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Abstract
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University of Toronto

2009

Monte Carlo (MC) simulations are widely used in the field of medical biophysics,

particularly for modelling light propagation in biological tissue. The iterative nature

of MC simulations and their high computation time currently limit their use to solving

the forward solution for a given source configuration and optical properties of the tis-

sue. However, applications such as photodynamic therapy treatment planning or image

reconstruction in diffuse optical tomography require solving the inverse problem given a

desired light dose distribution or absorber distribution, respectively. A faster means for

performing MC simulations would enable the use of MC-based models for such tasks. In

this thesis, a gold standard MC code called MCML was accelerated using two distinct

hardware-based approaches, namely designing custom hardware on field-programmable

gate arrays and programming commodity graphics processing units (GPUs). Currently,

the GPU-based approach is promising, offering approximately 1000-fold speedup with 4

GPUs compared to an Intel Xeon CPU.
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Chapter 1

Introduction

Photodynamic therapy (PDT) is an emerging, minimally invasive treatment modality in

oncology and other fields. For treating oncologic conditions, the key steps in PDT include

the uptake of a light-sensitive drug in the patient’s tumour and the local activation of

the drug by delivering a sufficient light dose selectively to the region. To effectively

target the therapy at the tumour, while sparing the healthy tissue nearby, accurate light

dosimetry is critical during treatment planning. Among other techniques for computing

light dose, the Monte Carlo (MC) method is considered the gold standard approach in

terms of accuracy and flexibility in modelling complex 3-D geometries. However, the use

of MC-based models for solving iterative, inverse optimization problems such as PDT

treatment planning is currently hindered by its long computation time. Accelerating MC

simulations would enable their use for solving such computationally intensive inverse

problems. Specifically, this thesis explores two different hardware-based approaches to

accelerate an MC simulation for computing light dose in multi-layered biological tissue.

The following sections review the progress in PDT and the clinical dosimetric concepts

unique to PDT. In particular, the notion of light dosimetry is introduced to explain how

the MC method can be used for PDT treatment planning.

1



2 Chapter 1. Introduction

1.1 Progress in Photodynamic Therapy

Initially developed for the local destruction of solid tumours, today photodynamic ther-

apy (PDT) has been applied to a wide range of clinical conditions. The fundamen-

tal mechanism of PDT involves the accumulation of a light-sensitive compound, called

a photosensitizer, in the treatment target and the irradiation of this target volume

with light (typically in the visible to near-infrared range) to generate reactive oxygen

species [1,2,3,4]. The biological effects of these reactive oxygen species include tissue de-

struction through necrosis or apoptosis, vascular damage resulting in further cell death,

and immune modulation.

In terms of non-oncologic conditions, PDT has become a standard treatment for age-

related macular degeneration [5]. It is also being investigated for localized infections such

as periodontitis [6] and for other conditions including rheumatoid arthritis [7]. As for on-

cologic applications, PDT has demonstrated high efficacy for the treatment of basal cell

carcinoma [8], which is a superficial skin tumour. In addition, PDT has been approved

for treating refractory superficial bladder cancer [9], early-stage bronchial cancer [10],

and high-grade dysplasia in Barrett’s oesophagus which is an important risk factor for

developing oesophageal carcinoma [11]. Clinical trials are underway to investigate the

use of this minimally invasive modality for deep-seated tumours, such as malignant brain

tumours [12], prostate cancer [13], and head and neck cancers [14]. However, special light

delivery systems are required to adequately cover the complex organ geometries in these

cases. For example, in a prostate PDT trial, multiple interstitial fibres are surgically

implanted using a modified stabilizing system originally designed for brachytherapy [15].

Since the inter-patient variations in optical properties, 3-D geometry, and biological re-

sponse of the tumour can be significant, pre-treatment optimization or treatment plan-

ning for each patient is especially critical in interstitial PDT (IPDT) [15]. Although

PDT can, in theory, be repeated multiple times without inducing apparent resistance

in the tumour (since DNA is not the major target in PDT [16]), treatment planning
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helps physicians and medical physicists avoid under-dosing or over-dosing, particularly

in critical structures or organs. The biological response and clinical outcome can also

be more accurately correlated with the prescribed dose. By building up this knowledge

base, tissue response models can be developed. Overall, treatment planning is a key step

in the development of IPDT as a reliable treatment modality. The next section intro-

duces the fundamental dosimetry concepts required to understand the unique challenges

in treatment planning for PDT.

1.2 Clinical Dosimetry for PDT Treatment Planning

Compared to radiation therapy treatment planning, PDT treatment planning is still a

nascent field. PDT dosimetry requires the consideration of at least three key parameters:

the concentration of photosensitizing drug, the power density of light delivered, and the

partial pressure of oxygen in the tissue. Unfortunately, these three quantities are intri-

cately linked together and they can also vary over the course of the treatment due to

photobleaching (which decreases the effective concentration of photosensitizers present),

changes in optical properties within the necrotic tissue (which affects the amount of

light actually delivered), or vascular shutdown (which decreases the concentration of

oxygen) [17]. For practical dosimetry in a clinical setting, the American Association of

Physicists in Medicine (AAPM) recommended the definition of a more practical dosi-

metric parameter called photodynamic dose [18]. Under this definition (Eq. 1.1), the

photodynamic dose D∗ [measured in ph/g or the number of photons absorbed by photo-

sensitizer per gram of tissue] is primarily a function of the light fluence rate φ [W/cm2],

light exposure time T [s], and concentration of the photosensitizer drug D [mol/L or

moles of drug per litre of tissue] accumulated in the target site:

D∗ = εDφT
λ

hcρ
(1.1)
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where ε is the extinction coefficient of the photosensitizing drug [cm−1/(mol/L)], ρ is the

density of the tissue [g/cm3], h is Planck’s constant which equals 6.6 × 10−34 J s, c is

the speed of light or 3.0 × 1010 cm/s, and λ is the wavelength of the photon expressed in

centimetres. Note that λ/hc also represents the number of photons per Joule of energy.

Based on this photodynamic dose definition, the threshold dose (D∗
th) to achieve the

desired biological effect (namely cell death) can be determined experimentally through

the delineation of necrotic zones, which have been shown to have sharp boundaries in

PDT [19]. Typical values of D∗
th range from 1018 to 1019 photons/gram depending on the

photosensitizing drug used and the intrinsic sensitivity of the target tissue to PDT [20].

A more convenient definition is based on the threshold fluence ψth [J/cm2] since fluence

is typically monitored throughout PDT. Rearranging Eq. 1.1 yields an expression for the

threshold fluence, as shown below:

ψth = φT = (
D∗

th

εD
)(
hcρ

λ
) (1.2)

Note that a different threshold value is required for each wavelength.

The above definitions of photodynamic dose do not consider the effect of tissue de-

oxygenation, the quantum yield in the generation of oxidative radicals, and the fraction

of generated radicals that succeed in causing cellular damage [18]. The reason for this

simplification is that the parameters used in the above definitions, such as the optical

power density and the photosensitizer concentration, are easier to control under experi-

mental or clinical conditions. In particular, light dosimetry has been widely accepted to

be very important in PDT treatment planning. Ongoing clinical trials have focused on

the quantification of fluence both within and around the tumour as the fluence distribu-

tion can be varied (within limits) even during the therapy [15, 21, 22]. Selective tumour

necrosis is largely dependent on reaching a sufficiently high light dose or fluence within

the tumour while not exceeding the threshold level for necrosis in surrounding normal

tissues. Therefore, a successful PDT treatment relies on the accurate computation of

the fluence distribution throughout the tumour and in surrounding healthy tissues or
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organs at risk. Improvements in PDT efficacy, particularly for interstitial applications,

require the development of fast and accurate computational tools to enable efficient light

dosimetry for PDT treatment planning and for real-time adjustment of the optical power

density during the therapy. To achieve this goal, the treatment planning software should

employ an accurate model of light propagation in turbid media that can take into ac-

count the complex geometry of the tumour and the heterogeneity in the tissue’s light

interaction coefficient and responsivity to PDT, for clinically robust treatment planning.

The focus of this thesis is the acceleration of a gold standard light dose computation

method, to be described next. For clinical relevance, the geometric uncertainty in the

computation of the isofluence contours, particularly at the threshold fluence level, must

be within acceptable limits in the accelerated version. Typically, an acceptable level

of uncertainty is +/- 1 to 2 mm in the position of the isofluence contours around the

threshold fluence level, considering that a safety margin of 2 mm is currently used in

treatment planning for an ongoing prostate PDT clinical trial [15].

1.3 Light Dosimetry Models

The inputs to a light dosimetry model include a set of measured optical properties of

the tissue. Tissue optical properties are specified by four key parameters: the absorp-

tion coefficient μa [in units of mm−1 or cm−1], scattering coefficient μs [mm−1 or cm−1],

anisotropy factor g [dimensionless], and refractive index n [dimensionless]. The absorp-

tion coefficient is defined as the product of the concentration of chromophores (or light-

absorbing molecules) within the tissue and their molecular absorption cross-section. The

scattering coefficient is similarly defined. Anisotropy refers to the average cosine of the

scattering angle, which ranges from -1 to 1. Isotropic scattering is represented by a value

of 0, while backward-directed scattering and forward-directed scattering are indicated by

−1 < g < 0 and 1 > g > 0, respectively. Typically, in the therapeutic or spectral win-
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dow for PDT (which ranges from 600 to 800 nm), scattering dominates over absorption

(μs >> μa) and scattering is forward-directed (1 > g > 0). Finally, the refractive index

of biological tissue (n = 1.33 − 1.5) is close to that of water (n = 1.333).

A widely accepted mathematical model of light transport in tissue is based on the

radiative transport equation (RTE) [23]. The time-dependent RTE is shown in Eq. 1.3.

1

v

∂

∂t
L(r,Ω, t) + Ω · ∇L(r,Ω, t) + [μa(r) + μs(r)]L(r,Ω, t) =
∫
4π
L(r,Ω′, t)μs(r,Ω

′ → Ω) dΩ′ + S(r,Ω, t) (1.3)

The key quantity in the RTE is the radiance [W m−2 sr−1] or L(r,Ω, t), defined as

the radiant power [W] crossing an infinitesimal area at location r perpendicular to the

direction Ω per unit solid angle. Note that μs(r,Ω
′ → Ω) is the differential scattering

coefficient, where Ω′ represents the propagation direction before elastic scattering while

Ω represents the new direction after scattering. Therefore, the total scattering coefficient

is given by
∫
4π μs(r,Ω

′ → Ω) dΩ′ and the term
∫
4π L(r,Ω′, t)μs(r,Ω

′ → Ω) dΩ′ accounts

for the gain in radiance into Ω as a result of scattering from all directions Ω′. The RTE

also contains a source term called S(r,Ω, t), which may be used to describe the light

emitted from the implanted source fibres. Finally, v is the speed of light in the tissue.

Exact analytical solutions for the RTE only exist for simple geometries and vari-

ous approximations are employed in practice. A common first-order approximation is

called the diffusion approximation, which has several important limitations [24]. First,

the diffusion approximation fails close to light sources. This distance is less than one

transport mean free path, defined as 1/[μa + μs(1 − g)], from the source. Within the

spectral window for PDT, one transport mean free path is 1-2 mm. This limitation also

extends to photon sinks or strongly absorbing objects as well as boundaries between dif-

ferent tissue types. Second, the diffusion approximation is not as accurate in strongly

absorbing tissue, meaning that for this approximation to be valid, the scattering coeffi-

cient has to be much greater than the absorption coefficient. This condition is typically
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satisfied if μs(1 − g) > 10μa. To model heterogeneity in tissue optical properties, nu-

merical approaches such as the finite element method (FEM) [25] are commonly used

to solve the diffusion equation. In FEM, the complex organ geometry is discretized into

a mesh of elements such as 4-noded tetrahedral elements, and a system of equations is

constructed to calculate the fluence rate inside each element by applying the diffusion ap-

proximation locally. Although this approach has been applied to clinical light dosimetry

for prostate IPDT due to its relatively low computation time (2-5 h of total treatment

planning time [15]), the limitations of the diffusion approximation are still present. To

overcome these limitations, Monte Carlo modelling can be used. In fact, MC simulations

are widely used as the gold standard in radiotherapy treatment planning and there is a

clear trend towards adopting the MC method for clinical radiotherapy dose calculations

in commercial treatment planning systems [26,27]. The next section presents MC-based

light dosimetry for PDT treatment planning.

1.4 MC-based Light Dosimetry

Compared to other techniques for computing light dose, the Monte Carlo (MC) method

is more flexible in modelling complex 3-D geometries with heterogeneous tissue optical

properties and it is considered the gold standard approach in terms of accuracy [28,

29]. Unfortunately, MC simulations are not yet routinely used in clinical dosimetry

for PDT treatment planning because they are computationally intensive and very time-

consuming [30]. Although different efficiency-enhancing methods or variance reduction

techniques are traditionally introduced to reduce the computation time (and similar

variance reduction techniques are used in MC-based dosimetry in radiotherapy [31]), the

computation time for MC remains high for iterative forward solutions of light transport

that optimize the source geometry and emission profile to achieve a desired light dose

distribution. Considering that hundreds of iterations are typically required to search for
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the optimum source configuration (by changing parameters such as the position, length,

and power of each diffuser) [32] and each iteration takes 20-30 minutes using MC-based

light dose computation (estimated with the commercial light modelling software called

ASAP [33]), MC-based PDT treatment planning would take days to weeks to complete.

Accelerating MC simulations would enable the use of MC-based models for solving these

iterative, inverse problems, including light dosimetry for treatment planning in PDT and

other therapies (such as laser interstitial thermal therapy [34]) or for image reconstruction

in diffuse optical tomography [35].

Attempts to accelerate MC simulations for modelling light propagation in tissues have

been limited to software parallelization schemes. For example, one such scheme involved

dividing the simulation into many independent groups, each of which was executed on

a different computer or processor in parallel [36, 37]. One potential problem with the

software parallelization approach is the need to have dedicated access to a computer

cluster in order to achieve the desired performance. This approach is not easily accessible

as the capital and maintenance costs of a large, dedicated networked cluster of servers

are substantial, thus hindering the deployment of complex MC-based models in iterative

optimization problems.

This thesis explores two distinct hardware-based approaches to accelerate MC sim-

ulations for computing light dose in PDT. The first approach involves the creation of

custom hardware de novo on programmable logic devices called field-programmable gate

arrays (FPGAs) [38,39]. The second approach exploits the high performance of commod-

ity graphics processing units (GPUs). To demonstrate the feasibility of the hardware

approach, the widely accepted MC code called Monte Carlo for Multi-Layered media

(MCML) [40] was used as a gold standard for the computation of light dose distribu-

tions. With modifications to model more complex scenarios, it can be used for MC-based

light dosimetry in PDT treatment planning.
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1.5 Organization of Dissertation

The next chapter provides further background on modelling light propagation in tis-

sue using the MC method and presents the MCML algorithm in detail to facilitate the

discussions in subsequent chapters. Chapter 3 and Chapter 4 illustrate how two dif-

ferent hardware-based approaches, namely the FPGA-based approach and GPU-based

approach, were used to accelerate the MCML code. In each chapter, the relevant pro-

gramming paradigms and related work are introduced before describing the final solution

as well as its accuracy and performance. Finally, Chapter 5 concludes with the contri-

butions of this thesis, the implications of the current work, and the future work required

to enable MC-based PDT treatment planning for complex 3-D geometries.
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Chapter 2

The MCML Light Dose

Computation Method

In this chapter, the general Monte Carlo method is introduced, followed by how it can

be used for modelling photon transport in biological tissue. The key computational steps

in the MCML algorithm are reviewed to show how the MC technique can be applied to

the computation of light dose in multi-layered tissue.

2.1 The Monte Carlo Method

The Monte Carlo method is a statistical sampling technique that has been widely applied

to a number of important problems in medical biophysics and many other fields, ranging

from photon beam modelling in radiation therapy treatment planning [41] to protein

evolution simulations in biology [42]. The name Monte Carlo is derived from the resort

city in Monaco which is known for its casinos, among other attractions. As its name

implies, the key feature of the MC method involves the exploitation of random chance

or the generation of random numbers with a particular probability distribution to model

the physical process in question [43]. Since the MC method inherently relies on repeated

sampling to compute the quantity of interest, the development of the MC method has

11
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parallelled the evolution of modern electronic computers. In fact, initial interests in MC-

based computations stemmed from von Neumann’s vision of using the first electronic

computer - the ENIAC [44] - for the modelling of neutron transport [45], which was later

adopted for the development of the atomic bomb in World War II.

Despite the increased variety and sophistication of MC-based simulations today, most

MC-based models still retain the same essential elements, including the extensive use of

random numbers and repeated sampling. For example, in the case of photon transport,

random numbers are used to determine the distance of photon propagation and the di-

rection of scattering, among other interactions. Each photon is tracked for hundreds of

iterations and typically thousands to millions of photons are required to accurately com-

pute the quantity of interest, such as the light dose distribution for the case of PDT. Due

to the large number of iterations required, different variance reduction techniques [46]

have been introduced to reduce the number of samples required to achieve a similar

level of statistical uncertainty or variance in MC-based computations. Conversely, vari-

ation reduction schemes allow more equivalent samples to be computed within the same

amount of time. (Several relevant techniques are discussed in the next section.) Unfor-

tunately, the simulation time remains high for solving complex optimization problems

such as those for treatment planning, which require many of these MC simulations. It

is important to note that while this thesis focuses on the acceleration of the MCML

code for modelling light propagation only, a similar approach may be used to accelerate

other interesting MC-based simulations in the biophysics, including those for radiother-

apy treatment planning. The MCML algorithm was chosen as the basis of this initial

exploration due to its widespread acceptance and its relevance to light dosimetry in PDT

treatment planning.
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2.2 The MCML Algorithm

The MCML algorithm [40] provides an MC model of steady-state light transport in multi-

layered media. With modifications, it can form the basis for light dose computation in

PDT treatment planning. The use of the MCML code package as a gold standard in this

thesis is based on the widespread acceptance of the code package and the agreement of the

simulation results with tissue phantom-based as well as in vivo measurements [47,48,49].

It has also been extended and applied to numerous interesting investigations, ranging

from reflectance pulse oximetry studies [50] to the 3-D modelling of light propagation in

a human head [51].

The MCML implementation assumes infinitely wide layers, each of which is specified

by its thickness and its optical properties, comprising the absorption coefficient, scatter-

ing coefficient, anisotropy factor, and refractive index (as described in Section 1.3). A

diagram illustrating the propagation of photon packets in a multi-layered skin model [52]

is shown in Fig. 2.1 (a), using ASAP as the MC simulation tool to trace the paths of

photons [33].

Three physical quantities are scored, in a spatially-resolved fashion, in the MCML

code – absorption, reflectance, and transmittance. Note that for the purpose of PDT

treatment planning, absorption by the photosensitizer is the quantity of interest (as noted

in Eq. 1.1). Therefore, reflectance and transmittance are henceforth not considered.

In the MCML code, absorption is recorded in a 2-D absorption array called A[r][z],

representing the photon absorption probability density [cm−3] as a function of radius r

and depth z. Fig. 2.1 (b) shows the computed absorption probability density after tracing

100 million photon packets from an infinitely narrow light beam (or a point source)

perpendicular to the top layer of the same skin model. Through the simulation input

parameters, the size of each absorption element (specified by dr and dz) and the number

of elements (specified by nr and nz) can be changed. The simulation volume of interest

or the extent of the detection grid is specified by the total radius nr × dr and total depth
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nz × dz. A photon packet at positions beyond the extent of the detection grid continues

to propagate, but its absorption events are recorded at the boundary elements of the

A[r][z] array. As such, these values are incorrect as warned by the authors of the MCML

code [40]. Absorption probability density can be converted into more common units,

such as photon fluence [measured in cm−2 for the impulse response of a point source].

Fig. 2.2 (a) shows this conversion: the fluence distribution was obtained by dividing the

absorption probability density, plotted in Fig. 2.1 (b), by the local absorption coefficient

for each layer. A common type of plot for visualizing the same fluence distribution in

treatment planning is the isofluence contour plot, as shown in Fig. 2.3. To model finite-

sized sources, the photon distribution obtained for the impulse response can be convolved

with tools such as the CONV program [53]. An example is shown in Fig. 2.2 (b), which

plots the fluence distribution resulting from a Gaussian beam.

The simulation of each photon packet consists of a repetitive sequence of computa-

tional steps and can be made independent of other photon packets by creating separate

absorption arrays and different random seeds. Therefore, a conventional software-based

acceleration approach involves processing multiple photon packets simultaneously on mul-

tiple processors. Figure 2.4 shows a flow chart of the key steps in an MCML simulation,

which includes photon initialization, position update, direction update, fluence update,

and photon termination. The following sections provide a brief summary of the compu-

tations performed in each of these steps.

2.2.1 Photon Initialization

To begin the MCML simulation, a new photon packet is launched vertically downwards

(which is assigned the +z direction) into the multi-layered media from the origin. Note

that the infinitely narrow light beam irradiates the top layer at the origin. The weight

of the photon packet is also initialized to 1.
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Figure 2.1: Monte Carlo simulation of photon propagation in a 5-layer skin model from an infinitely

narrow beam at 633nm
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Figure 2.2: Logarithm of fluence distribution in the skin model for the impulse response [measured in

units of 1/cm2] and for a Gaussian beam [J/cm2].

Figure 2.3: Isofluence contour lines for the impulse response in the skin model. Note that Fig. 2.2 (a)

shows the same fluence distribution plotted in a different format.
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Figure 2.4: Left: Flow-chart of the MCML algorithm. Right: Simplified representation used in sub-

sequent sections.

2.2.2 Position Update

The position update step moves the photon packet along its current direction vector,

given by the direction cosines (μx, μy, μz), to its next interaction site. The distance of

propagation, called the step size, is computed by sampling a probability density function.

Since the probability of a photon travelling a distance s is proportional to e−(μa+μs)s [54],

the step size s [cm] can be calculated using Eq. 2.1:

s =
−ln(ξ)

μa + μs
(2.1)

where ξ is a random variable uniformly distributed between 0 and 1, while μa and μs are

the absorption and scattering coefficients [cm−1], respectively.

This step size is used to check if the photon packet will encounter a boundary or the

interface between two layers. This condition is called a hit and is determined by Eq. 2.2:

hit =

⎧⎪⎪⎨
⎪⎪⎩

1 if (s - dl b/μz) <= 0

0 if (s - dl b/μz) > 0
(2.2)

where dl b is the distance [cm] to the closest boundary in the direction of photon propa-
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gation and μz is the direction cosine along the z direction. Note that all boundaries are

perpendicular to the z axis.

If the photon packet crosses a boundary, the step size is reduced so that the photon

packet arrives at the boundary. The difference between the original step size and the

reduced step size is called sleft and is calculated using Eq. 2.3. If sleft is not zero, it will

be used as the step size in the next iteration.

sleft =

⎧⎪⎪⎨
⎪⎪⎩

0 if hit = 0

s− (dl b/μz) if hit = 1
(2.3)

The new position for the photon packet (x′, y′, z′) is determined by first multiplying

the step size by the direction cosines in the x, y, and z directions (μx, μy, μz respectively)

to obtain the vector components and then adding these values to the old position (x, y, z).

2.2.3 Direction Update

The direction update step performs two mutually exclusive operations depending on

whether or not the photon packet has encountered a boundary during the position update

step. If the photon packet has not hit a boundary, the Henyey-Greenstein function [55],

originally developed for modelling diffuse radiation in the galaxy, is used to model scat-

tering in the tissue and the new direction cosines (μ′
x, μ

′
y, μ

′
z) are determined according

to Eqs. 2.4 - 2.6.

μ′
x =

sin(θ)[μxμzcos(ψ) − μysin(ψ)]√
1 − μ2

z

+ μxcos(θ) (2.4)

μ′
y =

sin(θ)[μyμzcos(ψ) + μxsin(ψ)]√
1 − μ2

z

+ μycos(θ) (2.5)

μ′
z = −sin(θ)cos(ψ)

√
1 − μ2

z + μzcos(θ) (2.6)

where θ is the deflection angle, ψ is the azimuthal angle, and (μx, μy, μz) represents the

old direction cosines.
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If the photon packet has hit a boundary, the direction update step determines whether

it is reflected back or traverses through and updates the direction based on Fresnel’s for-

mula [56] and Snell’s law. Whether or not a photon packet is reflected back is determined

by generating a random number ξ and comparing it with the internal reflectance R(θi)

computed using Eq. 2.7.

R(θi) =

⎧⎪⎪⎨
⎪⎪⎩

1 if θi > sin−1(nt/ni)

1
2
[ sin2(θi−θt)
sin2(θi+θt)

+ tan2(θi−θt)
tan2(θi+θt)

] otherwise
(2.7)

where θi is the angle of incidence, θt is the angle of transmission, while ni and nt are

the refractive indices of the incident medium and transmitted medium at the modelled

wavelength, respectively. R(θi) represents the average for the two orthogonal polarization

directions. (While polarization is not modelled in the MCML code, other code packages

such as polmc [57] support polarization-dependent effects.)

If ξ is greater than R(θi), the photon packet is transmitted. Otherwise, it is internally

reflected. At incident angles greater than the critical angle or sin−1(nt/ni), the photon

packet is completely internally reflected. Once the photon packet’s path is determined,

the direction cosines are updated as follows:

(μ′
x, μ

′
y, μ

′
z) =

⎧⎪⎪⎨
⎪⎪⎩

(μx, μy,−μz) if reflected

(μxni/nt, μyni/nt, SIGN(μz)cosθt) if transmitted
(2.8)

where SIGN(μz) gives the sign of μz. The direction cosines for the transmitted case are

derived based on Snell’s law.

2.2.4 Fluence Update

The fluence update step adjusts the photon packet’s weight to simulate absorption at

the site of interaction. The concept of a photon packet weight is introduced here to

simulate absorption in the tissue more efficiently. This is a variance reduction technique

known as implicit photon capture [58], which allows a photon packet to be absorbed
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or captured multiple times instead of terminating a photon after each absorption event.

The differential weight ΔW to be absorbed is computed according to Eq. 2.9 and is

accumulated in the raw absorption array Araw[r][z] at the location of absorption.

ΔW = W
μa

μa + μs
(2.9)

where μa and μs are the absorption and scattering coefficients of the current layer while

W is the current weight of the photon packet.

Since the number of photon packets launched (denoted Nphoton) and the volume of the

absorption grid elements (ΔV measured in cm3) can differ for each simulation, the accu-

mulated weights in the raw absorption array Araw[r][z] must be normalized, as follows:

Anormalized[r][z] =
Araw[r][z]

NphotonΔV
(2.10)

where Anormalized[r][z] is the absorption probability density measured in units of cm−3.

To obtain the fluence [cm−2], the absorption probability density is divided by the local

absorption coefficient μa [cm−1] per layer. For the fluence distribution resulting from a

finite-sized beam [J/cm2], the CONV program described earlier can be used.

2.2.5 Photon Termination

The MCML algorithm terminates a photon packet when it exits the tissue or through a

Russian roulette [59] that is activated when the weight of the photon packet has reached

a predefined threshold value, as further simulation has a minimal effect on the variance

of the results. When the weight reaches this threshold, the roulette generates a uniform

random number between 0 and 1. If the random number is above 1/10, the photon packet

is terminated; otherwise, the weight of the photon packet is increased by a factor of 10

to maintain the conservation of energy in the system. Note that this is another variance

reduction scheme implemented in the MCML code to reduce computation time. Other
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variance reduction methods also exist, including a plethora of schemes introduced in the

MCNP code from the Los Alamos National Laboratory [60].

2.3 Summary

Now that the MCML algorithm has been described, two different hardware-based ap-

proaches to accelerate the MCML computations will be presented in the next 2 chapters.



Chapter 3

FPGA-based Acceleration of the

MCML Code

This chapter presents the design of custom computer hardware on field-programmable

gate arrays (FPGAs) to accelerate the MCML algorithm. An overview of how hardware

design on an FPGA differs from software programming on a general-purpose processor is

included. For readers interested in the performance and validation results, please refer to

Section 3.5 and Section 3.6. The work described in this chapter has been published in the

Journal of Biomedical Optics [61] and presented at the IEEE FCCM 2009 conference [62].

3.1 Field-Programmable Gate Arrays

An FPGA is a prefabricated silicon chip that can be programmed electrically to imple-

ment virtually any digital design, including custom computer hardware for accelerating

simulations. Its flexibility is derived from an underlying programming technology, which

is typically implemented using a specific type of programmable electrical switch [64]. An

FPGA consists of an array of programmable blocks interconnected by a programmable

routing fabric as shown in Fig. 3.1 [63]. These programmable blocks include the soft

logic blocks (also called logic elements) that can perform binary computation or store

21



22 Chapter 3. FPGA-based Acceleration of the MCML Code

Figure 3.1: Key features of a basic FPGA - a programmable routing fabric (coloured in grey) that

interconnects different blocks, such as soft/programmable logic (blue), on-chip memory

(green), and hard multipliers (purple). The programmable input/output or I/O blocks

(red) connect the FPGA to the outside world [63].

data, on-chip memory blocks (with typically only Mbits of space) that allow fast access

to larger data structures such as arrays, and I/O blocks that connect to other FPGAs,

external memory modules (for extra storage space), or a host computer communication

interface. Additionally, modern FPGAs contain hard multipliers that perform multipli-

cation in faster, non-programmable circuitry since multipliers are costly in terms of area

to implement in soft logic blocks. (Note that multiple digital signal processing (DSP) el-

ements may be required to implement a hard multiplier, depending on its size as defined

by the bit widths of the operands.)

An FPGA enables the design of dedicated custom hardware, providing increased per-

formance for computationally intensive applications, without the high power consump-

tion and maintenance costs of networked computer clusters. FPGAs further offer the

flexibility of customizing the underlying hardware architecture for a specific application.

Therefore, the FPGA-based approach was explored first to create dedicated computer

hardware that was tailored to the MCML algorithm.
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3.2 Related Work

There is prior work on FPGA-based acceleration for related MC simulations. Gokhale

et al. presented an FPGA-based implementation of an MC simulation for radiative heat

transfer that achieved a 10.4-fold speedup on a Xilinx Virtex II Pro FPGA compared to

a 3 GHz processor [65]. (Note that speedup refers to the ratio between the sequential

execution time in software and the parallel execution time in hardware.) A convolution-

based algorithm used in radiation dose calculations achieved a 20.7-fold speedup [66].

This group adopted a design flow involving a programming language called Handel-C [67],

which was designed to ease hardware development by providing a C-like environment for

coding. However, Handel-C does not generate efficient hardware and this group’s design

was too large to fit on the Altera Stratix FPGA they had available. As a result, their

speedup values were projected using results from an emulated version of the hardware

using the ModelSim tool [68]. Similarly, Fanti et al. showed only a partial implementation

of an MC-based computation for radiotherapy without providing any speedup figures [69].

A working FPGA implementation of an MC-based electron transport simulation was

shown by Pasciak et al., reporting a speedup between 300 and 500-fold compared to

their custom software running on a 64-bit AMD Opteron 2.4 GHz machine [70]. Their

work focused on radiation transport computations, which have some similarities to this

work, but involve fundamentally different physical interactions, such as electron impact

ionization events due to high-energy beams.

The design presented in this chapter is a working implementation of an MC-based

photon migration simulation in biological tissue, based on the MCML code described in

Chapter 2, on FPGA hardware. Also, a systematic design flow, involving an intermediate

hardware modelling stage, was adopted to reduce development time, as described in the

next section.
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3.3 Hardware Design Method

3.3.1 Overview

Hardware design requires the explicit handling of two concepts that are normally ab-

stracted from software design: cycle-accurate design and structural design. Cycle-accurate

design requires a hardware designer to specify precisely what happens in each hardware

clock cycle. Structural design requires a hardware designer to specify exactly what re-

sources to use and how they are connected. In contrast, a typical software designer will

not be concerned with the number of clock cycles consumed in a processor for a section of

code although they do profile the code to determine and reduce performance bottlenecks.

Also, the underlying architecture and the internal execution units of a processor are not

specified by the program and are typically not considered by the programmer.

To ease the design flow in FPGA-based hardware development, specific computer-

aided design (CAD) tools are used, which are analogous to the compiler used by the soft-

ware programmer. These CAD tools typically accept a hardware description language,

which is a textual description of the circuit structure. To determine the precise logic im-

plementation, location and connectivity routing for a digital hardware implementation

on FPGAs, the CAD software performs a number of sophisticated optimizations [71].

To implement a large hardware design, the designer must break down the system

into more manageable sub-problems, each of which is solved by the creation of a module

that is simulated in a cycle-accurate manner to ensure data consistency. Due to the vast

amount of information gathered, a full system simulation cycle-by-cycle for large designs

such as the FBM hardware is time-consuming.

To simulate the full system more efficiently, an intermediate stage involving the use of

a C-like language that models the cycle-accurate hardware design, without details on the

exact implementation, is employed. This stage also allows for the testing and debugging

of the additional complexity of cycle-accurate timing before considering structural design
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necessary in the final hardware design.

The design of the FPGA-based digital hardware for the MCML computations followed

the hardware design stages described above, including the intermediate, cycle-accurate

timing stage. A C-based hardware modelling language, called SystemC [72], was used

to develop the intermediate hardware design. Verilog [73] was selected as the hardware

description language, and the Altera Quartus II 7.2 CAD tool [74] was used to synthesize

the Verilog code into hardware structures as well as to configure the FPGA.

3.3.2 Hardware Acceleration Techniques

An FPGA can implement any digital circuit including those with significant amounts

of computation. Such implementation has the potential to be significantly faster than

software-based implementations on a general-purpose processor for two reasons: first, an

FPGA can implement many computational units in parallel and second, it allows exact

organization of the data flow to effectively utilize those computational units.

A key factor limiting the amount of parallelism and hence the speed of an FPGA-

based solution is the number of logic elements available on the device. Therefore, min-

imizing the number of logic elements required for binary logic computation can lead to

the maximization of the performance per FPGA through replicating computational units

to enable parallel execution.

To achieve the goal of maximizing parallelism and computational throughput, three

hardware acceleration techniques are commonly applied. First, to greatly reduce the

size of a computational unit, the conversion from floating point to fixed point data

representation is used, although careful design and modelling are essential to ensure

that the proper precision is maintained. Second, look-up tables can be created in the

on-chip memory to pre-compute values for expensive computations such as trigonometric

functions, thereby eliminating the need for a large number of logic elements. The third

key technique is pipelining [75], which optimizes the computational throughput. The
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pipelining approach, similar to an assembly line, breaks down a complex problem into

simpler stages, each of which is responsible for performing a simple task. Since each

stage can now perform its task simultaneously with other stages, the net throughput is

increased, thereby speeding up the computation. An example of a pipeline is shown in

Fig. 3.2, where the calculation Y = aX2 + b is broken down into three pipeline stages.

Suppose the original calculation takes 300 ns to complete and further suppose that each

stage, representing a sub-step in the whole computation, takes 100 ns in this balanced

pipeline. Although it still takes 300 ns to compute the value Y from the time the

input X enters the pipeline, a continuous stream of new input data can be fed into

the pipeline. Therefore, once the pipeline is filled, a new value Y can be computed every

100 ns, thereby increasing the net throughput by a factor of 3 compared to the non-

pipelined computation. This increased efficiency is alternatively explained by the fact

that 3 computations, performed by 3 independent stages, are executed simultaneously

in the pipeline. Note that the slowest stage also dictates the throughput of a pipeline.

Therefore, an efficient pipeline design should be properly balanced by dividing the most

time-consuming computations into more stages. While pipelining leads to significant

performance gain, the complexity involved in designing and verifying the individual stages

increases appreciably in sophisticated designs, such as the one for the MCML algorithm

accelerated in this work.

Stage 1 Stage 2 Stage 3Input X Output Y
0 1 2 3g

X2=X*X
g

aX2=a*X2
g

Y=aX2+b0 1 2 3

Figure 3.2: An example of a three-stage pipeline: stage 1, square the input X and feed the result X2

into the next stage; stage 2, multiply X2 by coefficient a; stage 3, add constant b to aX2

from stage 2 to create the final result Y . Intermediate values are stored in temporary

registers, represented by the numbered rectangles between consecutive stages.
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3.4 FPGA-based Hardware Implementation

The FPGA-based hardware implementation is named here FPGA-based MCML or FBM.

It was first implemented on a multi-FPGA platform called the Transmogrifier-4 (TM-

4) [76]. This platform contains four FPGAs from the Altera Stratix device family (Altera

Corporation, San Jose, CA) and has a host software package to communicate with a

computer. The same design was also migrated to a newer platform called the DE3

board [77] with a modern Stratix III FPGA to show the implication of FPGA technology

on performance.

3.4.1 Modifications to the MCML code

First, to reduce the hardware resource requirements of the design, the 64-bit double-

precision floating-point operations used in the MCML software were converted to 32-

bit (or 64-bit as required) fixed-point operations in hardware. This conversion had a

significant impact on hardware resource usage (and hence the parallelism or performance

achievable as discussed above) as floating-point hardware is resource-intensive on FPGAs

[78]. However, the use of fixed-point data representation gives rise to other complexities,

such as the possibility of overflow. To avoid overflow when accumulating absorption

(Eq. 2.9) in fixed-point data representation, the 64-bit data type (which can store a

maximum value of 264-1) was used to create the A[r][z] array.

Similarly, logarithmic and trigonometric functions are very resource-intensive to im-

plement on FPGAs. Therefore, lookup tables were created to store pre-computed values

for trigonometric functions (as required in Eqs. 2.4-2.6) and logarithmic functions (re-

quired in Eq. 2.1). The FPGA on-chip memory was used to store these lookup tables.

To apply the pipelining technique to the hardware implementation, a SystemC model

was created to model the individual stages in the computation. This was the most

time-consuming and complex step as the individual stages and the relative timing of the
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operations had to be specified. Every dependency in the computation must be carefully

laid out to determine the appropriate division of the computation into stages.

PDT treatment planning requires only fluence quantification. Hence, only absorption

is recorded in the on-chip memory in the hardware design, while the reflectance and

transmittance are ignored to reduce memory usage. The dimensions of the absorption

array are fixed at 256 by 256 and the number of tissue layers is restricted to five to further

reduce memory usage.

3.4.2 System Overview

The overall system contains both hardware and software components. The hardware

component, called the FBM hardware, resides on the FPGA device and performs the

Monte Carlo simulation. The software on the host computer performs the pre-processing

steps and post-processing steps. The former includes the parsing of the simulation input

file and the initialization of the hardware system based on the simulation input file. The

latter includes the transfer of the simulation results from the FPGA back to the host

computer and the creation of the simulation output file containing the absorption array.

The absorption array is then used to generate the fluence distribution. To illustrate the

overall program flow from the user’s perspective, the key steps are shown in Fig. 3.3. For

the final system, the same hardware design is replicated across four FPGA devices on

the TM-4 platform to show the scalability of the solution.

3.4.3 Overview of Hardware Design

The design of the the FBM hardware dictates the overall performance of the system. The

architecture of the FBM hardware, which uses the pipelining acceleration technique, is

shown in Fig. 3.4.

As illustrated in Fig. 3.4, the pipelined hardware consists of a series of hardware

modules or cores, each further subdivided into pipeline stages, for the corresponding
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Figure 3.3: FPGA-based system overview: step 1, parsing of the simulation input file; step 2, transfer

of initialization information to the FPGAs; step 3, transfer of simulation results from the

FPGAs; step 4, creation of the simulation output file.

computations presented in Fig. 2.4. For clarity, the individual arithmetic blocks (such as

multipliers), look-up tables, random number generators [79], and the individual pipeline

stages are not shown. A single pass through the entire pipeline is equivalent to a single

iteration in the key loop of the MCML program. The pipeline has 100 stages, meaning

100 photon packets at different stages of the simulation are handled concurrently once the

pipeline is filled. The Step Size Core, Boundary Checker Core, and Movement Core are

collectively called the Position Update Engine since they are responsible for updating the

position of the photon packet. The Reflect/Transmit Core, Rotation Core (for modelling

scattering), and Shared Arithmetic Core are grouped under the Direction Update Engine,

which mainly determines the direction cosines of the photon packet. Comparing the

hardware design to the software flow chart given in Fig. 2.4, scattering (computed with

the Rotation Core), absorption (computed with the Fluence Update Core), and internal

reflectance (computed with the Reflect/Transmit Core) are all simulated in parallel in

the hardware. In fact, if these three hardware cores were connected in series instead,

approximately 3 times the number of temporary storage registers (used to propagate

intermediate results between consecutive stages) would be required. In the current design,

these registers are shared across the parallel, concurrently executing modules. The final
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Figure 3.4: Pipelined architecture of the FBM hardware: Module 1 computes the step size using

Eq. 2.1; Module 2 is based on Eq. 2.2 and Eq. 2.3; Module 3 uses the step size to com-

pute the new position; Module 4a computes the internal reflectance (Eq. 2.7), determines

whether the photon reflects or transmits, and updates the direction (Eq. 2.8) as well as

the layer the photon resides; Module 4b models scattering and computes the new direction

using Eqs. 2.4-2.6; Module 4c contains the arithmetic blocks shared across modules 4a and

4b; Module 4d computes the absorption (as described in Section 2.2.4) and records it in

the on-chip memory; Finally, module 6 performs the survival roulette (Section 2.2.5).

stage (called the Roulette Core) determines whether a photon packet is still active, in

which case it continues iterating at the beginning of the pipeline. Otherwise, a new

photon packet is selected to immediately enter the pipeline.

Resource sharing is a key feature of this pipelined hardware design. To explain why

the computational units between modules 4a (or the Reflect/Transmit Core) and 4b

(Rotation Core) can be shared, notice that the computations in module 4a or module

4b are mutually exclusive, as discussed in Section 2.2.3. (Recall that if a photon hits

a boundary, the scattering computations are skipped.) However, resource sharing along

with parallel processing result in greater design complexity since the modules cannot be

designed completely in isolation. For example, it is imperative that modules 4a,4b, and
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4d all finish their operations within exactly 37 clock cycles to ensure data consistency.

The number of stages was a major design decision as increasing this number leads to a

higher overall clock speed, at the expense of greater register usage and greater design

complexity.

The next two sections present further implementation details on the Fluence Update

Core and the Direction Update Engine for illustrative purposes.

3.4.4 Pipeline Stages in the Fluence Update Core

This section shows how the individual pipeline stages were designed using the Fluence

Update Core as an example. Note that the symbols/names used in the following diagrams

correspond to the variable names used in the hardware description (or the Verilog code)

shown in Appendix A. The original MCML code for the fluence update step is also

included in the same Appendix for comparison.
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Figure 3.5: Simplified I/O interface for the Fluence Update Core

Interfacing with adjacent modules

Before specifying the individual pipeline stages, the inputs and outputs (I/O) of the

hardware module must first be determined. A simplified I/O interface for the Fluence
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Update Core is shown in Fig. 3.5. The memory interface for writing the results to the

absorption array stored in the on-chip memory is omitted for clarity. Note that only

the signal wires (similar to software variables) from the preceding Movement Core that

are used by this module are connected as inputs. These include the current weight of

the photon packet (called weight hop), whether it has hit a boundary (hit hop), and

whether it has been terminated (dead hop). Other inputs include the photon position

(x pipe, y pipe, and z pipe) and the current layer (layer pipe) read from the shared

pipeline registers, to be discussed next. There are also other control signals to run the

circuit (clock), reset the circuit (reset) and enable/disable the circuit (enable). The

output of this module is the updated weight of the photon packet (weight absorber)

and the differential weight absorbed which is written into the on-chip memory directly

(not shown).

Shared and Internal Pipeline Registers

The key feature of a pipelined hardware design is a series of registers that store temporary,

intermediate results between consecutive stages (as explained earlier in Fig. 3.2). These

registers ensure that all stages can run concurrently.

Inside the Fluence Update Core, a total of 37 pipeline stages are present, as shown in

Fig. 3.6. The choice of the number of stages is determined by many factors, including how

the computations are laid out in the Direction Update Engine which runs synchronously

with this core and must also have the same number of stages.

Outside the Fluence Update Core, a series of shared pipeline registers with the same

pipeline depth (or 37 stages) are constructed to propagate the common photon data

structure. Details on the data stored and propagated through these registers are provided

in Table 3.1. The Fluence Update Core reads in the photon packet’s position and the

current layer from these registers. In addition, this module propagates its own modified

data and intermediate results in a series of internal pipeline registers. These include the
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Figure 3.6: Overview of the pipeline inside the Fluence Update Core. Note that each numbered rect-

angle represents a pipeline register for storing intermediate values between stages.

location of absorption as specified by the indices to the absorption array (ir P, iz P)

and the differential weight absorbed (dwa P).

Stages 1 and 2 - Initialization and Computation of x2 and y2

The division of the computation into stages must take into account all potential depen-

dencies (i.e., certain steps must be performed in a fixed order). For example, in the

Fluence Update Core, the position of the photon packet must be converted from Carte-

sian into cylindrical coordinates before accumulating the absorbed weight into the A[r][z]

array. The radius is computed according to Eq. 3.2. However, the square root of r2 shown

in Eq. 3.2 cannot be performed until the sum of x2 and y2 is ready as shown in Eq. 3.1.

r2 = x2 + y2 (3.1)

r =
√
x2 + y2 (3.2)

With this in mind, the first two stages of the Fluence Update Core are responsible

for initialization and for the computation of the square of x and y, as shown in Fig. 3.7.
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Table 3.1: Examples of photon packet data stored in the shared pipeline registers

Name Symbol Bit Width

x coordinate x 32

y coordinate y 32

z coordinate z 32

direction cosine (x) μx 32

direction cosine (y) μy 32

direction cosine (z) μz 32

layer layer 3

hit boundary? hit 1

dead? dead 1

weight W 32

For stage 1, no computations are performed. For stage 2, the current x and y positions

(x pipetemp and y pipetemp) are first read from the shared registers at the correspond-

ing stage. Note that timing is critical and a mistake in coding can lead to mis-reading

from the incorrect stage. Next, two multiplications are performed simultaneously within

one clock cycle, with the use of two 32-bit by 32-bit multipliers. The 64-bit results for x2

and y2 are stored in two temporary registers named x2 P and y2 P, respectively. Finally,

the data in the internal pipelined registers are propagated forward as before.

Stage 3 - Computation of r2

To simplify the diagram, the propagation of internal register values is not explicitly drawn

in Fig. 3.8. In Stage 3, a simple addition of x2 and y2 is performed using a 64-bit adder

unit to calculate r2, as shown earlier in Eq. 3.1. The result is stored in a register labelled

r2 P. Note that as this is being performed, a new value from stage 2 is simultaneously

computed. This is the basic mechanism or idea behind the pipelining technique.
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Figure 3.7: Pipeline Stages 1 and 2 inside the Fluence Update Core

Stage 4 - Computation of r and ΔW

Unlike previous stages, part of Stage 4 requires more than one cycle to complete due to

the use of a square-root block to compute r from r2, as illustrated in Fig. 3.9. Square-root

blocks are relatively slow on FPGAs; therefore, to improve its clock speed, the pipelining

technique is applied here as well. However, increasing the number of pipeline stages

within the square-root block also increases resource usage. Based on empirical testing of

this trade-off, a pipeline depth of 10 was chosen, which means that it takes 10 clock cycles

before the result of the square-root operation (r P) becomes ready. Correctly aligning

this with the rest of the computation at the right stage is crucial as missing by 1 cycle

can cause inconsistency in the simulation data.

This stage also concurrently computes ΔW (denoted dwa), using the formula below

from Chapter 2:

ΔW = W
μa

μa + μs
(3.3)

Note that μa

μa+μs
is a constant for each layer and does not require re-computation every

time. Hence, a look-up table (called muaFraction consisting of 5 entries for the 5 layers)

was used instead to save a divider and an adder. To compute ΔW , the constant μa

μa+μs
for

the desired layer is first retrieved from the look-up table based on the current layer index
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Figure 3.8: Pipeline Stages 2 and 3 inside the Fluence Update Core

(layer pipetemp). It is then multiplied by the current weight W (named weight P from

the internal registers). The most significant 32 bits of the final product are stored in the

internal pipeline registers called dwa P. Finally, a number of corner cases also need to be

considered. For example, if the photon has hit a boundary (as indicated by the signal

hit P[3]), then ΔW should be zero to ensure no weight is added to the array in the

on-chip memory. Extra control circuitry or logic is required to handle such special cases

throughout.

The stages described thus far illustrate several key differences with custom hardware

design. The remaining stages, which involve handling a memory interface to the on-chip

memory, follow a similar design methodology. The keen reader may refer to Appendix A

for details on how the entire Fluence Update Core is implemented stage-by-stage.

3.4.5 Design Challenges for the Direction Update Engine

To further illustrate the complexity of the FBM hardware, the implementation of the

Direction Update Engine (depicted in Fig. 3.4), which computes the scattering angle and
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Figure 3.9: Pipeline Stage 4 inside the Fluence Update Core

updates the direction of the photon packet (Eqs. 2.4-2.6), is described as follows.

μ′
x =

sin(θ)[μxμzcos(ψ) − μysin(ψ)]√
1 − μ2

z

+ μxcos(θ) (3.4)

A direct implementation of Eq. 3.4 would be very inefficient and would result in low

clock speed and high resource usage for each of the three direction cosines (the formula for

only one of which is reproduced above). The FPGA contains dedicated hard multipliers,

but it does not contain other dedicated circuitry to perform division, square root or

trigonometric functions. To efficiently evaluate trigonometric functions, look-up tables

with pre-computed sine and cosine values are stored in the on-chip memory, which has

a very fast (or 1 clock cycle) data access time. Division and square root operations are

performed using Altera Quartus library blocks. As these computations are generally slow

(as defined by the maximum clock speed), square root blocks are internally implemented

as a 10-stage pipeline and dividers are split into 20 stages to increase the clock speed.

The choice of the pipeline depth or the number of pipeline stages is a trade-off between

logic usage and clock speed. A deeper pipeline generally translates to a higher clock

speed (up to a certain limit), as shown by Fig. 3.10 using a 64-bit divider as an example;

however, the additional stages increase logic usage (e.g., a 30-stage divider may require
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∼50% more logic compared to a 20-stage divider). A pipeline depth of 20 stages was

chosen to achieve a desirable clock speed, while reserving resources for other modules.
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Figure 3.10: Effect of pipeline depth on the maximum clock speed of a 64-bit fixed point divider

3.4.6 Importance of Managing Resource Usage

Allocating the limited amount of FPGA on-chip resources effectively is critical to a

high-speed digital hardware design. A small, compact design can be replicated multiple

times to achieve more parallelism and can be tuned more easily for a higher clock speed.

Together, these two factors can significantly impact the final performance of the hardware.

Table 3.2 gives the resource usage statistics for each module in the pipelined hardware,

including the logic element (LE) usage, key arithmetic blocks used, on-chip memory usage

(in bits) and number of pipeline stages.

On-chip memory usage is critical since there are only 7.4 Mbits of space available

on each Stratix FPGA for the TM-4. Most of this space is occupied by the absorption

array A[r][z]. Although a larger A[r][z] array (up to ∼330 × 330 64-bit elements) can

be stored in the on-chip memory, the array dimensions are fixed at 256 × 256 (which

is a power of 2) to reserve some space for look-up tables and to reduce the amount of

hardware needed in addressing the array. For example, a division by 256 can now be
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implemented as a bit-shifting operation in binary representation, which is significantly

less resource-intensive than a division.

Another important resource is the number of logic elements for implementing the

computations in the design. Only the most resource-intensive arithmetic units are listed,

including multipliers, dividers, and square root blocks. One important optimization,

which cannot be readily implemented in software, is the sharing of resource-intensive

computational units between the Reflect/Transmit Core (module 4a) and Rotation Core

(module 4b). A total of 15 multipliers, 1 divider, and 1 square root block are shared

between these two cores. A particularly important arithmetic block is the multiplier

since there are only limited number of hard multipliers; additional multipliers are costly

to build using soft logic. Therefore, multipliers and other costly arithmetic blocks such

as dividers or square root blocks are shared as appropriate.

Finally, the number of stages within each module represents the number of clock cycles

required for a photon packet to propagate through the module. Increasing the number

of stages serves to decrease the complexity of each stage, thereby improving the clock

speed. An example of using this technique is module 2, which lies in the critical path of

the circuit. A deep pipeline with 60 stages was designed to divide the computation into

finer steps, increasing the clock speed of this part of the circuit and that of the entire

pipeline as a result. The key drawbacks include the need for many additional pipeline

registers between stages which significantly increased the logic element usage and the

extra design effort required due to the increased complexity involved in development and

verification.

3.4.7 Trade-offs

Several important tradeoffs were made on the final hardware design. First, to maximize

the on-chip memory space available to the look-up tables, the absorption array was

limited to 256 by 256 elements in the r and z direction, respectively. Second, the number
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Table 3.2: Allocation of on-chip resources on the TM-4 and the number of pipeline stages per module

Module Logic Elements

(LE)

Key Arithmetic Blocks On-chip Memory

(bits)

Number

of Stages

1. Step Size Core 856 2 multipliers (16 DSP

elementsb1)

32,768c1 1

2. Boundary Checker Core 31,868 3 multipliers and 1 di-

vider (8,273 LE)

— 60e

3. Movement Core 3,905 3 multipliers (3,444 LE) — 1

4a. Reflect/Transmit Core 1,355 — 65,536c2 37

4b. Rotation Core 3,190 — 589,824c3 37

4c. Shared Arithmetic Core 5,160 15 multipliers, 1 divider

and 1 square root (120

DSP elements and 5,160

LE)

— N/A

4d. Fluence Update Core 2,403 3 multipliers and 1

square root (24 DSP

elements and 270 LE)

4,194,304d 37

5. Roulette Core 309 — — 1

Total Used/ Total

Available

64,147a/79,040 26 multipliersb2 , 2 di-

viders, 2 square root

blocks (160/176 DSP el-

ements and 17,147 LEs)

4.8/7.4 Mbits 100

a Other logic elements were used by 5 random number generators (557 LE), shared pipeline registers (9,545 LE), the TM-4

ports interface (170 LE), design wrappers and other control/arithmetic blocks (4,829 LE).

b1 8 DSP elements required per multiplier

b2 20 multipliers were implemented in 160 (out of 176) DSP elements while 6 multipliers were implemented in logic elements.

c1 For a logarithm look-up table with 1,024 entries x 32 bits/entry = 32,768 bits

c2 For 2 look-up tables used in the Fresnel calculations (also 1024 32-bit entries per look-up table)

c3 For 4 trigonometric look-up tables (2 with 1,024 32-bit entries and another 2 with 8,192 32-bit entries)

d For the 64-bit A[r][z] array with 256 x 256 elements

e Dividing this module into 60 stages resulted in high logic element usage (∼15,000 LE for pipeline registers alone)
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of layers supported by the hardware was set to a maximum of five, also due to memory

constraints. Even though the number of layers was fixed at a maximum of five, their

optical properties and the dimensions of the voxels (dr and dz) can still be modified

easily through the standard input simulation file format used in the MCML program.

3.5 Validation

For the purpose of validation and performance comparison, a skin model was selected as

the simulation input to the MCML program. The tissue optical parameters presented in

Table 3.3 are based on the light scattering study of tissues by Tuchin [52]. In Tuchin’s

model of the skin, five layers are used to represent the varying tissue optical properties

from the epidermis to the dermis plexus profundus. The optical parameters for two

wavelengths, λ=633 nm and 337 nm, were used. Also, the top and bottom ambient

media were set to be air (n = 1, μa=0, and μs=0).

To test the accuracy and performance of the hardware system with different tissue

optical parameters, the absorption coefficient and scattering coefficient were varied sys-

tematically in a separate experiment, as described in the next section. Note that the

design was validated on both the TM-4 and DE3 board. Since only the communication

interface was modified in the migration process, identical results were generated on both

platforms. The results presented in this section can be reproduced on either platform.

3.5.1 FPGA System-Level Validation Procedures

System validation consisted of three phases. The first phase involved verifying the

simulation outputs from the FBM hardware against the gold standard (or the origi-

nal MCML software executed on an Intel Xeon processor). Since MC simulations are

non-deterministic, it is important to separate the error introduced by the hardware im-

plementation (including lookup tables and fixed-point conversion) from the statistical
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Table 3.3: Optical properties of the five-layer skin tissue at λ=633 nm (and 337 nm in brackets) [52]

Layer μa(cm−1) μs(cm−1) g n Thickness(cm)

1. epidermis (top) 4.3 (32) 107 (165) 0.79 (0.72) 1.5 0.01

2. dermis 2.7 (23) 187 (227) 0.82 (0.72) 1.4 0.02

3. dermis plexus superficialis 3.3 (40) 192 (246) 0.82 (0.72) 1.4 0.02

4. dermis 2.7 (23) 187 (227) 0.82 (0.72) 1.4 0.09

5. dermis plexus profundus 3.4 (46) 194 (253) 0.82 (0.72) 1.4 0.06

uncertainty inherent in an MC simulation. In other words, a fair comparison between

the MCML software and the FBM implementation can only be obtained by considering

the variance in the output of the MCML simulation, which is a 2-D absorption array

scoring the photon absorption probability density [cm−3] as a function of radius and

depth. The resulting absorption probability density map is also a function of tissue

optical properties. To quantify the difference between these arrays, the relative error

E[ir][iz ] between corresponding elements was computed using the following formula:

E[ir][iz ] =
|As[ir][iz] − Ah[ir][iz]|

As[ir][iz]
(3.5)

where As is the gold standard absorption array produced by the original MCML software

after launching 100 million photon packets and Ah contains the corresponding elements

in the absorption array produced by the FBM hardware. To visualize the distribution of

the relative error, a 2-D colour map showing the relative error (in percent) as a function of

position (r,z) was generated. For comparison, a reference colour map depicts the relative

error in the output from 2 gold standard absorption arrays to account for the statistical

uncertainty between MCML simulation runs.

To summarize the effect of varying the number of photon packets, the mean rela-

tive error (Eq. 3.6) was computed by averaging the relative error in all elements in the
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absorption array with values above a selected threshold of 0.00001 cm−3:

Eave[ir][iz] =

∑nz
iz=0

∑nr
ir=0E[ir][iz ]

nrnz
(3.6)

where Eave is defined as the mean relative error, E[ir][iz] is the relative error for each

element (as defined in Eq. 3.5), and nr=256 and nz=256. The threshold is necessary since

relative error is undefined when As[ir][iz] (or the software MCML output) is zero. (Note

that as the same threshold is used for quantifying the mean relative error between the

hardware and the gold standard and for calculating the error between two gold standard

runs.) This analysis enables the quantification of the impact of look-up tables and fixed-

point conversion in the hardware implementation. Photon packet numbers ranging from

105 to 108 were simulated.

To further characterize the hardware system with varying tissue optical parameters,

the performance and relative error based on 108 photons were analyzed as a function of

the target albedo. In a single-layer geometry, the target albedo, defined as μs/(μa + μs),

was systematically varied from 0.50 to 0.96 in order to investigate the effects of tissue

optical property on both the speedup and error.

The third phase for system-level validation of the FPGA-based hardware design in-

volved analyzing the effect of the error within the context of PDT treatment planning.

Isofluence maps were generated after launching 108 photon packets with the FBM hard-

ware. The relative shift in the position of the isofluence lines was analyzed by comparing

against the gold standard MCML output.

It is important to emphasize that in all phases of the validation, a much higher

resolution (dr=0.01 cm and dz=0.002 cm, comparable to the dimension of single cells)

than clinically required for PDT treatment planning (typically mm resolution) was used

to increase the sensitivity for detecting any systematic errors. In addition, the voxel

resolution was set based on the transport mean free path, defined as 1/[μa + μs(1 − g)],

which is around 0.01 to 0.04 cm using the optical properties from Table 3.3. While a

vertical resolution (in the z direction) of 0.002 cm probably over-samples the spatial
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distribution, it enables the visualization of changes within each tissue layer, particularly

in the top layer which has a thickness of only 0.01 cm. A similar rationale for choosing

voxel resolution was used in the multi-layered skin model for pulse oximetry by Reuss et

al [80].

3.5.2 Results

Figures 3.11 and 3.12 show the distribution of the relative error for 105 and 108 photon

packets respectively, using Tuchin’s skin model at λ=633 nm as input. In both cases, the

accuracy of the results produced by the FBM hardware was comparable to that of the

MCML software, as demonstrated by the similarity between the two error distributions

[Figs. 3.11(a) and 3.11(b)]. The statistical uncertainty decreased for the simulation that

used 100 million photon packets, as indicated by the expansion of regions within the

r, z plane showing less than 5% error in Fig. 3.12. This is expected as the variance in

Monte Carlo simulations decreases by 1/
√
n where n represents the number of photon

packets. Figure 3.12(a) also shows some slight differences of about 1-2% (manifesting

as an S-shaped region with lower error) in the region within a radius of 0.5 cm (or

the high fluence region). Further analysis revealed that this S-shaped pattern can be

eliminated by replacing the random number generator in the original MCML software

with the version implemented in hardware (namely the Tausworthe generator [79]). The

disappearance of the S-shaped pattern with the use of the same random number generator

(or the Tausworthe generator) shows that the minor deviation observed was due to the

statistical differences in the random number sequence generated by two different random

number generators [Figs. 3.12(c) and 3.12(d)].

To analyze the effect of photon packet number on the simulation accuracy, the mean

relative error is plotted in Fig. 3.13. Figure 3.13(a) shows that the mean relative error of

the results generated by the FBM hardware closely tracked the mean relative error of the

MCML gold standard, both decreasing as the number of photon packets increased. Figure
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Figure 3.11: Distribution of relative error as a function of radius and depth using 105 photon packets (at

λ=633 nm): (a) The FBM hardware (105 photon packets) versus the MCML software (108

photon packets) and (b) MCML (105 photon packets) versus MCML (108 photon packets).

The bar represents percent error from 0 to 10%. Values above 10% are represented by

the same colour as the maximum value in the colour scale.

3.13(b) shows the impact of converting from double-precision floating point operations

to fixed point operations combined with the impact of the use of look-up tables on the

relative error. As shown by the plot, the conversion introduced an increase in relative

error of 0.2-0.5%, which has a negligible effect on PDT treatment planning as explained

later in more details.

In the second phase of the validation, the mean relative error as a function of the

albedo was plotted [Fig. 3.14(a)]. The results show that for albedo values between 0.7

and 1.0, the increase in error was only 0.5-1%, while for albedo values below 0.7, the

added error was up to 2%. This increase was caused by the significant reduction in the

number of non-zero absorption array elements. For example, at an albedo of 0.90, there

were 11407/65536 non-zero elements, but only 351/65536 non-zero elements at an albedo

of 0.5. This high proportion of zero elements is due to the small voxel size used (dr=0.01

cm and dz=0.002 cm).
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Figure 3.12: Distribution of relative error as a function of radius and depth using 108 photon packets

(at λ=633 nm): (a) The FBM hardware versus the MCML software (run 2), (b) MCML

(run 1) versus MCML (run 2), (c) FBM versus MCML with Tausworthe generator (run 2),

and (d) MCML (run 1) versus MCML (run 2) both with Tausworthe generator. Colour

bar represents percent error from 0% to 10%.

To investigate the impact of the 1-2 % additional error within the context of PDT

treatment planning, the isofluence lines for the impulse response based on simulation

input parameters from Table 1 were plotted (Fig. 3.15). The isofluence lines produced

by the FBM hardware and the MCML software matched each other well. The shift in

the position of the isofluence lines was only noticeable for fluence levels at 0.00001 cm−2,

which is 8 orders of magnitude smaller than the fluence near the centre – 1000 cm−2. The

detected shift was only around 0.1 mm, which is of little significance in PDT treatment

planning.

3.6 Performance

A common metric for measuring the performance improvement of a parallel or acceler-

ated implementation is the speedup, which is defined as the ratio between the sequential
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Figure 3.13: Mean relative error as a function of the number of photon packets simulated (at λ=633

nm). The horizontal axis is in logarithmic scale: ♦, mean relative error between two

independent MCML runs. (a) ×, mean relative error comparing the results produced

by the FBM hardware and the MCML software and (b) ×, mean relative error of the

results produced by the C program modelling look-up tables and fixed-point operations

compared to MCML which uses double-precision floating point operations. Each point

represents the average obtained from four simulation runs.

execution time (tsequential) and parallel execution time (tparallel):

Speedup =
tsequential

tparallel
(3.7)

The parallel execution time of the FBM hardware was measured on two different

FPGA-based platforms: the TM-4 platform, which contains four Stratix FPGAs, and

the DE3 board, which contains a single Stratix III FPGA. The detailed specifications

for both are compared in Table 3.4. A key difference between the Stratix and Stratix

III FPGA is the Integrated Circuit (IC) process technology used to fabricate each silicon

chip. The Stratix III FPGA is manufactured using the 65 nm lithographic process, which

results in a smaller transistor size and higher transistor density compared to the Stratix

FPGA fabricated using the 130 nm process technology. The higher transistor density

translates to a larger number of logic elements and a higher clock speed for designs on

the Stratix III FPGA compared to the Stratix FPGA.

For fair comparison, a processor or CPU manufactured using a similar process tech-
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Table 3.4: Specifications of the TM-4 and DE3 FPGA platforms

TM-4 DE3-150

FPGA Devicea Four Stratix (EP1S80) FPGAs One Stratix III (EP3SL150) FPGA

Logic Elements (LE) 79 K/FPGA 142 Kb

DSP Elementsc 176/FPGA 384

On-chip Memory 7.4 Mbits/FPGA 5.6 Mbits

IC Process Technologyd 130 nm 65 nm

a Note that the Stratix FPGA used by the TM-4 is at the top of its class. A more advanced Stratix III EP3SL340 FPGA

(available on the DE3-340 model) contains 338 K LEs, 576 DSP elements, and 16 Mbits of on-chip memory

b The Stratix III FPGA uses a new architecture called Adaptive Logic Module (ALM). This device contains 56,800 ALMs,

but for easier comparison, the equivalent number of logic elements is reported.

c The DSP elements on Stratix and Stratix III FPGAs are different. For example, a 32-bit x 32-bit multiplier requires 8

DSP elements (9-bit x 9-bit) on Stratix FPGAs, but only 4 DSP elements (18-bit x 18-bit) on Stratix III FPGAs.

d Integrated Circuit (IC) process technology refers to the silicon chip fabrication technology, as defined by the ”size” of

transistors (in nm) created in the lithographic process. (The smaller it is, the higher the transistor density and clock speed.)
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Figure 3.14: (a) Mean relative error with varying albedo (108 photon packets): ♦, mean relative

error between two independent MCML runs; ×, mean relative error between the results

produced by the FBM hardware and the MCML software. (b) Speedup at different

albedo values (108 photon packets). Each point represents the mean obtained from four

simulation runs.

nology was selected for measuring the sequential execution time. Namely, an Intel Xeon

processor built with the 130nm process technology was compared against the 130 nm

Stratix FPGA, while a 65nm Intel Xeon processor was compared against the 65 nm

Stratix III FPGA. The specifications of each platform are listed in Table 3.5.

Table 3.5: Specifications of two Intel-based server platforms

Platform 1 (130 nm processor) Platform 2 (65 nm processor)

Processor Intel Xeon 3.06-GHz CPU (Pentium 4) Intel Xeon 5160 3-GHz CPU (Dual-Core)

CPU Cachea 512 kB 4 MB

Memory 2 GB of RAM 8 GB of RAM

C Compiler gcc 3.2.2 gcc 4.1.2

a A larger cache (L2 cache) – a fast CPU memory – can reduce the number of expensive memory accesses by temporarily

storing frequently used data.
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Figure 3.15: Comparison of the isofluence lines for the impulse response generated by the FBM hard-

ware and the MCML software using 100 million photon packets (at λ=633 nm): ◦, ♦,

and �, results from MCML; and •, +, and ×, results from FBM. (a) Isofluence lines for

fluence levels at 1000, 100, and 10 cm−2, as indicated on the figure and (b) isofluence

lines for fluence levels at 1, 0.01, and 0.00001 cm−2.

3.6.1 Multi-FPGA Platform: TM-4

The simulation time on the FBM hardware implemented using the TM-4 platform was

compared to the original MCML software executed on a single 3-GHz Intel Xeon (Pentium

4) processor with a process technology of 130nm. This test platform is called Platform 1

in Table 3.5. For a complete end-to-end comparison, the runtime includes file I/O, system

initialization, the MC simulation, and all pre-processing/post-processing operations to

generate the final simulation output file. The MCML software was compiled using full

compiler optimizations (gcc -O3 optimization flag [81]).

As shown in Table 3.6, the runtime of the MC simulation using 100 million photon

packets was reduced from over 2.5 h in software to approximately 2 min in hardware for

the skin model at λ=633 nm. The overall speedup was 78 times greater including a data

transfer time of 8 s. Using the tissue optical properties at λ=337 nm from Table 3.7,

the overall speedup was 66 times, mainly due to the much shorter execution time and

hence the relative importance of the data transfer time. However, the data transfer

rate was far from expected due to a known issue in the communication channel on the

TM-4 prototyping system. Normally, the communication channel [host-to-FPGA PCI
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Table 3.6: Runtime of the MCML software and the FBM hardware at 108 photon packets, averaged

over four independent simulation runs. (Input from Table 3.3 at λ=633 nm.)

Device Clock Speed

Simulation

Time (s)

Data Transfer

Time (s)

Overall

speedup

Speedup excluding

data transfer

Intel Xeon 3.06 GHz 9150 0 1 1

TM-4 41 MHz 109 8 78 +/- 1 84 +/- 1

Table 3.7: Runtime of the MCML software and the FBM hardware at 108 photon packets, averaged

over four independent simulation runs. (Input from Table 3.3 at λ=337 nm.)

Device Clock Speed

Simulation

Time (s)

Data Transfer

Time (s)

Overall

speedup

Speedup excluding

data transfer

Intel Xeon 3.06 GHz 3100 0 1 1

TM-4 41 MHz 39 8 66 +/- 1 80 +/- 1

(peripheral component interconnect) bus] supports a bandwidth of 266 MB/s for writes

to the FPGA and 154 MB/s for reads from the FPGA to the host [76]. Currently, it

takes 8 s to transfer 610 kB of data. Hence, the use of commercial prototyping platforms

with fully functional communication channels should yield a net 84 times speedup for the

λ=633 nm case and 80 times speedup for the λ=337 nm case without any modifications

to the design. Fig. 3.14(b) shows that as the albedo increased, the speedup increased

from 77 to 87 times, since the MCML software executes more expensive computations for

calculating the scattering angle and computing internal reflectance at higher albedo. (A

photon packet also takes a greater number of random walks before it is terminated by the

survival roulette). The average speedup was 80 times with the current TM-4 platform

running at a clock speed of 1/75 times compared to that of the Xeon processor.
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Table 3.8: Performance comparison of Stratix, Stratix III, and 3 GHz Xeon 5160 processor for the

MCML simulation with 108 photon packets. (Input parameters from Table 3.3 at λ=633

nm.)

Platform Clock Speed Simulation Time (s) Speedup

Xeon 5160 processor 3 GHz 6102 1

Stratix III (DE3) 80 MHz 220 28

4 x Stratix (TM-4) 41 MHz 109 56a

1 x Stratix (TM-4) 41 MHz 436* 14*

4 x Stratix III (stacked DE3) 80 MHz 55* 112*

* Projected values

a This speedup is lower than in Table 3.6 due to the faster Xeon CPU used for baseline comparison.

3.6.2 Modern FPGA Platform: DE3 Board

On a single Stratix III FPGA, the FBM hardware can operate at a higher clock frequency

(80 MHz), achieving a 28-fold speedup compared to a 3-GHz Xeon 5160 dual-core pro-

cessor (utilizing one processor core). Note that this test platform (called Platform 2 in

Table 3.5) contains an Intel processor with 65nm process technology, which is identical

to that of the Stratix III FPGA. The on-chip simulation time was 6102 seconds for the

processor and 220 seconds for the FPGA. A third-party host-to-FPGA communication

software package that is still under development was used to migrate the TM-4 design

over to the DE3. This software package has a performance problem and requires over

three hours to transfer one megabyte of data (although the integrity of the data was

not affected). The total amount of data that needs to be transferred to and from the

device is less than a megabyte and should take less than one second given a well-designed

communication interface. For this reason, the data-transfer overhead was not included

in the reported simulation time.
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Table 3.9: Resource utilization of one instance of the FBM design on a single Stratix (TM-4) and on

a single Stratix III device (DE3).

FPGA Device Logic Block Usagea DSP Elementsa On-chip Memory Clock Speed

Stratix (130nm) 64,147/79,040 LEs 160/176 4.8/7.4 Mbits 41 MHz

Stratix III (65nm) 31,185/56,800 ALMs 92/384 4.8/5.6 Mbits 80 MHz

a The Stratix III device uses a different FPGA architecture compared to the Stratix device. The Stratix III FPGA contains

Adaptive Logic Modules (ALMs) instead of Logic Elements (LEs) for soft logic and it also contains different kinds of DSP

elements for multipliers.

3.7 Resource Utilization

Table 3.9 shows the resource utilization (including the logic element, DSP element, and

on-chip memory usage) and clock speed of the FBM hardware on a Stratix FPGA de-

vice (Altera part number: EP1S80F1508C6) and a modern Stratix III FPGA device

(EP3SL150F1152C3). Note that the Stratix and Stratix III devices contain different

types of logic blocks and DSP elements. Although the FBM implementation only occu-

pies about 55% of the logic elements and 24% of the DSP elements on the Stratix III

device, the on-chip memory usage is 86%.

The on-chip memory usage and the number of occupied logic elements currently limit

the number of replicas of the design to one. The use of external memory modules, together

with a larger FPGA with more logic elements (offered by more advanced models of the

DE3 board family), will allow multiple instances of the pipelined MCML hardware to be

created, which translates to a proportionate increase in speedup. Also, the DE3 board

which houses the current Stratix III device was designed to be stacked, allowing multiple

Stratix III FPGAs to be combined into a single system. This offers the possibility of

potentially performing the same MCML computation in a cluster of FPGAs.
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3.8 Power

While power consumption is not of much concern in a hospital setting with the proper

infrastructure, power consumption is an important engineering metric that can be used

to show the merit of an FPGA-based implementation, compared to a cluster of proces-

sors. Also, power consumption becomes an essential metric in a cluster configuration,

especially when hundreds of FPGAs or CPUs are used for complex simulations such

as those required for treatment planning. Specifically, the power-delay product (PDP)

is commonly used to measure the efficiency of different implementations. To compute

the power-delay product, the power consumption and the simulation time or delay are

multiplied together.

In the following comparison, only the power consumed by the processor or FPGA

was considered; off-chip memory, network, and disk power were ignored. The thermal

design power of the dual-core Xeon 5160 processor is specified by Intel to be 80W [82],

and half of this value is taken as the power consumption for a single core. Although 40

W may be pessimistic for the single core, this value was chosen because the processor will

be heavily utilized during the MCML computation. The FPGA power consumption was

determined using the PowerPlay Power Analyzer tool in Quartus II version 8.1 [83]. The

default settings for PowerPlay were used, in which the input pin toggle rate was set at

the default 12.5%. Note that although most of the inputs remain almost constant during

the simulation of any large number of photon packets, the default settings were chosen

to give a more conservative estimate. Table 3.10 shows that the FBM hardware on the

Stratix III achieved a 716-fold better power-delay product than a single-core 3 GHz Xeon

5160 processor. The normalized PDP represents the energy efficiency ratio of the Stratix

III implementation. Note that a hypothetical cluster of 28 processors that matches the

performance of the Stratix III FPGA will have the same 716-fold worse power-delay

product compared to the FPGA. In other words, the Stratix III implementation will

remain 716-fold more energy efficient regardless of the number of processors present.
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Table 3.10: Power-delay product (PDP) of Stratix III, 3 GHz Xeon processor, and CPU cluster for

the MCML simulation using 100 million photon packets at λ=633 nm. Delay values are

extracted from Table 3.8.

Machine Power (W) Delay (s) PDP (kJ) Normalized PDP

Stratix III FPGA 1.55 220 0.341 1

Xeon processor (using 1 core) 40.0 6102 244 716

CPU cluster (28 cores) 1120 218 244 716

3.9 Summary

Custom digital hardware with a 100-stage pipeline was designed and validated for the

MCML computations on two FPGA-based platforms – the TM-4 platform and the DE3

board. The hardware performed the MC simulation on average 80 times faster on the

TM-4 platform with four Stratix FPGAs than the MCML software executed on a 3-GHz

Intel Xeon processor. On the modern DE3 board with a single Stratix III FPGA, a 28-

fold speedup was achieved compared to a different 3-GHz Xeon processor (manufactured

using a more advanced process technology), while reducing the energy consumption by

716 times compared to a CPU-based computing cluster. Multiple DE3 boards can also

be stacked to form a modern multi-FPGA platform that allows for the replication of the

pipelined hardware across the FPGAs. The scalability of the custom hardware solution

was demonstrated using the TM-4 platform in this thesis. In terms of accuracy, the

isofluence contours generated by the hardware matched the software counterpart well,

showing only a 0.1 mm shift for fluence levels as low as 0.00001 cm−2 in a skin model.

Although the FPGA-based approach potentially offers a scalable, low-power solution

for PDT treatment planning, a number of challenges remain due to the complexity of

designing and modifying custom hardware. The next chapter explores an alternative

route that has recently captured the interests of the scientific computing community.
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Chapter 4

GPU-based Acceleration of the

MCML Code

This chapter explores a second method of accelerating the MCML code: programming

commodity graphics processing systems. The first two sections provide the motivation

for using graphics hardware (GPU) and the obstacles faced by other groups in this

area. The new GPU programming paradigm is introduced in Section 4.3, followed by

the implementation details of the GPU-accelerated MCML program in Section 4.4. For

readers interested in the performance and validation results, please refer to Section 4.5

and Section 4.6. Part of this chapter has been presented at the European Conferences

on Biomedical Optics [84].

Note that this chapter must first introduce the key hardware terminology for under-

standing graphics processing hardware, since this understanding was instrumental to the

successful acceleration of the MCML code. Similarly, for other related applications, this

learning curve is required to fully utilize this emerging scientific computing platform.

57
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4.1 Graphics Processing Units

The proliferating gaming and entertainment industries have driven the rapid evolution of

graphics processing units (GPUs). Since the GPU is specialized for processing high frame

rate, high-definition graphics, it is well-suited for computationally intensive, parallelizable

applications. The significant increases in floating point computational power and memory

bandwidth further make the GPU an attractive platform for scientific computing [85].

GPU-accelerated scientific computing is becoming increasingly popular with the re-

lease of an easier-to-use programming model and environment from NVIDIA (Santa

Clara, CA), called CUDA, short for Compute Unified Device Architecture [85]. CUDA

provides a C-like programming interface for NVIDIA GPUs and it suits general-purpose

applications much better than traditional GPU programming languages. However, per-

formance optimization of a CUDA program requires careful consideration of the GPU

architecture to exploit the full computational potential of the GPU. In this chapter, the

exciting performance achieved for the acceleration of the MCML code is reported. More

importantly, the insights gained through experimenting with different parallelization and

optimization schemes are discussed, which reveal the unique challenges in CUDA pro-

gramming and the subtlety of the NVIDIA GPU architecture.

4.2 Related Work

There are a number of related works that have used GPUs to accelerate Monte Carlo sim-

ulations. In terms of previous attempts to use GPUs for MC-based photon simulations,

Alerstam et al. reported ∼1000x speedup on the NVIDIA GeForce 8800GT graphics

card, compared to an Intel Pentium 4 processor, for the simulation of time-resolved pho-

ton migration in a homogeneous, semi-infinite geometry [86]. A 1-D array was used to

generate the histogram for the time of flight of photons. Simultaneous to my efforts,

the same group released a CUDA-based implementation of the MCML code called CU-
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DAMCML (beta version), reporting an order of magnitude lower speedup (or ∼ 50-60x

compared to an Intel Core i7 CPU) when absorption is recorded in a multi-layered ge-

ometry. Note that absorption is scored in a 2-D array due to radial symmetry. Based on

this trend, a 3-D absorption array along with a voxel-based 3-D tissue geometry could

cause significant performance degradation without gaining a deeper understanding of the

performance bottleneck.

The work presented in this chapter proposes a different approach to handle the in-

efficiency in the scoring of absorption and addresses the question of how various opti-

mizations can dramatically affect the performance of MC-based simulations for photon

migration on NVIDIA GPUs.

4.3 CUDA-based GPU Programming

This section reviews the fundamentals of CUDA programming on NVIDIA GPUs. Only

the technical terms necessary for understanding the subsequent sections are introduced.

For a full description on NVIDIA GPU and CUDA, readers may consult the CUDA

programming guide [85].

4.3.1 GPU Hardware Architecture

The underlying hardware architecture of a NVIDIA GPU is illustrated in Fig. 4.1 [85]. In

fact, this architecture is common in a growing list of CUDA-enabled NVIDIA graphics

cards to ensure compatibility with CUDA code. The remainder of this section gives

a brief overview of the architecture using the NVIDIA GeForce GTX 280 GPU as an

example. Note that another graphics card used in this work, called NVIDIA GeForce

GTX 295, contains 2 GPUs and each GPU is similar to that on GTX 280. To understand

the programming paradigm for NVIDIA GPUs in the next section, two key aspects must

be explained, including the unique layout of processors and the memory hierarchy.
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Figure 4.1: Hardware architecture of a NVIDIA GPU (N=30, M=8 for GTX 280) [85]

Layout of Processors

The GTX 280 GPU contains N=30 multiprocessors, each of which contains M=8 scalar

processors (SPs). (GTX 295 has 2 GPUs and hence a total of 60 multiprocessors or 480

SPs.) The processor clock frequency or clock speed for each SP is 1296 MHz for GTX 280

and 1242 MHz for GTX 295. Typically, the clock speed for a modern CPU is around 3

GHz or 3000 MHz. However, apart from the clock speed, the performance of a processor

is also determined by how efficiently instructions are executed or how much useful work

can be executed in each hardware clock cycle. For the NVIDIA GPU, each multiprocessor

executes instructions using a mode called single-instruction, multiple-thread (SIMT). A

thread contains a parallel unit of work that is performed by a sequence of processor

instructions. For example, a thread can process a group of pixels in a medical image

or simulate a group of photon packets in the MCML algorithm. For the purpose of

this discussion, SIMT means that all SPs within a multiprocessor always execute the
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same instruction, but on potentially different data (or different photon packets for the

MCML code). The main implication of the SIMT architecture is that a GPU with 240

SPs cannot be viewed as 240 independent processors; instead, it should be considered

as 30 independent processors that can perform 8 similar computations at a time. This

has a significant implication on how MC-based programs need to be written for high

efficiency on NVIDIA GPUs. In contrary, this is typically not a key consideration when

programming MC simulations on multi-processor computer clusters, as each CPU or

processor can execute independently.

Memory Hierarchy

Second, the different layers and types of memory on the GPU must be understood by the

programmer, as there is a significant difference in memory access time. The outermost

layer, which is also the largest and slowest, is the off-chip device memory (also known

as global memory). It can be used to communicate with the host computer processor

or CPU and to store large quantities of data. It is typically at least 1 GB in size on

modern GPUs, but it is relatively slow, requiring around 600 clock cycles. This is called

the memory access latency, which is defined as the amount of time in clock cycles needed

to retrieve the first segment of data from memory after an initial request. Note that the

memory bandwidth, or the data transfer rate sustained after the initial access latency, is

still considerably high. The peak memory bandwidth, though rarely attained, is claimed

to be up to 141.7 GB/s for GTX 280, so that a single transfer of hundreds of megabytes

of data to the GPU (such as for image processing applications) is usually not a big

issue [85]. Closer to the GPU are the various kinds of fast, on-chip memories, including

registers with typically single clock cycle of access latency, shared memory at close to

register speed, and a low-latency cache for constant memory and texture memory, as

shown in Fig. 4.1. Although on-chip memories are fast, they are limited in storage space.

In total, there are 16,384 registers, each with 32 bits of storage, per multiprocessor for
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Table 4.1: Mapping the key MCML variables to various GPU memories for high performance

Variable GPU Memory Rationale

Photon data structurea Registers Independently accessed (private to each thread)

Random number seeds Registers Small and frequently accessed

Absorption array A[r][z] Global memory Large array (accessed by all threads)

Selected region of A[r][z]* Shared memory Faster access to the absorption array

Layer data structureb Constant memory Read-only data

Input file data structurec Constant memory Read-only data

a Contains the position, direction cosines, layer, step size, weight, and other temporary variables.

b Contains read-only tissue optical properties per layer, including μa, μs, g, n, and the z-coordinates

bounding each layer. A total of 20 layers can be supported with 8 kB of constant cache.

c Contains read-only simulation input parameters, such as dr, dz, nr, nz, and the number of photons.

* Note that the small size of the shared memory (only 16 kB) makes it crucial to choose the cached region

carefully. This optimization is discussed in Section 4.4.

modern graphics cards (with compute capability 1.2 or above [85]). Although it may

seem that there are many registers, these registers are distributed among up to a few

hundred threads to store thread-private temporary variables. Therefore, if 512 threads

are launched, each thread can only be allocated 32 registers. As for the shared memory,

only 16 kB per multiprocessor are available and this space is useful for communication

between the SPs. Finally, an 8 kB constant cache per multiprocessor is available to store

exclusively read-only data.

Table 4.1 shows how the key variables in the MCML code are mapped onto different

types of GPU memories for high performance. Note that there is also a region in device

memory called local memory reserved for large data structures, including arrays, which

cannot be mapped into registers by the compiler. Local memory is somewhat a misnomer

for hardware acceleration since it is as slow as global memory. For the MCML code, arrays

are used extensively in the original random number generator, which makes it inefficient
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Figure 4.2: CUDA programming model - concept of a thread block consisting of multiple threads, each

responsible for a subtask as defined by the programmer [85]

on GPUs since arrays are mapped to the slow, local memory. Therefore, a different

random number generator, explained in Section 4.5.3, is employed for the GPU version.

4.3.2 Programming with CUDA

CUDA is a C-based programming language extension that has gained acceptance in

the scientific computing community in recent years. By abstracting away some of the

complexity in programming graphics hardware, CUDA reduces the learning curve and

has made the GPU more accessible to a wider audience for general-purpose computing.

Unfortunately, it is not trivial to optimize for high computational speed using CUDA,

as this programming paradigm still exposes a significant portion of the underlying GPU

architecture for the programmer to handle.
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CUDA Programming Model

In CUDA, the programmer writes GPU code in the form of kernels, which are similar to

regular C functions. Multiple copies are executed in parallel by the GPU threads. There-

fore, the programmer must first divide the application into parallel units of execution,

which are assigned to threads. (For the MCML code, each thread can be assigned a group

of photon packets, which can be processed in parallel with other threads.) These threads

are in turn organized into thread blocks, as shown in Fig. 4.2. Next, the programmer

specifies a kernel configuration - the number of thread blocks and number of threads

within each thread block. This is an important decision as each thread block

is executed on a single multiprocessor and the threads inside are mapped

onto the individual SPs. Note that this is not a one-to-one mapping. For high

performance, NVIDIA suggests launching multiple thread blocks per multiprocessor and

hundreds of threads within each thread block to fully occupy the GPU resources. For ex-

ample, one might choose 60 thread blocks for 30 multiprocessors to allow 2 thread blocks

to interleave execution on the same multiprocessor (handled by the thread scheduler).

Within each thread block, 256 threads may be launched. (Using this configuration with

15360 threads in total and assuming 1 million photon packets need to be simulated, each

thread would process ∼65 photon packets.) The choice of a proper kernel configuration

involves more complicated trade-offs and is limited by the shared memory usage, reg-

ister usage, and other thread scheduling considerations. Interested readers can refer to

Chapter 5 of the CUDA programming guide for details [85].

Memory Access Restrictions

CUDA also requires the programmer to explicitly manage the storage of data on the GPU

and the data transfer between the device memory on the GPU side and the host memory

on the CPU side. The programmer must be aware of the size and access restrictions of

each type of memory in order to properly write and launch a GPU kernel, as explained in
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Figure 4.3: Memory access restrictions for CUDA programming - (1) local memory and registers are

private to each thread, (2) shared memory is shared by threads within a thread block, and

(3) global memory can be accessed by all threads from all thread blocks. [85]

Fig. 4.3. The scope of a variable differs depending on the specific type of memory used.

For example, the global memory and the read-only constant memory can be accessed by

all threads, while shared memory is only shared by threads within a thread block. By

default, variables declared without specifying the type of memory are stored in registers,

which are private to each thread and cannot be accessed by other threads. Notice that

these restrictions limit how different variables in the MCML code are mapped onto the

GPU memories, as shown earlier in Table 4.1. For example, if the photon data structure

were to be shared across threads or if its size were too large, it would not have been

possible to place it inside the fast registers.

Atomic Instructions

CUDA also provides ways to synchronize the execution of threads as many applications

require some form of cooperation or synchronization between the subtasks assigned to
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Figure 4.4: Concept of an atomic access represented by a funnel: as thread 3 is accessing the absorp-

tion array, threads 1 and 2 must wait. Atomic instructions can cause bottlenecks in a

computation, especially with thousands of threads common in GPU programming.

each thread, as defined by the programmer. To synchronize execution, multiple threads

may communicate through some shared variables. A common synchronization technique

involves the use of atomic instructions to coordinate the sequential access to a shared

variable, which can be stored in global or shared memory for NVIDIA GPUs. Atomic

instructions guarantee data consistency by allowing only one thread to update the shared

variable at any time; however, in doing so, it stalls other threads if they require access

to the same variable. The concept of an atomic access is illustrated by the funnel in

Fig. 4.4, where 3 threads are simultaneously attempting to access the shared A[r][z]

array to accumulate its absorbed weight, which is a key step in the fluence update part

of the MCML algorithm.

Just as an atom in chemistry is considered the indivisible unit or the fundamental

building block of all matter, an atomic instruction cannot be further divided. For ex-

ample, an atomic instruction may read a piece of data, modify it, and then write the

modified value back to memory all in one indivisible operation, which may be guaranteed
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by locking the variable to avoid interruptions temporarily. Since this locking mechanism

forces all other threads that might be simultaneously desiring to modify that memory

location to wait, atomic instructions can give rise to performance bottlenecks. Although

atomic instructions can sometimes be avoided by replicating the shared data structure

in each thread, if the shared data structure is large (as is the case for the absorption

array), the size of the memory will in turn limit the number of threads that can be

launched. This may decrease the parallelism and the final performance of the application

despite having avoided the use of atomic instructions. The problem of optimizing the

use of atomic instructions for the GPU-based MCML program is further discussed in

Section 4.4.2.

4.3.3 CUDA-specific Acceleration Techniques

For the highest performance, programmers must write CUDA code with the GPU archi-

tecture in mind. Two important objectives include maximizing parallelism and instruc-

tion throughput, both of which are also impacted by efficient memory usage.

Maximizing Parallelism and Instruction Throughput

There are a number of techniques to improve the efficiency of code execution on the

NVIDIA GPU by increasing the level of parallelism and instruction throughput, several

of which are listed below:

1. Devise a parallelization scheme with minimum synchronization by care-

fully identifying parallelizable portions in the CPU code.

2. Minimize code divergence, or threads taking different execution paths, by elim-

inating or grouping conditional statements, such as if and else constructs or

common for, while, and do while loops.
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3. Use single-precision floating point operations whenever possible as double-

precision operations and integer operations are slower on current GPUs.

4. Use the faster GPU-intrinsic math functions, such as logf(x) for faster

logarithmic computations, by enabling the -use fast math compiler flag.

Efficient Memory Usage

Efficient memory usage is critical as the amount of time required for retrieving data from

different types of memories can differ significantly, as explained in Section 4.3.1. Memory

operations can also be significantly more time-consuming than arithmetic operations. For

example, global memory access can take hundreds of clock cycles when only a few cycles

are required for single-precision floating point multiplication. Therefore, global memory

operations should be reduced as much as possible. There are mainly three ways to achieve

this goal:

1. Store or cache frequently accessed data in fast on-chip memories, such as

registers, shared memory, and the constant memory. (For the GPU-based MCML

code, the photon data structure is stored in registers, part of the absorption array is

cached in shared memory, and the optical properties of the tissue layers are stored

in the constant memory.)

2. Eliminate arrays to avoid the use of local memory, which is as slow as global

memory. (In the original MCML code, the random number generation algorithm

depends heavily on large arrays, which make it inefficient for GPU implementation.)

3. Increase the number of threads, which gives the thread scheduler more oppor-

tunities to fully utilize the GPU resources and to hide global memory access latency

(e.g., by executing computations from another thread while a thread is waiting for

data from the global memory).
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Balancing Trade-offs

Unfortunately, the optimizations above often compete with one another for GPU re-

sources. For example, caching data in registers increases register usage per thread, which

in turn limits the number of threads that can be launched. If maximum parallelism (or

512 threads per thread block) is desired, each thread can at most use 32 registers (since

32 x 512 = 16,384 registers, which is the maximum number of registers available). To

complicate matters further, the number of registers required by a program is not easily

predicted as the number of variables does not necessarily correspond to the number of

registers needed due to compiler optimizations.

One of the key challenges in optimizing a CUDA program is to find a scheme of

assigning resources that achieves the best performance. The strategies for accelerating

the MCML code on CUDA-enabled GPUs are discussed in the next section.

4.4 GPU-accelerated MCML Code

In this section, the implementation details of the GPU-accelerated MCML program are

presented, showing how a high level of parallelism is achieved, while avoiding memory

bottlenecks. The development process is described to summarize the thought process

and challenges encountered before arriving at the final solution. This may assist other

investigators in related efforts since the MC method is widely applied in computational

biophysics and most MC simulations share a set of common features. The final, optimized

implementation was also tested on a multi-GPU system to show the possibility of using

a cluster of GPUs for PDT treatment planning.

4.4.1 Parallelization Scheme

One key difference between writing CUDA code and writing a traditional C program

(for sequential execution on a CPU) is the need to devise an efficient parallelization
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scheme for the case of CUDA programming. Although the syntax used by CUDA is in

theory very similar to C, the programming approach differs significantly. Fig. 4.5 shows

an overview of the parallelization scheme used to accelerate the MCML code on the

NVIDIA GPU. Compared to serial execution on a single CPU where only one photon

packet is simulated at a time, the GPU-accelerated version can simulate many photon

packets in parallel using multiple threads executed across many scalar processors. Note

that the total number of photon packets to be simulated are split equally among all

created threads.

The GPU program or kernel contains the computationally intensive part or the key

loop in the MCML simulation (represented by the position update, direction update,

and fluence update loop in the figure). Other miscellaneous tasks, such as reading the

simulation input file, are performed on the host CPU. Each thread executes a similar

sequence of instructions, except for different photon packets simulated based on a different

random number sequence. To ensure that a different sequence is generated within each

thread, the unique thread ID (obtained using the CUDA keywords threadIdx.x and

blockIdx.x) is used to create a unique set of random seeds for each thread.

In the current implementation, the kernel configuration is specified as 30 thread blocks

(Q=30), each containing 256 threads (P=256). As shown in Fig. 4.5, each thread block

is physically mapped onto one of the 30 multiprocessors and the 256 threads interleave

its execution on the 8 scalar processors within each multiprocessor. As discussed in

Section 4.3.3, increasing the number of threads helps to hide the memory latency. How-

ever, this also increases competition for atomic access to the common A[r][z] array.

Therefore, the maximum number of threads, which is 512 threads per thread block on

the graphics cards used in this work, was not chosen and only 256 threads were launched

per thread block. A lower number would not be desirable since more than 192 threads

are required to avoid delays in accessing a register (due to potential register read-after-

write dependencies and register memory bank conflicts [85]). A similar reasoning applies
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Figure 4.5: Parallelization scheme of the GPU-accelerated MCML code (Q=30 and P=256 for each

GPU). Note the mapping of the threads to the GPU hardware. In general, P should be a

multiple of M, while Q should be a multiple of N for high performance.

to the number of thread blocks chosen. A lower number than 30 thread blocks would

under-utilize the GPU computing resources since there are 30 multiprocessors available.

A larger number, such as 60 thread blocks, would decrease the amount of shared memory

available for caching and also increase competition for access to the A[r][z] array. The

need to alleviate the competition for atomic access is discussed in detail next.

4.4.2 Key Performance Bottleneck

To understand further why atomic accesses to the A[r][z] array could become a key

performance bottleneck, notice that all threads add to the same absorption array in the

global memory during the fluence update step. In CUDA, atomic addition is performed

using the atomicAdd() instruction. However, using atomicAdd() instructions to access

the global memory is particularly slow, both because global memory access is a few

orders of magnitude slower than that of on-chip memories and because atomicity prevents
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parallel execution of the code (by stalling other threads in the code segment where atomic

instructions are located). This worsens with increasing number of threads due to the

higher probability for simultaneous access to an element, also known as contention.

Note that although the A[r][z] array could, in theory, be replicated per thread to

completely avoid atomic instructions, this approach is limited by the size of the device

memory, as discussed in Section 4.5.3, and would not be feasible in the general 3-D case

with much larger absorption arrays. Therefore, a more general approach was explored to

solve this performance problem.

4.4.3 Solution to Performance Issue

To reduce contention and access time to the A[r][z] array, two memory optimizations,

caching in registers and shared memory, were applied.

The first optimization is based on the idea of storing the recent write history, repre-

senting past absorption events, in temporary registers to reduce the number of atomic

accesses to the global memory. It was observed that consecutive absorption events can

happen at nearby, or sometimes the same, locations in the A[r][z] array, depending on

the absorption grid geometry and optical properties of the layers. Since the number of

registers is limited, in the final solution, only the most recent write history is stored in 2

registers – one for the last memory location and one for the total accumulated weight. In

each thread, consecutive writes to the same location of the A[r][z] array are accumulated

in these registers until a different memory location is computed. Once a different location

is detected, the total accumulated weight in the temporary register is flushed into the

global memory using an atomicAdd() operation and the whole process is repeated.

The second optimization, illustrated in Fig. 4.5, is based on the high access rate of the

A[r][z] elements near the photon source (or at the origin in the MCML model), causing

significant contention when atomic instructions are used. Therefore, this region of the

A[r][z] array is cached in the shared memory. This optimization has two significant
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implications. First, contention in the most competitive region of the A[r][z] array is

reduced by up to 30-fold since the shared memory copy of the array is updated atomically

by only 256 threads within each thread block instead of 7680 threads across 30 blocks.

Second, accesses to the shared memory are ∼100-fold faster than those to the global

memory. Together, these two factors explain the significant improvement in performance

observed after this optimization, as shown in Section 4.5.3.

To store as many elements near the photon source as possible in the shared memory,

the size of each element in the A[r][z] array was reduced to 32 bits (as opposed to 64

bits for the master copy in the global memory). Given the size of the shared memory

is 16 kB, 3584 32-bit elements can be cached compared to only 1792 elements if 64-

bit elements were used (3584 x 32 bits or 4 bytes = 14 kB, with the remaining shared

memory space reserved by CUDA). However, this reduction also causes a far greater

risk of computational overflow, which occurs when the accumulated value exceeds ∼232

(instead of ∼264 in the 64-bit case). To prevent overflow, the old value is always checked

before adding. If overflow is imminent, the value is flushed to the absorption array in

global memory, which still uses a 64-bit integer representation and overflow in this 64-bit

array is not necessary to detect given it takes ∼ 1500 billion photon packets all dropping

their weights (initially set to 12 million) into one single voxel to cause overflow in a 64-bit

integer.

As an additional optimization to avoid atomic accesses, in the GPU version, photon

packets at locations beyond the coverage of the absorption grid (as specified through the

input parameters dr, dz, nr, and nz) no longer accumulate their weights at the perimeter

of the grid, unlike in the original MCML code. Note that these boundary elements were

known to give invalid values in the original MCML code [40]. This optimization does not

change the correctness of the simulation, yet it ensures that performance is not degraded

if the size of the detection grid is decreased, which forces photon packets to be absorbed

at boundary elements (significantly increasing contention and access latency to these
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elements in the A[r][z] array).

4.4.4 Other Key Optimizations

Another major problem with the original MCML code for GPU-based implementation is

its abundance of branches (e.g., if statements), leading to significant code divergence.

To illustrate how the issue of divergence was tackled, the implementation of the Reflect

function inside the direction update step is described as an example.

Looking inside the original Reflect function shown in Listing 4.1 [40], there are two

nearly identical branches of execution (labelled Branch 1 and Branch 2 ) with only slightly

different assignments of variables. The condition used to determine which branch to take

is the sign of Photon Ptr->uz or μz, which is the direction cosine in the z direction.

There is also a significant amount of computation in each branch, meaning that if this

code were directly implemented on the GPU, the thread taking a different execution path

would significantly slow down the other threads. In particular, the RFresnel function

for computing the internal reflectance (defined in Eq. 2.7) contains another layer of con-

ditional statements and expensive trigonometric calculations, which are not shown here

for clarity.

In the CUDA implementation as shown in Listing 4.2, the Reflect code was signifi-

cantly re-structured to remove or to reduce the size of a large number of branches. For

example, the branch in the outer-most layer was replaced with a much smaller one that

decides which variables to use by collecting all the information that depends on the value

of μz, followed by the common piece of computation. This optimization almost halved

the number of instructions executed in this step and reduced divergence significantly.

The correctness of these transformations is shown by the validation results presented in

Section 4.6.

1 void Re f l e c t ( InputStruct ∗ In Ptr , PhotonStruct ∗Photon Ptr , OutStruct ∗Out Ptr )
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2 {
3 //////////////////////////////////////////////////////////////////////////

4 // Branch 1: I f t he photon packet i s heading UPwards (−z d i r e c t i on )

5 //////////////////////////////////////////////////////////////////////////

6 i f ( Photon Ptr−>uz < 0 . 0 ) {
7 double uz = Photon Ptr−>uz ; /∗ z d i r e c t i o n a l cos ine . ∗/
8 double uz1 ; /∗ temporary v a r i a b l e . ∗/
9 double r =0.0; /∗ r e f l e c t an c e ∗/

10 short l a y e r = Photon Ptr−>l a y e r ;

11 double ni = In Ptr−>l a y e r spe c s [ l ay e r ] . n ;

12 double nt = In Ptr−>l a y e r spe c s [ l ayer −1] .n ;

13 /∗ Get r . ∗/
14 i f ( − uz <= In Ptr−>l a y e r spe c s [ l ay e r ] . c o s c r i t 0 )

15 r =1.0; /∗ t o t a l i n t e r n a l r e f l e c t i o n . ∗/
16 // Compute In t e rna l Re f l e c tance using RFresnel func t ion

17 else

18 r = RFresnel ( ni , nt , −uz , &uz1 ) ;

19

20 i f (RandomNum() > r ) { /∗ t ransmi t t ed to layer −1. ∗/
21 i f ( l ay e r==1) {
22 Photon Ptr−>uz = −uz1 ;

23 Photon Ptr−>dead = 1 ;

24 }
25 else {
26 Photon Ptr−>l ayer −−;

27 Photon Ptr−>ux ∗= ni /nt ;

28 Photon Ptr−>uy ∗= ni /nt ;

29 Photon Ptr−>uz = −uz1 ;

30 }
31 }
32 else /∗ r e f l e c t e d . ∗/
33 Photon Ptr−>uz = −uz ;

34 }
35 //////////////////////////////////////////////////////////////////////////

36 // Branch 2: I f t he photon packet i s heading DOWNwards (+z d i r e c t i on )

37 //////////////////////////////////////////////////////////////////////////

38 else {
39 // Exac t l y the same v a r i a b l e s wi th s l i g h t l y d i f f e r e n t ass ignments

40 double uz = Photon Ptr−>uz ;

41 double uz1 ;

42 double r =0.0;
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43 short l a y e r = Photon Ptr−>l a y e r ;

44 double ni = In Ptr−>l a y e r spe c s [ l ay e r ] . n ;

45 double nt = In Ptr−>l a y e r spe c s [ l ay e r +1] .n ; //Note t ha t [ l a y e r +1] i s used

46 /∗ Get r . ∗/
47 i f ( uz <= In Ptr−>l a y e r spe c s [ l ay e r ] . c o s c r i t 1 ) //Note t ha t c o s c r i t 1 i s used

48 r =1.0;

49 else

50 r = RFresnel ( ni , nt , uz , &uz1 ) ; //Note the s i gn of uz

51

52 i f (RandomNum() > r ) { // t ransmi t t ed to l ay e r +1.

53 i f ( l ay e r == In Ptr−>num layers ) {
54 Photon Ptr−>uz = uz1 ;

55 Photon Ptr−>dead = 1 ;

56 }
57 else {
58 Photon Ptr−>l a y e r++; //Note the change in l ay e r

59 Photon Ptr−>ux ∗= ni /nt ;

60 Photon Ptr−>uy ∗= ni /nt ;

61 Photon Ptr−>uz = uz1 ; //Note the s i gn of uz1

62 }
63 }
64 else

65 Photon Ptr−>uz = −uz ;

66 }
67 }

Listing 4.1: MCML C code for the Reflect() function [40]

1 d e v i c e void Re f l e c t ( f loat rand3 , f loat ∗ux , f loat ∗uy ,

2 f loat ∗uz , unsigned int ∗ l ayer , unsigned int∗ dead ) {
3 /∗ Co l l e c t e v e r y t h i n g t ha t depends on the s i gn of uz . ∗/
4 f loat c o s c r i t ; // cos ine o f the c r i t i c a l ang l e

5 int new photon layer ;

6 i f (∗ uz > 0 .0F) {
7 c o s c r i t = d l aye r spe c s [ ( ∗ l a y e r ) ] . c o s c r i t 1 ;

8 new photon layer = (∗ l a y e r )+1;

9 } else {
10 c o s c r i t = d l aye r spe c s [ ( ∗ l a y e r ) ] . c o s c r i t 0 ;

11 new photon layer = (∗ l a y e r ) −1;

12 }
13 f loat ca1 = f ab s f (∗ uz ) ; // cos ine o f the i nc i den t ang l e

14 ∗uz = −(∗uz ) ; // De fau l t move = r e f l e c t
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15 // General Case − No t o t a l i n t e r n a l r e f l e c t i o n

16 // i f i n c i den t ang le < t he c r i t i c a l angle ,

17 // or i f ( cos ine o f i n c i den t ang le ( ca1 ) > cos ine o f c r i t i c a l ang le ( c o s c r i t ) )

18 i f ( ca1 > c o s c r i t )

19 {
20 // r e f r a c t i v e i nd i c e s o f i n c i den t and t ransmi t t ed media

21 f loat ni = d l aye r spe c s [ ( ∗ l a y e r ) ] . n ;

22 f loat nt = d l aye r spe c s [ new photon layer ] . n ;

23 f loat n i n t = f d i v i d e f ( ni , nt ) ; // reused l a t e r

24 /∗Compute using RFresnel ( ) − not shown . ∗/
25 i f ( rand3 > rF r e s ne l )

26 {
27 ∗ l a y e r = new photon layer ; // Transmit in to new lay e r

28 ∗dead = (∗ l a y e r == 0 | | ∗ l a y e r > d In Ptr . num layers ) ;

29 ∗ux ∗= ni n t ; // update d i r e c t i on

30 ∗uy ∗= ni n t ;

31 ∗uz = −copys i gn f ( uz1 , ∗uz ) ;

32 }
33 }
34 }

Listing 4.2: CUDA code for the Reflect() function

Finally, this implementation also includes a number of other optimizations, such as

using GPU-intrinsic math functions (namely sincosf(x) and logf(x)), reducing local

memory usage by expanding arrays into individual elements, and storing read-only tissue

layer specifications in constant memory. Further details on the effect of these optimiza-

tions and other optimizations not mentioned here are discussed in Section 4.5.3. For

details on the CUDA source code, please refer to Appendix B.

4.4.5 Scaling to Multiple GPUs

To scale the single-GPU implementation to multiple GPUs, multiple host threads were

created on the CPU side to simultaneously launch multiple kernels, to coordinate data

transfer to and from each GPU, and to sum up the partial results generated by the GPUs

for final output. The same kernel and associated kernel configuration were replicated N
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Figure 4.6: Multi-GPU system (GTX 295 contains GPU 1 and GPU 2, highlighted to indicate they

belong to the same graphics card, while the two GTX 280 cards contain GPU 3 and GPU

4): step 1, parsing of the simulation input file; step 2, transfer of initialization information

to the GPUs; step 3, transfer of simulation results from the GPUs; step 4, creation of the

simulation output file. Inside each GPU, the same parallelization scheme from Fig. 4.5 is

used.

times where N is the number of GPUs, except that each GPU initializes a different set

of seeds for the random number generator and declares a separate absorption array. This

allows the independent simulation of photon packets on multiple GPUs, similar to the

approach taken in CPU-based cluster computing.

4.5 Performance

4.5.1 GPU and CPU Platforms

The execution time of the GPU-accelerated MCML program (named here GPU-MCML)

was first measured on a single GPU — the NVIDIA GTX 280 graphics card — with

30 multiprocessors. The code was migrated to a Quad-GPU system consisting of two

NVIDIA GTX 280 graphics cards and a NVIDIA GTX 295 graphics card with 2 GPUs,

as shown in Fig. 4.6. This Quad-GPU system contains a total of 120 multiprocessors.

The final GPU-MCML was compiled using the CUDA Toolkit 2.2 and was tested in both
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a Linux and Windows environment. The number of GPUs used can be varied at run-time

and the simulation is split equally among the specified number of GPUs.

For baseline performance comparison, the same Intel Xeon processor (or Platform 2

in Table 3.5) was selected due to its high performance. Note that this processor was

manufactured using the 65 nm process technology (defined in Section 3.6), which is sim-

ilar to that of the GTX 280 graphics card. The original, CPU-based MCML program

(named here CPU-MCML) was compiled with the highest optimization level (gcc -O3

flag) and its execution time was measured on one of the two available cores on the Xeon

processor, as in Chapter 3. All execution times included the main simulation and all

pre-/post-processing operations.

4.5.2 Speedup

For performance comparison, the same five-layer skin model (at λ=633 nm) from Table 3.3

was used. Table 4.2 shows the execution time of GPU-MCML as the number of GPUs

and the associated number of scalar processors was increased. The kernel configuration

was fixed at 30 thread blocks, each with 256 threads. The performance of the solution

was roughly proportional to the number of GPUs used. Using all 4 GPUs or equivalently

960 scalar processors, the simulation time for 100 million photon packets in the skin

model was reduced from approximately 1.7 h on an Intel Xeon processor to 5.8 s on 4

GPUs. This represents an overall speedup of 1052x !

4.5.3 Effect of Optimizations

The impressive performance was the result of a series of optimizations, some of which have

been described earlier in Section 4.4. This section presents the effect of these optimiza-

tions as well as several other ones, not mentioned previously, with significant implications.



80 Chapter 4. GPU-based Acceleration of the MCML Code

Table 4.2: Speedup as a function of the number of GPUs for simulating 108 photon packets in the skin

model

Platform (Configuration)

Total Number of

Scalar Processors

Simulation

Time (s) Speedup

Normalized

Speedup

Intel 3-GHz Xeon 5160 processor – 6102 1 0.0037

GTX 295 (using 1 GPU) 240 22.7 269 1.0

GTX 295 (2 GPUs) 480 12.5 488 1.8

GTX 295 + GTX 280 (3 GPUs) 720 7.7 792 2.9

GTX 295 + 2 x GTX 280 (4 GPUs) 960 5.8 1052 3.9

The Unoptimized MCML Kernel

The initial MCML kernel, which did not employ any optimizations, yielded a very low

performance – 4x on the NVIDIA 8800 GTX graphics card with 128 scalar processors or

equivalently 16 multiprocessors. Because the 8800 GTX graphics card does not support

atomic operations, this initial version employed a very basic parallelization scheme, in

which a private copy of the A[r][z] array was created for each thread in the global memory.

The final result was obtained by summing the partial results stored in the private copies.

At this point, the kernel configuration has not yet been fine-tuned and was set to 32

thread blocks x 32 threads/block. (The effect of changing this configuration will be

discussed later.) However, the speedup was far from satisfactory, given that a significant

amount of time has been invested in converting the original C code to CUDA code.

Reducing Local Memory Usage

To investigate the performance issue further, the CUDA compiler intermediate files (with

the .cubin file extension) were inspected. These files explained the usage statistics of

registers, shared memory, and local memory for the initial MCML kernel. According to

the usage statistics, each thread required 292 bytes of local memory, mostly for storing
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Table 4.3: Effect of local memory usage on the simulation time for 108 photon packets in the skin

model

Optimization

Local Memory

Usage (byte)

Simulation

Timea (s) Speedup

1. Original, unoptimized version 292 1460 4

2. Use the Tausworthe random number generator [79] 68 759 8

3. Expand arrays into individual elements 28 578 11

4. Double the number of threads 28 338 18

a Measured on the NVIDIA 8800GTX graphics card

the arrays used by the random number generator. Since local memory is as slow as

global memory, a series of optimizations were applied to reduce local memory usage

and their effects on performance are shown in Table 4.3. First, a more efficient random

number generator called the three-component Tausworthe generator [79] (with a period

length of ≈ 288) was adopted as it does not use arrays. This optimization led to a

two-fold speedup compared to the previous version. Second, another array used to store

nine random numbers was expanded into individual elements, allowing the compiler to

allocate them in registers. This optimization resulted in another 1.3x speedup.

The last optimization involved fine-tuning the kernel configuration and doubling the

number of threads to 2048 (16 thread blocks x 128 threads/thread block), which resulted

in an additional 1.7x speedup. The determination of the optimum kernel configuration

was based on the performance guidelines suggested in the CUDA programming guide [85]

as well as empirical testing. After a whole series of optimizations, the total speedup was

only 18x on the 8800 GTX card.
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Table 4.4: Effect of optimizations on the simulation time for 108 photon packets in the skin model

Optimization

Simulation

Timea (s) Speedup

1. Baselineb (30 blocks, 128 threads/block) 466 13

2. Use atomic instructions (30 blocks, 256 threads/block) 158 39

3. Use fast intrinsic math functions 157.9 39

4. Cache recent fluence updates in registers 112 54

5. Cache high fluence regions of the A[r][z] array in shared memory 46 133

6. Reduce divergence, instruction count, and optimize overflow handler 22 277

a Measured on the NVIDIA GTX 280 graphics card

b This is the version after optimization 4 from Table 4.3.

Key Limitation of the First MCML Kernel

Although the initial approach of using a private copy of the A[r][z] array per thread

allowed the parallel processing of photon packets without synchronization, this approach

suffered from a fundamental problem. The size of the device memory, which is 768MB

in 8800 GTX, limited the total number of threads that could be launched, which in turn

limited the amount of parallelism and hence speedup achieved.

Migrating to New GPU with 64-bit Atomic Support

The migration to the new NVIDIA GTX 280 graphics card is a key milestone since this

card supports 64-bit atomic instructions, unlike the old 8800 GTX. Atomic operations

allow multiple threads to share access to a common data structure. The size of the

device memory is no longer the determining factor in the number of threads that can be

launched.

Before making any changes, a baseline measurement was made using the same code

on the new card. A rather disappointing speedup of ∼13x was obtained, as shown in
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Table 4.4. Next, a different parallelization scheme was attempted: a single copy of the

A[r][z] array was created in the global memory to be atomically accessed by all threads

using the 64-bit integer atomicAdd() operation. A total of 7680 threads were launched

using a kernel configuration of 30 thread blocks x 256 threads/block. The device memory

size no longer restricted the parallelism since only one copy of the absorption array is

required for any number of threads that may be launched. The increase in the number

of threads led to a 3-fold performance improvement.

Unfortunately, the next optimization, involving the use of the GPU intrinsic math

functions where possible (such as integer division, trigonometric, and logarithmic func-

tions), showed only marginal improvement (< 1 % change in execution time). This

was mainly due to the presence of another performance bottleneck, which highlights a

major challenge in optimizing CUDA code - the identification of the main performance

bottleneck.

Minimizing Atomic Accesses to Global Memory

As discussed in Section 4.4, one particularly crucial bottleneck is the use of atomic in-

structions to access global memory. To solve this problem, the first approach involved

caching the most recent fluence update history in registers (as described in Section 4.4.3),

which increased the speedup to ∼54x. This scheme was then expanded to cache writes

to multiple locations of the A[r][z] array (in each thread) by using the shared memory,

which further improved the performance to ∼90x. The final approach proposed in this

thesis, which involved caching the high fluence regions of the A[r][z] array in shared

memory, led to significantly better performance (∼133x) due to the great reduction in

the number of expensive, atomic accesses to global memory. To maximize the number of

high-fluence voxels that can be stored in the small shared memory, the previous scheme

of caching recent writes to multiple locations of the A[r][z] array was not implemented

simultaneously.
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Table 4.5: Effect of grid geometry on simulation time for 107 photon packets in a thick homogeneous

slab

dr and dz (cm) nr nz Simulation Time in

GPU-MCMLa (s)

Simulation Time in

CPU-MCMLb (s)

Speedup

0.001 500 200 14.5 5658 390

0.01 500 200 15.2 5670 373

1 500 200 14.4 5460 379

1 5 2 14.3 5473 383

0.001 5000 2000 35.5 6546 184

a Measured on the NVIDIA GTX 280 graphics card

b Measured on the Intel Xeon 5160 processor

Reducing Code Divergence and Instruction Count

Once the atomic accesses were optimized, the reduction of divergence and instruction

count throughout the code as well as the optimization of the overflow handler led to

an additional ∼2x performance. Specifically, the number of branches in the Reflect

function was greatly reduced as discussed in Section 4.4.4. The number of instructions

was reduced by cleaning up the code throughout. Finally, the overflow handler was

optimized so that once overflow is detected in a single element in the shared memory, a

group of elements are flushed to global memory to avoid frequent (or element-by-element)

writes to global memory. Please see Appendix B for details.

4.5.4 Effect of Grid Geometry

To test the effect of grid resolution and the number of voxels on execution time, a thick,

homogeneous slab (μa=0.1 cm−1, μs=90 cm−1, n=1.4, g=0.9, thickness=100 cm) was

used. These optical properties are based on the test case used by Alerstam et al. [86] in

their validation of CUDAMCML.



4.6. Validation 85

As shown by the first three rows in Table 4.5, the grid resolution (dr and dz) only

changed the simulation time of GPU-MCML slightly. The difference was within one

second. Interestingly, in the homogeneous slab, the simulation is even faster on the GPU,

compared to the speedup obtained for the skin geometry from Table 4.2. This is likely

due to the more prominent effect of divergence in thread execution when interfaces are

present. The most significant difference in simulation time was observed when the number

of voxels in the radial direction (nr) and in the z direction (nz) was increased from 500 ×
200 (or 105 voxels) to 5000 × 2000 (or 107 voxels). The latter configuration increased the

simulation time of both CPU-MCML and GPU-MCML. Further investigation revealed

that ∼15 s was required to generate the simulation output file for 107 voxels, while less

than 1 second was required for the 105 voxels configuration. The main reason was that

the size of the output file also increased from 1.25 MB to 125 MB. This overhead was

very significant given the relatively short GPU kernel execution time; neglecting this

overhead, the speedup would have been ∼320x. However, the performance still degraded

slightly compared to another configuration (dr=dz=0.01, nr=500, and nz=200) with the

same grid coverage (namely a cylindrical grid with a radius of 5 cm and depth of 2 cm).

This is likely due to the decreased proportion of voxels that can be stored in the shared

memory, leading to more atomicAdd() operations for writing to global memory.

4.6 Validation

The validation procedure for GPU-MCML is similar to that presented in Section 3.5.1.

4.6.1 Test Cases

Three test cases were used to validate GPU-MCML, including the skin model from

Table 3.3 (dr=0.01 cm, dz=0.002 cm, nr=256, and nz=256), the homogeneous slab

used in Section 4.5.4 (dr=dz=0.01 cm, nr=500, and nz=200), and a ten-layered geom-
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Figure 4.7: Distribution of relative error for the skin model using 100 million photon packets: (a)

GPU-MCML vs. CPU-MCML, (b) CPU-MCML vs. CPU-MCML. All versions adopted

the Tausworthe random number generator [79]. Colour bar represents percent error from

0% to 10%.

etry alternating between 2 materials, each layer with a thickness of 0.1 cm (material 1:

μa=0.1 cm−1, μs=90 cm−1, g=0.9, and n=1.5; material 2: μa=0.2 cm−1, μs=50 cm−1,

g=0.5, and n=1.2; dr=dz=0.01 cm, nr=500, and nz=200). The last two test cases were

adopted from Alerstam et al. [86] in their validation of CUDAMCML.

4.6.2 Error Distribution

Figure 4.7 shows two very similar distributions, verifying that the difference observed

between the A[r][z] arrays from GPU-MCML and CPU-MCML was within the statistical

uncertainty between two runs of CPU-MCML for the case of the skin model.

Figure 4.8 shows the distribution of error for the other two test cases - the homoge-

nous slab and ten-layered geometry. The patterns appear different, as expected, due

to the different input parameters used. The reference maps identified these differences

as the statistical uncertainty between runs, rather than the errors added by the GPU-

MCML implementation. In particular, the conversion to single-precision floating point

arithmetic, as shown by these plots, resulted in a negligible increase in error.
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Figure 4.8: Distribution of relative error for a homogeneous slab [left panels (a) and (b)] and ten-layered

geometry [right panels (c) and (d)] using 10 million photon packets: (a, c) GPU-MCML vs.

CPU-MCML, (b, d) CPU-MCML vs. CPU-MCML. All versions adopted the Tausworthe

random number generator [79]. Colour bar represents percent error from 0% to 10%.

4.6.3 Light Dose Contours

GPU-MCML vs. CPU-MCML

To show the accuracy of GPU-MCML within the context of PDT treatment planning,

the skin model was used as the simulation model. The absorption probability density was

first converted to fluence for the impulse response and the isofluence contour lines gen-

erated by CPU-MCML and GPU-MCML were compared. Note that finite-sized beams

are modelled in the next section to separate any error potentially introduced by the

convolution operation [53].

Figure 4.9 shows that the isofluence lines produced by GPU-MCML and CPU-MCML

matched very well. A minor shift in the position of the isofluence lines was only noticeable

for very low fluence levels. Notice that the isofluence line located at a radius of ∼ 0.7 cm

corresponds to the transition region in Fig. 4.7 where the statistical uncertainty between

runs starts to increase appreciably due to the low photon count. If this isofluence line is of

importance (i.e., if it is near the threshold fluence level for activating the photosensitizers),

more photon packets can be launched to achieve the desired accuracy for PDT treatment
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Figure 4.9: Isofluence lines for the impulse response generated by GPU-MCML and CPU-MCML using

the skin model (108 photon packets): ◦, ♦, and �, results from CPU-MCML; and •, +,

and ×, results from GPU-MCML. (a) Isofluence lines for fluence levels at 1000, 100, and

10 cm−2, as indicated on the figure and (b) isofluence lines for fluence levels at 1, 0.01,

and 0.00001 cm−2.

planning.

Considerations for Treatment Planning

To employ MC-based light dosimetry in PDT treatment planning, a number of additional

factors must be considered. A key consideration in treatment planning is the number of

photon packets required as this directly affects the geometric uncertainty of the simulated

isofluence contours. This is particularly important as the zone of necrosis is affected by

the location of the threshold fluence level according to the threshold light dose model

presented in Chapter 1. The number of photon packets also has a direct impact on the

overall treatment planning time. Therefore, this section considers a hypothetical scenario

to illustrate the impact of the number of photon packets on both accuracy and time.

Suppose a 1 cm diameter flat, circular light beam at 633 nm is used for surface

illumination on a skin tumour in PDT. Further suppose the treatment planning problem is

constrained to the determination of an appropriate incident fluence [J/cm2] for complete

coverage of a tumour with a diameter of 0.8 cm and a depth of 0.1 cm (assuming a

safety margin is included), without compromising the surrounding tissue. For topical
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ALA-based PDT of primary non-melanoma skin tumours such as basal cell carcinoma,

the total incident light dose delivered generally ranges from 60 - 250 J/cm2 [87]. To

illustrate this problem, Fig. 4.10 (a) shows the fluence distribution resulting from an

incident fluence of 100 J/cm2. Assuming a threshold fluence dose of 30 J/cm2 [88], the

zone of necrosis extends up to 0.5 cm radially and 0.15 cm below the skin surface, as

shown by the isofluence contours in Fig. 4.10 (b). This is not ideal as the tumour is

only 0.1 cm in depth and 0.8 cm in diameter. To optimize the PDT effect based on the

threshold model, the light dose distribution can be repeatedly adjusted to better match

the shape of the tumour. In this case, the parameter to be optimized is the incident

fluence, which requires iterative computation of the light dose distribution.

The optimization process becomes much more complicated for IPDT, which generally

involves more sophisticated source geometries, increasing the degrees of freedom in the

search space. An interesting development is the emergence of tailored diffuser, which can

emit light along the optical fibre with a desired emission profile [89]. However, given the

extra degrees of freedom introduced by tailored diffusers, treatment planning can become

an even more daunting task without accelerating the light dosimetry procedure.

An alternative way to further decrease the computation time for MC-based light

dosimetry (in addition to hardware acceleration schemes) is to optimize the number of

photon packets launched based on the clinically acceptable level of uncertainty discussed

in Chapter 1. As shown in Fig. 4.11(a)-(c), the statistical noise in the isofluence contours

rapidly decreases as the number of photon packets is increased from 103 to 105. The dif-

ference between the contours produced at 105 [Fig. 4.11(c)] and 108 [Fig. 4.11(d)] photon

packets is only noticeable at the lowest fluence level plotted (namely 0.1 J/cm2) despite

the fact that the simulation required almost 1000 times longer to complete. For this sim-

ple case, even 103 photon packets might suffice to determine the approximate location for

the threshold light dose contour (assumed previously to be 30 J/cm2). Compared to the

threshold contour produced at 108 photon packets, the threshold contour generated using
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only 103 photon packets is within +/- 0.3 - 0.5 mm in geometric uncertainty. However,

the number of photon packets required clinically in the general 3-D case is anticipated

to be orders of magnitude greater due to the following reasons.

First, absorption can no longer be scored in a radially symmetric grid based on the

cylindrical coordinate system in the 3-D case with multiple sources. This assumption

made by the MCML algorithm and the accelerated GPU-MCML greatly decreases the

number of photon packets required. Second, the resolution of the grid dictates the photon

statistics in the voxels. A finer grid requires a larger number of photons due to the lower

photon count per voxel. Finally, if multiple sources were implanted in a heterogeneous

3-D tissue geometry, the light dose contours could be more irregular in shape. The tighter

dose constraints placed around critical structures would require higher accuracy in the

computation of these contours. In many cases, the threshold light dose for sensitive

critical structures could be significantly lower. This is demonstrated in recent clinical

trials in IPDT, in which clinical experience showed that the threshold light dose for the

rectum is much lower than that of the prostate [15]. Therefore, for clinical dosimetry,

it would be wise to increase the number of photon packets to more accurately simulate

the light dose contours for even sub-threshold regions within the clinical target volume.

These low-fluence regions have low photon counts and require more computation time to

generate better statistics. An important observation here is that since the computation

time is directly proportional to the number of photon packets launched, increasing the

number of photon packets by a factor of ten also increases the simulation time by the

same factor. As a result, MC-based light dosimetry for the 3-D case is expected to be

even more time-consuming, which highlights the utility of the GPU-based approach for

dosimetry.

A rigorous analysis of the trade-off between accuracy and simulation time for inter-

stitial PDT treatment planning will be the subject of future work, as the capability to

model such scenarios (involving complex 3-D tissue geometry and multiple implanted
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Figure 4.10: Fluence distribution [J/cm2] in the skin model due to a 100 J/cm2 flat, circular beam with

a radius of 0.5 cm (generated with 108 photon packets): (a) an intensity map showing the

fluence value at each voxel and (b) isofluence contours showing the location of selected

fluence levels.

diffusers, possibly with a tailored emission profile) does not exist in the MCML code.

4.7 Summary

Using a skin model as the simulation input, the GPU-accelerated MCML implementa-

tion achieved a 277-fold speedup on a single NVIDIA GTX 280 graphics card with 30

multiprocessors, compared to a 3 GHz Intel Xeon processor. By scaling to a Quad-

GPU system with 120 multiprocessors, a 1052-fold speedup was obtained. Performance

can be further improved with the use of a GPU-based computing cluster. In fact, the

use of NVIDIA GPUs for supercomputing has been made possible by the commercial

development of the NVIDIA TeslaTM Computing Server systems, such as the NVIDIA

Tesla S1070 system [90] with 960 scalar processors, which can be stacked in a cluster

configuration (with each server node priced at ∼20,000 USD [91] at the time of writing).

In this chapter, high accuracy was also demonstrated by the close correspondence

between the isofluence lines generated by GPU-MCML and CPU-MCML. Finally, the

development process illustrates the subtle nature of the underlying NVIDIA GPU archi-

tecture, necessitating a different approach to programming to achieve high performance.

A number of unique challenges still remain before MC-based light dosimetry can be

routinely used in PDT treatment planning, as discussed in the next chapter.
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Figure 4.11: Isofluence contours [J/cm2] for varying number of photon packets in the skin model. (A

100 J/cm2 flat, circular beam with a radius of 0.5 cm is located at the origin.)



Chapter 5

Conclusions

5.1 Summary of Contributions

This thesis focused on the exploration of hardware-based approaches to accelerate a

Monte Carlo simulation for modelling light propagation in biological tissue - specifically

for the purpose of enabling MC-based light dosimetry in PDT treatment planning. Using

the widely cited MCML code as a gold standard, two such approaches were attempted.

The first approach, as described in Chapter 3, involved designing custom computer

hardware on an FPGA that was tailored to the MCML computation. The key advan-

tages of the FPGA-based approach include the flexibility of customizing the hardware to

efficiently execute the computation as well as the portability and low power consumption

of a custom hardware solution compared to a CPU or GPU-based solution. In this work,

such flexibility allowed the MCML computation to be broken down into many highly cus-

tomized pipeline stages and enabled the use of numerous hardware-based optimizations,

such as resource sharing across modules. The low power consumption also means that

an expensive cooling system is not required for heat dissipation, unlike in conventional

CPU-based supercomputing. However, the flexibility offered by an FPGA translates to

the longer development time for the first working hardware prototype. Each subsequent

93
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revision further required hours of system-wide design re-verification and re-compilation

in the CAD software before it could be tested on a real FPGA board. Despite these chal-

lenges, a fully validated hardware design was successfully created that achieved a 28-fold

speedup (using a skin model for simulation) on a modern DE-3 board with a Stratix III

FPGA compared to a 3-GHz Intel Xeon processor. This design was also replicated on 4

FPGA devices using the TM-4 platform, showing a linear improvement in performance

as a function of the number of FPGA devices used.

In Chapter 4, a CUDA program was written and optimized to accelerate the MCML

computation using multiple NVIDIA GPUs. This approach required considerably less

development effort to obtain the first working prototype with the use of CUDA - the C-

like programming language extension made for general-purpose computing on NVIDIA

GPUs. However, without careful optimizations, the initial CUDA program only achieved

a 4-fold speedup (using the same skin model) on a NVIDIA 8800 GTX graphics card

compared to the same Xeon processor mentioned previously. A considerable amount of

time was dedicated to optimizing the CUDA program by tailoring the implementation

to the unique features of the NVIDIA GPU architecture. This often required re-thinking

the overall parallelization strategy and the clear identification of major performance

bottlenecks. In the MCML code, the accumulation of absorption was one such bottleneck

due to atomic accesses to the global memory. A solution based on caching the high

fluence regions in shared memory was implemented in this work, which led to a significant

reduction in simulation time. After numerous other GPU-specific optimizations, the final

implementation showed an approximately 270-fold speedup on a NVIDIA GTX 280 GPU

with 30 multiprocessors (or a total of 240 scalar processors). By scaling to 4 GPUs with

a total of 120 multiprocessors (or 960 scalar processors), a speedup of over 1000-fold was

obtained. To put this 1000-fold speedup in context, a treatment plan that requires a week

of simulation time can be completed in approximately 10 minutes with this acceleration

factor.
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Although the GPU-based solution seems more promising at this stage, it is not entirely

clear that this massive speedup can be maintained for the more sophisticated 3-D case due

to the limitations imposed by the current NVIDIA GPU architecture. On the contrary,

the FPGA-based approach enables the flexible customization of the hardware architecture

to suit the computations, despite the greater development efforts required.

5.2 Future Work

For future work, a number of interesting research directions remain to be pursued to

enable the use of MC-based light dosimetry models for PDT treatment planning. Several

avenues for future research are outlined below.

5.2.1 Extension to 3-D and Support for Multiple Sources

The MCML code, which was the basis of this work, can only model light propagation from

a single beam in a multi-layered tissue geometry. For realistic treatment planning, the

extension to a 3-D model along with the support for multiple sources would be necessary

to simulate more complex tissue and source geometries.

The main implications for the FPGA-based implementation are listed below:

1. Need for external memory: For 3-D cases, the requirements for storage will

increase appreciably, due to the presence of a much larger absorption array and the

need to store the tissue optical properties for potentially thousands of voxels in the

worst case. As an example, for a 3-D array with 256 x 256 x 256 64-bit elements, a

total of ∼1024 MBits of memory would be required (compared to 4 Mbits for a 2-D

array with 256 x 256 64-bit elements). Therefore, the on-chip memory space will

no longer be sufficient, and off-chip, external memory must be used. Note that the

TM-4 platform contains 8 GB of external memory, so storage space is abundant.
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2. Increase in pipeline depth: The use of external memory, instead of on-chip mem-

ory, also translates to a higher latency for memory accesses. Additional pipeline

stages will be required in modules such as the Fluence Update Core to access the

absorption array. Extra stages will also be required with the expansion of the

model to 3-D, particularly in the Reflect/Transmit Core. However, due to the use

of a pipelined hardware architecture, the performance will likely not be severely

impacted by the increased pipeline depth given the stages are properly balanced to

maintain the clock speed.

The extension to 3-D has different implications for the GPU-based implementation,

as follows:

1. Increase in register usage and code divergence: A number of key simulation

steps, particularly reflection at tissue interfaces, need to be modified to propagate

the photon in a 3-D voxel-based tissue geometry. However, code expansion increases

the register usage, which may degrade the performance due to the decrease in the

maximum number of threads that can be created. Also, the divergence of the code

will likely increase due to the increased number of interfaces for reflection, which

may further degrade the performance.

2. Increase in demand for shared memory: The increase in the size of the ab-

sorption array, together with more photon sources, will require a modified approach

to capture the high fluence region effectively in the small, but fast shared mem-

ory. This is an important strategy used in this thesis to avoid frequent atomic

instructions that access the bigger, but much slower global memory.

3. Increase in global memory usage/access: The fast, constant memory used

in this work will be insufficient to store the read-only tissue optical properties

for potentially thousands of voxels, in the worst-case scenario. The need to store
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and read these values will increase the frequency of global memory accesses, likely

resulting in a further reduction in speedup.

5.2.2 Sources of Uncertainties

Apart from the geometric uncertainty of the simulated isofluence contours discussed in

Section 4.6.3, a number of other sources of uncertainties must be accounted for in PDT

treatment planning, several of which are listed below.

1. Intra- and inter-patient variations in tissue optical properties: Accurate

light dosimetry depends on the accurate determination of tissue optical proper-

ties. The intra- and inter-patient variations in these values can directly affect the

robustness of a treatment plan. To account for these variations, real-time light

dosimetry for each patient has been proposed [21], but such in-vivo measurements

were shown to have an uncertainty of at least +/-10% [92, 93]. Interestingly, the

Monte Carlo method can also be used to estimate the absorption and scattering

coefficients from reflectance data through iterative fitting procedures. The tech-

niques presented in this work to accelerate MC simulations may also lead to the

more accurate determination of tissue optical properties in the future.

2. Diffuser placement: The execution of the treatment plan is affected by the uncer-

tainty in the placement of the light diffusing fibres in interstitial PDT applications.

This uncertainty is especially critical for more complex anatomical regions such

as those in the head and neck. Tailored diffusers, which can emit light with a

customized emission profile, are being developed to shape the light dose in more

complex cases [94]. However, the flexibility of tailoring the emission profile also

makes the inverse problem in treatment planning more time-consuming to solve.

This further highlights the utility of accelerating MC-based light dosimetry in PDT.

3. Heterogeneity in the threshold light dose: In a recent prostate IPDT clinical
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trial that adopted the PDT threshold model for treatment planning, Davidson

et al. reported the significant heterogeneity in the threshold light dose observed

between patients [15]. This highlights the need for a more integrated approach in

PDT treatment planning that takes into account other important parameters in

PDT dosimetry, such as the dynamic nature of tissue oxygenation level, the effect

of photobleaching on the photosensitizer concentration, and changes in the optical

properties of the treated regions (as discussed in Chapter 1).

To account for the above sources of uncertainties, real-time online dosimetry may be a

promising future direction for PDT treatment planning. For example, online dosime-

try will allow in-vivo measurements of the changing tissue optical properties and tissue

oxygenation level, which can be used to update the treatment plan in real-time. The

acceleration of light dosimetry further makes real-time treatment planning a potential

possibility.

5.2.3 PDT Treatment Planning using FPGA or GPU Clusters

With the anticipated increase in simulation time for the 3-D case, the computing infras-

tructure can be expanded as necessary for PDT treatment planning in complex scenarios.

The potential for scalability was demonstrated in both Chapter 3 and Chapter 4, which

showed the linear improvement in speedup achieved by the multi-FPGA and multi-GPU

solutions for the MCML code.

The dramatic reduction in treatment planning time potentially achieved by an FPGA

cluster or a GPU cluster may enable real-time treatment planning based on the most

recent images of the treated volume, taking into account the changing tissue optical

properties as the treatment progresses. Currently, pretreatment models assume constant

values for tissue optical properties and ignore the dynamic nature of tissues, which could

directly affect treatment outcomes in interstitial PDT [95]. The significant performance

gain provided by the hardware approach, as demonstrated in this thesis, may enable
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sophisticated MC-based models to be employed for PDT treatment planning in hetero-

geneous, spatially complex tissues in the future.
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Appendix A

Source Code for the Hardware

The hardware description (or Verilog code) for the Fluence Update Core in Fig. 3.4 is

given below for illustrative purposes. The original C code is also provided for comparison.

1 void Drop( InputStruct ∗ In Ptr , PhotonStruct ∗ Photon Ptr , OutStruct∗ Out Ptr ) {
2 double dwa ; // Absorbed weight ( Del ta W in Sec t ion 2 . 2 . 4 )

3 double x = Photon Ptr−>x ; // Current x−coord inate o f the photon packet

4 double y = Photon Ptr−>y ; // Current y−coord inate o f the photon packet

5 double izd , i r d ; // Array ind i c e s to A[ r ] [ z ] − temporary

6 short i z , i r ; // Array ind i c e s to A[ r ] [ z ] − f i n a l

7 short l a y e r = Photon Ptr−>l a y e r ; // Current l ay e r o f the photon packet

8 double mua, mus ; // Absorption , s c a t t e r i n g c o e f f i c i e n t s ( current l ay e r )

9

10 i zd = Photon Ptr−>z/ In Ptr−>dz ; // compute array index f o r z dimension

11 i f ( izd>In Ptr−>nz−1) i z=In Ptr−>nz−1; // i f ( ou t s i de the g r i d ) , absorb at the edge

12 else i z = i zd ; // otherwise , use the computed index i z d

13 i r d = sq r t (x∗x+y∗y ) / In Ptr−>dr ; // compute array index f o r r dimension

14 i f ( i rd>In Ptr−>nr−1) i r=In Ptr−>nr −1; // i f ( ou t s i de the g r i d ) , absorb at the edge

15 else i r = i r d ; // otherwise , use the computed index i r d

16

17 mua = In Ptr−>l a y e r spe c s [ l ay e r ] . mua ; // r e t r i e v e absorpt ion c o e f f i c i e n t

18 mus = In Ptr−>l a y e r spe c s [ l ay e r ] . mus ; // r e t r i e v e s c a t t e r i n g c o e f f i c i e n t

19 dwa = Photon Ptr−>w ∗ mua/(mua+mus) ; // Compute Del ta W using Eq . 2.9

20 Photon Ptr−>w −= dwa ; // decrease photon weight by Del ta W

21 Out Ptr−>A rz [ i r ] [ i z ]+= dwa ; // add Delta W to absorpt ion array at [ i r , i z ]

22 }

Listing A.1: Original Fluence Update implementation in the MCML code [40]

101
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1 //////////////////////////////////////////////////////////////////////

2 //// Absorber Hardware Module : ////

3 //// Pipe l ined Implementation of Fluence Update Computation ////

4 //////////////////////////////////////////////////////////////////////

5

6 module Absorber (

7 //INPUTS

8 clock , r e s e t , enable ,

9 //From hopper

10 weight hop , hi t hop , dead hop ,

11 //From Shared Reg i s t e r s

12 x pipe , y pipe , z pipe , l ay e r p i p e ,

13 //From System Reg i s t e r F i l e (5 l ay e r s )

14 muaFraction1 , muaFraction2 , muaFraction3 , muaFraction4 , muaFraction5 ,

15 // I /O to on−chip mem −− check i n t e r f a c e

16 data , rdaddress , wraddress , wren , q ,

17 //OUTPUT

18 weight absorber

19 ) ;

20

21 //////////////////////////////////////////////////////////////////////////////

22 //PARAMETERS

23 //////////////////////////////////////////////////////////////////////////////

24 parameter NR=256;

25 parameter NZ=256;

26 parameter NR EXP=8; //meaning NR=2ˆNR exp or 2ˆ8=256

27 parameter RGRID SCALE EXP=21; //2ˆ21 = RGRID SCALE

28 parameter ZGRID SCALE EXP=21; //2ˆ21 = ZGRID SCALE

29 parameter BIT WIDTH=32;

30 parameter BIT WIDTH 2=64;

31 parameter WORDWIDTH=64;

32 parameter ADDRWIDTH=16; //256 x256=2ˆ8∗2ˆ8=2ˆ16

33 parameter LAYER WIDTH=3;

34 parameter PIPE DEPTH = 37;

35

36 //////////////////////////////////////////////////////////////////////////////

37 //INPUTS

38 //////////////////////////////////////////////////////////////////////////////

39 input c l ock ;

40 input r e s e t ;
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41 input enable ;

42

43 //From hopper

44 input [BIT WIDTH−1:0] weight hop ;

45 input hi t hop ;

46 input dead hop ;

47

48 //From Shared Reg

49 input signed [BIT WIDTH−1:0 ] x p ipe ;

50 input signed [BIT WIDTH−1:0 ] y p ipe ;

51 input [BIT WIDTH−1:0 ] z p i p e ;

52 input [LAYER WIDTH−1:0 ] l a y e r p i p e ;

53

54 //From System Reg Fi l e

55 input [BIT WIDTH−1:0 ] muaFraction1 , muaFraction2 , muaFraction3 , muaFraction4 ,

muaFraction5 ;

56

57 //////////////////////////////////////////////////////////////////////////////

58 //OUTPUTS

59 //////////////////////////////////////////////////////////////////////////////

60 output [BIT WIDTH−1:0 ] we i ght absorber ;

61

62 //////////////////////////////////////////////////////////////////////////////

63 // I /O to on−chip mem −− check i n t e r f a c e

64 //////////////////////////////////////////////////////////////////////////////

65 output [WORDWIDTH−1:0 ] data ;

66 output [ADDR WIDTH−1:0 ] rdaddress , wraddress ;

67 output wren ; reg wren ;

68 input [WORDWIDTH−1:0 ] q ;

69

70 //////////////////////////////////////////////////////////////////////////////

71 //Local AND Reg i s t e red Value Var iab l e s

72 //////////////////////////////////////////////////////////////////////////////

73 //STAGE 1 − I n i t i a l i z a t i o n and no computation

74

75 //STAGE 2

76 reg [ BIT WIDTH 2−1:0 ] x2 temp , y2 temp ; //From mult

77 reg [ BIT WIDTH 2−1:0 ] x2 P , y2 P ; // Reg i s t e red Value

78

79 //STAGE 3

80 reg [ BIT WIDTH 2−1:0 ] r2 temp , r2 P ;
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81 wire [ BIT WIDTH 2−1:0 ] r 2 P wi r e ;

82

83 //STAGE 4

84 reg [BIT WIDTH−1:0 ] f r a c t i o nS c a l e d ;

85 reg [BIT WIDTH−1:0] weight P4 ;

86 reg [BIT WIDTH−1:0 ] r P ;

87 wire [BIT WIDTH−1:0 ] r P wi r e ;

88 reg [ BIT WIDTH 2−1:0 ] product64b i t ;

89 reg [BIT WIDTH−1:0 ] dwa temp ;

90

91 //STAGE 14

92 reg [BIT WIDTH−1:0 ] i r temp ;

93 reg [BIT WIDTH−1:0 ] i z temp ;

94

95 //STAGE 15

96 reg [BIT WIDTH−1:0 ] i r P ;

97 reg [BIT WIDTH−1:0 ] i z P ;

98 reg [BIT WIDTH−1:0 ] i r s c a l e d ;

99 reg [ADDR WIDTH−1:0 ] rADDR temp ;

100 reg [ADDR WIDTH−1:0 ] rADDR 16 ;

101

102 //STAGE 16

103 reg [WORDWIDTH−1:0 ] oldAbs MEM;

104 reg [WORDWIDTH−1:0 ] oldAbs P ;

105 reg [ADDR WIDTH−1:0 ] rADDR 17 ;

106

107 //STAGE 17

108 reg [BIT WIDTH−1:0] weight P ;

109 reg [BIT WIDTH−1:0 ] dwa P ;

110 reg [BIT WIDTH−1:0 ] newWeight ;

111 reg [WORDWIDTH−1:0 ] newAbs P ;

112 reg [WORDWIDTH−1:0 ] newAbs temp ;

113 reg [ADDR WIDTH−1:0 ] wADDR;

114

115 //////////////////////////////////////////////////////////////////////////////

116 //PIPELINE weight , h i t , dead

117 //////////////////////////////////////////////////////////////////////////////

118 //WIRES FOR CONNECTING REGISTERS

119 wire [BIT WIDTH−1:0] weight [PIPE DEPTH : 0 ] ;

120 wire h i t [PIPE DEPTH : 0 ] ;

121 wire dead [PIPE DEPTH : 0 ] ;
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122

123 //ASSIGNMENTS FROM INPUTS TO PIPE

124 assign weight [ 0 ] = weight hop ;

125 assign h i t [ 0 ] = hi t hop ;

126 assign dead [ 0 ] = dead hop ;

127

128 //ASSIGNMENTS FROM PIPE TO OUTPUT

129 assign weight absorber =weight [PIPE DEPTH ] ;

130

131 //GENERATE PIPELINE

132 genvar i ;

133 generate

134 for ( i=PIPE DEPTH; i >0; i=i −1) begin : weightHitDeadPipe

135 case ( i )

136 //REGISTER 17 on diagram ! !

137 18 :

138 begin

139 PhotonBlock2 photon (

140 // Inputs

141 . c l ock ( c l ock ) ,

142 . r e s e t ( r e s e t ) ,

143 . enable ( enable ) ,

144

145 . i x ( newWeight ) ,

146 . i y ( h i t [ 1 7 ] ) ,

147 . i z ( dead [ 1 7 ] ) ,

148

149 //Outputs

150 . o x ( weight [ 1 8 ] ) ,

151 . o y ( h i t [ 1 8 ] ) ,

152 . o z ( dead [ 1 8 ] )

153 ) ;

154 end

155 default :

156 begin

157 PhotonBlock2 photon (

158 // Inputs

159 . c l ock ( c l ock ) ,

160 . r e s e t ( r e s e t ) ,

161 . enable ( enable ) ,

162



106 Appendix A. Source Code for the Hardware

163 . i x ( weight [ i −1]) ,

164 . i y ( h i t [ i −1]) ,

165 . i z ( dead [ i −1]) ,

166

167 //Outputs

168 . o x ( weight [ i ] ) ,

169 . o y ( h i t [ i ] ) ,

170 . o z ( dead [ i ] )

171 ) ;

172 end

173 endcase

174 end

175 endgenerate

176

177 //////////////////////////////////////////////////////////////////////////////

178 //PIPELINE ir , i z , dwa

179 //////////////////////////////////////////////////////////////////////////////

180 //WIRES FOR CONNECTING REGISTERS

181 wire [BIT WIDTH−1:0 ] i r [PIPE DEPTH : 0 ] ;

182 wire [BIT WIDTH−1:0 ] i z [PIPE DEPTH : 0 ] ;

183 wire [BIT WIDTH−1:0 ] dwa [PIPE DEPTH : 0 ] ;

184

185 //ASSIGNMENTS FROM INPUTS TO PIPE

186 assign i r [ 0 ] = 0 ;

187 assign i z [ 0 ] = 0 ;

188 assign dwa [ 0 ] = 0 ;

189

190 //GENERATE PIPELINE

191 generate

192 for ( i=PIPE DEPTH; i >0; i=i −1) begin : IrIzDwaPipe

193 case ( i )

194 //NOTE: STAGE 14 −−> REGISTER 14 on diagram ! ! ir , i z

195 15 :

196 begin

197 PhotonBlock1 photon (

198 // Inputs

199 . c l ock ( c l ock ) ,

200 . r e s e t ( r e s e t ) ,

201 . enable ( enable ) ,

202

203 . i x ( i r temp ) ,
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204 . i y ( i z temp ) ,

205 . i z (dwa [ 1 4 ] ) ,

206

207 //Outputs

208 . o x ( i r [ 1 5 ] ) ,

209 . o y ( i z [ 1 5 ] ) ,

210 . o z (dwa [ 1 5 ] )

211 ) ;

212 end

213

214 //NOTE: STAGE 4 −−> REGISTER 4 on diagram ! ! dwa

215 5 :

216 begin

217 PhotonBlock1 photon (

218 // Inputs

219 . c l ock ( c l ock ) ,

220 . r e s e t ( r e s e t ) ,

221 . enable ( enable ) ,

222

223 . i x ( i r [ 4 ] ) ,

224 . i y ( i z [ 4 ] ) ,

225 . i z ( dwa temp ) ,

226

227 //Outputs

228 . o x ( i r [ 5 ] ) ,

229 . o y ( i z [ 5 ] ) ,

230 . o z (dwa [ 5 ] )

231 ) ;

232 end

233

234 default :

235 begin

236 PhotonBlock1 photon (

237 // Inputs

238 . c l ock ( c l ock ) ,

239 . r e s e t ( r e s e t ) ,

240 . enable ( enable ) ,

241

242 . i x ( i r [ i −1]) ,

243 . i y ( i z [ i −1]) ,

244 . i z (dwa [ i −1]) ,
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245

246 //Outputs

247 . o x ( i r [ i ] ) ,

248 . o y ( i z [ i ] ) ,

249 . o z (dwa [ i ] )

250 ) ;

251 end

252 endcase

253 end

254 endgenerate

255

256 //////////////////////////////////////////////////////////////////////////////

257 //STAGE BY STAGE PIPELINE DESIGN

258 //////////////////////////////////////////////////////////////////////////////

259

260 ///////////////STAGE 2 − square o f x and y/////////////////////////

261 always @(∗ ) begin

262 i f ( r e s e t ) begin

263 x2 temp=0;

264 y2 temp=0;

265 end

266 else begin

267 x2 temp=x pipe ∗ x p ipe ;

268 y2 temp=y pipe ∗ y p ipe ;

269 end

270 end

271

272 ///////////////STAGE 3 − square o f r /////////////////////////

273 always @(∗ ) begin

274 i f ( r e s e t )

275 r2 temp =0;

276 else

277 r2 temp=x2 P+y2 P ;

278 end

279

280 ///////////////STAGE 4 − Find r and dwa/////////////////////////

281 //Create MUX

282 always@ (∗ )

283 case ( l a y e r p i p e )

284 1 : f r a c t i o nS c a l e d=muaFraction1 ;

285 2 : f r a c t i o nS c a l e d=muaFraction2 ;
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286 3 : f r a c t i o nS c a l e d=muaFraction3 ;

287 4 : f r a c t i o nS c a l e d=muaFraction4 ;

288 5 : f r a c t i o nS c a l e d=muaFraction5 ;

289 default : f r a c t i o nS c a l e d =0; //Sys Reset case

290 endcase

291

292

293 always @(∗ ) begin

294 i f ( r e s e t ) begin

295 weight P4=0;

296 r P=0;

297 product64b i t=0;

298 dwa temp=0;

299 end

300 else begin

301 weight P4=weight [ 4 ] ;

302 r P=r P wi r e ; //Connect to s q r t b l o c k

303 product64b i t=weight P4∗ f r a c t i o nS c a l e d ;

304

305 //Checking corner cases

306 i f ( dead [4]==1) //Dead photon

307 dwa temp=weight P4 ; //drop a l l i t s weight

308 else i f ( h i t [4]==1) //Hit Boundary

309 dwa temp=0; //Don ’ t add to absorpt ion array

310 else

311 dwa temp=product64b i t [ 6 3 : 3 2 ] ;

312 end

313 end

314

315 assign r 2 P wi r e=r2 P ;

316

317 Sqrt 64b squareRoot (

318 . c l k ( c l ock ) ,

319 . r a d i c a l ( r 2 P wi r e ) ,

320 . q ( r P wi r e ) ,

321 . remainder ( )

322 ) ;

323

324 ///////////////STAGE 14 − Find i r and i z /////////////////////////

325 always @(∗ ) begin

326 i f ( r e s e t ) begin
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327 i r temp =0;

328 i z temp =0;

329 end

330 else begin

331 i r temp=r P>>RGRID SCALE EXP;

332 i z temp=z pipe >>ZGRID SCALE EXP;

333

334 //Checking corner cases ! ! !

335 i f ( dead [14]==1) begin

336 i r temp=NR−1;

337 i z temp=NZ−1;

338 end

339 else i f ( h i t [14]==1) begin

340 i r temp =0;

341 i z temp =0;

342 end

343

344 i f ( iz temp>=NZ)

345 i z temp=NZ−1;

346

347 i f ( ir temp>=NR)

348 i r temp=NR−1;

349

350 end

351 end

352

353 ///////////////STAGE 15 − Compute MEM address /////////////////////////

354 always @(∗ ) begin

355 i f ( r e s e t ) begin

356 i r P =0;

357 i z P =0;

358 i r s c a l e d =0;

359 rADDR temp=0;

360 end

361 else begin

362 i r P=i r [ 1 5 ] ;

363 i z P=i z [ 1 5 ] ;

364 i r s c a l e d=ir P<<NR EXP;

365 rADDR temp=i r s c a l e d+iz P ;

366 end

367 end
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368

369 ///////////////STAGE 16 − MEM read /////////////////////////

370 always @(∗ ) begin

371 i f ( r e s e t )

372 oldAbs MEM=0;

373 else begin

374 //Check Corner cases (RAW hazards )

375 i f ( i r [16]== i r [ 1 7 ] && i z [16]== i z [ 1 7 ] )

376 oldAbs MEM=newAbs temp ;

377 else i f ( i r [16]== i r [ 1 8 ] && i z [16]== i z [ 1 8 ] )

378 oldAbs MEM=newAbs P ; //RAW hazard

379 else

380 oldAbs MEM=q ; //Connect to REAL dual−por t MEM

381 end

382

383 end

384

385 ///////////////STAGE 17 − Update Weight /////////////////////////

386 always @(∗ ) begin

387 i f ( r e s e t ) begin

388 dwa P=0;

389 weight P=0;

390 newWeight = 0 ;

391 newAbs temp =0;

392 end

393 else begin

394 dwa P=dwa [ 1 7 ] ;

395 weight P=weight [ 1 7 ] ;

396 newWeight=weight P−dwa P ;

397 newAbs temp=oldAbs P+dwa P ; //Check b i t width ca s t i n g (64− b i t <−−64− b i t+32− b i t )

398 end

399 end

400

401 //////////////////////////////////////////////////////////////////////////////

402 //STAGE BY STAGE − EXTRA REGISTERS

403 //////////////////////////////////////////////////////////////////////////////

404 always @ (posedge c l ock )

405 begin

406 i f ( r e s e t ) begin

407 // Stage 2

408 x2 P<=0;
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409 y2 P<=0;

410

411 // Stage 3

412 r2 P <=0;

413

414 // Stage 15

415 rADDR 16<=0;

416

417 // Stage 16

418 oldAbs P<=0;

419 rADDR 17<=0;

420

421 // Stage 17

422 newAbs P<=0;

423 wADDR <=0;

424 end

425

426 else i f ( enable ) begin

427 // Stage 2

428 x2 P<=x2 temp ; //From comb l o g i c above

429 y2 P<=y2 temp ;

430

431 // Stage 3

432 r2 P<=r2 temp ;

433

434 // Stage 15

435 rADDR 16<=rADDR temp ;

436

437 // Stage 16

438 oldAbs P<=oldAbs MEM;

439 rADDR 17<=rADDR 16 ;

440

441 // Stage 17

442 newAbs P<=newAbs temp ;

443 wADDR <=rADDR 17 ;

444 end

445 end

446

447 //////////////////////////////////////////////////////////////////////////////

448 //INTERFACE to on−chip MEM

449 //////////////////////////////////////////////////////////////////////////////
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450 always @ (posedge c l ock )

451 begin

452 i f ( r e s e t )

453 wren <=0;

454 else

455 wren<=1; //Memory enab led every c y c l e a f t e r g l o b a l enab le

456 end

457

458 assign rdaddres s=rADDR temp ;

459 assign wraddress=rADDR 17 ;

460 assign data=newAbs temp ;

461

462 endmodule

463

464

465 //////////////////////////////////////////////////////////////////////

466 //// INTERNAL ////

467 //// P ipe l i n e Module − Type 1 ( f o r 32− b i t , 32− b i t , 32− b i t case ) ////

468 //// Implementation of In t e rna l P i pe l i n e Module ////

469 //////////////////////////////////////////////////////////////////////

470 //Photons t ha t make up the r e g i s t e r p i p e l i n e

471 module PhotonBlock1 (

472 // Inputs

473 c lock ,

474 r e s e t ,

475 enable ,

476

477 i x ,

478 i y ,

479 i z ,

480

481 //Outputs

482 o x ,

483 o y ,

484 o z

485 ) ;

486

487 //////////////////////////////////////////////////////////////////////////////

488 //PARAMETERS

489 //////////////////////////////////////////////////////////////////////////////

490 parameter BIT WIDTH=32;
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491 input c l ock ;

492 input r e s e t ;

493 input enable ;

494 input [BIT WIDTH−1:0 ] i x ;

495 input [BIT WIDTH−1:0 ] i y ;

496 input [BIT WIDTH−1:0 ] i z ;

497

498 output [BIT WIDTH−1:0 ] o x ;

499 output [BIT WIDTH−1:0 ] o y ;

500 output [BIT WIDTH−1:0 ] o z ;

501

502 wire c l ock ;

503 wire r e s e t ;

504 wire enable ;

505 wire [BIT WIDTH−1:0 ] i x ;

506 wire [BIT WIDTH−1:0 ] i y ;

507 wire [BIT WIDTH−1:0 ] i z ;

508

509 reg [BIT WIDTH−1:0 ] o x ;

510 reg [BIT WIDTH−1:0 ] o y ;

511 reg [BIT WIDTH−1:0 ] o z ;

512

513 always @ (posedge c l ock )

514 i f ( r e s e t ) begin

515 o x<= {BIT WIDTH{1 ’ b0}} ;

516 o y<= {BIT WIDTH{1 ’ b0 }} ;

517 o z<= {BIT WIDTH{1 ’ b0 }} ;

518 end else i f ( enable ) begin

519 o x<= i x ;

520 o y<= i y ;

521 o z<= i z ;

522 end

523 endmodule

524

525

526 //////////////////////////////////////////////////////////////////////

527 //// INTERNAL ////

528 //// P ipe l i n e Module − Type 2 ( f o r 32− b i t , 1−b i t , 1− b i t case ) ////

529 //// Implementation of In t e rna l P i pe l i n e Module ////

530 //////////////////////////////////////////////////////////////////////

531
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532 //Photons t ha t make up the r e g i s t e r p i p e l i n e

533 module PhotonBlock2 (

534 // Inputs

535 c lock ,

536 r e s e t ,

537 enable ,

538

539 i x ,

540 i y ,

541 i z ,

542

543 //Outputs

544 o x ,

545 o y ,

546 o z

547 ) ;

548

549 //////////////////////////////////////////////////////////////////////////////

550 //PARAMETERS

551 //////////////////////////////////////////////////////////////////////////////

552 parameter BIT WIDTH=32;

553

554 input c l ock ;

555 input r e s e t ;

556 input enable ;

557 input [BIT WIDTH−1:0 ] i x ;

558 input i y ;

559 input i z ;

560

561 output [BIT WIDTH−1:0 ] o x ;

562 output o y ;

563 output o z ;

564

565 wire c l ock ;

566 wire r e s e t ;

567 wire enable ;

568 wire [BIT WIDTH−1:0 ] i x ;

569 wire i y ;

570 wire i z ;

571

572 reg [BIT WIDTH−1:0 ] o x ;
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573 reg o y ;

574 reg o z ;

575

576 always @ (posedge c l ock )

577 i f ( r e s e t ) begin

578 o x<= {BIT WIDTH{1 ’ b0}} ;

579 o y<= 1 ’ b0 ;

580 o z<= 1 ’ b0 ;

581 end else i f ( enable ) begin

582 o x<= i x ;

583 o y<= i y ;

584 o z<= i z ;

585 end

586 endmodule

Listing A.2: Absorber.v (Hardware Description for Fluence Update Core)



Appendix B

Source Code for the CUDA program

This appendix only shows the most interesting parts of the source code, which are the

GPU kernel code that performs the key part of the simulation (MCMLcuda kernel.h and

MCMLcuda kernel.cu) and the host software (MCMLcuda.cu) that performs miscellaneous

tasks. These tasks include initializing the program, launching the kernel on the GPU,

and retrieving the simulation output from the GPU for display on the host computer.

Implementation details for other less interesting tasks (e.g., parsing the simulation input)

are omitted.

1 #ifndef MCMLCUDA KERNEL CUH

2 #define MCMLCUDA KERNEL CUH

3

4 #include ”MCMLsrc/MCML.H”

5

6 /////////////////////////////////

7 // Overf low handler usage counter

8 // For debugging only

9 #define COUNTOVERFLOW

10

11 /////////////////////////////////

12 // precomputing l ay e r spec

13 #define PRECOMPUTE

14

15 /////////////////////////////

16 //GPU Kernel s p e c i f i c

117
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17 /////////////////////////////

18 #define NTHREAD 256

19 #define NBLOCK 30

20

21 /////////////////////////////

22 //Shared mem

23 /////////////////////////////

24 //NOTE: Make sure MAX IR ∗ MAX IZ i s l e s s than 4096 (max − 16kB shared )

25 //and d i v i s i b l e by NTHREAD for proper i n i t i a l i z a t i o n to 0 .

26 #define MAX IR 28

27 #define MAX IZ 128

28

29 #define MAXOVERFLOW 4000000000 //MAX UINT32 − some b u f f e r room

30

31 /////////////////////////////

32 //Multi−GPU

33 /////////////////////////////

34 #define MAX GPU COUNT 4

35

36 /////////////////////////////

37 //MCML cons tant s

38 /////////////////////////////

39 #define WEIGHT SCALE 12000000

40

41 #define WTH 1E−4F

42 #define PI cons t 3.1415926 f

43

44 #define COSNINETYDEG 1.0E−6F

45 #define COSZERO (1 . 0F − 1 .0E−6F)

46 #define CHANCE 0.1F

47 #define INVCHANCE 10.0F

48

49 ////////////////////////////////////////////////////////////////////////////////

50 // CPU−s i de data s t r u c t u r e s ( mult i−GPU)

51 ////////////////////////////////////////////////////////////////////////////////

52 typedef struct {
53 int dev i c e i d ;

54 double ∗∗ A rz ; // 2D absorpt ion

55 unsigned int num photons ; // s p e c i f i e d in input f i l e and d i v i ded by GPU N

56 unsigned int s1 base , s2 base , s3 base ; // d i s t i n c t seeds f o r each GPU

57 } GPUinout ;



119

58

59 ////////////////////////////////////////////////////////////////////////////////

60 // In t e rna l GPU−s i de data s t r u c t u r e s

61 ////////////////////////////////////////////////////////////////////////////////

62 /∗ ∗∗∗∗∗∗∗∗∗∗∗
63 ∗ S imp l i f i e d vers ion of input s p e c i f i c a t i o n s t ha t GPU ke rne l needs

64 ∗ Note t ha t GPU takes in InputStructGPU and LayerStruct s e para t e l y

65 ∗/
66 typedef struct {
67 unsigned int num photons ; /∗ to be t raced . ∗/
68 f loat dz ; /∗ z g r i d separat ion . [ cm] ∗/
69 f loat dr ; /∗ r g r i d separat ion . [ cm] ∗/
70 unsigned int nz ; /∗ array range 0 . . nz−1. ∗/
71 unsigned int nr ; /∗ array range 0 . . nr−1. ∗/
72

73 unsigned int num layers ; /∗ number o f l ay e r s . ∗/
74 } InputStructGPU ;

75

76 typedef struct {
77 f loat z0 , z1 ; /∗ z coord inate s o f a l ay e r . [cm] ∗/
78 f loat n ; /∗ r e f r a c t i v e index o f a l ay e r . ∗/
79 f loat mua ; /∗ absorpt ion c o e f f i c i e n t . [1/cm] ∗/
80 f loat mus ; /∗ s c a t t e r i n g c o e f f i c i e n t . [1/cm] ∗/
81 f loat g ; /∗ ani so t ropy . ∗/
82

83 f loat c o s c r i t 0 , c o s c r i t 1 ;

84 } LayerStructGPU ;

85

86 stat ic d e v i c e c on s t an t InputStructGPU d In Ptr ;

87

88 // NOTE: Fixed at 20 f o r now (2 ambient layers−−> so usab le 18 l ay e r s )

89 #define MAXLAYER 20

90

91 // l ay e r spec array

92 #ifdef PRECOMPUTE

93 typedef struct

94 {
95 f loat z0 , z1 ; /∗ z coord inate s o f a l ay e r . [cm] ∗/
96 f loat n ; /∗ r e f r a c t i v e index o f a l ay e r . ∗/
97 f loat g ; /∗ ani so t ropy . ∗/
98
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99 f loat c o s c r i t 0 , c o s c r i t 1 ;

100

101 int i s g l a s s ; /∗ non−zero i f mua == mus == 0.0F, zero otherwi se ∗/
102 f loat muas ; /∗ mua + mus ∗/
103 f loat rmuas ; /∗ 1/(mua+mus) ∗/
104 f loat mua muas ; /∗ mua/(mua+mus) ∗/
105 } LayerStructGPU precomp ;

106

107 stat ic d e v i c e c on s t an t LayerStructGPU precomp d l aye r spe c s [MAXLAYER] ;

108 #else

109 stat ic d e v i c e c on s t an t LayerStructGPU d l aye r spe c s [MAXLAYER] ;

110 #endif

111

112 #endif // MCMLCUDA KERNEL CUH

Listing B.1: MCMLcuda kernel.h (Header File for GPU program)

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗ CUDA GPU vers ion of MCML

3 ∗ Kernel code f o r Monte Carlo s imula t ion of photon

4 ∗ propagat ion in mult i−l ayered t u r b i d media .

5 ∗ Using shared memory f o r high f l u enc e reg ion ( near photon beam)

6 ∗∗∗ ∗/
7

8 #ifndef MCMLCUDA KERNEL H

9 #define MCMLCUDA KERNEL H

10

11 #include <s td i o . h>

12 #include ”MCMLcuda kernel . h”

13

14 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
15 // >>>>>>>>> Launch ()

16 // I n i t i a l i z e the photon .

17 d e v i c e void Launch ( f loat ∗w, f loat WINIT, unsigned int ∗dead ,

18 unsigned int ∗ l ayer , f loat ∗ s , f loat ∗ s l e f t , f loat ∗x , f loat ∗y , f loat ∗z ,

19 f loat ∗ux , f loat ∗uy , f loat ∗uz ) {
20 ∗w = WINIT ;

21 ∗dead = 0 ;

22 ∗ l a y e r = 1 ;

23 ∗ s = 0 .0 f ;

24 ∗ s l e f t = 0 .0 f ;

25
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26 ∗x = 0.0 f ;

27 ∗y = 0.0 f ;

28 ∗ z = 0.0 f ;

29 ∗ux = 0.0 f ;

30 ∗uy = 0.0 f ;

31 ∗uz = 1.0 f ;

32 }
33

34 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
35 // >>>>>>>>> Hop()

36 // Move the photon s away in the current l ay e r o f medium .

37 d e v i c e void Hop( f loat s , f loat ux , f loat uy , f loat uz , f loat ∗x , f loat ∗y ,

38 f loat ∗z ) {
39 ∗x += s ∗ ux ;

40 ∗y += s ∗ uy ;

41 ∗ z += s ∗ uz ;

42 }
43

44 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
45 ∗ >>>>>>>>> StepS i ze InTissue ()

46 ∗ Pick a s t ep s i z e f o r a photon packet when i t i s in t i s s u e .

47 ∗ I f t he member s l e f t i s zero , make a new s tep s i z e

48 ∗ with : − l o g ( rnd ) /(mua+mus) .

49 ∗ Otherwise , p i ck up the l e f t o v e r in s l e f t .

50 ∗∗∗ ∗/
51 d e v i c e void ComputeStepSize (unsigned int l ayer , f loat rand0 , f loat ∗s ,

52 f loat ∗ s l e f t ) {
53

54 #ifdef PRECOMPUTE

55 f loat rmuas=d l aye r spe c s [ l ay e r ] . rmuas ;

56

57 i f (∗ s l e f t == 0.0 f ) { /∗ make a new s tep . ∗/
58 ∗ s = (− l o g f ( rand0 ) ) ∗ rmuas ;

59 } else { /∗ t ake the l e f t o v e r . ∗/
60 ∗ s = (∗ s l e f t ) ∗ rmuas ;

61 ∗ s l e f t = 0 .0 f ;

62 }
63 #else

64 f loat muas=d l aye r spe c s [ l ay e r ] . mua+ d l aye r spe c s [ l ay e r ] . mus ;

65

66 i f (∗ s l e f t == 0.0 f ) { /∗ make a new s tep . ∗/
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67 ∗ s = f d i v i d e f ((− l o g f ( rand0 ) ) , muas) ;

68 } else { /∗ t ake the l e f t o v e r . ∗/
69 ∗ s = f d i v i d e f ( (∗ s l e f t ) , muas) ;

70 ∗ s l e f t = 0 .0 f ;

71 }
72 #endif

73

74 }
75

76 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
77 ∗ >>>>>>>>> HitBoundary ()

78 ∗ Check i f t he s t ep w i l l h i t t he boundary .

79 ∗ Return 1 i f h i t boundary .

80 ∗ Return 0 otherwi se .

81 ∗
82 ∗ I f t he pro j e c t e d s t ep h i t s the boundary , the members

83 ∗ s and s l e f t o f Photon Ptr are updated .

84 ∗∗∗ ∗/
85 d e v i c e int HitBoundary (unsigned int l ayer , f loat z0 , f loat z1 , f loat z , f loat uz ,

86 f loat ∗ s , f loat ∗ s l e f t ) {
87

88 f loat dl b ; /∗ s t ep s i z e to boundary . ∗/
89

90 /∗ Distance to the boundary . ∗/
91 i f ( uz > 0 .0 f )

92 dl b = f d i v i d e f ( ( z1 − z ) , uz ) ; /∗ d l b >0. ∗/
93 else i f ( uz < 0 .0 f )

94 dl b = f d i v i d e f ( ( z0 − z ) , uz ) ; /∗ d l b >0. ∗/
95

96 i f ( uz != 0 .0 f && (∗ s ) > dl b ) {
97 /∗ not hor i z on t a l & c ro s s i n g . ∗/
98

99 #ifdef PRECOMPUTE

100 f loat muas=d l aye r spe c s [ l ay e r ] . muas ;

101 #else

102 f loat muas=d l aye r spe c s [ l ay e r ] . mua+ d l aye r spe c s [ l ay e r ] . mus ;

103 #endif

104

105 ∗ s l e f t = ((∗ s ) − dl b ) ∗ (muas) ;

106 ∗ s = dl b ;

107 return 1 ;
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108 } else

109 return 0 ;

110 }
111

112 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
113 ∗ >>>>>>>>> UltraFast vers ion ()

114 ∗ >>>>>>>>> Reduced divergence

115 ∗/
116

117 d e v i c e void FastRef lectTransmit ( f loat rand3 , f loat ∗ux , f loat ∗uy ,

118 f loat ∗uz , unsigned int ∗ l ayer , unsigned int∗ dead ) {
119

120 /∗ Co l l e c t a l l i n f o t ha t depend on the s i gn of ”uz ” . ∗/
121 f loat c o s c r i t ;

122 int new photon layer ;

123 i f (∗ uz > 0 .0F) {
124 c o s c r i t = d l aye r spe c s [ ( ∗ l a y e r ) ] . c o s c r i t 1 ;

125 new photon layer = (∗ l a y e r )+1;

126 } else {
127 c o s c r i t = d l aye r spe c s [ ( ∗ l a y e r ) ] . c o s c r i t 0 ;

128 new photon layer = (∗ l a y e r ) −1;

129 }
130

131 // cos ine o f the i nc i den t ang l e (0 to 90 deg )

132 f loat ca1 = f ab s f (∗ uz ) ;

133

134 // The d e f a u l t move i s to r e f l e c t .

135 ∗uz = −(∗uz ) ;

136

137 // Moving t h i s check down to ”RFresnel = 0.0F” s lows down the

138 // app l i c a t i on , p o s s i b l y because every thread i s forced to do

139 // too much .

140 i f ( ca1 > c o s c r i t )

141 {
142 /∗ Compute the Fresne l r e f l e c t an c e . ∗/
143

144 // inc i den t and transmit r e f r a c t i v e index

145 f loat ni = d l aye r spe c s [ ( ∗ l a y e r ) ] . n ;

146 f loat nt = d l aye r spe c s [ new photon layer ] . n ;

147 f loat n i n t = f d i v i d e f ( ni , nt ) ; // reused l a t e r

148
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149 f loat sa1 = s q r t f ( 1 . 0F−ca1 ∗ ca1 ) ;

150 f loat sa2 = fminf ( n i n t ∗ sa1 , 1 . 0F) ;

151 i f ( ca1 > COSZERO) sa2 = sa1 ;

152 f loat uz1 = s q r t f ( 1 . 0F−sa2 ∗ sa2 ) ; // uz1 = ca2

153

154 f loat ca1ca2 = ca1 ∗ uz1 ;

155 f loat sa1sa2 = sa1 ∗ sa2 ;

156 f loat sa1ca2 = sa1 ∗ uz1 ;

157 f loat ca1sa2 = ca1 ∗ sa2 ;

158

159 f loat cam = ca1ca2 + sa1sa2 ; /∗ c− = cc + ss . ∗/
160 f loat sap = sa1ca2 + ca1sa2 ; /∗ s+ = sc + cs . ∗/
161 f loat sam = sa1ca2 − ca1sa2 ; /∗ s− = sc − cs . ∗/
162

163 f loat rF r e s ne l = f d i v i d e f ( sam , sap ∗cam) ;

164 rF r e s ne l ∗= rFr e sne l ;

165 rF r e s ne l ∗= ( ca1ca2 ∗ ca1ca2 + sa1sa2 ∗ sa1sa2 ) ;

166

167 // Hope ”uz1” i s very c l o s e to ”ca1 ” .

168 i f ( ca1 > COSZERO) rFr e sne l = 0 .0F ;

169 // In t h i s case , we do not care i f ”uz1” i s e x a c t l y 0 .

170 i f ( ca1 < COSNINETYDEG | | sa2 == 1.0F) rF r e s ne l = 1 .0F ;

171

172 i f ( rF r e sne l < rand3 )

173 {
174 // The move i s to transmit .

175 ∗ l a y e r = new photon layer ;

176 ∗dead = (∗ l a y e r == 0 | | ∗ l a y e r > d In Ptr . num layers ) ;

177

178 // Let ’ s do these even i f t he photon i s dead .

179 ∗ux ∗= ni n t ;

180 ∗uy ∗= ni n t ;

181 // Is t h i s f a s t e r ?

182 ∗uz = −copys i gn f ( uz1 , ∗uz ) ;

183 }
184 }
185

186 }
187

188 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
189 ∗ >>>>>>>>> Spin ()
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190 ∗ Choose a new d i r e c t i on f o r photon propagat ion by

191 ∗ sampling the po lar d e f l e c t i o n ang le t he t a and the

192 ∗ azimuthal ang le p s i .

193 ∗
194 ∗ Note :

195 ∗ t h e t a : 0 − pi so s in ( t he t a ) i s always p o s i t i v e

196 ∗ f e e l f r e e to use s q r t f ( ) f o r cos ( t he t a ) .

197 ∗
198 ∗ ps i : 0 − 2 pi

199 ∗ f o r 0−pi s in ( p s i ) i s +

200 ∗ f o r pi−2pi s in ( p s i ) i s −
201 ∗∗∗ ∗/
202 d e v i c e i n l i n e void Spin ( f loat ∗g , f loat ∗ux , f loat ∗uy , f loat ∗uz ,

203 f loat ∗ rand5 , f loat ∗ rand7 ) {
204 //>>>>>>>>> Spin ()

205 f loat cost , s i n t ; /∗ cos ine and s ine o f the po lar d e f l e c t i o n ang le t he t a . ∗/
206 f loat cosp , s inp ; /∗ cos ine and s ine o f the azimuthal ang le p s i . ∗/
207 f loat SIGN ;

208 f loat temp ; //deep wi th in the func t ion ( i f . . . e l s e )

209 f loat l a s t u x = ∗ux ;

210 f loat l a s t u y = ∗uy ;

211 f loat l a s t u z = ∗uz ;

212

213 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
214 ∗ >>>>>>> SpinTheta

215 ∗ Choose ( sample ) a new the t a ang le f o r photon propagat ion

216 ∗ according to the an i so t ropy .

217 ∗
218 ∗ I f an i so t ropy g i s 0 , then

219 ∗ cos ( t he t a ) = 2∗rand−1.

220 ∗ otherwi se

221 ∗ sample according to the Henyey−Greenste in func t ion .

222 ∗
223 ∗ Returns the cos ine o f the po lar d e f l e c t i o n ang le t he t a .

224 ∗∗∗ ∗/
225

226 cos t = 2.0F ∗ (∗ rand5 ) − 1 .0F ;

227 temp = f d i v i d e f ( ( 1 . 0 f − (∗ g ) ∗ (∗ g ) ) , 1 . 0F + (∗ g ) ∗ cos t ) ;

228 i f ( (∗ g ) != 0 .0F) {
229 cos t = f d i v i d e f ( 1 . 0F + (∗ g ) ∗ (∗ g ) − temp∗temp , 2 . 0F ∗ (∗ g ) ) ;

230 }
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231 cos t = fmaxf ( cost , −1.0F) ;

232 cos t = fminf ( cost , 1 . 0F) ;

233

234 s i n t = s q r t f ( 1 . 0 f − cos t ∗ cos t ) ;

235

236 s i n c o s f ( 2 . 0 f ∗ PI cons t ∗ (∗ rand7 ) , &cosp , &s inp ) ;

237

238 i f ( f a b s f ( l a s t u z ) > COSZERO) { /∗ normal i n c i den t . ∗/
239 ∗ux = s i n t ∗ cosp ;

240 ∗uy = s i n t ∗ s inp ;

241 SIGN = (( l a s t u z ) >= 0.0 f ? 1 . 0 f : −1.0 f ) ;

242 ∗uz = cos t ∗ SIGN ;

243

244 } else { /∗ r e gu l a r i n c i den t . ∗/
245 temp = r s q r t f ( 1 . 0 f − l a s t u z ∗ l a s t u z ) ;

246 ∗ux = s i n t ∗ ( l a s t u x ∗ l a s t u z ∗ cosp − l a s t u y ∗ s inp ) ∗ temp

247 + l a s t u x ∗ cos t ;

248 ∗uy = s i n t ∗ ( l a s t u y ∗ l a s t u z ∗ cosp + l a s t u x ∗ s inp ) ∗ temp

249 + l a s t u y ∗ cos t ;

250 ∗uz = f d i v i d e f (− s i n t ∗ cosp , temp) + l a s t u z ∗ cos t ;

251 }
252 }
253

254 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
255 //Generate a random number between 0 and 1.

256 d e v i c e i n l i n e void Rand(unsigned int ∗ s1 , unsigned int ∗ s2 ,

257 unsigned int ∗ s3 , f loat ∗ rand0 , f loat ∗ rand3 ,

258 f loat ∗ rand5 , f loat ∗ rand7 , f loat ∗ rand8 ) {
259 unsigned int b ;

260

261 //rand0

262 b = (( (∗ s1 << 13) ˆ ∗ s1 ) >> 19) ;

263 ∗ s1 = ( ( (∗ s1 & 4294967294) << 12) ˆ b) ;

264 b = (( (∗ s2 << 2) ˆ ∗ s2 ) >> 25) ;

265 ∗ s2 = ( ( (∗ s2 & 4294967288) << 4) ˆ b) ;

266 b = (( (∗ s3 << 3) ˆ ∗ s3 ) >> 11) ;

267 ∗ s3 = ( ( (∗ s3 & 4294967280) << 17) ˆ b) ;

268 ∗ rand0 = ( f loat ) ( (∗ s1 ˆ ∗ s2 ˆ ∗ s3 ) ∗ 2.3283064365 e−10 f ) ;

269

270 //rand3

271 b = (( (∗ s1 << 13) ˆ ∗ s1 ) >> 19) ;
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272 ∗ s1 = ( ( (∗ s1 & 4294967294) << 12) ˆ b) ;

273 b = (( (∗ s2 << 2) ˆ ∗ s2 ) >> 25) ;

274 ∗ s2 = ( ( (∗ s2 & 4294967288) << 4) ˆ b) ;

275 b = (( (∗ s3 << 3) ˆ ∗ s3 ) >> 11) ;

276 ∗ s3 = ( ( (∗ s3 & 4294967280) << 17) ˆ b) ;

277 ∗ rand3 = ( f loat ) ( (∗ s1 ˆ ∗ s2 ˆ ∗ s3 ) ∗ 2.3283064365 e−10 f ) ;

278

279 //rand5

280 b = (( (∗ s1 << 13) ˆ ∗ s1 ) >> 19) ;

281 ∗ s1 = ( ( (∗ s1 & 4294967294) << 12) ˆ b) ;

282 b = (( (∗ s2 << 2) ˆ ∗ s2 ) >> 25) ;

283 ∗ s2 = ( ( (∗ s2 & 4294967288) << 4) ˆ b) ;

284 b = (( (∗ s3 << 3) ˆ ∗ s3 ) >> 11) ;

285 ∗ s3 = ( ( (∗ s3 & 4294967280) << 17) ˆ b) ;

286 ∗ rand5 = ( f loat ) ( (∗ s1 ˆ ∗ s2 ˆ ∗ s3 ) ∗ 2.3283064365 e−10 f ) ;

287

288

289 //rand7

290 b = (( (∗ s1 << 13) ˆ ∗ s1 ) >> 19) ;

291 ∗ s1 = ( ( (∗ s1 & 4294967294) << 12) ˆ b) ;

292 b = (( (∗ s2 << 2) ˆ ∗ s2 ) >> 25) ;

293 ∗ s2 = ( ( (∗ s2 & 4294967288) << 4) ˆ b) ;

294 b = (( (∗ s3 << 3) ˆ ∗ s3 ) >> 11) ;

295 ∗ s3 = ( ( (∗ s3 & 4294967280) << 17) ˆ b) ;

296 ∗ rand7 = ( f loat ) ( (∗ s1 ˆ ∗ s2 ˆ ∗ s3 ) ∗ 2.3283064365 e−10 f ) ;

297

298 //rand8

299 b = (( (∗ s1 << 13) ˆ ∗ s1 ) >> 19) ;

300 ∗ s1 = ( ( (∗ s1 & 4294967294) << 12) ˆ b) ;

301 b = (( (∗ s2 << 2) ˆ ∗ s2 ) >> 25) ;

302 ∗ s2 = ( ( (∗ s2 & 4294967288) << 4) ˆ b) ;

303 b = (( (∗ s3 << 3) ˆ ∗ s3 ) >> 11) ;

304 ∗ s3 = ( ( (∗ s3 & 4294967280) << 17) ˆ b) ;

305 ∗ rand8 = ( f loat ) ( (∗ s1 ˆ ∗ s2 ˆ ∗ s3 ) ∗ 2.3283064365 e−10 f ) ;

306 }
307

308 /// ////////////////////////////////////////////////////////////////////////////

309 // ! MCML GPU Core

310 ////////////////////////////////////////////////////////////////////////////////

311 stat ic g l o b a l void
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312 MCMLKernel(unsigned int AVE ITER PERPHOTON, unsigned long long int ∗ A, unsigned int

tota l photon , f loat WINIT,

313 unsigned int s1 base , unsigned int s2 base , unsigned int s3 base , unsigned int ∗
t o ta l s imu l a t ed

314 #ifdef COUNTOVERFLOW

315 , unsigned int ∗ over f l ow count

316 #endif

317 )

318 {
319 #ifdef COUNTOVERFLOW

320 unsigned int photon over f l ow count =0;

321 #endif

322

323 #ifdef REG ONLY

324 unsigned int sum=0;

325 #endif

326

327 unsigned int photon count =0;

328 unsigned int l a s t add r =0, l a s t v a l =0;

329 unsigned int l a s t i r =0, l a s t i z =0; // f u r t he r opt imizat ion

330 s h a r e d unsigned int A shared [MAX IR∗MAX IZ ] ;

331

332 // over f low handl ing : s t o r e a 0/1 f l a g f o r over f low in the e lements

333 // each thread i s r e spons i b l e f o r

334 s h a r e d unsigned int tmp data [NTHREAD] ;

335

336 //Reset to zero j u s t in case ( f o r so r t i n g l a t e r )

337 for ( int i =0; i<MAX IR∗MAX IZ/NTHREAD; i++)

338 A shared [ threadIdx . x+i ∗NTHREAD]=0;

339

340 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
341 // ! Reg i s t e r s

342 //>>>>>>>>> Photon St ruc ture per thread

343 f loat photon x , photon y , photon z ; /∗ Cartes ian coord inate s . [ cm] ∗/
344 f loat photon ux , photon uy , photon uz ; /∗ d i r e c t i o n a l cos ines o f a photon . ∗/
345 // unsigned in t photon w ; /∗ weight . ∗/
346 f loat photon w ;

347

348 unsigned int photon dead ; /∗ 1 i f photon i s terminated . ∗/
349 unsigned int photon layer ; /∗ index to l ay e r where the photon packet r e s i d e s . ∗/
350 f loat photon s ; /∗ curren t s t ep s i z e . [cm ] . ∗/
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351 f loat pho t on s l e f t ; /∗ s t ep s i z e l e f t . d imens ion le s s [ − ] . ∗/
352 unsigned int photon h i t ;

353

354 // Random number array per thread

355 f loat rand0 , rand3 , rand5 , rand7 , rand8 ;

356

357 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
358 // ! Set d i f f e r e n t rand seed f o r each thread based on id

359 unsigned int s1 , s2 , s3 ;

360 s1=s1 base + blockIdx . x∗NTHREAD∗1000000 + threadIdx . x ∗1000000;

361 s2=s2 base + blockIdx . x∗NTHREAD∗1000000 + threadIdx . x ∗1000000;

362 s3=s3 base + blockIdx . x∗NTHREAD∗1000000 + threadIdx . x ∗1000000;

363

364 const f loat INITWEIGHT=WINIT ;

365

366 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
367 // ! Simulate photon group ( t o t a l pho t on /NTHREAD) per thread

368 unsigned int NITER=tota l photon /(NTHREAD∗NBLOCK) ∗ AVE ITER PERPHOTON;

369

370 Launch (&photon w , INITWEIGHT, &photon dead , &photon layer ,

371 &photon s , &photon s l e f t ,

372 &photon x , &photon y , &photon z ,

373 &photon ux , &photon ux , &photon uz ) ;

374

375 for ( int i Index = 0 ; i Index < NITER; ++i Index ) {
376 tmp data [ threadIdx . x ] = 0 ; // r e s e t over f low f l a g s

377

378 Rand(&s1 , &s2 , &s3 ,

379 &rand0 , &rand3 ,

380 &rand5 , &rand7 , &rand8 ) ;

381

382 //>>>>>>>>> StepS i ze InTissue ()

383 ComputeStepSize ( photon layer , rand0 ,

384 &photon s , &pho t on s l e f t ) ;

385

386 //>>>>>>>>> HitBoundary ()

387 photon h i t = HitBoundary ( photon layer , d l aye r spe c s [ photon layer ] . z0 , d l aye r spe c s [

photon layer ] . z1 , photon z , photon uz ,

388 &photon s , &pho t on s l e f t ) ;

389

390 Hop ( photon s , photon ux , photon uy , photon uz ,
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391 &photon x , &photon y , &photon z ) ;

392

393 i f ( photon h i t ) {
394 FastRef lectTransmit ( rand3 , &photon ux , &photon uy , &photon uz , &photon layer , &

photon dead ) ;

395 }
396 else {
397

398 //>>>>>>>>> Drop()

399 unsigned int h i t edge =0;

400

401 unsigned int i z = f d i v i d e f ( photon z , d In Ptr . dz ) ;

402 i f ( i z>=d In Ptr . nz ) {
403 h i t edge =1;

404 i z=d In Ptr . nz−1;

405 }
406

407 unsigned int i r = f d i v i d e f ( s q r t f ( photon x ∗ photon x + photon y ∗ photon y ) ,

d In Ptr . dr ) ;

408 i f ( i r>=d In Ptr . nr ) {
409 h i t edge =1;

410 i r=d In Ptr . nr −1;

411 }
412

413 #ifdef PRECOMPUTE

414 f loat dwa = photon w ∗ d l aye r spe c s [ photon layer ] . mua muas ;

415 #else

416 f loat mua=d l aye r spe c s [ photon layer ] . mua ;

417 f loat mus=d l aye r spe c s [ photon layer ] . mus ;

418 f loat dwa = photon w ∗ mua/(mua+mus) ;

419 #endif

420

421 photon w −= dwa ;

422

423 #ifdef REG ONLY

424 sum+=dwaINT ;

425 #else

426

427 // only record i f photon i s not at the edge ! !

428 // t h i s w i l l be ignored anyways .

429 i f ( ! h i t edge ) {
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430 unsigned int cur r addr = ( i r ∗ d In Ptr . nz + i z ) ;

431 unsigned int c u r r v a l = (unsigned int ) (dwa ∗ WEIGHT SCALE) ;

432

433 i f ( cur r addr==la s t add r ) // coa l e s c e l a s t entry (minor improvements wi th more

h i s t o r y )

434 l a s t v a l+=cu r r v a l ;

435 else {
436 i f ( l a s t i r <MAX IR && l a s t i z <MAX IZ) { // f i t s i n s i de the shared mem

437 unsigned shared addr = ( l a s t i r ∗ MAX IZ + l a s t i z ) ;

438 //need new address ing scheme f o r d i s t i n c t shared mem layout (MAX IR by

MAX IZ)

439 unsigned o l dva l=atomicAdd ( ( unsigned int ∗) &A shared [ shared addr ] , (unsigned

int ) l a s t v a l ) ;

440

441 i f ( o ldval >=MAXOVERFLOW) { // Detects over f low

442 tmp data [ shared addr % NTHREAD] = 1 ;

443 #ifdef COUNTOVERFLOW

444 photon over f l ow count++;

445 #endif

446 }
447 }
448 else { //must be wr i t t en to g l o b a l mem

449 atomicAdd ( ( unsigned long long int ∗) &A[ l a s t add r ] , (unsigned long long int )

l a s t v a l ) ;

450 }
451

452 //Promote current va lue as l a s t entry

453 l a s t i r=i r ; l a s t i z=i z ; //new opt imizat ion to capture more high l i g h t dose

e lements

454 l a s t add r=cur r addr ;

455 l a s t v a l=cu r r v a l ;

456 }
457 #endif

458 } //end i f ( ! h i t e d g e )

459 //>>>>>>>>> Drop()

460

461 Spin ( &d l aye r spe c s [ photon layer ] . g , &photon ux , &photon uy , &photon uz ,

462 &rand5 , &rand7 ) ;

463 }
464

465 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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466 ∗ >>>>>>>>> Roule t t e ( )

467 ∗ The photon weight i s small , and the photon packet t r i e s

468 ∗ to su r v i v e a r o u l e t t e .

469 ∗∗∗ ∗/
470 i f ( photon w < WTH && ! photon dead )

471 {
472 i f ( photon w == 0.0 f )

473 photon dead = 1 ;

474 else i f ( rand8 < CHANCE) /∗ surv i ved the r o u l e t t e . ∗/
475 photon w ∗= INVCHANCE;

476 else

477 photon dead = 1 ;

478 }
479

480 i f ( photon dead ) {
481 ++photon count ;

482 Launch (&photon w , INITWEIGHT, &photon dead , &photon layer ,

483 &photon s , &photon s l e f t ,

484 &photon x , &photon y , &photon z ,

485 &photon ux , &photon uy , &photon uz ) ;

486

487 }
488

489 #ifndef REG ONLY

490 //////////////////////////////////////////////////////

491 //Necessary to handle over f low in 32− b i t shared b u f f e r A[ r ] [ z ]

492 s ync th r ead s ( ) ;

493

494 // Enter a phase o f handl ing VIP range over f low .

495 i f ( tmp data [ threadIdx . x ] )

496 {
497 // Flush a l l e lements I am re spons i b l e f o r to the g l o b a l memory .

498 for (unsigned int i = threadIdx . x ; i < MAX IR∗MAX IZ ; i += NTHREAD)

499 {
500 unsigned int i r = i / MAX IZ ;

501 unsigned int i z = i − i r ∗ MAX IZ ;

502 unsigned g lob addr = i r ∗ d In Ptr . nz + i z ;

503

504 atomicAdd ( ( unsigned long long int ∗) &A[ g l ob addr ] , (unsigned long long int ) ( ( (

unsigned int ∗) A shared ) [ i ] ) ) ;

505 ( (unsigned int ∗) A shared ) [ i ]=0;
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506

507 }
508 }
509

510 s ync th r ead s ( ) ;

511 #endif

512 //////////////////////////////////////////////////////

513

514 } // end of b i g f o r loop

515

516 #ifdef REG ONLY

517 A[0]+=sum ;

518 #endif

519

520 atomicAdd ( to ta l s imu l a t ed , photon count ) ;

521

522 #ifdef COUNTOVERFLOW

523 atomicAdd ( over f l ow count , (unsigned int ) photon over f l ow count ) ;

524 #endif

525

526 #ifndef REG ONLY

527 ////////////////////////////////////////////////////////////////////

528 //Flush content from N−mul t iprocessor shared mem into g l o b a l memory

529 s ync th r ead s ( ) ;

530 i f ( threadIdx . x==0) { //nominate the f i r s t thread in each b l oc k to do the job

531 for ( int i r =0; i r <MAX IR; i r++ ) {
532 for ( int i z =0; i z<MAX IZ ; i z++ ) {
533 unsigned int g lob addr = ( i r ∗ d In Ptr . nz + i z ) ;

534 unsigned int shared addr = ( i r ∗ MAX IZ + i z ) ;

535

536 atomicAdd ( ( unsigned long long int ∗) &A[ g l ob addr ] , (unsigned long long int )

A shared [ shared addr ] ) ;

537 }
538 }
539 }
540 #endif

541

542 }
543

544 #endif // #i f n d e f MCMLCUDA KERNEL H
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Listing B.2: MCMLcuda kernel.cu (Kernel code or GPU program)

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗ CUDA GPU vers ion of MCML

3 ∗ Main program for Monte Carlo s imula t ion of photon

4 ∗ propagat ion in mult i−l ayered t u r b i d media .

5 ∗∗∗ ∗/
6

7 // ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

8 // NOTE: Set #de f i n e WINXP 1 when Visual Studio i s used to compile

9 // ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

10 //#de f i n e WINXP 1

11

12 // These i nc l ude s are ONLY needed in Visual Studio 2005

13 // They are not requ i red in Linux

14 #ifdef WINXP

15 #include ”MCMLsrc/MCMLNR.C”

16 #include ”MCMLsrc/MCMLIO.C”

17 #include ”MCMLsrc/MCMLGO.C”

18 #endif

19

20 // inc ludes , system

21 #include <s t d l i b . h>

22 #include <s td i o . h>

23 #include <s t r i n g . h>

24 #include <math . h>

25

26 // inc ludes , p ro j e c t

27 #include <c u t i l . h>

28 #include <cuda runtime . h>

29

30 #ifdef WINXP

31 #include ”mult i threading winxp / mul t i thr ead ing . h”

32 #else

33 #include <mul t i thr ead ing . h>

34 #endif

35

36 // inc ludes , k e rne l s

37 #include ”MCMLcuda kernel . cu”

38 #include ”MCMLcuda kernel . h”
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39

40 #include ”MCMLsrc/MCML.H”

41

42 ////////////////////////////////////////////////////////////////////////////////

43 // GLOBAL VARIABLES

44 unsigned int AVE ITER PERPHOTON; // to be determined by t e s t run

45

46 unsigned int tota l nphotons [MAXGPU COUNT] ;

47

48 // Multi−GPU

49 GPUinout GPUinfo [MAX GPU COUNT] ;

50 int GPU N;

51

52 // Input ( avoid pass ing )

53 InputStruct in parm ;

54

55 // Output

56 f loat Rsp ; /∗ specu lar r e f l e c t an c e . [−] ∗/
57 double ∗∗ f i n a lA r z ; /∗ 2D p r o b a b i l i t y den s i t y in t u r b i d ∗/
58 unsigned int NITER;

59 double t o ta l s imu l a t ed =0.0;

60

61 // Simulat ion t o t a l t ime

62 unsigned int t imer = 0 ;

63

64 ////////////////////////////////////////////////////////////////////////////////

65 // From MCMLIO.C and MCMLGO.C

66 FILE ∗GetFi le (char ∗) ;

67 short ReadNumRuns(FILE∗ ) ;

68 void ReadParm (FILE∗ , InputStruct ∗ ) ;

69 void CheckParm (FILE∗ , InputStruct ∗ ) ;

70 f loat Rspecular ( LayerStruct ∗ ) ;

71

72 ////////////////////////////////////////////////////////////////////////////////

73 // ! Report t ime and wr i t e r e s u l t s .

74 ////////////////////////////////////////////////////////////////////////////////

75 void ReportResult ( )

76 {
77 FILE ∗ f i l e ;

78

79 double dz = (double) in parm . dz ;
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80 double dr = (double) in parm . dr ;

81 // shor t n l = in parm . num layers ;

82 short i z , i r ;

83 // shor t i l ;

84 double s ca l e 1 ;

85

86 /∗ Sca le A rz . ∗/
87 s ca l e 1 = 2.0∗PI∗dr∗dr∗dz ∗( t o ta l s imu l a t ed ) ∗WEIGHT SCALE;

88 /∗ volume i s 2∗ pi ∗( i r +0.5)∗dr∗dr∗dz . ∗/
89 /∗ i r +0.5 to be added . ∗/
90 for ( i z =0; i z<in parm . nz ; i z++)

91 for ( i r =0; i r <in parm . nr ; i r++)

92 f i n a lA r z [ i r ] [ i z ] /= ( i r +0.5)∗ s ca l e 1 ;

93

94 f i l e = fopen ( in parm . out fname , ”w” ) ;

95 i f ( f i l e == NULL) nr e r r o r ( ”Cannot open f i l e to wr i te .\n” ) ;

96

97 for ( i r =0; i r <in parm . nr ; i r++)

98 for ( i z =0; i z<in parm . nz ; i z++) {
99 f p r i n t f ( f i l e , ”%12.4E ” , f i n a lA r z [ i r ] [ i z ] ) ;

100 i f ( ( i r ∗ in parm . nz + i z + 1)%5 == 0) f p r i n t f ( f i l e , ”\n” ) ;

101 }
102

103 f p r i n t f ( f i l e , ”\n” ) ;

104

105 f c l o s e ( f i l e ) ;

106

107 }
108

109 ////////////////////////////////////////////////////////////////////////////////

110 // ! Get the f i l e name of the input data f i l e from the

111 // ! argument to the command l i n e .

112 ////////////////////////////////////////////////////////////////////////////////

113 void GetFnameFromArgv( int argc ,

114 char ∗ argv [ ] ,

115 char ∗ i npu t f i l ename )

116 {
117 i f ( argc >=2) { /∗ f i lename in command l i n e ∗/
118 s t r cpy ( input f i l ename , argv [ 1 ] ) ;

119 }
120 else
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121 i npu t f i l ename [ 0 ] = ’ \0 ’ ;

122 }
123

124 stat ic CUT THREADPROC runGPUi(GPUinout ∗ GPUi) {
125 /////////////////////////////

126 //Multi−GPU

127 /////////////////////////////

128 CUDA SAFE CALL ( cudaSetDevice (GPUi−>dev i c e i d ) ) ;

129 p r i n t f ( ”========GPU %d running=======\n” , GPUi−>dev i c e i d ) ;

130

131 ///////////////////////////////////

132 // Set up Constants in constant mem

133 InputStructGPU h In Ptr ;

134

135 h In Ptr . num photons=in parm . num photons ;

136

137 h In Ptr . dz=in parm . dz ;

138 h In Ptr . dr=in parm . dr ;

139 h In Ptr . nz=in parm . nz ;

140 h In Ptr . nr=in parm . nr ;

141

142 h In Ptr . num layers=in parm . num layers ;

143

144 #ifdef PRECOMPUTE

145 /∗ Cache some precomputed r e s u l t f o r each l ay e r spec . ∗/
146 LayerStructGPU precomp l aye r spe c s p [MAXLAYER] ;

147

148 for ( int i = 0 ; i < in parm . num layers +2; ++i ) {
149 l a y e r spe c s p [ i ] . z0 = in parm . l aye r spe c s [ i ] . z0 ;

150 l a y e r spe c s p [ i ] . z1 = in parm . l aye r spe c s [ i ] . z1 ;

151 l a y e r spe c s p [ i ] . n = in parm . l aye r spe c s [ i ] . n ;

152 l a y e r spe c s p [ i ] . g = in parm . l aye r spe c s [ i ] . g ;

153 l a y e r spe c s p [ i ] . c o s c r i t 0 = in parm . l aye r spe c s [ i ] . c o s c r i t 0 ;

154 l a y e r spe c s p [ i ] . c o s c r i t 1 = in parm . l aye r spe c s [ i ] . c o s c r i t 1 ;

155

156 f loat muas = in parm . l aye r spe c s [ i ] . mua + in parm . l aye r spe c s [ i ] . mus ;

157 l a y e r spe c s p [ i ] . muas = muas ;

158 l a y e r spe c s p [ i ] . i s g l a s s = (muas == 0.0F) ? 1 : 0 ;

159 i f ( l aye r spe c s p [ i ] . i s g l a s s == 0) {
160 l a y e r spe c s p [ i ] . rmuas = 1.0F/muas ;

161 l a y e r spe c s p [ i ] . mua muas = in parm . l aye r spe c s [ i ] . mua / muas ;
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162 }
163 }
164

165 CUDA SAFE CALL( cudaMemcpyToSymbol ( d l aye r spe c s , l ay e r spe c s p ,

166 s izeof ( LayerStructGPU precomp ) ∗MAXLAYER ) ) ;

167 #else

168 //Copy in Layer geometry

169 CUDA SAFE CALL( cudaMemcpyToSymbol ( d l aye r spe c s , in parm . l aye r spe c s ,

170 s izeof ( LayerStruct ) ∗MAXLAYER ) ) ;

171 #endif

172

173 //Copy in Input s p e c i f i c a t i o n s (most impor tant ly num layers , dr , dz , Wth)

174 CUDA SAFE CALL( cudaMemcpyToSymbol ( d In Ptr , &h In Ptr , s izeof ( InputStructGPU ) ) ) ;

175

176 unsigned int mem size2=s izeof (unsigned long long int )∗ in parm . nr∗ in parm . nz ;

177

178 ///////////////////////////////////

179 // a l l o c a t e 2D absorpt ion array on hos t memory

180 unsigned long long int∗ h A = (unsigned long long int ∗) mal loc ( mem size2 ) ;

181 //Temp array f o r mem copy

182 for ( int i =0; i<in parm . nr∗ in parm . nz ; i++)

183 h A [ i ]=0;

184

185 unsigned long long int ∗ h A rz=(unsigned long long int ∗) mal loc ( mem size2 ) ;

186

187 ///////////////////////////////////

188 // a l l o c a t e dev i ce memory f o r r e s u l t

189 unsigned long long int ∗d A ;

190 CUDA SAFE CALL( cudaMalloc ( (void∗∗) &d A , mem size2 ) ) ;

191

192 ///////////////////////////////////

193 // I n i t dev i ce mem to 0 by copying

194 CUDA SAFE CALL( cudaMemcpy ( d A , h A , mem size2 ,

195 cudaMemcpyHostToDevice ) ) ;

196

197 /∗ Al l oca t e a g l o b a l v a r i a b l e t ha t s t o r e s the t o t a l # of photons

198 ∗ processed .

199 ∗/
200 unsigned int ∗ g to ta l npho ton s ;

201 cudaMalloc ( ( void∗∗) &g tota l nphotons , s izeof (unsigned int ) ) ;

202 cudaMemset ( g tota l nphotons , 0 , s izeof (unsigned int ) ) ;
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203

204 #ifdef COUNTOVERFLOW

205 // Count the number o f t imes the VIP ranges in smem over f low .

206 unsigned int ∗ g over f l ow count ;

207 cudaMalloc ( ( void∗∗)&g over f l ow count , s izeof (unsigned int ) ) ;

208 cudaMemset ( g over f l ow count , 0 , s izeof (unsigned int ) ) ;

209 #endif

210

211 ///////////////////////////////////

212 // se tup execut ion parameters

213 dim3 gr i d ( NBLOCK, 1 , 1) ;

214 dim3 thr eads ( NTHREAD, 1 , 1) ;

215

216 ///////////////////////////////////

217 // execute the k e rne l

218

219 // Simulat ion MCMLGPU ke rne l exec time

220 unsigned int execTimer = 0 ;

221 CUT SAFE CALL( cutCreateTimer ( &execTimer ) ) ;

222 CUT SAFE CALL( cutStartTimer ( execTimer ) ) ;

223

224 f loat WINIT=(1.0F − Rsp) ; //∗WEIGHT SCALE;

225

226 MCMLKernel<<< gr id , threads>>>( AVE ITER PERPHOTON, d A , GPUi−>num photons , WINIT,

227 GPUi−>s1 base , GPUi−>s2 base , GPUi−>s3 base , g t o ta l npho ton s

228 #ifdef COUNTOVERFLOW

229 , g over f l ow count

230 #endif

231 ) ;

232

233 CUT CHECK ERROR( ” ! ! ! ! ! ERROR ! ! ! ! ! −−> Kernel execut i on f a i l e d ” ) ;

234 cudaThreadSynchronize ( ) ;

235

236 CUT SAFE CALL( cutStopTimer ( execTimer ) ) ;

237

238 /∗ Copy back the photon count . ∗/
239 cudaMemcpy(&tota l nphotons [GPUi−>dev i c e i d ] , g tota l nphotons , s izeof (unsigned int ) ,

240 cudaMemcpyDeviceToHost ) ;

241

242 #ifdef COUNTOVERFLOW

243 // Copy back the over f low count .



140 Appendix B. Source Code for the CUDA program

244 unsigned int over f l ow count = 0 ;

245 cudaMemcpy(&over f l ow count , g over f l ow count , s izeof (unsigned int ) ,

246 cudaMemcpyDeviceToHost ) ;

247 p r i n t f ( ” ! ! ! ! ! ! ! ! ! ! VIP over f l ow count = %u\n” , over f l ow count ) ;

248 #endif

249

250 p r i n t f ( ”\n\n>>>>>>GPU Kernel Exec time : %f (ms) \n” , cutGetTimerValue ( execTimer ) ) ;

251 p r i n t f ( ” | | | | | | | | | | Num of photons ac tua l l y s imulated per GPU = %u \n” , tota l nphotons [

GPUi−>dev i c e i d ] ) ;

252 p r i n t f ( ” | | | | | | | | | |GPU exec time per m i l l i o n photons= %l f s ec \n” , cutGetTimerValue (

execTimer ) /(double) tota l nphotons [GPUi−>dev i c e i d ] ∗ 1000000 /1000) ;

253

254

255 // copy r e s u l t from dev i ce to hos t

256 CUDA SAFE CALL( cudaMemcpy ( h A rz , d A , mem size2 ,

257 cudaMemcpyDeviceToHost ) ) ;

258

259 /////////////////////////////

260 //Multi−GPU

261 /////////////////////////////

262 for ( int i r = 0 ; i r < in parm . nr ; i r++)

263 for ( int i z = 0 ; i z < in parm . nz ; i z++)

264 GPUi−>A rz [ i r ] [ i z ] = (double) h A rz [ i r ∗ in parm . nz + i z ] ;

265

266 ///////////////////////////////////

267 // c leanup memory

268 f r e e (h A) ;

269 CUDA SAFE CALL( cudaFree (d A) ) ;

270 CUT SAFE CALL( cutDeleteTimer ( execTimer ) ) ;

271

272 CUT THREADEND;

273 }
274

275 void sum () {
276 for ( int i = 0 ; i < GPU N; i++)

277 for ( int i r = 0 ; i r < in parm . nr ; i r++)

278 for ( int i z = 0 ; i z < in parm . nz ; i z++)

279 f i n a lA r z [ i r ] [ i z ] += GPUinfo [ i ] . A rz [ i r ] [ i z ] ;

280 }
281

282 ////////////////////////////////////////////////////////////////////////////////
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283 // ! Set up and Launch GPU Kernel f o r MCML simula t ion

284 ////////////////////////////////////////////////////////////////////////////////

285 void

286 runMCMLmultiGPU()

287 {
288 /////////////////////////////

289 //Multi−GPU

290 /////////////////////////////

291 CUTThread t i d [MAX GPU COUNT] ;

292

293 // Calcu la t e how many photons each GPU needs to launch

294 NITER=in parm . num photons /(NTHREAD∗NBLOCK) ;

295 t o ta l s imu l a t ed=NITER∗NTHREAD∗NBLOCK;

296

297 for ( int i =0; i<GPU N; i++) {
298 GPUinfo [ i ] . A rz = AllocDoubleMatrix (0 , in parm . nr −1 ,0 , in parm . nz−1) ;

299 GPUinfo [ i ] . d ev i c e i d=i ;

300 GPUinfo [ i ] . num photons=(unsigned int ) t o ta l s imu l a t ed /GPU N;

301 GPUinfo [ i ] . s 1 base =1113244+ i ;

302 GPUinfo [ i ] . s 2 base =4712433+ i ;

303 GPUinfo [ i ] . s 3 base =7437331+ i ;

304

305 t i d [ i ]= cutStartThread ( (CUT THREADROUTINE) runGPUi , &GPUinfo [ i ] ) ;

306 }
307

308

309 p r i n t f ( ”======== wai t ing f o r sim threads to complete=======\n” ) ;

310 cutWaitForThreads ( t id , GPU N) ;

311

312 t o ta l s imu l a t ed =0;

313 for ( int i =0; i<GPU N; i++)

314 t o ta l s imu l a t ed+=(double) tota l nphotons [ i ] ;

315

316 sum () ;

317 }
318

319 ////////////////////////////////////////////////////////////////////////////////

320 // ! Small t e s t run to es t imate the number o f i t e r a t i o n s requ i red per photon

321 ////////////////////////////////////////////////////////////////////////////////

322 unsigned int

323 runtestMCMLmultiGPU()
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324 {
325 /////////////////////////////

326 //Multi−GPU

327 /////////////////////////////

328 CUTThread t i d [MAX GPU COUNT] ;

329

330 // Calcu la t e how many photons each GPU needs to launch

331 NITER=300;

332 t o ta l s imu l a t ed=NITER∗NTHREAD∗NBLOCK;

333 p r i n t f ( ”>>>>>>>>>>>NITER = %u \n” , NITER) ;

334 for ( int i =0; i<GPU N; i++) {
335 GPUinfo [ i ] . A rz = AllocDoubleMatrix (0 , in parm . nr −1 ,0 , in parm . nz−1) ;

336 GPUinfo [ i ] . d ev i c e i d=i ;

337 GPUinfo [ i ] . num photons=(unsigned int ) t o ta l s imu l a t ed /GPU N;

338 GPUinfo [ i ] . s 1 base =1113244+ i ;

339 GPUinfo [ i ] . s 2 base =4712433+ i ;

340 GPUinfo [ i ] . s 3 base =7437331+ i ;

341

342 t i d [ i ]= cutStartThread ( (CUT THREADROUTINE) runGPUi , &GPUinfo [ i ] ) ;

343 }
344

345

346 p r i n t f ( ”======== wai t ing f o r sim threads to complete=======\n” ) ;

347 cutWaitForThreads ( t id , GPU N) ;

348

349 t o ta l s imu l a t ed =0;

350 for ( int i =0; i<GPU N; i++)

351 t o ta l s imu l a t ed+=(double) tota l nphotons [ i ] ;

352 p r i n t f ( ” to ta l s imu l a t ed = %l f \n” , t o ta l s imu l a t ed ) ;

353

354 return (unsigned int ) AVE ITER PERPHOTON∗NITER∗NTHREAD∗NBLOCK/(unsigned int )

t o ta l s imu l a t ed ;

355

356 }
357

358 ////////////////////////////////////////////////////////////////////////////////

359 // ! Execute Monte Carlo s imula t ion f o r one independent run .

360 ////////////////////////////////////////////////////////////////////////////////

361 void DoOneRun( short NumRuns)

362 {
363 Rsp = Rspecular ( in parm . l aye r spe c s ) ;
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364

365 AVE ITER PERPHOTON=200; // i n i t i a l i z a t i o n

366 p r i n t f ( ”\n\n\n−−−−−−−−−− RUNNING TEST RUN −−−−−−−−−−−− \n\n\n” ) ;

367 AVE ITER PERPHOTON=runtestMCMLmultiGPU () ;

368

369 for ( int i =0; i<GPU N; i++) {
370 FreeDoubleMatrix(GPUinfo [ i ] . A rz , 0 , in parm . nr−1, 0 , in parm . nz−1) ;

371 }
372

373 p r i n t f ( ”Estimated AVE ITER PERPHOTON = %u” , AVE ITER PERPHOTON) ;

374

375 p r i n t f ( ”\n\n\n−−−−−−−−−− RUNNING FULL RUN −−−−−−−−−−−−\n” ) ;

376 p r i n t f ( ”−−−−−−−−−− Input F i l e : %u photons−−−−−−−−−−−− \n\n\n” , in parm . num photons ) ;

377

378 p r i n t f ( ”========Multi−GPU host thr eads s t a r t i n g=======\n” ) ;

379 runMCMLmultiGPU() ;

380 p r i n t f ( ”========Multi−GPU host thr eads f i n i s h e d GPU s imulat i on=======\n” ) ;

381

382 ReportResult ( ) ;

383 f r e e ( in parm . l aye r spe c s ) ;

384 }
385

386 ////////////////////////////////////////////////////////////////////////////////

387 // ! Program main

388 ////////////////////////////////////////////////////////////////////////////////

389 int

390 main ( int argc , char∗∗ argv )

391 {
392 ///////////////////////////////////

393 // S t ar t t imer

394 CUT SAFE CALL( cutCreateTimer ( &timer ) ) ;

395 CUT SAFE CALL( cutStartTimer ( t imer ) ) ;

396

397 ///////////////////////////////////

398 //MCML front−end ( pars ing f i l e input )

399 char i npu t f i l ename [STRLEN ] ;

400 FILE ∗ i n p u t f i l e p t r ;

401 short num runs ; /∗ number o f independent runs . ∗/
402

403 CUDA SAFE CALL ( cudaGetDeviceCount(&GPU N) ) ;

404
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405 p r i n t f ( ”========Number o f GPUs ava i l a b l e : %d \n” , GPU N) ;

406

407 i f ( argc==3) { //Last argument f o r GPU N

408 i f ( a to i ( argv [ 2 ] )<=GPU N)

409 GPU N=ato i ( argv [ 2 ] ) ;

410 else

411 p r i n t f ( ”NOTE: You s p e c i f i e d more than the max # of gpus a v a i l a b l e . \ nDefau l t ing

to max ava i l a b l e=%u \n” , GPU N) ;

412 // e l s e use the max number o f GPU N a v a i l a b l e

413 }
414 else {
415 p r i n t f ( ”NOTE: You did not s p e c i f y the number o f gpus to be used . \nDefau l t ing to 1

GPU \n” ) ;

416 GPU N=1;

417 }
418

419 p r i n t f ( ”========Number o f GPUs used : %d \n\n” , GPU N) ;

420

421 p r i n t f ( ”\\\\\\\\GPU MCML/////////\ n” ) ;

422 p r i n t f ( ”\\\\\\\\%d blocks /////////\ n” , NBLOCK) ;

423 p r i n t f ( ”\\\\\\\\%d threads /////////\ n” , NTHREAD) ;

424

425 GetFnameFromArgv( argc , argv , i npu t f i l ename ) ;

426 i n p u t f i l e p t r = GetFi le ( i npu t f i l ename ) ;

427 CheckParm ( i n p u t f i l e p t r , &in parm ) ;

428 num runs = ReadNumRuns( i n p u t f i l e p t r ) ;

429

430

431 while ( num runs−−) {
432 ReadParm ( i n p u t f i l e p t r , &in parm ) ;

433

434 //Error check − l im i t e d to MAXLAYER by const memory (8kB) s i z e

435 i f ( in parm . num layers+2>MAXLAYER) {
436 p r i n t f ( ”ERROR: Total number o f l a y e r s + 2 ambient l a y e r s > ”

437 ”MAXLAYER (%u l a y e r s s p e c i f i e d in MCMLcuda kernel . h ) \n” , MAXLAYER) ;

438 e x i t (0) ;

439 }
440

441 f i n a lA r z=AllocDoubleMatrix (0 , in parm . nr −1 ,0 , in parm . nz−1) ;

442

443 DoOneRun( num runs ) ;
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444 }
445

446 ///////////////////////////////////

447 //Halt dev i ce and c lean up

448 FreeDoubleMatrix( f i na lA r z , 0 , in parm . nr−1, 0 , in parm . nz−1) ;

449 for ( int i =0; i<GPU N; i++) {
450 FreeDoubleMatrix(GPUinfo [ i ] . A rz , 0 , in parm . nr−1, 0 , in parm . nz−1) ;

451 }
452 f c l o s e ( i n p u t f i l e p t r ) ;

453

454

455 ///////////////////////////////////

456 // Stop t imer and repor t t ime/ r e s u l t s

457 CUT SAFE CALL( cutStopTimer ( t imer ) ) ;

458 p r i n t f ( ”\n\n>>>>>>TOTAL number o f photons s imulated : %u \n” , (unsigned int )

t o ta l s imu l a t ed ) ;

459 p r i n t f ( ”>>>>>>TOTAL Proces s ing time : %f (ms) \n” , cutGetTimerValue ( t imer ) ) ;

460 CUT SAFE CALL( cutDeleteTimer ( t imer ) ) ;

461

462 CUT EXIT( argc , argv ) ;

463

464 return (0) ;

465 }

Listing B.3: MCMLcuda.cu (Host CPU code)
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