
A Hierarchical Description Language and Packing

Algorithm for Heterogenous FPGAs

by

Jason Luu

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright c© 2010 by Jason Luu

Abstract

A Hierarchical Description Language and Packing Algorithm for Heterogenous FPGAs

Jason Luu

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2010

The complexity of Field-Programmable Gate Array (FPGAs) logic blocks have undergone

constant evolution to the point where both the basic soft logic blocks that implement

combinational logic and the fixed-function hard blocks contain complex interconnects,

hierarchy and modes. The goal of this thesis is to both support that complexity and

enable future architecture exploration of even increased complexity and new kinds of

hard functionality. To accomplish this, a Computer-Aided Design (CAD) flow that can

map a user circuit to an FPGA with these complex blocks is needed. We propose a

new language that can describe these complex blocks and a new area-driven tool for the

packing stage of that CAD flow. The packing stage groups components of a user circuit

into the complex blocks available on the FPGA. We conduct experiments to illustrate the

quality of the packing tool and to demonstrate the newly-enabled architecture exploration

capabilities.

ii

Acknowledgements

I would like to thank my supervisors Jonathan Rose and Jason Anderson for their deep

insights and advice on my thesis work and life in general.

I would like to also express gratitude to my parents Can Luu and Huong Do for their

support throughout my Master’s as well as to my friend Jun Ye for her humour and

encouragement.

I would like to thank Kenneth Kent, Ian Kuon, Danny Paladino, and many others in

the lab that I worked with. Their feedback and input were helpful and well appreciated.

Lastly, I would like to thank NSERC and the Rogers Scholarship for their financial

support in my degree.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Research Goals . 3

1.3 Thesis Overview . 4

2 Background 5

2.1 FPGA Architecture . 5

2.1.1 General-Purpose Complex Blocks 7

2.1.2 Special-Purpose Complex Blocks 11

2.2 Complex Block Architecture Description Languages 14

2.2.1 GPCB Description Languages . 15

2.2.2 Special Purpose Complex Block Description Languages 16

2.2.3 Combined GPCB and SPCB Description Languages 18

2.2.4 XML . 20

2.3 Computer-Aided Design Tools for FPGAs 21

2.3.1 Overview . 21

2.3.2 Packing Algorithms . 24

Overview . 24

Basic GPCB Packing . 25

2.3.3 SPCB and Extended GPCB Packing 28

iv

3 Complex Block Architecture Description Language 32

3.1 Introduction . 32

3.2 UTFAL Specification . 33

3.2.1 Physical Blocks . 34

3.2.2 Modeling Primitives . 36

3.2.3 Intra-Block Interconnect . 39

3.2.4 Modes . 42

3.3 More Complex Examples . 44

3.3.1 Basic GPCB . 44

3.3.2 Fracturable Memory Cluster . 46

3.4 Summary . 50

4 Packing Algorithm for Heterogeneous FPGAs 52

4.1 Introduction . 52

4.2 Scope . 53

4.3 The AAPack Packing Algorithm . 56

4.3.1 Algorithm Overview . 56

4.3.2 Dealing with Arbitrary Hierarchy 58

4.3.3 Dealing with Heterogeneity: Matching Supply and Demand 61

4.3.4 Algorithm Details . 62

Select Seed . 62

Select New Complex Block . 63

Try Pack Candidate Block Into Complex Block 63

Select Candidate Block . 63

Candidate Block Selection Cost Function 64

Quick Legality Checking . 65

4.3.5 Try Add Block . 65

Routing . 66

v

4.3.6 Dealing with Memories . 68

4.4 Error Checking . 69

4.5 Software Organization . 69

4.6 Summary . 70

5 Experiments and Results 71

5.1 Experimental Methodology . 71

5.2 Results . 75

5.2.1 Comparison of Algorithms on a Simple LUT-Based Complex Block 75

5.2.2 Fracturable LUT Architectures 80

Comparison Against Lower-Bound 83

Comparison of Architectures with and without Fracturable LUTs 84

5.2.3 Depopulated Crossbar . 88

5.2.4 Heterogeneous FPGA . 92

5.3 Summary . 95

6 Conclusions 96

6.1 Future Work . 97

Timing-Driven CAD Flow . 98

Architecture Exploration . 98

6.1.1 Improve Quality and Runtime for the AAPack Algorithm 99

6.1.2 Carry Chain Support . 99

Bibliography 101

A FPGA CBS Examples 107

A.1 Complete Specification of Basic GPCB Block 107

A.2 Complete Specification of Memory with Reconfigurable Aspect Ratio . . 108

A.3 Fracturable Multiplier . 110

vi

A.3.1 Multiplier SPCB Example . 110

A.3.2 Complete Specification . 115

vii

List of Tables

5.1 Routing architecture parameters . 73

5.2 AAPack results for a basic GPCB archictecture with N = 8, K = 6, I = 27. 76

5.3 AAPack vs T-VPack 5.0. Values are presented as AAPack/T-VPack. . . 77

5.4 AAPack vs T-VPack 5.0 single route normalized runtimes. 79

5.5 Fracturable LUT Architectures vs Non-fracturable. 86

5.6 Relaxed AAPack vs AAPack . 88

viii

List of Figures

2.1 Island Style FPGA . 6

2.2 Basic general-purpose complex block and the BLE inside of it 7

2.3 An expanded BLE with two LUTs that share common inputs 8

2.4 Merging two small LUTs to create a larger LUT using a 2-to-1 mux . . . 9

2.5 A fracturable 6-LUT with 7 inputs. 10

2.6 Heterogeneous FPGA with GPCB and different SPCBs 12

2.7 Floating-point core on an FPGA proposed by Ho [16] 13

2.8 RaPiD FPGA architecture datapath SPCB [14] 14

2.9 FPGA CAD Flow a) Typical CAD flow b) Fully architecture-aware CAD flow 23

2.10 T-VPack hill-climbing example for a N = 3, I = 4, K = 4 basic GPCB . 26

3.1 Example step-by-step process of describing a physical block 35

3.2 Examples of the three interconnect types: a) complete b) direct c) mux . 40

3.3 Concatenation example . 42

3.4 Example of a physical block with multiple modes of operation 42

3.5 Basic general-purpose complex block and the BLE inside of it 44

3.6 Port names and connections. 45

3.7 Example of an embedded block RAM. 47

3.8 The mem reconfig mode representing a 1024x2 RAM. 48

3.9 Routing connections for block RAM. 49

ix

4.1 Inputs and outputs of AAPack . 53

4.2 Fracturable LUT GPCB . 54

4.3 Fracturable multiplier CLB . 55

4.4 A tree representation of a complex block hierarchy 58

4.5 Mapping multiplier blocks from a circuit to a complex block hierarchy . . 60

4.6 Example where interconnect limits what blocks can be packed into the cluster 60

4.7 If an FPGA is too small, AAPack tries a larger FPGA 62

4.8 Negotiated congestion routing to resolve congestion conflicts 67

5.1 Experimental method to measure quality of an architecture/CAD algorithm 72

5.2 Complex block for a fracturable BLE FPGA architecture 81

5.3 A fracturable BLE with 7 inputs, 2 outputs, and optional output registers 82

5.4 The structure of fracturable 6-LUT with 7 inputs. 82

5.5 Logic utilization of AAPack on a sweep of FI. 84

5.6 The highlighted lut1 is packed into an empty fracturable BLE. 85

5.7 AAPack packs the neighbour primitives of lut1. 85

5.8 A more area efficient packing selects different candidates. 85

5.9 Depopulated crossbar with a staggered connection pattern and a xP of 0.5 89

5.10 Logic utilization vs depopulation of crossbar 90

5.11 Number of external nets vs depopulation of crossbar 91

5.12 Runtime vs depopulation of crossbar . 91

5.13 Placement of the or1200 circuit on a heterogeneous FPGA 93

5.14 Part of the routing for the or1200 circuit on a heterogeneous FPGA . . . 94

A.1 Reconfigurable Embedded Multiplier. 111

A.2 36x36 reconfigurable embedded multiplier slice. 111

A.3 Interconnect between complex block and two divisible 18x18 multipliers. 114

x

Chapter 1

Introduction

1.1 Motivation

Field-Programmable Gate Arrays (FPGAs) are programmable digital integrated circuits

that are a widely used media for implementing digital circuits. This is reflected in the

annual revenue of the two largest FPGA vendors, Xilinx and Altera, which exceeded $3

billion in 2008 [10] [18]. Programmability is one reason, among others, for the widespread

use of FPGAs; however, it comes with a high cost and one aspect of that cost is silicon

area. The general-purpose logic fabric that enables programmability on an FPGA uses

an average of 35 times more silicon area to implement a digital function compared to

implementing the same function directly in silicon using standard cells [24]. Area is

a major factor in the cost of a chip and so there is a strong incentive to narrow this

area gap. Furthermore, reducing area has the added benefit of improving both power

and delay because power is directly correlated with area, and delay can be improved by

trading-off area.

FPGA area can be improved by selectively removing some of its programmability,

hence reducing some of its cost. One approach on this front is to embed fixed-functionality

blocks (also known as hard blocks) such as memories and multipliers into the FPGA logic

1

Chapter 1. Introduction 2

fabric. Kuon showed that the area ratio between the specific circuits he implemented on

an FPGA and those same circuits implemented directly in silicon using standard cells

reduced from 35 to 18 in designs with hard blocks [24]. This is under the condition

that the number of hard blocks supplied on the FPGA exactly matches the demand

of the user circuit. When the number of supplied hard blocks exceeds demand then

the unused hard blocks waste area. But, if too few hard blocks are supplied, then

surplus demand will be implemented in the area-inefficient general-purpose logic fabric.

To account for these issues, hard blocks on an FPGA are often made more flexible to

accomodate differing demands from the circuit. Two common methods to make hard

blocks flexible are: 1) make them fracturable (divisible into smaller components), or 2)

make them reconfigurable into different modes of operation.

Apart from embedding fixed-functionality blocks, another approach to reduce area is

to remove some of the flexibility of the programmable logic on an FPGA by forcing con-

straints on what programmable logic may be put together. For example, a programmable

logic block that can implement one large logic function may be fractured to implement

two smaller logic functions with some shared inputs instead of two completely indepen-

dent logic functions. As long as the constraints are satisfied often enough in a user circuit,

it can provide significant area savings. There is a current trend for modern commercial

FPGAs to have fracturable programmable logic blocks [12] [17] because they use large

programmable blocks for delay benefits [1] and it is hard to fully utilize these blocks

unless they are fracturable [22].

Various clever architectures [16] [13] have been developed that aim to improve FPGA

area by selectively removing programmability. Modern commercial FPGAs, with their

fracturable hard blocks and programmable logic blocks, are a few example points in this

broad space of complex blocks in FPGAs. Architects require a method to compare the

quality of these architectures in order to gain a better understanding of different design

decisions.

Chapter 1. Introduction 3

FPGA architecture research is typically done empirically by mapping a set of bench-

mark circuit designs into each candidate architecture using a set of Computer-Aided

Design (CAD) tools. Then, the results are compared on the basis of quality metrics such

as area, speed and power. The CAD tools must be able to understand the architecture

being explored and utilize the unique features of each architecture in question in order to

fairly compare the different architectures and rigourously navigate this space. To date, a

generic and flexible CAD flow that is aware of architectural features such as hard blocks,

fracturabilility, and multiple modes of operation does not exist in the public domain.

The creation of that capability is the focus of this research, with specific attention paid

to the packing stage in the CAD flow.

The packing stage of a typical CAD flow begins at the point where the user circuit is

in the form of a technology-mapped netlist, then groups the netlist components into the

complex blocks available on the FPGA. In this thesis, we investigate architecture-aware

packing by focusing on two problems: the first is a way to describe the complex blocks of

an FPGA including fracturability, hierarchy, and multiple modes of operation, the second

is a way to pack to those complex blocks.

We envision that the knowledge gained in this research will be a key step towards

enabling exploration of new complex block architectures. Furthermore, it will aid in

developing a future completely architecture-aware academic CAD flow that may be used

to further do architecture exploration and algorithms research.

1.2 Research Goals

The goal of this research is to advance architecture-aware packing by:

1. Creating a new generic language that can describe a large number of different

complex blocks for FPGAs.

2. Creating a packing tool and algorithm that can pack to a useful subset of the

Chapter 1. Introduction 4

language with a focus on area-driven packing.

3. Measure and confirm the quality of the packer for a subset of the language.

To satisfy the first goal, a new language to describe the complex block was developed.

This language allows the FPGA architect to specify the routing, modes of operation, and

hierarchy of blocks that form the complex blocks of an FPGA in an intuitive fashion.

Secondly, a new area-driven packing tool was developed that packs to architectures spec-

ified by the new architecture description language and has been tested for fracturable

memory, multiplier, and general-purpose logic blocks. Lastly, the quality of results of the

packing tool was compared to a commonly-used packer for standard FPGA architectures

and against a lower-bound for new architectures.

1.3 Thesis Overview

Chapter 2 provides background information and discusses previous work in modeling

FPGA logic blocks and packing to those logic blocks. Chapter 3 introduces the new

architecture modeling language for FPGA logic blocks. Chapter 4 describes the packing

algorithm used to pack a user circuit into a subset of architectures described in Chapter

3. Chapter 5 describes the experimental methodology used to measure the quality of the

packing algorithm and gives experimental results. The final chapter offers a summary of

the thesis contributions and suggests future work.

Chapter 2

Background

This chapter covers the background material related to the key contributions in this

thesis, which are a new language for describing FPGA complex block architecture, and a

tool and algorithm that can pack smaller pieces of user logic into larger, widely varying,

complex blocks. We begin by describing the relevant basics of FPGA architecture, and

the prior work on languages that have been used to describe FPGA architecture. We

then give an overview of the complete Computer-Aided Design flow needed to take a user

circuit and implement it on an FPGA. As the focus of this work is on the packing step,

we describe the related prior work in that field.

2.1 FPGA Architecture

The architecture of an FPGA consists of the set of blocks that perform internal com-

puting, the Input/Output blocks that communicate with the extra-chip world, and the

programmable routing structure that connects them. As FPGAs have evolved, they have

employed increasingly more rich and complex blocks that consist of a larger number of

small components, which we will call primitives, grouped together.

One purpose of this grouping is to leverage the locality typically found in circuits.

This concept of locality leads naturally to the creation of a hierarchy of clusters. For the

5

Chapter 2. Background 6

���

���

�����	
�

���
�

�����	
�

���
�

�����	
�

���
�

�����	
�

���
�

���

���

������ ��� ���

�����	
�

���
�

�����	
�

���
�

�����	
�

���
�

�����	
�

���
�

�����	
�

���
�

�����	
�

���
�

�����	
�

���
�

�����	
�

���
�

�����	
�

���
�

�����	
�

���
�

�����	
�

���
�

�����	
�

���
�

������ ��� ���

���

���

���

���

Figure 2.1: Island Style FPGA

purposes of the discussions below we will refer to clusters that only contain primitives as

level 1 clusters. We refer to the the top-level cluster as a complex block.

This thesis focuses on a class of FPGA architectures known as island-style FPGAs,

which consist of complex blocks surrounded by interconnect with input and output pins

at its periphery, as shown in Figure 2.1. There are two major categories of complex blocks

for island-based FPGAs: general-purpose and special-purpose complex blocks. General-

purpose complex blocks (GPCBs) are flexible enough to be able to implement any logic

function. Special-purpose complex blocks (SPCBs) contain fixed-functionality blocks

(and are also known as hard blocks) that perform a more limited set of computation,

and does those computations more efficiently than the general-purpose blocks. SPCBs

are not intended for general-purpose use, though they can be used for general-purposes

under certain conditions [46] [20]. In the following sections we describe these each in

turn.

Chapter 2. Background 7

Basic GPCB

BLE

BLE 1

BLE 2
Fully

Populated

I O

LUT Flip!Flop
p

Crossbar

BLE N

clk

Figure 2.2: Basic general-purpose complex block and the BLE inside of it

2.1.1 General-Purpose Complex Blocks

GPCBs provide the core logic flexibility of an FPGA, and with a sufficient number of

them, can implement any logic function. A typical GPCB consists of programmable logic

primitives and flip-flops. One of the most common logic primitive is a k-input 1-output

look-up table (LUT), which can be programmed to implement any k-input Boolean logic

function.

Figure 2.2 illustrates the structure of a basic GPCB. This complex block consists of

Basic Logic Elements (BLEs), and a full crossbar for interconnect. The full crossbar

connects the inputs of the complex block to any of the inputs of the BLEs inside it, and

provides a feedback path from the outputs of the BLEs back to any of the inputs of the

BLEs. The outputs of the BLEs connect directly to the complex block outputs.

The expanded view of Figure 2.2 shows the internals of a typical BLE; the multiplexer

allows the BLE to implement a simple LUT or a LUT feeding directly into a flip-flop. If

the BLE is to implement a flip-flop only, then the mux would be set to have the LUT

feed the flip-flop and the LUT is programmed to have the same logic function as a wire.

Modern FPGAs [12] [17] employ several techniques to improve the architecture of this

basic GPCB. The first attempts to improve area efficiency by adding functionality to the

Chapter 2. Background 8

Expanded Dual!Output BLE

3!LUT
ff

3 LUT ff3!LUT

Figure 2.3: An expanded BLE with two LUTs that share common inputs

BLE. The BLE is expanded to have two outputs and contain two LUTs that share some

input pins. An example of an expanded BLE with two 3-LUTs that share inputs is shown

in Figure 2.4. This example has optional flip-flops for each output of the BLE. Since the

two LUTs share input pins, they can reuse the interconnect resources required to bring

connectivity to the pins of the BLE. It is thus possible to achieve an area saving as long

as both LUTs in the expanded BLE are used often enough. Some FPGA architects take

this technique further by allowing those two LUTs to optionally implement a larger LUT

via a 2-to-1 mux. This technique relies on Shannon decomposition, which states that a

function can be represented by an aggregate of two subfunctions of the original. Given

a function that has one too many inputs for one of the two LUTs in the expanded BLE,

this technique implements the function as follows: One LUT implements the function

assuming the last input of the BLE is logic ’0’, the other LUT implements the function

assuming that the last input is logic ’1’, and the last input is used to select which

subfunction to use with the 2-to-1 mux. Figure 2.4 shows an example of the structure

where two 3-LUTs can optionally implement one 4-LUT. A structure that can implement

one large LUT or multiple smaller LUTs is called a fracturable LUT. Each option (ie. one

large LUT or many small LUTs) is a mode for that fracturable LUT. Figure 2.5 shows

an example of a fracturable LUT with two modes. It can operate as a 6-LUT or it can

Chapter 2. Background 9

F t bl 4 LUT

3 LUT

Fracturable 4 LUT

3 LUT

3 LUT

Figure 2.4: Merging two small LUTs to create a larger LUT using a 2-to-1 mux

operate as two 5-LUTs with 3 shared inputs. The number of inputs used in the dual

LUT mode is called FI. For fracturable 6-LUTs, if FI is 5, then all the BLE input pins

to the dual 5-LUTs are shared. If FI is 10, then none of those input pins are shared. In

this example, FI is 7.

The two major FPGA vendors today use fracturable BLEs in their GPCBs. Xilinx

released its Virtex-6 FPGA that contain fracturable 6-LUTs. One of these fracturable

6-LUTs can implement one 6-LUT or two 5-LUTs that share common inputs (FI =

5) [17]. Altera’s Stratix IV FPGA has GPCBs that contain 8-input fracturable BLEs

that can implement two 5-LUTs with 2 shared inputs (FI = 8), one 6-LUT, a subset

of 7-input logic functions, and some other combinations [12]. Both vendors chose to

have optional registers at both outputs of the fracturable LUT. Despite the prevalence of

fracturable BLEs in commercial FPGAs, publicly available tools for FPGA architecture

exploration cannot yet model them. Furthermore, the vendors have chosen different FI

values for their fracturable BLEs and it is unclear which one is ”best” because of the lack

of exploration tools for fracturable LUTs.

The second technique reduces the area of the basic GPCB by depoulating the full

Chapter 2. Background 10

Fracturable LUT

Mode:!two!lut5

Fracturable LUT

M d l t6
lut5

lut6

Mode:!one!lut6

FI

lut5

lut6

Figure 2.5: A fracturable 6-LUT with 7 inputs.

crossbar inside it. Lemieux [26] discusses different methods of depopulating that crossbar.

Lewis [27] also discusses the use of depopulated crossbars in Stratix FPGAs. It is likely

that academic research ignores the depopulation of crossbars inside the GPCB because

of the lack of public-domain tools to model it.

A third technique attempts to improve the area and delay of GPCBs by adding special

hardware and interconnect for arithmetic. A dedicated arithmetic structure is added

to the BLEs and fast carry-chains [15] [8] are added to join together those arithmetic

components across the BLEs. Without carry-chains, two BLEs are needed to implement a

full adder because a full adder has two outputs while a BLE has just one. The carry-chain

serves as a second output for a BLE so including arithmetic hardware and carry-chains

allow one BLE, with some small area overhead, to implement a full adder instead of two

BLEs. If arithemetic operations are common enough in user designs, then this results in

an area savings. Furthermore, a carry-chain is a common timing critical path, if left to

be implement in simple BLEs, and so these structures improve speed. Both the Virtex-

6 and Stratix IV FPGAs contain adders and carry-chains in their GPCBs. Although

there exist academic tools [40] that model carry-chains, they often place architectural

assumptions in their source code making it difficult to model carry-chains that deviate

Chapter 2. Background 11

from those assumptions.

These advances on the GPCB and the lack of versatile public-domain tools to model

them motivates the two key contributions of this thesis. The first is a public-domain

language capable of describing these advances and that can be extended to cover future

advances. The second is a public-domain tool that can map a user’s circuit to the

architectures described by the language.

2.1.2 Special-Purpose Complex Blocks

An FPGA architect may choose to embed specialized hard blocks in the FPGA. These

hard blocks implement common functions found in digital designs typically using much

less area, delay, and power than implementing those same functions using GPCBs [24].

An SPCB is a complex block that contains those hard blocks. Figure 2.6 shows an

example of a heterogeneous island-style FPGA with GPCBs and different sized memory

and multiplier SPCBs.

Hard blocks provide area savings if used, but waste area if unused, and so it is

important to determine the right number and type of them to include in an FPGA. This

remains an open problem and one that clearly depends on the applications being targeted.

Furthermore, different designs may require different sizes or variations of hard blocks. As

a result, an FPGA architect may try to improve the utilization of an SPCB by making

it configurable into different, related functions, or fractured into multiple smaller hard

blocks with the same function. Examples of hard blocks in the SPCBs of commercial

FPGAs that make use of configuration/fracturing are memories and multiplier-oriented

blocks. Due to the prevalence of these two hard blocks in modern FPGAs, we describe

them in more detail.

Both Altera and Xilinx commercial FPGAs have SPCBs with configurable memories

[17] [11]. For example, the Virtex-6 36 Kb dual-port memory SPCB can implement a

dual-port memory with many aspect ratios a few of which include 32Kx1, 4Kx9, and

Chapter 2. Background 12

���

���

���� �	
��
����

����

���

���

������ ��� ���

����

����

��������	�

��������	� ����

��������	�

��������	�

����

����

�	
��

�	
��

�	
��

������ ��� ���

���

���

���

���

Figure 2.6: Heterogeneous FPGA with GPCB and different SPCBs

Chapter 2. Background 13
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Figure 2.7: Floating-point core on an FPGA proposed by Ho [16]

1Kx36 [17]. Implementing such memories are non-trivial. Ngai describes a memory with

configurable aspect ratios in [37].

Similar to memories, many commercial FPGAs contain hard multipliers that are

configurable. The Stratix IV hard multiplier can be fractured from one 36x36 multiplier

into multiple smaller 18x18, 12x12, or 9x9 multipliers [11]. These SPCBs can also operate

in modes that perform different, but related functions such as addition, or multiply-

accumulate [17] [11].

Apart from memories and multipliers, there has been prior work describing other

types of SPCBs that can be embedded into an FPGA. Ho [16] proposed adding a family

of SPCBs for floating-point computation onto an FPGA as shown in Figure 2.7. This

family consists of combinations of floating-point multipliers, floating-point adders, word-

based LUTs, and registers. Word-based LUTs are groups of LUTs that must share

the same logic function. A word-based LUT perform the same operation on different

bits of a bus of wires. The different primitives of Ho’s SPCBs are linearly placed and

connected together using bus-based interconnect and feedback paths. Instead of being

fracturable, these SPCBs implement different floating-point operations by programming

the bus interconnect and word-based LUTs.

Some FPGA architectures are composed entirely of SPCBs. These architectures are

known as coarse-grained FPGAs. This is a deep area of study and several authors have

Chapter 2. Background 14

well as simplifying the routing process.

G
P

R

R
A

M

R
A

M

G
P

R

M
U

L
T

G
P

R

A
L

U

A
L

U

G
P

R

G
P

R

R
A

M

A
L

U

G
P

R

G
P

R

R
A

M

R
A

M

G
P

R

M
U

L
T

G
P

R

A
L

U

A
L

U

G
P

R

G
P

R

R
A

M

A
L

U

G
P

R

Figure 2. The RaPiD datapath.

Figure 2.8: RaPiD FPGA architecture datapath SPCB [14]

proposed different SPCBs for coarse-grained FPGAs [36]. We will discuss one such FPGA

called RaPiD [13].

RaPiD is an FPGA architecture that consists of one large datapath SPCB and some

separate control logic. The RaPiD datapath follows a linear structure as shown in

Figure 2.8. The blocks are attached using segmented, bidirectional busses. Although

RaPiD is not an island-style FPGA, one can imagine that its datapath can be embedded

in an island-style FPGA in a way similar to Ho’s work.

The wide variety of SPCB designs motivates the need for a public-domain language

that can describe them, as well as a public-domain tool that can map a user’s circuit to

these blocks.

2.2 Complex Block Architecture Description Lan-

guages

The previous section described a few points in the large space of complex blocks that

FPGA architects may wish to investigate. In order to explore that space, a language that

can precisely specify those complex blocks is needed. This section describes a taxonomy of

different languages that were developed to describe complex blocks. Then, we introduce

a mark-up language called XML [45] which is used in the new language that we will

Chapter 2. Background 15

present in the next chapter.

There are three main types of complex block description languages: 1) Languages

that describe GPCBs only, 2) Languages that describe SPCBs only, 3) Languages that

describe both GPCBs and SPCBs.

2.2.1 GPCB Description Languages

GPCB description languages focus on describing the basic GPCB shown in Figure 2.2

and some variants of that GPCB.

VPR 4.30 is an FPGA architecture exploration tool released in 1999 [5]. It is a widely

cited tool used to explore FPGAs composed of the basic GPCB as well as a wide variety

of FPGA routing architectures. It is also the ancestor of several different description

languages that focus on the basic GPCBs.

In VPR 4.30, the architect describes the basic GPCB that he/she wants to explore

using data-value pairs. Comments are preceded by the character ’#’ For example:

s ubb l o ck s p e r c l b 4 # This means 4 BLEs in a c l u s t e r

The FPGAs that VPR 4.30 could explore were very broad and extensive for its time.

It was capable of varying the number of BLEs (N), number of input pins to the GPCB (I),

and size of the BLE (K) for basic GPCBs. It also provided some support for alternative

types of complex blocks through logical equivalence. Pins that are logically equivalent

can have their locations swapped with each other without changing logic functionality.

The four drawbacks of this description language are:

1. There is only one kind of intra-block interconnect - a full crossbar,

2. BLEs can only have one output,

3. There can be only one type of BLE within a complex block, and

4. There can only be one type of complex block.

Chapter 2. Background 16

In our own prior work [30], we attempted to resolve some of the drawbacks of VPR

4.30 in the upgraded VPR 5.0. We modified the description language to make use of

XML [45]. This stylistic change made it easier for users to make modifications to the

language because XML parsers are readily available compared to the VPR 4.30 custom

format. The two primary language contributions of the language developed in the VPR

5.0 release are that it enabled architects to specify different types of complex blocks, and

that it supported multi-output level 1 clusters (recall that level 1 clusters are clusters

that only contain primitives). That language assumed that the columns of an FPGA

contain complex blocks of the same type so the ratio of different types of complex blocks,

known as the supply ratio, is specified by the number of columns that a type of complex

block occupies. However, this language also assumed that level 1 clusters were uniform,

and did not let the user specify the arbitrary hierarchy and interconnect between and

among those hierarchies.

Pervez [41] proposed two new additions to the VPR 5.0 language: the first is to

individually specify the timing of each interconnect edge in a level 1 cluster. The second

is to specify each potential programmable connection individually. This results in a

high degree of flexibility but also a significant amount of verbosity in the architecture

description language. In our work in Chapter 3, we describe a new language that attempts

to strike a good balance between verbosity and flexibility.

These restrictions on GPCB description languages motivated other researchers to

create languages to describe SPCBs.

2.2.2 Special Purpose Complex Block Description Languages

A SPCB description language describes complex blocks containing hard blocks. These

languages range from simple parameter descriptions to a netlist representation.

Ho used parameters to describe different SPCBs that performed floating-point op-

erations on an FPGA [16]. The tool assumed a particular pipelined architecture. The

Chapter 2. Background 17

user would describe the SPCB architecture by setting various parameters that specify

the number of different types of blocks and busses available. The tool would then au-

tomatically generate the SPCB. This language is concise but is highly restrictive on the

types of SPCBs that can be explored.

There are several architecture description languages for SPCBs that employ a netlist

style representation. In RaPiD [13], users can specify the number of different blocks,

their placements, and their routing. It assumes a linear architecture in which the coarse

blocks are simply placed in a single line, with interconnect busses running alongside.

Filho proposed an architecture description language called CGADL that is designed

for coarse-grained FPGAs [39]. Filho’s language assumes that the SPCB is a level 1

cluster. The SPCB can contain five types of parameterizable primitives: memories,

registers, calculation units, bus-based multiplexers, and finite state machines. The inter-

connect within a SPCB is specified as port-to-port connections where one output port

can connect to multiple input ports. However, CGADL can be very verbose for some

architectural constructs that are common on FPGAs. For example, the full crossbar

connection found in the basic GPCB requires that the architect individually describe

each mux of the crossbar. There are several other architecture description languages for

FPGAs with SPCBs only and they are classified in [36]. These langauges tend to take

the form of a netlist specification of primitives and clusters connected within the block.

They are highly expressive and flexible but, similar to CGADL, that same expressiveness

can make it cumbersome to express GPCBs.

The expressiveness of the netlist-style description found in several of these SPCB

languages motivated the use of a netlist-style description for the new language that we

propose in the next chapter. Also, the problem with verbosity encountered with a netlist-

style language motivated us to reduce verbosity in our new language.

Chapter 2. Background 18

2.2.3 Combined GPCB and SPCB Description Languages

Some architecture description languages aim to accomodate both GPCBs and SPCBs.

These include the recently proposed CARCH language [40] and standard HDLs.

In [40], Paladino proposed a new hierarchical language called CARCH with the inten-

tion of using this langauge to describe commercial FPGAs from Altera. This language

is the most relevant to the goals of the present research, as its intent is to describe

both GPCBs and SPCBs in FPGAs so it will be covered in more depth than the other

languages presented thus far.

Similar to the VPR 5.0 language, CARCH describes complex blocks assuming a two-

level hierarchy. Unlike the VPR 5.0 language, the architect can specify the primitives

that comprise the level 1 cluster. Level 1 clusters contain a fixed number of primitives

and these primitives can have different modes of operation. Similarly, complex blocks

contain a fixed number of level 1 clusters and these clusters can have different modes of

operation. Both complex blocks and level 1 clusters can be heterogeneous.

Another key concept in the language is the ability to have blocks that operate in

different modes. A mode is a configuration for a block that is mutually exclusive with

other configurations.

The overall structure that the CARCH language uses to describe complex blocks is

follows:

d e f i n e a l l types o f p r im i t i v e s and t h e i r modes
d e f i n e a l l types o f l e v e l 1 c l u s t e r s and t h e i r modes
d e f i n e a l l types o f complex b locks and t h e i r modes

The complex block, level 1 clusters, and primitives generally follows the definition

pattern:

name
port d e f i n i t i o n s
modes o f opera t i on
r u l e s on packing subblocks o f c l u s t e r i f a pp l i c ab l e

Chapter 2. Background 19

CARCH has a few special case, very specific, constructs for blocks in each level of

hierarchy. For example, it has a unique carry-chain construct for level 1 clusters.

CARCH is much more flexible than the GPCB-only language family and can be more

concise than the SPCB languages. CARCH introduces ports for clusters and primitives,

complex matching rules, modes of operation, and heterogeneity within a cluster. These

are significant advancements in the description of GPCBs and a large step towards gener-

ically describing SPCBs.

There are some weaknesses with this language. It can be quite difficult to determine

the design rules of the CARCH language for a new complex block architecture. For

example, if a GPCB uses a depopulated crossbar, as found in the devices that it was

tested on, the architect must use a rule to restrict the number of input pins used by

the GPCB, and then empirically tune that number for the CARCH language to closely

approximate the depopulated crossbar. Ideally, an architect should directly describe

architectural structures, such as a depopulated crossbar, of a complex block instead of

manually inferring rules from those architectural structures.

The CARCH language was built with the goal of representing the GPCBs of commer-

cial FPGA architectures instead of architecture exploration and this bias makes the tool

more difficult to use for architecture exploration. For example, the CARCH language has

a large number of different parameters, conventions, and keywords, making the language

difficult to learn. Also, additional features require a modification to the CARCH lan-

guage. For example, it does not have an option to register input ports (a common trait

in FPGA memories) because this trait did not appear in the GPCBs of the commercial

devices. This feature can easily be added to the language as another property but such

a system can quickly lead to a bloated language with many special case constructs.

Another method to specify GPCBs and SPCBs is to use an existing Hardware Descrip-

tion Language (HDL), such as Verilog. Such a specification gives very high architecture

flexibility and precision as the user can describe any digital hardware device. The diffi-

Chapter 2. Background 20

culty with such an approach is that it becomes hard to parameterize and explore different

complex blocks quickly because an HDL is too detailed for such purposes.

An ideal complex block architecture description language should be able to clearly

and directly describe a wide variety of complex block architectures yet also be able to

maintain conciseness through the use of abstraction.

2.2.4 XML

This section provides a brief introduction to XML [45] because XML is used by the new

language described in this thesis. XML is a language that is widely used to describe

content that contains intrinsic hierarchy, such as documents and software configurations.

XML can also conveniently describe an FPGA architecture due to the intrinsic hierarchy

found in FPGAs.

XML describes content using a hierarchy of elements. Elements are described using

tags.

There are three types of tags. Start-tags mark the beginning of an element. They

start with a <, followed by the name of the tag, then some optional attributes (that

will be described later), and end with a >. An end-tag marks the end of an element

and corresponds with a start-tag. It begins with a </, followed by the name of the

matching start-tag, and ends with a >. For example: <foo> is a start-tag that marks

the beginning of an element called foo and </foo> is an end-tag that marks the end

of that element. All content between an element’s start tag and corresponding end tag

is contained inside that element. The third type of tag is called an empty-element tag.

Empty-element tags describe elements that do not contain other elements or text. They

follow the same structure as start-tags but end with a /> instead of a >. This type of

tag does not have a corresponding end-tag.

Attributes are name-value pairs that optionally appear inside start-tags and empty-

element tags. The name is separated from the value by a = and the value is enclosed

Chapter 2. Background 21

in quotes. For example <foo bar=”purple”/> describes an empty-element tag called foo

that has an attribute bar set to the value purple.

An short example of a hierarchy of XML elements is as follows:

<chapter >

<foo bar="purple"/>

<text>Hello World!</text>

</chapter >

Describes an element called chapter that contains two elements. The first element is

an empty-element tag foo with an attribute bar set to purple. The second element is an

element text that encloses the content Hello World! with its start and end tags.

Comments in XML start with a <!– and end with a –>. For example:

<!-- This is a comment

that spans multiple lines

-->

These are the basic rules of the XML language that will be used in the next chapter.

2.3 Computer-Aided Design Tools for FPGAs

2.3.1 Overview

The design of modern FPGAs must almost always use Computer-Aided Design (CAD)

tools to map a circuit to the FPGA, because of the size and complexity of the devices. The

inputs to the CAD flow are a user circuit specified in a Hardware Description Language

(HDL), and some method of describing the devices being targeted. Commercial FPGA

CAD software contains databases that describe the specific features of the architecture

of the devices being targetted, as well as software code written that is specific to the

devices. Academic CAD flows, which are often aimed at architecture exploration, will

more typically have a separate input architecture description language, such as those

described in section 2.2 earlier, to specify the device being targeted. The output of the

Chapter 2. Background 22

CAD flow are the configurations that implements the user circuit on the specified FPGA

architecture.

A typical academic FPGA CAD flow is shown in Figure 2.9 (a). The first stage

of this flow is called front-end synthesis. Front-end synthesis first elaborates the HDL

of the user circuit, it then performs logic optimizations on the circuit, and finally, it

does technology-mapping which maps the logic of the circuit into the types of primitives

found in the FPGA. The output of front-end synthesis is a technology-mapped netlist.

The netlist then passes through the back-end flow. The first stage of the back-end flow

is called packing and this stage maps the technology-mapped blocks of the netlist into

the complex blocks available on the FPGA. Then the placement stage determines the

location of those complex blocks and the final routing stage resolves the connections

between all blocks. The end result is the configurations necessary to realize the user’s

circuit on the FPGA.

A large body of work has been published on different stages of this CAD flow. Despite

this work, a complete flow to explore the more advanced complex blocks described earlier

is lacking. For example, when Ho explored the architecture of floating-point cores on

FPGAs, he did it using manual technology-mapping and packing[16].

The lack of a complete CAD flow for more advanced complex blocks is partly caused

by architectural inflexibility in the front-end synthesis and packing stages.

Publicly available tools that implement these stages often hard-code architectural

assumptions thus limiting the architectures that can be explored. For example, infor-

mation such as detailed-routing inside complex blocks is often ignored in public-domain

packers. Similarly, fracturable multipliers and configurable memories are often also ig-

nored in front-end synthesis. If detailed architectural information was used in all stages

of the CAD flow, as shown in Figure 2.9 (b), then the different parts of the flow could

make more intelligent algorithmic choices to map a circuit into a given architecture. All

tools need to be architecture-aware. There is currently new and on-going work to en-

Chapter 2. Background 23

Benchmark

Circuits

Benchmark

Circuits

a) b)

Front!end Front!end

Synthesis Synthesis

Back!end

Packing

Back!end

Detailed

Architecture

Description

Packing

Detailed

Architecture

Description

Placement

Routing

Description
Placement

Routing

Quality of Results Quality of Results

Figure 2.9: FPGA CAD Flow a) Typical CAD flow b) Fully architecture-aware CAD
flow

able architecture-awareness in the up-stream tools and this thesis is a part of that effort.

In the following paragraphs, we will describe this related work, as some of the results

presented in this thesis rely on it.

ODIN II [21] is a front-end synthesis tool that performs elaboration and some small

amount of synthesis on a Verilog netlist; it is a new, clean slate implementation of the

first version of ODIN [19]. It incorporates architecture-awareness into the front-end flow.

ODIN can infer multipliers, and provide black-box module support, and support for

splitting memories and multipliers. Splitting is the process of dividing a large function

to multiple smaller ones. Splitting is necessary when a user has a logical function that

is too big to fit into the physical hard blocks on the FPGA. The function gets split into

multiple smaller ones so that it can fit into the hard blocks of the FPGA. ODIN II uses

the same detailed architecture description of the FPGA as the back-end so that it can

split mutlipliers and memories based on the sizes available in the architecture. Publicly

available tools such as ABC [44] can be then used to optimize and technology map the

netlist circuit generated by ODIN II. The result is a user netlist that is ready for the

Chapter 2. Background 24

back-end flow.

There has also been work that attempted to expand the architectures supported in

the back-end flow. If the packing stage can pack the technology-mapped netlist into the

SPCBs and GPCBs that VPR 5.0 [30] supports (described earlier), then the recently

released VPR 5.0 can be used to place and route that circuit. This is a significant step

forward from the older, and more widely-used, VPR 4.30 tool [5] that can only model

FPGAs with one type of basic GPCB.

The key missing link in enabling a complete architecture-aware CAD flow is in the

packing stage. There is a large body of work in the field of packing for FPGAs but very

little work in a generic packing algorithm that can understand the detailed architecture

of an FPGA complex block and pack to it. A generic packer that can leverage that

information will help enable a complete CAD flow to explore new FPGA architectures.

2.3.2 Packing Algorithms

Overview

The packing problem takes as input a technology-mapped netlist and maps it into avail-

able complex blocks on the FPGA. A technology-mapped netlist is composed of primitives

(such as LUTs, flip-flops or multipliers) connected by nets.

For the output of the packer to be correct (legal), the primitives that are packed

inside a complex block must be connectable (routable) as dictated by the netlist and the

block’s internal routing architecture. The packing problem is defined as finding a legal

packing that minimizes a cost function, where the cost function is usually correlated with

area, delay, and/or power consumption of the resulting operating circuit.

There is large body of prior work on the packing problem for FPGAs. Most of it

focuses on optimizing packing for the basic GPCB described in Figure 2.2, which will

be covered first. Subsequently, we will describe packing algorithms for specific types of

Chapter 2. Background 25

SPCBs and more complex GPCBs.

Basic GPCB Packing

Basic GPCB packers deal with the fairly homogeous problem of packing LUTs and flip-

flops into GPCBs (as illustrated in Figure 2.2). A LUT and a flip-flop are grouped into

one BLE. BLEs are in turn grouped to form the complex block. Basic GPCB packers

assume that the technology-mapped user netlist is already packed into BLEs in a simple

stage called pre-packing. The input is a netlist of pre-packed BLEs and the parameters

that describe the GPCB:

1. Number of BLEs in a GPCB, N

2. Number of routed inputs to the GPCB, I

3. Number of inputs on each LUT in the GPCB, K

The output is a netlist of GPCBs that implement the user circuit. Most of these packers

follow a greedy heuristic that packs one BLE at a time; these packers use an affinity

function to choose the next block to pack into the GPCB. The higher the affinity a block

has to a GPCB, the more ”desirable” it is to pack that block into the GPCB.

T-VPack [33] is a timing-driven packer that packs a basic GPCB one BLE at a time

until there is no space left, or until there are no suitable BLEs. It then ’opens’ a new

GPCB and repeats the process. There are cases where a GPCB cannot be filled because

there aren’t enough input pins available to pack more BLEs into it. T-VPack attempts

to resolve this problem with a hill-climbing heuristic: it will try to pack more BLEs

into the complex block in an attempt to reduce the number of input pins and acheive

a legal packing. Figure 2.10 shows an example of a case where hill climbing is needed

to pack more BLEs into a GPCB. The figure assumes a basic GPCB with N = 3, I =

4, and K = 4. BLE 1 is packed into the complex block first and this uses up all the

input pins. Packing BLE 2 into the cluster results in an illegal packing because there

Chapter 2. Background 26

����� ����� �����

����� ����� ����� ����� ����� �����

Figure 2.10: T-VPack hill-climbing example for a N = 3, I = 4, K = 4 basic GPCB

are not enough input pins. Packing BLE 3 results in a legal packing because its inputs

consume some of the inputs that were previously required to come from the external

routing, making the packing legal again. T-VPack uses an affinity function to determine

which pre-packed BLEs to pack into a GPCB. The affinity function is composed of two

parts, an area-driven shared net count and a timing-driven critical path gain. T-VPack

is widely-used in conjunction with VPR and its area and delay results are both less than

its predecessor, the area-driven VPack. The version of T-VPack that comes with VPR

5.0 does not pack other types of complex blocks and passes those structures through as

monolithic black-boxes.

Subsequent work on basic GPCB packers use an empirical method to compare their

particular algorithm with the T-VPack algorithm. This empirical method consists of

running a set of benchmark circuits through a CAD flow and then measuring some

quality metrics. To isolate the effects of the packing algorithm in their experiments,

these experiments typically keep all parts of the CAD flow constant except for the packing

algorithm. The benchmark circuits used in these experiments are often from the MCNC

[47] benchmarks. These circuits contain only logic and flip-flops (i.e. no hard blocks

structures).

Chapter 2. Background 27

Bozorgzadeh [6] explored adding routability heuristics to T-VPack and developed the

T-RPack algorithm. T-RPack uses the T-VPack algorithm with an altered area-driven

affinity function. Instead of just counting the number of nets that a candidate pre-packed

BLE has in common with nets in the current GPCB, the algorithm weights each pre-

packed BLE pin based on whether it is an input or output pin, how many pins it is shares

with the current GPCB, and whether the GPCB contains a driver for that pin. As well,

T-RPack penalizes candidate pre-packed BLEs for each addition GPCB input pin that

the candidate pre-packed BLE requires. On the 20 largest MCNC benchmarks, the T-

RPack algorithm can reduce the average minimum channel width by 3% and reduce the

average critical path delay by 5% compared to the T-VPack algorithm.

Singh [43] proposed a packer, IRAC, that is similar to T-VPack but with an additional

routability heuristic to rank the candidate pre-packed BLEs. Singh’s packer packs less

tightly than T-VPack because it tries to create a uniform Rent’s exponent across all the

clusters. A key characteristic of IRAC is that it priortizes the BLEs before packing based

on the number of incident nets and the total number of pins on incident nets. This allows

the algorithm to more intelligently select the seed pre-packed BLE and candidate pre-

packed BLEs such that more nets are absorbed into the GPCB, thus reducing minimum

channel width. On the 20 largest MCNC benchmarks, the average area-delay product of

circuits packed use this algorithm is 25% less than the ones packed using the T-VPack

algorithm.

There has also been prior work on combined technology-mapping and packing. Cong

[28] investigated simultaneous technology-mapping and packing, while Ling [29] inves-

tigated the application of techniques commonly found in technology-mapping to the

packing problem (ie. finding a logic depth optimal packing solution using a dynamic

programming algorithm). These methods tend to produce better delay, worse area, and

similar area-delay results compared to the T-VPack algorithm.

Chapter 2. Background 28

Chen [9] proposed a timing-driven, greedy, packing algorithm called HDPack. This

algorithm first employs an extremely fast, min-cut placement using hMetis [23] to place

the pre-packed BLEs on a grid. It uses the weighted sum of these grid distances together

with the number of shared nets and timing criticality as the affinity function. The key

difference between the shared net count in HDPack and T-VPack is that the affinity of

a net is scaled by 1/(num connections − 1) instead of just 1, thus weighting nets with

less connections more heavily than nets with many connections. HDPack then employs

a two-stage packing process: in the first stage, it packs BLEs with high affinity together

into clusters with the aim of absorbing nets. In the second stage, it uses the small

clusters as seeds for GPCBs. It then packs the GPCB by adding one BLE at a time until

the cluster is full or until no more BLEs will fit. Over the 20 largest MCNC circuits,

the HDPack algorithm produces circuits that are on average 6% faster, have 24% lower

minimum channel width, and uses 1% more CLBs than the T-VPack algorithm. The

HDPack and T-VPack algorithms have approximately the same runtime. This packer is

the current state-of-the-art in basic GPCB packing.

With the exception of [28], basic GPCB packers are very fast and most MCNC circuits

pack within several seconds. This is in sharp contrast to the much longer placement and

routing runtimes in the CAD flow.

2.3.3 SPCB and Extended GPCB Packing

An FPGA may contain complex blocks that differ from the basic GPCB and there has

been prior work that focus on packing for these architectures. These packers either target

GPCBs that add additional features to the basic GPCB or they target specific SPCBs.

The basic GPCB packers assumed that BLEs were packed together in a pre-packing

stage before starting the packing algorithm for the complex block. More complex GPCBs

may have level 1 clusters (recall that level 1 clusters are clusters that only contain prim-

itives) that are different from the basic BLE. Ni proposed an algorithm that pre-packs

Chapter 2. Background 29

level 1 clusters only [38]. The inputs to the algorithm are the user netlist and a list of

all level 1 cluster configurations. A level 1 cluster configuration is defined as a group

of primitives with fixed routing. For example, a BLE has three configurations, a LUT,

a flip-flop, and a LUT followed by a flip-flop. The output of the algorithm is a pre-

packed netlist for the next stage in packing. Ni’s algorithm first selects a level 1 cluster

configuration from a set of all possible configurations then tries to match the netlist to

that configuraton. If it fails, then algorithm selects another configuration and repeats

the process. There is no cost function, as the purpose of this algorithm is to find legal

matches only and assumes that the next packing stage will properly group those level 1

clusters into a legal packing.

Paladino proposed a design rule check (DRC) based packer called DC that can pack

to the GPCBs of two different Altera FPGA families [40]. DC is based on T-VPack but

with many additional design rules, a special packing case for carry-chains, and commer-

cial timing models. It models a subset of the CARCH language discussed earlier. DC

is timing-driven and models carry-chains, different modes of operation, and ports. It

assumes a two-level hierarchy. It assumes that a pre-packer has already grouped level 1

clusters together. If there are multiple types of complex blocks on the FPGA, then DC

selects the type to pack based on priorities specified by the architect. It interfaces into

a commercial FPGA CAD tool called Quartus II [42] from Altera which performs the

other parts of the FPGA CAD flow.

DC implements its design rule checks during the candidate block selection phase in the

T-VPack algorithm. It supports all of the packing rules defined in the CARCH language

but does not support heterogeniety of complex blocks. DC supports carry-chains using

the following algorithm: when a carry-chain head is packed into a complex block, DC will

force pack the rest of the carry-chain in sequential order into the cluster. If the cluster

fills, it starts a new cluster and continues packing the carry-chain.

Paladino speculates that three levels of hierarchy are needed to pack to architectures

Chapter 2. Background 30

with fracturable logic elements (recall these were discussed in subsection 2.1.1) and he

also speculates that adding two additional rules to the CARCH language will be suffi-

cient for his tool to pack memories. DC is the only academic tool capable of packing

to commercial FPGA architectures. Its major drawbacks are that it assumes homoge-

neous complex blocks in the FPGA and has limitations in its modeling language. These

restrictions prevent the tool from exploring circuits which contain non-trivial SPCBs.

There has also been work to perform packing, or parts of it, during the later stages

of the CAD flow. Lemieux proposed using a basic GPCB packer to pack to GPCBs with

depopulated crossbars. This is done by leaving extra input pins unused on GPCBs with

depopulated crossbars and then use the post-placement router to legalize routing both

inside and outside the GPCBs [26]. Xilinx suggests doing packing during placement and

using the router to resolve the internal interconnect inside a GPCB [2].

There has also been work on packing for specific types of SPCBs. Xilinx investigated

packing their DSP blocks for common operations in such a way that the packed blocks

can be aligned during placement and routed with high regularity thus improving delay

[2].

The RaPiD portion of the Totem project [14] packs the datapath of a partitioned

application into one SPCB. It must determine the specific primitives to use, as well as

their placements and routing. Unlike typical FPGA packing, the optimization goals are

very different. In Totem, the SPCB interfaces to other large systems, such as a processor,

so the packer does not consider interconnect outside of the SPCB and instead focuses

on optimizing the internals of the SPCB. In FPGA packing, several complex blocks

must interface together so packing algorithms are concerned with the impact on external

routing, such as minimum channel width.

This discussion of architecture-specific packing shows that a generic, architecture-

aware packer, should have certain properties. It should be able to select and balance the

number and types of different complex blocks, clusters, and primitives in the FPGA. It

Chapter 2. Background 31

should automatically infer design rules based on the architecture of the complex block.

It should also be capable of performing placement and routing of clusters and primitives

within a complex block. Such a packer would greatly expand the ability of FPGA ar-

chitects to do architecture exploration. A packer that has some of these properties is

describe in Chapter 4.

Chapter 3

Complex Block Architecture

Description Language

3.1 Introduction

In this chaper, we introduce one of the primary contributions of this thesis – a modeling

language for describing FPGA complex block architectures. We first describe the high-

level goals that guided the language design. We then introduce the language itself using

examples. In particular, we begin by showing how trivial complex blocks can be modeled

using the language, and gradually illustrate more advanced features of the language

using more complex examples, eventually showing how complex blocks (both GPCBs

and SPCBs) with rich connectivity can be modeled. We refer to the new language as the

University of Toronto FPGA Architecture Language (UTFAL) 1.

The features incorporated into any language should be guided by how the language

is intended to be used. In this case, the modeling language will be used by an FPGA

architect to describe the FPGA complex block that he/she wishes to investigate. A high-

1UTFAL is an FPGA architecture description language, so it must also specify architectural constructs
outside of a complex block (such as the interconnect that joins complex blocks together). This is done
using the same language as that used in VPR 5.0 [30] and is defined in [31].

32

Chapter 3. Complex Block Architecture Description Language 33

level of abstraction is therefore desirable, permitting a broad range of architectures to

be explored without bogging down the architect in unnecessary detail. In addition to

being used by a human FPGA architect, the language must also be read and used by the

FPGA CAD software tools that automatically map a circuit into the target architecture

under investigation. The language must therefore provide enough detail to enable such an

automatic mapping. With this context in mind, we identified three top-level objectives

for the language design:

• Expressiveness: The language should be capable of describing a wide range of

complex blocks.

• Simplicity: The language constructs should match closely with an FPGA architect’s

existing knowledge and intuition.

• Conciseness: The language should permit complex blocks to be described as con-

cisely as possible.

To meet these goals, UTFAL incorporates constructs that directly correspond to the

hardware structures that most commonly occur in FPGA complex blocks – constructs

that we believe also align closely with an FPGA architect’s intuition. In essence, the

language provides a toolbox of easy-to-understand constructs that an FPGA architect

can use to build descriptions of complex blocks, such as those appearing in today’s state-

of-the-art commercial FPGAs.

3.2 UTFAL Specification

We now describe how one uses UTFAL to model a complex block. The language con-

structs in UTFAL use XML, so readers unfamiliar with XML should review subsection 2.2.4.

At a high-level, UTFAL contains two categories of construct: 1) physical blocks, and

2) interconnect. Physical block constructs in UTFAL are used to represent the core

Chapter 3. Complex Block Architecture Description Language 34

logic, computational, and memory elements within the FPGA; for example, LUTs, flip-

flops and memories. Interconnect constructs represent connectivitiy within and between

physical blocks, including wiring, programmable switches, and multiplexers. We begin

by describing the physical block construct in UTFAL.

3.2.1 Physical Blocks

FPGAs comprise blocks of various types that are repeated multiple times throughout

the array, for example, LUT-based complex blocks, memories and multipliers. All of the

blocks of a given type have the same design (i.e. same logic and layout). For example,

the classical FPGA architecture shown in Figure 2.1 is composed of a tiled array of LUT-

based complex blocks. Each LUT-based complex block contains sub-blocks that, in turn,

are instances of another type of physical block: a BLE (ie. a LUT/flip-flop pair). UTFAL

contains a construct called physical block type to represent a type of physical block within

the FPGA.

One specifies a physical block type in UTFAL using the XML element pb type. The

pb type element has a name attribute to identify it. We begin with a simple example.

Consider the empty complex block shown in Figure 3.1 a). The following code snippet

shows how the block is modeled in UTFAL:

<pb_type name="exampleCB">

</pb_type >

Any given complex block will typically contain multiple internal physical blocks.

These physical blocks may in turn contain other internal physical blocks and so forth. In

fact, the hierarchy formed by physical blocks can be arbitrary and one can think of there

being a parent/child relationship between a block and its internal blocks. UTFAL can

model an arbitrary hierarchy of physical blocks with a corresponding hierarchy of pb type

elements. Often, there is more than a single instance of one type of child block inside

a parent block. One uses the num pb attribute to specify the number of instances of a

Chapter 3. Complex Block Architecture Description Language 35

�����

���	
���� ���	
����

��

���

�� �� ��

�����

���	
����

����

��

����
���

����

����

Figure 3.1: Example step-by-step process of describing a physical block

child physical block that are contained in its parent physical block. Figure 3.1 b) extends

the example in Figure 3.1 a) to illustrate how block hierarchy is represented in UTFAL.

The example adds three child physical blocks to the parent block. The parent block now

contains one instance of a block whose type is blk A and it contains two instances of

a type of block called 4lut. The UTFAL specification of the example complex block in

Figure 3.1 b) is as follows:

<pb_type name="exampleCB">

<pb_type name="blk_A" num_pb="1">

</pb_type >

<pb_type name="4lut" num_pb="2">

</pb_type >

</pb_type >

In this example, num pb is an XML tag that represents the number of instances of a

type of block, which is 1 and 2 for blk A and 4lut, respectively.

Physical blocks must communicate with one another, and also with the external

world. A physical block will have a combination of input, output, and clock ports, each

comprising one or more pins. In UTFAL, one describes input, output, and clock ports

using XML tags input, output, and clock, respectively. Each tag is declared as a child

element of the pb type on which the ports reside. A port tag must be given an identifier

with the name attribute. And, the number of pins in a port is specified with the num pins

attribute. The exampleCB block shown in Figure 3.1c) adds four ports to the complex

Chapter 3. Complex Block Architecture Description Language 36

block of part b), and its UTFAL specification is given below. Notice that the In1 port

has four pins; the In2 port has three pins; the Out port has 2 pins; and, the Clk port has

a single pin.

<pb_type name="exampleCB">

<input name="In1" num_pins="4"/>

<input name="In2" num_pins="3"/>

<output name="Out" num_pins="2"/>

<clock name="Clk" num_pins="1"/>

<pb_type name="blk_A" num_pb="1">

</pb_type >

<pb_type name="4lut" num_pb="2">

</pb_type >

</pb_type >

3.2.2 Modeling Primitives

Recall that primitives are physical blocks at the bottom level of hierarchy – they do not

contain other physical blocks. A primitive is used to implement a block in the technology-

mapped user netlist. UTFAL has an attribute, blif model that must be included in the

primitive pb type element. The blif model attribute specifies the type of netlist block that

the primitive implements. UTFAL needs to identify components found in a technology-

mapped netlist and so we chose BLIF format2 [3] as the netlist format but this can

easily be modified to support other formats. The value of the blif model attribute for a

primitive pb type is a string the should exactly match the string in BLIF used for the

netlist block that can reside in the primitive.

UTFAL incorporates special handling for three of the most common types of prim-

itives found in FPGAs: flip-flops, LUTs, and memory. The rationale for this is that

such primitives require special handling by the FPGA CAD tools. UTFAL has a class

attribute that is used to identify these common primitives. The class attribute is only

used for these three common primitive classes; it should be left unspecified for other

2BLIF (Berkeley Logic Interchange Format) is a popular public-domain netlist format used for rep-
resenting digital circuits.

Chapter 3. Complex Block Architecture Description Language 37

types of physical block. A more detailed description of the three special primitive classes

is explained below in subsection 3.2.2. Revisiting the example in Figure 3.1 b), we make

the 4lut a LUT primitive type by adding the blif model and class attributes as follows:

<pb_type name="exampleCB">

<input name="In1" num_pins="4"/>

<input name="In2" num_pins="3"/>

<output name="Out" num_pins="2"/>

<clock name="Clk" num_pins="1"/>

<pb_type name="blk_A" num_pb="1">

</pb_type >

<pb_type name="4lut" num_pb="2" blif_model=".names" class="lut">

</pb_type >

</pb_type >

In BLIF [3], LUTs belong to the type .names hence the blif model attribute is assigned

.names for the 4lut primitive type3.

In addition to the using class attribute, the ports on such primitives must be declared

with a special attribute called port class. The port class attribute is needed to differen-

tiate between the pins on the primitive. For example, the port class attribute allows an

architect to specify which pins on a memory are address pins versus data pins. It turns

out that such differentiation is needed by the FPGA CAD tools to map circuits into the

architecture. We now delve into the port class requirements for the common primitives

and explain their rationale.

1. lut : The LUT primitive has two port classes: one for its inputs and one for its

output. The input port class is called lut in; the output port class is called lut out.

Requiring that the architect specify such port classes for a LUT permits the FPGA

CAD tools to differentiate between the LUT’s inputs and outputs. With such

knowledge, the CAD tools can perform certain checks and optimizations that they

could not otherwise. For example, the tools can execute a design-rule-check to

ensure that each LUT primitive has a single output pin. On the input side, the

3In BLIF, LUT instances begin with .names followed by the names of the signals attached to the
LUT inputs and output.

Chapter 3. Complex Block Architecture Description Language 38

tools can take advantage of input pin swapability : signals on LUT inputs can be

permuted and the LUT’s truth table re-programmed accordingly. Note that more

complex LUTs, such as the fracturable LUTs described in subsection 2.1.1, are

described as clusters; the basic LUTs within the more complex LUT can then be

described using this LUT primitive.

2. flipflop: A flip-flop has three port classes: D, Q, and clock for the input, output, and

clock ports, respectively. These port classes must have exactly one pin each. The

library can be extended to support more ports for flip-flops (such as asynchronous

clear).

3. memory : Single-port memories have three input port classes: address, data in, and

write en and one output port class: data out. These port classes represent the

address bus, input data bus, write enable, and output data bus, respectively. Dual-

port memories have six input port classes: address1, data in1, write en1, address2,

data in2, and write en2 and two output port classes: data out1 and data out2.

Both single and dual-port memories have one optional clock port class: clock (for

synchronous memories). The library can be extended to support more ports for

memories.

The following example describes a single-port memory primitive type to illustrate the

usage of the class and port class attributes:

<pb_type name="mem_1024x2" blif_model=".subckt single_port_ram"

class="memory" num_pb="1">

<input name="addr" num_pins="10" port_class="address"/>

<input name="data" num_pins="2" port_class="data_in"/>

<input name="we" num_pins="1" port_class="write_en"/>

<output name="out" num_pins="2" port_class="data_out"/>

<clock name="clk" num_pins="1" port_class="clock"/>

</pb_type >

It may occur to the reader that an alternative to introducing the class and port class

attributes would be to require that the architect give specific pre-defined names to

Chapter 3. Complex Block Architecture Description Language 39

pb types and ports. We considered that approach, however, we deemed it overly re-

strictive. With the proposed class and port class scheme, the architect is free to name

pb types and ports any way he/she likes, which enhances readability and may ease inte-

gration with other tools that use different naming conventions.

3.2.3 Intra-Block Interconnect

Having introduced how physical blocks are modeled in UTFAL, we move on to describe

how the ports/pins on physical blocks can be connected to one another. Interconnect is

specified using an interconnect element that is declared within a parent physical block

type. Within the interconnect element in UTFAL, there are three main ways to create

connectivity between ports/pins, inspired by the most common interconnect structures

present in commercial FPGAs:

1. direct : This is a direct connection from one set of pins to another set of pins.

This is used to model single metal wires or buses that have no programmability or

switching..

2. mux : This is a multiplexed connection of multi-bit (bus) signals. It is assumed that

signals internal to the FPGA control the select inputs of the multiplexer. That is,

this construct represents a bus-based multiplexer whose input-to-output path is set

during FPGA configuration.

3. complete: This represents a complete crossbar switch from a set of inputs pins to

a set of output pins. As in the case of mux, it is assumed that the particular input

pin that is matched with a particular output pin is controlled by signals internal

to the FPGA whose values are set during device configuration.

The input and output pins of interconnect elements are specified by one input at-

tribute and one output attribute declared within the interconnect element. The direct

Chapter 3. Complex Block Architecture Description Language 40

a) b) c)

Top

Top

TopChild

in

a) b) c)

Child
Child

Top

Child

Top

in in in in in

A

B

Child

Child
Child

Child

<complete input=“Top.in”

output=“Child.in”/>

<direct

input=“Top.in[2:1]”

output=“Child[1].in”/>

<mux

input=“Top.A Top.B”

output=“Child.in”/>

Figure 3.2: Examples of the three interconnect types: a) complete b) direct c) mux

element has one set of pins for its inputs and another set of pins for its outputs. The mux

element has multiple sets of pins for its input and one set of pins at its output. Each set

of input pins is delimited by a space. The complete element has one set of pins for its

input and one set of pins for its output.

A set of pins to be connected is specified by first selecting physical blocks that are to

be connected, and then specifying the desired pins on those blocks: In the case of there

being multiple instances of a physical block, the following syntax is used:

<name of pb type>[<starting index of physical block>:<ending index of physical block>]

Physical blocks are indexed from 0 to num pb - 1. If only one physical block is selected,

then the : and ending index may be skipped. If there is only one physical block, then

the entire [to] may be skipped.

Having specified one or more blocks, pins are specified in the following way:

<name of port of physical block>[<starting index of pins>:<ending index of pins>]

Pin indices start from 0 and end at num pins - 1. There is one shortcut for pin selection:

if the architect wishes to select all the pins of a port, then he can skip the section from [

to].

Figure 3.2 gives examples of the three interconnect models in UTFAL: complete,

direct and mux. Underneath each figure is the UTFAL code that produces the corre-

Chapter 3. Complex Block Architecture Description Language 41

sponding interconnect. The examples assume that interconnect connectivity is from pins

on a physical block called Top to pins on one of Top’s child physical block. For the

complete interconnect case (in Figure 3.2 a)), there is one physical block for each pb type

so only the pb type is specified when selecting the blocks. All pins of the ports are used,

so only the names of the ports are specified.

For the direct interconnect example (in Figure 3.2 b)), only the last two of the three

Top.in pins are used so the corresponding UTFAL specifies the range of pins using [2:1].

There are two physical blocks of type Child and only the one with index 1 is used, so the

UTFAL code includes a [1] in Child[1] to identify that block. This specification creates

a one-to-one mapping between two input pins of Top and two input pins of Child[1].

The mux interconnect example specifies a 3-bit 2-to-1 mux (in Figure 3.2 a)). The

input attribute to the mux has two 3-bit pin sets. The first pin set is Top.A and the

second pin set is Top.B. The two pin sets are separated by a space. The output of the

mux is one 3-bit pin set of Child.in.

For ease-of-use, UTFAL provides a mechanism to concatenate sets of pins together.

It follows a similar syntax to the concatenate construct in Verilog [7]. Sets of pins that

are to be concatenated together are delimited by spaces and enclosed in { } as follows:

{set1 set2 ... setN}

An example of concatenation is shown in Figure 3.3. Two ports from Top connect

to one port in Child. Top.A has one pin, Top.B has two pins. These two ports are then

concatenated together {Top.A Top.B} and connected to the Child.in port.

A “scope” question naturally arises with the use of the interconnect element: in an

arbitrary multi-level hierarchy of physical blocks, which ports/pins can be used within an

interconnect element that is declared within a physical block at some specific level of the

hierarchy? We take a straightforward approach to interconnect scope – the interconnect

element can use pins of its parent physical block, or can use pins of physical block declared

in the same level of the hierarchy.

Chapter 3. Complex Block Architecture Description Language 42

Top

Childin

A

BB

<direct input=“{Top.A Top.B}” output=“Child.in”/>

Figure 3.3: Concatenation example

�����

�
������
��
�� ��

�����

�
��������
�� ��

��
��

����

��� ���

Figure 3.4: Example of a physical block with multiple modes of operation

3.2.4 Modes

A physical block in an FPGA may have multiple modes of operation and such modes

are normally mutually exclusive. For example, consider an FPGA memory block that

can be configured with different aspect ratios [37]. Each aspect ratio is one unique

mode of operation for the memory. To represent the mode concept, UTFAL allows the

definition of one or more mode elements within the pb type. Multiple modes of operation

are represented by multiple sibling mode elements declared within a parent pb type. If a

mode is declared, child physical blocks and interconnect can be declared inside the mode

element, representing blocks (and connectivity) that is specific to the particular mode.

In general, modes represent different ways of using a given piece of underlying FPGA

hardware. A mode has one attribute name that serves as an identifier for the mode.

Figure 3.4 shows a physical block with multiple modes of operation. The first mode is

Chapter 3. Complex Block Architecture Description Language 43

called alpha and it contains one physical block a1 and the second mode is called beta

and contains two physical blocks of type b1. The corresponding UTFAL code is:

<pb_type name="blk_A">

<input name="CI" num_pins="4"/>

<output name="CO" num_pins="2"/>

<clock name="Clk" num_pins="1"/>

<mode name="alpha">

<pb_type name="a1" num_pb="1">

</pb_type >

</mode>

<mode name="beta">

<pb_type name="b1" num_pb="2">

</pb_type >

</mode>

</pb_type >

Different modes can each have their own unique interconnect by declaring one or

more interconnect elements as children of a mode element. For example, going back to

the blk A physical block in Figure 3.4, the interconnect element is declared inside each

mode as follows:

<pb_type name="blk_A">

<input name="CI" num_pins="4"/>

<output name="CO" num_pins="2"/>

<clock name="Clk" num_pins="1"/>

<mode name="alpha">

<pb_type name="a1" num_pb="1">

</pb_type >

<interconnect >

<!-- declare mode alpha connections here -->

</interconnect >

</mode>

<mode name="beta">

<pb_type name="b1" num_pb="2">

</pb_type >

<interconnect >

<!-- declare mode beta connections here -->

</interconnect >

</mode>

</pb_type >

Chapter 3. Complex Block Architecture Description Language 44

Basic GPCB

BLE

BLE 1

BLE 2
Fully

Populated

I O

LUT Flip!Flop
p

Crossbar

BLE N

clk

Figure 3.5: Basic general-purpose complex block and the BLE inside of it

3.3 More Complex Examples

This section presents two complex examples that illustrate how the UTFAL language

can be used to model realistic complex blocks. The first use case is the basic GPCB; the

second example is a configurable memory SPCB. Appendix A presents a use case for a

fracturable mulitplier SPCB.

3.3.1 Basic GPCB

The first complex example is the basic GPCB shown in Figure 3.5. The parameters of

this GPCB are N = 10, K = 4, and I = 22. It contains a full crossbar that connects to

the inputs of the 10 BLEs. Each BLE consists of a 4-input lookup table (LUT) and a

flip-flop. A BLE can implement three configurations: a LUT, a flip-flop, or a LUT and

flip-flop pair (where the LUT output drives the flip-flop input).

First, a complex block pb type called CLB is declared with appropriate input, output

and clock ports:

<pb_type name="clb">

<input name="I" num_pins="22"/>

<output name="O" num_pins="10"/>

<clock name="clk"/>

Chapter 3. Complex Block Architecture Description Language 45

�
��� ��

���

������

�
�����
�

�
������

����

����

�����
�

������
�
�����
�

����������

�������

Figure 3.6: Port names and connections.

A CLB contains 10 BLEs. Each BLE has 4 inputs, one output, and one clock. A

BLE block and its inputs and outputs are specified as follows:

<pb_type name="ble" num_pb="10">

<input name="in" num_pins="4"/>

<output name="out" num_pins="1"/>

<clock name="clk"/>

A BLE consists of one LUT and one flip-flop (FF). Both of these are primitives. Recall

that primitive physical blocks must have a blif model attribute that matches with the

model name in the BLIF input netlist. For the LUT, the model is “.names” in BLIF. For

the FF, the model is “.latch” in BLIF. The class construct denotes that these are special

(common) primitives. The primitives contained in the BLE are specified in UTFAL as:

<pb_type name="lut_4" blif_model=".names" num_pb="1" class="lut">

<input name="in" num_pins="4" port_class="lut_in"/>

<output name="out" num_pins="1" port_class="lut_out"/>

</pb_type >

<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">

<input name="D" num_pins="1" port_class="D"/>

<output name="Q" num_pins="1" port_class="Q"/>

<clock name="clk" port_class="clock"/>

</pb_type >

Figure 3.6 shows the ports of the BLE with the input and output pin sets. The inputs

to the LUT and flip-flop are direct connections. The multiplexer allows the BLE output

to be either the LUT output or the flip-flop output. The code to specify the interconnect

is:

<interconnect >

Chapter 3. Complex Block Architecture Description Language 46

<direct input="lut_4.out" output="ff.D"/>

<direct input="ble.in" output="lut_4.in"/>

<mux input="ff.Q lut_4.out" output="ble.out"/>

<direct input="ble.clk" output="ff.clk"/>

</interconnect >

</pb_type >

Finally, the CLB interconnect is modeled (see Figure 3.5). The inputs to the 10 BLEs

(ble[9:0].in) can be connected to any of the CLB inputs (clb.I) or any of the BLE outputs

(ble[9:0].out) by using a full crossbar. The clock of the CLB is wired to multiple BLE

clocks, and is modeled as a full crossbar. The outputs of the BLEs have direct wired

connections to the outputs of the CLB and this is specified using one direct tag. The

CLB interconnect specification is:

<interconnect >

<complete input="{clb.I ble[9:0].out}" output="ble[9:0].in"/>

<complete input="clb.clk" output="ble[9:0].clk"/>

<direct input="ble[9:0].out" output="clb.O"/>

</interconnect >

</pb_type >

The complete specification of this complex block is given in Appendix A. Note that

this example does not contain carry-chains. Carry-chains are common in GPCBs and we

plan to support carry-chains and delay information in future work.

3.3.2 Fracturable Memory Cluster

The second complex example is the single-ported memory shown in Figure 3.7. It is

reconfigurable with different width and depth configurations. The inputs can be either

registered or combinational. Similarly, the outputs can be either registered or combi-

national. Also, each memory configuration has groups of pins called ports that share

common properties. Examples of these ports include address ports, data ports, write

enable, and clock.

In this example, the block memory has the following three configurations: 2048x1,

1024x2, and 512x4, which will be modeled in UTFAL using modes. We begin by declaring

Chapter 3. Complex Block Architecture Description Language 47

��

�������	

��

��
���

���

����

�
�

�

��

��

��
������������

��������� ��

��

��

���

���

���

���������

���������

��	

��

� �
�

Figure 3.7: Example of an embedded block RAM.

the reconfigurable block RAM along with its I/O as follows:

<pb_type name="block_RAM">

<input name="addr" num_pins="11"/>

<input name="din" num_pins="4"/>

<input name="wen" num_pins="1"/>

<output name="dout" num_pins="4"/>

<clock name="clk"/>

The input and output registers are defined as 2 sets of bypassable flip-flops at the

I/Os of the block RAM. There are a total of 16 inputs that can be registered as a bus so

16 flip-flops (named ff reg in) must be declared. There are 4 output bits that can also

be registered, so 4 flip-flops (named ff reg out) are declared:

<pb_type name="ff_reg_in" blif_model=".latch" num_pb="16"

class="flipflop">

<input name="D" num_pins="1" port_class="D"/>

<output name="Q" num_pins="1" port_class="Q"/>

<clock name="clk" port_class="clock"/>

</pb_type >

<pb_type name="ff_reg_out" blif_model=".latch" num_pb="4"

class="flipflop">

<input name="D" num_pins="1" port_class="D"/>

<output name="Q" num_pins="1" port_class="Q"/>

<clock name="clk" port_class="clock"/>

</pb_type >

Chapter 3. Complex Block Architecture Description Language 48

addr[9:0]

mem_reconfig

addr[10:0]

dout[3:0]

Mode: mem_1024x2

din[1:0]

wen

dout[1:0]

wen

din[3:0]
dout[3:0]

wen

Figure 3.8: The mem reconfig mode representing a 1024x2 RAM.

Each aspect ratio of the memory is declared as a mode within the memory physical

block type as shown below. Also, observe that since memories are one of the special

(common) primitives, they each have a class attribute:

<pb_type name="mem_reconfig" num_pb="1">

<input name="addr" num_pins="11"/>

<input name="din" num_pins="4"/>

<input name="wen" num_pins="1"/>

<output name="dout" num_pins="4"/>

<!-- Declare a 1024x2 memory type -->

<mode name="mem_1024x2_mode">

<pb_type name="mem_1024x2" blif_model=".subckt sp_mem"

class="memory">

<input name="addr" num_pins="10" port_class="address"/>

<input name="din" num_pins="2" port_class="data_in"/>

<input name="wen" num_pins="1" port_class="write_en"/>

<output name="dout" num_pins="2" port_class="data_out"/>

</pb_type >

<interconnect >

<direct input="mem_reconfig.addr[9:0]"

output="mem_1024x2.addr"/>

<direct input="mem_reconfig.din[1:0]" output="mem_1024x2.din"/>

<direct input="mem_reconfig.wen" output="mem_1024x2.wen"/>

<direct input="mem_1024x2.dout"

output="mem_reconfig.dout[1:0]"/>

</interconnect >

</mode>

<!-- Declare a 2048x1 memory type -->

<mode name="mem_2048x1_mode">

<!-- Follows the same pattern as the 1024x2 memory type declared

below -->

</mode>

<!-- Declare a 512x4 memory type -->

<mode name="mem_512x4_mode ">

Chapter 3. Complex Block Architecture Description Language 49

��

�������	

��

����
�
�

����
����������	

����������

�
������

�������������

� �

��

� �

��
�� ��
��

��

���

����

���

�
�

���

�������������
�

�

�

�

��

����������

�������
�

 �	

!
�

� �

Figure 3.9: Routing connections for block RAM.

<!-- Follows the same pattern as the 1024x2 memory type declared

above -->

</mode>

</pb_type >

The top-level interconnect structure of the memory SPCB is shown in Figure 3.9. The

inputs of the SPCB can connect to input registers or bypass the registers and connect to

the combinational memory directly. Similarly, the outputs of the combinational memory

can either be registered or connect directly to the outputs. The UTFAL description of

the interconnect is as follows:

1 <interconnect >

2 <direct input="{block_RAM.wen block_RAM.din block_RAM.addr}"

output="ff_reg_in [15:0].D"/>

3 <direct input="mem_reconfig.dout" output="ff_reg_out [3:0].D"/>

4 <mux input="mem_reconfig.dout ff_reg_out [3:0].Q"

output="block_RAM.dout"/>

5 <mux input="{block_RAM.wen block_RAM.din[3:0] block_RAM.addr [10:0]}

ff_reg_in [15:0].Q"

6 output="{mem_reconfig.wen mem_reconfig.din

mem_reconfig.addr}"/>

7 <complete input="block_RAM.clk" output="ff_reg_in [15:0].clk"/>

8 <complete input="block_RAM.clk" output="ff_reg_out [3:0].clk"/>

9 </interconnect >

10 </pb_type >

Chapter 3. Complex Block Architecture Description Language 50

The interconnect for the bypassable registers is complex and so we provide a more de-

tailed explanation. First, consider the input registers. Line 2 shows that the SPCB inputs

drive the input flip-flops using direct wired connections. Then, in line 5, the combina-

tional configurable memory inputs {mem reconfig.wen mem reconfig.din mem reconfig.addr}

either come from the flip-flops ff reg in[15:0].Q or from the SPCB inputs {block RAM.wen

block RAM.din[3:0] block RAM.addr[10:0]} through a 16-bit 2-to-1 bus-based mux. Thus

completing the bypassable input register interconnect. A similar scheme is used at the

outputs to ensure that either all outputs are registered or none at all.

The complete memory specification is given in Appendix A.

3.4 Summary

This chapter described a new FPGA architecture description language, UTFAL, and

how this language can be used to describe the complex blocks of an FPGA architecture.

UTFAL can specify an arbitrary hierarchy of clusters and primitives inside a complex

block. The language also provides a library for common primitives on an FPGA such as

LUTs, flip-flops, and memories. Physical blocks need to connect to each other within a

complex block. UTFAL uses three interconnect constructs to specify those connections.

The language can express different modes of operation for physical blocks and different

interconnect for each mode of operation. Lastly, we gave two complex examples that

illustrate how to use UTFAL to describe a basic GPCB and a configurable memory

SPCB.

Note that a complete FPGA architecture language needs to cover FPGA structures

outside of a complex block, such as the interconnect that joins complex blocks together.

UTFAL specifies these structures using the same description language as that found in

VPR 5.0 [30] and is defined in [31].

The next section describes a new tool that supports architectures described with

Chapter 3. Complex Block Architecture Description Language 51

UTFAL.

Chapter 4

Packing Algorithm for

Heterogeneous FPGAs

In this chapter, we propose a novel generic packing tool for FPGAs called Architecture-

Aware Packer (AAPack). Recall that the input to a packer are the components of a

technology-mapped circuit (such as a circuit described in LUTs and flip-flops). The

output is the grouping of those components into the complex blocks available on an

FPGA. AAPack was developed to enable exploration into a much wider space of FPGA

logic block architectures than is possible with prior packers.

The chapter starts by giving the scope and context for the new algorithm, and then

presents the algorithm.

4.1 Introduction

Packing links the technology-mapping stage with the placement stage of an FPGA CAD

flow (recall the CAD flow shown in Figure 2.9). Furthermore, packing requires informa-

tion about the FPGA architecture and perhaps some additional user options. As a result,

AAPack has three inputs and one output as shown in Figure 4.1. The first input is a

technology-mapped circuit netlist; we use the BLIF input format [3]. The second input is

52

Chapter 4. Packing Algorithm for Heterogeneous FPGAs 53

Detailed

Architecture

DescriptionDescription

AAPackCircuit (.blif)
Packed Circuit

Netlist

User Options

Figure 4.1: Inputs and outputs of AAPack

a description of the FPGA architecture. This description uses the UTFAL language pre-

sented in Chapter 3. The third type of input are the user options, which set parameters

of the algorithm such as the weights of various metrics on internal cost functions within

the algorithm. The output of AAPack is a netlist of complex blocks (and the contents of

those blocks) that is used by the downstream placement stage.

4.2 Scope

The FPGA architecture description language presented in Chapter 3 can describe an

very large class of complex logic blocks, up to and including a block that itself looks like

a complex FPGA. While the intent of this work is to ultimately work well for any such

block, it is difficult to immediately build a packer that gives high-quality results given any

FPGA architecture. So, in this initial work we decided to limit the scope of AAPack such

Chapter 4. Packing Algorithm for Heterogeneous FPGAs 54

Fracturable LUT GPCB

Fracturable

BLE 0
Fracturable BLE

Fracturable

LUT

ff
Fracturable

BLE 1

Crossbar

ff

Fracturable

BLE 2BLE 2

FracturableFracturable

BLE N

Figure 4.2: Fracturable LUT GPCB

that the packing problem becomes more tractable while still providing new and useful

exploration capability. For the present research, the goals/limits are as follows: First, we

will focus on area-driven packing only. Although timing-driven packing is important, it

will be left for future work. Second, we limit the types of complex blocks that AAPack

supports to the following:

1. The types of GPCB shown in Figure 4.2. This complex block is similar to the basic

GPCB discussed in Chapter 2 but with two additional architectural features. The

first feature is fracturable LUTs. These fracturable LUTs have two outputs and are

contained in a fracturable BLE that has one or two flip-flops (of which the more

common two flip-flop case is shown). The second feature is a crossbar that may be

depopulated. These are two major features that may be found in modern FPGAs.

2. A memory block SPCB, in which the memory can be configured into different

aspect ratios. We will assume that these are synchronous memories. There are no

Chapter 4. Packing Algorithm for Heterogeneous FPGAs 55

block multblock_mult

mult_36x36
A

mult 18x18 mult 18x18

divisible_mult_18x18divisible_mult_18x18

Out

_

Or

mult_9x9

Or

_

mult_9x9

Or

B

mult_9x9 mult_9x9

Figure 4.3: Fracturable multiplier CLB

intra-cluster interconnect between different memories. Configurable memories are

a fundamental capability in modern FPGAs so a packer that can give high quality

support for them is essential.

3. A fracturable multiplier SPCB that is composed of one multiplier that can be

divided into two smaller multipliers. Each of these smaller multipliers can be further

fractured into two smaller, indivisible mulitpliers. For example, a 36x36 multiplier

example is shown in Figure 4.3. Here, a 36x36 multiplier can fractured down to

two 18x18 multipliers which in turn can be fractured into two 9x9 multipliers.

The input and output ports of the 36x36 are split such that the first half of the

bits go to one 18x18 multiplier and the other half to its sibling. These ports are

then again split in half for the 9x9 multipliers. There are no interconnect between

sibling multipliers. Multipliers are common in modern FPGAs so support for them

is important.

These three types of complex blocks are common in commercial FPGAs but so far

have not been well supported in public-domain packers. Furthermore, the lack of tools

that can support configurable memories and multipliers prevent modern, large, and useful

designs, such as [32], from being used as benchmark circuits. As a result, we focused

AAPack on these complex blocks to help make a contribution to the modernization of

Chapter 4. Packing Algorithm for Heterogeneous FPGAs 56

FPGA architecture research.

There are many features that this first version of AAPack will not support, including

complex blocks with bus-based routing or carry-chains. Due to time constraints, these

important features will be left for future work. Lastly, AAPack is designed to be general

enough to correctly pack architectures outside the specified scope, but the quality of

those solutions are not examined as part of the present work.

4.3 The AAPack Packing Algorithm

The AAPack algorithm takes a greedy approach to selecting primitives from the user

circuit to pack into complex blocks.

In addition to providing support for basic GPCBs, the AAPack algorithm must sup-

port three new kinds of architectural features that are described with the new UTFAL

language presented in Chapter 3. The first complexity is support for arbitrary heteroge-

niety. The architectures modeled by the new language contain different types of complex

blocks as well as different types of primitives and groups of primitives within a complex

block. The AAPack algorithm needs to determine where in the complex block hierarchy

to place a primitive. The other key, and new, capability of the algorithm is to compre-

hend the new more complex internal routing structures defined in the UTFAL language.

For a primitive to be successfully packed into a block, there must be a way for its required

netlist signals to route out to the pins of the block. Finally, the packer must select the

correct mode of operation (also described in the new language) of each primitive.

4.3.1 Algorithm Overview

We begin with a high-level description of the AAPack algorithm. Initially, all primitives

in the input circuit netlist are set to an unpacked state. AAPack first selects a seed

primitive and an “open” complex block to place that seed into. It then continues looking

Chapter 4. Packing Algorithm for Heterogeneous FPGAs 57

for companion primitives, based on a cost function, to pack into the complex block until

no more can be found. It then closes that complex block and opens a new one and

continues until there are no more unpacked netlist primitives. Note that there is no pre-

packing stage in AAPack, rather it operates directly on the technology-mapped input

circuit. The following pseudocode gives the high-level key stages of the AAPack routing

algorithm:

1 while (e x i s t u np a c k e d n e t l i s t b l o c k s ()) {
2 cur rent complex b lock = star t new complex b lock () ;
3 while (e x i s t s c and i d a t e b l o c k f o r c omp l e x b l o c k (cur rent complex b lock)) {
4 t ry pack cand ida t e b l o ck in t o comp l ex b l o ck (cur rent complex b lock) ;
5 }
6 }

AAPack begins by selecting a new complex block in its start new complex block func-

tion. This function selects a seed primitive, the complex block to pack that primitive

into, and determines if that primitive can be legally packed into the complex block.

The inner loop of the algorithm, beginning at line 3 of the pseudocode, looks for

additional primitives to pack into the complex block. The primitive is selected from a

candidate list of primitives based on a cost function which we will describe later. The

selected primitive is tested for legality which determines if the primitive can be routed

successfully within the complex block. If it cannot, then the primitive is rejected.

Once a complex block is full, or if there are no more candidate blocks, the inner loop

exits, and a new complex block is opened. The algorithm finishes when there are no

unpacked primitives left.

One of the key capabilities of the new algorithm is its ability to handle complex blocks

with arbitrary levels of hierarchy. The next section provides an example of how multiple

levels of hieararchy are packed, before proceeding on with a more detailed explanation

of the algorithm.

Chapter 4. Packing Algorithm for Heterogeneous FPGAs 58

block_mult

Mode 2Mode 1

mult_36x36 divisible_mult_18x18 divisible_mult_18x18

Mode 2Mode 1 Mode 2Mode 1

mult_18x18 mult_18x18mult_9x9 mult_9x9 mult_9x9 mult_9x9

Figure 4.4: A tree representation of a complex block hierarchy

4.3.2 Dealing with Arbitrary Hierarchy

Recall that we think of the hierarchy of the complex block as a hierarchy of clusters.

The highest-level cluster is the complex block itself, and then child clusters are contained

within that block, and then clusters within those, recursively, until there is a leaf cluster

that contains only architectural primitives. (These architectural primitives match directly

to the primitives that are described in the netlist). A physical block refers to a complex

block, a cluster, or a primitive.

We model the hierarchy of a complex block as a tree; the nodes of the tree are either

physical blocks or a mode indicator. The edges represent parent-child relationships in

the hierarchy. Modes at any given level are mutually-exclusive. Consider the multiplier

SPCB illustrated in Figure 4.3. The tree representation of it is illustrated in shown in

Figure 4.4. Note that multiplier tree is unbalanced because the 36x36 multiplier is closer

to the top-level than the 9x9 or 18x18 multipliers resulting in one half of the tree being

deeper than the other half. An algorithm that packs to this complex block must be able

to manage unbalanced hierarchies.

As described in the general algorithm earlier, the algorithm “opens” a complex block,

and then tests different candidates for inclusion into the block. A key question is to

Chapter 4. Packing Algorithm for Heterogeneous FPGAs 59

determine which level in the hierarchy to attempt to place the candidate. This is done

using a depth-first traversal of the tree, and is illustrated by the following example:

Consider a user circuit that contains one 16x16 multiplier primitive and one 8x8 multiplier

primitive, and that the FPGA contains the multiplier SPCB shown in Figure 4.3.

Assume that the first candidate primitive selected for potential inclusion in the block

is the 16x16 multiplier. The algorithm will perform a depth-first traversal of the tree to

find a suitable matching block. Beginning at the top, with block mult, it traverses the

tree in a depth first manner, as illustrated in by the arrows and numbers in Figure 4.5.

The traversal eventually discovers, at number 6, the 18x18 physical multiplier first and

so it packs the 16x16 multiplier into the 18x18 physical multiplier. Figure 4.5 indicates

how the algorithm traverses this tree and the shaded boxes indicate the physical blocks

that are used after packing is complete.

Subsequently, the algorithm walks back up the tree from the 18x18 multiplier until it

reaches a level that contains other empty primitives, namely block mult. It then selects the

8x8 circuit mulitplier candidate, and descends another part of the hierarchy. Ultimately

it packs the 8x8 multiplier into a 9x9 physical multiplier. There are no more multipliers

in the user circuit so the complex block is packed. Note that this example only describes

how the algorithm selects which part of the hierarchy to use, and not the legality checking,

which is described later in subsection 4.3.5.

A standard depth-first traversal occasionally leads to poor packing decisions and so

we modify this traversal in AAPack to improve quality. The following example shows the

problem with a standard depth-first traversal. Consider Figure 4.6, it shows a cluster

with 2 LUTs and a flip-flop along with a user circuit where the shaded LUT in the

circuit is packed into the shaded LUT in the cluster. Suppose the flip-flop is selected

as the next candidate block to pack into the cluster. The flip-flop cannot pack into the

cluster because of the constraints imposed by the interconnect so it gets rejected. In a

standard depth-first traversal, the algorithm will not revisit this cluster again because it

Chapter 4. Packing Algorithm for Heterogeneous FPGAs 60

block_mult

1

Mode 2Mode 1

1

210

mult_36x36 divisible_mult_18x18 divisible_mult_18x18

2

3

9

Mode 2Mode 1 Mode 2Mode 1

345

67

811

12

mult_18x18 mult_18x18mult_9x9 mult_9x9 mult_9x9 mult_9x9

6712

Figure 4.5: Mapping multiplier blocks from a circuit to a complex block hierarchy

Cluster
Circuit

LUT ff LUT
ff

LUT LUT

Figure 4.6: Example where interconnect limits what blocks can be packed into the cluster

has already been visited. Consequently, the LUT at the output of the packed LUT will

not get packed into the cluster. We modified the depth-first traversal to try up to three

different candidates for each cluster before traveling to a different part of the tree. Thus

it will pack the second LUT into the cluster after failing to pack the flip-flop.

Lastly, to save runtime, there are two pruning methods employed by this traversal.

First, other than the target cluster, any other cluster that contains packed primitives are

skipped. This means that a packed cluster in a complex block will only be visited once

by the AAPack algorithm. Second, every cluster keeps track of the primitive type(s)

that it contains. So, the traversal will not explore a physical block that does not have a

Chapter 4. Packing Algorithm for Heterogeneous FPGAs 61

matching primitive type for the candidate.

4.3.3 Dealing with Heterogeneity: Matching Supply and De-

mand

One of the key features of the new algorithm is that it can handle the heterogeneous

nature of the FPGA. The key here is that there is a fixed number (or a fixed ratio) of

each type of block supplied by the FPGA. The goal of the packer is to use all of the

blocks present on the FPGA, if possible; this depends on the demand presented in the

netlist. This can only be possible if the input netlist either contains the primitives in the

same ratio as present on the chip (the demand matches the supply), or if a primitive in

the netlist can map to one or more of the supplied complex blocks. In the latter case, a

packing algorithm must carefully select which block to pack into in order to match the

demand to the supply.

In this initial packing algorithm development, we will focus only on the case that is

typically used in architecture research, in which the size of the FPGA being packed to

“floats” to match the size of the input netlist. We do this by growing the size of the

FPGA as additional GPCBs or SPCBs are opened as described above. The architecture

description language indicates how many of each type of complex block are present, by

specifying which columns contains which blocks. So, when the FPGA “grows” as new

blocks are added, this specification is respected. Thus, if a new kind of block is needed,

but one is not available, the FPGA size is increased until a new becomes available.

Figure 4.7 illustrates this case where the FPGA is too small and a bigger one is

needed. Assume that there are two types of block, A and B, but B is specified to be only

in every third column. When the size of the FPGA contains only four blocks, there is no

third column. So, when a primitive that can only pack into complex block type B, the

FPGA is “grown”, as shown, and then contains three blocks of type B.

Note that this method of growing the FPGA in a somewhat greedy response to the

Chapter 4. Packing Algorithm for Heterogeneous FPGAs 62

� �

� �

� �

������

� �

�

�

�

�

Figure 4.7: If an FPGA is too small, AAPack tries a larger FPGA

netlist’s demand for a specific type does not attempt to balance the target complex block

when there may be two possibilities. This is left as future work.

4.3.4 Algorithm Details

We now provide more detail of the algorithm. We need to select a new complex block.

To do this, we first select a seed from the set of all unpacked primitives. Then, an empty

complex block that can legally pack that seed is selected. That complex block, with the

seed packed into it, becomes the “open” complex block and is returned by the function.

Select Seed

The primitive with the most number of unique input nets is selected to serve as a seed.

This criteria for seed selection is the same as the one used by VPack [4]. The rationale

behind this criteria is as follows: A primitive with a high number of input nets may have

a higher demand for input pins. Input pins of a cluster are often limited and so it will

likely be harder to pack this primitive into an existing complex block because there may

not be enough input pins available. Hence, this primitive should serve as a seed to avoid

Chapter 4. Packing Algorithm for Heterogeneous FPGAs 63

the difficulties of packing it into a pre-existing complex block.

Select New Complex Block

As described above, the Select New Complex Block function must deal with the het-

erogeneity of the FPGA, growing it to find blocks that can house the primitives in the

netlist. The actual growing of the FPGA occurs when the seed cannot be packed into

any of the currently available complex blocks. It should be noted, that, depending on

the specified supply of the complex blocks, that the FPGA will have to grow until one

of the right type appears.

Try Pack Candidate Block Into Complex Block

This function takes as input the open complex block. It selects one primitive from the

netlist, based on a cost function, and tries to pack that primitive into the current open

complex block. The first step of the Try Pack function is to select a cluster inside the

complex block, and this is done using the depth-first travels described in subsection 4.3.2

above. It then selects a candidate block. Afterwards, the algorithm tries to pack the

candidate into the target cluster with the try add block function.

Select Candidate Block

Recall that the algorithm performs a traversal of the hierarchy of clusters (and their

modes) within a complex block. So this function returns a candidate block to pack into

a target cluster within the complex block hierarchy. The pseudocode for the function is

as follows:

1 g e t n e x t n e t l i s t b l o c k (t a r g e t c l u s t e r , complex block) {
2 candidate =

s e l e c t l ow e s t c o s t c a n d i d a t e b l o c k t h a t p a s s e s q u i c k l e g a l i t y c h e c k () ;
3 i f (not e x i s t s (b lock)) {
4 candidate =

unpacked b l o ck w i th mos t un i que ne t s and pa s s e s qu i ck l e ga l i t y ch e ck () ;
5 }

Chapter 4. Packing Algorithm for Heterogeneous FPGAs 64

6 return (candidate) ;
7 }

The function first tries to find an unpacked primitive that has the lowest cost function

and has a good chance of legally packing into the target cluster (i.e. passes a quick legality

check). During this initial stage, unpacked primitives that share no common nets with

the open complex block are not considered. If the first stage cannot find a suitable

primitive, then the unrelated primitive that passes a quick legality check and has the

most number of unique nets is selected.

We describe the cost function used to select candidate blocks and the details of the

quick legality check in the next sections.

Candidate Block Selection Cost Function

A list of candidate primitives for a complex block are ranked based on a cost function as

follows:

1 a f f i n i t y = (a ∗ ne t ab so rp t i on ga in + (1 − a) ∗
num shared nets) / num input p in s o f cand idate

2 co s t = 1/ a f f i n i t y

Affinity measures the “attraction” that an unpacked primitive has with a complex

block. The cost of a candidate is the inverse of the affinity for that candidate; a small

affinity means a high cost and a high affinity means a low cost. Affinity for a primitive

is determined by the nets of that primitive and the relationship those nets have with the

“open” complex block. Affinity is determined by 3 variables and they are as follows:

• net absorption gain increases the affinity of a primitive if it contains nets that are

close to being absorbed into the complex block. net absorption gain is calculated

as follows: For each net of a primitive, add 1 / number of connections outside

complex block to net absorption gain. Thus, a net with most of its connections in

a complex block provide higher affinity than a net with connections outside the

complex block.

Chapter 4. Packing Algorithm for Heterogeneous FPGAs 65

• num shared nets increases the affinity of a primitive if it has nets that are shared

with the complex block. Each net adds one to num shared nets. This is the same

affinity metric as the one found in [4].

• num input pins of candidate normalizes affinity between different types of primi-

tives based on their number of inputs because primitives with more input pins have

a higher chance of getting a higher net absorption gain or num shared nets than

primitives with fewer pins.

Lastly, ’a’ is a constant that controls the weighting of the affinity variables. We

default the value of ’a’ to 0.9 as we found that this provides good quality of results.

Quick Legality Checking

A quick legality check is employed to remove infeasible candidates. This check employs

two rules as follows:

1. There exists at least one empty physical primitive in the target cluster that the

candidate block can map to and this primitive does not violate any previously set

modes.

2. There exists sufficient input and output pins available on the target cluster, and

all its ancestor clusters, to meet any increase in pins demanded by the candidate.

The quick legality check does not eliminate all infeasible candidates so a more com-

plete legality check is performed later in the algorithm. A complete legality check con-

sumes significantly more runtime than the quick check so filtering candidates with a quick

check saves runtime.

4.3.5 Try Add Block

This function takes as input a candidate primitive, the current complex block, and a

target cluster within the complex block. The output is a pass or fail flag indicating

Chapter 4. Packing Algorithm for Heterogeneous FPGAs 66

whether or not the primitive legally packed into the candidate cluster of the complex

block.

This function first finds a location within the complex block to place the candidate

primitive. This procedure follows the tree traversal described earlier in subsection 4.3.2.

For a given location, it also needs to route all the nets inside the complex block, including

the nets of the newly place primitive. The pseudocode for this function is as follows:

1 t ry add b lock (t a r g e t c l u s t e r , complex block , candidate) {
2 for each l e g a l placement i {
3 i f (rout ing (i , complex block , candidate) == succ e s s) { return PASS }
4 }
5 return FAIL ;
6 }

Routing

Routing determines the interconnect configurations of a complex block such that the nets

within it are implemented. It returns true if such a configuration exists, false otherwise.

First, a representation of the interconnect is described. Then, the routing algorithm that

operates on this representation is presented.

The routing stage uses a graph representation of the interconnect of a complex block.

The interconnect edges are modelled as directed edges and the pins of clusters are mod-

elled as nodes. Inputs and outputs pins of primitives connect to sinks and sources re-

spectively where one pin connects to one source/sink. Inputs and outputs of the complex

block connect to sources and sinks respectively. There are an equal number of sources as

there are input pins to the complex block and each source represent a potential external

net that can connect into the complex block. Each of these sources has an edge to every

input pin to represent the full connectivity of external routing. Similarly, there are an

equal number of output sinks as there are output pins and each output pin has an edge

to every output sink. Lastly, there is an edge from every output pin of a complex block to

every input pin to represent cases where a complex block must use external interconnect

Chapter 4. Packing Algorithm for Heterogeneous FPGAs 67

��	

��

�

��	

��

�

��	

��

�

��	

��

��
��	

��
��	

��

�� ��

Figure 4.8: Negotiated congestion routing to resolve congestion conflicts

to connect between points within the complex block. This graph is known as the routing

graph of the complex block.

The routing algorithm determines the interconnect configurations in order to imple-

ment all nets currently inside the complex block. The algorithm first maps the start

and endpoints of each net to their corresponding sources and sinks in the routing graph

of the complex block. It then determines the interconnect path for each net using the

breadth-first negotiated congestion routing algorithm in VPR [5]. A negotiated conges-

tion routing algorithm first routes all nets allowing some nets to share the same wire

resulting in a conflict. It then repeatedly rips up a net and re-routes the net based on a

cost function that tries to remove wire conflicts. Figure 4.8 gives an example of this type

of routing algorithm for the input nets of a physical block containing two 2-LUTs with

one shared input. The top LUT has nets n1 and n2 while the bottom LUT has nets n1

and n3. The first route has a wire conflict with the middle input pin because that pin is

used by n1 and n3. Net n3 is re-routed to avoid the middle pin but ends up conflicting

with the bottom pin. Then n1 is re-routed and takes the middle pin thus removing all

wire conflicts resulting in a legal routing. At which point, the router returns true.

We set the breadth-first search routing in VPR with the following parameters:

• Maximum router iterations: 20

• Present congestion cost (cost of conflicting wires): 10

Chapter 4. Packing Algorithm for Heterogeneous FPGAs 68

• Increase present congestion cost by 10x after the first iteration

• Increase present congestion cost by 2x for each subsequent interation

These parameters were selected to make the router converge faster than the default

settings.

If a legal route exists, the function returns true; otherwise, the function returns false.

4.3.6 Dealing with Memories

Supporting packing for memories presents an unusual scenario for packing and requires

some special handling in the algorithm. A memory instantiated in a user circuit may have

an aspect ratio that does not fit onto any one physical memory of an FPGA architecture

and is thus implemented using multiple physical memories.

The AAPack algorithm requires that memories in the input netlist be specified as one

bit-wide memories that do not exceed the depth of the largest physical memory in the

FPGA1. For example, if a design contained a 256 x 8 memory, the input netlist would

contain eight 256 x 1 memories that, ultimately, will end up residing together in one

or more RAM primitives. The total number of netlist primitives that can map into a

memory primitive is equal to the size of its data width. This makes memory primitives

different from other primitives because they can accommodate more than one netlist

primitive.

For two memory blocks in the input netlist to be packed together into one memory

primitive two requirements must be met: 1) the memory blocks in the netlist must have

the same address bus width, and 2) the signals on corresponding bits of the address bus

and control signals must be identical.

Other than these differences, memories are packed following the same algorithm as

the other primitives.

1The upstream tool ODIN II[21] is designed to meet this requirement

Chapter 4. Packing Algorithm for Heterogeneous FPGAs 69

4.4 Error Checking

The AAPack algorithm performs error checking after packing to test if the final solution

it generated is correct. Some basic checks that are done include checking that all netlist

blocks have been packed and checking that there are no primitives or clusters that are

overused. One key feature of the error checking employed in AAPack is that it can output

a BLIF netlist of the packed circuit. This allows us to use combinational and sequential

equivalence checkers, such as those available in ABC [44], to do a formal logic comparison

between the input BLIF netlist and the output complex block netlist.

The BLIF output feature outputs the used primitives of a complex block, the routing

inside a complex block, and the routing outside a complex block in BLIF format. This

feature supports outputting LUTs, flip-flops, and circuit I/Os. It outputs all interconnect

edges as buffers in BLIF thus allowing it to output the used interconnect within and

outside a complex block.

Although useful, the BLIF outputter feature is not yet fully featured. For example,

it does not output the BLIF subcircuits and hence cannot check memories. We plan to

add more support for it in future work.

4.5 Software Organization

Toolchain organization is an important part of software engineering so we provide an

overview of the AAPack toolchain here. The AAPack source files are based off T-VPack

and merged into the VPR 5.0 code base. This allows packing, placement, and routing to

share the same data structures.

We also created a library that reads and processes the architecture description file

(specified in UTFAL). The new VPR code links to that library to obtain architecture

information. Other tools, such as the previously discussed ODIN II [21], can also link

to that library to obtain information about the FPGA architecture. These changes are

Chapter 4. Packing Algorithm for Heterogeneous FPGAs 70

a significant improvement to the previous backend VPR toolchain where updates to the

FPGA architecture file required third-party tools to create a new parser to read that

architecture file.

4.6 Summary

In this chapter, we described a new packing tool called AAPack. The AAPack algorithm

packs blocks of a technology-mapped netlist into a complex block. This process entails the

selection of candidate blocks, the placement of those candidates within the physical block

hierarchy of a complex block, and the routing of the nets packed within the complex block.

After describing the general algorithm, we presented the special handling of memories.

Afterwards, we covered software engineering issues. For example, AAPack includes a

BLIF output feature for correctness checking.

AAPack performs greedy, area-driven packing which places limits on its exploration.

We plan to enable hill-climbing capabilities and timing-driven features in future work.

The next section investigates the quality of results for the AAPack algorithm and

presents a preliminary architecture exploration.

Chapter 5

Experiments and Results

In this chapter, we describe a set of experiments and results whose purpose is two-fold:

1) to validate the proposed FPGA architecture modeling language (UTFAL) and demon-

strate its utility in modeling a variety of complex block architectures, and 2) to evaluate

the quality of the proposed packing algorithm, AAPack. We begin by outlining our

experimental methodology. We then move on to describe a set of experiments that ex-

ercise both features of UTFAL, as well as our packing algorithm. We first model and

pack circuits into simple LUT-based logic blocks, thus permitting a direct comparison

with prior work on FPGA packing. We then model and pack circuits into more sophisti-

cated architectures that until now, could not be handled by any publicly-available FPGA

architectural exploration tools.

5.1 Experimental Methodology

We take an empirical approach to evaluating the proposed FPGA architecture description

language and packing algorithm. Specifically, we first develop a model (in UTFAL) of

the target FPGA architecture that we intend to map circuits into. We then use a set of

CAD tools to map a suite of benchmark circuits into the target architecture. The result

is a complete implementation of each benchmark circuit in the target architecture. We

71

Chapter 5. Experiments and Results 72

Benchmark

Circuits

Front!end

El b iElaboration

Logic Synthesis

Tech Mapping

FPGA

Architecture

Tech Mapping

Back!endDescription

Packing

Placement

Routing

Quality of Results

(eg. # complex blocks, Min Channel Width)

Figure 5.1: Experimental method to measure quality of an architecture/CAD algorithm

evaluate the quality of the implementation using a number of metrics (to be described

below). The overall experimental methodology is illustrated in Figure 5.1; we describe

the different pieces of the methodology below.

We employ two suites of benchmark circuits in this research. The first suite consists

of the 20 largest MCNC [47] circuits that are commonly used in FPGA architecture and

CAD research. These circuits contain only LUTs, flip-flops and I/Os. These are small

circuits and so a caveat must be placed on interpretting results based on the MCNC

benchmarks for larger benchmarks. This work is a step towards enabling experiments

with large, modern benchmarks in academia but full support for them is not yet ready in

the full CAD flow and so we use the MCNC in our experiments. The second benchmark

suite consists of a single benchmark, called the OpenRISC 1200 (or1200) [25]. The or1200

circuit contains two dual-port memories, one 32x32 multiplier, LUTs and flip-flops. We

Chapter 5. Experiments and Results 73

Table 5.1: Routing architecture parameters

Parameter Value

Fc in 0.15
Fc out 0.125
L 4

include this benchmark as it allows us to demonstrate the capability of our language and

packer to handle circuits with large hard-IP-like complex blocks, like those present in

today’s commercial FPGAs.

We limit our investigation to square FPGA architectures having an equal number of

rows and columns of complex blocks. I/O tiles surround the two-dimensional array of

complex blocks, forming a ring at the chip periphery. An I/O tile is present at the end

of each row/column of core logic, and each I/O tile contains 7 I/O pads. The FPGA

contains a programmable routing network that allows complex blocks be connected with

one another and allows complex blocks to connect to/from I/Os. The architecture of the

programmable routing network is held constant across all experiments conducted, which

permits us to evaluate the impact of our packer changes alone.

Detailed parameters of the routing architecture we use are shown in Table 5.1. Each

pin on a complex block is associated with a multi-track routing channel adjacent to the

block. Fc in specifies the fraction of neighbouring routing tracks that can connect to

an input pin of a complex block. Fc out specifies the fraction of routing tracks that an

output pin of a complex block can connect to. L specifies length of the metal routing wire

segments. As shown, we target an architecture with wire segments whose length spans 4

complex block tiles. We use the single driver routing wire model, as is used in modern

commercial FPGAs. In the single driver model, each wire segment is unidirectional and

a driver switch is present at only one of the segment’s two ends.

As illustrated in Figure 5.1, the FPGA CAD flow includes a front-end (comprising

HDL elaboration, logic synthesis and technology mapping) and a back-end (comprising

Chapter 5. Experiments and Results 74

packing, placement and routing). Front-end synthesis accepts a design written in a

hardware description language (HDL) and produces technology-mapped BLIF files that

are then passed to the back-end flow. For the MCNC benchmarks, HDL elaboration was

unnecessary, as the circuits were already available in a form that permitted them to be

fed directly into logic synthesis. ABC version 70930 [44] was used for logic synthesis and

technology mapping. ABC was set to perform technology mapping with structural choices

turned on [35]1. WireMap was used for technology mapping [22] and its parameters

were set to minimize the number of LUTs in mapped solutions (area-directed mapping).

WireMap produces LUTs that use fewer inputs than competing mappers and this allows

us to meaningfully measure fracturability for LUTs. The HDL elaboration was only

needed for the or1200 circuit. ODIN II [21] was used to elaborate or1200 into BLIF

format then ABC was used for logic synthesis and technology mapping. ABC treats

memories and multipliers as black-boxes and performs no logic optimization on these

blocks nor does it change the synthesis of the surrounding logic based on the contents of

the black box.

In the back-end of the flow, the packer we use depends on the experiment being run:

we use our own packer for some experiments, and we use a previously-published packer

for other experiments. For placement and routing, we use VPR 5.0, and we set VPR to

operate in non-timing driven mode. All experiments were run on a 3 GHz Intel Xeon

5160 proceessor with 4 MB cache and 8 GB of memory. Only one processor core was

used.

Four quality metrics are used to assess packing quality. The first metric is packer

runtime. We expect that AAPack will have longer runtimes versus prior work (such as

T-VPack 5.0 [33]) because AAPack is designed to support a much wider range of complex

block architectures. The second metric is the number of complex blocks in the packed

1Structural choices gives the technology mapper a more comprehensive view of the solution space,
leading to better results.

Chapter 5. Experiments and Results 75

circuit. This measurement determines the minimum dimensions of the FPGA and is a

proxy for total chip area. The third metric is the minimum channel width (min W) needed

to successfully route the circuit, which is determined by repeatedly invoking the router

with differing number of tracks, in order to find the fewest needed. This is a reasonable

metric to measure the overall demand of the circuit on the routing architecture. Channel

width is also a major factor in determining the total area of an FPGA. The last metric

is the number of external nets (nets that connect two or more complex blocks) after

packing. This metric is also a proxy for routing demand.

We note that it would have been better to evaluate our packing algorithm and ar-

chitectures using the silicon area needed to implement each benchmark circuit. Silicon

area depends strongly on the sizes of transistors used in the FPGA’s logic and routing.

Transistor sizing is typically done with specific speed performance goals in mind. As

our current flow is non-timing driven, a realistic measure of silicon area is difficult to

ascertain. We therefore leave silicon area evaluation as a topic for future work.

5.2 Results

5.2.1 Comparison of Algorithms on a Simple LUT-Based Com-

plex Block

We begin by comparing AAPack against another Packing algorithm on a fairly simple

complex block (as shown in Figure 2.2). The complex block we target has 8 LUT/FF

pairs (N = 8), 27 input pins (I = 27), and has LUTs with 6 inputs (K = 6). The

results of the experiment appear in Table 5.2. The meaning of the table columns is as

follows: The first column gives the name of the benchmark circuit. The second column,

Min W, is the minimum channel width needed to successfully route the circuit. The next

Chapter 5. Experiments and Results 76

Table 5.2: AAPack results for a basic GPCB archictecture with N = 8, K = 6, I = 27.

Circuit Min W Pack T Place T Route T Total T Num Ext Nets Num CB

alu4 54 1.2 1.75 12.62 15.57 410 103
apex2 64 1.41 3.37 17.5 22.28 601 125
apex4 66 1.2 1.85 13.53 16.58 485 103
bigkey 34 1.37 3.99 10.56 15.92 436 115
clma 64 4.4 15.81 94.7 114.91 1732 367
des 38 0.85 5.12 1.91 7.88 576 88
diffeq 34 1.49 1.98 2.48 5.95 502 117
dsip 34 1.65 5.47 12.33 19.45 600 115
elliptic 36 4.53 6.92 38.75 50.2 1073 293
ex1010 88 4.31 8.41 210.77 223.49 1227 324
ex5p 50 0.94 1.54 6.91 9.39 384 82
frisc 48 4.42 7.48 19.6 31.5 972 288
misex3 56 1.1 1.73 5.92 8.75 419 97
pdc 80 4.05 9.15 131.3 144.5 1217 313
s298 44 0.95 1.03 6.4 8.38 303 82
s38417 28 7.64 10.93 23.5 42.07 1545 454
s38584.1 38 6.75 14.77 10.29 31.81 1956 426
seq 64 1.33 3.14 13.2 17.67 542 115
spla 70 3.08 5.98 67.6 76.66 954 247
tseng 26 1.4 2.32 2.93 6.65 512 128

geoeman 47.90 2.09 4.20 15.46 24.01 706.17 166.25
stdev 17.74 2.06 4.36 53.45 56.53 489.43 125.53

three columns, labeled Pack T, Place T, and Route T2, respectively, give the runtime (in

seconds) of the packer, placer, and router steps. The next column, labeled Total T, gives

the total runtime for the entire back-end CAD flow. The two right-most columns present

the number of external nets for each circuit and the number of complex blocks in the

packed solution, respectively. At the bottom of each column, we provide the geometric

mean and standard of deviation for each metric.

It is difficult to glean any picture of AAPack quality by looking at the data in Table 5.2

in isolation. We therefore compare the results produced by using AAPack with those

produced by a previous published timing-driven packer, T-VPack 5.0 [33]. T-VPack

2This represents the time VPR needs to find the minimum W for a circuit, which involves routing the
circuit multiple times, each with a different value for W. Commercial FPGAs have fixed W and therefore
need only be routed once. Consequently, the apparent dominance of router runtime in Table 5.2 can be
misleading if read outside of this context.

Chapter 5. Experiments and Results 77

Table 5.3: AAPack vs T-VPack 5.0. Values are presented as AAPack/T-VPack.

Circuit Min W Pack T Place T Route T Total T Num Ext Nets Num CB

alu4 1.00 120.00 1.03 0.71 0.80 0.81 1.00
apex2 0.89 141.00 1.00 0.79 0.87 0.86 0.99
apex4 0.94 120.00 1.01 0.71 0.79 0.82 1.00
bigkey 1.00 137.00 0.97 0.99 1.07 0.95 1.00
clma 0.94 110.00 1.14 0.86 0.93 0.87 1.00
des 1.12 85.00 1.27 0.15 0.48 0.95 1.00
diffeq 1.00 149.00 1.06 0.70 1.09 0.86 1.05
dsip 1.00 82.50 1.25 0.69 0.87 1.15 1.00
elliptic 0.86 90.60 1.05 2.20 2.07 0.84 1.10
ex1010 0.88 71.83 0.94 0.55 0.57 0.80 0.99
ex5p 0.89 94.00 1.05 1.03 1.14 0.82 1.00
frisc 0.77 88.40 0.87 0.53 0.69 0.74 1.02
misex3 0.97 55.00 1.01 0.85 1.01 0.81 1.00
pdc 0.93 67.50 1.03 1.12 1.15 0.82 0.99
s298 0.88 47.50 1.04 0.98 1.11 0.83 1.00
s38417 0.70 152.80 0.97 1.50 1.56 0.73 1.01
s38584 0.86 112.50 0.99 0.61 1.00 0.86 1.01
seq 0.94 133.00 0.98 1.02 1.09 0.84 1.00
spla 0.95 77.00 0.97 1.66 1.64 0.82 1.00
tseng 0.81 70.00 1.01 0.92 1.21 0.88 1.01

geomean 0.91 95.22 1.03 0.83 1.00 0.85 1.01
stdev 0.09 31.82 0.09 0.45 0.37 0.09 0.02

is a commonly used baseline in research on FPGA packing, and it produces packed

circuits with less area than its predecessor, area-driven VPack [4]. Table 5.3 shows results

comparing AAPack with T-VPack. The meaning of the columns in Table 5.3 is the same

as in Table 5.2; however, the data values in the table are ratios of the data for AAPack

divided by the corresponding data for T-VPack. As such, numbers less than 1 in the

table are indicative of superior AAPack results; numbers larger than 1 are indicative of

superior T-VPack results.

Looking first at the results for channel width (Min W column) and the number of

external nets (Num Ext Nets column), we see that AAPack reduces minimum channel

width by 9% and the number of external nets by 15%, respectively. We suspected that

this improvement in routability by AAPack was primarily caused by the cost function

Chapter 5. Experiments and Results 78

used to select candidate blocks described in section 4.3.4. This cost function has a

term net absorption gain which gives higher priority to candidates with nets that get

completely absorbed into the complex block thus reducing the number of external nets.

The cost function in T-VPack, on the otherhand, did not show a preference towards these

nets. When we modified T-VPack to use the same cost function as AAPack, the minimum

channel width and the number of external nets of the modified T-VPack and AAPack

were within 1%. We observe that AAPack improves routability, without increasing the

number of complex blocks (Num CB column), which lies within 1% of T-VPack, on

average.

Turning to the runtime results, we observe that AAPack is 95 times slower than T-

VPack (two orders of magnitude). This time is primarily spent performing full detailed

routing every time a netlist block is packed into the complex block. Placer time is largely

unaffected by using AAPack versus T-VPack, while router time is reduced with AAPack.

The smaller router time is a consequence of AAPack reducing the number of external nets

between complex blocks, leading to fewer pins to route and less work for the router. We

see that the increase in packer time and the decrease in router time balance each other –

the total back-end CAD flow time is equal, on average, for AAPack versus T-VPack for

a minimum channel width experiment.

The balanced total back-end runtime for the end-user will differ from the above results

because the end-user will have an FPGA with a fixed channel width and hence will only

run routing once. To measure the runtime impact of the AAPack algorithm on the total

time seen by an end-user, we first fixed the channel width of each circuit by 20% over its

minimum channel width (so that the circuit has some difficulty routing but is not at the

limit of routability [33]). We then re-ran the previous experiment with the routing stage

set to one iteration. The results are presented in Table 5.4.

The average router time of AAPack is less than that of T-VPack by 18%, this is

similar to the minimum channel width experiment. The total back-end CAD flow time

Chapter 5. Experiments and Results 79

Table 5.4: AAPack vs T-VPack 5.0 single route normalized runtimes.

Circuit Single Route T Total T

alu4 0.77 1.28
apex2 0.98 1.23
apex4 1 1.3
bigkey 0.79 1.18
clma 0.68 0.99
des 1.03 1.24
diffeq 0.73 1.62
dsip 1 1.42
elliptic 0.68 1.3
ex1010 0.56 0.67
ex5p 1.07 1.38
frisc 0.34 0.77
misex3 1.47 1.57
pdc 0.68 0.83
s298 0.96 1.55
s38417 0.66 1.3
s38584 0.98 1.32
seq 0.94 1.25
spla 0.71 0.94
tseng 1.1 1.5

geomean 0.82 1.2
stdev 0.25 0.27

Chapter 5. Experiments and Results 80

of the AAPack flow is 20% greater than the T-VPack flow since routing is no longer as

dominant in the total back-end runtime.

The prinicipal aim of this work is to enable architecture exploration. Runtime is

not the main objective of our work and so we are willing to accept a high runtime

for AAPack compared to T-VPack. There are a few different methods we can use to

improve the runtime of the AAPack algorithm for future work and they are as follows:

First, the algorithm performs a runtime intensive detailed route of a complex block every

time a candidate is packed into a complex block. We can reduce runtime by packing

multiple candidates into a complex block before performing a detailed route. Second, the

algorithm re-routes all nets in a complex block which may not always be necessary. We

can reduce runtime by selectively determining which nets need to be re-routed.

5.2.2 Fracturable LUT Architectures

We now demonstrate the utility of UTFAL and AAPack by using them to model, and pack

circuits into, complex blocks that contain fracturable LUTs. Recall that a fracturable

LUT is a LUT that can be broken (fractured) into two smaller LUTs that share input

pins (see Figure 2.4). Modern commercial FPGAs incorporate fracturable LUTs for the

purpose of improving logic density – many LUTs in circuits are small and can therefore

be paired together and implemented in a single fracturable LUT.

Figure 5.2 depicts a complex block based on fracturable LUTs. The block has the

same structure as a basic LUT-based complex block, however, in this case each BLE

has two outputs. A fracturable BLE contains a fracturable (dual-output) LUT and two

bypassable registers – one register for each LUT output. Figure 5.3 shows a fracturable

BLE with 7 inputs and bypassable registers. A fracturable LUT has two modes of

operation: 1) as a single K-input LUT, or 2) as two LUTs that together use at most

FI inputs. In the dual-LUT mode, parameter FI determines the amount of pin sharing

that is required between the pair of LUTs that are implemented in the fracturable LUT.

Chapter 5. Experiments and Results 81

Fracturable LUT Complex Block

2

F_BLE_0
7

2

F_BLE_1
Fully

7
2

Populated

Crossbar .

.

.

.

.

.

7
2

F_BLE_7
7

Figure 5.2: Complex block for a fracturable BLE FPGA architecture

Figure 5.4 shows an example of a fracturable LUT. This fracturable LUT can operate as

either one 6-LUT (K = 6) or two 5-LUTs that share 3 inputs (FI = 7).

A key architectural question for fracturable LUT architectures concerns the “right”

value for FI. Larger values for FI will permit more packing flexibility likely at a higher

area cost, whereas lower values of FI will reduce packing flexibility. We use UTFAL and

AAPack to investigate the impact of different FI values in fracturable LUT architectures.

For this experiment, we assume that K = 6 (LUTs have 6-inputs when used in single-

output mode) and N = 8 (there are 8 fracturable BLEs per complex block). We sweep

FI from 5 to 10, covering all pin sharing possibilities for K = 6. The meaning of K = 6

and FI = 5 deserves some elaboration. In this case, when the LUT is used in dual-output

mode, the two LUTs implemented therein can together use no more than 5 distinct input

Chapter 5. Experiments and Results 82

Fracturable BLE

Fracturable

LUT

ff
FI

FO

ff

Figure 5.3: A fracturable BLE with 7 inputs, 2 outputs, and optional output registers

Fracturable LUT

Mode:!two!lut5

Fracturable LUT

M d l t6
lut5

lut6

Mode:!one!lut6

FI

lut5

lut6

Figure 5.4: The structure of fracturable 6-LUT with 7 inputs.

Chapter 5. Experiments and Results 83

signals. We set the number of external complex block inputs, I, equal to FI ×N , which

implies that no pin sharing requirements are imposed between BLEs within the complex

block.

Comparison Against Lower-Bound

We first evaluate the logic density offered by various fracturable LUT architectures by

comparing the number of complex blocks in packing solutions, with a lower bound on

the optimal number of complex blocks needed. The lower bound is computed as follows:

CB = ceiling((# 5-LUTs or smaller / 16) + (# 6-LUTs / 8))

The “# 5-LUTs or smaller” is the number of LUTs in the input (to the packer) netlist

that use 5 or few inputs. The #6-LUTs is the number of LUTs that use exactly 6 inputs.

The bound was developed through a counting argument: There are 8 fracturable BLEs

in a complex block. Each fracturable BLE can implement one 6-LUT, so the number of

6-LUTs in a design increases the complex block count by 1/8. Each fracturable BLE can

alternatively implement (at most) two 5-LUTs, so each LUT in a benchmark circuit that

uses 5 or fewer inputs increases the complex block count by 1/16. We ignore flip-flops

in the lower bound. Ignoring flip-flops does not affect the correctness of the bound but

it does affect how tight the lower bound is to the optimal solution. Almost all flip-flips

in the MCNC benchmark circuits can be paired with a LUT in the BLE, so ignoring

flip-flops has a negligible impact on the tightness of the bound. Having defined a lower

bound, we measure logic utilization for fracturable LUT-based complex blocks as follows:

CB AAPack / # CB lower bound

The logic utilization results attained by AAPack is shown in Figure 5.5. The X-axis

is FI, the number of inputs to the BLE. The Y-axis gives the logic utilization as defined

above. Each point is the geometric average logic of the 20 MCNC benchmarks. The bars

Chapter 5. Experiments and Results 84

0.8

0.85

0.9

0.95

1

Lo
g
ic

 U
ti
li
za
ti
o
n

Fracturable LUT Sweep

0.7

0.75

0.8

0.85

0.9

0.95

1

5 6 7 8 9 10

Lo
g
ic

 U
ti
li
za
ti
o
n

FI

Fracturable LUT Sweep

Figure 5.5: Logic utilization of AAPack on a sweep of FI.

show the minimum and maximum value at each point. Observe that AAPack is able to

pack to within 2% of the lower bound of the optimal solution when FI is 7 or greater.

We analyzed why logic utilization in Figure 5.5 peaked at 99% (relative to the lower

bound). A reason for this is that AAPack is uses heuristics and can make poor packing

choices under certain conditions. Consider the example in Figure 5.6, and assume that

the highlighted lut1 is the seed of a new fracturable BLE in a complex block. Figure 5.7

shows how AAPack packs the blocks associated with lut1 until the fracturable BLE is

full (the circles in the figure correspond to BLEs in the packing solution). AAPack takes

a greedy approach and both flip-flops get packed into a single BLE. The other LUT, lut6,

cannot pack into the BLE and must take up an entirely new BLE. A third BLE is then

needed for lut2. In contrast, Figure 5.8 shows an optimal packing with just 2 BLEs.

Comparison of Architectures with and without Fracturable LUTs

An architecture with fracturable LUTs uses the variation of LUT sizes in user circuits to

save area. Two small LUTs in a user circuit might map into one fracturable LUT whereas

for non-fracturable LUT architectures, two LUTs is always needed. If this situation

happens often enough, and if one fracturable LUT is smaller than two non-fracturable

LUTs, then this may result in an area savings. This experiments investigates the impact

Chapter 5. Experiments and Results 85

lut6

ff
lut1

ff

Packed into fracturable BLE

lut2

Figure 5.6: The highlighted lut1 is packed into an empty fracturable BLE.

lut6

ff
lut1

ff

lut2

Figure 5.7: AAPack packs the neighbour primitives of lut1.

ff ff
lut6

ff
lut1

ff

lut2

Figure 5.8: A more area efficient packing selects different candidates.

Chapter 5. Experiments and Results 86

Table 5.5: Fracturable LUT Architectures vs Non-fracturable.
FI Min W Pack T Place T Route T Total T Num Ext Nets Num CB

5 1.35 4.19 0.95 0.97 1.61 1.11 0.72
6 1.46 6.88 0.91 0.84 1.98 1.12 0.66
7 1.45 13.26 0.92 0.97 3.23 1.13 0.63
8 1.43 22.70 0.90 0.85 5.16 1.12 0.63
9 1.38 23.11 0.91 0.95 5.39 1.09 0.63
10 1.37 16.49 0.90 0.96 4.53 1.09 0.63

geomean 1.41 12.21 0.91 0.92 2.57 1.11 0.65
stdev 0.05 7.89 0.02 0.06 1.86 0.02 0.04

on different area metrics by architectures with and without fracturable LUTs.

Table 5.5 gives results comparing fracturable and non-fracturable LUT architectures.

The comparative baseline is a basic (non-fracturable) LUT-based complex block with

K = 6, N = 8, and I = 48. We selected I = 48 to remove the requirement of pin-sharing

between BLEs for the (non-fracturable) LUT-based architecture because we removed pin-

sharing at between BLEs for fracturable LUT-based architectures. With the exception

of the FI column, each data point in the table is a ratio of two geometric mean values:

the first mean corresponding to a fracturable LUT-based architecture, the second mean

corresponding to the non-fracturable baseline. The meanings of the columns is as follows:

FI represents the number of inputs used by the fracturable LUT when it is operating in

dual-LUT mode. Min W is the minimum channel width needed to route the benchmark

circuits. The next four columns give the pack, place, route and total runtime. This is

followed by the number of external nets. The last column is the number of complex

blocks in the packing solutions. The last two rows show the geometric mean and the

standard of deviation of the fracturable LUT-based complex block architectures.

Looking first at the Min W column of Table 5.5, we see that routing demand from

the complex blocks increases dramatically with fracturable architectures compared to

a non-fracturable architecture. The minimum channel width averages a 41% increase,

due to the greater packing density (and hence higher routing demand from each block)

afforded by fracturable LUT-based blocks.

Chapter 5. Experiments and Results 87

A second observation is that fracturable BLEs provide a 28% to 37% reduction in

the number of complex blocks needed to implement circuits (versus using a basic non-

fracturable LUT-based complex block) (see the Num CB column). Among fracturable

LUT architectures, varying FI = 5 to FI = 6 yields the highest incremental reduction in

the number of complex blocks. Increasing FI beyond six offers little additional benefit.

Xilinx Virtex-5 FPGAs have complex blocks that are similar to the FI = 5 scenario;

Altera Stratix IV FPGAs have complex blocks that are similar to the FI = 8 scenario.

A further architectural study with timing and silicon area values is needed to conclusively

show which value of FI is best given our benchmarks.

A third observation pertains to runtime. Packing runtime is increased 4-23× when

fracturable LUTs are used versus non-fracturable LUTs. AAPack incorporates a router

that is called to check packing feasibility. The complexity of the routing problem (during

packing) increases with FI, leading to longer runtimes. An exception to this is when FI

= 10. When FI = 10, LUTs packed into the same fracturable LUT do not need to share

any inputs, permitting a more straightforward checking of packing feasibility.

We also use fracturable LUT architectures to assess the quality of the AAPack router

(which is used for packing feasibility checking). The AAPacker router is based on negoti-

ated congestion routing [34], which is a heuristic approach, and therefore, may erroneously

reject certain packing solutions that are in fact legal. To gauge this possibility, the same

fracturable LUT sweep was done on a relaxed version of AAPack that ignores the rout-

ing step inside the packer – packing feasibility checks are based solely on signal counts.

Packings produced through this approach may be infeasible and hence, this produces an

upper bound on packing density. Table 5.6 shows the results of this comparison. The

relaxed version of AAPack packs slightly more tightly and produces, on average, 1% bet-

ter utilization. The increase in utilization comes at a cost of 4% more external nets and

a 3% increase in the minimum channel width. Such changes are relatively small, and we

conclude that the router’s heuristic nature has little impact on packing quality.

Chapter 5. Experiments and Results 88

Table 5.6: Relaxed AAPack vs AAPack
FI W num nets num clb

5 1.01 1.01 0.98
6 1.01 1.03 0.99
7 1.01 1.03 0.99
8 1.03 1.04 0.99
9 1.07 1.07 0.99
10 1.06 1.07 0.99

geomean 1.03 1.04 0.99
stdev 0.03 0.02 0.00

5.2.3 Depopulated Crossbar

A simple LUT-based complex block, such as the one shown in Figure 2.2, contains a

crossbar with inputs from the complex block and from the BLE outputs. The outputs

of this crossbar feed the BLE inputs. This crossbar is fully populated, meaning that any

input of the crossbar can connect to any output of the crossbar. A depopulated crossbar

attempts to save area removing some of the input-to-output connections. The reduction

in crossbar area will lead to a reduction in packing flexibility that may have a negative

area impact on the rest of the architecture, for example, it may reduce the utilization of

the complex blocks. Prior work has shown a net area reduction for certain depopulated

crossbars [26] and commercial FPGAs use depopulated crossbars [27]. A packer should

therefore be able to model and pack to complex blocks containing depopulated crossbars.

In this section, we use UTFAL to model depopulated crossbars and then use AAPack to

pack circuits into complex blocks containing them.

We evaluate using a depopulated crossbar in a simple LUT-based complex block with

the following parameters: K = 6, N = 8, I = 27. The crossbar used in the experiment

is characterized through four parameters: the number of inputs into the crossbar from

the complex block inputs (xCI), the number of inputs into the crossbar from the BLE

outputs (xBLI), the number of outputs of the crossbar (xO), and the fraction of crossbar

inputs that a single crossbar output can connect to (xP). For example, a fully populated

Chapter 5. Experiments and Results 89

Inputs from GPCB Input Pins

(xCI)

Inputs from BLE Feedback Paths

(xBLI)(xCI) (xBLI)

1 2 3 4 5 6 7 1 2 3 4

1

Outputs

(xO)
2

 3
 4

GPCB Crossbar

5

Figure 5.9: Depopulated crossbar with a staggered connection pattern and a xP of 0.5

crossbar for the complex block used in this experiment has xCI = 27, xBLI = 8, xO

= 48, and xP = 1. By varying xP in the range of 0 to 1, we can model a range of

depopulated crossbars. Aside from xP , the other three crossbar parameters are held

constant in this experiment.

The depopulated crossbars considered in this experiment follow a staggered connec-

tion pattern. An example of the pattern for a small crossbar with xCI = 7, xBLI = 4,

xO = 6, and xP = 0.5 is shown in Figure 5.9. A solid circle in the diagram represents a

programmable connection from an input to an output. The staggered connection pattern

connects inputs from xCI and xBLI separately. Only the pattern generation for xCI

will be described, because xBLI uses the same pattern generation. Each output connects

to ⌈xCI × xP ⌉ inputs (⌈7 × 0.5⌉ = ⌈3.5⌉ = 4). Connections to inputs are made consec-

utively; the next output begins making connections where the previous output stopped.

For example, output pin 1 connects to the first 4 input pins from xCI, and output pin 2

connects to input pins 5 to 7, and then wraps around and connects to pin 1 of xCI.

We measure the impact of xP on logic utilization, runtime, and the number of external

nets. We acknowledge that min W should also be measured, but this was not done

owing to limitations with the tool. In [26], Lemieux showed that an accurate min W

Chapter 5. Experiments and Results 90

����

���

����

����

����

����

�

��
�
��
��
��
	�

�
��
�
�

���������	�
������
��������	�����

����

����

���

����

����

����

����

�

� ��� ��� ��� ��� �

��
�
��
��
��
	�

�
��
�
�

�������������������������	����

���������	�
������
��������	�����

Figure 5.10: Logic utilization vs depopulation of crossbar

measurement requires that the routing stage of the CAD flow is able to access the routing

inside of a complex block. This feature is not part of VPR 5.0 so we do not present results

for min W.

Figure 5.10 graphs the impact of depopulation on logic utilization (logic utilization

is the ratio of the minimum number of complex blocks necessary with the number used

as described in 5.2.2). The x-axis shows depopulation while the y-axis shows logic uti-

lization. AAPack is able to maintain high logic utilization, near 99% when the crossbar

population is higher than 30%. Logic utilization degrades severely below the 15% cross-

bar population threshold. Observe that utilization remains above 85% even when the

crossbar is only 5% populated. At 5% population, each BLE input can connect to two

complex block input pins and one feedback pin. It is surprising that such high logic

utilization can be maintained despite the very inflexible crossbar.

Figure 5.11 graphs the impact of depopulation on the number of external nets when

compared to a complex block with a complete crossbar. The x-axis shows the population

of the crossbar; the y-axis shows the average relative increase in the number of external

nets. The packer starts to have difficulty packing related blocks together when the

crossbar population (xP) is lower than 0.15, thus increasing the number of external nets.

Figure 5.12 shows the impact of depopulation on runtime using the full crossbar as

Chapter 5. Experiments and Results 91

0 95

1.00

1.05

1.10

1.15

1.20

m
a
li
ze
d

 #
 E
x
te
rn
a
l
N
e
ts

External Nets vs Depopulation

0.90

0.95

1.00

1.05

1.10

1.15

1.20

0 0.2 0.4 0.6 0.8 1

N
o
rm

a
li
ze
d

 #
 E
x
te
rn
a
l
N
e
ts

Fraction of Crossbar Populated

External Nets vs Depopulation

Figure 5.11: Number of external nets vs depopulation of crossbar

1.00

1.10

1.20

1.30

1.40

1.50

1.60

o
rm

a
li
ze
d

 P
a
ck

 T
im

e

Runtime vs Depopulation

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

0 0.2 0.4 0.6 0.8 1

N
o
rm

a
li
ze
d

 P
a
ck

 T
im

e

Fraction of Crossbar Populated

Runtime vs Depopulation

Figure 5.12: Runtime vs depopulation of crossbar

the baseline. The x-axis shows population (xP); the y-axis shows runtime. There are

two factors at play in the runtime results. When xP is low, the crossbar is sparse,

and AAPack’s internal router must spend several iterations to find a legal routing. On

the other hand, when xP is high, the number of programmable connections within the

crossbar is large, again increasing the runtime of AAPack’s internal router. The graph

shows that there is a large range of xP values, 0.4 to 0.7, where runtime is reduced by

more than 10% compared to the full crossbar. Runtime is approximately the same as the

full crossbar for an xP value of 0.3.

Chapter 5. Experiments and Results 92

5.2.4 Heterogeneous FPGA

The final experiment is a proof-of-concept that AAPack can be used to pack hetero-

geneous circuits. We use AAPack to pack the or1200 benchmark circuit (described in

section 5.1 to an architecture that contains fracturable 36x36 multipliers, single-port

configurable memories, and dual-port configurable memories. The dual-port memories

can be configured as 2048x2 or to 1024x4. This architecture also includes traditional

LUT-based complex blocks with the following parameters: K = 4, N = 10, I = 22.

The circuit contains one 32x32 multiplier and should therefore use one physical frac-

turable multiplier. The circuit also contains two 32-bit dual-port RAMs. Each dual-port

RAM is split into single-bit wide RAMs by ODIN II; hence, the technology mapped

circuit contains 64 dual-port RAMs, each of which is 1-bit wide. These RAMs are sized

32x1 so four of such single-bit wide RAMs should pack into one 1024x4 RAM. Finally,

the circuit also contains 3423 LUTs and 579 flip-flops.

For the or1200 circuit, AAPack generates a packing with 349 LUT-based complex

blocks (98% logic utilization), 16 dual-port memory complex blocks, and 1 multiplier

complex block. The minimum channel width is 48 and the number of external nets is

2149 (2323 nets were absorbed into the LUT-based complex blocks). The placement

of the blocks on the FPGA is shown in Figure 5.13 and a close-up of the routing near

a dual-port memory is shown in Figure 5.14. In the placement, the multipliers have a

height of 3; dual-port memories have a height of 2. The lightly shaded 1x1 squares are

single-port memories; the white squares are unused LUT-based complex blocks and the

grey squares are used LUT-based complex blocks. Lightly shaded blocks are unused, and

darker blocks are used. These graphics are generated by the VPR 5.0 graphics engine.

In conclusion, AAPack is capable of correctly packing a heterogeneous circuit (that

contains multipliers and memories) into a heterogeneous FPGA architecture while main-

taining a high logic utilization.

Chapter 5. Experiments and Results 93

Placement. Cost: 275.404 bb_cost: 275.404 td_cost: 0 Channel Factor: 100 d_max: 0

Figure 5.13: Placement of the or1200 circuit on a heterogeneous FPGA

Chapter 5. Experiments and Results 94

.dpmemory

Figure 5.14: Part of the routing for the or1200 circuit on a heterogeneous FPGA

Chapter 5. Experiments and Results 95

5.3 Summary

This chapter investigated the quality of results of the AAPack tool followed by an explo-

ration of different architectures using AAPack. We described an experimental method-

ology that consisted of running benchmark circuits through a CAD flow and measuring

the results from that flow. We first showed that AAPack has comparable quality of

results with a previously published tool. Across the 20 largest MCNC benchmarks, AA-

Pack produces circuits with 9% lower minimum channel width and 1% higher complex

block count versus T-VPack. We then showed that AAPack can be used for preliminary

architectural experiments. For fracturable LUT-based complex blocks, we showed that

99% complex block utilization can be achieved if the 6-LUTs in a complex block can

be fractured into two 5-LUTs that share 3 or fewer inputs. We also showed the impact

of using fracturable LUTs on routing channel width. For depopulated crossbars within

complex blocks, we showed that 85% complex block utilization can be achieved with

just 5% switch population. Finally, we showed that AAPack can be used to pack to an

architecture with fracturable multipliers and configurable memories.

Chapter 6

Conclusions

FPGAs are a widely used media for implementing digital circuits. The complex block

architecture of an FPGA has a significant impact on the cost, performance, and power

of circuits implemented on the FPGA. Despite this, innovation in complex block archi-

tecture has been held back by a lack of publicly-available architecture exploration infras-

tructure. This thesis takes a first step towards enabling the comprehensive exploration

of modern complex block architectures. In particular, we make three contributions:

1. We presented a new modeling language, UTFAL, that can concisely describe a large

space of complex block architectures. We illustrated the capabilities of UTFAL for

complex block modeling using three examples: 1) a LUT-based complex block, 2) a

complex block with configurable memories, and 3) a complex block with fracturable

multipliers. The examples demonstrate that UTFAL can model complex blocks that

are representative of those in modern commercial FPGAs.

2. We presented a new area-driven FPGA packing tool, AAPack, that, to our knowl-

edge, is the first publicly-available “generic” packer, capable of packing circuits into

a range of complex block architectures. AAPack accepts two inputs: 1) the cir-

cuit to be packed, and 2) a description (in UTFAL) of the target FPGA’s complex

block architecture. Prior FPGA packing tools hard-code the architecture model

96

Chapter 6. Conclusions 97

and implement a packing algorithm suitable for a small range of complex block

architectures. AAPack, on the other hand, receives the architecture model as in-

put data, and can pack into a much wider range of architectures. Specifically, we

showed that AAPack provides improved quality-of-result versus T-VPack when tar-

geting basic LUT-based complex block architectures. Across the 20 largest MCNC

benchmarks, AAPack produces circuits with 9% lower minimum channel width and

1% higher complex block count versus T-VPack. We also showed that AAPack can

be used to explore general-purpose complex block architectures that contain frac-

turable LUTs and depopulated crossbars (see the next item below). Lastly, as a

proof-of-concept, we showed that AAPack can be used to pack to a heterogeneous

FPGA with fracturable multipliers and configurable memories.

3. We conducted a preliminary architecture investigation of fracturable LUT-based

complex block architectures and complex blocks with partially populated intra-

block routing crossbars. For fracturable LUT-based complex blocks, we showed that

99% complex block utilization can be achieved if the 6-LUTs in a complex block

can be fractured into two 5-LUTs that share 3 or fewer inputs. We also showed

the impact of using fracturable LUTs on routing channel width. For depopulated

crossbars within complex blocks, we showed that 85% complex block utilization

can be achieved with just 5% switch population.

6.1 Future Work

In the future, we plan to improve the FPGA architecture exploration capabilities of

UTFAL and AAPack.

Chapter 6. Conclusions 98

Timing-Driven CAD Flow

Timing-driven packing can have a significant impact on the performance of a circuit im-

plemented on an FPGA [33] and thus, timing-driven packing is a fundamental part of

a timing-driven CAD flow. This motivates the need to extend AAPack so that it can

use delay information to make better packing decisions, and thereby permit architec-

tural exploration based on circuit speed performance. We envision that UTFAL can be

extended to incorporate delay information in the architecture model, specifically, delay

values for the interconnect and block constructs. AAPack’s packing algorithm will then

be extended to make use of the delay information to produce speed-optimized packing

solutions.

Architecture Exploration

UTFAL and AAPack are intended to enable FPGA complex block architectural investi-

gation. While the proposed tools are already able to measure certain trade-offs between

complex block architectures (such as routing channel width and utilization), a more thor-

ough architecture study requires an accurate picture of silicon area, speed and power.

Further work is needed to extend the proposed tools (as well as the front-end synthesis

and back-end layout tools) to produce a complete FPGA architecture evaluation system

– a system from which one can draw accurate architectural conclusions.

Heterogeneous architecture exploration is another interesting future research direction

with many open questions: What are the “best” ratios and types of special-purpose

complex blocks in an FPGA? What functions should the different special-purpose blocks

in an FPGA implement? What fixed-functionality computations should be incorporated

into general-purpose complex blocks? To answer these questions and others, AAPack

may need to support additional features, an example being support for bus-based routing

to explore the types of floating point-based complex blocks proposed in [16]. Another

feature in a future version of AAPack may be a smarter way to decide which complex

Chapter 6. Conclusions 99

block type to use when there are multiple valid choices available.

6.1.1 Improve Quality and Runtime for the AAPack Algorithm

The AAPack algorithm uses greedy heuristics which may result in a poor quality of

results on some architectures. We plan to add some hill-climbing capabilities such that

AAPack can explore solutions past locally optimal points.

The runtime of the CAD flow affects engineering productivity and also affects the

number of different architectures an architect can explore given finite time and compute

resources. The runtime of AAPack is two orders of magnitude greater than the basic

GPCB packer T-VPack and there are at least two approaches to mitigate the runtime.

First, the current packing algorithm performs a runtime intensive detailed route of a

complex block every time a candidate primitive is packed into the complex block. We can

reduce runtime by packing multiple candidates into the complex block before performing

a detailed route. Second, the current algorithm re-routes all nets in a complex block each

time a new primitive is packed. We can reduce this runtime using an incremental routing

strategy.

6.1.2 Carry Chain Support

Carry chains are fundamental to implementing arithmetic circuits in commercial FPGAs

[12] [17]. A carry chain is a set of multiplexers, connected serially, that realizes the prop-

agate/generate concepts in binary addition. Since all commercial FPGAs contain carry

chains, architecture evaluation tools should be able to model and use them (including

support throughout the flow from HDL synthesis to routing). In UTFAL, it may be

necessary to define a special new primitive to represent a carry chain. Or, an alternative

approach would be to describe carry chains using the generic constructs that are already

part of UTFAL. The latter approach may require that the synthesis and packing CAD

tools “infer” carry chains from the circuit’s HDL and/or Boolean network representation.

Chapter 6. Conclusions 100

Carry chains in today’s commercial FPGAs are closely tied to LUTs: each multi-

plexer in a carry chain is linked to a specific neighbouring LUT. Packing of LUTs and

carry chains must therefore occur in tandem, and as such, handling carry chains will

undoubtedly require that changes be made to AAPack’s packing algorithm.

Bibliography

[1] Elias Ahmed and Jonathan Rose. The Effect of LUT and Cluster Size on Deep-

Submicron FPGA Performance and Density. IEEE TRANSACTIONS ON VERY

LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 12(3):288–298, March 2004.

[2] Taneem Ahmed, Paul D. Kundarewich, Jason H. Anderson, Brad L. Taylor, and Ra-

jat Aggarwal. Architecture-specific packing for Virtex-5 FPGAs. In FPGA ’08: Pro-

ceedings of the 16th international ACM/SIGDA symposium on Field programmable

gate arrays, pages 5–13, New York, NY, USA, 2008. ACM.

[3] UC Berkeley. Berkeley logic interchange format. Technical report, Technical report,

University of California at Berkeley, 1998.

[4] Vaughn Betz and Jonathan Rose. Cluster-Based Logic Blocks for FPGAs: Area-

Efficiency vs. Input Sharing and Size. IEEE 1997 CUSTOM INTEGRATED CIR-

CUITS CONFERENCE, 1997.

[5] Vaughn Betz, Jonathan Rose, and Alexander Marquardt. Architecture and CAD

for Deep-Submicron FPGAs. Kluwer Academic Publishers, Norwell, Massachusetts,

1999.

[6] E. Bozorgzadeh, S. Ogrenci Memik, X. Yang, and M. Sarrafzadeh. Routability-driven

Packing: Metrics and Algorithms for Cluster-based FPGAs. Journal of Circuits

Systems and Computers, 13:77–100, 2004.

101

Bibliography 102

[7] S.D. Brown. Fundamentals of digital logic with Verilog design. Tata McGraw-Hill,

2007.

[8] K. Chaudhary. FPGA having logic element carry chains capable of generating wide

XOR functions, March 30 1999. US Patent 5,889,411.

[9] Doris T. Chen, Kristofer Vorwerk, and Andrew Kennings. Improving Timing-driven

FPGA Packing with Physical Information. International Conference on Field Pro-

grammable Logic and Applications, pages 117–123, Aug 2007.

[10] Altera Corporation. Altera Fact Sheet. http://www.altera.com/corporate/news_room/factsheet/nr-

2009.

[11] Altera Corporation. Stratix IV Device Family Overview. 2009.

[12] Altera Corporation. Stratix Series FPGA Fracturable Look-Up Table Logic Struc-

ture. http://www.altera.com/products/devices/stratix-fpgas/about/alm-logic-structur

2009.

[13] C. Ebeling, D. Cronquist, and P. Franklin. RaPiDReconfigurable pipelined datap-

ath. Field-Programmable Logic Smart Applications, New Paradigms and Compilers,

pages 126–135, 1996.

[14] S. Hauck, K. Compton, K. Eguro, M. Holland, S. Phillips, and A. Sharma. Totem:

domain-specific reconfigurable logic. IEEE Transactions on VLSI Systems, pages

1–25, 2006.

[15] S. Hauck, MM Hosler, and TW Fry. High-performance carry chains for FPGA’s.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 8(2):138–147,

2000.

http://www.altera.com/corporate/news_room/factsheet/nr-factsheet.html
http://www.altera.com/products/devices/stratix-fpgas/about/alm-logic-structure/stx-alm-logic-structure.html

Bibliography 103

[16] Chun Hok Ho, Chi Wai Yu, Phillip Leong, Wayne Luk, and Steven J. E. Wilton.

Floating-point FPGA: architecture and modeling. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 17(12):1709–1718, 2009.

[17] Xilinx Incorporated. Virtex-6 Family Overview. 2009.

[18] Xilinx Incorporated. Xilinx Corporate Fact Sheet.

http://www.altera.com/corporate/news_room/factsheet/nr-factsheet.html,

2009.

[19] P. Jamieson and J. Rose. A verilog RTL synthesis tool for heterogeneous FPGAs.

In International Conference on Field Programmable Logic and Applications, volume

2005, pages 305–310, 2005.

[20] P. Jamieson and J. Rose. Mapping multiplexers onto hard multipliers in FPGAs.

Proc. of IEEE-NECAS, pages 323–326, 2005.

[21] Peter Jamieson, Kenneth Kent, and Jonathan Rose. Odin II.

http://www.users.muohio.edu/jamiespa/odin_II.html, 2009.

[22] S. Jang, B. Chan, K. Chung, and A. Mishchenko. WireMap: FPGA technology map-

ping for improved routability. In Proceedings of the 16th international ACM/SIGDA

symposium on Field programmable gate arrays, pages 47–55. ACM, 2008.

[23] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel

hypergraph partitioning: Application in VLSI domain. IEEE Transactions on Very

Large Scale Inegration (VLSI) Systems, 7(1):69–79, Mar 1999.

[24] Ian Kuon and Jonathan Rose. Measuring the gap between fpgas and asics.

IEEE Transactions On Computer-Aided Design of Integrated Circuits and Systems,

26(2):203–215, 2007.

[25] D. Lampret. OpenRISC 1200 IP Core Specification. September June, 2001.

http://www.altera.com/corporate/news_room/factsheet/nr-factsheet.html
http://www.users.muohio.edu/jamiespa/odin_II.html

Bibliography 104

[26] Guy Lemieux and David Lewis. Design of Interconnection Networks for Pro-

grammable Logic. Kluwer Academic Publishers, Norwell, Massachusetts, 2004.

[27] D. Lewis, V. Betz, D. Jefferson, A. Lee, C. Lane, P. Leventis, S. Marquardt, C. Mc-

Clintock, B. Pedersen, G. Powell, et al. The stratixπ routing and logic architecture.

In Proceedings of the 2003 ACM/SIGDA eleventh international symposium on Field

programmable gate arrays, pages 12–20. ACM New York, NY, USA, 2003.

[28] J.Y. Lin, D. Chen, and J. Cong. Optimal simultaneous mapping and clustering for

FPGA delay optimization. In Proceedings of the 43rd annual Design Automation

Conference, page 477. ACM, 2006.

[29] A.C. Ling, J. Zhu, and S.D. Brown. Scalable Synthesis and Clustering Techniques

Using Decision Diagrams. IEEE Transactions on Computer Aided Design of Inte-

grated Circuits and Systems, 27(3):423, 2008.

[30] Jason Luu, Ian Kuon, Peter Jamieson, Ted Campbell, Andy Ye, Wei Mark Fang,

and Jonathan Rose. VPR 5.0: FPGA CAD and Architecture Exploration Tools with

Single-driver Routing, Heterogeneity and Process Scaling. In FPGA ’09: Proceeding

of the ACM/SIGDA international symposium on Field programmable gate arrays,

pages 133–142, New York, NY, USA, 2009. ACM.

[31] Jason Luu, Ian Kuon, Peter Jamieson, Ted Campbell, Andy Ye, Wei Mark

Fang, and Jonathan Rose. VPR and T-Vpack User’s Manual (Version 5.0).

http://www.eecg.utoronto.ca/vpr/VPR_5.pdf, 2009.

[32] Jason Luu, Keith Redmond, William Lo, Paul Chow, Lothar Lilge, and Jonathan

Rose. Fpga-based monte carlo computation of light absorption for photodynamic

cancer therapy. Field-Programmable Custom Computing Machines, Annual IEEE

Symposium on, 0:157–164, 2009.

http://www.eecg.utoronto.ca/vpr/VPR_5.pdf

Bibliography 105

[33] Alexander Marquardt, Vaughn Betz, and Jonathan Rose. Using Cluster-Based Logic

Blocks and Timing-Driven Packing to Improve FPGA Speed and Density. Proceed-

ings of the Seventh International Symposium on Field Programmable Gate Arrays,

pages 37–46, 1999.

[34] L. McMurchie and C. Ebeling. PathFinder: a negotiation-based performance-driven

router for FPGAs. In Proceedings of the 1995 ACM third international symposium

on Field-programmable gate arrays, pages 111–117. ACM, 1995.

[35] Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. Improvements to tech-

nology mapping for LUT-based FPGAs. In FPGA ’06: Proceedings of the 2006

ACM/SIGDA 14th international symposium on Field programmable gate arrays,

pages 41–49, New York, NY, USA, 2006. ACM.

[36] P. Mishra and N. Dutt. Architecture description languages for programmable em-

bedded systems. System-on-chip: next generation electronics, page 187, 2006.

[37] T. Ngai, J. Rose, and S.J.E. Wilton. An sram-programmable field-configurable

memory. pages 499–502, May 1995.

[38] Gang Ni, Jiarong Tong, and Jinmei Lai. A new fpga packing algorithm based on the

modeling method for logic block. In ASIC, 2005. ASICON 2005. 6th International

Conference On, volume 2, pages 877–880, Oct. 2005.

[39] J. Oliveira Filho, S. Masekowsky, T. Schweizer, and W. Rosenstiel. CGADL: An

Architecture Description Language for Coarse-Grained Reconfigurable Arrays. IEEE

Transactions on VLSI Systems, 17(9):1247–1259, 2009.

[40] Daniele Paladino and Stephen Brown. Academic Clustering and Placement Tools for

Modern Field-Programmable Gate Array Architectures. Master’s thesis, University

of Toronto, Toronto, Ontario, Canada, 2008.

Bibliography 106

[41] Baber A Pervez, Alastair Smith, and George Constantinides. Fourth Year Design

Project, 2009.

[42] II Quartus. Version 9.0 Handbook. San Jose, Ca: Altera. Available

at¡http://www.altera.com/¿. Accessed in, 2009.

[43] Amit Singh, Ganapathy Parthasarathy, and Malgorzata Marek-Sadowksa. Efficient

Circult Clustering for Area and Power Reduction in FPGAs. ACM Transactions on

Design Automation of Electronic Systems, 7(4):643–663, Nov 2002.

[44] B.L. Synthesis. Verification Group. ABC: A system for sequential synthesis and

verification, 2005.

[45] W3C. Extensible Markup Language (XML). http://www.w3.org/XML/, 2003.

[46] Steve J.E. Wilton. Heterogeneous Technology Mapping for Area Reduction in FP-

GAs with Embedded Memory Arrays. IEEE TRANSACTIONS ON COMPUTER-

AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 19(1):56–68,

January 2000.

[47] S. Yang. Logic synthesis and optimization benchmarks user guide version 3.0.

MCNC, Jan, 1991.

http://www.w3.org/XML/

Appendix A

FPGA CBS Examples

A.1 Complete Specification of Basic GPCB Block

<!--

Example of a Basic GPCB with

N = 10, K = 4, I = 22, O = 10

BLEs consisting of a single LUT followed by a flip -flop that can be

bypassed

-->

<pb_type name="clb">

<input name="I" num_pins="22"/>

<output name="O" num_pins="10"/>

<clock name="clk"/>

<pb_type name="ble" num_pb="10">

<input name="in" num_pins="4"/>

<output name="out" num_pins="1"/>

<clock name="clk"/>

<pb_type name="lut_4" blif_model=".names" num_pb="1" class="lut">

<input name="in" num_pins="4" port_class="lut_in"/>

<output name="out" num_pins="1" port_class="lut_out"/>

</pb_type >

<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">

<input name="D" num_pins="1" port_class="D"/>

<output name="Q" num_pins="1" port_class="Q"/>

<clock name="clk" port_class="clock"/>

</pb_type >

<interconnect >

<direct input="lut_4.out" output="ff.D"/>

107

Appendix A. FPGA CBS Examples 108

<direct input="ble.in" output="lut_4.in"/>

<mux input="ff.Q lut_4.out" output="ble.out"/>

<direct input="ble.clk" output="ff.clk"/>

</interconnect >

</pb_type >

<interconnect >

<complete input="{clb.I ble[9:0].out}" output="ble[9:0].in"/>

<complete input="clb.clk" output="ble[9:0].clk"/>

<direct input="ble[9:0].out" output="clb.O"/>

</interconnect >

</pb_type >

A.2 Complete Specification of Memory with Recon-

figurable Aspect Ratio

<!--

Example of a memory with reconfigurable aspect ratios and optional ,

bus -based registers at its inputs and outputs.

The three aspect ratios that it can be configured to are 2048x1,

1024x2, 512x4

-->

<pb_type name="block_RAM">

<input name="addr" num_pins="11"/>

<input name="din" num_pins="4"/>

<input name="wen" num_pins="1"/>

<output name="dout" num_pins="4"/>

<clock name="clk"/>

<!-- 2 sets of bypassable registers -->

<pb_type name="ff_reg_in" blif_model=".latch" num_pb="16"

class="flipflop">

<input name="D" num_pins="1" port_class="D"/>

<output name="Q" num_pins="1" port_class="Q"/>

<clock name="clk" port_class="clock"/>

</pb_type >

<pb_type name="ff_reg_out" blif_model=".latch" num_pb="4"

class="flipflop">

<input name="D" num_pins="1" port_class="D"/>

<output name="Q" num_pins="1" port_class="Q"/>

<clock name="clk" port_class="clock"/>

</pb_type >

<pb_type name="mem_reconfig" num_pb="1">

<input name="addr" num_pins="11"/>

<input name="din" num_pins="4"/>

<input name="wen" num_pins="1"/>

Appendix A. FPGA CBS Examples 109

<output name="dout" num_pins="4"/>

<!-- Declare a 2048x1 memory type -->

<mode name="mem_2048x1_mode">

<pb_type name="mem_2048x1" blif_model=".subckt sp_mem"

class="memory">

<input name="addr" num_pins="11" port_class="address"/>

<input name="din" num_pins="1" port_class="data_in"/>

<input name="wen" num_pins="1" port_class="write_en"/>

<output name="dout" num_pins="1" port_class="data_out"/>

</pb_type >

<interconnect >

<direct input="mem_reconfig.addr [10:0]"

output="mem_2048x1.addr"/>

<direct input="mem_reconfig.din [0]" output="mem_2048x1.din"/>

<direct input="mem_reconfig.wen" output="mem_2048x1.wen"/>

<direct input="mem_2048x1.dout" output="mem_reconfig.dout [0]"/>

</interconnect >

</mode>

<!-- Declare a 1024x2 memory type -->

<mode name="mem_1024x2_mode">

<pb_type name="mem_1024x2" blif_model=".subckt sp_mem"

class="memory">

<input name="addr" num_pins="10" port_class="address"/>

<input name="din" num_pins="2" port_class="data_in"/>

<input name="wen" num_pins="1" port_class="write_en"/>

<output name="dout" num_pins="2" port_class="data_out"/>

</pb_type >

<interconnect >

<direct input="mem_reconfig.addr[9:0]"

output="mem_1024x2.addr"/>

<direct input="mem_reconfig.din[1:0]" output="mem_1024x2.din"/>

<direct input="mem_reconfig.wen" output="mem_1024x2.wen"/>

<direct input="mem_1024x2.dout"

output="mem_reconfig.dout[1:0]"/>

</interconnect >

</mode>

<!-- Declare a 512x4 memory type -->

<mode name="mem_512x4_mode ">

<pb_type name="mem_512x4" blif_model=".subckt sp_mem"

class="memory">

<input name="addr" num_pins="9" port_class="address"/>

<input name="din" num_pins="4" port_class="data_in"/>

<input name="wen" num_pins="1" port_class="write_en"/>

<output name="dout" num_pins="4" port_class="data_out"/>

</pb_type >

<interconnect >

<direct input="mem_reconfig.addr[9:0]"

output="mem_512x4.addr"/>

<direct input="mem_reconfig.din[3:0]" output="mem_512x4.din"/>

<direct input="mem_reconfig.wen" output="mem_512x4.wen"/>

<direct input="mem_2048x1.dout"

Appendix A. FPGA CBS Examples 110

output="mem_reconfig.dout[3:0]"/>

</interconnect >

</mode>

</pb_type >

<!-- connect up the memory , mux the block RAM outputs so that the

memory configurations are mutually exclusive -->

<interconnect >

<direct input="{block_RAM.wen block_RAM.din block_RAM.addr}"

output="ff_reg_in [15:0].D"/>

<mux input="{block_RAM.wen block_RAM.din[3:0] block_RAM.addr [10:0]}

ff_reg_in [15:0].Q"

output="{mem_reconfig.wen mem_reconfig.din

mem_reconfig.addr}"/>

<direct input="mem_reconfig.dout" output="ff_reg_out [3:0].D"/>

<mux input="mem_reconfig.dout ff_reg_out [3:0].Q"

output="block_RAM.dout"/>

<complete input="block_RAM.clk" output="ff_reg_in [15:0].clk"/>

<complete input="block_RAM.clk" output="ff_reg_out [3:0].clk"/>

</interconnect >

</pb_type >

A.3 Fracturable Multiplier

A.3.1 Multiplier SPCB Example

The third complex example is a fracturable multiplier SPCB shown in Figure A.1. The

large block mult can implement one 36x36 multiplier cluster called a mult 36x36 slice

or it can implement two divisble 18x18 multipliers. A divisible 18x18 multiplier can

implement a 18x18 multiplier cluster called a mult 18x18 slice or it can be fractured into

two 9x9 mulitplier clusters called mult 9x9 slice.

Figure A.2 shows a multiplier slice. Pins belonging to the same input or output port

of a multiplier slice must be either all registered or none registered. Pins belonging to

different ports or different slices may have different register configurations. A multiplier

primitive itself has two input ports (A and B) and one output port (OUT).

First, we describe the block mult complex block as follows:

Appendix A. FPGA CBS Examples 111

block multblock_mult

mult_36x36_slice
A

mult 18x18 slice mult 18x18 slice

divisible_mult_18x18divisible_mult_18x18

Out

_ _

Or

mult_9x9_slice

Or

_ _

mult_9x9_slice

Or

B

mult_9x9_slice mult_9x9_slice

Figure A.1: Reconfigurable Embedded Multiplier.

mult_36x36_slice
OUT_cfg

FF FF

mult_36x36

A OUTA_cfg

36 36

reg_36x36_A

FF

B
reg_36x36_out

reg_36x36_B

B_cfg

clkclk

Figure A.2: 36x36 reconfigurable embedded multiplier slice.

<pb_type name="block_mult">

<input name="A" num_pins="36"/>

<input name="B" num_pins="36"/>

<output name="OUT" num_pins="72"/>

<clock name="clk"/>

The block mult complex block has two modes: a mode containing a 36x36 multiplier

slice and a mode containing two fracturable 18x18 multipliers. The mode containing the

36x36 multiplier slice is described first. The mode and slice is declared here:

<mode name="mult_36x36">

<pb_type name="mult_36x36_slice " num_pb="1">

<input name="A_cfg" num_pins="36"/>

<input name="B_cfg" num_pins="36"/>

<input name="OUT_cfg" num_pins="72"/>

<clock name="clk"/>

This is followed by a description of the primitives within the slice. There are two

sets of 36 flip-flops for the input ports and one set of 64 flip-flops for the output port.

Appendix A. FPGA CBS Examples 112

There is one 36x36 multiplier primitive. These primitives are described by four pb types

as follows:

<pb_type name="reg_36x36_A" blif_model=".latch" num_pb="36"

class="flipflop">

<input name="D" num_pins="1" port_class="D"/>

<output name="Q" num_pins="1" port_class="Q"/>

<clock name="clk" port_class="clock"/>

</pb_type >

<pb_type name="reg_36x36_B" blif_model=".latch" num_pb="36"

class="flipflop">

<input name="D" num_pins="1" port_class="D"/>

<output name="Q" num_pins="1" port_class="Q"/>

<clock name="clk" port_class="clock"/>

</pb_type >

<pb_type name="reg_36x36_out" blif_model=".latch" num_pb="72"

class="flipflop">

<input name="D" num_pins="1" port_class="D"/>

<output name="Q" num_pins="1" port_class="Q"/>

<clock name="clk" port_class="clock"/>

</pb_type >

<pb_type name="mult_36x36" blif_model=".subckt mult" num_pb="1">

<input name="A" num_pins="36"/>

<input name="B" num_pins="36"/>

<output name="OUT" num_pins="72"/>

</pb_type >

The slice description finishes with a specification of the interconnection. Using the

same technique as in the memory example, bus-based multiplexers are used to register

the ports. Clocks are connected using the complete tag because there is a one-to-many

relationship. Direct tags are used to make simple, one-to-one connections.

<interconnect >

<direct input="mult_36x36_slice .A_cfg"

output="reg_36x36_A [35:0].D"/>

<direct input="mult_36x36_slice .B_cfg"

output="reg_36x36_B [35:0].D"/>

<mux input="mult_36x36_slice .A_cfg reg_36x36_A [35:0].Q"

output="mult_36x36.A"/>

<mux input="mult_36x36_slice .B_cfg reg_36x36_B [35:0].Q"

output="mult_36x36.B"/>

<direct input="mult_36x36.OUT" output="reg_36x36_out [71:0].D"/>

<mux input="mult_36x36.OUT reg_36x36_out [71:0].Q"

output="mult_36x36_slice .OUT_cfg"/>

<complete input="mult_36x36_slice .clk"

Appendix A. FPGA CBS Examples 113

output="reg_36x36_A [35:0].clk"/>

<complete input="mult_36x36_slice .clk"

output="reg_36x36_B [35:0].clk"/>

<complete input="mult_36x36_slice .clk"

output="reg_36x36_out [71:0].clk"/>

</interconnect >

</pb_type >

The mode finishes with a specification of the interconnect between the slice and its

parent.

<interconnect >

<direct input="block_mult.A" output="mult_36x36_slice .A_cfg"/>

<direct input="block_mult.B" output="mult_36x36_slice .A_cfg"/>

<direct input="mult_36x36_slice .OUT_cfg"

output="block_mult.OUT"/>

<direct input="block_mult.clk" output="mult_36x36_slice .clk"/>

</interconnect >

</mode>

After the mode containing the 36x36 multiplier slice is described, the mode containing

two fracturable 18x18 multipliers is described:

<mode name="two_divisible_mult_18x18">

<pb_type name="divisible_mult_18x18" num_pb="2">

<input name="A" num_pins="18"/>

<input name="B" num_pins="18"/>

<input name="OUT" num_pins="36"/>

<clock name="clk"/>

This mode has two additional modes which are the actual 18x18 multiply block or

two 9x9 mulitplier blocks. Both follow a similar description as the mult 36x36 slice with

just the number of pins halved so the details are not repeated.

<mode name="two_divisible_mult_18x18">

<pb_type name="mult_18x18_slice " num_pb="1">

<!-- follows previous pattern for slice definition -->

</pb_type >

<interconnect >

<!-- follows previous pattern for slice definition -->

</interconnect >

</mode>

<mode name="two_mult_9x9">

<pb_type name="mult_9x9_slice " num_pb="2">

<!-- follows previous pattern for slice definition -->

Appendix A. FPGA CBS Examples 114

block_mult

[35:0] [35:0][17:0]
A

[35:0]

divisible_mult_18x18

A

B
OUT

clk

[35:0][17:0]

[17:0]

[71 0]

B
OUT

clk

[35:0]

[35:18]

[71:0]

divisible_mult_18x18

A

B
OUT

clk

[71:36]

[35:18]

[35:18]

clk

clk

Figure A.3: Interconnect between complex block and two divisible 18x18 multipliers.

</pb_type >

<interconnect >

<!-- follows previous pattern for slice definition -->

</interconnect >

</mode>

</pb_type >

The interconnect for the divisible 18x18 mode is shown in Figure A.3. The unique

characteristic of this interconnect is that the input and output ports of the parent is split

in half, one half for each child. A convenient way to specify this is to use the syntax

divisible mult 18x18[1:0] which will append the pins of the ports of the children together.

The interconnect for the fracturable 18x18 mode is described here:

<interconnect >

<direct input="block_mult.A"

output="divisible_mult_18x18 [1:0].A"/>

<direct input="block_mult.B"

output="divisible_mult_18x18 [1:0].B"/>

<direct input="divisible_mult_18x18 [1:0].OUT"

output="block_mult.OUT"/>

<complete input="block_mult.clk"

output="divisible_mult_18x18 [1:0].clk"/>

</interconnect >

</mode>

</pb_type >

Appendix A. FPGA CBS Examples 115

A.3.2 Complete Specification

<!-- Example of a fracturable mutliplier whose inputs and outputs may

be optionally registered

The multiplier hard logic block can implement one 36x36 , two 18x18 , or

four 9x9 multiplies

-->

<pb_type name="block_mult">

<input name="A" num_pins="36"/>

<input name="B" num_pins="36"/>

<output name="OUT" num_pins="72"/>

<clock name="clk"/>

<mode name="mult_36x36">

<pb_type name="mult_36x36_slice " num_pb="1">

<input name="A_cfg" num_pins="36"/>

<input name="B_cfg" num_pins="36"/>

<input name="OUT_cfg" num_pins="72"/>

<clock name="clk"/>

<pb_type name="reg_36x36_A" blif_model=".latch" num_pb="36"

class="flipflop">

<input name="D" num_pins="1" port_class="D"/>

<output name="Q" num_pins="1" port_class="Q"/>

<clock name="clk" port_class="clock"/>

</pb_type >

<pb_type name="reg_36x36_B" blif_model=".latch" num_pb="36"

class="flipflop">

<input name="D" num_pins="1" port_class="D"/>

<output name="Q" num_pins="1" port_class="Q"/>

<clock name="clk" port_class="clock"/>

</pb_type >

<pb_type name="reg_36x36_out" blif_model=".latch" num_pb="72"

class="flipflop">

<input name="D" num_pins="1" port_class="D"/>

<output name="Q" num_pins="1" port_class="Q"/>

<clock name="clk" port_class="clock"/>

</pb_type >

<pb_type name="mult_36x36" blif_model=".subckt mult" num_pb="1">

<input name="A" num_pins="36"/>

<input name="B" num_pins="36"/>

<output name="OUT" num_pins="72"/>

</pb_type >

<interconnect >

<direct input="mult_36x36_slice .A_cfg"

output="reg_36x36_A [35:0].D"/>

<direct input="mult_36x36_slice .B_cfg"

output="reg_36x36_B [35:0].D"/>

<mux input="mult_36x36_slice .A_cfg reg_36x36_A [35:0].Q"

output="mult_36x36.A"/>

Appendix A. FPGA CBS Examples 116

<mux input="mult_36x36_slice .B_cfg reg_36x36_B [35:0].Q"

output="mult_36x36.B"/>

<direct input="mult_36x36.OUT" output="reg_36x36_out [71:0].D"/>

<mux input="mult_36x36.OUT reg_36x36_out [71:0].Q"

output="mult_36x36_slice .OUT_cfg"/>

<complete input="mult_36x36_slice .clk"

output="reg_36x36_A [35:0].clk"/>

<complete input="mult_36x36_slice .clk"

output="reg_36x36_B [35:0].clk"/>

<complete input="mult_36x36_slice .clk"

output="reg_36x36_out [71:0].clk"/>

</interconnect >

</pb_type >

<interconnect >

<direct input="block_mult.A" output="mult_36x36_slice .A_cfg"/>

<direct input="block_mult.B" output="mult_36x36_slice .A_cfg"/>

<direct input="mult_36x36_slice .OUT_cfg"

output="block_mult.OUT"/>

<direct input="block_mult.clk" output="mult_36x36_slice .clk"/>

</interconnect >

</mode>

<mode name="two_divisible_mult_18x18">

<pb_type name="divisible_mult_18x18" num_pb="2">

<input name="A" num_pins="18"/>

<input name="B" num_pins="18"/>

<input name="OUT" num_pins="36"/>

<clock name="clk"/>

<mode name="mult_18x18">

<pb_type name="mult_18x18_slice " num_pb="1">

<input name="A_cfg" num_pins="18"/>

<input name="B_cfg" num_pins="18"/>

<input name="OUT_cfg" num_pins="36"/>

<clock name="clk"/>

<pb_type name="reg_18x18_A" blif_model=".latch" num_pb="18"

class="flipflop">

<input name="D" num_pins="1" port_class="D"/>

<output name="Q" num_pins="1" port_class="Q"/>

<clock name="clk" port_class="clock"/>

</pb_type >

<pb_type name="reg_18x18_B" blif_model=".latch" num_pb="18"

class="flipflop">

<input name="D" num_pins="1" port_class="D"/>

<output name="Q" num_pins="1" port_class="Q"/>

<clock name="clk" port_class="clock"/>

</pb_type >

<pb_type name="reg_18x18_out" blif_model=".latch"

num_pb="36" class="flipflop">

<input name="D" num_pins="1" port_class="D"/>

<output name="Q" num_pins="1" port_class="Q"/>

Appendix A. FPGA CBS Examples 117

<clock name="clk" port_class="clock"/>

</pb_type >

<pb_type name="mult_18x18" blif_model=".subckt mult"

num_pb="1">

<input name="A" num_pins="18"/>

<input name="B" num_pins="18"/>

<output name="OUT" num_pins="36"/>

</pb_type >

<interconnect >

<direct input="mult_18x18_slice .A_cfg"

output="reg_18x18_A [17:0].D"/>

<direct input="mult_18x18_slice .B_cfg"

output="reg_18x18_B [17:0].D"/>

<mux input="mult_18x18_slice .A_cfg reg_18x18_A [17:0].Q"

output="mult_18x18.A"/>

<mux input="mult_18x18_slice .B_cfg reg_18x18_B [17:0].Q"

output="mult_18x18.B"/>

<direct input="mult_18x18.OUT"

output="reg_18x18_out [35:0].D"/>

<mux input="mult_18x18.OUT reg_18x18_out [35:0].Q"

output="mult_18x18_slice .OUT_cfg"/>

<complete input="mult_18x18_slice .clk"

output="reg_18x18_A [17:0].clk"/>

<complete input="mult_18x18_slice .clk"

output="reg_18x18_B [17:0].clk"/>

<complete input="mult_18x18_slice .clk"

output="reg_18x18_out [35:0].clk"/>

</interconnect >

</pb_type >

<interconnect >

<direct input="divisible_mult_18x18.A"

output="mult_18x18_slice .A_cfg"/>

<direct input="divisible_mult_18x18.B"

output="mult_18x18_slice .A_cfg"/>

<direct input="mult_18x18_slice .OUT_cfg"

output="divisible_mult_18x18.OUT"/>

<complete input="divisible_mult_18x18.clk"

output="mult_18x18_slice .clk"/>

</interconnect >

</mode>

<mode name="two_mult_9x9">

<pb_type name="mult_9x9_slice " num_pb="2">

<input name="A_cfg" num_pins="9"/>

<input name="B_cfg" num_pins="9"/>

<input name="OUT_cfg" num_pins="18"/>

<clock name="clk"/>

<pb_type name="reg_9x9_A" blif_model=".latch" num_pb="9"

class="flipflop">

Appendix A. FPGA CBS Examples 118

<input name="D" num_pins="1" port_class="D"/>

<output name="Q" num_pins="1" port_class="Q"/>

<clock name="clk" port_class="clock"/>

</pb_type >

<pb_type name="reg_9x9_B" blif_model=".latch" num_pb="9"

class="flipflop">

<input name="D" num_pins="1" port_class="D"/>

<output name="Q" num_pins="1" port_class="Q"/>

<clock name="clk" port_class="clock"/>

</pb_type >

<pb_type name="reg_9x9_out" blif_model=".latch" num_pb="18"

class="flipflop">

<input name="D" num_pins="1" port_class="D"/>

<output name="Q" num_pins="1" port_class="Q"/>

<clock name="clk" port_class="clock"/>

</pb_type >

<pb_type name="mult_9x9" blif_model=".subckt mult"

num_pb="1">

<input name="A" num_pins="9"/>

<input name="B" num_pins="9"/>

<output name="OUT" num_pins="18"/>

</pb_type >

<interconnect >

<direct input="mult_9x9_slice .A_cfg"

output="reg_9x9_A [8:0].D"/>

<direct input="mult_9x9_slice .B_cfg"

output="reg_9x9_B [8:0].D"/>

<mux input="mult_9x9_slice .A_cfg reg_9x9_A [8:0].Q"

output="mult_9x9.A"/>

<mux input="mult_9x9_slice .B_cfg reg_9x9_B [8:0].Q"

output="mult_9x9.B"/>

<direct input="mult_9x9.OUT" output="reg_9x9_out [17:0].D"/>

<mux input="mult_9x9.OUT reg_9x9_out [17:0].Q"

output="mult_9x9_slice .OUT_cfg"/>

<complete input="mult_9x9_slice .clk"

output="reg_9x9_A [8:0].clk"/>

<complete input="mult_9x9_slice .clk"

output="reg_9x9_B [8:0].clk"/>

<complete input="mult_9x9_slice .clk"

output="reg_9x9_out [17:0].clk"/>

</interconnect >

</pb_type >

<interconnect >

<direct input="divisible_mult_18x18.A"

output="mult_9x9_slice [1:0]. A_cfg"/>

<direct input="divisible_mult_18x18.B"

output="mult_9x9_slice [1:0]. A_cfg"/>

<direct input="mult_9x9_slice [1:0]. OUT_cfg"

output="divisible_mult_18x18.OUT"/>

<complete input="divisible_mult_18x18.clk"

Appendix A. FPGA CBS Examples 119

output="mult_9x9_slice [1:0].clk"/>

</interconnect >

</mode>

</pb_type >

<interconnect >

<direct input="block_mult.A"

output="divisible_mult_18x18 [1:0].A"/>

<direct input="block_mult.B"

output="divisible_mult_18x18 [1:0].B"/>

<direct input="divisible_mult_18x18 [1:0].OUT"

output="block_mult.OUT"/>

<complete input="block_mult.clk"

output="divisible_mult_18x18 [1:0].clk"/>

</interconnect >

</mode>

</pb_type >

	Introduction
	Motivation
	Research Goals
	Thesis Overview

	Background
	FPGA Architecture
	General-Purpose Complex Blocks
	Special-Purpose Complex Blocks

	Complex Block Architecture Description Languages
	GPCB Description Languages
	Special Purpose Complex Block Description Languages
	Combined GPCB and SPCB Description Languages
	XML

	Computer-Aided Design Tools for FPGAs
	Overview
	Packing Algorithms
	Overview
	Basic GPCB Packing

	SPCB and Extended GPCB Packing

	Complex Block Architecture Description Language
	Introduction
	UTFAL Specification
	Physical Blocks
	Modeling Primitives
	Intra-Block Interconnect
	Modes

	More Complex Examples
	Basic GPCB
	Fracturable Memory Cluster

	Summary

	Packing Algorithm for Heterogeneous FPGAs
	Introduction
	Scope
	The AAPack Packing Algorithm
	Algorithm Overview
	Dealing with Arbitrary Hierarchy
	Dealing with Heterogeneity: Matching Supply and Demand
	Algorithm Details
	Select Seed
	Select New Complex Block
	Try Pack Candidate Block Into Complex Block
	Select Candidate Block
	Candidate Block Selection Cost Function
	Quick Legality Checking

	Try Add Block
	Routing

	Dealing with Memories

	Error Checking
	Software Organization
	Summary

	Experiments and Results
	Experimental Methodology
	Results
	Comparison of Algorithms on a Simple LUT-Based Complex Block
	Fracturable LUT Architectures
	Comparison Against Lower-Bound
	Comparison of Architectures with and without Fracturable LUTs

	Depopulated Crossbar
	Heterogeneous FPGA

	Summary

	Conclusions
	Future Work
	Timing-Driven CAD Flow
	Architecture Exploration

	Improve Quality and Runtime for the AAPack Algorithm
	Carry Chain Support

	Bibliography
	FPGA_CBS Examples
	Complete Specification of Basic GPCB Block
	Complete Specification of Memory with Reconfigurable Aspect Ratio
	Fracturable Multiplier
	Multiplier SPCB Example
	Complete Specification

