
ROUTING ARCHITECTURE AND

LAYOUT SYNTHESIS

FOR MULTI-FPGA SYSTEMS

BY

MOHAMMED A. S. KHALID

A Thesis submitted in conformity with the requirements
for the Degree of Doctor of Philosophy in the

Department of Electrical and Computer Engineering,
University of Toronto

© Copyright by Mohammed A. S. Khalid 1999

ii

Abstract

Routing Architecture and Layout Synthesis for Multi-FPGA Systems

Doctor of Philosophy, 1999
Mohammed A. S. Khalid

Department of Electrical and Computer Engineering
University of Toronto

Multi-FPGA systems (MFSs) are used as custom computing machines, logic emula-

tors and rapid prototyping vehicles. A key aspect of these systems is their programmable

routing architecture, which is the manner in which wires, FPGAs and Field-Programmable

Interconnect Devices (FPIDs) are connected.

This dissertation provides new insight into the strengths and the weaknesses of two

popular existing routing architectures: the Partial Crossbar and the Mesh. New hybrid

architectures, that use a mixture of hardwired and programmable connections, are pro-

posed. The new architectures are the Hybrid Torus Partial-Crossbar (HTP), the Hybrid

Complete-Graph Partial-Crossbar (HCGP) and the Hardwired Clusters Partial Crossbar

(HWCP).

We evaluate and compare several MFS routing architectures by using a rigorous exper-

imental approach that employs real benchmark circuits. The circuits are mapped into the

architectures using a customized set of partitioning, placement and inter-chip routing

tools. The architectures are compared on the basis of cost (the total number of pins

required in the system) and speed (determined by the post-inter-chip routing critical path

delay).

The key parameters associated with the partial crossbar and the hybrid architectures

are explored. For the partial crossbar, the effect of varying the number of pins per subset

(Pt), on the routability, speed, and cost is minor. For the hybrid architectures, a key param-

eter, the percentage of programmable connections (Pp), is explored and we experimentally

determined that Pp = 60% gives good routability across all the benchmark circuits.

iii

 We show that the Partial Crossbar is superior to the 8-way Mesh architecture. We

show that one of the newly proposed hybrid architectures, HCGP, is superior to the Partial

Crossbar. The HTP architecture is shown to be inferior to the HCGP and only marginally

better than the Partial Crossbar. The HWCP architecture is evaluated compared to the

HCGP architecture and gives encouraging routability and speed results.

Overall, the results show that for single board MFSs, the HCGP is the best among all

the MFS routing architectures evaluated.

iv

Acknowledgments

Alhamdulillah (Praise be to God), this dissertation work has been finally completed.

First, I want to express my gratitude to the God almighty for enabling me to reach this

important milestone in my life.

I would like to express my heartfelt thanks to my supervisor Jonathan Rose for his

moral and financial support, guidance, and encouragement. All the things that I learned

from him in the past five years, especially his commitment to excellence in research and

his remarkable presentation skills, will be very useful for the rest of my life. I would like

to thank the members of my thesis committee, Professors P. Chow, Z. Vranesic, T. Abdel-

rahman, G. Slemon and my external examiner Prof. S. Hauck. Their invaluable sugges-

tions were crucial in improving the clarity and readability of this dissertation.

I would like to thank members of Jonathan’s research group, Vaughn Betz, Mike Hut-

ton, Rob McCready, Sandy Marquardt, Yaska Sankar, Jordan Swartz, and Steve Wilton for

their valuable technical discussions during our weekly group meetings. All the colleagues

in LP392 deserve my thanks for making my stay so enjoyable. Mazen Saghir and Muham-

mad Jaseemuddin deserve my special thanks for their help on many occasions.

I am indebted to my parents for their support and prayers throughout my life. I learned

from them the virtues of hard work, diligence, and forbearance which are crucial for any

significant achievement in life. I am grateful to my wife for patiently facing the rigors of

life for the past few years. This dissertation would not have been possible without her con-

stant love and support. I am thankful to my father-in-law and mother-in-law for their sup-

port and encouragement during this thesis work. My brothers, sisters, and cousins

provided much needed moral support and prayers. Last but not the least, I would like to

thank my three wonderful daughters Samira, Aisha, and Sarah for bringing so much joy

into my life.

Financial support for this project, provided by the ITRC and MICRONET, is gratefully

acknowledged.

v

Table of Contents

Chapter 1 Introduction .1

1.1 MFS Routing Architecture. 2

1.2 Thesis Overview . 4

Chapter 2 Background and Previous Work .6

2.1 Multi-FPGA System Architectures . 6

2.1.1 Linear Arrays . 8

2.1.2 Mesh Architectures . 9

2.1.3 Architectures that Employ only Programmable Interconnect

Devices . 11

2.1.4 Previous Research on MFS Architectures 14

Mesh Architectures . 14

Partial Crossbar Architecture . 16

Studies on Other MFS Architectures 17

FPMCM Architecture Study . 18

2.2 CAD Flow for Multi-FPGA Systems . 20

2.2.1 Alternate Approach . 22

2.3 Layout Synthesis Tools . 22

2.3.1 Partitioning . 23

Part: A Partitioning Tool Developed for the TM-1 MFS 25

2.3.2 Placement . 26

A Force-Directed Placement Algorithm 26

2.3.3 Inter-FPGA Routing . 29

Routing Algorithms for the Partial Crossbar 30

Topology Independent Routing Algorithms 32

vi

2.3.4 Pin Assignment . 33

2.4 Summary. 33

Chapter 3 MFS Routing Architectures .35

3.1 Basic Assumptions . 35

3.2 4-way and 8-way Mesh Architectures . 37

3.3 Partial Crossbar Routing Architecture . 38

3.4 Hybrid Architectures . 39

3.4.1 Hybrid Torus Partial-Crossbar . 40

3.4.2 Hybrid Complete-Graph Partial-Crossbar 42

3.4.3 Hardwired-Clusters Partial-Crossbar 44

3.5 Summary. 45

Chapter 4 CAD Tools and Experimental Evaluation Framework . .46

4.1 Experimental Procedure . 46

4.1.1 Assumptions . 48

FPGA Pin Assignment . 49

Intra-FPGA Placement and Routing. 49

4.2 Evaluation Metrics . 50

4.2.1 Pin Cost. 50

4.2.2 Post-Routing Critical Path Delay . 50

4.3 Benchmark Circuits . 50

4.4 CAD Tools . 52

4.4.1 Multi-way Partitioning . 52

4.4.2 Placement . 55

Placement for Mesh Architectures . 55

Placement for the HWCP Architecture. 57

4.4.3 MFS Static Timing Analyzer . 58

Sample Results Obtained Using the MTA 61

4.4.4 Inter-FPGA Routing Algorithms . 62

A Topology-Independent Router . 62

Routing Algorithm for Mesh Architectures 64

Routing Algorithm for Partial Crossbar 65

vii

Routing Algorithm for Hybrid Architectures 69

Timing-Driven Routing Algorithm for Hybrid Architectures 70

4.5 Summary. 73

Chapter 5 Evaluation and Comparison of Architectures75

5.1 Analysis of Routing Architectures. 75

5.1.1 Partial Crossbar: Analysis of Pt . 76

5.1.2 HCGP Architecture: Analysis of Pp . 78

5.1.3 HTP Architecture: Analysis of Pp . 80

5.1.4 HWCP Architecture: Analysis of Pp and Cs 80

5.2 Comparison of 8-way Mesh and Partial Crossbar Architectures. . . 83

5.3 Comparison of HCGP and Partial Crossbar 86

5.4 Comparison of HTP and HCGP Architectures 89

HTP Compared to the Partial Crossbar 91

5.5 Comparison of HWCP and HCGP Architectures 91

HWCP Compared to HTP . 93

5.6 Summary. 94

Chapter 6 Conclusions and Future Work .96

6.1 Dissertation Summary . 96

6.2 Principal Contributions . 97

6.3 Future Work . 98

6.3.1 CAD Tools for MFSs . 98

6.3.2 Future MFS Routing Architecture Research. 99

Appendix A The Effects of Fixed I/O Pin Positioning on the Routabil-

ity and Speed of FPGAs .101

A.1 Introduction . 101

A.2 Benchmark Circuits and Experimental Procedure 102

A.3 Experimental Results and Analysis . 105

A.3.1 Results for the Xilinx XC4000 FPGAs. 106

A.3.2 Results for the Altera FLEX 8000 FPGAs. 112

A.4 Conclusions . 117

viii

Appendix B Experimental Results Showing Actual Pin Cost and Delay

Values .119

References .125

ix

List of Tables

Table 4-1: Benchmark Circuits . 51

Table 4-2: Placement Results for Different Values of iteration_limit 56

Table 4-3: The Delay Values Used in the Timing Analyzer Model. 59

Table 4-4: Critical Path Delays at Different Levels of Circuit Implementation . . 61

Table 4-5: Comparison of FPSROUTE and MROUTE . 65

Table 4-6: Comparison of HROUTE and HROUTE_TD . 72

Table 5-1: The Effect of Pt on the Delay of the Partial Crossbar Architecture . . . 76

Table 5-2: The Effect of on the Delay of the HCGP Architecture 79

Table 5-3: The Minimum Pp Value Required for Routing Completion in HWCP . 82

Table 5-4: Comparison of the 8-way Mesh and Partial Crossbar Architectures . . 84

Table 5-5: Comparison of the HCGP and Partial Crossbar Architectures 87

Table 5-6: Comparison of the HTP and HCGP Architectures. 89

Table 5-7: Comparison of the HWCP and the HCGP Architectures. 92

Table A-1: Critical Path Delay Under Different Pin Constraints for the Xilinx FP-

GAs. 105

Table A-2: Routing Resource Utilization in the Xilinx FPGAs 108

Table A-3: Routing Resource Utilization Statistics for the Xilinx FPGAs 110

Table A-4: Critical Path Delay Under Different Pin Constraints for the Altera FP-

GAs. 112

Table A-5: Routing Resource Utilization for the Altera FPGAs 114

Table A-6: Routing Resource Utilization Statistics for the Altera FPGAs. 116

Table B-1: Critical Path Delays at Different Levels of Circuit Implementation . 119

Table B-2: Comparison of HROUTE and HROUTE_TD . 120

Table B-3: The Effect of Pp on the Delay of the Partial Crossbar Architecture . 121

Table B-4: Comparison of the HCGP and Partial Crossbar Architectures 122

Table B-5: Comparison of the HTP and HCGP Architectures 123

x

Table B-6: Comparison of the HWCP and HCGP Architectures 124

xi

List of Figures

Figure 1-1: A Generic Multi-FPGA System . 2

Figure 1-2: MFS Routing Architectures Using (a) Hardwired Connections (b) Pro-

grammable Connections (c) Both Types of Connections 3

Figure 2-1: The AnyBoard System [Van92] . 8

Figure 2-2: Mesh Architectures: (a) 4-way Mesh (b) Torus (c) 8-way Mesh 9

Figure 2-3: (a) Full Crossbar (b) Partial Crossbar . 12

Figure 2-4: The TM-2 Routing Architecture [Lewi98] . 13

Figure 2-5: Connections in 1-Hop Topology . 15

Figure 2-6: Connections in a 4-way Mesh: (a) Without Superpins (b) With Super-

pins . 15

Figure 2-7: Example of Tri-partite Graph Topology Using Six FPGAs 18

Figure 2-8: Programmable Interconnection Frame Structure 19

Figure 2-9: The Design Flow for MFSs. 20

Figure 2-10: A Force-directed Placement Algorithm using Ripple Moves 28

Figure 2-11: Inter-FPGA Routing in a 4-way Mesh . 29

Figure 3-1: Mesh Architectures: (a) 4-way Mesh (b) 8-way Mesh (c) 4-way Torus (d)

8-way Torus . 36

Figure 3-2: Extreme Cases of the Partial Crossbar: (a) Pt = 192, (b) Pt = 1 39

Figure 3-3: The HTP Architecture . 40

Figure 3-4: The HCGP Architecture. 42

Figure 3-5: Multi-terminal Net Routing: (a) Without an FPID (b) With an FPID. 43

Figure 3-6: The HWCP Architecture . 44

Figure 3-7: Different Cluster Sizes for HWCP (a) Cs = 3 (b) Cs = 4 45

Figure 4-1: Experimental Evaluation Procedure for MFSs. 47

Figure 4-2: Pseudo-code for RBT . 53

Figure 4-3: The Partitioning Tree for the Circuit spsdes Generated by RBT 54

xii

Figure 4-4: Semi-perimeter of the Net Bounding Box . 55

Figure 4-5: Partitioning and Placement of the s35932 circuit on the HWCP Archi-

tecture: (a) Actual (b) Ideal . 58

Figure 4-6: (a) 4-way Torus architecture (b) Its Routing Graph 63

Figure 4-7: Pseudo-code for the Routing Algorithm used in PCROUTE 66

Figure 4-8: Multi-hop Routing in Partial Crossbar . 68

Figure 4-9: Pseudo-code for the Routing Algorithm used in HROUTE 70

Figure 4-10: Timing-driven Routing Algorithm for the Hybrid Architectures. . . . 71

Figure 5-1: The Effect of Pp on the Routability of the HCGP Architecture 78

Figure 5-2: The Effect of Pp on the Routability of the HTP Architecture 81

Figure 5-3: The Effect of Pp on Routability of HWCP Architecture (s38417 circuit)

82

Figure 5-4: Routing in the Mesh (a) Non-local Net (b) Multi-terminal Net 86

Figure 5-5: Hardwired connections in the HTP architecture 91

Figure A-1: Experimental Procedure for the Xilinx FPGAs. 103

Figure A-2: Experimental Procedure for the Altera FPGAs 104

xiii

Glossary

Acronyms

Architecture Parameters

MFS Multi-FPGA System

FPID Field Programmable Interconnect Device

MCM Multi-Chip Module

FPMCM Field Programmable Multi-Chip Module

HTP Hybrid Torus Partial Crossbar

HCGP Hybrid Complete Graph Partial Crossbar

HWCP Hardwired Clusters Partial Crossbar

Pt
The number of pins per subset, an important parameter in the
partial crossbar architecture

Pp The percentage of programmable connections, an important
parameter in the hybrid architectures

Cs The cluster size, an important parameter in the HWCP archi-
tecture

1

Chapter 1
Introduction

Field-Programmable Gate Arrays (FPGAs) are widely used for implementing digital

circuits because they offer moderately high levels of integration and rapid turnaround time

[Brow92, Trim94]. Multi-FPGA Systems (MFSs), which are collections of FPGAs joined

by programmable connections [Hauc98a], are used when the logic capacity of a single

FPGA is insufficient, and when a quickly reprogrammed system is desired. MFSs are used

in logic emulation [Babb97, Apti98, Quic98], rapid prototyping [Van92, Gall94, Alte94,

Lewi98] and reconfigurable custom computingmachines [Arno92, Cass93, Dray95,

Vuil96]. In some of these applications, MFSs have produced the highest performance

to-date, surpassing even the most powerful supercomputers [Gokh91][Vuil96]. The

subject of this dissertation is the exploration of the routing architectures for MFSs.

Logic emulation is the most important application of MFSs. Logic emulators map a

structural (netlist) representation of an ASIC or a microprocessor design into an MFS. The

design is operated at speeds ranging from hundreds of KHz to a few MHz. This is several

orders of magnitude faster than software design simulation speeds, which are restricted to

at most few tens of Hertz. This allows functional verification of the design in its target

operating environment that includes other hardware and software modules [Butt95]. Many

functional errors, that are impossible to detect by simulation due to prohibitively long

execution times, can be discovered and fixed before IC fabrication. Thus very costly

Introduction

2

iterations in IC fabrication are avoided, resulting in reduced design costs and faster

time-to-market, which are crucial in today’s competitive technology market. Almost all

the major vendors of microprocessors and complex ASICs, such as Intel, Sun

Microsystems and Advanced Micro Devices, have used logic emulation for IC design

verification [Gate95][Gana96].

The computational power required for veri fying the next generation of

microprocessors and complex ASICs (such as graphics controllers) will always remain

beyond the reach of even the most powerful existing microprocessor. This is because the

speed of a microprocessor grows linearly at best with its size, but the computations needed

for simulating a design grow at roughly the square of the design size [Butt95]. Therefore,

simulating the design of a next generation microprocessor is not feasible using a current

generation microprocessor. In the foreseeable future, logic emulators using hundreds of

FPGAs will be the only viable alternative for functional verification and may well serve as

the cornerstone of future IC and system design verification technologies.

1.1 MFS Routing Architecture
A generic MFS is shown in Figure 1-1. The FPGAs are connected using direct

hardwired connections or a programmable interconnection network that may consist of

one or more Field-Programmable Interconnect Devices (FPIDs). An FPID is a device that

FPGA FPGA FPGA

FPGA FPGA

FPGA FPGA FPGA

Programmable
Interconnection
Network

Hardwired
connections

Figure 1-1: A Generic Multi-FPGA System

Introduction

3

can be programmed to provide arbitrary connections between its I/O pins. One-to-one and

one-to-many connections between its pins can be realized by the FPID.

The routing architecture of an MFS is the way in which the FPGAs, fixed wires and

programmable interconnect chips are connected. The routing architecture has a strong

effect on the speed, cost and routability of the system because an inefficient routing

architecture may require excessive logic and routing resources when implementing

circuits and cause large routing delays.

There are many such routing architectures. For example, consider those shown in

Figure 1-2. We refer to wires directly connecting two FPGAs as hardwired connections.

Wires that connect an FPGA to an FPID are called programmable connections. Figure

1-2(a) shows an FPGA-only architecture that uses only hardwired connections. Figure

1-2(b) shows an architecture that uses only programmable connections (no hardwired

connections). Figure 1-2(c) shows an architecture that uses both hardwired and

FPGA FPGA FPGA

FPGA FPGA FPGA

FPGA FPGA FPGA

FPGA FPGAFPGA

FPGA FPGA FPGA

FPGA FPGA FPGA

FPID FPID

FPIDFPID

(b)

(a)

(c)

Figure 1-2: MFS Routing Architectures Using (a) Hardwired Connections (b)
Programmable Connections (c) Both Types of Connections

Introduction

4

programmable connections. Given the multitude of choices in the architectural exploration

space, it is difficult even to decide on a starting point in MFS architecture research.

The goals of this research are to evaluate and compare different routing architectures

for MFSs. We address the following questions:

• Which routing architecture topology is the best in terms of cost, speed, and routabil-

ity?

• What is the effect of using hardwired inter-FPGA connections? If they are useful,

what are the percentages of programmable and hardwired connections that give the

best results for different architectures?

We use an experimental approach to evaluate and compare different architectures. A

total of fifteen large benchmark circuits are used in our experimental work. The

benchmark circuits are mapped to different architectures using a customized set of

architecture-appropriate mapping tools. The architectures are evaluated and compared on

the basis of cost and speed metrics. Thespeed comparisons are based on post inter-chip

routing critical path delay of real benchmark circuits, which, to our knowledge, is the first

time such detailed timing information has been used in the study of board-level MFS

architectures.

We started this research by evaluating and comparing two commonly used routing

architectures namely, the mesh and the partial crossbar [Butt92]. The insight and the

experience gained in this task enabled us to propose a better routing architecture, called

theHybrid Complete-GraphPartial-Crossbar (HCGP), that gives superior cost and speed

[Khal98].

1.2 Thesis Overview
This dissertation is organized as follows:

In Chapter 2 we describe the previous work on MFS routing architectures and

mapping CAD tools.

In Chapter 3, we present detailed descriptions of all the routing architectures explored

in this research. We also cover the issues and assumptions that arise when mapping real

Introduction

5

circuits to the various architectures. The architectures explored are mesh, partial crossbar,

and some newly proposed hybrid architectures. The mesh uses only hardwired

connections, the partial crossbar uses only programmable connections. The hybrid

architectures use a mixture of hardwired and programmable connections.

Chapter 4 describes the framework used for experimental evaluation of MFS routing

architectures. The experimental procedure used for mapping circuits to architectures is

described. The metrics used for evaluating and comparing architectures are explained and

the details of the benchmark circuits used are presented. The customized set of mapping

tools used in this work are described in detail. These are architecture-specific (board-level)

inter-chip routers, a board-level placement tool, and a static timing analysis tool for MFS

architectures.

Chapter 5 presents the key results from this research. For several architectures, we

explore key parameters associated with each architecture. We compare different

architectures and show that the partial crossbar is one of the best existing architectures.

The newly proposed hybrid complete-graph partial-crossbar architecture is shown to be

superior to the partial crossbar. The proposed hybrid architectures and their detailed

evaluation is the main contribution of this thesis.

We conclude and describe topics for future work in Chapter 6.

6

Chapter 2
Background and Previous

Work

Since the early 1990s, many MFSs and the associated CAD tools have been proposed

and built for logic emulation, rapid prototyping and a wide variety of applications in

custom computing. These systems and their CAD tools are the focus of this chapter. An

overview of existing MFSs and their routing architectures is presented in Section 2.1. The

design flow used in mapping large circuits to MFSs is described in Section 2.2. In Section

2.3, the various mapping tools and algorithms for each of the steps in the design flow are

reviewed.

2.1 Multi-FPGA System Architectures
The MFSs that have been previously developed range from small systems that fit on a

single printed circuit board [Gall94] to huge systems that use hundreds of FPGAs laid out

on tens of Printed Circuit Boards (PCBs), which in turn are mounted in many card cages

[Quic98].

An overwhelming majority of MFSs have been implemented on PCBs. However, a

few MFSs based on Multi-Chip Modules (MCMs) have been proposed and built

[Dobb92][Darn94][Amer95][Lan95][Terr95]. In these Field-Programmable Multi-Chip

Modules (FPMCMs), several FPGA dies are mounted on a single substrate,

interconnection resources are provided, and all the logic and routing resources are

Background and Previous Work

7

packaged as a single unit. The advantages of MCMs compared to PCBs are reduced size,

power consumption and superior speed performance. This approach is still in its infancy

and a number of issues like FPMCM cost, architectures, yield, interconnect density, and

thermal dissipation need to be resolved before FPMCMs become commercially viable. In

this chapter we will concentrate on MFSs implemented using PCBs.

Many MFSs were built for specific applications, such as the Marc-1, which was

designed to perform circuit simulation [Lewi93] and the RM-nc which was used for

neural-network simulation [Erdo92]. Their topologies are optimized for specific

applications and it is hard to categorize such unique topologies. Since the focus of this

research is on general purpose reprogrammable MFSs, we will not review such systems.

In addition to FPGAs, almost all MFSs have memory chips and other devices such as

small dedicated FPGAs or microcontrollers for ‘housekeeping’ tasks such as controlling

communication with the host computer, system configuration and status monitoring

[Babb97]. For example each board in the TM-2 system [Lewi98] consists of two Altera

10K50 FPGAs, four I-Cube FPIDs, 8 Mbytes of memory, and one FPGA each for

programmable clock generation and housekeeping respectively. The current trend in MFSs

(especially in logic emulators) is to provide RISC processors and sockets for DSPs and

Intellectual Property (IP) cores in addition to FPGAs [Baue98, Cour97] to widen their

range of applications. Even in such systems, the routing architecture used for

interconnecting the FPGAs remains important.

The routing architecture of an MFS is defined by the topology used to connect the

FPGAs. Another distinguishing feature is whether programmable interconnect chips, also

called FPIDs or crossbars in the literature, are used for connecting the FPGAs. If no FPIDs

are used we refer to it as an FPGA-only architecture. The existing routing architectures

can be categorized roughly in the following three ways: linear arrays, meshes, and

architectures that use programmable interconnect chips. The first two categories are

examples of FPGA-only architectures.

Background and Previous Work

8

2.1.1 Linear Arrays

In this architecture the FPGAs are arranged in the form of a linear array, which is

suitable for one-dimensional systolic processing applications. This architecture has

extremely limited routing flexibility and many designs may run out of routing resources

and hence cannot be implemented. While the architecture may perform well in certain

niche applications, it’s utility as a general purpose MFS is very limited. Two well known

examples of this architecture are Splash [Gokh91] and AnyBoard [Van92].

The AnyBoard system uses five Xilinx 3090 FPGAs and three 128K x 8 RAMs as

shown in Figure 2-1. Note that FPGAs at the opposite ends of the array are connected to

form a ring topology and all the FPGAs are connected to a global bus. An extension of the

global bus with dedicated I/O lines from each FPGA serves as the system interface. This

can be used for routing I/O signals of the circuits. The control FPGA is used to implement

circuitry for managing the PC bus interface, FPGA configuration management and

hardware debugging support. The purpose of using the control FPGA is to leave all the

logic in other FPGAs for implementing the required design functionality. The AnyBoard

system was one of the earliest MFSs built for rapid prototyping of small designs. It was an

inexpensive system that demonstrated the potential of MFSs as an attractive and low-cost

medium for rapid prototyping of many hardware designs.

XC3090
FPGA

XC3090
FPGA

XC3090
FPGA

XC3090
FPGA

XC3090
FPGA

Global Bus

128K X 8
RAM

128K X 8
RAM

128K X 8
RAM

Address

Data Data

PC Interface

CONTROL
FPGA

Figure 2-1: The AnyBoard System [Van92]

Background and Previous Work

9

The Splash system employed a linear array of 32 Xilinx 3090 FPGAs augmented with

memory and FIFO devices. It was used to implement a systolic algorithm for genetic

string matching and shown to be 300 times faster than the Cray-2 supercomputer. The

Splash 2 system [Arno92] (the successor of Splash) improved the Splash architecture by

using a large crossbar chip for routing non-local connections between FPGAs in the linear

array. Hence, Splash-2 is a hybrid architecture that does not fit into any specific category

of routing architectures given in this chapter.

2.1.2 Mesh Architectures

In the simplest mesh architecture, the FPGAs are laid out in the form of a

two-dimensional array with each FPGA connected to its horizontal and vertical adjacent

neighbours as shown in Figure 2-2(a). Variations of this basic topology may be used to

improve the routability of the architecture such as the torus and 8-way mesh as shown in

Figure 2-2(b) and Figure 2-2(c). The advantages of mesh are simplicity of local

FPGA

FPGA

FPGAFPGA

FPGA FPGA

FPGAFPGA

FPGA

FPGA

FPGA

FPGAFPGA

FPGA FPGA

FPGAFPGA

FPGA

FPGA

FPGA

FPGAFPGA

FPGA FPGA

FPGAFPGA

FPGA

Figure 2-2: Mesh Architectures: (a) 4-way Mesh (b) Torus (c) 8-way Mesh

(a)

(c)

(b)

Background and Previous Work

10

interconnections and easy scalability. However, using FPGAs for interconnections reduces

the number of pins for logic inside each FPGA and leads to poor logic utilization. The

connection delays between widely separated FPGAs (especially in bigger arrays) are large

whereas those between adjacent FPGAs are small. This results in poor speed performance

and timing problems such as setup and hold time violations due to widely variable

interconnection delays. Notable examples in this category are the Quickturn RPM

[Walt91], DEC PeRLe-1 [Vuil96], and the MIT Virtual Wires project [Babb97].

The Quickturn RPM was the first commercial logic emulation system. Due to the

routability and speed problems of the mesh architecture that arise when implementing

general logic circuits, Quickturn switched to a superior architecture (partial crossbar) in

their next generation logic emulation systems [Butt92].

Some of the disadvantages of the mesh architecture were overcome in the MIT Virtual

Wires project by using a software technique called virtual wires [Babb97]. The FPGA pins

are used for both logic and routing in the mesh, and hence there are not enough pins

available for logic in each FPGA. Virtual wires overcomes this pin limitation problem by

intelligently multiplexing many logical wires (connections between partitioned

sub-circuits) on each physical wire in the mesh and pipelining these connections at the

maximum clocking frequency of the FPGA. In this way the number of pins available in

each FPGA can be effectively increased leading to higher logic utilization per FPGA.

Demonstration hardware boards were built, each using 16 Xilinx 4005 FPGAs

arranged as a 4-way mesh. Each FPGA has 22 I/O lines dedicated to a 64K X 4 SRAM

chip. A SPARC microprocessor was successfully emulated in a system environment and

booted the Alewife operating system at 180 KHz [Babb97]. This technology has been

commercialized and emulators using this architecture are being produced by IKOS

Systems [Ikos98].

The advantage of using the virtual wires scheme on a mesh is low-cost logic emulation

because inexpensive low pin count FPGAs can be used and the mesh architecture is

relatively easy to manufacture. The disadvantages are the speed penalty and increased

mapping software complexity due to pin multiplexing. Also, it may be very difficult to

Background and Previous Work

11

map portions of asynchronous logic that may be present in the circuit being emulated

because asynchronous signals cannot be assigned to a specific time slice (phase) in the

emulation clock period. Finally, it should be noted that virtual wires is a software

technique, and using it on other architectures (instead of a mesh) may give better speed

results.

The mesh architecture also does extremely well when implementing algorithms that

match its topology. This has been convincingly demonstrated by the DEC PeRLe-1 system

which uses a 4-way mesh of 16 Xilinx 3090 FPGAs augmented by 7 control FPGAs, 4

MB of static RAM, four 64-bit global buses and FIFO devices. For many diverse

applications, such as cryptography, image analysis, high energy physics, and

thermodynamics, this system gave superior performance and cost compared to every other

contemporary technology, including supercomputers, massively parallel machines, and

conventional custom hardware [Vuil96].

2.1.3 Architectures that Employ only Programmable Interconnect
Devices

In these architectures all the inter-FPGA connections are realized using FPIDs. An

ideal architecture would be a full crossbar that uses a single FPID for connecting all

FPGAs, as shown in Figure 2-3(a). Unfortunately, the complexity of a full crossbar grows

as a square of its pin count and hence it is restricted to systems that contain at most a few

FPGAs. Before we discuss the existing MFS architectures that use FPIDs, we briefly

review existing FPID device architectures, their cost and commercial viability issues. We

also discuss the pros and cons of using commercially available FPGAs as FPIDs.

The first FPID introduced in the market was the Aptix FPIC (a synonym for FPID)

device [Guo92]. Each FPIC has 1024 pins arranged in a 32 x 32 I/O pin matrix. Each pin

connects to two I/O tracks that orthogonally cross routing channels. Each routing channel

consists of sets of parallel tracks that are segmented into various sizes to accommodate

signal paths with different lengths. Bidirectional pass transistors controlled by SRAM

cells connect I/O tracks to routing tracks and routing tracks to other routing tracks. By

selectively programming the SRAM cells, the user can connect any device pin to any

number of other pins. The Aptix FPID has a number of disadvantages such as high cost

Background and Previous Work

12

(due to large number of I/O pins) and unpredictable delay (due to FPGA-like architecture

of the device). Therefore it is not suitable for use as a mainstream component for

production and prototyping.

The ICube IQX family of FPIDs [ICub97] provide a better alternative compared to the

Aptix FPICs. They use a non-blocking switch matrix to provide arbitrary one-to-one and

one-to-many connections between FPID I/O pins. They provide deterministic connection

delays and are available in sizes ranging from 96 to 320 pins. Since ICube FPIDs are

available in low cost packages, produced in relatively high volume and used in many

telecommunication applications, they are much less costly compared to Aptix FPICs.

Commercially available FPGAs have also been used as inexpensive FPIDs [Butts92,

Slim94]. The disadvantages of this approach are: the connection delay may be

unpredictable due to the FPGA routing architecture, the mapping (place and route) time

may be large, and some special circuit feature (available in FPIDs) may not be provided.

For the same number of I/O pins, we found that the cost of FPGAs and FPIDs is

comparable because it is dominated by packaging costs. Therefore, the decision to use

FPGA FPGA FPGA FPGA

FPID

21 3 4

FPGA 1

A

FPGA 4FPGA 3FPGA 2

FPID FPIDFPID
B pinsA pins

AAA

C pins

B C B C B C B C

Figure 2-3: (a) Full Crossbar (b) Partial Crossbar

(b)

(a)

Background and Previous Work

13

FPIDs or FPGAs (as FPIDs) should be based on other features such as delay

characteristics, device mapping and configuration time, etc.

The partial crossbar architecture [Butt92, Varg93] overcomes the limitations of the full

crossbar by using a set of small crossbars. A partial crossbar using four FPGAs and three

FPIDs is illustrated in Figure 2-3(b). The pins in each FPGA are divided into N subsets,

where N is the number of FPIDs in the architecture. All the pins belonging to the same

subset in different FPGAs are connected to a single FPID. The number of pins per subset

is a key architectural parameter that determines the number of FPIDs needed and the pin

count of each FPID (this will be discussed in detail in Chapter 3). The delay for any

inter-FPGA connection is uniform and is equal to the delay through one FPID. The size of

the FPIDs (determined by pin count) increases only linearly as a fraction of the number of

FPGAs.

Partial crossbars can be used in a hierarchical manner to provide interconnections in

large systems. A set of crossbars at the board level can interconnect multiple FPGAs, at

the next level, another set of crossbars can interconnect multiple boards, and finally

another set of crossbars can interconnect multiple card cages. The delay for going from

one level to another increases, but it is still predictable and uniform. This architecture is

used in the System Realizer, a logic emulation system produced by Quickturn Design

Systems with an estimated logic capacity of three million gates [Quic98].

One difficulty with the (uniform) partial crossbar is that the wiring is very non-local,

which causes a major manufacturing problem when the FPGAs are spread out across

FPGA 1 FPGA 4FPGA 3FPGA 2

FPID A FPID B FPID C FPID D

Figure 2-4: The TM-2 Routing Architecture [Lewi98]

Background and Previous Work

14

many boards. The number of connections required between the boards requires expensive

high pin count connectors and back planes that can handle high wiring densities. These

problems are alleviated in the Transmogrifier-2 (TM-2 for short) architecture [Lewi97]

[Lewi98] developed at the University of Toronto. The TM-2 takes advantage of the natural

hierarchy and resulting locality of wiring within circuits. It uses a modified partial

crossbar architecture that maintains the constant routing delay of a partial crossbar but

utilizes more local connections to substantially reduce the back plane wiring density. A

hierarchical interconnect structure is used that requiresN levels of routing for2N FPGAs.

The number of wires in routing level k is more than the number of wires in routing level

k+1. A TM-2 system using four FPGAs (two routing levels) and four FPIDs is illustrated

in Figure 2-4. The thick lines indicate level 1 routing and the thin lines indicate level 2

routing. The largest version of the TM-2, called the TM-2A, will comprise 16 boards that

each contain two Altera 10K100 FPGAs and up to 8 Mbytes of memory, providing an

estimated logic capacity of two million gates.

Other examples of MFSs in this category are the Aptix AXB-AP4 [Apti93] and the

Transmogrifier-1 [Gall94]. These architectures use very high pin count Aptix

Field-Programmable Interconnect Components (FPIC, a synonym for FPID) [Guo92].

These systems are expensive due to high cost of the 1024-pin FPIC used and are difficult

to manufacture, especially for larger MFS sizes.

2.1.4 Previous Research on MFS Architectures

There have been a number of research efforts relating to MFS architectures that

predate the present work. We summarize them in this section.

Mesh Architectures
Hauck et al proposed several constructs to improve the basic 4-way mesh [Hauc94,

Hauc95]. In the 8-way mesh, each FPGA connects to its diagonal adjacent neighbours in

addition to horizontal and vertical adjacent neighbours. The 1-hop topology is similar to

the 4-way mesh but with additional connections to ‘next-to-adjacent’ FPGAs as well, both

horizontally and vertically, as illustrated in Figure 2-5. These topologies result in a

Background and Previous Work

15

reduction of routing cost in the mesh (measured in terms of intermediate FPGA pins

required for connecting non-adjacent FPGAs).

Superpins and permutations are techniques that minimize internal FPGA routing

resource usage when routing inter-FPGA nets. For example, in a 4-way mesh each FPGA

communicates with its four nearest neighbours; logically north, south, east, and west, as

illustrated in Figure 2-6(a). If a signal passing through an FPGA enters from the north side

and leaves from the south side, it has to traverse the entire FPGA chip. This increases

FPGA FPGAFPGA

FPGA

FPGA FPGA

FPGA

FPGA

FPGA

Figure 2-5: Connections in 1-Hop Topology

Figure 2-6: Connections in a 4-way Mesh: (a) Without Superpins (b) With Superpins

N N N N N N N N

S S S S S S S S S

W
W
W
W
W
W
W
W

E
E
E
E
E
E
E
E

FPGA

N S E W N S E W

N S E W N S E W

N
S
E
W
N
S
E
W

N
S
E
W
N
S
E
W

FPGA

(a) (b)

Superpin

Background and Previous Work

16

intra-FPGA routing cost and delay. Using the superpins technique, the I/O pins in an

FPGA are connected to adjacent FPGAs using an alternating pattern illustrated in Figure

2-6(b). With this arrangement, a signal passing through the chip need only traverse the

length of at most a few pins inside the FPGA, rather than the whole FPGA chip. A

‘permutation’ of superpins is a way of connecting superpins in adjacent FPGAs. A better

permutation (that reduces inter-FPGA routing costs) connects adjacent superpins in one

FPGA to non-adjacent superpins in the other FPGA.

To evaluate these topologies and techniques, a synthetic netlist was generated for a 5 x

5 array of FPGAs. The netlist was obtained by using a random distribution of sources and

sinks across a 5 x 5 array of FPGAs. The FPGAs were represented as grids with 36 pins on

a side. The inter-FPGA routing delay was assumed to be 30 times greater than the unit

intra-FPGA routing delay. Using a well known routing tool called the PathFinder

[McMu95], the synthetic netlist was routed on different topologies. The average and

maximum source-sink delays were calculated for each topology. The study showed that in

terms of routing delay, the 8-way topology is 21% better than the 4-way topology and the

1-hop is 36% better. Superpins improve the 1-hop topology by 31%, with permutations

giving a further 5% improvement.

The limitations of this study are: First, it uses synthetic netlists instead of

post-partitioning and placement netlists for real circuits. The effectiveness of the improved

topologies in routing real circuits is not proven; Second, no multi-terminal nets (one

source, multiple sinks) are used in the netlists. In mesh topologies, routing multi-terminal

nets is difficult [Tess97] and consumes excessive inter-FPGA routing resources (pins in

intermediate FPGAs). It is not clear if these reductions in delay offered by the improved

topologies for synthetic netlists will apply for real circuits. The Superpins and

permutations techniques, however, are valuable and could potentially provide significant

reductions in intra-FPGA routing resource utilization and delay for real circuits.

Partial Crossbar Architecture
Recall from Section 2.1.3 that the number of pins per subset is a key parameter of the

partial crossbar that determines the number of FPIDs required and the size (pin count) of

Background and Previous Work

17

each FPID. Its effect on the routability of the partial crossbar is investigated in [Butt92].

Dif ferent types of synthetic netlists are mapped to different configurations of the partial

crossbar and the percentage of nets routed for each case are reported. It is shown that low

pin count FPIDs, which are cheaper, are almost as effective as high pin count FPIDs for

the partial crossbar.

In [Chan93] architectural trade-offs in the design of folded Clos networks (partial

crossbar) are discussed qualitatively. A Clos network [Clos53] is a three-stage

interconnection network that can be used to connect FPGAs in an MFS. Each inter-FPGA

connection, however, will incur a delay of three stages. In a folded Clos network, the

switches in the two outer stages are implemented inside the FPGAs and the switches in the

middle stage are implemented using FPIDs [Chan93]. The routing resources needed for

implementing outer stage switches within FPGAs affects their routability and logic

utilization. There is a trade-off here; reducing the size of the switches in the outer stages

improves the routability and logic utilization of individual FPGAs but requires larger

FPIDs in the middle stage and adversely affects the routability of the folded Clos network,

and vice versa.

An optimal algorithm for routing two-terminal nets in the folded clos network is

presented. It is demonstrated that the routing problem for multi-terminal nets has no

optimal solution.

Studies on Other MFS Architectures
Although the studies discussed above provide some insight into the mesh and partial

crossbar architectures, empirical studies that evaluate the implementation of real circuits

on different architectures provide a more clear picture of the ‘goodness’ of each

architecture relative to the others.Kim et al mapped several MCNC circuits to seven

different architectures, including the partial crossbar architecture [Kim96]. Each circuit

was mapped to a fixed size MFS (containing 30 FPGAs). The size of the FPGA was

varied depending upon the circuit size. Each architecture was evaluated on the basis of

total number of CLBs needed across all circuits (where fewer CLBs used implies better

architecture), the type of FPGA chips used (smallest FPGAs implies better architecture),

Background and Previous Work

18

and maximum number of hops needed across all inter-FPGA nets (as a metric for speed).

A hop is defined as a chip-to-chip connection, i.e. a wire segment that connects two

different chips on a board. It was shown that one of the proposed architectures, FPGAs

connected together as a tri-partite graph (illustrated in Figure 2-7), gave the best results

(slightly better than partial crossbar). In this work, relatively few large circuits were used

that would have really ‘stressed’ the architectures, as only three reasonably large circuits

(>2000 CLBs) were employed. Also, for the speed estimate only the worst casenet delay

in terms of the number of hops was considered; which is not as representative of the true

delay as post-inter-FPGA routingcritical path delay.

Based on the different research studies and anecdotal evidence from the industry, it is

apparent that the partial crossbar is one of the best existing routing architectures for MFSs.

FPMCM Architecture Study
A comprehensive experimental study of FPMCM architectures is presented in

[Lan95]. Partitioning, placement and routing tools were developed for mapping circuits to

FPMCM architectures [Lan94]. An FPMCM architecture, called theexact segmented

architecture, was proposed that gave superior cost and speed performance compared to

two other FPMCM architectures, mesh and partial crossbar.

The exact segmented architecture uses enhanced FPGA chips that consist of an

SRAM-based FPGA logic core surrounded by an SRAM-based programmable

interconnection frame. The chips are mounted on a deposited MCM substrate and

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

Figure 2-7: Example of Tri-partite Graph Topology Using Six FPGAs

Background and Previous Work

19

interconnected using a topology similar to the 1-hop mesh topology in which each FPGA

connects to its horizontal and vertical adjacent as well as ‘next-to-adjacent’ FPGAs

(Figure 2-5).

The modified FPGA that consists of an FPGA core surrounded by a programmable

interconnection frame [Lan95] is illustrated in Figure 2-8. Although not shown in Figure

2-8 to avoid making it too cluttered, the signals from the FPGA core are connected to the

programmable interconnection frame via core buffers. The I/O terminals of the

programmable interconnection frame are called frame pins. The programmable

interconnection frame is used for implementing inter-FPGA connections and provides

much shorter interconnection delays compared to the delays through FPIDs or FPGAs.

The interconnection frame uses four switch boxes placed at the corners of the chip.

Permutation boxes are placed between switch boxes and are assumed to have complete

flexibility .

FPGA CORE

core buffers

frame pin

switch
prog.

switch box permutation box

Figure 2-8: Programmable Interconnection Frame Structure

Background and Previous Work

20

Experimental results show that the exact segmented FPMCM architecture gives one to

two orders of magnitude higher logic density and over a factor of two higher speed

compared to contemporary MFSs implemented on advanced PCBs.

2.2 CAD Flow for Multi-FPGA Systems
The steps needed to map a large design on to an MFS are described in this section. The

design flow is illustrated in Figure 2-9. The input design may be available as a huge flat

netlist of logic gates and flip flops, as in the case of logic emulation and rapid prototyping.

Alternatively, it may be in the form of a high level language description, as in the case of

FPGA-based custom computing machines. The input description is mapped into a netlist

of configurable logic blocks (CLBs) of the FPGAs used [Babb97, Hauc98b]. The

Netlist of gates and
flip flops for input design

High level language
description for input design

Netlist of CLBsTechnology Hardware
mapping compiler

Partitioning into multiple FPGAs

Board-level FPGA placement

Inter-FPGA routing

Pin assignment, placement and routing

Configuration bit stream generation for FPGAs and FPIDs

Figure 2-9: The Design Flow for MFSs

 within individual FPGAs

Background and Previous Work

21

remaining steps (partitioning, placement and routing) constitute the layout synthesis phase

and will be described here in the context of MFSs. Formal problem definitions, objective

functions, and algorithms for each of these steps can be found in any introductory book on

VLSI physical design automation [Sher95, Sarr96].

A review of hardware compilers that generate circuit netlists from behavioral or

structural hardware description languages is beyond the scope of this work, but good

references covering this topic are available in [Page91, Gall95, Knap96]. Similarly,

detailed discussion of issues in technology mapping, intra-FPGA placement and routing

can be found elsewhere [Brow92, Betz97].

The first step in the layout synthesis phase is multi-way partitioning. It is defined as

follows: given an input circuit divide it into a minimum possible number of sub-circuits

such that the total number of connections between sub-circuits is minimized and the logic

and pin limits on each sub-circuit are satisfied. The main objective here is to minimize the

total cut size, i.e. the total number of wires between the sub-circuits while satisfying the

FPGA logic and pin capacity constraints.

The next step is placement of each sub-circuits on a specific FPGA in the MFS. This is

defined as follows: given all the sub-circuits and their interconnection netlist, assign each

sub-circuit to a specific FPGA so as to minimize the total routing cost of inter-FPGA

connections. The objective here is to place closely connected sub-circuits in adjacent

FPGAs (if the architecture has some notion of adjacency) so that the routing resources

needed for inter-FPGA connections are minimized. The total routing cost of inter-FPGA

connections is architecture dependent.

Given the sub-circuit interconnection netlist and their placement on FPGAs in the

MFS, the next step is inter-FPGA routing. The routing path chosen for each net should be

the shortest path (use the minimum number ofhops) and it should cause the least possible

congestion for subsequent nets to be routed.

The inter-FPGA routing step is followed by pin assignment, which decides the

assignment of inter-FPGA signals to specific I/O pins in each FPGA. This is followed by

Background and Previous Work

22

placement and routing within each FPGA in the MFS. The last step is the generation of

configuration bit streams to program each FPGA and FPID (if any).

2.2.1 Alternate Approach

Instead of partitioning the technology mapped netlist representing the input circuit, as

shown in Figure 2-9 and used in many existing systems [Babb97], an alternate approach

would be to partition the gate-level netlist, followed by placement and inter-FPGA

routing. The technology mapping is done for the gate-level sub-circuit assigned to each

FPGA before the pin assignment step. This approach is preferred by some researchers

[Hauc95] and used in commercially available mapping tools from Quickturn Design

Systems [Quic98]. The advantage of this approach is that technology mapping for smaller

sub-circuits can be done much faster in parallel compared to the technology mapping for a

single large gate-level netlist. There is also some empirical evidence that this approach

results in significantly smaller cut sizes after bipartitioning using an improved FM-based

algorithm [Hauc95]. It is not clear, however, if similar reductions can be obtained for

multi-way partitioning using other algorithms. Quickturn’s primary motivation for using

this approach is to reduce the technology mapping run times and not any potential

reductions in cut sizes [Chu98].

The main disadvantage of this approach is that there is no information at this level

about the ‘final’ critical paths in the circuit, and the logic block and interconnect delays

[Roy95]. Therefore, timing-driven partitioning and inter-FPGA routing cannot be

performed for an unmapped circuit because there is no information available on the final

critical paths in the circuit being mapped to an MFS. This is a major limitation because

opportunities for significant speed improvement may be lost.

2.3 Layout Synthesis Tools
In this section, previous work on partitioning, placement, and inter-FPGA routing for

MFSs is reviewed, and the pin assignment issue is covered briefly.

Background and Previous Work

23

2.3.1 Partitioning

The partitioning problem for MFSs is different compared to that in layout synthesis of

VLSI systems because of hard pin and logic capacity constraints for each partition. When

typical circuits are partitioned into currently available FPGAs, the partitions are usually

pin-limited, i.e. all the available logic in the FPGA cannot be used due to lack of pins.

Hence the primary goal of the partitioner is to minimize the total number of pins used (the

total cut size) across all partitions. Partitioning into multiple FPGAs can be achieved

either by direct multi-way partitioning or by recursive bipartitioning. The former approach

usually gives superior results [Chou95] but is much harder compared to the latter approach

because bipartitioning is a well studied problem and widely used algorithms that give

good results in real world (commercial) CAD tools are available [Fidu82, Kris84, Heil97].

Many multi-way partitioning algorithms developed for MFSs use minimization of the

total cut size as their primary objective [Woo93, Kuzn94, Chou95]. The additional

objectives used are to make the partitioner timing-driven and routability-driven.

Timing-driven partitioning attempts to minimize the effects of partitioning on circuit

speed by preventing the critical paths in the circuit from traversing too many partitions

[Kim96, Roy95]. Routability-driven partitioning attempts to produce partitions that lead to

successful inter-FPGA routing for the target MFS architecture. Obviously, to succeed in

this task, the partitioner needs to be aware of the topology of the target MFS architecture

[Hauc95, Kim96].

The Fidducia and Mattheyses [Fidu82] graph bipartitioning algorithm (generally

referred to as FM) forms the basis of many multi-way partitioning algorithms due to its

speed, efficiency and relatively easy implementation. It is an iterative improvement

algorithm that uses multiple passes. It starts with an initial random partition and during

each pass it attempts to reduce the cut size of the partition by moving cells from one

partition to the other. The cell to be moved is selected based on its gain, which is the

number by which the cut size would decrease if the cell is moved. In some cases, the gain

of a cell is negative, but it is still moved with the expectation that the move will allow the

Background and Previous Work

24

algorithm to ‘escape out of a local minimum’. This feature is also referred to as ‘hill

climbing’ in the literature.

In [Kuzn93, Kuzn94] a modified form of the FM algorithm, further enhanced by using

functional replication to minimize cut size in each partition, is used to for bipartitioning.

This algorithm is used in a recursive manner to partition a design into minimum possible

number of homogeneous FPGAs or into a set of minimal cost heterogeneous FPGAs.

The multi-way partitioning algorithm proposed in [Woo93] also uses an iterative

improvement method (like FM) but differs in the way it selects a cell to move and the

manner in which it moves the cell.

An efficient algorithm for multi-way partitioning of huge circuits used in logic

emulation was proposed in [Chou95]. It first applies a fast clustering scheme called the

local ratio cut to produce initial partitions. It then uses a set covering approach to improve

the initial partitioning and remove any inefficiencies that may be introduced during

clustering. Compared to a recursive FM algorithm, this algorithm reduced the number of

FPGAs required by 41% and the run time by 86% for partitioning a circuit containing 160,

000 gates (assuming FPGA logic and pin capacities of 2700 gates and 184 I/O pins).

A routability and performance-driven partitioning algorithm is presented in [Kim96].

In the first phase, clustering-based partitioning is performed whose objective function is

the weighted sum of the cut size and the maximum delay. This is followed by a partition

improvement step that is based on the gain (cut size reduction) of moving a cell from one

FPGA to the other. In the second phase, inter-FPGA routing is performed and the existing

partitions are improved to obtain 100% routability for the target MFS architecture. Here, if

the inter-FPGA routing attempt fails, then the cells are moved between partitions in an

attempt to obtain routing completion.

Many other techniques like the spectral method [Chan95], simulated annealing

[Roy95], and partitioning based on design hierarchy [Behr96], have been proposed for

multi-way partitioning in MFSs.

Background and Previous Work

25

Part: A Partitioning Tool Developed for the TM-1 MFS
An example of a practical multi-way partitioning tool isPart, which was originally

developed for the Transmogrifier-1 (TM-1 for short) MFS [Gall94]. The term ‘practical’

indicates that the tool has been used with an existing MFS (the TM-1) and real circuits

have been partitioned and implemented on the TM-1 using this tool.

Part is based on the FM algorithm with extensions for multi-way partitioning and

timing-driven pre-clustering [Shih92]. The basic FM algorithm gives much improved

results when combined with a set of techniques such as pre-clustering and utilization of

higher-level gains [Hauc95, Kris94].

Clustering before partitioning reduces the run time and gives better quality results.

Since many nodes are replaced by a single cluster, the algorithm runs much faster because

it has fewer nodes to partition. The FM algorithm is a global algorithm that optimizes the

macroscopic properties of the circuit and may overlook more local concerns. An

intelligent clustering algorithm can perform good local optimization, complementing the

global optimization properties of the FM algorithm.Part uses a timing-driven

pre-clustering algorithm, similar to that proposed in [Shih92], to reduce the cut size as

well as the delay obtained after bipartitioning. Timing-driven partitioning is accomplished

by modifying the FM algorithm such that when selecting a cluster to be moved, the

algorithm tries to select a cluster to move that prevents the critical paths from traversing

across too many partitions. Notice that the timing-driven feature ofPart will be lost after

the first cut if we use it for implementing multi-way partitioning through a recursive

bi-partitioning approach.

We could not compare multi-way partitioning results obtained usingPart to the other

partitioning algorithms because none of them give results for the circuits and FPGA logic

and pin capacities that we use. Another important point to note is that while minimizing

the cut size during partitioning is important, a small variation in the cut size is acceptable

as long as the partitioned netlist is routable on a given MFS. Overall, we believe thatPart

gives reasonably good results because it uses pre-clustering combined with the FM

algorithm.

Background and Previous Work

26

2.3.2 Placement

Following circuit partitioning the placement tool assigns sub-circuits to specific

FPGAs such that inter-FPGA routing costs and critical path delays are minimized. This

task can be done simultaneously with partitioning [Roy95, Kim96] or as a separate step

[Babb97]. Well known algorithms like simulated annealing [Shah91] have been used for

placement on MFSs [Roy95, Babb97].

The placement task is trivial for some architectures such as the partial crossbar, where

any random placement is acceptable because the number of wires between any pair of

FPGAs is the same.

A Force-Directed Placement Algorithm
Force-directed placement algorithms have been used for board-level placement of IC

chips [Quin79, Goto81] and could potentially be used for placement in the mesh

architectures. Force-directed algorithms are rich in variety and differ greatly in

implementation details [Shah91]. The common element in these algorithms is the method

used to calculate the location where a module (sub-circuit) should be placed on the target

two-dimensional array to achieve its ideal placement. The algorithms operate on the

physical analogy of a system of masses connected by springs, where the system tends to

rest in its minimum energy state with minimum combined tension from all the springs.

Consider any given initial placement. Assume that the modules that are connected by

nets exert an attractive force on each other. The magnitude of the force between any two

modules is directly proportional to the distance between them and the number of

connections between them. Since each module is usually connected to many other

modules, it will be pulled in different directions by different modules. If the modules in

such a system were allowed to move freely, they would move in the direction of the force

until the system achieves equilibrium with zero resultant force on each module.

Suppose a module Mi is connected to j other modules. Let Cij represent the number of

connections between the module Mi and the module Mj. The coordinates for the zero force

target point for the module Mi can be derived as follows:

Background and Previous Work

27

A version of the force-directed placement algorithm from [Shah91] is illustrated in

Figure 2-10. This is an iterative algorithm that starts with an initial placement solution that

is randomly generated. Then a module with the highest connectivity (seed module) is

selected and its target point computed using the above equations.

The inner while loop of the algorithm is executed while the end_ripple flag is false. If

the computed target point of a module is thesame as its present location or isvacant, then

theend_ripple flag is set totrue, abort_count is set to zero and module is assigned to the

computed position andlocked.

If the target point isoccupied, the algorithm uses ripple moves in which the selected

module is moved to the computed target point andlocked. The module displaced is

selected as the next seed module to be moved,end_ripple is set tofalse andabort_count is

set to zero. When a module is moved to its target point, it is necessary tolock it for the rest

of the current iteration in order to avoid infinite loops, which can occur if two modules

compete for the same target point.

If the computed target point is occupied andlocked, then the selected module is moved

to nearestvacant location,abort_count is incremented andend_ripple is set totrue. If

abort_count is less thanabort_limit, then the next seed module is selected and the same

iteration continues. Otherwise, all locations are unlocked,iteration_count is incremented,

and a new iteration is started.

The process of selecting seed modules in the order of their connectivity and attempting

to place them in their ideal locations continues until theiteration_limit is reached. The

placement available at this point is the final placement solution. In this algorithm, there is

xi{ }
Cij x j×

j
∑

Cij
j

∑
-------------------------=

yi{ }
Cij y j×

j
∑

Cij
j

∑
-------------------------=

Background and Previous Work

28

no methodical way to choose specific values for the parameters iteration_count and

abort_limit. These parameters are experimentally determined in practice.

Force-directed placement()
{ /* begin */

 Generate the connectivity matrix from the netlist;
 Calculate the total connectivity of each module;
 Generate a random placement;

 while(iteration_count < iteration_limit)
 {

Select the next seed module in order of total connectivity;
Declare the position of the seed vacant;
while(end_ripple == FALSE)
{

Compute the target point for selected module;
CASE target point:
{

LOCKED
Move selected module to nearest vacant location;
end_ripple = TRUE;
Increment abort_count;
if(abort_count > abort_limit)
{

Unlock all modules;
Increment iteration count;

}
OCCUPIED

Select module at target point for next move;
Move previous module to target point and lock;
end_ripple = FALSE;
abort_count = 0;

SAME
Do not move module;
end_ripple = TRUE;
abort_count = 0;

VACANT
Move selected module to target point and lock;
end_ripple = TRUE;
abort_count = 0;

}
}

 }

} /* end */

Figure 2-10: A Force-directed Placement Algorithm using Ripple Moves

Background and Previous Work

29

2.3.3 Inter-FPGA Routing

The inter-FPGA router determines the routing path for each inter-FPGA net. The

router could use direct connections between two FPGAs or it may use intermediate

FPGAs and FPIDs, depending upon the routing architecture and wire availability. The

choice of specific pins and wires (from a group) to use for routing a net is left to the pin

assignment step. For example, consider a net that connects FPGAs 0 and 8 in the 4-way

mesh shown in Figure 2-11. Three of the many possible paths for routing the net are

shown using dashed lines. The final path chosen will depend upon the availability of wires

and the congestion encountered in each path.

Ideally the router should use only one hop for each source-to-sink connection in all the

nets so that the usage of FPGA pins and the delay is minimized. Simultaneously, it should

also balance the usage of routing resources to ensure routing completion. This may be

difficult in practice because the amount of routing resources in an MFS is fixed. The

minimization of pins used in routing a net rather than any geometric distance metric

makes the inter-FPGA routing problem unique compared to routing in ASICs or FPGAs.

Routing completion is the primary goal, because in the case of routing failure the

partitioning step has to be repeated and the design may require more FPGAs to fit. Once

the primary goal seems achievable, secondary goals such as maximizing the circuit speed

can be addressed. Many routing algorithms for different MFS routing architectures have

been proposed and will be reviewed briefly in this section.

Figure 2-11: Inter-FPGA Routing in a 4-way Mesh

FPGA
0

FPGA
4

FPGA
3

FPGA
2

FPGA
1

FPGA
5

FPGA
7

FPGA
6

FPGA
8

src

sink

Background and Previous Work

30

Routing Algorithms for the Partial Crossbar
Due to its importance in commercial logic emulators, the inter-FPGA routing problem

for the partial crossbar architecture has been investigated by several researchers [Butt92,

Slim94, Mak95a, Mak95b, Lin97]. Recall from Section 2.1.3 and Figure 2-3(b) that the

partial crossbar has no direct connections between FPGAs and any connections between

FPGAs must go through FPIDs. Given a post-partition inter-FPGA netlist, the routing

problem reduces to choosing a specific FPID for routing each net such that all the nets

route.

The earliest proposed algorithms [Butts92, Slim94] are based on greedy heuristics. In

this case, for routing each net the first available FPID that has connections to all the net

terminals (FPGAs) is selected. Because of the greedy approach these algorithms may not

find a routing solution in some cases where a solution exists.

Optimal algorithms for routing two-terminal nets were proposed by Chan [Chan93]

and Mak [Mak95a]. These algorithms guarantee 100% routing completion for all

two-terminal nets. It is also shown that the multi-terminal net routing problem for partial

crossbar is NP-complete. Unfortunately, post-partition netlists for real circuits almost

always contain multi-terminal nets and there is no guarantee of routing completion even if

optimal algorithms for two-terminal nets are used as part of the solution.

One way of routing multi-terminal nets on a partial crossbar is to break each net into a

set of two-terminal nets and route the resulting two-terminal nets using the proposed

optimal algorithms. Such an approach is proposed in [Mak95b] and an algorithm for

decomposing multi-terminal nets into a set of two-terminal nets is presented. The

decomposition problem is modeled as a bounded-degree hypergraph-to-graph

transformation problem where hyperedges (representing multi-terminal nets) are

transformed to spanning trees of only two terminal nets. A network flow-based algorithm

is suggested that determines if there is a feasible decomposition so that FPGA I/O pin

capacities are not violated due to decomposition, and gives one if it exists. This is a deeply

flawed and impractical approach for the following reasons: first, the number of FPGA I/O

pins needed after decomposition will drastically increase, especially for higher fanout

nets. Decomposing onen-terminal net into a set of two-terminal nets requiresn-2 extra

Background and Previous Work

31

pins. FPGA pins are the most scarce resource in MFSs and extra pins for decomposition

may not be available. Second, decomposition may lead to routing paths between source

and sinks that consist of multiple hops, thus greatly increasing the delay of the circuit

being implemented. It is much better to use a method that uses a single FPID to directly

route a multi-terminal net while trying to minimize congestion for subsequent nets to be

routed.

A combination of heuristic and exact algorithms for two-terminal and multi-terminal

net routing is presented in [Lin97]. In this two-phase approach, a fast (linear time

complexity) heuristic algorithm is used first, the exact algorithm is called only if the

heuristic fails to provide routing completion. The heuristic algorithm routes nets based on

the order of their fanout, i.e. the highest fanout nets first and two-terminal nets last. For a

given net, an FPID is selected that has wires available for connecting to all the net

terminals (FPGAs) and has the most unused pins across all FPIDs in the system, i.e. the

most lightly used FPID. This minimizes congestion and increases the chance of

successfully routing subsequent nets. The authors also report a further modification of this

heuristic that gives improved results.

In the exact algorithm, the routing problem (for any fanout) is formulated as a linear

programming problem and solved. This exact algorithm will find a solution if one exists,

however it may take exponential time. To deal with the large and sparse matrices required,

which existing solvers could not handle, the authors developed their own linear

programming solver.

These heuristic algorithms were compared with the heuristic given in [Varg93] and

gave superior results for synthetic netlists. The partial crossbar used had 8 FPGAs and

routing was performed for different values of the number of pins per subset ranging from 1

to 32 in variable increments. On the more difficult routing problems, the exact algorithm

gave better results (measured by the percentage of nets routed) compared to the heuristic

algorithms.

A limitation of studies discussed above for routing in partial crossbars (with the

exception of [Butt92]) is that they used synthetic netlists instead of real circuits. It is

Background and Previous Work

32

possible to make the algorithm overly complicated in order to route synthetic netlists, as in

the case of the exact algorithm proposed in [Lin97] and multi-terminal net routing

approach proposed in [Mak95b]. If post-partition netlists of real circuits are used, it would

give a much better idea of what algorithms work best in practice.

Topology Independent Routing Algorithms
Inter-FPGA routing tools capable of handling arbitrary MFS topologies have been

proposed [Selv95, Kim96]. The inputs to such tools are post-partitioning-and-placement

netlists and routing architecture topology descriptions.

In [Selv95] a topology independent pipelined routing and scheduling (TIERS)

algorithm is presented for the Virtual Wires system. Recall from Section 2.1.2 that in the

Virtual Wires scheme several logical wires between sub-circuits are multiplexed on a

single physical wire between FPGAs. The inter-FPGA routing phase in this case should

not only specify the path for routing each net but also the time slice in which the

connection is established, which is determined by the scheduling algorithm. For routing,

which is our main interest here, the well known maze routing algorithm is used and its

flexibility is exploited to handle any arbitrary MFS topology. The MFS is represented as a

graph whose nodes are FPGAs. To find the shortest path for routing a net, breadth first

search is performed starting from the source FPGA and stopping once the target FPGA is

reached. The TIERS algorithm also identifies critical nets and gives them higher priority

to achieve as much as a factor of 2.5 speed improvement over prior work [Babb93].

A different approach towards topology independent routing is adopted in [Kim96]. For

each topology, all possible routing paths (patterns) between every pair of FPGAs are

stored. To minimize inter-FPGA routing delays, only paths of length one or two hops are

considered. When routing each net, one of several stored paths is chosen based on a cost

function that attempts to minimize the congestion and the path length. To simplify path

generation and storage, all multi-terminal nets are split into a set of two-terminal nets and

routed independently. This, however, introduces some inefficiencies as discussed in the

previous section when reviewing the routing algorithm in [Mak95b]. This algorithm was

used to map real circuits to several different architectures.

Background and Previous Work

33

2.3.4 Pin Assignment

The pin assignment step chooses the specific wires and pins to use for each connection

given by inter-FPGA router. For example consider the three possible routing paths shown

in Figure 2-11 for a net connecting FPGA 0 to 8. Assume that the path through

intermediate FPGAs 3, 4, and 5 is chosen. The pin assignment step will choose specific

wire segments (and FPGA pins) for connecting each pair of FPGAs in the path, i.e. (0,3),

(3,4), (4,5) and (5,8). Notice that each line between the FPGAs in Figure 2-11 actually

represents a group of wires connecting distinct FPGA pins.

The pin assignment has no effects on inter-FPGA routing resources and only affects

placement and routing for individual FPGAs and routing for FPIDs. In many existing

systems [Lewi98, Quic98] the pins are assigned randomly within the constraints imposed

by the inter-FPGA router. This has the effect of randomly locking individual FPGA pins

before placement and routing, which may lead to increased consumption of routing

resources within the FPGA. For the past few years, however, leading FPGA vendors like

Xilinx and Altera have enhanced their FPGA architectures and mapping tools to handle

pin locking without unduly adverse impact on either the routability and speed of FPGAs

or the run time for FPGA place and route [Trim95, Heil96]. The architectural

improvement in the Xilinx 4000 family of FPGAs is the addition of extra routing

resources, including long lines that span the length of the chip, on the periphery of the

FPGA chip. These extra routing resources could provide fast arbitrary pin-to-pin

connections within FPGAs. Given these improvements, pin assignment algorithms such as

those proposed in [Hauc95] may or may not give better run time and delay results

compared to random pin assignments. The only way to decide would be to map real

circuits to MFSs (that utilize a state-of-the-art FPGA) using both these approaches, and

compare the run times and post-mapping critical path delays obtained.

2.4 Summary
A review of existing MFSs and the different routing architectures and mapping CAD

tools used was presented in this chapter. These systems were grouped into three main

Background and Previous Work

34

categories based on their topology and the interconnect devices used: linear arrays,

meshes, and architectures that use programmable interconnection chips. The relevant MFS

architecture research studies were considered, which show that the partial crossbar is one

of the best existing architectures. The design flow for mapping circuits to MFS

architectures was described and the various mapping tools for the layout synthesis tasks in

the design flow (partitioning, placement, and inter-FPGA routing) were reviewed.

Although many MFSs have been proposed and built, there has been very little research

work on comparing different MFS routing architectures and evaluating their effectiveness

in implementing real circuits. This problem is addressed in this dissertation by using an

experimental approach for comparing and evaluating different MFS routing architectures

using real benchmark circuits. The details of all the architectures explored are described in

the next chapter.

35

Chapter 3
MFS Routing Architectures

In this chapter the MFS routing architectures explored in our research are described.

We cover the architectural issues and assumptions that arise when mapping real circuits to

these architectures. The mesh and partial crossbar architectures are discussed in Sections

3.2 and 3.3, while the new hybrid architectures proposed in this dissertation are described

in Section 3.4.

3.1 Basic Assumptions
We assume that all the MFS architectures explored are homogeneous, in which a

single type of FPGA is used. This is the case for almost all the existing systems.

Heterogeneous MFSs using FPGAs of different sizes are possible but rarely used, and are

restricted to application-specific (custom) MFSs. Our focus is on single-board MFS

architectures that use approximately 25 or less FPGAs.

Another important issue is the choice of FPGA. We decided on the Xilinx 4013E-1

FPGA, which consists of 1152 4-LUTs, 1152 flip flops, and 192 usable I/O pins [Xili97].

The reasons for this choice are: first, all our benchmark circuits are available in Xilinx

Netlist Format (XNF) and the partitioning tool used in our experimental studies also

requires circuits in this format. Second, in terms of logic and pin capacity, the Xilinx 4013

FPGA is a reasonable choice and is used in commercial logic emulators [Quic98]. If the

MFS Routing Architectures

36

FPGA used is too large, many of the benchmark circuits may fit into a single FPGA and

prevent the study of MFS architectures. If it is too small, the circuit partitioning would

result in a large number of FPGAs that may not fit into a single board, violating our

assumption about single-board MFS architectures. We conjecture that inter-FPGA netlists

for larger benchmark circuits mapped to MFSs using larger FPGAs (compared to the

Xilinx 4013 FPGA) would exhibit similar behavior. Therefore the architectural results

obtained in our research would also apply to larger circuits and MFSs using larger FPGAs.

Figure 3-1: Mesh Architectures: (a) 4-way Mesh (b) 8-way Mesh (c)
4-way Torus (d) 8-way Torus

(b)(a)

(c) (d)

FPGA
0

FPGA
1

FPGA
2

FPGA
3

FPGA
4

FPGA
5

FPGA
6

FPGA
7

FPGA
0

FPGA
8

FPGA
1

FPGA
2

FPGA
3

FPGA
4

FPGA
5

FPGA
8

FPGA
7

FPGA
6

FPGA
0

FPGA
2

FPGA
1

FPGA
3

FPGA
5

FPGA
4

FPGA
8

FPGA
7

FPGA
6

FPGA
7

FPGA
6

FPGA
5

FPGA
4

FPGA
3

FPGA
2

FPGA
1

FPGA
0

FPGA
8

MFS Routing Architectures

37

3.2 4-way and 8-way Mesh Architectures
The simplest mesh topology is a 4-way mesh as illustrated in Figure 3-1(a). Each

FPGA is connected to its horizontal and vertical adjacent neighbours. The number of

wires connecting adjacent FPGAs depends upon the number of I/O pins available per

FPGA. The Xilinx 4013 FPGA has 192 usable I/O pins. We reserve four of these pins for

routing global nets frequently encountered in circuits such as clock and reset, leaving 188

pins in each FPGA for inter-FPGA connections. Hence each edge in Figure 3-1(a)

represents 47 (188 / 4) wires.

A variation of this basic mesh topology is the 8-way mesh as shown in Figure 3-1(b).

Each FPGA is connected to its horizontal, vertical, and diagonal adjacent neighbours and

each edge in Figure 3-1(b) represents 23 wires (). Notice that since 188 is not evenly

divisible by 8 (remainder is 4), only 184 pins out of 192 pins per FPGA are used for

inter-FPGA connections in the 8-way mesh. The remaining 8 lines can be used as global

lines (each global line connects to all FPGAs) for routing very high fanout nets. Notice

that the number of global lines in the 4-way mesh (4) is different from that in the 8-way

mesh (8). This small difference in the number of global lines is unavoidable and will occur

for other architectures as well, but has no impact on architectural results.

One major drawback of 4-way and 8-way meshes is that the edges in FPGAs that lie

on the periphery of the array cannot be utilized for inter-FPGA routing. For example in

Figure 3-1(b) only three out of eight edges emanating from FPGA 0 are connected to

neighbouring FPGAs implying that only about 38% of the I/O pins are connected to other

FPGAs, the rest being wasted. When implementing a large circuit on this array, the only

way these edges can be used is for circuit I/O signals. However all circuits usually do not

use a large number of I/O signals and hence these edges will be wasted and will lead to

inefficiency. Preliminary experiments confirmed this and hence we do not present any

results for these mesh topologies.

Instead, we use a torus topology that provides enough FPGA I/O pins for circuit I/O

signals and at the same time avoid waste of pins. As shown in Figure 3-1(c) and (d), the

unused edges on the peripheral FPGAs are wrapped around in horizontal and vertical

188
8

MFS Routing Architectures

38

directions and are connected to FPGAs on the opposite side of the array. For example,

FPGA 0 in Figure 3-1(c) is connected to FPGAs 2 and 6. Note that in 8-way torus we use

only horizontal and vertical wrap around, with no wrap around in diagonal directions. The

reason is that if we use diagonal wrap around, some edges emanate and end on the same

FPGA, which does not help inter-FPGA routing in any way. In each FPGA, a certain

number of pins are reserved for circuit I/O signals, the exact number used in our

experiments is dictated by the number of I/O signals in the circuit being mapped.

3.3 Partial Crossbar Routing Architecture
Recall from Section 2.1.3 that the partial crossbar uses a number of small crossbars to

provide interconnections between multiple FPGAs. Also recall from Figure 2-3 that in a

partial crossbar the pins in each FPGA are divided into N subsets, where N is the number

of FPIDs in the architecture. All the pins belonging to the same subset number in different

FPGAs are connected to a single FPID. Note that any circuit I/O signals will have to go

through FPIDs to reach FPGA pins. For this purpose, 50 pins per FPID are reserved for

circuit I/O signals in our experiments.

The number of pins per subset (Pt) is a key architectural parameter that determines the

number of FPIDs (Ns) needed and the pin count of each FPID (Ps). Given the values of the

number of pins per subset (Pt), the number of FPGAs (Nf) in the partial crossbar and the

number of I/O pins in each FPGA (Pf), Nsand Ps are given by [Butt92]:

The extremes of the partial crossbar architecture are illustrated in Figure 3-2 by

considering a system with four Xilinx 4013 FPGAs (192 usable I/O pins). A Pt value of

192 would require a single 768-pin FPID (Figure 3-2(a)) that acts as a full crossbar and a

Pt value of 1 will require 192 4-pin FPIDs (Figure 3-2(b)). Both of these cases are

impractical.

N s

P f

Pt
------=

Ps N f Pt×=

MFS Routing Architectures

39

A good value of Pt should require low cost, low pin count FPIDs. For the above

example, a Pt value of 12 will require 16 48-pin FPIDs. When we consider FPID pins

required for circuit I/O signals we will need to use 64 or 96-pin FPIDs that are

commercially available [ICub97]. When choosing a value of Pt, we must ensure that

number of usable I/O pins per FPGA is evenly divisible by Pt or at least the remainder

should be a very small number so that we can use such pins for routing high fanout

inter-FPGA nets. In this work we set Pt = 17, which leaves five pins per FPGA to be used

as global lines in the partial crossbar architecture. These global lines are used for routing

global nets such asreset, clock and other very high fanout nets in the circuit. The choice of

Pt = 17 was also influenced by our experiments on the effect of Pt on the routability of the

partial crossbar, which will be discussed later in Chapter 4.

3.4 Hybrid Architectures
The partial crossbar is an efficient architecture that gives excellent routability and

reasonably good speed. On close observation, it is apparent that the architecture provides

FPGA
1

FPID
1

FPGA
2

FPGA
3

FPGA
4

FPGA
1

FPGA
2

FPGA
3

FPGA
4

FPID
1

FPID
192

FPID
2

Figure 3-2: Extreme Cases of the Partial Crossbar: (a) Pt = 192, (b) Pt = 1

(b)

(a)

MFS Routing Architectures

40

more routing flexibility than necessary, which comes at a cost of extra FPID pins. For

example, consider two-terminal net routing in the partial crossbar; all such nets have to

use an FPID to connect two FPGAs. If the architecture has direct connections between

FPGAs, no FPIDs would be needed for routing certain two-terminal nets, thus saving

FPID pins. The direct connections would also be faster than the connections through

FPIDs.

These observations motivated us to propose new hybrid MFS routing architectures that

have the flexibility of the partial crossbar and use a mixture of both programmable and

hardwired connections. The hardwired connections are most suitable for routing

two-terminal nets that connect adjacent FPGAs and can also be exploited to improve the

speed performance. The programmable connections are best suited for routing

multi-terminal nets. A key issue in the hybrid architectures is the choice of topology for

the hardwired connections between FPGAs. We chose and explored three topologies for

hardwired connections in this dissertation. The motivations for these choices are presented

below, along with the architecture descriptions.

3.4.1 Hybrid Torus Partial-Crossbar

The first newly proposed hybrid routing architecture is the Hybrid Torus

Partial-Crossbar (HTP). The motivation behind this architecture is to combine the locality

FPGA 1

FPGA 4 FPGA 5 FPGA 6

FPGA 3FPGA 2

A pins FPID B pins FPID C pins FPID D pins FPID

A B C D A B C DA B C D

A B C D A B C D A B C D

Figure 3-3: The HTP Architecture

MFS Routing Architectures

41

of inter-FPGA connections, provided by the mesh architecture, with the routing flexibility

provided by the partial crossbar. This locality will lead to easier manufacturability by

reducing the board-level wiring complexity.

The I/O pins in each FPGA are divided into two groups: hardwired and programmable

connections. The pins in the first group connect to FPGAs and the pins in the second

group connect to FPIDs. The FPGAs are connected to each other in a 4-way torus

topology and the FPGAs and FPIDs are connected in exactly the same manner as in a

partial crossbar, as illustrated in Figure 3-3. An HTP architecture that consists of six

FPGAs and four FPIDs is shown. The pins assigned for programmable connections are

divided into four subsets A, B, C, and D. The pins from different FPGAs belonging to the

same subset are connected using a single FPID. Since the circuit I/O signals will have to

go through the FPIDs to reach FPGA pins, 50 pins per FPID are reserved for circuit I/O

signals.

A key architectural parameter in the HTP architecture is the percentage of

programmable connections, Pp. It is defined as the percentage of each FPGA’s pins that are

connected to FPIDs, with the remainder hardwired to other FPGAs. If Pp is too high it will

lead to increased pin cost because more programmable connections are required, which

implies more FPID pins. If Pp is too low it will adversely affect routability. If Pp is 0% the

HTP architecture degrades to a 4-way torus with no FPIDs used. If Pp is 100% the HTP

architecture degrades to a standard partial crossbar. A key issue we address later (in

Chapter 5) is the best value of Pp for obtaining minimum cost and good routability.

Notice that the parameter Pt also applies to the programmable connections in the

HCGP (another hybrid architecture introduced in the next Section). For the same reasons

as in the partial crossbar (given in Section 3.3), we chose Pt = 14 for the HCGP

architecture in our experiments. Also, the number of global lines used in the HTP

architecture depends upon the MFS size (the number FPGAs used) and the parameters Pp

and Pt. In our experiments, the number of global lines used for the HCGP architecture

varied from 5 to 15. Recall from Section 3.3 that the number of global lines for the partial

crossbar is 5 corresponding to Pt = 17. The different values for number of global lines used

MFS Routing Architectures

42

in HCGP is due to the fact that the number depends upon both Pp and Pt instead of just Pt

as in the partial crossbar architecture. This discussion about the value of Pt and the number

of global lines used also applies to the remaining hybrid architectures presented in this

chapter.

3.4.2 Hybrid Complete-Graph Partial-Crossbar

The second newly proposed architectures is called the Hybrid Complete-Graph

Partial-Crossbar (HCGP). The HCGP architecture for four FPGAs and three FPIDs is

illustrated in Figure 3-4. As in HTP architecture, the I/O pins in each FPGA are divided

into two groups: hardwired connections and programmable connections. The pins in the

first group connect to other FPGAs and the pins in the second group connect to FPIDs.

The FPGAs are directly connected to each other using a complete graph topology, which

means that each FPGA is connected to every other FPGA. The connections between

FPGAs are evenly distributed, which implies that the number of wires between every pair

of FPGAs is the same. The FPGAs and FPIDs are connected in exactly the same manner

as in a partial crossbar. Since any circuit I/O signals will have to go through FPIDs to

reach FPGA pins, 50 pins per FPID are reserved for circuit I/O signals.

The direct connections between FPGAs can be exploited to obtain reduced cost and

better speed. For example, consider a net that connects FPGA 1 to FPGA 3 in Figure 3-4.

FPGA 1

A

FPGA 4FPGA 3FPGA 2

FPID FPIDFPID

B pinsA pins

AAA

C pins

B C B C B C B C

Figure 3-4: The HCGP Architecture

MFS Routing Architectures

43

If there were no direct connections (as in the partial crossbar), we would have used an

FPID to connect the two FPGAs. This will cost extra delay and two extra FPID pins. A

natural question to ask is: why not dispense with FPIDs and just use FPGAs connected as

a completely connected graph as investigated in [Kim96]? The answer is that routing

multi-terminal nets in a hardwired FPGA-only architecture is expensive in terms of

routability because in such an architecture a multi-terminal net requires many extra pins in

the source FPGA. For example, as illustrated in Figure 3-5(a), two extra FPGA pins are

used for routing a fanout 3 multi-terminal net. Since extra pins are a very scarce resource

on an FPGA this has an adverse effect on the routability of FPGA-only architectures. On

the other hand, if we use an FPID for routing the same multi-terminal net, we do not need

even a single extra FPGA pin, other than the FPGA pins needed to access the source and

sinks of the net as shown in Figure 3-5(b).

The complete graph topology for the hardwired connections provides good routing

flexibility, because for connecting any pair of FPGAs direct connections between them

can be used, and once they are exhausted, any FPGA outside the pair can be utilized for a

two-hop connection, provided it has enough ‘free’ pins for routing.

FPGA 1

FPGA 4 FPGA 3

FPGA 2
src sink1

sink2sink3

FPGA 1

FPGA 2FPGA 3FPGA 4

src

sink1sink2sink3

FPID

(a)

(b)

Figure 3-5: Multi-terminal Net Routing: (a) Without an FPID (b) With an
FPID

MFS Routing Architectures

44

3.4.3 Hardwired-Clusters Partial-Crossbar

The motivation behind this architecture is to combine the routability and speed of the

HCGP with easier manufacturability. All the connections in the HCGP architecture are

non-local which leads to excessive board-level wiring complexity. Providing more local

connections would mitigate this problem (recall the motivation behind the design of the

TM-2 from Section 2.1.3). The Hardwired-Clusters Partial-Crossbar (HWCP)

architecture has the potential to provide good routability, speed, and manufacturability.

An example of the HWCP architecture using six FPGAs and three FPIDs is illustrated

in Figure 3-6. The FPGAs are grouped into clusters whose size is represented by a

parameter called the cluster size (Cs). In Figure 3-6 Cs = 2, which implies three clusters.

The pins in each FPGA are divided into two groups: hardwired and programmable

connections. The pins in the first group connect to the other FPGAs within each cluster

and the pins in the second group connect to FPIDs. All the FPGAs within each cluster are

connected to each other in a complete graph topology. In Figure 3-6 the pins assigned for

programmable connections are divided into three subsets A, B, and C. The pins from

different FPGAs belonging to the same subset are connected using a single FPID. As in

the HCGP architecture, the percentage of programmable connections (Pp) is a key

parameter in HWCP.

The intra-cluster connections for Cs = 3 and Cs = 4 are illustrated in Figure 3-7(a) and

Figure 3-7(b) respectively. Notice that the MFS size in the HWCP architecture is restricted

FPGA 1 FPGA 4 FPGA 5 FPGA 6FPGA 2

A B C A B C A B C A B C A B C

A pins FPID B pins FPID C pins FPID

FPGA 3

A B C

Figure 3-6: The HWCP Architecture

MFS Routing Architectures

45

to be a multiple of Cs. In this research the HWCP architecture was explored for Cs values

2, 3, and 4.

In addition to reducing board-level wiring complexity in single-board systems, the

HWCP is suitable for larger MFS sizes. It lends itself to hierarchical implementations of

large MFSs using FPGAs distributed across multiple boards, with one or two clusters and

a fraction of all the FPIDs, assigned to a single board.

3.5 Summary
The MFS routing architectures that are explored in this dissertation were described in

this chapter. The intuitive ideas that led to the proposal of the new hybrid architectures

were discussed. The proposal of a new MFS architecture is relatively easy, but presenting

convincing evidence that demonstrates its effectiveness for real circuits is a difficult and

time consuming task.

In this dissertation, we developed a framework for experimental evaluation of MFS

routing architectures. Real benchmark circuits are mapped to different routing

architectures to evaluate the ‘goodness’ of each architecture relative to the others. This

experimental framework is the focus of the next chapter.

FPGA 3

A B C

FPGA 1

A B C

FPGA 2

A B C

FPGA 3

A B C

FPGA 1

A B C

FPGA 2

A B C

FPGA 4

A B C

Figure 3-7: Different Cluster Sizes for HWCP (a) Cs = 3 (b) Cs = 4

(a) (b)

46

Chapter 4
CAD Tools and

Experimental Evaluation
Framework

A wide range of MFS routing architectures were presented in the previous two

chapters. To evaluate and compare different architectures, an experimental framework is

required that enables mapping of real circuits to different architectures. The framework

developed in this research is the focus of this chapter. An overview of the experimental

procedure used for mapping a circuit to an architecture is delineated in Section 4.1. The

cost and delay metrics used to evaluate architectures are described in Section 4.2. The

large benchmark circuits used in this research are described in Section 4.3. Finally, the

layout synthesis and timing analysis tools used in the experimental procedure are

presented in Section 4.4.

4.1 Experimental Procedure
The experimental procedure for mapping a circuit to an architecture is illustrated in

Figure 4-1. We assume that the circuit is available as a technology mapped netlist of

4-LUTs and flip flops. First, the circuit is partitioned into a minimum number of

sub-circuitsusing a multi-way partitioning tool that accepts as constraints the specific

FPGA logic capacity and pin count. Recall from Section 3.1 that the FPGA used in our

experiments is the Xilinx 4013E-1, which consists of 1152 4-LUTs and flip flops and 192

I/O pins. Multi-way partitioning is accomplished using a recursive bipartitioning

CAD Tools and Experimental Evaluation Framework

47

procedure. The partitioning tool used is calledpart, which was briefly described in

Section 2.3.1. The output of the partitioning step is a netlist of connections between the

sub-circuits.

The next step is the placement of each sub-circuit on a specific FPGA in the MFS.

Given the sub-circuits and the netlist of interconnections, each sub-circuit is assigned to a

specific FPGA in the MFS. The goal is to place highly connected sub-circuits into

adjacent FPGAs (if the architecture has some notion of adjacency) so that the routing

resources needed for inter-FPGA connections are minimized.

Given the sub-circuit interconnection netlist and the placement of sub-circuits on

FPGAs in the MFS, the next step is to route each inter-FPGA net using the most suitable

routing path. In the context of MFSs this means that the routing path chosen should

minimize the routing delay for the critical nets and it should cause the least possible

congestion for subsequent nets to be routed. If the routing attempt is successful, it means

that the circuit fits in the specified architecture.

Circuit
netlist

Circuit

partitioning

Board-level
placement

Inter-FPGA
routing

Fit?
No

Evaluation metrics:

Yes - Pin cost

- Critical path delay

pins per FPGA

Reduce

MFS

FPGA used

architecture

specified

Figure 4-1: Experimental Evaluation Procedure for MFSs

CAD Tools and Experimental Evaluation Framework

48

If the routing attempt fails, the partitioning step is repeated after reducing the number

of I/O pins per FPGA specified to the partitioner. This usually increases the number of

FPGAs needed, and helps routability by decreasing the demand from each FPGA, and

providing more “route-through” pins in the FPGAs, which facilitates routing. For

example, consider a benchmark circuit consisting of 4374 LUTs, 1728 flip flops, and 357

I/O signals, mapped to a 8-way mesh. The first mapping attempt partitioned the circuit

into 8 sub-circuits, and therefore 8 separate FPGAs. The sub-circuits were placed on a 2 X

4 mesh of FPGAs and then inter-FPGA routing was performed. Only 60% of the

inter-FPGA nets were successfully routed. The mapping procedure was repeated by

reducing the number of pins per FPGA specified to the partitioner, until 100% of the

inter-FPGA nets were routed. The circuit was routable on a 3 X 4 array and the number of

FPGA I/O pins specified for the partitioner was 100 (out of a possible 192).

For some circuits the routing attempt may fail even after increasing the array size. For

such cases, the mapping attempt is abandoned when the logic utilization becomes very

low after partitioning (15% or less).

The inter-FPGA routing problem is unique for each architecture and this requires an

architecture-specific router. We developed a generic router that can be used for different

architectures, but it did not give satisfactory results. Each architecture has unique features

that can be exploited by the routing tool to give superior results. Therefore we developed

an architecture-specific router for each class of architectures that we explored.

4.1.1 Assumptions

In an actual MFS, the inter-FPGA routing step is followed by pin assignment,

placement and routing within individual FPGAs. Performing these tasks will provide us

with accurate routing delays within each FPGA, but will require an exorbitant amount of

time and effort. We believe that a better alternative is to perform static timing analysis

after inter-FPGA routing, assuming constant routing delay within each FPGA, to obtain a

sufficiently accurate estimate of the MFS speed. We assume that after inter-FPGA routing,

the pin assignment, placement, and routing step for each FPGA will succeed for the

reasons outlined below.

CAD Tools and Experimental Evaluation Framework

49

FPGA Pin Assignment
Recall from Section 2.3.4 that the pin assignment step chooses specific wires and

FPGA pins for each connection given by the inter-FPGA router. If the FPGA pin

assignment is done randomly, it is likely to lock pins in places that make intra-FPGA

placement and routing more difficult, and may cause routability and speed problems for

the FPGA.

We conducted an experimental study to investigate the effects of pin locking on the

routability and speed of FPGAs [Khal95]. Sixteen benchmark circuits were placed and

routed on FPGAs with and without a variety of pin constraints. The FPGAs used were the

Xilinx XC4000 family of FPGAs using the XACT 5.1.0 tool set as well as the Altera

FLEX 8000 family of FPGAs using the MAX+PLUS II 5.0 tool set. The experimental

results show that the average increase in the critical path delay due to random pin

assignment is only 5% for XC4000 FPGAs and only 3.6% for the FLEX 8000 FPGAs

(compared to the no pin constraints case). There were no routing failures for the XC4000

FPGAs, but there were three routing failures (out of 14 circuits) for the FLEX 8000

FPGAs. Since we use the Xilinx 4013E-1 FPGA in our experiments, the results support

our assumption that pin locking will not significantly impact placement and routing results

for each FPGA in the MFS.

A detailed account of the experimental study is available in [Khal95], an expanded

version of which is given in Appendix A.

Intra-FPGA Placement and Routing
After the inter-FPGA routing and FPGA pin assignment, we assume that each

sub-circuit can be successfully placed and routed on an FPGA. This is because our

experience [Khal95] and that of other researchers [Kuzn93] shows that the placement and

routing of a circuit on an FPGA will usually succeed if the FPGA logic utilization is

restricted to less than 70%. Therefore, during multi-FPGA partitioning, we restrict the size

of each sub-circuit to at most 70% of the FPGA logic capacity. This almost guarantees that

the placement and routing of each sub-circuit on an FPGA will be successful.

CAD Tools and Experimental Evaluation Framework

50

4.2 Evaluation Metrics
To compare different routing architectures we implement benchmark circuits on each

and contrast the pin cost and post-routing critical path delay, as described below.

4.2.1 Pin Cost

The cost of an MFS is likely a direct function of the number of FPGAs and FPIDs: If

the routing architecture is inefficient, it will require more FPGAs and FPIDs to implement

the same amount of logic as a more efficient MFS. While it is difficult to calculate the

price of specific FPIDs and FPGAs, we assume that the total cost is proportional to the

total number of pins on all of these devices. Since the exact number of FPGAs and FPIDs

varies for each circuit implementation (in our experimental procedure, we allow the MFS

to grow until routing is successful), we calculate, for each architecture, the total number of

pins required to implement each circuit. We refer to this as thepin cost metric for the

architecture.

4.2.2 Post-Routing Critical Path Delay

The speed of an MFS, for a given circuit, is determined by the critical path delay

obtained after a circuit has been placed and routed at the inter-chip level. We call this the

post-routing critical path delay. We have developed an MFS static timing analysis tool

(MTA) for calculating the post routing critical path delay for a given circuit and MFS

architecture, which is described later in Section 4.4.3 of this chapter.

4.3 Benchmark Circuits
A total of fifteen large benchmark circuits were used in our experimental work. An

extensive effort was expended to collect this suite of large benchmark circuits. The details

of each benchmark circuit are shown in Table4-1, which provides the circuit name, size

(in 4-LUTs, D flip flops, and I/O count), rough description of the functionality, the source

of the circuit and the manner in which it was synthesized. Four circuits were obtained

from MCNC [Yang91], two from FPGA synthesis benchmarks [Prep96], and the

remaining nine were developed at the University of Toronto (UofT). The circuits from

MCNC were available in the XNF [Xili97] gate-level netlist format required by our front

CAD Tools and Experimental Evaluation Framework

51

end tools. All the circuits from [Prep96] and UofT were originally available as VHDL or

Verilog HDL models and were synthesized into XNF netlists using the Exemplar

[Exem94] and Synopsys Behavioral Compiler [Knap96] and/or Design Compiler

[Syno97] synthesis tools. We show these details of the benchmark circuits because we feel

that the MCNC circuits that have been used so far in MFS architecture studies are

insufficient in terms of size and variety to ‘stress’ different architectures and the mapping

tools used. Specifically, we found that they are easier to partition and map compared to the

other real circuits that we use in this work.

Circuit Size Function
Source, Synthesis tool used (if

applicable)

s35932 4374 LUTs,
1728 FFs, 357 I/O signals

Sequential circuit MCNC

s38417 6097 LUTs,
1463 FFs, 134 I/O signals

Sequential circuit MCNC

s38584 4396 LUTs
1451 FFs, 292 I/O signals

Sequential circuit MCNC

mips64 2900 LUTs
440 FFs, 260 I/O signals

Scaled down version
of MIPS R4000

PREP, Verilog model synthe-
sized using Exemplar

spla 3423 LUTs
0 FFs, 62 I/O signals

Combinational Cir-
cuit

MCNC

cspla 2039 LUTs
0 FFs, 62 I/O signals

Clone of spla UofT, Generated using
GEN[Hutt96]

mac64 2560 LUTs
64 FFs, 133 I/O signals

64-bit
multiply-accumulate

ckt.

UofT, Verilog model synthe-
sized using Synopsys

sort8 1540 LUTs
200 FFs, 20 I/O signals

8-bit HW sort engine UofT, Verilog model synthe-
sized using Synopsys

fir16 5366 LUTs
1040 FFs, 60 I/O signals

16-bit, 8-stage
 FIR filter

UofT, Verilog model synthe-
sized using Synopsys

gra 2494 LUTs
1156 FFs, 144 I/O signals

Graphics accelera-
tion

circuit

UofT, circuit generated using
tmcc[Gall95]

fpsdes 3484 LUTs
1008 FFs, 69 I/O signals

Fastest pseudo DES
circuit

UofT, Verilog model synthe-
sized using Synopsys

spsdes 2452 LUTs
982 FFs, 69 I/O signals

Smallest pseudo DES
circuit

UofT, Verilog model synthe-
sized using Synopsys

Table 4-1: Benchmark Circuits

CAD Tools and Experimental Evaluation Framework

52

4.4 CAD Tools
The CAD tools developed for mapping circuits to architectures are described in this

section. Our main goals in creating these CAD tools were:

1. To create a tool suite that was flexible enough to map circuits to a wide range of

MFS routing architectures.

2. To employ a suitable algorithm for each task to obtain results that were as good as

the results reported elsewhere or at least not significantly worse.

3. To minimize the development time of the CAD tools to allow sufficient time for

MFS routing architecture exploration, which is the main focus of this research. We

wanted to avoid spending an excessive amount of time on CAD tool optimization.

4.4.1 Multi-way Partitioning

Recall from Section 2.3.1 that multi-way partitioning can be done using either a direct

approach or by recursive bipartitioning. The problem with direct multi-way partitioning is

that it has no information about the MFS architecture and hence routability constraints

between different sub-circuits. Ideally, it is best to use an architecture-driven multi-way

partitioner. Since we did not have access to such a partitioner, we implemented multi-way

partitioning by recursive bipartitioning which is followed by board-level FPGA

placement. The motivation behind this approach is to provide enough locality in

post-partitioning and placement netlists for architectures like the mesh and HTP that have

local inter-FPGA connections. The partitioning tool used in the recursive bipartitioning

procedure is calledpart [Gall94], which was briefly described in Section 2.3.1.

ochip64 3617 LUTs
5810 FFs, 84 I/O signals

Output chip for
ATM switching chip

set

UofT, VHDL model synthesized
using Exemplar

ralu32 2553 LUTs
584 FFs, 98 I/O signals

32-bit register file,
ALU, and control

logic

PREP, VHDL model synthe-
sized using Synopsys

iir16 3149 LUTs
522 FFs, 52 I/O signals

16-bit IIR filter UofT, VHDL model synthesized
using Synopsys

Circuit Size Function
Source, Synthesis tool used (if

applicable)

Table 4-1: Benchmark Circuits

CAD Tools and Experimental Evaluation Framework

53

We developed a tool for multi-way partitioning, called the Recursive Bipartitioning

Tool (RBT), which partitions a given circuit into the minimum possible number of

FPGAs, given the FPGA logic and pin capacity. The pseudo-code for RBT is shown in

Figure 4-2. First the circuit, denoted by C, is bipartitioned into two sub-circuits, part1 and

part2 such that the number of wires between the sub-circuits is minimized. Also each

sub-circuit is restricted to be between 45% and 55% of the size of cur_ckt to keep the

partitions balanced. The two sub-circuits are then pushed on to a stack. Next, the while

loop shown in Figure 4-2 is executed until the stack is empty. In the while loop, the

sub-circuit on the top of stack is examined first to check if it fits in the FPGA used. To

ensure intra-FPGA routability (as discussed in Section 4.1.1), only sub-circuits whose size

RBT() /* Recursive Bipartitioning Tool */

Inputs:
 C: circuit to be partitioned;
 FPGA logic and pin capacity;

Outputs:
 K sub-circuits, each of which fits into a single FPGA;

Variables:
 cur_ckt: current sub-circuit to be bipartitioned;
 part1, part2: sub-circuits obtained after bipartitioning;

{ /* begin RBT */
 cur_ckt = C;
 bipart(cur_ckt); /* sub-circuit < (0.55 * cur_ckt) */
 push part1 on to stack;
 push part2 on to stack;
 while(stack is NOT empty)
 {

pop top of stack into cur_ckt;
if(cur_ckt fits into FPGA) /* logic util. <= 70% */

assign a partition number to cur_ckt and store it;
else
{

bipart(cur_ckt); /* sub-circuit < (0.55 * cur_ckt) */
push part1 on to stack;
push part2 on to stack;

}
 }
} /* end RBT */

Figure 4-2: Pseudo-code for RBT

CAD Tools and Experimental Evaluation Framework

54

is at most 70% of FPGA logic capacity are chosen as feasible partitions. If the sub-circuit

does not fit into the FPGA, it is bipartitioned and the resulting partitions are pushed on the

top of stack. When the while loop terminates, all the partitions obtained by RBT are

available. The RBT generates the partitioning tree for a circuit in a sequence illustrated in

Figure 4-3 for the benchmark circuitspsdes. The circuit is represented by the root node (0)

in the tree and the leaf nodes (shaded circles) represent the final partitions. The node

number indicates the sequence in which the nodes are generated during recursive

bipartitioning. Thus nodes 1 and 2 are generated first from node 0, and nodes 13 and 14

are generated last from the node 11.

A multi-way partitioning tool can be evaluated using two metrics: first, it should

minimize the total number of FPGAs required in the partitioned circuit and second, it

should minimize the total cut size. Unfortunately, none of the published work on

multi-way partitioning [Kuzn94, Chan95, Chou95, Roy95, Kim96] used the Xilinx 4013

FPGA. Therefore we cannot compare RBT to the other multi-way partitioners that have

been previously developed. The partitioning tool used in RBT (part) is based on the

widely used FM algorithm and it is reasonable to expect that its results are not

significantly worst compared to other multi-way partitioning tools reported in the

literature [Kuzn94, Chan95, Chou95, Roy95, Kim96].

0

1

3

5 6

4

7 8

2

9 10

11 12

13 14

Figure 4-3: The Partitioning Tree for the Circuitspsdes Generated by RBT

CAD Tools and Experimental Evaluation Framework

55

4.4.2 Placement

Following multi-way partitioning of the circuit, the placement tool assigns each

sub-circuit to a specific FPGA in the MFS. If the MFS architecture has no local

connections, as in partial crossbar and HCGP, any arbitrary placement is acceptable. This

is because in such architectures any pair of FPGAs is uniformly connected. For

architectures that have local connections, such as the Mesh, HTP, and HWCP, a placement

algorithm is required to place highly connected sub-circuits into adjacent FPGAs, to

minimize the inter-FPGA routing resources needed.

Placement for Mesh Architectures
For placement on the mesh architectures such as the 8-way torus and HTP, we

developed a tool called the Mesh Placement Tool (MPT) that uses a version of

force-directed placement algorithm presented in [Shah91]. That algorithm was described

in Section 2.3.2 and the pseudo-code for the algorithm was presented in Figure 2-10. To

implement the algorithm, suitable decisions on the following issues were required:

1. For calculating the cost of a given placement configuration, a method of estimating

the routing cost of each net is needed. The routing cost of an inter-FPGA net on a

mesh is estimated by the semi-perimeter of the net bounding box. This is a

commonly used method of estimating the routing cost in placement tools [Sarr96].

The number of FPGA pins required for routing a net is directly proportional to the

length of semi-perimeter of the net bounding box. For example, consider a net that

connects FPGA 0 and FPGA 8 in Figure 4-4. Assuming that the FPGAs are placed

FPGA
0

FPGA
4

FPGA
3

FPGA
2

FPGA
1

FPGA
5

FPGA
7

FPGA
6

FPGA
8

src

sink

Figure 4-4: Semi-perimeter of the Net Bounding Box

CAD Tools and Experimental Evaluation Framework

56

on a grid, the length of semi-perimeter of the net bounding box is four units and

the number of FPGA pins used is eight (4 x 2).

2. The value of the parameterabort_limit in the algorithm (Figure 2-10) decides how

many aborts are allowed in each iteration of the force-directed relaxation. Recall

that the variable abort_count is incremented every time the target point of the

selected module conflicts with the target point of another module that has already

been placed and locked. Intuitively, abort_limit should depend upon the ratio of

the number of locked modules and the total number of modules. As this ratio

increases, there will be frequent aborts. When close to half the total number of

modules are locked, we found that the number of aborts increased rapidly because

every second module is locked. Therefore we setabort_limit to half the total

number of modules in the placement problem.

3. Another important parameter in the algorithm isiteration_limit. To experimentally

determine a suitable value of this parameter, we placed post-partition netlists of

three benchmark circuits (s35932, s38417, and s38584) on a 3 x 3 array (9

modules) using threeiteration_limit values: (1) 100 x 9, (2) 1000 x 9, and (3)

10000 x 9. We also obtained the best placement cost for each circuit after

performing ten placement runs with aniteration_limit value of 100 x 9. The results

are shown in Table4-2. The first clear conclusion is that increasing the value of

iteration_limit does not give better results all the time. The best results were

obtained when the algorithm was executed multiple times with different initial

random partitions and the best result was chosen. This implies that the results

produced by the force-directed placement algorithm are sensitive to the initial

random placement used. Therefore, in MPT we set the iteration limit to 100 times

the number of modules in the target mesh array and chose the best result obtained

Circuit

Placement Cost for Different Values of iteration_limit
(wire length on a grid)

iteration_limit
= 100 x 9

iteration_limit
= 1000 x 9

iteration_limit
= 10000 x 9

Best of 10
Placement

runs,
iteration_limit

= 100 x 9

s35932 388 479 421 260

s38417 497 494 282 243

s38584 349 334 407 242

Table 4-2: Placement Results for Different Values ofiteration_limit

CAD Tools and Experimental Evaluation Framework

57

out of ten placement runs. We used only three benchmark circuits in this

experiment because the other benchmark circuits were not available when we were

developing MPT.

To evaluate the quality of MPT, we did not have any published results for comparison.

We looked at the reduction in placement cost obtained compared to the cost of the initial

random placement. Across all circuits, the reduction in placement costs ranged from 39%

to 61%. It is difficult to calculate an average reduction in the placement cost because

placements were done for many array sizes for each circuit (in an attempt to make the

circuits route on the mesh architecture).

Placement for the HWCP Architecture
Recall from Section 3.4.3 that the HWCP architecture consists of clusters of FPGAs

with hardwired connections between all the FPGAs in each cluster. The placement

problem for the HWCP architecture is an assignment problem. Each cluster of sub-circuits

in the partitioning tree of a circuit needs to be assigned to a specific cluster of FPGAs in

the target HWCP architecture. The goal is to assign closely connected clusters of

sub-circuits to adjacent FPGA clusters in the architecture to minimize the inter-FPGA

routing cost.

The cluster size depends upon the value of the Cs parameter in the target HWCP

architecture. Recall from Section 3.4.3 that Cs represents the number of FPGAs within

each hardwired cluster in the HWCP architecture. For example, consider the partitioning

tree of the s35932 circuit shown in Figure 4-5(a). The final partitions or sub-circuits are

represented by shaded circles. Assume that this circuit is to be mapped to an HWCP

architecture that consists of nine FPGAs with a cluster size of three (Cs = 3). The approach

used for clustering of sub-circuits is shown in Figure 4-5(a), where adjacent sub-circuits

are grouped into each cluster, represented by dashed lines covering the sub-circuits. We

start from the leftmost sub-circuit in the partitioning tree which is grouped with the next

two sub-circuits to the right. An ideal approach for generating the partitioning tree would

be as shown in Figure 4-5(b), where the partitioning tree matches the target HWCP

architecture topology. Developing such an architecture-driven partitioning tool is very

CAD Tools and Experimental Evaluation Framework

58

time consuming, therefore we used the partitioning tree generated by our recursive

bipartitioning tool (RBT). While our approach towards partitioning and placement for

HWCP is sub-optimal, we expect that the mapping results would still give valuable insight

into the routability and speed performance of the HWCP architecture.

4.4.3 MFS Static Timing Analyzer

In synchronous digital circuits, the maximum possible speed is determined by the

slowest combinational path in the circuit implementation, which is called the critical path.

Static timing analysis tools are used to identify the critical paths in designs implemented at

the chip-level [Joup87] as well as the board-level [Chan97]. Timing analysis is also used

in timing-driven layout tools, to estimate the slack of each connection in the circuit. The

Figure 4-5: Partitioning and Placement of the s35932 circuit on the HWCP
Architecture: (a) Actual (b) Ideal

(a)

(b)

CAD Tools and Experimental Evaluation Framework

59

slack of a connection is defined as the delay that can be added to the connection without

increasing the critical path delay. Connections with low slack values are routed using fast

paths to avoid slowing down the circuit.

For a given circuit, the speed of an MFS is determined by the critical path delay

obtained after a circuit has been placed and routed at the inter-chip level. We developed an

MFS static timing analysis tool (MTA) for calculating the post-routing critical path delay

for a given circuit and MFS architecture. The operation and modeling used in the MTA are

described in this section.

The delay values used by the MTA are given in Table 4-3. These values were obtained

from the Xilinx [Xili97] and ICube [ICub97] data sheets and some design experience.

Since we do not perform individual FPGA placement and routing, we approximate the

CLB-to-CLB delay as a constant. The value of 2.5 ns for CLB-to-CLB routing delay is

roughly half the delay on a long line for XC4013E-1 FPGA, which is a pessimistic

estimate. Although using a single delay value is somewhat inaccurate, it still gives us a

good estimate of the post-routing critical path delay of an MFS because it is dominated by

off-chip delay values.

The configurable logic block (CLB) in the Xilinx 4000 family of FPGAs [Xili97]

consists of two 4-LUTs, called F and G, whose outputs feed into a 3-LUT called the

H-LUT. The H-LUT is not always used when implementing combinational logic functions

Item Delay (ns)

Intra-FPGA CLB-to-CLB routing delay 2.5

FPGA input pad delay 1.4

FPGA output pad delay 3.2

CLB delay (without using H-LUT) 1.3

CLB delay (via H-LUT) 2.2

FPID crossing delay (including pad delays) 10

PCB trace delay 3

FPGA route through delay 10

Table 4-3: The Delay Values Used in the Timing Analyzer Model

CAD Tools and Experimental Evaluation Framework

60

in the CLB (the CLB outputs come directly from F and G LUTs). Obviously, the CLB

delay is more when the H-LUT is used because of the extra logic in the paths from CLB

inputs to the outputs as given in Table 4-3.

We now describe the operation of the MTA. First, it calculates the critical path delay of

the un-partitioned design using a widely used method called the block-oriented technique

[Joup87]. In this step it is assumed that the circuit is implemented on a hypothetical single

large FPGA that has the same logic block and interconnect delay (shown in Table 4-3) as

the FPGA used in the MFS (Xilinx 4013). The critical path delay of the un-partitioned

design is denoted by CPD.

In the second step, MTA calculates the post-partition critical path delay, denoted by

CPD_PP. This is the critical path delay obtained by analyzing the circuit netlist after it has

been partitioned into multiple-FPGAs. It is assumed that the FPGAs are interconnected on

a custom PCB and the circuit is annotated with the inter-chip delays from which CPD_PP

is calculated. The inter-chip delay for connecting a CLB in one FPGA to a CLB in another

FPGA is given by the sum of the following delay values (given in Table 4-3): CLB to

output pad routing delay (assumed to be equal to the CLB-to-CLB routing delay), PCB

trace delay and input pad to CLB routing delay (assumed to be equal to the CLB-to-CLB

routing delay). CPD_PP provides a lower bound on the post-routing critical path delay

(denoted by CPD_PR) that is obtained using general purpose MFS. This is because for any

circuit, CPD_PR can be no better CPD_PP due of the delays introduced by board-level

programmable routing in general purpose MFSs.

Lastly, the MTA reads the MFS architecture description and the routing path for each

inter-FPGA net, as provided by the inter-FPGA router. From this information, the circuit

is annotated with the inter-FPGA delays for the given MFS, from which the post-routing

critical path delay (CPD_PR) is calculated. After inter-FPGA routing, a path connecting

two FPGAs may traverse other FPGAs and FPIDs. In such cases the FPGA and FPID

crossing delays and the input and output pad delays, shown in Table 4-3, are used for

calculating the routing delay.

CAD Tools and Experimental Evaluation Framework

61

Sample Results Obtained Using the MTA
The capabilities of the MTA are demonstrated by the speed estimates obtained for all

the benchmark circuits at three levels of circuit implementation: pre-partitioning (single

hypothetical FPGA), post-partitioning (custom MFS), and post-routing (actual MFS).

Table4-4 shows the critical path delays obtained by using MTA for all the benchmark

circuits mapped to the partial crossbar architecture. Column 1 shows the circuit name and

column 2 shows the number of FPGAs required to implement the circuit on the partial

crossbar. Columns 3 and 4 show the normalized pre-partit ioning (CPD) and

post-partitioning (CPD_PP) critical path delays respectively. The delay values in each row

are normalized to the pre-partitioning critical path delay value (CPD). Column 5 shows

the normalized post-routing critical path delay (CPD_PR).

Circuit
 #FPGAs

Normalized critical path delay

Pre-partitioning,
CPD

Post-partitioning,
CPD_PP

Post-routing,
CPD_PR

s35932 8 1.0 1.09 1.68

s38417 9 1.0 1.34 2.16

s38584 9 1.0 1.32 1.96

mips64 14 1.0 1.37 2.01

spla 18 1.0 2.26 5.16

cspla 18 1.0 2.28 5.36

mac64 6 1.0 1.47 2.40

sort8 12 1.0 2.10 3.68

fir16 10 1.0 1.40 2.48

gra 4 1.0 1.06 1.30

fpsdes 9 1.0 1.42 2.36

spsdes 8 1.0 1.25 1.80

ochip64 8 1.0 1.32 2.86

ralu32 9 1.0 1.71 3.45

iir16 6 1.0 1.05 1.24

Average 10 1.0 1.49 2.66

Table 4-4: Critical Path Delays at Different Levels of Circuit Implementation

CAD Tools and Experimental Evaluation Framework

62

Compared to single FPGA implementation, Table4-4 illustrates the delay penalties

incurred due to partitioning and programmable routing at the board level. The CPD_PP

value across all the circuits is on average 49% more than the CPD value, and in some cases

is more than a factor of 2 greater. Similarly, the average CPD_PR value across all the

circuits is a factor of 2.5 times more than CPD and up to 5 times more. Table B-1 in

Appendix B is similar to Table4-4 except that it shows the actual (un-normalized) critical

path delay values.

Note that our definition of the critical path (obtained using the block-oriented

technique) suffers from two limitations: First, we cannot guarantee that the critical path is

not a false path. Second, in some circuits that implement multi-cycle operations, the

critical path in each cycle may be different from what we define as a critical path. Despite

these limitations, the block-oriented technique gives reasonably accurate results and is

widely used in practice.

4.4.4 Inter-FPGA Routing Algorithms

The routing algorithms developed for the various MFS architectures explored in this

research are described in this section. Initially, we developed a generic MFS router that

uses a topology independent routing algorithm. As we mapped circuits to different

architectures, we found that the generic router had major problems with different aspects

of each architecture. Therefore we developed architecture-specific routers to obtain the

best possible routing results for each architecture.

The two goals of an inter-FPGA router are achieving routing completion and obtaining

the best possible speed performance. For hybrid architectures that use a mix of fast

hardwired connections and slow programmable connections, timing-driven routing should

be used to obtain the best possible speed performance.

A Topology-Independent Router
We developed a topology independent inter-FPGA routing tool called FPSROUTE. It

represents the MFS architecture using an undirected routing graph whose nodes are

FPGAs and FPIDs. Each edge between any pair of nodes is assigned a weight that is equal

to the number of wires between those two nodes. For example, consider the 4-way torus

CAD Tools and Experimental Evaluation Framework

63

architecture and its routing graph illustrated in Figure 4-6. Each edge in Figure 4-6

represents 47 wires, hence the weight of each edge in the routing graph is also 47.

Given the routing graph for any MFS architecture and the netlist of connections

between FPGAs, the well known maze routing algorithm [Lee61] is used to find the

shortest available path for routing each net. After each net is routed, the edge weights in

the routing paths are updated to reflect the reduction in available wires. The maze routing

algorithm is suitable for routing two-terminal nets and cannot be used directly for routing

multi-terminal nets. One approach for routing multi-terminal nets is to decompose each

such net into a set of two terminal nets and route the two-terminal nets independently. But

this approach leads to inefficiencies as discussed in Section 2.3.3. FPSROUTE uses an

algorithm called the single component growth algorithm [Kuh86] for routing

multi-terminal nets. This algorithm starts with the net source and finds the shortest path to

the closest sink using the maze routing algorithm. Next, all the nodes in the routing path

are treated as possible sources and the shortest path to the next closest sink is found. This

procedure is repeated until paths to all the net sinks are found.

If any nets remain unrouted after the first routing attempt, repeated iterations of the

router are performed. In each iteration, all nets are ripped up and rerouted. The nets that

failed in the immediately previous iteration are routed first, followed by nets that failed in

the next previous iteration, and so on. Thus in each iteration, the ‘history’ of failed nets is

FPGA
0

FPGA
2

FPGA
1

FPGA
3

FPGA
5

FPGA
4

FPGA
8

FPGA
7

FPGA
6

0 1

6

43 5

2

87

Figure 4-6: (a) 4-way Torus architecture (b) Its Routing Graph

CAD Tools and Experimental Evaluation Framework

64

considered when ordering the nets for routing. To summarize, FPSROUTE uses the

traditional multi-pass maze routing approach, with a ‘move-to-front’ heuristic, for

topology-independent inter-FPGA routing.

Due to its generic nature, FPSROUTE gives inferior routability and speed results for

different MFS architectures. It is compared to the other architecture-specific routers in

subsequent sections. Note that this basic maze routing approach is used in the other

architecture-specific routers to handle the last few ‘dif ficult-to-route’ nets that are

encountered in some circuits.

Routing Algorithm for Mesh Architectures
The problem with FPSROUTE is that it concentrates exclusively on finding the

shortest path for each net while ignoring issues like routing congestion.

The routing problem in the mesh architectures is complicated by the fact that the

FPGAs are used for both logic and routing. After a circuit is mapped to a mesh

architecture, each FPGA will have a number of I/O pins unused after all the pins needed

for sources and sinks in that FPGA are accounted for, calledfree pins. An FPGA should

have at least two free pins if it is to permit a route to pass through it.

Consider a net that connects the nodes 0 and 4 in Figure 4-6(a). The shortest paths for

routing the net are (0 1 4) and (0 3 4). The final choice of the routing path depends upon

two things: first whether enough free pins are available in the intermediate FPGAs used in

each path (1 and 3), and second whether routing congestion is minimized or not. The path

that has the largest number of wires available will minimize congestion for the subsequent

nets to be routed.

We developed a mesh routing tool called MROUTE that uses a heuristic tuned to the

routing requirements of the mesh architecture. It first routes all those nets that do not use

any free pins (e.g. nets connecting adjacent FPGAs). It then routes all two-terminal nets

using an algorithm that enumerates all possible shortest paths between source and target.

A shortest path is chosen that attempts to minimize the congestion for the subsequent nets

to be routed and utilizes intermediate FPGAs that have the most number of free pins.

Since the typical array is small (at most 6 X 8 in our case), enumeration of all possible

CAD Tools and Experimental Evaluation Framework

65

shortest paths is computationally feasible. For multi-terminal nets, a modified form of the

single component growth algorithm, described in the previous section, is used. The

algorithm is adapted for mesh architectures to consider free pins when routing

multi-terminal nets. Specifically in the multi-terminal net routing algorithm, during the

breadth-first-search (BFS) to find a net sink, the FPGAs that do not have free pins are not

marked as possible intermediate FPGAs in a routing path. If the first routing attempt fails,

it uses a rip-up and reroute approach similar to that used in FPSROUTE.

MROUTE gave consistently better results compared to the topology-independent

router FPSROUTE as illustrated in Table4-5. Across ten circuits mapped to several array

sizes, the percentage of nets routed by MROUTE increased by 4% on average and up to

7% more in the best case, compared to FPSROUTE.

Routing Algorithm for Partial Crossbar
Recall from Section 2.3.3 that the inter-FPGA routing problem in the partial crossbar

involves choosing a specific FPID for routing each net such that all nets route. The router

Circuit #FPGAs
% nets routed in the 8-way mesh

FPSROUTE MROUTE

mips64 14 (2 x 7) 91 92

spla 18 (3 x 6) 83 90

cspla 18 (3 x 6) 81 85

mac64 6 (2 x 3) 73 77

sort8 12 (3 x 4) 78 80

fir16 10 (2 x 5) 92 96

fpsdes 9 (3 x 3) 84 88

spsdes 8 (2 x 4) 81 84

ralu32 9 (3 x 3) 80 87

iir16 6 (2 x 3) 89 89

Average 10 83 87

Table 4-5: Comparison of FPSROUTE and MROUTE

CAD Tools and Experimental Evaluation Framework

66

should minimize the number of hops used in each source to sink path in each net in order

to obtain good speed performance.

We developed a routing tool, called PCROUTE, that uses a heuristic algorithm tuned

to the requirements of the partial crossbar architecture, which is illustrated in Figure 4-7.

Recall from Section 3.3 that in the partial crossbar, the circuit I/O signals are connected to

the FPGAs through FPIDs. Such connections (nets) have one FPGA and one FPID as the

net terminals. The algorithm routes such nets first because there is no flexibility in routing

such nets. Next all the nets are routed in decreasing order of fanout, the highest fanout net

first and two-terminal nets last. The reason behind this is that as the wires between the

FPGAs and FPIDs get used up in routing, it becomes increasingly difficult to route high

fanout nets. This is because an FPID with wires available for connecting to all the FPGAs

belonging to the net may not be available. Therefore it is better to route such nets first. If

the routing attempt fails a rip up and reroute strategy is used, which is similar to the one

employed in FPSROUTE.

PCROUTE_ALGORITHM
{
 route all nets that contain an FPID as a net terminal;
 route all nets using best_path() in decreasing order of fanout;
 if(any net remains unrouted)

Iterate N times using a ‘move-to-front’ strategy for failed
 nets;

 if(any net remains unrouted)
report routing failure;

 else
report routing success;

}

best_path()
{
 calculate the routing cost for the net through all
 available FPIDs;
 choose the least cost routing path (through a specific FPID)
 if(routing attempt using a single FPID fails)

use maze routing to route the net;
 if(maze routing attempt fails)

report routing failure for the net;
}

Figure 4-7: Pseudo-code for the Routing Algorithm used in PCROUTE

CAD Tools and Experimental Evaluation Framework

67

For each net, thebest_path() routineevaluates potential routing paths through all

available FPIDs. The cost function used to choose an FPID attempts to guarantee balanced

usage of FPIDs and preserve the most options for two-hop routing of subsequent nets to be

routed. It is as follows: consider a partial crossbar that consists ofX FPGAs andY FPIDs.

Consider anN-terminal net calledM. LetF denote the set of FPGAs belonging toM, i.e. F

= { f1, f2,...., fN}.

Let Aik denote the number of available wires between FPGAi and FPIDk. The cost of

routing the netM through FPIDk, C(M, k), is given by:

Recall from Section 3.3 that Pt is the number of pins per subset. An FPID that has the

lowest routing cost for the netM is chosen for routing that net. If the routing attempt using

a single FPID fails, the net is processed by a maze router. The routing path obtained by the

maze router in such cases will involve the usage of multiple intermediate FPGAs and

FPIDs as illustrated in Figure 4-8. Consider a net whose source lies in FPGA 1 and sinks

lie in FPGAs 2 and 4. A single FPID cannot be used for routing the net because the

required connections between FPGAs and FPIDs are used up by other nets. Hence the

routing path specified by dashed lines in Figure 4-8 will be chosen by the maze router. The

path between FPGA 1 and FPGA 4 will require 4 hops: FPGA1 to FPID A, FPID A to

FPGA 2, FPGA 2 to FPID B, and FPID B to FPGA 4.

PCROUTE gives excellent routability and speed results for all the benchmark circuits,

which were routed without requiring any iterations. The routing problem for the partial

crossbar becomes more difficult as the value of Pt is reduced. This is because of reduced

routing flexibility due to the low pin count FPIDs used in such cases. Irrespective of the

value of Pt, PCROUTE achieves 100% routing completion and produces two-hop routing

for all the nets in almost all circuits. For only two circuits, for the specific case of Pt = 4, it

produced multi-hop routing paths for a negligible number of nets (1 out of 991 nets for the

first circuit and 3 out of 645 nets for the second). In practical terms, this means it gives

almost optimal results for all of our benchmark circuits because the best that a partial

C M k,()
Pt

Aik

i f 1=

f N

∑=

CAD Tools and Experimental Evaluation Framework

68

crossbar router can achieve is routing of every net using only two hops in the source-sink

path. Although we did not compare PCROUTE to the other partial crossbar routers, we

expect it to be equivalent in quality to other partial crossbar routers that have been

proposed to date [Kim96] [Mak95a] [Lin97] [Slim94]. This is because PCROUTE

performs so well across a variety of benchmark circuits, including some difficult-to-route

circuits such asspla andcspla. PCROUTE should be better than [Mak95b] for speed

because that algorithm splits each multi-terminal into a set of two-terminal nets and routes

them independently, leading to multiple hops and even possible routing failures.

PCROUTE also gives better speed results compared to the topology-independent

router FPSROUTE. This is because FPSROUTE greedily chooses the first available FPID

to route each net and does not balance the usage of FPIDs. The result is that many

multi-terminal nets cannot be routed using a single FPID and are forced to use multi-hop

routing paths.

The benchmark circuits were mapped to the partial crossbar architecture with Pt = 4

using both FPSROUTE and PCROUTE. For FPSROUTE, the average increase in

post-routing critical path delay (CPD_PR) across all circuits was 19% compared to

PCROUTE and 62% more in the worst case.

FPGA 1

A

FPGA 4FPGA 3FPGA 2

FPID FPIDFPID

B pinsA pins

AAA

C pins

B C B C B C B C

net_src net_sink_1 net_sink_2

Figure 4-8: Multi-hop Routing in Partial Crossbar

CAD Tools and Experimental Evaluation Framework

69

Routing Algorithm for Hybrid Architectures
Recall from Section 3.4 that the hybrid architectures use a mixture of hardwired and

programmable connections. The inter-FPGA routing algorithm for the hybrid

architectures is closely related to the partial crossbar routing algorithm in the sense that a

similar algorithm is employed when routing nets through FPIDs. However, the difference

here is that the router should also exploit the direct connections between FPGAs to

minimize the number of FPGA and FPID pins and the number of hops used, when routing

each inter-FPGA net. This makes the routing algorithm for the hybrid architectures more

complicated compared to the partial crossbar.

We developed a routing tool, called HROUTE, that understands the hybrid

architectures and gives excellent routability and speed results for all the benchmark

circuits.

The main objective of HROUTE is to route all nets using no more than two hops for

each source-sink path in each net. Wherever possible, it strives to use the direct hardwired

connections between FPGAs to minimize source-sink net delay when routing both

two-terminal and multi-terminal nets. The routing algorithm used in HROUTE is

described using the pseudo-code in Figure 4-9. First an attempt is made to route all

possible two-terminal nets using the direct connections between FPGAs to minimize the

usage of pins and net delay. Next, all multi-terminal nets are routed through FPIDs using a

routing algorithm similar to that used in PCROUTE. The difference here is; first an

attempt is made to use hardwired connections for all possible source to sink connections.

Any sinks that remain unconnected are then linked to the source using a single FPID.

Finally, the remaining two terminal nets are routed using FPGAs or FPIDs. Any nets that

remain unrouted are processed by a maze router.

If any nets remain unrouted after the first iteration, a rip up and reroute strategy similar

to the one described for FPSROUTE is used. We found that net ordering is crucial for

obtaining good routability and speed results in HROUTE because it optimizes the usage of

MFS routing resources (FPGA and FPID pins).

CAD Tools and Experimental Evaluation Framework

70

Timing-Driven Routing Algorithm for Hybrid Architectures
A problem with HROUTE is that it is not timing-driven and hence does not fully

exploit the fast hardwired connections in the hybrid architectures to obtain the maximum

possible speed. To overcome this deficiency, we developed a timing-driven routing tool for

the hybrid architectures, called HROUTE_TD, that uses path based static timing analysis

to identify the critical nets and route them using the fast hardwired connections.

The main objectives of HROUTE_TD are to try to route all critical nets using direct

connections and to route all other (non-critical) nets using no more than two hops for each

source-sink path.The algorithm used in HROUTE_TD can be best described by using the

HROUTE_ALGORITHM
{ /* begin HROUTE */

 route all nets that contain an FPID as one of the net terminals;
 route all possible two-terminal nets connecting adjacent FPGAs
 using hardwired connections;
 route all multi-terminal nets using best_path_multi();
 for (all remaining two-terminal nets)
 {

route the net using the most suitable intermediate FPGA;
if(no intermediate FPGA is available)

route the net using the most suitable FPID;
 }
 if(any nets remain unrouted) /* from earlier attempts */

route each net using the maze router;
 if(any nets remain unrouted)

iterate N times using a ‘move-to-front’ strategy for
failed nets;

 if(any nets remain unrouted) /* even after iterations */
report routing failure

} /* end HROUTE */

best_path_multi()
{
 if(enough free pins are available in the source FPGA)

 connect the source to all possible sinks using hardwired
 connections;

 if(any sinks remain unconnected)
 calculate the routing cost of connecting the source to
 the sinks using all available FPIDs;
 choose the least cost routing path using a single FPID;

}

Figure 4-9: Pseudo-code for the Routing Algorithm used in HROUTE

CAD Tools and Experimental Evaluation Framework

71

flow chart given in Figure 4-10. Given a circuit to be routed on a hybrid architecture,

path-based static timing analysis is performed and the post-partitioning critical path delay

(CPD_PP) for the circuit is calculated. CPD_PP forms a lower bound for the post-routing

critical path delay (CPD_PR) because it represents the critical path delay obtained by

using custom board-level implementation of the circuit. The net slacks are then calculated

Perform post-partitioning path-based timing analysis to calculate CPD_PP

Use CPD_PP as a lower bound for CPD_PR

Calculate net slacks, identify and mark all critical nets

Route all possible critical nets using hardwired connections

Route all non-critical nets in the same order as in HROUTE

All nets routed?

Perform post-routing timing analysis to calculate CPD_PR

CPD_PR = CPD_PP?

Enough iterations?

EXIT

Report routing
failure

Yes

Yes
No

No

Yes

rip-up and

No

Figure 4-10: Timing-driven Routing Algorithm for the Hybrid Architectures

Enough iterations?

Yes

No

re-route

CAD Tools and Experimental Evaluation Framework

72

for each inter-FPGA net and the critical nets are identified and marked. A critical net is

defined as an inter-FPGA net whose slack is less than the delay incurred for connecting

two FPGAs via an FPID, which is the delay of a programmable connection.

In the next step, an attempt is made to route all critical nets using hardwired

connections. Among the critical nets, two-terminal nets are routed first because such nets

are the most suitable candidates for using direct hardwired connections. It is difficult to

route multi-terminal nets using only hardwired connections (without FPID) because many

free pins are required in the source FPGA, which are usually not available. This is

followed by the routing of non-critical nets in the same order as that used in HROUTE. If

any nets remain unrouted, this implies that the first iteration of timing-driven routing is

unsuccessful. In such cases, a rip-up and re-route similar to that employed in FPSROUTE

is used. The failed nets from the previous iterations are assigned the highest priority in the

current iteration. Once the failed nets are routed, the remaining nets are routed in the same

order as that in the very first routing pass.

Circuit
 #FPGAs

Normalized post-routing critical path
delay, CPD_PR

HROUTE HROUTE_TD

s35932 8 1.08 1.0

s38417 9 1.01 1.0

s38584 9 1.15 1.0

mips64 14 1.12 1.0

spla 18 1.21 1.0

cspla 18 1.16 1.0

mac64 6 1.21 1.0

sort8 12 1.08 1.0

fir16 10 1.16 1.0

gra 4 1.04 1.0

fpsdes 9 1.11 1.0

spsdes 8 1.05 1.0

ochip64 8 1.00 1.0

Table 4-6: Comparison of HROUTE and HROUTE_TD

CAD Tools and Experimental Evaluation Framework

73

If the timing-driven routing attempt succeeds, timing analysis is performed to

calculate CPD_PR. If CPD_PR achieves its lower bound, the timing-driven routing

attempt is terminated because it has already achieved its goal. Otherwise, net slacks are

again calculated and iterations of timing-driven routing are performed. We found that the

iterations to improve the timing did not result in any significant reduction in the value of

CPD_PR compared to the value given by the first iteration. Even after using ten iterations,

the best case reduction in CPD_PR was only 3% across all benchmark circuits.

HROUTE_TD gave s ign i ficant speed improvements compared to the

non-timing-driven router HROUTE, as illustrated in Table4-6. The benchmark circuits

were mapped to the HCGP architecture using HROUTE and HROUTE_TD. In Table4-6,

the first column shows the circuit name and the second column shows the number of

FPGAs required to implement that circuit. Columns 3 and 4 show the normalized

post-routing critical path delay (CPD_PR) obtained using HROUTE and HROUTE_TD

respectively. For each circuit, the CPD_PR value obtained using HROUTE_TD is set as 1.

Compared to HROUTE_TD, the average increase in the critical path delay across all

circuits was 10%, and up to 21% more. These results demonstrate that it is essential to use

a timing-driven router in order to obtain the maximum possible speed for the hybrid

architectures. Table B-2 in Appendix B is similar to Table4-6 except that it shows the

actual (un-normalized) critical path delay values.

4.5 Summary
The experimental framework and the CAD tools used for mapping the benchmark

circuits to different architectures were described in this chapter. The architecture

ralu32 9 1.13 1.0

iir16 6 1.00 1.0

Average 10 1.10 1.0

Circuit
 #FPGAs

Normalized post-routing critical path
delay, CPD_PR

HROUTE HROUTE_TD

Table 4-6: Comparison of HROUTE and HROUTE_TD

CAD Tools and Experimental Evaluation Framework

74

evaluation metrics were discussed and the benchmark circuits used were presented. In this

research, particular attention was paid to the development of architecture-specific

inter-FPGA routing algorithms, which were discussed in detail. The routing algorithm

developed for the partial crossbar is shown to give excellent results across all the

benchmark circuits.

A static timing analysis tool for measuring the speed performance of different MFS

routing architectures was described and a timing-driven routing algorithm for the hybrid

architectures was presented. To our knowledge, this is the first board-level study of MFS

routing architectures that uses such detailed timing information for measuring their speed

performance.

The experimental evaluation framework and the CAD tools presented in this chapter

were used to map the benchmark circuits to different routing architectures. The

architectures were then evaluated and compared on the basis of pin cost and speed metrics.

The evaluation and comparison results and their analysis are presented in the next chapter.

75

Chapter 5
Evaluation and Comparison

of Architectures

In this chapter the key experimental results obtained in this research and their analysis

are presented. Several routing architectures are evaluated and compared. The key

architecture parameters associated with the partial crossbar and the hybrid architectures

are explored in Section 5.1. In Section 5.2 to Section 5.5 we compare the best among

different classes of architectures to find the best overall architecture. We could have

compared all the architectures explored in one Section, but we did not do that because we

wanted to provide insight into the strengths and defects of each architecture. Two popular

existing architectures, the 8-way mesh and the partial crossbar, are compared in Section

5.2. The new HCGP architecture is compared to the partial crossbar architecture in

Section 5.3. The HTP architecture is compared to the HCGP architecture in Section 5.4. In

Section 5.5 the HWCP architecture, which is suitable for hierarchical implementation of

MFSs, is compared to the HCGP architecture.

5.1 Analysis of Routing Architectures
In this Section the key architecture parameters associated with the partial crossbar and

the hybrid architectures are explored. The goal is to determine the values of the key

parameters in each architecture that give the best routability and speed results.

Evaluation and Comparison of Architectures

76

5.1.1 Partial Crossbar: Analysis of Pt

Recall the definition of Pt, the number of pins per subset, given in Section 3.3. Pt is

important because, depending on its size either very large FPIDs are needed or very many

FPIDs are required. In this Section we explore the effect of Pt on the routability and speed

of the partial crossbar architecture. The fifteen benchmark circuits were mapped to the

partial crossbar architecture, using the CAD flow described in Section 4.1, for three

different values of Pt (4, 17, 47). The values 4 and 47 are extreme cases (resulting in either

many small FPIDS or few very large FPIDs) and the value of 17 gives a reasonable sized

FPID as discussed in Section 3.3.

Circuit # FPGAs

Normalized post-routing critical
path delay using PCROUTE

Normalized post-routing critical path
delay using FPSROUTE

Pt = 47 Pt = 17 Pt = 4 Pt = 47 Pt = 17 Pt = 4

s35932 8 1.0 1.0 1.0 1.0 1.42 1.42

s38417 9 1.0 1.0 1.0 1.0 1.27 1.27

s38584 9 1.0 1.0 1.0 1.0 1.17 1.17

mips64 14 1.0 1.0 1.0 1.0 1.00 1.09

spla 18 1.0 1.0 1.0 1.38 1.46 1.62

cspla 18 1.0 1.0 1.0 1.24 1.24 1.36

mac64 6 1.0 1.0 1.0 1.0 1.0 1.0

sort8 12 1.0 1.0 1.0 1.09 1.14 1.22

fir16 10 1.0 1.0 1.0 1.0 1.03 1.03

gra 4 1.0 1.0 1.0 1.0 1.0 1.0

fpsdes 9 1.0 1.0 1.0 1.0 1.0 1.24

spsdes 8 1.0 1.0 1.0 1.0 1.0 1.10

ochip64 8 1.0 1.0 1.0 1.0 1.0 1.0

ralu32 9 1.0 1.0 1.0 1.0 1.04 Routing
failure

iir16 6 1.0 1.0 1.0 1.0 1.0 1.00

Average 1.0 1.0 1.0 1.05 1.12 1.19

Table 5-1: The Effect of Pt on the Delay of the Partial Crossbar Architecture

Evaluation and Comparison of Architectures

77

We used two routing algorithms to do these experiments: FPSROUTE (described in

Section 4.4.4), which employed a somewhat generic maze-routing algorithm, and

PCROUTE (described in Section 4.4.4), which used a algorithm that specifically

addressed the nature of a partial crossbar.

The effect of Pt on the critical path delay of the partial crossbar is shown in Table5-1.

The first column shows the circuit name. The second column gives the number of FPGAs

needed to implement the circuit. PCROUTE gives the same critical path delay value for

each circuit for all three values of Pt. Therefore, the critical path delay obtained by

PCROUTE is set as 1. Columns 3 to 5 show the normalized post-routing critical path

delay obtained for the circuit using PCROUTE for the three values of Pt. The columns 4 to

6 show the normalized post-routing critical path delay obtained using FPSROUTE for the

three values of Pt. Table B-3 in Appendix B is similar to Table5-1 except that it shows the

actual (un-normalized) critical path delay values.

The first clear conclusion is that Pt has no impact on the routability of the partial

crossbar, because all the circuits were routable by PCROUTE for all the Pt values used.

The same was true for FPSROUTE as well except for the routing failure in one circuit

(ralu32) for the Pt = 4 case. An interesting point that follows from this conclusion is that

we do not need connections between FPIDs, as proposed in [Icub94], to improve the

routability of the partial crossbar.

Observe that the PCROUTE algorithm, which is tuned for the partial crossbar

architecture, gives the same delay value irrespective of the value of Pt. This shows that it is

able to tackle the increased complexity of the routing task when we use very small values

of Pt with no adverse effects on routability or speed.

We include the results for FPSROUTEto warn of the danger of using an inappropriate

algorithm for the partial crossbar: here the effect of Pt on speed is quite significant, the

delay increases as the value of Pt decreases. For Pt = 4, average increase in delay using

FPSROUTE is 19% across all circuits, and 62% more in the worst case.

The partial crossbar is a very robust architecture that allows us to use a wide range of

Pt values without any penalties on routability and speed.

Evaluation and Comparison of Architectures

78

We will use Pt = 17 when comparing the partial crossbar to the other routing

architectures because this value gives good routability and speed and requires reasonable

sized FPIDs.

5.1.2 HCGP Architecture: Analysis of Pp

Recall the definition of Pp, given in Section 3.4.1, which is the percentage of pins per

FPGA used for programmable connections in the hybrid architectures. Pp is important

because it potentially affects the cost, routability and speed of the hybrid architectures. If

Pp is too high it will lead to increased pin cost because more programmable connections

are required. If Pp is too low it may adversely affect the routability.

Here we explore the effect of Pp on the routability and speed of the HCGP

architecture. We mapped the fifteen benchmark circuits to the HCGP architecture using

five different values of Pp (20, 30, 40, 50, 60). We do not route for other values of Pp

because we believe that would need greater time and effort without giving more accurate

results. For example, it is most likely that the percentage of nets routed at Pp = 55% would

s35932

s38417

s38584

mips64

spla

cspla

mac64

sort8

fir16

gra

fpsdes

spsdes

ochip64

ralu32

iir16

% nets routed

Pp
90.00

91.00

92.00

93.00

94.00

95.00

96.00

97.00

98.00

99.00

100.00

20.00 30.00 40.00 50.00 60.00

Figure 5-1: The Effect of Pp on the Routability of the HCGP Architecture

Evaluation and Comparison of Architectures

79

be in between the percentage of nets obtained at Pp = 50% and Pp = 60%. The results are

shown in Figure 5-1, in which the Y-axis represents the percentage of inter-FPGA nets

successfully routed for each circuit and the X-axis represents Pp. The first clear conclusion

is that Pp = 60% gives 100% routability for all the benchmark circuits. Notice that about

two thirds of the circuits routed at Pp ≤ ³40%, and for the remaining one third, more than

97% of the nets routed. This implies that there is a potential for obtaining 100% routability

for all circuits at Pp = 40% if we use a routability driven partitioner like the one used in

[Kim96]. We believe this will lead to further reduced pin cost for the HCGP architecture,

but leave it as an area for future work.

We conjecture that the Pp value required for routing completion of a given circuit on

the HCGP depends upon how well the circuit structure ‘matches’ the topology of the

architecture.

We also investigated the effects of Pp on the post-routing critical path delay. Table5-2

shows the ten circuits that routed for Pp < 60%. The first column shows the circuit name.

In subsequent columns, the critical path delay of each circuit for different values of Pp (20,

30, 40, 50, 60) is shown. A surprising conclusion is that overall, the lower Pp values have

Circuit
Post Routing Critical Path Delay (ns)

Pp = 20 Pp = 30 Pp = 40 Pp = 50 Pp = 60

s35932 unroutable unroutable 53 53 53

s38417 87 94 94 94 94

s38584 unroutable 96 96 98 98

sort8 unroutable unroutable unroutable 460 499

fir16 147 160 163 167 167

gra 57 57 57 57 57

fpsdes unroutable 173 176 176 176

spsdes unroutable unroutable 192 205 205

ochip64 50 50 50 50 50

iir16 143 143 143 152 152

Table 5-2: The Effect of on the Delay of the HCGP Architecture

Evaluation and Comparison of Architectures

80

no significant effect on the critical path delay. Compared to the delay value at Pp = 60%,

for lower Pp values, the delay either remained the same or decreased slightly (only 4% less

on average and 12% less in the best case).

For the circuits in which the delay was reduced, as Pp decreased one or more

programmable connections on the critical paths were replaced by the more plentiful and

faster hardwired connections. Note that as Pp is reduced, more hardwired connections are

available. For circuits in which the delay remained the same, ‘segments’ on the critical

path are part of very high fanout nets that have to be routed using FPIDs because of the

lack of free pins in FPGAs. These free pins are required for routing multi-terminal nets

using only hardwired connections. Therefore, even though more hardwired connections

are available at lower values of Pp, they cannot be used for routing the multi-terminal nets

on the critical path.

We will use Pp = 60% when comparing the HCGP to the other routing architectures

because this value gives good routability and speed.

5.1.3 HTP Architecture: Analysis of Pp

We also explored the effect of Pp on the routabil i ty of the Hybrid Torus

Partial-Crossbar (HTP) architecture. As in the case of HCGP, the fifteen benchmark

circuits were mapped to the HTP architecture using five different values of Pp. The results

are shown in Figure 5-2, where the Y-axis represents the percentage of inter-FPGA nets

routed and the X-axis represents Pp. As in the case of HCGP, Pp = 60% gives 100%

routability across all circuits. The routability of the HTP architecture, however, is not as

good as that of the HCGP architecture. Comparing Figure 5-1 and Figure 5-2, the average

percentage of nets routed across all the circuits is higher for the HCGP compared to the

HTP architecture. For example, the percentage of nets routed for all circuits for Pp = 30%

ranges from 93% to 100% for HCGP, compared to 86% to 100% for HTP.

5.1.4 HWCP Architecture: Analysis of Pp and Cs

Recall from Section 3.4.3 that in the Hardwired-Clusters Partial Crossbar (HWCP)

architecture, the FPGAs are grouped into clusters whose size is represented by a parameter

called the cluster size (Cs). All the FPGAs within each cluster are connected to each other

Evaluation and Comparison of Architectures

81

in a complete graph topology using the hardwired connections. Each FPGA is connected

to every other FPGA through FPIDs (programmable connections), as in the partial

crossbar architecture.

The cluster size Cs and the percentage of programmable connections Pp, are important

parameters in the HWCP architecture. In this section we explore the effect of Pp on the

routability of the HWCP architecture for three values of Cs (2, 3, and 4). Our objective is

to determine suitable values of Cs and Pp that give good routability at the minimum

possible pin cost.

The effect of Pp on the routability of thes38417 circuit (for three values of Cs) is

illustrated in Figure 5-3. The Y-axis represents the percentage of inter-FPGA nets routed

and the X-axis represents the value of Pp. Routing completion was obtained at Pp = 40%

for Cs = 4, Pp = 50% for Cs = 3, and Pp = 70% for Cs = 2. In Figure 5-3 the identifier

“Cs4_Nf12” indicates that the specified curve is for the Cs = 4 case and the MFS size

(number of FPGAs) is 12. Recall from Section 3.4.3 that the MFS size must be a multiple

of Cs in the HWCP architecture.

s35932

s38417

s38584

mips64

spla

cspla

mac64

sort8

fir16

gra

fpsdes

spsdes

ochip64

ralu32

iir16

% nets routed

Pp
80.00

82.00

84.00

86.00

88.00

90.00

92.00

94.00

96.00

98.00

100.00

20.00 30.00 40.00 50.00 60.00

Figure 5-2: The Effect of Pp on the Routability of the HTP Architecture

Evaluation and Comparison of Architectures

82

The Pp values required for routing completion across all circuits for the three values of

Cs, are shown in Table 5-3. The first column shows the circuit name and the second

column shows the number of FPGAs needed to fit the circuit on HWCP for the three

values of Cs. The third column shows the minimum value of Pp required for routing

completion of the circuit in HWCP for three values of Cs. The results from Figure 5-3 and

Table 5-3 show that the best routability results for the HWCP architecture (with the lowest

possible Pp value to minimize the pin cost) are obtained when Cs = 4 and Pp = 60%. The

percentage of circuits that routed for Pp ≤ 60% were 20% for Cs = 2, 60% for Cs = 3 and

80% for Cs = 4.

Circuit
Number of FPGAs

 Minimum value of Pp required for
routing completion

Cs = 2 Cs = 3 Cs = 4 Cs = 2 Cs = 3 Cs = 4

s35932 8 9 8 70 60 60

s38417 10 9 12 70 50 40

Table 5-3: The Minimum Pp Value Required for Routing Completion in HWCP

Cs4_Nf12

Cs3_Nf9

Cs2_Nf10

% of inter-FPGA nets routed

Pp
70.00

75.00

80.00

85.00

90.00

95.00

100.00

30.00 40.00 50.00 60.00 70.00 80.00 90.00

Figure 5-3: The Effect of Pp on Routability of HWCP Architecture (s38417 circuit)

Evaluation and Comparison of Architectures

83

The clear conclusion from these results is that Cs = 4 and Pp = 60% are suitable

choices for achieving good routability at the minimum possible pin cost in the HWCP

architecture. Note that we did not get routing completion in the HWCP architecture for 3

out of 15 circuits.Although we did not explore the routability of HWCP forCs > 4, we

expect that it will continue to improve asCs increases relative to the MFS size. Note that

when Cs equals the MFS size, the HWCP architecture reduces to the HCGP architecture.

For Pp = 100%, the HWCP architecture reduces to the partial crossbar architecture.

5.2 Comparison of 8-way Mesh and Partial
Crossbar Architectures

In this section we compare the 8-way mesh architecture with the partial crossbar.

Table5-4 presents the results obtained after mapping fifteen benchmark circuits to the

s38584 10 9 12 70 60 60

mips64 16 15 16 80 70 60

spla 18 18 20 100 100 100

cspla 18 18 20 100 100 100

mac64 6 6 8 80 50 60

sort8 14 15 16 70 70 60

fir16 10 12 12 70 40 40

gra 4 6 4 60 40 20

fpsdes 10 9 12 70 60 40

spsdes 8 9 8 70 60 60

ochip64 8 9 8 40 40 20

ralu32 16 15 16 100 80 70

iir16 6 6 8 50 40 40

Number of circuits routed at Pp ≤ 60% 3 of 15
(20%)

9 of 15
(60%)

12 of 15
(80%)

Circuit
Number of FPGAs

 Minimum value of Pp required for
routing completion

Cs = 2 Cs = 3 Cs = 4 Cs = 2 Cs = 3 Cs = 4

Table 5-3: The Minimum Pp Value Required for Routing Completion in HWCP

Evaluation and Comparison of Architectures

84

8-way mesh and partial crossbar architectures. The first column shows the circuit name,

the second column shows the number of FPGAs needed to implement the circuit, and the

third column shows percentage of nets routed, in each architecture. The fourth and fifth

columns show pin cost (defined in Section 4.2.1) and post-routing critical path delay

(defined in Section 4.2.2) respectively, obtained for each architecture.

Recall from Section 3.3 and Section 5.1.1 that we set Pt = 17 in all experiments for

comparing the partial crossbar to the other architectures.

Notice that the partial crossbar is always routable after the first partitioning attempt for

each circuit. Only five of the fifteen benchmark circuits were routable on the 8-way mesh

even after mapping attempts with increased array sizes. The fact that so few circuits

successfully routed indicates a basic flaw with the mesh architectures.

The mesh architectures failed for the majority of circuits due to a number of reasons.

First, the locality available in inter-FPGA netlists for real circuits is not great enough for

the nearest neighbor connections. Second, there are not enough free pins available for

routing the non-local and multi-terminal nets. Routing such nets uses up many free pins in

FPGAs. For example, consider the routing of non-local and multi-terminal nets illustrated

in Figure 5-4. A non-local two-terminal net uses up pins in the intermediate FPGA as

illustrated in Figure 5-4(a). This problem becomes worse as the array size increases.

Multi-terminal net routing requires extra FPGA pins to connect the source to multiple

Circuit

Number of FPGAs % nets routed Pin cost
 Post-routing

critical path delay
(in ns.)

8-way
mesh

Par.
Cross.

8-way
 mesh

Par.
Cross.

8-way
mesh

Par.
Cross.

8-way
mesh

Par.
Cross.

s35932 12 (3 X 4) 8 100 100 2304 3428 51 57

s38417 12 (3 X 4) 9 100 100 2304 3807 124 94

s38584 30 (5 X 6) 9 100 100 5760 3807 217 139

mips64 > 48 (6 X 8) 14 92 100 > 9216 5646 Rout. fail-
ure

462

spla > 48 (6 X 8) 18 90 100 > 9216 7218 Rout. fail-
ure

196

Table 5-4: Comparison of the 8-way Mesh and Partial Crossbar Architectures

Evaluation and Comparison of Architectures

85

sinks as depicted in Figure 5-4(b). The problem becomes more severe as the net fanout

increases.

It was initially surprising to find no success when the mesh size was expanded in an

attempt to obtain routing completion. Clearly the larger mesh has more free pins.

However, since the array is larger, this in turn leads to an increase in average wire length

and more inter-FPGA nets, partially nullifying the advantage of increased free pins.

These results show the partial crossbar architecture is superior to the 8-way mesh

architecture.

The delay results show that for small array sizes, the 8-way mesh gives better speed

than the partial crossbar (for the circuitss35932, gra andochip64). This is because some

cspla > 40 (5 X 8) 18 85 100 > 7680 7218 Rout. fail-
ure

193

mac64 > 18 (3 X 6) 6 77 100 > 3456 2760 Rout. fail-
ure

623

sort8 > 28 (4 X 7) 12 80 100 > 5376 4944 Rout. fail-
ure

533

fir16 > 25 (5 X 5) 10 96 100 > 4800 4944 Rout. fail-
ure

238

gra 4 (2 X 2) 4 100 100 768 1912 60 70

fpsdes > 18 (3 X 6) 9 88 100 > 3456 3807 Rout. fail-
ure

227

spsdes > 15 (3 X 5) 8 84 100 > 2880 3428 Rout. fail-
ure

249

ochip64 8 (2 X 4) 8 100 100 1536 3428 47 63

ralu32 > 30 (5 X 6) 9 87 100 > 5760 3807 Rout. fail-
ure

317

iir16 > 15 (3 X 5) 6 89 100 > 2880 2760 Rout. fail-
ure

160

Avg.:
> 23

Avg:
10

Avg.:
91.2

Avg.:
100

Total:
> 67392

Total:
62914

Circuit

Number of FPGAs % nets routed Pin cost
 Post-routing

critical path delay
(in ns.)

8-way
mesh

Par.
Cross.

8-way
 mesh

Par.
Cross.

8-way
mesh

Par.
Cross.

8-way
mesh

Par.
Cross.

Table 5-4: Comparison of the 8-way Mesh and Partial Crossbar Architectures

Evaluation and Comparison of Architectures

86

or all the nets on the critical paths may utilize direct connections between FPGAs that are

faster than connections that go via FPIDs. But the speed deteriorates as the array sizes get

bigger, because the critical nets travel through many FPGAs.

With respect to cost, for the same number of FPGAs, the partial crossbar always needs

twice as many pins as an 8-way mesh. For 4 out of 15 circuits the 8-way mesh has less pin

cost compared to the partial crossbar architecture. On average across all the circuits, the

pin cost will be more for the 8-way mesh. This is because of the very large array sizes that

will be required to make many circuits routable on the 8-way mesh.

Mesh architectures should be avoided if the goal is to implement a wide variety of

circuits on MFSs. Although meshes and linear arrays have been used successfully in

practice [Arno92, Vuil96], they were successful only for implementing algorithms that

match the mesh topology, which implies they require mostly nearest neighbour type of

connections between FPGAs. We also note that meshes can be used successfully when the

FPGA pins are time division multiplexed [Babb97], but this results in a substantial

reduction in speed.

5.3 Comparison of HCGP and Partial Crossbar
In this section we compare the HCGP architecture to the partial crossbar architecture.

The benchmark circuits were mapped to the partial crossbar and HCGP architectures

using the experimental procedure described in Section 4.1. The results obtained are shown

FPGA

FPGA

FPGAFPGA

FPGA FPGA

FPGAFPGA

FPGA

src

sink

FPGA

FPGA

FPGAFPGA

FPGA FPGA

FPGAFPGA

FPGA

src

sink

sink

sink sink

(a) (b)

Figure 5-4: Routing in the Mesh (a) Non-local Net (b) Multi-terminal Net

Evaluation and Comparison of Architectures

87

in Table5-5, in which the first column shows the circuit name. The second column shows

the number of FPGAs needed for implementing the circuit on each architecture (recall that

we increase the MFS size until routing is successful).The third column shows the pin cost

normalized to the number of pins used by the HCGP architecture and the fourth column

shows the normalized critical path delay obtained for each architecture. Table B-4 in

Appendix B shows the actual (un-normalized) pin cost and delay values from which the

normalized values in Table5-5 are derived.

For the reasons discussed in Section 3.3 and Section 5.1.1, we set Pt = 17 for the

partial crossbar architecture. The value of Pp for the HCGP architecture was set to 60% to

Circuit

Number of FPGAs Normalized pin cost
Normalized post-

routing
critical path delay

Partial
crossbar

HCGP
Partial

crossbar
HCGP

Partial
crossbar

HCGP

s35932 8 8 1.25 1.0 1.08 1.0

s38417 9 9 1.25 1.0 1.00 1.0

s38584 9 9 1.25 1.0 1.42 1.0

mips64 14 15 1.16 1.0 1.11 1.0

spla 18 18 1.25 1.0 1.16 1.0

cspla 18 18 1.25 1.0 1.18 1.0

mac64 6 6 1.25 1.0 1.34 1.0

sort8 12 14 1.07 1.0 1.07 1.0

fir16 10 10 1.25 1.0 1.43 1.0

gra 4 4 1.25 1.0 1.23 1.0

fpsdes 9 9 1.25 1.0 1.29 1.0

spsdes 8 8 1.25 1.0 1.21 1.0

ochip64 8 8 1.25 1.0 1.26 1.0

ralu32 9 14 0.80 1.0 1.21 1.0

iir16 6 6 1.25 1.0 1.05 1.0

Average 10 10 1.20 1.0 1.20 1.0

Table 5-5: Comparison of the HCGP and Partial Crossbar Architectures

Evaluation and Comparison of Architectures

88

obtain good routability across all circuits, as discussed in Section 5.1.2. Notice that the

parameter Pt also applies to the programmable connections in the HCGP. For the same

reasons as in the partial crossbar, we chose Pt = 14 for the HCGP architecture.

In reviewing Table5-5, consider the circuitmips64. The first partitioning attempt

resulted in 14 FPGAs required to implement the circuit on the partial crossbar. However,

the circuit was not routable on the HCGP and the partitioning was repeated after reducing

the number of pins per FPGA specified to the partitioner by 5%. This resulted in 15

FPGAs required to implement the circuit. The second partitioning attempt was routable on

the HCGP architecture because more ‘free pins’ were available in each FPGA for routing

purposes. The pin costfor the partial crossbar was still more than that for the HCGP

because it uses many more programmable connections, and hence more FPID pins. A

partial crossbar always requires one FPID pin for every FPGA pin; the HCGP architecture

requires a lower ratio, (0.6: 1) as implied by the setting of the parameterPp = 60%.

Inspecting Table5-5, we can make several observations. First, the partial crossbar

needs 20% more pins on average, and as much as 25% more pins compared to the HCGP

architecture. Clearly, the HCGP architecture is superior to the partial crossbar architecture

in terms of the pin cost metric. This is because the HCGP exploits direct connections

between FPGAs to save FPID pins that would have been needed to route certain nets in the

partial crossbar. However, for routability purposes, the HCGP needs some free pins in

each FPGA and may require repeated partitioning attempts for some circuits.

Table 5-5 also shows that the typical circuit delay is lower with the HCGP

architecture: the HCGP gives significantly less delay for twelve circuits compared to the

partial crossbar and about the same delay for the rest of the circuits. The reason is that the

HCGP utilizes fast and direct connections between FPGAs, whenever possible. From the

delay values in Table4-3, we can show that the interconnection delay is much smaller

(12.6 ns) if we use direct connections between FPGAs compared to the delay value (25.6

ns) when connecting two FPGAs through an FPID. Another interesting observation is that

even for the circuits where the HCGP needs more FPGAs compared to the partial crossbar,

it still gives comparable or better delay value. This clearly demonstrates that the HCGP

Evaluation and Comparison of Architectures

89

architecture is inherently faster due to the faster hardwired connections. It gives a

significant speed advantage, especially when we use timing driven inter-FPGA routing.

The superior speed of the HCGP architecture can be potentially crucial to ASIC

designers who use MFSs as simulation accelerators, to run test vectors on ASIC designs.

According to one designer [Mont98], even a 10% increase in clock speed is very useful

because it enables the designers to run many more test vectors in the same amount of time,

thus improving the design quality and reliability.

5.4 Comparison of HTP and HCGP Architectures
A comparison of the HTP and HCGP architectures is presented in Table5-6, which

has a format similar to Table5-5. Table B-5 in Appendix B is similar to Table5-6 except

that it shows the actual (un-normalized) pin cost and delay values.

Across all circuits, the HTP architecture needs 13% more pins on average, and as

much as 74% more, compared to the HCGP architecture. The HCGP architecture is

superior to HTP because it has better routing flexibility . The hardwired connections are

utilized more efficiently in the complete graph topology (used in the HCGP) compared to

the torus topology (used in the HTP). For example, in the HCGP the shortest path between

any pair of FPGAs can be obtained by utilizing any intermediate FPGA outside the pair. In

Circuit

Number of
FPGAs

Normalized pin
cost

Normalized
post-routing
critical path

delay

HTP HCGP HTP HCGP HTP HCGP

s35932 9 8 1.12 1.0 1.0 1.0

s38417 9 9 1.0 1.0 0.94 1.0

s38584 9 9 1.0 1.0 1.15 1.0

mips64 16 15 1.07 1.0 0.96 1.0

spla 30 18 1.74 1.0 1.37 1.0

cspla 25 18 1.39 1.0 1.25 1.0

Table 5-6: Comparison of the HTP and HCGP Architectures

Evaluation and Comparison of Architectures

90

contrast, the shortest path between some pairs of FPGAs in the HTP can be obtained by

utilizing only two intermediate FPGAs outside the pair. This is illustrated in Figure 5-5,

where the shortest path for connecting FPGAs 0 and 8 can utilize either FPGA 2 or FPGA

6.

Another reason for inferior routability of the HTP is that there is not enough locality in

the post-partitioning and placement netlists of real circuits that could be exploited by

using the local hardwired connections in the architecture.

Table5-6 also shows that across all the circuits, the critical path delay of the HTP is

13% more on average and up to 37% more compared to the HGCP. There are two reasons

for this: first the HTP uses more FPGAs for some circuits, which implies more partitions

and many more slower off-chip connections. Second, not all critical nets connecting pairs

of FPGAs can be routed using hardwired connections in the HTP. In the HGCP, such nets

have a better chance of using hardwired connections because of the complete graph

topology, which provides hardwired connections between any arbitrary pair of FPGAs.

mac64 8 6 1.33 1.0 1.14 1.0

sort8 14 14 1.0 1.0 1.07 1.0

fir16 12 10 1.20 1.0 1.18 1.0

gra 4 4 1.0 1.0 1.05 1.0

fpsdes 9 9 1.0 1.0 1.13 1.0

spsdes 8 8 1.0 1.0 1.13 1.0

ochip64 8 8 1.0 1.0 1.26 1.0

ralu32 16 14 1.14 1.0 1.24 1.0

iir16 6 6 1.0 1.0 1.0 1.0

Average 12 10 1.13 1.0 1.13 1.0

Circuit

Number of
FPGAs

Normalized pin
cost

Normalized
post-routing
critical path

delay

HTP HCGP HTP HCGP HTP HCGP

Table 5-6: Comparison of the HTP and HCGP Architectures

Evaluation and Comparison of Architectures

91

HTP Compared to the Partial Crossbar
Comparing the average pin cost and critical path delay for HTP and partial crossbar

architectures (relative to the HCGP architecture) from Table 5-6 and Table 5-5, we can

conclude that the HTP architecture is marginally better than the partial crossbar. Across all

circuits, the average pin cost as well as delay is 13% more for HTP (relative to HCGP), in

contrast to the partial crossbar in which the average pin cost as well as delay is 20% more

(relative to HCGP).

5.5 Comparison of HWCP and HCGP Architectures
Recall from Section 3.4.3 that the HWCP is a hierarchical architecture in which the

FPGAs are divided into clusters and the FPGAs within each cluster are connected using a

complete graph topology. Also recall that the motivation behind this architecture is to

combine the routability and speed advantages of the HCGP architecture with easier

manufacturability. To investigate the efficacy of the HWCP architecture in meeting the

design goals, we mapped the benchmark circuits to this architecture and compared it to the

HCGP architecture. We set Pp = 60% and Cs = 4 for the HWCP architecture to obtain good

routability as discussed in Section 5.1.4.

The mapping results are shown in Table 5-7. Table B-6 in Appendix B is similar to

Table 5-7 except that it shows the actual (un-normalized) pin cost and critical path delay

values.

FPGA
0

FPGA
2

FPGA
1

FPGA
3

FPGA
5

FPGA
4

FPGA
8

FPGA
7

FPGA
6

Figure 5-5: Hardwired connections in the HTP architecture

Evaluation and Comparison of Architectures

92

Table5-7 shows that the HWCP architecture failed to route three of the fifteen

benchmark circuits. For the twelve circuits that routed on the HWCP, the pin cost is 17%

more on average, and up to 33% more compared to the HCGP architecture. The increase

in pin cost is partly due to the fact that the HWCP required more FPGAs for some circuits

to make the MFS size (measured by the number of FPGAs) a multiple of the cluster size

(Cs = 4). The other reason is that the HCGP has superior routability compared to HWCP.

Circuit

Number of
FPGAs

Normalized pin cost
Normalized post-

routing
critical path delay

HWCP
(Cs = 4) HCGP

HWCP
(Cs = 4) HCGP

HWCP
(Cs = 4) HCGP

s35932 8 8 1.0 1.0 1.08 1.0

s38417 12 9 1.33 1.0 1.18 1.0

s38584 12 9 1.33 1.0 1.20 1.0

mips64 16 15 1.07 1.0 0.99 1.0

spla 20 18 routing
failure

1.0 routing
failure

1.0

cspla 20 18 routing
failure

1.0 routing
failure

1.0

mac64 8 6 1.33 1.0 1.15 1.0

sort8 16 14 1.14 1.0 1.15 1.0

fir16 12 10 1.20 1.0 1.19 1.0

gra 4 4 1.0 1.0 1.0 1.0

fpsdes 12 9 1.33 1.0 1.29 1.0

spsdes 8 8 1.0 1.0 1.15 1.0

ochip64 8 8 1.0 1.0 1.26 1.0

ralu32 16 14 routing
failure

1.0 routing
failure

1.0

iir16 8 6 1.33 1.0 1.11 1.0

Average 12 10 1.17 1.0 1.15 1.0

Table 5-7: Comparison of the HWCP and the HCGP Architectures

Evaluation and Comparison of Architectures

93

For the twelve circuits that routed on HWCP, the critical path delay is 15% more on

average, and up to 29% more compared to the HCGP architecture. The reasons for this

are: first the HWCP uses more FPGAs for some circuits, which implies more partitions

and many more slow off-chip connections, some of which may lie on the critical path.

Second, unlike the HCGP not all critical nets connecting pairs of FPGAs can be routed

using hardwired connections in the HWCP.

Despite some routing failures, the routability results for HWCP are quite encouraging

for the following reasons: first, we did not try higher cluster sizes (relative to the MFS

size). Recall from Section 5.1.4 that the routability of the HWCP architecture improves

with the increase in cluster size. Second, the partitioning and placement methods used for

the HWCP architecture were not the best possible. Architecture-driven partitioning and

placement methods may give better routability results.

Due to the reasons given above, we conclude that the HWCP architecture has the

potential to provide good routability, speed, and manufacturability. Unlike the HCGP

architecture which is the most suitable for single-board MFSs, HWCP lends itself to

hierarchical implementations of large MFSs that use hundreds of FPGAs distributed

across multiple boards. Such large MFSs are currently used for emulating complex ASICs

and microprocessors [Quic98].

HWCP Compared to HTP
Comparing the average pin cost and critical path delay for HWCP and HTP

architectures (relative to the HCGP architectures) from Table 5-6 and Table 5-7, we can

conclude that the HTP is marginally better than the HWCP. Across all circuits, the average

pin cost for HTP is 1.13 (compared to 1.17 for HWCP) and the average delay is 1.13

(compared to 1.15 for HWCP). Moreover, HTP obtained 100% routability across all

circuits in contrast to HWCP which failed to route three circuits. While it is possible that

larger cluster sizes may improve the results for HWCP, it is also likely that better

locality-enhancing partitioning tools will further improve the results for HTP. To

conclude, for large hierarchical MFSs, both HTP and HWCP architectures should be

investigated to determine which architecture gives the best results. From the results

Evaluation and Comparison of Architectures

94

obtained in our research, both architectures seem to be promising candidates for large

MFSs.

5.6 Summary
Several MFS routing architectures were evaluated and compared in this chapter. An

experimental approach was used and real benchmark circuits were employed. The

architectures were compared on the basis of pin cost and post-routing critical path delay

metrics.

The key parameters associated with the partial crossbar and the hybrid architectures

were explored. The partial crossbar is a very robust architecture because the effect of

varying a key architecture parameter (Pt) on the routability, speed, and cost is minor. This

is contingent, however, on using an appropriate inter-FPGA routing algorithm.

A key parameter associated with the hybrid architectures, Pp, was explored and it was

experimentally determined that Pp = 60% gives good routability across all the benchmark

circuits. In the hybrid architecture HWCP, in addition to Pp, the cluster size Cs is an

important parameter. We experimentally determined that Cs = 4 gives good routability for

the HWCP architecture.

The partial crossbar is one of the best existing architectures and is the key technology

behind commercially available MFSs [Quic98]. We showed that the partial crossbar is

superior to the mesh architecture. The main reason behind inferior results for the mesh

architecture is that the FPGAs are used for both logic and inter-FPGA routing. This causes

routability problems that cannot be solved even after increasing the mesh size in order to

fit a circuit.

We showed that one of the newly proposed hybrid architectures, HCGP, is superior to

the partial crossbar. Across all the benchmark circuits, the pin cost of the partial crossbar

is on average 20% more than the new HCGP architecture and up to 25% more.

Furthermore, the critical path delay for the benchmark circuits implemented on the partial

crossbar were on average 20% more than the HCGP and up to 43% more.

Evaluation and Comparison of Architectures

95

The HTP architecture was shown to be inferior to the HCGP and only marginally

better than the partial crossbar and the HWCP. The HWCP architecture was evaluated

compared to the HCGP architecture and gave encouraging routability and speed results.

From the scalability point of view, both HTP and HWCP architectures are suitable for

implementing large MFSs implemented using multiple boards.

Overall, the results show that for single-board MFSs, the HGCP is the best among all

the MFS routing architectures evaluated.

We end this Chapter with a cautionary note. The quality of the architectural results

obtained depends upon the quality of the CAD tools used. To obtain the best possible

results, we used the best possible tools that we could develop or acquire in the time

available. There is always a scope for improvements in the CAD tools. For example, it

would have been better to use architecture-driven partitioning and placement for

architectures that have some notion of adjacency, such as the mesh, HTP, and HWCP.

While there may be minor improvements in the routability and speed results, we do not

expect our architectural conclusions to change radically after using such tools. For

example, an architecture-driven partitioner was used to map circuits to the mesh

architecture in [Kim96], but the results for the mesh were still significantly worst

compared to the other architectures evaluated, such as the partial crossbar and the

tri-partite graph.

96

Chapter 6
Conclusions and Future

Work

6.1 Dissertation Summary
In this dissertation we evaluated and compared existing as well as new MFS routing

architectures by using a rigorous experimental approach that employed real benchmark

circuits. This research provides new insight into the strengths and the weaknesses of some

popular existing routing architectures. New hybrid architectures, that use a mixture of

hardwired and programmable connections, were proposed and shown to be superior to one

of the best existing architectures.

In Chapter 3, all the MFS routing architectures explored in this research were

described. The architectures are the 8-way mesh, the partial crossbar and the three hybrid

architectures, HTP, HCGP and HWCP. The architectural issues and assumptions that arise

when mapping real circuits to the architectures were discussed.

In Chapter 4, the experimental framework and the CAD tools used for mapping the

benchmark circuits to different architectures were described. The architecture evaluation

metrics (pin cost and post-routing critical path delay) were discussed and the benchmark

circuits used were presented. In this research, particular attention was paid to the

development of architecture-specific inter-FPGA routing algorithms, which were

discussed in detail. A static timing analysis tool for measuring the speed performance of

Conclusions and Future Work

97

different MFS routing architectures was described and a timing-driven routing algorithm

for the hybrid architectures was presented.

Finally, in Chapter 5, key architecture evaluation and comparison results and their

analysis were presented. The key parameters associated with the partial crossbar and the

hybrid architectures were explored. We showed that the partial crossbar, which is one of

the best existing architectures, is superior to the best mesh architecture. We showed that

one of the newly proposed hybrid architectures, HCGP, is superior to the partial crossbar.

Across all the benchmark circuits, the pin cost of the partial crossbar is on average 20%

more than the new HCGP architecture and 25% more in the worst case. Furthermore, the

critical path delay for the benchmark circuits implemented on the partial crossbar were on

average 20% more than the HCGP and 43% more in the worst case. The HTP architecture

was shown to be inferior to the HCGP and only marginally better than the partial crossbar.

The HWCP architecture was evaluated compared to the HCGP architecture and gave

encouraging routability and speed results.

6.2 Principal Contributions
The principal contributions of this dissertation are as follows:

1. We proposed hybrid architectures and demonstrated that they are superior to one of

the best existing architectures. We explored a key parameter associated with the

hybrid architectures (Pp) and experimentally determined its best value for

obtaining good routability at the minimum possible pin cost.

2. We showed that the Hybrid Complete-Graph Partial-Crossbar (HCGP) architecture

provides significant reductions in pin cost and delay compared to the partial

crossbar architecture.

3. We proposed the Hardwired-Clusters Partial-Crossbar (HWCP) and Hybrid Torus

Partial-Crossbar (HTP) architectures that are potentially suitable for large MFSs

implemented across multiple boards.

4. We developed an MFS static timing analysis tool that was used to estimate and

compare the speed performance of different MFS architectures. To our knowledge,

this is the first time such detailed timing information has been used in the study of

board-level MFS routing architectures.

Conclusions and Future Work

98

5. We developed a timing-driven (board-level) inter-FPGA router for the hybrid

architectures that exploits the fast hardwired connections available to obtain good

speed performance.

6. We developed a new (board-level) inter-FPGA routing algorithm for the partial

crossbar architecture that gives excellent results for real benchmark circuits.

6.3 Future Work
In this section, we discuss promising topics for future research. These are categorized

into two broad areas: CAD tools for MFSs and future research in MFS architectures.

6.3.1 CAD Tools for MFSs

Recall from Section 5.1.2 that in the HCGP architecture all the circuits routed at Pp =

60% and 97-100% of the nets routed across all the circuits for Pp = 40%. Also recall from

Section 3.4.1 that lower values of Pp imply reduced pin cost in the hybrid architectures. A

routability-driven partitioner may achieve routing completion for almost all circuits for

lower values of Pp.

It has been shown that instead of partitioning flat circuit netlists, if the circuit design

hierarchy information is exploited by the partitioning algorithm, significant reductions in

both the number of FPGAs and the cut size can be obtained [Behr96, Fang98]. Utilizing

such partitioning algorithms may lead to better routability in the hybrid architectures that

use low values of Pp (20-40%). This is because the reductions in cut size makes the

inter-FPGA routing problem easier, since more free pins are available for routing each

FPGA.

In addition to providing good quality results, the partitioning algorithms also need to

be very fast to exploit the reconfigurable nature of MFSs. If the circuit partitioning itself

takes hours or even a few days for very large circuits, the utility of MFSs will be very

limited.

A simple timing model is used in our MFS timing analyzer (MTA) that assumes a

constant net delay independent of fanout for both intra-FPGA and inter-FPGA nets. A

timing model that accurately estimates the net delay based on fanout should be

investigated. It would also be interesting to compare the speed estimate given by MTA

Conclusions and Future Work

99

with the actual speed performance obtained on some existing MFSs to evaluate the

accuracy of the timing analysis tool. Also, for hierarchical architectures that use multiple

boards, the timing model would need to be modified to consider the inter-board routing

delay.

Although not covered in this dissertation, fast and effective high-level synthesis tools

(in addition to layout synthesis tools) are indispensable for MFSs to achieve widespread

utility as custom computing machines and logic emulators [Gall95, Knap96, Syno97].

6.3.2 Future MFS Routing Architecture Research

A major open problem in MFS architecture research is to find an effective architecture

for large MFSs that use hundreds of FPGAs spread out across multiple boards. The

hierarchical HWCP architecture is a first step in this direction. It is not clear, however, if

other topologies may give better results. For example, is it better to use inter-cluster

hardwired connections, in addition to intra-cluster hardwired connections? What would be

suitable values of Pp and Cs (relative to the MFS size) for such hierarchical architectures?

Suitable CAD tools and extremely large benchmark circuits will be needed to explore such

architectures.

The virtual wires time-multiplexing technique is used on the mesh architecture in

commercially available logic emulators [Ikos98]. One problem with the mesh architecture

is that it is very inefficient and slow for routing non-local and multi-terminal nets (as

discussed in Section 5.2). Using the virtual wires technique on the other architectures such

as the HCGP and completely connected graph may give much better speed results

compared to the mesh.

The HCGP is a very versatile architecture for single-board MFSs that gives excellent

routability and speed for a variety of circuits. As the FPGA logic and pin capacities

continue to increase, it make sense to use single board systems using a few high capacity

FPGAs to avoid the problems associated with using high pin count connectors for

multi-board systems [Lewi98]. Except for high-end logic emulation, such systems would

cover most other applications in custom computing and rapid prototyping. A prototype

single board system based on the HCGP architecture should be developed and tested for

Conclusions and Future Work

100

different custom computing applications. It would be interesting to map the algorithms

originally used with linear arrays and meshes [Arno92, Vuil96] to the HCGP and compare

the logic utilization and speed results.

Finally, the relationship between the best architecture and the implementation

technology used is crucial. In the future, if MCMs and high pin count FPGAs using

flip-chip technology [Lan95] become commonplace, radically different routing

architectures (in contrast to board-level MFS routing architectures) may be required.

101

A.1 Introduction
As discussed in Section 4.1.1, after board-level FPGA placement and inter-FPGA routing in

MFSs, the pin assignment in each FPGA is done randomly. The alternative, allowing the auto-

matic placement and routing software the freedom to choose whichever pins it deems best for

each signal, may result in better routability and speed but is not feasible in many applications.

When developing an MFS architecture, it is important to know the effect of the fixed pin

assignment on the system’s speed and routability.

This question is also important in many other applications where FPGAs are used. For exam-

ple, when systems designers have already committed to the board-level layout, which dictates the

pin-signal assignment, and then wish to change the functionality of the FPGA. Although the orig-

inal pin assignment may have been chosen by the software, the subsequent assignment must

remain the same. If major delay increases result from fixing the pin locations in the second itera-

tion, or if routability disappears, then designers will need to account for these likelihoods in the

original design.

Anecdotal evidence [Chan93b] [Hoel94] suggests that pre-assigning FPGA package pins

before placement and routing can adversely affect the speed and routability of several manufac-

turer’s FPGAs. The speed and routability of an FPGA under pin constraints is a function of both

the routing architecture of the device (whether or not there are sufficient paths from the pads to all

Appendix A

The Effect of Fixed I/O Pin
Positioning on The Routability and

Speed of FPGAs

102

parts of the logic), and the quality of the placement and routing tools (how cleverly it organizes

the placement to overcome a difficult pin placement). In this Appendix, we are concerned with the

combined effect of routing architecture and automatic layout tools on specific commercial archi-

tectures. We present experimental results on the effect of fixed-pin assignment on FPGA delay

and routability. To our knowledge, no such formal study has yet been done. These results are for

the Xilinx XC4000 and the Altera FLEX 8000 families of FPGAs. The results of this study were

used in developing the architecture of the Transmogrifier-2, an MFS developed at the University

of Toronto [Lewi97, Lewi98].

This Appendix is organized as follows: In Section A.2 we present the methodology used in

this work. Research results and their analysis are presented in Section A.3. Although the focus is

on the effects of fixed pins on delay and routability, a number of interesting observations on other

FPGA design issues can also be deduced from the results. We conclude in Section A.4 with a few

remarks on the significance of the results obtained and relevant topics for future work.

A.2 Benchmark Circuits and Experimental Procedure
To determine the effect of fixed pin constraints we performed placement and routing on a set

of benchmark circuits with and without constraints. The benchmark circuits were obtained from

both the MCNC Logic Synthesis 1991 [Yang91] suite, and from several FPGA designs done at the

University of Toronto.

The experimental procedure used in our investigation is illustrated in Figure A-1 for the Xil-

inx FPGAs and Figure A-2 for the Altera FPGAs. For the Xilinx FPGAs, each benchmark circuit

available in the Xilinx netlist format (XNF), was technology mapped (called “partitioning” by

Xilinx), placed, and routed using the 5.1.0 version of Xilinx place and route tool PPR [Xili94a].

For the Altera FPGAs, each benchmark circuit available in the Xilinx netlist format (XNF) was

mapped into the FLEX 8000 FPGAs by using the MAX+PLUS II compiler. The compiler accepts

circuits described using many standard netlist formats, including XNF, and performs technology

independent logic optimization, technology mapping, placement, and routing [Alte94a]. To deter-

mine the effect of pin assignment, each circuit was processed under four types of pin constraints,

for both Xilinx and Altera FPGAs.

103

1. No pin constraints (referred to asnpc in the sequel): Technology Mapping, placement

and routing was performed without pre-assigning (fixing) any signals to pins.

2. Same pin constraints (spc): The pin-signal assignment was fixed before the placement

and routing; the pin assignments were the same as those generated by the uncon-

strained placement and routing run (i.e.npc).

3. Bad pin constraints (bpc): The pin-signal assignment was fixed before the placement

and routing and the pin assignment was intentionally bad. Signals that were assigned

to adjacent pins by unconstrained placement and routing run were assigned to pins at

opposite ends of the FPGA chip.

4. Random pin constraints (rpc): The pin-signal assignment was fixed before the place-

ment and routing and signals were assigned to randomly generated pin numbers.

The output files after place and route were analyzed for worst-case delay and utilization of

routing resources. The worst-case delay was determined using the static timing analysis tools

available in the Xilinx and Altera tool sets. For the Xilinx FPGAs, routing utilization was auto-

matically extracted from the output LCA file using a C program specifically developed for this

Benchmark circuit Pin constraints file

PPR

LCA file

Static timing analysis

Critical path delay

Extraction of routing
information

Statistics on routing
resources used

Figure A-1: Experimental Procedure for the Xilinx FPGAs

104

purpose. The latter measures the number of single-length segments, double-length segments and

long lines used by the Xilinx placement and routing tool PPR. For the Altera FPGAs routing utili-

zation statistics are available from the report file that is generated after each compilation run.

For the Xilinx FPGAs, for each of the above four pin constraint cases, five PPR runs were per-

formed and the average delay and the average routing utilization were used. This was done to

determine the consistency of the results. The annealing option in PPR was used to obtain different

placement and routing results, and hence different delay and routing statistics, for each PPR run.

For the Altera FPGAs, a single compilation run for each pin constraint case was sufficient. This is

because for a given circuit and pin constraint case, the compiler gives the same placement and

routing results for multiple compilation runs, presumably because it uses deterministic algorithms

for placement and routing and has no non-deterministic option.

Benchmark circuit Pin constraints file

PPR

MAX+PLUS II Compiler

SNF file

Static timing analysis

RPT file

Statistics on routing
resources used

Figure A-2: Experimental Procedure for the Altera FPGAs

Critical path delay

Extraction of routing
information

105

A.3 Experimental Results and Analysis
In this section we present the result of the experiments. Delay and routability results are given

for 16 benchmark circuits for the Xilinx FPGAs and for 14 benchmark circuits for the Altera

FPGAs. The circuits are the same except for two circuits that utilized on-chip RAM that is avail-

able in the XC4000 FPGAs but not in the FLEX 8000 FPGAs.

Circuit
#

I/O
pins

FPGA
Device

% of FPGA
Pins and

CLBs used

Avg. Crit.
Path
Delay
(npc)

Avg. Crit.
Path
Delay
(spc)

Avg. Crit.
Path
Delay
(bpc)

Avg. Crit.
Path
Delay
(rpc)

dalu
(ALU)

91 4010
DPQ160-5

70% pins
100% CLBs
83% PCLBs

154.4 ns 155.8 ns
(+ 1%)

158.7 ns
(+2.8%)

163.3 ns
(+5.8%)

c1908
(Error

Correct Cct)

58 4003
PC84-5

95% pins
100% CLBs
98% PCLBs

133.4 ns 135.9 ns
(+2%)

142.2 ns
(+7%)

134.2 ns
(+1%)

mul
(16-bit Mult)

64 4008
PQ160-5

 49% pins
100% CLBs
99% PCLBs

247.7 ns 266.4 ns
(+8%)

271.2 ns
(+10%)

263.8 ns
(+7%)

c3540
(ALU +
Control)

72 4006
PG156-5

57% pins
100% CLBs
89% PCLBs

173 ns 172.8 ns
(0%)

180.3 ns
(+4.2%)

177.2ns
(+2.5%)

c1355
(Error

Correct Cct)

73 4005
PG156-5

65% pins
99% CLBs

55% PCLBs

129.7 ns 128.6 ns
(0%)

135.4 ns
(+4.4%)

133.4 ns
(+3%)

c499
(Error

Correct Cct)

73 4003
PQ100-5

94% pins
56% CLBs

53% PCLBs

72.7 ns 70.2 ns
(-3%)

73.6 ns
(+1%)

71.9 ns
(-1%)

c880
(ALU +
Control)

86 4005
PG156-5

76% pins
48% CLBs

30% PCLBs

109.1 ns 108 ns
(-1%)

108.4 ns
(0%)

116.3 ns
(+6.6%)

lcdm
(LCD Disp
Controller)

155 4010
PQ208-5

96% pins
100% CLBs
86% PCLBs

57.1 ns 59.1 ns
(+3.5%)

66 ns
(+15.6%)

65.6ns
(+15.4%)

sw_f128
(Partial Vit-
erbi Decod

117 4010
PQ208-5

73% pins
100% CLBs
91% PCLBs

42.78 ns 42.9 ns
(0%)

51.3 ns
(+19.6%)

42 ns
(0%)

s1196
(Logic)

30 4005
PG156-5

26% pins
78% CLBs

53% PCLBs

72.6 ns 70.9 ns
(-2%)

80 ns
(+10%)

75.5 ns
(+4%)

Table A-1: Critical Path Delay Under Different Pin Constraints for the Xilinx FPGAs

106

A.3.1 Results for the Xilinx XC4000 FPGAs

Table A-1 presents the effect of fixed-pin assignment on delay of the Xilinx FPGAs for the

benchmark circuits. The circuit name and function is given in column 1. Columns 2 and 3 give the

number of I/O pins and the FPGA device used. For all the circuits, the smallest FPGA that would

fit the circuit was used. Column 4 gives the percentage of the available pins and configurable logic

blocks (CLBs) used by the circuit after placement and routing, and the number of “packed” CLBS

or PCLBs. PCLBs is a term used by Xilinx to indicate the minimum number of CLBs the circuit

could be packed into if that were the tool’s goal. The Xilinx place and route tool will use more

than the minimum number if they are available during the placement and routing phase to ease the

routing congestion. Column 5 gives the average critical path delay obtained for the circuit with no

pin constraints during placement and routing (i.e. thenpc case). Columns 6, 7, and 8 give the

average critical path delay obtained for pin-constrained placement and routing runs for the pin

s1423
(Logic)

24 4003
PC84-5

39% pins
100% CLBs
90% PCLBs

262.5 ns 266.3 ns
(+1%)

266.8 ns
(+2%)

263.3 ns
(0%)

s5378
(Logic)

86 4006
PG156-5

68% pins
100% CLBs
97% PCLBs

71.4 ns 74.4 ns
(+4%)

72.6 ns
(+2%)

73ns
(+2%)

s820
(PLD)

39 4003
PC84-5

63% pins
92% CLBs

68% PCLBs

53.5 ns 53.9 ns
(0%)

54.2 ns
(+1%)

53.5 ns
(0%)

s832
(PLD)

39 4003
PC84-5

63% pins
92% CLBs

70% PCLBs

53.7 ns 54.4 ns
(+1%)

53.4 ns
(0%)

53.6 ns
(0%)

s838
(Fractional
Multiplier)

39 4003
PC84-5

63% pins
100% CLBs
74% PCLBs

237.7 ns 240.3 ns
(+1%)

239.8 ns
(+1%)

240.7 ns
(+1%)

s9234
(Logic)

43 4010
PC84-5

70% pins
100% CLBs
83% PCLBs

116.7 ns 114.5 ns
(-2%)

116 ns
(0%)

121.7 ns
(+4%)

Average
 Increase

1% 5% 3%

Circuit
#

I/O
pins

FPGA
Device

% of FPGA
Pins and

CLBs used

Avg. Crit.
Path
Delay
(npc)

Avg. Crit.
Path
Delay
(spc)

Avg. Crit.
Path
Delay
(bpc)

Avg. Crit.
Path
Delay
(rpc)

Table A-1: Critical Path Delay Under Different Pin Constraints for the Xilinx FPGAs

107

constraintsspc, bpc, andrpc respectively. The percentage increase in delay compared to the

unconstrained case is given in brackets. The standard deviation in delay was not more than 5%

about the average for each type of constraint, for all circuits. The average delay increase for the

spc case over all circuits was negligible (1%). This indicates that the placement and routing tool

was mostly capable of taking advantage of the good pin assignment it had chosen in the uncon-

strained case. The average delay increase for the bad pin assignment (bpc) case was 5%, and for

the random case (rpc) was 3%. The greatest increase in delay across all circuits forspc, bpc, and

rpc cases were 8%, 19.6%, and 15.4% respectively.

From these results we conclude that fixed pin assignment usually has a minor effect on delay.

While the worst case increase was 19% most circuits had increases under 5%. Interestingly, this

contradicts the anecdotal evidence cited earlier [Chan93b] [Hoel94]. There are two possible rea-

sons for this:

1. The quality of the place and route tools has improved since the anecdotes were col-

lected.

2. There are many long lines on the chip periphery (18 per row/column) and 6 long

lines in each non-peripheral row/column. This allows the I/O pads that are far from

where they “want to be” to be transported there effectively around this ring.

Table A-2 gives the routing utilization obtained for the same placement and routing experi-

ments as in Table A-1. Column 1 gives the circuit name. Column 2 gives the average number of

wire segments of length 1, 2, and “long”, used by each circuit after unconstrained placement and

routing runs. Columns 3, 4, and 5 give the average number of wire segments used by each circuit

after placement and routing with thespc, bpc andrpc pin constraints.

For example, the un-constrained placement and routing of thedalu circuit results in an aver-

age utilization of 218 long lines, 592 double-length segments, and 1255 single length segments.

For thespc case average utilization of long lines, doubles, and singles increased by 1%, 5%, and

2% respectively. Similarly the increase in average utilization of long lines, doubles, and singles is

shown for thebpc andrpc cases. The standard deviation about the average for each type of con-

straint, for all circuits, was less than 10% overall for long lines, and less than 5% for doubles and

108

singles.

Circuit

Avg.
Segment

Usage (npc)
longs,

doubles,
singles

Avg.
Segment

Usage
(spc)

longs, doubles,
singles

Avg.
Segment

Usage (bpc)
longs,

doubles,
singles

Avg.
Segment

Usage (rpc)
longs,

doubles,
singles

dalu
(ALU)

218
592
1255

220 (+1%)
622 (+5%)
1285 (+2%)

240 (+10%)
620 (+5%)
1333 (+6%)

244 (+11%)
599 (+1%)

1398 (+11%)

c1908
(Error

Correct Cct)

81
239
455

84(3+%)
242(+1%)
455(0%)

100(+23%)
236(-1%)
485(+7%)

103(+27%)
218(-9%)
497(+9%)

mul
(16-bit Mult)

187
589
1253

205(+10%)
595(+1%)
1324(+6%)

217(+16%)
597(+1%)
1345(+7%)

215(+15%)
594(+1%)
1317(+5%)

c3540
(ALU +
Control)

169
483
972

177 (+5%)
483 (+0%)
1007 (+4%)

191 (+13%)
484 (+0%)
1035 (+7%)

182(+7%)
483(+0%)

1024 (+5%)

c1355
(Error

Correct Cct)

67
300
345

65 (-3%)
309 (+3%)
352 (+2%)

94 (+40%)
304 (+1%)
395 (+15%)

92 (+37%)
290 (-3%)

398 (+15%)

c499
(Error

Correct Cct)

59
145
194

50(-15%)
150(+4%)
180(-7%)

63(+7%)
143(-1%)

222(+15%)

67(+14%)
131(-10%)
223(+15%)

c880
(ALU +
Control)

63
203
266

67 (+6%)
210 (+3%)
274 (+3%)

91 (+44%)
221 (+9%)
294 (+11%)

94 (+49%)
223 (+10%)
314 (+18%)

lcdm
(LCD Disp
Controller)

259
750
2201

270 (+4%)
766 (+2%)
2311 (+5%)

284 (+10%)
797 (+6%)

2431 (+10%)

284 (+10%)
793 (+6%)

2468 (+12%)

sw_f128
(Partial Vit-
erbi Decod

290
782
1786

296(+2%)
818(+5%)

2033 (+14%)

304 (+5%)
842 (+8%)

2127 (+19%)

297 (+2%)
801 (+3%)

1995 (+12%)

s1196
(Logic)

98
280
516

96 (-2%)
273 (-3%)
537 (+4%)

106 (+8%)
273 (-3%)
550 (+7%)

114 (+16%)
274 (-2%)
545 (+6%)

s1423
(Logic)

60
195
339

63(+5%)
198(+2%)
347(+2%)

65(+9%)
197(+1%)
362(+7%)

67(+12%)
180(-7%)
353(+4%)

Table A-2: Routing Resource Utilization in the Xilinx FPGAs

109

It is interesting to note that for all circuits used, none of them becomes un-routable even under

the worst pin constraints. This was true even for the circuits that were very tightly packed, in

terms of percentage of available CLBs and I/O pins used. This implies that, for the Xilinx

XC4000 series (parts 4003 to 4010), there are sufficient tracks per channel to achieve good

routability. Also the routability of XC4000 series FPGAs seems to be better compared to that of

XC3000 series FPGAs. There are several circuits with high CLB utilization that do not have

routability problems. Other researchers working with XC3000 FPGAs reported routability prob-

lems in XC3000 FPGAs when the CLB utilization was greater than 80% [Kuzn93]. Compared to

npc case, the average increase in utilization of wire segments is marginal forspc case and signifi-

cant forbpc andrpc cases, where 9% more single length lines and 17% more long lines are used.

Overall, we conclude that fixed pin assignment does impact routability significantly, because

the amount of routing resources used were increased, but the Xilinx XC4000 series architecture

s5378
(Logic)

236
639
1487

243(+3%)
655(3%)

1576(+6%)

258(+9%)
710(+11%)
1777(+20%)

256(+8%)
694(+9%)

1715(+15%)

s820
(PLD)

63
158
257

64(+1%)
166(+5%)
257(0%)

75(+19%)
161(+2%)
274(+6%)

75(+19%)
154(-2%)
281(+9%)

s832
(PLD)

64
156
271

65(+2%)
168(+8%)
272(0%)

76(+19%)
147(-6%)
278(+3%)

78(+22%)
148(-4%)
290(+7%)

s838
(Fractional
Multiplier)

59
200
264

57(-2%)
188(-5%)
271(+3%)

66(+13%)
197(-1%)
279(+6%)

69(+16%)
187(-7%)
279(+6%)

s9234
(Logic)

249
801
1659

252(+1%)
771(-4%)

1677(+1%)

262(+5%)
785(-1%)

1722(+4%)

272(+9%)
796(0%)

1697(+2%)

Average
Increase

longs: 1%
doubles: 2%
singles: 3%

longs: 16%
doubles: 2%
singles: 7%

longs: 17%
doubles: 0%
singles: 9%

Circuit

Avg.
Segment

Usage (npc)
longs,

doubles,
singles

Avg.
Segment

Usage
(spc)

longs, doubles,
singles

Avg.
Segment

Usage (bpc)
longs,

doubles,
singles

Avg.
Segment

Usage (rpc)
longs,

doubles,
singles

Table A-2: Routing Resource Utilization in the Xilinx FPGAs

110

provided sufficient resources to handle the increased demand.

Circuit
#

I/O
pins

FPGA
Device

% of FPGA
Pins and

CLBs used

% of
FPGA
routing

resources
used
(npc)
longs,

doubles,
singles

% of
FPGA
routing

resources
used
(spc)
longs,

doubles,
singles

% of
FPGA
routing

resources
used
(bpc)
longs,

doubles,
singles

% of
FPGA
routing

resources
used
(rpc)
longs,

doubles,
singles

dalu
(ALU)

91 4010
DPQ160-5

70% pins
100% CLBs
83% PCLBs

67%
24%
15%

68%
26%
15%

74%
26%
16%

75%
25%
16%

c1908
(Error

Correct Cct)

58 4003
PC84-5

95% pins
100% CLBs
98% PCLBs

40%
29%
18%

41%
29%
18%

49%
28%
19%

51%
26%
19%

mul
(16-bit Mult)

64 4008
PQ160-5

 49% pins
100% CLBs
99% PCLBs

63%
29%
17%

68%
30%
18%

72%
29%
18%

72%
29%
18%

c3540
(ALU +
Control)

72 4006
PG156-5

57% pins
100% CLBs
89% PCLBs

61%
28%
16%

64%
28%
17%

69%
28%
18%

66%
28%
18%

c1355
(Error

Correct Cct)

73 4005
PG156-5

65% pins
99% CLBs

55% PCLBs

27%
22%
7%

27%
22%
7%

37%
22%
8%

37%
21%
8%

c499
(Error

Correct Cct)

73 4003
PQ100-5

94% pins
56% CLBs

53% PCLBs

29%
17%
7%

24%
18%
7%

31%
17%
9%

33%
16%
9%

c880
(ALU +
Control)

86 4005
PG156-5

76% pins
48% CLBs

30% PCLBs

25%
15%
6%

27%
15%
6%

36%
16%
6%

37%
16%
7%

lcdm
(LCD Disp
Controller)

155 4010
PQ208-5

96% pins
100% CLBs
86% PCLBs

80%
31%
25%

83%
31%
27%

88%
33%
28%

88%
33%
29%

sw_f128
(Partial Vit-
erbi Decod

117 4010
PQ208-5

73% pins
100% CLBs
91% PCLBs

90%
32%
21%

91%
34%
24%

94%
35%
25%

90%
33%
23%

s1196
(Logic)

30 4005
PG156-5

26% pins
78% CLBs

53% PCLBs

39%
20%
11%

38%
20%
11%

42%
20%
12%

45%
20%
12%

s1423
(Logic)

24 4003
PC84-5

39% pins
100% CLBs
90% PCLBs

29%
23%
13%

31%
24%
13%

32%
24%
14%

33%
21%
14%

Table A-3: Routing Resource Utilization Statistics for the Xilinx FPGAs

111

Table A-3 shows the resource utilization statistics for the Xilinx FPGAs for all the benchmark

circuits used. The information in this table is basically the same as that available in Table A-1 and

Table A-2, but it is presented in a manner that shows the percentage of total available FPGA logic

and routing resources used by each circuit. Columns 1, 2, and 3 respectively give the circuit used,

the number of I/O pins used, and the FPGA device used. Column 4 gives percentage of available

FPGA pins and CLBs that were used by the circuit. For each pin constraint case in columns 5

through 8, the percentage of available long lines, doubles, and singles used is given.

An interesting observation is that the number of doubles and singles used is a small fraction of

the total number of doubles and singles available. For example, in the unconstrained case of

sw_f128 only about 32% of the available doubles and 21% of the available singles are used. On

average only 14% and 25% respectively, of the available doubles and singles were used. This

s5378
(Logic)

86 4006
PG156-5

68% pins
100% CLBs
97% PCLBs

86%
38%
25%

94%
39%
27%

94%
42%
30%

93%
41%
30%

s820
(PLD)

39 4003
PC84-5

63% pins
92% CLBs

68% PCLBs

31%
19%
10%

31%
20%
10%

37%
19%
11%

37%
18%
11%

s832
(PLD)

39 4003
PC84-5

63% pins
92% CLBs

70% PCLBs

31%
19%
10%

31%
20%
10%

37%
18%
11%

38%
18%
11%

s838
(Fractional
Multiplier)

39 4003
PC84-5

63% pins
92% CLBs

74% PCLBs

29%
24%
10%

28%
23%
10%

32%
24%
11%

33%
22%
11%

s9234
(Logic)

43 4010
PC84-5

70% pins
100% CLBs
83% PCLBs

77%
33%
19%

78%
32%
19%

81%
32%
20%

84%
33%
20%

Average
Utilization

50%
25%
14%

51%
26%
15%

57%
26%
16%

57%
25%
16%

Circuit
#

I/O
pins

FPGA
Device

% of FPGA
Pins and

CLBs used

% of
FPGA
routing

resources
used
(npc)
longs,

doubles,
singles

% of
FPGA
routing

resources
used
(spc)
longs,

doubles,
singles

% of
FPGA
routing

resources
used
(bpc)
longs,

doubles,
singles

% of
FPGA
routing

resources
used
(rpc)
longs,

doubles,
singles

Table A-3: Routing Resource Utilization Statistics for the Xilinx FPGAs

112

demonstrates that a great deal of flexibility may have to be present, but not necessarily used, to

complete the routing. Also it appears that the Xilinx placement and routing tool uses as many long

lines as possible to minimize routing delay. Note that routing delay is a major contributing factor

to the overall critical path delay in an FPGA.

A.3.2 Results for the Altera FLEX 8000 FPGAs

Table A-4 presents the effect of fixed-pin assignment on the delay of the Altera FPGAs for the

benchmark circuits. This is similar to Table A-1 and the purpose of each column is the same. For

all the circuits the smallest FPGA that would fit the circuit was used. The average delay increase

for thespc case over all circuits was negligible (0.7%). The average delay increase for the bad pin

assignment (bpc) case was 3.6%, and for the random case (rpc) was 3%. The worst case increase

in delay forspc, bpc, andrpc cases were 9%, 12%, and 16% respectively. We can conclude from

these results that the average increase in delay over all the circuits is small and the worst case

increase in delay is significant.

Circuit
#

I/O
pins

FPGA
Device

% of FPGA
Pins and
LEs used

Avg. Crit.
Path
Delay
(npc)

Avg. Crit.
Path
Delay
(spc)

Avg. Crit.
Path
Delay
(bpc)

Avg. Crit.
Path
Delay
(rpc)

dalu
(ALU)

91 EPF8820
GC192-3

60% pins
67% LEs

175.2 ns 181.6 ns
(+4%)

180.3 ns
(+3%)

193.5 ns
(+10%)

c1908
(Error

Correct Cct)

58 EPF8282
LC84-3

87% pins
63% LEs

137.1 ns 139.6 ns
(2+%)

137.9 ns
(0%)

139.9 ns
(+2%)

mul
(16-bit Mult)

64 EPF8820
GC192-3

41% pins
97% LEs

297.6 ns 297.1 ns
(0%)

344 ns
(+16%)

100pfp:
failure
75pfp:

332.5 ns
(+12%)

c3540
(ALU +
Control)

72 EPF8452
GC160-3

60% pins
97% LEs

176.5 ns 166.6 ns
(-6%)

100pfp:
failure
70pfp:
163 ns
(-7%)

100pfp:
failure
55pfp:

181.6 ns
 (+3%)

Table A-4: Critical Path Delay Under Different Pin Constraints for the Altera FPGAs

113

Two circuits (c3540 and c1355) were un-routable for the bpc case and three circuits (mul,

c3540, and c1355) were un-routable for the rpc case. To enable the tool to complete routing, some

of the pins were left unassigned (the tool chose the pin assignment). For example, for the circuit

mul under the rpc case, 75pfp implies that the circuit would successfully route if 75% of the pins

c1355
(Error

Correct Cct)

73 EPF8282
TC100-3

95% pins
39% LEs

95.4 ns 91.8 ns
(-4%)

100pfp:
failure
85pfp:
90.9 ns
(-5%)

100pfp:
failure
90pfp:
89.3 ns
(-6%)

c499
(Error

Correct Cct)

73 EPF8282
TC100-3

95% pins
39% LEs

89.5 ns 94.4 ns
(+6%)

90.7 ns
(+1%)

92.7 ns
(+4%)

c880
(ALU +
Control)

86 EPF8452
GC160-3

72% pins
31% LEs

137.5 ns 149.8 ns
(+9%)

144.4 ns
(+5%)

148.9 ns
(+8%)

s1196
(Logic)

30 EPF8452
LC84-3

43% pins
65% LEs

72.6 ns 70.9 ns
(-2%)

80 ns
(+10%)

75.5 ns
(+4%)

s1423
(Logic)

24 EPF8282
LC84-3

37% pins
79% LEs

207.6 ns 203.9ns
(-2%)

207.9 ns
(0%)

205.6 ns
(-1%)

s5378
(Logic)

86 EPF8820
GC192-3

56% pins
69% LEs

66.8 ns 68.6ns
(+3%)

73 ns
(+9%)

71.4 ns
(+6%)

s820
(PLD)

39 EPF8282
LC84-3

60% pins
59% LEs

64 ns 60.1 ns
(-6%)

69.4 ns
(+8%)

62.7 ns
(-2%)

s832
(PLD)

39 EPF8282
LC84-3

60% pins
60% LEs

63.1 ns 65.5 ns
(+4%)

67.5 ns
(+7%)

65.1 ns
(+4%)

s838
(fractional

mult)

39 EPF8282
LC84-3

60% pins
60% LEs

42.5 ns 42.9 ns
(0%)

41.7 ns
(-2%)

40.3 ns
(-5%)

s9234
(Logic)

43 EPF8820
GC192-3

23% pins
52% LEs

101.6 ns 103.7 ns
(+2%)

107.1 ns
(+5%)

107.8 ns
(+6%)

Average
 Increase

0.7% 3.6% 3%

Circuit
#

I/O
pins

FPGA
Device

% of FPGA
Pins and
LEs used

Avg. Crit.
Path
Delay
(npc)

Avg. Crit.
Path
Delay
(spc)

Avg. Crit.
Path
Delay
(bpc)

Avg. Crit.
Path
Delay
(rpc)

Table A-4: Critical Path Delay Under Different Pin Constraints for the Altera FPGAs

114

were fixed and 25% of the pins were left unassigned.

Circuit

FastTrack
Interconnect
Usage (npc)

rows,
columns

FastTrack
Interconnect
Usage (spc)

rows,
columns

FastTrack
Interconnect
Usage (bpc)

rows,
columns

FastTrack
Interconnect
Usage (rpc)

rows,
columns

dalu
(ALU)

310
88

304(-2%)
109(+24%)

329(+6%)
149(+69%)

328(+6%)
155(+76%)

c1908
(Error

Correct Cct)

138
46

122(+3%)
43(-7%)

116(-2%)
44(-4%)

130(+10%)
49(+7%)

mul
(16-bit Mult)

436
117

488(+12%)
130(+11%)

475(+9%)
182(+56%)

75pfp:
465(+7%)
166(+42%)

c3540
(ALU +
Control)

230
68

230(0%)
68(0%)

70pfp:
250(+9%)
78(+15%)

55pfp:
271(+18%)
122(+79%)

c1355
(Error

Correct Cct)

87
56

89(+2%)
56(0%)

85pfp:
98(+13%)
60(+7%)

85pfp:
103(+18%)
59(+5%)

c499
(Error

Correct Cct)

86
55

84(-2%)
56(+2%)

97(+13%)
61(+11%)

104(+21%)
61(+11%)

c880
(ALU +
Control)

103
60

103(0%)
63(+5%)

107(+4%)
66(+10%)

140(+36%)
81(+35%)

s1196
(Logic)

141
32

140(0%)
39(+22%)

150(+6%)
76(+138%)

150(+6%)
76(+138%)

s1423
(Logic)

93
17

100(+8%)
23(+35%)

94(+1%)
17(0%)

101(+9%)
16(-6%)

s5378
(Logic)

371
108

424(+14%)
144(+33%)

438(+18%)
174(+61%)

469(+26%)
196(+81%)

s820
(PLD)

85
22

93(+9%)
24(+9%)

94(+11%)
26(+18%)

95(+12%)
27(+23%)

s832
(PLD)

81
24

87(+7%)
24(0%)

93(+15%)
24(0%)

90(+11%)
28(+17%)

s838
(fractional

mult)

96
7

94(-2%)
9(+29%)

95(-1%)
10(+43%)

100(+4%)
10(+43%)

s9234
(Logic)

260
64

280(+8%)
87(+36%)

286(+10%)
86(+34%)

289(+11%)
98(+53%)

Table A-5: Routing Resource Utilization for the Altera FPGAs

115

Table A-5 gives the routing utilization obtained for the same placement and routing experi-

ments as in Table A-4. This is similar to Table A-2 and the purpose of each column is the same.

Altera uses a two-level hierarchical routing architecture and the routability is determined by the

utilization of the row and column fast track interconnects that span the whole length and width of

the chip [Alte94b]. Compared to thenpc case, the average increase in utilization of row and col-

umn fast track interconnect is quite pronounced in all other pin constraint cases. For all the cir-

cuits, the worst case increase in utilization of routing tracks due to pin constraints are 36%, and

138% respectively for row and column fast track interconnects.

The Altera FLEX 8000 FPGAs seem to be slightly susceptible to routing failures under ran-

dom pin constraints in cases where the I/O pin or logic element utilization is close to 100%. The

cause of this seems to be the architectural restriction that each I/O pin can connect to only one

(unique) row or column of routing tracks (fast tracks). Some flexibility here, e.g. allowing an I/O

pin to connect to a number of rows or columns, will probably lead to better routability under ran-

dom pin constraints. It seems that system designers, when implementing a circuit using FLEX

8000 FPGAs, should leave about 20% of the logic elements and I/O pins free to avoid routability

problems due to pin constraints. For less tightly packed circuits, the amount of routing resources

used were increased markedly, but there are sufficient routing resources available to handle the

increased demand.

Table A-6 shows the resource utilization statistics for the Altera FPGAs for all the benchmark

circuits used. The information in this table is basically the same as that available in Table A-4 and

Table A-5, but it is presented in a manner that shows the percentage of total available FPGA logic

and routing resources used by each circuit. Over all the circuits under thenpc case, the average

utilization of row and column fast tracks are 48% and 19% respectively. Over all the circuits and

Average
Increase

row tracks:3%
col tracks:14%

row tracks:7%
col tracks:33%

row tracks:13%
col tracks:43%

Circuit

FastTrack
Interconnect
Usage (npc)

rows,
columns

FastTrack
Interconnect
Usage (spc)

rows,
columns

FastTrack
Interconnect
Usage (bpc)

rows,
columns

FastTrack
Interconnect
Usage (rpc)

rows,
columns

Table A-5: Routing Resource Utilization for the Altera FPGAs

116

pin constraint cases, the maximum utilization of row and column fast tracks are 86% and 58%.

Circuit
#

I/O
pins

FPGA
Device

% of FPGA
Pins and
LEs used

% of
FPGA
routing

resources
used
(npc)
rows,

columns

% of
FPGA
routing

resources
used
(spc)
rows,

columns

% of
FPGA
routing

resources
used
(bpc)
rows,

columns

% of
FPGA
routing

resources
used
(rpc)
rows,

columns

dalu
(ALU)

91 EPF8820
GC192-3

60% pins
67% LEs

46%
26%

45%
32%

49%
44%

49%
46%

c1908
(Error

Correct Cct)

58 EPF8282
LC84-3

87% pins
63% LEs

66%
22%

59%
21%

56%
21%

63%
24%

mul
(16-bit Mult)

64 EPF8820
GC192-3

41% pins
97% LEs

65%
35%

73%
39%

71%
54%

75%
57%

c3540
(ALU +
Control)

72 EPF8452
GC160-3

60% pins
97% LEs

70%
20%

70%
20%

74%
23%

86%
35%

c1355
(Error

Correct Cct)

73 EPF8282
TC100-3

95% pins
39% LEs

42%
27%

43%
27%

47%
29%

50%
28%

c499
(Error

Correct Cct)

73 EPF8282
TC100-3

95% pins
39% LEs

41%
26%

40%
27%

47%
30%

50%
28%

c880
(ALU +
Control)

86 EPF8452
GC160-3

72% pins
31% LEs

31%
18%

31%
19%

32%
20%

42%
24%

s1196
(Logic)

30 EPF8452
LC84-3

43% pins
65% LEs

42%
10%

42%
12%

45%
23%

45%
23%

s1423
(Logic)

24 EPF8282
LC84-3

37% pins
79% LEs

45%
8%

48%
11%

45%
8%

49%
8%

s5378
(Logic)

86 EPF8820
GC192-3

56% pins
69% LEs

55%
32%

63%
43%

65%
52%

70%
58%

s820
(PLD)

39 EPF8282
LC84-3

60% pins
59% LEs

41%
11%

45%
12%

45%
13%

46%
13%

s832
(PLD)

39 EPF8282
LC84-3

60% pins
60% LEs

39%
12%

42%
12%

45%
12%

43%
14%

Table A-6: Routing Resource Utilization Statistics for the Altera FPGAs

117

A.4 Conclusions
In this Appendix we presented experimental results on the effects of fixing FPGA pin assign-

ment on the speed and routability of FPGAs. We showed that the effects on delay are marginal on

average and significant in particular cases. The effects on delay are more pronounced in the case

of circuits that use up almost all of the available FPGA I/O pins and logic blocks. The effects on

routability are significant for almost all the circuits.

The main contribution of this study is that we have presented some quantitative results on the

effects of fixing FPGA pins on delay and routability. So far the evidence to this effect was anec-

dotal, and contrary to what our results indicate. Our results will be useful to system designers

using FPGAs in their hardware designs and to architects and CAD tool developers involved in the

development of architectures and layout synthesis tools for multi-FPGA systems.

It appears that the extra long lines provided on the periphery of XC4000 FPGAs are effective

in handling pin constraints. One research issue this raises is how many such lines should be pro-

vided for FPGAs of different sizes and different number of I/O pins. Circuits that utilize carry

chains and wide edge decoders [Xili94b] may limit the flexibility available to the placement and

routing tool. The effect of pin constraints may be more pronounced for such circuits. Also the

effects of pin constraints on performance driven placement and routing of FPGAs needs to be

s838
(fractional

mult)

39 EPF8282
LC84-3

60% pins
60% LEs

46%
3%

45%
4%

46%
5%

48%
5%

s9234
(Logic)

43 EPF8820
GC192-3

23% pins
52% LEs

39%
19%

42%
26%

43%
26%

43%
29%

Average
Utilization

61% pins
63% LEs

48%
19%

49%
23%

51%
26%

54%
28%

Circuit
#

I/O
pins

FPGA
Device

% of FPGA
Pins and
LEs used

% of
FPGA
routing

resources
used
(npc)
rows,

columns

% of
FPGA
routing

resources
used
(spc)
rows,

columns

% of
FPGA
routing

resources
used
(bpc)
rows,

columns

% of
FPGA
routing

resources
used
(rpc)
rows,

columns

Table A-6: Routing Resource Utilization Statistics for the Altera FPGAs

118

investigated.

119

In many tables in Chapter 4 and 5, the pin cost and the critical path delay values were given in

a normalized manner. In this Appendix, the tables showing the actual (un-normalized) pin cost

and critical path delay values are presented, which corresponding to specific tables in Chapter 4

and Chapter 5.

Circuit
 #FPGAs

Critical path delay (in ns)

Pre-partitioning,
CPD

Post-partitioning,
CPD_PP

Post-routing,
CPD_PR

s35932 8 34 37 57

s38417 9 44 59 94

s38584 9 71 94 139

mips64 14 230 315 462

spla 18 38 86 196

cspla 18 36 82 193

mac64 6 260 381 623

sort8 12 145 304 533

fir16 10 96 134 238

gra 4 54 57 70

Table B-1: Critical Path Delays at Different Levels of Circuit Implementation

Appendix B

Experimental Results Showing Actual
Pin Cost and Delay Values

120

fpsdes 9 96 136 227

spsdes 8 138 172 249

ochip64 8 22 29 63

ralu32 9 92 157 317

iir16 6 129 135 160

Average 10 99 145 241

Circuit
 #FPGAs

Post-routing critical path delay, CPD_PR
(in ns)

HROUTE HROUTE_TD

s35932 8 57 53

s38417 9 95 94

s38584 9 113 98

mips64 14 468 418

spla 18 204 169

cspla 18 191 164

mac64 6 563 465

sort8 12 538 499

fir16 10 193 167

gra 4 59 57

fpsdes 9 195 176

spsdes 8 216 205

ochip64 8 50 50

ralu32 9 298 263

iir16 6 152 152

Average 10 226 202

Table B-2: Comparison of HROUTE and HROUTE_TD

Circuit
 #FPGAs

Critical path delay (in ns)

Pre-partitioning,
CPD

Post-partitioning,
CPD_PP

Post-routing,
CPD_PR

Table B-1: Critical Path Delays at Different Levels of Circuit Implementation

121

Circuit # FPGAs

Post-routing critical path delay
using PCROUTE (in ns)

Post-routing critical path delay using
FPSROUTE (in ns)

Pt = 47 Pt = 17 Pt = 4 Pt = 47 Pt = 17 Pt = 4

s35932 8 57 57 57 57 82 82

s38417 9 94 94 94 94 120 120

s38584 9 139 139 139 139 164 164

mips64 14 462 462 462 462 463 501

spla 18 196 196 196 271 287 317

cspla 18 193 193 193 238 238 262

mac64 6 623 623 623 623 623 623

sort8 12 533 533 533 588 608 652

fir16 10 238 238 238 238 244 244

gra 4 70 70 70 70 70 70

fpsdes 9 227 227 227 227 227 280

spsdes 8 249 249 249 249 249 274

ochip64 8 63 63 63 63 63 63

ralu32 9 317 317 317 317 330 Routing
failure

iir16 6 160 160 160 160 160 160

Average 241 241 241 253 262 281

Table B-3: The Effect of Pp on the Delay of the Partial Crossbar Architecture

122

Comment
 Observe from this table that the estimated clock speeds for the partial crossbar architecture

range from 20 MHz for theochip64 circuit to 2 MHz thesort8 circuit. This range is representative

of the clock rates expected in MFSs for rapid prototyping and logic emulation [Quic98]. This is a

validation of our layout synthesis tools and the timing model used in our timing analysis tool

(MTA).

Circuit

Number of FPGAs Pin cost
Post-routing critical

path delay (in ns)

Partial
crossbar

HCGP
Partial

crossbar
HCGP

Partial
crossbar

HCGP

s35932 8 8 3032 2432 57 53

s38417 9 9 3411 2736 94 94

s38584 9 9 3411 2736 139 98

mips64 14 15 5306 4560 462 418

spla 18 18 6822 5472 196 169

cspla 18 18 6822 5472 193 164

mac64 6 6 2274 1824 623 465

sort8 12 14 4548 4256 533 499

fir16 10 10 3790 3040 238 167

gra 4 4 1516 1216 70 57

fpsdes 9 9 3411 2736 227 176

spsdes 8 8 3032 2432 249 205

ochip64 8 8 3032 2432 63 50

ralu32 9 14 3411 4256 317 263

iir16 6 6 2274 1824 160 152

Avg.: 10 Avg.: 10 Total:
56092

Total:
47424

Avg.: 241 Avg.: 202

Table B-4: Comparison of the HCGP and Partial Crossbar Architectures

123

Circuit

Number of FPGAs Pin cost Post-routing critical
path delay (in ns)

HTP HCGP HTP HCGP HTP HCGP

s35932 9 8 2736 2432 53 53

s38417 9 9 2736 2736 88 94

s38584 9 9 2736 2736 113 98

mips64 16 15 4864 4560 403 418

spla 30 18 9520 5472 232 169

cspla 25 18 7600 5472 205 164

mac64 8 6 2432 1824 529 465

sort8 14 14 4256 4256 535 499

fir16 12 10 3648 3040 197 167

gra 4 4 1216 1216 60 57

fpsdes 9 9 2736 2736 199 176

spsdes 8 8 2432 2432 232 205

ochip64 8 8 2432 2432 63 50

ralu32 16 14 4864 4256 325 263

iir16 6 6 1824 1824 152 152

Avg.: 12 Avg.: 10 Total:
56032

Total:
47424

Avg.: 226 Avg.: 202

Table B-5: Comparison of the HTP and HCGP Architectures

124

Circuit

Number of FPGAs Pin cost
Post-routing critical

path delay (in ns)

HWCP
(Cs = 4) HCGP

HWCP
(Cs = 4) HCGP

HWCP
(Cs = 4) HCGP

s35932 8 8 2432 2432 57 53

s38417 12 9 3648 2736 111 94

s38584 12 9 3648 2736 118 98

mips64 16 15 4864 4560 414 418

spla 20 18 5472 5472 routing
failure

169

cspla 20 18 5472 5472 routing
failure

164

mac64 8 6 2432 1824 533 465

sort8 16 14 4864 4256 573 499

fir16 12 10 3648 3040 199 167

gra 4 4 1216 1216 57 57

fpsdes 12 9 3648 2736 227 176

spsdes 8 8 2432 2432 235 205

ochip64 8 8 2432 2432 63 50

ralu32 16 14 4256 4256 routing
failure

263

iir16 8 6 2432 1824 169 152

Avg.: 12 Avg.: 10 Total:
 > 54720

Total:
47424

Avg. 229 Avg.: 202

Table B-6: Comparison of the HWCP and HCGP Architectures

 125

References
[Alte94] Altera Corporation, Reconfigurable Interconnect Peripheral Processor

(RIPP10) Users Manual, Version 1.0, 1994.

[Alte94a] Altera Corporation,MAX+PLUS II User Manual, 1994.

[Alte94b] Altera Corporation,FLEX 8000 Handbook, 1994.

[Apti98] Aptix Corporation, Product brief: The System Explorer MP4, 1998. Available

on Aptix Web site: http://www.aptix.com.

[Apti93] Aptix Corporation,Data Book Supplement, San Jose, CA, September 1993.

[Amer95] R. Amerson et al, “Teramac -- Configurable Custom Computing,” Proceedings

of IEEE Symposium on FPGAs for Custom Computing Machines, pp. 32-38,

1995.

[Arno92] J. M. Arnold, D. A. Buell, and E. G. Davis, “Splash 2,” Proceedings of 4th

Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 316-

322, 1992.

[Babb93] J. Babb et al, “Virtual Wires: Overcoming Pin Limitations in FPGA-based

Logic Emulators,” Proceedings of IEEE Workshop on FPGAs for Custom

Computing Machines, pp. 142-151, 1993.

[Babb97] J. Babb et al, “Logic Emulation with Virtual Wires,” IEEE Trans. on CAD, vol.

16, no. 6, pp. 609-626, June 1997.

[Baue98] J. Bauer et al, “A Reconfigurable Logic Machine for Fast Event-Driven Simu-

lation,” Proc.of the Design Automation Conference, pp. 668-671, 1998.

[Behr96] D. Behrens, K. Harbich, and E. Barke, “Hierarchical Partitioning”, Proc. of

International Conference on CAD (ICCAD’96), pp. 470-477, 1996.

[Bert93] P. Bertin, D. Roncin, and J. Vuillemin, “Programmable Active Memories: A

Performance Assessment,” Proceedings of the 1993 Symposium: Research on

Integrated Systems, MIT Press, 1993.

 126

[Betz97] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for

FPGA Research,” Proc. of the 7th International Workshop on Field-Program-

mable Logic, London, pp. 213-222, August1997.

[Brow92] S. Brown, R. Francis, J. Rose, and Z. Vranesic,Field Programmable Gate

Arrays, Kluwer Academic Publishers, 1992.

[Butt92] M. Butts, J. Batcheller, and J. Varghese, “An Efficient Logic Emulation Sys-

tem,” Proceedings of IEEE International Conference on Computer Design, pp.

138-141, 1992.

[Butt95] M. Butts, “Future Directions of Dynamically Reprogrammable Systems,”

Proc. of IEEE Custom Integrated Circuits Conference, pp. 487-494, 1995.

[Cass93] S. Casselman, “Virtual Computing and The Virtual Computer,” Proceedings of

IEEE Workshop on FPGAs for Custom Computing Machines, pp. 43-48, 1993.

[Chan93] P. K. Chan, M. D. F. Schlag, “Architectural Trade-offs in Field-Programmable-

Device-Based Computing Systems,” Proceedings of IEEE Workshop on

FPGAs for Custom Computing Machines, pp. 152-161, 1993.

[Chan93a]P. K. Chan, M. D. F. Schlag, and J. Y. Zien, “On Routability Prediction for

FPGAs,” Proceedings of 30th ACM/IEEE DAC, 1993.

[Chan93b]P.K. Chan, University of California, Santa Cruz, California,Private Communi-

cation.

[Chan95] P. K. Chan, M. D. F. Schlag and J. Y. Zien, “Spectral-Based Multi-Way FPGA

Partitioning,” International Symposium on Field-Programmable Gate Arrays,

pp. 133-139, 1995.

[Chan97] L. L. Chang, “Static Timing Analysis of High-Speed Boards,” IEEE Spectrum,

vol. 34, no. 3, March 1997.

[Chou95] N. Chou et al, “Local Ratio Cut and Set Covering Partitioning for Huge Logic

Emulation Systems,” IEEE Trans. on CAD, vol. 14, no. 9, pp. 1085-1092, Sep-

tember 1995.

[Chu98] K. C. Chu, Quickturn Design Systems, San Jose, California,Private Communi-

 127

cation.

[Clos53] C. Clos, “A Study of Non-Blocking Switching Networks,” The Bell System

Technical Journal, vol. XXXII, pp. 406-424, March 1953.

[Cour97] M. Courtoy (Aptix Corp.), “Prototyping Engines: How Efficient and Practi-

cal?,” Invited Talk, Sixth IFIP International Workshop on Logic and Architec-

ture Synthesis (IWLAS’97), 1997.

[Darn94] J. Darnauer et al, “A Field Programmable Multi-chip Module (FPMCM),” Pro-

ceedings of IEEE Symposium on FPGAs for Custom Computing Machines, pp.

1-9, 1995.

[Dobb92] I. Dobbelaere et al, “Field Programmable MCM Systems -- Design of an Inter-

connection Frame,” IEEE Custom Integrated Circuits Conference, pp. 4.6.1-

4.6.4, 1992.

[Dray95] T. H. Drayer, W. E. King, J. G. Tront, and R. W. Conners, “MORRPH: A Mod-

ular and Reprogrammable Real-time Processing Hardware,” Proceedings of

IEEE Symposium on FPGAs for Custom Computing Machines, pp. 11-19,

1995.

[Erdo92] S. S. Erdogan and A. Wahab, “Design of RM-nc: A Reconfigurable Neurocom-

puter for Massively Parallel-Pipelined Computations,” International Joint

Conference on Neural Networks, Vol. 2, pp. 33-38, 1992.

[Exem94] Exemplar Logic,VHDL Synthesis Reference Manual, 1994.

[Fang98] W. Fang and A. Wu, “Performance-Driven Multi-FPGA Partitioning Using

Functional Clustering and Replication,” Proc.of the Design Automation Con-

ference, pp. 94-99, 1998.

[Fidu82] C. M. Fiduccia, and R. M. Mattheyses, “A Linear-Time Heuristic for Improved

Network Partitions”,Proc. of 19th ACM/IEEE Design Automation Conference,

pp. 241-247, 1982.

[FCCM] Proceedings of IEEE Workshops/Symposia on FPGAs for Custom Computing

Machines, 1992 to 1996.

 128

[Gall94] D. Galloway, D. Karchmer, P. Chow, D. Lewis, and J. Rose, “The Transmogri-

fier: The University of Toronto Field-Programmable System”,CSRI Technical

Report (CSRI-306), CSRI, University of Toronto, 1994.

[Gall95] D. Galloway, “The Transmogrifier C Hardware Description Language and

Compiler for FPGAs,” Proceedings of IEEE Symposium on FPGAs for Custom

Computing Machines, pp. 136-144, 1995.

[Gana96] G. Ganapathy et al, “Hardware Emulation for Functional Verification of K5,”

Proc.of the Design Automation Conference, pp. 315-318, 1996.

[Gate95] J. Gateley et al, “UltraSPARCTM-I Emulation,” Proc.of the Design Automation

Conference, pp. 13-18, 1995.

[Gokh91] M. Gokhale et al, “Building and Using a Highly Parallel Programmable Logic

Array,” IEEE Computer, pp 81-89, January 1991.

[Goto81] S. Goto, “An Efficient Algorithm for the Two-Dimensional Placement Problem

in Electric Circuit Layout,” IEEE Trans. on Circuits and Systems, Vol. 28, No.

1, pp. 12-18, January 1981.

[Guo92] R. Guo et al, “A 1024 Pin Universal Interconnect Array with Routing Architec-

ture,” Proc. of IEEE Custom Integrated Circuits Conference, pp. 4.5.1-4.5.4,

1992.

[Hauc94] S. Hauck, G. Boriello, C. Ebeling, “Mesh Routing Topologies for Multi-FPGA

Systems”, Proceedings of International Conference on Computer Design

(ICCD’94), pp. 170-177, 1994.

[Hauc94b]S. Hauck and G. Boriello, “Pin Assignment for Multi-FPGA systems”,Pro-

ceedings of IEEE Workshop on FPGAs for Custom Computing Machines,

1994.

[Hauc95] S. Hauck, Multi-FPGA Systems,Ph.D. Thesis, University of Washington,

Department of Computer Science and Engineering, 1995.

[Hauc98a]S. Hauck, “The Roles of FPGAs in Reprogrammable Systems”,Proceedings of

the IEEE, vol. 86, no. 4, pp. 615-638, July 1998.

 129

[Hauc98b]S. Hauck and A. Agarwal, “Software Technologies for Reconfigurable Sys-

tems”,submitted to IEEE Trans. on Computers, 1998.

[Heil97] F. Heile, Altera Corporation, San Jose, California,Private Communication.

[Hoel94] W. Hoelich, Aptix Corporation, San Jose, California,Private Communication.

[Hutt96] M. Hutton, J.P. Grossman, J. Rose and D. Corneil, “Characterization and

Parameterized Random Generation of Digital Circuits,” Proc.of the Design

Automation Conference, pp. 94-99, 1996.

[Icub97] I-Cube, Inc., The IQX Family Data Sheet, May 1997. Available at:

www.icube.com.

[Icub94] I-Cube, Inc., “Using FPID Devices in FPGA-based Prototyping,” Application

note, Part number:D-22-002, February 1994.

[Ikos98] IKOS Systems, Product Brief: VirtuaLogic-8 Emulation System, Available at

www.ikos.com.

[Joup87] Norman P. Jouppi, “Timing Analysis and Performance Improvement of MOS

VLSI Designs,” IEEE Trans. on CAD, vol. CAD-6, no. 4, pp. 650-665, July

1987.

[Karc94] D. Karchmer, A Field-Programmable System with Reconfigurable Memory,

M.A.Sc. Thesis, Dept. of Electrical and Computer Engineering, University of

Toronto, 1994.

[Khal95] M. A. S. Khalid and J. Rose, “The Effect of Fixed I/O Pin Positioning on The

Routability and Speed of FPGAs,” Proceedings of The Third Canadian Work-

shop on Field-Programmable Devices (FPD’95), pp. 92-104, 1995.

[Khal97] M. A. S. Khalid and J. Rose, “Experimental Evaluation of Mesh and Partial

Crossbar Routing Architectures for Multi-FPGA Systems,” Proceedings of the

Sixth IFIP International Workshop on Logic and Architecture Synthesis

(IWLAS’97), 1997.

[Khal98] M. A. S. Khalid and J. Rose, “A Hybrid Complete-Graph Partial-Crossbar

Routing Architecture for Multi-FPGA Systems,” Proc. of 1998 Sixth ACM

 130

International Symposium on Field-Programmable Gate Arrays (FPGA’98), pp.

45-54, February 1998.

[Kim96] C. Kim, H. Shin, “A Performance-Driven Logic Emulation System: FPGA

Network Design and Performance-Driven Partitioning,” IEEE Trans. on CAD,

vol. 15, no. 5, pp. 560-568, May 1996.

[Knap96] D. W. Knapp,Behavioral Synthesis: Digital System Design Using the Synopsys

Behavioral Compiler, Prentice Hall PTR, 1996.

[Kris84] B. Krishnamurthy, “An Improved Min-Cut Algorithm for Partitioning VLSI

Networks,” IEEE Trans. on Computers, vol. C-33, no. 5, pp. 438-446, May

1984.

[Kuh86] E. S. Kuh and M. Marek-Sadowska, “Global Routing,” in Layout Design and

Verification, Edited by T. Ohtsuki, North-Holland, pp. 169-198, 1986.

[Kuzn93] R. Kuznar et al, “Partitioning Digital Circuits for Implementation on Multiple

FPGA ICs,” MCNC Technical Report 93-03, North Carolina, 1993.

[Kuzn94] R. Kuznar et al, “Multi-way Netlist Partitioning into Heterogeneous FPGAs

and Minimization of Total Device Cost and Interconnect,” Proc.of the Design

Automation Conference, pp. 238-243, 1994.

[Lan94] S. Lan, A. Ziv and A. El-Gamal, “Placement and Routing for A Field Program-

mable Multi-Chip Module,” Proc.of the Design Automation Conference, pp.

295-300, 1994.

[Lan95] S. Lan, Architecture and Computer Aided Design Tools for a Field Program-

mable Multi-chip Module,Ph.D. Thesis, Stanford University, 1995.

[Lee61] C. Lee, “An Algorithm for Path Connection and its Applications,” IRE Trans.

on Electronic Computers, vol. EC-10, no. 3, pp. 346-365, 1961.

[Lewi93] D. M. Lewis, M. Van Ierssel, and D. H. Wong, “A Field Programmable Accel-

erator for Compiled Code Applications,” Proceedings of IEEE Workshop on

FPGAs for Custom Computing Machines, pp. 60-67, 1993.

[Lewi97] D. M. Lewis, D. R. Galloway, M. Van Ierssel, J. Rose, and P. Chow, “The

 131

Transmogrifier-2: A 1 Million Gate Rapid Prototyping System,” Proceedings

of FPGA’97, pp. 53-61, 1997.

[Lewi98] D. M. Lewis, D. R. Galloway, M. Van Ierssel, J. Rose, and P. Chow, “The

Transmogrifier-2: A 1 Million Gate Rapid Prototyping System,” IEEE Trans.

on VLSI Systems, vol. 6, no. 2, pp. 188-198, June1998.

[Lin97] S. Lin, Y. Lin, and T. Hwang, “Net Assignment for the FPGA-Based Logic

Emulation System in the Folded-Clos Network Structure,” IEEE Trans. on

CAD, vol. 16, no. 3, pp. 316-320, March 1997.

[Mak95a] Wai-Kei Mak, D. F. Wong, “On Optimal Board-Level Routing for FPGA-based

Logic Emulation,” Proc. of 32nd Design Automation Conference, pp. 552-556,

1995.

[Mak95b] Wai-Kei Mak, D. F. Wong, “Board-Level Multi-Terminal Net Routing for

FPGA-based Logic Emulation,” Proc. of International Conference on CAD

(ICCAD’95), pp. 339-344, 1995.

[McMu95]L. McMurchie and Carl Ebeling, “PathFinder: A Negotiation-Based Perfor-

mance-Driven Router for FPGAs,” Proc. of 1995 Third ACM International

Symposium on Field-Programmable Gate Arrays (FPGA’95), pp. 111-117,

1995.

[Mont98] S. Montazeri, ATI Technologies Inc., Unionville, Ontario,Private Communi-

cation, 1998.

[Page91] I. Page and W. Luk, “Compiling Occam into FPGAs,” in W. Moore, W. Luk,

Eds.,FPGAs, Abingdon EE&CS Books, England, pp. 271-283, 1991.

[Prep96] Programmable Electronics Performance Corporation, HDL models for differ-

ent circuits (synthesis benchmarks) are available on their Web site: http//

www.prep.org.

[Quic94] Quickturn Systems, Product brief: The Enterprise Emulation System and Logic

Animator, 1994.

[Quic98] Quickturn Design Systems, Inc., System Realizer product brief, 1998. Avail-

able on Quickturn Web site:http://www.quickturn.com.

 132

[Quin79] N. R. Quinn, M. A. Breuer, “A Force Directed Component Placement Proce-

dure for Printed Circuit Boards,” IEEE Trans. on Circuits and Systems, Vol. 26,

No. 6, pp. 377-388, June 1979.

[Roy95] K. Roy-Neogi and C. Sechen, “Multiple-FPGA Partitioning with Performance

Optimization,” International Symposium on Field-Programmable Gate Arrays,

pp. 146-152, 1995.

[Sarr96] M. Sarrafzadeh and C. K. Wong, An Introduction to VLSI Physical Design,

McGraw Hill, 1996.

[Selv95] C. Selvidge et al, “TIERS: Topology Independent Pipelined Routing and

Scheduling for Virtual Wire Compilation,” Proceedings of FPGA’95, pp. 25-

31, 1995.

[Sher95] N. Sherwani, Algorithms for VLSI Physical Design Automation, Kluwer Aca-

demic Publishers, 1995.

[Shah91] K. Shahookar and P. Mazumder, “VLSI Cell Placement Techniques,” ACM

Computing Surveys, Vol. 23, No. 2, pp. 143-220, June 1991.

[Shih92] M. Shih, E. S. Kuh, “Performance-Driven System Partitioning on Multi-Chip

Modules,” Proc. of the Design Automation Conference, pp. 53-56, 1992.

[Slim94] M. Slimane-Kadi, D. Brasen, and G. Saucier, “A Fast-FPGA Prototyping Sys-

tem That Uses Inexpensive High Performance FPIC,” International Workshop

on Field Programmable Gate Arrays, 1994.

[Syno97] Synopsys, Inc., Design Compiler(Version 3.4a), Behavioral Compiler (Version

3.4a), and Library Compiler (Version 3.4a),Reference Manuals. Documents

available on-line.

[Terr95] R. Terril, “A 50000-gate MCM-based PLD for Gate Array Prototyping,” IEEE

Custom Integrated Circuits Conference, pp. 2.2.1-2.2.4, 1995.

[Tess97] R. Tessier, MIT Laboratory for Computer Science, Cambridge, MA,Private

Communication, 1997.

[Trim94] S. M. Trimberger, Field Programmable Gate Array Technology, Kluwer Aca-

 133

demic Publishers, 1994.

[Trim95] S. M. Trimberger, Xilinx Inc., San Jose, California,Private Communication.

[Van92] D. E. Van Den Bout, et al, “Anyboard: An FPGA-Based Reconfigurable Sys-

tem,” IEEE Design and Test of Computers, pp. 21-30, June 1992.

[Varg93] J. Vargese, M. Butts, and Jon Batcheller, “An Efficient Logic Emulation Sys-

tem”, IEEE Trans. on VLSI Systems, vol. 1, no. 2, pp. 171-174, June 1993.

[Vuil96] J. E. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, and P. Boucard,

“Programmable Active Memories: Reconfigurable Systems Come of Age,”

IEEE Transactions on VLSI, Vol 4, No. 1, pp. 56-69, March 1996.

[Walt91] S. Walters, “Computer-Aided Prototyping for ASIC-Based Systems,” IEEE

Design and Test of Computers, pp. 4-10, June 1992.

[Woo93] N. Woo and J. Kim, “An Efficient Method of Partitioning Circuits for Multi-

FPGA Implementation,” Proc. of 30th Design Automation Conference, pp.

202-207, 1993.

[Xili94a] Xilinx, Inc., XACT Development System User Guide, February 1994.

[Xili94b] Xilinx, Inc., The Programmable Logic Data Book (page 9-11), 1994.

[Xili97] Xilinx, Inc., Product Specification: XC4000E and XC4000X Series FPGAs,

Version 1.2, June 16, 1997. Available on Xilinx Web site: www.xilinx.com.

[Yang91] S. Yang,Logic Synthesis and Optimization Benchmarks User Guide, Version

3.0, Microelectronics Center of North Carolina, January 1991.

