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As technology scaling, human creativity, and other factors open new markets for FPGAs, the ar-

chitectures of such chips must continue to evolve to meet changing demands. However, public domain

software tools available to explore future FPGA architectures have not kept pace with advances in the

field. Furthermore, these tools often have strong architectural assumptions embedded within the source

code itself. Thus, short of major software rewriting, this limits the use of these tools to simple variations

of particular architectures. In this thesis, we describe contributions to a large open-source collaborative

project, called Verilog-to-Routing (VTR), that relaxes such limitations by providing an extensive soft-

ware infrastructure for FPGA architecture exploration and CAD research. This infrastructure includes

modern benchmarks, sample architecture description files, and a CAD flow that can target a broad space

of architectures. We then describe new techniques in the packing stage of the CAD flow, which allow

the packer to both target FPGAs with modern architectural features, as well as adjust computational

effort based on architectural complexity. Finally, we conduct an architecture experiment on hard adders

and carry chains to show the new capabilities of the software infrastructure and to quantitatively answer

questions about the actual effectiveness of these classical architectural features.
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Chapter 1

Introduction

Field-Programmable Gate Arrays (FPGAs) are integrated circuits whose functionality may be configured

by the end user. They have grown from their humble beginnings as simple glue logic devices to complex

systems targeting a diverse space of applications, each with distinct needs. Today, FPGAs may be found

in internet routers which require massive data bandwidth, video/audio processing which require efficient

on-chip memory and arithmetic functions, mobile devices which require low power operation, among

many others. As technology scaling and human creativity continue to open up new markets for FPGAs,

so too must the architecture of the FPGA itself evolve to meet these diverse demands.

Modern FPGA architecture design is usually done using an empirical approach. An architect evalu-

ates hypothetical FPGA architectures by using CAD tools to map benchmark circuits to each architecture

and then measures the resulting speed, area, power, and other quality metrics for each mapping. The

knowledge gained from these experiments is then used to guide the design of the next set of hypothetical

architectures. This process is repeated until a suitable candidate meets the objectives of the designer.

The reliability of the data used to drive this process depends on having representative benchmarks,

accurate architecture models, and software tools that can efficiently map circuits to the architectures

being investigated. Thus, software infrastructure plays a critical role in FPGA architecture research.

Approximately 15 years ago, Betz et. al. released an open source software infrastructure for FPGA

architecture exploration and CAD research [9]. This infrastructure included a curated set of technology-

mapped benchmark circuits, some sample architecture description files, a packer (T-VPack), and a place-

and-route tool (VPR). Betz’s infrastructure provided great value to the research community serving as

the foundation of much subsequent academic research [77] [11] [48] [70] [17] . However, in academia,

new software written by one group that advances the field often does not cross institutional boundaries

for use by another group; thus, over time, the open source software infrastructure became increasingly

out of step with modern architectures. Consequently, the software development effort now required to

target state-of-the-art architectures is very large.

With limited development resources, academic researchers are stuck targeting simple architectures

for simple glue logic circuits even though FPGAs today can be two to four orders of magnitude larger,

contain specialized logic such as embedded block memories, have far more complex soft logic, among other

important differences. Unlike academia, the major FPGA vendors have more development resources

which allows them to create their own internal software infrastructure capable of targeting large, complex

architectures. However, those tools are closed source which limits their use in the academic community.

1



Chapter 1. Introduction 2

Hence, there is a need for a new open source baseline for architecture exploration. This open source

software should be capable of targeting a broad range of different architectures so as to reduce, if not

eliminate, code modifications normally required to investigate modern and future architectures.

This PhD dissertation makes major advances towards providing an open source, flexible, software

infrastructure for FPGA architecture exploration, called Verilog-to-Routing (VTR), which is based on

Betz’s original VPR infrastructure. This infrastructure consists of larger benchmark circuits from real

applications, CAD tools that are capable of mapping to a diverse range of architectures, sample architec-

ture descriptions, scripts that simplify the use of the full toolchain, and finally developer support such as

documentation, regression tests, and bug tracking. In addition to its value as an architecture exploration

platform, this large-scale infrastructure creates opportunities for CAD research. One reason for this is

that new architectural features provide unique challenges to CAD algorithms. A more subtle, yet equally

important reason is the complex interactions within a project of this scale, for algorithmic optimizations

in one part of the system cause profound, perhaps unexpected, effects in other parts. Thus, the first key

contribution of this dissertation is an infrastructure for enabling future CAD and architecture research

[80] [59].

Within the large space of CAD and architecture for FPGAs, our work focuses on CAD for FPGA logic

blocks. Logic blocks are responsible for computation and storage. Examples of logic blocks commonly

found in commercial FPGAs include configurable memories for on-chip storage, configurable bus-based

arithmetic blocks, and soft logic blocks for general purpose computation [97] [6]. When designing a logic

block, one needs to choose the logic, hierarchy, interconnect, and modes of operation available within the

block. Designing a well-optimized logic block is difficult because many decisions in the vast design space

are coupled – some choices synergize, while others conflict. The diverse set of interdependant axes along

which an architecture may be explored gives rise to a rich and complex space of interesting candidate

architectures. These different exploration points require CAD tools that can efficiently map to them. In

a typical FPGA CAD flow, the packing stage is responsible for mapping a flattened, technology-mapped

representation of a circuit to the physical logic blocks of the FPGA. Historically, packing algorithms

embed strong architectural assumptions about the logic blocks into the software itself. Though this

may provide good runtime and quality of results for the architectures being targeted, it also means

that targeting new architectures often requires substantial software development effort. If a packer is

capable of mapping to any logic block without software changes, then that would enable a more extensive

exploration of the design space.

Our first attempt at generalizing the packer was done as part of my Master’s work [56]. There, we

showed that the general packing problem creates a local intra-logic block placement and routing problem

that is challenging to solve. The packing solution developed as part of that work served as a proof-of-

concept but suffered from practical issues including long runtimes, inconsistent quality, and a lack of

timing-driven capability. In this PhD dissertation, we revisit the general packing problem with better

success. Though we fell short of creating a packer that will pack to any architecture, we successfully

created a packer that can target a very wide space of logic block architectures [57] [62] [80]. This forms

the second contribution of this dissertation.

We observe that common interconnect structures in logic blocks, such as crossbars, carry chains,

dedicated signals, and others, have unique properties that simplify the local intra-logic block placement

and routing problem encountered by a general packer. Naively using a general-purpose routing algorithm,

such as a negotiated congestion router, to route these structures is often unnecessarily time consuming.



Chapter 1. Introduction 3

Instead, when these structures are encountered, the packer should automatically reduce its computational

effort because the routing of these structures can be done with much less effort. To accomplish this,

we employ three techniques in this work: speculative packing, pre-packing, and interconnect-aware pin

counting. We show that these techniques result in improvements to runtime and quality of results

across a spectrum of architectures, while simultaneously expanding the scope of architectures that can

be explored. Techniques for interconnect-adaptive packing forms the third major contribution of this

dissertation [62].

Finally, the fourth contribution of this dissertation is an architectural study that uses the new CAD

capabilities mentioned earlier to investigate hardened addition and subtraction in FPGAs. Hard adders,

along with carry chains (the dedicated interconnect for carry logic that join hard adders together),

are widely used in commercial FPGAs to improve the efficiency of arithmetic functions. There are

many design choices and complexities associated with such hardening including circuit design, FPGA

architectural choices, and CAD decisions. There have been few published studies, however, on these

choices despite a general consensus in the FPGA community of their importance, and hence we explore

a number of possibilities for hard adder design. We show that hard adders and carry chains, when used

for simple adders, increase performance by a factor of four or more, but on larger benchmark designs

that contain arithmetic, improve overall performance by roughly 20%. We measure an average area

increase of 5% for architectures with carry chains but believe that better logic synthesis should reduce

this penalty. Interestingly, these performance ratios stay fairly close across many different hard adder

and carry chain designs [61].

This thesis is organized into the following chapters: The background chapter briefly describes FPGA

architecture and the general FPGA CAD flow before going into detail on the packing stage of the CAD

flow. The third chapter describes the VTR architecture exploration infrastructure. The fourth chapter

formally defines the packing problem and presents our overall approach to solving this problem. The

chapter following describes the interconnect-aware advances made to the packer. The sixth chapter

presents an architectural study of hard adders and carry chains. The final chapter presents conclusions

and avenues for future work.



Chapter 2

Background

This chapter provides the relevant background material necessary for understanding this thesis. This

thesis discusses advances made to the VTR software infrastructure for exploring FPGA logic block

architectures. Thus, we begin with material on FPGA architecture, focusing on logic blocks. Afterwards,

we present background on the infrastructure used to conduct architecture exploration. Finally, we

describe in detail one crucial part of that infrastructure, called packing, that comprises a major focus of

this thesis.

2.1 FPGA Architecture and Logic Blocks

An FPGA architecture is composed of programmable logic blocks, I/Os, and interconnect. Logic blocks

implement functions and storage, I/O interfaces the FPGA with the extra-chip world, and interconnect

connects signals to and from the logic blocks and I/Os. This thesis focuses on FPGA logic block

exploration so this section describes logic block architecture in greater detail.

FPGA logic blocks play a crucial role in the performance, cost, and energy efficiency of an FPGA. This

section describes the different types of logic blocks, their key features, and their intended functionality.

We also highlight the key challenges that these logic blocks pose to the CAD software.

2.1.1 Soft Logic Blocks

Soft logic blocks are designed to both implement general boolean functions and provide local data storage.

Figure 2.1 shows an example of a basic FPGA soft logic block architecture with some typical parameters

[9]. This logic block contains a group of basic logic elements (BLEs) where each BLE consists of a look-up

table (LUT) with an optionally registered output. A full crossbar provides local connectivity, joining

any logic block input pin and any BLE output to any BLE input.

There has been some prior work optimizing the various parameters of a basic soft logic block. Betz

[9] and Ahmed [2] investigated how many input pins a basic soft logic block should have. Both studies

concluded that the number of input pins should be just over half the total number of BLE inputs.

Ahmed [2], and later Kuon [43], showed that there is a large range of reasonable values for the number

of BLEs in a logic block. That number can vary from 4 to 12 while still providing similar overall quality.

Ahmed and Kuon also showed that 6-LUT architectures result in better overall performance, 4-LUT

architectures result in a better overall area-delay product, and 5-LUTs show characteristics that are in

4
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Figure 2.1: A basic soft logic block with typical parameters.
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Figure 2.2: A fracturable LUT that can operate as one 6-LUT or as two 5-LUTs that share 3 inputs.

between. However, the quality of results that can be achieved from simple parameter sweeps alone is

limiting. To obtain further gain, more advanced architecture optimizations must be attempted.

Fracturable LUTs

One technique to obtain the delay advantage of larger LUTs, while retaining the area efficiency of smaller

LUTs is to use fracturable LUTs. A fracturable LUT is a LUT that can optionally implement two smaller

LUTs with some shared inputs. If an architecture contains fracturable LUTs, and if the large physical

LUT cannot be entirely filled, it may be possible to pair another small LUT from the user circuit into

the partially filled large LUT. If this pairing can be done often enough, and if the area overhead to create

a fracturable LUT is small, then fracturable LUTs result in an area savings while maintaining the delay

performance of large LUTs.

Figure 2.2 illustrates a fracturable LUT that can operate in 6-LUT mode or in dual 5-LUT mode,

where the 5-LUTs share three input pins. The total number of input pins used in dual LUT mode is
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Figure 2.3: The microarchitecture of a 6-LUT consists of two 5-LUTs.

an important parameter that we define as FI. In this example, FI can range from a minimum of 5 to a

maximum of 10 (in the figure, it is 7). A smaller value of FI constrains which LUTs may go together,

while a larger FI provides more flexibility at the cost of more routing interconnect. An FI of 10 means

that the two 5-LUTs may operate independently. The vendors have not come to consensus on what

is the right value for FI. The fracturable LUTs in a Xilinx Virtex 6 FPGA have an FI of 5, while the

fracturable LUTs in an Altera Stratix V FPGA have an FI of 8.

The fracturable LUT itself can be implemented with little area overhead because the microarchitec-

ture of a LUT, shown in Figure 2.3, already contains within it two smaller LUTs. Therefore enabling

a large LUT to optionally fracture into two smaller LUTs (with shared inputs) may be provided with

low overhead. This notion of fracturing a larger LUT to multiple smaller LUTs can be generalized to a

hierarchy of smaller LUTs that may compose together to form larger LUTs. However, a high degree of

fracturing has drawbacks for increasing output pins also increases the demand on interconnect.

The Xilinx 2000 series FPGA [33] was one of the first FPGA architectures to have fracturable

LUTs. However, at that time, LUTs in FPGAs were smaller than today, thus reducing the benefit of

using fracturable LUTs. As LUT sizes in FPGAs trended larger, fracturable LUTs saw a resurgence in

commercial devices and have now become commonplace [7] [34] [49]. Despite this, most literature on

FPGA architecture today do not consider fracturable LUTs due to difficulties in software modelling.

Depopulated Crossbars

The full crossbar shown in Figure 2.1 for a basic logic block consumes significant area (roughly 50% of

logic block area, depending on the architecture). One may reduce the area of a logic block by carefully

removing some switch points to create what is known as a depopulated crossbar, but doing so may have

global side-effects. A depopulated crossbar may increase the number of logic blocks needed to implement

a circuit because some previously routable clusters of BLEs become unroutable in the new, less flexible

interconnect. Furthermore, inter-logic block interconnect area might increase because of reduced routing

flexibility from having less switch points. These global side-effects can be hard to quantify analytically

so CAD tool support is essential for a proper study.
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Lemieux [48] showed several different depopulated crossbar designs that provide an overall area

savings. To conduct his study, Lemieux modified public domain software [9] to support these interconnect

structures. But these important updates did not get integrated into the public infrastructure, resulting

in studies afterwards neglecting depopulated crossbars.

2.1.2 Hard Logic Blocks

One of the central questions in FPGA architecture is determining which functions to harden and which

to implement in soft logic [79]. Generally, a function makes a good candidate for hardening if it appears

often in the set of used applications, and if there is a large advantage when that function is implemented in

hard logic rather than soft. But this decision of hard versus soft is more nuanced than a simple, boolean,

choice. Architecting some flexibility to a hardened function, such as by providing a programmable size

versus quantity trade-off, may enable much better utilization with relatively low overhead. Logic blocks

that are centred around hardened, dedicated, functions are called hard logic blocks.

Configurable Memories

I/O pins of ICs do not scale as quickly with improved process technology as on-die transistors. Conse-

quently, applications today have limited off-chip data bandwidth compared to on-chip bandwidth. This

drives the need for on-chip storage of local data. Although registers in soft logic blocks suffice as storage

for some simple tasks, when an application requires buffering or larger caches, then block memories with

significant amounts of storage, become preferable. Wong [95] makes a strong case for hardened memories

in FPGAs by showing that hardened memories use two orders of magnitude less area than their soft

counterparts. However, selecting the right quantity, size, depth, and width for hardened memories is not

straightforward because these parameters vary based on the application.

Hardened memories are found today in commercial architectures [97] [6]. Though the major vendors

are not in agreement on what is the best combination of memories to provide, they are in agreement

that hardened memories should have configurable aspect ratios to accomodate applications with different

memory aspect ratios. Since there is both a demand for, and a supply of, hardened memories in FPGAs,

large modern designs often will contain one or more of these blocks. This makes CAD tool support for

hardened memories essential, for a CAD flow that does not support these blocks is confined to targeting

small, glue logic style, circuits.

Wilton [94] did an extensive study on various configurable memory architectures for FPGAs and

developed CAD algorithms to map to these memories. Ho [30] followed up on this work with better

algorithms to map memories in the user circuit to physical dual-port memories. However, their code

did not integrate into the public infrastructure for FPGA architecture exploration, so many architecture

studies afterwards did not consider hardened memories.

Bus-Based Arithmetic

Bus-based arithmetic operations, such as wide multiplication, are common especially in fields that require

digital filters, like video and audio processing. Their implementation in soft logic is relatively much more

expensive than a hard logic implementation making them a good candidate for hardening. However,

selecting which operations, as well as the appropriate widths of each operation, to harden is difficult

since requirements vary across applications. Thus, bus-based arithmetic hard logic blocks commonly
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offer different modes of operation as well as some limited routing flexibility to improve utilization. These

configurable arithmetic blocks appeared in FPGAs in 2002 [50] and have continued to evolve since then.

We examine two examples of such blocks: an integer DSP logic block and a floating-point logic block.

Figure 2.4 [8] shows an example of one mode of a bus-based arithmetic block from a commercial

FPGA. This is a variable precision DSP block from the Altera Stratix V device family operating in

18x18 bit mode. Here, one can see bus-based hardened multipliers, adders, and registers with optional

bypass multiplexers. This DSP block has another mode that offers wider 27x27 bit operation, but with

less computation units, to accomodate wider arithmetic functions. Software that aims to target future

bus-based arithmetic logic blocks should, at minimum, support heterogeneous functions, different modes

of operation, and unique routing flexibilities.
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Figure 2.5: A floating-point hard logic block architecture by Ho [15].

Ho [15] proposed a hard logic block specialized for floating-point computation, as shown in Figure 2.5.

This logic block contains bus-based registers, floating-point multipliers, and floating-point adders. Any

computation or storage unit can drive any unit on its right. A small number of feedback lines limits

how many units can drive a unit on its left. The authors did not have access to software that can map

user logic to this logic block so they performed the mapping manually. The development effort required

for manual mapping imposes a large barrier to entry in the research of new bus-based arithmetic logic

blocks, a barrier that we would like to avoid with flexible software tools.

As emerging user applications place new demands on FPGAs, we foresee a greater diversity in future

bus-based arithmetic blocks. Software tools will continue to play a crucial role in the design of these

blocks.

2.1.3 Hardened Adders and Carry Chains

Architecting FPGAs to efficiently implement addition and subtraction poses an interesting architectural

challenge. These operations are common and wide operations are especially slow. Thus, addition and

subtraction are great candidate functions to harden. But, unlike memories and multipliers, the pin-to-

area ratio for a hardened adder is quite large which makes the interconnect overhead for bringing signals

to and from the adder relatively expensive. Thus, adders are typically not made into their own hard

logic block. Rather, they are included in existing logic blocks to reuse the existing interconnect of those

logic blocks.

Hard adders are found in both soft and hard logic blocks of commercial FPGAs. In bus-based arith-

metic blocks, hard adders may optionally follow hard multipliers (to realize multiply and accumulate)

and face the same considerations as discussed earlier. In soft logic blocks, hard adders provide a wealth

of interesting design choices. One needs to decide how the adder interacts with the LUT, what granu-

larity of adders to provide, among other choices. Commercial FPGAs employ dedicated routing paths,

called carry chains, to join the carry signals of adjacent adders together to implement wide functions

[31]. Figure 2.6 shows a simple soft logic block with hard adders that are joined together by a dedicated,
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Figure 2.6: A simple ripple carry chain in a soft logic block.

inflexible, carry chain. There is a general belief in the field that both hard adders and carry chains are

crucial for performance in FPGAs but there is little published literature measuring their usefulness in

real applications.

Previous work in this area began in the early 90’s, when Hsieh et al. [31] described the Xilinx 4000

FPGA that had soft logic blocks that were capable of implementing two independent adder bits per

block. They employed dedicated carry logic and routing from adjacent logic blocks for the carry signals.

Woo [96] proposed adding additional flexibility to the fast carry links between logic blocks to enable

flexible tree-based mappings of addition/subtraction/comparison functions. FPGAs today have evolved

substantially from those investigated by Hseih and Woo. Modern FPGAs tend to have larger, and more

numerous, lookup tables in a soft logic block and also tend towards having less flexbility in the carry

chain.

Since Hsieh et al. and Woo, there has been a few interesting works in this area. Xing proposed

implementing carry-lookahead adders (in an FPGA architecture that contains just ripple adders) by

using soft logic to do the carry-lookahead operation [99]. His case study on the Xilinx 4000 series

FPGAs show that this approach is limiting because of the large area and delay penalty that results

when soft logic is involved in carry-lookahead computations. Hauck et al. [28] evaluated different

implementations for FPGA adders including ripple carry, carry-skip, and tree-based adders. He showed

that a Brent-Kung adder achieves 3.8 times speedup vs. the basic ripple carry adder for 32-bit addition

at the expense of between 5 to 9.5 times more area for the adder. Parandeh-Afshar et al. [75] proposed

adding hardened compressors to soft logic blocks to speed up multi-input addition with a focus on DSP

and video applications. The benchmarks used in that study appear to be on the order of a few hundred

6-LUTs [76]. Ultimately, more diverse and larger benchmarks need to be used to better quantify the
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Figure 2.7: A 3-bit carry-skip adder.

effects of hard adders and carry chains.

Different FPGA vendors currently choose a variety of hard arithmetic architectures inside their soft

logic blocks. The Xilinx Virtex-7 FPGA family [98] contains a basic ripple carry adder architecture

where addition can only start on every 4th adder bit. The interaction between the soft logic and the

adder is flexible; the adder can either be driven by a 6-LUT and a logic block input pin or be driven

by two 5-LUTs with shared inputs. The Altera Stratix V architecture contains carry-skip adders. An

example of a 3-bit carry-skip adder is shown in Figure 2.7. A carry-skip adder contains a standard

ripple-carry adder plus additional lookahead circuitry that determines whether to use or to skip the

ripple-carry adder when generating the, assumed to be timing critical, carry out signal. The Stratix V

architecture employs a two-level carry-skip adder architecture [51]. Each soft logic block contains ten

2-bit carry-skip adders that can be cascaded with dedicated links. Between two logic blocks, there is

an additonal carry-skip stage that can skip 20 bits of addition. Lewis et al. [51] claims that this adder

results in both a delay improvement and an area reduction compared to the basic ripple carry adder, as

the increase in logic gates necessary for the carry-skip feature is more than offset by the area reduction

made possible via optimizations during transistor design of the FPGA itself. Each of the two 5-LUTs in

the fracturable LUT in Stratix V drives two bits of arithmetic. Each adder input is driven by a 4-LUT

with input sharing constraints [7] as shown in Figure 2.8. Outside of microbenchmarks, neither vendor

has published, in depth, the impact of the major design decisions for their hard adder and carry chain

architectures.

Prior published work on hardened arithmetic focused on the implementation of arithmetic structures,

and evaluated results on microbenchmarks such as adders and adder trees or very small designs. A full

design, on the other hand, imposes many other demands on the FPGA and its CAD flow. In this thesis,

we seek to measure the impact of different hard adder choices not only on microbenchmarks, but also

on complete designs with a full CAD flow.

2.2 FPGA Architecture Exploration Infrastructure

New FPGA architectures are explored using an empirical approach. First, benchmark circuits are

mapped onto a prospective architecture using a CAD flow; then, quality metrics from the implementation
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Figure 2.8: In arithmetic mode, a single adder bit in a Stratix V soft logic block is driven by two 4-LUTs
that share inputs.

of each benchmark are obtained and compared with previous results. The knowledge gained from these

experiments helps guide the creation of the next new architecture. This section provides background on

the different parts of this exploration infrastructure starting first with benchmarks and then following

with the FPGA CAD flow.

2.2.1 Benchmarks

As is the nature of any scientific study, the inputs used in an experiment can have a major impact on

the resulting conclusions. Being a major input to an architecture experiment, one therefore wants high

quality benchmarks that capture the space of applications of interest. Furthermore, to allow comparisons

between different studies, a researcher would want to employ a public set of standard benchmarks before

considering closed-source circuits.

Although there exists a large set of public benchmarks that may be used for FPGA architecture

exploration [73], many of these benchmarks are specialized for particular domains (such as DSP or

floating-point computations) so only a few benchmark sets are used for general study. Among the

general benchmark set, the MCNC benchmarks [100] are arguably one of the most commonly used

benchmarks in FPGA CAD and architecture studies. These benchmarks are convenient for they cover

diverse functions and are compatible with open source CAD tools. But the MCNC benchmarks are more

than two decades old, so the application space targeted by them is only a narrow slice of the applications

that use FPGAs today. The newer IWLS 2005 benchmarks [5], originally meant for the related field of

ASIC CAD, represent a much broader space of applications and have been used in FPGA CAD studies

[10]. However, compatibility issues with open source tools limits the representation of these benchmarks

entirely to soft logic which may not be realistic especially for large designs where one would expect to

see, at the very least, hard block memories. This points to the need for modern public benchmarks that

are compatible with open source tools. As we will show, our work has both created one such benchmark
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Figure 2.9: A generic FPGA CAD flow.

set [80] [59] as well as enabled others [69].

It is generally believed that the closed source benchmarks found in industry publications [52] are

high quality, state-of-the-art, FPGA designs that are superior to what is available publicly today. But

since these circuits are not available for public use, their use is necessarily limited in academic works.

Altera has released some of their previously closed source benchmarks as part of QUIP [63]. There is

currently an on-going effort to make these QUIP benchmarks, and other benchmarks, that target large

industrial FPGAs to also be compatible with an open-source flow [69].

2.2.2 FPGA CAD Flow

A major challenge in FPGA architecture exploration work is changing the FPGA CAD flow to make use

of the new features of the architecture being investigated. This section describes the FPGA CAD flow

and discusses the prior work in this area.

An FPGA flow takes as input a user circuit, specified in a hardware description language (HDL)

such as Verilog or VHDL, and a description of the FPGA architecture being targeted. The outputs of

the flow are the configuration needed for the FPGA to implement the user circuit and statistics about

that implementation.

Figure 2.9 show the major stages in a generic FPGA CAD flow. Elaboration takes as input a user

circuit, described in HDL, then resolves all instantiations and parameters in the HDL to produce a

flattened netlist representation of the user circuit. Logic synthesis performs technology independent

optimizations on this flattened netlist. Technology mapping translates an optimized netlist into atoms.

Atoms are specific, basic, components found in the FPGA architecture such as LUTs and flip-flops. The

packing stage then groups the atomic netlist from technology mapping into the logic blocks available in
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the architecture. Placement finds physical, geographic locations for each logic block. Routing determines

the physical wires and switches needed to implement the connections of the user circuit. After routing,

the information needed to configure the FPGA to implement the user circuit is complete. At this

point, analysis can be done to figure out various statistics such as the area, delay, and power of the

implementation.

The exploration of new logic elements often requires substantial support in some, if not all, stages

of this CAD flow. To illustrate what is involved, we will use the configurable floating-point logic block

described in Figure 2.5 to serve as an example. Given an architecture that contains these blocks, elab-

oration must decide whether a particular function in the user circuit should map to soft logic, use one

of the hardened floating-point atoms within the floating-point logic block, or some combination of the

two (which may be necessary when the user function is larger than the hardened floating-point functions

supplied). Logic synthesis and technology mapping should understand the functionality and delay profile

of the hardened floating point functions to better optimize the netlist produced by elaboration. Packing

must determine where hardened floating-point atoms map to within the block. However, due to limited

internal connectivity, this can be quite challenging. In this architecture, the floating-point logic block

consumes far more area than a soft logic block, so the number of floating-point logic blocks is relatively

scarce. The limited number of locations for these floating-point logic blocks in turn constrains optimiza-

tions during placement. Routing is unaffected in this particular example. As this example illustrates,

the development effort needed to create a CAD flow that can explore new logic blocks can therefore

be quite high. Thus, the capabilities of public domain FPGA CAD tools are often one of the limiting

factors in the kinds of exploration a researcher is willing to conduct.

2.2.3 Publicly Available FPGA CAD Tools

An FPGA CAD flow requires substantial development effort to create from the ground up. Instead,

researchers often start with existing CAD software then modify that software for their specific research.

This section describes existing available FPGA CAD software. We discuss open-source CAD flows as

well as publicly available, but closed-source, CAD flows.

For about a decade, many CAD and architecture researchers formed their own CAD flow using open

source tools. Often, a logic synthesis tool, such as SIS [83], is used in conjunction with a physical design

tool, such as T-VPack and VPR 4.30 [9]. This infrastructure, though very useful for its time, only

supported architectures that contain LUTs and flip-flops which limits the space of circuits that can be

investigated.

As part of my Master’s work, we formed a collaborative team to build upon this initial public in-

frastructure adding Odin [37] for Verilog elaboration, replacing SIS with ABC [66] for logic synthesis

and technology mapping, modifying T-VPack [60] for packing, and significantly improving VPR [60] for

place-and-route. This work was publicly released under the name Verilog-to-Routing (VTR). We labeled

the initial release as VTR 5.0. The value of this release included more optimized routing architectures,

larger benchmarks, and some rudimentary support for hardened logic throughout the CAD flow. How-

ever, VTR 5.0 treated hard logic blocks as non-configurable, monolithic, objects that were either used

or not used. This is, as we showed earlier, undesirable because inflexibile configurations of hard logic

limit their use. In order to target flexible hard logic block architectures, the packing stage, which is

responsible for mapping to logic blocks, needed major improvements. These improvements form a major

contribution of this thesis.
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Other groups have also worked on improving the public FPGA CAD infrastructure. Groups from

four universities, headed by Steiner, released an open source FPGA CAD and architecture exploration

software infrastructure called Torc [88]. Torc supports a wide variety of different netlist formats which

in turn provides a convenient way to swap different tools, both academic and commercial, for the

various stages of the CAD flow. Unlike VTR, which terminates after routing, Torc has a bitstream

generation stage post-routing where the bitstreams can be used to program Xilinx FPGAs. The extensive

development that the Torc team invested to support different netlists and to support the programming

of commercial FPGAs meant that less resources were available to invest in the different CAD stages. As

a result, Torc relies on other tools (such as VTR or commercial tools) for stages that are not available

or not handled well by the Torc internal implementations. Currently, they appear to be missing their

own technology mapper and packer.

RapidSmith is an open-source FPGA CAD infrastructure that enables open source CAD tools to

directly target commercial Xilinx FPGAs. While the RapidSmith project is very helpful in enabling new

CAD research, due to its focus on support for existing FPGAs, it is of limited use for exploring future

hypothetical FPGAs.

Several open source tools exist that help automate the the creation of the FPGA architecture itself.

Kuon [43] and Chiasson [18] created tools that optimize the electrical design of the FPGA. Smith [86]

employs geometric programming techniques to simulateneously optimize lower level transistor sizing as

well as higher level architectural parameters (such as LUT size and cluster size). As FPGA architectures

become increasingly more complex, these kinds of tools will become increasingly more important. The

output of these tools serve as inputs to the FPGA CAD flow.

Closed-source, but publicly available, CAD flows can be very useful for research. The two FPGA

vendors, Altera and Xilinx, provide support for FPGA CAD researchers by releasing interfaces for third

party software to link with their commercial CAD flows. QUIP is a package from Altera that gives

researchers the ability to interface third party tools into various stages of the Quartus II CAD flow [63].

Xilinx provides descriptions for different parts of the architecture and different representations of the

netlist to those who ask, so that third party flows can map user circuits to a Xilinx FPGA [88] [46]. The

value of this is large. Using either vendors’ flows, one has access to commercial front-end synthesis which

makes available a far larger space of digital circuits than academic flows. Furthermore, the final analysis,

such as timing and power, are accurate, taking into account many real world effects. However, vendor

flows are designed to target logic found in vendor devices and are thus not well suited for exploring

architectures that contain different logic. Also, since the main tools are closed source, optimizing the

algorithms within the different CAD stages is near impossible. For these kinds of research, one still

requires the flexibility offered by open source CAD tools.

2.3 Packing

The packing stage shown in Figure 2.9 forms a flat, technology-mapped netlist into a netlist of logic blocks

found in the FPGA architecture. A core contribution of this dissertation is expanding the capabilities

of the packing stage of a public CAD flow to enable the exploration of a much greater space of logic

blocks. In this section, we review prior work in this field, starting with simple packers and then examine

progressively more advanced packers.
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2.3.1 Traditional Packing

Much of the prior work in packing is limited to only targeting basic logic blocks, such as the one shown

in Figure 2.1, that consist of LUTs and flip-flops joined by full crossbar interconnect. However, modern

designs often contain hard logic blocks, such as configurable memories and multipliers, because these

specialized blocks are supplied in commercial FPGAs and because these blocks provide very strong

area efficiency when used [95]. Thus, the inability to target hard logic blocks restricts these packing

algorithms to older, small, glue logic, circuits. Despite this, a review of these algorithms is insightful

because the issues they deal with are also found, in a more challenging form, in more general packing.

Marquardt, Betz, and Rose did important early work in the field of FPGA packing [64]. They released

an open source, timing-driven, packer called T-VPack that targets basic logic blocks. Much prior work

compares to this tool and a large proportion of prior work, including the packer created as part of this

thesis, are based off T-VPack. T-VPack employs a two stage packing algorithm. The first stage groups

LUTs and flip-flops together into the BLEs shown in Figure 2.1. The second stage groups BLEs together

into logic blocks following a greedy algorithm. This algorithm first opens an unused logic block, fills the

logic block with BLEs one BLE at a time (candidate BLEs are selected by a gain function), closes the

logic block when it is full, and repeats the process until the entire input netlist is assigned into logic

blocks. The gain function to select candidate BLEs is a weighted sum of a term that quantifies the

shared connections of the candidate and another term measuring the timing criticality of the candidate.

Though simple, the quality of results derived from T-VPack remain remarkably robust compared to the

later BLE packers.

Several packers use T-VPack as a baseline then improve upon it by altering cost functions to better

select what BLEs to pack together [11] [85]. The most notable of these packers is HDPack proposed by

Chen et al. [17]. Similar to T-VPack, the HDPack’s algorithm is greedy but with three stages instead

of two. The first stage does the same BLE packing as T-VPack, the second stage seeds logic blocks with

small groups of tightly connected BLEs, then the third stage performs greedy 1-by-1 packing of BLEs

into the partially filled logic blocks. HDPack adds an interesting new distance term to the BLE selection

gain function. To compute distance, HDPack first applies fast, min-cut, placement to put BLEs on a

grid. BLEs that have a geographically closer distance on this grid have more affinity for being packed

together than BLEs that are further. Over the 20 largest MCNC [100] circuits, the HDPack algorithm

produces circuits that are on average 6% faster, have 24% lower minimum channel width, and uses 1%

more CLBs than the T-VPack algorithm over approximately the same runtime. We consider this packer

to be the current state-of-the-art in basic logic block packing.

There has been prior work on combined technology-mapping and packing. Lin et al. [53] investi-

gated simultaneous technology-mapping and packing (SMAC) using techniques from FlowMap [20] (a

technology-mapping alogrithm), while Ling et al. [54] investigated the application of techniques com-

monly found in technology-mapping to the packing problem. These methods attempt to find a logic

depth optimal packing solution at the expense of duplicating logic. Overall, these methods produce

better delay, worse area, and similar area-delay results compared to the T-VPack algorithm.

Others have explored coupling packing with placement. Singh et al. [85] proposed a packer, iRAC,

that minimizes the worst-case Rent’s exponent of a cluster. This packer is meant to be paired with a

placer, iRAP, that also optimizes for the Rent’s exponent but at a higher level of granularity. Their

techniques result in a 24% reduction in overall area-delay product due to much better routability, but

this comes with a caveat that the number of clusters increases by about 5% compared to T-VPack.
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Some recent packers target basic logic blocks with even more lax constraints. Feng proposed two

different packers [23] [24] that target basic logic blocks with no input pin constraints. With the constraints

relaxed, techniques from the related field of circuit partitioning may be used to achieve results that might

perform better than HDPack, though the experiments chosen by Feng make a direct comparison difficult.

Currently, Feng’s approach does not work well if the number of input pins becomes limiting.

Prior work in traditional packing show surprisingly strong area and delay results for greedy algo-

rithms, which are simple to implement, versus more advanced algorithms, which are more complex.

For example, despite the significant complexity of SMAC that guarantees optimal logical depth, SMAC

appears to produce worse post-route area and worse post-route delay than the greedy packer HDPack

[53] [17]. In the space that Feng’s complex Rent’s rule based packer works well, Feng implies (without

actually doing a direct comparison) that his packer should produce 6% better delay and 15% lower min-

imum channel width than HDPack [24]. Thus, the simplicity and robustness of a greedy packer, with

a well-tuned cost function, appears to be a reasonable choice for the goal of creating a general packer,

versus using more complex heuristics.

2.3.2 Architecture-Specific Packing

The features of logic blocks found in commercial devices are too complex to be targeted by simple BLE

packers. This led some researchers to create bespoke packing algorithms that are tailored for a specific

architecture. Ahmed et al. proposed packing techniques for the Xilinx Virtex V FPGA [4]. These

techniques include merging packing with placement when targeting soft logic blocks as well as packing

memories in such a way that they align with the datapath of DSP blocks. Steiner created a packer that

targets memories, multipliers, and soft logic slices of a commercial device, the Xilinx Virtex II Pro [89].

Although these packers are able to target very complex architectures, they do so by embedding

architectural assumptions within the algorithm itself. This makes it difficult to apply these packers to

target different architectures.

2.3.3 Flexible Packing

A general packer that can target a large space of different logic blocks addresses the lack of architec-

tural complexity found in traditional BLE packers while at the same time avoiding the inflexibility of

architecture-specific packers. There have been several different approaches to create these packers each

providing useful insights on what an ideal general packer should (or should not) have.

Ni et al. [72] proposed expanding the notion of a BLE in a basic logic block to represent more

arbitrary logic elements. Ni et al. created a tool for prepacking that is meant to be used with traditional

BLE packers to enable these packers to target more complex architectures. Though this algorithm suffers

from scalability issues, it does show the importance of having a flexible prepacker aid general packing.

It also shows that limited interconnect flexibility makes placement within a logic element an important

consideration during prepacking.

Depopulated crossbars in logic blocks are important architectural constructs that an architect would

want to study. Wang et al. [92] as well as Lemieux and Lewis [48] proposed different ways to target logic

blocks with depopulated crossbars. Their studies show that if one has depopulated crossbars in a logic

block, then it may be necessary to have a router route nets within the intra-logic block interconnect.

Work by Wang et al. suggests that the placement of BLEs within a logic block can also become an issue
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for packing, given certain crossbar designs.

Cong et al. proposed a tool, RASP, where a variety of different interconnect in a logic block is

permitted but the user is then responsible for creating custom heuristics to map to that logic block [21].

This approach defers too much development effort to the user. An ideal packer should encapsulate, or

at least greatly simplify, the hints given to it by the user.

Paladino and Brown [74] proposed a packer that focuses on modelling control signals and carry chains

within a soft logic block. The architect describes a set of design rules which governs the legality of how

logic elements may or may not pack together. The packer then uses these design rules to filter out

illegal intermediate packing solutions. This is an excellent work that is capable of targeting a wide space

of different architectures without requiring the highly specialized expert knowledge required to operate

Cong’s RASP tool. Although Paladino’s packer was only proven on soft logic blocks, we believe that

such a tool, given sufficient modifications, could be made to target hard logic blocks too. However, the

design rule language is still quite complex. An ideal, general, packer should instead infer these design

rules based on the structure of the architecture itself.

Sharma et al. [84] proposed a placement algorithm that can explore FPGAs with arbitrary gen-

eral interconnect. That work could be extended to target arbitrary interconnect within a logic block.

Sharma’s approach is to regularly sample the underlying interconnect during annealing-based placement

by employing detailed routing repeatedly. However, this approach results in extremely long runtime.

This suggests that detailed routing enables the exploration of a wide space of architectures but blindly

relying on it is intractable.

Similar to the work done by Sharma et al. but in the context of FPGA packing, in my Master’s and

early portions of this thesis work, we proposed a greedy packer, called AAPack [57], that recognized the

need for intra-logic block placement and routing when targeting a large space of different logic block

architectures. This algorithm employed first-fit placement and negotiated-congestion routing to check the

legality of all intermediate (partial) packing solutions. Compared to the former, the AAPack algorithm

benefited from targeting a much smaller routing problem, namely working at the logic block level, but

it still ran two orders of magnitude slower than T-VPack [64] on the simple FPGA architectures (recall

though that T-VPack is specialized to only target these simple architectures).

In summary, the different approaches before this work targeting different aspects of general packing

provide important insights for creating a general packer. We know that intra-logic block placement and

routing becomes a concern once we allow freedom in specifying interconnect. We know that a detailed

router for addressing the interconnect problem is powerful but can be very slow; thus simpler, but less

powerful, design rule checks need to be used too. Finally, we know that prepacking is a robust technique

for addressing situations of limited flexibility in packing and that this technique can be generalized to

target more than just pairs of LUTs with flip-flops.
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VTR: FPGA Architecture

Exploration Infrastructure

This chapter describes a flexible, robust, open-source, public infrastructure for FPGA architecture ex-

ploration and CAD research, called Verilog-to-Routing (VTR). The VTR project is a large scale endeav-

our that involves contributions from many collaborators around the world. We, the research teams of

Jonathan Rose, Jason Anderson, and Vaughn Betz, at the University of Toronto, stand in an unusual

position for this project because we are responsible for the VTR system as a whole. Thus, substantial

work done as part of this thesis touches upon all parts of the VTR project. Due to this unique cir-

cumstance, the content of this chapter will describe the different parts of the VTR project that I was

involved with, or oversaw, while giving credit to the many important contributors of each part.

Figure 3.1 shows the main components of VTR. These components include realistic benchmarks,

sample architecture description files, a CAD flow, experiment scripts, and regression tests. The CAD

flow consists of the Odin II tool for Verilog elaboration, ABC for logic synthesis and technology mapping,

and VPR for packing, placement, and routing. We describe each of these different components in more

detail before describing the process of engineering the VTR system as a whole.

3.1 Benchmarks

Due to the empirical nature of an FPGA CAD or architecture study, the benchmarks used in experiments

can have a significant impact on that study’s conclusions. One therefore wants a large number of

benchmark circuits that represent the space of applications that one intends to optimize for. Gathering

these benchmarks comes with challenges. There are far fewer, and far less substantial, open source

circuits in the digital hardware community than in the software community. But gathering benchmarks

is only one small part of the challenge, as one also needs to port the benchmarks so that they are

compatible with the limited feature set of an open source flow. This can be quite labourious. Thus,

there is value in having one research group create a set of benchmarks that are compatible with an open

source flow, then make that set publicly available for other researchers to use.

In VTR, we make our best attempt at curating a representative benchmark set, while keeping the

functionality of each circuit as close as we can to the original work. Benchmarks are chosen from a

variety of different applications from a variety of different sources. This process is made possible only
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Figure 3.1: The VTR infrastructure includes benchmarks, architecture description files, CAD flow,
experiment scripts, and regression tests.

through the goodwill of the community. Thus, we acknowledge and thank the many people who donated

applications directly to VTR and to those who donated circuits to the open source hardware repository,

OpenCores, from where we also gathered some of our benchmarks [44].

Benchmarks are, themselves, a form of software. If benchmarks are not maintained, then it is

very easy for even basic runs of the tool to fail, let alone more sophisticated experiments. It is thus

important that each release of the VTR CAD flow is paired with a set of benchmarks compatible with

that release. Hence, before any release, we perform regular testing of the benchmarks on a variety of

different architectures and flows.

Contributors involved with assembling these benchmarks and changing the benchmarks to be com-

patible with the VTR flow include Kenneth Kent, Cong Wang, Peter Milankov, Opal Densmore, Jingjing

Li, and myself [80] [59]. I also acted as the gatekeeper of the benchmarks deciding which benchmarks

to keep and whether or not a particular benchmark was properly converted. During a release, I was

responsible for testing that the benchmarks are compatible with the release software.

Table 3.1 shows the statistics for the VTR benchmarks gathered using the VTR CAD flow that will

be described later in Section 3.3. The columns from left to right are as follows: The name, number of

6-LUTs, number of multiplications, number of memory bits, number of 1-bit addition/subtraction oper-

ations, maximum addition/subtraction length, and application domain of the circuit. The benchmarks

demonstrate a great diversity of different properties. Circuits range in soft logic size from a few hundred

LUTs to nearly 100,000 6-LUTs. In terms of hard logic, circuits range from having no multipliers to

having hundreds of multipliers, and from having no memories to having over 5 million bits of memory.

To measure the ratio of arithmetic functions to soft logic in the benchmarks, the CAD flow was

configured such that addition/subtraction operations were always hardened. Later in this thesis, we will

show that there are situations when some addition/subtraction operations are better off implemented in

soft rather than hard logic.
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Table 3.1: VTR benchmarks statistics gathered using the VTR CAD flow.
Circuit # # # # Max Domain

6LUTs Mult Mem Bits Add Add Size

arm core 13,812 0 305,152 537 35 Proc
bgm 32,337 11 0 5,438 25 Finance
blob merge 7,843 0 0 3,754 13 Image Proc
boundtop 2,846 0 32,768 309 19 Ray Trace
ch intrinsics 425 0 256 0 0 Memory Init
diffeq1 294 5 0 132 33 Math
diffeq2 202 5 0 132 33 Math
LU8PEEng 21,668 8 46,608 3,251 47 Math
LU32PEEng 73,828 32 673,328 8,249 47 Math
mcml 94,048 27 5,210,112 24,302 65 Med Physics
mkDelayWorker32B 5,405 0 532,916 816 33 Packet Proc
mkPktMerge 225 0 7,344 45 5 Packet Proc
mkSMAdapter4B 1,819 0 4,456 431 33 Packet Proc
or1200 2,813 1 2,048 534 65 Soft Proc
raygentop 1,778 18 5,376 580 32 Ray Trace
sha 1,994 0 0 309 33 Cryptography
stereovision0 8,282 0 0 2,920 18 Comp Vision
stereovision1 7,845 152 0 2,388 19 Comp Vision
stereovision2 11,006 564 0 13,843 32 Comp Vision
stereovision3 174 0 0 28 11 Comp Vision

In addition to these comprehensive benchmarks, we also included other benchmarks to aid researchers

in particular experiments. We include the traditional MCNC benchmarks [100] for use when evaluating

against older works, and a set of floating-point benchmarks curated by Yu et al. [15].

3.2 Architecture Modelling

In this section, we describe two contributions to architecture modelling. First, we describe advances to

the language used to describe architectures in VTR. Second, we describe a curated set of architectures

that may serve as baselines for researchers conducting CAD and architecture experiments. The most

notable of these is an architecture based on a commercial Stratix IV FPGA [19], that we call the Extensive

Archiecture (EArch).

3.2.1 Architecture Description Language and Modelling

VTR employs an XML-based language to describe an FPGA architecture [60]. This language assumes

an island-based architecture where logic blocks are defined on a discrete 2D grid and are surrounded by a

sea of interconnect. An architecture description file begins with a set of parameters that describe general

properties of the FPGA and the interconnect architecture. The logic blocks themselves are defined using

a netlist-style language that was created as part of my master’s thesis [56]. This logic block description

language allows the architect to specify an arbitrary internal hierarchy of subclusters within a logic

block, different exclusive modes of operation at any point in the hierarchy, primitives such as LUTs,

flip-flops, memory slices, and other basic blocks, and interconnect that joins the different intra-logic

block components together. The physical locations of different types of logic blocks are organized into

columns. All logic blocks in a column must be of the same type.

In the present work, I extended the language used to describe a logic block to include information
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about delays [80]. Interconnect delay is specified as point-to-point delays between pins inside the logic

block. Primitives within a logic block, such as LUTs, flip-flops, memory slices, and other basic blocks,

have their timing information specified based on whether the primitive is combinational logic or sequential

logic. For combinational logic, the language allows the architect to specify a graph of input-to-output pin

delays. To make this process less onerous for specifying large logic primitives (which would have many

input-to-output paths), the architect may specify a constant delay between a set of primitive input pins

to a set of primitive output pins. For sequential logic, the architect specifies setup time for input pins

and clock-to-Q time for output pins. For sequential primitives that have some internal pipeline stages,

we allow the maximum operating frequency of the primitive to also be specified. Hold time support,

though important, is left to future work.

Below, we show a code example of how delays for a simple memory primitive may be specified:

<pb_type name="mem_512x64_sp " blif_model=".subckt single_port_ram " num_pb="1">

<input name="addr" num_pins="9"/>

<input name="data" num_pins="64"/>

<input name="we" num_pins="1"/>

<output name="out" num_pins="64"/>

<clock name="clk" num_pins="1"/>

<T_setup value="509e-12" port="mem_512x64_sp .addr" clock="clk"/>

<T_setup value="509e-12" port="mem_512x64_sp .data" clock="clk"/>

<T_setup value="509e-12" port="mem_512x64_sp .we" clock="clk"/>

<T_clock_to_Q max="1.234e-9" port="mem_512x64_sp .out" clock="clk"/>

<\pb_type >

In this example, the pb type XML tag describes an architecture primitive, named mem 512x64 sp,

that can implement any user netlist block of type single port ram. The following input, output, and clock

tags specify the input, output, and clock ports, respectively, of this memory along with their widths.

The new timing extensions to the architecture description language include T setup for specifying the

setup time to the input ports of the memory and T clock to Q time for specifying the delay from the

arrival of a clock edge to valid data at the memory output. The value attribute specifies delay in seconds.

The port attribute specifies which port this delay applies to. Finally, the clock attribute specifies which

clock functions as the clock for this port. This last feature was created in anticipation that future logic

primitives may have more than one clock.

We also extended the language to allow the architect to provide hints to the CAD tool to aid the tool

on particularly difficult logic block constructs. As this “advanced user” feature is necessarily coupled

with the CAD algorithms, we describe this extension later in Section 4.3.3.

Jeff Goeders at UBC further extended the language to support power specification [25]. Our ex-

perience integrating this feature into the VTR architecture modelling language is interesting because

it illustrates an important difference between features that are standalone with features that are well

integrated. Initially, Goeders’ models ignored hard blocks, such as memories and multipliers. In addi-

tion, these models duplicated key parameters leading to risks that the models may become internally

inconsistent. Vaughn Betz drove the need for power specification for hard blocks (through the use of

optionally simpler models) and better synchronization of architectural parameters. Betz also verified

that power modelling reasonably matched with the other area and delay models. I assisted in these

tasks. One may now choose among multiple different levels of abstraction for power modelling in the

architecture description file ranging from detailed transistor level models of wires and buffers to simpler

models that measure power based exclusively on pin activity [25] [59].
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Figure 3.2: Architecture of the soft logic block in the flagship architecture.

3.2.2 The Extensive Architecture File

There is great value in having one, quality, architecture file as the “goto” architecture for a researcher new

to the field. We wanted this architecture to resemble a modern, commercial chip. Such an architecture

should contain the features that one would find in a modern FPGA including hard fracturable multipliers,

hard memories with configurable aspect ratios, and soft logic blocks that have fracturable LUTs, carry

chains, and a depopulated crossbar. Among the state-of-the-art commercial devices available, we decided

to base our architecture off an Altera Stratix IV device [6] for practical reasons - we had available more

device information for the Stratix IV device than any newer device at the time. We call this “goto”

architecture, the Extensive Architecture (EArch).

Modelling for this architecture was done by Vaughn Betz, Charles Chiasson, and myself. Delay

information was gathered primarily by using the Quartus II CAD tool to sample the different components

of a Stratix IV device. Area information for the different logic blocks was scaled from Wong et al. [95].

Where more information was needed, such as when describing the resistance and capacitance of wire

segments, we scaled the Berkeley predictive models [14] for 45 nm process to 40 nm to match Stratix

IV.

Soft Logic Architecture

Figure 3.2 shows a soft logic block in EArch. This soft logic block has 52 general inputs, 20 general

outputs, one clock pin (not shown), and dedicated cin and cout pins for fast carry arithmetic. The

cout pin of a soft logic block drives the cin pin of the soft logic block directly below it. These carry

signal pins do not have access to the general (inter-block) interconnect. This soft logic block has 10

fracturable logic elements and a 50% populated crossbar provides internal connectivity from the general

inputs to the fracturable logic elements as well as between logic elements. The crossbar parameters are

set to closely resemble a Stratix IV device [19]. A dedicated carry chain connects the fracturable logic

elements vertically downwards.

A fracturable logic element is shown in Figure 3.3. It contains a fracturable LUT (explained in
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Figure 3.3: Fracturable logic element with optionally registered outputs.
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Figure 3.5: In arithmetic mode, the 5-LUT fractures into two 4-LUTs where each 4-LUT drives an adder
input.
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Figure 3.6: A fracturable multiplier can operate as one large 36x36 multiplier or two smaller 18x18
multipliers that can each further fracture to two 9x9 multipliers.

Figure 3.7: General interconnect wires run over tall logic blocks.

Section 2.1.1) with two optionally registered inputs. The fracturable LUT has two modes of operation,

as shown in Figure 3.4. It can operate as either one 6-LUT or as two 5-LUTs that share two inputs

(FI = 8). When operating as a 6-LUT, two LUT input pins are unused and the carry chain is unused.

When operating in dual 5-LUT mode, each 5-LUT can optionally implement one bit of addition, which

is implemented by a 1-bit hard adder. Figure 3.5 shows that hard adder along with the interaction

between the LUT with the adder. In arithmetic mode, the 5-LUT is further fractured into two 4-LUTs

with all inputs shared. Each 4-LUT drives one adder input. Fast, dedicated, interconnect for carry logic

joins adjacent adders together.

Fracturable Multipliers

Figure 3.6 shows the architecture of a hardened multiplier block in EArch. This fracturable multiplier

can operate as one large 36x36 multiplier or two smaller 18x18 multipliers that can each further fracture

to two 9x9 multipliers. This style of fracturability is a simplified version of a Stratix DSP block [50].
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Table 3.2: Configurable memory modes and aspect ratios.
Single-Port RAM 32Kx1 16Kx2 8Kx4 4Kx8 2Kx16 1Kx32 512x64

Dual-Port RAM 32Kx1 16Kx2 8Kx4 4Kx8 2Kx16 1Kx32
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Figure 3.8: Core logic block layout for EArch.

In the core of the architecture, every eighth column, starting from the sixth, contains block multipliers

exclusively and each multiplier block is four soft logic tiles high. The supply of multipliers was selected

such that they become the limiting factor when determining the size of the FPGA for our most multiplier-

intensive benchmark (stereovision2). In VTR, general interconnect wires run over tall logic blocks. This

is shown by the bolded, gray, wires in Figure 3.7. Logic block pins do not connect to these wires. Since

the multiplier is four tiles high, every multiplier block has three interconnect channels that run over it.

Configurable Memories

Stratix IV has block RAM sizes of 9 Kb and 144 Kb [6]. We chose to simplify our architecture by

supplying one block RAM size of 32 Kb in EArch (32 Kb is the closest power of two to the geomean

of the two Stratix IV RAM sizes). The configurable block memory in EArch has different modes of

operation to better fit with the varying memory demands placed upon it by different user circuits.

Table 3.2 shows the various modes of operation of the memory. It can operate in either single-port mode

or dual-port mode. In single-port mode, the memory can have an aspect ratio varying from 32Kbits x

1 to 512x64. In dual-port mode, the memory can have an aspect ratio from 32Kbits x 1 to 1024x32.

There is no 512x64 mode for dual-port mode because this mode requires an excessive number of pins,

which are very costly.

As was the case with fracturable multipliers, general interconnect wires may run over the memory

block.

In the core of the architecture, every eighth column, starting from the second, contains block memories

exclusively and each memory block is six soft logic tiles high. Since embedded multipliers are also found

on every eighth column (but starting from the sixth), this configuration results in no conflicts regarding

whether or not a column is a memory or a multiplier. For our most memory intensive benchmark, mcml,

the number of memories is close to being the limiting factor for determining the size of the FPGA.
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Table 3.3: Routing architecture parameters.
Type Single-Driver
Fcin 0.15
Fcout 0.1
L 4
Switch Block Type Modified Wilton [60]

Table 3.4: Architecture files included in VTR.
Architecture Name Description

k4 N4 Legacy style soft logic only architecture
k6 N10 Legacy style soft logic only architecture
hard fpu arch timing Contains hardened floating-point logic blocks
k6 N8 ripple chain Heterogeneous architecture with

carry chains and non-fracturable LUTs
k6 N8 unbalanced ripple chain Heterogeneous architecture with

carry chains and non-fracturable LUTs
EArch Heterogeneous architecture with

carry chains and fracturable LUTs

Figure 3.8 shows the core logic block layout for EArch. Soft logic blocks are labelled s, multipliers are

labelled ∗, and block RAM are labelled RAM.

Routing Architecture

The routing architecture parameters are listed in Table 3.3. We use a single-driver routing architecture

[35] [50] [47]. The fraction of wire segments in a channel that are connected to a logic block input pin

(Fcin) is 0.15. The fraction of wire segments in a channel that are driven by a logic block output pin

(Fcout) is 0.1. All wire segments are length 4. The switch block pattern is a modified Wilton pattern

[94] that attempts to balance mux sizes [60].

3.2.3 Other Architecture Files

We created a series of architecture files to serve as examples for other researchers to use. Table 3.4 shows

some key architectures that are included in VTR. I created simpler variations of EArch including archi-

tectures with/without fracturable LUTs, carry chains, and hard blocks. Chiwai Yu created architecture

files to explore hardened floating-point logic blocks [80].

A full summary of the different architectures released in VTR 7.0 [59] is provided in Section A.

EArch itself is not in the VTR 7.0 release, will be made available in the next release.

3.3 CAD Flow

3.3.1 Odin II: Verilog Elaboration

Odin II is the Verilog elaborator used in VTR [37]. It was originally written by Peter Jamieson at Miami

University in Ohio, but research and development of the tool is now primarily done by the research team

headed by Kenneth B. Kent at the University of New Brunswick. The contributors in Kent’s team

were/are Andrew Sommerville, Sen Wang, Konstantin Nasartchuk, Ash Furrow, Jingjing Li, Bo Yan,

and Conor McCullough. Since every other stage of the VTR CAD flow depends on elaboration, I worked
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Figure 3.9: Example of common subexpression elimination for hard logic in Odin II. The duplicated
x+ y operation may be merged together to save area.

closely with the Odin II team throughout my Master’s and PhD to ensure a correct and compatible link

between the elaborator and the downstream tools. Here, I briefly discuss my involvement with Odin II.

A key capability of Odin II is its ability to directly synthesize parts of a user circuit into the hardened

logic (see Section 2.1.2) found in the FPGA architecture. But elaborating hard blocks requires more

than just a direct translation. If the logical function in the user circuit is bigger than the hardened

function available in the architecture, then the CAD tool must automatically split the user function into

chunks that can physically fit. Odin II has the capability to automatically split multipliers, memories,

and adders. Of these features, multiplier splitting was implemented by the Odin II team during my

Master’s. Memory and adder splitting was implemented during my PhD. I oversaw and verified the

work done by Andrew Sommerville and Ash Furrow on memory splitting [87] as well as Sen Wang on

adder splitting [59].

The introduction of hard logic into a user circuit creates boundaries at hard logic instances that

make logic synthesis difficult. The logic synthesis tool that we are using, ABC, is unable to optimize

across these boundaries. The VTR team lacked expert developers in ABC, thus, the responsibility of

performing important, basic logic optimizations fell to Odin II. Odin II can perform basic logic synthesis

operations such as sweeping away unused cones of logic, merging duplicate hard blocks together in a

process formally known as common subexpression elimination, and propagating constants through hard

blocks. An example of merging duplicate hard blocks is shown in Figure 3.9. The operation x + y is

needed in two different mux inputs. Rather than create two adders, the output of one adder may be

used twice.

For certain situations, one may want to avoid hard logic altogether because the penalty from the

boundaries imposed by hard logic may exceed the gain from using them. Thus, Odin II allows the user

to specify conditions that, when satisfied by a particular hard logic instance, will replace that instance

with soft logic.

Though hard logic block optimizations are performed during elaboration, the effects are more pro-

nounced at the system level. Thus, being the one responsible for the VTR system as a whole, I discovered

the initial problem caused by the boundaries imposed by hard blocks, proposed many of the optimizations

later implemented by the Odin II team, then oversaw the implementations of these optimizations and
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verified their correctness. Sen Wang, Conor McCullough, and Bo Yan implemented these optimizations

under the supervision of Kenneth Kent.

Andrew Sommerville and Ash Furrow implemented functional simulation in Odin II [80]. The primary

purpose of this simulator is to help verify the correctness of the circuits generated by Odin II. I played

the role of a consultant for this work.

3.3.2 ABC: Logic Synthesis and Technology Mapping

One of the main uses of VTR is to explore FPGA architectures that contain new logic elements using

realistic benchmark circuits that may be quite large in size. Thus, we need a logic synthesis and

technology mapping tool that allows for the representation of black boxes and can scale to large circuits.

We chose the ABC tool, developed by Mishchenko et al. [66], for logic synthesis and technology mapping,

precisely for those reasons. Through the use of local, scalable, optimizations, ABC can match the quality

of results of other open source logic synthesis tools while acheiving one to two orders of magnitude

speedup [67]. Mischenko’s team added rudimentary black box support to ABC so that arbitrary logic can

pass through synthesis completely untouched. But, as mentioned earlier, this implementation introduced

a host of quality issues that we handled in Odin II.

Although we do not directly collaborate with the developers who work on ABC, we do modify ABC to

tailor it for certain specific needs in VTR. Jason Anderson added the wiremap [39] technology mapping

heuristic to ABC. Rafi Rubin [81] and myself also made build changes to better deploy the tool to

different platforms.

3.3.3 VPR: Packing, Placement, and Routing

The VPR tool [9] [60] [80] performs packing, placement, and routing in the VTR CAD flow. Packing

maps a technology mapped circuit to the logic blocks found in an FPGA architecture. Placement finds

physical locations for those logic blocks. Routing connects different logic blocks together. After routing,

VPR then performs timing and power analysis of the resulting implementation.

Packing creates a netlist of logic blocks from a flat netlist of atoms. In line with the vision of a

single CAD tool that can target many different architectures, we want a packer that can target a broad

space of different logic blocks without code changes. In my Master’s work, we proposed a simple packer,

called AAPack [57] that is capable of legally mapping to a broad space of architectures, but the packer

had excessive runtime and may perform poorly on certain complex architectures. For my PhD work,

we made major contributions to the packing problem. These contributions will be discussed in detail in

Chapter 4.

Placement assigns packed logic blocks to physical locations on the FPGA. The greatly expanded scope

of architectures targeted by VTR created new challenges for placement. Work done before this thesis by

Ted Campbell and myself involved initial support for heterogeneous logic blocks during placement [60].

Work done as part of this thesis involved supporting carry chain structures in placement through the

use of relative placement. Thien Yu and Noruddin Ahmed did much of the initial development work,

while being supervised by Vaughn Betz and Jonathan Rose [59]. But, the term ended before Thien and

Noruddin were able to complete carry chain support so I was responsible for finishing the work. This

included bug fixes to carry chain discovery and placement, as well as new features such as graphical

visualization of the carry chain and carry chain interconnect modelling [59]. Tim Liu and myself further
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refined placement for heterogeneous logic blocks. I improved accuracy for costing intermediate placement

solutions while Tim further improved and sped up that computation.

Routing implements nets using the physical wires and switches available on the FPGA. The original

timing-driven router in VPR, designed by Betz et al. [9], was very robust. Few changes needed to be

made to target the benchmarks and architectures that we are interested in for VTR. The changes that

we did make focused on speeding up minimum channel width search using the router. Minimum channel

width search is the slowest stage in the VTR CAD flow [9] [59] [90]. The problem became especially

noticeable with larger circuits where runtimes can exceed a week. I made some runtime optimizations

to routing for handling high fanout nets based on techniques by Swartz et al. [90]. The rationale is that

although high fanout nets tend to have a large bounding box, the bounding box for any particular target

pin of that net should be much smaller. By restricting the area of the bounding box for each target, one

can dramatically reduce the search space that the router explores, which in turn can reduce route time

several fold for high fanout nets. The overall speedup on routing is approximately 5% to 20% depending

on the circuit and architecture. Andre Pereira added more intelligence in the router for predicting when

routing is impossible. This allows the router to exit earlier rather than waste time solving a problem

that it cannot solve. I further refined Andre’s heuristics to allow more precision. The ability for the

router to exit early has a substantial impact on our largest circuits that also have the longest route

times. This optimization reduced the total time to run all VTR benchmarks on one architecture from

over a week to just a few days.

A flexible logic block architecture implies that the VPR models for timing must likewise be flexible.

VPR has two models for timing, one for before packing (when the user netlist has no hierarchy, as ex-

plained in Section 2.2.2) and another for after packing (when the user netlist is assembled into hiearchical

logic blocks). Originally, the pre-packing timing model used two constants to model delay: delay for a

primitive and delay between primitives. I updated the timing models in packing to include actual delay

information gathered from the architecture file. The delay graph now uses the timing information for

each primitive [80]. Michael Wainberg improved upon this by assigning a constant delay for connections

between primitives based on inter-logic block interconnect delays [59]. The user may optionally override

this with a different value using a command-line option.

Originally, the post-packing timing model in VPR contained hard-coded architectural assumptions

regarding the delay model within a logic block. This model assumed a two-level hierarchy for logic blocks

that no longer holds true with the broader architectural space for logic blocks. I generalized the timing

models to use architect-defined delay information from primitives, intra-logic block interconnect, and

inter-logic block interconnect [80].

Jeff Goeders added power analysis to VTR. After routing, VPR applies the activities of various nets,

as specified in a user-provided activity file, to the power models, specified in the architecture description

file, to measure dynamic and static power consumption of the final mapping [25]. Vaughn and I were

heavily involved with the integration of power analysis with VTR. Vaughn drove for features that enable

power modelling of hardened logic and he spent time validating power measurements. I assisted Vaughn

in these activities.

There were multiple important advancements to VPR where I had minimal involvement. Michael

Wainberg added more advanced timing features to VPR including multi-clock timing analysis and clock

constraints. He also added support for specifying clock constraints using the industry standard called

SDC [59]. Miad Nasr and Jason Anderson added a feature that allows one to extract a netlist, with
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Table 3.5: Statistics from mapping the VTR benchmark circuits to EArch through the VTR CAD flow.
Circuit Min W Crit Path Num CLB Total VTR

Delay (ns) Runtime (s)

arm core 136 19.49 1067 2359
bgm 108 30.07 2916 3822
blob merge 92 13.79 560 412
boundtop 74 6.51 200 85
ch intrinsics 60 4.01 26 11
diffeq1 70 16.81 25 28
diffeq2 56 12.85 15 24
LU8PEEng 124 78.29 1852 3840
LU32PEEng 176 81.89 6208 65012
mcml 170 43.82 6044 30243
mkDelayWorker32B 92 7.29 422 1140
mkPktMerge 48 4.92 15 46
mkSMAdapter4B 88 6.03 152 76
or1200 114 8.58 214 336
raygentop 88 4.97 162 81
sha 74 10.11 187 57
stereovision0 66 4.29 860 275
stereovision1 122 5.92 854 1669
stereovision2 136 13.94 1906 12446
stereovision3 34 2.98 13 4

delays annotated, after routing. This allows users to perform accurate timing simulation on their circuit

[59].

3.4 Example Result Runs of the Entire Infrastructure

This section shows the quality of results when the VTR benchmark circuits (described in Section 3.1)

are mapped to EArch (described in Section 3.2.2) using the full VTR CAD flow. The machine used in

this experiment is a 64-bit Intel Xeon 5160 running at 3 GHz in single core mode with access to 8GB of

physical memory. Table 3.5 shows the final stats. The leftmost column lists the circuit name. Following

that are the minimum channel width to route the benchmark, the critical path delay in nanoseconds

from a channel width 30% greater than min W, the total number of soft logic blocks used, and total

VTR runtime in seconds.

These statistics show the current state-of-the-art for open-source FPGA architecture exploration. It

shows that VTR can target architectures with depopulated crossbars, fracturable LUTs, carry chains,

memories, and multipliers on real benchmarks that approach 100K 6-LUTs in size.

Investigating the multiple instances of poor performance in these results reveals the holistic nature

of VTR. For example, a large portion of the 19 hour compile time for LU32PEEng, a circuit with

just over 70K LUTs, is in minimum channel width search that we feel can be further sped up through

better algorithms. On the other hand, the low clock frequencies for LU32PEEng, mcml, and other

circuits primarily arose from a slow implementation of division in the benchmarks themselves. Our

implementation for division in the benchmarks is much less efficient than the proprietary dividers used

in the original benchmarks. Rather than being just one-off cases, these cases resemble the kinds of issues

involved with, large, system-level, FPGA CAD infrastructures because architecture, benchmarks, and

CAD are all, ultimately, interrelated.
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Figure 3.10: Breakdown of percent of total runtime for the different CAD stages for a minimum channel
width search experiment. Values shown are the arithmetic mean of the relative runtime for each stage
across the VTR benchmarks.

Figure 3.10 presents a breakdown of the percent of total runtime for each of the major stages of the

CAD flow. Minimum channel width search occupies more than half of total runtime for each circuit on

average. Placement time takes up just over one quarter of total runtime. Other stages of the CAD flow,

such as elaboration, logic synthesis, packing, and timing analysis, occupy less than 15% of total runtime.

In this experiment, the placement option inner num was set to 10, which is higher than the recommended

value from [59], because we found that increasing placement effort led to an overall reduction in runtime

because a better placement results in faster min W search time.

In addition to its use as an architecture exploration tool, some users employ the VTR CAD flow

in a production environment to target a specific FPGA architecture [71] [68]. It is thus interesting to

measure how the CAD flow performs in a production style environment. First, a fabricated FPGA

must have a fixed channel width. Thus, for this experiment, we ignore minimum channel width search

time and instead take fixed-channel width route time at 1.3 times minW as total route time. Second,

since minimum channel width search time is no longer a factor, placement effort can be substantially

reduced with only a marginal degredation in results, so inner num is set from 10 to 1. Table 3.6 shows

the results of mapping the VTR benchmarks to EArch using these settings. We see a 6.8-fold speedup

for a 2% delay penalty when comparing a production style run of VTR to an architecture exploration

run. Figure 3.11 shows the runtime breakdown for a production flow. Without minimum channel width

search, the stages before place and route consume a relatively larger pecentage of total runtime.

As issues that affect runtime and quality continue to be improved upon, and as researchers explore new

avenues of research opened up by VTR, we foresee a future where quality of results will be significantly

better than the results presented here.
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Table 3.6: Statistics from mapping the VTR benchmark circuits to EArch with settings tuned for a
production environment.

Circuit W Crit Path Num CLB Total VTR
Delay (ns) Runtime (s)

arm core 198 19.71 1067 218.93
bgm 146 29.39 2916 530.30
blob merge 130 14.14 560 59.24
boundtop 102 6.58 200 20.29
ch intrinsics 78 3.99 26 3.36
diffeq1 70 17.10 25 4.86
diffeq2 68 13.06 15 4.54
LU8PEEng 172 82.18 1852 402.61
LU32PEEng 242 81.09 6208 2614.80
mcml 222 47.34 6044 2594.10
mkDelayWorker32B 128 7.59 422 82.38
mkPktMerge 64 4.98 15 10.93
mkSMAdapter4B 108 5.91 152 16.65
or1200 136 8.86 214 29.76
raygentop 114 4.95 162 20.83
sha 94 10.27 187 18.43
stereovision0 86 4.61 860 86.16
stereovision1 164 6.05 854 110.25
stereovision2 196 14.23 1906 401.70
stereovision3 44 3.07 13 2.49
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Figure 3.11: Breakdown of percent of total runtime for the different CAD stages for a production
environment. Values shown are the arithmetic mean of the relative runtime for each stage across the
VTR benchmarks.
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Figure 3.12: VTR software development follows a typical trunk/branch process.

3.5 Software Engineering

This section describes the software engineering behind the VTR project. We briefly illustrate the prob-

lems and solutions that we encountered with the intention that this may help others with the software

engineering behind their projects.

The unique circumstances of academia give rise to interesting challenges in the creation of large-scale

software. First, contributors to the VTR project are distributed around the world, which can make

collaboration difficult. Second, researchers choose, rather than are assigned, what to research; therefore

the VTR project is susceptible to losing key experts if those experts change interests or priorities. Third,

many contributors have a short turnover time compared with industry: a summer student contributes for

4 months, a Master’s student contributes for 1-2 years, and a PhD student contributes for 3-4 years. This

distributed, ever-changing, at times fickle, staff can make the development, management, and testing of

the VTR project difficult.

3.5.1 Software Development

We employ a typical trunk/branch software development process for VTR, as illustrated in Figure 3.12.

The trunk represents the current and latest shared code in active development. Changes are made incre-

mentally to the trunk. When sufficient new features are added to justify a full release, at approximately

every two to three years, we start the release process. This process starts by putting the trunk into a

state called code freeze. In this state, only bug fixes are allowed, no new features are added. Once the

team has sufficient confidence in the quality of the code, a branch is started. A branch is a completely

separate snapshot of the trunk which may now diverge from the trunk in code. The branch undergoes

testing in preparation for a release while the trunk is unfrozen so that developers can continue develop-

ment of new features independently of the release process. When the branch reaches a suitable state, we

release a packaged version of the branch. Unlike larger companies, we do not have spare development

capacity for patching releases, so code changes to the branch stops at the release.

I led the VTR 6.0 and 7.0 release as part of my dissertation work. To aid in this process, I automated

the process of creating and validating a release candidate. However, manual spot checking of the release

still needs to be done because automation lacks the scope of judgement that a human has.

Due to the large number of people on the project, we placed a requirement that the trunk must

always be stable. If this condition was not met, then people responsible for making the current state of

software unstable are responsible for fixing it.

Figure 3.13 shows the source-controlled, software organization of the trunk of VTR. Every solid
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Figure 3.13: Organization of the VTR 7.0 release.

block represents a folder. VTR has a folder for each of the three major CAD tools (Odin II, ABC,

VPR). Various libraries, such as libraries to read the architecture file, that support Odin II or VPR,

have their own separate folders. We provide documentation in the base folder that describes the overall

organization and use of VTR. Within each major folder, there exists documentation that describes the

function and organization of that folder. VTR has a test folder, called vtr flow, that contains architecture

description files, benchmarks, scripts for running and parsing VTR, documentation, settings, and the

tests themselves.

3.5.2 Management

To work with people around the world, we held, and continue to hold, weekly meetings, initially over

Skype, then later over Google Hangout. Each research site would then have smaller meetings for each

local team. Jonathan Rose took a leadership role running the meetings and driving the common vision for

the VTR project. This is essential for keeping the team cohesive. Vaughn Betz also played a leadership

role taking on increasing responsibility to drive the project forward.

Managing the people in the VTR project goes beyond just division of responsibility. Often times,

system level issues can arise that are not detected from looking at any one part in isolation. The

high turnover rate of contributors further exacerbates this problem because often times contributors

do not have the time to understand the nuances of the system. Hence, there is a need for one person

who is responsible for the project as a whole. I decided to take this role which includes performing

integration work, testing the full infrastructure, and providing support where help was needed to ensure

good operation of the VTR project.

Due to the short turn-over time of contributors, it becomes especially important that faults are

detected early in the software development process rather than later. Suya Liu [55] worked on changing
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the build process to detect problems early. She added stricter checks in the compile process. Suya and

I also cleaned VPR of memory leaks, though such work is currently ongoing in Odin II. Daniel Chen

[16] and Jeff Rudolph [82] were involved in improving error logging and messaging in VTR to help both

developers and users detect and solve problems quicker.

3.5.3 Testing

Early on, I would test VTR manually but this does not scale well and is prone to human error. Hence,

we moved towards a more automated way to check for the good operation of the system. Jeff Goeders

and myself worked on regression tests that tie the different components of VTR together. These tests

let a user automatically map different circuits to different architectures using various CAD settings,

automatically parses out the results, then compares these results to a set of golden results. CAD noise

creates a complication to testing. Due to the nature of the heuristic algorithms used in the CAD

flow, something as simple as changing the order of nets or changing how rounding is done can change

quality of results while still generating correct solutions. So forcing equivalent results in testing may

end up creating many false positives due to this “noise” in quality of results. To manage this problem,

guardbands are placed around golden results. These guardbands, and the golden results themselves,

need to be updated and tuned, as the CAD algorithms get optimized, so that the tests capture real

errors while avoiding false positives.

Using this infrastructure Norrudin Ahmed [3] created an automatic test infrastructure using BuildBot

[1] that regularly runs regression tests at various levels of comprehensiveness that check both correctness

and quality of results. In addition, Norrudin added measurements on average quality of results to this

infrastructure to track performance. The VTR automated infrastructure was then further augmented

by Andrew Sommerville and Kenneth Kent, who added unit tests for the Odin II elaborator. With

this system, new changes to the source code are verified automatically so that developers know when a

problem happens at the system level. After Norrudin’s summer term ended, I became responsible for

maintaining the BuildBot automated test infrastructure.

Automated testing, though useful, does not cover new functionality so any new features still need to

be tested by the developers manually before they can automated. Other manual work includes certain

kinds of benchmarking. For example, Tim Liu did benchmarking work to check quality of results across

VTR versions [59] to establish history of quality of results from before automated testing.

3.5.4 Public Deployment

The purpose of a release is to create a known stable version of the software that the public can depend

on. We discussed the process leading up to a release in Section 3.5.1. Here, we discuss the deployment

considerations surrounding a release such as licensing, support, and actual deployment.

For VTR to be widely useful, we want an open source license that maximizes what others can do

with the tool, while at the same time minimizes our liability. This led us to choose the MIT license

[36] for VTR. In short, with the MIT license, one can use VTR for free but we are not liable for the

outcome. Since VTR is built from multiple different tools with different licenses, we negotiated with

various authors to consolidate the release into one license (with the exception of ABC, but the license

for that software is in practice identical to the one we use).

Software that is not maintained will eventually fall into disuse as various features become outdated
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or incompatible. To combat this, we have a simple bug reporting/tracking system using the google code

infrastructure. At this current snapshot in time, we have received 70 issues with 27 issues still open.

The source code itself can be downloaded directly from the google code repository at

https://code.google.com/p/vtr-verilog-to-routing/.

3.6 Contribution

The primary contribution of VTR is in enabling CAD and architecture research. We can begin to see its

impact through some recently published works. Zgheib et al. [101] studied a newly proposed soft logic

block based on programmable and-inverter cones using VTR as part of her experimental infrastructure.

Murray et al. [69] released an even larger set of benchmarks for FPGA research along with a CAD

flow to map those benchmarks to a VTR compatible flow, which together is called TITAN. Brant and

Lemieux [13] proposed virtualizing FPGAs by creating an FPGA overlay over an existing commercial

architecture, then using VTR to map to the virtual FPGA. Purnaprajna and Ienne [78] investigated a

mix of LUTs and hardened muxes for logic using the VTR infrastructure. Hung et al. [32] performed

a head-to-head comparison between the VTR CAD flow versus a commercial flow and created a way

for the output of VTR to interface to a commercial tool. Hartig et al. used VTR to map circuits to a

structured ASIC [27]. Lingli Wang’s group at Fudan University is using VTR to target an FPGA that

they are fabricating [93]. The diversity of research that VTR already enables speaks well to its future

value.

VTR is/was used as part of commercial CAD infrastructure. Texas Instruments used VTR to map

to an internal FPGA that they were investigating [68]. A new FPGA startup, called Efinix, use VTR as

part of their backend [71]. One of the founders, Ngai [71], says that VTR was invaluable to the startup

for it enabled a much shorter time to market.

Reproducibility is a major cornerstone of the scientific method but reproducibility can be difficult

to achieve in FPGA CAD and architecture research. The FPGA CAD flow has become so complex

that most publications must carefully curate what implementation details are important to show. If a

researcher omits a particular parameter or optimization that happens to be important, then it can make

reproducibility extremely difficult. VTR helps address this concern by reducing infrastructure differences

among researchers. At minimum, the results packaged with VTR should be easily reproduced simply by

running the experiment flow packaged with the tool. Hence, by improving the reproducibility of future

studies, VTR helps with the scientific rigour that is vital in good research.

From 2012 to date, VTR has accumulated over 700 unique downloads and its 2012 publication [80]

has accumulated 89 citations in just two years. The VTR project has further underscored the value that

large collaborative endeavours, though challenging, is necessary for overcoming certain barriers that

affect the research community that are too large for a single group to resolve.

https://code.google.com/p/vtr-verilog-to-routing/


Chapter 4

Architecture-Aware Packing for

FPGAs

To study a variety of novel logic block architectures, one needs a flexible packer that can target a broad

architectural space. We begin this chapter with a formal definition of the architecture-aware packing

problem for FPGAs. We then describe a packing algorithm to solve the packing problem.

4.1 Problem Definition

Figure 4.1 shows the inputs and output of the packing problem. The inputs to packing are a technology-

mapped netlist and a description of the architecture. The output of packing is a netlist of logic blocks

that are configured to implement the user netlist. This section formally defines each of these terms.

4.1.1 Architecture Definition

A description of the FPGA architecture is one of two inputs to packing (the other input being the user

netlist). It defines the logic blocks in the FPGA. A logic block performs computation, storage, or some

combination of both. Logic blocks that have the same properties are classified as belonging to the same

type. Modern FPGAs have multiple types of logic blocks, such as DSP blocks, configurable RAM, and

soft logic clusters, where each type is available in different quantities. The total number of logic blocks

Architecture 

Description

Packer
Tech!Mapped

Netlist

Packed Circuit 

Netlist

Figure 4.1: The inputs and outputs of the packing problem.
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Figure 4.2: Examle of a simple logic block

is represented by the variable Z. The architect may choose a fixed Z or a variable Z. A variable Z is

a convenience feature for the architect; it follows a long history [91] [9] of allowing the CAD algorithms

to optimize for certain architectural parameters (in this case, FPGA size). Let the logic blocks be

B = {b1, b2, ...bZ}.

Logic blocks contain primitives, where each primitive can implement a single basic block, that we

call an atom, of the input user netlist. Let primitive pij represent the jth primitive in logic block bi.

The particular sequential/combinational logic functionality that a primitive implements, such as a LUT,

flip-flop, memory slice, or adder bit, is called a logic model. The function MODEL(pij) returns the

single logic model of the primitive pij . Let P be the set of all primitives in the FPGA architecture.

All logic blocks and primitives have input/output pins that connect these blocks/primitives to other

blocks/primitives via configurable interconnect. Configurable interconnect is modelled as a directed

graph consisting of nodes and edges. Nodes in this network are either primitive input/output pins or

intermediate nodes that represent interconnect resources (such as muxes or wires). Let vij represent the

jth interconnect node in logic block bi. Let V be the set of all interconnect nodes across all logic blocks

in the FPGA.

We allow the architect to specify any arbitrary interconnect graph within a logic block, with any

number of intermediate nodes or edges. The logic block pins themselves are represented as intermediate

nodes in this graph. A detailed interconnect model between logic blocks is unknown because the packing

stage of the CAD flow precedes placement-and-routing. Thus, we define a simplified model of that inter-

connect for packing – we assume that any logic block pin has an edge (can connect without restriction)

to any other logic block pin.

Figure 4.2 shows an example of a simple logic block. This logic block consists of two 3-input LUT

primitives and one mux primitive. The mux primitive is intended to be part of the logic function, not

the internal-to-the-block interconnect. The LUT primitives share two of their three inputs. The logic

block has six input pins and three output pins.

The interconnect graph representation of this simple logic block is shown in Figure 4.3. Black squares

are intermediate nodes, nodes labelled ‘t’ are sink nodes, nodes labelled ’s’ are source nodes. Each pin
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Figure 4.3: Graph representation of the interconnect of the simple logic block

in the logic block is an interconnect node. In addition, the external source and the external sink nodes

represents interconnect outside the logic block. The number of nets that are allowed to drive a node is

called capacity. All nodes have a capacity of one unless otherwise specified. The external source node

has a capacity of 6 because up to 6 inter-logic block nets can drive the logic block and the external sink

node has a capacity of 3 because the logic block can drive up to 3 inter-logic block nets. The mux has

six sink nodes (data and select) and one source node. The two LUTs require special modelling. Since

a LUT has logically equivalent inputs, we model all three input pins as one sink with a capacity of 3.

Also, since a LUT can be configured to implement an interconnect wire, we add an edge that joins the

inputs of the LUT to the output. We will revisit this simple logic block again when we describe how to

pack a netlist into it.

Modern logic blocks have hierarchy as well as different modes of operation. A mode is specific func-

tionality in a logic block, or part of the logic block, that when used, prevents certain other functionality

from being used. A soft logic block that contains BLEs, where each BLE contains a LUT and flip-flop

pair, is an example of hierarchy. Memory blocks in modern FPGAs have different modes of operation

and may be configured to different aspect ratios. A soft logic block that contains fracturable LUTs,

where each fracturable LUT can operate as either a big LUT or two smaller LUTs with shared inputs,

is an example of both hierarchy and modes in the same logic block. Thus it is important to capture

hierarchy and modes in the definition of an architecture.

Hierarchy is represented using subclusters. A subcluster is a group of primitives, interconnect nodes,

and/or other subclusters. The earlier example of Figure 4.2 shows a logic block that contains one

subcluster of two 3-input LUTs. Any subcluster, primitive, or interconnect node has one parent. That

parent must be another subcluster or the logic block itself. Logic blocks are the exception as they do not

have a parent; they are top level subclusters. Sibling subclusters are not allowed to share descendants.

Let subcluster sij represent the jth subcluster in logic block bi. Let S be the set of all subclusters
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Figure 4.4: Example of a configurable multiplier that has multiple levels of hierarchy and multiple modes
of operation

across all logic blocks in the FPGA. Apart from its use as a convenience feature, hierarchy enables the

specification of modes.

A mode is modelled as a special subcluster that can contain other subclusters, primitives, or inter-

connect nodes. To maintain mutual exclusivity, no two sibling modes may be active at the same time.

A mode is considered active if any of its descendant subclusters or primitives are used. Let mode mijk

represent the kth mode of subcluster sij . Let M be the set of all modes in the FPGA architecture.

Figure 4.4 provides an example of how modes and subclusters may be used in the modelling of an

FPGA logic block. Suppose that a multiplier logic block can operate as one large 36x36 multiplier

or as two 18x18 multipliers, and that each 18x18 multiplier can further optionally operate as two 9x9

multipliers. Figure 4.4 shows how the subclusters and modes of such a multiplier would be defined.

The logic block is called block mult. The logic block can operate in mode 1, which contains one 36x36

multiplier primitive, or it can operate in mode 2, which contains two divisible 18x18 subclusters. Each

18x18 subcluster can operate in a mode that contains one 18x18 multiplier primitive or two 9x9 multiplier

primitives.

4.1.2 Netlist Definition

A technology mapped netlist is a flattened view of a user circuit that serves as the second of the two

inputs to packing. The netlist consists of atoms and nets. Atoms are basic blocks that, during packing,

will be assigned to physical primitives (defined above) found in the FPGA. Typical examples of atoms

include LUTs, flip-flops, memory slices (one bit data memories that may be grouped together to form

a wider memory), and adder bits (one bit additions that may chain together to form a wide addition).

Let the set of all atoms in the netlist be A = {a1, a2, ..., aN}.

An atom has one logic model that identifies the specific sequential/combinational logic functionality

of that atom. Each primitive in the architecture can only implement atoms of a particular logic model.

For example, suppose an FPGA contains LUTs and flip-flops, then atoms of logic model LUT can only

be assigned to LUT primitives while atoms of logic model flip-flop can only be assigned to flip-flop

primitives. The function MODEL(ai) returns the logic model for the ith atom.

Nets join atoms together. Let the set of nets be E. Every net ei in E is driven by exactly one atom
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Figure 4.5: Example of a simple netlist.

output pin and connects to one or more input pins of its current atom or other atoms.

Figure 4.5 shows an example of a netlist with 10 atoms and 8 nets. This netlist has six atoms of

logic model input, one atom of logic model LUT, one atom of logic model mux, and two atoms of logic

model output. The 8 nets join these atoms together. We will revisit this example below to show how

this netlist gets packed to an architecture.

4.1.3 The Packing Problem

The packing problem is defined as the determination of a legal assignment of input netlist atoms A to

input FPGA architecture primitives P, in such a way as to optimize one or more aspects of the result

such as area, speed, or energy.

We leave the definition of the cost function flexible, as it is a subject of investigation itself. A

good cost function should give a lower cost for packing solutions that result in a smaller FPGA, lower

critical path delay, lower minimum channel width, lower energy usage, and lower wirelength usage after

placement and routing.

A legal solution is an assignment that satisfies the following conditions:

1. All atoms are assigned to a unique primitive.

∀a ǫ A, ∃ exactly one p in P s.t. a 7→ p.

2. The primitive that is assigned can implement that atom.

If a 7→ p then MODEL(a) = MODEL(p).

3. No two atoms map to the same primitive.

If ai 7→ prs and aj 7→ ptu then prs 6= ptu for all i 6= j.

4. The packed solution is routable assuming full connectivity between logic blocks.

Given a logic block interconnect graph, used primitive input/output pins map to sink/source nodes

on the graph. Since we assume full connectivity between logic blocks, the connectivity of a logic

block may be checked independently of other logic blocks, because nets either route inside the logic

block or to/from a logic block pin. Hence, nets with connections outside the logic block map to

external source and external sink nodes, as shown earlier in Figure 4.3. A solution is routable if

and only if for all nets ei in E, there exists a directed path from each source to each sink of ei in
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V such that the number of nets that share the same node v does not exceed the capacity of that

node, where v ǫ V. A path is defined as a sequence of edges which connect a sequence of vertices.

5. The mutual-exclusivity of modes is respected

A mode is called active if in the final packed solution, the mode contains a primitive p that has

an atom mapped to it or the mode has an interconnect node v that has a net that routes through

it. The mutual-exclusivity of modes are respected if all subclusters have at most one active mode.

More formally:

∀mijk in M, if mijk is active then mijt is not active for all t 6= k.

4.1.4 Example of Packing

This example illustrates what constitutes a packing solution. Let the input netlist be the one shown in

Figure 4.5. Let the FPGA architecture consist of one simple logic block defined in Figure 4.2 and 8 I/O

logic blocks. In this example, we will use the I/O logic block shown in Figure 4.6. This logic block can

operate as either an input pad or as an output pad.

Figure 4.7 shows an example of a packing solution. There are 10 logic blocks {b1, b2, ..., b10} total.

The I/O logic blocks are set to the modes in which they are operating. The shaded primitives show which

netlist atom was mapped to which primitive. The bolded edges show the physical interconnect edges

that are used by nets. Figure 4.8 shows the hierarchy of the mapped logic block. Shaded regions show

the used regions of the hierarchy. Note that although the typical operation of a LUT is to implement

logic, a LUT can also be configured to act as an interconnect wire. As a result, a LUT is modelled as a

subcluster with two modes of operation. One mode as a LUT primitive and the other as interconnect

only.

4.1.5 Subproblems in Packing

From our new definition of packing, a few related subproblems arise. We have identified them as follows:
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• Partitioning: The packer needs to determine what atoms should be grouped together. This is

a classical problem that all prior FPGA packers consider but now must be reconsidered in the

context of heterogeneous cluster and primitive types as well as constraints, such as interconnect

and modes.

• Resource balancing: When more than one type of logic block can implement (ie. contain primitives

that have the same logic model) one particular atom, then the packing algorithm must make a

choice when selecting what type of logic block to use. The packer should choose in such a way

that the final packed solution fits a given architecture (if the size of the architecture is given) or

minimizes the size of the final architecture (if the size is left variable). The resource balancing

problem is often seen in commercial architectures having memory blocks of different sizes or flip-

flops available in different logic blocks. We note that there has been some prior work on resource

balancing for FPGAs with memories [94] and for FPGAs with different LUT sizes [29]. But, the

more general problem of balancing supply and demand given different ratios of physical and netlist

blocks is not well explored in packing. We do not address this issue well in this thesis. It is left

for future work.

• Intra-logic block placement: In much prior academic work, the logic blocks are architected such that

the selection of which particular primitive an atom maps to inside a logic block did not matter,

because there was full connectivity between all internal inputs and outputs. Our new packing

problem may target architectures where this assumption no longer holds (because of more limited

internal connectivity within the logic block) so the packer must now select specific primitives for

atoms.

• Intra-logic block routing: Since the interconnect may now be arbitrarily defined, routability needs

to be checked in order to ensure a legal solution. There is little prior work on intra-logic block

routing.

4.2 Architecture-Aware Packing Algorithm

This section describes an algorithm, called the Architecture-Aware Packing (AAPack) algorithm, that

is a step towards solving the problem defined in the previous section.

An ideal packer would discover the globally optimal solution, to any architecture, for any input

netlist, instantly. Reality dictates that one or more of these four ideals needs to be relaxed. In our

particular case, we want our packing algorithm to be useful to other researchers, which in turn led us

to relax all four ideals in specific ways. We propose an algorithm that can accept any architecture

and any netlist as input, but we focus on the quality of results for specific sub-classes of architectures.

The types of architectures we focus on are the EArch architecture described in Section 3.2.2 and the

many simpler variations of this architecture described in Section 3.2.3. We chose these architectures

because they contain useful features found in modern FPGAs, such as carry chains, fracturable LUTs,

and configurable memories, that are often ignored in much academic work and we believe should be

considered in future studies.

There are certain advantages that arise from a packer that can accept any architecture but is only

vetted for some. First, the architectural space that is well-supported by the algorithm can be immediately

useful. Second, for architectures that are not well supported, this algorithm serves as a starting point,
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Figure 4.9: Flow chart showing the operation of the try fill function.

for it takes less development effort to tune and optimize an existing packer that can already model the

target architecture, than it is to design a packer entirely from scratch.

This section begins with an overview of the algorithm, followed by details on the main stages, some

key optimizations, and then experiments and results. We will be presenting many tuning parameters

in the presentation of this algorithm. Unless otherwise specified, results for each tuning parameter

are obtained from mapping the VTR benchmarks to the EArch architecture using the VTR CAD flow

described the in previous chapter.

4.2.1 Overview

The AAPack algorithm follows a greedy approach, using T-VPack as a base [64]. The inputs to the

algorithm are the technology mapped netlist and the FPGA architecture. First, a pre-packing stage

identifies certain patterns of netlist atoms that require special handling (details described later in Sec-

tion 4.3.3), then a greedy general packing stage assigns atoms to logic blocks. The pseudocode for the

general packing stage is as follows:

1: pack(atom_netlist , architecture) {

2: logic_block_netlist = empty

3: while(exist_unpacked_candidates (atom_netlist)) {

4: current_logic_block =

open_new_logic_block(atom_netlist , architecture)

5: try_fill(current_logic_block , atom_netlist , architecture)

6: logic_block_netlist .append(current_logic_block )

7: }

8: return logic_block_netlist

9: }

Logic blocks are filled iteratively. Line 4 shows the start of a new iteration where an empty logic

block is “opened”. The logic block is then filled with atoms. When the logic block cannot be further

filled, the logic block is then “closed”, which makes the configuration of the logic block immutable. This

filled logic block is then added to the netlist of packed logic blocks on line 6. The process repeats until all

atoms are packed into logic blocks, after which packing is complete, so the logic block netlist is returned.



Chapter 4. Architecture-Aware Packing for FPGAs 48

Figure 4.9 shows the operation of the try fill function that fills a logic block with netlist atoms.

Section 4.3.1 describes the speculative packing optimization in detail. We focus first on the base operation

of one-by-one packing. Pseudocode on the operation of one-by-one packing is shown below:

1: one_by_one_packing (current_logic_block , netlist , architecture) {

2: candidate =

get_next_candidate (atom_netlist , current_logic_block )

3: try_lb_place_and_route (candidate , current_logic_block , success)

4: if(success) {

5: add_candidate_to_logic_block (candidate ,current_logic_block )

6: }

7: }

A logic block is filled by selecting a candidate unpacked atom from the netlist, locating a primitive for

the candidate in the logic block, then routing within the logic block to connect the nets of the partially

filled logic block. We now describe in detail the key parts of the algorithm starting with new logic block

selection.

4.2.2 New Logic Block Selection

The process of filling a logic block must first begin with the selection of an unused, empty logic block.

We call this opening a logic block. A general principle in greedy packing is to start with the most

timing critical and the hard-to-pack parts of the netlist first [64]. For example, consider a long carry

chain, if LUTs and flip-flops connected to a chain are packed first, then those atoms might get packed

in a way that prevents the carry chain from going into the same logic block; however, if the chain is

packed first, then it becomes much easier to figure out which other atoms should pack with the chain and

where precisely in the logic block those atoms should go. Hence, a logic block is opened by first scoring

unpacked atoms, selecting the unpacked atom with the highest score in the netlist, then returning the

first logic block in the architecture that can legally pack that atom. We call the selected atom the seed

and the score the seed value.

Equation 4.1 shows the equation for determining seed value.

seed value = seed fac ∗ timing criticality + (1− seed fac) ∗ used inputs (4.1)

The seed value is a weighted sum of timing criticality and the number of used inputs of the atom

(normalized to the maximum number inputs of all atoms). The parameter seed fac is set to 0.5. Timing

criticality is the max criticality of all pins. We approximate atoms with many used inputs as being more

difficult to pack. The seed values themselves are precomputed for all atoms before packing, then sorted

for fast access.

The issue of resource balancing arises when a seed atom can pack to different types of logic blocks.

If left unconstrained, our first-fit heuristic for selecting a logic block will select the same logic block type

every time. To address this, we implemented a simple resource balancing method based on resizing the

FPGA. At a specific FPGA size, the number of instances of each logic block type is fixed. When all

instances of a particular type are used, then the first-fit heuristic will select an instance of the other

types. If no unused instances exist, then we grow the FPGA to make available more instances. Thus,

by starting with a min-sized FPGA, we acheive some rudimentary resource balancing. We leave a more

elegant method of resource balancing to future work.
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4.2.3 Candidate Selection for a Partially Filled Logic Block

After seed selection, candidate selection determines which unpacked atom the packer should try to put

into a partially filled logic block. Candidate atoms are classified into two categories. The first category

are unpacked atoms that have strong connectivity with the logic block. We define strong connectivity

to mean that the unpacked atom has at least one shared, low fanout, net with a packed atom within

the open logic block. A low fanout net is a net with fewer than 256 connections. For the purposes

of strong connectivity, nets with more connections, high fanout nets, are ignored, because considering

high fanout nets greatly increases the number of potential candidates, which in turn adversely affects

runtime without helping quality of results. The second category consist of atoms that have weak or no

connectivity with the open logic block. This category consists of atoms related to the open logic block

by high fanout nets or other notions of relatedness. Since the number of atoms in this second category

is usually very large, the packer always considers atoms with strong connectivity first.

Unlike conventional packing that assumes full connectivity within a logic block, the computational

cost required to guarantee, in the general case, that an unpacked atom can legally pack into a logic block

is large. Thus, candidate selection only applies fast, basic, legality checks. The checks are as follows:

• The candidate has not been packed.

• There exists at least one available primitive that can implement the candidate, ignoring connec-

tivity constraints with already packed atoms.

Candidates that pass these checks are placed in a list sorted based on an attraction value computed

for each candidate to the logic block. The candidate with the strongest attraction is selected first. If

the later intra-logic block place and route stages cannot find a legal fit for this candidate, then the next

candidate in the list is selected. The number of candidates in the priority queue of strongly connected

atoms is kept constant to keep runtime reasonable. For EArch, a queue length of 1000 doubles pack

time compared to a queue length of 2 in return for 3% better logic density and 2% fewer external nets.

We set the queue length to 30 as this provides almost the same quality as a queue length of 1000 for

only a 15% increase in runtime when compared to a queue length of 2.

The attraction function is a weighted sum of the timing gain (an estimate of the effect of this choice

on the critical path) and the connection gain (an estimate of how many connections will be absorbed by

this choice). The attraction function is based off [64] and is defined as follows:

attraction(atom) = (T ∗ timing gain+ (1− T ) ∗ connection gain) (4.2)

timing gain = max(timing criticality) (4.3)

timing criticalityedge i = 1− slackedge i/crit path delay (4.4)

slack = required time− arrival time− node delay (4.5)

Timing gain of an atom is a normalized value from 0 to 1 and is equal to the timing criticality of

the most critical edge connecting that atom to the currently open logic block. A value of 1 means that

the atom has at least one critical edge with no timing slack, where timing slack is defined as the total

delay, normalized to critical path delay, that may be added to a pin before that pin becomes critical. A

value close to 0 means that all the pins of the atom have plenty of slack. Timing analysis for packing is
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described earlier in Section 3.3.3. T is a constant, determined empirically, with a default value of 0.75.

Connection gain is defined below:

connection gain =
AB ∗ net absorption gain+ (1−AB) ∗ num shared nets

num used pins of candidate
(4.6)

The connection gain metric for an atom is similar to my Master’s thesis [56], which in turn is

a simplification of the much more complex attraction functions of [12]. It is a weighted sum of net

absorption gain and number of shared nets. Both these values are normalized to the number of used

pins of the candidate. The number of shared nets is a count of the total number of nets shared between

the atom and the current set of atoms packed in the open logic block. Net absorption gain is a sum of

1/(number pins of net outside open logic block) over all shared nets. The idea behind net absorption

gain is that atoms connected to a logic block by lower fanout nets should have higher attraction than

atoms connected a logic block by higher fanout nets. AB is a constant that is tuned, through empirical

tests, to 0.9.

When the queue of strongly connected candidates is exhausted before the logic block is completely

filled, which happens more regularly for heterogeneous architectures, then atoms with weak (or no)

connectivity to the logic block need to be considered. We select these candidates using the following

techniques (in order of priority): 1) shared connections with high fanout nets, 2) transitive connections,

and finally 3) just based on number of inputs.

Shared Connections with High Fanout Nets

Once a logic block is opened for packing and atoms are packed into it, a record is kept of the lowest-

fanout high fanout net (defined as nets with 256 or more connections). When no unpacked atoms with

strong connectivity to a logic block remain, the atoms connected to this high fanout net are then selected

from. This is particularly important for packing memories, where composing a very wide memory from

1-bit data memory slices requires considering high fanout address or control signals.

If no legal candidate among this set can be found, then the next selection strategy, transitive con-

nections, are considered.

Transitive Connections

Figure 4.10 illustrates an example of transitive connections. The multiplier in this figure has registered

inputs but this particular multiplier logic block does not supply flip-flops so those flip-flops must be

packed in a different logic block. Those flip-flops do not directly connect to each other but rather are

related indirectly because of their shared connectivity with the multiplier – the flip-flops are transitively

connected. Thus, it makes sense to pack these flip-flops together over completely unrelated logic. We

consider unpacked atoms as transitively connected with the current logic block if those atoms share

connections to already packed logic blocks that in turn have connections with the current logic block.

The more transitive connections an unpacked atom has, the higher the attraction value for that atom.

To prevent too many candidates from being explored, the number is limited to transitive connections

for nets that have less than four sinks. If this fails to find a candidate, then completely unrelated atoms

are considered.
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Figure 4.10: Registered multiplier inputs show the importance of transitive connections during packing.

Unrelated Logic

The final technique selects an unpacked atom with the largest number of inputs as the best candidate,

provided some simple feasibility tests pass. These feasibility tests are checking that an available primitive

exists that can implement that atom (ignoring connectivity) and that there exists enough free pins on

the logic block to pack the atom. This technique of packing unrelated logic is ported over from the

original T-VPack [64]

4.2.4 Intra-Logic Block Placement

During packing, an intra-logic block placement subproblem arises because, given a candidate atom, there

may exist many primitives in the open logic block that can implement that atom, and the choice of which

primitive to assign that atom matters. Consider, for example, the fracturable LUT described in Section

2.1.1, the figure of which is reproduced again in Figure 4.11 for the reader’s convenience. It is illegal

to assign two completely independent 5-LUTs in this one fracturable LUT because the fracturable LUT

can accomodate at most 8 unique inputs and not 10. Much prior work in packing avoided the intra-logic

block placement subproblem by simply not supporting architectures where intra-logic block placement is

an issue. However, with the need to explore more complex architectures, this subproblem can no longer

be ignored.

The intra-logic block placement subproblem is as follows: Given a logic block and all atoms to pack

into that logic block, legally assign the atoms to primitives in the logic block such that the overall

objective function is optimized. Since the overall packing algorithm we employ is greedy and iterative,

we simplify the intra-logic block placement subproblem as follows: Given an already partially filled logic
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Figure 4.11: A fracturable LUT that can operate as one 6-LUT or as two 5-LUTs that share 3 inputs.

block and a candidate atom to pack into that logic block, return a potential unused primitive such that

area is minimized.

We employ a simple, greedy, best-fit (for a simple cost function) heuristic for intra-logic block place-

ment. Every primitive in the logic block has a cost value and a valid flag. Primitives with a lower

cost are considered first before primitives with a higher cost. The cost function is initially set to be

equal to the number of inputs of a primitive, so that smaller primitives are considered first before larger

primitives. The cost of each primitive is modified during placement to prioritize filling partially used

subclusters over unfilled subclusters. More detail on this will be described later. The valid flag stores

whether or not this primitive is available for use. A primitive that is used by another atom or a primitive

that belongs to a conflicting mode with the current state of the logic block will have its valid flag set to

FALSE.

Three lists keep track of state information, they are as follows:

• Available Primitives List - Stores valid primitives.

• Attempted Primitives List - Stores primitives that have been attempted for the current candidate

atom but did not result in a legal assignment.

• Invalid Primitives List - Stores invalid primitives.

A valid primitive for a candidate atom is selected from the available primitives list. The available

primitives list is organized as shown in Figure 4.12. Primitives are sorted into bins based on type. A

primitive type is defined by the architect and all instances of a particular type implement the same logic

model, have the same number of pins, and the same delay profile. If an atom can be implemented by a

particular primitive type, then the primitive with the lowest cost of that type is selected. Since an atom

may fit into multiple different types of primitives, this process is repeated for all primitive types after

which the placer returns the overall lowest cost primitive. Lazy removal is used, so primitives that are

flagged as invalid will be removed when encountered.

The atom is tentatively placed in the lowest cost primitive selected, then this assignment undergoes

two legality checks: a pin counting check (described in Section 4.3.2) and a routability check (described

in the next subsection). If the assignment fails a check, then the placement is reverted, the primitive is



Chapter 4. Architecture-Aware Packing for FPGAs 53

Available Primitives List

5LUT

6LUT

Inst 3 Inst 4 Inst 5 Inst 6

Inst 2 Inst 36LUT

FF

Inst 2 Inst 3

Inst 0 Inst 1 Inst 4 Inst 6

Adder Inst 6

Figure 4.12: Example list of available primitives for intra-logic block placement.
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Figure 4.13: Example showing how the intra-logic block placement cost function changes, as a logic
block is filled, to favour selecting primitives in used subclusters first before unused subclusters.

removed from the Available Primitives List and stored in the Attempted Primitives List. If the intra-

logic block placer exhausts all potential placements, then the candidate atom is rejected and primitives

in the Attempted Primitives List list are moved back to the Available Primitives List.

If the legality checks pass, then that assignment is committed. A commit results in a series of actions.

First, primitives in the Attempted Primitives List list are moved back to the Available Primitives List.

Second, the selected primitive becomes invalid as it is now used to implement the atom. Third, the modes

in the logic block that must be set in order for the primitive to be used in turn invalidate primitives that

belong to the other, mutually exclusive modes. For example, if a fracturable LUT is set to dual 5-LUT

mode, then the 6-LUT primitive cannot be used so the 6-LUT primitive would then be invalidated.

Finally, each primitive that remains valid has its cost reduced by 0.1a, where a is the depth of the used

primitive to the closest ancestor of the unused primitive, and the value 0.1 is an empirically derived

parameter. This encourages the usage of partially used subclusters before unused subclusters.

Figure 4.13 shows a simple example of how primitives in partially-filled subclusters are favoured over

unfilled subclusters, and how this minimizes area by encouraging tight packing. The logic block in this

example contains two subclusters where each subcluster has two LUTs. When the logic block is unfilled,

all LUTs have the same cost. When one LUT is used however, the cost of the unused LUT closest in
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Figure 4.14: Example of a simple logic block.

the hiearchy to the used LUT is reduced more than the cost of the LUTs in the unfilled subcluster.

4.2.5 Intra-Logic Block Routing

Driven by a need to explore increasingly sophisticated logic blocks, intra-logic block interconnect is now

an input to packing, which gives rise to an intra-logic block routing subproblem. The intra-logic block

routing subproblem takes as input a partially filled logic block and outputs the interconnect used to

implement nets within the logic block. It is part of the process to determine if the assignment of atoms

to primitives, selected by the earlier placement stage, is legal. If intra-logic block routing finds a solution,

then the specific assignments made by intra-logic block placement is legal. If intra-logic block routing

fails, then the placement is rejected. This section describes how interconnect is modelled, followed by a

description of the routing algorithm used.

Interconnect Model

The interconnect supplied within a logic block is modelled as a directed graph of nodes and edges. Every

pin of a logic block, subcluster, or primitive is modelled as a node in this graph. Primitive input pins

are modelled as sink nodes that may be the end destination of a net connection while primitive output

pins are modelled as source nodes which may drive a net.

In packing, external-to-logic block interconnect is simplified to a full crossbar that connects all logic

blocks together. To represent this model of external interconnect, the intra-logic block interconnect

graph adds both an ext source node to represent signals that come from outside the logic block and an

ext sink node to represent signals that go out to other logic blocks. The ext source and ext sink nodes

may accommodate as many nets as there are logic block inputs and outputs, respectively. The ext sink

connects to all logic block inputs to model the use of external interconnect in the event intra-logic block

interconnect is insufficient for routing signals.

Figure 4.14 shows an example of a logic block that contains a 3-input AND gate, a 2-input AND

gate, and two flip-flops. This logic block has some statically-controlled muxes that specify whether to

use the flip-flop or AND gate outputs. Observe there is some pin sharing for the AND gates. Figure 4.15

shows how the interconnect of this logic block is modelled. In this figure, source nodes are represented

by empty circles, sink nodes by empty squares, and other pins are represented as filled squares. The
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Figure 4.15: Example of the interconnect graph for the logic block described in Figure 4.14.

ext sink node is represented by a large square with a ‘t’, and the ext source node is represented by a

large circle with an ‘s’. Notice that the link from the ext sink node to the input pins of the logic block

represents external interconnect which must be used if the flip-flop drives an AND-gate in the same logic

block.

Routing Algorithm

The intra-logic block router employs a non-timing-driven variant of the PathFinder negotiated congestion

routing algorithm [65]. Nets are routed using a minimum cost search while allowing for overuse. Overuse

is gradually removed by iteratively re-routing nets and increasing the cost of congestion after each routing

iteration. A routing iteration finishes when all nets have be visited once. Routing completes when there

are no overused nodes, in which case a valid routing solution is returned, or when the number of routing

iterations exceed a threshold, in which case the router failed to find a legal answer.

The cost of a node n is determined by the following equation:

costn = (bn + hn) ∗ pn

The term bn represents the base cost of a node. This cost depends on the node and net being

considered; it is independant of the routing iteration. The term pn represents the present congestion of

a node. If the number of nets currently using this node is less than the maximum capacity supplied by

the node, then pn is set to 1 because using that node does not create congestion. Otherwise, pn is set to

(1+NetsUsingNode−Capacity)∗CongestionFactor where CongestionFactor is a term that increases

with each routing iteration to increasingly penalize overused nodes. Present congestion has the most

immediate effect towards removing congestion. The term hn represents historical congestion. It is the

sum total of overuse of the node over the course of the routing algorithm execution. This term serves to

“coax” the router to explore alternative paths not previously chosen for heavily congested areas. Similar

to pn, the historical usage count for hn is multiplied by a historical use factor that increases with each

routing iteration.

We made two tuning optimizations to the PathFinder algorithm. First, we applied a standard tech-

nique where only illegal routes are re-routed – nets that are legal do not get rerouted. This dramatically

speeds up the algorithm. Second, we applied some cost tuning that is specific to intra-logic block pack-

ing. Logic block input pins have a base cost set to 1,000 times more than pins inside the logic block so



Chapter 4. Architecture-Aware Packing for FPGAs 56

that the router strongly prioritizes intra-logic block routing over using external routing. We also set the

base cost of a node to nominally 1 but adjusted by a small fanout factor. For interconnect nodes with

a fanout of 1, the fanout factor penalizes nets with higher fanout, while favouring nets with a fanout of

1. For interconnect nodes with a fanout of 2 or more, the fanout factor penalizes nets with a fanout of 1

while favouring nets with a higher fanout. This biases the intra-logic block router to using shared pins

for multi-fanout nets during earlier routing iterations rather than waiting for negotiated congestion to

discover pin sharing. The equation for the fanout factor is as follows:

fanout factor =







0.85 + 0.25
net fanout

, if node fanout ≥ 2

1.15− 0.25
net fanout

otherwise
(4.7)

For architectures with depopulated crossbars and fracturable LUTs, only re-routing congested nets

speeds up pack time by 26%, while fanout factor speeds up pack time by an additional 8%. For simpler

architectures, both these techniques have limited, if any, effect. We speculate that for even more complex

intra-logic block interconnect structures than those investigated here, more sophisticated optimizations

may be needed.

4.3 Interconnect-Aware Enhancements to Packing

The VTR logic block architectural description language (described in [58] and in Section 3.2.1) provides

the architect great freedom when specifying logic block architectures, including the ability to specify

any arbitrary interconnect structure within a logic block. Support for arbitrary interconnect enables the

natural expression of a wide range of architectural constructs. These include carry chains, crossbars,

optionally registered inputs/outputs, and control signals, which can be expressed by simply stating how

various components are connected together. However, this level of customization creates a computation-

ally challenging packing problem. The packing algorithm must determine if the internal connectivity

within a logic block can successfully route the portions of the netlist that are assigned to that logic

block. The algorithm described in the previous section deals with this problem by solving the full rout-

ing problem. However, though robust, detailed routing alone can be very slow. This section describes

techniques to avoid the blanket use of detailed routing when “lighter weight” approaches may work.

Our vision is a packing tool and algorithm that runs quickly for architectures with simple interconnect,

spends medium computational effort on architectures with moderately complex interconnect, and only

uses heavy computational effort on architectures with very complex interconnect. Our approach is to

use a faster, simpler algorithm when interconnect structures that are easier to deal with are encountered.

For example, if an architecture contains full crossbars, then computationally intensive routing checks

within the logic block are not necessary because routing is guaranteed as long as the number of pins

to be connected is below a certain threshold. Similarly, if an architecture has an inflexible carry chain,

then we know that the blocks that form that chain must be kept together in a strict order.

We introduce three techniques that enable the packer to adjust computational effort based on inter-

connect complexity [62]: First, speculative packing attempts to save runtime by optimistically skipping

detailed legality checks at intermediate steps and then checking all legality rules after a logic block is

full. Second, interconnect-aware pin counting reduces the more complex routing problem to a simple

counting problem, which is inferred from the architecture. Third, pre-packing groups together netlist

blocks that should stay together as one unit during packing. This helps the packer deal with interconnect
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structures with limited or no flexibility, such as carry chains and registered input/output pins.

4.3.1 Speculative Packing

Speculative packing is a technique to avoid unnecessary invocations of detailed routing. This technique

first attempts to optimistically pack a logic block without invoking detailed routing until the logic block

is filled. We call the optimistically filled logic block the speculated solution. If detailed routing of the

speculated solution succeeds, then the solution is accepted. Otherwise, the packer rejects the speculated

solution and reverts back to the conservative method described in Section 4.2 that invokes detailed

routing for every partial packing for that logic block.

The runtime impact of speculative packing depends heavily on how often the final route of a specu-

lated solution succeeds. In the best case, the final route always succeeds, resulting in speedup. In the

worst case, the final route never succeeds, resulting in wasted speculation time. Thus, if a logic block

contains simple interconnect from which the packer can form routable speculated solutions, then spec-

ulative packing enables the packer to spend less computational effort routing. If a logic block contains

more complex interconnect, then the computational effort expended by the packer depends on how often

the packer assembles a routable speculated solution – the more often a routable speculated solution is

found, the less computational effort expended.

4.3.2 Interconnect-Aware Pin Counting

As discussed above, there are some circumstances in which the routing problem can be abstracted into

a much simpler counting problem - for example, when logic blocks have a full internal crossbar for

routing. Pin counting is a technique that approximates the routability problem with a simpler counting

problem. Pin counting checks if a particular assignment of atoms to a logic block/subcluster uses more

pins than supplied by the logic block/subcluster. If pins are overused, then that assignment is proven

unroutable. If pins are not overused, then in the pin counting approach, we optimistically assume

that the assignment is routable. Pin counting is a check performed during intra-logic block placement.

During speculative packing, when detailed routing is skipped, pin counting becomes the only check for

routability. Therefore, more accurate pin counting reduces computational effort by increasing the chance

that speculated solutions will route.

Interconnect-aware pin counting is a more precise implementation of pin counting than what was

done during my Master’s work [56]. In addition to analyzing pins, interconnect-aware pin counting also

analyzes the underlying physical interconnect with the intention of capturing clues about how those pins

are related. We begin by describing what information this technique extracts from the interconnect, and

then we describe how packing uses that information.

Prior to the packing stage, we analyze the architecture of each logic block, and group the pins of

each block and subcluster into separate pin classes based on the interconnect structures. Intuitively, pin

classes are an attempt to approximate arbitrary interconnect with a set of non-overlapping full crossbars.

Input pins of the same class drive the same crossbar. Output pins of the same class are driven by the

same crossbar.

Two pins of a subcluster/logic block belong to the same pin class if they belong to the same, con-

nected, interconnect graph within the subcluster/logic block and satisfy two constraints. First, pins in

the same pin class must be on the periphery of the same subcluster/logic block. Second, pins of the same
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Figure 4.16: Examples on how pins are grouped into pin classes. Input pin classes are labelled with an
i followed by a number while output pin classes are labelled with an o followed by a number.
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Figure 4.17: An AND gate is logically equivalent because its inputs can be swapped without changing
functionality. The gate below is not logically equivalent because functionality changes if the inputs are
swapped.

pin class must either be all input pins or all output pins. Note that although primitives are involved in

the determination of pin classes, the primitives themselves do not have pin classes because primitives do

not contain interconnect and are terminal points for nets.

Figure 4.16 illustrates different examples of pin classes on a subcluster with two primitives, four input

pins, and three output pins. The labels on the subcluster pins show which pin class each pin belongs

to. Figure 4.16 (a) has a large, well populated crossbar at the inputs and outputs. The subcluster input

pins all belong to the same pin class i1 and the subcluster output pins all belong to another pin class o1.

Figure 4.16 (b) has a sparser crossbar than (a). Our technique optimistically approximates these cases

as the same, thus (b) has the same pin classes as (a). Figure 4.16 (c) has disconnected smaller crossbars.

This is reflected in the two pin classes for the inputs and two pin classes for the outputs. Finally,

Figure 4.16 (d) has no interconnect flexibility so all subcluster pins belong to separate pin classes.

We include a special case in the event that the primitive has logically equivalent pins. Pins that are

logically equivalent means that connections to those pins may be swapped arbitrarily without changing

the functionality of the primitive. Figure 4.17 show that an AND gate has logically equivalent inputs

while the the gate below it does not. Logically equivalent primitive pins are considered as one pin for

the purposes of determining pin classes. Currently, logical equivalence is only supported for LUTs but

may be easily extended for other gates too.

Prior to packing, pin classes are determined for each logic block type and subclusters within. We

begin by selecting an unclassified input pin of the logic block. Starting from that pin, the interconnect

graph is traversed forwards and backwards, ignoring directionality, until all reacheable nodes have been

visited once. If any input pins are encountered, then those pins belong to the same pin class. Afterwards,

the next unclassified input pin is selected. This is repeated until all input pins belong to pin classes, then

repeated again for output pins. Once all pins are classified for the logic block, the process is repeated for

each subcluster inside the logic block. To provide fast pin class lookup during packing, a lookup table

that maps each primitive pin to pin class is created for each logic block type during the construction of

pin classes. Similarly, a lookup table records whether or not a primitive output pin can connect to a

primitive input pin using intra-logic block interconnect for each logic block type/subcluster type.

During packing, every time a candidate atom is placed inside a logic block, pin counting updates the
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Figure 4.18: Example netlist to illustrate pin counting.

utilization of the pin classes of all used subclusters within the logic block and then updates the utilization

of pin classes of the logic block itself. If, after the update, there exists a pin class that uses more pins than

is supplied by that pin class, then pin counting declares the intermediate solution unroutable. Without

loss of generality, we describe the update procedure for just the logic block. A net adds a count of one to

a pin class of input pins if and only if the net drives a primitive input pin through that pin class and the

driver of that net cannot reach the primitive input pin solely from within the logic block. A net adds a

count of one to a pin class of output pins if and only if the primitive output pin of that net drives that

pin class and there exists one primitive input pin driven by the net that cannot be reached solely from

within the logic block.

To illustrate the nuances of pin counting, we revisit the logic block described in Figure 4.2. We show

the effect of packing the netlist in Figure 4.18 to that logic block. This netlist consists of a LUT L and

a logical mux M. Figure 4.19 shows an intermediate packing solution that placed the LUT L in the top

LUT position and the mux M in the mux location. We start by describing the pin classes in the logic

block, then we describe the utilization of each pin class.

The logic block input pin classes are I1, I2, and I3. The logic block output pin classes are O1 and

O2. The dual-LUT subcluster input pin class is SI1 and the subcluster output pin class is SO1. There

is some subtlety in determining pin class I1. All four top input pins of the logic block belong to the

same pin class. A LUT has logically equivalent inputs so the top three input pins are grouped together

and the second, third, and fourth input pins are grouped together. Moreover, since the second and third

input pins are common to both groups, all four pins are merged into the same pin class. The capacity

of each pin class is determined by the number of pins it grouped. We label this value in the figure as

the denominator of the fraction displayed beside each pin class. For pin class I1, the capacity is 4.

The utilization of each pin class is determined by the nets connected to the primitives within the

logic block. This value is displayed as the numerator in the fraction beside each pin class in the figure.

Observe the following sublety: Net a requires two logic block input pins because of the lack of internal

flexibility in the logic block. This behaviour is captured by consuming one pin each in pin classes I1

and I2. This is in contrast to net b which only needs to consume one pin in pin class I1 because of

internal fanout within the logic block. Net M from the logical mux must traverse outside the logic block

to reach the LUT input. This is represented as consuming one count of pin class O2 and one count of

pin class I1. Net c illustrates how interconnect-aware pin counting is optimistic. Without the ability to



Chapter 4. Architecture-Aware Packing for FPGAs 61

Soft Logic Blockg

L
O1

SO1

a

L
I1

(4/4)

(1/2)

SI1

(3/4)

SO1

(1/2)

a

b

m

d
L

LUT
( )

b

c

M

MI2

(1/1)
O2

c

b

a

eM

(1/1)

I3

(0/1)

(1/1)
a

Figure 4.19: Example intermediate solution to illustrate pin counting. The pins in this figure are already
grouped into pin classes. The utilization and supply of each pin class are shown below the pin class
name.

detect that it is necessary to route through the dual-LUT subcluster to reach the mux select line, we see

that our pin counting technique optimistically uses 3 of 4 pins in SI1, when in fact all 4 must be used

in a detailed route. These examples illustrate which properties interconnect-aware pin can capture and

which it cannot capture.

To summarize, we list the properties and limitations of interconnect-aware pin classes as follows:

• Acts as an optimistic filter. Cases that fail interconnect-aware pin counting will fail to route, while

cases that pass may or may not successfully route.

• Sparse interconnect is approximated as fully flexible.

• Does not account for situations where a net routes through a subcluster without connecting to any

primitive within the subcluster.

• Internal feedback and feedfoward connections within a logic block/subcluster can reduce the usage

of a pin class and therefore must be checked.

• Only returns pass/fail. Does not give hints to guide future candidate selection.

4.3.3 Pre-Packing

Logic blocks sometimes contain inflexible routing structures. These structures can cause complications

in a greedy packer because different stages of the packer become necessarily coupled. We illustrate this

coupling using carry chains as an example. A carry chain is an important structure that enables the fast
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Figure 4.20: The pack pattern label, ble5, on the link that joins the LUT and flip-flop primitives in the
architecture description file, forces LUT and flip-flop atom pairs to treated as a single unsplittable unit
during packing.

computation of wide netlist adders by chaining together smaller physical adders using fast, inflexible carry

links. In the packing stage of the VTR CAD flow, a netlist adder is represented by multiple smaller adder

atoms that link together to implement wider addition. The packer must map the adder atoms to physical

adder primitives in such a way that the physical chain can implement those logical links. An incorrect

grouping or placement of the atoms during packing can result in failed (internal-to-the-block) routing

because carry connections may become impossible to route. This example shows how inflexibility in

interconnect can cause strong coupling among the candidate selection and placement stages in packing.

This coupling is not unique to carry chains. We observe this coupling effect in multiple other logic

block constructs including primitives with registered inputs/outputs, datapath arithmetic blocks with

compound operations such as multply-add, and others.

We employ a pre-packing technique to capture coupling from restrictive interconnect in a generic

and simple way. The architect is asked to identify (in the architecture file) groups of primitives joined

together using inflexible interconnect by annotating the links in the interconnect. These groups and

their links are called pack patterns. Figure 4.20 shows an example of a pack pattern for a BLE which

consists of a LUT and flip-flop pair. The code below shows how a direct link is annotated with the pack

pattern in the architecture description:

<direct name="direct2" input="lut5.out" output="ff.D">

<pack_pattern name="ble5" in_port="lut5.out" out_port="ff.D"/>

</direct >

Before packing, groups of netlist atoms that match a pack pattern are grouped together into what

is called a molecule. We call this stage the pre-packing stage. During packing, molecules are treated

as though they are an atom and can only map to primitives that form the same pack pattern as the

molecule.

Figure 4.21 shows a second example of the concept of pack patterns and molecules. This arithmetic

logic block can perform both basic multiplication and addition, as well as combined operations such

as multiply-add and registered arithmetic. If the architect intends for combined operations to be kept

together during packing, then the architect should indicate that intent by specifying four pack patterns

as follows: 1) Multiply-add, 2) Registered multiply, 3) Registered add, and 4) Registered multiply-add.

Certain pack patterns, such as a LUT or a multiplier with registered output(s), speed up packing

and help with quality of results; however, other pack patterns, such as carry chains, are necessary in
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Figure 4.21: A bus-based arithmetic logic block.

order for the packer to find a legal solution. The necessity of a particular pack pattern is determined

by whether or not one-by-one packing of atoms produces legal intermediate solutions. For carry chains,

this is not true because of the lack of interconnect flexibility on the carry links, hence pack patterns is

necessary for them.

Molecules have an impact on the attraction gain used to determine what atoms should be packed

together. The attraction gain for a molecule is the sum of the gains of each atom in the molecule modified

by two tie breakers. The first tie breaker penalizes the introduction of new input nets by a cost of 0.001

per net. The second tie breaker biases the packer to select molecules with more atoms by adding 0.0001

per atom.

We now describe the pre-packing algorithm used to group atoms into molecules. The netlist is

traversed, once per pack pattern, starting with the largest pack pattern and ending with the smallest

pack pattern. For each traversal, the pre-packer matches parts of the netlist to a pack pattern through a

technique similar to the matching process in standard cell technology mappers [41]. A root primitive is

selected in the pack pattern. If the root primitive can implement the current netlist atom selected, then

another primitive connected to the root and belonging to the pack pattern is selected. The corresponding

atom that matches that next primitive is located (if exists). This process is repeated until all primitives

in the pack pattern have a corresponding match with an atom in the netlist, in which case those atoms are

grouped together into a molecule. Or, if at any point, there is a mismatch (such as when no corresponding

atom exists for a particular primitive), then the candidate atom cannot form a molecule from that root

reference point and the next candidate is selected. The molecule creation process is greedy so atoms

that are assigned to a molecule cannot be reassigned later to another molecule.

Carry chains create a special case for pre-packing. A carry chain has dedicated links that can extend

across multiple logic blocks. So unlike other molecules, the pre-packer will assemble a carry chain by

grouping a single chain of atoms into multiple molecules. The size of each molecule matches the length

of the chain in a single logic block except the last molecule in the chain, which may have a variable

size. This implies that, for wide addition that extends beyond one logic block, the carry chain head

must always start at the beginning of the physical chain in the logic block. The code that handles carry

chains is general to chain-like structures, such as linear mux chains, are also supported.
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4.4 Experiments and Results

This section describes the experiments and results for the AAPack packing algorithm. The first set

of experiments quantitatively break down the impact of key parts of the AAPack algorithm. Then,

we measure how the AAPack algorithm changes computational effort based on architecture complexity.

Afterwards, we compare AAPack performance against other packers for simple, legacy, soft logic blocks.

Finally, we analyze the runtime behaviour of the algorithm.

4.4.1 Isolating the Impact of Optimizations

The following experiments measure the effectivness of the pre-packing technique, the speculative packing

technique, and the intra-logic block router. These experiments use the EArch architecture described in

Section 3.2.2. This is a heterogeneous architecture with soft logic, multipliers, and memories. The soft

logic blocks contain fracturable LUTs, hard adders, carry chains, and a 50% depopulated crossbar. The

experiment employs the VTR benchmarks described in Section 3.1. These benchmarks are from a variety

of real applications, the largest of which contains almost 100,000 6-LUTs. The VTR CAD flow employed

is described in Section 3.3. The software used is revision 4310 of the publicly available trunk which has

advanced substantially beyond the latest, VTR 7.0, release. The placement option inner num was set

from a default of 1 back to the historical value of 10 because this produced both better quality of results

and faster overall experiment runtimes.

All experiment results are normalized against the full flow, with all packing optimizations turned on,

as described in Section 3.4.

Pre-Packing and Speculative Packing

The following experiments investigate the pre-packing and speculative packing techniques. In these

experiments, pre-packing of carry chains is always on because this is necessary for the packer to handle

the adders in the soft logic block. Thus, only for this section, pre-packing off means that pre-packing is

turned off for LUT/FF pairs only.

The first experiment investigates packing without speculation and without pre-packing. Table 4.1

shows the results. The columns from left to right are as follows: the circuit name, packer runtime,

minimum channel width (Min W), critical path delay at 1.3 times min W, number of soft logic blocks,

and number of external nets (nets that connect two or more logic blocks). All values after the leftmost

column are the geometric mean across all benchmarks normalized to the baseline EArch architecture

(on the CAD flow with speculation and pre-packing on).

The results show that pack time increases by about 5-fold. The number of soft logic blocks also

increases 7%. The increase in soft logic blocks arises because, without pre-packing, the packing algorithm

may mistakenly split LUT/flip-flop pairs which reduces packing density. To see why this happens,

consider the case where a 6-LUT drives a flip-flop. Assume that the flip-flop is packed first and the

placement of that flip-flop sets the FLE to dual 5-LUT mode, then the 6-LUT cannot be packed into

the same FLE thus wasting space. Note that speculation is a runtime optimization, while pre-packing is

both a runtime and quality of results optimization. Therefore, if we rerun the same experiment without

pre-packing but with speculation, then we expect to see similar quality of results but with faster runtime.

As such, the next experiment investigates packing with speculation and without pre-packing to

isolate the impact of speculation. Table 4.2 shows the results. The columns are the same as previously
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Table 4.1: Quality of results of packing without speculation and without pre-packing (of LUT and FF
pairs) normalized to the fully optimized baseline.

Circuit Pack Time Min W Crit Path Num Soft Num Ext
Delay Logic Blocks Nets

arm core 4.63 1.09 1.04 1.06 1.05
bgm 2.20 1.06 0.94 1.01 1.00
blob merge 5.44 1.00 1.03 1.03 1.01
boundtop 7.90 0.97 1.05 1.11 1.05
ch intrinsics 6.19 1.00 0.98 1.08 0.99
diffeq1 6.75 0.86 1.06 1.12 1.03
diffeq2 6.85 0.93 1.03 1.07 1.00
LU8PEEng 2.48 1.03 1.04 1.02 1.00
LU32PEEng 2.32 1.05 0.95 1.02 1.00
mcml 3.68 0.93 1.03 1.19 1.03
mkDelayWorker32B 6.38 1.09 1.01 1.03 1.01
mkPktMerge 8.19 1.04 0.88 1.00 1.01
mkSMAdapter4B 6.37 0.89 0.98 1.08 1.02
or1200 5.72 0.91 1.13 1.07 1.01
raygentop 4.23 1.02 1.02 1.04 1.01
sha 5.50 0.97 1.06 1.16 1.03
stereovision0 5.56 0.97 1.04 1.16 1.03
stereovision1 6.13 1.00 1.06 1.05 1.00
stereovision2 3.36 1.04 1.05 1.08 1.00
stereovision3 5.47 1.12 1.07 1.08 1.11

geomean 4.94 1.00 1.02 1.07 1.02
stdev 1.75 0.07 0.05 0.05 0.03

in Table 4.1. Here, as expected, the results show similar quality of results for just over 2-fold speedup.

However, the runtime gap is still quite large compared to the baseline (which has both speculation and

pre-packing on). There are a few reasons for this. First, when pre-packing is off, the packer must work

with a larger number of packable units. Second, the number of failed attempts at speculative packing

increases slightly versus the baseline, because interconnect-aware pin counting alone may mistakenly

accept certain illegal intermediate assignments to a fracturable logic element.

To isolate the impact of pre-packing, the final experiment investigates packing without speculation

but with pre-packing. Table 4.3 shows the results of the experiment. The columns are the same as

earlier. Here, as expected, the quality of results are basically the same as with the baseline. Packer

runtime is in between all optimizations on and both speculation and pre-packing off.

Though not shown in the tables, with all optimizations turned on, total pack time is 3.4% of total

runtime on average. We therefore conclude that AAPack runtime is practical for architecture exploration.

However, the bulk of architecture exploration runtime is taken up in the search for minimum channel

width. If the channel width is known, as is the case for a manufactured FPGA, then pack time is 20%

longer than fixed channel width route time (when routing at 1.3x min W), which is substantial. Thus,

we conclude that once an architecture is decided upon for mass production, then it may make sense to

specialize the packing algorithm to reduce runtime.

We conclude that pre-packing improves both quality of results and packer runtime while speculative

packing only reduces pack time. We also conclude that both optimizations combined produce better

quality of results and runtime than any optimization in isolation.
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Table 4.2: Quality of results of packing with speculation but without pre-packing (of LUT and FF pairs)
normalized to the fully optimized baseline.

Circuit Pack Time Min W Crit Path Num Soft Num Ext
Delay Logic Blocks Nets

arm core 1.82 1.04 1.02 1.06 1.05
bgm 1.04 1.00 0.96 1.01 1.00
blob merge 3.11 1.00 1.03 1.03 1.00
boundtop 4.35 0.97 1.08 1.11 1.05
ch intrinsics 2.25 1.00 1.00 1.08 0.99
diffeq1 2.91 0.86 1.06 1.12 1.03
diffeq2 2.13 0.93 1.01 1.07 1.00
LU8PEEng 1.27 1.03 1.03 1.02 1.00
LU32PEEng 1.24 1.05 0.96 1.02 1.01
mcml 1.70 0.93 1.04 1.18 1.05
mkDelayWorker32B 1.87 1.09 1.07 1.03 1.02
mkPktMerge 1.36 1.04 0.88 1.00 1.01
mkSMAdapter4B 2.83 0.89 1.00 1.09 1.02
or1200 2.72 0.91 1.13 1.07 1.01
raygentop 2.29 1.02 1.02 1.04 1.01
sha 3.00 0.97 1.06 1.16 1.03
stereovision0 3.13 0.88 1.07 1.16 1.03
stereovision1 3.22 1.02 1.04 1.05 1.00
stereovision2 1.87 1.04 1.05 1.08 1.00
stereovision3 2.52 1.12 1.07 1.08 1.11

geomean 2.18 0.99 1.03 1.07 1.02
stdev 0.84 0.07 0.05 0.05 0.03

Table 4.3: Quality of results of packing without speculation but with pre-packing normalized to the fully
optimized baseline.

Circuit Pack Time Min W Crit Path Num Soft Num Ext
Delay Logic Blocks Nets

arm core 3.27 1.03 1.01 1.00 1.00
bgm 2.14 1.02 0.98 1.00 1.00
blob merge 3.31 1.04 1.02 1.00 1.00
boundtop 3.58 1.03 1.03 1.00 1.00
ch intrinsics 3.86 1.03 0.99 1.00 0.99
diffeq1 3.91 1.03 1.00 1.00 1.00
diffeq2 4.39 0.96 1.02 1.00 1.00
LU8PEEng 2.17 1.03 1.01 1.00 1.00
LU32PEEng 2.04 1.03 1.00 1.00 1.00
mcml 2.60 1.00 0.97 1.00 1.00
mkDelayWorker32B 4.49 1.02 0.98 1.00 1.00
mkPktMerge 7.55 1.00 1.00 1.00 1.00
mkSMAdapter4B 3.58 0.84 0.93 1.00 1.00
or1200 3.67 1.00 1.00 1.00 1.00
raygentop 2.22 1.00 1.00 1.00 1.00
sha 3.09 1.00 1.00 1.00 1.01
stereovision0 2.68 1.00 1.04 1.00 1.00
stereovision1 2.74 0.98 1.21 1.00 1.00
stereovision2 1.99 1.03 1.05 1.00 1.00
stereovision3 2.98 1.00 1.00 1.00 1.00

geomean 3.14 1.00 1.01 1.00 1.00
stdev 1.26 0.04 0.05 0.00 0.00
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Table 4.4: Quality of results comparing old router with new router on EArch with all optimizations on.
Values are normalized old over new.

Circuit Pack Time Min W Crit Path Num Soft Num Ext
Delay Logic Blocks Nets

arm core 3.98 1.03 1.00 1.00 1.02
bgm 5.88 0.96 1.00 1.01 1.02
blob merge 3.96 1.02 1.02 1.00 1.01
boundtop 7.76 0.97 0.98 1.00 1.00
ch intrinsics 12.31 0.97 1.03 1.00 1.02
diffeq1 2.85 0.80 1.02 1.00 1.00
diffeq2 43.81 1.14 0.99 1.07 1.06
LU8PEEng 6.36 1.03 1.01 1.01 1.01
LU32PEEng 6.00 1.00 1.00 1.01 1.01
mcml 3.55 1.00 1.00 1.00 1.02
mkDelayWorker32B 5.11 0.98 0.99 1.00 1.02
mkPktMerge 2.44 1.00 0.93 1.00 1.00
mkSMAdapter4B 8.60 0.89 0.89 0.99 1.03
or1200 6.39 0.91 1.01 1.00 1.01
raygentop 2.28 1.02 1.00 1.00 1.01
sha 3.73 0.97 1.00 1.01 1.06
stereovision0 2.63 0.97 1.04 1.00 1.00
stereovision1 3.37 1.00 1.00 1.00 1.01
stereovision2 1.57 0.99 1.00 1.00 1.00
stereovision3 3.39 1.12 0.97 1.00 1.01

geomean 4.79 0.99 0.99 1.00 1.02
stdev 9.09 0.07 0.03 0.02 0.02

Impact of Intra-Logic Block Router

This experiment compares the new intra-logic block router with the old intra-logic block router employed

in my Master’s thesis [56]. The previous router used the breadth-first search router found in VPR [9].

This is the same router as the one used to route inter-logic block connections but with parameters tuned

more for speed because the intra-logic block routing problem is a much smaller one than the inter-logic

block routing problem. The new router, being completely decoupled from the inter-logic block router,

uses smaller data structures, as well as some algorithm changes beyond simple parameter tuning (see

Section 4.2.5). Thus, we expect the new, more specialized router to outperform the older, more general

router.

Table 4.4 shows the results of the experiment. The columns are the same as earlier. The pack time

for the old router is 4.8-fold longer than for the new router. Quality of results are about the same.

There are two effects at play for runtime. First, the old router fails intra-logic block routing slightly

more frequently than the new router resulting in failed speculation and longer runtimes. Second, the old

router is slower than the new router for this architecture. For extremely small circuits, such as diffeq2

and ch intrinsics, a single instance of a failed speculative route can cause a large spike in runtime. If

one is conservative, then removing these two outliers results in the new router having a 4-fold (rather

than 4.8-fold) speedup compared to the old router. When speculation is turned off, then packer runtime

using the old intra-logic block router is approximately 3-fold slower than for the new router.

There is a caveat that these results depend on the complexity of the architecture. For very simple

architectures, such as a legacy non-fracturable LUT architectures with full crossbar interconnect, there

is no noticeable runtime differences between the new router and the old router.

We conclude that the new, specialized, intra-logic block router results in approximately 3-fold to
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Table 4.5: Impact of interconnect difficulty on quality of results. Interconnect difficulty is approximated
with crossbar flexibility.

Xbar Pop Pack Time Min W Crit Path Num Soft Num Ext
Delay Logic Blocks Nets

100% 1.10 0.81 0.99 1.00 0.99
50% (EArch Baseline) 1.00 1.00 1.00 1.00 1.00
25% 1.67 1.04 1.01 1.00 1.08
12.5% 5.57 1.20 1.04 1.02 1.22

5-fold faster pack time than the older, more general router for a complex architecture such as EArch.

4.4.2 Performance Across a Range of Architectures

The purpose of this experiment is to measure how well AAPack adapts to increasingly difficult inter-

connect. We keep the same experimental setup as in the previous section but vary the architecture

(based on EArch) in the following way: the crossbar in the soft logic block is given population values

of 12.5%, 25%, 50%, and 100% (fully populated). Lower population implies a more difficult intra-logic

block interconnect which in turn should result in longer runtimes and poorer quality of results.

The depopulated crossbars themselves are designed with some simplifying assumptions because the

focus of this experiment is on the packing algorithm. First, crossbar delay is kept constant regardless of

crossbar size. Second, in an ideal world, the router would optimize both inter-logic block routing and

intra-logic block routing together. But, due to limitations with VTR, the inter-logic block router cannot

directly modify intra-logic block routing. The only optimization available to the inter-logic block router

at the logic block block level in VTR is the selection of which logically equivalent logic block pins to

use. Therefore, to compensate for this limitation, the depopulated crossbars are composed of smaller,

fully populated crossbars. Input pins that share the same, small, fully populated crossbar are logically

equivalent to take advantage of the limited flexibility offered by the inter-logic block router.

Commercial FPGA architects usually design the interconnect so that fracturable LUTs may be easily

moved to a different location within the same soft logic block [49]. This allows the final, external-to-

logic block routing stage of the CAD flow to decide which output pins a fracturable LUT should drive,

which is advantageous because the external router has information about routing congestion that is

not available during packing. Although we do not have this CAD capability to swap fracturable LUTs

during external-to-logic block routing in VTR, it makes sense to impose such a constraint to improve the

realism of the depopulated crossbar. Thus, the depopulated crossbar is designed so that if a fracturable

LUT gets moved to a different position, each input of that fracturable LUT keeps access to the exact

same set of logic block pins.

Table 4.5 shows the quality of results sweeping cross different crossbar values. The columns from left

to right are as follows: the population of the crossbar, pack time, minimum channel width (Min W),

critical path delay at 1.3 times min W, number of soft logic blocks, and number of nets that connect two

or more logic blocks. All values after the leftmost column are the geometric mean across all benchmarks

normalized to the baseline EArch architecture (which has a crossbar population of 50%).

The results show trends that are roughly what we expect. Pack time tends to increase and quality

of results tend to decrease with decreasing crossbar population. A crossbar population of 12.5% show

significant routability degredation (higher min W) due to an increase in the number of external-to-logic-

block nets. The techniques used to avoid detailed routing when checking the routability of intermediate
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Figure 4.22: A basic soft logic block with typical parameters.

solutions fails at a crossbar population of 12.5% resulting in much higher pack time compared to crossbars

with higher population. Perhaps a less expected result, logic density degrades only 2% at 12.5% crossbar

population.

Note that in Table 4.5, minimum channel width values measured are conservative. We expect that

if the inter-logic block router was allowed to route inside the logic block, then the CAD algorithm

may find a better solution for the architectures with depopulated crossbars, because the external router

would then have a wider optimization space available. Also, there are many ways to design depopluated

crossbars beyond using smaller full crossbars [48].

The minor reduction in packer runtime from targeting the full crossbar architecture compared to the

50% populated crossbar architecture is interesting. For both architectures, there is sufficient interconnect

for speculative packing to succeed, often within just a few intra-logic block routing iterations. So runtime

differences between these architectures depend largely on how long each iteration of the intra-logic block

router takes. Since the intra-logic block router employs a simple uniform-cost search (rather than a more

advanced A-star search), the larger number of switches for the full crossbar case increases the runtime

per iteration slightly more compared to the 50% populated case. That said, in the big picture, given the

range of runtime differences across architectures, 10% difference is ultimately inconsequential.

We conclude that the packer runs faster for simpler interconnect and slower for more complex inter-

connect. We conclude that critical path delay and logic block density are both relatively insensitive to

crossbar population down to as low as 12.5%.

4.4.3 Comparison to Other Packers on Simple Architectures

We now move onto the performance of AAPack on simple architectures. We compare AAPack to the

open source packer T-VPack 4.30 [64]. Since much literature employs T-VPack as a baseline, the results

obtained here may be used as a proxy to compare AAPack with other state-of-the-art packers for simple

soft logic. The simple soft logic block itself was described in detail in Section 2.1.1. It is shown again in

Figure 4.22 for the reader’s convenience.
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Table 4.6: Parameters of 4-LUT simple soft logic block architecture.
Parameter Value

K 4
N 8
I 22
Fcin 0.2
Fcout 0.1
L 4
Switch Block Type Modified Wilton

The key architectural parameters used in this experiment are presented in Table 4.6. The num-

ber of inputs to the LUTs (K) is 4. The number of LUTs per soft logic block (N) is 8. The num-

ber of inputs to a soft logic block (I) is set to 22 to match recommendations from prior research

by Ahmed [2] for this architecture. The routing parameters match the closest architecture, named

N10K04L04.FC20FO10.AREA1DELAY1.CMOS45NM.BPTM, in the IFAR repository [43]. This same

IFAR architecture also provides the transistor-optimized area and delay values for the test architecture.

The 20 largest technology-mapped MCNC benchmarks, called the Toronto 20 [73], are used so that

comparisons with other, closed-source, simple soft logic block packers may be made. The output of

packing goes through the latest VPR 7.0 for placement and routing. For this experiment, T-VPack 4.30

was modified to output a netlist compatible with VPR 7.0. Thus, this study evaluates solely the packer

– the rest of the flow is the same.

The standard VPR experiment flow is used. This flow starts with a technology-mapped circuit as

input. This circuit undergoes packing, placement, and minimum channel width (minW) routing to find

the minimum channel width. Afterwards, there is one more run of just routing at a higher channel

width (more details on the exact values later) to measure critical path delay to simulate more realistic

congestion conditions. All settings were left to default except the placement option inner num, which

was set to 10 to align these experimental parameters with prior literature. The machine used for these

experiments is a 64-bit Intel Xeon 5160 at 3 GHz running in single core mode with access to 8GB of

physical memory.

The quality of results is shown in Table 4.7. From left to right, the columns are as follows: 1) Name

of the circuit, 2) Minimum channel width, 3) Critical path delay, 4) Number of external nets (nets that

cross logic block boundaries) post-packing, and 5) number of soft logic blocks. For critical path delay,

we set channel width to 1.3 times the largest min W of the two runs. This method of measuring critical

path delay is unlike the previous experiments. Since the architecture is identical and the number of soft

logic blocks is very close, we can obtain slightly better experimental control by using the same channel

width for the same circuit when comparing AAPack vs T-VPack. All values are the measurement of the

AAPack run divided by the T-VPack run. The last two rows show the geometric mean and standard of

deviation of the results. For quality of results, AAPack demonstrates similar results to T-VPack. The

change to the cost function of AAPack results in less external nets but this reduction in external nets

does not have a significant impact on post-routed results for this architecture. AAPack, being a more

flexible packer, is 8.3-fold slower than T-VPack. Not shown in this table is AAPack runtime, which is

less than 5% of total runtime.

To measure the robustness of these results, we repeated the experiment on a different architec-

ture. The second architecture parameters are shown in Table 4.8. This experiment uses larger LUTs

and larger soft logic blocks. The IFAR architecture used as the base for this architectures is called
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Table 4.7: Relative comparison of AAPack vs T-VPack on a simple soft logic architecture. Values shown
are normalized measurements of AAPack/T-VPack.

Circuit Min W Crit Delay Pack Time Num Ext Nets Num CLB

alu4 0.95 1.02 13.14 0.92 1.00
apex2 1.00 1.00 11.04 0.84 1.00
apex4 1.00 1.07 6.30 0.85 0.98
bigkey 0.94 1.12 5.23 1.21 1.00
clma 1.06 0.97 13.64 0.94 1.00
des 1.00 1.03 3.53 0.87 1.00
diffeq 1.00 1.12 6.92 0.89 0.99
dsip 1.00 1.04 4.02 1.05 1.00
elliptic 1.00 1.02 10.05 0.89 1.00
ex1010 0.91 0.99 14.80 0.90 0.98
ex5p 0.97 1.00 4.45 0.94 0.99
frisc 1.03 1.04 5.77 0.89 1.00
misex3 0.96 1.03 4.99 0.88 1.00
pdc 0.97 0.94 17.43 0.95 1.00
s298 1.00 0.93 6.48 1.01 1.00
s38417 0.92 1.02 8.99 0.90 1.00
s38584.1 1.00 0.96 6.77 0.96 1.00
seq 1.04 1.02 7.83 0.90 1.00
spla 1.00 1.05 14.21 0.94 1.00
tseng 0.85 0.99 6.63 0.74 0.99

geomean 0.98 1.02 7.76 0.92 0.996
stdev 0.05 0.05 4.10 0.09 0.01

Table 4.8: Parameters of 6-LUT simple soft logic block architecture.
Parameter Value

K 6
N 10
I 33
Fcin 0.15
Fcout 0.1
L 4
Switch Block Type Modified Wilton

N10K06L04.FC15.AREA1DELAY1.CMOS45NM.BPTM. The benchmarks employed are the Toronto

20, but these circuits are technology-mapped to 6-LUTs using the newer, wiremap, algorithm [39].

The results of this run are shown in Table 4.9. The columns are the same as before. Unlike the

previous experiment, when compared to T-VPack, AAPack produces better quality of results post-

routing where min W drops 5.8% and the number of external nets drops by 14% on average. Critical

path delay is within noise.

Overall, these results show that a general packing algorithm can achieve comparable quality of results

to a specialized algorithm for simple soft logic blocks with an under 10x packer runtime penalty. To

put this runtime number in perspective, packing is typically only a small fraction of total CAD runtime.

Despite being 10x slower than T-VPack, on average, AAPack runtime is under 6% of total runtime, on

average, for these runs. On the largest circuit (clma on the 4LUT architecture), AAPack takes just 4.6

seconds. Therefore, we conclude that the runtime overhead for generality is reasonable, given its much

greater explorative potential.
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Table 4.9: Relative comparison of AAPack vs T-VPack on a larger simple soft logic architecture. Values
shown are normalized measurements of AAPack/T-VPack.

Circuit Min W Crit Delay Pack Time Num Ext Nets Num CLB

alu4 0.83 1.00 2.32 0.75 1.00
apex2 0.97 0.97 3.52 0.76 1.00
apex4 0.91 1.04 2.91 0.77 0.99
bigkey 1.06 0.97 8.17 0.95 1.00
clma 1.03 1.00 13.20 0.87 1.00
des 0.94 0.91 4.29 0.93 1.00
diffeq 1.24 1.02 4.09 1.06 1.00
dsip 0.94 0.93 8.14 0.88 1.00
elliptic 1.00 1.04 10.43 0.87 1.00
ex1010 0.96 1.02 16.51 0.91 1.00
ex5p 0.93 0.95 6.45 0.73 1.00
frisc 0.97 1.00 6.96 0.94 1.00
misex3 0.92 0.96 7.53 0.78 1.00
pdc 0.93 0.94 16.80 0.80 1.00
s298 0.87 1.00 5.50 0.81 1.00
s38417 0.89 0.94 12.24 0.96 1.00
s38584.1 1.00 0.99 5.79 1.00 1.00
seq 0.97 1.00 5.14 0.78 1.00
spla 0.95 1.03 18.78 0.81 1.00
tseng 0.65 1.02 3.99 1.03 1.00

geomean 0.94 0.99 6.86 0.86 0.999
stdev 0.11 0.04 4.94 0.10 0.00

4.4.4 Runtime Analysis

As digital designers create circuits of ever larger size, CAD runtime scaling has become increasingly

important. This section analyzes the runtime behaviour of the packer. We show theoretical worst-case

runtime scaling first, followed by empirical runtime scaling, then a breakdown of pack time with respect

to the rest of the CAD flow.

In a pathological scenario, every netlist atom has connections to every other netlist atom through

very high fanout nets. In this situation, the packer is not able to restrict the search space to locally

connected groups, so every atom that gets packed will cause the packer to visit, possibly, every other

atom. Let the number of atoms be N , then in this worst-case scenario we have N2 behaviour. Let

the maximum number of primitives of a given logic block be P . Every atom may, in the worst case,

potentially be considered for up to P placement locations. Furthermore, it may be necessary to do

detailed intra-logic block routing for each placement location. Let the maximum number of pins within

a logic block be V and the maximum number of interconnect edges within a logic block be E. The time

to route one source pin to another sink pin would then be O((E + V ) ∗ logV ) [22] but the number of

source or sink pins may be up to V. Therefore, asymptotic runtime for packing, in the worst case, is as

follows:

O(N2 ∗ P ∗ (E + V ) ∗ log(V ) ∗ V ) (4.8)

If we assume that the circuit is very large then the logic block can be viewed as a constant during

packing. The worst-case asymptotic runtime then simplifies to the following:

O(N2) (4.9)
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Table 4.10: Packer runtime with respect to number of netlist atoms.
Circuit Pack Time Num Netlist Atoms Atoms per Sec

stereovision3 0.32 345 1085
diffeq2 0.49 597 1223
diffeq1 0.62 882 1412
ch intrinsics 0.82 895 1094
mkPktMerge 0.98 1232 1254
sha 2.95 3288 1116
mkSMAdapter4B 3.72 3786 1018
raygentop 6.02 4364 725
or1200 4.87 4882 1002
boundtop 4.63 5325 1149
mkDelayWorker32B 11.53 11112 964
blob merge 15.69 12468 795
arm core 31.18 20876 670
stereovision1 19.20 22452 1169
stereovision0 20.32 24994 1230
LU8PEEng 101.39 33182 327
bgm 114.19 43437 380
stereovision2 44.11 44160 1001
LU32PEEng 390.80 108474 278
mcml 296.00 172521 583

However, this worst-case scenario rarely happens. Table 4.10 shows the rate of packing for the VTR

benchmarks on the EArch architecture. The table is sorted based on number of atoms of the netlist

in ascending order. The last column shows the packing rate in atoms per second. Overall, the rate of

packing does slows with larger circuits but slows to approximately half the rate for 100-fold increase in

netlist size. Thus, we conclude that packer runtime scales worse than linear in practice, but only slightly

so.

Figure 4.23 and Figure 4.24 reproduces the runtime breakdown charts from Section 3.4 when mapping

the VTR benchmarks to the EArch architecture. We conclude that pack time is 3.4% of total CAD time

for an architecture experiment that employs minimum channel width search, and pack time is 17.5% of

total CAD time for a production-style run with a fixed channel widths and faster placement parameters.

4.5 Conclusions

In this chapter, we have formally defined the architecture-aware packing problem where a netlist-like

description of the logic block architectures is given as input to packing. We have described a greedy

algorithm to solve this problem. Due to the flexibility of the architecture description, this algorithm

must solve a placement-and-routing subproblem within the logic block itself. We employed a greedy

placement algorithm and a variation of the Pathfinder [65] negotiated congestion routing algorithm for

this subproblem [57]. Since the routing subproblem is particularly time consuming, we proposed three

techniques (speculative packing, interconnect-aware pin counting, and pre-packing) to help speed it

up [62]. In addition to runtime benefits, pre-packing improves quality of results by making use of an

architect’s insight regarding what to keep together during packing.

Our experiments and results demonstrate that the packer can target logic blocks with modern features

such as soft logic blocks with fracturable LUTs, carry chains, and depopulated crossbars. We showed

that although speculation and molecules each provide runtime speedups of approximately 2-fold to 3-fold
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Figure 4.23: Breakdown of percent of total runtime for the different CAD stages for a minimum channel
width search experiment. Values shown are the arithmetic mean of the relative runtime for each stage
across the VTR benchmarks.
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Figure 4.24: Breakdown of percent of total runtime for the different CAD stages for a production
environment. Values shown are the arithmetic mean of the relative runtime for each stage across the
VTR benchmarks.
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in isolation, they together provide 5-fold speedup. Comparisons using a legacy architecture reveal a few

percent improvement to minimum channel width and marginal improvement to critical path delay versus

T-VPack for about a 10-fold runtime overhead from architecture flexibility.

For a minimum channel width search experiment, pack time is just 3.4% of total CAD time, so

we conclude that the runtime overhead from architecture-aware packing is acceptable for architecture

exploration. Outside of architecture exploration, when the channel width is known, AAPack runtime

takes a much larger 17.5% of total CAD time, hence it may make sense to use architecture-specific

packers after the architecture is determined.



Chapter 5

Architecture Study: Hard Adders

and Carry Chains

This chapter describes an exploration of the architecture of hard adders and carry chains in an FPGA

that uses the infrastructure described in Chapter 3 and the packing algorithm described in Chapter 4.

It serves as both an illustration of the capability of the work of those chapters, and an interesting FPGA

architectural result in its own right.

5.1 Introduction

One of the central questions in FPGA architecture is that of deciding which functions to harden and

which to leave for implementation in the soft logic [79]. A function should be hardened if it appears

often in the set of used applications, and if there is a large advantage when it is implemented in hard

logic rather than soft. This argument has held sway in the case of adder-type arithmetic functions – they

appear often and hardened adders are much faster than soft adders. Consequently, commercial devices

commonly have hardened adder and/or carry logic and routing [51] [26] [45] [98]. Indeed, hardened

arithmetic structures have been a longstanding feature of commercial FPGAs, yet there has been no

comprehensive published study of the performance benefits they offer on complete designs or their cost

in terms of area. This architecture study aims to fill that gap.

There are many degrees of freedom in the electrical and architectural design of hard adder logic, and in

the software used to map a complete application to such structures. There has been little published work

that sheds light on the set of such choices, nor the impact they have on the resulting implementations

of complete designs in FPGAs. We study a number of these choices and determine their impact on

performance, area and CAD complexity. We focus on architectures where the hard adders are integrated

into the soft logic block. Some examples include: First, the determination of how an adder interacts

with nearby LUTs and flip-flops. Second, the trade-off of performance and area between larger, faster,

multi-bit adders and more flexible, slower, smaller single-bit adders. Third, the design of the connection

between the carry bits of adjacent hard adder units; for example, should there be dedicated links for the

carry signal across soft logic block boundaries so that wide additions may be done at high speed but with

a more constrained CAD placement problem? Or should those connections cross soft logic boundaries

using the general-purpose interconnect of the FPGA? These are important implementation details that

76
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an architect must decide on when embedding hard adders in with soft logic. We present quantitative

measurements of the impact of these decisions.

Prior published work on hardened arithmetic, described in Section 2.1.3, focused on the implemen-

tation of arithmetic structures, and evaluated results on microbenchmarks such as adders and adder

trees or very small designs. A full design, on the other hand, imposes many other demands on the

FPGA and its CAD flow. We seek to measure the impact of different hard adder choices not only on

microbenchmarks, but also on complete designs with a full CAD flow.

This chapter is organized as follows: We first describe the FPGA architecture and circuit design that

serve as the basis for the exploration. Afterwards, we describe the variations of the hard arithmetic

structures and their interaction with the soft logic. Then, we present results of the various architectures

on both pure-adder microbenchmarks and full application circuits. Finally, we give some concluding

remarks.

5.2 Base Architecture Model

The base FPGA architecture used in this study is designed in a 22nm CMOS process, and is a heteroge-

neous architecture with soft logic blocks, simple I/Os, configurable memories and fracturable multipliers.

We are not using the EArch architecture for this study because we require more precise area and delay

values for the internals of the architecture than what is available in EArch. Figure 5.1 illustrates the

base soft logic block used in this study, which contains eight Basic Logic Elements (BLEs), 40 general

inputs, eight general outputs, one carry in (cin) pin and one carry out (cout) pin. The BLE consists of

a 6-input LUT, a hard adder, and a flip-flop that can optionally register the BLE output. The BLE has

a cin and a cout pin that connects the hard adder to adjacent BLEs (and possibly to BLEs in adjacent

soft logic blocks). A fast path connects the flip-flop output to the LUT input. The specific details

regarding the hard adder are described later in Section 5.3. We also consider one architecture that does

not contain hardened arithmetic, and hence has neither cin nor cout pins.

The internal connectivity of the blocks is provided by a 50% depopulated crossbar that connects

block inputs and BLE outputs to the BLE inputs. We have chosen a depopulated crossbar as this is

common in commercial devices [98, 51]. The depopulated crossbar itself is composed of four, smaller, fully

populated crossbars designed by Chiasson in [18]; this depopulation results in the soft logic block inputs

being divided into four groups of ten logically equivalent pins. The input pins are evenly distributed on

the bottom and the right sides of the logic block, as this simplifies the layout of the FPGA.

There are some important implications that carry chains create. Consider the logic block of Figure 5.1

but without hard carry links. Which BLE performs which function can be changed by the routing stage

of the CAD flow to allow different functions to access different output pins – the outputs are thus logically

equivalent. When the carry links of the BLEs are used however, the order of those BLEs are fixed and

cannot be exchanged, so the outputs of BLEs using their carry function are not logically equivalent. The

VTR CAD flow does not have the capability to selectively switch off output pin logical equivalence in

cases when the carry links are used by the BLEs. Hence, for correctness, we do not allow any BLE swaps

at all, thus removing all output logical equivalence. To compensate for this restriction, each output pin

can directly access two sides of the logic block, and hence both a vertical and a horizontal channel.

Turning off logical equivalence for all outputs will lead to a slight pessimism on the routability of the

soft logic only architecture vs. that of the hard adder architectures, but we believe the impact is small.
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Figure 5.1: The base soft logic block.

Table 5.1: Routing architecture parameters.
Parameter Value

Cluster input flexibility (Fcin) 0.2
Cluster output flexibility (Fcout) 0.1
Switch block flexibility (Fs) 3
Wire segment length (L) 4
Switch Block Type Wilton
Interconnect Style Single-driver
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Table 5.2: Properties of the 1-bit hard adder used in this study.
Property Value

Area 47.7 MWTAs
Delay cin to cout 11 ps
Delay sumin to cout 56 ps
Delay cin to sumout 30 ps
Delay sumin to sumout 83 ps

Table 5.3: Properties of the 4-bit carry-lookahead adder used in this study.
Property Value

Area 257 MWTAs
Delay cin to cout 20 ps
Delay sumin to cout 80 ps
Delay cin to sumout LSB 25 ps
Delay cin to sumout MSB 30 ps
Delay sumin to sumout LSB 65 ps
Delay sumin to sumout MSB 82 ps

Table 5.1 gives the routing architecture parameters of the base architecture, which are chosen to be

in line with the recommendations of prior research [42]. The hard memory logic block can implement

memories of different aspect ratios ranging from 32Kx1 down to 1Kx32 for both dual-port and single-

port modes. The multiplier logic block can implement a 36x36 multiplier that can optionally fracture

to two 18x18 multipliers. Each 18x18 multiplier can further fracture down to two 9x9 multipliers.

The transistor-level design of the base soft logic blocks and routing architecture was done by Chiasson

[61] using the COFFE tool [18] and a 22nm CMOS technology. The architecture uses pass gates. The

statically controlled pass gates in the interconnect switches are gate-boosted by 0.2V. The architecture,

area, and delay models for the memories and multipliers are scaled to 22nm from the 40nm EArch

architecture.

5.3 Hard Adder and Carry Chain Design

The goal of this chapter is to explore various hard adder and carry chain architectures, and to do so in

the context of careful electrical design of the key circuits. The two hard adder primitives in this study

are hand-optimized at the transistor level by Huda [61]. The first adder primitive is a basic 1-bit full

adder. In a soft logic block, eight of these full adders are linearly chained together to form a ripple carry

chain. Table 5.2 shows the properties of the 1-bit hard full adder used in this study. Area is measured

as minimum width transistor areas (MWTAs), using the transistor drive-to-area conversion equations

of [18]. The adder circuitry, LUTs and routing are all designed with a similar goal of minimizing the

area-delay product of the FPGA, and the cin-to-cout path of the adder is particularly optimized for

delay as it occurs n-1 times within an n-bit adder.

The second adder primitive is a 4-bit carry-lookahead adder (CLA). Each logic block contains two

of these 4-bit adders chained in a ripple carry fashion. Table 5.3 shows the properties of the 4-bit carry-

lookahead adder used in this study. The carry-lookahead optimization allows for a faster carry path (20

ps) compared to a ripple of four 1-bit adders (44 ps) when performing a 4-bit addition. The CLA design

trades off flexibility (as some bits are wasted if the desired adder length is not divisible by 4) and area

in exchange for speed.
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Figure 5.2: A balanced 6-LUT and adder interaction where both adder inputs are driven by 5-LUTs.
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Figure 5.3: An unbalanced 6-LUT and adder interaction where the 6-LUT drives only one adder input.

Figure 5.2 shows one of the ways that we explore interaction between the adder and LUT. Here,

we make use of the property that a 6-LUT is constructed with two 5-LUTs and a mux. If that mux

is bypassed, then the adder can be driven by two 5-LUTs, where the LUTs share inputs. If the adder

is not used, then another mux can be used to produce the 6-LUT output. We call this the balanced

LUT interaction, and its underlying hypothesis is that a symmetric amount of prior logic is the most

appropriate architecture. Example circuits that may benefit from this architecture would be applications

where multiplexers select the inputs to an adder.

Figure 5.3 shows another LUT-adder interaction architecture that we will explore. Here, the 6-LUT

output drives one of the adder inputs and the other adder input is driven by one of the 6-LUT inputs.

As with the previous case, if the adder is not used, then another mux can be used to select the 6-LUT

output. We call this the unbalanced LUT interaction. We model each additional SRAM-controlled

2-to-1 mux (one per BLE for the balanced LUT interaction, two per BLE for the unbalanced LUT

interaction) as having 22 ps of delay and occupying 15 minimum width transistor areas (including the
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Table 5.4: Architecture acronyms.
Acronym Architecture

Soft Soft logic only
Ripple 1-bit ripple carry, balanced LUT
U-Ripple 1-bit ripple carry, unbalanced LUT
CLA 4-bit CLA, balanced LUT
U-CLA 4-bit CLA, unbalanced LUT

SRAM configuration bit). The underlying hypothesis for this architecture is that there might be an

advantage to allowing a faster input into one side of the adder, which may improve circuit speed.

A third type of architecture we are interested in are those with hardened adders but no dedicated

carry link between logic blocks. Here, both the cin and cout pin are treated as though they are regular

input and output pins with respect to the inter-block routing architecture. Within the logic block, the

carry signals maintain the same restricted connections. We create two physically equivalent pins at

the right and bottom sides of the logic block for both carry-in and carry-out (i.e. 4 pins in total). For

architectures that have a dedicated carry link, the carry link has a delay of 20 ps.

Finally, there are a few different ways to implement the starting location of a multi-bit addition. One

can place a mux at every carry link that can select from logic-0, logic-1, or a carry signal of a previous

stage but this can incur a significant delay penalty because every carry link must now go through a mux.

Alternatively, one can place these muxes only on selected carry links, thus minimizing the overhead of

excessive muxing but at the cost of having fewer locations where an addition may begin. This latter

approach is typical in commercial devices. Alternatively, the responsibility for starting an addition can

be implemented in a front-end CAD tool – the tool can pad the addition with a dummy LSB that

generates a 0 or a 1 carry-in for addition and subtraction, respectively. We employ this approach in our

research.

5.4 Experiments and Results

This section describes the experiments and results of the study. We begin with an experiment on pure

adder benchmarks to characterize the architectures then describe a detailed study on complete user

designs. Questions that we explore include: what is the right adder granularity (one-bit ripple vs. four-

bit CLA)? Should the LUT structure feeding the adder be symmetrical? And, how useful are high-speed

inter-CLB carry links?

Table 5.4 lists the 5 different ways of supporting arithmetic in an FPGA soft logic block that we

investigate. For the four architectures with hard adders, we also investigate both flexible and dedicated

inter-logic-block links. Thus, this results in a total of 9 architectures in these experiments.

Table 5.5 shows the area, in MWTAs, for each soft logic block architecture. Hard adders and carry

chains increase an individual logic block area by 4% to 6%.

The application circuit benchmarks we use are the VTR benchmarks, described in Section 3.1,

excluding any benchmark under 1,000 6-LUTs in size. In addition, the mkDelayWorker32B benchmark

is excluded as it caused ABC to crash. We will refer to these as the VTR+ benchmarks. The geometric

average atom count across all 14 circuits is 11,700.

The VTR CAD flow employed is described in Section 3.3. The software used is revision 4310 of the

publicly available trunk, which has advanced substantially beyond the latest, VTR 7.0, release. The
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Table 5.5: Area of each soft logic block for each architecture in MWTAs.
Arch Area

Soft 12039
Ripple 12541

U-Ripple 12660
CLA 12674

U-CLA 12794
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Figure 5.4: Delay vs adder length for various architectures.

placement option inner num was set from a default of 1 back to the historical value of 10 because this

produced both better quality of results and faster overall experiment runtimes. The machine used for

these experiments is a 64-bit Intel Xeon 5160 at 3 GHz running in single core mode with access to 8GB

of physical memory.

5.4.1 Pure Adder Experiment

Before exploring the effect of each architecture on full designs, it is instructive to measure their effect on

various sizes of simple, pure adders. Here, each circuit is an adder of N bits, where N ranges from 2 to

127. Both the inputs and outputs of the adder are registered, so that critical path delay measurement

is a direct function of the adder combinational logic delay.

Figure 5.4 shows the impact on critical path delay vs. width of addition, for the Soft, Ripple and

CLA architectures, where the critical path delay is averaged over three placement seeds. In addition,

two variants of the Ripple and CLA architectures are included, labelled no CLB carry, in which the

general-purpose interconnect is used to implement carry links across soft logic blocks, rather than using

dedicated carry links. The unbalanced architectures are not included here as their performance difference

vs. balanced is similar on the microbenchmarks.

These results show trends that we generally expect. Delay grows linearly with adder size and more

“hardened” architectures are faster. In the extreme case, for 127 bit addition, it is interesting to note
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Figure 5.5: Delay vs adder length for various architectures for additions under 25 bits.

that a pure soft adder is ten times slower than the fastest (CLA) adder. The no CLB carry circuits have

delay values in between fully hard and fully soft adder architectures. While the CLA architecture is the

fastest of all, ripple carry is only 14% slower for 32 bit adders, and 43% slower for 127 bit addition. A

ripple architecture can sustain 500 MHz operation even at 96-bit addition.

Figure 5.5 shows the delays for additions under 25 bits for the different architectures. This figure

shows that for smaller additions, that swings in delay for the soft logic architecture is much greater than

that of the hard adder architectures. For hard adders, the lack of CAD flexibility forces a predictable

physical design, thus reducing CAD noise for these microbenchmarks when compared against soft adders.

The combination of higher and more predictable performance provided by hard adders, especially those

with hard inter-CLB links, is very desirable.

The data from this experiment also shows that a 3-bit addition implemented in soft logic is actually

slightly faster than any of the hard-logic adders. This suggests that there is a threshold below which

addition/subtraction should be implemented in soft logic and above which they should be implemented

using hard adders.

5.4.2 Application Circuit Statistics

Table 5.6 provides statistics on the VTR+ benchmarks, and includes the number of addition/subtraction

functions found in the benchmarks. The table columns list the number of 6-LUTs, the number of adder

bits after elaboration, the length of the longest adder chain in bits, the average adder chain length, and

the ratio of adder bits to LUTs. The benchmarks exhibit a wide range in the number and length of

addition/subtraction functions. On average, the ratio of adder bits divided by the number of 6-LUTs is

0.21, indicating arithmetic is plentiful and hence it is reasonable to include hard adder circuitry in every

CLB. The widest addition/subtraction generated in these benchmarks is 65 bits, which corresponds to

a 64-bit operation (as the first bit must always be used to generate the carry-in signal). For blob merge,
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Table 5.6: Benchmark Statistics when mapped to Ripple architecture.
Circuit Num Num Max Avg Add/LUT

6LUTs Add Add Add Ratio
Bits Len Len

arm core 13812 537 35 9.2 0.04
bgm 32337 5438 25 9.3 0.17

blob merge 7843 3754 13 10.0 0.48
boundtop 2846 309 19 7.2 0.11
LU8PEEng 21668 3251 47 11.0 0.15
LU32PEEng 73828 8249 47 11.9 0.11

mcml 94048 24302 65 47.5 0.26
mkSMAdapter4B 1819 431 33 6.9 0.24

or1200 2813 534 65 23.9 0.19
raygentop 1778 580 32 11.8 0.33

sha 1994 309 33 24.0 0.15
stereovision0 8282 2920 18 11.2 0.35
stereovision1 7845 2388 19 6.4 0.30
stereovision2 11006 13843 32 23.9 1.26

geomean 8606 1807 31.2 12.5 0.21

the longest chain has just 13 bits. The geometric mean of the longest addition/subtraction lengths

is 31.2 bits. The most adder-intensive circuit is stereovision2 with 1.26 adders per LUT, while the

least adder-heavy circuit is arm core at 0.04. These measurements correspond well with other modern

benchmarks. For the TITAN benchmarks (with the SPARC cores excluded because these cores have

almost no adders at all) [69], the geometric average of the fraction of LUTs in arithmetic mode and the

maximum of length of addition/subtraction is 0.22 and 35.8, respectively.

5.4.3 Threshold of When to Use Hard Adders

While hardened adder and carry logic is clearly good to use for wide arithmetic structures, for small

adders the flexibility provided by soft logic might actually prove superior as hard adders impose a bound-

ary across which it is difficult for logic synthesis to optimize. We define the hard adder threshold as the

size, in bits, of addition/subtraction above which the CAD flow will implement the addition/subtraction

with hard adders and below or equal to which the function is implemented in soft logic.

Figure 5.6 shows the impact on delay of different hard adder thresholds when we target the ripple

carry architecture. The x-axis shows the hard adder threshold in bits. The y-axis shows the geometric

mean of the critical path delay over the 14 circuits of VTR+. There is a general trend towards achieving

a minimum mean delay at a threshold of around 12 bits.

Figure 5.7 shows the area impact of different hard adder thresholds. The x-axis is again the hard

adder threshold, while the y-axis shows geometric mean of the area for all benchmarks. Area is computed

as the total number of soft logic blocks (CLBs) multiplied by the area of a soft logic tile, where a tile is

one soft logic block with interconnect.

The area consumed using an architecture with hard adders is on average more than that of an

equivalent architecture without carry chains. We see a gradual drop in area with an increasing hard

adder threshold: area drops from 10% above the soft adder architecture with a hard adder threshold

of 0, to 5% above with a threshold of 12. Note that, however, preliminary measurements we made on

commercial FPGAs showed that using carry chains in the CAD flow reduced area. We therefore suspect

that with further improvements in logic synthesis, the remaining 5% area penalty could be eliminated.
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Figure 5.6: Circuit speed vs. hard adder threshold. Results are the average across 14 benchmarks and
normalized to the soft implementation.
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Figure 5.7: Average area of different hard adder thresholds normalized to the soft architecture.
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Table 5.7: Geometric mean critical path delays across the VTR+ benchmarks for different hard adder
architectures.

Arch 32-bit Add Application Circuits
Delay (ns) Geomean Delay (ns)

Soft 3.87 14.14
Ripple 1.12 11.90

U-Ripple 1.05 12.03
CLA 0.97 11.85

U-CLA 0.90 11.65

Table 5.8: Delay for different hard adder architectures, normalized to the soft logic architecture.
Arch 32-bit Add Application Circuits

Delay Geomean Delay

Ripple 0.290 0.842
U-Ripple 0.272 0.850
CLA 0.250 0.838

U-CLA 0.232 0.824

For these benchmarks and on this architecture, we conclude that the best hard adder threshold is

approximately 12 bits. Therefore, all subsequent experiments use a hard adder threshold set to 12.

5.4.4 Microbenchmarks vs. Application Circuits

An interesting first comparison is to assess the impact of hard adders on application circuits as compared

to those above with the pure adders microbenchmarks. We use a 32-bit adder as a representative

microbenchmark, as this is close to the average size of the longest adders in the application circuits.

Table 5.7 shows the geometric mean critical path delay across all 18 VTR+ circuits for each of the

architectures. Table 5.8 shows these delays normalized to the soft logic architecture. A more detailed

circuit-by-circuit breakdown of application circuit delays are provided in Appendix B. An isolated 32-bit

adder sees a compelling delay reduction of 71% to 77% with hard carry architectures, while application

circuits see much smaller (but still very significant) delay reductions of 15% to 18%, depending on the

hard carry architecture. This is a common outcome in the hardening of any kind of circuit – the final

impact on critical path delay is limited because other paths in the design quickly become more critical

than the hardened circuit. On the application circuits, the best average delay reduction achieved by

hardening adders is 18% (which corresponds to a speedup of 21%), for the U-CLA architecture. Observe,

however, that the other hardened adder architectures benefit circuit speed almost as much.

5.4.5 Simple vs. High Performance Adder Logic

An FPGA architect must choose between smaller, more flexible, slower adders vs. larger, less flexible,

faster adders. The delays in the second column of Table 5.7 shows that, on average, the two ripple

architectures have 17% more delay than the two carry-lookahead architectures for a 32-bit addition.

For the application circuits, however, the ripple architectures average only 1.8% more delay than the

CLA architectures. We conclude that the benefit of a very fast adder for long word-length additions is

greatly diluted by the presence of all the logic surrounding adders in complete designs – indeed, for some

circuits, addition and subtraction are not on the critical path.
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Table 5.9: QoR of the VTR+ benchmarks on different carry chain architectures. Values are the geometric
mean of VTR+ circuits normalized to the soft adder architecture.

Arch Area Area-Delay Min W Num Per CLB
Product CLB Area

Ripple 1.042 0.877 0.957 1.029 1.042
U-Ripple 1.034 0.879 0.920 1.031 1.052
CLA 1.055 0.884 0.943 1.037 1.053

U-CLA 1.045 0.861 0.925 1.035 1.063

Table 5.9 shows the quality of results (QoR) for each of the architectures normalized to the soft logic

architecture (a circuit-by-circuit breakdown of area results is provided in Appendix B). The columns

from left to right are the architecture, the total soft logic area including routing, area-delay product,

minimum channel width, number of used soft logic blocks, and area of each soft logic block. Values for

area, area-delay product, minimum channel width, and number of used soft logic blocks are geometric

averages across all application benchmarks, normalized to the soft adder architecture. Area of each soft

logic block is measured directly from the architecture and normalized to the soft adder architecture. The

CLA architecture increases area slightly (by between 1% and 2%) but cuts delay by roughly the same

amount, leading to an area-delay product that is very close to that of the ripple architectures.

On these complete circuits, the results reaffirm the importance of hard adders but show that different

hard adder granularities (1-bit ripple or 4-bit CLA) remain reasonable architectural choices. This is an

unexpected result, as Table 5.2 and Table 5.3 show markedly different area and delay characteristics

between 1-bit and 4-bit hard adders, respectively. One would normally expect that architectures with 1-

bit adders would result in smaller circuits that are also slower, yet the area and delay results on complete

circuits exhibit this trend only very weakly.

5.4.6 Balanced vs. Unbalanced

We now consider how best to integrate the LUT and arithmetic circuitry described in Section 5.3. The

balanced approach (shown in Figure 5.2) of splitting the 6-LUT into two 5-LUTs, where each 5-LUT

drives a different adder input has good symmetry. The unbalanced approach (shown in Figure 5.3) of

using the 6-LUT to drive one adder input and a small mux to select BLE input pins for the other adder

input offers richer LUT functionality feeding the adder input (six pins compared to five for the balanced

case) but worse symmetry. It is thus unclear which of these two approaches is better. Note also that

commercial FPGAs differ in their approach: Altera’s Stratix V FPGAs [7] support a balanced style,

while Xilinx’s Virtex7 FPGAs [98] allow both unbalanced and balanced styles.

The third column of Table 5.8 shows the normalized delay values for each of the different architectures.

The delay of the U-Ripple architecture is approximately the same as that of the Ripple architecture.

The delay of the U-CLA architecture is 1.4% faster than the CLA architecture. From these results, we

conclude that balanced and unbalanced architectures achieve approximately the same overall delay.

Table 5.9 shows the QoR for each of the architectures normalized to the soft logic architecture. The

balanced and unbalanced architectures require virtually the same CLB count, indicating that the packer

can fill both architectures with roughly the same amount of logic per CLB, despite the fact that the

balanced architectures can use a LUT on each input of an adder instead of only one input. Interestingly,

the unbalanced architectures require a channel width that is approximately 2-3% lower, on average. This

is due to the fact that the unbalanced architecture can use all 6 inputs of a BLE when in adder mode,
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Table 5.10: QoR for architectures with soft inter-CLB links. Values are the geometric mean of VTR+
circuits normalized to the equivalent architecture with dedicated inter-CLB links.

Arch 32-bit VTR+ VTR+ VTR+
Add Delay Area Area-Delay
Delay Product

Ripple 1.805 1.046 0.997 1.043
U-Ripple 1.844 1.041 1.000 1.040
CLA 1.923 1.033 1.001 1.034

U-CLA 1.950 1.021 0.995 1.016

while the balanced architectures can use only 5 – the packer has more freedom on what to pack with

the adder in the unbalanced architecture and reduces the number of signals to route between clusters.

The net impact is that while the unbalanced architectures require slightly more logic area due to their

extra 2:1 mux per BLE, they reduce overall area by 1% by reducing the required amount of inter-cluster

routing.

5.4.7 Utility of Inter-CLB Carry

Dedicated carry links between logic blocks improve the speed of long adders significantly, as shown in

Figure 5.4, but their use constrains the placement engine to keep long adders in a fixed relative placement,

which may lengthen the wiring between other blocks. Table 5.10 compares the QoR of architectures

with soft inter-CLB carry links (i.e. routed using the general-purpose interconnect) normalized to their

corresponding architectures with hard inter-CLB carry links. The first column gives the architecture

name. The second column shows normalized delays for the 32-bit addition micro benchmark. The next

three columns show the normalized geometric mean of delay, area, and area-delay product over the

VTR+ benchmarks. Using soft inter-CLB links increases the delay of a 32-bit adder by 88%, on average,

across the hard adder architectures, but increases the delay of the VTR+ designs by only 3.5%. The

area cost of hard inter-CLB carry is negligible, as little hardware needs to be added to support them,

and their use does not significantly increase the required inter-CLB channel width, despite the constraint

they create on the placement engine. A detailed circuit-by-circuit breakdown of application circuit area

and delay values for the different soft inter-logic block carry architectures are provided in Appendix B.

We expect that the impact of hard inter-CLB carry links is a strong function of the number of adder

bits per logic block. Fewer adder bits per block means more inter-CLB links are required for an addition

of a given size, which in turn may have a bigger impact on delay. Therefore, we believe that architectures

with 4 adder bits per logic block (e.g. Virtex 7 [98]) will benefit more from hard inter-CLB links than

architectures with 20 bits per block (e.g. Stratix V [7]).

5.4.8 Circuit-by-Circuit Breakdown

Table B.9 provides a circuit-by-circuit breakdown comparing the U-CLA and Soft architectures. The

columns from left to right are the benchmark name followed by the ratio of the U-CLA/Soft values

for critical path delay, the total soft logic area including routing, and the number of LUTs on the

critical path. The last column is the number of (4-bit) hard adders on the critical path for the U-CLA

architecture. All values are obtained after routing at 1.3x min W. On average, the delay of the circuits

is reduced by 18% and the critical path LUT depth is cut by 46%, but there are 3 distinct classes of

circuits that show markedly different behaviour.
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Table 5.11: Circuit-by-circuit breakdown comparing the U-CLA architecture to the Soft architecture.
Circuit Delay Area LUTs on CLA cout on

Crit Path Crit Path

arm core 0.925 1.067 0.875 1
mcml 0.567 1.104 0.379 43
or1200 0.670 1.083 0.148 3
sha 0.549 1.023 0.250 6

stereovision2 0.605 0.784 0.091 5

boundtop 0.998 1.030 0.889 0
LU8PEEng 0.781 1.057 0.642 0
LU32PEEng 0.744 0.958 0.654 0

mkSMAdapter4B 0.959 1.129 0.857 0

bgm 1.068 1.098 0.969 0
blob merge 0.939 1.060 0.944 0
raygentop 0.971 1.112 N/A 0

stereovision0 1.000 1.044 3.000 0
stereovision1 1.049 1.145 N/A 0

geomean 0.824 1.045 0.561 –
stdev 0.186 1.044 0.760 –

For the top 5 circuits, hard adders are on the critical path, and we obtain a large delay reduction of

35% (a 54% speed-up). The next 4 circuits (boundtop, LU8PEEng, LU32PEEng, and mkSMAdapter4B)

have reductions in the LUT depth on the critical path of more than 10% when targeting the U-CLA

architecture, even though no hard adders occur on their critical path. This indicates that adder logic

was likely timing critical in the Soft architecture1, but has sped up enough to move off the critical path

in the U-CLA architecture. While these 4 circuits have an average LUT depth that is 25% lower when

targeting U-CLA vs. Soft, the average delay reduction across the 3 designs is only 14%. We believe this

illustrates a trade-off when hard carry chains are added to an FPGA: by limiting the flexibility of the

packer and placer, the carry chains have increased the average routing delay per LUT level on non-adder

paths, and this costs some of the speed gain one would expect from reducing the logic on the critical

path with hard adders. Finally, there are five circuits where the LUT depth is not significantly reduced

and where there is not a significant delay reduction, indicating adders were not very timing-critical in

even the Soft architecture. Two of these circuits (raygentop and stereovision1) have hard multipliers

as their critical paths so they show very little variation in speed vs. carry architecture, as one would

expect. The critical path for stereovision0 contains more LUTs in the U-CLA architecture than in soft

but differences in inter-logic block routing delay negated the delay penalty from increased LUT depth

resulting in almost the same delay for both architectures.

5.5 Conclusions

The work in this chapter covered a broad range of different implementations of hard adders and carry

chains within a soft logic block. We show, using the infrastructure described in Chapter 3 and packing

algorithm described in Chapter 4, that different hard adder and carry chain architectures show very

similar area and delay values on real applications despite significant differences on microbenchmarks.

We conclude that hardened adders provide a speed up of approximately 20% for an area penalty of

1Ideally we would examine the Soft implementation of a design to directly determine if its critical path included addition,

but as ABC does not preserve node names, we cannot trace LUTs back to specific HDL.
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approximately 5% resulting in an overall area-delay product reduction of approximately 14%.



Chapter 6

Conclusions and Future Work

This chapter summarizes the main conclusions and contributions of this thesis, and suggests avenues for

future research.

6.1 VTR: FPGA Architecture Exploration

Infrastructure

The rising software development effort required to explore increasingly complex FPGA architectures

drives the need for a flexible FPGA CAD flow that can target a broad space of architectures, with

little or no code modifications. We presented an open source FPGA architecture and CAD exploration

infrastructure, called Verilog-to-Routing (VTR), that minimizes that software development effort by

accepting a flexible description of the architecture as input. The main contributions of the VTR project

are as follows:

• A new comprehensive FPGA architecture exploration infrastructure with real benchmarks, tuned

architecture files, a full CAD flow from Verilog elaboration to routing, regression tests, and docu-

mentation.

• Open-source CAD support for modern FPGA architectural features such as configurable memories,

fracturable multipliers, hard adders, carry chains, fracturable LUTs, and depopulated crossbars.

• Regular tracking of software quality so that all components stay compatible with each other and

so that quality of results are either preserved or improved.

• Enabling new research: VTR 6.0 has accumulated 700 unique downloads, received 89 citations,

and served as the base infrastructure for many research papers in the past two and a half years.

• Enabling commercial projects: VTR was/is used as part of the commercial CAD infrastructure

within Texas Instruments and also by a new FPGA startup, Efinix.

Several individuals from multiple research groups have worked on VTR. As the one responsible for

the VTR system as a whole, I oversaw and/or contributed to many different parts of the project [80]

[59] [69].
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6.1.1 Future Work

We believe that FPGA architecture exploration remains a rich area for future research. The generic

modelling of fixed-function logic in VTR opens up the exploration of specialized hard IP that would

have been more difficult to study in the past. Architects interested in targeting high data bandwidth

applications may want to model embedded ethernet transceivers, PCI Express, or other high speed data

links in their architectures. Architects interested in exploring FPGA clock networks may want to add

embedded PLLs then modify VTR to understand clock trees. Architects speculating on promising new

hard blocks, such as hardened crossbars [38], now have access to measurements using a full CAD flow.

FPGA CAD and architecture are strongly coupled. As the space of architectures explored increases,

so too will the need for better CAD to target those architectures. We anticipate that researchers will

continue to use VTR as a baseline for future CAD studies.

As technology scaling increases the logic capacity of FPGAs, computation specified down to the bit

level may become increasingly less scalable. At the other extreme, arrays of full processors offer a much

higher level of abstraction, but incur a large delay/power overhead because of the need to process instruc-

tions (whereas an FPGA can encode computation directly in the datapath circuitry). Coarse-grained

reconfigurable architectures (CGRAs) occupy a vast middle spectrum between fine-grained FPGAs on

one end, and an array of full processors on the other. A well-designed CGRA might deliver the best

of both of these worlds. Also, a good architecture may not necessarily be limited to just the level of

coarsening. In much the same way as modern consumer computer systems pair a processor with a GPU,

it is interesting to explore heterogeneous chips that include processors, fine-grained FPGA logic, and

specialized compute units that best leverage the unique strengths of each. VTR may be the right vehicle

to modify to explore important aspects of these diverse areas.

There remains much work to do in every major component of VTR and in every major stage of the

VTR CAD flow. Gathering the latest benchmarks and making them compatible with the VTR flow

will remain an on-going task. Creating new architecture description files is currently very challenging,

in a large part because accurate area and delay values of various components requires transistor-level

design of the full architecture. Thus, integrating automated transistor design for new, hypothetical

FPGA architectures [18] is becoming increasingly important because the time required to hand-optimize

designs at the transistor level has risen with the increasing complexity of FPGA architectures.

The different stages of the VTR CAD flow itself also have potential for improvement. The Odin

II Verilog elaborator needs better language support. Kent’s team has devoted much effort improving

language support in Odin II [37] [59] but language features used in real designs are quite diverse so many

used features are not yet covered. Hence, it remains labour-intensive to covert benchmarks to a form

that can be accepted by Odin II, which in turn limits how many benchmarks we can provide in VTR.

ABC logic synthesis needs to understand logic that crosses hard logic boundaries. Currently, ABC treats

all hard logic as black boxes and hence misses important optimizations.

The AAPack packer needs to broaden the space of logic blocks that it can target well. For example,

the packer takes a much longer time than it should when targeting complex bus-based arithmetic blocks.

Placement needs to be improved to understand region constraints. Minimum channel width routing

needs to be made faster, as it currently occupies more than half the total runtime of experiments. Since

the later stages of the CAD flow have more information than the earlier stages, placement should be

made capable of changing packing decisions and inter-logic block routing should be made capable of

changing intra-logic block routing. The timing analyzer in VTR should do hold time analysis. Finally,
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although VTR has power analysis, we currently do not do power optimization. Power optimization

would be an interesting field to explore.

A complete, end-to-end, comparison between VTR and commercial tools would be very interesting.

Currently, there have been studies [69] [32] comparing certain stages of the VTR CAD flow to corre-

sponding stages of a commercial flow but several issues have prevented a full comparison. These issues

include benchmark compatibility problems, differences in architecture features supported, and challenges

in keeping logic models consistent.

6.2 Architecture-Aware Packing for FPGAs

The need to explore new complex logic block architectures, with few to no modifications to source code,

requires that the packing stage of the CAD flow accept a flexible description of the architecture as input.

We formally defined this expanded notion of packing and showed that flexibility in the description of

an architecture results in a placement-and-routing subproblem, within each logic block, during packing.

We then described an architecture-aware packing algorithm to solve this new packing problem.

The AAPack algorithm greedily fills logic blocks one netlist block at a time. It handles the intra-logic

block placement subproblem using a greedy best-fit approach. It handles the intra-logic block routing

subproblem using the Pathfinder [65] negotiated congestion algorithm.

Indiscriminate use of intra-logic block detailed routing to check packing feasibility can produce very

long runtimes so three techniques were introduced to avoid detailed routing on well-understood inter-

connect. The first technique, interconnect-aware pin counting, is a filter that approximates the rout-

ing problem with a simpler counting problem. Interconnect-aware pin counting groups pins into pin

classes based on intra-logic block interconnect then applies counting arguments to discover and reject

impossible-to-route intermediate solutions without the use of full detailed routing. The second tech-

nique, speculative packing, assumes routing will be successful and attempts to only route once at the

end of packing, using interconnect-aware pin couting as the only check for routability of intermediate so-

lutions. Speculative packing reduces pack time by approximately 3-fold on a set of large, realistic, VTR

benchmarks on an architecture with modern architectural features. The third technique, pre-packing,

is meant to handle architectural primitives connected together by inflexible links (such as carry chains,

LUT/FF pairs, multiply-add operations, etc.). Pre-packing groups parts of the netlist together before

packing based on hints in the architecture description file. These groups then stay together as one unit

during packing. Pre-packing results in approximately 2-fold speedup and improved logic density. Taken

together, these techniques result in 5-fold speedup and better quality of results than the same algorithm

without these techniques.

Our experiments and results demonstrate that the packer can target logic blocks with modern features

such as soft logic blocks with fracturable LUTs, depopulated crossbars, and carry chains. We show, in

an experiment with various levels of interconnect flexibility in a soft logic block, that AAPack increases

computational effort with increasing interconnect difficulty. We also demonstrated that AAPack, a

general purpose packer, can produce marginally better minimum channel width and critical path delay

against a specialized packer, T-VPack [64], for an order of magnitude more runtime. This runtime

difference remains a small fraction of total flow runtime. However, if used in a general CAD flow outside

of minimum channel width search, AAPack runtime remains high as its runtime lies in between fixed

channel width routing time and placement time.
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The main contributions in packing are as follows:

• A new formal description of the generalized packing problem.

• Important enhancements to an existing packing algorithm, AAPack, that enable timing-driven

optimizations and improve robustness, quality, and runtime of the baseline algorithm [57] [80] [62].

• New techniques to allow AAPack to adjust computational effort based on architectural complexity

[62].

6.2.1 Future Work

There are several interesting new avenues for future research in architecture-aware packing. As men-

tioned earlier in Section 2.3.1 on traditional packing, packing for simple logic blocks has advanced

substantially since T-VPack. It is future work to determine which of those techniques can be general-

ized to architecture-aware packing and which techniques are limited to only simple logic blocks. In the

event that some of those techniques are not generalizable, it would be interesting to see if the packing

algorithm can automatically detect when to employ a particular specialized technique, in much the same

way as how AAPack can adapt computational effort based on interconnect complexity.

Currently, in AAPack, the architect must provide hints in the architecture description file on what

molecules the pre-packer should form. This limitation increases the learning curve needed to use VTR

efficiently. In the future, the pre-packer should automatically figure out these hints, which should simplify

the specification of new architectures.

The resource balancing subproblem arises when different types of logic blocks can implement one

particular atom because the packing algorithm must make a choice on what type of logic block to use.

For example, if an architecture contains configurable block RAM of different sizes, then the packer must

find an appropriate mix of block RAMs to assign the different user memories to [40]. The packer should

choose in such a way that the final packed solution fits a given architecture (if the size of the architecture

is fixed) or minimizes the size of the final architecture. The resource balancing problem is left to future

work.

Ahmed et al. [4] showed that for a commercial FPGA with RAM blocks and arithmetic blocks,

packing should assign atoms in such a way that connections between memories and arithmetic can

be easily aligned during inter-logic block placement to obtain better routability and performance. It

is interesting future work to generalize this approach, so that packing can automatically make use of

information about the inter-logic block architecture.

When AAPack performs one-by-one packing, it re-routes all nets within the logic block for every

intermediate solution. Runtime may be improved by only routing nets that change first, reserving the

full detailed routing for cases where congestion is difficult to resolve.

6.3 Architecture Study on Hard Adders and Carry Chains

Addition and subtraction are common operations in digital circuit design. Wide implementations of

these functions are very slow in soft logic, so it makes sense to provide hardened support for these

functions. Despite being found in commercial FPGAs for decades, there has been little published work



Chapter 6. Conclusions and Future Work 95

demonstrating their effectiveness. We investigated the benefit of a broad range of different implementa-

tions of hard adders and carry chains on FPGAs, for both pure adder microbenchmarks, as well as large

full applications. Furthermore, this study uses the new capabilities of packing and the VTR CAD flow,

which demonstrates the usefulness of our software infrastructure for architecture exploration.

We show that different hard adder and carry chain architectures show very similar area and delay

values on real applications, despite significant differences on microbenchmarks. We conclude that hard-

ened adders provide a speed up of approximately 20% for an area penalty of approximately 5%, resulting

in an overall area-delay product reduction of approximately 14%.

The main contributions of this architecture study are as follows [61]:

• Quantified effects on area and delay from hard adders and carry chains in FPGAs.

• Demonstration of major differences in conclusions between microbenchmarks and full applications.

• Showed that several details in the implementation of hard adders and carry chains matter little in

real applications, despite larger differences on microbenchmarks.

6.3.1 Future Work

There remains much future work to explore on the topic of hard adders and carry chains. In terms of

architecture, the interaction between fracturable LUTs and hard adders is interesting as it adds another

dimension to the architecture space. In terms of benchmarks, we only explored pure adder benchmarks

versus general applications, the space of arithmetic-heavy benchmarks (such as DSP applications) was

not specifically targeted. We suspect that for these applications, the benefits of hard adders and carry

chains would be in between pure adder results and the VTR+ benchmark results.

In terms of CAD, the most pressing issue is the lack of good logic synthesis when adders are used.

Currently, VTR relies exclusively on Odin II to remove redundant logic during Verilog elaboration

because ABC is unable to understand logic within hard adders. Thus, optimization opportunities that

are revealed during logic synthesis are not exploited. Ideally, ABC would be upgraded to understand

the logic within hard adders and optimize the soft logic accordingly.
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Appendix A

VTR 7.0 Public Architectures

This section contains reference tables on the most recent (VTR 7.0) publicly released set of architecture

files [59].

The VTR 7.0 release provides a series of sample architecture files in the vtr flow/arch folder of the

release package. The timing folder contains the key architecture files for the release. These architecture

files have reasonable area-delay values. The other folders contain architecture files that illustrate certain

architectural features and do not have reasonable area-delay values.

Table A.1 describes the key properties of an FPGA architecture. All subsequent tables characterize

different architectures using these properties.

Table A.2 describes the timing-driven architectures of the VTR release. The k6 series architecture

files are variations of the EArch architecture, described in Section 3.2.2, which is based on a commercial

Stratix IV architecture [6]. A new user of VTR should begin with these architecture description files.

The k4 N4 90nm architecture file is a simple architecture file, containing only soft logic, sampled from

the iFAR FPGA architecture repository [43]. The fpu series architectures are two proof-of-concept archi-

tectures for exploring FPGAs targeting floating-point applications. The hard fpu architecture contains

embedded, configurable, floating-point cores. The soft fpu architecture contains soft logic only.

Table A.3 describes the other architecture description files that serve as proof-of-concepts for specific

Table A.1: Properties that describe an architecture.
Property Value

Process Process technology
K Size of (largest) LUT.
N Number of (fracturable) LUTs.
I Number of inputs per soft logic cluster.
Frac LUTs Whether or not a LUT can be fractured into

smaller LUTs with shared inputs.
Carry Chain Whether or not a soft logic block contains carry chains.
FI Number of inputs used by fracturable LUT in dual-LUT mode.
RAM Block RAM type.
Multiplier Block multiplier type.
Fcin Fraction of tracks that may drive a logic block input pin.
Fcout Fraction of tracks a logic block output pin may drive.
L Number of soft logic blocks a wire segment spans.
Power Models Whether or not architecture contains power models.
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Table A.2: Core timing-driven architectures of the VTR release.

Property Value

k6 series

Process 40nm
K 6
N 10
I 40
Frac LUTs Optional
Carry Chain Optional 1-bit ripple
FI 5 (if applicable)
RAM Optional, configurable 32 Kb
Multiplier Optional, fracturable 36x36
Fcin 0.15
Fcout 0.1
L 4
Power Models Yes

k4 N4

Process 90nm
K 4
N 4
I 10
Frac LUTs None
Carry Chain None
RAM None
Multiplier None
Fcin 0.15
Fcout 0.25
L 1
Power Models None

fpu series

Process 130nm
K 4
N 4
I 10
Frac LUTs None
Carry Chain Optional
RAM None
Multiplier None
Fcin 1.0
Fcout 0.25
L 4
Power Models None
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Table A.3: Description of the purpose of the other architectures files.
Architecture Series Purpose

Titan Allow the use of a commercial front-end, Quartus II, to
feed into VPR via the Titan flow [69].

Power Proof-of-concept on how to describe power for a series
of fracturable LUT architectures.

no timing Proof-of-concept on how to describe different
memory and fracturable LUT architectures.

features. They do not contain reasonable area-delay values.



Appendix B

Data Tables of the Adder

Architecture Study

This section contains data tables that show the quality of results for the large VTR application circuits

on the adder architectures in chapter 5. From left to right, the columns of these tables are: the circuit

name, critical path delay in ns at 1.3 times minimum channel width, minimum channel width, number

of soft logic blocks, and total soft logic area in minimum width transistor areas. Total soft logic area is

measured as the total number of soft logic blocks times the area of one soft logic block and one tile of

interconnect.

Table B.1: Quality of results of the soft adder architecture.
Circuit Delay Min W Num CLB Area

arm core 16.01 112 1713 3.55E+07
bgm 23.92 120 3910 8.34E+07

blob merge 8.40 82 753 1.42E+07
boundtop 5.39 58 381 6.56E+06
LU8PEEng 91.43 126 2742 5.92E+07
LU32PEEng 93.80 202 9166 2.42E+08

mcml 75.84 98 12700 2.50E+08
mkSMAdapter4B 5.39 66 248 4.43E+06

or1200 11.04 82 382 7.22E+06
raygentop 4.57 72 274 5.00E+06

sha 11.21 66 285 5.09E+06
stereovision0 3.56 62 1743 3.01E+07
stereovision1 5.35 84 1595 3.02E+07
stereovision2 19.59 150 3895 9.06E+07
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Table B.2: Quality of results of the balanced ripple adder architecture.
Circuit Delay Min W Num CLB Area

arm core 15.96 108 1783 3.75E+07
bgm 24.48 106 4519 9.42E+07

blob merge 8.30 82 766 1.48E+07
boundtop 5.76 52 381 6.56E+06
LU8PEEng 72.47 124 2858 6.30E+07
LU32PEEng 72.06 184 9538 2.47E+08

mcml 40.07 104 13045 2.71E+08
mkSMAdapter4B 5.46 66 268 4.93E+06

or1200 8.07 86 397 7.85E+06
raygentop 4.44 70 298 5.58E+06

sha 6.35 62 290 5.21E+06
stereovision0 3.58 58 1747 3.09E+07
stereovision1 5.48 102 1610 3.32E+07
stereovision2 12.00 102 3407 7.00E+07

Table B.3: Quality of results of the unbalanced ripple adder architecture.
Circuit Delay Min W Num CLB Area

arm core 16.28 112 1776 3.80E+07
bgm 25.18 88 4599 9.04E+07

blob merge 8.08 82 764 1.49E+07
boundtop 5.45 54 380 6.66E+06
LU8PEEng 73.39 100 2996 6.20E+07
LU32PEEng 70.38 158 9817 2.39E+08

mcml 47.76 104 13090 2.73E+08
mkSMAdapter4B 5.37 64 267 4.86E+06

or1200 7.75 78 390 7.48E+06
raygentop 4.44 70 296 5.58E+06

sha 6.46 62 286 5.17E+06
stereovision0 3.67 58 1742 3.10E+07
stereovision1 5.61 106 1593 3.35E+07
stereovision2 12.01 104 3369 7.04E+07

Table B.4: Quality of results of the carry-lookahead adder architecture.
Circuit Delay Min W Num CLB Area

arm core 14.90 106 1791 3.78E+07
bgm 23.61 102 4549 9.42E+07

blob merge 7.75 86 765 1.51E+07
boundtop 5.57 54 386 6.77E+06
LU8PEEng 68.23 130 2839 6.43E+07
LU32PEEng 70.91 192 9475 2.53E+08

mcml 41.23 100 13167 2.71E+08
mkSMAdapter4B 5.39 66 272 5.04E+06

or1200 7.99 82 400 7.83E+06
raygentop 4.31 68 298 5.54E+06

sha 7.31 58 293 5.27E+06
stereovision0 3.59 54 1761 3.07E+07
stereovision1 5.84 98 1679 3.45E+07
stereovision2 12.51 100 3436 7.09E+07
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Table B.5: Quality of results of the unbalanced carry-lookahead adder architecture.
Circuit Delay Min W Num CLB Area

arm core 14.81 108 1783 3.79E+07
bgm 25.56 88 4628 9.16E+07

blob merge 7.88 82 766 1.50E+07
boundtop 5.38 56 381 6.75E+06
LU8PEEng 71.41 102 2996 6.25E+07
LU32PEEng 69.78 142 9981 2.32E+08

mcml 42.98 106 13105 2.76E+08
mkSMAdapter4B 5.17 68 267 5.00E+06

or1200 7.39 84 392 7.82E+06
raygentop 4.44 70 293 5.56E+06

sha 6.15 62 286 5.21E+06
stereovision0 3.56 58 1751 3.14E+07
stereovision1 5.61 104 1637 3.46E+07
stereovision2 11.84 108 3359 7.10E+07

Table B.6: Quality of results of the balanced ripple adder architecture with soft inter-logic block carry
links.

Circuit Delay Min W Num CLB Area

arm core 16.97 110 1783 3.80E+07
bgm 24.83 106 4519 9.50E+07

blob merge 8.08 82 766 1.49E+07
boundtop 5.44 54 381 6.66E+06
LU8PEEng 76.34 122 2858 6.32E+07
LU32PEEng 77.74 184 9538 2.49E+08

mcml 50.36 94 13045 2.60E+08
mkSMAdapter4B 5.42 64 268 4.87E+06

or1200 8.19 82 397 7.77E+06
raygentop 4.44 72 298 5.63E+06

sha 7.82 56 290 5.12E+06
stereovision0 3.54 56 1747 3.06E+07
stereovision1 5.48 102 1610 3.35E+07
stereovision2 12.98 94 3407 6.81E+07

Table B.7: Quality of results of the unbalanced ripple adder architecture with soft inter-logic block carry
links.

Circuit Delay Min W Num CLB Area

arm core 16.79 106 1776 3.77E+07
bgm 24.11 88 4599 9.10E+07

blob merge 8.12 84 764 1.52E+07
boundtop 5.57 54 380 6.69E+06
LU8PEEng 74.96 102 2996 6.26E+07
LU32PEEng 74.28 152 9817 2.38E+08

mcml 43.24 92 13090 2.62E+08
mkSMAdapter4B 5.20 66 267 4.97E+06

or1200 8.51 84 390 7.79E+06
raygentop 4.57 70 296 5.61E+06

sha 7.69 52 286 5.01E+06
stereovision0 5.02 56 1742 3.07E+07
stereovision1 5.61 102 1593 3.33E+07
stereovision2 11.93 98 3369 6.93E+07
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Table B.8: Quality of results of the carry-lookahead adder architecture with soft inter-logic block carry
links.

Circuit Delay Min W Num CLB Area

arm core 15.67 106 1791 3.81E+07
bgm 23.70 106 4549 9.62E+07

blob merge 7.84 86 765 1.53E+07
boundtop 5.80 54 386 6.80E+06
LU8PEEng 70.77 126 2839 6.36E+07
LU32PEEng 75.01 192 9475 2.56E+08

mcml 50.82 92 13167 2.64E+08
mkSMAdapter4B 5.33 66 272 5.07E+06

or1200 8.22 82 400 7.88E+06
raygentop 4.44 68 298 5.57E+06

sha 7.94 54 293 5.19E+06
stereovision0 3.57 54 1761 3.09E+07
stereovision1 5.74 98 1679 3.48E+07
stereovision2 11.80 96 3436 6.93E+07

Table B.9: Quality of results of the unbalanced carry-lookahead adder architecture with soft inter-logic
block carry links.

Circuit Delay Min W Num CLB Area

arm core 14.78 106 1783 3.81E+07
bgm 26.23 86 4628 9.19E+07

blob merge 7.96 82 766 1.51E+07
boundtop 5.47 56 381 6.79E+06
LU8PEEng 72.55 98 2996 6.22E+07
LU32PEEng 71.85 138 9981 2.33E+08

mcml 42.62 92 13105 2.64E+08
mkSMAdapter4B 5.13 66 267 5.01E+06

or1200 8.41 82 392 7.77E+06
raygentop 4.44 70 293 5.59E+06

sha 6.76 56 286 5.12E+06
stereovision0 3.56 54 1751 3.09E+07
stereovision1 5.48 102 1637 3.45E+07
stereovision2 12.08 98 3359 6.95E+07
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