It is important to notice that no real effort was made to increase this
clock speed. By giving higher priorities to the critical path and clock nets, the system may

have ran at higher speeds.
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3.3.2 A Logarithmic Arithmetic Chip

To test the TM-1 as a logic emulator, Jess Lee has implemented a Logarithmic Arithmetic

Chip [37]. This chip was previously implemented in a full-custom 1.2um CMOS process [38].

In order to map full-custom logic into FPGA logic, parts of the circuit were redesigned.
To reduce the amount of routing resources for example, barrel shifters were redesigned out
of multiplexers and a one-hot encoded state machine became a binary encoded one. The
algorithm was also redesigned to reduce its complexity at the cost of increased memory size.
The original full custom design used 2392 x 32 bits of memory to store the values of a function
f(z). The memory was then used to calculate f(x — 1), f(z), and f(x +1). In the TM-1
implementation, three 3292 x 32 memories are used to store the actual f(x — 1), f(z), and

f(z + 1) function values. It is important to note, however, that the memory cost was much

less in the TM-1 design, due to the available SRAM.

The TM-1 implementation uses all four FPGAs and all four memories. It has been
simulated with a 5M Hz clock rate. The low speed is due to the internal FPGA’s delays
rather than to the use of programmable interconnects. A 19 x 8 bit multiplier, which is used

twice per clock cycle, is the critical path of this implementation.

If we assume that the Xilinx XC4010 FPGA has a die size of approximately 144mm? in
a 0.8um technology %, then we can calculate how many times the TM-1 implementation is
larger than the full custom implementation. Knowing that the full-custom implementation
has a die size of 10mm? in a 1.2um technology, we can calculate the size ratio with the

following equation,

S _ 1.2 ® (4 x 140mm?
EeTMol (2 (22 ) 99 6 (3.1)
Stzechip 0.8um 10mm?2

Speed-wise, the TM-1 implementation simulated at 5M Hz, which is 10 times slower than
the 50M H z full-custom design. It is important to notice that the actual implementation

has not been fully operational, but is expected to work shortly.

2Xilinx does not provide die sizes in their documentation.
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3.4 Summary

In this chapter, the Transmogrifier-1 Field-Programmable System built at the University of
Toronto as part of this thesis, was described. The complete Transmogrifier-1 system consists

of:

e The TM-1 board which consists of four Xilinx XC4010 FPGAs, four 32k x 9 SRAMs,
two Aptix FPIC devices and one Aptix Field-Programmable Circuit Board.

e The interface board which consists of one Xilinx XC4010 FPGA that acts as a commu-
nication controller. The FPGA can be configured as a 72-bit programmable bidirec-
tional interface or as 16-bit DMA interface. Both circuits communicate to a commercial

board (S16D) connected to a Sparc workstation.

e Several Unix scripts (xtopins, toaptix and xnf2tm1) that help experienced users

implement a circuit on the TM-1.

e The front-end software program, called takeme, which helps an unexperienced user

implement and test a circuit on the TM-1.

Two example applications have been implemented on the TM-1 board: part of a multi-
processor Viterbi decoder was successfully tested with a system clock rate of 10M Hz and
a logarithmic arithmetic full-custom chip was emulated using the TM-1 board. This last
circuit did not work completely because of an error with the memory controls. A working

implementation is expected shortly.



Chapter 4

The Memory Packing Problem for

Field-Programmable Systems

As mentioned in Chapter 1, memory is an essential part of almost any digital system,

and so forms a key element of a Field-Programmable System.

In this chapter, a method to efficiently map an application circuit’s required set of mem-
ories into the available physical memories on an FPS is presented [39]. The context is a
low-cost FPS in which there is a small number of pre-fabricated physical memories, but
a large number of desired memories. The physical memories must be time-multiplexed to

create the desired memories.

The mapping becomes an optimization problem when the number of required memo-
ries exceeds the number of physical memories. There may be many different ways that the
required (logical) memories can be packed into the physical memories. If the logical mem-
ories have different access time requirements, the optimization problem is to find a packing
that meets the timing requirements. Furthermore, different packings will require different
amounts of multiplexing and control, and so it is desirable to minimize the amount of logic

devoted to this part of the circuit.

Note that in some cases, a logical memory may be larger than an individual physical

memory, and so will have to be partitioned into smaller pieces before it can be packed.

35
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The multiplexer and controller that implements the packing will be referred to as a
Memory Organizer. In a Field-Programmable System this circuit would be implemented
using the FPGAs. This chapter presents an algorithm to solve the optimization problem
and describes a CAD tool which uses this algorithm to generate the memory organizer

circuit. This tool has been used on the Field-Programmable System described in Chapter 3.

This chapter is organized as follows: Section 4.1 provides a precise definition of the
optimization problem to be solved. Section 4.2 describes the memory organizer architecture,
and the models needed to estimate the organizer speed and area. Section 4.3 gives an
algorithm for the solution of the optimization problem. Section 4.4 presents several examples
of the use of the CAD tool based on this algorithm, and measurements corroborating the

models.

4.1 Problem Definition

In this section we first describe our notation and then give a precise definition of the Field-

Reconfigurable Memory packing problem.

There are three key parameters that characterize any memory: The width is the number
of bits per memory word, the depth is the number of words in the memory, and the access
time is the minimum amount of time that must pass between two consecutive memory access

requests.

We will refer to each memory required by the user as a Logical Memory, abbreviated as
LM. Each fixed available memory on the FPS is referred to as a Physical Memory (PM).
There are n logical memories in the set L = {LM,,...,LM,_1} and m physical memories
in the set P = {PM,,...,PM,,_,}. The width, depth and access time of the j** PM are
denoted by Pw;, Pd; and Pt;, and the width, depth and required access time of the i
LM are denoted by Lw;, Ld; and Lt;. If a logical memory is larger in depth or width than
the physical memory, then it must be partitioned into pieces. Section 4.1.1 shows how this

partitioning is done.

A packing is a partition of the logical memories together with a mapping from each of

the partitioned logical memories to one of the physical memories.
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The occupancy of a physical memory in a packing is the number of logical memories that
are mapped into the physical memory. For example, the occupancy of the topmost physical

memory in Figure 1.4b is three. We denote the occupancy of PM; by OC;.

A legal packing is a packing which meets the access times required by each of the logical
memories. The access time of a realized logical memory is a function of the occupancy
of the physical memory in which it resides, and of the delay introduced by the organizer
multiplexer. If we denote the organizer delay of logical memory LM; by OD;, then a packing
is legal if the following holds for all logical memories LM; packed into physical memory PM;:

Lti < OC] . Ptj + ODZ (41)

If a logical memory is partitioned into smaller pieces in order to fit into a physical memory,

then this access time requirement is also placed on the individual pieces.

The area used by the organizer is the amount of logic used in the FPGAs to implement the
multiplexing hardware and control. It depends on the number and size of the multiplexers
in the organizer, which in turn depends on the occupancy of each physical memory, and the

width and depth of the logical memories.

For example, suppose that six logical memories of the same width and depth are to be
packed into two physical memories. Assume there are only two legal packings, one that
maps four logical memories into one physical memory and two logical memories into the
other physical memory (i.e. OCy = 4 and OC; = 2). The other legal packing maps three
logical memories into one physical memory and three logical memories into the other physical
memory (OCy = 3 and OCy = 3). Assume also that both a 2 to 1 and a 3 to I multiplexer
can be implemented in a single FPGA logic block, but a 4 to 1 multiplexer requires two
logic blocks, as is the case for a Xilinx 2000 series logic block. Under these assumptions, the
OCy = 4, OC; = 2 solution requires a larger area (3 logic blocks per multiplexed bit) than
the OCy = 3, OCy = 3 solution which requires 2 logic blocks per multiplexed bit.

With this notation, we can state a general version of the Field-Reconfigurable Mem-

ory packing problem:

Given: The sets L = {LMy,...,LM,_1} and P = {PM,,...,PM,,_1} and associated

width, depth and access time parameters,
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Figure 4.1: Contrast in Efficiency With and Without Word Sharing.

Find: A legal packing of L into P, which minimizes the area of the organizer.

4.1.1 Practical Issues and Assumptions

To both create a practical organizer and to simplify the description in this chapter, we make

the following assumptions about the logical and physical memories:

1. Homogeneous Physical Memories

In the above definition each physical memory is allowed to be different. For simplicity
we will assume all physical memories are identical. The notation for the width, depth

and access time of all physical memories thus simplifies to Pw, Pd and Pt.

2. Prevention of Word Sharing

Word sharing occurs when two or more logical memories share the same word in a
physical memory. We will not allow this because it would cause a memory write
to become significantly slower and more complex — since part of a word has to be
preserved, each write must be preceded by a read to record the un-altered portion
of the physical memory’s word. Note that this assumption implies that more of the
physical memory will be wasted, as illustrated in Figure 4.1. Figure 4.1a shows an
example packing with word sharing and Figure 4.1b shows an example packing without

word sharing. The latter uses a greater portion of the physical memory.

To implement this restriction, we re-define the width of the logical memory to be equal

to the next nearest multiple of Pw. We call this adjusted width, Lw!, and it is given
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by,

Lw! = [Lw[‘ - Pw (4.2)

3. Logical Memory Depth Restricted to be a Power of Two

If the depth of each logical memory is anything other than a power of two, the address-
ing circuitry connecting the logical address to the physical memory address bus will
require physical adders to create the correct offsets into the physical memory space.
Since adders are expensive in space and time, we restrict all logical memory’s depths

to be a power of two.

If we restrict the offset to be a power of two value, we can replace the adders by simply
including extra bits (i.e. logical ones or zeros) in the logical memories’ address bus. We

implement this restriction by re-defining a depth for each logical memory, Ld., given
by,
Ld!, = 2Mos: Ldi] (4.3)

Note that this assumption also has the potential to waste part of the physical memory.

4. Logical Memory Partition Limit

When a logical memory is bigger than a physical memory, it is necessary to partition
the logical memory into smaller pieces. For simplicity, we will partition logical memory

LM; only if:

(Lw! > Pw) or (Ld. > Pd) (4.4)

In this case LM; is partitioned into exactly nb; pieces where nb; is given by:

Lw! | Ld.
nb; = o {Pd-‘ (4.5)

From this point on we will assume that all logical memories have been partitioned in
this way, and we will refer to the pieces simply as logical memories. Note that the CAD
tool that generates the organizer does in fact generate the control and multiplexing to

handle the larger memories.
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Figure 4.2: Block diagram of the Memory Organizer.

4.2 Organizer Architecture and Area/Delay Models

In the introduction of this chapter we discussed how different packings of the same set of
logical memories could require different amounts of area to implement the Organizer. In this
section, we describe the general structure of the organizer and derive models for the area
and delay of the organizer hardware as a function of the occupancy of the physical memories
and the width and depth of the logical memories. These models are used in the packing
algorithm described in Section 4.3.

In the following discussion we describe area and delay models for an organizer for a single

physical memory and some number of logical memories.

As illustrated in Figure 4.2, the organizer is divided into three modules: The Address
module, which organizes the address busses, the Data module, which organizes the data

busses and the Control module, which generates the timing and multiplexer control signals.

Some aspects of the model are independent of the FPGAs and memories in the actual
Field-Programmable System. These technology-independent aspects will be described first.
After describing the specific FPS that we have built, we will use it to give a technology-
specific delay model.
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Figure 4.3: Address Module for two 512 x 8 LMs and one 1k x 8 LMs
4.2.1 Technology-Independent Area Model
Address Module

When more than one logical memory is mapped into a single physical memory, the logical
memories’ address buses are multiplexed to form a single physical memory address. The
address module organizes these busses so that accesses to the logical memories are mapped

to non-overlapping portions of the physical memory.

Figure 4.3 illustrates the address module multiplexer for an example with two 512 x 8,
and one 1k x 8 logical memories packed into a single physical memory. The ADDR_CTR

bus in the figure is generated in the control module.

The area required for this multiplexer depends on the occupancy of the physical memory
and the width of the maximum offset of the logical memories” address buses. If we denote

by Lo; the offset (i.e. the based memory address) of the :** LM mapped into the PM, the

area of the address multiplexer for physical memory PM; is given by:

Auar = |1 + max(log,(Loo), log,y(Lor), ..., log,(Looc,-1))| - MUX(OC;) (4.6)

Here the function MU X(x) returns the number of logic blocks needed to implement a
one bit x to one multiplexer. The function depends on the type of FPGA being used. It
returns a larger number as the occupancy of the physical memory increases and therefore

depends on the packing.

Equation (4.6) illustrates that different packings will result in a different sized organizer:

If there are wide address buses and thin address buses in the set of logical memories, it
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Figure 4.4: Block diagram of the Data Module

is better to pack the wide addresses together and the thin addresses together because the

address module area is determined by the maximum width bus in the physical memory.

Data Module

The data bus multiplexing is more complex than the address bus as illustrated in Figure 4.4.
For write accesses, the logical memories” data buses are multiplexed and passed through a
tri-state driver into the physical memory’s data bus. For read accesses, it is necessary to

capture each logical memory’s read data in a separate register, as illustrated in the figure.

The DATACTR, SEL_LM; and ST1 signals are generated by the Control module.

Each bit in the data bus of all logical memories is multiplexed independently. For exam-
ple, consider the following three logical memories: one 1k x 3, one 1k x 6 and one 1k X 8.
In order to multiplex the data buses, we need a 3 to I multiplexer for data bits 0, 1 and 2
of all the logical memories and a 2 to I multiplexer for data bits 3, 4 and 5 of the 1k x 6
and 1k x 8 logical memories. Data bits 6 and 7 of the 1k x 8 logical memory are connected

directly to the physical memory. Figure 4.5 gives a block diagram for this example.

To calculate the area of the data multiplexer in the data module, we first sort the width
of the logical memories so that Lwy < Lw; < ... < Lw,_;. To minimize the area, we
first multiplex the first Lwg data bits of all the logical memories. Then we multiplex the
Lw; — Lwy data bits of LM,, ..., LM,_; and so on. The area of the organizer depends on

the occupancy of the physical memory and the width of the logical memories. This is given
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Figure 4.5: Data Multiplexer for a 1k x 3, a 1k x 6 and a 1k x 8 LMs

0C;—1

ADataMuo; = Z (ka — L'wk_l) . MUX(OC] — k —|— 1) (47)

k=1

The technology-dependent function MUX is equivalent to the one used in Equation (4.6).
Equation (4.7) also illustrates that different packings will result in a different sized organizer:
If the logical memories consists of both wide and thin data busses, it is more area-efficient
to pack thin busses with wide busses, because most of the wide bus part will not require
multiplexing. On the other hand, if the wide busses are packed together, then all bits will

have to be multiplexed.

The area of the data registers in the data module only depends on the width of the logical
memories. Hence, it is independent of the packing. This area is given by:
0c;-1

AData_Reg = Z REG(ka) (48)

k=0

Here REG(z) is a technology-dependent function that returns the number of logic blocks

needed to implement a register of x bits.

Control Module

The Control module consists of a finite state machine and decoders that generate the timing,

clocking and multiplexer control signals.
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Figure 4.6: Block diagram of the Control Module.

Figure 4.6 shows the block diagram for the Control module. The state signals ST0 and
ST1 are generated centrally; the same signals are used for all the physical memories. The

control is pipelined as described below:

STO. In this first state, the counter in Figure 4.6 is clocked, generating the ADDR_CTR bus
used to multiplex the address buses. In this same state, the physical memory’s clock
! latches both the data bus and control signals (i.e. write enable, input and output

enable) of the previous memory access (i.e. the ones generated in ST1).

ST1. In this second state, the first data register in Figure 4.6 is clocked, generating the
DATA_CTR bus used to multiplex the data buses. In this same state, the physical
memory latches the address bus generated at ST0. In case of a memory read access,
the data registers in the data module latches the data coming from the physical memory

(of the previous memory access).

The area of the controller is given by:

Acontrot = COUNTER(OC;) + 2 - REG(log, OC;) + DEC(OC;) (4.9)

Here COUNTER(z) is a function that returns the number of logic blocks needed to imple-
ment a 0 to x — 1 counter and DEC(z) is a function that returns the number of logic blocks
needed to implement a log, x to = decoder. All of these functions return larger numbers as

the occupancy of the physical memory increases.

!The TM-1 uses four Motorola MCM62110 Synchronous RAM chips: the address bus is latched at the
falling edge of the clock signal and the data bus and control signals are latched at the rising edge of the clock
signal.
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4.2.2 Area Model Accuracy

Figure 4.7 presents a comparison between the area model presented in Section 4.2.1 and
the actual area used in the FPGA. The actual area used is taken from the output of the
Xilinx’s technology mapping tool) after generating the Organizer. In the graph shown in
this figure, the x-axis represents the number of logical memories packed into a single PM.
The y-axis represents the number of logic blocks that the organizer needs to multiplex the

logical memories.

As shown in the graph, the model is very accurate. The discrepancies are due to the
fact that the model uses manual technology mapping, which can give different results than
the automatic technology mapping of ppr. For example, when doing manual mapping, we
decide how many logic blocks are needed to implement a multiplexer and the result is always
the same. With automatic technology mapping, the multiplexer is first translated into a
binary equation and then combined to all the other equations to form a large equation. An
algorithm then decides how to map this equation into the logic blocks. The same multiplexer
that can manually be mapped into one logic block, may be mapped into two separate logic

blocks with an automatic technology mapper.

It is important to note that ppr itself produces little differences each time is executed.

The graph shows the average logic blocks used in five ppr runs.

4.2.3 Technology-Dependent Delay Model

In Chapter 3, the Transmogrifier-1 Field-Programmable System built at the University of
Toronto was presented. As described, the TM-1 consists of four Xilinx’s 4010 FPGAs [11],
two Aptix’s Field-Programmable Interconnect Components (FPIC) [27] and four Motorola’s
MC62110 32k x 9 Synchronous SRAM chips [25]. Figure 3.2 gives a block diagram of the
TM-1. In this section, the TM-1 is used to create a technology specific delay model.

Finding an exact delay model for the Organizer is difficult because the circuits imple-
mented in most FPGAs have delays that are hard to predict. We now present a worst-case

delay model for our implementation in the TM-1.

The control module uses two states for every physical memory access and so the best
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Number of Logic Blocks vs. Number of Logical Memories
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Figure 4.7: Our area model vs. Xilinx ppr’s area model.

possible access time for LM; packed in PM; is:

Lt; =2-(0C; - Pt + OD) (4.10)

For the TM-1 FPS, the access time of the physical memories, Pt, is equal to 20ns. The
delay due to the programmable interconnect component incurs an additional 15ns. Thus,

the physical memory access time is 35ns.

The Organizer Delay for LM;, OD;, is a function of the packing. It depends on the
number of logic blocks in the critical path and the routing needed to connect these blocks.
For simplicity, we assume that the routing delay is constant and that all the logical memories
mapped into one physical memory have the same delay. We denote by OD);, the organizer
delay of all the logical memories mapped into PM;. From Figures 4.3 and 4.6, if we assume
that the critical path includes the counter in the local control module and the multiplexer

in the address module, then the Organizer delay for PM; is given by,
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OD; = OBUF + COUNTdelay(OC;) + MU Xdelay(OC;) + SMdelay (4.11)

Here OBUF is the delay of the output buffer, COUNTdelay(x) and MU Xdelay(x) are
the delays for a 0 to * — 1 counter and an = to I multiplexer, and SMdelay is the delay
of the state machine. If we assume 8ns delay per Xilinx XC4000 family logic block, (i.e.
the 6ns nominal delay plus 2ns for routing), then COUNTdelay(x) and MU Xdelay(x)
have a worst-case delay of 8ns each for x = 2,3,4 and of 16ns for x = 5,6,7,8. OBUF is
approximately equal to 10ns and the worst-case delay of the state machine is approximately

8ns.

With the above data and Equations (4.10) and (4.11), the final delay model is given by,

; =

(4.12)

2.0C; - (35+34), if0OC; =234
2.0C; - (354 50), if OC; =5,6,7,8

This model assumes that the entire Organizer is placed in a single FPGA, and not split

across multiple FPGAs. This is a reasonable assumption, as the organizer is small.

4.2.4 Delay Model Accuracy

Figure 4.8 presents a comparison between the delay model presented in Section 4.2.3 and the
actual delay used in the FPGA. The actual delay used is taken from the output of the Xilinx’s
technology map, place and route tool (taken from PPR ?) after generating the Organizer. In
the graph shown in this figure, the x-axis represents the number of logical memories packed
into a single PM. The y-axis represents the delay in nanoseconds that the organizer needs
to multiplex the logical memories. The difference between the two graphs is due to the fact
that the delay model does not take into account the routing delays. It just adds a 2ns delay

to the nominal 6ns logic block delay. However, the error in the model is less than 10%.

It is important to notice that the graph only gives the delay inside the FPGA, as opposed
to the total delay: FPGA delay plus FPIC delay plus physical memory delay. Therefore, to

2PPR was run five times to determine the average delay.
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calculate the total organizer delay, the following equation needs to be used:

Lt; =2-0C; - (354 FPGAgeay) (4.13)

where OC); is the number of logic memories and F'PG Ageqy 1s the delay shown in Figure 4.8

for the OC; number of logic memories.

Organizer Delay vs. Number of Logical Memories
Each LM with w=2, d=4

55

50 -
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35 Xilinx's PPR

30

Number of Logical Memories

Figure 4.8: Our delay model vs. Xilinx ppr’s delay model.

4.3 Memory Packing Algorithm

In this section, an exhaustive algorithm which solves the constrained problem defined in
Section 4.1 is presented. A fast heuristic algorithm is also described at the end of this

section.



Memory Packing Problem 49

LMO mapped into PM2

-
-

LMO

LMO mapped into PM3

LM1

Figure 4.9: Decision Tree of Packing Solutions for problem with 3 LMs and 4 PMs.

4.3.1 Exhaustive Algorithm

The memory mapping problem can be solved using a Branch and Bound approach [40].
Figure 4.9 illustrates the branch and bound decision tree that represents all the possible
solutions to the memory mapping problem. The nodes represent the logical memories. The
edges represent the physical memories into which the logical memories are packed. For
example, Figure 4.9 has two nodes, x and y joined by edge z. The partial solution represented

by node y means that LMy was mapped into P Mj.

The decision tree is traversed depth-first from the root. Pruning occurs in the following
manner: assume that node z is the current node and has child node y connected by edge z.
The tree is pruned at node y if LM, cannot be mapped into PM,, which occurs when any

one of the following is not true:

1. LM, physically fits in the size remaining in PM,.
2. After placing LM, into PM.,, the required access time of LM, (Lt,) is achieved.

3. By placing LM, into PM,, the logical memories already placed into PM, also meet

their required access times.

If the bottom of the tree is reached then a legal packing is found. The algorithm continues to
traverse the tree to find the solution with the minimal area as determine by the area model

described in Section 4.2.

The tree is also pruned using a bounding function on the area of the partial solutions:

this lower bound is calculated as the area needed to implement an Organizer for all the
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logical memories already mapped in the sub-tree above the current node. If there are n
logical memories and m physical memories, the worst-case complexity of the algorithm is
O(m”™). However, in most of the cases, a large portion of the tree is pruned and only a
small fraction of the tree is visited. Table 4.1 gives the required memories of a few example
applications: Column one gives the required logical memories and columns three and four
give the total number of nodes in the tree and the number of visited nodes. Column six
gives the CPU time — the time a SUN Sparc [ workstation took to execute the program.
Note that although the number of visited nodes is smaller than the total number of nodes
(i.e. m™), it still grows exponentially with the number of logical memories. Therefore, the

execution time also grows exponentially.

Required Number of Total No. | Visited No. CPU
Logical Memories Subdivided of Nodes of Nodes Time
Logical Memories
three 28x16 7 16,384 398 0.11s
one 28x3 LIFO
15x24, 16x4 (RAM) 8 65,536 818 0.21s
256x32 (ROM)
2048x56 (ROM) 9 262,144 7,708 3.69s
4096x12 (ROM)
16x80, 160x8 14 2.68 x 10% | 4.60 x 10° | 3601.52s
16x16, 32x8

Table 4.1: Total and visited number of nodes in the Branch & Bound tree.

4.3.2 Heuristic Algorithm

In this section, a heuristic algorithm is presented. This algorithm employs a mapping priority
function (described later in this section) to order all logical memories, and then it takes one

LM at a time and maps it into a PM.

As described in Section 4.1, the goal of the memory packing problem is to fit the logical
memories within the physical memories, meet the required access times, and minimize the
area of the multiplexing hardware. The goals of fitting the logical memories and meeting
their access time may be in direct conflict because they are completely orthogonal. To

create the prioritized list of logical memories for packing, a mapping priority function must
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be derived from the two competing goals. Although it is difficult to determine, in advance,
which goal (fitting or meeting) will be the hardest to achieve, we calculate a “normalized”
measure for each goal, and sum the two normalized values to create the mapping priority

function.

The first measurement, called normalized depth, is calculated by dividing the depth of
the LM by the depth of the PM and then multiplying it by [rn/m], where n is the total
number of logical memories, and m is the total number of physical memories. Therefore,
[n/m] is the number of logical memories that need to be packed into each PM to achieve
a balanced packing — a legal packing in which each PM has the same number of logical

memories. More formally,

Ld; [n
Normalized depth = 2 || 11
ormalized dep 7 |7 (4.14)
The second measurement, called normalized access time is calculated by dividing the access
time of the PM by the required access time of the LM and then multiplying it by [n/m].
More formally,

Pt
Normalized access time = . [E-‘ (4.15)
Lt; Im

Using the normalized depth and normalized access time, the mapping priority function is

(L[] PL-[2]
riority; = exp By + exp 17 (4.16)

given by,

Note that an exponential form is given to the mapping priority function to emphasize the
terms that are equal to or greater than one. The exponential form was empirically found
to be better than the linear form. With this equation, for example, an LM with normalized
depth equal to 1.8, and normalized access time equal to 0.3, is mapped before an LM with

both normalized depth, and normalized access time equal to 1.1.

Also note that, if all logical memories have both normalized depth and normalized access
time less than or equal to one, then a balanced packing can easily be found by simply packing
[n/m] logical memories into each PM. If this is not the case, then an algorithm is needed
to some how try to map all the logical memories into the physical memories: The Furst-Fit
(FF)[41] algorithm takes one LM at a time (in order from the prioritized list), and maps it
into the first PM in which it fits. A legal packing found with this algorithm tends to result
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in an unbalanced packing — a legal packing in which each PM has a different number of
logical memories. Furthermore, the FF' algorithm will try to map all logical memories into

a single PM if is possible.

Improving the heuristic for area minimization

The algorithm described above does not try to find the best possible organizer’s area. This
is because, as described in Section 4.1, an unbalanced packing sometimes results in a better

area but most of the time does not.

Heuristic Algorithm

{

// n is the total number of logical memories
// m is the total number of physical memories

Best Area = 0;

r = 0;

Repeat n times:
Priority[i] = exp (Ld[%ﬁ) + exp (PZ{[? )3
t =1+ 1;

Sort_Down all the Priority values;

= 1;

Repeat n times:
Pack-FF (LM[0]... LM[: —1]);
Pack-BF (LM[:]... LM[n — 1]);
if Best Area > Area of this packing
— Best Area = Area of this packing;
t =1+ 1;

Figure 4.10: Pseudo Code for the heuristic algorithm

The heuristic algorithm shown in Figure 4.10, tries to explore both the balanced and
unbalanced legal packing by using a combination of the First-Fit (FF) algorithm, and an
algorithm we call Balanced-Fit (BF) ?. The BF algorithm takes one LM at a time and maps

it into the PM that fits and has the least number of logical memories.

As shown in Figure 4.10, the algorithm iterates n times (where n is the number of logical

3Not to be confused with Best-Fit



Memory Packing Problem 53

memories). In the first iteration, the algorithm only uses BF' to pack all the logical memories.
In the second iteration, the algorithm packs one LM using F'F' and the rest using BF. In
the %" iteration, the algorithm uses FF' to pack the first ¢ logical memories and BF to pack
the rest (i.e. n — ¢ memories). At the end, the algorithm uses only FF to pack all logical

memories. From all the legal packings, the one with minimum area is chosen as the solution.

Since it was not the primary goal of this thesis to find a heuristic for the memory packing
problem, there has not been enough analytical and practical investigation to determine if this
algorithm can always find a legal packing, if one exists. It is important to notice however,
that this heuristic algorithm has worst-case complexity of O(2 - n - m). This means that
the heuristic can run orders of magnitude faster than the exhaustive algorithm which has
worst-case complexity of O(m™). Table 4.2 gives the same example applications presented
in Table 4.1. Columns three and four presents the area cost given by the exhaustive and the
heuristic algorithms. Column five gives the ratio between the time a Sparc workstation takes
to run the exhaustive algorithm and the time it takes to run the heuristic algorithm. As the
number of logical memories increases, the difference in speed between the two algorithms
increases, making the heuristic essential for circuits with large numbers of required logical
memories. The CPU time of the exhaustive algorithm is shown in Table 4.1. The final
example in Table 4.2 shows a case in which the heuristic algorithm was 45 thousand times

faster than the exhaustive algorithm, in finding a packing with only a 9.1% increase in area.

Required Number of Area Area Heuristic
Logical Memories | Memory Pieces | (Exhaustive) | (Heuristic) | Speedup
three 28x16 7 53 53 1.83

one 28x3 LIFO
15x24, 16x4 (RAM) 3 67 67 1.20
256x32 (ROM)
2048x56 (ROM) 9 96 96 92.25
4096x12 (ROM)
16x80, 160x8 14 121 132 45,019
16x16, 32x8

Table 4.2: Comparison between the exhaustive and heuristic algorithms.
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4.4 Results

The above algorithms have been implemented in a CAD tool called MemPacker. It is cur-
rently targeted towards the TM-1 FPS described in Chapter 3. The inputs to MemPacker
are the logical memory parameters (width, depth and access time) and the output is the
FPGA design of the organizer. MemPacker produces a Xilinx 4000 series netlist format
(XNF) file that can be directly synthesized by the native Xilinx tools to produce a program-
ming bit stream. We note that this tool saves the designer a significant amount of time by
automatically generating the memory multiplexing logic and control. Manual generation of
such circuits may take many hours. Appendix C describes how to use the MemPacker

program.

4.4.1 Using MemPacker for Architecture Exploration

MemPacker can be used to explore the architectural space of a design from the perspective
of the memory access times. It is often true that memory access times are the limiting
factor in the overall speed of an application [6]. MemPacker can be used to determine the
minimum access time for a set of logical memories implemented on a set of physical memories
by iterating the algorithm with successively smaller required access times. The iteration prior
to the one in which the algorithm fails to find a legal packing gives the minimum access time
for all of the memories (using the exhaustive approach). The algorithm will also determine

the smallest sized organizer that will achieve maximum performance.

Table 4.3 gives a set of example applications for which the maximum operating frequency
of the memories has been determined. In this example, we assume that all of the memories
will have the same access time. MemPacker is iteratively invoked to determine the smallest
possible access time. The first column of Table 4.3 gives the source and/or name of the circuit
from which the set of logical memories was derived. The second column describes the set of
logical memories. These are packed into the TM-1, which consists of four 32k x 8 physical
memories. Column three indicates the number of pieces the logical memories are partitioned
into, as described in Section 4.1.1. Column four gives the minimum area of the organizer
achieved, in terms of the number of Xilinx 4000-series logic blocks. Column five gives the

maximum operating frequency achievable if the memory access time is the limiting factor
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System Logical Memories Number of Area Max
Subdivided (XC4000 CLBs) | Op. Freq
Logical Memories
Industrial Example 1 three 736x16 6 52 3.6 MH=z
Viterbi decoder three 28x16 7 53 3.6 MH=z
one 28x3 LIFO
DMA Chip for LAN | 15x24, 16x4 (RAM) 8 67 3.6MH:~z
256x32 (ROM)
Industrial Example 2 six 88x8 9 87 24MH =z
one 64x24
Fast Divider 2048x56 (ROM) 9 96 2AMH =
4096x12 (ROM)
Industrial Example 3 four 368x16 10 109 24MH =z
one 736x16
Neural Network Chip 16x80, 160x8 14 121 1.8MH=z
16x16, 32x8

Table 4.3: Maximum Operating Frequency and Area for Example Circuits. The Industrial
Examples are Telecommunication-related circuits.

in the system performance. This illustrates how MemPacker can be used to explore the

performance and area costs of different memory architectures.

4.4.2 Illustration of Area Dependency on the Packing

In Section 4.2 we discussed the effect of the packing on both the address and data module
area. Here we illustrate these effects by an example. Consider the following set of logical
memories: four 4k x 8, two 32 X 3, two 64 x 2 and two 8k x 2. These will be packed into the

same physical memories as above.

Using the heuristic algorithm described in Section 4.3.2, these memories would be packed
as illustrated in Figure 4.11a. The area cost of this packing is 84 Xilinx 4000-series logic
blocks. Using the exhaustive algorithm described in Section 4.3, the packing illustrated in
Figure 4.11b results. The area cost of the latter packing is only 78 logic blocks. The reason
for the major difference is a better matching of address and data busses within each physical
memory to minimize the amount of multiplexing. Note that both packings achieve the same

minimum access time over all the memories. If this constraint is relaxed and the minimum
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area solution is generated, the packing of Figure 4.11c results, which has an area cost of only

66 logic blocks. This solution is 21% smaller than the heuristic solution.

PMg PM, PM,, PM,
e kX8 AkxB ) Akx8 AKX
............... 8kx2| | ...BkXx2Z 64x2 64x2
32x3 32x3 Max. OP. Freq. =2.7MHz
Area=84CLBs

PMq PM, PM,, PM,
o kX 8 32X Akx8 ) AKX
_______________ 64x2 . 32x3 8kx2 4k x 8

8k x 2 64x2 Max. OP. Freq. = 2.7MHz
Area=78CLBs

PMg PM, PM,, PM,
_______________ 64x2  4kx8 4k x 8 4k x 8
............... 64x2| |.......%KX8
............... 32x3| |l BKX2
Max. OP. Freq. = 2MHz
32x3 8kx2
X X Area= 66 CLBs

(c) Branch & Bound Solution. Minimizing Area

Figure 4.11: Effect of different packings on the Area and Delay Cost.

4.5 Summary

This chapter motivates and defines the memory packing problem for Field-Programmable
Systems. Memory packing is necessary when the number of application logical memories
exceeds the number of physical memories. Because different packings result in both different
access times and area requirements, it is an optimization problem to select the fastest and
most area-efficient packing. This chapter has presented a precise definition of this prob-
lem and an algorithm for its solution. The resulting CAD tool, MemPacker was used to

synthesize area-efficient and delay-minimal packings for a set of application circuit examples.



Chapter 5

Conclusions and Future Work

5.1 Summary and Contributions

This thesis makes two contributions. First, a working Field-Programmable System that can
be used for instant prototyping of digital circuits was implemented. Both the hardware and
software needed to support the system were presented in Chapter 3. This FPS, called the

Transmogrifier-1 (TM-1) has been used to emulate and test some example applications.

Second, a method for mapping a set of required logical memories into a fixed set of
physical memories in a Field-Programmable System was presented. It was described how
the access time of the logical memories and the area of the multiplexing circuitry depend on

how the logical memories are packed into the physical memories.

A CAD tool called MemPacker was developed with the algorithms and models presented
in Chapter 4. The effectiveness of the tool was demonstrated by showing how it can be used

to determine maximum memory operating frequency with minimum area cost.

57
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5.2 Realities

The Transmogrifier-1, like any other Field-Programmable System, runs at very low speeds.
From the two large designs that were implemented using the TM-1, only one ran at 10M H z.
It is important to notice however, that the low speed is due mainly to the slowness of today’s
FPGAs. The memory organizer also ran at very low speeds due to the low speeds of the

FPGAs in which the organizer was implemented.

Another important issue is the density of the TM-1. The TM-1 is supposed to have 40,000
equivalent gates. This is not a very large number if we consider that by the time the sys-
tem was functional, many FPGA companies had announced 25,000 equivalent gate FPGAs.
This means that probably in a year, FPGA companies will announce 50,000 equivalent-gate

devices, making the TM-1 obsolete.

Finally, synthesis software for FPGAs is not a mature field and therefore, designing with
many FPGAs is not as easy as it should be. A CAD tool that understands the architecture
of the programmable system, and not only the individual FPGAs, is going to be needed in
order to get higher logic utilization. However, we believe that it is only a matter of time

before better synthesis tools are developed.

5.3 Future Work

Bell Northern Research has been constructing a multi-chip module (MCM) almost identical
to the Transmogrifier-1. BNR’s MCM has a 2.4” x 2.4" footprint, and is suitable for replacing
small-gate count ASICs with reasonable amounts of memory. The main differences between
the board level TM-1 and the MCM TM-1 are that the MCM contains one FPIC device, and
some control lines as well as global clock signals that are hard-wired between the FPGAs

without passing through the FPIC device.

A next generation Field-Programmable System (i.e. the Transmogrifier-2) can be built
using several of BNR’s MCM or future versions of it. However, if a more efficient FPS is

wanted, several issues need to be addressed before building the next Transmogrifier system:

1. It is important to decide how many and what kind of FPGAs are going to be used in
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the next generation FPS: Should the TM-2 contain the largest available Xilinx FPGAs,
or should it use Altera’s, AT&T’s, or other FPGAs ?

2. The type of interconnect architecture to be used in the Transmogrifier-2 will be very
important: Should the TM-2 also use a concentrated, distributed programmable inter-
connect architecture, or should it use a partial programmable architecture or something

else 7 Should the TM-2 contain some hard-wired connections 7 If so, how many 7

3. The type and size of the memories also imposes many interesting questions: How
many and what kind of memories will be needed 7 Should the TM-2 use hard-wired
connections between the FPGAs and the memories to reduce memory access times and

hence increase the practicality of a memory organizer ?

Another important topic for future work has to do with benchmarking. To the best of
our knowledge, there are no set of benchmark circuits that can be used to compare Field-
Programmable Systems. Therefore, nobody really knows the advantages or disadvantages of
all the available systems. Benchmark circuits can also be used to develop better synthesis

tools, such as better partitioners.

Benchmark circuits can also be used to further study better memory organizers. By
having a better idea of the set of memories that most of the times are required, better

models can be developed. At the same time, heuristic algorithms can be investigated.
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Appendix A

Interface Board’s Schematics

As described in Section 3.1.1, for the TM-1 to work properly, either as a compute engine

or as an emulator, it needs some kind of communication with a host computer.

The TM-1 system uses two auxiliary boards in order to interface to a host computer.
First, it uses an S16D interface from Engineering Design Team, Inc. (EDT) [28]. The S16D
is a single-slot, 16-bit parallel input/output interface for SBus-based computer systems.

Second, the system uses an additional interface board, built at the University of Toronto as

part of this thesis, that contains a Xilinx XC4010 FPGA.

Two circuit designs were implemented and tested on the interface board: Figure A.l
shows the schematics of the 72-bit programmable bi-directional interface, and Figure A.2

illustrates the schematics of the 16-bit direct memory access (DMA) [29] interface.

Figure A.3 shows the contents of the port symbol used in both of the above designs.
Finally, the control symbol (in Figure A.2) contains the VHDL file shown in Figure A.4:

A.1 Instructions

A.1.1 72-bit programmable bi-directional interface

To use the 72-bit programmable bi-directional interface:
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1. Download the circuit into the FPGA in the interface board. To do so, turn switch 1
to the left (see Figure B.4) and type:

“xchecker -port /dev/ttya /jayar/d0/davka/FPS/s16d/io72”.

If you have any problem downloading the fpga in the interface board, you can discon-

nect the two sbus cables, execute the xchecker command again, and then reconnect
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Figure A.2: 16-Bit DMA Interface.

the two cables without turning the power off.

2. To run the interface program type:
“/jayar/d0/davka/FPS /bin/interface”.

Follow the below instructions to use the interface:

63



64 An FPS with Reconfigurable Memory

® .PI o
PORT
1/ O Port Mbodul e

SBUS | nt er dace
Davi d Kar chrmer

I

l% 0 o Wb
LL
4
o -
" 0
Qro
P
Lol o
[
amm "
143 E

Figure A.3: Port’s Schematics.

e Use ¢ P ccc to configure each port where P is the port number (0 to 5) and
cce is the configuration data. cce is a hex number representing the 12 port pins.
Each pin can be configured with a zero for an output (i.e. from the computer to
the TM-1 board) or with a one for an input (i.e. from the TM-1 board to the

computer).

e Use w P www to write data where P is the port number (0 to 5) and www is the
data to be written. This number is also a hex number representing the 12 port

bits.

e User P to read data where P is the port number (0 to 5) from where you want

to read.
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e Use q to quit the interface program.

A.1.2 16-bit DMA interface

To use the 16-bit DMA interface:

1. Download the circuit into the FPGA in the interface board. To do so, turn switch 1
to the left (see Figure B.4) and type:
“xchecker -port /dev/ttya /jayar/d0/davka/FPS/s16d/dmal6_ul”
if you are using a 10M H z oscillator, or
“xchecker -port /dev/ttya /jayar/d0/davka/FPS/s16d/dmal6_u2”
if you are using a 33M Hz oscillator. If you have any problem downloading the fpga
in the interface board, you can disconnect the two sbus cables, execute the xchecker

command again, and then reconnect the two cables without turning the power off.

2. The interface can be tested by typing:
“/jayar/d0/davka/FPS/s16d/testdma -o 1 size repeat”
where size is the size of the counter and repeat is the number of times you want to

repeat this counter. This command only writes a counter from 0 to size, repeat times.

3. To read data type:
“/jayar/d0/davka/FPS/s16d/testdma -0 0 size repeat”.

4. Use the testdma program as a template when more elaborated programs are needed.
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-- This is a state machine that controls the protocol needed
-- to talk to the S16D sbus interface card. It needs

-- a clock of approx. 10MHz.

library exemplar;

use work.exemplar.all;

entity control is
port( clk, ack, val, rd, rs: IN bit;
state: OUT bit_vector(0 to 1);
dck, la0O: OUT bit
);

end control;

architecture exemplar of control is
signal st, nx: bit_vector(0 to 1);

begin

-- update the state on the clock edge (Initialize at st(0))
dffp(nx(0), rs, clk, st(0));
dffc(nx(1), rs, clk, st(1));

-- set the outputs
dck <= ’0’ when st(1)=’1’ else ’1’;
la0 <= ’1’ when st(1)=’1’ and rd=’1’ else ’0’;
state(0) <= st(0);
state(1) <= st(1);

-- set next state
nx(0) <= 1’ when (st(1)=’1’ and st(0)=’0’)
or (st(0)=’1’ and ack=’0’ )
or (st(0)=’1’ and val=’1’ and rd=’1’)
or (st(0)=’0’ and st(1)=’07)
else '0’;
nx(1) <= 1’ when (st(0)=’1’ and ack=’1’ and rd=’0’)
or (st(0)=’1’ and val=’0’ and ack=’1’ and rd=’1’)
else '0’;

end exemplar;

Figure A.4: VHDL Control Circuit for the DMA Interface.
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TM-1 Design Instructions

This Appendix contains the instructions to setup and use the Takeme CAD tool. This
tool was written to help inexperience users to implement or emulate digital circuits using

the Transmogrifier-1 Field-Programmable System.

B.1 General Information

To setup your environment, be sure to follow the next steps:

e [t is very important that you include the following lines in your .cshre:

1. source ~“pga/xact/SOURCE

2. set path=($path /jayar/e0/aptic/aptiz/bin)

3. set path=($path /jayar/d0/davka/FPS/bin)

e If you have never used azess before, execute:

cat /jayar/e0/aptix/aptix/etc/Xdefaults >> ~/.X11defaults

e You can use the tutorial directory (/jayar/d0/davka/FPS/designs/tutorial)
Read the README file for instructions.
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B.2 Design Limitations

Although the user can configure the chip interconnections as he/she wishes, some connections
are fixed to facilitate the FPGA downloading. Figure B.1 illustrates the fixed connections
needed to serially download the FPGAs. In order to assure that the Xilinx’s partition,
place and route tool (ppr) [26] does not route any internal signal to the unavailable pins,
a constraint file (i.e. using a .cst extension) has to be created before executing ppr. An

example of this file is shown in Figure B.2.

T T T T

DONE MO.1.2 DONE M0.1.,2 DONE M0.1,2 DONE M0.1,2
PROG PROG PROG PROG
INIT INIT INIT INIT
DIN DIN DOUT DIN DOUT DIN DoUT DIN DOUT [—>

CCH xcao010 € xcao10 € xcao10 CeH xcao10

CCLK
INIT

PROG

DONE

Slave Mode

Figure B.1: Fixed connections in the Transmogrifier-1.

notplace instance *: j16;
notplace instance *: t4;
notplace instance *: u3;

Figure B.2: Example of a .cst constraint file

B.3 Step by step instructions

Takeme is a program that generates all the files needed to download the routing configuration
into the Aptix FPIC devices (i.e. using axess), and the logic design into the FPGAs (i.e.

using the xchecker). For the development process, follow the next steps:

1. Type takeme.
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2. Click the SETUP button, and in the Setup window,

(a) Enter the name of the directory that you want to create or use.
(b) Select New or Old. New to create a new directory or Old to use an old one.
(c) Select what type of format you are using as input.

e Selecting bit/rpt means that you have run ppr already. If so, check the report
file (rpt) and be sure that the 716, t4 and u3 pins were not used. To be sure
that ppr does not use these pins, you need to include a .c¢st file before ppr

is executed. Figure B.2 shows an example of the .est file.

(d) Click OK to go to the next step.

3. In the Resources window,
(a) If you are using an old project and you already modified the .net files, then Click
skip init to go to the next window, else:

(b) Select the number of FPGAs required or use partitioner if you want to use Dave

Galloway’s Partitioner.
(c) Select the number of memories required.

(d) Select the number of 40-pin connectors required. These connectors can be used
to interface your design with the computer or to debug your design with the use

of a Logic Analyzer.

(e) Click init to go to the next step.

4. In the Load window,

(a) Enter the name of your source files. Do not use extensions (i.e. .bit, .xnf, etc).

(b) Enter the output files name. This is the name that the program will use when
generating the SCI netlist file and the xchecker EXO file.

(c¢) Click OK to go to the next step.
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5. In the Edit window,

(a) Select the editor to use.
(b) Click the button of the file you want to edit.

o connectors.net This file contains the signal name and location in the two

40-pin connectors.

e mem.net This file contains the memories address and data port names and
locations. For example:
If you have a design in FPGA No. 1 that uses one of the memories (say
Memory No. 1) and you call the data bus data and the address bus addr, you

need to edit the file mem.net as shown in Figure B.3 *.

meml DATAOQ 35
meml DATA1 19
meml ADDRO 47
meml ADDR14 21

Figure B.3: Example of a mem.net file

(c) Click OK to go back to the main menu.

6. Click the EXECUTE button, and in the Frecute window, Click OK to produce the

.sci and .exo files. This process may take a long time if your input format is znf or

toyc.

7. Check the .sci file. You can do this by Clicking MISC' in the main menu and selecting
the Edit SCI File button. Make extra changes to the net files if needed (using the FEdit
window and then Click the Regenerate SCI button).

Do not change the pin numbers (i.e. the number at the end of each line)
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8. Click the DOWNLOAD button to see the instructions of how to download both the
FPIC and FPGA devices. Refer to the Aptix FPCB development system user’s manual.

(a) The AXESS window shows the instructions for the FPIC downloading.

i. Type Run Azess *: From axess,
A. File — Open FPCB Design
o Select the fpeb! design in your working directory.
B. Setup — Import Netlist
o Select your SCI file
C. Route — Auto Route All
ii. Connect the cable that comes from the HIM to the TM-1 (See Figure B.4).
iii. Turn ON the HIM.
iv. Wait for one minute.
v. From axess: Program — Program FPIC Devices
vi. Click OK to go to the next window.
(b) In the Download Interface window.
i. Make all the appropriate cable connections as shown in Figure B.4 (if the
download of the FPIC devices was successful):
e Power and Ground cable from the TM-1 board to the power supply.
e The two 40-pin connectors from the TM-1 board to the interface board.
e The 10-pin connector from the TM-1 board to the interface board.
ii. TURN ON the power supply.
iii. Turn switch 1 to the left. (See Figure B.4)
iv. Click the Download Interface button and hit Return from the new window. .

v. Click OK to go to the next window.

(¢) In the Download Design window:

2The Axess software is not X11 compatible and therefore, twm may die at any time. If this happens, go
to the console window and enter twm.

3If you have any problem downloading the fpga in the interface board, you can disconnect the two sbus
cables and then click Download Interface again. At this point, you can connect the two cables without
turning the power off.
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Figure B.4: Block Diagram of the FPS.

i. Turn switch 1 to the right.
ii. Click the download Design button and hit Return from the new window.

iii. Click OK to go to the next window.
(d) In the Interface window:

i. Click the interface button.
ii. From the new xterm window:
e Use ¢ P ccc to configure each port where P is the port number (0 to 5)
and ccc is the configuration data. cec is a hex number representing the
12 port pins. Each pin can be configured with a zero for an output (i.e.

from the computer to the TM-1 board) or with a one for an input (i.e.
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from the TM-1 board to the computer).

e Use w P www to write data where Pis the port number (0 to 5) and www

is the data to be written. This number is also a hex number representing

the 12 port bits.

e Use r P to read data where P is the port number (0 to 5) from where

you want to read.
e Use q to quit the interface program.

iii. Click OK to go to the main menu.
9. Click the POWERDOWN button for instructions of how to turn off the system.
(a) TURN OFF the power supply. WAIT for a few seconds until the red light in
the power supply turns off.
(b) From axess:

i. Program — Power down FPIC devices

ii. File — exit. 1t is not necessary to save the changes. In fact, it is faster if you

discard them

iii. TURN OFF the HIM

10. Click the Quit Button to exit Takeme.
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Appendix C

Using MemPacker

To run MemPacker:

1. Create the input file with the Logic Memory Requirements. Each line represent a logic

memory and contains three fields: depth, width and access time (in ns). Example:

12000 5 35
512 16 35

2. Execute the program as follows:
MemPacker [option option ...| < input_file

where the available options are listed in Table C.1

Figure C.1 illustrates the complete MemPacker design flow. As shown in this figure,
the MemPacker XNF output is merged with the original user’s XNF file. The resulting
merged XNF file is then pass through the xblox filter [42]. Xblox synthesizes a delay- and
area-efficient logic level design from an input specification consisting of a network of generic
modules. After xblox, the design can be partitioned, placed and routed using ppr and

makebits.
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Option ‘ Meaning ‘

-m num Select algorithm:
0: Exhaustive, 1: Heuristic

-5 Show debugging data while executing the algorithm

-t Include test pads in XNF file. Use for testing
-p Force powers of two
-X Generate XNF file
-v Generate Symbol for Viewlogic
-n Generate net file for the TM-1
-0 name Output file name,

for the xnf, symbol and net files
Default: MemPacker_out

Table C.1: Available options for MemPacker.

LM Netlist System Design

|

MemPacker

XNF File

XNF Merge ~—

XNF File

XBLOX

XGFile

PPR

LCA File

MakeBits

i

Bit File

Figure C.1: Design Flow for MemPacker.

C.1 Tutorial

In this tutorial, we will use ViewLogic and MemPacker to design a memory organizer.

We will design a 64k x 5 logical memory and a 16 x 12 logical memory. Although the
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packing of these logical memories is easy, we will use MemPacker to quickly generate the

XNF file, the symbol file used by ViewLogic and the NET file used by the TM-1.

This tutorial is intended for people with previous experience in designing using ViewLogic,

Xilinx FPGAs and the TM-1 system.

1. Create an input file, named organizer.lm, as shown in Figure C.2. The first line
tells MemPacker to use four physical memories, and the second and third line tells
MemPacker that the required memories are: a 64k x 5 with required access time of

80ns, and a 16 x 12 with the same access time.

66536 5 80
16 12 80

Figure C.2: Example input file for MemPacker.

2. Run MemPacker:
Type: MemPacker -s -x -v -n -m1 -0 organizer < organizer.lm
This command will run MemPacker showing the debugging data (-s), and generating
an “organizer.xnf” (-z), an “organizer.1” (-v) and an “organizer.net” (-n) files, contain-
ing the organizer Xilinx netlist file, the ViewLogic symbol file and the TM-1 mem.net
file. It uses the heuristic algorithm (-m0)

3. Move the “organizer.1” file to your ViewLogic sym directory.

4. Use Viewdraw to capture the design shown in Figure C.3. Name this file: “top”. (The

organizer symbol can be retrieved by typing “< space > com organizer”)

5. Generate the top.xnf file:

Type: wir2znf top

6. Merge the top.xnf file with the “organizer.xnf” file:
Type: xznfmerge top.anf top_merged.znf
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Figure C.3: Viewdraw schematics of the organizer example.

7. Filter the merged xnf file with xblox:
Type: zblox top_merged

8. Generate the configuration bits for the FPGA:
Type: ppr top_merged
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Type: makebits -w top_merged

9. If you want to actually test the circuit on the TM-1, run takeme and:

(a) Click Setup, and

i. Enter “emulation.fps” as the working directory.
ii. Select one FPGA and two connectors.

iii. Enter “top_merged” as your source file.

iv. Modify the “connectors.net” file to include the AOLM[15:0], DIOLM[4:0],
WEOLM, OEOLM, A1LM][3:0], DIILM[11:0], WEILM, OE1LM, and RESET

nets.
(b) From a unix shell, copy the “organizer.net” file to “emulation.fps/mem.net”

c¢) From takeme, execute steps 6 to 9 of Section B.3.
) p
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