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2004

The design and layout of Field-Programmable Gate Arrays (FPGAs) is a time-

consuming process that is currently performed manually. This work investigates two

issues faced when automating this task. First, an accurate comparison of layout area

between manually and automatically-generated layouts is performed. For the single

commercial architecture considered, this work found that the area of an automatically-

generated layout is only 36% larger than that needed for a manual layout. The second

half of this work focused on the steps needed to implement a complete FPGA using

automatic layout tools. New tools that aid the design and verification of an FPGA are

presented and an FPGA created with those tools was verified in simulation and then

sent for fabrication. This indicates that automatic layout tools can be used to design

complete FPGAs in a fraction of the time required for manual design.
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Chapter 1

Introduction

1.1 Motivation

FPGAs have become an extremely useful medium for implementing digital designs. With

SRAM-based FPGAs, the devices can be programmed in seconds or less. This allows the

lengthy and costly fabrication process needed for standard-cells and mask-programmed

gate arrays to be avoided. The significantly reduced initial costs make FPGAs well-suited

for low to medium volume designs typically up to one hundred thousand units per year

[1, 2]. The shortened design time makes FPGAs ideal for prototyping designs prior to full-

fledged production. However, with this ease of use comes a significant penalty in terms

of area, speed and power, as circuits implemented in FPGAs are at least ten times larger

and three times slower than custom implementations [3]. To minimize these factors, the

high-speed and low-area design of the FPGA itself is essential. A compact physical layout

is necessary to achieve this goal and producing such a layout is an extremely resource-

intensive task that takes upwards of fifty person years for a typical FPGA family [4]. The

process is labour and time intensive because it has long been thought that only human

designers can produce the high quality layouts required.

The goal of this research is to investigate that assumption by examining the feasibility

of automating the physical design of FPGAs. This is motivated by the fact that there

are many potential benefits to such automation. Currently, it takes over a hundred

designers between 9 months and a year to complete an FPGA design [4]. Automated

layout tools could significantly reduce this design time for FPGAs thereby allowing FPGA

manufacturers to reduce the time to market for their products.

The process of designing an FPGA is also exceedingly complex. This has in general

1



Chapter 1. Introduction 2

limited the field to a handful of large FPGA manufacturers but this need not be the case.

In the Application Specific Integrated Circuit (ASIC) market, standard cell design tools

have enabled a wide range of users to complete custom designs. An automated FPGA

design methodology could facilitate the use of FPGA technology in a broader range of

applications since domain-specific FPGAs might then become feasible.

The architects who design FPGAs could also benefit from automated FPGA design

tools. Currently, when designing a new FPGA family the architects must rely on esti-

mates for silicon area, speed and power. It would be too time-consuming to generate

the actual layouts needed to obtain accurate area, speed and power measurements if the

layouts were done manually. However, with automation it becomes possible to measure

the performance of actual layouts. The improved accuracy of the area, speed and power

information could assist the FPGA architects in the discovery of superior architectures.

Alternatively, automation could be used to validate the area, speed and power estimates

used by the architects.

With this potential to produce better FPGAs more quickly and for a wider market,

past researchers [4, 5, 6, 7] as part of the GILES project have developed Computer-Aided

Design (CAD) tools specifically to speed the layout process for FPGAs. That past work

will serve as the foundation for the research in this thesis.

1.2 Objectives

Given the many benefits of automated FPGA design, this work will focus on demonstrat-

ing the utility of such design practises. However, there are many challenges that must

be addressed before the automated layout of FPGAs can become a standard procedure.

Two such potential issues will be investigated in this work. First, the quality of results

relative to manual designs will be measured. Then, the feasibility of using this automated

layout flow to produce an entire FPGA will be explored.

1.2.1 Measuring Layout Quality

As discussed previously, the poor area efficiency and circuit speeds of FPGAs relative

to custom designs has limited their market. It has been thought that automated design

techniques would only compound this problem. This perception presents a significant

obstacle to the acceptance of automated FPGA design. To alleviate those concerns a
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thorough comparison is needed between automated and manual designs and this work

will perform such a comparison. Speed, area and power are all important attributes

that must be compared between the two design styles; however, to maintain a reasonable

scope for this work, this research will focus exclusively on analyzing the area differences.

Area was selected as the starting point since, until the two design styles deliver similar

area results, obtaining a similar power and speed is difficult.

It is necessary to make such a comparison between manual and automated design as

accurate as possible. Approximate comparisons do little to demonstrate the viability of

automated design. Accordingly, one goal of this work will be to generate an accurate area

comparison. Such a comparison will demonstrate the capabilities of the automated FPGA

design tools and will offer insights as to how the layout area required by automated design

tools can be improved. The ultimate goal is the creation of automatically-generated

layouts that are smaller and more area efficient designs than manual layouts.

1.2.2 Demonstrating Feasibility of Automated Design

The use of automated tools to produce complete FPGA layouts is a relatively new con-

cept. To gain acceptance as a viable design technique, functional FPGAs must be pro-

duced using these automated tools since that has not been done previously for general

purpose FPGAs. In the latter half of this work, the automated tools that were developed

in prior works [4, 5, 6, 7] will be enhanced to enable the creation of a complete FPGA.

The goal of the current work is to produce a functional FPGA using the automated tools.

By going through the process of generating an entire FPGA, the obstacles faced by

an automated FPGA CAD flow will be uncovered. This work will present the tools that

were enhanced or developed to complete this CAD flow. Then, when the generation of

the FPGA layout is complete, the challenges in verifying the design will be considered.

Finally, successful verification through simulation will demonstrate that automated tools

can be used to produce FPGAs.

1.3 Organization

This thesis is organized as follows. Chapter 2 provides background on automated de-

sign methodologies and introduces the CAD system upon which this work is based. In

Chapter 3, a thorough comparison in terms of area between an automatic and a manual
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design of an FPGA is presented. Chapter 4 discusses the steps taken to create an FPGA.

The process of selecting an architecture is first detailed and then the enhancements made

to the CAD tools to support the creation of this FPGA are examined. In Chapter 5,

the strategy used for verification of the design and the results of that testing are pre-

sented. Finally, Chapter 6 concludes this work and suggests potential avenues for future

exploration.



Chapter 2

Background

2.1 Introduction

This chapter will first define the general FPGA structures that will be used in the pro-

ceeding chapters. A survey of physical layout techniques for FPGAs will then be given in

Section 2.3. Sections 2.4 and 2.5 will provide background on the tools that will be used

in this work to automate the physical layout process. Finally, past research comparisons

of manual and automated designs will be reviewed in Section 2.6.

2.2 FPGA Structure

FPGAs are classified according to their routing structure. The three most common

structures are island-style, hierarchical and row-based [8]. The tools upon which this

work is based [4, 5, 6, 7] only considered island-style FPGAs and, therefore, this work will

also focus exclusively on this FPGA routing style. The island-style structure is based on

an array of identical programmable logic blocks as shown in Figure 2.1. The logic blocks

in the array are used to implement a wide range of arbitrary digital functions. The

blocks are surrounded by routing resources used for making connections both between

the blocks and to pads which connect off the array. Each individual routing resource is

known as a track. Each track may span multiple logic blocks and the number of blocks

it spans is considered to be its length. These tracks connect to the logic block through

configurable connection blocks. Connections between tracks are made by using a switch

block.

Inside the logic block, Look-up Tables (LUTs) are commonly used to implement

5
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Logic Block Logic Block Logic Block Logic Block Logic Block

Logic Block Logic Block Logic Block Logic Block Logic Block

Logic Block Logic Block Logic Block Logic Block Logic Block

Logic Block Logic Block Logic Block Logic Block Logic Block

Logic Block Logic Block Logic Block Logic Block Logic Block

Routing Track Switch Block Connection BlockIO Block

Figure 2.1: FPGA Array and Pads

arbitrary boolean functions. A flip-flop is also included to allow sequential circuits to

be realized easily. Each LUT and flip-flop pair is known as a logic element. It has

been found in past work [8] that it is more efficient to have groups of logic elements

interconnected by local routing as shown in Figure 2.2. This grouping of logic elements

is called a logic cluster. The term logic block refers to the more general case of any block

with programmable logic such as a block containing a single logic element or an entire

logic cluster.

FPGA manufacturers typically create a number of similar FPGAs [9, 10] that differ

primarily in the size of the array of logic blocks. These similar FPGAs form an FPGA

BLE

BLE

N

I

. . . N

Clock

LUT

FFClock

Inputs

Basic Logic Element (BLE)

Figure 2.2: Logic Cluster from [8]
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family. Within the family, logic blocks, connection blocks and switch blocks are typically

structured in the same manner. This structure, along with other essential parameters

such as the number and type of routing tracks in each dimension, describe what is

conventionally known as an FPGA architecture.

Modern commercial FPGAs have grown significantly more complex than the simple

structures portrayed above. The logic block now contains more functionality such as

carry chains to support faster arithmetic operations [9, 10]. As well, these devices now

also include heterogeneous elements such as memory or multipliers [9, 10]. However, the

simple generic programmable logic blocks described above contain the essential elements

of an FPGA. This structure retains a key property of FPGAs which is the ability to

implement arbitrary digital logic circuits. To limit the scope of this research, this work

focuses exclusively on these logic blocks and other heterogeneous elements will not be

considered.

2.3 FPGA Layout

Once the architecture of an FPGA is defined and the electrical circuits for this FPGA are

designed, the time-consuming process of physical layout must be performed. The layout

defines the masks that will be used to create the FPGA. A variety of strategies for gen-

erating this layout are possible. The entire FPGA could be treated as one flat structure

and custom layout, either manually or automatically, could be performed. McCracken

adopted this approach for designing a small-scale FPGA in [11]. The entire FPGA was

treated as a full custom design and all the transistors for the design were manually laid

out. A similar approach of designing the entire FPGA array at once was used by Kafafi

et al. in [12]. Kafafi et al. described the FPGA in a high-level Hardware Description

Language (HDL) and then the design was implemented in standard cells using commer-

cial ASIC tools. As will be discussed in Section 2.6.2, the use of standard cells leads to an

area and speed penalty over custom approaches while the commercial tools restrict the

architectures that can be created. However, this flat approach allows the entire FPGA

structure to be optimized.

The flat approach also increases the complexity of the layout task since it fails to take

advantage of the regularity of the FPGA array. The repetitive pattern of identical logic

blocks along with their routing presents one possible hierarchical method of approaching

FPGA layout. As shown in Figure 2.3, a single tile can be replicated and abutted to
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Figure 2.3: Tileable FPGA

identical tiles to form an array of programmable logic blocks. Each tile contains all the

circuitry required for one logic cluster and its associated routing. The advantage of this

approach is that only a single tile must be laid out. It is also flexible since selecting the

number of times the tile is replicated allows different sizes of FPGA arrays to be easily

created.

This approach has been used by George in [13] for the construction of a low energy

FPGA. Patents by Xilinx [14] and Vantis (now owned by Lattice Semiconductor) [15]

indicate commercial interest in a tile-based approach to layout as well. It is also the

technique used by Padalia et al.’s GILES automated layout tools [4]. The RaPiD project

[16] proposes a seemingly different one-dimensional programmable structure. However,

RaPiD can also be considered a tile-based methodology since its programmable cells can

still be tiled in one dimension.

There are potential disadvantages to this tiling method. This tiling methodology lim-

its the opportunities for optimization. Optimizations that require different sized devices

in different portions of the array are not possible since every tile in the array is identi-

cal. This approach also places restrictions on the architectures that can be generated.

One such restriction is that tracks must be produced in groups equal to a multiple of

their length. An example of this is that length three tracks must be created in multiples

of threes as shown in Figure 2.4. Each segment of the track created in the single tile
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Figure 2.4: Wire twisting to create longer tracks

contributes to the total length. Multiple cluster-length tracks are created using what is

known as wire twisting [5]. A group of tracks, in this case three tracks, are twisted such

that the relative order of the tracks is different on each side of the tile. One segment is

the start of the track and spans one block. At the edge of the tile, it twists so that it

will connect to a different segment. That second wire is also twisted such that in a third

tile it will connect to the third wire in the group. With this twisting technique, tracks of

arbitrary length can be created but in all cases they are arranged in groups whose size

is dictated by the track length.

Other approaches to FPGA layout are possible. In [17], a minitile was used in the

construction of the LEGO FPGA. Each minitile contains a portion of the logic block, the

switch blocks and the connection blocks. By combining sixteen of these minitiles, a single

complete tile is created. This layout technique was used to simplify the amount of custom

layout required since it was performed manually in [17]. However, the disadvantage of

the minitiles is a possible area increase over a regular tiled approach.

The DPGA project by Brown et al. [18] is designed as a multi-context FPGA. On

one level its layout is very similar to the tile-based methodology as it is based on an

array of LUT-based elements. However, other types of “tiles” are used to connect the

logic arrays together. Therefore, this layout methodology lies between the minitile and

full tile-based approaches.

This work will use the full tile approach since the GILES CAD tools [4, 5, 6, 7] have

been designed to use this technique and the present work is based on those tools.
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2.4 The VPR FPGA Placement and Routing System

Before describing the GILES CAD tools used in this work, it is necessary to provide

an overview of the VPR Placement and Routing tool upon which the GILES tools are

based. VPR was developed by Betz in [19] as a tool for FPGA architecture exploration.

As an input, it accepts an architecture description and a circuit to be implemented on the

FPGA. The output from VPR is a placement and a routing of the circuit on the FPGA

architecture described by the architecture description. The basic CAD flow to produce

this output is shown in Figure 2.5. However, it is important to note that this output from

VPR does not include the actual physical implementation of the FPGA architecture. A

brief overview of these basic steps will now be given.

2.4.1 VPR Architecture Generation

One goal of VPR was to facilitate architecture exploration and such exploration requires

the ability to create and use a range of FPGA architectures. The VPR Architecture

Generator enables this functionality by accepting an input architecture description that
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#Comments are signified by a ’#’

subblocks_per_clb 3 #Cluster Size = 3

subblock_lut_size 4 #4-LUTs

#Cluster inputs and outputs

#Input pin connecting to tracks below logic cluster

inpin class: 0 bottom

...

#Output pin connecting to tracks above logic cluster

outpin class: 1 top

#Clock for the flip flop

inpin class: 2 global right

#Define the number of tracks to which a logic block connects

Fc_type fractional

Fc_output 0.333333333333 #Fraction of tracks to which output connects

Fc_input 0.4 #Fraction of tracks to which input connects

Fc_pad 0.4 #Fraction of tracks to which pad connects

switch_block_type subset #Switch block style

Figure 2.6: VPR Architecture Description Language

is used to generate an internal representation of the FPGA of interest [20, 21]. The

architecture is described using a high-level Architecture Description Language (ADL)

that is specific to VPR. An annotated example of a portion of an architecture description

is shown in Figure 2.6. The description defines such things as the number of logic elements

in a cluster, the size of the LUTs, the number of inputs and outputs into a cluster and

the switch block structure. The Architecture Generator uses that description to generate

the internal representation that will be used by the VPR Placer and Router. One of the

most important internal structures describes the routing network and is referred to as

the routing resource graph. This graph describes all the possible connections that can

be made using the FPGA’s programmable routing. This structure will be used by the

GILES CAD tools to generate the FPGA circuitry.
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2.4.2 VPR Placer and Router

Next, the VPR Placer uses the information produced by the Architecture Generator along

with the input circuit to assign logic clusters to a specific cluster within the architecture’s

array of clusters. The aim in this process is to minimize the wirelength and maximize

performance of the placement. Once a satisfactory placement has been generated, the

VPR Router uses the routing information produced by the Architecture Generator along

with the placement and the input circuit to form the connections required by the circuit.

2.5 GILES FPGA Circuit Generation and Layout

Tools

The work in [4], [5], [6], and [7] describes the development of the GILES circuit generation

and layout tools which automate the FPGA design process from a high level architecture

description to a final tile layout. These tools will serve as the foundation for this work

and, in the following sections, the capabilities of these tools prior to the present work will

be described. An overview of the CAD flow for using these tools is shown in Figure 2.7.

The input to the tools is a description of the FPGA in the VPR Architecture Description

Language (ADL). From this description, a physical layout of the single tile needed to

create this FPGA architecture will be produced.

2.5.1 Netlist Generator

An architecture described using the VPR ADL is input to the GILES Netlist Genera-

tor. The tool will output a netlist describing a single tile of the architecture. This is

accomplished using an enhanced version of VPR known as VPR LAYOUT. As described

in Section 2.4.1, the architecture generator produces a routing resource graph describing

the routing within the FPGA. VPR LAYOUT uses this routing resource graph to gen-

erate a netlist describing the circuitry needed to implement the routing for single tile of

the FPGA described by the architecture. For the logic cluster, VPR LAYOUT uses the

structure described by Betz et al. in [8] and shown previously in Figure 2.2.

Two equivalent netlists describing the tile are produced by VPR LAYOUT. One

netlist is transistor-based and uses the transistor implementations for an FPGA de-

scribed in [8]. The other netlist is cell-based in which transistors are grouped into cells
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Figure 2.7: GILES CAD Flow

such as inverters, SRAM bits and multiplexers. The remainder of the CAD flow uses

this cell-based netlist. Research by Egier in [22] has explored the challenge of selecting

appropriate groupings of transistors into cells. The results presented in this work will

use the best groupings found in [22].

The netlist generator also generates constraints that allow the creation of routing

tracks spanning multiple tiles when the tile layouts are abutted. This is done through

the use of ports that are placed on the edge of the tile. Each port has a partner that it

will connect to in a neighbouring tile. This is depicted in Figure 2.8 in which the ports

have been arranged to realize length 3 wires. In the figure, port A and B are paired and

must be moved in tandem during placement i.e. their y coordinate will always be equal.

Similarly, for C and D, the x coordinate of the two ports must be equal.

Constraints are also needed to realize switch blocks that connect to abutting tiles and

connection blocks that take their input from neighbouring tiles. A detailed discussion of

these constraints can be found in [5].
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2.5.2 Placement, Compaction and Routing

The port constraints and cell-level netlist are used as inputs to the GILES cell-level placer

developed by Fung in [6]. The output is a compact placement of these cells. A simulated

annealing-based algorithm is used to accomplish this task. The cells being placed vary

in both width and height. A large-tile placement is performed first in which cell-overlap

problems are avoided by operating on a large placement grid. The width and height of

each grid unit is the largest width and height respectively of all the cells. This allows

the placer to determine good global positions for the cells. Once this stage is complete,

the placer starts shrinking the tile through alternating stages of placement optimization

and tile compaction.

This custom placer makes use of FPGA-specific optimizations. In particular, the

logical equivalence of configuration SRAM is leveraged. Every programmable element

in the tile must be controlled by SRAM bits but since all the SRAM bits are identical

it is not essential that any specific bit be used. Similarly, all multiplexer inputs are

equivalent and the data and inverted data outputs of an SRAM are equivalent. By

making use of these logical equivalencies the placer is able to produce more area-efficient

layouts. However, it is significant to note that the placed netlist has been electrically

altered compared to the input netlist. When a configuration for the FPGA is produced,
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these changes must be considered.

Two different routers are used in this work. Both perform the same function of routing

a placed design. The first router is the GILES router developed by Bourgeault et al. in

[7] to perform routing using an iterative maze routing algorithm. If a valid routing is not

found, the router adds rows and/or columns of space into the most congested regions of

the design and routing is attempted again. This process is repeated until a valid routing

is generated. This router was limited in multiple respects. It is unable to handle partial

blockages. If the intra-cell routing of one cell requires an additional metal layer, the

entire layer must be blocked off for inter-cell routing. As well, the router is limited to

using a relatively large routing grid to accommodate larger structures such as vias. This

limits the density of the routing that can be achieved.

An alternative approach to routing has been developed by Egier in [22] in which the

Cadence IC Craftsman router [23] is used. This router is significantly more flexible and

is therefore able to route some designs in a smaller area. A detailed discussion about the

benefits of this router can be found in [22].

Regardless of which router is used, the output from the router completes the physical

layout of an FPGA tile. This layout can then be replicated as necessary to produce an

FPGA of the desired size.

2.5.3 Previous Quality of Results using the GILES Tools

Past efforts in [5], [6] and [7] focused on the development of GILES. Padalia et al.’s

work in [4] offers the first results attempting to quantify, in terms of area, the quality of

FPGA tiles generated using the GILES CAD tools. The Xilinx Virtex-E and the Altera

Apex 20K400E, which are two commercial devices, are used as the basis for comparison.

An approximate representation of the device is made using the VPR ADL [8] since the

authors did not have access to the cell-level netlist used for the commercial devices. The

GILES CAD tools used this architecture description to produce tiles for comparison to

the commercial designs. The results from this comparison are summarized in Table 2.1.

The column, “Actual Area” reports the tile area used in the commercial device. For

the Virtex-E and Apex-E, these tile areas were 35 462 µm2 and 63 161 µm2 respectively.

These areas are obtained directly from the device layouts or extracted from die photos.

Using the automated circuit generation and layout tools, a tile area of 52 268 µm2 for

the Virtex-E and 124 161 µm2 for the Apex-E was obtained. This is listed under the
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Table 2.1: Area Comparisons between Automated and Commercial Designs [4]

Actual Automated Difference Metal Layers
Device Area Area (%) for

( µm2) ( µm2) Automated Design

Xilinx Virtex-E 35 462 52 268 +47 % 8
Altera Apex 20K400E 63 161 124 161 +97 % 8

“Automated Area” column. The tiles produced using the automated layout tools were

47% and 97% larger than the actual Xilinx and Altera devices respectively. The number

of metal layers for the integrated circuit processes assumed by the automated approach

was eight in both cases.

The results indicate that the automated designs are within a factor of two of the

manually designed tiles. However, some weaknesses exist in this comparison. The first

issue is that the Virtex-E was actually constructed using a 0.18 µm2 six metal layer

process [24]. The work in [4] incorrectly assumed eight metal layers were available. Since

most designs produced using the GILES layout tools are routing-area limited particularly

when using six or fewer metal layers, the reported automatic area is likely lower than can

be achieved with a six layer process.

Another issue is the approximate representation of the commercial architectures. As

described in Section 2.5.1, the automated tools require an input architecture description

of the target FPGA. To perform an area comparison with commercial devices, this de-

scription must accurately capture all the attributes of the commercial FPGAs. The term

capture will hereafter refer to the representation of the commercial FPGA used for the

comparisons. A perfect capture would match every transistor in the commercial FPGA.

Producing such an accurate capture is exceedingly difficult and Padalia et al. opted to

create only a rough approximation of the architectural attributes. The accuracy of this

architecture capture was also limited by the capabilities of the VPR ADL and the VPR

Architecture Generator. This led to significant differences between the circuit produced

by the automated tools and the actual version.

For the Apex-E [25], the most significant differences were as follows:

1. The VPR Architecture Generator requires that the number of horizontal and ver-

tical tracks be equal. The actual Apex-E has a different number of tracks in each

dimension. Padalia et al.’s capture of the Apex-E approximates the design by keep-

ing the total number of tracks that same as the actual Apex-E but dividing them
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equally between the horizontal and vertical channels.

2. The Architecture Generator is designed exclusively for island-style FPGAs. The

actual Apex-E has a hierarchical style. In this hierarchy, logic elements similar

to Basic Logic Elements (BLEs) are first grouped in Logic Array Blocks (LABs)

[25] and then the LABs are grouped into MegaLABs. This structure leads to

hierarchical routing that can not be captured by the VPR ADL and, hence, Padalia

et al.’s Apex-E capture does not mimic such structures.

3. The VPR Architecture Generator assumes the logic clusters consist of the simple

BLEs shown previously in Figure 2.2. The actual Apex-E contains additional cir-

cuitry to support carry chains for faster addition and cascade chains for realizing

wide functions. These features were simply ignored by Padalia et al..

For the Virtex-E [24], the most significant differences are listed below.

1. The VPR ADL assumes all routing tracks are bidirectional. In the actual Virtex-E,

some of the tracks are only driven at one end. The Virtex-E capture in [4] treats

these unidirectional lines as regular bidirectional tracks.

2. Like the Apex-E, the actual Virtex-E contains logic clusters with additional cir-

cuitry. Carry chains are included to speed circuits which perform addition. The

LUTs can be connected to act as a 5-LUT and they can also be configured to behave

as RAMs. Again, these differences were not included in Padalia et al.’s capture.

These inaccuracies in both the Virtex-E and Apex-E capture are significant and this

potentially calls in to question the validity of the comparison in [4].

The extent of these differences can be measured by comparing the number of SRAM

configuration bits in a single tile of the automated and commercial designs. This com-

parison is summarized in Table 2.2 with the bit counts listed per FPGA tile. The con-

figuration SRAM count labelled as the “Actual SRAM Bits” count is an estimate of the

number of bits in the true Virtex-E and Apex-E based on the configuration information

provided in [26] and [25]. For the Virtex-E and Apex 20K400E, this estimate is 864 and

2349 bits respectively. The estimate for the Apex 20K400E is more approximate because

Altera does not provide detailed information about which portion of the configuration

bitstream is allocated to each tile. The estimate was produced by dividing the total

configuration bitstream length by the number of tiles in the device. This clearly ignores
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Table 2.2: SRAM Count of Automated and Commercial Designs

Actual SRAM bits
Device SRAM used by

bits [4]

Xilinx Virtex-E 864 669
Altera Apex 20K400E 2349 1230

all the configuration in the periphery as well as any padding that may be present in the

bitstream. The number of configuration bits used in [4]’s automated representation is

669 and 1230 for the Xilinx and Altera devices respectively. In both cases the difference

with respect to the actual device is over 20%. This is significant and it reveals that the

architecture description used in [4] bears only slight similarity to the actual architecture.

This is an unfortunate shortcoming since it prevents a reliable assessment of the state

of automated FPGA design. A more precise comparison is clearly needed and this work

will address this issue by developing an accurate comparison.

2.6 Alternative Automated Layout Methodologies

The work in this thesis is an attempt to automate a design process that has tradition-

ally been performed as a full custom manual design. Numerous alternate automation

methodologies exist ranging from transistor-based to cell-based techniques. Some of the

approaches that have been used in the past and their results relative to full-custom

manual design will be reviewed in the following sections.

2.6.1 Transistor-Based Methodologies

All digital microelectronic circuits are composed of transistors. This is the lowest level

unit that can be easily considered by placement and routing tools. One possibility then

for automatic layout is to simply place and route the transistors that constitute the

design. Such approaches are termed transistor-based methodologies. This has been a rich

research area and various past efforts will be reviewed.

Most past work has focused on applying this transistor-based approach to fixed-

height cell design. One technique popularized by Uehara and van Cleemput in [27] is

a one-dimensional technique where two parallel n and p diffusion regions are used for

implementing transistors. Power rails run parallel to these rows. In [28], Hsieh et al.
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modified this general one-dimensional approach to allow routing anywhere between the

power and ground rails. One challenge faced by Hsieh et al. is ensuring diffusion sharing

is used where possible. Opportunities for diffusion region sharing emerge when two tran-

sistors share a common source or drain. To ensure as many such opportunities are used,

Hsieh et al. use an optimal chaining algorithm. For larger transistors, a folding algorithm

was developed to divide those larger transistors into multiple fingers. A comparison with

manual cell layouts was then performed for multiple cells. The automatically generated

layouts ranged from 17% smaller to 8% larger for cells having between 4 and 28 transis-

tors. A total of six cells were compared and in four of them the automatically generated

layout proved to be larger.

Hwang et al. in [29] were able to improve on the results obtained by Hsieh et al. For

twenty-four cells with transistor counts ranging from 2 to 32, Hwang et al.’s layouts were

on average 4% larger than manual layouts of the same cells. The best result obtained was

18% smaller than the manual layout and the worst result was 17% larger. However, both

the manual and automated layouts used the same layout style of one-dimensional rows

of n and p transistors. With more freedom a human designer might be able to achieve

better results than are possible when confined to a specific style.

This incomplete success with one dimensional layout motivated later work that pur-

sued a two-dimensional style. Using a two-dimensional style, transistors can be placed

both horizontally and vertically. This is more like manual custom design as the con-

cept of rows is eliminated. In the AKORD project [30] and later follow up work [31],

this placement style was used for designing data path layouts. The placement tool is

simulated-annealing based and supports moves such as transistor folding and diffusion

merging. With this tool, one benchmark circuit was 8.7% smaller than a manual design

but the remainder of the designs ranged from 0% to 18% larger. All the circuits however

contained fewer than 72 transistors.

Clearly, with the transistor-based methodology, there is a great deal of freedom in the

optimizations possible and the results with these tools approach the area quality achieved

by manual designers. The run times reported for these transistor-based methodologies

were on the order of minutes [30] which is reasonable. However, none of these past

researchers considered the issue of scaling these techniques to handle the approximately

10 000 transistors typically found in an FPGA tile. Therefore, it remains an open question

as to whether this transistor-based design methodology can accommodate large designs

like FPGA tiles.
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2.6.2 Standard Cell Based Design

An alternative to operating on the transistor level is to group transistors into cells.

Typically, these groupings form cells that implement various logic gates ranging from

simple inverters, AND gates, and multiplexers to more complex AND-OR-INVERT gates,

adders and flip-flops [32, 33]. While a range of cell-based techniques are possible, the most

frequently used style is standard cell design. An example of this is shown in Figure 2.9.

With standard cells, all cells regardless of functionality have the same fixed height and

only the cell’s width varies [33]. Power and ground rails run the full width of the cell. This

allows the power and ground connections to be made simply by abutting cells. In the past,

additional space was needed for routing channels [33]. However, with the numerous metal

layers available in modern processes, this is no longer necessary and typically routing can

be performed over the placed cells [32, 34]. With this standard cell-based approach,

the user need only be concerned with the connections between cells thereby avoiding

many complex layout issues. Numerous vendors such as Artisan Components [35] and

Virtual Silicon Technology [36] now offer standard cell libraries for various processes.

These libraries are pre-characterized and come in a range of cells over a discrete range

of drive strengths. With these libraries, a designer can easily create new designs using

commercial tools, such as those from Cadence [37, 38] and Synopsys [39], which automate

synthesis, placement and routing. The automated tools allow the user to easily control

target parameters such as aspect ratio and row utilization. Aspect ratio refers to the

ratio of layout height to width or vice versa. Row utilization is calculated as the total

area of the standard cells relative to the total area available for placement [32]. It is

reported as a percentage and it indicates the area efficiency or density of the design.

Lower values simplify both placement and routing while higher values make the design

more area-efficient. This standard cell approach has been widely adopted for the design

of ASICs in industry [32, 33].

Despite this widespread adoption of standard cell design, it is widely felt that it too
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Table 2.3: Comparison of Design Techniques from [40]

Custom Crafted Bit-sliced Fully
Cells Standard Automated

Cells Std Cells

Area 1.0 1.64 5.25 14.50
Delay 1.0 1.11 2.23 N/A
M2 Length 1.0 1.07 4.19 34.9
M3 Length 1.0 1.63 2.52 7.92

does not deliver the area and speed performance that would be possible with manual

full custom design. Dally and Chang in [40] examined this issue for data path circuits.

The authors explored four different design techniques. The first technique is the full

custom manual approach. With this approach, extensive global and local wire planning

is performed. The structure of the design is also preserved by recognizing the regularity

of the bit slices. Finally, transistors are also sized to match the load they will drive.

The next approach considered was the crafted cell approach. With this layout technique,

the standard cell library is augmented with additional cells required by the design. For

instance, a register cell which requires six library cells is implemented as one of the

crafted cells. A manual synthesis process was performed for a single bit slice. Placement

was also manual but final routing was automated. The data path is then completed

by tiling the individual bit slices. Another alternative that was explored was the bit-

sliced standard cell approach. With this technique, the entire design process including

synthesis, placement and routing was performed using automated tools for a single bit

slice. The basic standard cell library without the additional crafted cells was used. The

bit slices were again replicated to complete the data path. The final approach considered

is fully automated standard cell design. Starting from a Verilog description, the entire

design process is performed automatically for the entire data path. Again, the basic

standard cell library is used as the target library. All design approaches used only static

CMOS circuitry.

The results obtained by Dally and Chang are summarized in Table 2.3. The data

clearly demonstrates that the full custom approach offers the best performance over the

range of parameters considered. The area measurements showed that the best automated

technique, the crafted cell approach, was 64% larger than the full custom design. This

demonstrates that future tools will need to capture more human intuition if the auto-

mated tools are ever to equal or surpass the layout density acheived by manual designers.
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The authors also report that the area increase is at least partly due to the routing grid

required by the automated router.

In terms of delay through the data path, there is significantly less variation in the

results relative to the full-custom design. The crafted cell approach is only 11% slower

than the custom design but was produced with a fraction of the effort. This is an

interesting result which suggests automated layout tools may offer a potential trade off

of time to market and increased processing cost due to the increased area.

The authors also report the metal layer 2 and 3 wirelengths. Here the automated

approach again performs significantly worse than custom. The crafted cell technique has

7% and 63% longer wirelength on metal layers 2 and 3 than the full custom design. Due

to the larger area required for the crafted cell design, the wirelength was expected to

be longer than the full-custom design; however, the increased area does not justify the

63% increase in metal 3 length. Dally and Chang suggest that the full-custom design

benefited from a “wires-first“ approach in which wire planning is undertaken early in the

design process. The automated tools currently do not perform such early wire planning

and the authors suggest that future automated design flows should be wiring-centric.

The other design techniques, bit-sliced and fully automated, perform significantly

worse than the crafted cell approach. There is clearly a significant advantage to recog-

nizing the hierarchy present in a design. It is also apparent that a library augmented

with cells specific to the design offers considerable area and delay savings.

These results are specific to a data path but it clearly suggests that standard cells

incur significant overhead relative to custom designs. This result will likely apply to

FPGA design as well. The tile-based approach used by the GILES tools is somewhat

similar to the crafted cell technique. With the GILES automated circuit generation tools,

the synthesis process is automated but has been tailored specifically to FPGAs. As well,

the idea of laying out a single tile and replicating it is very much like the idea of tiling

bit-slices. Therefore, this suggests that area results between 1.64 and 5.25 times larger

than manual should be possible using the GILES automated layout tools although the

number of transistors that must be laid out by the GILES tools is much larger.

Standard cells have also been used in programmable architectures such as the Totem

Project [16]. Totem focuses on Domain-Specific Reconfigurable systems and it can target

a range of programmable circuit implementations. The approach uses a standard ASIC

flow starting from behavioural Verilog. A Synopsys tool was used to synthesize the de-

sign into a library of standard cells that has been augmented to include FPGA specific
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cells. Cadence Silicon Ensemble [38] was then used to place and route the design. Row

utilization was set to the highest value for which the design was routable. Using this

methodology, it was found that standard cell tools can produce a design that is 270%

larger than a full custom manual design. This project also allows for the design to be

optimized producing less flexible programmable designs. Using domain specific architec-

tural reductions, the standard cell design can be made 2.1x smaller than the complete

full-custom implementation. The ability to easily regenerate new designs highlights one

of the benefits of automated design but the area result clearly demonstrates that, in the

direct comparison, standard cells lead to a significant area increase.

Kafafi et al. in [12] also used a standard cell design methodology for designing em-

bedded programmable logic cores. A standard ASIC flow was used with synthesis in

Synopsys and physical design in Cadence. This ASIC flow restricted the programmable

architecture to one having a directional bias. The directional architecture eliminates the

combinational loops that cause problems for synthesis tools but it is less flexible since

the routing only flows in one direction. Using such an architecture, Kafafi et al. created

a design consisting of a directional 4 by 4 array of 3-LUTs. This design required an

area of 81 092 µm2 when produced using the ASIC tools. For comparison, the authors

estimated the size of the custom layout. The estimated custom area for the same design

was 12 868 µm2 which is 84% smaller than the version created with the commercial tools.

These results from past researchers suggest that the standard cell design methodology

has the capacity to handle programmable designs such as an FPGA tile which contains

on the order hundreds to thousands of cells [7]. However, this approach appears to

consistently incur a significant overhead with respect to custom designs. One of the

goals of this work is to reduce this difference eventually allowing automated designs to

surpass the area efficiency of manual layouts.



Chapter 3

Area Efficiency Measurement of

Automated FPGA Layout

3.1 Introduction

The goal of this research is to demonstrate the utility of automated FPGA design and

layout. The utility of these techniques depends in part on the ability of the automated

system to produce high quality layouts. This chapter will assess the quality of FPGA

layouts produced by the GILES layout tools [4] through an area comparison between

automatically-generated and manually-created designs. To make this a fair comparison,

an accurate capture of a commercial device, the Xilinx Virtex-E [24], will be used and this

capture will be presented in Section 3.2. The accuracy of this capture will be measured in

Section 3.3. Then, in Section 3.4, this capture of the Virtex-E will serve as the basis for

comparisons between automatically-generated and manually-created layouts. For these

comparisons, the automated layout will be performed using the GILES layout system

that was introduced in Chapter 2. An alternate approach to the GILES layout system is

to use commercial standard cell-based tools and, in Section 3.5, the area results of these

two automated methodologies will be compared. Finally, the results from all the design

styles will be summarized in Section 3.6.

3.2 Accurate Capture of Virtex-E Circuit

The aim of accurately comparing manually-created and automatically-generated layout

areas requires that similar, or ideally identical, circuits are used as the basis for com-

24
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parison. As described in Chapter 2, the prior work by Padalia et al. [4] used a very

approximate capture of the Virtex-E and the Apex-E, which called the validity of the

comparison into question. One issue that was ignored by Padalia et al., is that this

capture, which was previously defined to describe a representation of a target FPGA,

can have varying degrees of detail. At the highest level of abstraction, an architectural

capture encapsulates all the logical attributes of an FPGA. This was the level of accu-

racy sought by Padalia et al. [4]. Such an architectural capture ensures identical logical

functionality; however, there are many possible circuits that implement this functional-

ity. Therefore, a more detailed description of the device, called a circuit-level capture, is

needed to describe the circuits used in the target FPGA to realize the logical behaviour

of the architectural capture. As an example, this circuit-level capture would correctly

describe whether switches are implemented using a single driver and a multiplexer or

using multiple tri-state buffers. At this level of accuracy, the number of transistors in

the capture should match the number in the FPGA being captured. This however does

not address the issue of sizing these transistors and a more comprehensive electrical cap-

ture describes these details. An accurate electrical capture should describe an electrically

identical device. When comparing layout methodologies exclusively, this level of accuracy

is required and such accuracy will be sought in this work.

The difficulty in producing such an accurate capture of a commercial device is that

the netlists describing the circuits in the FPGAs are generally not publicly available.

Therefore, to create a capture, a specific FPGA was reverse engineered in this work.

Unlike Padalia et al.’s [4] capture, this new electrical capture was not restricted by the

semantics of the VPR ADL since a new set of tools was developed to produce the capture.

Even with these new tools creating an accurate electrical capture is a time-consuming

process and this work only attempted one such capture. The device selected for this

capture was the Xilinx Virtex-E for the following reasons:

1. The availability of the Xilinx FPGA Editor [41] which shows all the possible connec-

tions available in a Xilinx FPGA. Such information is necessary to reverse-engineer

a device.

2. The island-style structure of the Virtex-E is well-suited to the tile-based layout

methodology.

3. The TSMC 0.18 µm process available at the University of Toronto through the

Canadian Microelectronics Corporation (CMC) is similar to the process from UMC

used by Xilinx for the Virtex-E. This means that layout design rules will be com-
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Figure 3.1: Virtex-E Configurable Logic Block

parable and similarly sized layouts should be achievable.

3.2.1 Virtex-E FPGA Architecture

Before detailing the capture of the Xilinx Virtex-E, its structure will first be described

since it differs considerably from the structure discussed in Section 2.4 that is produced

by the VPR Architecture Generator. A central feature of the Virtex-E is its logic clusters

which are called a Configurable Logic Blocks (CLBs). As shown in Figure 3.1, these logic

clusters are divided into two halves called slices. Each slice contains two 4-input LUTs

and two flip flops. The LUT can be used as a regular LUT, a RAM and a shift register and

the flip flop can be configured to be edge or level sensitive. Inside each slice is additional

logic to support faster addition, a carry chain and multiplexing of the LUT outputs. The

inputs to the two slices can come from various routing tracks or from some of the CLB

outputs. However, unlike the logic cluster created by the VPR Architecture Generator,

all the inputs to the cluster are not logically equivalent and, instead, each cluster input

has a unique function. For consistency with the terminology defined in Chapter 2, the

set of programmable connections into the CLB will be called the Input Connection Block

and the connections out of the CLB will be called the Output Connection Block.

The routing network in the Virtex-E consists of three different track lengths. Length
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one tracks connect to each of the neighbouring CLBs and there are twenty-four such

connections in each direction. In each dimension there are also seventy-two length six

tracks. Two thirds of these lines are only driven at one end and are called unidirectional

routing tracks. This is a significant difference compared to the routing created by the

VPR Architecture Generator since all the tracks it creates can be driven at either end.

The remaining one third of the tracks can be driven at either end and will be called

bidirectional tracks. Twelve buffered long lines that span the entire length of chip are

provided in both dimensions as well. Finally, there are also four tri-state busses in the

horizontal direction. These resources are connected to each other through a switch block-

like structure. Xilinx refers to this as a General Routing Matrix (GRM).

3.2.2 Methodology

The process of producing an accurate electrical capture begins with an architectural

capture. That capture is then refined to produce a circuit-level capture. Finally, the

transistors in the circuit are sized and a complete electrical capture is generated. The

process used to create each of these captures is described in the following sections.

Architectural Capture

The architectural capture was produced using information from the Xilinx FPGA Editor

[41]. This tool provides detailed logical information about the FPGA. An example of

the information from this tool is shown in Figure 3.2. This figure is a screen capture

of the operating tool and it shows the logical view of a Virtex-E CLB slice. This logi-

cal information was extracted from the tool and formed the basis for the architectural

capture.

The routing resources were considered first since these resources compose approx-

imately 70-90% of an FPGA’s circuit area [3]. In performing this capture of routing

resources, the desire for an exact capture must be balanced with the time and effort re-

quired to produce that capture. In this work, an exact capture was used where possible.

However, if producing the exact capture requires a substantial effort with little potential

improvement to the accuracy of the layout area, then a simplified capture was used.

Based on this principle, the input and output connection blocks were replicated exactly.

This was feasible since there are only twenty-six outputs from the input connection block

and eight outputs from the output connection block and, therefore, enumerating all the
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Figure 3.2: Logical View of Virtex-E Slice from Xilinx FPGA Editor

connections was a manageable task. However, for the switch block an exact capture

would require significant effort since it has over sixty-four tracks with hundreds of pos-

sible sources. To produce the capture in a reasonable amount of time, only the number

and type of connections were captured and the tracks were interconnected randomly.

For the logic block, all the connections shown in FPGA Editor were replicated except

for an advanced mode which allows many LUTs to be connected together to form a shift

register. This behaviour was not included in the architectural capture again because of

the significant effort it would entail.

Circuit-Level Capture

Next, the complete architectural capture was mapped to specific electrical circuits that

realize the desired behaviour. It was necessary to make some assumptions since this

circuit-level information is not provided in any Xilinx data sheets or in the Xilinx FPGA

Editor. The most significant assumption is that the routing in the Virtex-E is multiplexer-

based. This assumption is predicated on the existence of Xilinx patents detailing the

discovery of a compact layout for six-input multiplexers [42, 43]. Since numerous routing

tracks driven by six possible inputs were observed, it is logical to assume that the compact

six-input multiplexer layout is used [42]. For consistency, other routing, even when not
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driven by six potential inputs, is also assumed to be multiplexer-based.

Given this assumption, the structure used for routing tracks is shown in Figure 3.3.

The select lines for the multiplexers and the connections to the gates of transistors con-

trolled by configuration SRAM bits are not shown in the diagram. For bidirectional

tracks, it is assumed that multiplexers followed by tristate buffers are used to drive the

tracks. As can be seen in the figure, an NMOS pass transistor is used to implement the

tristate functionality.

For the logic block, translating the architectural features to circuits is straightforward

in most cases. Elements shown as multiplexers in the FPGA Editor are assumed to be

implemented as multiplexers composed of NMOS pass transistors. This is a sensible

choice since it provides reasonable speed in minimal area. However, for some blocks, the

circuit-level implementation is not transparent. This applies in particular to the LUT and

flip-flop, which differ significantly from the simple structures used by the GILES circuit

generation tools [5]. Patents from Xilinx, [44] and [45], were used to determine the

circuitry for these elements respectively and the circuits were replicated where possible.

The patents do not show some portions of these blocks in detail and, hence, only an

approximation of these segments is possible.

Electrical Capture

To make the most accurate capture, it is necessary to determine proper transistor sizes

for each of the the circuit elements. Most cells including the multiplexers, flip-flops and

configuration SRAM bits are implemented using minimum-width transistors. This is

reasonable since it minimizes both the area and the capacitive load on other elements.
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The transistors in buffers have a significant range of sizing possibilities and occur

frequently in the captured Virtex-E. Therefore, a more thorough sizing procedure is used

for these elements. The procedure that was used is based on Betz et al.’s work in [8]. For

this process, each type of routing resource is considered independently. The resource is

loaded with multiplexers and buffers as determined by the captured netlist. The delay

through the routing track is measured as the delay from the input to the multiplexer to

an output at the opposite end of the track. The area of this resource is measured in terms

of minimum-width transistor areas. This minimum-width transistor area is calculated

using the following approach from [8]:

Min.Width xtor Area(trans) = 0.5 +
DriveStrength(trans)

DriveStrength(min.width)
(3.1)

Simulation was performed in HSPICE [46] for varying buffer sizes. The buffer size that

minimized the area-delay product for the resource under test was selected. This pro-

cess was also repeated to determine appropriate pass transistor sizes for bidirectional

resources.

A netlist describing this final capture of the Virtex-E can be found at http://www.

eecg.utoronto.ca/~jayar/software/virtexe/netlist.html. For convenience, the

netlist is given in Verilog instead of the custom netlisting language used by the GILES

tools.

3.3 Accuracy of Virtex-E Capture

Before using the Virtex-E capture to measure the area efficiency of the layout tools, the

quality of the capture was first measured. In particular two metrics were considered:

1. Configuration SRAM count,

2. Total active area.

For both metrics, the Virtex-E capture was compared to the actual Virtex-E and the

results are summarized in Table 3.1.

3.3.1 Configuration SRAM Count Comparison

If the designs are identical, the amount of configuration SRAM should be equal. Xilinx

provides information about the the number of bits in the configuration bitstream that
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Table 3.1: Comparison of Virtex-E Capture and Actual Virtex-E

Virtex-E Actual % Difference
Capture Virtex-E

Configuration SRAM Count 838 864 -3.0 %
Active Area 39 250 µm2 35 462 µm2 +10.1 %

are allocated to a single tile. For the Virtex-E, there are 864 bits per tile [26]. This is

the maximum number of configuration bits that can be in a tile. There can potentially

be fewer bits that are actually used in the tile since some bits in the bitstream may be

reserved for future functionality or may have only been used in prior designs. Also, the

Virtex-E organizes the bitstream into frames. For each tile there are 48 frames each

containing 18 bits for a single tile. Given this structure, it may be desirable to keep

the number of bits per frame constant and, as a result, some of the frames may not use

all 18 allocated bits. In any of these cases, while the bits remain in the bitstream, no

configuration SRAM would be present to store those bits. Therefore, the Virtex-E can

be considered to have at most 864 bits.

The capture of the Virtex-E described in Section 3.2 contains 838 configuration SRAM

bits. This is within 3.0% of the actual maximum which indicates that the designs are

quite similar. This is also a notable improvement from the prior capture used in [4] which

contained 669 SRAM bits. The differences that remain in the current capture are likely

due to some of the following factors.

1. There are known differences, such as the lack of multiple LUT SRAM modes,

between the capture and the actual device.

2. Some features requiring configuration may not be shown in the Xilinx FPGA Editor.

As a result, those features would not be included in the Virtex-E capture.

3. There is also the possibility that some functionality was encoded differently in the

captured Virtex-E since FPGA Editor only provided a logical view of the function-

ality. For example, the six input multiplexer is encoded using three bits [43, 42]

but the encoding of other multiplexers is unknown. The capture uses the minimum

number of configuration bits required. It is possible some multiplexers in the actual

Virtex-E may be encoded using an alternate approach such as a one-hot encoding.
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3.3.2 Active Area Comparison

Identical designs should also have identical active areas. Betz et al. in [8] stated that

FPGA manufacturers report that their designs tend to be active area-limited. Hence, the

total tile area can be used as a measure of the transistor area required for the design. As

shown in Table 3.1, this gives an active area of 35 462 µm2 for the actual Virtex-E. For the

Virtex-E capture, the active area is calculated as the sum of the areas for each individual

cell in the netlist. By this measure, the capture has a total active area of 39 250 µm2

which is within 10.1% of the actual area. This indicates both that a similar amount of

circuitry is being used in the Virtex-E capture and that the area estimator is producing

results that will allow for a conservative comparison between the automatically-generated

and manually-created designs.

There are a few possible reasons why the Virtex-E capture has a larger active area

than the actual Virtex-E. One factor is that there is an area overhead associated with the

cell-based approach used by the automated layout tools. This overhead is a result of a

border of empty space that must be left around every cell layout to satisfy all the design

rules. In many cases, this border is excessively conservative but it is necessary because

the automated layout tools are not aware of the cell contents and their associated design

rules. The empty space is included as part of the total active area and, therefore, this

contributes to the capture’s larger active area. Another possible factor is the cell layouts

used in the Virtex-E capture may not be as area efficient as those produced by skilled

designers. At Xilinx, significant time is likely spent producing extremely dense layouts.

For example, an efficient six-input multiplexer layout described in [42] has even been

patented. Xilinx also has gone further and, in [43], a compact layout is described for

two six-input multiplexers that share some common inputs. The Virtex-E capture from

Section 3.2 does not take advantage of such opportunities. Therefore, with less efficient

layouts, the larger cell area for the Virtex-E capture is not surprising.

3.4 Automated and Manual Layout Area Compar-

isons

The goal of determining the quality of an automatically generated FPGA layout requires

an accurate comparison to manual created layouts. In this section, the accurate Virtex-

E capture described in Section 3.2 is used with the GILES automated layout tools to
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produce a layout that is compared to the manual design created by Xilinx. As will be

shown, the results are dramatically affected by the number of metal layers, the transistor

grouping, cell bloating and the allocation of the metal layers.

3.4.1 General Methodology

The layouts used for the comparisons were generated using the CAD flow shown in

Figure 3.4 for all the experiments. The capture was constant for all the experiments

but the transistor grouping, the cell bloating factor, the number of metal layers and the

allocation of those layers was varied. The output from the CAD tools was the total area

of a routed tile that implements the electrical capture under the specified conditions.

Netlist Generation

The first step in the CAD flow is the Virtex-VPR LAYOUT circuit generation tool which

uses the electrical capture to produce a cell-level netlist describing the Virtex-E capture.

The output netlist must be at the cell-level for the GILES placer and router to operate

effectively. Many different groupings of transistors into cells are possible. Prior work by

Egier in [22] has found that these groupings have a significant effect on the final routed
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area because a boundary of white space around the cells must be added to satisfy the

design rules (in particular, the n-well spacing rules) since the GILES layout tools are

unaware of the cell contents. The effect of transistor groupings on the Virtex-E capture’s

layout area is examined in Section 3.4.3.

Since there are various possible transistor groupings, there are a large number of

possible cells required by the GILES tools. The area of each cell must be known by the

GILES tools but it is not feasible to manually construct all these cells. Instead of creating

each cell, an estimated area will be used. Egier in [22] developed a model to produce

these area estimates. It is based on Betz et al.’s approach from [8] of using minimum-

width transistor areas to model area. Egier’s area model was found to estimate the cell

area with an average absolute error of 5.8% relative to some test manual layouts. Over a

range of architectures, the final routed area using cells with estimated areas was between

3.2% and 8.0% larger than when manual cells were used. This accuracy was considered

sufficient for the comparisons that were performed in this work. In Section 3.4.4, the

estimated cell areas are increased by a common factor and the area effect of that change

is observed.

The Virtex-VPR LAYOUT tool created for this work incorporates the area model

and the variable transistor groupings. Despite the fact that only a single architecture,

the Virtex-E capture, is being produced, creating a custom tool based on the frame-

work provided in VPR LAYOUT [5] was necessary to ensure proper operation with the

remaining GILES tools. In particular, the tool ensures that configuration SRAM are

created as needed and properly connected to programmable elements. It also allows for

easy experimentation with area and grouping decisions.

Placement

The GILES placer created by Fung [6] then places the netlist produced by Virtex-

VPR LAYOUT. The output placement is strongly influenced by the random seed used

to initialize the placer’s random number generator. Those random numbers are needed

by the placer’s simulated-annealing based algorithm. To reduce the noise introduced by

this algorithm, all experimental runs were repeated ten times using different seeds for

each trial.
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Routing

Next, the placed netlist was routed using the GILES router developed by Bourgeault et

al. in [7]. This router is sensitive to the ordering of the nets within the netlist; however,

the variability in the outcome is not as significant as that seen with the placer. To reduce

the computing time required, only one routing was performed for each trial placement.

The smallest routed area of all the placement trials is reported as the final area in all

experiments. This approach assumes that a user will be able to afford the additional

computing time required to perform the multiple placement and routing runs.

The GILES router is also sensitive to the available number of metal layers. A metal

layer must be free from obstructions for the inter-cell router to use it since the router

can not handle blockages. As a result, the user must plan the usage of the metal layers

prior to routing. There are three purposes for which a layer can be allocated: global,

inter-cell and intra-cell routing. The global interconnect is needed to distribute power

and ground between tiles. Within a tile, the cells are connected with inter-cell routing.

It is these inter-cell routing layers that are used by the GILES router. Finally, intra-cell

routing is used for connections within the cells. This routing is completed manually by

a cell layout designer.

Throughout this work, one metal layer is reserved for global interconnect. The num-

ber of layers allocated for intra-cell and inter-cell routing will be varied. Given a fixed

number of intra-cell and global routing layers, the only way to increase the number of

inter-cell routing layers is to consider processes with more metal layers. In 0.18 µm

CMOS, processes with between six and eight metal layers are available and, therefore,

it is reasonable to explore the effect additional metal layers have on the routed area. It

should be noted that the assumption that one layer is sufficient for global power and

ground distribution may be optimistic.

3.4.2 Area Result with the Original GILES Tools

Using this general methodology, the layout area of the Virtex-E capture will now be

compared to the manual layout of an actual Virtex-E. For this first comparison, the

configuration of the flow in Figure 3.4 will be as follows:

1. The original transistor grouping used by Padalia et al. in [4] will be used.

2. No cell bloating will be used.

3. Cells will use two metal intra-cell routing layers.
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Table 3.2: Effect of Metal Layer Count on Tile Area (Original Grouping)

Number of Tile Area Percentage Difference
Metal Layers Relative to Actual

Virtex-E

6 105 921 µm2 198%
7 52 377 µm2 48%
8 43 530 µm2 23%

4. The total number of metal layers will be varied between six and eight.

Under these conditions, the Virtex-E capture has a tile area of 105 921 µm2 when

using six metal layers. This is the same number of layers that were used in the actual

Virtex-E. Compared to the actual Virtex-E which has a tile area of 35 462 µm2, this is

an increase of 198%.

The result as the number of metal layers is varied is shown in Table 3.2. It is apparent

that the routed area decreases dramatically with an increasing number of metal layers.

With seven metal layers total, the area dropped significantly to 52 377 µm2 and, with

eight layers, the area was further reduced to 43 530 µm2. The addition of just one inter-

cell routing layer when the total number of layers was increased from six to seven resulted

in the most significant area improvement. This suggests that the design is highly con-

gested since, when routing the design in six metal layers, the router is forced to increase

the area significantly to obtain a successful routing.

3.4.3 Effect of Transistor Grouping on Area

The area results with the original transistor grouping are clearly not on par with the

manual designs. To improve these results, the transistor grouping was changed since, in

[22], Egier reported that alternate groupings can reduce the layout area. Egier considered

three possible classes of transistor groupings derived from the original transistor groups

used by the GILES tools [5]. These classes were functional groupings which grouped cir-

cuit elements based on their functionality, SRAM grouping which grouped the individual

SRAM bits into groups of bits and a combination of the two grouping styles [22]. For

each class, Egier determined the best grouping based on the area savings it delivered.

In terms of functional groupings, the best grouping was found to occur when a buffer, a

pass transistor and an SRAM bit were grouped to form a new cell used by the GILES
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Table 3.3: Area Results with Varied Transistor Grouping

Grouping Tile Area Percentage Difference
Relative to Actual

Virtex-E

Original Grouping 105 921 µm2 198%
Buffer, Pass Transistor and 101 752 µm2 187%

SRAM bit Grouping
Buffer and Pass Transistor, and 161 444 µm2 355%

4x4 SRAM Grouping

tools. This grouping will be called a buffered switch grouping. The best SRAM grouping

was found to occur when a 4x4 arrangement of SRAM bits was placed in a single cell. A

combination of that SRAM grouping with a buffer and a pass transistor grouping yielded

the best combined grouping.

Both the functional buffered switch grouping and the combined grouping suggested

by Egier were used with the Virtex-E capture and the results are compared in Table 3.3

to the tile area with the original cell grouping. In all cases, the conditions for the

experiments were the same as in Section 3.4.2 except the grouping was varied. The table

lists the three groupings that were attempted and the final routed area of a single tile

using six metal layers for each grouping.

A grouping of SRAM bits into a four by four arrangement combined with a grouped

pass transistor and buffer was reported to offer the best area improvement by Egier [22].

However, when that grouping is used with the Virtex-E capture, an area of 161 444 µm2

was obtained which is 355% larger than the actual Virtex-E tile and 52% larger than the

area obtained when the original transistor grouping is used.

Such a large increase in area was not expected based on the results from [22]. However,

Egier did observe that groupings of SRAM bits into multi-bit arrays increased wirelength

demands while reducing placement area. This leads to an increase in wiring congestion.

In [22], Egier focused on placement area savings, and routing was conducted relatively

free from congestion. This is a very different case than with the Virtex-E capture which

is a highly congested design when routed in six metal layers. It appears the router has

difficulty with the increased congestion caused by the grouping of SRAM bits and, as a

result, a larger area is needed for routing. Groupings involving SRAM bits were therefore

avoided in the remainder of this work.
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Table 3.4: Area Results with Buffered Switch Grouping

Metal Layers Original Buffered Percentage Difference
Grouping Switch Relative to Original

Grouping Grouping

6 105 921 µm2 101 752 µm2 -3.9%
7 52 377 µm2 50 194 µm2 -4.2%
8 43 530 µm2 39 976 µm2 -8.2%

Egier also suggested an alternate grouping of a buffer, pass transistor and SRAM

bit called a buffered switch grouping. This cell grouping does not typically lead to

increased wiring congestion since both wirelength and placement area were reduced when

this grouping was applied to the test architectures. As shown in Table 3.3, using this

grouping, the tile layout area of the Virtex-E capture was reduced to 101 752 µm2. This

is only 187% larger than the actual Virtex-E tile.

Table 3.4 shows the effect of an increased number of metal layers when this grouping

is used. An increased number of metal layers again reduces the routed area of a tile.

The tile area is only 50 194 µm2 when seven metal layers are available and 39 976 µm2

when eight metal layers are available. All these results are an area improvement over the

original grouping. The improvement ranges from an area savings of 3.9% with six metal

layers to an 8.2% reduction with eight metal layers. In all cases, the savings are less

than the 9.8% area improvement predicted by Egier’s work [22]. The reason for this is

again due to the fact that Egier performed his experimentation on relatively uncongested

designs. The congestion of the Virtex-E capture reduced the area improvements. It is

only with eight metal layers that the congestion eases and an area reduction similar to

that acheived by Egier is obtained. Regardless, this transistor grouping does reduce the

routed area and it is used for the remainder of this work.

3.4.4 Effect of Cell Bloating on Area

The best result that has been obtained for the Virtex-E capture in six metal layers

with the automated layout tools is still 187% larger than the manual design. This is

unsatisfactory since the goal of this work is to equal or improve on the results possible

with manual designs. One way to reduce the layout area may be to improve the strategy

for handling congestion. Currently, when a design is too congested for the GILES router
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Figure 3.5: Cell Bloating with Six Layers of Metal

to succeed, rows and columns of white space are inserted to ease the congestion and then

routing is reattempted [7]. However, this simple row and column insertion strategy may

not be optimal. One alternative approach is to treat the cells as being larger than they

actually are during placement. This technique has been called cell-bloating by Adya et

al. [47]. Essentially this technique provides more space above each cell for routing.

This cell-bloating technique will be applied to the layout of the Virtex-E capture by

increasing the size of all the cells by a fixed factor. This cell bloating factor is input to

the Virtex-VPR LAYOUT tool as shown in Figure 3.4. This will increase the placement

area but should ease the congestion encountered during routing.

To test this hypothesis, placement and routing were performed with varying degrees

of cell bloat. Each cell was increased by the common inflation factor. The results are

shown in Figure 3.5 with the line connecting the best area at each inflation factor. Each

point in the figure is the tile area from a trial with a different random seed. At 30%

cell inflation, a 3% area reduction to 98 680 µm2 is observed. However, with no cell

inflation the maximum area observed was 41% greater than the minimum and with such

a large variation from random seeds alone, a 3% improvement from cell bloating is not
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significant. Another approach is needed to produce more compact layouts.

3.4.5 Effect of Metal Layer Allocation on Area

Up to this point, the allocation of the metal layers has been kept the same and all

the experiments have been performed with cells that use two metal layers for intra-

cell connections. These layers are completely un-available to the inter-cell router. Two

observations suggest this may not be optimal:

1. Many standard cell libraries use only one metal layer [48, 49]

2. The significant decrease in area observed in Sections 3.4.2 and 3.4.3 when the

number of metal layers is increased from six to seven suggests that an additional

inter-cell routing layer may be advantageous. To achieve this in a six metal layer

process, the number of layers used for intra-cell routing could be reduced.

These observations motivated the reallocation of the metal layers in the experimental

CAD flow. This affects the routing stage of the CAD flow shown in Figure 3.4 since now

there will be four layers available for inter-cell routing but only one layer for intra-cell

connections.

Before a comparable layout can be produced with one metal layer cells, the area of

these cells must be determined. Unfortunately, the area estimation model developed by

Egier in [22] was designed for two-metal layer cells and it will not correctly estimate

the area of a one metal layer cell. To address this problem, the cells required for the

Virtex-E capture were laid out by So in [50]. In Table 3.5, the area of these one metal

layer cells is compared to the two metal layer cells. The single metal layer cells require

on average 18.8% more area. An increase was expected since the layout of the cells is

more challenging when fewer metal layers are available. The impact from these cells on

the total cell area is shown in Table 3.6. In the table, active area refers to the sum of

the cell areas and it is 9.5% larger for the one layer cells relative to the two metal layer

cells. The increase in area is less than the average cell area increase because some cells

are used more frequently than others. For example, the SRAM cell is one of the most

frequently used cells and its area did not increase.

The routed tile area results using these new one metal layer cells are shown in

Figure 3.6 and summarized in Table 3.7. There is a significant reduction in area when

using the one-metal-layer cells and an extra inter-cell routing layer. When using six metal
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Table 3.5: Cell Area Differences Between One and Two Metal Layer Cells [50]

Cell Name Area with Area with Percentage
Two Layers One Layer Difference

1x Inverter 13.1 15.7 20.0%
2x Inverter 13.1 18.3 40.0%
4x Inverter 15.7 21.3 36.1%
4x Buffer 24.4 24.4 0.0%
2 Input MUX 10.9 13.1 20.0%
12 Input MUX 68.0 71.9 5.8%
24 Input MUX 149.0 174.2 17.0%
LUT 91.5 107.6 17.6%
SRAM 21.3 21.3 0.0%
Pass transistor 3x 8.7 13.1 50.0%
Pass transistor 8x 13.1 13.1 0.0%

Average Area Increase 18.8%

Table 3.6: Active Area Differences Between One and Two Metal Layer Cells

Two Layer One Layer Percentage Difference
Cells Cells Relative to Two

Active Area Active Area Layer Cells

35 835 µm2 39 250 µm2 +9.5%

Table 3.7: Comparison of Routed Area of One and Two Metal Layer Cells

Number of Routed Area for Routed Area for Percent
Metal Layers Two Metal Layer Cells One Metal Layer Cells Difference

6 101 752 µm2 48 282 µm2 -53.5%
7 50 194 µm2 43 658 µm2 -13.0%
8 39 976 µm2 43 658 µm2 -8.4%
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layers, the routed tile area is 48 282 µm2 which is 53.5% smaller than the tile layout us-

ing two metal layer cells. The layout produced by the automated tools is now only 36%

larger than the manually laid out Virtex-E. The improvement in the area with seven and

eight metal layers is less significant at 13.0% and 8.4% respectively. However, this was

expected since there is less routing congestion when more metal layers are available and,

as a result, the router is less sensitive to the number of layers available for routing.

3.5 Comparison of GILES CAD Flow to Standard

Cell Design

The goal in this work has been to demonstrate the possibilities for automated FPGA lay-

out. The preceding section revealed the capabilities of the custom GILES automated lay-

out tools. However, alternative layout techniques exist and were reviewed in Chapter 2.

One approach examined in detail was standard cell design as it is the most common ap-

proach used for ASIC designs. With standard cells, the design is mapped to a standard

cell library and commercial place and route tools are used to perform the automated

layout. To further explore the capabilities of automated FPGA layout tools, a standard
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cell layout is now compared to one produced using the GILES layout tools.

3.5.1 Methodology

For this experiment, the netlist generator, Virtex-VPR LAYOUT, was modified to pro-

duce a Verilog netlist of standard cells instead of the custom cells used previously. Cells

such as large multiplexers, which are treated as a single cell in the conventional CAD

flow when using the GILES layout tools, were mapped to multiple two-input multiplex-

ers. The Diplomat-18 Standard Cell Library from Virtual Silicon Technology [36] made

available to the University of Toronto through the Canadian Microelectronics Corpora-

tion (CMC) [51] was used. Since pass transistor and SRAM cells are not available in this

library, these cells were manually laid out using the circuitry as given in [8].

The Verilog netlist was imported into Cadence Design Planner and Cadence Silicon

Ensemble [37, 38]. Placement was performed using Cadence’s QPlace engine and Ca-

dence’s WRoute was used for global and detailed routing. As with GILES, the entire

process was not timing driven. This ensures a fair comparison even though the commer-

cial packages can accept timing constraints.

The commercial tools used were not designed for the creation of FPGA tiles and

hence do not consider issues such as ensuring that ports from a tile connect in a pattern

that allows multiple-tile length wires to be realized. To make a fair comparison with the

tile-based approach, instead of a single tile, a 4x4 array of tiles was placed and routed.

This eliminates the need for ports to describe the relationship between tiles. To compare

results with GILES, the total area and wire lengths obtained from the commercial tools

are divided by the number of tiles to produce a per tile value.

3.5.2 Comparison Qualifications/Caveats

The goal in this comparison is to approximately compare the tile area of a layout produced

using the GILES tools and a standard cell layout. As a result, some simplifications were

made when generating the standard cell design. These simplifications and their area

impact is as follows:

1. The issue of buffer sizing was not reevaluated and instead a single size of buffers

was used in all cases. This assumption will underestimate the standard cell area if

stronger buffers are required to minimize the area delay product. It is also possible
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that some standard cells have greater drive strengths than required. In that case

the area of the standard cell implementation will be overestimated.

2. The mapping of large multiplexers into collections of connected two-input multi-

plexers is not optimal and likely increases the area required for the standard cell

layout.

3. The standard cell implementation does not allow for port constraints. As discussed

previously, this problem is resolved by placing and routing a large array of tiles.

With this larger array, the challenge of placing and routing the design is more

complex. However, there is also the possibility for additional optimizations that

are not possible when using the GILES layout tools since they operate only on a

single tile.

4. The tiles at the edge of the standard cell implementation do not connect to pad cells

so the wirelength needs of the standard cell implementation are somewhat reduced

compared to layout produced with the GILES automated layout tools since, with

the GILES layout tools, wires to which connections must be made are always routed

to the edge of the tile.

5. A multitude of factors, such as input settings for row utilization and aspect ratio,

influence the placement and routing of a standard cell design. This standard cell

implementation was produced targeting an aspect ratio of 1.0 and a row utilization

of 85 %. Since an extensive examination of the possible input parameters was not

conducted, a smaller standard cell design may be possible.

3.5.3 Results

The results of the comparison between a standard cell layout and one produced using

the GILES layout tools are summarized in Table 3.8. The column in the table labelled

“GILES-Generated Tile” gives the area result from Section 3.4.5 using a six metal layer

process. That was the best area achieved using six layers and it was obtained following

the procedure of Section 3.4.1 which is entirely based on the GILES tools. Comparing

final tile areas, the standard cell tile is 48% larger having an area of 71 569 µm2 compared

to the GILES-generated tile with its area of 48 282 µm2.
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Table 3.8: Standard Cell Comparison Results

GILES- Standard % Difference
Generated Cell Tile

Tile

Routed Tile Area 48 282 µm2 71 569 µm2 +48%
Active Cell Area 39 250 µm2 61 000 µm2 +55%
Wirelength 190 876 µm 166 971 µm -13%

The row labelled “Cell Area” refers to the sum of the areas required by each cell.

This is the lower bound on the area that can be achieved. For standard cells achieving

this would require 100% row utilization. The standard-cell cell area of 61 000 µm2 is

55% larger than the GILES cell area of 39 250 µm2. This large difference in cell area is

the primary reason the tile area of the standard cell implementation was larger than the

layout produced using the GILES tools.

Finally, the wirelength of the standard cells and the GILES tile is 166 971 µm and

190 876 µm respectively. In this case, the layout produced by the GILES tools actually

requires 13% more wirelength than the standard cell design. As discussed earlier, the

standard cell result is somewhat optimistic since connections to the sides of the tiles are

not routed. As well, standard cells connect power and ground by abutting power rails

which reduces the need for routing. With the GILES layout tools all power and ground

connections are individually routed and, thus, their wirelength needs will be greater.

3.6 Summary

The accurate Virtex-E capture that was described in Section 3.2 has allowed many differ-

ent comparisons to be performed between automated approaches and the custom manual

design. These results are summarized in Table 3.9. The full custom design performed

by Xilinx remains the most efficient layout. However, the present work has vastly im-

proved the results possible with automated FPGA layout tools. Originally with an area

of 105 921 µm2 that was 198% larger than Xilinx’s design, the automated approach ap-

peared to result in a large penalty in area. By discovering the benefit of switching to

single metal layer cells, the area has been reduced to 48 282 µm2 which is only 36% larger

than the actual Virtex-E. These improvements make the GILES layout tools a better al-

ternative for FPGA layout than a standard cell approach which is 102% larger than the
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Table 3.9: Summary of Results Compared to Actual Virtex-E

Layout Method Routed Relative
Tile Area (µm2) to Actual

Full Custom Manual Layout by Xilinx 35462 0%

GILES Automated 101 752 +187%
6 layers
2 metal layer cells

GILES Automated 48 282 +36%
6 layers
1 metal layer cells

Standard Cell 71 569 +102%
6 layers

GILES Automated 39 976 +13%
8 layers
2 metal layer cells

full-custom manual design. Finally, it is noteworthy that, if the savings in design time

introduced by the automated FPGA layout tools warrant the increased process costs as-

sociated with adding metal layers, it is possible to produce a tile that is only 13% larger

having an area of 39 976 µm2.

It is also interesting to compare these results with the past comparisons to manual

layouts presented in Chapter 2. Based on Dally and Chang’s results, an area between

64% and 425% larger than a manual design was expected [40]. The initial results in this

work did fall within this range but, with improved techniques for grouping transistors

into cells and for allocating the metal layers, the area was improved to being only 36%

larger which is better than Dally and Chang’s result. This result is also better than

the previous results by Kafafi et al. [12] and Phillips et al. [16]. The layouts they

produced automatically were 6.3 and 3.7 times larger, respectively, than comparable

manual layouts. This indicates that the use of FPGA specific tools is warranted since in

both those past projects generic standard cell tools were used.



Chapter 4

Tools and Process for Automated

Design of a Complete FPGA

4.1 Introduction

Previously, the automatic layout system [4] has been used to compare manual and auto-

mated layout methodologies. However, competitiveness with respect to manual design is

only one of the challenges facing automated FPGA design. As an unproven technique, it

is not known whether tools that automate the design of a single FPGA tile can be used

successfully to speed the implementation of an entire FPGA. This chapter will address

this challenge by enhancing or developing the tools needed to build an entire FPGA and

then using those tools to actually build an FPGA. First, the CAD flow used in this work

will be presented in Section 4.2. The enhancements to existing tools needed to enable

that design flow will be discussed in Section 4.3. Section 4.4 will present an architec-

ture suitable for fabrication. Finally, the design of additional infrastructure needed to

produce, use and test an entire FPGA will be examined. This includes the design of

additional tiles required to complete the FPGA in Section 4.5. The design of a program-

mer to configure the FPGA is then presented in Section 4.6 and Section 4.7 discusses

the tools developed to produce this configuration information. In the following chapter,

simulation results will be used to demonstrate proper functionality of these tools and the

FPGA design and layout itself.

47
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4.2 CAD Flow

Prior to describing the design and construction of an FPGA, it is necessary to consider

how this FPGA will be used. The GILES layout system automates the design process

from architecture description to layout. This however, is only half the problem as the

physical layout is simply an implementation of an FPGA suitable for fabrication in

silicon. To test and use this FPGA, one must be able to program the device with

actual designs. These circuits must be implemented on the FPGA by configuring all

the programmable elements in the FPGA. This programming information is typically

referred to as a bitstream. The task of generating this bitstream is far too arduous a

task to be performed manually and, hence, a CAD flow was developed to facilitate this

process.

This CAD flow is shown in Figure 4.1. The main input to the tools is a Berkeley

Logic Interchange Format (BLIF) [52] file describing the circuit to be implemented in

terms of the LUTs and flip flops present in the FPGA and the output is a bitstream that

configures the FPGA appropriately. The first step in creating the bitstream involves

using T-VPack [53] for packing groups of FPGA components into larger logic blocks.

T-VPack also requires an architecture description to define the logic blocks that are
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available. Once the packing is complete, the VPR Placer [19] is used to determine

where on the FPGA the logic blocks will be positioned. The VPR Router [19] then

connects the placed components as specified in the netlist. The FPGA architecture used

by the placer and router is defined in an architecture description input to these tools.

Finally, the bitstream generator translates the placed and routed design into a bitstream

of configuration bits that can be used to program the FPGA. This step depends on the

physical implementation of the FPGA and therefore, the netlists describing the FPGA

tiles must be provided as inputs as well.

4.3 Tool Enhancements to Support Bitstream Gen-

eration

The CAD flow presented in the preceding section relies on tools that were developed for

prior work. T-VPack was created by Marquardt in [53] and Betz developed VPR as part

of his work in [19]. The CAD flow for this work requires a bitstream as its end product

but, unfortunately, the past work that created T-VPack and VPR did not have this goal

in mind. As a result, some enhancements to these tools are required to integrate them

with a bitstream-oriented CAD flow.

4.3.1 T-VPack for Bitstream Generation

To support bitstream generation, the tool for the first stage in the CAD flow, packing,

was updated. The primary deficiency with the original T-VPack was the lack of LUT

configuration information. When actually using an FPGA, the LUT must be configured

to implement a specific boolean function. This is done by setting the SRAM bits which

connect to the LUT. The configuration of these bits is frequently referred to as the LUT

mask. T-VPack was not designed for bitstream generation and, hence, it discards this

information about the LUT configuration.

To remedy this problem, this work first enhanced T-VPack to read in the information

about the LUT configuration from the input BLIF file. A BLIF file describes the circuit

in a verbose truth table format and the enhanced T-VPack maps this truth table to a

numerical representation. This gives each LUT a numerical value that will later be used

to generate the LUT mask.
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The BLIF definition does allow for various configurations of the flip-flops or latches

in the circuit. Falling or rising edge sensitive flip flops or active high or low latches can

be specified. The target FPGA that will be created with the GILES tools does not have

this flexibility and, hence, this information will be ignored. Rising edge sensitive flip

flops will be assumed and no additional enhancements were added to support flip flop

configuration information.

The added LUT mask information does pose a problem since the T-VPack output, a

VPR-style netlist, does not have the capability to store the additional information. To

accommodate this information, the VPR-style netlist format was extended. For com-

patibility with the original version of VPR, this was done by embedding the numerical

LUT representation in the comments. The original format specified comments using a

’#’. Now in the updated version, if the comment symbol is immediately proceeded by an

exclamation point as in ’#!’ the comment symbol will be ignored. With this approach,

this updated version of T-VPack will function with all versions of VPR.

4.3.2 Bitstream Generation within VPR

VPR also requires enhancements to perform bitstream generation. It too, like T-VPack,

ignored LUT information and, thus, it was first enhanced to read in the improved netlist

containing the LUT configuration. This information is then saved for later use by the

bitstream generator. This resolves the problem of having insufficient information to

configure the FPGA.

Architecture Generation

Another issue arises in ensuring that the architecture generated by the VPR Architecture

Generator matches the layout that will be generated with the GILES layout system. As

discussed in Section 2.5, the automatic layout system creates a single tile that is replicated

to form a larger array of routing and logic clusters. This places some restrictions, such as

track count, on the possible architectures that can be constructed. These restrictions have

been discussed in Section 2.5.1 and [5]. However, that discussion focused only on ensuring

that the architecture description input to VPR was suitable for tiling. Other issues exist

in how that architecture description is implemented by the Architecture Generator. The

generator must produce an internal structure that exactly matches the structure created

by the replicated tile layouts. An architecture that meets these constraints will be referred
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to as tileable.

Before analyzing the restrictions, it is necessary to reconsider the method of con-

structing a tile-based FPGA. The main difficulty in this tile layout approach comes in

creating wires that must span multiple tiles. This is done by permuting the relative or-

dering of the routing tracks on the edge of the tile as shown in Figure 4.2. This technique

has been described as wire twisting by Padalia [5] and, due to this twist, when the tiles

are abutted, as in Figure 4.3, multiple cluster length wires are created. As a result of

this wire twisting, the mapping between the physical wire in a tile and the logical track

it implements changes for each tile. Consider the example in Figure 4.4 of a tile which

has three physical wires, a, b, and c, that implement routing tracks. These physical

wires will correspond to logical tracks 1, 2, and 3 respectively, for one tile in the array

of replicated tiles. However, at another point in the array, those same physical tracks

within the tile will map to logical tracks 2, 3 and 1 respectively. This is an issue because

the internal representation of tracks in VPR does not fully account for this twisting as

described below.

Tileable Cluster Input and Output Connections

With the twisting tile layout approach, in every tile the physical connections are the

same but the logical connections they form varies based on the position of the tile in

the array. This leads to the first issue with the VPR Architecture Generator. When

connecting routing tracks to the input and output connection blocks, every logic cluster

was connected to the same logical tracks by the Architecture Generator [8, 20]. The

logical view of this is illustrated in Figure 4.5(a) for the input connection blocks only. A

problem emerges when one considers the physical implementation of this as shown in Fig-
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ure 4.5(b). The physical connections in each tile are different which is not possible using

the replicated tile layout methodology. Hardware could be added to the tile to support

the connections expected by the Architecture Generator but this would be wasteful since

the circuitry would not be used in every tile. Instead, the Architecture Generator was

modified to produce an internal routing structure that matches that created by replicat-

ing tiles. The representation of this routing structure is illustrated in Figure 4.5(c). In

this approach, the input connections to the clusters are permuted to match the changes

introduced by the wire twisting.

Tileable Input/Output Block Connections

The connections at the edges of the array to the input and output block also must

agree with the structure created by replicating tiles. These connections face the same

problem as connections to clusters in that the logical track connections must be adjusted

to reflect the position in the array due to the wire twisting. The Architecture Generator

was updated to perform this wire twisting adjustment; however, there are additional

constraints that must be considered.

The input/output blocks are not part of the FPGA array created by replicating a

tile containing a cluster and its routing. For the input and output blocks to connect

to the routing tracks, those tracks must be physically available for connection at the

edge of the tile. This means that the tracks must be routed to ports on the edge of the

tile to which the input and output block will connect. The original VPR Architecture

Generator treated the connections to the input and output blocks as independent of any

other routing parameters. However, the connections to this block are in fact determined

by the connections that are present in a regular tile. The connections at the edge of a

tile called ports are only created if required and, thus, they would only be created if the

track is used as a connection to a logic cluster in the neighbouring tile. This restriction

is illustrated in Figure 4.6. Clearly, it is possible to add more routing to connect every

track to a port on the appropriate side of the tile. Such a change would eliminate

any relationship between the logic cluster input connections and the input/output block

connections but, again, this is wasteful as it adds routing unnecessarily to every tile which

is not on the edge of the array. Instead, the Architecture Generator was modified such

that the connections to the input/output pads match those that were available as inputs

and outputs to logic clusters. It is important to note that this adds the constraint that
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the number of input and output connection tracks to a cluster must match the number

to the input/output blocks.

4.4 Architecture Decisions

Given the goal in this work of proving the viability of automatic FPGA generation,

a specific architecture for the FPGA to be fabricated must be selected. The goal in

producing this FPGA is not to generate a replica of a commercial device. This contrasts

the goal of Chapter 3 which aimed to replicate a commercial device with reasonable

accuracy. Producing an FPGA comparable to such a commercial device is not feasible, as

it would require the development of a new FPGA CAD flow since the CAD flow outlined

in Section 4.2 can not handle modern commercial devices. Such an effort is well beyond

the scope of this work. Furthermore, it is unnecessary to achieve this work’s primary goal

of proving the viability of automated FPGA layout. Instead, an architecture that can

be generated by VPR will be selected. This approach demonstrates the capabilities of

automated FPGA design as the architectures that VPR can handle are not significantly

less complex than a commercial FPGA from a layout and circuit design perspective.

Other considerations, besides the constraints imposed by the VPR Architecture Gen-



Chapter 4. Tools and Process for Automated Design of a Complete FPGA 56

erator and the tileablility restrictions discussed in Section 4.3, must also be taken into

account. The most significant issue is silicon availability. The architecture must be cho-

sen such that a tile will be sufficiently small that an interesting number of tiles can be

created on the amount of silicon available in an academic environment. The process of

selecting such an architecture will now be given.

4.4.1 Logic Block Parameters

Given the prevalence of four-input LUTs in academic and commercial work [24, 25, 54, 55]

it is appropriate to use them in this work as well. Past work such as that by Ahmed

et al. in [56] has also revealed that 4-LUTs deliver the best area results. The selection

of 4-LUTs also allows the results from past architectural examinations to be directly

applied, which simplifies the architectural decisions made for this design.

The next most important parameter influencing tile area is cluster size since, in a

properly designed architecture, this will impact other crucial factors such as track count.

The issue of cluster size has been extensively studied in the past by Betz et al. in [8]

and Ahmed et al. in [56]. Based on those results, a cluster size of one was rejected

since it offers poor speed performance. Increasing the cluster size to two results in a

significant area efficiency penalty as local routing, which makes connections within the

cluster, requires more area to create than the general routing area reduction it provides.

Hence, a cluster size of three was selected. While larger clusters may offer slight area

efficiency gains, the desire to minimize the size of the logic blocks to create the largest

array possible necessitates selecting the cluster size of three.

In [8], Betz et al. developed the following empirical relationship to determine the

number of inputs, I, required to effectively use a given cluster size, N.

I = 2N + 2 (4.1)

With a cluster size of, N = 3, this gives 8 inputs per cluster. The architectures generated

by VPR assume that every BLE has a single output and, thus, each logic cluster will also

have three outputs.

Each cluster output need not connect to every track. The fraction of tracks to which

any given output connects, denoted Fc,output, was experimentally found in [8] to be suffi-

ciently flexible when set to 1/N. Thus, a value of 1/3 is appropriate for this design.
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4.4.2 Routing Structure

To simplify the design of this FPGA, a single type of routing track will be used. Un-

buffered pass transistors, while small in area, make electrical design more challenging as

multi-segment routes face significant resistive load. Thus, to mitigate any such potential

problems, a fully buffered routing architecture will be used. This means that tristate

buffers will be used for all the routing switches.

Given this all-buffered routing network, tracks of length four will be used. Betz et

al. in [8] found that, when a single length of routing is used, a length of four or eight is

optimum. Since this FPGA will not consist of a large array, selecting length four wires is

more appropriate. The results in [8] were for a different cluster size and, thus, may not

be directly applicable to a cluster size of three. However, it is unlikely that their area

efficiency would be significantly degraded in the current architecture since the cluster

size is only one less than was used by Betz et al. [8].

4.4.3 Array Size

Each tile is replicated to form an array of tiles. The dimensions of this array, nx x ny,

can be of any size. However, given the length four routing architecture, constructing

an array of less than 4 x 4 would not be interesting as no track would realize its full

length. Thus, an array size of 8 x 8 was selected since it allows two full length wires to

be realized. Based on the packages that will be available for the final fabricated device,

it was decided that two input/output pins would be connected per logic block row and

column. A lower value would severely limit the number of implementable circuits while

a higher value would require more advanced packaging.

With this array size there will be 8 × 8 × 3 = 192 4-LUTs and 8 × 4 × 2 = 64

programmable input/output pins in the design. This is relatively small compared to a

more current device family such as the Xilinx Virtex-E with devices ranging in size from

1532 4-LUTs to 64896 4-LUTs and 176 to 804 user I/O pins [24]. Such a comparably small

size does not make this design less relevant or viable as other recent designs such as the

MAX II Complex Programmable Logic Device (CPLD) family are only marginally larger

with between 240 and 2210 4-LUTs and 80 to 272 I/O pins [57]. It is also interesting

to observe that the device to be created in this work will be larger than one of the first

FPGAs ever produced commercially, the Xilinx 2064 which contained only 64 4-LUTs

[58].
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4.4.4 Track Count

The number of tracks has a significant impact on the routability of the FPGA. The

following equation offers an estimate of the required average track width, Waverage [3, 59]:

Waverage =
λR̄

2

where λ is the number of pins connected to each logic block and R̄ is the average length

of wires in the channel. With an average length of R̄ = 3 [3] and λ = 11 total pins, this

gives an average track width of 16.5 tracks. This however is only an average and the

FPGA must be designed to handle cases that are worse than average. Thus, instead of

using an analytical expression to determine the number of tracks that the architecture

should have, it will be determined experimentally.

Methodology

To find a suitable number of tracks for this architecture, a set of benchmark circuits will

be placed and routed on the FPGA fabric. The ability to route these circuits will be

observed and examined in conjunction with the area required for the architecture. The

goal will be to find the number of tracks needed to allow for easy routing while keeping

the tile area as small as possible.

The CAD flow discussed in Section 4.2 was used for this investigation. A set of MCNC

circuits [60] that have already been synthesized were used for testing. Appendix A lists

the properties of these circuits. The packing tool, T-VPack [53], was configured for a

cluster size of three with eight inputs but was otherwise left with default settings. Place-

ment and routing were then performed using VPR. The input architecture description

to VPR was based on the parameters determined in the preceding sections. For Fc,input

which will be determined in Section 4.4.5, a value of 0.5 will be used. Later experimen-

tation will determine if this is acceptable. To ease routing congestion in the periphery

and focus on the number of tracks required in the core of the FPGA array Fc,pad was

set to 1.0. The number of routing tracks was varied with the constraint, as discussed

in Section 2.5.1, that the track count must be a multiple of the track length which in

this case is four. This procedure was repeated ten times to reduce the influence of noise

from the simulated annealing-based placer. A circuit was considered to have routed if it

succeeded on any of these trials.
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To determine the circuit area for each given track count, the GILES layout system was

used following the procedure from Section 2.5. The architecture description is input to

VPR LAYOUT which generates a netlist that is placed and routed by the GILES placer

and router respectively. Actual cell layouts were not available; instead, the area model

for two metal layer cells developed by Egier in [22] was used. A six metal layer process

was assumed. One metal layer was allocated for global power and ground distribution

which leaves three layers for inter-cell routing. This process was repeated using the same

number of tracks per channel as the place and route tests with VPR. The trials will be

compared in terms of the final routed area for a single tile.

Results

The data from the above experiment is plotted in Figure 4.7. The tile area, shown in

Figure 4.7(a), increases approximately linearly with an increasing number of tracks. The

number of successfully routable circuits, shown in Figure 4.7(b), also increases initially

with the track count but it plateaus once there are 20 tracks in each channel. At this

point, all the circuits that can fit on an FPGA of this size are being routed successfully.

Given the increasing tile area, the minimum number of tracks that satisfy the routing

requirements will be selected. Accordingly, it was decided that the architecture will have

twenty tracks per channel.

4.4.5 Connection Block Flexibility

Finally, the fraction of tracks that connect to each cluster input, Fc,input, must be deter-

mined. Betz et al. [8] suggests a value higher than Fc,output and, thus, in the previous

experiments a value of 0.5 was selected. However, as described in Section 4.3.2, it was

discovered that in a tileable architecture a relationship exists between Fc,input and Fc,pad

where Fc,pad is the fraction of tracks to which an input or output pad pin connects. The

experimentation in Section 4.4.4 ignored this effect so as to focus exclusively on routing

concerns related to the track count. Thus, it is necessary to conduct further testing in

which Fc,input is set equal to Fc,pad.

Methodology

The same process as used in Section 4.4.4 was used to determine an appropriate connec-

tion block flexibility. The same MCNC benchmark circuits [60] were used in conjunction
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Figure 4.7: Area and Number of Routable Circuits over Varied Track Widths
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with T-VPack and VPR for packing, placement and routing. Placement and routing

were performed using ten different placement seeds. In this case, however, Fc,input was

varied while the number of tracks was held constant at twenty. To address tileability

issues Fc,pad was kept equal to Fc,input. These flexibilities will be reported as the fraction

of tracks the connection block connects to relative to the total number of tracks. This

flexibility will then be varied between 0.05 and 1 representing between 1 and 20 input

tracks. As was done previously, the GILES layout tools will be used to determine the

tile area of the architecture at each specific connection box flexibility.

Results

The results from this experimentation are plotted in Figure 4.8. With respect to the

connection block flexibility, the tile area again increases approximately linearly. However,

the slope of this increase is significantly less and the area only increases by 5 450 µm2

over the range of Fc,input. The number of routable circuits does plateau again but prior to

this plateau there is significant variation in number of routable circuits. Isolated Fc,input

values such as 0.45 appear to provide excellent routability while a larger Fc,input value of

0.5 is significantly more challenging for routing. This is an interesting phenomenon since

an increased flexibility is typically expected to provide easier routing. The reason for this

is likely due to the technique used for selecting the specific input tracks for each cluster

input. Improving this technique may allow for more consistent routability results but is

beyond the scope of this work. For this design, a value of 0.6 was selected since it is in

a region in which circuits are consistently routable. Selecting a lower value could offer a

slight area reduction but would not reliably increase the ease of routing. Therefore, the

Fc,input value of 0.6 was considered the most appropriate.

4.4.6 Summary of Architecture

The most significant architecture parameters discussed above are summarized in Table 4.1.

4.5 Periphery Design

Previous work [5, 4, 6, 7] with the GILES automatic layout system has focused on the

layout of a single tile containing a single logic cluster and its associated routing as shown

previously in Figure 4.2. This tile can then be used to create arbitrary sized arrays
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Figure 4.8: Area and Number of Routable Circuits over Varied Track Widths
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Table 4.1: Architecture Parameters

Parameter Value

LUT Size, k 4
Cluster Size, N 3
Number of Cluster Inputs, I 8
Track Width, W 20
Track Length, L 4
% Buffered Tracks 100%
Fc,input 0.6
Fc,output 0.333
Fc,pad 0.6
Array Size, nx x ny 8 x 8
Pads per column 2

Total Number of LUTs 192
Total Number of I/O’s 64

of logic clusters. However, examination of the entire FPGA design assumed by VPR

illustrated in Figure 4.3, reveals that the single tile does not capture all of the assumed

functionality at the periphery of the FPGA array. Most noticeably, the I/O blocks at

the edge of the FPGA array, which are needed to connect tracks as inputs and outputs,

are not included in the main tile. The VPR Architecture Generator also assumes that

there are additional routing channels at the bottom and left sides of the FPGA array.

Since the main tile only captures the routing channels above and to the right of the logic

block, these additional channel will not be created by simple tiling of the primary tile.

There are numerous possible methods to remedy this discrepancy between the VPR

structure and that generated by the GILES tools. Since this is only at the edge of the

array, manual implementation of the additional routing elements is feasible but does not

fit with the automatic design goals of this project. An alternative is to alter the VPR

Architecture Generator such that its structure matches that of automatic layout. This,

however, only solves the problem regarding the additional routing channels as I/O blocks

are still needed for connecting inputs and outputs. The approach that was decided upon

was to augment the automatic layout system to produce additional tiles containing the

required functionality.

A total of seven additional tiles are needed. One additional tile is needed on each side

of the array and three corner tiles are needed. The routing network alone only requires

one corner tile; the other two corners are needed for programming infrastructure as will
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be discussed in Section 4.6. The top right corner position is empty. This floor plan of all

the tiles is shown for a 3 x 3 array in Figure 4.9. The 8 x 8 array created in this work

will have the same structure.

4.5.1 Periphery Generation

The periphery tiles must be generated in a multi-step process. The main tile is first gener-

ated using the normal automated layout approach with GILES in which VPR LAYOUT

translates VPR’s routing resource graph into a netlist suitable for the GILES Placer and

Router. Once this tile is placed and routed, it must be processed by VPR LAYOUT to

produce the edge tiles (Bottom, Left, Top and Right). This must occur after the main

tile is placed since the location of ports, to which these periphery tiles will abut, is not

known until after placement and routing of the main tile. As well, the dimensions of the

main tile must be known to ensure the array of periphery tiles can connect to the array

of main tiles. These periphery tiles are then placed and routed. Finally, once these edge

tiles are complete the corner tiles are created in the same fashion.
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4.5.2 Layout Placement and Routing Enhancements

One challenge in creating the periphery tiles is that, as mentioned earlier, they must

connect with the main tile by abutment. The GILES Placer and Router was designed to

operate on a single tile free from any external constraints. Ports at the edge of the tile,

as discussed in Section 2.5.1, are created in pairs to allow for abutment of tiles. During

placement, these pairs of ports are free to move in tandem. However, when placing

periphery tiles, any connections that must be formed via abutment to the main array

must have a fixed position. As well, since one periphery tile will be abutted to each main

tile at the edge of the array, it is essential that the pitch of the periphery tile match the

pitch of the abutting tiles.

Adding such functionality to a placer would normally be straightforward. However,

for the GILES placer it is complicated by one of the features of the placer which is

it performs compaction as well as placement as described in Section 2.5.2. Initially,

placement occurs on a large grid so that cell overlap can be ignored. Later stages compact

this large placement to produce an area efficient layout. As a result, the initial dimensions

of the placer are far larger than the final dimensions. However, when placing a periphery

tile, the need to abut the array of main tiles necessitates that the width or height of the

periphery tile be constrained. The width is constrained for the top and bottom periphery

tiles since they must be arrayed with the same pitch as the main tile array. The height is

constrained for the right and left periphery tiles again because these tiles must be arrayed

abutting the main tile array. If the tile were free to take on large initial dimensions there

is no guarantee that the final dimensions will satisfy the restrictions. Thus, for the

edge tiles, which are only constrained in one dimension, the constrained dimension is

fixed for the entire placement process. However, the corner tiles are constrained in both

dimensions. The large grid placement step requires an area large enough to place every

cell in a large grid position. As a result, the dimensions of the large grid may exceed

those possible given the constraints on the tile. In this case, the initial constraints are

ignored and the tile is initially larger than the constraints. A final check is necessary to

verify if the constraints were eventually satisfied after compaction.

To support this constrained compaction, the GILES placer was modified. The placer

was first enhanced to allow the positions for some ports to be fixed. This is required

to ensure the ports can correctly abut the main tile. In addition to this, the placer was

improved to work effectively with the dimensional constraints. The original version of
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(a) Placement with Compaction

(b) Placement without Compaction in the Y direction

Figure 4.10: Significance of Compaction in GILES Placer
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the placer attempts to compact the tile in both dimensions but when one dimension is

constrained there is no need for such behaviour. Continued compaction of the constrained

dimension only leads to wasted area as illustrated in an example placement shown in

Figure 4.10(a). It would be more efficient to place cells uniformly within the available

area. Accordingly, the placer was changed to eliminate compaction moves when such

moves are unnecessary. Figure 4.10(b) demonstrates an example of a placement produced

by this updated version of the placer. This modification improves the final area because

it eliminates the unnecessary whitespace within the tile.

4.6 Configuration SRAM Programmer

One of the main advantages of FPGAs is their reconfigurability. Programmable connec-

tions are controlled by configuration SRAM bits. To implement a circuit on the FPGA,

these configuration SRAM bits must be set appropriately. This configuration is known

as a bitstream. At power up and when a new circuit is to be implemented on the FPGA,

this bitstream must be loaded to set all the configuration SRAM in the appropriate state.

This task is performed by a dedicated programmer circuit that communicates with an

external circuit that provides the bitstream information. This section will describe the

design of a generic programmer that accomplishes this task for the automatically laid

out FPGA produced as part of this work.

First, it is necessary to review the basic configuration SRAM architecture assumed

by the GILES layout tools. The SRAM bits are treated as forming a large memory array.

Each bit is connected to a word and bit line which are used to program the bit. These

word and bit lines run the length of the FPGA array in orthogonal directions. This

ensures each bit has a unique position in the memory array just as in normal SRAM

banks. The individual SRAM bits are constructed using five transistors to reduce area

requirements [5]. This also simplifies routing since only a single bit line is required. To

program the SRAM contents, every memory word must be loaded with its configuration

and the programmer circuit is designed to accomplish this task.

4.6.1 Programmer Design

For this test chip, it is desirable to make the programming circuit as simple as possi-

ble to minimize the chance of design error. Programming speed will not be considered
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a significant factor and a serial approach to programming will be used. As shown in

Figure 4.11, the word and bit lines will be connected to large shift registers. The config-

uration bitstream will be shifted into the bottom shift register which connects to the bit

lines running through the FPGA tile.

The word lines are connected to a multiplexer. While the bitstream is being shifted

into the bit shift register it is essential that none of the SRAM bits are improperly

configured. To ensure this, the multiplexer will be configured to output a logic low value

thereby de-asserting the word lines. When the value in the bit shift register is valid,

the multiplexer will then be set to accept the value from the word shift register. The

word shift register will have a value that will assert the single word line currently being

programmed. Essentially, this multiplexer is functioning as an AND gate and future

iterations of this design would implement it as such a gate.

The flip-flops in the shift register are embedded in the periphery tiles shown in

Figure 4.9 as the left tile, bottom tile and corner tiles. This minimizes the number

of connections required between the programmer and the FPGA array since only the

control signals must then be connected.

Again, to minimize the potential for error, the programmer controlling these shift

registers has been kept relatively simple. Only serial shifting in of data is permitted and

partial reconfiguration of the device, as is possible in some commercial devices such as

the Virtex family [24, 26], is not permitted. A block diagram of this circuit is shown in

Figure 4.12.

The inputs and outputs on the left and right sides are signals which connect off-chip.

The outputs at the bottom of the figure are on-chip signals that must be connected to
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the FPGA array. The state diagram controlling the programmer is shown in Figure 4.13.

This design was implemented in Verilog and the full listing of the Verilog code can

be found in Appendix B. This Verilog description was synthesized using Synopsys De-

sign Compiler [39]. The target standard cell library was Virtual Silicon Technology’s

Diplomat-18 Standard Cell Library [36]. This is a 0.18 µm library. Placement and rout-

ing was performed using Cadence Physically Knowledgeable Synthesis (PKS) [61] and

Cadence Silicon Ensemble [38]. Programmer speed is not a significant concern and the

target clock frequency of 20 MHz was easily achieved.

4.6.2 Power On Issues

Every routing track in the FPGA has multiple potential drivers. It can be driven at

either end from numerous buffered switches. A valid bitstream will configure the device

such that every routing track will only be driven by one buffered switch. All other drivers

will be set to high impedance. When power is first applied to the device, the SRAM bits

will settle into a random state. As a result, there is no guarantee that the configuration

will be valid. An example of a potential problem is depicted in Figure 4.14. In this

case, both SRAM bits initialized to a logic high value (1.8 V). With the two buffers

driving different values, contention results. This is not desirable since it will lead to large
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operating currents. Given the large number of tracks and associated drivers it is probable

that, if left in this state for a prolonged period of time, the device would suffer irrevocable

damage. As well, the large currents may cause large voltage drops to areas of the chip.

This might hamper the ability to program the SRAM bits with a valid configuration.

Clearly, it is imperative that such contention prior to initial programming be avoided.

Figure 4.15 depicts the solution to this problem developed for this project which consists

of a global line that sets all drivers into tristate mode. This line must be kept low (0 V)

until a valid bitstream is applied.

Commercial FPGAs handle this and any other power on issues with circuitry that

detects power up. Examples of such circuitry that has been patented by FPGA companies

can be found in [62], [63] and [64]. That circuitry then applies the appropriate signals to

ensure the device does not encounter any problems. For this test chip, such a technique

was considered unnecessarily risky. Instead the global signal will be generated off chip.

This line must be set low prior to applying the input power. Once the configuration

SRAM contains a valid bitstream the signal can then be de-asserted.
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4.7 Bitstream Generation

As discussed previously, a bitstream must be created for an FPGA to be used. This

bitstream configures the FPGA for the specific circuit being implemented on the FPGA.

With approximately 20 736 configuration bits in this test FPGA, an automated process

for generating a bitstream is required. As part of this work, such a tool was developed.

First, it is necessary to recall one feature of GILES discussed in Section 2.5.2 which is

the ability to exploit the logical equivalencies present in the FPGA netlist. This allows the

placer to swap output terminals of an SRAM bit, to switch the word and bit lines used for

an SRAM, and to swap multiplexer inputs. An example of this is shown in Figure 4.16.

These features improve placement quality but also alter the netlist electrically from that

which was input to the placer. When generating a bitstream, these changes must of

course be known. As a result, bitstream generation can only be performed after all the

tiles have been placed and routed.

Once the tile design is complete, the process of generating the bitstream can be

started. The inputs to this process are the netlists describing the design and a routing of

the circuit to be implemented on the FPGA. The output is the configuration information

for every SRAM bit in the FPGA.

The bitstream generation process begins by first reading in the tile netlists. Every

programmable element such as a multiplexer or buffered switch is identified along with the

configuration SRAM bits which control it. At this point, the generator also determines

which SRAM output, data or inverse data, is used as the control signal.

The routing of the circuit that will be implemented on the FPGA is produced by

the VPR Placer and Router. It is described in terms of paths within an internal graph

structure that abstractly describes the routing network of the FPGA. This graph, known

as the routing resource graph, hides the actual implementation of the FPGA from the

VPR Placer and Router. Physically, though, each edge in this graph corresponds to
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programmable element while each node corresponds to a wire or net. Prior to generating

a bitstream, the bitstream generator must determine the association between the routing

resource graph edges used by the router and the programmable elements in the circuit.

With just a regular netlist, matching the elements is challenging since many similar

elements exist. To avoid these difficulties, information was added to the netlist to assist

in the identification process. In particular, the resource type, resource number, switch

type, and original coordinates are saved with the netlist. Using this information, every

programmable element is appropriately labelled by the bitstream generator.

Once all the programmable elements have been identified, the bitstream generator

must next determine the safe state for all the SRAM in the device. This will be the

default state for each of the SRAM bits. This safe state will ensure that no contention

occurs on routing tracks. While the programmable elements inside the logic cluster do

not present the opportunity for contention, it is also necessary to configure them ap-

propriately by default. If randomly configured it is possible to create ring oscillators

inadvertently. This can occur anytime there is a combinational loop with a LUT config-

ured as an inverting element. The loop can be created by the default configuration of the

intra-cluster routing since the cluster outputs are available as inputs to the LUT input

multiplexers. Such a situation should be avoided for multiple reasons. In simulation, an

unnecessary ring oscillator would slow down simulation. In silicon, the oscillator would

increase power consumption and potentially add noise to other signals on the FPGA. It

should be emphasized that unlike commercial devices such as Altera’s Cyclone [65], there

is not a bias toward SRAM configured in the zero state. Due to the logically equivalent

changes by the GILES placer, producing the safe configuration state for the logic cluster

is not simply a matter of setting the SRAM bits to zero. Instead, the proper configuration

must be determined based on the tile netlist.

The routing produced by the VPR Router can now be implemented. The bitstream

generator processes each routing resource graph path required by the VPR Router. For

each path, the generator identifies each programmable element needed for the connec-

tions and programs the element accordingly. This graph does not describe any of the

connections within the logic cluster nor does the VPR placer specify placement of the

individual BLEs. The placer only operates on the cluster level. Instead, the placement

of the BLEs is dictated by the final routing. Based on which cluster output is selected by

the VPR router, the bitstream generator then selects the placement of the BLE within

the cluster. Once this placement is set the LUT inputs and the LUT mask are appropri-
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ately configured. In cases where there are unused LUT inputs, the mask for configuring

the LUT is updated to treat the signals as don’t cares. The complete bitstream is then

output in various formats suitable for simulation and silicon.

It should also be noted that the bitstream generator is not specific to the FPGA con-

structed for this work. The tool is capable of handling the range of tileable architectures

that can be produced by the GILES automated layout tools.

4.8 Summary

With the tools presented, it is now possible to automatically design and use an FPGA

created with the GILES tools. The process of doing so will now be outlined to highlight

the contributions of this work. Starting from an architecture description, prior work

enabled the automatic design of the main FPGA tile. This work has extended the

GILES layout tools significantly. From the main FPGA tile, seven additional periphery

tiles can be automatically created. These tiles are needed to complete an FPGA array

and the GILES tools have been updated to accommodate the constraints associated with

periphery tiles. Given a complete FPGA, VPR was modified to enable it to perform

placement and routing on this generated FPGA. With the bitstream generator created

in this work, this placement and routing can be mapped to the physical implementation

of the FPGA and a bitstream to configure either a simulated version or the real version

of the device can be produced. A programmer circuit was designed that enables this

bitstream to be used to program the configuration SRAM distributed throughout the

FPGA tiles. It is significant to note that none of this work is architecture specific and

any VPR LAYOUT/GILES architecture can be targeted.

When this work is combined with concurrent work performed by Egier in [22] that

created the physical layouts of the cells used by GILES, updated GILES to use a com-

mercial router and addressed global layout challenges such as power, ground and clock

distribution, producing a complete FPGA with the architecture described in Section 4.4

is now possible. The final layout that was created is shown in Figure 4.17. The challenge

that remains is to verify that a functional FPGA is being produced. The verification

methodology and the results from simulation that demonstrate the design is functional

will be presented in the following chapter.
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Figure 4.17: Complete FPGA Layout



Chapter 5

Verification Methodology and

Results

5.1 Introduction

The system presented in Chapter 4 enables the automated design of an entire FPGA.

However, thorough testing has never been performed on the entire automated flow, from

circuit generation to layout, to verify that the design is implemented correctly. Prior

to fabrication, this shortcoming must be addressed and extensive verification must be

performed to ensure that the design sent for manufacturing will operate correctly when

silicon is returned. There are many different issues that must be considered in verification

and, thus, the goals for this device must first be examined.

For this design, proper functionality is paramount. The speed at which the circuit

can operate is not as high a priority to keep the scope of this work tractable. Therefore,

the current verification effort will focus exclusively on ensuring a functional FPGA is

designed and produced. There are three basic issues that must be considered.

First, does the circuit implement the desired FPGA architecture? The automatic

layout tools have only been subject to approximate manual inspection in the past. It is

not certain that the netlist produced by GILES Netlist Generator or the changes made by

the GILES Placer are correct and meet expectations. The VPR Architecture Generator

has been updated to match the expected results from the automatic layout and this must

be compared with the actual netlist produced by the GILES layout tools to prove that

the two structures are identical.

Another issue is whether a circuit can be implemented on this FPGA fabric. VPR has

76
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only been used for architectural explorations previously so it is not certain that circuits

implemented on the FPGA are correctly placed and routed by VPR. More significantly,

the bitstream generator which translates a routing produced by the VPR Placer and

Router to an implementation on the FPGA fabric has not been used previously and its

correctness must be verified.

Finally, since an automatically laid out design generated by the GILES tools is being

fabricated, a plethora of issues regarding the correct electrical functionality of the circuit

arise. Each cell is a custom design that has never been used previously and as a result is

uncharacterized. Ensuring that all the cells used by the GILES tools operate successfully

is a significant challenge.

This chapter will present the verification efforts used to address these concerns. First,

the overall strategy will be presented. Then each aspect of verification will be considered

along with the results of such testing.

5.2 General Verification Strategy

Verifying a design of the size of this FPGA is a challenge since in each tile there are 530

cells and in total the design has over 300 000 transistors. Therefore, the circuit is too

large for each element to be individually tested and, instead, alternate techniques must

be used. A few classes of approaches will be used ranging from simple circuit comparisons

to simulation-based methods.

The most basic approach will be an automated comparison of the architecture pro-

duced by the VPR Architecture Generator and that which is produced by the automatic

layout tools. The architecture from the Architecture Generator will be in the form of

a routing resource graph describing all the connections in available in VPR. The auto-

mated check will ensure that each of the edges in these graphs matches a resource in the

netlist. This will confirm that the functionality assumed by the CAD tools supporting

the design is present. The success of this test is necessary since the CAD tools such as the

bitstream generator depend on the VPR architecture and the physical implementation

being identical. Without these tools, further testing is not possible; however, this basic

comparison does not confirm the proper operation of the design.

To better verify that the design and the CAD tools are functional, simulation will

be used. These simulations will be performed for several levels of abstraction to trade-

off simulation speed for accuracy. At the highest level of abstraction and fast speed of
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simulation, only the logical functionality will be considered. This will treat all signals

as being digital and issues such as drive strength and timing will be neglected. Such

simulations will test the ability to configure the FPGA properly as well as ensuring the

connectivity inside the FPGA array is as expected.

At a level lower from this, the true analog nature of the circuit will be considered.

Instead of Register Transfer Level (RTL) gate descriptions, cells will be implemented

using transistors. This allows electrical issues to be observed. Simulating each cell to

confirm its proper analog behaviour, while useful and necessary, is not sufficient since

more complicated interactions occur when the electrical behaviour is considered. In

particular, given the liberal use of pass transistors throughout this design as part of

multiplexers and tri-state drivers, voltages will not simply be high (VDD) or low (VSS)

and instead a range of possibilities will definitely occur. Therefore, these electrical checks

are important as they are needed to confirm that each cell can function within the larger

circuit.

The next levels of simulation will increase the use of information extracted from actual

circuit layouts. Instead of relying on a structural netlist produced by the automated

layout tools and cell-level netlists extracted from layouts, larger portions of the design

will be extracted from the layouts. Both an extracted netlist from the individual tiles and

the entire chip will be used for simulation. In this final stage, there will be no reliance

on netlists from the automated tools. This is necessary to confirm that all the cells and

tiles function together properly and, hence, the actual layout is acceptable.

Finally, as an additional check between what is used in simulation and the layout

produced automatically, Layout versus Schematic (LVS) comparisons will be performed.

This will confirm that the thoroughly simulated designs are in fact implemented in the

layout. This serves as alternate check, in parallel, to the simulation of the extracted chip.

5.3 Routing Resource Graph to Netlist Matching

As described in Chapter 4, the routing structure and BLE structure assumed by the

VPR Architecture Generator has been updated to reflect the structure that is produced

using the automatically generated tiles. However, it has not been confirmed that the two

structures are in fact the same. Thus, an appropriate first verification step is to compare

the VPR architecture structure with that which is produced by the GILES automated

FPGA creation and layout tools.
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The procedure for performing this comparison is as follows. The tile cell-level netlists

are read in by the bitstream generator. As discussed in Section 4.7, the tool then attempts

to match the programmable elements in the netlists with the logical resources used by

the VPR Placer and Router. In general, the bitstream generator need only consider the

logical resources explicitly required for the circuit being implemented. However, as a

check, the bitstream generator was configured to search for every possible logical element

available to the VPR Placer and Router. This ensures that any placement and routing

produced by VPR is suitable for bitstream generation. Such a check is important since

it will confirm that the tiles generated with the GILES tools contain all the circuitry

required to implement the logical structure assumed by VPR. Later stages of verification

will confirm that the GILES-generated tiles match the physical layouts.

It is significant to note that this most basic test found a wide range of problems with

initial versions of the tiles. The version of the netlist generator developed by Padalia in [5]

did not include some of the programmable connections used by VPR. These deficiencies

were identified and corrected. The version used for fabrication successfully passes this

verification step.

5.4 Logical Functionality

As discussed previously, verification of the logical functionality will be the first test that

demonstrates the design and its supporting tools are functional. The test environment,

test circuits and results will be described in the following sections.

5.4.1 Methodology

The inputs to this stage of the verification process are the netlists that describe the

FPGA tiles and a test circuit that will be implemented on the FPGA. The output will be

the simulation results using these tiles. A custom tool was developed as part of this work

to assist in this process. This tool will be referred to as the VPR LAYOUT Simulation

Generator. It accepts the tile netlists as inputs and then outputs a description of a

complete arrayed FPGA in a format suitable for simulation.

The input tile netlists are produced by the GILES automated FPGA layout tools. The

Simulation Generator reads these netlists. It then outputs a hierarchical description of

the complete FPGA. The basic cells used by the layout tools constitute the lowest level of
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the hierarchy. A library of RTL descriptions of the cells will define their behaviour during

simulation. At a step higher in the hierarchy, these cells are then connected together to

form the tiles described by the input tile netlists. As discussed in Section 4.5, there are

eight different tiles and at the next level of hierarchy these tiles are connected together

to form the FPGA array structure shown in Figure 4.9. At this level, the programmer

designed in Section 4.6 is also instantiated. Pad cells taken from the Virtual Silicon

Technology 0.18 µm Diplomat standard cell library [36] are also connected to the input

and output signals in the array of tiles. The clock and the power-on protection signal

are assumed to be globally connected to every tile. The entire hierarchical description of

the FPGA is output in Verilog.

The test circuit will be input as a BLIF file. Following the bitstream generation pro-

cedure discussed in Section 4.7, the VPR Bitstream Generator will produce a bitstream

that configures the FPGA to implement the test circuit. To verify that the tools and

the automatically generated FPGA are operating correctly, the behaviour of the FPGA

must be compared to the results expected for the test circuit. The BLIF input file de-

fines the expected behaviour. To perform the comparison the BLIF circuit description is

converted to Verilog using an automated tool created for the current work.

Simulation is performed using Cadence NC-Verilog [66]. No timing information is

used and all gates operate with zero delay. The bitstream produced by the bitstream

generator is applied to the programmer which then programs the configuration bits in the

FPGA array. Once programming is complete, test vectors are applied to the FPGA array

inputs and the outputs from the FPGA array are compared to the outputs from Verilog

implementation of the original BLIF test circuit description. The two implementations

should match exactly except in the case of uninitialized sequential circuits. The flip

flops in the FPGA array do not have a dedicated reset signal. It is possible to construct

a synchronous reset using LUTs but for circuits already described in BLIF form such

functionality is not easily added. As a result, care must be taken in the comparisons

between the FPGA array and the BLIF description when flip flops are present. Either

sequential circuits are avoided or comparison will only be performed after all the flip flops

have been initialized to a known state.
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5.4.2 Test Circuits

To verify the functionality of the FPGA, test circuits must be developed or obtained.

These circuits will be implemented on the test FPGA. Due to the VPR-based CAD flow,

these circuits must be available as BLIF netlists.

Given that there are 20 736 configuration SRAM in the FPGA array, a very large

number of possible configurations exist. It is not possible nor is it prudent to test every

possible valid configuration. The goal in this verification effort is simply to establish that

a range of designs can be successfully implemented on the FPGA. This will demonstrate

that the GILES netlist generator and the bitstream generator function adequately. Other

tests such as those performed in Section 5.3 increase the confidence that the output from

the netlist generator is correct. Hence, only a relatively small number of test circuits are

needed.

For some specific needs, custom test circuits were developed. These tests target basic

functionality of the FPGA and were used to assist in debugging early versions of the

GILES CAD flow. In addition to these custom tests, other circuits were obtained as well.

The MCNC circuits [60] were released for benchmarking CAD tools but they are also

useful simply as black box test circuits. The function they implement is not important

and it is only imperative that the implementation of the circuit on the FPGA match the

expected output based on the input BLIF file. The primary circuits that are used for

testing are listed in Table 5.1. The size of the circuit in terms of logic clusters, inputs and

outputs is given along with the source of the circuit. At various times in the verification

effort, other test circuits have been used; however, Table 5.1 only catalogues the tests

which were considered most important. Altering the placement results in a different

routing and hence a different bitstream. For some of the circuits, various placements

were attempted but, for the tests listed in the table, only the default placement obtained

by using VPR with the default placement seed will be used for the basic suite of tests.

The majority of the circuits listed in Table 5.1 are purely combinational. Due to the

aforementioned difficulties in reseting the sequential circuits, combinational circuits are

more useful for testing. From a functionality perspective, the only difference between a

sequential circuit and a combinational design is the select lines in the output multiplexer

of the BLEs. Hence, it is sufficient to only test the flip flops using the shift register circuit.

This circuit will confirm that the flip flops can be used and the remaining circuits will

more thoroughly test the LUTs and routing.
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Table 5.1: Primary Test Circuits

Test Name Logic Inputs Outputs Source Description
Clusters

Long Shift 64 1 1 Custom 192 bit long shift register
Register

Miscellaneous 5 13 13 Custom Various 4 or more
input logic functions

too-lrg 63 38 3 MCNC Largest MCNC Circuit
that fits on FPGA

mux 5 21 1 MCNC Combinational Circuit
my-adder 16 33 17 MCNC Combinational Circuit
term1 30 34 10 MCNC Combinational Circuit
clip 48 9 6 MCNC Combinational Circuit

5.4.3 Results

This layer of verification uncovered many problems that were not found in the prior tests.

The prior checking had only ensured that all the expected programmable elements were

present while the tests in this section allowed logical problems to be discovered. Two areas

were particularly problematic. The first resulted from the fact that the automated FPGA

creation CAD flow does not maintain information regarding multiplexer encoding. When

a bitstream is required, the Bitstream Generator assumes a specific encoding for each of

the inputs. In the initial version of the tools, there was an inadvertent permutation of

the inputs and, as a result, the behaviour of the multiplexer circuit did not match the

behaviour assumed by the bitstream generator. To remedy this problem, the Bitstream

Generator was updated to correspond with the actual structure of the multiplexer.

A second area of difficulty involved the creation of the LUT mask. Initial versions of

the tools did not configure the LUT if it was unused. This left the LUT in a random

state and, in some cases, simulations were not able to complete. In those cases, it was

discovered that the LUT was implementing a random inverting boolean function and the

local routing happened to connect those LUTs into a combinational loop. This led to the

creation of ring oscillators. Since logical simulations perform operations in zero time, the

ring oscillator will continue to toggle but the simulation time will never advance since

the simulator does not increase the simulation time until all the events at the current

time are complete. Those events will never complete when a ring oscillator is present.

While this problem is exclusively a simulation issue, having such ring oscillators in the

real circuit will be detrimental since they will consume power and contribute noise to the
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circuit unnecessarily. To address these concerns, the Bitstream Generator was updated

to always initialize unused LUTs to produce a constant logical zero output. This need

for initialization was also discussed in Section 4.7.

Once those problems were remedied, all comparisons between implementation on

the test FPGA and expectations based on the BLIF input file were successful. This

demonstrates a few significant accomplishments. Most importantly, it establishes that

the bitstream generator can function correctly. Also, this reveals that the FPGA array

implements the programmable fabric assumed by VPR.

5.5 Electrical Functionality

Logical functionality testing confirmed that the high-level design of the FPGA is ade-

quate. The circuit-level implementation of this design must also be checked to ensure

that the FPGA will function correctly at the electrical level. To perform these tests, cells

that were previously described logically must now use transistor-based implementations.

This section will describe the testing conducted at this level.

5.5.1 Methodology

The Simulation Generator is used, as in Section 5.4.1, to produce a structural Verilog

netlist describing the FPGA array and the programmer. However, the cells in both

components are replaced with transistor-level implementations. These transistor-level

implementations are extracted from the actual layout of the cell. The parasitic capaci-

tance introduced from the transistors and their interconnect is also extracted from the

actual layout.

A standard tool for performing transistor-level simulations is HSPICE. However, there

are over 300 000 transistors in the complete FPGA design and this exceeds the capacity

of HSPICE. Instead, Synopsys Nanosim [67] is used to simulate the design. Nanosim is

a high-speed, high-capacity circuit simulator reported to have an accuracy within 2% to

5% of HSPICE [68] and it is capable of handling a design of this size. This tool does

allow simulation speed to be increased at the expense of accuracy. The level of accuracy

used in this work was selected based on the recommendations in the tool’s documentation

[67].

Again, a comparison point is needed to ensure the design is functional. Mixed-signal
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simulation through integration with the Verilog simulator was unsuccessful because of

problems encountered with the tools that could not be fixed in a reasonable amount of

time. Instead every test was first performed using the procedure of Section 5.4.1. The

input and output signals to the array and programmer are captured and then converted

to vectors. These input vectors are applied in the Nanosim simulation to the design and

the output vectors confirm the proper functionality. The test circuits listed in Table 5.1

were also used for these electrical functionality tests.

5.5.2 Results

The importance of this verification step can be seen in the number of problems uncovered

by this testing. It had been thought that HSPICE simulation of typical paths within the

FPGA would reveal most potential problems. However, Nanosim simulation uncovered

a host of problems particularly involving the use of a PMOS pull-up to restore voltages

degraded after passing through NMOS pass transistors. Sizing of this pull-up is a delicate

task since, if it is too strong, it will not be possible to pull down nodes connected to the

pull-up and, if it is too weak, area will be wasted since the length must be increased

to make the device weaker than a minimum width transistor. Due to the on-resistance

of NMOS pass transistors, problems were discovered in paths involving many series-

connected pass transistors. Initial size adjustments remedied these problems for typical

transistor models but more thorough testing using the corner models revealed additional

problems requiring correction. These paths were not considered in the initial SPICE

simulations and only thorough application of this electrical functionality verification led

to the discovery of these potentially fatal problems.

All tests successfully passed with the primary test circuits. These circuits were tested

with typical NMOS and PMOS transistor models and the standard core voltage for this

process of 1.8 V. As an additional check, some test circuits were simulated using corner

models (Slow P Slow N, Fast P Fast N, Slow P Fast N, Fast N Slow P) for the transistors.

As well, the circuit was tested with VDD at 1.62 V which is 10% below nominal. The

FPGA design was found to be operate successfully under all these conditions.

5.5.3 Test Coverage

The goal of this verification effort was to confirm functionality of the entire design. It

is thus relevant to measure the amount of the design that has been tested. A variety of
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Table 5.2: Simulation Toggle Coverage for Entire Design

Toggles (t)

t = 0 t = 1 2 ≤ t < 10 10 ≤ t < 100 t ≥ 100

All - Total Nodes 27430 3881 15633 37017 58393
All - Percentage 19.3% 2.7% 11.0% 26.0% 41.0%

Table 5.3: Simulation Toggle Coverage for Virtual Tile

Toggles (t)

t = 0 t = 1 2 ≤ t < 10 10 ≤ t < 100 t ≥ 100

Virtual Tile - Total Nodes 6 4 54 204 1432
Virtual Tile - Percentage 0.4% 0.2% 3.2% 12.0% 84.2%

metrics are possible but this work will look exclusively at the number of times each net

changes between logic high and logic low voltages. A change in voltage either from high

to low or low to high will be referred to as a toggle. For each simulation of a test circuit,

Nanosim was set to record the number of times each net in the entire design toggled.

This includes the nets inside the array of tiles, the programmer and the IO pads. The

number of toggles from each electrical simulation of the test circuits listed in Table 5.1

was summed for each net. With 142 354 nets in the design, it is most effective to sort

the nets into groups or bins based on the number of times the net toggled. To highlight

the most significant results from the verification perspective, the bins are non-uniform

in their range. The first two groups include nets that do not toggle and nets that toggle

only once. Such nets are not being throughly excited and, hence, are not significantly

contributing to this functionality testing. The other bins, for nets that toggle between 2

and 9 times inclusively, 10 and 99 times inclusively and 100 or more times, contain nodes

that are more throughly exercised.

Table 5.2 summarizes the data from the testing broken down into these groups. The

row “All - Total Nodes” gives the absolute number of nets for each of the toggle count

ranges considered. This includes all the nets in the entire design. To provide a better

relative sense of the number of nets in each bin, the row “All - Percentage” gives the

number of nets in each bin as a percentage of the total number of nets in the design.

Over the complete design 19.3% of nodes are never exercised and 2.7% of nodes are only

partially used since they toggle only once. The large number of nodes that never toggle

is a concern since it demonstrates some functionality is not being tested.
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However, as can be seen in the floor plan of the chip in Figure 4.9, the design has a

great deal of regularity since a large portion of the design consists of the array of 8 × 8

main tiles. These main tiles are identical. Instead of considering the entire array of these

tiles as one large structure, the regularity can be used and a single tile will be analyzed.

For each net inside the main tile, the number of times the net toggles in each instantiation

of the main tile will be totalled. The toggle coverage will then be considered in terms of

this virtual tile. The term virtual is used because no actual tile exhibits such toggling.

Yet, given the entire design, the main tile is being exercised in such a manner. Again, the

number of toggles is also summed over all the simulations performed. These results are

shown in Table 5.3. The “Virtual Tile - Total Nodes” gives the number of total number

of nets in each toggle count range for this single virtual tile. This is converted into the

percentage of the nodes in the tile in the row labelled “Virtual Tile - Percentage”. By this

measurement technique only 0.4% of the nodes in this single virtual tile are unexercised

and 0.2% only toggle once. The majority of the nodes, 84.2%, toggle over a hundred

times and this indicates that over the entire design the main tile is being thoroughly

exercised.

Observing this single virtual tile is very different than what is done for manufacturing

tests. It is acceptable since the focus in this testing is functionality. When performing

manufacturing tests, the goal is often to exercise every physical node since manufacturing

defects can occur in any area of the design. However, for simply testing functionality,

the repetition in the design can be used since all the main tiles are identical at design

time. It is only in manufacturing that differences or defects can arise in individual tiles.

One issue with these toggle count observations is that the observability of any faults

is not guaranteed. Ideally, one should ensure that the reported toggles are observed on

the output signals tested by the simulator. This however was not done for this work

and the possibility exists that a significant portion of the functionality is not actually

being observed. For future designs, improved analysis of test coverage would clearly be

desirable.

Despite these observability concerns, the tests performed do increase the confidence in

the design since the test circuits were in fact functional. At the very least, these circuits

should operate on the FPGA and it is quite likely that significantly more circuits will be

functional.
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5.6 Further Electrical Functionality Checking

To further ensure the correct operation of the FPGA more extensive simulation is needed.

Up to this point a netlist produced by the GILES placer has been used to generate the

Verilog simulation environment. Separate work by Egier in [22] has taken this netlist

from the placer and routed it to produce a final tile layout. These tiles are automatically

arrayed and connected to complete the design. These are significant steps and, thus, it

is essential that their output is verified.

The procedure for these simulations is similar to that used in Section 5.5.1. However,

now more of the physical design is extracted from the actual layouts. Using the Ca-

dence Diva Extractor [69], the layout of an entire tile was first converted to a transistor

level netlist. These transistor-level netlists are then substituted for the Verilog struc-

tural netlist of that same tile that was generated using the VPR LAYOUT Simulation

Generator discussed in Section 5.5.1. With this new transistor-level netlist describing

the design, simulation with Nanosim was performed in the same manner as before. Fi-

nally, this process was repeated except with the layout of the entire FPGA extracted to

a transistor-level netlist.

This level of simulation is computationally intensive. Running on a 1.062 GHz Ultra-

SPARC IIIi processor, the full simulation requires approximately 65 hours. As a result,

time constraints prior to the tape out of this design prevented all the test circuits listed

in Table 5.1 from being used for this verification step. Only the long shift register, mis-

cellaneous, my-adder, and too-lrg test circuits were simulated at this level. Nevertheless,

this does provide reasonable confidence that the design is functional.

5.7 Summary

This multi-faceted approach to verification has demonstrated the functionality of the

design. Initial tests indicated that the structure of the FPGA assumed by VPR matches

that produced using the automated layout tools. Extensive simulation then confirmed

proper operation of this structure and the supporting infrastructure needed to configure

and to use the design. Finally, LVS comparisons between this simulation version and the

physical layout reveals the validity of these simulations.



Chapter 6

Conclusions and Future Work

6.1 Summary

The goal of this thesis was to explore the utility of an automated FPGA design method-

ology by considering two issues: the layout quality and the viability of this method.

First, the area quality of FPGA layouts produced with automated tools was assessed in

Chapter 3. The quality was measured by comparison with manually generated layouts.

This comparison, which was significantly more accurate than past comparisons, found

that the automated tools can produce a layout that is only 36% larger than one created

manually. This is a promising result and it suggests that there is room for automation in

FPGA design. Furthermore, with concentrated effort to improve the tools in the future,

it will likely be possible to automatically create layouts that are more area-efficient than

manual designs.

In Chapters 4 and 5, this work focused on developing the infrastructure needed to

create a complete FPGA. This included the development of tools and circuits, such as a

bitstream generator and a configuration SRAM programmer, that are needed to use an

FPGA. Using those tools, in conjunction with prior automated design tools, a complete

FPGA was created. This design was demonstrated to be functional in simulation and it

was sent for fabrication. Producing and fabricating this complete FPGA is a significant

accomplishment since it demonstrates the feasibility of an automated FPGA design flow.

6.2 Contributions

This thesis made the following contributions:
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• An accurate capture of the Virtex-E for use in layout comparisons.

• A fair comparison between manual and automated layouts which found that layouts

which are only 36% larger can be produced automatically.

• The development of tools that enable the automated creation of a configuration

SRAM programmer and the periphery tiles needed to connect I/O pads to the

main FPGA array.

• The creation of an environment for verifying FPGAs produced using the automated

layout tools. This included the development of a generic bitstream generator and

tools that enable the simulation of an FPGA.

• The creation of a fully functioning chip.

• A complete FPGA design described at the cell level, the electrical level and the

physical layout level that may be of use to academic FPGA architects and creators.

6.3 Future Work

The layout quality and feasibility issues considered in this work suggest many possible

future directions. This work measured the quality of the layouts produced using the

automated tools exclusively in terms of area. Other important parameters like speed

and power consumption should be measured in the future. Once the speed and power

consumption are accurately measured, it would be logical to design tools that can opti-

mize these parameters while still ensuring reasonable area efficiency. The goal would be

to create tools that produce layouts which are faster and more power and area efficient

than the layouts produced by manual designers.

It would also be useful to perform more comparisons to manual layouts in the future.

The single comparison performed in this work was a valid starting point but to better

demonstrate the capabilities of the automated layout tools, comparison to many devices

from various manufacturers using various CMOS processes is needed. If the area, speed

and power performance of the layouts produced automatically is found to be similar to

that of manual layouts then it would provide a strong basis for FPGA manufacturers to

use automated tools for future layouts.
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One input to the current tools is the set of cells needed by the design. As a result, the

cells have to be created before significant information about the final layout is known.

It would be interesting to reverse this process and create tools that output specifications

for the cells. An initial estimate of the cell’s size and the location of the cell’s input and

output pins could be used as starting point and then both the size and pin positions could

be optimized by the placer and router to suit the layout needs. The required cells would

then be created manually. This process could lead to significantly more area efficient

designs with the only cost being a slight increase in the complexity of the manual layout.

However, that manual effort would remain well below the effort required to create the

complete FPGA layout which could make this a promising technique

Finally, it would also be interesting to augment the current verification tools to fa-

cilitate the measurement of the speed of the FPGA circuit. This information would be

useful for timing-driven placement and routing of circuits on the FPGA since, currently,

for every new target architecture, the user must provide an estimate to the placer and

router of the delays through the FPGA resources. If the performance estimate for a

circuit implemented on an FPGA is to be accurate then it is important those estimates

are correct. However, obtaining accurate estimates is difficult and, therefore, the process

would be aided greatly by tools that automatically characterize the speed of the FPGA

circuit.



Appendix A

MCNC Benchmark Circuits

Table A.1: MCNC Test Circuits Used for Architecture

Experiments

Name Number of Number of Number of Number of

4-LUTs Inputs Outputs Nets

5xp1 57 7 10 64

9symml 97 9 1 106

9sym 144 9 1 153

alu2 197 10 6 207

alu4 1522 14 8 1536

apex1 700 45 45 745

apex2 1878 39 3 1917

apex3 869 54 50 923

apex4 1262 9 19 1271

apex5 535 117 88 652

apex6 393 135 99 528

apex7 102 49 37 151

b12 56 15 9 71

b1 4 3 4 7

b9 46 41 21 87

bbara 33 5 2 42

bbrtas 406 5 2 418

Continued on next page
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Table A.1 – continued from previous page

Name Number of Number of Number of Number of

4-LUTs Inputs Outputs Nets

bbsse 64 8 7 76

bbtas 6 3 2 12

beecount 14 4 4 21

bigkey 1707 263 197 2194

bw 132 5 28 137

C1355 74 41 32 115

C17 2 5 2 7

C1908 145 33 25 178

C2670 259 233 64 492

C3540 431 50 22 481

C432 124 36 7 160

C499 74 41 32 115

C5315 620 178 123 798

C6288 527 32 32 559

C7552 739 207 107 946

C880 174 60 26 234

c8 39 28 18 67

cc 26 21 20 47

cht 55 47 36 102

clip 140 9 5 149

clma 8381 383 82 8797

cm138a 10 6 8 16

cm150a 14 21 1 35

cm151a 8 12 2 20

cm152a 6 11 1 17

cm162a 18 14 5 32

cm163a 11 16 5 27

cm42a 10 4 10 14

cm82a 4 5 3 9

Continued on next page
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Table A.1 – continued from previous page

Name Number of Number of Number of Number of

4-LUTs Inputs Outputs Nets

cm85a 11 11 3 22

cmb 17 16 4 33

comp 40 32 3 72

con1 5 7 2 12

cordic 466 23 2 489

count 39 35 16 74

cps 757 24 109 781

cse 90 8 7 102

cu 22 14 11 36

daio 3 2 2 9

daio-rec 311 17 46 409

dalu 500 75 16 575

decod 20 5 16 25

des 1591 256 245 1847

diffeq 1494 64 39 1935

dk14 43 4 5 50

dk15 24 4 5 30

dk16 105 3 3 113

dk17 15 3 3 21

dk27 5 2 2 10

dk512 14 2 3 20

dsip 1370 229 197 1823

duke2 251 22 29 273

e64 274 65 65 339

ecc 330 12 14 451

elliptic 3602 131 114 4855

ex1010 4598 10 10 4608

ex1 124 10 19 139

ex4 35 7 9 46

Continued on next page
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Table A.1 – continued from previous page

Name Number of Number of Number of Number of

4-LUTs Inputs Outputs Nets

ex4p 445 128 28 573

ex5p 1064 8 63 1072

ex6 60 6 8 69

example2 138 85 66 223

f51m 54 8 8 62

frg1 49 28 3 77

frg2 379 143 139 522

frisc 3539 20 116 4445

gcd 218 19 25 295

i10 995 257 224 1252

i1 21 25 13 46

i2 74 201 1 275

i3 46 132 6 178

i4 98 192 6 290

i5 88 133 66 221

i6 182 138 67 320

i7 203 199 67 402

i8 481 133 81 614

i9 376 88 63 464

inc 64 7 9 71

k2 519 45 45 564

keyb 103 8 2 116

lal 34 26 19 60

ldd 37 9 19 46

lion 3 3 1 8

majority 3 5 1 8

mark1 37 6 16 47

mc 7 4 5 13

misex1 21 8 7 29

Continued on next page
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Table A.1 – continued from previous page

Name Number of Number of Number of Number of

4-LUTs Inputs Outputs Nets

misex2 49 25 18 74

misex3c 549 14 14 563

misex3 1397 14 14 1411

mm30a 467 34 30 591

mm4a 78 8 4 98

mm9a 142 13 9 182

mm9b 204 13 9 243

mult16a 57 18 1 91

mult16b 31 18 1 79

mult32a 116 34 1 182

mux 15 21 1 36

my-adder 47 33 17 80

o64 46 130 1 176

opus 50 6 6 60

pair 647 173 137 820

parity 5 16 1 21

parker1986 660 50 9 871

pcle 21 19 9 40

pcler8 35 27 17 62

pdc 4575 16 40 4591

ph-decod 219 4 10 278

planet1 266 8 19 280

planet 266 8 19 280

pm1 19 16 13 35

pma 85 9 8 99

rd53 12 5 3 17

rd73 83 7 3 90

rd84 157 8 4 165

rot 307 135 107 442

Continued on next page
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Table A.1 – continued from previous page

Name Number of Number of Number of Number of

4-LUTs Inputs Outputs Nets

s1196 264 15 14 297

s1238 292 15 14 325

s1423 221 18 5 313

s1488 296 9 19 311

s1494 292 9 19 307

s1 195 9 6 209

s208 24 11 1 43

s208 18 12 2 35

s27 6 5 1 14

s298 1930 4 6 1942

s344 67 10 11 92

s349 67 10 11 92

s382 60 4 6 85

s38417 6096 29 106 7588

s38584 6281 39 304 7580

s386 56 8 7 68

s400 69 4 6 94

s420 47 19 1 82

s420 23 20 2 48

s444 62 4 6 87

s510 101 20 7 127

s526n 60 4 6 85

s526 52 4 6 77

s5378 576 36 49 772

s641 87 36 23 142

s713 88 36 23 143

s820 120 19 19 144

s832 145 19 19 169

s838 95 35 1 162

Continued on next page
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Table A.1 – continued from previous page

Name Number of Number of Number of Number of

4-LUTs Inputs Outputs Nets

s838 167 36 2 235

s9234 461 37 39 633

s953 214 17 23 260

sand 243 12 9 260

sao2 90 10 4 100

sbc 384 41 56 452

scf 418 28 56 453

sct 23 19 15 42

seq 1750 41 35 1791

shiftreg 0 2 1 5

spla 3690 16 46 3706

sqrt8ml 31 8 4 39

sqrt8 29 8 4 37

squar5 34 5 8 39

sse 64 8 7 76

styr 238 10 10 253

t481 214 16 1 230

table3 480 14 14 494

table5 485 17 15 502

tav 9 5 4 16

tbk 84 7 3 95

tcon 16 17 16 33

term1 88 34 10 122

too-lrg 187 38 3 225

traffic 35 6 8 53

tseng 1046 52 122 1483

ttt2 75 24 21 99

unreg 48 36 16 84

vda 291 17 39 308

Continued on next page
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Table A.1 – continued from previous page

Name Number of Number of Number of Number of

4-LUTs Inputs Outputs Nets

vg2 67 25 8 92

x1 143 51 35 194

x2 17 10 7 27

x3 377 135 99 512

x4 194 94 71 288

xor5 2 5 1 7

z4ml 8 7 4 15



Appendix B

SRAM Programmer Verilog

Description

//
// GILES Programmer
// A v e r i l o g implementat ion t ha t can be used to program
// a GILES genera ted FPGA
// by Ian Kuon
// Ju ly 2003
// Updated throughout 2003
//
‘timescale 1 ns / 1 ns

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
//
// The f o l l ow i n g modules are j u s t b a s i c e lements
// such as comparators , r e g i s t e r s and counters
//
//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

module s h i f t r e g ( c lk , s h i f t i n , data out , enable , r e s e t b ) ;

// synopsys s y n c s e t r e s e t ” r e s e t b ”
parameter data width =10;
parameter i n i t i a l i z a t i o n v a l u e =’b0 ;
input c l k ;
input s h i f t i n ;
output [ data width −1:0] data out ;
input enable ;
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input r e s e t b ;

reg [ data width −1:0] data out ;

always@ (posedge c l k )
i f ( r e s e t b==0)

data out<=i n i t i a l i z a t i o n v a l u e ;
else i f ( enable==1) begin

data out<=data out <<1;
data out [0]<= s h i f t i n ;

end // i f ( enab l e==1)

endmodule // s h i f t r e g

module mux 2 1 (A, B, s e l , out ) ;

parameter data width =10;
input [ data width −1:0] A, B;
input s e l ;
output [ data width −1:0] out ;

reg [ data width −1:0] out ;

always @(A or B or s e l )
begin

case ( s e l )
0 : out = A;
1 : out = B;

// d e f a u l t : out <=A;
endcase

end

endmodule // mux 2 1

module counter ( c lk , enable , r e s e t b , count ) ;

// synopsys s y n c s e t r e s e t ” r e s e t b ”
parameter count width =2;

input c l k ;
input enable ;
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input r e s e t b ;
output [ count width −1:0] count ;

reg [ count width −1:0] count ;

always @(posedge c l k )
i f ( r e s e t b == 0)

count <=0;
else i f ( enable==1)

count<=count+1;

endmodule // counter

module comparator (A,B, eq ) ;

parameter comp width=2;
input [ comp width −1:0] A,B;
output eq ;

assign eq = A==B;

endmodule // comparator

module g i l e s programmer embedded sh i f t ( r e s e t b , c lk ,
program ready , program enable , t o b i t s h i f t , t o wo rd sh i f t ,
p rog c lk , prog c lk b , word enable , word enable b ,
word f l op enab l e , b i t f l o p e n ab l e , data in , done l ine , d on e a l l )
;

// A l l the b i t s
// f o r an en t i r e word l i n e must be programmed at once
// b i t l i n e s
// | |
// −−−+−−−−−−+−−−−−−−−−− word l i n e
// | |
// −−−+−−−−−−+−−−−−−−−−−
// | |
//
parameter b i t count =144;
parameter word count =144;
parameter b i t c oun t l o g 2 =8;
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parameter word count log2 =8;

input r e s e t b ;
input c l k ;
input data in ;
input program enable ;

output t o b i t s h i f t ;
output t o wo rd sh i f t ;
output prog c l k ;
output prog c l k b ;
output word enable ;
output word enable b ;
output word f l op enab l e ;
output b i t f l o p e n a b l e ;

output done l i n e ;
output done a l l ;
output program ready ;

wire [ b i t count −1:0] p r o g b i t s ;
wire [ b i t c oun t l og2 −1:0] b i t s r e c e i v e d ;
wire [ word count −1:0] words r ece ived ;
wire b i t count enab l e ,

word count enable ;
wire b i t compare r e su l t ,

word compare resu l t ;
wire c oun t e r r e s e t b ;
wire i d l e r e s e t b ;
wire program ;

wire [ word count −1:0] z e r o s ;
wire [ b i t c oun t l og2 −1:0] b i t count compare va l ;

wire [ word count −1:0 ] word count compare val ;
wire b i t c o u n t e r r e s e t b ;

wire word sh i f t ;

assign b i t count compare va l=bi t count −1;
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//The compare va lue i s the l a s t word to be wr i t t en hence the
//word count −1.
assign word count compare val=1’b1<<(word count−1) ;

assign z e ro s =’b0 ;

assign c oun t e r r e s e t b=i d l e r e s e t b&r e s e t b ;

//Assign the s i g n a l s t h a t j u s t f l ow through the b l o c k
assign prog c l k=c lk ;
assign prog c l k b=˜c lk ;
assign t o b i t s h i f t=data in ;
assign word f l op enab l e=word count enable ;
assign b i t f l o p e n a b l e=b i t c oun t enab l e ;

//Data w i l l be s h i f t e d in u n t i l the r e g i s t e r i s f u l l
//which w i l l be known by us ing a counter . A s i n g l e word
// l i n e w i l l then be programmed . As a f i r s t v e r s i on t h i s
// w i l l s imply s t a r t a t word l i n e 0 a f t e r r e s e t and increment
// in a loop .
//
//

// S h i f t r e g i s t e r which s t o r e s the b i t s as they are r e c e i v ed
s h i f t r e g #(b i t count ) b i t s t o r e 0 ( . c l k ( c l k ) , . s h i f t i n (

da ta in ) , . data out ( p r o g b i t s ) ,
. enable ( b i t c oun t enab l e ) , . r e s e t b (

r e s e t b ) ) ;
// Some compi l e r s don ’ t seem to l i k e defparams
// defparam b i t s t o r e 0 . da ta w id th=b i t c o un t ;

//Bit counter to know when we are ready to wr i t e a word
counter #(b i t c oun t l o g 2 ) b i t c oun t 0 ( . c l k ( c l k ) , . enable (

b i t c oun t enab l e ) ,
. r e s e t b ( b i t c o u n t e r r e s e t b ) ,
. count ( b i t s r e c e i v e d ) ) ;

// defparam b i t c o un t 0 . count wid th=b i t c o u n t l o g 2 ;

//We need to r e s e t the count every time we wr i t e a word
assign b i t c o u n t e r r e s e t b=coun t e r r e s e t b & ( ! done l i n e ) ;
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//This comparator determines when we have r e c e i v ed a l l the
b i t s

// defparam bi t compare 0 . comp width=b i t c o u n t l o g 2 ;
comparator b i t compare 0 ( .A( b i t s r e c e i v e d ) , .B(

b i t count compare va l ) ,
. eq ( b i t c ompa r e r e su l t ) ) ;

defparam bit compare 0 . comp width=b i t c oun t l o g 2 ;

//Word counter to know when the en t i r e dev i c e i s programmed
//A s h i f t r e g i s t e r i s used in s t ead o f a counter because I

want
// to avoid decoding numbers to the one hot r e p r e s en t a t i on
s h i f t r e g word count 0 ( . c l k ( c l k ) , . s h i f t i n (1 ’ b0 ) , . data out (

words r ece ived ) ,
. enable ( word count enable ) ,
. r e s e t b ( c oun t e r r e s e t b ) ) ;

defparam word count 0 . data width=word count ;
defparam word count 0 . i n i t i a l i z a t i o n v a l u e =’b01 ;

//The f l o p s f o r the s h i f t reg don ’ t have a r e s e t
// so we must waste time i n i t i a l i z i n g them

assign t o wo rd sh i f t=word sh i f t ;
assign word enable=program ;
assign word enable b=˜program ;

//This comparator determines when we have r e c e i v ed a l l the
b i t s

comparator word compare 0 ( .A( words r ece ived ) , .B(
word count compare val ) ,

. eq ( word compare resu l t ) ) ;
defparam word compare 0 . comp width=word count ;

// Con t r o l l e r which makes e v e r y t h i n g work t o g e t h e r
g i l e s p r og r am con t r o l embedded sh i f t g i l e s c o n t r o l ma i n (

. c l k ( c l k ) ,

. b i t c ompa r e r e su l t ( b i t c ompa r e r e su l t ) ,

. word compare resu l t ( word compare resu l t ) ,

. b i t c oun t enab l e ( b i t c oun t enab l e ) ,

. word count enable ( word count enable ) ,
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. perform program ( program ) ,

. i d l e r e s e t b ( i d l e r e s e t b ) ,

. r e s e t b ( r e s e t b ) ,

. program enable ( program enable ) ,

. d one l i n e ( done l i n e ) ,

. d on e a l l ( d on e a l l ) ,

. program ready ( program ready ) ,

. wo rd sh i f t ( wo rd sh i f t ) ) ;

endmodule // gi les programmer main
module g i l e s p r og r am con t r o l embedded sh i f t ( c lk ,

b i t c ompare r e su l t ,
word compare result ,
b i t count enab l e , word count enable ,
perform program , i d l e r e s e t b , r e s e t b ,
program enable , done l ine , done a l l ,
program ready , wo rd sh i f t ) ;

input c l k ;
input b i t compare r e su l t , word compare resu l t ;
output b i t count enab l e , word count enable ;
output perform program , i d l e r e s e t b ;
input r e s e t b ;
input program enable ;
output done l ine , d on e a l l ;
output program ready ;
output word sh i f t ;

reg b i t count enab l e , word count enable ;
reg done l ine , d on e a l l ;
reg perform program , i d l e r e s e t b ;
reg program ready ;
reg word sh i f t ;

parameter STATE SIZE = 3 ;
parameter IDLE = ’ b000 ;
parameter INITIALIZE = ’ b111 ;
parameter PREPARE TO PROGRAM = ’ b110 ;
parameter BIT RECEIVE = ’ b001 ;
parameter BIT PROGRAM = ’ b010 ;
parameter BIT PROGRAM PRE WAIT = ’ b101 ;
parameter BIT PROGRAM POST WAIT = ’ b100 ;
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parameter PROGRAMMED = ’ b011 ;

reg [ STATE SIZE−1:0] c u r r s t a t e ; // Seq par t o f the FSM
reg [ STATE SIZE−1:0] n ex t s t a t e ;

//−−−−−−−−−−− Next S ta t e Logic −−−−−−−−−−−−−−−−−−−−−−

always@ ( c u r r s t a t e or b i t c ompa r e r e su l t or
word compare resu l t or

r e s e t b or program enable )
begin : NEXT STATE LOGIC

case ( c u r r s t a t e )
IDLE : i f ( program enable == 1 ’ b1 ) begin

nex t s t a t e = INITIALIZE ;
end
else begin

nex t s t a t e = IDLE ;
end

INITIALIZE :

i f ( word compare resu l t == 1 ’ b1 ) begin
nex t s t a t e = PREPARE TO PROGRAM;

end
else begin

nex t s t a t e = INITIALIZE ;
end

PREPARE TO PROGRAM : nex t s t a t e=BIT RECEIVE ;

BIT RECEIVE : i f ( program enable == 1 ’ b0 ) begin
nex t s t a t e = IDLE ;

end // i f ( program enable == 1 ’ b0 )
else i f ( b i t c ompa r e r e su l t == 1 ’ b1 )

begin
nex t s t a t e = BIT PROGRAM PRE WAIT;

end
else begin

nex t s t a t e = BIT RECEIVE ;
end // e l s e : ! i f ( b i t c ompa r e r e s u l t ==

1 ’ b1 )
BIT PROGRAM PRE WAIT :

n ex t s t a t e = BIT PROGRAM;
BIT PROGRAM : // n e x t s t a t e=BIT RECEIVE;
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i f ( word compare resu l t == 1 ’ b1 ) begin
nex t s t a t e = PROGRAMMED;

end
else begin

nex t s t a t e = BIT PROGRAM POST WAIT;
end // e l s e : ! i f ( word compare resu l t ==

1 ’ b1 )
BIT PROGRAM POST WAIT:

n ex t s t a t e = BIT RECEIVE ;

PROGRAMMED : i f ( program enable == 1 ’ b0 ) begin
nex t s t a t e = IDLE ;

end
else begin

nex t s t a t e = PROGRAMMED;
end

default : n e x t s t a t e = IDLE ;

endcase

end // b l o c k : NEXT STATE LOGIC

// synopsys s y n c s e t r e s e t ” r e s e t b ”

always @ (posedge c l k )
begin : NEXT STATE SETTER

i f ( r e s e t b == 1 ’ b0 ) begin
c u r r s t a t e <= IDLE ;

end
else begin

c u r r s t a t e <= nex t s t a t e ;
end

end // b l o c k : NEXT STATE SETTER
//−−−−−−−−−−Output Logic−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

//always@ ( posedge c l k )
always@ ( c u r r s t a t e )
begin : OUTPUT LOGIC

case ( c u r r s t a t e )

IDLE : begin
done l i n e =1’b0 ;
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don e a l l =1’b0 ;
perform program=1’b0 ;
i d l e r e s e t b =1’b0 ;
b i t c oun t enab l e =1’b0 ;
word count enable=1’b0 ;
program ready=1’b1 ;
wo rd sh i f t =1’b0 ;

end
INITIALIZE : begin

done l i n e =1’b0 ;
d on e a l l =1’b0 ;
perform program=1’b0 ;
i d l e r e s e t b =1’b1 ;
b i t c oun t enab l e =1’b0 ;
word count enable=1’b1 ;
program ready=1’b0 ;
wo rd sh i f t =1’b0 ;

end
PREPARE TO PROGRAM : begin

done l i n e =1’b0 ;
d on e a l l =1’b0 ;
perform program=1’b0 ;
i d l e r e s e t b =1’b0 ;
b i t c oun t enab l e =1’b0 ;
word count enable=1’b1 ;
program ready=1’b0 ;
wo rd sh i f t =1’b1 ;

end
BIT RECEIVE : begin

done l i n e =1’b0 ;
d on e a l l =1’b0 ;
perform program=1’b0 ;
i d l e r e s e t b =1’b1 ;
b i t c oun t enab l e =1’b1 ;
word count enable=1’b0 ;
program ready=1’b1 ;
wo rd sh i f t =1’b0 ;

end
BIT PROGRAM PRE WAIT : begin

done l i n e =1’b1 ;
d on e a l l =1’b0 ;
perform program=1’b0 ;
i d l e r e s e t b =1’b1 ;
b i t c oun t enab l e =1’b0 ;
word count enable=1’b0 ;
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program ready=1’b0 ;
wo rd sh i f t =1’b0 ;

end
BIT PROGRAM : begin

done l i n e =1’b1 ;
d on e a l l =1’b0 ;
perform program=1’b1 ;
i d l e r e s e t b =1’b1 ;
b i t c oun t enab l e =1’b0 ;
word count enable=1’b1 ;
program ready=1’b0 ;
wo rd sh i f t =1’b0 ;

end
BIT PROGRAM POST WAIT : begin

done l i n e =1’b1 ;
d on e a l l =1’b0 ;
perform program=1’b0 ;
i d l e r e s e t b =1’b1 ;
b i t c oun t enab l e =1’b0 ;
word count enable=1’b0 ;
program ready=1’b0 ;
wo rd sh i f t =1’b0 ;

end
PROGRAMMED : begin

done l i n e =1’b0 ;
d on e a l l =1’b1 ;
perform program=1’b0 ;
i d l e r e s e t b =1’b1 ;
b i t c oun t enab l e =1’b0 ;
word count enable=1’b0 ;
program ready=1’b1 ;
wo rd sh i f t =1’b0 ;

end
default : begin

done l i n e =1’b0 ;
d on e a l l =1’b0 ;
perform program=1’b0 ;
i d l e r e s e t b =1’b0 ;
b i t c oun t enab l e =1’b0 ;
word count enable=1’b0 ;
program ready=1’b0 ;
wo rd sh i f t =1’b0 ;

end
endcase
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//end

end // End Of Block OUTPUT LOGIC

endmodule // g i l e s p r o g r am con t r o l embedd ed s h i f t
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