ROUTING ARCHITECTURE AND
LAYOUT SYNTHESIS
FOR MULTI-FPGA SYSTEMS

BY

MOHAMMED A. S. KHALID

A Thesis submitted in conformity with the requirements
for the Degree of Doctor of Philosophy in the
Department of Electrical and Computer Engineering,
University of Toronto

© Copyright by Mohammed A. S. Khalid 1999

Abstract

Routing Architecture and Layout Synthesis for Multi-FPGA Systems

Doctor of Philosophy, 1999
Mohammed A. S. Khalid
Department of Electrical and Computer Engineering
University of Toronto

Multi-FPGA systems (MFSs) are used as custom computing machines, logic emula-
tors and rapid prototyping vehicles. A key aspect of these systems is their programmable
routing architecture, which is the manner in which wires, FPGAs and Field-Programmable
Interconnect Devices (FPIDs) are connected.

This dissertation provides new insight into the strengths and the weaknesses of two
popular existing routing architectures: the Partial Crossbar and the Mesh. New hybrid
architectures, that use a mixture of hardwired and programmable connections, are pro-
posed. The new architectures are the Hybrid Torus Partial-Crossbar (HTP), the Hybrid
Complete-Graph Partial-Crossbar (HCGP) and the Hardwired Clusters Partial Crossbar
(HWCP).

We evaluate and compare several MFS routing architectures by using arigorous exper-
imental approach that employs real benchmark circuits. The circuits are mapped into the
architectures using a customized set of partitioning, placement and inter-chip routing
tools. The architectures are compared on the basis of cost (the total number of pins
required in the system) and speed (determined by the post-inter-chip routing critical path
delay).

The key parameters associated with the partial crossbar and the hybrid architectures
are explored. For the partial crossbar, the effect of varying the number of pins per subset

(Py), on the routability, speed, and cost is minor. For the hybrid architectures, akey param-
eter, the percentage of programmable connections (Py), is explored and we experimentally

determined that P, = 60% gives good routability across all the benchmark circuits.

We show that the Partial Crossbar is superior to the 8-way Mesh architecture. We
show that one of the newly proposed hybrid architectures, HCGP, is superior to the Partial
Crossbar. The HTP architecture is shown to be inferior to the HCGP and only marginally
better than the Partial Crossbar. The HWCP architecture is evaluated compared to the
HCGP architecture and gives encouraging routability and speed results.

Overal, the results show that for single board MFSs, the HCGP is the best among all
the MFS routing architectures evaluated.

Acknowledgments

Alhamdulillah (Praise be to God), this dissertatioonrivhas been finally completed.
First, | want to e&press my gratitude to the God almighty for enabling me to reach this
important milestone in my life.

| would like to express my heartfelt thanks to my supervisor Jonathan Rose for his
moral and financial support, guidance, and encouragement. All the things that | learned
from him in the past fiw years, especially his commitment tacellence in research and
his remarkable presentation skills, will bery useful for the rest of my life. lauld like
to thank the members of my thesis committee, Profess@isdr, Z. Vranesic, TAbdel-
rahman, G. Slemon and myternal aminer Prof. S. Hauck. Theirvaluable sugges-
tions were crucial in imprang the clarity and readability of this dissertation.

| would like to thank members of Jonatherésearch group,adghn Betz, Mik Hut-
ton, Rob McCreadySandy Marquardt,aska Sankadordan Swartz, and Stee WIton for
their valuable technical discussions during our weekly group meetings. All the colleagues
in LP392 deserm my thanks for making my stay so grgble. Mazen Saghir and Muham-
mad Jaseemuddin desemy special thanks for their help on mamccasions.

| am indebted to my parents for their support and prayers throughout my life. | learned
from them the virtues of hardosk, diligence, and forbearance which are crucial fgr an
significant achieement in life. | am grateful to my wife for patientlgcing the rigors of
life for the past fe years. This dissertationonld not hae been possible without her con-
stant love and support. | am thankful to matlierin-law and mothein-law for their sup-
port and encouragement during this thesisrkw My brothers, sisters, and cousins
provided much needed moral support and prayers. Lastdt the least, | auld like to
thank my three wnderful daughters Samira, Aisha, and Sarah for bringing so mych jo
into my life.

Financial support for this project, mided by the ITRC and MICBNET, is gratefully

acknavledged.

Table of Contents

Chapter 1 Introductionciiiiieerereneeossccesoncncns 1
1.1 MFS Routing Architecture...................... 2
1.2 Thesis OVerviewottt e et e 4

Chapter 2 Background and Previous Workcci0veeens 6
2.1 Multi-FPGA System Architectures 6

2.1.1 Linear Arraysoiii i e 8
2.1.2 Mesh Architectures......... 9
2.1.3 Architectures that Employ only Programmable Interconnect
Devices. ... 11

2.1.4 Previous Research on MFS Architectures 14
Mesh Architectures L. 14

Partial Crossbar Architecture......................... 16

Studies on Other MFS Architectures 17

FPMCM Architecture Study 18

2.2 CAD Flow for Multi-FPGA Systems 20
2.2.1 Alternate Approach.................... 22

2.3 Layout Synthesis Tools, 22
2.3.1 Partitioning 23
Part: A Partitioning Tool Developed for the TM-1 MFS25

2.3.2 Placement i 26

A Force-Directed Placement Algorithm 26

2.3.3 Inter-FPGARouting 29
Routing Algorithms for the Partial Crossbar............. 30

Topology Independent Routing Algorithms 32

2.3.4 PinAssignment, 33

2.4 SUMMATY. . .ottt ettt ettt et 33
Chapter 3 MFS Routing Architecturesccceeiveeeenneess 35
3.1 Basic Assumptions ittt 35
3.2 4-way and 8-way Mesh Architectures 37
3.3 Partial Crossbar Routing Architecture 38
3.4 Hybrid Architectures 39
3.4.1 Hybrid Torus Partial-Crossbar........................ 40
3.4.2 Hybrid Complete-Graph Partial-Crossbar............... 42
3.4.3 Hardwired-Clusters Partial-Crossbar 44

3.5 Summary. e 45
Chapter 4 CAD Tools and Experimental Evaluation Framework . .46
4.1 Experimental Procedure 46
4.1.1 Assumptions ittt 48
FPGA Pin Assignment. 49
Intra-FPGA Placement and Routing. 49

4.2 Evaluation Metrics. i i 50
421 PinCost. .. .o 50
4.2.2 Post-Routing Critical Path Delay...................... 50

4.3 Benchmark Circuits 50
4.4 CAD To0lSo e e 52
4.4.1 Multi-way Partitioning 52
442 Placement e 55
Placement for Mesh Architectures 55
Placement for the HWCP Architecture. 57

4.4.3 MFS Static Timing Analyzer 58
Sample Results Obtained Usingthe MTA 61

4.4.4 Inter-FPGA Routing Algorithms 62

A Topology-Independent Router 62

Routing Algorithm for Mesh Architectures 64

Routing Algorithm for Partial Crossbar................. 65

vi

Routing Algorithm for Hybrid Architectures............. 69
Timing-Driven Routing Algorithm for Hybrid Architectures 70

4.5 SUMMATY.o 73
Chapter 5 Evaluation and Comparison of Architectures 75
5.1 Analysis of Routing Architectures. 75
5.1.1 Partial Crossbar: Analysisof Pt....................... 76

5.1.2 HCGP Architecture: Analysisof Pp.................... 78

5.1.3 HTP Architecture: Analysisof Pp 80

5.1.4 HWCP Architecture: Analysisof PpandCs 80

5.2 Comparison of 8-way Mesh and Partial Crossbar Architectures. . . 83

5.3 Comparison of HCGP and Partial Crossbar 86

5.4 Comparison of HTP and HCGP Architectures 89
HTP Compared to the Partial Crossbar 91

5.5 Comparison of HWCP and HCGP Architectures 91
HWCP Comparedto HTP 93

B5.6 SUMMATY. . ..ttt ettt 94
Chapter 6 Conclusions and Future Workccc00ee.. 96
6.1 Dissertation Summary.................. 96

6.2 Principal Contributions 97

6.3 Future Work e 98
6.3.1 CADToolsfor MFSs 98

6.3.2 Future MFS Routing Architecture Research............. 99
Appendix A The Effects of Fixed I/O Pin Positioning on the Routabil-
ityand Speed of FPGASciiiiiivernnnccennnns 101

Al Introduction e 101

A.2 Benchmark Circuits and Experimental Procedure 102

A.3 Experimental Results and Analysis 105
A.3.1 Results for the Xilinx XC4000 FPGAs. 106

A.3.2 Results for the Altera FLEX 8000 FPGAs. 112

A4 Conclusions i 117

vii

Appendix B Experimental Results Showing Actual Pin Cost and Delay
Valuesoiiiiiiiiiiiiiiiieninennnnesseseccsnnns 119

R eremnCesS v o it ttitiitieeeeeeeeeeeeseesessessssassaasenses 125

viii

List of Tables

Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4:
Table 4-5:
Table 4-6:
Table 5-1:
Table 5-2:
Table 5-3:
Table 5-4:
Table 5-5:
Table 5-6:
Table 5-7:
Table A-1:

Table A-2:
Table A-3:
Table A-4:

Table A-5:
Table A-6:
Table B-1:
Table B-2:
Table B-3:
Table B-4:
Table B-5:

Benchmark Circuits. i 51
Placement Results for Different Values of iteration_limit 56
The Delay Values Used in the Timing Analyzer Model. 59
Critical Path Delays at Different Levels of Circuit Implementation .. 61
Comparison of FPSROUTE and MROUTE 65
Comparison of HROUTE and HROUTE_TD 72
The Effect of Pt on the Delay of the Partial Crossbar Architecture ... 76
The Effect of on the Delay of the HCGP Architecture.............. 79

The Minimum Pp Value Required for Routing Completion in HWCP . 82
Comparison of the 8-way Mesh and Partial Crossbar Architectures .. 84

Comparison of the HCGP and Partial Crossbar Architectures. 87
Comparison of the HTP and HCGP Architectures. 89
Comparison of the HWCP and the HCGP Architectures. 92
Critical Path Delay Under Different Pin Constraints for the Xilinx FP-
GAS. .ot e 105
Routing Resource Utilization in the Xilinx FPGAs. 108
Routing Resource Utilization Statistics for the Xilinx FPGAs. 110
Critical Path Delay Under Different Pin Constraints for the Altera FP-
GAS. o e 112
Routing Resource Utilization for the Altera FPGAs 114
Routing Resource Utilization Statistics for the Altera FPGAs. 116
Critical Path Delays at Different Levels of Circuit Implementation . 119
Comparison of HROUTE and HROUTE_TD.................... 120
The Effect of Pp on the Delay of the Partial Crossbar Architecture . 121
Comparison of the HCGP and Partial Crossbar Architectures 122
Comparison of the HTP and HCGP Architectures 123

Table B-6: Comparison of the HWCP and HCGP Architectures

List of Figures

Figure 1-1: A Generic Multi-FPGA System 2
Figure 1-2: MFS Routing Architectures Using (a) Hardwired Connections (b) Pro-
grammable Connections (¢) Both Types of Connections 3
Figure 2-1: The AnyBoard System [Van92] 8
Figure 2-2: Mesh Architectures: (a) 4-way Mesh (b) Torus (c) 8-way Mesh 9
Figure 2-3: (a) Full Crossbar (b) Partial Crossbar. 12
Figure 2-4: The TM-2 Routing Architecture [Lewi98]....................... 13
Figure 2-5: Connections in 1-Hop Topology 15
Figure 2-6: Connections in a 4-way Mesh: (a) Without Superpins (b) With Super-
PalIS o ottt e e e e e 15
Figure 2-7: Example of Tri-partite Graph Topology Using Six FPGAs 18
Figure 2-8: Programmable Interconnection Frame Structure 19
Figure 2-9: The Design Flow for MFSs. 20
Figure 2-10: A Force-directed Placement Algorithm using Ripple Moves 28
Figure 2-11: Inter-FPGA Routingina4-wayMesh 29
Figure 3-1: Mesh Architectures: (a) 4-way Mesh (b) 8-way Mesh (c) 4-way Torus (d)
B-Way Torus e e 36
Figure 3-2: Extreme Cases of the Partial Crossbar: (a) Pt =192, (b)Pt=1 39
Figure 3-3: The HTP Architecture 40
Figure 3-4: The HCGP Architecture. 42
Figure 3-5: Multi-terminal Net Routing: (a) Without an FPID (b) With an FPID. 43
Figure 3-6: The HWCP Architecture 44
Figure 3-7: Different Cluster Sizes for HWCP (a) Cs =3 (b)Cs=4............ 45
Figure 4-1: Experimental Evaluation Procedure for MFSs. 47
Figure 4-2: Pseudo-code for RBT 53
Figure 4-3: The Partitioning Tree for the Circuit spsdes Generated by RBT 54

xi

Figure 4-4: Semi-perimeter of the Net BoundingBox....................... 55
Figure 4-5: Partitioning and Placement of the 35932 circuit on the HWCP Archi-

tecture: (a) Actual (b) Ideal 58
Figure 4-6: (a) 4-way Torus architecture (b) Its Routing Graph............... 63
Figure 4-7: Pseudo-code for the Routing Algorithm used in PCROUTE 66
Figure 4-8: Multi-hop Routing in Partial Crossbar......................... 68
Figure 4-9: Pseudo-code for the Routing Algorithm used in HROUTE 70
Figure 4-10: Timing-driven Routing Algorithm for the Hybrid Architectures. ... 71
Figure 5-1: The Effect of Pp on the Routability of the HCGP Architecture. 78
Figure 5-2: The Effect of Pp on the Routability of the HTP Architecture 81
Figure 5-3: The Effect of Pp on Routability of HWCP Architecture (s38417 circuit)

82
Figure 5-4: Routing in the Mesh (a) Non-local Net (b) Multi-terminal Net 86
Figure 5-5: Hardwired connections in the HTP architecture 91
Figure A-1: Experimental Procedure for the Xilinx FPGAs................. 103
Figure A-2: Experimental Procedure for the Altera FPGAs 104

xii

Glossary

Acronyms
MFS Multi-FPGA System
FPID Field Programmable Interconnect Device
MCM Multi-Chip Module
FPMCM Field Programmable Multi-Chip Module
HTP Hybrid Torus Partial Crossbar
HCGP Hybrid Complete Graph Partial Crossbar
HWCP Hardwired Clusters Partial Crossbar

Architecture Parameters
= The number of pins per subset, an important parameter in the
t partial crossbar architecture

Po The percentage of programmable connections, an important
parameter in the hybrid architectures

Cs The cluster size, an important parameter in the HWCP archi-
tecture

Xiii

Chapter

| ntroduction

Field-Programmable Gate Arrays (FPGAS) are widely used for implementing digital
circuits because tlyeoffer moderately high ieels of intgration and rapid turnaround time
[Brow92, Trim94]. Multi-FPGA Systems (MFSs), which are collections of FPGAs joined
by programmable connections [Hauc98a], are used when the logic capacity of a single
FPGA is insuficient, and when a quickly reprogrammed system is desired. MFSs are used
in logic emulation [Babb97, Apti98, Quic98], rapid prototypingfg2, Gall94, Alte94,
Lewi98] and recorfurable custom computingnachines [Arno92, Cass93, Dray95,
Vuil96]. In some of these applications, MFSvd@roduced the highest performance
to-date, surpassingven the most peerful supercomputers [Gokh91]{M96]. The
subject of this dissertation is thepdoration of the routing architectures for MFSs.

Logic emulation is the most important application of MFSs. Logic emulators map a
structural (netlist) representation of an ASIC or a microprocessor design into an MFS. The
design is operated at speeds ranging from hundreds of KHzwMHe. This is seeral
orders of magnitudeakter than softare design simulation speeds, which are restricted to
at most fev tens of Hertz. This alles functional erification of the design in its tget
operating emronment that includes other hardee and softare modules [Butt95]. Man
functional errors, that are impossible to detect by simulation due to preéipitong

execution times, can be diseered andiked before IC dbrication. Thus ery costly

Introduction

FPGA FPGA FPGA
etoomecion .
connections !

\/j = Network FPGA

FPGA FPGA FPGA

Figure 1-1: A Generic Multi-FPGA System

iterations in IC &brication are wided, resulting in reduced design costs aastdr
time-to-marlet, which are crucial in today’competitve technology mast. Almost all
the major endors of microprocessors and conpleSICs, such as Intel, Sun
Microsystems and Adanced Micro Deices, hae used logic emulation for IC design
verification [Gate95][Gana96].

The computational pwer required for erifying the net generation of
microprocessors and complASICs (such as graphics controllers) willvalys remain
beyond the reach ofven the most pmserful existing microprocessoiThis is because the
speed of a microprocessor giolinearly at best with its sizeytthe computations needed
for simulating a design gwat roughly the square of the design size [Butt95]. Therefore,
simulating the design of a xtegeneration microprocessor is not feasible using a current
generation microprocessdn the foreseeable future, logic emulators using hundreds of
FPGAs will be the only viable alternadi for functional erification and may well seevas

the cornerstone of future IC and system desagifigation technologies.

1.1 MFS Routing Architecture

A generic MFS is shen in Figure 1-1. The FPGAs are connected using direct
hardwired connections or a programmable interconnectiononketithat may consist of

one or more Field-Programmable Interconnecti&s (FPIDs). An FPID is a dee that

Introduction

FPGA FPGA FPGA

FPGA
FPGA FPGA FPGA FPGA FPGA
(@

—>
FPGA FPGA FPGA '
“ H FPGA FPGA FPGA

g (©

FPGA FPGA FPGA

b
Figure1-2: M Fé I)?outi ng Architectures Using (a) Hardwired Connections (b)
Programmable Connections (c) Both Types of Connections
can be programmed to provide arbitrary connections between its I/O pins. One-to-one and
one-to-many connections between its pins can be realized by the FPID.

The routing architecture of an MFS is the way in which the FPGAS, fixed wires and
programmabl e interconnect chips are connected. The routing architecture has a strong
effect on the speed, cost and routability of the system because an inefficient routing
architecture may require excessive logic and routing resources when implementing
circuits and cause large routing delays.

There are many such routing architectures. For example, consider those shown in
Figure 1-2. We refer to wires directly connecting two FPGAS as hardwired connections.
Wires that connect an FPGA to an FPID are called programmable connections. Figure
1-2(a) shows an FPGA-only architecture that uses only hardwired connections. Figure
1-2(b) shows an architecture that uses only programmable connections (no hardwired

connections). Figure 1-2(c) shows an architecture that uses both hardwired and

Introduction

programmable connections.u8n the multitude of choices in the architecturgleration
space, it is dffcult even to decide on a starting point in MES architecture research.
The goals of this research are t@leate and compare tifent routing architectures

for MFSs. W address the folaing questions:

» Which routing architecture topology is the best in terms of cost, speed, and routabil-
ity?
* What is the déct of using hardwired intdfPGA connections? If tlyeare useful,

what are the percentages of programmable and hardwired connectionsetiaegi

best results for diérent architectures?

We use anx@erimental approach tov&uate and compare tifent architectures. A
total of fifteen lage benchmark circuits are used in ouperimental vork. The
benchmark circuits are mapped tofdient architectures using a customized set of
architecture-appropriate mapping tools. The architecturesrahga¢ed and compared on
the basis of cost and speed metrics. 3peed comparisons are based on post inter-chip
routing critical path delay of real benchmark circuits, which, to our knowledge, is the first
time such detailed timing information has been used in the study of board-level MFS
architectures.

We started this research byaduating and comparing twcommonly used routing
architectures namelyhe mesh and the partial crossbar [Butt92]. The insight and the
experience gined in this task enabled us to propose a better routing architecture, called
the Hybrid CompleteGraphPartial-Crossbar (HCGP), thatvgis superior cost and speed
[Khal98].

1.2 Thesis Overview

This dissertation is ganized as follws:

In Chapter 2 we describe the preus work on MFS routing architectures and
mapping CAD tools.

In Chapter 3, we present detailed descriptions of all the routing architectplesed

in this research. Walso cwer the issues and assumptions that arise when mapping real

Introduction

circuits to the arious architectures. The architectureglered are mesh, partial crossbar
and some nely proposed kbrid architectures. The mesh uses only hardwired
connections, the partial crossbar uses only programmable connectionsybrrfte h
architectures use a mixture of hardwired and programmable connections.

Chapter 4 describes the frawmrk used for gperimental ealuation of MFS routing
architectures. Thexperimental procedure used for mapping circuits to architectures is
described. The metrics used ferkiating and comparing architectures aqel@ned and
the details of the benchmark circuits used are presented. The customized set of mapping
tools used in this ark are described in detail. These are architecture-specific (beat}l-le
inter-chip routers, a boardyel placement tool, and a static timing analysis tool for MFS
architectures.

Chapter 5 presents theykresults from this researchofFseseral architectures, we
explore key parameters associated with each architecture.cdmpare dierent
architectures and shothat the partial crossbar is one of the bagtteng architectures.
The nevly proposed Wbrid complete-graph partial-crossbar architecture isveho be
superior to the partial crossbdihe proposedybrid architectures and their detailed
evaluation is the main contuition of this thesis.

We conclude and describe topics for futukvin Chapter 6.

Chapter

Background and Previous
Work

Since the early 1990s, maMFSs and the associated CAD toolsénadeen proposed
and huilt for logic emulation, rapid prototyping and a widariety of applications in
custom computing. These systems and their CAD tools are the focus of this.chapter
overview of existing MFSs and their routing architectures is presented in Section 2.1. The
design flov used in mapping lge circuits to MFSs is described in Section 2.2. In Section
2.3, the arious mapping tools and algorithms for each of the steps in the desiguré

reviewed.

2.1 Multi-FPGA System Architectures

The MFSs that hee been prngously dereloped range from small systems that fit on a
single printed circuit board [Gall94] to huge systems that use hundreds of FPGAs laid out
on tens of Printed Circuit Boards (PCBs), which in turn are mounted iy caad cages
[Quic98].

An overwhelming majority of MFSs lva been implemented on PCBs.Wwer, a
few MFSs based on Multi-Chip Modules (MCMs)Jeabeen proposed andiilt
[Dobb92][Darn94][Amer95][Lan95][&rr95]. In these Field-Programmable Multi-Chip
Modules (FPMCMs), seeral FPGA dies are mounted on a single substrate,

interconnection resources are yided, and all the logic and routing resources are

Background and Previous Work

packaged as a single unit. The adtages of MCMs compared to PCBs are reduced size,
power consumption and superior speed performance. This approach is still ity inf
and a number of issues éil-FPMCM cost, architectures, yield, interconnect denaitg
thermal dissipation need to be resul\before FPMCMs become commercially viable. In
this chapter we will concentrate on MFSs implemented using PCBs.

Many MFSs were bilt for specifc applications, such as the Marc-1, whichsw
designed to perform circuit simulation [(w&3] and the RM-nc which as used for
neural-netvark simulation [Erdo92]. Their topologies are optimized for specif
applications and it is hard to cgteize such unique topologies. Since the focus of this
research is on general purpose reprogrammable MFSs, we willviet sach systems.

In addition to FPGAs, almost all MFSsyeamemory chips and othervdees such as
small dedicated FPGAs or microcontrollers for ‘howsgiing’ tasks such as controlling
communication with the host computeystem confuration and status monitoring
[Babb97]. For example each board in the TM-2 system\li@8] consists of tw Altera
10K50 FPGAs, four I-Cube FPIDs, 8 Mbytes of memagd one FPGA each for
programmable clock generation and hoesging respeately. The current trend in MFSs
(especially in logic emulators) is to pide RISC processors and setk for DSPs and
Intellectual Property (IP) cores in addition to FPGAs [Baue98, Cour97] to widen their
range of applications. En in such systems, the routing architecture used for
interconnecting the FPGAs remains important.

The routing architecture of an MFS is idefd by the topology used to connect the
FPGAs. Another distinguishing feature is whether programmable interconnect chips, also
called FPIDs or crossbars in the literature, are used for connecting the FPGAs. If no FPIDs
are used we refer to it as an FPGA-only architecture. Xiséirgg routing architectures
can be catgorized roughly in the folwing three vays: linear arrays, meshes, and
architectures that use programmable interconnect chips.ifBthéwo catgories are

examples of FPGA-only architectures.

Background and Previous Work

Global Bus
XC3090 XC3090 XC3090 XC3090 XC3090)
FPGA FPGA FPGA FPGA FPGA
A A
Data Data ! [conTrOL
h 4 ¥ 7 FPGA
Address | 128K X 8 128K X 8 128K X 8
» RAM » RAM » RAM +
PC Interfice

Figure 2-1: The AryBoard System [&n92]

2.1.1 Linear Arrays

In this architecture the FPGAs are arranged in the form of a linear, agh is
suitable for one-dimensional systolic processing applications. This architecture has
extremely limited routingléxibility and mary designs may run out of routing resources
and hence cannot be implemented. While the architecture may perform well in certain
niche applications, &' utility as a general purpose MFS &y limited. wo well knovn
examples of this architecture are Splash [Gokh91] angBaard [\an92].

The AryBoard system uses/é Xilinx 3090 FPGAs and three 128K x 8 RAMs as
showvn in Figure 2-1. Note that FPGAs at the opposite ends of the array are connected to
form a ring topology and all the FPGAs are connected to a glabaAm etension of the
global lus with dedicated I/O lines from each FPGA seras the system intade. This
can be used for routing I/O signals of the circuits. The control FPGA is used to implement
circuitry for managing the PCuls intertice, FPGA conduration management and
hardware delbgging support. The purpose of using the control FPGA is t@ lat the
logic in other FPGASs for implementing the required design functiondliig AryBoard
system vas one of the earliest MFSgilb for rapid prototyping of small designs. lawan
inexpensve system that demonstrated the potential of MFSs as an aéract lev-cost

medium for rapid prototyping of marardware designs.

Background and Previous Work

— FPGA FPGA FPGA —
| | |
— FPGA FPGA FPGA — P (\ (I
| | | - FPGA FPGA FPGA |—
— FPGA FPGA FPGA [— | | |
I I I | Froa FPGA FPGA —
() I | |
_|rroa FPGA FPGA —
I I I
— FPGA FPGA FPGA [— b b b
I [I (b)
— FPGA FPGA FPGA —
| | |
— FPGA FPGA FPGA [—
I I I
(©

Figure 2-2: Mesh Architectures: (a) 4-way Mesh (b) Torus (c) 8-way Mesh

The Splash system employed a linear array of 32 Xilinx 3090 FPGAs augmented with
memory and FIFO devices. It was used to implement a systolic algorithm for genetic
string matching and shown to be 300 times faster than the Cray-2 supercomputer. The
Splash 2 system [Arno92] (the successor of Splash) improved the Splash architecture by
using alarge crossbar chip for routing non-local connections between FPGAs in the linear
array. Hence, Splash-2 is a hybrid architecture that does not fit into any specific category

of routing architectures given in this chapter.

2.1.2 Mesh Architectures

In the simplest mesh architecture, the FPGAs are laid out in the form of a
two-dimensional array with each FPGA connected to its horizontal and vertical adjacent
neighbours as shown in Figure 2-2(a). Variations of this basic topology may be used to
improve the routability of the architecture such as the torus and 8-way mesh as shown in

Figure 2-2(b) and Figure 2-2(c). The advantages of mesh are simplicity of local

Background and Previous Work

interconnections and easy scalability. However, using FPGASs for interconnections reduces
the number of pins for logic inside each FPGA and leads to poor logic utilization. The
connection delays between widely separated FPGASs (especially in bigger arrays) are large
whereas those between adjacent FPGAs are small. This resultsin poor speed performance
and timing problems such as setup and hold time violations due to widely variable
interconnection delays. Notable examples in this category are the Quickturn RPM
[Walt91], DEC PeRLe-1 [Vuil96], and the MIT Virtual Wires project [Babb97].

The Quickturn RPM was the first commercial logic emulation system. Due to the
routability and speed problems of the mesh architecture that arise when implementing
general logic circuits, Quickturn switched to a superior architecture (partial crossbar) in
their next generation logic emulation systems [Butt92].

Some of the disadvantages of the mesh architecture were overcome in the MIT Virtual
Wires project by using a software technique called virtual wires [Babb97]. The FPGA pins
are used for both logic and routing in the mesh, and hence there are not enough pins
available for logic in each FPGA. Virtua wires overcomes this pin limitation problem by
intelligently multiplexing many logical wires (connections between partitioned
sub-circuits) on each physical wire in the mesh and pipelining these connections at the
maximum clocking frequency of the FPGA. In this way the number of pins available in
each FPGA can be effectively increased leading to higher logic utilization per FPGA.

Demonstration hardware boards were built, each using 16 Xilinx 4005 FPGAs
arranged as a 4-way mesh. Each FPGA has 22 1/0 lines dedicated to a 64K X 4 SRAM
chip. A SPARC microprocessor was successfully emulated in a system environment and
booted the Alewife operating system at 180 KHz [Babb97]. This technology has been
commercialized and emulators using this architecture are being produced by IKOS
Systems [1kos98].

The advantage of using the virtual wires scheme on amesh islow-cost logic emulation
because inexpensive low pin count FPGASs can be used and the mesh architecture is
relatively easy to manufacture. The disadvantages are the speed penalty and increased

mapping software complexity due to pin multiplexing. Also, it may be very difficult to

10

Background and Previous Work

map portions of asynchronous logic that may be present in the circuit being emulated
because asynchronous signals cannot be assigned to a specific time slice (phase) in the
emulation clock period. Finally, it should be noted that virtual wires is a software
technique, and using it on other architectures (instead of a mesh) may give better speed
results.

The mesh architecture also does extremely well when implementing algorithms that
match its topology. This has been convincingly demonstrated by the DEC PeRLe-1 system
which uses a 4-way mesh of 16 Xilinx 3090 FPGAs augmented by 7 control FPGAS, 4
MB of static RAM, four 64-bit global buses and FIFO devices. For many diverse
applications, such as cryptography, image analysis, high energy physics, and
thermodynamics, this system gave superior performance and cost compared to every other
contemporary technology, including supercomputers, massively parallel machines, and
conventional custom hardware [Vuil96].

2.1.3 Architectures that Employ only Programmable Interconnect
Devices

In these architectures all the inter-FPGA connections are realized using FPIDs. An
ideal architecture would be a full crossbar that uses a single FPID for connecting all
FPGAS, as shown in Figure 2-3(a). Unfortunately, the complexity of afull crossbar grows
as asquare of its pin count and hence it is restricted to systems that contain at most a few
FPGASs. Before we discuss the existing MFS architectures that use FPIDs, we briefly
review existing FPID device architectures, their cost and commercial viability issues. We
also discuss the pros and cons of using commercially available FPGAs as FPIDs.

The first FPID introduced in the market was the Aptix FPIC (a synonym for FPID)
device [Gu092]. Each FPIC has 1024 pins arranged in a 32 x 32 1/0O pin matrix. Each pin
connects to two 1/0O tracks that orthogonally cross routing channels. Each routing channel
consists of sets of parallel tracks that are segmented into various sizes to accommodate
signal paths with different lengths. Bidirectional pass transistors controlled by SRAM
cells connect 1/0 tracks to routing tracks and routing tracks to other routing tracks. By
selectively programming the SRAM cells, the user can connect any device pin to any

number of other pins. The Aptix FPID has a number of disadvantages such as high cost

11

Background and Previous Work

FPGA FPGA FPGA FPGA
1 2 3 4
FPID
(@
FPGA 1 FPGA 2 FPGA 3 FPGA 4
A B C A B C A B C A B C

(b)
Figure 2-3: (a) Full Crossbar (b) Partial Crossbar

(due to large number of /O pins) and unpredictable delay (due to FPGA-like architecture
of the device). Therefore it is not suitable for use as a mainstream component for
production and prototyping.

The ICube 1QX family of FPIDs [ICub97] provide a better alternative compared to the
Aptix FPICs. They use a non-blocking switch matrix to provide arbitrary one-to-one and
one-to-many connections between FPID 1/O pins. They provide deterministic connection
delays and are available in sizes ranging from 96 to 320 pins. Since |Cube FPIDs are
available in low cost packages, produced in relatively high volume and used in many
telecommunication applications, they are much less costly compared to Aptix FPICs.

Commercially available FPGASs have also been used as inexpensive FPIDs [Butts92,
SIim94]. The disadvantages of this approach are: the connection delay may be
unpredictable due to the FPGA routing architecture, the mapping (place and route) time
may be large, and some special circuit feature (available in FPIDs) may not be provided.
For the same number of I/O pins, we found that the cost of FPGAs and FPIDs is

comparable because it is dominated by packaging costs. Therefore, the decision to use

12

Background and Previous Work

FPGA 1 FPGA 2 FPGA 3 FPGA 4

FPID A FPID B FPID C FPID D

Figure 2-4: The TM-2 Routing Architecture [lvei98]

FPIDs or FPGAs (as FPIDs) should be based on other features such as delay
characteristics, déce mapping and configuration time, etc.

The partial crossbar architecture [Butt92y083] overcomes the limitations of the full
crossbar by using a set of small crossbars. A partial crossbar using four FPGAs and three
FPIDs is illustrated in Figure 2-3(b). The pins in each FPGA aideatl into N subsets,
where N is the number of FPIDs in the architecture. All the pins belonging to the same
subset in dierent FPGAs are connected to a single FPID. The number of pins per subset
is a key architectural parameter that determines the number of FPIDs needed and the pin
count of each FPID (this will be discussed in detail in Chapter 3). The delayyfor an
interFPGA connection is uniform and is equal to the delay through one FPID. The size of
the FPIDs (determined by pin count) increases only linearly as a fraction of the number of
FPGAs.

Partial crossbars can be used in a hierarchical manner\aerimterconnections in
large systems. A set of crossbars at the boasel man interconnect multiple FPGAs, at
the net level, another set of crossbars can interconnect multiple boardsinafig f
another set of crossbars can interconnect multiple card cages. The delay for going from
one level to another increasegytht is still predictable and uniform. This architecture is
used in the System Realizerlogic emulation system produced by Quickturn Design
Systems with an estimated logic capacity of three millaes [Quic98].

One dificulty with the (uniform) partial crossbar is that the wiring é&wnon-local,

which causes a major mamgturing problem when the FPGAs are spread out across

13

Background and Previous Work

mary boards. The number of connections required between the boards rexjesie

high pin count connectors and back planes that can handle high wiring densities. These
problems are allgated in the Tansmogriier-2 (TM-2 for short) architecture [lva97]
[Lewi98] developed at the Umersity of Toronto. The TM-2 tags adantage of the natural
hierarcly and resulting locality of wiring within circuits. It uses a maoelif partial
crossbar architecture that maintains the constant routing delay of a partial cragsbar b
utilizes more local connections to substantially reduce the back plane wiring dansity
hierarchical interconnect structure is used that reqiddesels of routing fo2N FPGAs.

The number of wires in routingvel k is more than the number of wires in routingele

k+1. A TM-2 system using four FPGAs (dwouting levels) and four FPIDs is illustrated

in Figure 2-4. The thick lines indicatevid 1 routing and the thin lines indicateédé 2
routing. The lagest ersion of the TM-2, called the TM-2A, will comprise 16 boards that
each contain te Altera 10K100 FPGAs and up to 8 Mbytes of meme@rgviding an
estimated logic capacity of tmmillion gates.

Other xamples of MFSs in this cajery are the Aptix AXB-AP4 [Apti93] and the
Transmogrifer-1 [Gall94]. These architectures usery high pin count Aptix
Field-Programmable Interconnect Components (FPIC, a syndar FPID) [Gu092].
These systems ar@pensve due to high cost of the 1024-pin FPIC used and dreudlif

to manuécture, especially for lger MFS sizes.

2.1.4 Previous Research on MFS Architectures
There hae been a number of researcloets relating to MFS architectures that

predate the presentork. We summarize them in this section.

Mesh Architectures
Hauck et al proposedseral constructs to impwve the basic 4-ay mesh [Hauc94,

Hauc95]. In the 8-ay mesh, each FPGA connects to its diagonal adjacent neighbours in
addition to horizontal andevtical adjacent neighbours. The 1-hop topology is similar to
the 4-way mesh bt with additional connections to ‘reto-adjacent’ FPGAs as well, both

horizontally and ertically, as illustrated in Figure 2-5. These topologies result in a

14

Background and Previous Work

A 4

FPGA FPGA *—| FPGA FPGA FPGA
U I] et

Figure 2-5: Connections in 1-Hop Topology

reduction of routing cost in the mesh (measured in terms of intermediate FPGA pins
required for connecting non-adjacent FPGAS).

Superpins and permutations are techniques that minimize internal FPGA routing
resource usage when routing inter-FPGA nets. For example, in a 4-way mesh each FPGA
communicates with its four nearest neighbours; logically north, south, east, and west, as
illustrated in Figure 2-6(a). If asignal passing through an FPGA enters from the north side

and leaves from the south side, it has to traverse the entire FPGA chip. This increases

Superpin

HAP

||]
NSEWNSEW

Z_
Z_
Z_
Z_
Z_
Z_
Z_
Z_

—lw El— —N N —
—W El— —1S S |—
w El— —E El—
| FPGA el |y FPGA wi—
—W El— —S S |—
—W El— —E E|l—
— W E — —W WIELe—

SSSSSSSSS NSEWNSEW

T T

(@) (b)

Figure 2-6: Connectionsin a4-way Mesh: (a) Without Superpins (b) With Superpins

15

Background and Previous Work

intra-FPGA routing cost and delaysing the superpins technique, the 1/O pins in an
FPGA are connected to adjacent FPGAs using an alternating pattern illustrated in Figure
2-6(b). With this arrangement, a signal passing through the chip need ovdyseathe
length of at most a fe pins inside the FPGA, rather than the whole FPGA chip. A
‘permutation’ of superpins is aay of connecting superpins in adjacent FPGAs. A better
permutation (that reduces iHEPGA routing costs) connects adjacent superpins in one
FPGA to non-adjacent superpins in the other FPGA.

To evaluate these topologies and techniques, a synthetic netBsgenerated for a 5 x
5 array of FPGAs. The netlistas obtained by using a random digitibn of sources and
sinks across a 5 x 5 array of FPGAs. The FPGAs were represented as grids with 36 pins on
a side. The inteFPGA routing delay as assumed to be 30 times greater than the unit
intra-FPGA routing delayUsing a well knan routing tool called the &hFinder
[McMu95], the synthetic netlist &s routed on diérent topologies. Thevarage and
maximum source-sink delays were calculated for each topoltgystudy sheed that in
terms of routing delgythe 8-vay topology is 21% better than the 4ywtopology and the
1-hop is 36% betteSuperpins impnee the 1-hop topology by 31%, with permutations
giving a further 5% impneement.

The limitations of this study are: First, it uses synthetic netlists instead of
post-partitioning and placement netlists for real circuits. Tlee®feness of the impuved
topologies in routing real circuits is not pen; Second, no multi-terminal nets (one
source, multiple sinks) are used in the netlists. In mesh topologies, routing multi-terminal
nets is dificult [Tess97] and consumescessve interFPGA routing resources (pins in
intermediate FPGAS). It is not clear if these reductions in defayeaf by the impreed
topologies for synthetic netlists will apply for real circuits. The Superpins and
permutations techniques,\wever, are \aluable and could potentially pride signifcant

reductions in intra-FPGA routing resource utilization and delay for real circuits.

Partial Crossbar Architecture

Recall from Section 2.1.3 that the number of pins per subsetis@akameter of the

partial crossbar that determines the number of FPIDs required and the size (pin count) of

16

Background and Previous Work

each FPID. Its étct on the routability of the partial crossbar igasticated in [Butt92].
Different types of synthetic netlists are mapped teifit confgurations of the partial
crossbhar and the percentage of nets routed for each case are reportedwh ihahlmv
pin count FPIDs, which are cheapare almost as fctive as high pin count FPIDs for
the partial crossbar

In [Chan93] architectural tradefefin the design of folded Clos netvks (partial
crossbar) are discussed qualivatly. A Clos network [Clos53] is a three-stage
interconnection netark that can be used to connect FPGAs in an MFS. EackRREBA
connection, havever, will incur a delay of three stages. In a folded Clos oekwthe
switches in the te outer stages are implemented inside the FPGAs and the switches in the
middle stage are implemented using FPIDs [Chan93]. The routing resources needed for
implementing outer stage switches within FPGAfeetk their routability and logic
utilization. There is a trade4dfiere; reducing the size of the switches in the outer stages
improves the routability and logic utilization of inddual FPGASs ht requires lager
FPIDs in the middle stage and adsely afects the routability of the folded Clos netrk,
and vice ersa.

An optimal algorithm for routing ta-terminal nets in the folded clos netik is
presented. It is demonstrated that the routing problem for multi-terminal nets has no

optimal solution.

Studies on Other MFS Architectures
Although the studies discussed ab@rovzide some insight into the mesh and partial

crossbar architectures, empirical studies thatuate the implementation of real circuits

on different architectures pvade a more clear picture of the ‘goodness’ of each
architecture relate to the othersKim et al mapped several MCNC circuits to seven
different architectures, including the partial crossbar architecture [Kim96]. Each circuit
was mapped to a fixed size MFS (containing 30 FPGAS). The size of the FPGA was
varied depending upon the circuit size. Each architecture was evaluated on the basis of
total number of CLBs needed across all circuits (where fewer CLBs used implies better

architecture), the type of FPGA chips used (smallest FPGAs implies better architecture),

17

Background and Previous Work

FPGA

FPGA

FPGA FPGA

Figure 2-7: Example of Ti-partite Graph ®pology Using Six FPGAs

and maximum number of hops needed across all inter-FPGA nets (as a metric for speed).
A hop is defined as a chip-to-chip connection, i.e. a wire segment that connects two
different chips on a board. It was shown that one of the proposed architectures, FPGAs
connected together as a tri-partite graph (illustrated in Figure 2-7), gave the best results
(slightly better than partial crossbar). In this work, relatively few large circuits were used
that would have really ‘stressed’ the architectures, as only three reasonably large circuits
(>2000 CLBs) were employed. Also, for the speed estimate only the worstetaistay
in terms of the number of hops was considered; which is not as representative of the true
delay as post-inter-FPGA routirgitical path delay.

Based on the d#rent research studies and anecdotalesce from the industyyt is

apparent that the partial crossbar is one of the kesting routing architectures for MFSs.

FPMCM Architecture Study
A comprehensie experimental study of FPMCM architectures is presented in

[Lan95]. Rartitioning, placement and routing tools werealeped for mapping circuits to
FPMCM architectures [Lan94]. An FPMCM architecture, calledeteet segmented
architecture, was proposed thatage superior cost and speed performance compared to
two other FPMCM architectures, mesh and partial crossbar

The &act sgmented architecture uses enhanced FPGA chips that consist of an
SRAM-based FPGA logic core surrounded by an SRAM-based programmable

interconnection frame. The chips are mounted on a deposited MCM substrate and

18

Background and Previous Work

frame pir’ L — 1L
| oog.-
o
I &
|
prog. o
switch o
oog..
- A
I
i
I
—_ -
-------%-----
switch box permutation box

Figure 2-8: Programmable Interconnection Frame Structure

interconnected using a topology similar to the 1-hop mesh topology in which each FPGA
connects to its horizontal an@ntical adjacent as well as ‘xteto-adjacent’ FPGAs
(Figure 2-5).

The modifed FPGA that consists of an FPGA core surrounded by a programmable
interconnection frame [Lan95] is illustrated in Figure 2-8. Although notveho Figure
2-8 to aoid making it too cluttered, the signals from the FPGA core are connected to the
programmable interconnection frame via cotdfers. The I/O terminals of the
programmable interconnection frame are called frame pins. The programmable
interconnection frame is used for implementing tRBIGA connections and priges
much shorter interconnection delays compared to the delays through FPIDs or FPGASs.
The interconnection frame uses four switch &xylaced at the corners of the chip.
Permutation boas are placed between switch bsyand are assumed tovbaomplete

flexibility .

19

Background and Previous Work

Netlist of cates and

High level language

flip flops for input design description for input desig

v

Hardware
compiler

Technology
mapping

Netlist of CLBs

Partitioning into multiple FPGAs

!

Board-level FPGA placement

v

InterFPGA routing

v

Pin assignment, placement and routing
within individual FPGAs

Configuration bit stream generation for FPGAs and FRIDs

Figure 2-9: The Design Flar for MFSs

Experimental results shothat the gact sgmented FPMCM architecturevgis one to
two orders of magnitude higher logic density aweroa factor of two higher speed

compared to contemporary MFSs implemented oaackd PCBs.

2.2 CAD Flow for Multi-FPGA Systems

The steps needed to map gy&adesign on to an MFS are described in this section. The
design low is illustrated in Figure 2-9. The input design may ‘lable as a hugéat
netlist of logic @tes and flip flops, as in the case of logic emulation and rapid prototyping.
Alternatively, it may be in the form of a highvel language description, as in the case of
FPGA-based custom computing machines. The input description is mapped into a netlist

of configurable logic blocks (CLBs) of the FPGAs used [Babb97, Hauc98b]. The

20

Background and Previous Work

remaining steps (partitioning, placement and routing) constitute the layout synthesis phase
and will be described here in the codtef MFSs. ermal problem défitions, objectve
functions, and algorithms for each of these steps can be foung im@ductory book on

VLSI physical design automation [Sher95, Sarr96].

A review of hardware compilers that generate circuit netlists from bedral or
structural hardware description languages isybad the scope of thisavk, but good
references ogering this topic arevailable in [Rage91, Gall95, Knap96]. Similatly
detailed discussion of issues in technology mapping, intra-FPGA placement and routing
can be found elséhere [Brav92, Betz97].

The frst step in the layout synthesis phase is mu#tirywartitioning. It is defied as
follows: given an input circuit dide it into a minimum possible number of sub-circuits
such that the total number of connections between sub-circuits is minimized and the logic
and pin limits on each sub-circuit are satisfied. The main olgeogire is to minimize the
total cut size, i.e. the total number of wires between the sub-circuits while satisfying the
FPGA logic and pin capacity constraints.

The net step is placement of each sub-circuits on a specific FPGA in the MFS. This is
defined as follavs: given all the sub-circuits and their interconnection netlist, assign each
sub-circuit to a spedd FPGA so as to minimize the total routing cost of HREIGA
connections. The objewt here is to place closely connected sub-circuits in adjacent
FPGAs (if the architecture has some notion of adjagesw that the routing resources
needed for inteFPGA connections are minimized. The total routing cost of-IRREBA
connections is architecture dependent.

Given the sub-circuit interconnection netlist and their placement on FPGASs in the
MFS, the ngt step is inteiFPGA routing. The routing path chosen for each net should be
the shortest path (use the minimum numbéropk) and it should cause the least possible
congestion for subsequent nets to be routed.

The interFPGA routing step is follwed by pin assignment, which decides the
assignment of inteFPGA signals to speafl/O pins in each FPGA. This is folleed by

21

Background and Previous Work

placement and routing within each FPGA in the MFS. The last step is the generation of

configuration bit streams to program each FPGA and FPIDy()f an

2.2.1 Alternate Approach

Instead of partitioning the technology mapped netlist representing the input circuit, as
showvn in Figure 2-9 and used in masxisting systems [Babb97], an alternate approach
would be to partition theae-level netlist, folloved by placement and int&iPGA
routing. The technology mapping is done for tla¢eglesel sub-circuit assigned to each
FPGA before the pin assignment step. This approach is preferred by some researchers
[Hauc95] and used in commerciallyalable mapping tools from Quickturn Design
Systems [Quic98]. The adatage of this approach is that technology mapping for smaller
sub-circuits can be done mudster in parallel compared to the technology mapping for a
single lage cate-lesel netlist. There is also some empiricaldence that this approach
results in signitantly smaller cut sizes after bipartitioning using an impdoFM-based
algorithm [Hauc95]. It is not cleahowever, if similar reductions can be obtained for
multi-way partitioning using other algorithms. Quicktwprimary motration for using
this approach is to reduce the technology mapping run times and ynpogntial
reductions in cut sizes [Chu98].

The main disadantage of this approach is that there is no information at the$ le
about the ‘ihal’ critical paths in the circuit, and the logic block and interconnect delays
[Roy95]. Therefore, timing-dxien partitioning and inteFPGA routing cannot be
performed for an unmapped circuit because there is no informatdlalde on theihal
critical paths in the circuit being mapped to an MFS. This is a major limitation because

opportunities for significant speed impement may be lost.

2.3 Layout Synthesis Tools

In this section, prgous work on partitioning, placement, and infePGA routing for

MFSs is regiewed, and the pin assignment issue igeced briefly

22

Background and Previous Work

2.3.1 Partitioning

The partitioning problem for MFSsis different compared to that in layout synthesis of
VLSl systems because of hard pin and logic capacity constraints for each partition. When
typical circuits are partitioned into currently available FPGAS, the partitions are usually
pin-limited, i.e. all the available logic in the FPGA cannot be used due to lack of pins.
Hence the primary goal of the partitioner isto minimize the total number of pins used (the
total cut size) across all partitions. Partitioning into multiple FPGAs can be achieved
either by direct multi-way partitioning or by recursive bipartitioning. The former approach
usually gives superior results [Chou95] but is much harder compared to the latter approach
because bipartitioning is a well studied problem and widely used algorithms that give
good resultsin real world (commercial) CAD tools are available [Fidu82, Kris84, Heil97].

Many multi-way partitioning algorithms devel oped for MFSs use minimization of the
total cut size as their primary objective [W0093, Kuzn94, Chou95]. The additional
objectives used are to make the partitioner timing-driven and routability-driven.
Timing-driven partitioning attempts to minimize the effects of partitioning on circuit
speed by preventing the critical paths in the circuit from traversing too many partitions
[Kim96, Roy95]. Routability-driven partitioning attempts to produce partitions that lead to
successful inter-FPGA routing for the target MFS architecture. Obviously, to succeed in
this task, the partitioner needs to be aware of the topology of the target MFS architecture
[Hauc95, Kim9g].

The Fidducia and Mattheyses [Fidu82] graph bipartitioning algorithm (generally
referred to as FM) forms the basis of many multi-way partitioning algorithms due to its
speed, efficiency and relatively easy implementation. It is an iterative improvement
algorithm that uses multiple passes. It starts with an initial random partition and during
each pass it attempts to reduce the cut size of the partition by moving cells from one
partition to the other. The cell to be moved is selected based on its gain, which is the
number by which the cut size would decrease if the cell is moved. In some cases, the gain

of acell isnegative, but it is still moved with the expectation that the move will allow the

23

Background and Previous Work

algorithm to ‘escape out of a local minimum’. This feature is also referred to as ‘hill
climbing’ in the literature.

In [Kuzn93, Kizn94] a modified form of the FM algorithm, further enhanced by using
functional replication to minimize cut size in each partition, is used to for bipartitioning.
This algorithm is used in a recursimanner to partition a design into minimum possible
number of homogeneous FPGASs or into a set of minimal cost heterogeneous FPGAs.

The multi-way partitioning algorithm proposed in py93] also uses an iterag
improvement method (li& FM) kut differs in the vay it selects a cell to me and the
manner in which it mees the cell.

An efficient algorithm for multi-vay partitioning of huge circuits used in logic
emulation vas proposed in [Chou95]. it$t applies adst clustering scheme called the
local ratio cut to produce initial partitions. It then uses a sedraty approach to impve
the initial partitioning and renve ary inefficiencies that may be introduced during
clustering. Compared to a recwesiFM algorithm, this algorithm reduced the number of
FPGAs required by 41% and the run time by 86% for partitioning a circuit containing 160,
000 aates (assuming FPGA logic and pin capacities of 2&0®sgand 184 1/0O pins).

A routability and performance-aen partitioning algorithm is presented in [Kim96].

In the frst phase, clustering-based partitioning is performed whose ofgidatiction is
the weighted sum of the cut size and the maximum délay is follaved by a partition
improvement step that is based on tlaéng(cut size reduction) of nang a cell from one
FPGA to the otheln the second phase, iHEPGA routing is performed and theiging
partitions are impneed to obtain 100% routability for the ¢gat MFS architecture. Here, if
the interFPGA routing attemptdils, then the cells are med between partitions in an
attempt to obtain routing completion.

Many other techniques Ik the spectral method [Chan95], simulated annealing
[Roy95], and partitioning based on design hiergrfehr96], hae been proposed for

multi-way partitioning in MFSs.

24

Background and Previous Work

Part: A Partitioning Tool Developed for the TM-1 MFS
An example of a practical multi-ay partitioning tool idPart, which was originally

developed for the lansmogrier-1 (TM-1 for short) MFS [Gall94]. The term ‘practical’
indicates that the tool has been used withxastiag MFS (the TM-1) and real circuits
have been partitioned and implemented on the TM-1 using this tool.

Part is based on the FM algorithm witlktensions for multi-way partitioning and
timing-driven pre-clustering [Shih92]. The basic FM algorithmegi much impreed
results when combined with a set of techniques such as pre-clustering and utilization of
higherlevel gains [Hauc95, Kris94].

Clustering before partitioning reduces the run time amdgybetter quality results.
Since may nodes are replaced by a single clystex algorithm runs muclaster because
it has fever nodes to partition. The FM algorithm is a global algorithm that optimizes the
macroscopic properties of the circuit and maygmook more local concerns. An
intelligent clustering algorithm can perform good local optimization, complementing the
global optimization properties of the FM algorithfart uses a timing-dxien
pre-clustering algorithm, similar to that proposed in [Shih92], to reduce the cut size as
well as the delay obtained after bipartitioningnihg-driven partitioning is accomplished
by modifying the FM algorithm such that when selecting a cluster to vednohe
algorithm tries to select a cluster to veahat preents the critical paths from trarsing
across too manpartitions. Notice that the timing-eten feature oPart will be lost after
the frst cut if we use it for implementing multiay partitioning through a recuvs
bi-partitioning approach.

We could not compare multiay partitioning results obtained usiRgrt to the other
partitioning algorithms because none of thewegesults for the circuits and FPGA logic
and pin capacities that we use. Another important point to note is that while minimizing
the cut size during partitioning is important, a smatiation in the cut size is acceptable
as long as the partitioned netlist is routable orvargMFS. Owerall, we belige thatPart
gives reasonably good results because it uses pre-clustering combined with the FM

algorithm.

25

Background and Previous Work

2.3.2 Placement

Following circuit partitioning the placement tool assigns sub-circuits to specific
FPGASs such that inter-FPGA routing costs and critical path delays are minimized. This
task can be done simultaneously with partitioning [Roy95, Kim96] or as a separate step
[Babb97]. Well known algorithms like simulated annealing [Shah91] have been used for
placement on MFSs [Roy95, Babb97].

The placement task is trivial for some architectures such as the partial crossbar, where
any random placement is acceptable because the number of wires between any pair of

FPGASsisthe same.

A Force-Directed Placement Algorithm
Force-directed placement algorithms have been used for board-level placement of 1C

chips [Quin79, Goto81] and could potentially be used for placement in the mesh
architectures. Force-directed algorithms are rich in variety and differ greatly in
implementation details [Shah91]. The common element in these algorithms is the method
used to calculate the location where a module (sub-circuit) should be placed on the target
two-dimensional array to achieve its ideal placement. The algorithms operate on the
physical analogy of a system of masses connected by springs, where the system tends to
rest in its minimum energy state with minimum combined tension from all the springs.

Consider any given initial placement. Assume that the modules that are connected by
nets exert an attractive force on each other. The magnitude of the force between any two
modules is directly proportional to the distance between them and the number of
connections between them. Since each module is usually connected to many other
modules, it will be pulled in different directions by different modules. If the modulesin
such a system were allowed to move freely, they would move in the direction of the force
until the system achieves equilibrium with zero resultant force on each module.

Suppose amodule M; is connected to j other modules. Let Cj; represent the number of
connections between the module M; and the module M;. The coordinates for the zero force

target point for the module M; can be derived as follows:

26

Background and Previous Work

> Cij*x
i

2.Ci

J

{x}

> Cij
{yi} = +—
2.Ci
]

A version of the force-directed placement algorithm from [Shah91] is illustrated in
Figure 2-10. This is an iteraé algorithm that starts with an initial placement solution that
is randomly generated. Then a module with the highest cornitgdseed module) is
selected and its tget point computed using the afecequations.

The inner while loop of the algorithm igexuted while the end_ripple flag ede. If
the computed tget point of a module is treame as its present location orvacant, then
theend_ripple flag is set tdrue, abort_count is set to zero and module is assigned to the
computed position andcked.

If the taget point isoccupied, the algorithm uses ripple mes in which the selected
module is mged to the computed tget point andocked. The module displaced is
selected as the xieseed module to be med,end rippleis set tdalse andabort_count is
set to zero. When a module iswad to its taget point, it is necessary tock it for the rest
of the current iteration in order to@d infinite loops, which can occur if svmodules
compete for the same ¢gat point.

If the computed tayet point is occupied andcked, then the selected module isved
to nearesvacant location,abort_count is incremented anehd_ripple is set tatrue. If
abort_count is less thambort_limit, then the net seed module is selected and the same
iteration continues. Otherwise, all locations are urdd¢keration_count is incremented,
and a ne iteration is started.

The process of selecting seed modules in the order of their cotiyesotid attempting
to place them in their ideal locations continues untiliteeation_limit is reached. The

placementailable at this point is the final placement solution. In this algorithm, there is

27

Background and Previous Work

Force-directed pl acenent ()
{ /* begin */

Cenerate the connectivity matrix fromthe netlist;
Cal cul ate the total connectivity of each nodul e;
Cenerate a random pl acenent;

while(iteration_count < iteration_limt)

{
Sel ect the next seed nodule in order of total connectivity;
Decl are the position of the seed vacant;
whi | e(end_ri ppl e == FALSE)

{
Conpute the target point for sel ected nodul e;
CASE target point:
{
LOCKED
Move sel ected nodul e to nearest vacant |ocation
end_ripple = TRUE
I ncrenent abort _count;
i f(abort_count > abort limt)
{
Unl ock all nodul es;
Increnent iteration count;
}
OCCUPI ED
Sel ect nodul e at target point for next nove;
Move previous nodule to target point and | ock
end_ripple = FALSE
abort _count = O;
SAMVE
Do not nove nodul e;
end_ripple = TRUE
abort _count = O;
VACANT
Move sel ected nodule to target point and | ock
end_ripple = TRUE
abort _count = O;
}
}
}
} /* end */

Figure 2-10: A Force-directed Placement Algorithm using Ripple Moves

no methodical way to choose specific values for the parameters iteration_count and

abort_limit. These parameters are experimentally determined in practice.

28

Background and Previous Work

FPGA fessscedecccssssssesscccatacanns >
— FPGA FPGA ™+ [—
L)) s— - =P 3 6 ;

| : : | |
FPGA: ' EPGA FPGA:
— 11 'y 70
FP|GAE i | V
S 2 20— FRGE Y @ reoa—
8

Figure 2-11: InterFPGA Routing in a 4-ay Mesh

2.3.3 Inter-FPGA Routing

The interFPGA router determines the routing path for each iR@GA net. The
router could use direct connections betweea B#GAs or it may use intermediate
FPGAs and FPIDs, depending upon the routing architecture and waitakality. The
choice of speci€ pins and wires (from a group) to use for routing a net is left to the pin
assignment step.0F example, consider a net that connects FPGAs 0 and 8 in tlay 4-w
mesh shan in Figure 2-11. Three of the mapossible paths for routing the net are
shavn using dashed lines. The final path chosen will depend upowraitebdity of wires
and the congestion encountered in each path.

Ideally the router should use only one hop for each source-to-sink connection in all the
nets so that the usage of FPGA pins and the delay is minimized. Simultangainsyld
also balance the usage of routing resources to ensure routing completion. This may be
difficult in practice because the amount of routing resources in an MB&ds The
minimization of pins used in routing a net rather thay g@mometric distance metric
makes the inteFPGA routing problem unique compared to routing in ASICs or FPGAs.
Routing completion is the primary goal, because in the case of rowihgef the
partitioning step has to be repeated and the design may require more FP{EA3noef
the primary goal seems actadble, secondary goals such as maximizing the circuit speed
can be addressed. Marouting algorithms for diérent MFS routing architecturesvea

been proposed and will beviewed briefly in this section.

29

Background and Previous Work

Routing Algorithms for the Partial Crossbar

Due to its importance in commercial logic emulators, the-lRRBA routing problem
for the partial crossbar architecture has beeasticated by seeral researchers [Butt92,
Slim94, Mak95a, Mak95b, Lin97]. Recall from Section 2.1.3 and Figure 2-3(b) that the
partial crossbar has no direct connections between FPGAs prub@mections between
FPGAs must go through FPIDs.\@h a post-partition intedfFPGA netlist, the routing
problem reduces to choosing a spedfPID for routing each net such that all the nets
route.

The earliest proposed algorithms [Butts92, SIim94] are based on greedy heuristics. In
this case, for routing each net thrstfasailable FPID that has connections to all the net
terminals (FPGAS) is selected. Because of the greedy approach these algorithms may not
find a routing solution in some cases where a solutittse

Optimal algorithms for routing ta+terminal nets were proposed by Chan [Chan93]
and Mak [Mak95a]. These algorithms guarantee 100% routing completion for all
two-terminal nets. It is also siva that the multi-terminal net routing problem for partial
crossbar is NP-complete. Unfortunatgbyst-partition netlists for real circuits almost
always contain multi-terminal nets and there is no guarantee of routing compietioii e
optimal algorithms for tw-terminal nets are used as part of the solution.

One vay of routing multi-terminal nets on a partial crossbar is to break each net into a
set of two-terminal nets and route the resultingptterminal nets using the proposed
optimal algorithms. Such an approach is proposed in [Mak95b] and an algorithm for
decomposing multi-terminal nets into a set obtterminal nets is presented. The
decomposition problem is modeled as a boundegirele lypergraph-to-graph
transformation problem whereyperedges (representing multi-terminal nets) are
transformed to spanning trees of onlhotterminal nets. A netark flow-based algorithm
is suggested that determines if there is a feasible decomposition so that FPGA 1/O pin
capacities are not violated due to decomposition, ares @ine if it ®ists. This is a deeply
flawed and impractical approach for the fallag reasons: first, the number of FPGA 1/O
pins needed after decomposition will drastically increase, especially for hiyhautf

nets. Decomposing ometerminal net into a set of vterminal nets requiras?2 extra

30

Background and Previous Work

pins. FPGA pins are the most scarce resource in MFSsxénadpéns for decomposition

may not be wailable. Second, decomposition may lead to routing paths between source

and sinks that consist of multiple hops, thus greatly increasing the delay of the circuit

being implemented. It is much better to use a method that uses a single FPID to directly
route a multi-terminal net while trying to minimize congestion for subsequent nets to be

routed.

A combination of heuristic andkact algorithms for tw-terminal and multi-terminal
net routing is presented in [Lin97]. In thisdvwphase approach, adt (linear time
compleity) heuristic algorithm is usedr$t, the &act algorithm is called only if the
heuristic &ils to pravide routing completion. The heuristic algorithm routes nets based on
the order of theirdnout, i.e. the highesamout netsifst and tvo-terminal nets last.df a
given net, an FPID is selected that has winesilable for connecting to all the net
terminals (FPGAs) and has the most unused pins across all FPIDs in the system, i.e. the
most lightly used FPID. This minimizes congestion and increases the chance of
successfully routing subsequent nets. The authors also report a further modification of this
heuristic that gies improed results.

In the exact algorithm, the routing problem (foryafanout) is formulated as a linear
programming problem and seld. This &act algorithm will ind a solution if one»asts,
however it may tak exponential time. @ deal with the lage and sparse matrices required,
which existing solers could not handle, the authorsvdped their wn linear
programming soler.

These heuristic algorithms were compared with the heuristengn [Varg93] and
gave superior results for synthetic netlists. The partial crossbar used had 8 FPGAs and
routing was performed for diérent \alues of the number of pins per subset ranging from 1
to 32 in \ariable increments. On the morefiduilt routing problems, thexact algorithm
gave better results (measured by the percentage of nets routed) compared to the heuristic
algorithms.

A limitation of studies discussed aofor routing in partial crossbars (with the

exception of [Butt92]) is that theused synthetic netlists instead of real circuits. It is

31

Background and Previous Work

possible to ma&the algorithmwerly complicated in order to route synthetic netlists, as in
the case of thexact algorithm proposed in [Lin97] and multi-terminal net routing
approach proposed in [Mak95b]. If post-partition netlists of real circuits are useaild w

give a much better idea of what algorithmsrkvbest in practice.

Topology Independent Routing Algorithms
Inte-FPGA routing tools capable of handling arbitrary MFS topologiee heen

proposed [Selv95, Kim96]. The inputs to such tools are post-partitioning-and-placement
netlists and routing architecture topology descriptions.

In [Selv95] a topology independent pipelined routing and scheduling (TIERS)
algorithm is presented for tharwial Wires system. Recall from Section 2.1.2 that in the
Virtual Wires scheme seral logical wires between sub-circuits are multielé on a
single plysical wire between FPGAs. The irfePGA routing phase in this case should
not only specify the path for routing each net bhlso the time slice in which the
connection is established, which is determined by the scheduling algorihmougng,
which is our main interest here, the well imomaze routing algorithm is used and its
flexibility is exploited to handle anarbitrary MFS topologyThe MFS is represented as a
graph whose nodes are FPGAs.fihd the shortest path for routing a net, breadst f
search is performed starting from the source FPGA and stopping oncegeid-RGA is
reached. The TIERS algorithm also idaesfcritical nets and ges them higher priority
to achiee as much as adtor of 2.5 speed imprement @er prior work [Babb93].

A different approach wards topology independent routing is adopted in [Kim96i. F
each topologyall possible routing paths (patterns) betweeeryg pair of FPGAs are
stored. D minimize intefFPGA routing delays, only paths of length one av tvops are
considered. When routing each net, one wégsd stored paths is chosen based on a cost
function that attempts to minimize the congestion and the path lergtmplify path
generation and storage, all multi-terminal nets are split into a sebdetminal nets and
routed independentlylhis, havever, introduces some ingdiencies as discussed in the
previous section when véewing the routing algorithm in [Mak95b]. This algorithmasv

used to map real circuits toveeal diferent architectures.

32

Background and Previous Work

2.3.4 Pin Assignment

The pin assignment step chooses the specific wires and pins to use for each connection
given by intesfFPGA router For example consider the three possible routing pathe/isho
in Figure 2-11 for a net connecting FPGA 0 to 8. Assume that the path through
intermediate FPGAs 3, 4, and 5 is chosen. The pin assignment step will choose specif
wire sgments (and FPGA pins) for connecting each pair of FPGAs in the path, i.e. (0,3),
(3,4), (4,5) and (5,8). Notice that each line between the FPGAs in Figure 2-11 actually
represents a group of wires connecting distinct FPGA pins.

The pin assignment has ndegits on intefFPGA routing resources and onlyeadts
placement and routing for inddual FPGAs and routing for FPIDs. In mpaexisting
systems [Le&i98, Quic98] the pins are assigned randomly within the constraints imposed
by the intefFPGA router This has the &ct of randomly locking indidual FPGA pins
before placement and routing, which may lead to increased consumption of routing
resources within the FPGAoFthe past f&@ years, hwever, leading FPGA gndors like
Xilinx and Altera hae enhanced their FPGA architectures and mapping tools to handle
pin locking without unduly adrse impact on either the routability and speed of FPGAs
or the run time for FPGA place and routerifi95, Heil96]. The architectural
improvement in the Xilinx 4000dmily of FPGAs is the addition ofx&ra routing
resources, including long lines that span the length of the chip, on the periphery of the
FPGA chip. Thesexra routing resources could pride fast arbitrary pin-to-pin
connections within FPGAs. @&n these impreements, pin assignment algorithms such as
those proposed in [Hauc95] may or may notegbetter run time and delay results
compared to random pin assignments. The ordy v decide wuld be to map real
circuits to MFSs (that utilize a state-of-the-art FPGA) using both these approaches, and

compare the run times and post-mapping critical path delays obtained.

2.4 Summary

A review of existing MFSs and the d#rent routing architectures and mapping CAD

tools used \&s presented in this chapt&hese systems were grouped into three main

33

Background and Previous Work

categories based on their topology and the interconnewgicde used: linear arrays,
meshes, and architectures that use programmable interconnection chips.vEm kS
architecture research studies were considered, whieh tfad the partial crossbar is one
of the best risting architectures. The desiglow for mapping circuits to MFS
architectures as described and thanous mapping tools for the layout synthesis tasks in
the design flav (partitioning, placement, and itEPGA routing) were rgewed.

Although may MFSs hae been proposed andilh, there has beerewy little research
work on comparing diérent MFS routing architectures angakiating their dectiveness
in implementing real circuits. This problem is addressed in this dissertation by using an
experimental approach for comparing amvdleating diferent MFS routing architectures
using real benchmark circuits. The details of all the architectypdsred are described in

the net chapter

34

Chapter

MFS Routing Architectures

In this chapter the MFS routing architecturgplered in our research are described.
We cover the architectural issues and assumptions that arise when mapping real circuits to
these architectures. The mesh and partial crossbar architectures are discussed in Sections
3.2 and 3.3, while the mehybrid architectures proposed in this dissertation are described

in Section 3.4.

3.1 Basic Assumptions

We assume that all the MFS architectureglered are homogeneous, in which a
single type of FPGA is used. This is the case for almost all Xlstieg systems.
Heterogeneous MFSs using FPGAs ofadlédnt sizes are possiblatlrarely used, and are
restricted to application-spef(custom) MFSs. Our focus is on single-board MFS
architectures that use approximately 25 or less FPGAs.

Another important issue is the choice of FPGAe Wécided on the Xilinx 4013E-1
FPGA, which consists of 1152 4-LUTs, 1152 flip flops, and 192 usable 1/O pins [Xili97].
The reasons for this choice aresff, all our benchmark circuits argalable in Xilinx
Netlist Format (XNF) and the partitioning tool used in ouperimental studies also
requires circuits in this format. Second, in terms of logic and pin capémeEtilinx 4013

FPGA is a reasonable choice and is used in commercial logic emulators [Quic98]. If the

35

MFS Routing Architectures

FPGA FPGA FPGA FPGA FPGA FPGA[_
0 1 2 0 1 2
| | | | | |
FPGA FPGA FPGA|__ _|FPGA FPGA FPGAL
3 4 5 3 4 5
| | | | | |
FPGA| _ |FPGA FPGA FPGA FPGA FPGA
| | | > |
(@ (b)
C FPOGA FPGA FPZGA D C_|FPGA FPGA FPGA|_ D
1 0 1 2
| | | | | |
C FP3GA FF’4GA FPGA|_ D C__|FPGA FPGA FPGA|_
5 3 4 5
| | | | | |
C FPéBA FPGA FPGAl > C |rpca FPGA FPGA|
7 8 6 7 8
' VR VY
VI VIV
(© (d)

Figure 3-1: Mesh Architectures. (a) 4-way Mesh (b) 8-way Mesh (c)
4-way Torus (d) 8-way Torus
FPGA used is too large, many of the benchmark circuits may fit into a single FPGA and
prevent the study of MFS architectures. If it istoo small, the circuit partitioning would
result in alarge number of FPGASs that may not fit into a single board, violating our
assumption about single-board MFS architectures. We conjecture that inter-FPGA netlists
for larger benchmark circuits mapped to MFSs using larger FPGAs (compared to the
Xilinx 4013 FPGA) would exhibit similar behavior. Therefore the architectural results

obtained in our research would also apply to larger circuits and MFSs using larger FPGAS.

36

MFS Routing Architectures

3.2 4-way and 8-way Mesh Architectures

The simplest mesh topology is a 4-way mesh as illustrated in Figure 3-1(a). Each
FPGA is connected to its horizontal and vertical adjacent neighbours. The number of
wires connecting adjacent FPGAs depends upon the number of 1/0O pins available per
FPGA. The Xilinx 4013 FPGA has 192 usable /O pins. We reserve four of these pins for
routing global nets frequently encountered in circuits such as clock and reset, leaving 188
pins in each FPGA for inter-FPGA connections. Hence each edge in Figure 3-1(a)
represents 47 (188 / 4) wires.

A variation of this basic mesh topology is the 8-way mesh as shown in Figure 3-1(b).
Each FPGA is connected to its horizontal, vertical, and diagonal adjacent neighbours and
each edge in Figure 3-1(b) represents 23 wires (L %SJ). Notice that since 188 is not evenly
divisible by 8 (remainder is 4), only 184 pins out of 192 pins per FPGA are used for
inter-FPGA connections in the 8-way mesh. The remaining 8 lines can be used as global
lines (each global line connects to all FPGAS) for routing very high fanout nets. Notice
that the number of global lines in the 4-way mesh (4) is different from that in the 8-way
mesh (8). This small difference in the number of global linesis unavoidable and will occur
for other architectures as well, but has no impact on architectural results.

One mgjor drawback of 4-way and 8-way meshes is that the edges in FPGAs that lie
on the periphery of the array cannot be utilized for inter-FPGA routing. For example in
Figure 3-1(b) only three out of eight edges emanating from FPGA 0 are connected to
neighbouring FPGAs implying that only about 38% of the /O pins are connected to other
FPGAs, the rest being wasted. When implementing a large circuit on this array, the only
way these edges can be used is for circuit I/O signals. However al circuits usualy do not
use a large number of 1/0 signals and hence these edges will be wasted and will lead to
inefficiency. Preliminary experiments confirmed this and hence we do not present any
results for these mesh topologies.

Instead, we use a torus topology that provides enough FPGA 1/O pins for circuit 1/0O
signals and at the same time avoid waste of pins. As shown in Figure 3-1(c) and (d), the

unused edges on the peripheral FPGASs are wrapped around in horizontal and vertical

37

MFS Routing Architectures

directions and are connected to FPGASs on the opposite side of the array. For example,
FPGA 0 in Figure 3-1(c) is connected to FPGAs 2 and 6. Note that in 8-way torus we use
only horizontal and vertical wrap around, with no wrap around in diagonal directions. The
reason is that if we use diagonal wrap around, some edges emanate and end on the same
FPGA, which does not help inter-FPGA routing in any way. In each FPGA, a certain
number of pins are reserved for circuit 1/0 signals, the exact number used in our

experiments is dictated by the number of 1/O signalsin the circuit being mapped.

3.3 Partial Crossbar Routing Architecture

Recall from Section 2.1.3 that the partial crossbar uses a number of small crossbars to
provide interconnections between multiple FPGAs. Also recall from Figure 2-3 that in a
partial crossbar the pinsin each FPGA are divided into N subsets, where N is the number
of FPIDs in the architecture. All the pins belonging to the same subset number in different
FPGA s are connected to a single FPID. Note that any circuit 1/0 signals will have to go
through FPIDs to reach FPGA pins. For this purpose, 50 pins per FPID are reserved for
circuit I/0O signalsin our experiments.

The number of pins per subset (P,) is akey architectural parameter that determines the
number of FPIDs (Ng) needed and the pin count of each FPID (Py). Given the values of the
number of pins per subset (P;), the number of FPGAS (Ng) in the partial crossbar and the
number of 1/0 pinsin each FPGA (P;), Nsand Pgare given by [Butt92]:

'U|_:U

t
Ps = N¢xPy

The extremes of the partial crossbar architecture are illustrated in Figure 3-2 by
considering a system with four Xilinx 4013 FPGAs (192 usable /O pins). A P; value of
192 would require a single 768-pin FPID (Figure 3-2(a)) that acts as afull crossbar and a
P; value of 1 will require 192 4-pin FPIDs (Figure 3-2(b)). Both of these cases are

impractical.

38

MFS Routing Architectures

FPGA FPGA FPGA FPGA
1 2 3 4
FPID
1
(@)
FPGA FPGA FPGA FPGA
1 2 3 4

(b)

Figure 3-2: Extreme Cases of theaRial Crossbar: (a);® 192, (b) P=1

A good walue of R should require v cost, lav pin count FPIDs. &r the abwee
example, a Pvalue of 12 will require 16 48-pin FPIDs. When we consider FPID pins
required for circuit I/O signals we will need to use 64 or 96-pin FPIDs that are
commercially &ailable [ICub97]. When choosing alue of R, we must ensure that
number of usable I/O pins per FPGA isgly dvisible by R or at least the remainder
should be a &ry small number so that we can use such pins for routing higbut
inter-FPGA nets. In this ark we set P= 17, which leges five pins per FPGA to be used
as global lines in the partial crossbar architecture. These global lines are used for routing
global nets such asset, clock and other gry high finout nets in the circuit. The choice of
P, = 17 was also influenced by ouxgeriments on the ffct of R on the routability of the

partial crossbawhich will be discussed later in Chapter 4.

3.4 Hybrid Architectures

The partial crossbar is anfiefent architecture that ges ecellent routability and

reasonably good speed. On close oletérn, it is apparent that the architecturevjes

39

~

—_—

FPGA 1
ABCD

~

FPGA 2
ABCD

MFS Routing Architectures

A

<

FPGA 4
ABCD

FPGA 3
ABCD

L >

FPGA 5
ABCD

FPGA 6
ABCD

>

Figure 3-3: The HTP Architecture

more routing flexibility than necessary, which comes at a cost of extra FPID pins. For
example, consider two-terminal net routing in the partial crossbar; all such nets have to
use an FPID to connect two FPGAs. If the architecture has direct connections between
FPGAS, no FPIDs would be needed for routing certain two-terminal nets, thus saving
FPID pins. The direct connections would also be faster than the connections through
FPIDs.

These observations motivated us to propose new hybrid MFS routing architectures that
have the flexibility of the partial crossbar and use a mixture of both programmable and
hardwired connections. The hardwired connections are most suitable for routing
two-terminal nets that connect adjacent FPGAs and can also be exploited to improve the
speed performance. The programmable connections are best suited for routing
multi-terminal nets. A key issue in the hybrid architectures is the choice of topology for
the hardwired connections between FPGAs. We chose and explored three topol ogies for
hardwired connections in this dissertation. The motivations for these choices are presented

below, along with the architecture descriptions.

3.4.1 Hybrid Torus Partial-Crossbar

The first newly proposed hybrid routing architecture is the Hybrid Torus
Partial-Crossbar (HTP). The motivation behind this architecture isto combine the locality

40

MFS Routing Architectures

of interFPGA connections, pvided by the mesh architecture, with the routingilidity
provided by the partial crossbarhis locality will lead to easier maradturability by
reducing the board-el wiring compl«ity.

The 1/O pins in each FPGA arevitled into tw groups: hardwired and programmable
connections. The pins in thedt group connect to FPGAs and the pins in the second
group connect to FPIDs. The FPGAs are connected to each other irg tbiws
topology and the FPGAs and FPIDs are connectedantly the same manner as in a
partial crossbaras illustrated in Figure 3-3. An HTP architecture that consists of six
FPGAs and four FPIDs is siwo. The pins assigned for programmable connections are
divided into four subsets A, B, C, and D. The pins frorfed#int FPGAs belonging to the
same subset are connected using a single FPID. Since the circuit I/O signalsenid ha
go through the FPIDs to reach FPGA pins, 50 pins per FPID areeddencircuit I/0
signals.

A key architectural parameter in the HTP architecture is the percentage of
programmable connections,. Mt is defined as the percentage of each FB@ifs that are
connected to FPIDs, with the remainder hardwired to other FPGAsidftéd high it will
lead to increased pin cost because more programmable connections are required, which
implies more FPID pins. If Bis too law it will adversely afect routability If P, is 0% the
HTP architecture dgades to a 4-ay torus with no FPIDs used. I, 100% the HTP
architecture dgrades to a standard partial crossl#fakey issue we address later (in
Chapter 5) is the besalue of B for obtaining minimum cost and good routability

Notice that the parameteg Blso applies to the programmable connections in the
HCGP (anotherybrid architecture introduced in thexté&ection). Br the same reasons
as in the partial crossbar {gn in Section 3.3), we chosg ® 14 for the HCGP
architecture in ourxperiments. Also, the number of global lines used in the HTP
architecture depends upon the MFS size (the number FPGAs used) and the pargmeters P
and R. In our eperiments, the number of global lines used for the HCGP architecture
varied from 5 to 15. Recall from Section 3.3 that the number of global lines for the partial

crossbar is 5 corresponding to=P17. The diferent \alues for number of global lines used

41

MFS Routing Architectures

FPGA 1 FPGA 2 FPGA 3 FPGA 4

A B C A B C A B C A B C

Figure 3-4: The HCGP Architecture

in HCGP is due to the fact that the number depends upon both P, and P, instead of just P
asinthe partial crossbar architecture. This discussion about the value of P, and the number
of global lines used also applies to the remaining hybrid architectures presented in this

chapter.

3.4.2 Hybrid Complete-Graph Partial-Crossbar

The second newly proposed architectures is called the Hybrid Complete-Graph
Partial-Crossbar (HCGP). The HCGP architecture for four FPGAs and three FPIDs is
illustrated in Figure 3-4. Asin HTP architecture, the I/O pins in each FPGA are divided
into two groups. hardwired connections and programmable connections. The pinsin the
first group connect to other FPGAs and the pins in the second group connect to FPIDs.
The FPGAs are directly connected to each other using a complete graph topology, which
means that each FPGA is connected to every other FPGA. The connections between
FPGAs are evenly distributed, which implies that the number of wires between every pair
of FPGAs s the same. The FPGAs and FPIDs are connected in exactly the same manner
asin apartial crossbar. Since any circuit 1/0 signals will have to go through FPIDs to
reach FPGA pins, 50 pins per FPID are reserved for circuit I/O signals.

The direct connections between FPGASs can be exploited to obtain reduced cost and

better speed. For example, consider a net that connects FPGA 1 to FPGA 3 in Figure 3-4.

42

MFS Routing Architectures

FPGA 4 FPGA 3
sink3 sink2

(@
FPGA 1
sre NN
FPGA 4 FPGA 3 FPGA 2
sink3 sink2 sinkl

(b)

Figure 3-5: Multi-terminal Net Routing: (a) Whout an FPID (b) Wh an
FPID

If there were no direct connections (as in the partial crossbar), we would have used an
FPID to connect the two FPGASs. This will cost extra delay and two extra FPID pins. A
natural question to ask is: why not dispense with FPIDs and just use FPGAs connected as
a completely connected graph as investigated in [Kim96]? The answer is that routing
multi-terminal nets in a hardwired FPGA-only architecture is expensive in terms of
routability because in such an architecture a multi-terminal net requires many extra pins in
the source FPGA. For example, as illustrated in Figure 3-5(a), two extra FPGA pins are
used for routing a fanout 3 multi-terminal net. Since extra pins are a very scarce resource
on an FPGA this has an adverse effect on the routability of FPGA-only architectures. On
the other hand, if we use an FPID for routing the same multi-terminal net, we do not need
even a single extra FPGA pin, other than the FPGA pins needed to access the source and
sinks of the net as shown in Figure 3-5(b).

The complete graph topology for the hardwired connections provides good routing
flexibility, because for connecting any pair of FPGAs direct connections between them
can be used, and once they are exhausted, any FPGA outside the pair can be utilized for a

two-hop connection, provided it has enough ‘free’ pins for routing.

43

MFS Routing Architectures

B pins FPID

C pins FPID

Figure 3-6: The HWCP Architecture

A pins FPID

3.4.3 Hardwired-Clusters Partial-Crossbar

The motivation behind this architecture is to combine the routability and speed of the
HCGP with easier manufacturability. All the connections in the HCGP architecture are
non-local which leads to excessive board-level wiring complexity. Providing more local
connections would mitigate this problem (recall the motivation behind the design of the
TM-2 from Section 2.1.3). The Hardwired-Clusters Partial-Crossbar (HWCP)
architecture has the potential to provide good routability, speed, and manufacturability.

An example of the HWCP architecture using six FPGAs and three FPIDs is illustrated
in Figure 3-6. The FPGAs are grouped into clusters whose size is represented by a
parameter called the cluster size (Cy). In Figure 3-6 C4 = 2, which implies three clusters.
The pins in each FPGA are divided into two groups: hardwired and programmable
connections. The pinsin the first group connect to the other FPGAs within each cluster
and the pins in the second group connect to FPIDs. All the FPGAs within each cluster are
connected to each other in a complete graph topology. In Figure 3-6 the pins assigned for
programmable connections are divided into three subsets A, B, and C. The pins from
different FPGAs belonging to the same subset are connected using a single FPID. Asin
the HCGP architecture, the percentage of programmable connections (Py) is a key
parameter in HWCP.

The intra-cluster connections for Cg= 3 and C4 = 4 areillustrated in Figure 3-7(a) and

Figure 3-7(b) respectively. Notice that the MFS size in the HWCP architecture is restricted

44

MFS Routing Architectures

FPGA 1 FPGAZ2 |\ | FPGA1 FPGA 2
ABC ABC : | aBC ABC
FPGA3 : . | FPGA3 FPGA 4
ABC : | ABC ABC
(@ (b)

Figure 3-7: Different Cluster Sizes for HWCP (a) €3 (b) G =4

to be a multiple of € In this research the HWCP architectur@sveplored for G values
2,3,and 4.

In addition to reducing boardyel wiring compleity in single-board systems, the
HWCP is suitable for lger MFS sizes. It lends itself to hierarchical implementations of
large MFSs using FPGAs disttted across multiple boards, with one oo wlusters and

a fraction of all the FPIDs, assigned to a single board.

3.5 Summary

The MFS routing architectures that arplered in this dissertation were described in
this chapterThe intuitve ideas that led to the proposal of theviingbrid architectures
were discussed. The proposal of avMFS architecture is relagly easybut presenting
corvincing evidence that demonstrates it$eetiveness for real circuits is a fidult and
time consuming task.

In this dissertation, we gteloped a fram&ork for experimental ealuation of MFS
routing architectures. Real benchmark circuits are mapped terdift routing
architectures tovaluate the ‘goodness’ of each architecture nedatio the others. This

experimental framwork is the focus of the meéchapter

45

Chapter

CAD Tools and

Experimental Evaluation
Framework

A wide range of MFS routing architectures were presented in theopisetwo
chapters. @ evaluate and compare thfent architectures, axgerimental frameork is
required that enables mapping of real circuits téed#int architectures. The framerk
developed in this research is the focus of this chapteroverview of the experimental
procedure used for mapping a circuit to an architecture is delineated in Section 4.1. The
cost and delay metrics used takiate architectures are described in Section 4.2. The
large benchmark circuits used in this research are described in Section 4.3, theally
layout synthesis and timing analysis tools used in #pegmental procedure are

presented in Section 4.4.

4.1 Experimental Procedure

The eperimental procedure for mapping a circuit to an architecture is illustrated in
Figure 4-1. V@ assume that the circuit igaalable as a technology mapped netlist of
4-LUTs and hip flops. First, the circuit is partitioned into a minimum number of
sub-circuitsusing a multi-way partitioning tool that accepts as constraints the specific
FPGA logic capacity and pin courRecall from Section 3.1 that the FPGA used in our
experiments is the Xilinx 4013E-1, which consists of 1152 4-LUTs and flip flops and 192

I/0 pins. Multi-way partitioning is accomplished using a recursive bipartitioning

46

CAD Tools and Experimental Evaluation Framework

C|_r.cu¢ FPGA used
> partitioning
. Reduce Board-level
pins per.fl.:F;GA placement
ifi
specifie MES
1 architecture
InterFPGA
routing
Evaluation metrics:
Fit? - Critical path delay
No Yes

- Pin cost

Figure 4-1: Experimental Ealuation Procedure for MFSs

procedure The partitioning tool used is callepart, which was briefly described in
Section 2.3.1. The output of the partitioning step is a netlist of connections between the
sub-circuits.

The net step is the placement of each sub-circuit on a S§pdeHfGA in the MFS.

Given the sub-circuits and the netlist of interconnections, each sub-circuit is assigned to a
specifc FPGA in the MFS. The goal is to place highly connected sub-circuits into
adjacent FPGAs (if the architecture has some notion of adjgceadhat the routing
resources needed for iEPGA connections are minimized.

Given the sub-circuit interconnection netlist and the placement of sub-circuits on
FPGAs in the MFS, the restep is to route each itEPGA net using the most suitable
routing path. In the cont¢ of MFSs this means that the routing path chosen should
minimize the routing delay for the critical nets and it should cause the least possible
congestion for subsequent nets to be routed. If the routing attempt is successful, it means

that the circuit fits in the specified architecture.

47

CAD Tools and Experimental Evaluation Framework

If the routing attemptdils, the partitioning step is repeated after reducing the number
of 1/0 pins per FPGA spea#d to the partitionerThis usually increases the number of
FPGAs needed, and helps routability by decreasing the demand from each FPGA, and
providing more “route-through” pins in the FPGASs, whidrcilitates routing. br
example, consider a benchmark circuit consisting of 4374 LUTs, 1ip2Bojps, and 357
I/0 signals, mapped to a 8ay mesh. Theifst mapping attempt partitioned the circuit
into 8 sub-circuits, and therefore 8 separate FPGAs. The sub-circuits were placed on a 2 X
4 mesh of FPGAs and then infEPGA routing vas performed. Only 60% of the
inter-FPGA nets were successfully routed. The mapping procedaser@peated by
reducing the number of pins per FPGA spiedifto the partitioneruntil 100% of the
inter-FPGA nets were routed. The circuidsvroutable on a 3 X 4 array and the number of
FPGA 1/0 pins specified for the partitioneasv100 (out of a possible 192).

For some circuits the routing attempt mayt ven after increasing the array sizer F
such cases, the mapping attempt is abandoned when the logic utilization beegmes v
low after partitioning (15% or less).

The interFPGA routing problem is unique for each architecture and this requires an
architecture-spead router We dereloped a generic router that can be used foerdift
architectures, Ut it did not gve satisactory results. Each architecture has unique features
that can be>gloited by the routing tool to geé superior results. Therefore wevdlmped

an architecture-specific router for each class of architectures thapioeecel.

4.1.1 Assumptions

In an actual MFS, the intdfPGA routing step is folwed by pin assignment,
placement and routing within inddual FPGAs. Performing these tasks will yide us
with accurate routing delays within each FPG, will require an gorbitant amount of
time and diort. We beliere that a better alternaé is to perform static timing analysis
after interFPGA routing, assuming constant routing delay within each FPGA, to obtain a
sufficiently accurate estimate of the MFS speed.assume that after itEPGA routing,
the pin assignment, placement, and routing step for each FPGA will succeed for the

reasons outlined bealo

48

CAD Tools and Experimental Evaluation Framework

FPGA Pin Assignment

Recall from Section 2.3.4 that the pin assignment step choosescspemt and
FPGA pins for each connectionvgin by the inteFPGA router If the FPGA pin
assignment is done randomlyis likely to lock pins in places that makntra-FPGA
placement and routing more fiiult, and may cause routability and speed problems for
the FPGA.

We conducted anxperimental study to wresticate the dects of pin locking on the
routability and speed of FPGAs [Khal95]. Sixteen benchmark circuits were placed and
routed on FPGAs with and without anety of pin constraints. The FPGAs used were the
Xilinx XC4000 family of FPGAs using the X&T 5.1.0 tool set as well as the Altera
FLEX 8000 family of FPGAs using the MAX+PLUS Il 5.0 tool set. Theerimental
results shw that the gerage increase in the critical path delay due to random pin
assignment is only 5% for XC4000 FPGAs and only 3.6% for the FLEX 8000 FPGAs
(compared to the no pin constraints case). There were no roaifung$ for the XC4000
FPGAs, lut there were three routingifures (out of 14 circuits) for the FLEX 8000
FPGAs. Since we use the Xilinx 4013E-1 FPGA in ogpegiments, the results support
our assumption that pin locking will not significantly impact placement and routing results
for each FPGA in the MFS.

A detailed account of thexperimental study isvailable in [Khal95], angpanded

version of which is gien in Appendix A.

Intra-FPGA Placement and Routing

After the interFPGA routing and FPGA pin assignment, we assume that each
sub-circuit can be successfully placed and routed on an FPGA. This is because our
experience [Khal95] and that of other researchetg[93] shas that the placement and
routing of a circuit on an FPGA will usually succeed if the FPGA logic utilization is
restricted to less than 70%. Therefore, during multi-FPGA partitioning, we restrict the size
of each sub-circuit to at most 70% of the FPGA logic capafitig almost guarantees that

the placement and routing of each sub-circuit on an FPGA will be successful.

49

CAD Tools and Experimental Evaluation Framework

4.2 Evaluation Metrics

To compare dferent routing architectures we implement benchmark circuits on each

and contrast the pin cost and post-routing critical path datagescribed belo

4.2.1 Pin Cost

The cost of an MFS is ldly a direct function of the number of FPGAs and FPIDs: If
the routing architecture is irfefient, it will require more FPGAs and FPIDs to implement
the same amount of logic as a morcednt MFS. While it is dificult to calculate the
price of specit FPIDs and FPGAs, we assume that the total cost is proportional to the
total number of pins on all of thesevdes. Since thexact number of FPGAs and FPIDs
varies for each circuit implementation (in oxiperimental procedure, we aldhe MFS
to graw until routing is successful), we calculate, for each architecture, the total number of
pins required to implement each circuite\Weéfer to this as thgin cost metric for the

architecture.

4.2.2 Post-Routing Critical Path Delay

The speed of an MFS, for avgn circuit, is determined by the critical path delay
obtained after a circuit has been placed and routed at thehpelevel. We call this the
post-routing critical path delay. We hare developed an MFS static timing analysis tool
(MTA) for calculating the post routing critical path delay for @egi circuit and MFS

architecture, which is described later in Section 4.4.3 of this chapter

4.3 Benchmark Circuits

A total of ffteen lage benchmark circuits were used in oyperimental vork. An
extensve efort was expended to collect this suite of ¢ggr benchmark circuits. The details
of each benchmark circuit are sttoin Table4-1, which preides the circuit name, size
(in 4-LUTs, D flip flops, and 1/0O count), rough description of the functionahty source
of the circuit and the manner in which iaw synthesized.der circuits were obtained
from MCNC [Yang91], two from FPGA synthesis benchmarks [Prep96], and the
remaining nine were deloped at the Umersity of Toronto (UofT). The circuits from

MCNC were aailable in the XNF [Xili97] gte-level netlist format required by our front

50

CAD Tools and Experimental Evaluation Framework

end tools. All the circuits from [Prep96] and UofT were originaligiable as VHDL or
Verilog HDL models and were synthesized into XNF netlists using tresmipiar
[Exem94] and Synopsys BeWaral Compiler [Knap96] and/or Design Compiler
[Syno97] synthesis tools. &shav these details of the benchmark circuits because we feel
that the MCNC circuits that a been used saf in MFS architecture studies are
insufficient in terms of size andaviety to ‘stress’ dferent architectures and the mapping

tools used. Specificallyve found that theare easier to partition and map compared to the

other real circuits that we use in thisnk.

Circuit Size Function Source, Synth_esstool used (if
applicable)
s$35932 4374 LUTs, Sequential circuit MCNC
1728 FFs, 357 I/O signals
s38417 6097 LUTSs, Sequential circuit MCNC
1463 FFs, 134 1/O signals
538584 4396 LUTs Sequential circuit MCNC
1451 FFs, 292 I/O signals
mips64 2900 LUTs Scaled dan version PRER Verilog model synthe-
440 FFs, 260 1/O signals of MIPS R4000 sized using Eemplar
spla 3423 LUTs Combinational Cir- MCNC
0 FFs, 62 1/O signals cuit
cspla 2039 LUTs Clone of spla UofT, Generated using
0 FFs, 62 1/0O signals GEN[Hutt96]
mac64 2560 LUTs 64-bit UofT, Verilog model synthe-
64 FFs, 133 I/0 signals | multiply-accumulate sized using Synopsys
ckt.
sort8 1540 LUTs 8-bit HW sort enginel UofT, Verilog model synthe-
200 FFs, 20 1/O signals sized using Synopsys
firl6 5366 LUTs 16-bit, 8-stage UofT, Verilog model synthe-
1040 FFs, 60 I/O signals FIR filter sized using Synopsys
gra 2494 LUTs Graphics accelera-| UofT, circuit generated using
1156 FFs, 144 1/O signals tion tmcc[Gall95]
circuit
fpsdes 3484 LUTs Fastest pseudo DES UofT, Verilog model synthe-
1008 FFs, 69 1/O signals circuit sized using Synopsys
spsdes 2452 LUTs Smallestpseudo DE$ UofT, Verilog model synthe-
982 FFs, 69 /0O signals circuit sized using Synopsys

Table 4-1: Benchmark Circuits

51

CAD Tools and Experimental Evaluation Framework

Circuit Size Function Source, S\/nth_wstool used (if
applicable)
ochip64 3617 LUTs Output chip for UofT, VHDL model synthesized
5810 FFs, 84 1/0 signals | ATM switching chip using Exemplar
set
ralu32 2553 LUTs 32-bit register file, PRER VHDL model synthe-
584 FFs, 98 1/0O signals ALU, and control sized using Synopsys
logic
iirl6 3149 LUTs 16-bit lIR filter UofT, VHDL model synthesized
522 FFs, 52 1/0O signals using Synopsys

Table 4-1;: Benchmark Circuits
4.4 CAD Tools

The CAD tools deeloped for mapping circuits to architectures are described in this

section. Our main goals in creating these CAD tools were:

1. To create a tool suite thataw flxible enough to map circuits to a wide range of
MFS routing architectures.

2. To emply a suitable algorithm for each task to obtain results that were as good as
the results reported eilsbere or at least not significantlyovee.

3. To minimize the deslopment time of the CAD tools to aosuficient time for
MFS routing architecturexgloration, which is the main focus of this researcb. W
wanted to @oid spending anxeessve amount of time on CAD tool optimization.

4.4.1 Multi-way Partitioning

Recall from Section 2.3.1 that multiay partitioning can be done using either a direct
approach or by recuka bipartitioning. The problem with direct multiay partitioning is
that it has no information about the MFS architecture and hence routability constraints
between diferent sub-circuits. Ideallyt is best to use an architecturevein multi-way
partitioner Since we did not va@ access to such a partitionee implemented multi-ay
partitioning by recursie bipartitioning which is follwed by board-leel FPGA
placement. The motation behind this approach is to pide enough locality in
post-partitioning and placement netlists for architecturesthke mesh and HTP thatvea
local interFPGA connections. The partitioning tool used in the recergipartitioning

procedure is calledart [Gall94], which was briefly described in Section 2.3.1.

52

CAD Tools and Experimental Evaluation Framework

RBT() /* Recursive Bipartitioning Tool */

I nput s:
C. circuit to be partitioned;
FPGA | ogi ¢ and pin capacity;

Qut put s:
K sub-circuits, each of which fits into a single FPGA

Vari abl es:
cur_ckt: current sub-circuit to be bipartitioned;
partl, part2: sub-circuits obtained after bipartitioning;

{ /* begin RBT */
cur_ckt = C
bi part (cur_ckt); /* sub-circuit < (0.55 * cur_ckt) */
push partl on to stack;
push part2 on to stack;
whil e(stack is NOT enpty)

{

pop top of stack into cur_ckt;

if(cur_ckt fits into FPGA) [/* logic util. <= 70%*/
assign a partition nunber to cur_ckt and store it;

el se

{
bi part (cur_ckt); /* sub-circuit < (0.55 * cur_ckt) */
push partl on to stack;
push part2 on to stack;

}

}
} /* end RBT */

Figure 4-2: Pseudo-code for RBT

We developed atool for multi-way partitioning, called the Recursive Bipartitioning
Tool (RBT), which partitions a given circuit into the minimum possible number of
FPGASs, given the FPGA logic and pin capacity. The pseudo-code for RBT is shown in
Figure 4-2. First the circuit, denoted by C, is bipartitioned into two sub-circuits, partl and
part2 such that the number of wires between the sub-circuits is minimized. Also each
sub-circuit is restricted to be between 45% and 55% of the size of cur_ckt to keep the
partitions balanced. The two sub-circuits are then pushed on to a stack. Next, the while
loop shown in Figure 4-2 is executed until the stack is empty. In the while loop, the
sub-circuit on the top of stack is examined first to check if it fitsin the FPGA used. To

ensure intra-FPGA routability (as discussed in Section 4.1.1), only sub-circuits whose size

53

CAD Tools and Experimental Evaluation Framework

Figure 4-3: The Rartitioning Tree for the Circuispsdes Generated by RBT

is at most 70% of FPGA logic capacity are chosen as feasible partitions. If the sub-circuit
does not fit into the FPGA, it is bipartitioned and the resulting partitions are pushed on the
top of stack. When the while loop terminates, all the partitions obtained by RBT are
available. The RBT generates the partitioning tree for a circuit in a sequence illustrated in
Figure 4-3 for the benchmark circsfisdes. The circuit is represented by the root node (0)

in the tree and the leaf nodes (shaded circles) represennhah@drtitions. The node
number indicates the sequence in which the nodes are generated duringveecursi
bipartitioning. Thus nodes 1 and 2 are generatstiffom node 0, and nodes 13 and 14
are generated last from the node 11.

A multi-way partitioning tool can bevaluated using te metrics: irst, it should
minimize the total number of FPGAs required in the partitioned circuit and second, it
should minimize the total cut size. Unfortunatetpne of the publishedavk on
multi-way partitioning [Kuzn94, Chan95, Chou95, &b, Kim96] used the Xilinx 4013
FPGA. Therefore we cannot compare RBT to the other malyi-partitioners that va
been preiously developed. The partitioning tool used in RBpa(t) is based on the
widely used FM algorithm and it is reasonable kpect that its results are not
significantly worst compared to other multiay partitioning tools reported in the
literature [Kuzn94, Chan95, Chou95, &b, Kim96].

54

CAD Tools and Experimental Evaluation Framework

FPGA
— FPGA FPGA |—
€D 3 s
| 4 | |
] FPGA; FPGA FPGA -
1 4 7
FP|GA§ | |
— 2 FPGA ——— > GOrpgal—
e) 8

Figure 4-4: Semi-perimeter of the Net Bounding Box

4.4.2 Placement

Following multi-way partitioning of the circuit, the placement tool assigns each
sub-circuit to a spedd FPGA in the MFS. If the MFS architecture has no local
connections, as in partial crossbar and HC&¥W arbitrary placement is acceptable. This
is because in such architecturey grair of FPGAs is uniformly connectedoiF
architectures that ke local connections, such as the Mesh, Hifld HWCPa placement
algorithm is required to place highly connected sub-circuits into adjacent FPGAs, to

minimize the intet=PGA routing resources needed.

Placement for Mesh Architectures

For placement on the mesh architectures such as thay8avus and HTPwe
developed a tool called the Mesh PlacemenblT(MPT) that uses aersion of
force-directed placement algorithm presented in [Shah91]. That algoriéisndegcribed
in Section 2.3.2 and the pseudo-code for the algoritBmpresented in Figure 2-1@ T

implement the algorithm, suitable decisions on the foiig issues were required:

1. For calculating the cost of avgin placement configuration, a method of estimating
the routing cost of each net is needed. The routing cost of afFiA@A net on a
mesh is estimated by the semi-perimeter of the net bounding box. This is a
commonly used method of estimating the routing cost in placement tools [Sarr96].
The number of FPGA pins required for routing a net is directly proportional to the
length of semi-perimeter of the net bounding bax. &le, consider a net that
connects FPGA 0 and FPGA 8 in Figure 4-4. Assuming that the FPGAs are placed

55

CAD Tools and Experimental Evaluation Framework

on a grid, the length of semi-perimeter of the net bounding box is four units and
the number of FPGA pins used is eight (4 x 2).

. The alue of the parametabort_limit in the algorithm (Figure 2-10) decidesao
mary aborts are allwed in each iteration of the force-directed relaxation. Recall
that the wariable abort_count is incremented \ery time the taget point of the
selected module conflicts with thedat point of another module that has already
been placed and loeH. Intuitvely, abort_limit should depend upon the ratio of
the number of lookd modules and the total number of modules. As this ratio
increases, there will be frequent aborts. When close to half the total number of
modules are load, we found that the number of aborts increased rapidly because
every second module is loeld. Therefore we setbort limit to half the total
number of modules in the placement problem.

Placement Cost for Different Values of iteration_limit
(wirelength on agrid)

Circuit Fﬁie?r:elrg

iteration_limit iteration_limit iteration_limit uns
=100x9 =1000x9 =10000x 9 . T
iteration_limit

=100x9
35932 388 479 421 260
s38417 497 494 282 243
$38584 349 334 407 242

Table 4-2: Placement Results for Darent \alues ofiteration_limit

3. Another important parameter in the algorithnitésation_limit. To experimentally

determine a suitablealue of this parametewe placed post-partition netlists of
three benchmark circuits (s35932, s38417, and s38584) on a 3 x 3 array (9
modules) using thregeration_limit values: (1) 100 x 9, (2) 1000 x 9, and (3)
10000 x 9. W also obtained the best placement cost for each circuit after
performing ten placement runs with iagration_limit value of 100 x 9. The results

are shwn in Table4-2. The first clear conclusion is that increasing thieies of
iteration_limit does not gie better results all the time. The best results were
obtained when the algorithmas eecuted multiple times with ddrent initial
random partitions and the best resulisachosen. This implies that the results
produced by the force-directed placement algorithm are sensdithe initial
random placement used. Therefore, in MPT we set the iteration limit to 100 times
the number of modules in the gat mesh array and chose the best result obtained

56

CAD Tools and Experimental Evaluation Framework

out of ten placement runs. We used only three benchmark circuits in this
experiment because the other benchmark circuits were not available when we were
developing MPT.

To evaluate the quality of MPT, we did not have any published results for comparison.
We looked at the reduction in placement cost obtained compared to the cost of the initial
random placement. Across all circuits, the reduction in placement costs ranged from 39%
to 61%. It is difficult to calculate an average reduction in the placement cost because
placements were done for many array sizes for each circuit (in an attempt to make the

circuits route on the mesh architecture).

Placement for the HWCP Architecture
Recall from Section 3.4.3 that the HWCP architecture consists of clusters of FPGAS

with hardwired connections between all the FPGASs in each cluster. The placement
problem for the HWCP architecture is an assignment problem. Each cluster of sub-circuits
in the partitioning tree of a circuit needs to be assigned to a specific cluster of FPGAsin
the target HWCP architecture. The goal is to assign closely connected clusters of
sub-circuits to adjacent FPGA clusters in the architecture to minimize the inter-FPGA
routing cost.

The cluster size depends upon the value of the Cg parameter in the target HWCP
architecture. Recall from Section 3.4.3 that Cg represents the number of FPGAS within
each hardwired cluster in the HWCP architecture. For example, consider the partitioning
tree of the s35932 circuit shown in Figure 4-5(a). The final partitions or sub-circuits are
represented by shaded circles. Assume that this circuit is to be mapped to an HWCP
architecture that consists of nine FPGAs with a cluster size of three (C4 = 3). The approach
used for clustering of sub-circuits is shown in Figure 4-5(a), where adjacent sub-circuits
are grouped into each cluster, represented by dashed lines covering the sub-circuits. We
start from the leftmost sub-circuit in the partitioning tree which is grouped with the next
two sub-circuits to the right. An ideal approach for generating the partitioning tree would
be as shown in Figure 4-5(b), where the partitioning tree matches the target HWCP

architecture topology. Developing such an architecture-driven partitioning tool is very

57

CAD Tools and Experimental Evaluation Framework

(b)

Figure 4-5: Partitioning and Placement of the s35932 circuit on the HWCP
Architecture: (a) Actual (b) Ideal
time consuming, therefore we used the partitioning tree generated by our recursive
bipartitioning tool (RBT). While our approach towards partitioning and placement for
HWCP is sub-optimal, we expect that the mapping results would still give valuable insight
into the routability and speed performance of the HWCP architecture.

4.4.3 MF'S Static Timing Analyzer

In synchronous digital circuits, the maximum possible speed is determined by the
slowest combinational path in the circuit implementation, which is called the critical path.
Static timing analysistools are used to identify the critical pathsin designsimplemented at
the chip-level [Joup87] as well as the board-level [Chan97]. Timing analysisis also used

in timing-driven layout tools, to estimate the slack of each connection in the circuit. The

58

CAD Tools and Experimental Evaluation Framework

slack of a connection is defined as the delay that can be added to the connection without
increasing the critical path delay. Connections with low slack values are routed using fast
paths to avoid slowing down the circuit.

For a given circuit, the speed of an MFS is determined by the critical path delay
obtained after a circuit has been placed and routed at the inter-chip level. We developed an
MFS static timing analysis tool (MTA) for calculating the post-routing critical path delay
for agiven circuit and MFS architecture. The operation and modeling used in the MTA are
described in this section.

The delay values used by the MTA are given in Table 4-3. These values were obtained
from the Xilinx [Xili97] and ICube [ICub97] data sheets and some design experience.

Item Delay (ns)

Intra-FPGA CLB-to-CLB routing delay 25
FPGA input pad delay 14
FPGA output pad delay 32
CLB delay (without using H-LUT) 13
CLB delay (viaH-LUT) 2.2
FPID crossing delay (including pad delays) 10
PCB trace delay 3

FPGA route through delay 10

Table 4-3: The Delay Values Used in the Timing Analyzer Model

Since we do not perform individual FPGA placement and routing, we approximate the
CLB-to-CLB delay as a constant. The value of 2.5 nsfor CLB-to-CLB routing delay is
roughly half the delay on along line for XC4013E-1 FPGA, which is a pessimistic
estimate. Although using a single delay value is somewhat inaccurate, it still gives us a
good estimate of the post-routing critical path delay of an MFS because it is dominated by
off-chip delay values.

The configurable logic block (CLB) in the Xilinx 4000 family of FPGAs [Xili97]
consists of two 4-LUTs, called F and G, whose outputs feed into a 3-LUT called the
H-LUT. The H-LUT is not always used when implementing combinational logic functions

59

CAD Tools and Experimental Evaluation Framework

in the CLB (the CLB outputs come directly from F and G LUTSs). Obviously, the CLB
delay is more when the H-LUT is used because of the extralogic in the paths from CLB
inputs to the outputs as given in Table 4-3.

We now describe the operation of the MTA. First, it calculates the critical path delay of
the un-partitioned design using a widely used method called the block-oriented technique
[Joup87]. Inthis step it is assumed that the circuit isimplemented on a hypothetical single
large FPGA that has the same logic block and interconnect delay (shown in Table 4-3) as
the FPGA used in the MFS (Xilinx 4013). The critical path delay of the un-partitioned
design is denoted by CPD.

In the second step, MTA calculates the post-partition critical path delay, denoted by
CPD_PP. Thisisthe critical path delay obtained by analyzing the circuit netlist after it has
been partitioned into multiple-FPGAS. It is assumed that the FPGASs are interconnected on
acustom PCB and the circuit is annotated with the inter-chip delays from which CPD_PP
iscalculated. The inter-chip delay for connecting a CLB in one FPGA to a CLB in another
FPGA is given by the sum of the following delay values (given in Table 4-3): CLB to
output pad routing delay (assumed to be equal to the CLB-to-CLB routing delay), PCB
trace delay and input pad to CLB routing delay (assumed to be equal to the CLB-to-CLB
routing delay). CPD_PP provides a lower bound on the post-routing critical path delay
(denoted by CPD_PR) that is obtained using general purpose MFS. Thisis because for any
circuit, CPD_PR can be no better CPD_PP due of the delays introduced by board-level
programmable routing in general purpose MFSs.

Lastly, the MTA reads the MFS architecture description and the routing path for each
inter-FPGA net, as provided by the inter-FPGA router. From this information, the circuit
is annotated with the inter-FPGA delays for the given MFS, from which the post-routing
critical path delay (CPD_PR) is calculated. After inter-FPGA routing, a path connecting
two FPGAs may traverse other FPGAs and FPIDs. In such cases the FPGA and FPID
crossing delays and the input and output pad delays, shown in Table 4-3, are used for
calculating the routing delay.

60

CAD Tools and Experimental Evaluation Framework

Sample Results Obtained Using the MTA
The capabilities of the MA are demonstrated by the speed estimates obtained for all

the benchmark circuits at threevéds of circuit implementation: pre-partitioning (single
hypothetical FPGA), post-partitioning (custom MFS), and post-routing (actual MFS).
Table4-4 shavs the critical path delays obtained by usingAfor all the benchmark
circuits mapped to the partial crossbar architecture. Columnwisshe circuit name and
column 2 shws the number of FPGAs required to implement the circuit on the partial
crossbar Columns 3 and 4 slwothe normalized pre-partitioning (CPD) and
post-partitioning (CPD_PP) critical path delays respelti The delay alues in each w

are normalized to the pre-partitioning critical path delajp® (CPD). Column 5 sias

the normalized post-routing critical path delay (CPD_PR).

Normalized critical path delay
Circuit H#FPGAS . - .
Pre-partitioning, Post-partitioning, Post-routing,
CPD CPD_PP CPD_PR

s35932 8 1.0 1.09 1.68
s38417 9 1.0 1.34 2.16
s38584 9 1.0 1.32 1.96
mips64 14 1.0 1.37 2.01
spla 18 1.0 2.26 5.16
cspla 18 1.0 2.28 5.36
mac64 6 1.0 1.47 2.40
sort8 12 1.0 2.10 3.68
firle 10 1.0 1.40 2.48
gra 4 1.0 1.06 1.30
fpsdes 9 1.0 1.42 2.36
spsdes 8 1.0 1.25 1.80
ochip64 8 1.0 1.32 2.86
ralu32 9 1.0 1.71 3.45
iirl6 6 1.0 1.05 1.24
Average 10 10 1.49 2.66

Table 4-4: Critical Path Delays at Dferent Levels of Circuit Implementation

61

CAD Tools and Experimental Evaluation Framework

Compared to single FPGA implementatioable4-4 illustrates the delay penalties
incurred due to partitioning and programmable routing at the boaet Tehe CPD_PP
value across all the circuits is oveaage 49% more than the CP&lue, and in some cases
is more than aaictor of 2 greaterSimilarly, the aerage CPD_PRalue across all the
circuits is a &actor of 2.5 times more than CPD and up to 5 times miable B-1 in
Appendix B is similar to Tabld-4 except that it shows the actual (un-normalized) critical
path delay values.

Note that our denition of the critical path (obtained using the block-oriented
technique) sdérs from two limitations: First, we cannot guarantee that the critical path is
not a alse path. Second, in some circuits that implement mytiecoperations, the
critical path in eachycle may be dierent from what we define as a critical path. Despite
these limitations, the block-oriented techniqueegireasonably accurate results and is

widely used in practice.

4.4.4 Inter-FPGA Routing Algorithms

The routing algorithms deloped for the &rious MFS architecturexgored in this
research are described in this section. Initjallg deeloped a generic MFS router that
uses a topology independent routing algorithm. As we mapped circuitsféeoedt
architectures, we found that the generic router had major problems Vgttedifaspects
of each architecture. Therefore wevdl®ped architecture-speicifrouters to obtain the
best possible routing results for each architecture.

The two goals of an inteFPGA router are achieng routing completion and obtaining
the best possible speed performanam. llybrid architectures that use a mix aist
hardwired connections and slgrogrammable connections, timingigmn routing should

be used to obtain the best possible speed performance.

A Topology-Independent Router
We developed a topology independent iRE?GA routing tool called FPSBRUTE. It

represents the MFS architecture using an undirected routing graph whose nodes are
FPGAs and FPIDs. Each edge betwegngair of nodes is assigned a weight that is equal

to the number of wires between thos® tmodes. Br example, consider the 4ay torus

62

CAD Tools and Experimental Evaluation Framework

U

Figure 4-6: (a) 4-way Torus architecture (b) Its Routing Graph
architecture and its routing graph illustrated in Figure 4-6. Each edge in Figure 4-6
represents 47 wires, hence the weight of each edge in the routing graph is also 47.

Given the routing graph for rMFS architecture and the netlist of connections
between FPGAs, the well kmm maze routing algorithm [Lee61] is used tadfthe
shortest wailable path for routing each net. After each net is routed, the edge weights in
the routing paths are updated to reflect the reductiovaitable wires. The maze routing
algorithm is suitable for routing twterminal nets and cannot be used directly for routing
multi-terminal nets. One approach for routing multi-terminal nets is to decompose each
such net into a set of swterminal nets and route thedwerminal nets independentBut
this approach leads to iffigiencies as discussed in Section 2.3.3. FPSRE uses an
algorithm called the single component gutth algorithm [Kuh86] for routing
multi-terminal nets. This algorithm starts with the net source and finds the shortest path to
the closest sink using the maze routing algorithnxtNal the nodes in the routing path
are treated as possible sources and the shortest path tattibbosest sink is found. This
procedure is repeated until paths to all the net sinks are found.

If any nets remain unrouted after thesf routing attempt, repeated iterations of the
router are performed. In each iteration, all nets are ripped up and rerouted. The nets that
failed in the immediately pveous iteration are routed first, foll@d by nets thatfled in

the net previous iteration, and so on. Thus in each iteration, the ‘histongitdd nets is

63

CAD Tools and Experimental Evaluation Framework

considered when ordering the nets for routing.simmarize, FPSRUTE uses the
traditional multi-pass maze routing approach, with avexo-front’ heuristic, for
topology-independent intéfPGA routing.

Due to its generic nature, FPSGRTE gwes inferior routability and speed results for
different MFS architectures. It is compared to the other architectureispecifers in
subsequent sections. Note that this basic maze routing approach is used in the other
architecture-speadi routers to handle the lastwedifficult-to-route’ nets that are

encountered in some circuits.

Routing Algorithm for Mesh Architectures
The problem with FPSBUTE is that it concentratex@usively on inding the

shortest path for each net while ignoring issuesiduting congestion.

The routing problem in the mesh architectures is complicated byatteHhat the
FPGAs are used for both logic and routing. After a circuit is mapped to a mesh
architecture, each FPGA will @ a number of 1/0O pins unused after all the pins needed
for sources and sinks in that FPGA are accounteccédedfree pins. An FPGA should
have at least tw free pins if it is to permit a route to pass through it.

Consider a net that connects the nodes 0 and 4 in Figure 4-6(a). The shortest paths for
routing the net are (0 1 4) and (0 3 4). Timalfchoice of the routing path depends upon
two things: first whether enough free pins aralable in the intermediate FPGAs used in
each path (1 and 3), and second whether routing congestion is minimized or not. The path
that has the Igeest number of wiresvailable will minimize congestion for the subsequent
nets to be routed.

We developed a mesh routing tool called @MRTE that uses a heuristic tuned to the
routing requirements of the mesh architecturdardt foutes all those nets that do not use
ary free pins (e.g. nets connecting adjacent FPGAS). It then routeaktminal nets
using an algorithm that enumerates all possible shortest paths between sourageand tar
A shortest path is chosen that attempts to minimize the congestion for the subsequent nets
to be routed and utilizes intermediate FPGAs thaetthe most number of free pins.

Since the typical array is small (at most 6 X 8 in our case), enumeration of all possible

64

CAD Tools and Experimental Evaluation Framework

shortest paths is computationally feasibler. multi-terminal nets, a modified form of the
single component gweth algorithm, described in the pieus section, is used. The
algorithm is adapted for mesh architectures to consider free pins when routing
multi-terminal nets. Specdally in the multi-terminal net routing algorithm, during the
breadth-first-search (BFS) to find a net sink, the FPGAs that do vefriea pins are not
marked as possible intermediate FPGASs in a routing path. If the first routing atelspt f

it uses a rip-up and reroute approach similar to that used inGWBER

% netsrouted in the 8-way mesh
Circuit #FPGAS

FPSROUTE MROUTE
mips64 14 (2x7) 91 92
spla 18 (3 x 6) 83 90
cspla 18 (3 x 6) 81 85
mac64 6 (2x3) 73 77
sort8 12 (3x 4) 78 80
firlé 10 (2 x 5) 92 96
fpsdes 9 (3x23) 84 88
spsdes 8(2x4) 81 84
ralu32 9(3x3) 80 87
iirl6 6 (2x3) 89 89
Average 10 83 87

Table 4-5: Comparison of FPSBRUTE and MROUTE

MROUTE gave consistently better results compared to the topology-independent
router FPSRUTE as illustrated in8ble4-5. Across ten circuits mapped tovsel array
sizes, the percentage of nets routed byQMRE increased by 4% owerage and up to

7% more in the best case, compared to FRSRE.

Routing Algorithm for Partial Crossbar

Recall from Section 2.3.3 that the intePGA routing problem in the partial crossbar

involves choosing a specific FPID for routing each net such that all nets route. The router

65

CAD Tools and Experimental Evaluation Framework

PCROUTE_ALGORITHM
{

route all nets that contain an FPID as a net terminal;
route all nets using best_path() in decreasing order of fanout;
if(any net remains unrouted)
Iterate N times using a ‘move-to-front’ strategy for failed
nets;
if(any net remains unrouted)
report routing failure;
else
report routing success;

best_path()
{

calculate the routing cost for the net through all
available FPIDs;
choose the least cost routing path (through a specific FPID)
if(routing attempt using a single FPID fails)
use maze routing to route the net;
if(maze routing attempt fails)
report routing failure for the net;

Figure 4-7: Pseudo-code for the Routing Algorithm used in BCHE

should minimize the number of hops used in each source to sink path in each net in order
to obtain good speed performance.

We developed a routing tool, called PORITE, that uses a heuristic algorithm tuned
to the requirements of the partial crossbar architecture, which is illustrated in Figure 4-7.
Recall from Section 3.3 that in the partial crosstya circuit I/O signals are connected to
the FPGAs through FPIDs. Such connections (nets) bae FPGA and one FPID as the
net terminals. The algorithm routes such nets first because there isilmibtjlen routing
such nets. Né all the nets are routed in decreasing ordeanbiit, the highesahout net
first and tvo-terminal nets last. The reason behind this is that as the wires between the
FPGAs and FPIDs get used up in routing, it becomes increasinfitpidifo route high
fanout nets. This is because an FPID with wikesl@ble for connecting to all the FPGAs
belonging to the net may not beadlable. Therefore it is better to route such niess. fif
the routing attemptails a rip up and reroute strgieis used, which is similar to the one
employed in FPSRUTE.

66

CAD Tools and Experimental Evaluation Framework

For each net, thbest_path() routineevaluates potential routing paths through all
available FPIDs. The cost function used to choose an FPID attempts to guarantee balanced
usage of FPIDs and preserve the most options for two-hop routing of subsequent nets to be
routed. It is as follows: consider a partial crossbar that consixt&B{GAs andr FPIDs.
Consider aN-terminal net calledV. LetF denote the set of FPGAs belongindvpi.e. F
= {fq, fo,.o, TN

Let Ay, denote the number ofailable wires between FPGAand FPIDK. The cost of
routing the neM through FPIDk, C(M, k), is gien by:

fy
Pt
H |

i=f,

Recall from Section 3.3 that B the number of pins per subset. An FPID that has the
lowest routing cost for the nbt is chosen for routing that net. If the routing attempt using
a single FPIDdils, the net is processed by a maze roiitee routing path obtained by the
maze router in such cases willatve the usage of multiple intermediate FPGAs and
FPIDs as illustrated in Figure 4-8. Consider a net whose source lies in FPGA 1 and sinks
lie in FPGAs 2 and 4. A single FPID cannot be used for routing the net because the
required connections between FPGAs and FPIDs are used up by other nets. Hence the
routing path specified by dashed lines in Figure 4-8 will be chosen by the mazeTioaiter
path between FPGA 1 and FPGA 4 will require 4 hops: FPGAL1 to FPID A, FPID A to
FPGA 2, FPGA 2 to FPID B, and FPID B to FPGA 4.

PCROUTE gwes &cellent routability and speed results for all the benchmark circuits,
which were routed without requiring witerations. The routing problem for the partial
crossbar becomes morefai@ilt as the @lue of Ris reduced. This is because of reduced
routing fexibility due to the lev pin count FPIDs used in such cases. Irrespedi the
value of R, PCROUTE achiges 100% routing completion and produces-tvop routing
for all the nets in almost all circuitsoFonly two circuits, for the specific case qf+P4, it
produced multi-hop routing paths for eghigible number of nets (1 out of 991 nets for the
first circuit and 3 out of 645 nets for the second). In practical terms, this meavesit gi

almost optimal results for all of our benchmark circuits because the best that a partial

67

CAD Tools and Experimental Evaluation Framework

FPGA 1 FPGA 2 FPGA 3 FPGA 4
net_src net sink_1 net_sink_2

Figure 4-8: Multi-hop Routing in Rrtial Crossbar

crossbar router can actaeeis routing of eery net using only tew hops in the source-sink
path. Although we did not compare PGBTE to the other partial crossbar routers, we
expect it to be egwalent in quality to other partial crossbar routers thakehaeen
proposed to date [Kim96] [Mak95a] [Lin97] [SIim94]. This is because BORE
performs so well across anety of benchmark circuits, including somefidiilt-to-route
circuits such aspla andcspla. PCROUTE should be better than [Mak95b] for speed
because that algorithm splits each multi-terminal into a setafdwminal nets and routes
them independentlyeading to multiple hops anden possible routingaflures.

PCROUTE also gves better speed results compared to the topology-independent
router FPSRUTE. This is because FPORTE greedily chooses the firstaalable FPID
to route each net and does not balance the usage of FPIDs. The result is that man
multi-terminal nets cannot be routed using a single FPID and are forced to use multi-hop
routing paths.

The benchmark circuits were mapped to the partial crossbar architecturg wigh P
using both FPSRQUTE and PCRUTE. For FPSROUTE, the aerage increase in
post-routing critical path delay (CPD_PR) across all circuas W9% compared to
PCROUTE and 62% more in theonst case.

68

CAD Tools and Experimental Evaluation Framework

Routing Algorithm for Hybrid Architectures
Recall from Section 3.4 that thglirid architectures use a mixture of hardwired and

programmable connections. The inrEPGA routing algorithm for theybrid
architectures is closely related to the partial crossbar routing algorithm in the sense that a
similar algorithm is emplged when routing nets through FPIDs.wéwer, the diference
here is that the router should alsqbit the direct connections between FPGASs to
minimize the number of FPGA and FPID pins and the number of hops used, when routing
each intefFPGA net. This mads the routing algorithm for theylbrid architectures more
complicated compared to the partial crossbar

We dereloped a routing tool, called HRUTE, that understands the/brid
architectures and gés cellent routability and speed results for all the benchmark
circuits.

The main objectie of HROUTE is to route all nets using no more thawo tvops for
each source-sink path in each net. Wher@ossible, it stvies to use the direct hardwired
connections between FPGAs to minimize source-sink net delay when routing both
two-terminal and multi-terminal nets. The routing algorithm used IOMRE is
described using the pseudo-code in Figure 4-9. First an attempt is made to route all
possible tw-terminal nets using the direct connections between FPGAs to minimize the
usage of pins and net deldext, all multi-terminal nets are routed through FPIDs using a
routing algorithm similar to that used in PORTE. The diference here isjrst an
attempt is made to use hardwired connections for all possible source to sink connections.
Any sinks that remain unconnected are thendthko the source using a single FPID.
Finally, the remaining tw terminal nets are routed using FPGAs or FPIDg. Aets that
remain unrouted are processed by a maze router

If any nets remain unrouted after the first iteration, a rip up and rerouteygtsatalar
to the one described for FPORITE is used. W found that net ordering is crucial for
obtaining good routability and speed results iR E because it optimizes the usage of
MFS routing resources (FPGA and FPID pins).

69

CAD Tools and Experimental Evaluation Framework

HROUTE_ALGORITHM
{ /* begin HROUTE */

route all nets that contain an FPID as one of the net terminals;
route all possible two-terminal nets connecting adjacent FPGAs
using hardwired connections;
route all multi-terminal nets using best_path_multi();
for (all remaining two-terminal nets)
{
route the net using the most suitable intermediate FPGA,;
if(no intermediate FPGA is available)
route the net using the most suitable FPID;
}
if(any nets remain unrouted) * from earlier attempts */
route each net using the maze router;
if(any nets remain unrouted)
iterate N times using a ‘move-to-front’ strategy for
failed nets;
if(any nets remain unrouted) [* even after iterations */
report routing failure

} /* end HROUTE */

best_path_multi()
{

if(enough free pins are available in the source FPGA)
connect the source to all possible sinks using hardwired
connections;

if(any sinks remain unconnected)
calculate the routing cost of connecting the source to
the sinks using all available FPIDs;
choose the least cost routing path using a single FPID;

Figure 4-9: Pseudo-code for the Routing Algorithm used inGURTE

Timing-Driven Routing Algorithm for Hybrid Architectures
A problem with HROUTE is that it is not timing-dvien and hence does not fully

exploit the fast hardwired connections in thgbinid architectures to obtain the maximum
possible speed.olovercome this deficieycwe deeloped a timing-dven routing tool for
the tybrid architectures, called HIRUTE_TD, that uses path based static timing analysis
to identify the critical nets and route them using te hardwired connections.

The main objectives of HROUTE_TD are to try to route all critical nets using direct
connections and to route all other (non-critical) nets using no more than two hops for each

source-sink pathl'he algorithm used in HRUTE_TD can be best described by using the

70

CAD Tools and Experimental Evaluation Framework

Perform post-partitioning path-based timing analysis to calculate CPD_PP
Use CPD_PP as alower bound for CPD_PR

v

Calculate net slacks, identify and mark all critical nets

A 4

v

Route all possible critical nets using hardwired connections

A

v rip-up and
Route all non-critical netsin the same order asin HROUTE re-route

All nets routed?

Enough iterations?

Yes i Yes

Perform post-routing timing analysis to calculate CPD_PR

|

CPD_PR=CPD_PP?

Report routing
failure

No

Enough iterations?

Figure 4-10: Timing-driven Routing Algorithm for the Hybrid Architectures

flow chart given in Figure 4-10. Given a circuit to be routed on a hybrid architecture,
path-based static timing analysis is performed and the post-partitioning critical path delay
(CPD_PP) for the circuit is calculated. CPD_PP forms a lower bound for the post-routing
critical path delay (CPD_PR) because it represents the critical path delay obtained by

using custom board-level implementation of the circuit. The net slacks are then cal culated

71

CAD Tools and Experimental Evaluation Framework

for each intefFPGA net and the critical nets are iddatifand markd. A critical net is
defned as an inteFPGA net whose slack is less than the delay incurred for connecting
two FPGAs via an FPID, which is the delay of a programmable connection.

In the net step, an attempt is made to route all critical nets using hardwired
connections. Among the critical nets,odterminal nets are routenist because such nets
are the most suitable candidates for using direct hardwired connections. ficidtdid
route multi-terminal nets using only hardwired connections (without FPID) becauge man
free pins are required in the source FPGA, which are usuallyvadiable. This is
followed by the routing of non-critical nets in the same order as that useddbHR If
ary nets remain unrouted, this implies that tingt iteration of timing-dwen routing is
unsuccessful. In such cases, a rip-up and re-route similar to thayechpldcPSR®UTE
is used. Thediled nets from the pveous iterations are assigned the highest priority in the
current iteration. Once thaifed nets are routed, the remaining nets are routed in the same

order as that in theewy first routing pass.

Normalized post-routing critical path
Circuit #FPGAS delay, CPD_PR

HROUTE HROUTE_TD
$35932 8 1.08 1.0
s38417 9 1.01 1.0
s38584 9 1.15 1.0
mips64 14 1.12 1.0
spla 18 1.21 1.0
cspla 18 1.16 1.0
mac64 6 1.21 1.0
sort8 12 1.08 1.0
firle 10 1.16 1.0
gra 4 1.04 1.0
fpsdes 9 1.11 1.0
spsdes 8 1.05 1.0
ochip64 8 1.00 1.0

Table 4-6: Comparison of HRUTE and HROUTE_TD

72

CAD Tools and Experimental Evaluation Framework

Normalized post-routing critical path
N #FPGAs delay, CPD_PR
Circuit
HROUTE HROUTE_TD
ralu32 9 1.13 1.0
iirl6 6 1.00 1.0
Average 10 1.10 10

Table 4-6: Comparison of HRUTE and HROUTE_TD

If the timing-driven routing attempt succeeds, timing analysis is performed to
calculate CPD_PR. If CPD_PR achés its laver bound, the timing-dven routing
attempt is terminated because it has already aetiigs goal. Otherwise, net slacks are
again calculated and iterations of timingademn routing are performed. &\found that the
iterations to impree the timing did not result in grsignificant reduction in thealue of
CPD_PR compared to thalue gven by the first iteration. Ew after using ten iterations,
the best case reduction in CPD_P&swonly 3% across all benchmark circuits.

HROUTE_TD gave significant speed impreements compared to the
non-timing-driven router HROUTE, as illustrated indble4-6. The benchmark circuits
were mapped to the HCGP architecture using HROUTE and HROUTE_TD. In4Féble
the first column shows the circuit name and the second column shows the number of
FPGAs required to implement that circuit. Columns 3 and 4 show the normalized
post-routing critical path delay (CPD_PR) obtained using HROUTE and HROUTE_TD
respectively. For each circuit, the CPD_PR value obtained using HROUTE_TD is set as 1.
Compared to HROUTE_TD, the average increase in the critical path delay across all
circuits was 10%, and up to 21% more. These results demonstrate that it is essential to use
a timing-driven router in order to obtain the maximum possible speed for the hybrid
architectures. Table B-2 in Appendix B is similar to Tablé except that it shows the

actual (un-normalized) critical path delay values.

4.5 Summary

The «perimental frameork and the CAD tools used for mapping the benchmark

circuits to diferent architectures were described in this chapitee architecture

73

CAD Tools and Experimental Evaluation Framework

evaluation metrics were discussed and the benchmark circuits used were presented. In this
research, particular attention was paid to the development of architecture-specific
inter-FPGA routing algorithms, which were discussed in detail. The routing algorithm
developed for the partial crossbar is shown to give excellent results across all the
benchmark circuits.

A static timing analysis tool for measuring the speed performance of different MFS
routing architectures was described and a timing-driven routing algorithm for the hybrid
architectures was presented. To our knowledge, this is the first board-level study of MFS
routing architectures that uses such detailed timing information for measuring their speed
performance.

The experimental evaluation framework and the CAD tools presented in this chapter
were used to map the benchmark circuits to different routing architectures. The
architectures were then evaluated and compared on the basis of pin cost and speed metrics.

The evaluation and comparison results and their analysis are presented in the next chapter.

74

Chapter

Evaluation and Comparison
of Architectures

In this chapter the key experimental results obtained in this research and their analysis
are presented. Several routing architectures are evaluated and compared. The key
architecture parameters associated with the partial crossbar and the hybrid architectures
are explored in Section 5.1. In Section 5.2 to Section 5.5 we compare the best among
different classes of architectures to find the best overall architecture. We could have
compared all the architectures explored in one Section, but we did not do that because we
wanted to provide insight into the strengths and defects of each architecture. Two popular
existing architectures, the 8-way mesh and the partial crossbar, are compared in Section
5.2. The new HCGP architecture is compared to the partial crossbar architecture in
Section 5.3. The HTP architecture is compared to the HCGP architecturein Section 5.4. In
Section 5.5 the HWCP architecture, which is suitable for hierarchical implementation of
MFSs, is compared to the HCGP architecture.

5.1 Analysis of Routing Architectures

In this Section the key architecture parameters associated with the partial crossbar and
the hybrid architectures are explored. The goal is to determine the values of the key

parameters in each architecture that give the best routability and speed results.

75

Evaluation and Comparison of Architectures

5.1.1 Partial Crossbar: Analysis of P,

Recall the defition of P, the number of pins per subsetvan in Section 3.3.fs

important because, depending on its size eitbgr lge FPIDs are needed cery mary

FPIDs are required. In this Section welere the dect of R on the routability and speed
of the partial crossbar architecture. THeé&n benchmark circuits were mapped to the
partial crossbar architecture, using the CA@fdescribed in Section 4.1, for three
different \alues of P(4, 17, 47). Thealues 4 and 47 ar&teeme cases (resulting in either

mary small FPIDS or f& very lage FPIDs) and thealue of 17 gies a reasonable sized

FPID as discussed in Section 3.3.

Normalized post-routing critical Normalized post-routing critical path
Circuit | #FPGAS path delay using PCROUTE delay using FPSROUTE
P, =47 P =17 P, =4 P, =47 P, =17 P, =4
s$35932 8 1.0 1.0 1.0 1.0 1.42 1.42
s38417 9 1.0 1.0 1.0 1.0 1.27 1.27
s38584 9 1.0 1.0 1.0 1.0 1.17 1.17
mips64 14 1.0 1.0 1.0 1.0 1.00 1.09
spla 18 1.0 1.0 1.0 1.38 1.46 1.62
cspla 18 1.0 1.0 1.0 1.24 1.24 1.36
mac64 6 1.0 1.0 1.0 1.0 1.0 1.0
sort8 12 1.0 1.0 1.0 1.09 1.14 1.22
firl6 10 1.0 1.0 1.0 1.0 1.03 1.03
gra 4 1.0 1.0 1.0 1.0 1.0 1.0
fpsdes 9 1.0 1.0 1.0 1.0 1.0 1.24
spsdes 8 1.0 1.0 1.0 1.0 1.0 1.10
ochip64 8 1.0 1.0 1.0 1.0 1.0 1.0
ralu32 9 1.0 1.0 1.0 1.0 1.04 Routing
failure
iirl6 6 1.0 1.0 1.0 1.0 1.0 1.00
Average 10 10 10 1.05 112 1.19

Table 5-1: The Efect of R on the Delay of thed?tial Crossbar Architecture

76

Evaluation and Comparison of Architectures

We used tw routing algorithms to do thesgperiments: FPSRUTE (described in
Section 4.4.4), which empyed a som&hat generic maze-routing algorithm, and
PCROUTE (described in Section 4.4.4), which used a algorithm that $paityf
addressed the nature of a partial crossbar

The efect of R on the critical path delay of the partial crossbar isvshio Table5-1.
The first column shas the circuit name. The second columvegithe number of FPGAs
needed to implement the circuit. POBTE gwves the same critical path delagiwe for
each circuit for all threealues of R. Therefore, the critical path delay obtained by
PCROUTE is set as 1. Columns 3 to 5 shthe normalized post-routing critical path
delay obtained for the circuit using PORTE for the threealues of R The columns 4 to
6 shav the normalized post-routing critical path delay obtained using BRSE for the
three \alues of R Table B-3 in Appendix B is similar toable5-1 except that it shws the
actual (un-normalized) critical path delagiwes.

The frst clear conclusion is that Ras no impact on the routability of the partial
crossbarbecause all the circuits were routable by PORE for all the Pvalues used.
The same as true for FPSBUTE as well gcept for the routingdilure in one circuit
(ralu32) for the R = 4 case. An interesting point that folle from this conclusion is that
we do not need connections between FPIDs, as proposed in [Icub94], towentipeo
routability of the partial crosshar

Obsene that the PCRUTE algorithm, which is tuned for the partial crossbar
architecture, gies the same delayhue irrespecte of the alue of R. This shas that it is
able to tackle the increased conxitie of the routing task when we usery small alues
of P, with no aderse efects on routability or speed.

We include the results for FPORITE to warn of the danger of using an inappropriate
algorithm for the partial crossbar: here thieeff of R on speed is quite sigroant, the
delay increases as thalue of R decreases.df B, = 4, average increase in delay using
FPSROUTE is 19% across all circuits, and 62% more in thesiwcase.

The partial crossbar is @&y rolust architecture that aills us to use a wide range of

P; values without ayrpenalties on routability and speed.

77

Evaluation and Comparison of Architectures

% nets routed

100.00 |) | 85982
38417
99.00 = —|pEEd
98.00 (— —| mips64
97.00 — _| la
cspla
96.00 — —1 ‘macé4
95.00 — _| sort8
firle
94.00 — B -
gra
93.00 — — tpsdes™ "
92.00 —| Spsdes
ochip64
91.00 — Tl
90.00 |- | ‘ ‘ ‘ L Tir1ie
20.00 30.00 40.00 50.00 60.00

Figure 5-1: The Effect of P, on the Routability of the HCGP Architecture

We will use P; = 17 when comparing the partial crossbar to the other routing
architectures because this value gives good routability and speed and requires reasonable
sized FPIDs.

5.1.2 HCGP Architecture: Analysis of P,

Recall the definition of P, given in Section 3.4.1, which is the percentage of pins per
FPGA used for programmable connections in the hybrid architectures. P, is important
because it potentially affects the cost, routability and speed of the hybrid architectures. If
Py istoo high it will lead to increased pin cost because more programmable connections
arerequired. If Py istoo low it may adversely affect the routability.

Here we explore the effect of P, on the routability and speed of the HCGP
architecture. We mapped the fifteen benchmark circuits to the HCGP architecture using
five different values of P, (20, 30, 40, 50, 60). We do not route for other values of P,
because we believe that would need greater time and effort without giving more accurate

results. For example, it ismost likely that the percentage of nets routed at P, = 55% would

78

Evaluation and Comparison of Architectures

be in between the percentage of nets obtaineg atd®% and p= 60%. The results are

shown in Figure 5-1, in which the-#xis represents the percentage of HRBGA nets

successfully routed for each circuit and the X-axis represgnie first clear conclusion

is that B = 60% gves 100% routability for all the benchmark circuits. Notice that about

two thirds of the circuits routed apR 40%, and for the remaining one third, more than

97% of the nets routed. This implies that there is a potential for obtaining 100% routability

for all circuits at B = 40% if we use a routability deen partitioner lile the one used in

[Kim96]. We believe this will lead to further reduced pin cost for the HCGP architecture,

but leave it as an area for futureonk.

We conjecture that the,Ralue required for routing completion of aven circuit on

the HCGP depends uponvavell the circuit structure ‘matches’ the topology of the

architecture.

Post Routing Critical Path Delay (ns)
Circuit
P, =20 P, =30 P, =40 P, =50 p =60

35932 unroutable | unroutable 53 53 53
s38417 87 94 94 94 94
s$38584 unroutable 96 96 98 98
sort8 unroutable | unroutable unroutable 460 499
firle 147 160 163 167 167
gra 57 57 57 57 57
fpsdes unroutable 173 176 176 176
spsdes unroutable | unroutable 192 205 205
ochip64 50 50 50 50 50
iirl6 143 143 143 152 152

Table 5-2: The Efect of on the Delay of the HCGP Architecture

We also inesticated the décts of B on the post-routing critical path deldable5-2

shaws the ten circuits that routed fo|5 R 60%. Theifst column shass the circuit name.

In subsequent columns, the critical path delay of each circuit ferefit \alues of B (20,

30, 40, 50, 60) is shn. A surprising conclusion is thaverall, the lover B, values hae

79

Evaluation and Comparison of Architectures

no signifcant efect on the critical path delagompared to the delayle at B = 60%,
for lower R, values, the delay either remained the same or decreased slightly (only 4% less
on average and 12% less in the best case).

For the circuits in which the delayas reduced, asyRlecreased one or more
programmable connections on the critical paths were replaced by the more plentiful and
faster hardwired connections. Note that ggsPeduced, more hardwired connections are
available. For circuits in which the delay remained the samegrisents’ on the critical
path are part ofery high finout nets that wa to be routed using FPIDs because of the
lack of free pins in FPGAs. These free pins are required for routing multi-terminal nets
using only hardwired connections. Therefoneerethough more hardwired connections
are aailable at lover values of B, they cannot be used for routing the multi-terminal nets
on the critical path.

We will use B = 60% when comparing the HCGP to the other routing architectures

because thisalue gves good routability and speed.

5.1.3 HTP Architecture: Analysis of P

We also &plored the efect of R, on the routability of the Hybrid drus
Partial-Crossbar (HTP) architecture. As in the case of HGRdifteen benchmark
circuits were mapped to the HTP architecture usirgydifferent \alues of B. The results
are shavn in Figure 5-2, where the-&xis represents the percentage of HREBGA nets
routed and the X-axis represents Rs in the case of HCGI®, = 60% gves 100%
routability across all circuits. The routability of the HTP architecturejelaer, is not as
good as that of the HCGP architecture. Comparing Figure 5-1 and Figure 5\ &rdmgea
percentage of nets routed across all the circuits is higher for the HCGP compared to the
HTP architecture. & example, the percentage of nets routed for all circuits for 80%

ranges from 93% to 100% for HCGi®mpared to 86% to 100% for HTP

5.1.4 HWCP Architecture: Analysis of P, and Cg
Recall from Section 3.4.3 that in the Hardwired-Clustei® Crossbar (HWCP)
architecture, the FPGAs are grouped into clusters whose size is represented by a parameter

called the cluster size {C All the FPGAs within each cluster are connected to each other

80

Evaluation and Comparison of Architectures

nets routed

100.00 — ———" | AT
98.00 I~ - =" _|mEssa
mips64~
96.00 |— e -
Tspla
94.00 |— _ | Csple
mac64
92.00 — _| sort8
firle
90.00 — —graT
88.00 — —| fpsdes
spsdes
86.00 — 1 "ochipéa™
ralu3z
84.00 — —| Tir1ie
82.00 — |
80.00 — |
! ! ! ! ! Pp

Figure 5-2: The Efect of R, on the Routability of the HTP Architecture

in a complete graph topology using the hardwired connections. Each FPGA is connected
to every other FPGA through FPIDs (programmable connections), as in the partial
crossbar architecture.

The cluster size Gand the percentage of programmable connectignar® important
parameters in the HWCP architecture. In this sectionxpeoee the efect of R, on the
routability of the HWCP architecture for threalwes of G (2, 3, and 4). Our objegt is
to determine suitablealues of G and R that gve good routability at the minimum
possible pin cost.

The efect of B, on the routability of the38417 circuit (for three alues of Q) is
illustrated in Figure 5-3. The-&xis represents the percentage of HieGA nets routed
and the X-axis represents thelwe of B. Routing completion as obtained at = 40%
for Cs =4, B, = 50% for G = 3, and B = 70% for G = 2. In Figure 5-3 the identgr
“Cs4_Nf12” indicates that the speeidl cune is for the G= 4 case and the MFS size
(number of FPGAS) is 12. Recall from Section 3.4.3 that the MFS size must be a multiple
of C4in the HWCP architecture.

81

Evaluation and Comparison of Architectures

% of inter-FPGA nets routed

100.00 |- ‘ - -] Ssa NP2
CS3 N9
.- Cs2 Nfi0
95.00 — T |
90.00 — —
85.00 |- —
80.00 |- —
.
75.00 — —
70.00 — —
! ! ! ! ! ! ! Pp
30.00 40.00 50.00 60.00 70.00 80.00 90.00

Figure 5-3: The Effect of P, on Routability of HWCP Architecture (s38417 circuit)

The P, values required for routing completion across all circuits for the three values of
Cs, are shown in Table 5-3. The first column shows the circuit name and the second
column shows the number of FPGAs needed to fit the circuit on HWCP for the three
values of Cg. The third column shows the minimum value of P, required for routing
completion of the circuit in HWCP for three values of Cg. The results from Figure 5-3 and
Table 5-3 show that the best routability results for the HWCP architecture (with the lowest
possible P, value to minimize the pin cost) are obtained when Cs = 4 and P, = 60%. The
percentage of circuits that routed for P, < 60% were 20% for Cs = 2, 60% for Cs=3 and
80% for C4= 4.

Number of FPGAs M '”'m”rf;“u‘t’if:'] UZ);PT ertieg:lred for
Circuit g P
CS:Z CS:3 CS:4 CS:2 Cs:3 C3:4
35032 8 9 5 - = —
38417 10 9 12 70 50 40

Table 5-3: The Minimum P, Value Required for Routing Completion in HWCP

82

Evaluation and Comparison of Architectures

Number of FPGAS Minimum vglueof Pp rt:-:quiredfor
Circuit routing completion
Cs=2 Cs= Cs=4 Cs=2 Cs=3 Cs=4
$38584 10 9 12 70 60 60
mips64 16 15 16 80 70 60
spla 18 18 20 100 100 100
cspla 18 18 20 100 100 100
mac64 6 6 8 80 50 60
sort8 14 15 16 70 70 60
firl6 10 12 12 70 40 40
gra 4 6 4 60 40 20
fpsdes 10 9 12 70 60 40
spsdes 8 9 8 70 60 60
ochip64 8 9 8 40 40 20
ralu32 16 15 16 100 80 70
iirl6 6 6 8 50 40 40
Number of circuitsrouted at Pp < 60% 3of 15 9of 15 12 of 15
(20%) (60%) (80%)

Table 5-3: The Minimum B, Value Required for Routing Completion in HWCP

The clear conclusion from these results is that@ and B = 60% are suitable
choices for achMng good routability at the minimum possible pin cost in the HWCP
architecture. Note that we did not get routing completion in the HWCP architecture for 3
out of 15 circuitsAlthough we did not explore the routability of HWCP fog > 4, we
expect that it will continue to improve &% increases relative to the MFS sikiote that
when G equals the MFS size, the HWCP architecture reduces to the HCGP architecture.

For R, = 100%, the HWCP architecture reduces to the partial crossbar architecture.

5.2 Comparison of 8-way Mesh and Partial
Crossbar Architectures

In this section we compare the &ymesh architecture with the partial crossbar

Table5-4 presents the results obtained after mappfteph benchmark circuits to the

83

Evaluation and Comparison of Architectures

8-way mesh and partial crossbar architectures. iFsiecblumn shas the circuit name,

the second column siws the number of FPGAs needed to implement the circuit, and the
third column shws percentage of nets routed, in each architecture. The fourtiftand f
columns shw pin cost (dehed in Section 4.2.1) and post-routing critical path delay
(defined in Section 4.2.2) respeelly, obtained for each architecture.

Recall from Section 3.3 and Section 5.1.1 that we set in all eperiments for
comparing the partial crossbar to the other architectures.

Notice that the partial crossbar isvalys routable after the first partitioning attempt for
each circuit. Onlyife of the ifteen benchmark circuits were routable on theeB~mesh
even after mapping attempts with increased array sizes. adteliat so fe& circuits
successfully routed indicates a basiwflaith the mesh architectures.

The mesh architectureailied for the majority of circuits due to a number of reasons.
First, the locality wailable in intefFPGA netlists for real circuits is not great enough for
the nearest neighbor connections. Second, there are not enough freeapaideafor
routing the non-local and multi-terminal nets. Routing such nets uses yfneaipins in
FPGAs. ler example, consider the routing of non-local and multi-terminal nets illustrated
in Figure 5-4. A non-local terterminal net uses up pins in the intermediate FPGA as
illustrated in Figure 5-4(a). This problem becomesse as the array size increases.

Multi-terminal net routing requiresxera FPGA pins to connect the source to multiple

Post-routing
Number of FPGAs % netsrouted Pin cost critical path delay
Circuit (inns)
8-way Par. 8-way Par. 8-way Par. 8-way Par.
mesh Cross. | mesh | Cross. mesh Cross. mesh Cross.
s35932| 12 (3 X 4) 8 100 100 2304 3428 51 57
s38417| 12 (3 X 4) 9 100 100 2304 3807 124 94
s38584 | 30 (5 X 6) 9 100 100 5760 3807 217 139
mips64 | >48 (6 X8)| 14 92 100 > 9216 5646 | Rout. fil- 462
ure
spla | >48(6X8)| 18 90 100 > 9216 7218 | Rout. fil- 196
ure

Table 5-4: Comparison of the 8-ay Mesh and &tial Crossbar Architectures

84

Evaluation and Comparison of Architectures

Post-routing
Number of FPGAs % netsrouted Pin cost critical path delay
Circuit (inns)
8-way Par. 8-way Par. 8-way Par. 8-way Par.
mesh Cross. | mesh | Cross. mesh Cross. mesh Cross.
cspla | >40(5X8)| 18 85 100 > 7680 7218 | Rout. fil- 193
ure
mac64 | >18 (3 X 6) 6 77 100 > 3456 2760 | Rout. fil- 623
ure
sort8 | >28 (4 X7) 12 80 100 > 5376 4944 | Rout. fil- 533
ure
firlé | >25(56X5)| 10 96 100 > 4800 4944 | Rout. fil- 238
ure
gra 4(2X2) 4 100 100 768 1912 60 70
fpsdes | > 18 (3 X 6) 9 88 100 > 3456 3807 | Rout. fil- 227
ure
spsdes | > 15 (3 X 5) 8 84 100 > 2880 3428 | Rout. fil- 249
ure
ochip64| 8 (2X4) 8 100 100 1536 3428 47 63
ralu32 | >30 (5 X 6) 9 87 100 > 5760 3807 | Rout. fil- 317
ure
iirl6 >15((3X5) 6 89 100 > 2880 2760 | Rout. fil- 160
ure
Avg.: Avg: Avg.: Avg.: Total: Total:
>23 10 91.2 100 > 67392 | 62914

Table 5-4: Comparison of the 8-ay Mesh and &tial Crossbar Architectures
sinks as depicted in Figure 5-4(b). The problem becomes maeeesas the neahout
increases.

It was initially surprising toihd no success when the mesh sizswpanded in an
attempt to obtain routing completion. Clearly thegker mesh has more free pins.
However, since the array is Iger, this in turn leads to an increase werge wire length
and more inteFPGA nets, partially nullifying the adutage of increased free pins.

These results smothe partial crossbar architecture is superior to theag-wesh
architecture.

The delay results skothat for small array sizes, the &ywmesh gies better speed

than the partial crossbar (for the circlgd$932, gra andochip64). This is because some

85

Evaluation and Comparison of Architectures

FPGA FPGA FPGA FPGA FPGA FPGA
|src sink
src
FPGA FPGA FPGA FPGA FPGA FPGA
sink sink sin sink
FPGA FPGA FPGA FPGA FPGA FPGA
(@ (b)

Figure 5-4: Routing in the Mesh (a) Non-local Net (b) Multi-terminal Net

or all the nets on the critical paths may utilize direct connections between FPGASs that are
faster than connections that go via FPIDs. But the speed deteriorates as the array sizes get
bigger, because the critical netstravel through many FPGAS.

With respect to cost, for the same number of FPGAS, the partial crossbar always needs
twice as many pins as an 8-way mesh. For 4 out of 15 circuits the 8-way mesh hasless pin
cost compared to the partial crossbar architecture. On average across all the circuits, the
pin cost will be more for the 8-way mesh. Thisis because of the very large array sizes that
will be required to make many circuits routable on the 8-way mesh.

Mesh architectures should be avoided if the goal is to implement a wide variety of
circuits on MFSs. Although meshes and linear arrays have been used successfully in
practice [Arno92, Vuil96], they were successful only for implementing algorithms that
match the mesh topology, which implies they require mostly nearest neighbour type of
connections between FPGAs. We also note that meshes can be used successfully when the
FPGA pins are time division multiplexed [Babb97], but this results in a substantial
reduction in speed.

5.3 Comparison of HCGP and Partial Crossbar

In this section we compare the HCGP architecture to the partial crossbar architecture.
The benchmark circuits were mapped to the partial crossbar and HCGP architectures

using the experimental procedure described in Section 4.1. The results obtained are shown

86

Evaluation and Comparison of Architectures

in Table5-5, in which the first column stws the circuit name. The second columnveho
the number of FPGAs needed for implementing the circuit on each architecture (recall that

we increase the MFS size until routing is successft. third column shas the pin cost

Normalized post-
Number of FPGAs | Normalized pin cost routing

Circuit critical path delay

crobar | MCOP | crombar | MOOF | crombar | OGP
s35932 8 8 1.25 1.0 1.08 1.0
s38417 9 9 1.25 1.0 1.00 1.0
s38584 9 9 1.25 1.0 1.42 1.0
mips64 14 15 1.16 1.0 1.11 1.0
spla 18 18 1.25 1.0 1.16 1.0
cspla 18 18 1.25 1.0 1.18 1.0
mac64 6 6 1.25 1.0 1.34 1.0
sort8 12 14 1.07 1.0 1.07 1.0
firle 10 10 1.25 1.0 1.43 1.0
gra 4 4 1.25 1.0 1.23 1.0
fpsdes 9 9 1.25 1.0 1.29 1.0
spsdes 8 8 1.25 1.0 1.21 1.0
ochip64 8 8 1.25 1.0 1.26 1.0
ralu32 9 14 0.80 1.0 1.21 1.0
iirl6 6 6 1.25 1.0 1.05 1.0
Average 10 10 1.20 1.0 1.20 1.0

Table 5-5: Comparison of the HCGP anaflal Crossbar Architectures

normalized to the number of pins used by the HCGP architecture and the fourth column
shavs the normalized critical path delay obtained for each architectabde B-4 in
Appendix B shws the actual (un-normalized) pin cost and dekayes from which the
normalized @alues in &ble5-5 are dexied.

For the reasons discussed in Section 3.3 and Section 5.1.1, we=s&7 For the

partial crossbar architecture. Thelwe of B for the HCGP architectureas set to 60% to

87

Evaluation and Comparison of Architectures

obtain good routability across all circuits, as discussed in Section 5.1.2. Notice that the
parameter Palso applies to the programmable connections in the HEGRhe same
reasons as in the partial crosshvee chose = 14 for the HCGP architecture.

In reviewing Table5-5, consider the circuinipsé4. The frst partitioning attempt
resulted in 14 FPGAs required to implement the circuit on the partial crosshaver,
the circuit vas not routable on the HCGP and the partitioniag vepeated after reducing
the number of pins per FPGA speed to the partitioner by 5%. This resulted in 15
FPGAs required to implement the circuit. The second partitioning atteagptoutable on
the HCGP architecture because more ‘free pins’ weaigadle in each FPGA for routing
purposes. The pin co#tr the partial crossbar was still more than that for the HCGP
because it uses many more programmable connections, and hence more FPID pins. A
partial crossbar always requires one FPID pin for every FPGA pin; the HCGP architecture
requires a lower ratio, (0.6: 1) as implied by the setting of the paraRyete80%.

Inspecting able5-5, we can mak several obserations. First, the partial crossbar
needs 20% more pins oxegiage, and as much as 25% more pins compared to the HCGP
architecture. ClearJythe HCGP architecture is superior to the partial crossbar architecture
in terms of the pin cost metric. This is because the HOXpRors direct connections
between FPGAs to ga FPID pins that wuld have been needed to route certain nets in the
partial crossbarHowever, for routability purposes, the HCGP needs some free pins in
each FPGA and may require repeated partitioning attempts for some circuits.

Table5-5 also shws that the typical circuit delay iswer with the HCGP
architecture: the HCGP\gs signiicantly less delay for tweéscircuits compared to the
partial crossbar and about the same delay for the rest of the circuits. The reason is that the
HCGP utilizes &st and direct connections between FPGAs, wiareossible. From the
delay \alues in &ble4-3, we can she that the interconnection delay is much smaller
(12.6 ns) if we use direct connections between FPGAs compared to the alaay25.6
ns) when connecting WPGAs through an FPID. Another interesting olestéon is that
even for the circuits where the HCGP needs more FPGAs compared to the partial crossbar

it still gives comparable or better delagiwe. This clearly demonstrates that the HCGP

88

Evaluation and Comparison of Architectures

architecture is inherentlyater due to theakter hardwired connections. livgs a
significant speed adwntage, especially when we use timingaeini interkFPGA routing.

The superior speed of the HCGP architecture can be potentially crucial to ASIC
designers who use MFSs as simulation accelerators, to ruretéstsyon ASIC designs.
According to one designer [Mont98lven a 10% increase in clock speedesywuseful
because it enables the designers to rurymaore test gctors in the same amount of time,

thus impreing the design quality and reliability

5.4 Comparison of HTP and HCGP Architectures

A comparison of the HTP and HCGP architectures is presenteabla5F6, which
has a format similar toable5-5. Table B-5 in Appendix B is similar toable5-6 except
that it shavs the actual (un-normalized) pin cost and dekdyes.

Across all circuits, the HTP architecture needs 13% more pinserage, and as
much as 74% more, compared to the HCGP architecture. The HCGP architecture is
superior to HTP because it has better routiegbility. The hardwired connections are
utilized more diciently in the complete graph topology (used in the HCGP) compared to
the torus topology (used in the HTPyriexample, in the HCGP the shortest path between
ary pair of FPGAs can be obtained by utilizingyamtermediate FPGA outside the pair

Normalized
Number of Normalized pin post-routing
FPGAs cost critical path

Circuit delay

HTP | HCGP | HTP HCGP | HTP | HCGP

$35932 9 8 1.12 1.0 1.0 1.0
s38417 9 9 1.0 1.0 0.94 1.0
$38584 9 9 1.0 1.0 1.15 1.0
mips64 16 15 1.07 1.0 0.96 1.0
spla 30 18 1.74 1.0 1.37 1.0
cspla 25 18 1.39 1.0 1.25 1.0

Table 5-6: Comparison of the HTP and HCGP Architectures

89

Evaluation and Comparison of Architectures

Normalized
Number of Normalized pin post-routing
FPGAs cost critical path

Circuit delay

HTP | HCGP | HTP | HCGP | HTP | HCGP

mac64 8 6 1.33 1.0 1.14 1.0
sort8 14 14 1.0 1.0 1.07 1.0
firl6 12 10 1.20 1.0 1.18 1.0
gra 4 4 1.0 1.0 1.05 1.0
fpsdes 9 9 1.0 1.0 1.13 1.0
spsdes 8 8 1.0 1.0 1.13 1.0
ochip64 8 8 1.0 1.0 1.26 1.0
ralu32 16 14 1.14 1.0 1.24 1.0
iirl6 6 6 1.0 1.0 1.0 1.0
Average 12 10 113 1.0 113 1.0

Table 5-6: Comparison of the HTP and HCGP Architectures

contrast, the shortest path between some pairs of FPGAs in the HTP can be obtained by
utilizing only two intermediate FPGAs outside the pdinis is illustrated in Figure 5-5,
where the shortest path for connecting FPGAs 0 and 8 can utilize either FPGA 2 or FPGA
6.

Another reason for inferior routability of the HTP is that there is not enough locality in
the post-partitioning and placement netlists of real circuits that couldpbeited by
using the local hardwired connections in the architecture.

Table5-6 also shars that across all the circuits, the critical path delay of the HTP is
13% more on\erage and up to 37% more compared to the HGB&re are tw reasons
for this: rst the HTP uses more FPGAs for some circuits, which implies more partitions
and magy more slover off-chip connections. Second, not all critical nets connecting pairs
of FPGAs can be routed using hardwired connections in the IHTire HGCPsuch nets
have a better chance of using hardwired connections because of the complete graph

topology which pravides hardwired connections between arbitrary pair of FPGASs.

90

Evaluation and Comparison of Architectures

3 4 5
| | |

(FPéSA FPGA FPGA)
7 8

Figure 5-5: Hardwired connections in the HTP architecture

HTP Compared to the Partial Crossbar
Comparing the average pin cost and critical path delay for HTP and partial crossbar

architectures (relative to the HCGP architecture) from Table 5-6 and Table 5-5, we can
conclude that the HTP architecture is marginally better than the partial crossbar. Acrossall
circuits, the average pin cost as well as delay is 13% more for HTP (relative to HCGP), in
contrast to the partial crossbar in which the average pin cost as well as delay is 20% more
(relative to HCGP).

5.5 Comparison of HWCP and HCGP Architectures

Recall from Section 3.4.3 that the HWCP is a hierarchical architecture in which the
FPGAs are divided into clusters and the FPGAs within each cluster are connected using a
complete graph topology. Also recall that the motivation behind this architecture is to
combine the routability and speed advantages of the HCGP architecture with easier
manufacturability. To investigate the efficacy of the HWCP architecture in meeting the
design goals, we mapped the benchmark circuitsto this architecture and compared it to the
HCGP architecture. We set P, = 60% and Cg = 4 for the HWCP architecture to obtain good
routability as discussed in Section 5.1.4.

The mapping results are shown in Table 5-7. Table B-6 in Appendix B is similar to
Table 5-7 except that it shows the actual (un-normalized) pin cost and critical path delay

values.

91

Evaluation and Comparison of Architectures

Normalized post-
Number of . . .
FPGAS Normalized pin cost N routing
critical path delay
Circuit
HWCP HWCP HWCP
HCGP HCGP HCGP
(Cs=4) (Cs=4) (Cs=4)
35932 8 8 1.0 1.0 1.08 1.0
38417 12 9 1.33 1.0 1.18 1.0
$38584 12 9 1.33 1.0 1.20 1.0
mips64 16 15 1.07 1.0 0.99 1.0
spla 20 18 routing 1.0 routing 1.0
failure failure
cspla 20 18 routing 1.0 routing 1.0
failure failure
mac64 8 6 1.33 1.0 1.15 1.0
sort8 16 14 1.14 1.0 1.15 1.0
firl6 12 10 1.20 1.0 1.19 1.0
gra 4 4 1.0 1.0 1.0 1.0
fpsdes 12 9 1.33 1.0 1.29 1.0
spsdes 8 8 1.0 1.0 1.15 1.0
ochip64 8 8 1.0 1.0 1.26 1.0
ralu32 16 14 routing 1.0 routing 1.0
failure failure
iirl6 8 6 1.33 1.0 1.11 1.0
Average 12 10 117 10 115 10

Table 5-7: Comparison of the HWCP and the HCGP Architectures
Table5-7 shavs that the HWCP architecturaifed to route three of théfteen

benchmark circuits. dt the twele circuits that routed on the HWQRe pin cost is 17%

more on g&erage, and up to 33% more compared to the HCGP architecture. The increase
in pin cost is partly due to thadt that the HWCP required more FPGAs for some circuits

to male the MFS size (measured by the number of FPGASs) a multiple of the cluster size

(Cs=4). The other reason is that the HCGP has superior routability compared ta HWCP

92

Evaluation and Comparison of Architectures

For the twelve circuits that routed on HWCP, the critical path delay is 15% more on
average, and up to 29% more compared to the HCGP architecture. The reasons for this
are: first the HWCP uses more FPGASs for some circuits, which implies more partitions
and many more slow off-chip connections, some of which may lie on the critical path.
Second, unlike the HCGP not all critical nets connecting pairs of FPGAs can be routed
using hardwired connections in the HWCP.

Despite some routing failures, the routability results for HWCP are quite encouraging
for the following reasons: first, we did not try higher cluster sizes (relative to the MFS
size). Recall from Section 5.1.4 that the routability of the HWCP architecture improves
with the increase in cluster size. Second, the partitioning and placement methods used for
the HWCP architecture were not the best possible. Architecture-driven partitioning and
placement methods may give better routability results.

Due to the reasons given above, we conclude that the HWCP architecture has the
potential to provide good routability, speed, and manufacturability. Unlike the HCGP
architecture which is the most suitable for single-board MFSs, HWCP lends itself to
hierarchical implementations of large MFSs that use hundreds of FPGASs distributed
across multiple boards. Such large MFSs are currently used for emulating complex ASICs

and microprocessors [Quic98].

HWCP Compared to HTP
Comparing the average pin cost and critical path delay for HWCP and HTP

architectures (relative to the HCGP architectures) from Table 5-6 and Table 5-7, we can
conclude that the HTP is marginally better than the HWCP. Across all circuits, the average
pin cost for HTP is 1.13 (compared to 1.17 for HWCP) and the average delay is 1.13
(compared to 1.15 for HWCP). Moreover, HTP obtained 100% routability across all
circuits in contrast to HWCP which failed to route three circuits. While it is possible that
larger cluster sizes may improve the results for HWCRP, it is also likely that better
locality-enhancing partitioning tools will further improve the results for HTP. To
conclude, for large hierarchical MFSs, both HTP and HWCP architectures should be

investigated to determine which architecture gives the best results. From the results

93

Evaluation and Comparison of Architectures

obtained in our research, both architectures seem to be promising candidategefor lar
MFSs.

5.6 Summary

Several MFS routing architectures wereatiated and compared in this chapten
experimental approach as used and real benchmark circuits were eggdo The
architectures were compared on the basis of pin cost and post-routing critical path delay
metrics.

The key parameters associated with the partial crossbar and/lhigl larchitectures
were &plored. The partial crossbar is ary rolust architecture because théeet of
varying a ley architecture parameter@n the routabilityspeed, and cost is mindihis
is contingent, hwever, on using an appropriate irtEPGA routing algorithm.

A key parameter associated with thgbhid architectures, 2 was eplored and it \as
experimentally determined that,® 60% gves good routability across all the benchmark
circuits. In the Rbrid architecture HWCHn addition to B, the cluster size Js an
important paramete¥Me experimentally determined that,& 4 gives good routability for
the HWCP architecture.

The partial crossbar is one of the begsting architectures and is theyktechnology
behind commercially\ailable MFSs [Quic98]. W shaved that the partial crossbar is
superior to the mesh architecture. The main reason behind inferior results for the mesh
architecture is that the FPGAs are used for both logic andRR@A routing. This causes
routability problems that cannot be sedveven after increasing the mesh size in order to
fit a circuit.

We shaved that one of the mdy proposed Wbrid architectures, HCGIs superior to
the partial crossbaAcross all the benchmark circuits, the pin cost of the partial crossbar
is on average 20% more than themedCGP architecture and up to 25% more.
Furthermore, the critical path delay for the benchmark circuits implemented on the partial

crossbar were orvarage 20% more than the HCGP and up to 43% more.

94

Evaluation and Comparison of Architectures

The HTP architecture was shown to be inferior to the HCGP and only marginally
better than the partial crossbar and the HWCP. The HWCP architecture was evaluated
compared to the HCGP architecture and gave encouraging routability and speed results.
From the scalability point of view, both HTP and HWCP architectures are suitable for
implementing large MFSs implemented using multiple boards.

Overall, the results show that for single-board MFSs, the HGCP is the best among all
the MFS routing architectures evaluated.

We end this Chapter with a cautionary note. The quality of the architectural results
obtained depends upon the quality of the CAD tools used. To obtain the best possible
results, we used the best possible tools that we could develop or acquire in the time
available. There is always a scope for improvements in the CAD tools. For example, it
would have been better to use architecture-driven partitioning and placement for
architectures that have some notion of adjacency, such as the mesh, HTP, and HWCP.
While there may be minor improvements in the routability and speed results, we do not
expect our architectural conclusions to change radically after using such tools. For
example, an architecture-driven partitioner was used to map circuits to the mesh
architecture in [Kim96], but the results for the mesh were still significantly worst
compared to the other architectures evaluated, such as the partial crossbar and the

tri-partite graph.

95

Chapter

Conclusions and Future
Work

6.1 Dissertation Summary

In this dissertation we evaluated and compared existing as well as new MFS routing
architectures by using a rigorous experimental approach that employed real benchmark
circuits. Thisresearch provides new insight into the strengths and the weaknesses of some
popular existing routing architectures. New hybrid architectures, that use a mixture of
hardwired and programmable connections, were proposed and shown to be superior to one
of the best existing architectures.

In Chapter 3, all the MFS routing architectures explored in this research were
described. The architectures are the 8-way mesh, the partial crossbar and the three hybrid
architectures, HTP, HCGP and HWCP. The architectural issues and assumptions that arise
when mapping real circuits to the architectures were discussed.

In Chapter 4, the experimental framework and the CAD tools used for mapping the
benchmark circuits to different architectures were described. The architecture evaluation
metrics (pin cost and post-routing critical path delay) were discussed and the benchmark
circuits used were presented. In this research, particular attention was paid to the
development of architecture-specific inter-FPGA routing algorithms, which were

discussed in detail. A static timing analysis tool for measuring the speed performance of

96

Conclusions and Future Work

different MFS routing architecturesa& described and a timing-ekn routing algorithm
for the tybrid architectures as presented.

Finally, in Chapter 5, & architecture waluation and comparison results and their
analysis were presented. They lparameters associated with the partial crossbar and the
hybrid architectures werexplored. ¢ shaved that the partial crossbavhich is one of
the best eisting architectures, is superior to the best mesh architectershwed that
one of the naly proposed ibrid architectures, HCGIB superior to the partial crossbar
Across all the benchmark circuits, the pin cost of the partial crossbar \&emyga 20%
more than the me HCGP architecture and 25% more in therst case. Furthermore, the
critical path delay for the benchmark circuits implemented on the partial crossbar were on
average 20% more than the HCGP and 43% more in tinstwase. The HTP architecture
was shan to be inferior to the HCGP and only mawally better than the partial crossbar
The HWCP architecture as ealuated compared to the HCGP architecture aave g

encouraging routability and speed results.

6.2 Principal Contributions

The principal contribtions of this dissertation are as folis

1. We proposedybrid architectures and demonstrated that Hre superior to one of
the best eisting architectures. Wexplored a ey parameter associated with the
hybrid architectures (ff and eperimentally determined its bestalue for
obtaining good routability at the minimum possible pin cost.

2. We shoved that the Hybrid Complete-Graphrial-Crossbar (HCGP) architecture
provides significant reductions in pin cost and delay compared to the partial
crossbar architecture.

3. We proposed the Hardwired-Clustemtial-Crossbar (HWCP) and Hybriebius
Partial-Crossbar (HTP) architectures that are potentially suitable fpe MFSs
implemented across multiple boards.

4. We dereloped an MFS static timing analysis tool thaswsed to estimate and
compare the speed performance ofedént MFS architecturesoTour knavledge,
this is the first time such detailed timing information has been used in the study of
board-lerel MFS routing architectures.

97

Conclusions and Future Work

5. We developed a timing-driven (board-level) inter-FPGA router for the hybrid
architectures that exploits the fast hardwired connections available to obtain good
speed performance.

6. We developed a new (board-level) inter-FPGA routing algorithm for the partial
crosshar architecture that gives excellent results for real benchmark circuits.

6.3 Future Work

In this section, we discuss promising topics for future research. These are categorized

into two broad areas: CAD tools for MFSs and future research in MFS architectures.

6.3.1 CAD Tools for MFSs

Recall from Section 5.1.2 that in the HCGP architecture all the circuits routed at P, =
60% and 97-100% of the nets routed across all the circuits for P, = 40%. Also recall from
Section 3.4.1 that lower values of P, imply reduced pin cost in the hybrid architectures. A
routability-driven partitioner may achieve routing completion for ailmost all circuits for
lower values of P,

It has been shown that instead of partitioning flat circuit netlists, if the circuit design
hierarchy information is exploited by the partitioning algorithm, significant reductionsin
both the number of FPGAs and the cut size can be obtained [Behr96, Fang98]. Utilizing
such partitioning algorithms may lead to better routability in the hybrid architectures that
use low values of P, (20-40%). This is because the reductions in cut size makes the
inter-FPGA routing problem easier, since more free pins are available for routing each
FPGA.

In addition to providing good quality results, the partitioning algorithms aso need to
be very fast to exploit the reconfigurable nature of MFSs. If the circuit partitioning itself
takes hours or even a few days for very large circuits, the utility of MFSs will be very
limited.

A simple timing model is used in our MFS timing analyzer (MTA) that assumes a
constant net delay independent of fanout for both intra-FPGA and inter-FPGA nets. A
timing model that accurately estimates the net delay based on fanout should be

investigated. It would also be interesting to compare the speed estimate given by MTA

98

Conclusions and Future Work

with the actual speed performance obtained on souastirg MFSs to ealuate the
accuray of the timing analysis tool. Also, for hierarchical architectures that use multiple
boards, the timing modelauld need to be modéd to consider the intdyoard routing
delay

Although not ceered in this dissertationa$t and déctive high-level synthesis tools
(in addition to layout synthesis tools) are indispensable for MFSs tovachidespread

utility as custom computing machines and logic emulators [Gall95, Knap96, Syno97].

6.3.2 Future MFS Routing Architecture Research

A major open problem in MFS architecture research is to findfactieé architecture
for large MFSs that use hundreds of FPGAs spread out across multiple boards. The
hierarchical HWCP architecture isiest step in this direction. It is not cledrovever, if
other topologies may gé better results.d¥ example, is it better to use intefuster
hardwired connections, in addition to intra-cluster hardwired connections? \Whiat e
suitable @alues of B and G (relatve to the MFS size) for such hierarchical architectures?
Suitable CAD tools andxé&remely lage benchmark circuits will be needed xplere such
architectures.

The virtual wires time-multipbang technique is used on the mesh architecture in
commercially sailable logic emulators [ks98]. One problem with the mesh architecture
is that it is \ery ineficient and sla for routing non-local and multi-terminal nets (as
discussed in Section 5.2). Using the virtual wires technique on the other architectures such
as the HCGP and completely connected graph mes miuch better speed results
compared to the mesh.

The HCGP is aery \ersatile architecture for single-board MFSs thaéegiecellent
routability and speed for aaviety of circuits. As the FPGA logic and pin capacities
continue to increase, it malsense to use single board systems using &ifgh capacity
FPGAs to &oid the problems associated with using high pin count connectors for
multi-board systems [v&98]. Except for high-end logic emulation, such systerogld/
cover most other applications in custom computing and rapid prototyping. A prototype

single board system based on the HCGP architecture shouldddepl and tested for

99

Conclusions and Future Work

different custom computing applications. It would be interesting to map the algorithms
originally used with linear arrays and meshes [Arno92, Vuil96] to the HCGP and compare
the logic utilization and speed results.

Finally, the relationship between the best architecture and the implementation
technology used is crucial. In the future, if MCMs and high pin count FPGASs using
flip-chip technology [Lan95] become commonplace, radically different routing

architectures (in contrast to board-level MFS routing architectures) may be required.

100

Appendix A

The Effect of Fixed I/0 Pin
Positioning on The Routability and
Speed of FPGAs

A.1 Introduction

As discussed in Section 4.1.1, after boakdll&-PGA placement and intEPGA routing in
MFSs, the pin assignment in each FPGA is done randadrhky alternatie, alloving the auto-
matic placement and routing sofive the freedom to choose whigke pins it deems best for
each signal, may result in better routability and spegdsinot feasible in mgnapplications.

When deeloping an MFS architecture, it is important to wnthe efect of the fixed pin
assignment on the systesispeed and routability

This question is also important in nyaother applications where FPGAs are usent.dam-
ple, when systems designervéalready committed to the boaradélayout, which dictates the
pin-signal assignment, and then wish to change the functionality of the FPGA. Although the orig-
inal pin assignment may W& been chosen by the sofire, the subsequent assignment must
remain the same. If major delay increases result from fixing the pin locations in the second itera-
tion, or if routability disappears, then designers will need to account for thellddds in the
original design.

Anecdotal gidence [Chan93b] [Hoel94] suggests that pre-assigning FPGA package pins
before placement and routing can axbely afect the speed and routability ofveeal manudc-
turer's FPGAs. The speed and routability of an FPGA under pin constraints is a function of both

the routing architecture of thexdee (whether or not there are fcient paths from the pads to all

101

parts of the logic), and the quality of the placement and routing tools dleeerly it organizes

the placement tow@rcome a dffcult pin placement). In this Appendix, we are concerned with the
combined dect of routing architecture and automatic layout tools on specific commercial archi-
tectures. W present>gerimental results on thefe€t of fixed-pin assignment on FPGA delay
and routability To our knavledge, no such formal study has yet been done. These results are for
the Xilinx XC4000 and the Altera FLEX 800@rhilies of FPGAs. The results of this study were
used in deeloping the architecture of theanhsmogrifier2, an MFS deeloped at the Urersity

of Toronto [Lewi97, Lewi98].

This Appendix is aganized as follws: In Section A.2 we present the methodology used in
this work. Research results and their analysis are presented in Section A.3. Although the focus is
on the eflects of fibed pins on delay and routability number of interesting obsatwns on other
FPGA design issues can also be deduced from the reselisoMglude in Section A.4 with ane

remarks on the significance of the results obtained andargleopics for future ark.

A.2 Benchmark Circuits and Experimental Procedure

To determine the &dct of fixed pin constraints we performed placement and routing on a set
of benchmark circuits with and without constraints. The benchmark circuits were obtained from
both the MCNC Logic Synthesis 19914ivg91] suite, and fromgeral FPGA designs done at the
University of Toronto.

The perimental procedure used in ouvastication is illustrated in Figure A-1 for the Xil-
inx FPGAs and Figure A-2 for the Altera FPGAsr Ehe Xilinx FPGAs, each benchmark circuit
available in the Xilinx netlist format (XNF), as technology mapped (called “partitioning” by
Xilinx), placed, and routed using the 5.1€rsion of Xilinx place and route tool PPR [Xili94a].
For the Altera FPGASs, each benchmark circudikable in the Xilinx netlist format (XNF) as
mapped into the FLEX 8000 FPGAs by using the MAX+PLUS Il compilee compiler accepts
circuits described using mastandard netlist formats, including XN&nd performs technology
independent logic optimization, technology mapping, placement, and routing [Alte®4igter-
mine the dict of pin assignment, each circuidsvprocessed under four types of pin constraints,
for both Xilinx and Altera FPGAs.

102

Benchmark circuit Pin constraints file

PPR

LCA file

Extraction of routing

Static timing analysis information

v v
Statistics on routing

resources used

Critical path delay

Figure A-1: Experimental Procedure for the Xilinx FPGAs

1. No pin constraints (referred to@sc in the sequel): 8&chnology Mapping, placement
and routing vas performed without pre-assigning (fixingyamgnals to pins.
2. Same pin constraintsp€): The pin-signal assignmentaw fixed before the placement
and routing; the pin assignments were the same as those generated by the uncon-
strained placement and routing run (npc).
3. Bad pin constraintdpc): The pin-signal assignmentaw fixed before the placement
and routing and the pin assignmerasantentionally bad. Signals that were assigned
to adjacent pins by unconstrained placement and routing run were assigned to pins at
opposite ends of the FPGA chip.
4. Random pin constraintspc): The pin-signal assignmentaw fixed before the place-
ment and routing and signals were assigned to randomly generated pin numbers.
The output files after place and route were analyzed ¢wstvease delay and utilization of
routing resources. Theasst-case delay as determined using the static timing analysis tools
available in the Xilinx and Altera tool setsoiFthe Xilinx FPGAs, routing utilization as auto-

matically etracted from the output LCA file using a C program specificallyeldped for this

103

Benchmark circuit Pin constraints file

PPR

MAX+PLUS Il Compiler

SNF file RPT file

h 4 v

Extraction of routing
information

} v

Statistics on routing
resources used

Static timing analysis

Critical path delay

Figure A-2: Experimental Procedure for the Altera FPGAs

purpose. The latter measures the number of single-lenghess, double-length gements and
long lines used by the Xilinx placement and routing tool PRIRtle Altera FPGASs routing utili-
zation statistics arevailable from the report file that is generated after each compilation run.

For the Xilinx FPGAS, for each of the al@four pin constraint cases,di¥PR runs were per-
formed and theeerage delay and theserage routing utilization were used. Thiaswdone to
determine the consistgnof the results. The annealing option in PP&swsed to obtain dgrent
placement and routing results, and henciediht delay and routing statistics, for each PPR run.
For the Altera FPGAs, a single compilation run for each pin constraint @sssulicient. This is
because for a gen circuit and pin constraint case, the compilgegithe same placement and
routing results for multiple compilation runs, presumably because it uses deterministic algorithms

for placement and routing and has no non-deterministic option.

104

A.3 Experimental Results and Analysis

In this section we present the result of the experiments. Delay and routability results are given
for 16 benchmark circuits for the Xilinx FPGAs and for 14 benchmark circuits for the Altera

FPGAs. The circuits are the same except for two circuits that utilized on-chip RAM that is avail-

able in the XC4000 FPGA S but not in the FLEX 8000 FPGAS.

Avg. Crit. | Avg.Crit. | Avg.Crit. | Avg. Crit.
0
- # 1 mpoa | POTFPGA T oh Path Path Path
Circuit /0 . Pins and
pins Device CLBs used Delay Delay Delay Delay
(npe) (spc) (bpe) (rpo)
dalu 1 4010 70% pins 154.4 ns 155.8 ns 158.7 ns 163.3ns
(ALV) DPQ160-5 | 100% CLBs (+ 1%) (+2.8%) (+5.8%)
83% PCLBs
c1908 58 4003 95% pins 133.4ns 1359 ns 142.2 ns 134.2ns
(Error PC84-5 100% CLBs (+2%) (+7%) (+1%)
Correct Cct) 98% PCLBs
mul 64 4008 49% pins 247.7 ns 266.4 ns 271.2ns 263.8 ns
(16-bit Mult) PQ160-5 100% CLBs (+8%) (+10%) (+7%)
99% PCLBs
c3540 72 4006 57% pins 173 ns 172.8 ns 180.3 ns 177.2ns
(ALU + PG156-5 100% CLBs (0%) (+4.2%) (+2.5%)
Contral) 89% PCLBs
c1355 73 4005 65% pins 129.7 ns 128.6 ns 135.4 ns 133.4ns
(Error PG156-5 99% CLBs (0%) (+4.4%) (+3%)
Correct Cct) 55% PCLBs
c499 73 4003 94% pins 72.7 ns 70.2 ns 73.6 ns 71.9ns
(Error PQ100-5 56% CLBs (-3%) (+1%) (-1%)
Correct Cct) 53% PCLBs
€880 86 4005 76% pins 109.1 ns 108 ns 108.4 ns 116.3 ns
(ALU + PG156-5 48% CLBs (-1%) (0%) (+6.6%)
Contral) 30% PCLBs
lcdm 155 4010 96% pins 57.1ns 59.1ns 66 ns 65.6ns
(LCD Disp PQ208-5 100% CLBs (+3.5%) (+15.6%) (+15.4%)
Controller) 86% PCLBs
sw_f128 117 4010 73% pins 42.78 ns 429 ns 51.3ns 42 ns
(Partiad Vit- PQ208-5 100% CLBs (0%) (+19.6%) (0%)
erbi Decod 91% PCLBs
s1196 30 4005 26% pins 72.6 ns 70.9 ns 80 ns 75.5ns
(Logic) PG156-5 78% CLBs (-2%) (+10%) (+4%)
53% PCLBs

Table A-1: Ciritical Path Delay Under Different Pin Constraints for the Xilinx FPGAs

Avg. Crit. | Avg.Crit. | Avg.Crit. | Avg. Crit.
0
- # 1 mpoa | POTFPGA L oh Path Path Path
Circuit /0 . Pins and
pins Device CLBs used Delay Delay Delay Delay
(npc) (spc) (bpc) (rpo)
s1423 24 4003 39% pins 262.5ns 266.3 ns 266.8 ns 263.3 ns
(Logic) PC84-5 100% CLBs (+1%) (+2%) (0%)
90% PCLBs
s5378 86 4006 68% pins 71.4 ns 74.4 ns 72.6 ns 73ns
(Logic) PG156-5 | 100% CLBs (+4%) (+2%) (+2%)
97% PCLBs
s820 39 4003 63% pins 53.5ns 53.9ns 542 ns 53.5ns
(PLD) PC84-5 92% CLBs (0%) (+1%) (0%)
68% PCLBs
s832 39 4003 63% pins 53.7 ns 54.4 ns 53.4ns 53.6 ns
(PLD) PC84-5 92% CLBs (+1%) (0%) (0%)
70% PCLBs
s838 39 4003 63% pins 237.7 ns 240.3 ns 239.8 ns 240.7 ns
(Fractional PC84-5 100% CLBs (+1%) (+1%) (+1%)
Multiplier) 74% PCLBs
s9234 43 4010 70% pins 116.7 ns 114.5ns 116 ns 121.7 ns
(Logic) PC84-5 100% CLBs (-2%) (0%) (+4%)
83% PCLBs
Average 1% 5% 3%
Increase

Table A-1: Critical Path Delay Under Dferent Pin Constraints for the Xilinx FPGAs

A.3.1 Results for the Xilinx XC4000 FPGAs

Table A-1 presents thefe€t of fixed-pin assignment on delay of the Xilinx FPGAs for the
benchmark circuits. The circuit name and functionvegiin column 1. Columns 2 and ¥githe
number of 1/0 pins and the FPGAuilee used. br all the circuits, the smallest FPGA thaiwid
fit the circuit was used. Column 4\gis the percentage of theadlable pins and configurable logic
blocks (CLBs) used by the circuit after placement and routing, and the number ddpetiBS
or PCLBs. PCLBs is a term used by Xilinx to indicate the minimum number of CLBs the circuit
could be pactd into if that were the toal’goal. The Xilinx place and route tool will use more
than the minimum number if theare &ailable during the placement and routing phase to ease the
routing congestion. Column 5ugis the @erage critical path delay obtained for the circuit with no
pin constraints during placement and routing (i.e.rtpe case). Columns 6, 7, and 8/githe

average critical path delay obtained for pin-constrained placement and routing runs for the pin

106

constraintsspc, bpc, andrpc respecirely. The percentage increase in delay compared to the
unconstrained case isvgn in brackts. The standard dation in delay vas not more than 5%
about the werage for each type of constraint, for all circuits. Therage delay increase for the
spc case wer all circuits vas ngligible (1%). This indicates that the placement and routing tool
was mostly capable of taking ahtage of the good pin assignment it had chosen in the uncon-
strained case. Thev@rage delay increase for the bad pin assignniga) Case vas 5%, and for

the random casefc) was 3%. The greatest increase in delay across all circugpddopc, and

rpc cases were 8%, 19.6%, and 15.4% respsgti

From these results we conclude thagdixpin assignment usually has a minde&fon delay
While the worst case increaseas 19% most circuits had increases under 5%. Interestthgly
contradicts the anecdotalidence cited earlier [Chan93b] [Hoel94]. There are pessible rea-
sons for this:

1. The quality of the place and route tools has impdosince the anecdotes were col-
lected.

2. There are manlong lines on the chip periphery (18 pewfcolumn) and 6 long
lines in each non-peripheralwfolumn. This allars the I/O pads that ararffrom
where thg “want to be” to be transported theréefively around this ring.

Table A-2 gves the routing utilization obtained for the same placement and rouipegi-e
ments as in dble A-1. Column 1 ges the circuit name. Column 2vgs the gerage number of
wire s@ments of length 1, 2, and “long”, used by each circuit after unconstrained placement and
routing runs. Columns 3, 4, and Yeithe &erage number of wire gments used by each circuit
after placement and routing with tgc, bpc andrpc pin constraints.

For example, the un-constrained placement and routing oflahe circuit results in an\er-
age utilization of 218 long lines, 592 double-lengthnsents, and 1255 single lengtlgs®ents.

For thespc case gerage utilization of long lines, doubles, and singles increased by 1%, 5%, and
2% respectiely. Similarly the increase invarage utilization of long lines, doubles, and singles is
shavn for thebpc andrpc cases. The standardvibgion about theaerage for each type of con-

straint, for all circuits, \&s less than 10%yverall for long lines, and less than 5% for doubles and

107

singles.

Avg. Avg. Avg. Avg.
Segment Segment Segment Segment
- Usage (npc) Usage Usage (bpc) Usage (rpc)
Circuit
longs, (spo) longs, longs,
doubles, longs, doubles, doubles, doubles,
singles singles singles singles
dalu 218 220 (+1%) 240 (+10%) 244 (+11%)
(ALV) 592 622 (+5%) 620 (+5%) 599 (+1%)
1255 1285 (+2%) 1333 (+6%) 1398 (+11%)
c1908 81 84(3+%) 100(+23%) 103(+27%)
(Error 239 242(+1%) 236(-1%) 218(-9%)
Correct Cct) 455 455(0%) 485(+7%) 497(+9%)
mul 187 205(+10%) 217(+16%) 215(+15%)
(16-bit Mult) 589 595(+1%) 597(+1%) 594(+1%)
1253 1324(+6%) 1345(+7%) 1317(+5%)
3540 169 177 (+5%) 191 (+13%) 182(+7%)
(ALU + 483 483 (+0%) 484 (+0%) 483(+0%)
Control) 972 1007 (+4%) 1035 (+7%) 1024 (+5%)
c1355 67 65 (-3%) 94 (+40%) 92 (+37%)
(Error 300 309 (+3%) 304 (+1%) 290 (-3%)
Correct Cct) 345 352 (+2%) 395 (+15%) 398 (+15%)
c499 59 50(-15%) 63(+7%) 67(+14%)
(Error 145 150(+4%) 143(-1%) 131(-10%)
Correct Cct) 194 180(-7%) 222(+15%) 223(+15%)
c880 63 67 (+6%) 91 (+44%) 94 (+49%)
(ALU + 203 210 (+3%) 221 (+9%) 223 (+10%)
Control) 266 274 (+3%) 294 (+11%) 314 (+18%)
lcdm 259 270 (+4%) 284 (+10%) 284 (+10%)
(LCD Disp 750 766 (+2%) 797 (+6%) 793 (+6%)
Controller) 2201 2311 (+5%) 2431 (+10%) 2468 (+12%)
sw_f128 290 296(+2%) 304 (+5%) 297 (+2%)
(Partial Vit- 782 818(+5%) 842 (+8%) 801 (+3%)
erbi Decod 1786 2033 (+14%) 2127 (+19%) 1995 (+12%)
51196 98 96 (-2%) 106 (+8%) 114 (+16%)
(Logic) 280 273 (-3%) 273 (-3%) 274 (-2%)
516 537 (+4%) 550 (+7%) 545 (+6%)
51423 60 63(+5%) 65(+9%) 67(+12%)
(Logic) 195 198(+2%) 197(+1%) 180(-7%)
339 347(+2%) 362(+7%) 353(+4%)

Table A-2: Routing Resource Utilization in the Xilinx FPGASs

108

Avg. Avg. Avg. Avg.
Segment Segment Segment Segment
N Usage (npc) Usage Usage (bpc) Usage (rpc)
Circuit
longs, (spo) longs, longs,
doubles, longs, doubles, doubles, doubles,
singles singles singles singles
s5378 236 243(+3%) 258(+9%) 256(+8%)
(Logic) 639 655(3%) 710(+11%) 694(+9%)
1487 1576(+6%) 1777(+20%) 1715(+15%)
s820 63 64(+1%) 75(+19%) 75(+19%)
(PLD) 158 166(+5%) 161(+2%) 154(-2%)
257 257(0%) 274(+6%) 281(+9%)
s832 64 65(+2%) 76(+19%) 78(+22%)
(PLD) 156 168(+8%) 147(-6%) 148(-4%)
271 272(0%) 278(+3%) 290(+7%)
s838 59 57(-2%) 66(+13%) 69(+16%)
(Fractional 200 188(-5%) 197(-1%) 187(-7%)
Multiplier) 264 271(+3%) 279(+6%) 279(+6%)
59234 249 252(+1%) 262(+5%) 272(+9%)
(Logic) 801 771(-4%) 785(-1%) 796(0%)
1659 1677(+1%) 1722(+4%) 1697(+2%)
Average longs: 1% longs: 16% longs: 17%
Increase doubles: 2% doubles: 2% doubles: 0%
singles: 3% singles: 7% singles: 9%

Table A-2: Routing Resource Utilization in the Xilinx FPGAs

It is interesting to note that for all circuits used, none of them becomes un-routablender
the worst pin constraints. Thisag true een for the circuits that wereexy tightly paclkd, in
terms of percentage ofvailable CLBs and I/O pins used. This implies that, for the Xilinx
XC4000 series (parts 4003 to 4010), there aréicgrit tracks per channel to acheegood
routability. Also the routability of XC4000 series FPGAs seems to be better compared to that of
XC3000 series FPGAs. There arereal circuits with high CLB utilization that do notvea
routability problems. Other researchersriing with XC3000 FPGAs reported routability prob-
lems in XC3000 FPGAs when the CLB utilizatiomsvgreater than 80% {kn93]. Compared to
npc case, thexaerage increase in utilization of wiregeaeents is mayinal for spc case and signifi-
cant forbpc andrpc cases, where 9% more single length lines and 17% more long lines are used.

Overall, we conclude that f&d pin assignment does impact routability significarttgcause

the amount of routing resources used were increasedhé Xilinx XC4000 series architecture

109

provided suficient resources to handle the increased demand.

% of % of % of % of
FPGA FPGA FPGA FPGA
routing routing routing routing
FPGA % of FPGA resources | resources | resources | resources
Circuit /0 Device Pinsand used used used used
pins CLBsused (npc) (spe) (bpc) (rpc)
longs, longs, longs, longs,
doubles, doubles, doubles, doubles,
singles singles singles singles
dalu 91 4010 70% pins 67% 68% 74% 75%
(ALU) DPQ160-5| 100% CLBs 24% 26% 26% 25%
83% PCLBs 15% 15% 16% 16%
c1908 58 4003 95% pins 40% 41% 49% 51%
(Error PC84-5 100% CLBs 29% 29% 28% 26%
Correct Cct) 98% PCLBs 18% 18% 19% 19%
mul 64 4008 49% pins 63% 68% 72% 72%
(16-bit Mult) PQ160-5 | 100% CLBs 29% 30% 29% 29%
99% PCLBs 17% 18% 18% 18%
c3540 72 4006 57% pins 61% 64% 69% 66%
(ALU + PG156-5 | 100% CLBs 28% 28% 28% 28%
Control) 89% PCLBs 16% 17% 18% 18%
c1355 73 4005 65% pins 27% 27% 37% 37%
(Error PG156-5 99% CLBs 22% 22% 22% 21%
Correct Cct) 55% PCLBs 7% 7% 8% 8%
c499 73 4003 94% pins 29% 24% 31% 33%
(Error PQ100-5 56% CLBs 17% 18% 17% 16%
Correct Cct) 53% PCLBs 7% 7% 9% 9%
€880 86 4005 76% pins 25% 27% 36% 37%
(ALU + PG156-5 48% CLBs 15% 15% 16% 16%
Control) 30% PCLBs 6% 6% 6% 7%
lcdm 155 4010 96% pins 80% 83% 88% 88%
(LCD Disp PQ208-5 | 100% CLBs 31% 31% 33% 33%
Controller) 86% PCLBs 25% 27% 28% 29%
sw_f128 117 4010 73% pins 90% 91% 94% 90%
(Partial \At- PQ208-5 | 100% CLBs 32% 34% 35% 33%
erbi Decod 91% PCLBs 21% 24% 25% 23%
1196 30 4005 26% pins 39% 38% 42% 45%
(Logic) PG156-5 78% CLBs 20% 20% 20% 20%
53% PCLBs 11% 11% 12% 12%
s1423 24 4003 39% pins 29% 31% 32% 33%
(Logic) PC84-5 100% CLBs 23% 24% 24% 21%
90% PCLBs 13% 13% 14% 14%
Table A-3: Routing Resource Utilization Statistics for the Xilinx FPGAs

110

% of % of % of % of
FPGA FPGA FPGA FPGA
routing routing routing routing
FPGA % of FPGA resources resources resources resources

Circuit I1/0 Device Pinsand used used used used
pins CLBsused (npc) (spe) (bpc) (rpc)
longs, longs, longs, longs,

doubles, doubles, doubles, doubles,

singles singles singles singles
s5378 86 4006 68% pins 86% 94% 94% 93%
(Logic) PG156-5 100% CLBs 38% 39% 42% 41%
97% PCLBs 25% 27% 30% 30%
s820 39 4003 63% pins 31% 31% 37% 37%
(PLD) PC84-5 92% CLBs 19% 20% 19% 18%
68% PCLBs 10% 10% 11% 11%
s832 39 4003 63% pins 31% 31% 37% 38%
(PLD) PC84-5 92% CLBs 19% 20% 18% 18%
70% PCLBs 10% 10% 11% 11%
s838 39 4003 63% pins 29% 28% 32% 33%
(Fractional PC84-5 92% CLBs 24% 23% 24% 22%
Multiplier) 74% PCLBs 10% 10% 11% 11%
s9234 43 4010 70% pins 7% 78% 81% 84%
(Logic) PC84-5 100% CLBs 33% 32% 32% 33%
83% PCLBs 19% 19% 20% 20%
Aver age 50% 51% 57% 57%
Utilization 25% 26% 26% 25%
14% 15% 16% 16%

Table A-3: Routing Resource Utilization Statistics for the Xilinx FPGAs

Table A-3 shows the resource utilization statistics for the Xilinx FPGAs for all the benchmark
circuits used. The information in thistable is basically the same asthat available in Table A-1 and
Table A-2, but it is presented in a manner that shows the percentage of total available FPGA logic
and routing resources used by each circuit. Columns 1, 2, and 3 respectively give the circuit used,
the number of 1/0 pins used, and the FPGA device used. Column 4 gives percentage of available
FPGA pins and CLBs that were used by the circuit. For each pin constraint case in columns 5
through 8, the percentage of available long lines, doubles, and singles used is given.

An interesting observation is that the number of doubles and singles used isasmall fraction of
the total number of doubles and singles available. For example, in the unconstrained case of
sw_f128 only about 32% of the available doubles and 21% of the available singles are used. On
average only 14% and 25% respectively, of the available doubles and singles were used. This

111

demonstrates that a great deal otibigity may have to be present,ub not necessarily used, to
complete the routing. Also it appears that the Xilinx placement and routing tool usesydsemgan
lines as possible to minimize routing delBpte that routing delay is a major contitiing factor

to the wverall critical path delay in an FPGA.

A.3.2 Results for the Altera FLEX 8000 FPGAs

Table A-4 presents thefett of fixed-pin assignment on the delay of the Altera FPGAs for the
benchmark circuits. This is similar t@fdle A-1 and the purpose of each column is the saame. F
all the circuits the smallest FPGA thabwld fit the circuit vas used. Thevarage delay increase
for thespc case wer all circuits vas ngligible (0.7%). The @erage delay increase for the bad pin
assignmenthpc) case vas 3.6%, and for the random caec] was 3%. The wrst case increase
in delay forspc, bpc, andrpc cases were 9%, 12%, and 16% respelti We can conclude from
these results that therexrage increase in delayear all the circuits is small and theovgt case

increase in delay is significant.

Avg. Crit. | Avg.Crit. | Avg.Crit. | Avg.Crit.
- # 1 ppoa | POFPGA T oah Path Path Path
Circuit /0 ; Pinsand
pins Device L Es used Delay Delay Delay Delay
(npc) (spc) (bpc) (rpo)
dalu 91 EPF8820 60% pins 175.2 ns 181.6 ns 180.3 ns 193.5ns
(ALU) GC192-3 67% LEs (+4%) (+3%) (+10%)
c1908 58 EPF8282 87% pins 137.1 ns 139.6 ns 1379 ns 139.9 ns
(Error LC84-3 63% LEs (2+%) (0%) (+2%)
Correct Cct)
mul 64 EPF8820 41% pins 297.6 ns 297.1ns 344 ns 100pfp:
(16-bit Mult) GC192-3 97% LEs (0%) (+16%) failure
75pfp:
332.5ns
(+12%)
¢3540 72 EPF8452 60% pins 176.5 ns 166.6 ns 100pfp: 100pfp:
(ALU + GC160-3 97% LEs (-6%) failure failure
Control) 70pfp: 55pfp:
163 ns 181.6 ns
(-7%) (+3%)

Table A-4: Critical Path Delay Under Dferent Pin Constraints for the Altera FPGAs

112

Avg. Crit. | Avg.Crit. | Avg.Crit. | Avg.Crit.
0,
- # 1 ppea | POTFPGA i Path Path Path
Circuit /0 : Pinsand
pins Device L Es used Delay Delay Delay Delay
(npe) (spc) (bpe) (rpo)
c1355 73 EPF8282 95% pins 95.4ns 91.8ns 100pfp: 100pfp:
(Error TC100-3 39% LEs (-4%) failure failure
Correct Cct) 85pfp: 90pfp:
90.9 ns 89.3ns
(-5%) (-6%)
c499 73 EPF8282 95% pins 89.5ns 94.4 ns 90.7 ns 92.7 ns
(Error TC100-3 39% LEs (+6%) (+1%) (+4%)
Correct Cct)
c880 86 EPF8452 72% pins 137.5ns 149.8 ns 1444 ns 1489 ns
(ALU + GC160-3 31%LEs (+9%) (+5%) (+8%)
Control)
s1196 30 EPF8452 43% pins 72.6 ns 70.9 ns 80 ns 75.5ns
(Logic) LC84-3 65% LEs (-2%) (+10%) (+4%)
51423 24 EPF8282 37% pins 207.6 ns 203.9ns 207.9ns 205.6 ns
(Logic) LC84-3 79% LEs (-2%) (0%) (-1%)
s5378 86 EPF8820 56% pins 66.8 ns 68.6ns 73ns 71.4ns
(Logic) GC192-3 69% LEs (+3%) (+9%) (+6%)
s820 39 EPF8282 60% pins 64 ns 60.1 ns 69.4 ns 62.7 ns
(PLD) LC84-3 59% LEs (-6%) (+8%) (-2%)
s832 39 EPF8282 60% pins 63.1ns 65.5ns 67.5ns 65.1 ns
(PLD) LC84-3 60% LEs (+4%) (+7%) (+4%)
s838 39 EPF8282 60% pins 42.5ns 429 ns 41.7ns 40.3 ns
(fractional LC84-3 60% LEs (0%) (-2%) (-5%)
mult)
9234 43 EPF8820 23% pins 101.6 ns 103.7 ns 107.1ns 107.8ns
(Logic) GC192-3 52% LEs (+2%) (+5%) (+6%)
Average 0.7% 3.6% 3%
Increase

Table A-4: Critical Path Delay Under Different Pin Constraints for the Altera FPGAs
Two circuits (c3540 and c1355) were un-routable for the bpc case and three circuits (mul,
€3540, and c1355) were un-routable for the rpc case. To enable the tool to compl ete routing, some
of the pins were left unassigned (the tool chose the pin assignment). For example, for the circuit

mul under the rpc case, 75pfp implies that the circuit would successfully route if 75% of the pins

113

were fixed and 25% of the pins were left unassigned.

FastTrack FastTrack FastTrack FastTrack
I nter connect Inter connect I nter connect I nter connect
Circuit Usage (npc) Usage (spc) Usage (bpc) Usage (rpc)
rows, rows, rows, rows,
columns columns columns columns
dalu 310 304(-2%) 329(+6%) 328(+6%)
(ALU) 88 109(+24%) 149(+69%) 155(+76%)
€1908 138 122(+3%) 116(-2%) 130(+10%)
(Error 46 43(-7%) 44(-4%) 49(+7%)
Correct Cct)
mul 436 488(+12%) 475(+9%) 75pfp:
(16-bit Mult) | 117 130(+11%) 182(+56%) 465(+7%)
166(+42%)
c3540 230 230(0%) 70pfp: 55pfp:
(ALU + 68 68(0%) 250(+9%) 271(+18%)
Control) 78(+15%) 122(+79%)
c1355 87 89(+2%) 85pfp: 85pfp:
(Error 56 56(0%) 98(+13%) 103(+18%)
Correct Cct) 60(+7%) 59(+5%)
c499 86 84(-2%) 97(+13%) 104(+21%)
(Error 55 56(+2%) 61(+11%) 61(+11%)
Correct Cct)
c880 103 103(0%) 107(+4%) 140(+36%)
(ALU + 60 63(+5%) 66(+10%) 81(+35%)
Control)
s1196 141 140(0%) 150(+6%) 150(+6%)
(Logic) 32 39(+22%) 76(+138%) 76(+138%)
51423 93 100(+8%) 94(+1%) 101(+9%)
(Logic) 17 23(+35%) 17(0%) 16(-6%)
s5378 371 424(+14%) 438(+18%) 469(+26%)
(Logic) 108 144(+33%) 174(+61%) 196(+81%)
s820 85 93(+9%) 94(+11%) 95(+12%)
(PLD) 22 24(+9%) 26(+18%) 27(+23%)
s832 81 87(+7%) 93(+15%) 90(+11%)
(PLD) 24 24(0%) 24(0%) 28(+17%)
s838 96 94(-2%) 95(-1%) 100(+4%)
(fractional 7 9(+29%) 10(+43%) 10(+43%)
mult)
s9234 260 280(+8%) 286(+10%) 289(+11%)
(Logic) 64 87(+36%) 86(+34%) 98(+53%)

Table A-5: Routing Resource Utilization for the Altera FPGAs

114

FastTrack FastTrack FastTrack FastTrack
I nterconnect I nterconnect I nterconnect I nterconnect
Circuit Usage (npc) Usage (spc) Usage (bpc) Usage (rpc)
rows, rows, rows, rows,
columns columns columns columns
Average row tracks:3% row tracks: 7% row tracks:13%
Increase col tracks: 14% col tracks:33% col tracks:43%

Table A-5: Routing Resource Utilization for the Altera FPGAs

Table A-5 gves the routing utilization obtained for the same placement and rouipegi-e
ments as in dble A-4. This is similar todble A-2 and the purpose of each column is the same.
Altera uses a terlevel hierarchical routing architecture and the routability is determined by the
utilization of the rav and columndst track interconnects that span the whole length and width of
the chip [Alte94b]. Compared to timpc case, theerage increase in utilization ofwaand col-
umn fast track interconnect is quite pronounced in all other pin constraint casedl the cir-
cuits, the warst case increase in utilization of routing tracks due to pin constraints are 36%, and
138% respeciely for rov and columndst track interconnects.

The Altera FLEX 8000 FPGAs seem to be slightly susceptible to rowtihges under ran-
dom pin constraints in cases where the 1/O pin or logic element utilization is close to 100%. The
cause of this seems to be the architectural restriction that each 1/0O pin can connect to only one
(unique) rev or column of routing tracksdst tracks). Some #t#ility here, e.g. allowing an I/O
pin to connect to a number ofwse or columns, will probably lead to better routability under ran-
dom pin constraints. It seems that system designers, when implementing a circuit using FLEX
8000 FPGAs, should lega about 20% of the logic elements and I/O pins fre@aaaoutability
problems due to pin constraintsrHess tightly paokd circuits, the amount of routing resources
used were increased matky, but there are siitient routing resourcesvailable to handle the
increased demand.

Table A-6 shws the resource utilization statistics for the Altera FPGAs for all the benchmark
circuits used. The information in this table is basically the same asé#iabte in Rble A-4 and
Table A-5, lut it is presented in a manner thatwhdhe percentage of totalalable FPGA logic
and routing resources used by each circuierGl the circuits under thepc case, thegrage

utilization of rav and columndst tracks are 48% and 19% respetyi Ower all the circuits and

115

pin constraint cases, the maximum utilization of row and column fast tracks are 86% and 58%.

% of % of % of % of
FPGA FPGA FPGA FPGA
4 % of EPGA routing routing routing routing
L FPGA . resour ces resources resources resources
Circuit 1/0 - Pinsand
pins Device L Es used used used used used
(npc) (spc) (bpc) (rpe)
rows, I ows, I Ows, r ows,
columns columns columns columns
dalu 91 EPF8820 60% pins 46% 45% 49% 49%
(ALV) GC192-3 67% LEs 26% 32% 44% 46%
¢1908 58 EPF8282 87% pins 66% 59% 56% 63%
(Error LC84-3 63% LEs 22% 21% 21% 24%
Correct Cct)
mul 64 EPF8820 41% pins 65% 73% 71% 75%
(16-bit Mult) GC192-3 97% LEs 35% 39% 54% 57%
c3540 72 EPF8452 60% pins 70% 70% 74% 86%
(ALU + GC160-3 97% LEs 20% 20% 23% 35%
Contral)
c1355 73 EPF8282 95% pins 42% 43% 47% 50%
(Error TC100-3 39% LEs 27% 27% 29% 28%
Correct Cct)
c499 73 EPF8282 95% pins 41% 40% 47% 50%
(Error TC100-3 39% LEs 26% 27% 30% 28%
Correct Cct)
c880 86 EPF8452 72% pins 31% 31% 32% 42%
(ALU + GC160-3 31% LEs 18% 19% 20% 24%
Contral)
s1196 30 EPF8452 43% pins 42% 42% 45% 45%
(Logic) LC84-3 65% LEs 10% 12% 23% 23%
s1423 24 EPF8282 37% pins 45% 48% 45% 49%
(Logic) LC84-3 79% LEs 8% 11% 8% 8%
s5378 86 EPF8820 56% pins 55% 63% 65% 70%
(Logic) GC192-3 69% LEs 32% 43% 52% 58%
s820 39 EPF8282 60% pins 41% 45% 45% 46%
(PLD) LC84-3 59% LEs 11% 12% 13% 13%
s832 39 EPF8282 60% pins 39% 42% 45% 43%
(PLD) LC84-3 60% LEs 12% 12% 12% 14%

Table A-6: Routing Resource Utilization Statistics for the Altera FPGAS

% of % of % of % of
FPGA FPGA FPGA FPGA
4 % of FPGA routing routing routing routing
L FPGA . resources resources resources resources
Circuit 1/0 - Pinsand
pins Device L Es used used used used used
(npc) (spc) (bpc) (rpe)
I ows, I ows, rows, r ows,
columns columns columns columns
s838 39 EPF8282 60% pins 46% 45% 46% 48%
(fractional LC84-3 60% LEs 3% 4% 5% 5%
mult)
s9234 43 EPF8820 23% pins 39% 42% 43% 43%
(Logic) GC192-3 52% LEs 19% 26% 26% 29%
Average 61% pins 48% 49% 51% 54%
Utilization 63% LEs 19% 23% 26% 28%

Table A-6: Routing Resource Utilization Statistics for the Altera FPGAs

A.4 Conclusions

In this Appendix we presentedperimental results on thefefts of fixing FPGA pin assign-
ment on the speed and routability of FPGAg $Meved that the éécts on delay are nginal on
average and significant in particular cases. Tlecef on delay are more pronounced in the case
of circuits that use up almost all of theadable FPGA 1/0 pins and logic blocks. Théeefs on
routability are significant for almost all the circuits.

The main contribtion of this study is that we %@ presented some quantiatiresults on the
effects of fixing FPGA pins on delay and routabilio far the gidence to this ééct was anec-
dotal, and contrary to what our results indicate. Our results will be useful to system designers
using FPGAs in their hardwe designs and to architects and CAD tosktigers inolved in the
development of architectures and layout synthesis tools for multi-FPGA systems.

It appears that thexera long lines preided on the periphery of XC4000 FPGAs aredive
in handling pin constraints. One research issue this raises/imhg/ such lines should be pro-
vided for FPGAs of dferent sizes and ddrent number of 1/0O pins. Circuits that utilize carry
chains and wide edge decoders [Xili94b] may limit theilbidity available to the placement and
routing tool. The déct of pin constraints may be more pronounced for such circuits. Also the

effects of pin constraints on performanceven placement and routing of FPGAs needs to be

117

investigated.

118

Appendix B

Experimental Results Showing Actual

Pin Cost and Delay Values

In mary tables in Chapter 4 and 5, the pin cost and the critical path deélsswere gen in

a normalized mannem this Appendix, the tables skimg the actual (un-normalized) pin cost

and critical path delayalues are presented, which corresponding to specific tables in Chapter 4

and Chapter 5.

Critical path delay (in ns)

N #FPGAs

Circuit L S .
Pre-partitioning, Post-partitioning, Post-routing,
CPD CPD_PP CPD_PR

s35932 8 34 37 57
s38417 9 44 59 94
s38584 9 71 94 139
mips64 14 230 315 462

spla 18 38 86 196
cspla 18 36 82 193
mac64 6 260 381 623
sort8 12 145 304 533

firlé 10 96 134 238

gra 4 54 57 70

Table B-1: Critical Path Delays at Dierent Levels of Circuit Implementation

119

Critical path delay (in ns)
- #FPGAs
Circuit I o .
Pre-partitioning, Post-partitioning, Post-routing,
CPD CPD_PP CPD_PR

fpsdes 9 96 136 227
spsdes 8 138 172 249
ochip64 8 22 29 63
ralu32 9 92 157 317

iirl6 6 129 135 160
Aver age 10 99 145 241

Table B-1: Critical Path Delays at Dierent Levels of Circuit Implementation

Post-routing critical path delay, CPD_PR
Circuit #FPGAS (in ng)
HROUTE HROUTE_TD

s$35932 8 57 53
s38417 9 95 94
$38584 9 113 98
mips64 14 468 418
spla 18 204 169
cspla 18 191 164
mac64 6 563 465
sort8 12 538 499
firlé 10 193 167
gra 4 59 57
fpsdes 9 195 176
spsdes 8 216 205
ochip64 8 50 50
ralu32 9 298 263
iirl6 6 152 152
Average 10 226 202

Table B-2: Comparison of HRUTE and HROUTE_TD

Post-routing critical path delay Post-routing critical path delay using
Circuit | #FPGAS using PCROUTE (in ns) FPSROUTE (in ns)
P=47 | P=17 | P,=4 P, =47 P, =17 P =4
s$35932 8 57 57 57 57 82 82
s38417 9 94 94 94 94 120 120
$38584 9 139 139 139 139 164 164
mips64 14 462 462 462 462 463 501
spla 18 196 196 196 271 287 317
cspla 18 193 193 193 238 238 262
mac64 6 623 623 623 623 623 623
sort8 12 533 533 533 588 608 652
firlé 10 238 238 238 238 244 244
gra 4 70 70 70 70 70 70
fpsdes 9 227 227 227 227 227 280
spsdes 8 249 249 249 249 249 274
ochip64 8 63 63 63 63 63 63
ralu32 9 317 317 317 317 330 Routing
failure
iirl6 6 160 160 160 160 160 160
Average 241 241 241 253 262 281

Table B-3: The Efect of B, on the Delay of thed?tial Crossbar Architecture

121

Number of FPGAs Pin cost ngt'r:%‘{dtzyg(f;igg)a'
Circuit
cobar | "OOP | cromper | HCOP | o | HCGP
s$35932 8 8 3032 2432 57 53
s38417 9 9 3411 2736 94 94
$38584 9 9 3411 2736 139 98
mips64 14 15 5306 4560 462 418
spla 18 18 6822 5472 196 169
cspla 18 18 6822 5472 193 164
mac64 6 6 2274 1824 623 465
sort8 12 14 4548 4256 533 499
firlé 10 10 3790 3040 238 167
gra 4 4 1516 1216 70 57
fpsdes 9 9 3411 2736 227 176
spsdes 8 8 3032 2432 249 205
ochip64 8 8 3032 2432 63 50
ralu32 9 14 3411 4256 317 263
iirl6 6 6 2274 1824 160 152
Avg.: 10 | Avg.: 10 Total: Total: Avg.: 241 | Avg.. 202
56092 47424

Table B-4: Comparison of the HCGP anaifial Crossbar Architectures

Comment
Obsere from this table that the estimated clock speeds for the partial crossbar architecture

range from 20 MHz for thechip64 circuit to 2 MHz thesort8 circuit. This range is representai

of the clock ratesxpected in MFSs for rapid prototyping and logic emulation [Quic98]. This is a
validation of our layout synthesis tools and the timing model used in our timing analysis tool
(MTA).

122

Number of FPGAs Pin cost Post-routing critical
Circuit path delay (in ns)
HTP HCGP HTP HCGP HTP HCGP
s$35932 9 8 2736 2432 53 53
s38417 9 9 2736 2736 88 94
38584 9 9 2736 2736 113 98
mips64 16 15 4864 4560 403 418
spla 30 18 9520 5472 232 169
cspla 25 18 7600 5472 205 164
mac64 8 6 2432 1824 529 465
sort8 14 14 4256 4256 535 499
firlé 12 10 3648 3040 197 167
gra 4 4 1216 1216 60 57
fpsdes 9 9 2736 2736 199 176
spsdes 8 8 2432 2432 232 205
ochip64 8 8 2432 2432 63 50
ralu3d2 16 14 4864 4256 325 263
iirl6 6 6 1824 1824 152 152
Avg.: 12 | Avg.: 10 Total: Total: Avg.: 226 | Avg.: 202
56032 47424

Table B-5: Comparison of the HTP and HCGP Architectures

123

Post-routing critical

Number of FPGAS Pin cost path delay (in ns)
Circuit
Coms | HoeP | @ T | Heer | (00| HeeP
$35932 8 8 2432 2432 57 53
s38417 12 9 3648 2736 111 94
s38584 12 9 3648 2736 118 98
mips64 16 15 4864 4560 414 418
spla 20 18 5472 5472 routing 169
failure
cspla 20 18 5472 5472 routing 164
failure
mac64 8 6 2432 1824 533 465
sort8 16 14 4864 4256 573 499
firlé 12 10 3648 3040 199 167
gra 4 4 1216 1216 57 57
fpsdes 12 9 3648 2736 227 176
spsdes 8 8 2432 2432 235 205
ochip64 8 8 2432 2432 63 50
ralu32 16 14 4256 4256 routing 263
failure
iirl6 8 6 2432 1824 169 152
Avg.: 12 | Avg.: 10 Total: Total: Avg. 229 Avg.: 202
> 54720 47424

Table B-6: Comparison of the HWCP and HCGP Architectures

124

References

[Alte94]

[Alte94a]
[Alte94b]
[Aptiog]

[Aptio3]

[Amer95]

[Arno92]

[Babb93]

[Babb97]

[Baue98]

[Behrog]

[Bert93]

Altera Corporation, Reconfiguable Inteconnect PBripheml Processor
(RIPP10) Uses Manua] Version 1.0, 1994.

Altera CorporationMAX+PLUS Il User Manugl1994.

Altera CorporationfFLEX 8000 HandboqkL994.

Aptix Corporation, Product brief: The System Explorer MP4, 19%ail&able
on Aptix Web site: http://wwvaptix.com.

Aptix CorporationData Book Supplemerban Jose, CA, September 1993.
R. Amerson et al, “@ramac -- Configurable Custom Computirigroceedings
of IEEE Symposium on FPGAs for Custom Computinghias pp. 32-38,
1995.

J. M. Arnold, D. A. Buell, and E. G. b8, “Splash 2, Proceedings of 4th
Annual ACM Symposium onarallel Algorithms and Adhitectues pp. 316-
322, 1992.

J. Babb et al, “Wftual Wires: Owrcoming Pin Limitations in FPGA-based
Logic Emulators, Proceedings of IEEE ®vkshop on FPGAs for Custom
Computing Mahines pp. 142-151, 1993.

J. Babb et al, “Logic Emulation withiNual Wires; IEEE Trans. on CAD, vol.
16, no. 6 pp. 609-626, June 1997.

J. Bauer et al,A Reconfigurable Logic Machine forabt Eent-Driven Simu-
lation;” Proc.of the Design #tomation Confence pp. 668-671, 1998.

D. Behrens, K. Harbich, and E. Batk‘Hierarchical Rrtitioning”, Proc. of
International Confeence on CAD (ICCAD’96pp. 470-477, 1996.

P. Bertin, D. Roncin, and J.Wlemin, “Programmable Acte Memories: A
Performance Assessménroceedings of the 1993 Symposium: Rebean

Integrated System#MIT Press, 1993.

125

[Betz97] V. Betz and J. Rose, “VPR: A NePacking, Placement and Routingal for
FPGA ResearchProc. of the 7th International Workshop on Field-Program-
mable Logic, London, pp. 213-222, August1997.

[Brow92] S. Browvn, R. Francis, J. Rose, and Z. Vranes$ield Programmable Gate
Arrays, Kluwer Academic Publishers, 1992.

[Butt92] M. Butts, J. Batchellerand J. ¥rghese, An Efficient Logic Emulation Sys-
tem; Proceedings of |EEE International Conference on Computer Design, pp.
138-141, 1992.

[Butt95] M. Butts, “Future Directions of Dynamically Reprogrammable Systems,
Proc. of IEEE Custom Integrated Circuits Conference, pp. 487-494, 1995.

[Cass93] S. Casselman, “fual Computing and Theikual Computef Proceedings of
| EEE Workshop on FPGAs for Custom Computing Machines, pp. 43-48, 1993.

[Chan93] P. K. Chan, M. D. FSchlag, Architectural Tade-ofs in Field-Programmable-
Device-Based Computing SystefhsProceedings of |[EEE Workshop on
FPGAs for Custom Computing Machines, pp. 152-161, 1993.

[Chan93a]P. K. Chan, M. D. FSchlag, and J..YZien, “On Routability Prediction for
FPGAS, Proceedings of 30th ACM/IEEE DAC, 1993.

[Chan93bJP.K. Chan, Unversity of California, Santa Cruz, Californiy,ivate Communi-
cation.

[Chan95] P. K. Chan, M. D. FSchlag and J..¥Zien, “Spectral-Based Multi-& FPGA
Partitioning; International Symposium on Field-Programmable Gate Arrays,
pp. 133-139, 1995.

[Chan97] L. L. Chang, “Static iming Analysis of High-Speed Boarti$EEE Spectrum,
vol. 34, no. 3, March 1997.

[Chou95] N. Chou et al, “Local Ratio Cut and Setweadng Rartitioning for Huge Logic
Emulation System§]EEE Trans. on CAD, vol. 14, no. 9, pp. 1085-1092, Sep-
tember 1995.

[Chu98] K. C. Chu, Quickturn Design Systems, San Jose, Califdpnirggte Communi-

126

cation

[Clos53] C. Clos, A Study of Non-Blocking Switching Netwvks; The Bell System
Tedhnical Jurnal, vol. XXXIJ pp. 406-424, March 1953.

[Cour97] M. Courtoy (Aptix Corp.), “Prototyping Engines: Ko Efficient and Practi-
cal?; Invited Talk, Sixth IFIP International \@rkshop on Lgic and Achitec-
ture Synthesis (IWLAS’97)997.

[Darn94] J. Darnauer et alA‘Field Programmable Multi-chip Module (FPMCMRro-
ceedings of IEEE Symposium on FPGAs for Custom Computingjrigqp.
1-9, 1995.

[Dobb92] I. Dobbelaere et al, “Field Programmable MCM Systems -- Design of an Inter-
connection Framé,|JEEE Custom Intgrated Cicuits Confeence pp. 4.6.1-
4.6.4, 1992.

[Dray95] T. H. DrayerW. E. King, J. G. Tont, and R. WConners, “MORRPH: A Mod-
ular and Reprogrammable Real-time Processing HaefwProceedings of
IEEE Symposium on FPGAs for Custom Computing hines pp. 11-19,
1995.

[Erdo92] S. S. Erdogn and A. Vehab, “Design of RM-nc: A Reconfigurable Neurocom-
puter for Massiely Parallel-Pipelined Computatioris|nternational bint
Confeence on New Networks \Vol. 2, pp. 33-38, 1992.

[Exem94] Exemplar LogicVHDL Synthesis Refence Manugl1994.

[Fang98] W. Fang and A. W, “Performance-Dven Multi-FPGA Rrtitioning Using
Functional Clustering and ReplicatibriRroc.of the Design #tomation Con-
ference pp. 94-99, 1998.

[Fidu82] C. M. Fiduccia, and R. M. Mattlises, A LinearTime Heuristic for Improeed
Network Partitions”, Proc. of 19th £M/IEEE Design Atomation Confeance
pp. 241-247, 1982.

[FCCM] Proceedings of IEEE dvkshops/Symposia on FPGAs for Custom Computing
Machines 1992 to 1996.

127

[Gall94] D. Gallovay, D. KarchmerP. Chaw, D. Lewis, and J. Rose, “Therdnsmogri-
fier: The Unversity of Toronto Field-Programmable Systen®SRI Ednical
Report (CSRI-306)CSRI, Unversity of Toronto, 1994.

[Gall95] D. Gallovay, “The Transmogrifier C Hardare Description Language and
Compiler for FPGAS,Proceedings of IEEE Symposium on FPGAs for Custom
Computing Mahines pp. 136-144, 1995.

[Gana96] G. Ganapath et al, “Hardvare Emulation for Functionalevification of K5,
Proc.of the Design #tomation Confaeance pp. 315-318, 1996.

[Gate95] J. Gatelg et al, “UltraSRRC™-I Emulation’] Proc.of the Design étomation
Confeence pp. 13-18, 1995.

[Gokh91] M. Gokhale et al, “Building and Using a HighlaiRllel Programmable Logic
Array,” IEEE Computerpp 81-89, January 1991.

[Goto81] S. Goto, An Efficient Algorithm for the Wo-Dimensional Placement Problem
in Electric Circuit Layout, IEEE Trans. on Cicuits and Systemspl 28, No.

1, pp. 12-18, January 1981.

[Guo92] R. Guo et al,A 1024 Pin Unversal Interconnect Array with Routing Architec-
ture; Proc. of IEEE Custom Inggated Circuits Confeence pp. 4.5.1-4.5.4,
1992.

[Hauc94] S. Hauck, G. Boriello, C. Ebeling, “Mesh Routingpblogies for Multi-FPGA
Systems”, Proceedings of International Con&srce on Computer Design
(ICCD'94), pp. 170-177, 1994.

[Hauc94b]S. Hauck and G. Boriello, “Pin Assignment for Multi-FPGA systenisg-
ceedings of IEEE Wvkshop on FPGAs for Custom Computing Kiaes
1994.

[Hauc95] S. Hauck, Multi-FPGA Systems$?h.D. Thesis University of Washington,

Department of Computer Science and Engineering, 1995.

[Hauc98a]S. Hauck, “The Roles of FPGAs in Reprogrammable Systdpnsteedings of
the IEEE vol. 86, no. 4, pp. 615-638, July 1998.

128

[Hauc98b]S. Hauck and A. Agrwal, “Software Technologies for Reconfigurable Sys-

[Heil97]
[Hoel94]
[Hutt96]

[lcub97]

[lcub94]

[Ik0s98]

[Joup87]

[Karc94]

[Khal95]

[Khal97]

[Khalog]

tems”,submitted to IEEErBns. on Computer 1998.

F. Heile, Altera Corporation, San Jose, Califoriayate Communicatian

W. Hoelich, Aptix Corporation, San Jose, CaliforiRaivate Communicatian
M. Hutton, J.P Grossman, J. Rose and D. Corneil, “Characterization and
Parameterized Random Generation of Digital CircuiBoc.of the Design
Automation Confence pp. 94-99, 1996.

I-Cube, Inc., The IQX Rmily Data Sheet May 1997. Aailable at:
www.icube.com.

I-Cube, Inc., “Using FPID Deaces in FPGA-based Prototypihdipplication
note Part number:D-22-002February 1994.

IKOS Systems, Product BriefirtlaLogic-8 Emulation System,vAilable at
www.ikos.com.

Norman P Jouppi, “Tming Analysis and Performance Impssment of MOS
VLSI Designs, IEEE Trans. on CAD, vol. CAD-6, no, $p. 650-665, July
1987.

D. Karchmer A Field-Programmable System with Reconfigurable Memory
M.A.Sc. ThesjsDept. of Electrical and Computer Engineering, u@nsity of
Toronto, 1994.

M. A. S. Khalid and J. Rose, “Thefett of Fixed I/O Pin Positioning on The
Routability and Speed of FPGA$roceedings of The ThirCanadian \rk-
shop on keld-Programmable Deices (FPD’95) pp. 92-104, 1995.

M. A. S. Khalid and J. Rose, “Experimentaldiivation of Mesh anddtial
Crossbar Routing Architectures for Multi-FPGA Systérspceedings of the
Sixth IFIP International \WWrkshop on Lgic and Achitectue Synthesis
(IWLAS'97) 1997.

M. A. S. Khalid and J. RoseA“Hybrid Complete-Graph d&tial-Crossbar
Routing Architecture for Multi-FPGA SystehisProc. of 1998 Sixth @M

129

[Kim96]

[Knap96]

[Kris84]

[Kuh86]

[Kuzn93]

[Kuzn94]

[Lan94]

[Lan95]

[Lee61l]

[Lewi93]

[Lewi97]

International Symposium ondfd-Programmable Gate Aays (FPGA98), pp.
45-54, February 1998.

C. Kim, H. Shin, A Performance-Dxien Logic Emulation System: FPGA
Network Design and Performance-ien Rartitioning, IEEE Trans. on CAD,
vol. 15, no. 5pp. 560-568, May 1996.

D. W. Knapp,Behavioal Synthesis: Digital System Design Using the Synopsys
Behavioal Compiler Prentice Hall PTR, 1996.

B. Krishnamurtly, “An Improved Min-Cut Algorithm for Rrtitioning VLSI
Networks] IEEE Trans. on Computer vol. C-33, no. 5pp. 438-446, May
1984.

E. S. Kuh and M. Marek-Sadweska, “Global Routing,in Layout Design and
\erification Edited by T Ohtsuki, North-Holland, pp. 169-198, 1986.

R. Kuznar et al, “Brtitioning Digital Circuits for Implementation on Multiple
FPGA ICs; MCNC Ednical Report 93-03North Carolina, 1993.

R. Kuznar et al, “Multi-vay Netlist Rirtitioning into Heterogeneous FPGAs
and Minimization of ©tal Desice Cost and Interconnéc®roc.of the Design

Automation Confeance pp. 238-243, 1994.

S. Lan, A. Zv and A. El-Gamal, “Placement and Routing for A Field Program-
mable Multi-Chip Modulé, Proc.of the Design #tomation Confance pp.
295-300, 1994.

S. Lan, Architecture and Computer Aided Desigol$ for a Field Program-
mable Multi-chip ModulePh.D. ThesisStanford Uniersity, 1995.

C. Lee, An Algorithm for Fath Connection and its Applicatioh$RE Trans.
on Electonic Computes, vol. EC-10, no.,3p. 346-365, 1961.

D. M. Lewis, M. Van lerssel, and D. H. d¥g, ‘A Field Programmable Accel-
erator for Compiled Code ApplicatiohsRroceedings of IEEE dvkshop on
FPGAs for Custom Computing Mdnes pp. 60-67, 1993.

D. M. Lewis, D. R. Gallevay, M. Van lerssel, J. Rose, and Ghav, “The

130

Transmogrifier2: A 1 Million Gate Rapid Prototyping SysténiProceedings
of FPGA97, pp. 53-61, 1997.

[Lewi98] D. M. Lewis, D. R. Gallovay, M. Van lerssel, J. Rose, and Ghav, “The
Transmogrifier2: A 1 Million Gate Rapid Prototyping SystémEEE Trans.
on VLSI Systems, vol. 6, nopp, 188-198, Junel998.

[Lin97] S. Lin, Y. Lin, and T Hwang, “Net Assignment for the FPGA-Based Logic
Emulation System in theoiled-Clos Netwrk Structuré, IEEE Trans. on
CAD, vol. 16, no. 3pp. 316-320, March 1997.

[Mak95a] Wai-Kei Mak, D. FWong, “On Optimal Board-Leel Routing for FPGA-based
Logic Emulatiori, Proc. of 32nd Designutomation Confeance pp. 552-556,
1995.

[Mak95b] Wai-Kei Mak, D. F Wong, “Board-Le&el Multi-Terminal Net Routing for
FPGA-based Logic EmulatiénProc. of International Confence on CAD
(ICCAD’95), pp. 339-344, 1995.

[McMu95]L. McMurchie and Carl Ebeling, ‘@®hFinder: A Ngotiation-Based Perfor-
mance-Dwven Router for FPGAS,Proc. of 1995 Thot ACM International
Symposium on i€ld-Programmable Gate Aays (FPGA95), pp. 111-117,
1995.

[Mont98] S. Montazeri, Al Technologies Inc., Uniaille, Ontario, Private Communi-
cation, 1998.

[Page91] I. Page and WLuk, “Compiling Occam into FPGAsin W. Moore, W Luk,
Eds.,FPGAs Abingdon EE&CS Books, England, pp. 271-283, 1991.

[Prep96] Programmable Electronics Performance Corporation, HDL models fer-dif
ent circuits (synthesis benchmarks) axailable on their Wb site: http//
Www.prep.og.

[Quic94] Quickturn Systems, Product brief: The Enterprise Emulation System and Logic
Animator, 1994.

[Quic98] Quickturn Design Systems, Inc., System Realizer product brief, 1988- A
able on Quickturn &b site:http://wwwguickturn.com.

131

[Quin79]

[Roy95]

[Sarr96]

[Selv5]

[Sher95]

[Shaho1]

[Shih92]

[Slim94]

[Syno97]

[Terr95]

[Tess97]

[Trim94]

N. R. Quinn, M. A. Breuer‘A Force Directed Component Placement Proce-
dure for Printed Circuit BoarddEEE Trans. on Cicuits and SystemspN 26,
No. § pp. 377-388, June 1979.

K. Roy-Neogi and C. Sechen, “Multiple-FPGARtioning with Performance
Optimization; International Symposium origfd-Programmable Gate Aays
pp. 146-152, 1995.

M. Sarrafzadeh and C. K. &g, An Introduction to VLSI Physical Design
McGraw Hill, 1996.

C. Selvidge et al, “TIERS: dpology Independent Pipelined Routing and
Scheduling for Wftual Wire Compilatior?, Proceedings of FPG85, pp. 25-
31, 1995.

N. Shervani, Algorithms for VLSI Physical Desigrufomation Kluwer Aca-
demic Publishers, 1995.

K. Shahookar and.MMazumder “VLSI Cell Placement @chnique$, ACM
Computing Suryes, \6l. 23, No. 2pp. 143-220, June 1991.

M. Shih, E. S. Kih, “Performance-Dven System &titioning on Multi-Chip
Modules; Proc. of the Design #tomation Confeance pp. 53-56, 1992.

M. Slimane-Kadi, D. Brasen, and G. Sauciér Fast-FPGA Prototyping Sys-
tem That Uses Ing@ensve High Performance FPICInternational Vérkshop
on Held Programmable Gate Aays 1994.

Synopsys, Inc., Design Compiledigion 3.4a), Bel@ral Compiler (\érsion
3.4a), and Library Compiler @rsion 3.4a)Refeence ManualsDocuments
available on-line.

R. Terril, “A 50000-gite MCM-based PLD for Gate Array PrototypinlEEE
Custom Intgrated Cicuits Confeence pp. 2.2.1-2.2.4, 1995.

R. Tessier MIT Laboratory for Computer Science, Cambridge, MPivate
Communication1997.

S. M. Trimbemger, Field Programmable Gate Aay Tednolagy, Kluwer Aca-

132

[Trim95]
[Van92]

[Varg93]

[Vuil96]

[Walt91]

[W0093]

[Xili94a]

[Xili94b]

[Xili97]

[Yang91]

demic Publishers, 1994.
S. M. Trimbeger, Xilinx Inc., San Jose, Californi&rivate Communication.

D. E. Van Den Bout, et al Ahyboard: An FPGA-Based Reconfigurable Sys-
tem; |IEEE Design and Test of Computers, pp. 21-30, June 1992.

J. \Vamgese, M. Butts, and Jon Batchell&kn Efficient Logic Emulation Sys-
tem”, IEEE Trans. on VLS Systems, vol. 1, no. 2, pp. 171-174, June 1993.

J. E. Willemin, P Bertin, D. Roncin, M. Shand, H.otiati, and PBoucard,
“Programmable Actie Memories: Reconfigurable Systems Come of "Age,
|EEE Transactionson VLS, Vol 4, No. 1, pp. 56-69, March 1996.

S. Walters, “ComputeAided Prototyping for ASIC-Based Systefn$EEE
Design and Test of Computers, pp. 4-10, June 1992.

N. Woo and J. Kim, An Efficient Method of Rrtitioning Circuits for Multi-
FPGA Implementatioh, Proc. of 30th Design Automation Conference, pp.
202-207, 1993.

Xilinx, Inc., XACT Development System User Guide, February 1994.
Xilinx, Inc., The Programmable Logic Data Book (page 9-11), 1994.
Xilinx, Inc., Product Specification: XC4000E and XC4000X Series FPGASs,

Version 1.2, June 16, 1997vdilable on Xilinx Wb site: wwwiilinx.com.

S. Yang, Logic Synthesis and Optimization Benchmarks User Guide, Version

3.0, Microelectronics Center of North Carolina, January 1991.

133

