ClusterBased Architecture,
Timing-Driven Racking and
Timing-Driven Placement for FPGAs

Alexander R. Marquardt

A thesis submitted in conformity with the requirements
for the dgree of Master of Applied Science
Department of Electrical and Computer Engineering
University of Toronto

© Copyright by Alexander Ronald Marquardt, 1999

Abstract

ClusterBased Architecture,iining-Driven Racking and
Timing-Driven Placement for FPGAs

Master of Applied Science, 1999
Alexander R. Marquardt
Department of Electrical and Computer Engineering
University of Toronto

As process geometries shrink into the deep-submicgparreinterconnect resistance and capaci-
tance account for an increasingly significant portion of the delay of circuits implemented in Field-
Programmable Gate Arrays (FPGAs). Onaywio imprave FPGA speed is to empldogic-
clusterbased architectures which vieahigh-speed local connections among groups of logic

elements. In this ark we shav what size logic-cluster results in the best area-speed trade-of

To obtain the best choices for a cludtesed architecture, we use computer aided design (CAD)
tools to eperimentally galuate architectures with &&fent sized logic clusters. As part of this
CAD flow, we deelop a timing-diren algorithm that packs logic elements into these clusters. In
addition, we deelop a timing-dwen placement algorithm that results in significant inmapnoents

in FPGA speed\er eisting non-timing-drven algorithms.

Acknowledgments

| would like to thank my advisor Jonathan Rose fowvpling direction, motration, and advice

throughout this wrk. He has taught me a great deal about FPGA research.

| would also lile to gve thanks to ®fughn Betz. He and | spent nyamours discussing FPGA

architecture and CAD, and each discussion we raesdeslucational.

| would also lile to thank the students in Jonatisar@search group,agka, Jordan, Khalid, Rob,
and Rwl. Through our weekly meetings, and through other informal meetings,wseshared

mary ideas.

| am grateful to my parents forngmg me constant support and encouragement throughout my life

and alays haing faith in me.

Table of Contents

CHAPTER 1 INntroducCtion e e e 1....
1.1 Cluster-Based Logic Blocks. 3...
1.2 Timing-Driven Packingot 4. ...
1.3 Timing-Driven Placement. 4. ..
1.4 Thesis Organization.ottt 5....

CHAPTER 2 Background and PreviousWork, 7 ..
2.1 Overview of FPGA Architecture. e ...

2.1.1 Cluster-Based LogicBlocks 8...
2.2 CAD TOr FPGAS .« Q...
2.2.1TIMING ANalysSiS.o 11...
2.2.2 Packing Algorithms for Cluster-Based FPGAs. 12
2.2.2.1 The VPack Logic Cluster Packing Tool 13.
2.2, 2. 2 RASP 15. ..
2.2 3 Placement 15...
2.2.3.1Simulated Annealing. 16. .
2.2.3.2The VPR Placement Tool (VPlace). 18.
2.2.3.3Timing-Driven Placement. 18..
TimberWolfSC. 19. ..
PROXI . e 20...
2.3 SUMMaANY. . o ottt e e e e e e e 21. ...

CHAPTER 3 Timing-Driven and Connection-Driven Packing 23

3.1 Experimental Methodology. 23 ..

3.2 Timing-Driven Packing: T-VPack 25..

3.2.1 Timing Analysisand Delay Models 27..
3.2.2 Timing-Driven Packing Description 27..
3.2.2.1Preliminary Definitions 28. .
3.2.2.2 Seed Selection and Attraction Function. 32.
3.2.3 Algorithm Analysis 33...
3.2.4 Computational Complexity. 34..
3.3 Connection-Driven Packing: C-VPack 36. .
3. 3.1 Attraction FUNCHION oo o 37...
3.3.2Time Complexity.o 38. ..
3.4 Result Quality of T-VPack, C-VPack, and VPack. 39.
3.5 SUMMaANY. . . 43. ...
CHAPTER 4 The Effect of Cluster Sizeon FPGA Speedand Density: 45
4.1 Trade-offs in Cluster-Based FPGAS. e 45. .
4.2 Architecture Modeling. 46. ..
4.2 1 AreaModel 47 . ..
4.22Delay Model. 47 . ..

4.2.3 Effect of Cluster Size on the Physical Length of FPGA Routing Segments.49
4.2.4 Sizing Routing Transistors to Compensate for Different

Physical Segment Lengths. 50..
4.3 FPGA Architectural Parameterst 51..
4.3.1 BasiC ArchiteCture. 51...
4.3.2 Inputs Required vs. Cluster Size 52..
4.3.3 Routing Architecture. 53..
4.3.4 Flexibility of Logic Block to Routing Interconnect vs. Cluster Size. 54
4.4 Architecture Evaluation Metric: Area-Delay Product 56
4.5 Speed and Area-Efficiency vs. Cluster Size 57.
4.5.1 Discussion of Delay vs. Cluster Size Results. 62.
4.6 Effect of Cluster Sizeon Compile Time 64. .
A7 SUMMAIY. .« ot ettt e e e e e e e e e e 65....
CHAPTER 5 Timing-Driven Placement 67..
5.1 INtrodUCHION.o 67....
5.2 Timing-Driven Placement: T-VPlace. i 68. .
5.2.1 Delay Modelingand Cost Functian 68 .
5.2.1.1 Delay Lookup MatrixX.t 70. .
5.21.2CostFunction. L

522 Algorithm TuNiNg 74. ..
5.2.3 Verification of the Fidelity of the Placement Estimated Critical Path Delay.79

5.24Time Complexity.o 80. ..
5.3 Results: VPlace vs. T-VPIace 81..
5.4 SUMMANY. .« . ottt e e e e e 84. ...
CHAPTER 6 Conclusionsand FutureWork 87..
6.1 Conclusions and Contributions 87..
6.2 FUIUrE WOTKo 88. ...
APPENDIX A MCNCBenchmarks 89..
APPENDIX B VPack and T-VPack Sink Delay Distributions: Size8 Clusters 91
APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 103
C.1 Placement Estimated Sink Delay Distributions: Size 1 Clusters 103
C.2 Low-Stress Sink Delay Distributions: Size 1 Clusters. 114
C.3 Placement Estimated Sink Delay Distributions: Size 8 Clusters 125
C.4 Low-Stress Sink Delay Distributions: Size 8 Clusters. 136

Vi

List of bles

TABLE 3.1

TABLE 3.2

TABLE 3.3
TABLE 4.1

TABLE 4.2

TABLE 4.3
TABLE 5.1

TABLE 5.2
TABLE 5.3
TABLE 5.4
TABLE 5.5
TABLE 5.6

TABLE 5.7

TABLE 5.8

TABLE A.1

Effects of using tie-breakers, and the recompute timing

interval (cluster size =8).. 35..
Comparison of VBck, FVPack, and C-VBck

result quality (Cluster Size =8)......... 40 .
Net absorption and inputs used (clustersize 8) 41
Important intra-cluster delays in TSMC’s 0.8 CMOS process.. A8
Inputs required for 98% utilization for \&ék and IVPack 55
Routing area vs. &y, for various cluster sizes. 56
Effect of re-timing-analysis in the outerloop. 75
Effect of re-timing-analysis in the innerloop. 75
Effect of Criticality_Exponent with avalue of 0.5.................76
Effect of Criticality Exponentwithavalueof 1 77
Effect of A with an adaptie Criticality Exponentof8............... 79
Post-place-and-route comparison of VPlace and

T-VPlace (cluster Size = 1)..ottt 82..
Post-place-and-route comparison of VPlace and

T-VPlace (cluster size = 8).. 83..
Post-place-and-route comparison with Xilinxdilrchitecture

(CluSter SIZE = 4).. . . 85 ..
MCNC benchmark circuits. 89. .

Vil

List of Hgures

FIGURE 1.1
FIGURE 2.1
FIGURE 2.2
FIGURE 2.3
FIGURE 2.4
FIGURE 2.5
FIGURE 2.6

FIGURE 3.1
FIGURE 3.2
FIGURE 3.3
FIGURE 3.4
FIGURE 3.5
FIGURE 3.6
FIGURE 3.7
FIGURE 3.8
FIGURE 4.1
FIGURE 4.2
FIGURE 4.3
FIGURE 4.4
FIGURE 4.5

FIGURE 4.6
FIGURE 4.7
FIGURE 4.8
FIGURE 4.9

Example logic cluster containingoA.UTs [BETZ99] 3

A generic FPGA [Brov92].o oo 8...
Logic cluster and basic logic element (BLE). 9.
CADfloW 10...
Packing eample. 13 ..
Pseudo-code for \dek [Betz98b, Betz99] 14
Pseudo-code of a generic Simulated Annealing-based placer

[Betz98b, BetzO9]. 17 ..
Architecture galuation CAD flav [Betz98b, Betz99].. 24
Pseudo-code for-VPack. 26. .
Determining BaseBLECrit from connection criticalities. 28
Example of first criticality tie-breagt 30.
Example of second criticality tie-break 31
Post place and routeMPack alpha trade-bturves. 33
Post place and route C-XEk alpha trade-dfcurves. 38
Why reducing the number of nets in a circuitisgood 42
Structure and speed paths of alogiccluster. 48
Effect of cluster size on pkical length of routing ggnents.. 49
Effect of cluster sizeontilelength 50.
Inputs required for 98% utilization vs. cluster Size 53
FPGA with length 4 ggments, 50% Wiffered and 50%

pass transistor switches. 54..
Total area vs. clustersize.. 58..
Area components vs. clustersize. 59.
Critical path delay vs. clustersize.. 60 .
Area-delay productvs. clustersize.. 61.

viii

FIGURE 4.10
FIGURE 4.11

FIGURE 4.12
FIGURE 4.13
FIGURE 5.1
FIGURE 5.2

Inter-cluster and intra-cluster nets on the critical path. 62
Breakdavn of critical path delay into intesluster and

intra-cluster components.. 63. .
Decrease in logical manhattan distance as cluster size increases.. . . 64
Variation of circuit compile time with logic cluster size.. a5
Pseudo-code-VPlace. 69. .
Graph shwing fidelity of placement estimated critical path.. 80

anerer: INtroduction

Field-Programmable Gate Arrays (FPGAsyddecome one of the most popular implementation
media for digital circuits, and since their introduction in 1984, FPGA® Ih@come a multi-
billion dollar industry The ley to the success of FPGAs is their programmabhitiyich allavs

ary circuit to be instantly realized by appropriately programming an FPGA.

FPGAs hae some compelling adntages wer Standard Cells or Mask-Programmed Gate Arrays
(MPGAS): faster time-to-mamt, lover non-recurring engineering costs (NRE), and easiargdeb
ging. Additionally FPGAs ofer designers the ability to fix errors or to add features to systems
that hae already been maradtured. FPGAs are also useful for implementing designs that are
low volume or are required immediatelince thg do not require densve manuécturing like
Standard Cells or MPGAs.

The benefits déred by FPGAs come at a price — FPGAs are at least three times, slod

require at least ten times the area of MPGAs\B®2). This loss in speed is mainly due to taetf

that logic in FPGAs is connected via programmable switches, while in Standard Cells or MPGAs,
logic is directly connected with metal wires. The programmable switches in FPGAigh
resistance and capacitance compared to the metal wiring in Standard Cells or MPGAs, and
therefore reduce circuit speed. Interconnect delay is more significantgéa faoportion of

circuit delay) in FPGAs than it is in MPGAs or Standard Cells, and consequently it is more

important to minimize the interconnect delay in FPGAs than it is in MPGAs or Standard Cells.

CHAPTER 1 Introduction 2

Another important dctor afecting circuit delay is the process used in the mattufe of an

FPGA. As process geometries shrink into the deep-submicgionreinterconnedtresistance

and capacitance become increasingly significant — smaller processes which result ve-impro
ments in logic speed do not result in similar inyenments in interconnect speed. The result of

this is that as processes shrink, interconnect delay accounts for an increasing proportion of total
circuit delay Clearly each process shrink negkinterconnect delay more and more significant,

and it must be minimized to ackieethe best possible circuit performance.

The quality of the computerided design (CAD) tools used to map circuits into an FPGA and the
guality of the FPGA architecture carvieaa significant impact on the FPGAerformance. It is
clear that interconnect delay is an increasingly importtof in the gerall performance of an
FPGA, so it is crucial that FPGA CAD tools and FPGA architectures minimize this Galay

research focuses on the follmg two areas

1. Exploring FPGA logic block architectures to minimize interconnect dalay

2. Developing CAD tools that minimize interconnect delay

It is important that FPGA architecture and CAD be studied in concert, since architectural features
must be properly utilized by CAD tools to be ofydenefit, and CAD tool enhancements cannot

be properly ealuated without a good architecture. In this thesis, we are concerned with
improving FPGA performance without sacrificingdaramounts of areaoTaccomplish this we
investicate three promising aspects of FPGA architecture and CAD: Logic-cluster based FPGA
architectures, timing-dren packing, and timing-dfen placement. These three areas are

described in the follwing sections.

1. Interconnect is the wiring and switches that connect logic elements.

CHAPTER 1 Introduction 3

Logic Cluster FPGA
T —_
I _— —
BLE »Ih ,
| Logic d
Cluster
| Outputs ~
BLE ,h d
s
| 7

FIGURE 1.1 Example logic cluster containing . UTs [BETZ99]

1.1 ClusterBased Lgic Bloks

An important &ctor afecting the area and speed of an FPGA is the logic block (logic cluster)
architecture used within the FPGA. In general a logic cluster consists one or more “basic logic
elements” (BLEs) connected bwst local interconnect [Betz98b, Betz99], where the BLE
(described fully in Section 2.1.1) that we use consists of a 4-LUT amiséere-igurel.1 shavs

an ample logic cluster consisting of mBLEs and local interconnect. The size of the logic
cluster (number of BLEs it contains) used in an FPGA architecture varaldramatic éct on

its area and performance. s work [Betz98b] demonstrated thdeadt of cluster size on area
efficiengy. Also, in [Betz98b] it vas speculated that as cluster size is increased, circuit speed

would be impreoed. As cluster size is increasedptthings happen

1. More critical path connections are able to use déiselbcal interconnect rather than using\slo

inter-cluster (between cluster) interconnectt this local interconnect becomesvetn

2. More connections are completely absorbed within clusters so lesslugtsr routing is
required (reducing area)ubthe local interconnect area per cluster ismgng quadratically

(increasing area).

CHAPTER 1 Introduction 4

We are concerned with determining thieef of logic cluster size on circuit speed as well as area
and finding what size logic cluster has the best area-delay trade-aur knavledge no wrk
has been done which simultaneouslyesticates logic clusters with respect to both area and

speed.

1.2 Timing-Driven Rdking

To fairly evaluate diferent size logic clusters with respect to speed, it is important that the CAD
tools tale adwantage of theast local interconnect within the clusters in order to minimize the
critical path delayA packing algorithm selects WaBLEs in a circuit are to be mapped into logic
clusters, while a “timing-dvien packing” algorithm attempts to map BLEs along the critical path
into the fevest number of clusters so that mamitical path connections usast local intercon-

nect. \& give a more formal definition of packing in Section 2.2.2.

1.3 Timing-Driven Placement

Placement imolves selecting the coordinates in the FPGA where each logic cluster will be
mapped to. A timing-dvien placement algorithm attempts to map logic clusters that are on the
critical path into pigsical locations that are close together so as to minimize the amount of inter-
connect through which the critical signal musvétaPrevious work [Betz99, Betz98b] has done

a good job considering timing during routingitlit did not consider timing during placement.
While there is @idence that timing-dvien placement impxes speed for standard cells, there has
been no clear quantification ofwionuch the impreement is for FPGAs. A goal of thisork is

to determine what imprv@ments can be obtained with timingwam placement. Placement is

formally defined in Section 2.2.3.

CHAPTER 1 Introduction 5

1.4 Thesis Oganization

This thesis is @anized as folls. Chapter 2 describes FPGA architecture and CAD, ard gi
an overview of existing CAD tools. Chapter 3 introduces awtaming-driven logic block packing

algorithm. Chapter 4 describes architectueeeiments thatwaluate diferent size logic clusters
with respect to area and speed. Chapter 5 describes &nmeg-driven placement algorithm.

Finally, in Chapter 6 we present our conclusions and suggestions for futtke w

CHAPTER 1 Introduction 6

cmerer2 Bakground and Revious
WOrk

In this chapterwe first gve an @erview of FPGA architecture with a focus on logic block archi-
tecture. After this we discuss the CADWIaised to map circuits into FPGAs including an intro-
duction to timing analysis, and a detailediees of logic cluster packing, placement, and timing-

driven placement.

2.1 Overviev of FPGA Achitectue

In general, an FPGA consists of logic blocks, 1/0 blocks, and programmable routingvasrsho
Figure2.1. To implement a circuit in an FPGA, each of the logic blocks in the FPGA are appro-
priately programmed to perform a small portion of the functionality of the desired circuit, and
each of the 1/0O blocks is programmed to be an input pad or an output pad as required by the
circuit. Then these functional portions and I/Os are all appropriately connected through the pro-
grammable routing. The logic block used in an FPGA cagr hasignificant impact on the perfor-
mance of an FPGA, and since we are interested in determiningféiots ednd trade-tf of

clusterbased logic blocks, we describe cludiased logic blocks behl

CHAPTER 2 Background and Previous Work 8

Logic

block 1/0 block

00 00
riryrir
Srarariry
Sryririr
Seiniale

000000

FIGURE 2.1 A generic FPGA [Bre/92]

Programmable
routing

mim

oooo

2.1.1 ClusterBased Logic Blocks

We are interested in studying logic blocks that consist of a groupihgsi€ I@ic elements
(BLEs) connected withafst local interconnect. In general, a BLE is a smallvisitile unit
combining sequential and combinational logic, while the BLE that we study consists of a 4-LUT
and a flip-flop as shn in Figure2.2-h A logic block combining manBLESs is knevn as dogic

cluster [Betz99, Betz98b]. Anxample of a logic cluster is the Logic Array Blocks used in
Altera’s FLEX 6K, FLEX 8K, and FLEX 10K parts [Alte98a], as well as the Configurable Logic
Blocks used in the Xilinx 5200 [Xili97] and iNex [Xili98] parts. Figure2.2-a shws the
structure of a logic cluster that consists of one or more BLEs and the routing required to connect

them together

The clusters that we study dtdly-connectedmeaning that anBLE input can connect to gn
cluster input or an BLE output. Since the cluster is fully connected it is possible to bring a net
into the cluster on a single cluster input, and route this net ty Blaas within the cluster via the

local routing. This alles the number of nets brought into the cluster (number of cluster inputs

CHAPTER 2 Background and Previous Work 9

(a) Logic Cluster (b) Basic Logic Element (BLE)

FIGURE 2.2 Logic cluster and basic logic element (BLE)

used) to be less than the total number of BLE inputs within the cléstether benefit of fully
connected clusters is that CAD tools are simplified since all BLEs within the cluster are logically

equvalent.

A logic cluster consisting of BLEs is described with the feitay four parameters [Betz99,
Betz98b]:

The size of (number of inputs to) a LUK)(
The number of BLEs in a clusteX)
The number of inputs to the cluster for use as inputs by the L) Ten(

A w0

The number of clock inputs to a cluster (for use by thesters) Mclk.

The work of [Betz99, Betz98b] focused on logic clusters in which the LUT Kizes 4 and the
number of clock pins on a clustéi,,, is 1 — this is the case shio in Figure2.2. The total
number of BLE inputs i¥K:N, however, only | inputs are brought into the clust@Betz98b]
shaved that a good rule of thurhis to design logic clusters with2:N + 2. Also shan was that
FPGAs composed of logic clusters of size 1-10 BLEs (with xbepion of size 2) hee the best
area diciengy. This research did not consider th&eef of cluster size on circuit speedwaver,

it was speculated that gger cluster sizes ould have a positre impact on FPGA performance.

1. This rule of thumb applies to the case when the LUT Kizis 4. An interesting direction for future research
would be to study the interactions between LUT sizethe number of inputs to a clusterand the number of
BLEs in a clusteN, and determine the best combination of these parameters.

CHAPTER 2 Background and Previous Work 10

2.2 CAD for FPGAs

Figure2.3 illustrates the CAD fl@ that is used towaluate FPGA architectures and CAD algo-
rithms. This CAD flev mirrors the actual CAD fls emplo/ed by FPGA and ASIC designers.

Each circuit we use is logic-optimized by SIS [Sent92] and then technology-mapped into 4-LUTs
by FlovMap [Cong94]. VRck [Betz98b] is then used to group the LUTs amsters into logic
clusters of the desired size. Finallwe use VPR [Betz98b, Betz99] to place (determine the x, y
position of each cluster in the FPGA) and route (connect the wires) each circuis MRIRG-

driven router gtracts the elmore delay [EImo48] of each routed net, and performs a path-based
timing analysis to determine the delay of the cirewstitical path. FinallyVPR uses a transistor

based area model [Betz98b, Betz99] to estimate the total layout area required by this FPGA to

implement each circuit.

Circuit

}

| Logic Optimization |

| Technology Map to 4-LUTs |

Clust [[
Sigg (el\rl)_>| Pack BLEs into Logic Clusters |
| Placement |
'
| Routing |

Timing an}Area Results
FIGURE 2.3 CAD flow

1. Note, follaving the comention of [Betz98b] our CAD fle shavs packing and placement asotaeparate steps.
After packing, we treat a logic cluster as anvigible unit which is then placed. Thisviiion is not avays nec-
essary (depending on the CADvflaised), ot we impose it in order to simplify the CAD tools. Another approach
would be to eliminate packing, and alithe placement algorithm to m®LUTs and rgisters freely between dif-
ferent clusters. This approach to placemeantid/ considerably increase the computational corityleof the
placement algorithm,ut would likely produce better results.

CHAPTER 2 Background and Previous Work 11

In this section we first describevmdiming analysis is used tova&uate a circuis speed, and o
it guides timing-driren algorithms. Then we discussotywacking algorithms Vé&tk and RASP
After this we discuss placement, andiggian @erview of Simulated Annealing and VPR’

placement tool, and we discusseml timing-drven placement approaches.

2.2.1 Timing Analysis

Timing analysis [Hitc83] has twmain purposes:

1. To determine the final maximum speed that a circuit implementation canechie

2. To determine the delay of all the paths and connections in a circuit during placement and rout-

ing, and use these as a guide to reduce the total circuit delay

To perform a timing analysis, we must first represent the circuit as a directed graph. Nodes in the
graph represent input and output pins of circuit elements such as LIdiEseng and 1/0O pads.
Connections between these nodes are modeled with edges in the graph. These edges are

annotated with a delay corresponding to thgspial delay between the nodes.

To determine the delay of the circuit, a breadth firsensal is performed on the graph starting at
sources (input pads, andyrgter outputs). Then we compute treival time, T4, at all nodes

in the circuit with the follving equation

Tarrival(i) = Ivla‘XEIj O fanin(i){ Tarrival(j) +delay(j, 1)} (2.1)

Where node i is the node currently being computed, and delay(j,i) is the d&layov the edge
joining node j to node i. The delay of the circuit is then the maximuwaatime, Q,,,, of all

nodes in the circuit.

1. In a graph representation of the circuit we define a “connection” to be an edge betweerverrstdian of its
terminals.

CHAPTER 2 Background and Previous Work 12

To guide a placement or routing algorithm, it is useful taxkhow much delay may be added to

a connection before the path that the connection is on becomes critical. The amount of delay that
may be added to a connection before it becomes critical is callathtkgHitc83] of that con-
nection. D compute the slack of a connection, we must computeetiered arrival time T,..

quires At &ery node in the circuit. @¥/first set the [I,,.qat all sinks (output pads andgrster

inputs) to be [, Required arual time is then propaged backwrds starting from the sinks

with the folloving equation

Trequired(i) = MinDj ad fanout(i){ Trequired(j) —del ay(i’ J)} (2.2)

Finally, the slack of a connection ding nodej, is defined as:

Slack(i, §) = Tequirea(i) = Tarrivar(i) —delay(i, j) (2.3)

2.2.2 Packing Algorithms for ClusteBased FPGAs

A packing algorithm tals a netlist consisting of LUTs andyjigters and produces a netlist con-
sisting of logic clusters. This\mlves combining the LUTs andgisters into BLES, and then

grouping the BLEs into logic clusters (Figuzd).
There are tw main constraints that packing algorithms must meet:

1. The number of BLEs must be less than the cluster Nize,
2. The number of distinct inputs generated outside the cluster and used as inputs to BLEs within

the cluster must be less than or equal to the number of cluster inputs,

CHAPTER 2 Background and Previous Work 13

Netlist of BLEs Netlist of Clusters
T = A= —®{| A BlL
— B |- > - >
Pack —||C D=
— FM G CHH}I - >
o = D} - | > G Clusters
e 1. L = |
B —~{E @[~

FIGURE 2.4 Packing ekample

Altera has an in-house tool [Alte95] thatgats clustebased logic blocks, and Xilinx has an in-
house tool tggeting the “clustetike” logic blocks of the 5200 [Xili97] and iex [Xili98]
FPGAs, havever to our knwledge, this wrk has not been made publiclyadable. In this
section we discuss twpublicly available packing algorithms, \dek [Betz98b] and RASP
[Cong96].

2.2.2.1 The VRack Logic Cluster &king ool

VPack [Betz98b, Betz99] tals a netlist of LUTs and gesters, and produces a netlist of logic
clusters. All parameters relating to the logic clusteriNgl(K, M) are specified at run-time.
VPack first groups LUTs and gesters into BLES, and then packs the BLEs into logic clusters.
The pseudo-code for the Y€k algorithm is gien in Figure2.5 [Betz98b, Betz99].

The VRack algorithm has taw optimization goals. The first is to pack each logic cluster to its
capacity to minimize the number of clusters needed. The second goal is to minimize the number

of inputs to each cluster in order to reduce the number of connections required between clusters.

CHAPTER 2 Background and Previous Work 14

Let: UnclusteredBL Es be the set of BLES not contained iryatuster
C be the set of BLEs contained in the current cluster
LogicClusters be the set of clusters (where each cluster is a set of
BLEs)

UnclusteredBLEs =&ternMatch®BLEs (LUTs, Rgisters);
LogicClusters = NULL;

while (UnclusteredBLEs = NULL) { /* More BLEs to cluster */
C = GetBLEwithMostUsedInputs (UnclusteredBLES);
while (|IC| < N){ /* Cluster is not full */
BestBLE = MaxAttractionLgalBLE (C, UnclusteredBLES);
if (BestBLE == NULL) /* No BLE can be added to cluster */
break;
UnclusteredBLEs = UnclusteredBLEs - BestBLE;
C = CO BestBLE;
}
LogicClusters = LogicClusters C;

FIGURE 2.5 Pseudo-code for \dek [Betz98b, Betz99]

Vpack uses a greedy algorithm to construct each cluster sequewtidtye start of each cluster
operation, VRck selects as a “seed” an unclustered Blith the most used inputs, and then
places this “seed” into a clustér Then VRck selects a meBLE, B to pack intoC based on the
attractionthatB has toC. Attraction is determined by the number of inputs and output8taad

C have in common:

Attraction(B) = |Nets(B) n Nets(C)| (2.4)

BLEs are added to the current cluster until it cannot fitraare, at which point packing ias

on a n&v cluster The process terminates when there are no more unclustered BLES left.

CHAPTER 2 Background and Previous Work 15

The time compleity of this algorithm is O(k,,&m) which is a result of theatt that when each
BLE is clustered (n BLES) we mustamine all of the nets attached to the BIkEngts), and we
must eamine all BLEs that each nerfs out to (maximumahout = k). This results in an
execution time of about four seconds to pack thgdsir MCNC circuit (clma) [Yang91] on a 296
MHz UltraSFARC-II processar

2.2.2.2RASP

In [Cong96] the RASP logic block packing tool is described. This tool is capable of mapping
circuits represented as a netw of LUTs into seeral diferent types of logic blocks. This
algorithm uses a “closeness” cost function to weigh the desirability of mapping LUTs into the
same logic block. This closeness cost function can be set up to prefer to minimize delay or area, or
to maximize routability The closeness of wLUTs is markd on an edge in a “compatibility
graph” if it is allavable to pack the tavLUTs into one logic block. If the LUTs cannot be paatk
together (i.e. theviolate some hard constraint such as number of inputs or BLEgedldhen

there is no edge put into the compatibility graph. The packing step selects LUTs to pack together
by performing a maximum weighted matching on the compatibility graph. The catpitthis
algorithm is O(nm) where n is the number of LUTs, and m is the number of edges in the compati-
bility graph. With the logic blocks used in our research, the number of edges, m, in the compati-

bility graph is O(A), which leads to an algorithm compiy of O(n3).

2.2.3 Placement

Placement is the process by which a netlist of circuit blocks (I/Os or logic clusters) is mapped into
physical locations in an FPGA. The locations that blocks are mapped to can significkaatly af
the performance of the FPGA. There are three main goals that placement algorithms may attempt

to satisfy:

1. We give a brief eerview of the 20 lagest MCNC circuits in Appendix A.

CHAPTER 2 Background and Previous Work 16

1. To minimize the amount of wiring required, which we refer to as wirelengtierdplace-
ment.
2. To balance the wiring density across the FPGA, called routabiligmplacement.

3. Minimize the delay of the critical path(s), called timingven placement.
Placement algorithms may simultaneously satisfy one or more of these goals.

In the remainder of this section wesiev the Simulated Annealing algorithm that is commonly
applied to placement problems. Then we discuss the Simulated Annealing-baseduitaoés b
VPR [Betz98b, Betz99] which we call VPlace. After this weiew various timing-dwen

placement approaches.

2.2.3.1 Simulated Annealing

The Simulated Annealing placement algorithm mimics the annealing process used to gradually
cool molten metal to produce high-quality metal structures [Kirk83]. A Simulated Annealing-
based placer initially places logic clusters and 1/Os (circuit blocks) randomly iy&icph
locations in an FPGA. Then the placement is iteestiimprosed by randomly sapping blocks

and @aluating the goodness of eachagpwwith a cost function. If the me will result in a
reduction in the placement cost, then thevenis accepted. If the nae would cause an increase

in the placement cost, then thevaanay still be accepteden though it maés the placement
worse. The purpose of accepting some “bad¥@sas to preent the Simulated Annealing-based

placer from becoming trapped in a local minimum.

The probability of accepting a “bad” meis given by é*“’T, whereaC is the positie change in
cost function that acceptance of thevmaould result in, and T is a parameter called temperature
that controls the liglihood of accepting each & Initially, a Simulated Annealing-based placer
starts at a high temperature, so that almost allem@are accepted, then the temperature is
gradually reduced so that the probability of acceptingeadhat ma& the placement avse
becomes ery low. In the final stages of placement onlyves that decrease the placement cost

are accepted.

CHAPTER 2 Background and Previous Work 17

S = RandomPlacement ();
T = InitialTemperature ();
Riimit = InitialRymit ();

while (ExitCriterion () == Rlse) { [* *Outer loop” */
while (InnerLoopCiriterion () ==&se){ /* “Inner loop” */
Shav = GenerateMMove (S, Rmit);
AC = Cost (§gy) - Cost (S);
if (AC <0) {
S = Sy /*Move is good, accept*/

}

else {
r = random (0,1);
if (r < e—AC/T) {

S = §avi *Move is bad, accept grway*/

}

}

} /* End “inner loop” */

T = Update€mp ();
Riimit = UpdateRmy;t ();
} /* End “outer loop” */

FIGURE 2.6 Pseudo-code of a generic Simulated Annealing-based placer [Betz98b, Bef

In the final (lav temperature) stages of the placement, if all blocks in the FPGA are considered for
swapping, most saps will be rejected because yhresult in lage positve changes in the cost
function. 1o increase the number of acceptedvesoat lov temperatures, only blocks that are

close together should be considered foapmng since “local saps” tend to result in relagly

small changes in the placement cost. Accordinglypimulated Annealing-based placer uses a
parameter called R;; (“range limiter”) that controls hw close together circuit blocks must be to

be considered for sapping. Initially R;,,; spans the entire FPGA which means that blocks on
opposite sides of the FPGA may be considered fappimg. As the placement proceedg,Rs
decreased, so that in the final stages of placement, only blocks that are close together are consid-

ered for svapping.

In Figure2.6 we shw the pseudo-code for a generic Simulated Annealing-based ,péecer
presented in [Betz98b, Betz99].

CHAPTER 2 Background and Previous Work 18

2.2.3.2 The VPR Placementobl (VPlace)

In this document we will refer to the placement algorithm used within VPR as VPlace. VPlace is
a Simulated Annealing-based placement algorithm that attempts to minimize the wirelength of
the resulting circuit by placing circuit blocks that are on the same net close togetahecom-

plish this, VPlace uses a bounding-box based “linear congestion” [Betz98b, Betz99] cost function
to estimate wirelength requirements. The VPlace algorithmaisltbe format of the pseudo-code

shavn in Figure2.6.

The linear congestion cost function has the foitg functional form [Betz98b, Betz99]

Nnets

COStinear congestion= » A(1) LTDb,(i) +bby(i)] (2.5)
i=1
where there are [N in the circuit. The cost of each net, i, is determined by its horizontal span,
bh,(i), and its \ertical span, bigi). The q(i) actor compensates for thect that the bounding box
wire length model underestimates the wiring necessary to connect nets with more than three ter-
minals. The alues used for (i) were obtained from [Chen94] so that q(i) is set to 1 for nets with
3 or faver terminals, and it skady increases to 2.79 for nets with 50 terminalsyde 50 termi-

nals, the q(i) function linearly increases at the rate of

q(i) = 2.79 + 0.02616Num_"Erminals- 50). (2.6)

The compleity of this algorithm is O(#%) where n is the number of blocks in the circuit.

2.2.3.3 Timing-Driven Placement

Placement algorithms that attempt to minimize the critical path delay of the resulting circuits are
called timing-dven. There are diérent approaches to minimizing critical path delay in timing-
driven placement algorithms. One approach which we call “path-based” timueggiiacement
computes path delays ategy stage of the placement, and uses theses delays in its cost function.
This path-based approach is computationatlye@sve since path delays must be continuously

re-computed. Another approach is “connection-based” timingsaplacement, which wolves

CHAPTER 2 Background and Previous Work 19

performing a path-based timing analysis and assigning slacks to each connection in the circuit.
Then during placement, more attention is paid to connections withléxk, lut the more global

view of the complete path delay is not used. It is also possible to combine connection-based and
path-based timing-dren placement by periodically performing a full path analysis based on the

current placement, and then updating the slacks owidlugil connections.

In this section we discuss theiging timing-driven placement algorithms that are mostvaié

to our work.

Timber WolfSC

The TimberWbIfSC timing drven placement algorithm for webased standard cell ICs is
presented in [Sar95]. This algorithm uses a Simulated Annealing approach to placement. In this

algorithm, net delay is computed as

Net Del ay = Tdriver + Rdriver E(Cnet + Cgates) 2.7)

Where T, IS the intrinsic delay of the aer, Ry iS the resistance of the der, G, is the
estimated capacitance of the net, agg.{s the @te input capacitance of all sinks on the net. The
arrival time at the sink of a path is the summation of all of the net delays along that path. This for-
mulation of delay assumes that thevdriresistance is much ¢ger than the wiring resistance (so

that it can ignore wiring resistance). Thaetfthat wiring resistance is ignoreddik males these

net delays optimistic, especially for circuits implemented in deep-submicron processes where

wiring resistance and delay is significant.

The cost function used in this algorithm penalizes@aths where the aval time is greater than

the required (user defined) ami time with the folleving:

Penalty = T T (2.8)

arrival — ' required

The total timing penalty #s the sum of all critical path penalties.

CHAPTER 2 Background and Previous Work 20

P, = Z Penalty (2.9)
Opaths

The cost function consists of tivierms, a wire length term represented hyaddal timing penalty

P, and a trade-bWariableA that trades dfbetween the te terms

Cost = W+ A [P, (2.10)

The authors of [Sar95] found that setting

A= 3ﬂ (2.11)

gave the best results, whef@V is the average change in wire length and\P, is the aerage
change in the timing penalty measured during the first “outer loop” iteration of a Simulated
Annealing algorithm. This implies that changes in the timing penalty are three times as important

as changes in the wire length.

The authors presented results for three MCNC standard cell circuits, for which timing informa-
tion was preiously available. Compared to the pieus results thereduced delay by 28% - 50%

at an area cost of between 2.5% and 6%. It is not clear from the pap#rehpreious timing
results were obtained. This algorithm is path based, so the computationalxacgmgplékely

quite high, lot is not re@ealed in the paper
PROXI
In [Nag95] a performance-aen simultaneous place and route algorithm@RR is presented.

After each placement perturbation in the anneal, a small subset wdntelgets (praously
unroutable and mdy disturbed nets) is ripped up and rerouted witlast fnaze routeAs the

placementeolves the critical path isvaluated. The cost function used in this algorithm is

Cost = W, [R+W, O (2.12)

CHAPTER 2 Background and Previous Work 21

Where R is the number of unrouted nets and T is the critical patndW\V are weights that are
determined adap#tely at runtime so as to normalize the components of the cost function so that
each term contrites equally to the cost function. This algorithm is unique in that it performs
placement and routing simultaneously — most place and routeaseftlees placement first, and

then routes the placed circuit. Performing placement and routing in one stage should theoretically
give better results than advetage (place then route) algorithmweeer it is much more compu-

tationally expensve.

This algorithm achies 8% - 15% impneement in delay when compared to the Xilinx &F5.0
place and route system. This algorithmwbeer, has a significant disadmtage in CPU compile
time compared to the X&T5.0 tool, ranging from 6 times for the smallest design (12x12 array),

to 11 times for the Igest design (16x16 array).

2.3 Summary

In this chapter we presented areoview of FPGA architecture including a description of cluster
based logic blocks [Betz99, Betz98b]. Then we discussed CAD for FPGAs. This included discus-

sions of timing analysis, packing algorithms, and placement.

CHAPTER 2 Background and Previous Work 22

23

emerers 11IMING-Driven and
Connection-Driven
Padking

In this chapter we first discuss theperimental methodology that we use taleate diferent
CAD algorithms and FPGA architectures. Then we introduoenaw packing algorithms that are
extensions to the V&tk [Betz98b, Betz99] algorithm. The first is a timingsn packing
algorithm that we call -WPack, and the second is a connection-absorptiomiarpacking
algorithm that we call C-V&tk. We then compare the results of both of these algorithms to the
results of VRck.

3.1 Experimental Methodolyy

The CAD flav that we use tovaluate diferent CAD algorithms and FPGA architectures is the
same as in [Betz98b, Betz99], and igegi in Figure3.1. First each circuit is logic-optimized by

SIS [Sent92] and technology mapped into 4-LUTs byiMap [Cong94]. TVPack (described in
Section 3.2) is then used to group the LUTs amgisters into logic clusters of the desired size
with the desired number of inputs. Then VPR is used to place and route each circuit. The
placement algorithm in VPR is simulated annealing based and optimizes the final placement to
minimize the required routing area. The router in VPR is fully timingedriand attempts to

minimize the critical path delay (gn the current placement). After placement and routing, we

CHAPTER 3 Timing-Driven and Connection-Driven Packing 24

Circuit

Logic optimization (SIS)
Technology map to 4-LUTS (RidMap + Flavpack)

Cluster
Parameters—» | Pack FFs and LUTs into logic cIusters‘(fPack)|
(N, I, K)
| Placement (VPR)
Routing
Architecture i P ——
ParameteE" Routing (VPR, timing-dsien router
(Fc, etc.) Adjust channel
’ capacities (W)
in No A
tracks

Yes <« Wmin determined

Routing with W = 1.2 Wmin (VPR, timing-dren router)

| Determine critical path delay and transistor areautll -PGA (VPR + TansCount)|

FIGURE 3.1 Architecture galuation CAD flav [Betz98b, Betz99].

know the estimated area and track width required to implement each circuit and the estimated
critical path delaywhere area and delaplues are computed using the area and delay models

described in the & chapter

Figure3.1 shavs hav VPR computes the minimum number of tracks in which a circuit will
route, which we refer to ashagh-stessrouting. Basically VPR repeatedly routes each circuit
with different channel widths (number of tracks per channel), scaling the’'ER@Hitecture

until it finds the minimum number of tracks in which the circuit will route. d&fine dow-stress
routing (as does [Sav98a]) to occur when an FPGA has 20% more routing resources than the
minimum required to route awgn circuit. & feel that la/-stress routings are indicadi of hav

an FPGA will generally be used (it is rare that a user will utilize 100% of all routing and logic

CHAPTER 3 Timing-Driven and Connection-Driven Packing 25

resources), so mgrof our delay results are based ow4siress routings. @also present results
that are based on an infiniteumber of routing resources. These infinite routing results tell us the
best possible routexchievable speed of a circuit\g@n the current packing and placement of that
circuit. We feel that is a useful indicator ofvmavell a packing or placement algorithm performs

with respect delay

By allowing the channel width toavy, and searching for the minimum routable width, we can
detect small impneements in FPGA architectures or CAD algorithms that might otherwise go
unnoticed. Compare this to mapping a circuit into edigize FPGA — this auld only tell us if

the circuit fit or not. A “binary” result li& this maks it is dificult to drav conclusions about me

architectures or CAD algorithms.

3.2 Timing-Driven Rdcking: T-VPack

Our timing-driven logic block packing algorithm-\IPack, attempts not only to pack each logic
block to capacity and minimize the number of cluster inputs usédalbo to minimize the
number of intercluster (between cluster) connections on the critical path(s). The local routing
within clusters isdster than the general-purpose routing between logic clusters, so reducing the
number of intercluster connections on the critical path(s) reduces circuit .ddlag basic
operation of the algorithm is the same as that of thecWRlgorithm described in Section 2.2.2.1

with a fev modifications. W shav the pseudo-code for theVIPack algorithm in Figur8.2.

T-VPack first performs a timing analysis (defined in Section 2.2.1) to determine the critical
path(s) of the circuit. Then-V¥pack finds a “seed” BLE by selecting a BLE on the critical path(s)

rather than selecting a BLE with the most used inputs. BLEs are then added to the current cluster

1. Infinite routing resource results are delay results from the router when it ignores congestion, i.e. the router is
allowed to use a single resource for multiple un-related connections. This #fle router to allocate thastest
possible resource fowery connection in the circuit. See [Betz98b, Betz99] for a detailed descriptiomdhbo
router in VPR vorks.

CHAPTER 3 Timing-Driven and Connection-Driven Packing 26

Let: UnclusteredBL Es be the set of BLEs not contained iryartuster
C be the set of BLEs contained in the current cluster
LogicClusters be the set of clusters (where each cluster is a set of BLES)

UnclusteredBLEs =&ternMatch®BLEs (LUTs, Rgisters);
LogicClusters = NULL;

ComputeCriticalities();
BLEsSinceLastCriticalityRecompute = 0;

while (UnclusteredBLEs != NULL) { /* More BLEs to cluster */

C = GetMostCriticalBLE (UnclusteredBLES);
BLEsSinceLastCriticalityRecompute ++;

while (|IC| < N){ /* Cluster is not full */

if (BLEsSinceLastCriticalityRecompute >= Recomputelnadry
ComputeCriticalities();
BLEsSinceLastCriticalityRecompute = 0;

}

BestBLE = MaxAttractionLgalBLE (C, UnclusteredBLES);

if (BestBLE == NULL) /* No BLE can be added to cluster */
break;

UnclusteredBLEs = UnclusteredBLEs - BestBLE;

C = CO BestBLE;

BLEsSinceLastCriticalityRecompute ++;

}
LogicClusters = LogicClusters C;

FIGURE 3.2 Pseudo-code for-VPack

based on the attraction thbave to the current clustewhere the attraction function is modified
to prefer to absorb connections along the critical paths(s). After each cluster is full, packing

begins on a ne cluster

In this section we first discuss timing-analysis and delay modeling wiWiPatk. Then we ge
details of the algorithm implementation. After this wevile an analysis of-VPack to see the
effect of various parameters within\IPack. Finally after this we analyze the conxiie of the

algorithm.

CHAPTER 3 Timing-Driven and Connection-Driven Packing 27

3.2.1 Timing Analysis and Delay Models

To minimize the number of inteluster connections on the critical path(s)/Hack first needs to
determine which connections are on the critical path(s). AccordiiiffPack performs a timing
analysis to determine the slack of each connection between BLEs. The timing analyzer-within T
VPack models three types of delay: the delay through a BLIEggicDelay the connection delay
between blocks within the same clusterloiraClusterConnectionDelayand the connection

delay between blocks that are infelient clusters, dinterClusterConnectionDelay he delay of

a connection between 6BLEs in diferent logic clusters is not kmm until after a circuit has

been placed and routed, s&/Pack approximates the delay between clusters as a constant Inter-
ClusterConnectionDelayote that this leads to some inaccyracT-VPack’s estimate of where

the critical path(s) lies, so that sometimegHack will be attempting to shorten a path that will

not be part of the post-place-and-route critical path(s). The performane¥R#cK is not ery

sensitve to the gact \alues chosen for these three delay parameters. Throughouothisevset
LogicDelay to 0.1, IntraClusterConnectionDelay to 0.1 and InterClusterConnectionDelay to 1.0.
Note that the timing analysis can be performed as often as the user specifies, i.e. a timing analysis
can be performed after each BLE is clustered, or at the other end of the spectrum timing analysis
may be done once at thego@ning of the algorithm»eecution and neer agiin. The efiect of this

recompute intervak discussed in Section 3.2.3.

3.2.2 Timing-Driven Racking Description

After a timing analysis is complete, we are able wib@acking. This section describesxhave
determine which BLE will be selected as a “seed” for each cjustdrhav BLES to be added to
each cluster are selectedeWtst define mansub-equations that are used in selecting a cluster
seed and in the attraction function. After these preliminaries, we finally presentehselect a

cluster seed, and ourwattraction function.

CHAPTER 3 Timing-Driven and Connection-Driven Packing 28

3.2.2.1 Preliminary Definitions

We define the criticality of a connectidnto be

slack(i)

ConnectionCriticality(i) = 1 -2

(3.0
whereMaxSlak is the lagest slack amongst all connections in the circuit.

The Criticality of a BLE is computed as folls. Let us first define the base criticality of an
unclustered BLE, oBaseBLECTri(B). BaseBLECiit is defined slightly d&rently depending on
whether we are choosing a seed BLE fora aleister or computing the attraction of a BLE to the

current cluster:

1. When we are choosing a seed BLE, BaseBLER)ri§ the maximum ConnectionCriticality

value amongst all of BLB's connections; or

2. When we are computing the attraction of a BLE to the current ¢ligaeeBLECIitB) is the
maximum ConnectionCriticalityalue amongst all the connections joining BBEo BLEs
within the cluster currently being paak C. If a BLE does not hae ary connections t&€ then

its base criticality score is zero.

r-—-——-- 0 —75'1 BaseBLECrit = 0.95
3 BLE :
0.65] | | BLE
I I
—d BLE
—d BLE : | 0.95

L
BaseBLECrit = 0.97 Cluster C

FIGURE 3.3 Determining BaseBLECrit from connection criticalities.

CHAPTER 3 Timing-Driven and Connection-Driven Packing 29

In Figure3.3 we illustrate ho the BaseBLECrit &lues are assigned when we are computing the
attraction of a BLE to the current clustBach connection between unclustered BLEs and BLEs
within the clustelC is labelled with its ConnectionCiriticalityalue. Notice hav the base critical-

ity of each BLE is set to the highest criticality amongst the connections between it and the cluster

being packd.

During packing, multiple BLEs often ha the same base criticalitglue. In this case, we use a
tie-brealer mechanism to select which BLEs are the most beneficial to pack. This mechanism is
designed to choose (from the BLEs tied with the highest base criticalitg)vthe BLE whose
packing would reduce the length of the g&st number of critical paths. This is best illustrated by

an xample.

In Figure3.4 we hae darlened connections and BLEs on the critical paths. Notice that when
selecting which BLEs to place into a clustieis more beneficial to absorb certain critical BLEs
over other critical BLEs. In this case, absorbing BLEs Xantl Z vould be much more beneficial
than absorbing BLEs Q,, Bnd V We can see that absorbing X, anhd Z afects three partially-
overlapping critical paths, and will shorten the lengths of the critical path(s) tleat sher BLES

(Q, R, S, TU, Vand W) are on. On the other hand, absorbing @d V afects only one critical
path, and will not reduce the criticality ofyaather BLES, since all the other critical BLEswid

still lie on a critical path after the packing of Q,ahd V into a single clusteClearly it is best to

cluster BLEs that reduce the criticalities of the most other BLES.

We define threeariables that &ep track of the number of critical paths that each BLE in the
circuit afects. First we definenputPathsAfectedas the number of critical paths between timing
path sources (primary inputs ogigter outputs) and the BLE currently being labelledxtNee
define OutputRthsAfectedas the number of critical paths between the BLE currently being
labelled and the timing path sinks (primary outputs grster inputs). Finallywe defineTotal-
PathsAfectedas the sum of the pneus two variables. The calculation of thesaribles is

explained belav.

CHAPTER 3 Timing-Driven and Connection-Driven Packing 30

BLEs on
D critical path(s)

BLES not on
Q T . Z [Gritical path(s)
Y |3

(N

-
I 1 X

Timing path |1 w P13 Timing path
sources R 5 > sinks

1 U
S 2 4

19 2

InputPathsAfected(S) = 1
FIGURE 3.4 Example of first criticality tie-breadt

An example of the computation of Inp@thsAfected is shan in Figure3.4. In this figure each
BLE is labelled with its InputithsAfected \alue. W assign all timing path source nodes an
InputPathsAfected \alue of one. Then we perform a breadth-firstdraal of the circuit starting

at the sources, and define the In@uitBAfected alue as

InputPathsAffected(B) = InputPathsAffected(D) (3.2
0D O most critical inputs(B)

wheremost critical inputs(BYyefers to all of the BLE(S) diing the connections oB’s input(s)
that hae a criticality \alue equal to the lgest criticality of ag input onB. The OutputBthsAf-
fected \ariable is calculated in the same manbet it starts at timing path sink nodes anorks

back tavard the timing path sources.

OutputPathsAffected(B) = OutputPathsAffected(D) (3.3)
0OD O most critical outputs(B)

TotalPathsAfected is then simply

Total PathsAffected(B) = InputPathsAffected(B) + OutputPathsAffected(B) (3.4)

CHAPTER 3 Timing-Driven and Connection-Driven Packing 31

When two BLEs hae the same BaseBLECrit, we break the tie by choosing to insert the BLE with
the higher dtalPathsAfected alue in the clusteWhile this breaks most ties, it does not resolv

all of them. Consider the simple circuit shoin Figure3.5, and the selection of a seed BLE for

the first cluster. There is only one path through the circuit, so all 4 BLEs are on the critical path,
and hae a BaseBLECritaiue of 1. Similarlyall 4 BLEs hae a DtalPathsAfected \alue of 2, so

we hare a fourway tie for the best BLE to use as a seed. Figusé) shws a potential outcome

if we randomly choose one of the four tied BLEs as the cluster seed when the cluster size is 2. If
we choose BLE F as the cluster seed, and then BLE G is chosen as the second BLE in this cluster
we hare “marooned” BLEs E and H — it is not possible to pack either E or H withntenfor
fan-out. If instead, we choose BLE H as the seed of the first cluster (asFgbjeshavs), the

first cluster vauld contain G and H, and E and F could still be pddogether into one cluster

Clearly, the clustering shvan in Figure3.5(b) is preferable to that of Figuseb(a).

We use a second tie-breakmechanism to break ties not regol\by the first tie-bre@k to reduce
the likelihood of “marooning” BLEs. & alvays choose to pack the tied BLE that is tehfest
from the timing path sources (i.e. is the closest to the timing sirksFigure3.5, for eample,
this second tie-break causes-VPack to alvays choose BLE H as the seed of the first cluster

the superior clustering solution of FiguBé(b) is achieed.

The criticality of a BLE is its BaseBLECHit slightly adjusted by these tie-brealkrs:

Criticality(B) = BaseBLECrit(B) + ¢ [Total PathsAffected(B) + £” (D, .«(B) (3.5)

F_irs_t cﬂjster First cluster

<N VAN
EEamt []
\l / \ /

_ — —_ — = =

(a) BLE F chosen as seed of first clusi@) BLE H chosen as seed of first cluster

FIGURE 3.5 Example of second criticality tie-breatk

1. Note that choosing tovedys pack the tied BLE closest to the timing path souraeddanork just as well. The
key is simply to ensure that one consistently chooses BLEs from one end of a chain of tied BLES, rather than from
the middle or from a mix of the wends.

CHAPTER 3 Timing-Driven and Connection-Driven Packing 32

wheree is a small number (e.g. 0.01) to ensure that the secamtetws function only as tie-
brealers, and Q,,.{B) is a BLES distance, or {el, from the timing path sources.eVghav the

effectiveness of incorporating these tie-breikin Section 3.2.3.

3.2.2.2 Seed Selection and Attraction Function

Now that we hge all of the preliminary definitions out of theyyywe can gplain hav we select

a cluster seed and define our attraction function.

The seed BLE pa@d into a ne cluster is the unclustered BLE with the high@sticality. Once
a seed is chosen, the attraction function used to determinexhanutustered BLEB, to be

added to the current clust€r, is:

(B) n Nets(C)|

. _ e Nets
Attraction(B) = o [Criticality(B) + (1 0‘)d MaxNets

(3.6)

Notice that the second term in (3.6) is essentially the attraction function from the origatk VP
algorithm. The MaxNetsatctor in the denominator of this term is the maximum number of nets
that could connect to grBLE (I + N +M,) and simply normalizes the magnitude of the second
term. The first term in (3.6) promotes the grouping of BLEs with high criticalities (defineg)belo
into the current cluster to minimize delay is a parameter that controls the tradiebetween net
sharing and delay minimization.dfis O, we hge an algorithm that focuses solely on minimizing
the number of used inputs to a clusterd is equialent to the basic VE&ck algorithm described

in Section 2.2.2.1. l& is 1, the algorithm focuses solely on minimizing the delay of a circuit,
with no regard for hav mary nets are shared by the BLEs within a cludtising the CAD flav
described in Section 2.2 weveaeperimentally determined thatya value in the range from
0.4 to 0.9 produces the best quality packings in terms of both post-place-and-route delay and

routing area (channel width). The tradé-@frves for channel width and critical path delayws.

1. The attraction function is eguaient to the VBck attraction function if is O, lut the seed selection is still based
on the maximum criticality

CHAPTER 3 Timing-Driven and Connection-Driven Packing 33

56 T T T T 3.6e-08
Minimum Channel Width——
@ 35 f Critical Path Delay———— m
= 1 3.55e-08 >
— 54 Y ('5
5 g “\ Aa
22 53¢ 3.5e-08 DX
T 52t R
c g o £
£ES gl 3.45e-08 g
59 =0
es O 3.4e-08 £ x
ZE a9 3 £
g 2 335e-08 = ©
= &Cﬁ 48 ' OS5
47 + ; 0
8 3.3e-08 o
~ AN
46 + &
45 - - -) 3.25€-08
0 0.2 0.4 0.6 0.8 1
a

FIGURE 3.6 Post place and routeMPack alpha trade-bturves.

for an architecture using size 8 clusters arevshim Figure3.6. In this figure, the critical path
delay is computed based on an architecture with infinite routing resources. Throughookkour w
we sefa to 0.75.

3.2.3 Algorithm Analysis

In this algorithm, there are twfactors that may impact the quality of the packing solutions. First,
what is the déct of the tie-breadr enhancements on theeoall quality Second, the compliy

of T-VPack depends on hooften timing analysis is performed on the circuit as BLEs aregplack
into logic clusters, so we are interested iwltasten we should recompute timing information to
get the best results. &\¢all this theeecompute intervaMe perform a ne timing analysis if the
number of BLEs paad since the last timing analysis is greater than or equal to the recompute

interval. The pseudo-code forMPack was gven in Figures.2.

CHAPTER 3 Timing-Driven and Connection-Driven Packing 34

In Table3.1 we shw the efect of the tie-breadrs and the recompute intatvThis table shes

that in the infinite routing case, the tie-breekimpree the post-place-and route speed by about
4% compared to not using these tie-beraklt also shes that computing the critical path only
once during the algorithmxecution and using tie-breaks results in a 2% speedgdadation
compared to recomputing the timing information after each BLE is clustered and using tie-
brealers. The lav stress routing case sk® that the three casesvlaroughly the same critical

path delayWe feel that the infinite routing results are a good indicator wfwell the packing
algorithm performs with thearious options since these infinite routing results redadations

due to the router

It is likely that the reason that the recompute irdkeinas such a smallfett on the quality of the
resulting circuits is because thevPack predicted critical path (which uses the same delay for
each intercluster connection) and the post-place-and-route critical path &sedifenough that
there is no benefit to updating connection criticalities as more information about the circuit
packing becomesvailable. Since the post-place-and-route quality is not dramaticédigted by

the recompute inteal, we use a recompute intahof co (compute criticality once) for the results
presented in the remainder of this thesis. This dramatically reducegeitigtien time of our

algorithm as we discuss balo

3.2.4 Computational Complaty

The computational comptay of T-VPack depends on hooften timing analysis is performed on

the circuit as BLESs are paett into logic clusters. If timing analysis is performed after each BLE
is paclked (a recompute inteaVof 1), the algorithm has the most up-to-datenaé the criticality

of each BLE, bt the algorithm is O@), where n is the number of BLEs in the circuit. This com-
plexity is the result of O(n) BLEs to pack, and each timing analysis being an O(n) operation. In
this case VPack requires about fifteen minutes on a 300 MHz UltraSpar&station to pack

the lagest MCNC benchmark circuit (clma)ghg91], which contains 8383 BLEs.

CHAPTER 3 Timing-Driven and Connection-Driven Packing 35

TABLE 3.1 Effects of using tie-breaks, and the recompute timing intel(cluster size = 8.

M&g&j‘ﬁgﬂ?ﬂg\éﬁthf?r Post-PIaceF?:Icri]-l(R;]c:)Jte Critical Post-PIace;nat(:]-(F:](;;Jte Critical
min W = oo W = Wi, + 20%

Circuit With Tie | NoTie | With Tie | WithTie | NoTie | With Tie | WithTie| NoTie | WithTie

Breakers | Breakers | Breakers | Breakers | Breakers | Breakers | Breakers | Breakers | Breakers
and and and and and and and and and

Criticality | Criticality | Compute | Criticality | Criticality | Compute | Criticality | Criticality | Compute

Always | Always |Criticality] Always | Always |Criticality] Always | Always |Criticality
UptoDate|UptoDate] Once |JUptoDate|UptoDate] Once |JUptoDate/UptoDatel Once
alud 43 42 42 25.2 27.2 25.6 29.9 28.3 28.0
ape2 50 58 54 30.2 32.6 35.6 35.9 34.3 33.1
ap4 60 54 58 27.1 29.8 25.5 315 314 30.1
bigkey 28 25 26 15.7 21.4 16.4 17.2 21.7 17.7
clma 68 68 66 63.6 80.3 64.0 67.3 82.1 66.0
des 29 31 31 28.1 28.2 27.5 28.7 28.4 28.3
diffeq 34 33 34 30.2 30.0 26.5 34.6 31.2 30.1
dsip 23 23 24 17.9 18.1 20.2 20.5 18.0 21.9
elliptic 47 48 55 40.1 40.5 40.5 52.9 48.8 54.7
ex1010 63 59 62 41.4 49.1 42.8 44.9 50.8 49.3
ex5p 59 56 58 28.9 29.1 28.4 29.7 3.32 33.2
frisc 55 55 58 55.0 54.6 55.9 65.0 62.2 63.1
misex3 47 48 48 23.1 25.3 25.2 27.3 33.2 314
pdc 76 82 78 47.3 48.6 52.5 72.8 52.5 63.3
s298 31 32 32 48.7 53.4 49.5 57.6 59.4 67.0
s38417 44 44 44 39.3 43.4 41.6 40.8 43.9 42.7
$38584.1 43 44 44 35.5 32.0 29.3 36.6 33.9 38.1
seq 54 54 51 25.9 30.3 26.9 29.0 32.6 30.6
spla 69 69 68 38.9 42.1 41.0 59.0 48.2 46.3
tseng 29 29 36 28.9 29.6 29.0 321 33.7 30.1
Geom. A. 45.1 45.1 46.1 325 35.0 33.0 37.7 37.8 37.6

a. The results shn in Table3.1 were computed with an oldeergion of VPR than the results displayed in
Table3.2. Also, the architecture used for thigperiment has a leer F; value than the architecture used to gener-
ate Tble3.2. For these reasons, the numbersrghbere (for the tie-breaks enabled and compute criticality once
case) do notxactly match the size 8 clusterVPack results which we present iatle3.2 (although the are
quite close). Since all results stin this table are generated with tkemerouter and Fvalues, it preides an
accurate comparison of tie-bresk and the recompute intatv Howvever, comparisons should not be made
between @ble3.1 and &ble3.2.

CHAPTER 3 Timing-Driven and Connection-Driven Packing 36

b. Note that the congestion-okibus (infinite routing) delay isot a laver bound on the achiable delayIn fact
there is currently no kmen algorithm to route a net with guaranteed minimum Elmore delteyt of @haustvely
searching all possibilities [Boes93].

We demonstrated in the preus section that it is not necessary twals hae an up to date we
of the critical path, and iratt neer recomputing the timing information (recompute ingérveo)
results in an\erage dgradation of only 2%. If timing analysis is performed only afterg P
BLEs are pacid, the algorithm compidy is O(nZ/P). If it performs timing analysis only once
before ag BLEs hae been paad, the algorithm has the same comipe as VRack:
O(kna M) where k.. is the maximum number of terminals ofyamet andK is the number of
inputs to each BLE. As with \&k, this compbeity is the result of thealct that after each BLE is
clustered (n BLEs) we muska&mine all of the nets attached to the BlKEngts), and we must
examine all BLEs that each netrfs out to (maximumahout = k..). In this timing analyze only
once case,-VPack requires only a¥eseconds to pack the ¢gast MCNC circuit (clma). Wfeel
that this time-quality trade-bis the best for our purposes, so the remainder of evPakck

results are based on packing solutions in which the recomputeainssnoy

3.3 Connection-Driven &Xing: C-VRad

As we will shav in Section 3.4, our-VPack algorithm on\gerage requires ¥eer post-place-and-

route tracks to implement the benchmark circuits thaackPThis is a result of thedt that a

side efect of FVPack is that may connections (and hencewlicfanout nets) are completely
absorbed into logic clusters. This occurs because the attraction function uséBankTprefers

to pack a BLE with itsdn-in or fin-out BLES, rather than packing it with BLEs that it hasyman

nets in common with. Because of the realization that absorbing connections is good for area, we

decided to design an algorithm with this as a goal.

Our connection-absorption-gtan logic block packing algorithm, C-\dEk, attempts not only to
pack each logic block to capacity and minimize the number of cluster inputs usedsdto

minimize the number of interluster (between cluster) connections in the resulting circuit. This

CHAPTER 3 Timing-Driven and Connection-Driven Packing 37

algorithm isnot timing driven, so it has no concept of where the critical path lies, or what BLEs
are critical. The basic operation of the algorithm is the same as that of #uk ¥orithm
described in Section 2.2.2.1: C-a6k first chooses an unclustered BLE as the seed olva ne
cluster and then sequentially adds unclustered BLEs with the greatest attraction to the current
cluster until the cluster is full. Then this process is repeated until all BiMesbegn packd. The

seed is selected in the same manner as eck/Fhavever the C-VRck algorithm difers from

VPack in the attraction function it uses.

3.3.1 Attraction Function

C-VPack packs clusters together in a manner that minimizes the number afluister connec-
tions in the resulting circuit. W this goal in mind, the attraction function used to select the

unclustered BLEB, to add to the current clust€l, is:

Attraction(B) = a OConnectionGain(B) + (1—a) [JNets(B) n Nets(C)| (3.7)

The first term in (3.7) promotes the grouping of BLEs with I@ginnectionGaingthe number of

point to point connections betweBnandC) into the current cluster to minimize the number of
inter-cluster connectionsa is a parameter that controls the tradebsftween net sharing and
connection absorption. ki is 0, we hae an algorithm that focuses solely on minimizing the
number of used inputs to a clustand is basically equalent to the basic \@k algorithm
described in Section 2.2.2.1.dfis 1, the algorithm focuses solely on minimizing the number of
inter-cluster connections remaining, with n@aed for hav mary nets are shared by the BLEs
within a clusterUsing the CAD flav described in Section 2.2 weveaexperimentally determined

that aly a value in the range from 0.7 to 0.9 produces the best quality packings in terms of both
post-place-and-route delay and routing area (channel width). The tfacierafs for channel
width and critical path delay vs. alpha for an architecture using size 8 clusters wareisho
Figure3.7. In this figure, the critical path delay is computed based on an architecture with infinite

routing resources. In the remainder of this thesis, @easx set to 0.75.

CHAPTER 3 Timing-Driven and Connection-Driven Packing 38

58 ¥ T — T —T 3.75e-08
. Minimum Channel Width—— -
% It Cr//fflca[f?ath Delay-—— %
cxg ° : ‘ 3.7e-08 &
S0 O
2 = > 5
D g 54 + R
£ S | 3.65€-08 2 §
/ e
69 =2t 30
Eg 3.66-08 5 &
ES 50t =S
c = O
= C O c
=0 @
o 48l 3.55e-08 @
))
46 3.5e-08
0 0.2 0.4 0.6 0.8 1
Alpha

FIGURE 3.7 Post place and route C-XEk alpha trade-dfcurves.

3.3.2 Time Compleity

The time compleity of the C-VRack algorithm is the same as the originalael algorithm,
O(knadKM) where k.., is the maximum number of terminals ofaret,K is the number of inputs
to each BLE, and n is the number of BLEs in the circuit. As withdkPthis complbeity is the
result of the &ct that after a BLE is put into a cluster (n BLEs) we mxatene all of the nets
attached to the BLEK(nets), and we muskamine all BLEs that each netrfs out to (maximum
fanout = k...

CHAPTER 3 Timing-Driven and Connection-Driven Packing 39

3.4 Result Quality of -WPack, C-VRad, and VR

Table3.2 summarizes the performance of the basiackRalgorithm and the enhancedyPack
and C-VRck algorithms for the 20 lgest MCNG [Yang91] benchmark circuits. The logic
cluster tageted in this xperiment contains 8 BLEs. The first columuas the circuit names. The
second, third and fourth columns compare the number of inputgired to achie 98% logic

utilization where logic utilization is defined as

"num logic blocks]
cluster size
num clusters used

utilization =

(3.8)

Notice that compared to the original &k algorithm, IVPack requires anvarage of 8% feer
cluster inputs to achie 98% utilization, and C-\V&&k requires 10% ¥eer cluster inputs. The
reason for this surprising result is that the criticality term in tM@ack attraction function (3.6)
makes FVPack favour clustering a BLE with itsah-in or fin-out vs. clustering it with BLES with
which it shares inputs. The ConnectionGain term in the @¥WRttraction function (3.7) has a
similar efect. Other researchersveaalso found that grouping circuit blocks with thein{in or

fan-out tends to be anfective clustering technique [Sauc93].

The remaining columns inable3.2 compare the post-place-and-route performance of circuits
pacled with the three dérent algorithms. The CAD flw used to generate these results is the

same as the CAD flo described in Section 3.1oTenerate the results listed in these columns,

the number of inputs per clustelasvset to 18. The architecture used in tkgegments that

produced these results is described in Section 4.2.

Three columns indble3.2 list the minimum number of tracks per channel (JWfequired to suc-
cessfully route the paekl circuit produced by each algorithm. Compared t@ackP FVPack
results in circuits that require 16%wfer tracks for successful routing, while C-AGR results in

circuits that require 19% Veer tracks. ® understand the reason for this surprising result, one

1. We give a brief summary of the 20 ¢ggast MCNC circuits in Appendix A.

CHAPTER 3 Timing-Driven and Connection-Driven Packing 40

TABLE 3.2 Comparison of VBck, FVPack, and C-VRck result quality (Cluster Size = 8).

Cluster Inputs (1) Minimum Channel Post-Place-and-Route Post-Place-and-Route
Required for 98% L ogic Width for Successful Critical Path (ns) Critical Path (ns)
Circuit Utilization Routing (W min) W = 00? W =W, +20%
VPack VF-’rz;ck Vlga-ck VPack VIIE-ICk VPCa;ck VPack VJz;ck VFC;a-ck VPack VPT{:-ICk VF?z;ck
alu4 20 16 17 55 39 40 28.1 25.1 28.8 30.7 27.9 30.7
ape2 19 19 18 58 55 52 375 32.7 34.7 37.9 34.5 37.2
ap4 19 20 19 53 52 51 28.5 25.5 28.3 34.5 32.9 314
bigkey 15 12 13 41 27 28 17.4 16.6 17.8 18.7 17.5 25.5
clma 17 17 16 75 64 65 82.9 64.7 71.9 84.3 77.1 79.4
des 19 17 17 36 29 31 28.8 27.4 26.6 29.9 294 28.4
diffeq 16 15 14 37 33 28 38.5 26.6 344 41.3 31.6 40.8
dsip 28 13 13 41 23 24 19.2 20.2 16.4 23.1 22.2 211
elliptic 16 17 16 57 49 43 50.2 40.1 56.2 60.5 49.1 69.5
ex1010 20 20 19 61 58 54 45.4 42.7 46.1 53.0 56.3 52.2
exsp 19 20 20 55 53 52 27.6 28.1 27.6 31.9 30.9 33.1
frisc 16 16 17 57 58 50 75.0 | 56.4 | 61.2 80.2 65.3 | 68.8
misex3 18 18 18 49 43 44 25.5 25.3 27.0 29.1 30.6 29.6
pdc 20 18 18 82 76 72 56.7 52.7 54.3 57.9 81.8 62.0
s298 18 15 15 48 28 31 49.9 49.7 58.1 58.0 63.3 70.3
s38417 14 14 14 47 42 39 51.2 41.6 46.1 59.7 45.0 53.7
s38584.1 13 12 12 43 44 38 39.6 29.3 37.0 40.2 30.3 41.3
seq 18 17 17 57 47 49 30.2 27.2 279 31.5 37.0 30.1
spla 19 18 18 76 59 64 47.0 41.0 40.8 48.3 47.0 49.6
tseng 17 18 14 39 33 26 371 29.0 36.2 38.2 33.8 41.0
Arith. Av. 18.1 16.6 16.3 534 45.6 44.1 40.8 35.1 38.9 445 42.2 44.8
%Diff w.r.t — -8.3% | -10% — -14.6%| -17.4%) — -14.0%| -4.7% — -5.2% | +0.6%
VPack
Geom. A 17.8 16.4 16.1 51.9 434 42.0 37.7 33.0 36.1 41.2 38.9 41.7
%Diff w.r.t — -7.9% | -9.6% — -16.3%| -19.1%) — -12.5%| -4.2% — -5.6% | +1.2%
VPack

a. Note that the congestion-ahdius (infinite routing) delay isot a lover bound on the achiable delayIn fact
there is currently no kmn algorithm to route a net with guaranteed minimum Elmore defteyt of &haustvely
searching all possibilities [Boes93].

CHAPTER 3 Timing-Driven and Connection-Driven Packing 41

must compare the structure of the pattlcircuits produced by the three algorithms. Since T
VPack and C-VRck prefer to cluster a BLE with BLEs in isnkin or fin-out, rather than with
other BLEs that share inputs with it, these algorithms produce circuit packings in whigh man
low-fanout nets ha been completely absorbed into logic clustergr@il; the output of -WPack

and C-VRick hae fewer nets to route between clusters than the output atk/Rut the aerage
fanout of each intecluster net is higher (more cluster inputs are used) with these algorithms than

with VPack (see @ble3.3). The net result is that the output é¥Pack and C-VRck is somehat

TABLE 3.3 Net absorption and inputs used (cluster size 8)

Average Aver age Number
Per centage of Nets | of Cluster Inputs
Algorithm Absorbed Used
VPack 16.4% 12.09
T-VPack 40.6% 13.56
C-VPack 41.2% 13.41

easier to route than the output ofadR! An example of wly net absorption is good isvgin in
Figure3.8 — this figure demonstrates that each net to be routed requiragnitgack, and
multiple point to point connections that are on the same net are able to share a track. An important
factor in reducing the minimum required channel width is to minimize the number of nets

remaining in the circuit (by absorbing nyamets into clusters).

1. This result shes the importance of using a full CAD Wpincluding placement and routing, teatuate man
FPGA issues. It wuld have been dficult to guess that the output ofVIPack and C-VBck would be easier to
route than the output of \&k without actually placing and routing the outputs of all of the packing algorithms. In
fact, since the circuit packings produced byHack and C-VBck hae more point-to-point connections to route
between clusters (despitevitag fewer nets) one wauld likely guess that-VPack and C-VBRck generated circuits
would be more dffcult to route.

CHAPTER 3 Timing-Driven and Connection-Driven Packing 42

V Pack T-\éPack
an
clu sters\k C-VPack /Clusters
A out out out
4 Nets and | OUt In In L 2 Nets and
4 pt. to pt. 6 pt. to pt.
connections. o in in connections.
out] out in in
Route l Route l
inp out 0#}:_ out
4 Tracks L2 JuL In 2 Tracks
Required Required
in ; in - in
outHEEE 1 ¢ inH—in

FIGURE 3.8 Why reducing the number of nets in a circuit is good

The post-place-and-route critical path columns abl@3.2 compare the relag speeds of
circuits implemented with the three féifent packing algorithms. One set of post-place-and-route
speed results assumes that the circuite lessentially an infinite amount of general purpose
routing available. In this case, the router is able to focus entirely on speed optimization, rather
than congestionvaidance, so we obtain a good estimate of the spefedetite between the tw
packings when the circuits are mapped into routing-rich FPGAs. The W,=\W20% speed
results, on the other hand, shthe speed diérence between the twpackings when an FPGA

has a more limited amount of interconnect — only 20% more than the minimum required by each
circuit packing. Remember thatVIiPack and C-VBck produce circuits that requirener tracks

to route than circuits generated by afR. Since our M stress delay results are based on this
minimum width + 20%, a W stress routing is more @dult for T-VPack and C-VRck circuits

vs. VRack circuits since the router hasver tracks to select from. &therefore think that the

infinite routing delay results g a better (moreafr) comparison of the algorithms.

CHAPTER 3 Timing-Driven and Connection-Driven Packing 43

As one would epect, FVPack decreases delay vs. a0R — by 12.5% (a 14% increase in speed)

for the unlimited interconnect case, and 5.6% (a 6% increase in speed) for the limited interconnect
case, on\erage. Note also that in the limited interconnect case,-¥eack circuits aredster

than those of V&ck despite theatt that the router is beingvgn significantly (16%) feer tracks

to route them than it is\gen for the VRck-generated packings.

The C-VRack algorithm reduces delay by 4.2% (a 4.4% increase in speed) for the unlimited inter-
connect case compared to &dR. In the limited interconnect case, Ca¢R circuit delays are
only 1.2% more (a 1.2% reduction in speed) thaadkRlelays, despite thadt that the router has
been g¥en significantly (19%) feer tracks to route them than it iwgn for the VRck-generated

packings.

3.5 Summary

In this chapter we introduced awnev packing algorithms,-WPack, and C-VRBck. Owerall, it is
clear that IVPack is better than \&k in terms of both circuit speed and routing area required.
C-VPack on the other hand, is better thare@kin terms of areaubhas vorse speed for thewo

stress case and has better speed for the unlimited interconnect case.

CHAPTER 3 Timing-Driven and Connection-Driven Packing 44

45

cmerers 1 NE Efect of Cluster Size
on FPGA Speed and
Density

In this chapter we wresticate the speed and aredi@éncgy of FPGAs emplging logic clustes
(described in Section 2.).&s their logic block. \& are particularly interested in thdeet that
cluster size has on FPGA speed and derisithe n&t section we discuss the traddsafvolved

in selecting the proper cluster size for a clubtised FPGA. After this, Section 4.2p&ins hav

we model the area and speed afious FPGA architectures. Section 4.3 describe®ws archi-
tectural parameters that define the FPGAs used in xqerienents. Section 4.4 describes the
area-delay poductthat we use towvaluate the quality of dérent FPGA architectures. In sections
4.5 and 4.6 wexplore lkey architectural questions concerningsaoircuit speed, FPGA areafief
cieng/, and compile time are fatted by the size of the logic cluster used. Fin&kgction 4.7

summarizes our results.

4.1 Trade-ofs in ClusterBased FPGASs

Much of the speed and aredig@éncy of an FPGA is determined by the logic block it emypldn

a clustetbased FPGA (described in Section 2)1there are clear tradetsfbetween cluster size

and FPGA speed and area. Ifeaywsmall logic cluster is used WeBLES per logic cluster), man

logic blocks are required to implement each circuit, andynm@mnections must be routed
between the numerous logic blocks. Since routing consumes most of the area and accounts for

most of the delay in FPGAs, a small logic block often results in poor dreleedy and speed

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 46

due to the xcessve routing required to connect all the logic blocks. If, on the other haretya v
large logic block is empled (may BLEs per logic cluster), #eer logic blocks are required to
implement each circuit,ub the logic block area and delay may becoreessie, agin resulting

in poor area-diciency and speed. Choosing the best size for an FPGA logic block therefore

involves balancing compterade-ofs.

We are interested in determining the best cluster size for chested architectures (described in
Section 2.1.1). This style of logic block is of interest foresal reasons. First, the Altera ¥le

series FPGAs [Alte98], the Xilinx 5200 andrtéx FPGAs [Xili97, Xili98], the nevest Actel
[Acte99], and the &hntis VF1 FPGAs [®&nt99] all emplyg clusterbased logic blocks, so research
concerning the best size of logic clusters is of clear commercial interest. Second, prior research
[Betz98b] has shen that the area-Bfiency of large logic clusters is quite competdiwith that

of FPGAs using single look-up table (LUT) logic blocks. Third, an FPGA composedgef lar
logic clusters requires\ieer logic blocks to implement a circuit than an FPGA using a more fine-
grained block. This reduces the size of the placement and routing problem, and hence design
compile time — an increasingly important concern as the logic capacity of FPGAs rises, Finally
clusterbased logic blocks can imp® FPGA speed compared to single-BLE logic blocks by

reducing the number of connections on the critical path that must be routed between logic blocks.

We are interested in twaspects concerning the design of clubteed logic blocks. First, o
mary LUTs should be included in a cluster to create FPGAs with the best combination of speed
and area-éiciengy? Second, he is the time required to compile a circuitedted by the size of

logic cluster used?

4.2 Architectue Modeling

In this section we first describe the area and delay models that we wsdutieethe arious
FPGA architectures. After this we describe thieafthat varying cluster size has ongseent

lengths, and transistor sizing.

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 47

4.2.1 Area Model

The area model that we use is based on counting the numimémiofum-width tansistor aeas

required to implement each FPGA architecture, which is the same modes ased in [Betz98b,
Betz99]. A minimum-width transistor area is simply the layout area occupied by the smallest tran-
sistor that can be contacted in a process, plus the minimum spacing to another transistior abo
and to its right [Betz98b]. By counting the number of minimum-width transistor areas required to
implement an FPGA, rather than the number of square microns that these transidrs w
occupy, we obtain a process-independent estimate of the FPGA area. The area model that we use
is described in detail in [Betz98b, Betz99].

We use a program calletansCount[Betz99], to determine the area of a cludtased logic

block (including the local cluster routing) withyarmalues ofN, I, K, andMg,. This program
models such &cts as bffer resizing as a function of tharfout of the connections within a logic
block, and hilds multi-stage bffers when high dve strengths are required. Since the area of an
FPGA includes both logic block area and routing area, we use VPR to determine the transistor
count of the area tek by the routing for each FPGA of interest, and by adding this area to the

logic block area we obtain the total FPGA area.

4.2.2 Delay Model

The delays of the connections within logic clusters were found by performing SPICE simulations
using TSMCS 0.35um process for each structure in the clustegure4.1 shavs the major struc-

tures and speed paths in a logic cludtaportant delay &lues through this cluster are shmin

Table4.1, while some delays cannot be listed because the process information is proprietary and
was obtained under a non-disclosure agreement. The architectures corresponding to the numbers
shawvn in this table had the number of inputs per cluster set to the number of inputs required for an
average utilization (defined in Section 3.4, Equation 3.8) of 98% (which wnsio Section

4.3.2) when the circuits are packwith FVPack.

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 48

r——— - - - - - - - - - - — — A

| |
$ A | g
5 | [ZaNE
(2]
£ | | @
o o | s
: L 11 — 3
o . . : 4 D 5
S . e . LT |HFR I B
3 | . | 1Y &

x — |~ | e
Input | Local L I B I §

connection | buffers L'W"'l BLE |

block kuffers | roaf[:iﬁg N N |

& muxes : MUXeS * BLEs :

Lo - |

Logic Cluster

FIGURE 4.1 Structure and speed paths of a logic cluster

TABLE 4.1 Important intra-cluster delays in TSM£0.35um CMOS process.

Cluster Size (N) AtoB (ps) |IBtoCandDtoC (ps)| CtoD (ps) | BtoD (ps)

1 (No local routing 760 140 (and nd to C 379 519
muxes) path)

2 760 687 379 1066
4 760 761 379 1140
8 760 902 379 1281
16 760 1054 379 1433
20 760 1081 379 1460

VPR has a bilt in delay estimator that usesrdifiedElmore delay [EImo48] model to estimate
the delay of each connection in the routing. The modifications to the Elmore delay are described
in [Okam96], and are such that it can be used to estimate delay of circuits contaifeng, b

resistors, and capacitors. Aftereey connectiors delay in the circuit has been computed, VPR

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 49

performs a path-based timing analysis using thesecdhister connection delayalues (Elmore
delay) and intra-cluster delaphes (Gble4.1). A full description of the timing-analyzer used in
VPR is aailable in [Betz98b] or [Betz99].

4.2.3 Effect of Cluster Size on the fical Length of FPGA Routing
Sgments

As we increase the cluster size, both the logic area per cluster and routing area per clster gro
Figure4.2 demonstrates toa tile (a logic block plus its associated routing\g@s cluster size
is increased. This increased tile size results in routiggheets with the same logical length

having different plysical lengths for logic clusters of tifent sizes.

We define the measured length of a routingnsent as its pysical length. The resistance and
capacitance of a routing gment grav linearly with the sgments ptysical length. & hae
experimentally determined theverage rate at which the FPGA tiles wrwith cluster size, and

have used this information to appropriately scale the routiggsat resistance and capacitance
values for the arious cluster sizes. The increase in the resistance and capacitance of routing

segments as the size of the FPGA logic block increases is an impoftitteét has often been

Increased
channel
width
Cv\r/‘i%?ﬁ‘el Increase = |n<|:(§8ie}:sed
—— C|l.]StEF area
_ size Logic per cluster
éﬁig cluster
Increased
routing
/ area
- per cluster

Segment length P
Increased ggment length

FIGURE 4.2 Effect of cluster size on phical length of routing sgnents.

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 50

- 200 T T T T T T T T T
o

A2y 180

e

S % 160

s

< S 140 +

S o

2 E 120 +

ECD

s O 100 +

€ x

ca 80 r

S £

26 60 |

e

S 40 |

$o

g 20]
Q

}: O 1 1 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16 18 20

Cluster SizelY)

FIGURE 4.3 Effect of cluster size on tile length

neglected in prior FPGA architecture research. In FiguBewe shw experimental results
shaving the efect of cluster size on tile length.eMise the ratio of the actuallves in this cur

to accurately scale routinggeent lengths for diérent cluster sizes.

4.2.4 Sizing Routing Tansistors to Compensate for férent Plysical
Sagment Lengths

To compensate for ddrences in the capacitance and resistance of routgrgeses in FPGAS
using diferent sizes of logic clusters, we scale the routing pass transistorsféerd.All of our

pass transistor andutfer scaling is in relation to a base architecture that has been area-delay
optimized for clusters of size faufrom this base architecture, we linearly scale routuifgis

and pass transistors depending on the relation betweenwheapment lengths and the base

sgment length. & example, in an FPGA with size 16 clusters, thggatal sgment length is

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 51

approximately tw times longer than in an architecture with size 4 clustersadintain roughly
the same speed per routingyseent, we increase the size of the routing switches connecting to
each wire by adctor of 2. In Section 4.5 weerify that this linear scaling oiuffers and pass-tran-

sistors with plgsical sgment length prades good results.

VPR models changes in delay caused by resiaiffgiis and pass-transistors in the routing, and it

also accurately models the area required fdedint sizes of routing pass-transistors amitels.

4.3 FPGA Achitectural Parametes

To evaluate the speed and area of an FPGA eyimmidogic clusters for its logic blocks, we must
choose not only the logic block architecturet hlso a routing architecture, transistor sizes, and
the fleibility of the logic block to routing intedce. The follaing sections detail the architec-

tural parameters used in owperiments.

4.3.1 Basic Architecture

We investicateisland-styleFPGAs in which each logic cluster is surrounded by routing channels
on all four sides with the logic cluster input and output puenly distributed around the logic
cluster perimeterThis type of FPGA was described in Section 2.lorFour experiments each

circuit is mapped to the smallest square FPGA with enough logic clusters and 1/O pads to accom-

modate it.

For our periments, we ary the number of I/O pads pemr@r column depending on the cluster
size. Since a lge cluster size requireswer clusters to implement avgn circuit, we require

more 1/O pads per woor column. V& set the number of 1/O pads pewror column to

Pads = f2 CIuster_SizeW (4.1)

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 52

Setting the number of I/O pads pewror column with the ab@ equation &eps the total number
of I/O pads roughly the same for each FPGA architecture, independent of the cluster size that is

used.

Recall from Section 2.1.1 that we can describe a logic cluster with four parameters: the number of
logic inputs (), the number of BLEs (LUTs andgisters) in a clustemN), the number of clock

inputs M), and the number of inputs to each LWA).(In this chapter we fix the number of
clocks per cluster at one for all owperiments, since the MCNC benchmark circuits we use to
evaluate architectures all Y only one clock. & set the number of inputs to each LHJto 4,

since preious research has sko LUTs of this size are the most arefiesEnt [Rose90], and
because this is the LUT size used in most commercial FPGAsdeatribe he we set the

number of inputsl, in the ne&t section.

4.3.2 Inputs Required vs. Cluster Size

Previous work [Betz98b] hasxamined the issue of nomary cluster inputs are required for 98%
utilization (defined in Section 3.4, Equation 3.8) of the logic clusters. This reseandveho
used VRck to map logic into the clusters. Since we are using aurTRéPack algorithm for
packing in our clustebbased logic blockx@eriments, and because wewkd in Section 3.4 that
T-VPack has better utilization than ¥k, it is prudent to re-run thesgperiments with T
VPack. Figuret.4 and able4.2 shev the number of inputs required to act@ean aerage utili-
zation of 98% vs. cluster size for both &R and TVPackl. We use the -WPack results of this

experiment to set the number of inputs per cluster for the remainder of our architecture studies.

1. This shws that FVPack reduces the number of inputs required vsaadkFor 98% utilization at lge cluster
sizes. Thedct that the tw cune have different requirements for the number of inputs is»amele of the depen-
dencies between FPGA architecture and CAD.

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 53

45 T T T T T T T T T
40 t o
o~
S5 3/
2 s
& 30|
9 v
O 25f
S E
=S 20t
c 2
= O
ég 15 +
AN
==~ 10t
5_
0
0

Cluster SizelY)

FIGURE 4.4 Inputs required for 98% utilization vs. cluster Size

4.3.3 Routing Architecture

We define the number of logic blocks that a routingneent spans as the logical length of that
seggment. In [Betz98b, Betz99] it is slva that an architecture in which routinggegents hee a

logical length of fourwith 50% of the sgments connected by tri-statefters and 50% connected

by pass-transistors, priodes good area-gfiency and speed for FPGAs containing logic clusters

of size four This routing architecture is sla in Figure4.5. We implicitly assume that this
routing architecture is good for architectures containing logic clusters of all sizes, and we use this
routing architecture in all of ouxperiments. ldeallyone would find the best routing architecture

for each FPGA emplong a diferent cluster size,ub this would require a huge amount ofaat.

By basing all of ourxgeriments on this routing architecture, we may sliglapif architectures

with size four clustersver other architectures.

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 54

Logic Logic Logic Logic Logic
cluster| ||| | cluster cluster cluster| []| | cluster
a \ \
T T T
T - X -
HHA | A . 7 1L :
Logic Logic Logic L.ogic Logic
clusten ||| | cluster| || || cluster | | || cluster || | |cluster
’ \
' /
/ //’_— ~ o //’—__‘\\ \
/ / P s [~ \\ / {/ N N \
, L
AT / \

[
\
—
\
\
\
N

~

-
! y
.

S

i
-
L{}_I

FIGURE 4.5 FPGA with length 4 ggments, 50% Wffered and 50% pass transistor switche:

4.3.4 Flexibility of Logic Block to Routing Interconnect vs. Cluster

Size

For a cluster of size 1 [Rose91] stex that a goodalue of F; (the number of routing tracks to

which each logic block pin can connect) is W (the total number of tracks in a channelgltibis v

of F, means that each logic block pin can connect toranting track in an adjacent channel.

However, for large clusters, setting.ffo W provides far more routing fbeibility than is required,

wasting area.

[Betz98b] found that a more appropriatedeof routing fleibility results when the Fvalue for

logic block output pins, &S set to W/N, so all thexperiments in the ne section use this

value. This choice of &5, «€nsures that all the routing tracks in each channel canves dhry at

least one output from each cluster

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 55

TABLE 4.2 Inputs required for 98% utilization for \dek and TvVPack

Cluster Size VPack T-VPack
1 4 4
2 6 7
3 9 9
4 11 11
5 13 12
6 15 14
7 17 16
8 19 18
9 21 19
10 23 21
11 25 22
12 27 24
13 29 25
14 32 27
15 33 28
16 35 30
17 37 32
18 39 33
19 41 35
20 44 36

Choosing the appropriat@e for E ., involves finding the best tradetdfetween track width

and area per track as folle

1. As Finputis increased, feer tracks are required to implement aegi circuit since the router

has more choices of which track each input can connect to.

2. Each track talts more area as f,, is increased since there are more switches on each track

(Note that routing area is determined by transistor area, not wiring area [Betz98b, Betz99]).

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 56

Therefore, we must determine the point at which the best tradeafrs. V¢ hae run eperi-
ments on size 4, 8, 14, and 20 clusters to determine the hgstvalues as stvan in Table4.3,
and hae linearly interpolated between these results for other cluster sizes. Note, foxpese e
ments, we hee noticed that the critical path is noteated by the £, values chosen, so we

choose the F,,,:value based only on the area results.

TABLE 4.3 Routing area vs. &np¢for various cluster siz8s

Routing Areafor variouscluster sizes
Fe, input (in millions of minimum-width transistors)

4 8 14 20
0.1 — — — 151
0.2 — — 1.38 141
0.3 — 1.29 1.34 141
0.4 1.47 1.27 1.34 1.42
0.5 1.45 1.28 1.37 1.46
0.6 1.44 1.30 — —
0.7 1.45 — — —
0.8 1.49 — — —
0.9 1.50 — — —
BestF¢ input 0.6 0.4 0.3 0.2
value

a. The MCNC circuits used for theseperiments are the 10 smallest circuits
of the 20 circuits shen in Appendix A.

4.4 Architectue Evaluation Metric: Aga-Delay Poduct

In this section we define therea-delay poduct metric, which we feel is useful fovauating
different architectures with respect to both speed and area. This is a reasonable architecture

metric for two reasons:

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 57

1. Intuitively, we want to find the point at which we are sacrificing the least amount of area for the
most impreement in speed. @&n that we can afys trade area for speed (see W¢land
speed for area, it mak sense to combine thes® tlactors into one cuevto see where the best

trade-of occurs.

2. The computational throughput of an FPGA (on a parallel algorithm) is simply the number of
functional units multiplied by the clock speed. Anothaywef looking at this igshroughput =
(1/area per functional unitpl1/delay) Therefore by minimizing the area-delay product, we

maximize throughput.

There are tw main fctors that can fEct the area-delay product of an FPGA: transistor sizing
and the FPGA architecture. In general, the speed of an FPGA can be increased (to a point) by
sizing up the bffers and transistors within the FPGAItlthis increases area. Alternatly, the
FPGA can be made smaller by sizingwmiothe luffers and transistors,ub this dgrades the

FPGA performance.

Throughout this chaptewe will size the transistors in each FPGA architecture to minimize the
FPGA's area-delay product. Only by resizing transistors appropriately for each architecture in this
way can we dirly compute the speed and areficefnoy of FPGAs with diferent logic block

architectures.

4.5 Speed and Aa-Eficiency vs. Cluster Size

In this section we study thefe€t that \arying cluster size has on the area and delay of implemen-
tations of the benchmark circuitso Bbtain our results, we use theperimental flov given in
Section 3.1 for 20 MCNC benchmark circuits, and we present the geomatrages of the
results for these circuitsoF all of the &periments in this section we set the number of inputs,
for a cluster of siz&l to the minimum alue that allavs T-VPack to achiee 98% logic utilization

(as shwn in Figure4.4). This walue ofl allows full utilization of our logic clusters, whileskeping

the compleity (hence area) of the clusters to a minimum.

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 58

7e+06 : : : —
© 6e+06 e |
< o
o
= 5e+06 -
Qo
g g 4e+06
O L
<0
8 x
= 3e+06 | |
S
e
=
S 2e+06 |
0a)
8/ 1e+06 | Regular Transistor Size—— |
Half Transistor Size
0 , , . Double Transistor Size

0 2 4 6 8 10 12 14 16 18 20
Cluster SizelY))

FIGURE 4.6 Total area vs. cluster size.

In Figures 4.6 and 4.8, we shahe geometric\eerage wer the benchmark circuits of the total
FPGA area required and the critical path delagpectiely. Note that we are shang three
different routing transistor sizings in each of these graphs to ensure that we doairht unf
penalize ay architecture with an inappropriate transistor sizing. The soliceswskiav the area

and delay when we use the “normal” transistor sizing described in Section 4.2.4, while the dashed
curves shav the results when we use transistors that are one-half or double the size of those in the
“normal” case. Notice that we can indeed trade speed for area by resizing routing transistors —
the half transistor size resultsviealess area,ub greater delgywhile the double transistor size

results hae less delgybut greater area.

Figure4.7 shavs the efiect that varying cluster size has on the area required to implement the

benchmark circuits. Area isfatted by tvo factors.

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 59

1. As we increase cluster size up to about size 9, the routing requirements between clusters is
reduced since marconnections are completely absorbed within the clusters. After size 9, the
routing area bgins to increase. ¥believe that the reason for this increase is becauge lar
clusters maé it difficult for the placer to do a good job minimizing wirelength. This is the
result of each cluster being connected to soymmaats that it is sharing nets with essentially
every other clusterlt is therefore likly that when the placer mes these Ige clusters to
improve the wire-length of some nets, this samevenwill increase the wire-length of man

other nets.

2. As we increase cluster size, the total arearndky the multipkeers within each cluster gns
guadratically but the number of clusters required to implement a circuit is decreasing. This
results in a linear increase in the total areandby all the logic clustersoF suficiently lage
clusters, the area reductions in the routing asertalen by the increased area required to

implement the lager clusters.

6e+06 | I ' T T T T T T
©
(@]
g 5e+06 | |
ks
o 4e+06 |
€ .
(@]]
83
<T: < 3e+06 - fanNy wx SRSV —_
© o
S 2e+06 | o |
: X
m .
* L Total Area ——
& < Routing Area
0 Cluster Area =

0 2 4 6 8 10 12 14 16 18 20
Cluster Size)

FIGURE 4.7 Area components vs. cluster size.

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 60

Figure4.8 shavs that circuit speed increases significantly as we increase the cluster size. As one
increases the cluster size from size 1 to 7, the circuit speed rapidly increases — with the “normal”
transistor sizing, a size 7 logic cluster leads to circuits which are &484r than those imple-
mented with a size 1 clustdncreases in cluster size p&st= 7 produce smaller incremental
speed gins. for example, with the “normal” transistor sizing, a cluster of size 20 is &8tef

than a cluster of size 7.

In Figure4.9, we shav how the geometric \aerage of the area-delay product aehak by the
benchmark circuitsaries with cluster size, ag for three diierent transistor sizings. Notice that

the “normal” transistor sizing pvades the best area-delay product for all the architectuepe

a cluster size of 1, indicating that linearly scaling routing transistor size with the length of a
layout tile is a good method to size transistoos.dcluster of size 1, ever, the normal transis-

tor sizing is smaller than optimal, and the double transistor size FPGA has a W&alea-

delay product than the normal transistor size FPGA. There is a broad minimum in the area-delay

8e-08 —— . : , . . . | |
fi,-fv 7e-08f _
~~~ Q \‘><
g.@ 6e-08 | h ]
>0
o E 5e-08
Qg
O i
E ~ 4e-08
— ®©
S E 3e-08 1
=
Oao 2008 _
& le-08+ Regular Transistor Size—— |
- © Half Transistor Size -
0 , , Double Transistor Size —*—

0 2 4 6 8 10 12 14 16 18 20
Cluster Sizely)

FIGURE 4.8 Critical path delay vs. cluster size.




CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 61

03 T T T T T T T T .
X Regular Transistor Size——
© 028+ | Half Transistor Size > |
& Double Transistor Size-*--
g 026 |
53
E E 0.24 +
& o022}
8O :
[}
al= 0.2+
T £
o
£S5 o018y
[¢B)
oy 0.16
o
&
0.14 + |

0 2 4 6 8 10 12 14 16 18 20

Cluster Sizel)

FIGURE 4.9 Area-delay product vs. cluster size.

product for cluster sizes from 4 to 10. A cluster of size 7 has Westarea-delay productyto

ary cluster size between 4 and 10 is within 12% of the minimum, and hendd ke a reason-

able choice. Notice that moderate-size logic clusters significantly wapne area-delay product

of an FPGA vs. using a single BLE logic block. Comparing a size 7 logic cluster (with the normal
transistor sizing) to a size 1 logic cluster (with double-sized transistors — the best for this cluster
size), one sees that the size 7 logic cluster has an area-delay product that is€33%alothat of

a size 1 clustelAn FPGA using a size 7 logic cluster is simultaneously 248tef (a 17% delay

reduction), and requires 19% less area than an FPGA using a size 1 logic cluster



CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 62

[
o

' Intra-'CIustér Neté on C'ritical 'Path%
S Inter-Cluster Nets on Critical Path-—~—-- -

Number of Nets on Criticald®h
(20 Benchmark GeometricvArage)

O rr N W b~ O O N 00O ©
T
1

Cluster Sizel)

FIGURE 4.10 Inter-cluster and intra-cluster nets on the critical path.

4.5.1 Discussion of Delay vs. Cluster Size Results

In Figure4.10 we shw the relationship between the number of intra-clustestlfand inter

cluster (slaver) connections on the critical path as a function of cluster size. As cluster size is
increased, the number of intra-cluster connections on the critical path increases, and the number
of intercluster connections decreases. Thiviges a circuit speedup since intra-cluster connec-

tions are &ster than intecluster connections.

Interestingly the number of intecluster nets on the critical path does not decrease as much with
cluster size as the inteluster delay decreases with cluster size (see Flfg. From size 2 to

size 20 we ha& a reduction in the number of induster nets on the critical path of 13%

1. As cluster size is increased, intra-cluster mubtgreouffer and wiring delays increase. If we were to increase the
size of cluster to ery lage \alues, this déct would esentually result in intra-cluster delays becomingyéar
enough that angains obtained by making connections local to the clusteitdibe lost.



CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 63

6e-08 - - . .

Total Path DeI'ay%

Intra-Cluster Delay-——* i

5e-08

4e-08

3e-08 s

2e-08

Critical Path Delay Components (ns)
(20 Benchmark GeometricvArage)

0 1 1 1 1 1 1 1 1 1
0 2 4 6 8§ 10 12 14 16 18 20

Cluster SizelY))

FIGURE 4.11 Breakdavn of critical path delay into intesluster and intra-cluster component

(Figure4.10); compare this to the inteluster component of the critical path delagich has
been reduced by 39%er the same range (Figutell). This means the circuit speedup visible in
Figure4.11 for lager cluster sizes is not only caused by a reduction in the number eflugtar
connections on the critical pathutbalso byinter-cluster connections on the critical path

becoming faster

The improvement in intercluster delay with increased cluster size is caused primarily by a
reduction in the “logical” manhattan distance spanned by connections in the FPGA, as illustrated
in Figure4.12. By sizing the routing pass transistors aumifebs' (as discussed in Section 4.2.4)

to compensate for the increasedghbal length of routing wire genents associated with ¢gar

clusters, the delay of each routingyseent has remained roughly constant. Since the total number

1. Changes in delay and area due tfedkht size routinguiffers and pass transistors are accounted for in the timing
and area models used in this research.



CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 64

T |
Am o/lo o//o O/o OB Al o o ollo o o tB

O O g gl/lo g /o o O O 0O Ollo o o O

O O g gl/lo g /o o O O 0O Ol o o o

O O g gl/lo g /o o O O 0O Ol o o o
Cluster size 4 Cluster size 16

Logical manhattan distance Logical manhattan distance

AtoB=4 AtoB=2

FIGURE 4.12 Decrease in logical manhattan distance as cluster size increases.

of routing sgments on the critical path has decreased due to the reduction of the “logical”
manhattan distance, the result is a greater ivgonent in circuit delay than the reduction in the

number of inteicluster nets on the critical patfould indicate.

4.6 Effect of Cluster Size on Compilame

In this section we demonstrate that clustesed FPGA architectures can significantly impro
compile time. Figurd.13 shavs hav the aerage CPU time (on a 300 MHz UltraSpararksta-
tion) required to implement circuitaries with cluster size. The solid line in Figdté3 shavs
the total (packing, placement, and routing) compile time, while the three dashed Iwethesho
individual components of this compile time. The routing time is the timentéér lov-stress

routings (minimum width + 20%).

As lamger logic clusters are empled in an FPGA the time to compile circuits is dramatically
reduced. This occurs because agdaclusters are empled, faver of these clusters are required

to implement each circuit. Since the size of a placement problem is proportional to the number of
logic clusters that a circuit is mapped to, this dramatically reduces placement time. In

Figure4.13, for @ample, one can see that the placement time is reducedabtoa df 8.8 times



CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 65

as the cluster size increases from 1 to 20gémlogic clusters also reduce the routing time. This
is the result of more connections using the local cluster routing, withfda #fat the router has

fewer intercluster connections to routeofexample, using a size 20 logic cluster reduces routing
time by 2.7 times vs. using a size 1 clusBerlding an FPGA with a size 20 logic cluster reduces

the total CPU time required for placement and routing by 7 times vs. a size 1 logic cluster

4.7 Summary

Using the area-delay produataduation metric, we hee demonstrated that logic clusters contain-
ing between 4 and 10 BLEs all ackeegood performance, soyadluster in this range is a reason-
able choice. Compared to FPGAs using a single BLE logic block, logic clusters in this size range

achieve significant area and speed imments. Br example, an FPGA empjing a size 7 logic

1000 T T T T T T T T

- Total Compile Time———

L 900 r Routing Compile Time-———-— .

© Placement Compile Time—»—

“g 800 - * Packing Compile Time & 1
OF= 700 F ]
o 2
+§ S 600 r _
S < 500
3 d
S E 400 |
X c
u-e 300 -

Q

m 200 f

&

= 100} .

0 =
0

Cluster Sizel)

FIGURE 4.13 Variation of circuit compile time with logic cluster size.




CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 66

cluster requires 19% less area, aek8e21% higher speed, and has an area-delay product 33%
lower than an FPGA using a single BLE logic block. AdditiondHyge logic clusters signifi-
cantly reduce design compile time. Size 7 and 20 logic clusters reduce placement and routing

time by 4.6 times and 7 times compared to a single BLE logic block, ragbecti



67

emerers  1IMING-Driven Placement

In this chapter we first ge a brief introduction to timing-dren placement. After this we describe
our nav timing-driven placement algorithm, andvnave hae tuned warious parameters within
the algorithm. Then we gg results comparing the speed and area of circuits placed withvihe ne

timing-driven algorithm to circuits placed with axiging non-timing-dwen algorithm.

5.1 Introduction

Recall that placement is the process by which a netlist of circuit blocks (which are either 1/0Os or
logic clusters) are mapped ontoypltal locations in an FPGA. The location of the circuit blocks
can significantly déct the performance of the FPGA. A timingwdm placement algorithm
attempts to map circuit blocks that are on the critical path ingsigdi locations that are close

together so as to minimize the amount of interconnect that critical signals naiestdra

The VPR place and route tool [Betz99, Betz98b] incorporates a timwmgadiouter but does not
consider timing during placement (VRRilacement tool VPlace is described in Section 2.2.3.2).

A timing-driven router can only produce routings that are as good as the placement on which the
routing is performed, so toxeact more speed out of an FPGA it is essential that timingiuri

placement algorithms be used.\Roeis timing-drven placement algorithms (described in Section



CHAPTER 5 Timing-Driven Placement 68

2.2.3.3) hae done a good job in reducing circuit delayt they are \ery computationally inten-
sive. To be useful, a timing-dren placement algorithm must produce high quality placements in

reasonable amounts of time.

5.2 Timing-Driven Placement:-VPlace

We hae developed a ne placement tool called-VPlace which is an>ension to VPlace
(described in Section 2.2.3.2) and is grtged into VPR. -‘MPlace is both wireability-dven
(minimizing wiring requirementsand timing-driven. It is essential to consider both the goal of
minimizing wiring and reducing critical path delay because a timingsdronly approach will

lead to circuits that require an unacceptable amount of routing resowe¢@&ace simulta-
neously considers critical path delay and wireability and finds a reasonable compromise between
the two. T-VPlace is simulated annealing-based and it uses the same annealing schedule as
VPlace (as discussed in Section 2.2.3.1). In Fi§uteve shw the pseudo-code for theVIPlace

algorithm. The follaving sections describeIPlace in detail.

5.2.1 Delay Modeling and Cost Function

To maximize speed,-VPlace must model the delay of each connection andvdikalle slack
for each connection. In this section we will discuss the computation of thesmtmponents as

well as hav they are combined into our mecost function.

For a placement algorithm to minimize the delay of the resulting circuits in a reasonable amount
of time, accurate delay modeling is required.nfodel delay we computedelay lookup matrix

which contains the delay between a source and a sink located,at $ourcd @Nd Kinke Ysink)»
depending only 0AX = |X.ource- Xsind @NAAY = |Yeource~ Vsind- IN this model, the delay between the

two locations depends only on the relatdistance between thedvocations. The delay lookup

matrix is described more thoroughly in Section 5.2.1.1.



CHAPTER 5 Timing-Driven Placement 69

S = RandomPlacement ();

T = InitialTemperature ();

Riimit = InitialRjmit ();

Criticality Exponent = ComputeMé=xponent();

ComputeDelayMatrix();
while (ExitCriterion () == Rlse) { [* *Outer loop” */

TimingAnalyze(); [*Perform a timing-analysis and update each connections criticality*/
Previous_CoSfnear congestiom™ COShinear congestioh®); ~ /*wirelength minimization normalization ter

Previous_Timing_Cost = Tming_Cost(S); [*delay minimization normalization term*/
while (InnerLoopCriterion () ==&se) { /* “Inner loop” */

Shav = GeneratelMove (S, Rmit);
ATiming_Cost = Tming_Cost({g,) - Timing_Cost(S);
ACOSfinear congestior COSlinear congestiokPnew) - COSlinear congestiok®):
AC = A-(ATiming_Cost/Pre_Timing_Cost) +
(1')\)'(Acostinear congestic/rPre/iOUS_cos%ear congestio)i I*new cost fcn*/

if (AC <0) {
S = Sy *Move is good, accept*/
}
else {
r = random (0,1);
if (r < e—AC/T) {
S = §avi I*Move is bad, accept grway*/
}
}
} /* End “inner loop” */

T = Update€mp ();
Riimit = UpdateRm;t ();
Criticality_Exponent = ComputeMé=xponent();

}  /* End “outer loop” */

FIGURE 5.1 Pseudo-code-VPlace.

It is also essential that timing analysis be done in faciesft mannerTo male sure that the com-
putation time spent performing timing analysis does not significantiyade the placement
compile time, we periodically perform a timing analysis after a certain number of simulated-
annealing swaps are completed. This means that the slatkeg (obtained by this “infrequent”

timing-analysis) used in the placer may be based on dalags/that do not precisely reflect the



CHAPTER 5 Timing-Driven Placement 70

connection delays of the current placemené N#&e experimentally determined ko often a
timing analysis must be done to get the best results, and we discusfiergaants in Section
5.2.2.

Finally, we need a e cost function that tads into account both the slack of each connection,
and the delay on each connection. By reducing delay on connections with little slack while
increasing delay on connections with lots of slack, we are able to reduce the criticaleph#e W

developed a cost function based on slack and delay that is described in Section 5.2.1.2.

5.2.1.1 Delay Lookup Matrix

To allov an eficient assessment of the delay between blocks th@xaaedAy distance apart in

a tile-based FPGAwe compute a delay lookup matrix ixeel byAx andAy. To compute a gen
(Ax, Ay) entry in the matrix, we empjothe VPR router to determine the delay betweem tw
blocks that arex, Ay) distance apart.ordo this, a source block is placed at a locatiQg), (%
Ysourcd 1N the FPGA, and a sink block is placed at (X+AX, YsourcdtQY). Then VPRS timing-
driven router is used to perform a routing between tloebtacks, and the delay is recorded in the
delay lookup matrix at locatiod\k, Ay). This process is then repeated feery possibleAx and

Ay value in the FPGA.

Since we use the timing &dn router to compute the delay between blocks, we are ableeto tak
adwantage of architectural features in the FPGA, i.e. d bdocks are on opposite sides of the
FPGA and there is a long line crossing the FPGA, the timingalnouter will recognize this and

the delay lookup matrix will reflect the smallest possible delay (the one using the long line)

between the tavlocations. The reason that we use the smallest possible delay betwddocks

1. A tile-based FPGA is one in which the FPGA structure is homogenousv/éirg.xgy location in the FPGA is
physically constructed with identical tiles). Since most FPGA architectures are tile-based and because the archi-
tectures we use are tile based, we obtain accurate delay estimakxgsoiiing this uniformity and only comput-
ing delays based akx andAy values.



CHAPTER 5 Timing-Driven Placement 71

to compute thealues in the delay lookup matrix is because we assume that after placement, the
router will be smart enough to use tlastest resource to connectotiocations on the critical

path.

5.2.1.2 Cost Function

To properly balance the tradefdietween wirelength minimization and critical path minimiza-
tion, we hae developed a n& cost function that we call theormalized-tade-of-Acostfunction.
Before we discuss this wecost function we need to introduce some definitions that are used in

our cost function.

We first introduce a neterm calledliming_Cost This is the portion of the cost function that will

be responsible for minimizing the critical path del@iyning_Cost is based on ti@riticality of

each connection, theelay of each connection, and a user defi@eidicality Exponent Where

the Delay for each connection is obtained from the delay lookup matrix, the Criticality Exponent
is defined bel, and Criticality is defined as foils

Slack(i)

ticalitv(i) = 1—
Criticality(i) Drmax

(5.1)

where Q. IS the maximum arwal time of all sinks in the circuit, and Slack is the amount of
delay that can be added to a connection without increasing the critical path delagnd@slack

were described in detail in Section 2.2.1).

In our nev cost equation, to control the relaiimportance of connections withfeifent criticali-
ties, we compute a per of the Criticality of each connection depending oramable called
Criticality _Exponent (i.e. Criticalitycality_Exponenj The purpose of including axmonent on the
Criticality in our nev cost function is to hedy weight connections that are critical, while/igig

less weight to connections that are non-critical.



CHAPTER 5 Timing-Driven Placement 72

The Criticality Exponent that we use can biher constant or “adapte”. An adaptie
Criticality_Exponent is an x@onent that gradually increases as the annealing temperature
decreases. The reasoning behind this is that during the initial stages of the anneal, the current
critical path is lilely to significantly change, while at later stages of the annealing process the
placer has a better idea of where the critical path lies. It is udlyitbeneficial at these latter
stages to hedy weight the critical path more than at the initial stages.dd this we hae
developed an equation that glly increases the Criticality Exponent starting at a user defined
initial value calledinit_Exp, up to its final user definedale calledFinal_Exp This inolves
making use of anxésting variable called R,; [Betz98b, Betz99] (described in Section 2.2.3.1)
that we can use to dee the desired betimr for the Criticality _Exponent. Remember thgt,R
determines the range that the placer will consider fapgimg blocks. Initially R,; spans the
entire chip (it is the maximumalue of either the x or y dimension of the FPGA), and at the end
of the anneal it considers only adjacent blocks (it is one). Sinceatigdble is a good indicator of

how far along the anneal is, and because it is changing gradwallgan use it as a guide to

gradually increase our Criticality Exponent with the failog equation

Criticality_Exponent = (5.2)

= ' Einal Exo—lnit Exol +nit E
Imt_RHmit—Flnal_R”mit}E[ inal_Exp—Init_Exp] it_Exp

where Curr_R,; is the current alue of R,,;. Final_R,; is alvays one, and Initial_R;, spans

the entire chip.
We nav define the ming_Cost of a connection,as follavs

Criticality_Exponent

Timing_Cost(i) = Delay(i) [(Criticality(i) (5.3)

And the total Tming_Cost for a circuit is the sum of theming_Cost of all of its connections as

follows



CHAPTER 5 Timing-Driven Placement 73

Timing_Cost = Timing_Cost(i) (5.4)

Oi Ocircuit

We are nw ready to discuss our normalized-tradéfdost function. Our normalized-tradefof
Acost function depends on tlseange in Timing_Cost and Cogtar congesion(diVEN in Section
2.2.3.2, Equation 2.5). It uses a tradewafriable called\ to determine h@ much weight to gie
each component.oTnormalize the weight of thesedveomponents we use tvnormalization
variables called Pweous_Timing_Cost and the Pr®us_CoShear congestionthat are updated at
every temperature. The fett of these tw normalization components is to neathe function
weight the tvo components only with the variable, independent of their actualwes. This is
corvenient because it automatically adjusts the weights of tlee components so that the
algorithm is alvays allocating\ importance to changes in thaning_Cost, and (&) importance
to changes in the CQgly congestionIf A is 1 then we hae an algorithm that focuses only on timing,
but ignores wirelength minimization. X is 0, then we ha the original VPlace algorithm that

focuses only on minimizing wirelength.eMav present the normalized-tradd-éfcost function

AC = A ATiming_Cost F(1=2) ACOSt)iyeqr congestion (5.5)
DF’revi ous_Timing_Cost DF’r evious_Cost|jnear congestion '

We use this cost function in our algorithm without modifying the annealing schedule from VPlace
(described in Section 2.2.3.1). Since the annealing schedule is t@f3tiperforms well with
this nev cost function. When is 0 this ne/ cost function attempts to minimize only wirelength

like the original VPlace algorithm, Wever the results are slightly (about 3%)nse for the post-

1. For example, if we hae aA value of 0.7, we ant ezery move to be 70% due to changes iming_Cost, and 30%
due to changes in CQgtar congestion!f We did not normalize, and we haihiing_Cost alues that were orders of
magnitude less than C@star congestiofhen the cost functionauld only be &ected by changes in the Cggly,
congestion€v€n though we desired this to only account for 30% of the change in total cost. Another benefit of this
normalized approach is that as the temperature changes, we are constantly re-normalizing the weights of the tw
components. Compare this to other approaches that only normalize the components oncejiainthg beéthe
algorithm [Svar95], which means that if the tmncomponents change atfdifent rates, this normalization will
become increasingly inaccurate, and will inexdently allocate more weight to one of the component thasy w
desired.

2. For a full description of the adapé annealing schedule, see [Betz98b, Betz99]



CHAPTER 5 Timing-Driven Placement 74

place-and-route channel width. It isdllg that we could hae fine-tuned the schedule for thismne
normalized-trade-&fAcost function, bt we did not feel that this deadation vas significant

enough to \arrant the etra efort.

5.2.2 Algorithm Tuning

In our algorithm there are parameters that must be tuned to get the best perforneamaestW
find the bestalue forA, the best Criticality Exponent (and whether it should be constant or adap-
tive), and determine mooften we must re-timing analyze the circuit during placemenfint

the best &lues for these parameters, we performguements on the 20 lgest MCNC circuits,

using size one clusters, and the same architecture as described in Section 4.3.

By using the delays from the delay lookup matrix annotated onto connections in the circuits, we
are able to obtain critical path delay estimates from the placement algorithm without performing a
routing. These estimates allais to airly compare dierent algorithm parameters in a reasonable
amount of computation time. &Wvill later shav in Section 5.2.3 that these placement estimates
are a good tool (Ive good fidelity with respect to the final routed delay) for compaiahgeg for

different parameters.

The first parameter that we discuss is the re-timing analysisahtéor this experiment we set

the \alue ofA to 1 (fully timing-driven) and the Ciriticality_Exponent to 1.e\then waried heov

often we re-timing analyze the circuit and update the connection Criticalities and Slacks. The
sweep went from once at thego@ning of execution all the \&y up to re-analyzing timing within

the inner loop of the placement algorithme \Wesent tw tables shwing the efect of this re-
analysis interal. The first results sk in Table5.1 are for timing analysis in the outer loop of

the placement algorithm. This first column in this tablexshihve number of temperature changes
between each timing-analysis (which we call the re-timing-analysis atettve second column

shaws the placement estimated critical path, and the third colunwssthe Costear congestion



CHAPTER 5 Timing-Driven Placement 75

TABLE 5.1 Effect of re-timing-analysis in the outer loop

Placement
Estimated
Re-Timing-Analysis | Critical Path (ns) | coq,. _
Interval (20 Circuit linear congestion
Geometric
Average)
1 39.3 529.6
2 39.5 531.1
4 40.1 530.5
8 40.5 531.0
16 39.5 530.3
32 414 534.5
64 41.3 528.3
128 43.0 522.9
Never 43.0 522.9

Table5.2 shavs the efiect of re-timing-analyzing the circuit in the inner loop of the placement
algorithm. The first column ska hav mary re-timing-analysis are being performed in the inner
loop of the annealer at each temperature, the second coluws #i® placement estimated

critical path, and the third column sk®the Costear congestion

TABLE 5.2 Effect of re-timing-analysis in the inner loop

Placement
Number of Re-Timing- | .  EStimated
i Critical Path (ns)
Analysisin the Inner 20 Circui Cost _
Loop at Each (Geon':retF:“ct linear congestion
i
Temperature Average)
1 39.3 529.6
10 39.2 528.8
50 40.1 525.6
100 39.7 530.9




CHAPTER 5 Timing-Driven Placement 76

These results indicate that performing a timing analysis once per temperaturigcisnsub
obtain the best placement results. Surprisingiiging-analyzing more than this causeseayv
small degradation in the performance (with respect to delay) of the placement algorithm,
however, this is likely due to random tdcts of the simulated annealing placement algorithm. It
appears that this re-analysis intdrdoes not &kct the bounding box cost of the placement. F

the remainder of ouxperiments, we setVPack to re-timing-analyze each circuit once per tem-

perature change.

The net parameter that we will discuss is the Criticality Exponerg.nHa/e performed tw sets
of experiments to determine the beatue for the Criticality Exponent, in the firstperiment we
hare set A to 0.5, and ha& used both constant Criticality Exponent and adapti
Criticality_Exponent galues. Vé then performed the sameperiments with\ set to 1. Agin, all

of the results presented are the placement estimated critical paths apd,GRgtstion

TABLE 5.3 Effect of Criticality Exponent with & value of 0.5.

Adaptiv%(r‘;irtiiig)a(dri)t):/_llixponmt Constant Criticality_Exponent
Placement
Criticality_Exponent _ |_Estimated Placgment Estimated
cr Izlz%alciag&t(ns) Costjinear congestion (28: élitr'gﬂt%agn(qﬁic Costjinear congestion
Geometric Aver age)
Average)
1 38.9 342.0 38.9 342.0
2 37.1 342.3 37.1 343.4
3 35.7 343.4 35.9 344.0
4 34.6 344.0 34.8 344.7
5 34.2 3415 34.7 343.7
6 34.3 341.5 34.8 341.6
7 33.9 339.5 34.3 339.6
8 34.0 339.9 34.3 340.1
9 34.4 336.5 33.8 339.6
10 33.9 336.5 34.3 337.9
11 34.6 336.1 34.3 336.3




CHAPTER 5 Timing-Driven Placement 77

We first shav the efect of the constant and adagti Criticality_Exponents witth = 0.5 in
Table5.3. These results shothat increasing the criticalityxponent up to about size 8 or 9
improves the placement estimated critical path, at which point no naore gre apparent. These
experiments she that the adapte Criticality Exponent is slightly better than the constant
Criticality_Exponent (in most cases the critical path is less, and in all cases tfg,CogtstiodS
less). These results also shthat lage exponents impree the CoStear congestion 1 NiS IS NOt sur-
prising since lage exponents mad& very fav connections ha a high Tming_Cost, and all other
connections ha an insignificant iming_Cost. As a result, the placement algorithm is able to
focus on minimizing only area for nets that do nateha critical connection (which is &ky the

majority of nets).

TABLE 5.4 Effect of Criticality_Exponent with & value of 1

Adaptiv?lcriirtiiié:)e(lgtz_ﬁxponent Constant Criticality_Exponent
Placement
Criticality_Exponent | Estimated Critical Ple}c_ement Estimated

(;’gtgir(rgj)it Costjinear congestion Cgitrlgﬂtpggrg]:t)rggo CoStjinear congestion

Geometric Aver age)

Aver age)
1 39.3 529.6 39.3 529.6
2 36.3 545.4 36.4 540.9
3 35.3 561.1 36.1 567.4
4 35.9 581.9 37.6 593.3
5 36.1 606.9 36.5 623.8
6 40.1 651.5 40.2 681.0
7 40.3 693.1 43.8 717.3

The net experiment (&ble5.4) shavs that wherh = 1, an gponent @alue of 2 or 3 is the best. It
also shws that using the adapé Criticality Exponent is slightly better than using a constant
Criticality_Exponent. Compared to the results that we displayedbie.3 the critical path is

worse, and the Cg§tar congestiodS MUch vorse. It is surprising that the delay results fanalue



CHAPTER 5 Timing-Driven Placement 78

of 1 are worse than a value of 0.5 since il = 1 case, the algorithm is only attempting to
minimize delaywhile in theA = 0.5 case the algorithm is considering both delay and wirelength

minimization. This result desess more discussion.

When we set up the algorithm to only minimize delay (by sek#D), it attempts to minimize
the current critical path at the cost otending other non-critical paths. Since we are only re-
timing-analyzing the circuit once per temperature, the algorithm hay mames between
updates of the connection criticalities and slacks. This means that élysthiat the algorithm is
able to significantly reduce critical paths during one iteration of the outer lobpf the same
time inadertently mak other pathsery critical. This oscillation éct males it dificult for the

placement algorithm to cearge onto the best placement solution.

By including a wirelength minimization term in the cost equation, we are able to reduce the oscil-
lations of the placement. This is because, the wirelength term will not let the placemoals

that significantly increase the wirelength of the placemern & the mee would significantly
reduce the current critical path.f&dtively, the wirelength term acts as a damper on the delay

minimization term in our cost function.

The abee results she that using an adap® Criticality Exponent alue of 8 with a trade-bbf
0.5 praiides the best results scarf Based on these results, we use an adapti
Criticality_Exponent set to 8, and perform a sweep.ofhe results of this sweep are wimoin
Table5.5.

This table shass that an algorithm that is only wirelengthveéin produces the best Gst; conges-

ion- It @lso shws that an algorithm with & of 0.9 produces circuits with the best placement
estimated critical path delay\ A of 1 is bad for both critical path, and delay for the reasons
explained abwe. We feel that setting to 0.5 preides the best compromise between wirelength

and critical path minimization, and so the remainder of peements use thisalue.



CHAPTER 5 Timing-Driven Placement 79

TABLE 5.5 Effect of A with an adaptie Criticality _Exponent of 8

Placement

_Estimated

Geometric

Aver age)
0 51.6 312.7
01 40.0 315.8
02 37.8 318.5
03 36.7 322.8
04 35.6 331.1
05 34.0 339.8
06 33.2 353.6
07 325 373.9
08 325 400.7
09 324 439.7
1 43.4 725.3

5.2.3 Verification of the Fidelity of the Placement Estimated Critical
Path Delay

In the preious section we used placement estimated critical path delays to compamentif
parameters used in the placement algorithm. It is interesting to wemunch correlation there is
between this estimate and the actual post-place-and-route critical path delstyslyTthe corre-

lation, we present & sweep graph with a Criticality Exponent of 8 in Fighr2. This graph

shaws the infinite routing resource post-place-and-route didayav-stress post-place-and-route
delay and the placement estimated post-place-and-route. dédaye is a xcellent correlation
between the placement estimated critical path and the infinite routing-resource critical path, addi-
tionally the lav-stress results folle the same trend as the placement-estimated resuéts. W
therefore belige that our placement-estimated delay results aadichiadicator of the best&aes

for the \arious parameters that weaduated in the preous section.



CHAPTER 5 Timing-Driven Placement 80

5.2.4 Time Complaity

The compleity of our algorithm is essentially the same as VPlace péfform a timing analysis
once per temperature change which is an O(n) operation. At each temperatwecwe the
inner loop of the placer Off) times (i.e. we perform Offf) swaps). In the inner loop we Y@an
incremental-bounding-box-update operation thatasstvcase O(k,,), where K. is the inout

of the lagest net in the circuit. Thev@rage case compigy for this bounding box update is O(1)
[Betz98b, Betz99]. Also in the inner loop is the computation of timen§_Cost for each connec-
tion afected by a sap. This is also Ofl,). In the aerage case this is Qff) where k,, is the
average anout of all nets in the circuit. Sincgkis typically quite small, thevarage compbety

of this Timing_Cost computation is O(1) as well. Thesrall result is that our algorithm isonst
case OJ(kn), but on aerage it is O(H3). Our algorithm taks about 2.5 times as long as

VPlace to place the Igest MCNC circuit (clma).

6e-08
— 5e-08 1.
[
(@]
S
£g 4e-08
s =
$ s
= E 3e-08 ]
S
= Q@
oo 2e-08 } |
o
&
le-08 ¢ Low-Stress Post-Place-and-Route——
Infinite Routing Post-Place-and-Route -
0 , Placement Estimated =
0 0.2 0.4 0.6 0.8 1

A

FIGURE 5.2 Graph shwing fidelity of placement estimated critical path.




CHAPTER 5 Timing-Driven Placement 81

5.3 Results: VPlace vs-YPlace

In this section we compare the post-place-and-route results from VPlacevadce. V¢ shav
the results for size 1,4, and 8 clusters. 860 sha the efect of using TVPack with FVPlace vs.
using VRack with VPlace. Agin, our results are theerage of the 20 MCNC benchmark circuits,
and we use the routing architecture described in Section 4.3. Additjcadblbf the results that
we present are based on an adap@riticality _Exponent of 8, and a re-timing-analysis irdéof

once per temperature change.

The first results that we present are for size 1 clusteessMiv post-place-and-route VPlace
results and -WPlace results. dble5.6 shavs that for the infinite routing caseVPlace impreoes
circuit speed by about 42% (a 30% decrease in delayyemage compared to VPlaceorRhe

low stress routing case;VPlace imprees circuit speed by 25% (a 20% reduction in delay) on
average compared to VPlace. The cost of this spaedig only a 5% increase in the minimum
channel width. It is likly that the lav-stress routing results do not shthe same imprement in
speed as the infinite routing results due to #oe that the placement algorithm has made it more
difficult for the router to optimize the critical path(s). This is becatgPl@ice produces circuits
that hae shorter critical paths than VPlacef inore of therh The result is that the router has
mary more paths to shorten, making it mordidifit in the lav-stress routing case for the router

to get close to the “l@er bound” that the infinite routing results represent.

The net results that we present imfle5.7 are for size 8 clusters. In this case, wevstiBlace
results for VRck and TVPack, and TVPlace results for-WPack. This allavs us to ealuate the

combined dect of using TVPack and TVPlace (our contribitions) vs. using Véck and VPlace.

This table shas that when we ha& infinite routing resources;\MPack combined with -WPlace
speeds up circuit speed by 39% (a 28% reduction in delay) compared to using Vpack and VPlace.
If we compare only the placement algorithms using the same packing algorithm, we see that T

VPlace imprees circuit speed by 21% (an 18% reduction in delay) compared to using VPlace.

1. We shov the critical path distrilstions in Appendix C.



CHAPTER 5 Timing-Driven Placement 82

TABLE 5.6 Post-place-and-route comparison of VPlace aiiPTace (cluster size = 1).

Pogg)#ﬁlgn&%?ﬁtww;num Post-PIace;:I(;Il-gc')sl)JteCritical Post-PIaceuF?:tcri]-(F;c:)Jte Critical
Circuit " W= W= Wnin + 20%

pice. | ToPae | TVPISCe | vprace | TorPIse | TPce vpice | TovPace | Tt
alu4 14 14 14 40.3 40.4 29.8 42.4 41.2 334
ape2 15 17 16 46.9 46.3 32.3 47.7 46.5 48.8
ape4 17 16 18 40.9 44.8 28.2 42.0 46.8 31.7
bigkey 13 13 10 36.0 35.2 21.6 36.7 354 25.2
clma 16 16 17 90.2 91.1 72.3 116.0 166.0 130.0
des 11 12 11 40.5 48.9 30.2 50.4 57.4 43.7
diffeq 11 11 12 35.2 375 30.8 38.9 41.0 34.9
dsip 12 12 12 27.9 27.2 21.7 28.3 28.8 229
elliptic 14 16 15 70.6 76.1 46.1 79.5 79.6 58.1
ex1010 14 15 15 85.0 77.5 52.9 96.2 78.6 70.5
ex5p 17 17 19 39.6 40.4 28.1 42.7 42.7 435
frisc 16 17 18 70.8 73.2 59.6 76.8 79.6 61.6
misex3 14 15 15 39.0 40.2 26.6 39.3 75.0 34.3
pdc 22 21 24 81.7 74.5 49.9 122.0 114.0 73.0
298 11 12 12 74.8 72.0 53.6 116.0 78.7 77.8
s38417 11 11 12 61.7 71.0 33.7 70.0 74.6 37.2
s$38584.1 11 11 11 45.3 44.1 31.8 49.7 44.3 36.4
seq 16 16 16 45.7 41.0 28.1 46.4 43.7 39.5
spla 18 18 20 58.4 67.4 39.7 74.8 100.0 69.4
tseng 9 10 11 33.7 331 28.3 39.8 384 33.1
Geom. A 13.78 14.22 14.50 50.1 51.0 35.2 57.1 59.2 45.7
%diff w.r.t — +3.2% +5.2% — +1.8% -29.7% — +1.04% -20.0%
VPlace




CHAPTER 5 Timing-Driven Placement 83

TABLE 5.7 Post-place-and-route comparison of VPlace aidPTace (cluster size = 8).

Post-Place-and-Route Minimum

Post-Place-and-Route Critical

Post-Place-and-Route Critical

Channel Width (W) Fain (09 W =T/?/t2i,fnf)20%
Cireuit vPack | T Vl;re-lck Vl;re-lck vPack | . T Vl;l’—a;ck Vl;ra_lck vpack | T Vl;re_lck Vll—z-;ck
i | | | || | | VR |
VPlace VPlace | VPlace | VPlace VPlace VPlace | VPlace | VPlace VPlace VPlace | VPlace | VPlace
(A=0) |(A\=05) (A=0) |(A=05) (A=0) |(A\=05)
alu4 55 39 38 38 28.1 25.1 24.8 22.6 30.7 27.9 32.7 294
ape2 58 55 55 50 37.5 32.7 31.8 26.6 37.9 34.5 35.0 30.8
apx4 53 52 52 53 28.5 255 26.7 22.3 345 329 34.2 27.6
bigkey 41 27 27 28 17.4 16.6 17.8 12.8 18.7 17.5 18.4 16.2
clma 75 64 68 68 82.9 64.7 66.7 48.5 84.3 77.1 67.5 58.3
des 36 29 29 29 28.8 27.4 26.7 22.3 29.9 294 29.9 25.3
diffeq 37 33 32 33 38.5 26.6 28.1 26.6 41.3 31.6 28.7 28.3
dsip 41 23 24 24 19.2 20.2 18.3 12.3 23.1 22.2 19.3 15.4
elliptic 57 49 50 50 50.2 40.1 40.5 34.6 60.5 49.1 51.2 46.8
ex1010 61 58 59 59 454 42.7 43.8 35.1 53.0 56.3 55.0 42.1
ex5p 55 53 51 50 27.6 28.1 26.7 23.4 31.9 30.9 31.2 31.0
frisc 57 58 56 56 75.0 56.4 584 48.3 80.2 65.3 63.6 54.7
misex3 49 43 46 44 25.5 25.3 25.2 23.6 29.1 30.6 28.1 27.4
pdc 82 76 75 78 56.7 52.7 46.9 35.3 57.9 81.8 58.3 50.2
s298 48 28 28 31 49.9 49.7 47.2 44.4 58.0 63.3 80.6 64.0
s38417 47 42 44 45 51.2 41.6 40.6 30.5 59.7 45.0 46.1 40.8
s38584.1 43 44 44 45 39.6 29.3 28.7 26.0 40.2 30.3 30.6 27.2
seq 57 47 48 50 30.2 27.2 26.6 23.2 315 37.0 30.1 26.1
spla 76 59 61 68 47.0 41.0 36.0 30.7 48.3 47.0 457 35.3
tseng 39 33 34 33 37.1 29.0 29.3 28.8 38.2 33.8 335 31.0
Geom. A.. 51.9 43.4 43.9 44.3 37.7 33.0 325 27.2 41.2 38.9 38.0 33.1
% diff w.r.t — -16.4%| -15.4%| -14.6%) — -12.5%| -13.8%| -27.9%) — -5.6% | -7.8% | -19.7%
Vpack
with
VPlace




CHAPTER 5 Timing-Driven Placement 84

Also shavn are lav-stress delay results which sthdhat FVPack combined with -MPlace
speeds up circuitxecution by 25% (a 20% reduction in delay) compared to using Vpack and
VPlace. If we compare only the placement algorithms using the same packing algorithm, we see
that FVPlace imprees circuit speed by 16% (a 14% reduction in delay) compared to using
VPlace.

The results shen in Table5.8 are for a Xilinx 4000x-lie architecture presented in [&®8b].

The logic block used in thixperiment is a logic cluster consisting of 4 BLEs with 10 inputs. The
routing contains 25% length 1 wires, 12.5% length 2 wires, 37.5% length 4 wires, and 25% “one-
guarter longs”, whose length is one-fourth of the chip. The length 1 and 2 wires connect with pass
transistors, while the longer wires connect with tri-staféebs. As well, there are pass-transistor
switches connecting length 4 wires to the length 1 and 2 wires, and connecting the one-quarter
longs to the length 1 wires. In this table wewhesults for TVPlace withA=0 andA=0.5. The

A=0 results are essentially the same as what the original VPtadd produce, so we tia@ not

generated results using VPlace on this particular architecture.

These results shwo that incorporating timing information into the cost function results in a
speedup of 22% (an 18% reduction in delay) in the infinite routing case, and a speedup of 14% (a
12% reduction in delay) for thevestress routing case. The cost of this is a 5% increase in the

minimum channel width.

5.4 Summary

In this chapter we discussed ounnEming-driven placement algorithm\Place. In our discus-
sions, we gplained hav various parameters within the algorithm were selected. al¢o
discussed the compligy of our algorithm, which is the same as that of VPlace, arestakout
2.4 times as long as VPlace to place thgdsr circuit (clma). After this, we demonstrated the
improvements resulting from our wealgorithm compared to thexisting non-timing-drven

VPlace algorithm. \& shaved for an architecture with size 1 cluster§/Hlace vas able to speed



CHAPTER 5 Timing-Driven Placement 85

TABLE 5.8 Post-place-and-route comparison with Xilinxdilrchitecture (cluster size = 4).

Post-Place-and-RouteMinimum Post-PIaceuF?Z;Itﬂ-gc;l)Jte Critical Post-PIacegﬂ-l(R;(;;Jte Critical
_ Channel Width (Wyin) W = 0 W = W, + 20%

T-VPlace T-VPlace T-VPlace T-VPlace T-VPlace T-VPlace

A=0) (A=05) A=0) (A=05) A=0) (A=05)
alu4 27 27 31.7 28.2 33.7 35.0
ape? 34 34 34.6 30.9 42.2 43.6
ape4 34 35 32.9 26.3 46.8 35.7
bigkey 17 19 20.9 15.3 27.2 23.8
clma 41 45 70.2 58.6 80.8 67.4
des 18 19 311 24.9 32.8 31.3
diffeq 23 23 35.5 321 36.6 32.8
dsip 16 20 20.6 13.7 29.1 19.3
elliptic 31 31 51.6 40.1 60.6 51.1
ex1010 36 37 54.9 45.7 64.4 62.4
ex5p 33 34 31.6 26.2 36.4 34.0
frisc 39 38 63.9 51.5 79.2 56.7
misex3 32 33 30.0 24.8 34.6 29.1
pdc 47 51 57.6 43.2 78.2 56.6
$298 22 25 66.6 48.4 78.3 78.8
$38417 28 29 42.7 38.0 48.5 42.7
$38584.1 27 29 29.5 29.3 34.5 34.6
seq 32 33 32.7 25.6 38.4 34.1
spla 43 44 51.0 38.0 63.0 62.5
tseng 18 19 31.2 29.7 34.6 31.4
Geom. A. 28.5 30.0 38.5 315 45.9 40.4

%diff w.rt. A =0 — +5.2% — -18.2% — -12.0%

up the resulting circuits by 40% at a cost of only about a 5% increase in the minimum channel
width. For size 8 clusters,-VPlace vas able to speed up the resulting circuits by 21% with only a
5% increase in the minimum channel width.e@all, it is clear that timing-dren placement can

significantly imprae performance without making ¢gr sacrifices in area.



CHAPTER 5 Timing-Driven Placement 86




87

cnerers  CONClusions and Futar
Wbrk

6.1 Conclusions and Contrillions

The goal of this thesis as to &plore nev architectures and CAD algorithms to reduce FPGA
delay without sacrificing lae amounts of area. Thisvolved eploring clustetbased FPGA

architectures, as well aswd#oping nev timing-driven packing and placement algorithms.

In Chapter 3 we described ampacking algorithm called-VPack. This algorithm was designed
to absorb critical path connections into logic clusters te takantage of thedst speed &éred

by intra-cluster connections-MIPack not only impreed the delay of the resulting circuitsjtb
also improed the area. Compared to &R, FVPack generated circuits that required 16%%ee

tracks to route and were 13%ster

In Chapter 4 we studied thefedftiveness of using logic-cluster based FPGA architectures.
Previous work [Betz98b, Betz99] had studied thdeefiveness of logic clusters with respect to
area-eficiengy, hawvever that vork did not consider the fetct of logic clusters on FPGA speed.
We beliere that our werk is the first to study logic-cluster based architectures with respect to both
speed and area. Using the area-delay product metric weghbat an FPGA architecture should

be composed of logic clusters containing between 4 and 10 basic logic elements.



CHAPTER 6 Conclusions and Future Work 88

In order to reduce FPGA delay is important that placement algorithms consider ddiay
Chapter 5 we deeloped a ne timing-driven placement algorithm calledVIPlace and we ran

mary experiments to tunearious parameters within the algorithm. Our algorithm significantly
reduced the post-place-and-route critical path delay of the resulting ciraritsn FPGA with

size 1 clusters,-VPlace reduced the critical path by 30% (a speed increase of 42%) compared to
using VPlace, while only sacrificing a small amount of routing area. Additiomalfyalgorithm

was quite computationally fefient — it only took 2.4 times as long to place thgédst MCNC

circuit as VPlace.

6.2 Future Work

This thesis eplored three approaches to imprggy FPGA performance, clustbased logic

blocks, timing-dnven packing, and timing-dmen placement.

In the future, it vould be interesting to seew@ clustetbased architecture with LUTs other than
size 4 or a combination of é#rent size LUTs wuld perform. Br FPGAs composed of these
new logic clusters, it wuld be interesting to seewmanary inputs are required for full utilization,

and haov flexible the routing intedce should be.

Another area of interestomld be to study an FPGA with nearest-neighbor interconnects. These
connections wuld allov critical paths to be routed between clusters usasgriearest-neighbor
connections rather than using the rekli slov inter-cluster routing. @ study this issue, it@uld

be necessary to delop nev CAD tools capable obgloiting this enhancement.

Finally, our CAD flov has an arbitrary dision between packing and placement. twd be
interesting to see Momuch impreement could be obtained by rewirg this arbitrary diision
and allaving the placer to freely place BLEsyavhere within the FPGA. Thiseuld increase the

CPU compile time, ot it may be worth it if the @quins are significant.



89

weenoixa  MICNC Benhmarks

In this appendix we ge a description of the 20 MCNC circuits that we use in Rpeements.

TABLE A.1 MCNC benchmark circuits

Circuit Description ( af?eirr %Jgplg;ar]s;rtigginlz 9
Circuit Number of
Number of | Number of | Number of | Number of | Number of | Number of | Number of Point to
LUTs Latches Nets Inputs Outputs BLEs Nets Point
Connections

alu4 1522 0 1536 14 8 1522 1536 5408
ape2 1878 0 1917 39 3 1878 1916 6692
ape4 1262 0 1271 9 19 1262 1271 4479
bigkey 1707 224 2194 263 197 1707 1936 6313
clma 8381 33 8797 383 82 8383 8445 30462
des 1591 0 1847 256 245 1591 1847 6110
diffeq 1494 377 1935 64 39 1497 1561 5296
dsip 1370 224 1823 229 197 1370 1599 5645
elliptic 3602 1122 4855 131 114 3604 3735 12634
ex1010 4598 0 4608 10 10 4598 4608 16078




APPENDIX A MCNC Benchmarks 90

TABLE A.1 MCNC benchmark circuits

Circuit Description (af?efrr(r:\legpgi?; rtiggoLnES)
Circuit Number of
Number of | Number of | Number of | Number of | Number of | Number of | Number of | Point to
LUTs Latches Nets Inputs Outputs BLEs Nets Point
Connections

ex5p 1064 0 1072 8 63 1064 1072 4002
frisc 3539 886 4445 20 116 3556 3576 12772
misex3 1397 0 1411 14 14 1397 1411 4968
pdc 4575 0 4591 16 40 4575 4591 17193
s298 1930 8 1942 4 6 1931 1935 6951
s38417 6096 1463 7588 29 106 6406 6435 21344
s38584.1 6281 1260 7580 39 304 6447 6485 20840
seq 1750 0 1791 41 35 1750 1791 6193
spla 3690 0 3706 16 46 3690 3706 13808
tseng 1046 385 1483 52 122 1047 1099 3760




91

APPENDIX B VFh.d( and -'FVFb.d( Slnk
Delay Distriutions: Size

8 Clustes

In this appendix we present pre-place-and-route sink-delay distris for the 20 lgyest MCNC
circuits as computed by ek and TVPack using the unit delay models that we described in
Section 3.2.1. All of the results that we shio this appendix are for size 8 clusters. THéPack,

results were obtained with anof 0.75 and neer re-timing analyzing.

29 T
S
8 8+  ~_  TVPack —— 1
=
-l |
S o |
"é‘ 5L i
£
n 3 _
2 2
)
g 1 i
O 1 1 1 1 1 1
0 1 2 3 4 5 6 7

Sinks (Sorted From Highest to Lowest)



APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters

92

Delay to Sinks(Unit Delay Model)

Delay to Sinks(Unit Delay Model)

10
9
8
7 i
6 i
5 i
4 il
3 i
2 i
1 i
O 1 1 1
0.5 1 15 2
Sinks (Sorted From Highest to Lowest)
apex4
8 T T T T T T T
VPack
7t T-VPack ——— 1
6r NN .
5 L i
4t il
3 L 4
2 L
1 L a
O 1 1 1 1 1 1 1
0 4 6 8 10 12 14 16 18

Sinks (Sorted From Highest to Lowest)



APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters

93

Delay to Sinks(Unit Delay Model)

Delay to SinksUnit Delay Model)

bigkey
4.5 T T T T T T T T
VPack
4 r T-VPack - 1
35} 1
3 L i
251 1
2 o 4
15+ .
1 L i
0.5+ .
0 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450
Sinks (Sorted From Highest to Lowest)
clma
18 . .
VPack
16 T-VPack ————- 1
14 _
121 .
10 1
8 4
6 4
4 _
2 r VT
O 1 1 1 1 1
0 20 40 60 80 100

Sinks (Sorted From Highest to Lowest)

120



APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters

94

Delay to Sinks((Unit Delay Model)

Delay to Sinks(Unit Delay Model)

oSO = N W o 01 O N ©©

des

50 100 150 200 250
Sinks (Sorted From Highest to Lowest)

o N b~ OO ©

50

100 150 200 250 300 350 400 450
Sinks (Sorted From Highest to Lowest)



APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters

95

Delay to Sinks(Unit Delay Model)

Delay to Sinks(Unit Delay Model)

4.5 T T T T

3.5t | 1

25} ‘z 1

15 1

0.5 _

0 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450
Sinks (Sorted From Highest to Lowest)

elliptic
18 T T T T T T
VPack
16 T-VPack ]
14 i
12 i
10 p i
8l ]
6 i
4 i
2 s i
0 ! ! ! ! ! !

0 200 400 600 800 1000 1200 1400
Sinks (Sorted From Highest to Lowest)



APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters 96

ex1010

—~ 10 ; : ; .
D VPack
go] o I S i N2
S
> st -
o 7 r _
()]
= 6 1
c
2 5¢ ]
R
c 4 1
0
e 3 '
g 2| -
8 1t ]

O 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9
Sinks (Sorted From Highest to Lowest)

exsp

D ' ' ' VPack ——
3 T-VPack ———— .
=
> /7 1
®©
S 6°¢ 1
= 5t _
=2
g 4y 1
£
n 3r 8
8
> 2f :
o
a 1r 1

O ! ! ! ! ! !

0 10 20 30 40 50 60 70

Sinks (Sorted From Highest to Lowest)



APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters

97

Delay to Sinks(Unit Delay Model)

Delay to Sinks(Unit Delay Model)

0 ! ! ! ! !
0 200 400 600 800 1000 1200
Sinks (Sorted From Highest to Lowest)
misex3
8 T T T T T
VPack
7 T-VPack - i
6 i
5 i
4 i
3 L i
2 L i
1 L i
O 1 1 1 1 1
0 4 6 8 10 12 14

Sinks (Sorted From Highest to Lowest)



APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters

98

Delay to Sinks((Unit Delay Model)

Delay to Sinks(Unit Delay Model)

12

10

o N B~ O 0

pdc
| | | " VPack —
T-VPack ———
0 10 15 20 25 30 35

Sinks (Sorted From Highest to Lowest)

40

8

10

12

Sinks (Sorted From Highest to Lowest)



APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters 99

s38417

Delay to Sinks(Unit Delay Model)

0 200 400 600 800 1000 1200 1400 1600
Sinks (Sorted From Highest to Lowest)

s38584.1

Delay to Sinks(Unit Delay Model)

N e

0 200 400 600 800 1000 1200 1400 1600
Sinks (Sorted From Highest to Lowest)



APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters 100

seq
~~ 9 T T T T
) VPack ——
8 8¢t T-VPack -
=
E 7TrF S~ 1
a 6r 1
"é 5 | i
=2
g 4 '
=
n 3r ]
i)
> 27 ]
©
8 1} -
O ! ! ! ! ! !
0 5 10 15 20 25 30 35
Sinks (Sorted From Highest to Lowest)
spla
—~~ 10 T T T T T T T T
D VPack
8 9r T-VPack 1
= g 0 ) ]
2
© 7t i
o)
= er b
[
2 5% ]
Q°
c 45 ]
)
e 3 '
g 2 -
8 1t 1
O ! ! ! ! ! ! ! !

0 5 10 15 20 25 30 35 40 45
Sinks (Sorted From Highest to Lowest)



APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters 101

tseng

— 14 T T T
o) VPack
3 T-VPack - .
=
g |
(]
(@)
E |
A _
v
£
0p]
o i
>
c ‘ _
8 L

0 1 1 1 1 1

0 100 200 300 400 500 600

Sinks (Sorted From Highest to Lowest)



APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters 102




103

reenoix e SINK Delay Distribtions
for the 20 MCNC
Bentimark Cicuits

In this appendix we present sink delay disttibns for the 20 lgyest MCNC benchmark circuits.
Section C.1 presents the post-placement estimated sink delayutiistisbfor the 20 layest

MCNC circuits implemented in an architecture with size 1 clusters. Then Section C.2 present
low-stress post-place-and-route results for the same circuits in the same architecture. After this,
Sections C.3 and C.4 present the placement-estimatedvarstréss sink delay distuitions for

the circuits implemented in an architecture with size 8 clusters.

C.1 Placement Estimated Sink Delay Distrilons: Size 1 Cluster

In this section we present the post-placement sink delay disbnis for the 20 lgest MCNC
benchmark circuits using size 1 clusters. The delays that we present are placement-estimated
delays as we discussed in Section 5.202.TF/Place, we set the adayeiCriticality Exponent to

8, andA to 0.5.



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 104

4.5e-08 ; : : . .
VPlace
4e-08 T-VPlace ——— -

3.5e-08
3e-08
2.5e-08
2e-08 >
1.5e-08 1
1le-08 1
5e-09 .

0 1 1 1 1 1 1
0 1 2 3 4 5 6 7
Sinks (Sorted From Highest to Lowest)

Delay t® Sinks

apex2

5e-08
4.5e-08
4e-08 | .
3.5e-08} 1
3e-08 T .
2.5e-08 | .
2e-08 | .
1.5e-08 .
le-08 .
5e-09 1

O 1 1 1
0 0.5 1 15 2
Sinks (Sorted From Highest to Lowest)

Delay to Sinks




APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 105

4.5e-08 - - . . VPlace —
4e-08 T-VPlace 1
3.5e-08
3e-08
2.5e-08
2e-08
1.5e-08
1le-08
5e-09

O 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18
Sinks (Sorted From Highest to Lowest)

Delay t® Sinks

bigkey

4e-08 . : : . .
VPlace
3.5e-08 T-VPlace ]

3e-08

2.5e-08

2e-08
1.5e-08

Delay t® Sinks

1le-08

5e-09

0 1 1 1 1 1 1 1 |7K
0O 50 100 150 200 250 300 350 400 450
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 106

clma

le-07 . . : : :
VPlace
9e-08 T-VPlace ——— 1

8e-08
7e-08|
6e-08 |-
5e-08|
4e-08
3e-08
2e-08
1e-08

O 1 1 1 1 1
0 20 40 60 80 100 120
Sinks (Sorted From Highest to Lowest)

Delay t® Sinks

des
4. 58-08 T T T T
VPlace

4e-08 | T-VPlace 1

3.5e-08
3e-08
25608}
2e-08
1.56-08
1e-08
5e-09 .

O 1 1 1 1
0 50 100 150 200 250
Sinks (Sorted From Highest to Lowest)

Delay t® Sinks




APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 107

diffeq

4e-08 . : : . .
VPlace
3.5e-08 T-VPlace —— ]

3e-08|
2.5e-08}
26-08
1.56-08

Delay to Sinks

le-08
5e-09

O 1 1 1 1 1 1 1 1 ‘
0O 50 100 150 200 250 300 350 400 450
Sinks (Sorted From Highest to Lowest)

3e-08 . . . .

VPlace
T-VPlace
2.5e-08

2e-08

1.5e-08

Delay to Sinks

1le-08

5e-09

0 1 1 1 1 1 1 1 1
0O 50 100 150 200 250 300 350 400 450
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 108

elliptic
7e-08 . . . :

\/Place
T-VPlace —

6e-08

5e-08 .

4e-08 ]

3e-08 ]

Delay t® Sinks

2e-08 _

1e-08 ]

O 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400
Sinks (Sorted From Highest to Lowest)

ex1010

9e-08
8e-08
7e-08 - i
6e-08 - i
S5e-08 T ]
4e-08 - i
3e-08 i
2e-08 i
1le-08 i

O 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9
Sinks (Sorted From Highest to Lowest)

Delay t® Sinks




APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 109

4e-08 - . . .

Vl5lace

3.5e-08 T-VPlace —— ]

3e-08

T

2.5e-08

2e-08

1.5e-08

Delay to Sinks

1e-08
5e-09 ]

O 1 1 1 1 1 1
0 10 20 30 40 50 60 70
Sinks (Sorted From Highest to Lowest)

frisc

8e-08 . . . . :
VPlace
7e-08 T-VPlace - i

6e-08 |
5e-08|
4e-08
3e-08

Delay to Sinks

2e-08
1le-08

O | | | | 3
0 200 400 600 800 1000 1200
Sinks (Sorted From Highest to Lowest)




APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 110

Delay t® Sinks

Delay t® Sinks

misex3

4e-08
3.5e-08
3e-08

2.5e-08F

2e-08
1.5e-08
le-08
5e-09

V|5Iace
T-VPlace

2 4 6 8

10

12

Sinks (Sorted From Highest to Lowest)

14

9e-08
8e-08
7e-08
6e-08
5e-08
4e-08
3e-08
2e-08
1le-08

T
/

VPlace
T-VPlace

5

10 15 20

25 30

35

Sinks (Sorted From Highest to Lowest)

40



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 111

8e-08 - . . .

VPlace
T-VPlace ———— 1

7e-08

6e-08
5e-08 _
4e-08 )

3e-08

Delay to Sinks

2e-08

le-08

O 1 1 1 1 1 1
0 2 4 6 8 10 12 14
Sinks (Sorted From Highest to Lowest)

s38417
7e-08 . . . . .

VPlace

T-VPlace

6e-08
5e-08
4e-08

3e-08 "

Delay to Sinks

2e-08

le-08

0 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600
Sinks (Sorted From Highest to Lowest)




APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 112

s38584.1
5e-08 . . . . .

4.5e-08
4e-08
3.5e-08
3¢-08 |
2.5e-08}"
2e-08
1.56-08
1e-08
5e-09

O 1 1 1 1 1 1 1
0O 200 400 600 800 1000 1200 1400 1600
Sinks (Sorted From Highest to Lowest)

VPlace
T-VPlace -~ 1

Delay t® Sinks

56'08 T T T T T
VPlace
458-08 T_VPlace ,,,,,,,,,,, -

4e-08
3.5e-08
3e-08
2.5e-08
2e-08
1.5e-08
1le-08 1
5e-09 .

O 1 1 1 1 1 1
0 5 10 15 20 25 30 35
Sinks (Sorted From Highest to Lowest)

T T T T T

Delay t® Sinks




APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 113

66'08 T T T T T

' VPIa'ce

T-VPlace —

5e-08

4e-08

3e-08 |

Delay to Sinks

2e-08

1le-08

O 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45
Sinks (Sorted From Highest to Lowest)

tseng

3.5e-08 . .

'VPIace

3e-08 T-VPlace

2.5e-08

2e-08

1.5e-08

Delay to Sinks

1le-08

5e-09

0 1 1 1 1 1
0 100 200 300 400 500 600
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 114

C.2 Low-Stess Sink Delay Distriliions: Size 1 Cluster

In this section we present the post place-and-route sink delay wlisind for the 20 layest
MCNC benchmark circuits using size 1 clusters. The delays that we presemt-ateeks which
we defined in Section 3.10FT-VPlace, we set the adayi Criticality Exponent to 8, anklito

0.5.

4.5e-08 - - . ;
4e-08
3.56-08f
3e-08|
2.5e-08
2e-08
1.5e-08 .
1le-08 .
5e-09 .

O 1 1 1 1 1 1
0 1 2 3 4 5 6 7
Sinks (Sorted From Highest to Lowest)

Vlblace

T-VPlace -~ 1

Delay t® Sinks




APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 115

56-08 — , ,
45e-08F

4e-08 |

3e-08 |
2.5e-08 |

2e-08 |
1.5e-08 |

1le-08 |

5e-09 |

VPIéce

Delay t® Sinks

O 1 1 1
0 0.5 1 15 2
Sinks (Sorted From Highest to Lowest)

4.5e-08
4e-08
3.5e-08
3e-08F
2.5e-08
2e-08
1.5e-08
1le-08
5e-09

0 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18
Sinks (Sorted From Highest to Lowest)

Delay t® Sinks




APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 116

4e-08
3.5e-08
3e-08
2.56-08
2e-08
1.5e-08

Delay t® Sinks

le-08
5e-09

O 1 1 1 1 1 1 1 1
0O 50 100 150 200 250 300 350 400 450

Sinks (Sorted From Highest to Lowest)

clma
1.4e-07 . . .

'VPIace

1.2e-07 T-VPlace

e

1e-07
8e-08

6e-08

Delay to Sinks

4e-08

2e-08

O 1 1 1 1 1
0 20 40 60 80 100 120

Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 117

66-08 T T T T

5e-08 1

4e-08

3e-08

Delay to Sinks

2e-08

1le-08 i

O 1 1 1 1
0 50 100 150 200 250
Sinks (Sorted From Highest to Lowest)

4e-08
3.5e-08
3e-08
2.5e-08
2e-08
1.5e-08

Delay t® Sinks

1le-08

5e-09

O 1 1 1 1 1 1 1 1
0O 50 100 150 200 250 300 350 400 450
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 118

3e-08 . ; : : . .
VPlace

T-VPlace

2.5e-08

2e-08

1.5e-08

Delay t® Sinks

1le-08

5e-09

O 1 1 1 1 1 1 1 1
0O 50 100 150 200 250 300 350 400 450
Sinks (Sorted From Highest to Lowest)

elliptic
8e-08 . . . .

VPlace
T-VPlace ———— 1

7e-08

6e-08 |-
5e-08

4e-08
3e-08

Delay t® Sinks

2e-08

le-08

0 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 119

ex1010

le-07 . . : : : :
VPlace
9e-08 T-VPlace ——— 1

8e-08 | .
N

6e-08 | .
5e-08 | .
4e-08 | ]
3e-08
2e-08
1e-08

0 L

Delay to Sinks

0 1 2 3 4 5 6 7 8 9
Sinks (Sorted From Highest to Lowest)

4.5e-08
4e-08 |
3.5e-08 \".\\
3e-08
2.5e-08
2e-08
1.5e-08
1le-08
5e-09

0 1 1 1 1 1 1
0 10 20 30 40 50 60 70
Sinks (Sorted From Highest to Lowest)

Delay to Sinks




APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 120

frisc
8e-08 ; : .

' VPIace'

7e-08 T-VPlace 1

T
i

6e-08

5e-08

4e-08
3e-08

Delay to Sinks

2e-08

1le-08

O 1 1 1 1 1
0 200 400 600 800 1000 1200
Sinks (Sorted From Highest to Lowest)

misex3

4e-08
3.5e-08}

3e-08
2.5e-08 S

2e-08 1

1.5e-08 1

Delay t® Sinks

le-08 1
5e-09 1

O 1 1 1 1 1 1
0 2 4 6 8 10 12 14
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 121

pdc

1.4e-07 - . .

VPIéce

T-VPlace —

1.2e-07

le-07

8e-08

6e-08

Delay t® Sinks

4e-08 ‘ -

2e-08 1

O 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
Sinks (Sorted From Highest to Lowest)

126'07 T T T T

V|5Iace
T-VPlace —
le-07

8e-08|

6e-08

Delay t® Sinks

4e-08

2e-08 T

O 1 1 1 1 1 1
0 2 4 6 8 10 12 14
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 122

s38417

8e-08 . . . . : .
VPlace
7e-08 T-VPlace - i

6e-08
5e-08
4e-08 |

3e-08|

Delay ® Sinks

2e-08
1le-08

O ! ! ! ! ! ! ‘”\r”\i”\
0 200 400 600 800 1000 1200 1400 1600
Sinks (Sorted From Highest to Lowest)

s38584.1

56-08
4.5¢-08
46-08
3.5¢-08|
3e-08 .
2.5¢-08
26-08
1.5¢-08
1e-08
5e-09

0 1 1 1 1 1 1 1
0O 200 400 600 800 1000 1200 1400 1600
Sinks (Sorted From Highest to Lowest)

VPlace
T-VPlace ———— 1

Delay t® Sinks




APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 123

56-08 T T T T T
VPlace
4-56'08 T_VPlace ,,,,,,,,,,, -

4e-08
3.5e-08
3e-08
2.5e-08
2e-08
1.5e-08
le-08 1
5e-09 1

O 1 1 1 1 1 1
0 5 10 15 20 25 30 35
Sinks (Sorted From Highest to Lowest)

Delay to Sinks

86-08 T T T T T T T
VPlace
7e-08 | T-VPlace 1

6e-08

5e-08
4e-08

3e-08

Delay t® Sinks

2e-08

1le-08

O 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 124

tseng

4e-08 T T

'VPIace

3.5e-08 T-VPlace ]

3e-08
2.5e-08

2e-08

1.5e-08

Delay to Sinks

1le-08

5e-09

O 1 1 1 1 1
0 100 200 300 400 500 600
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 125

C.3 Placement Estimated Sink Delay Distrlons: Size 8 Cluster

In this section we present the post-placement estimated sink delayutististfor the 20 layest
MCNC benchmark circuits using size 8 clusters. The delays that we present are placement-
estimated delays as we discussed in Section 5.2P. TRV/Place, we set the adapi

Criticality_Exponent to 8, anl to 0.5.

alu4

" VPack with VPlace
T-VPack with VPlace—
ith T-VPlace i

3e-08 . .

2.5e-08}

2e-08

1.5e-08

Delay t® Sinks

le-08 1

5e-09 .

O 1 1 1 1 1 1
0 1 2 3 4 5 6 7
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 126

apex2
4e-08 ; . . :
VPack with VPlace
3.5e-08 T-VPack with VPlace—--- i
;;;;;;;;;;; -VPack with T-VPlace
3e-08¢ T
[%))]
N
= 25e-08+ BRMRREREE N e i
N
§ 2e-08 | ]
©
8 1.5e-08} i
1e-08 i
5e-09 i
0 1 L L
0 0.5 1 15 2
Sinks (Sorted From Highest to Lowest)
apex4
36-08 T T T T T B T T T
VPack with VPlace
,,,,,,, B T-VPack with VPlace--——
2.5e-08 - T-VPack with T-VPlace :
1 T T o
E 2e-08F el
N
§ 1.5e-08}
«
D)
a 1e-08 +
5e-09 |+
O 1 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16 18
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 127

bigkey
1.86'08 T T T T T T T T
VPack with VPlace
1.6e-08 T-VPack with VPlace—— -
T-VPack with T-VPlace
1.4e-08} i
%]
_Agc 1.2e-08 i
) i i
2 1le-08
T 8e-09 - 1
()]
@) 6e-09 | i
4e-09 i
2e-09 | i
O 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450
Sinks (Sorted From Highest to Lowest)
clma
9e-08 T T T " T
VPack with VPlace
8e-08 T-VPack with VPlace .
T-VPack with T-VPlace—
7e-08 _
m “\
E 6e-08 .
n \\ i
2 5e-08
T 4e-08 -
[¢)]
(@) 3e-08 -
2e-08 i
1le-08 | i
O 1 1 1 1 1
0 20 40 60 80 100 120

Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 128

des
3e-08 - - .
VPack with VPlace
\ T-VPack with VPlace-———-
2.5e-081 T-VPack with T-VPlace -
%) 3
E 2e-08 - i
0]
g 1.5e-08} ]
>
©
(]
(@] 1le-08 ¢t i
5e-09 i
O ! ! ! !
0 50 100 150 200 250
Sinks (Sorted From Highest to Lowest)
diffeq
4e-08 T T T T — T T
VPack with VPlace
3.5e-08 T-VPack with VPlace—-- _
T-VPack with T-VPlace
3e-08 i
%]
x X
= 2.5e-08}. i
)
§ 2e-08 | |
«
8 1.5e-08} i
1e-08 i
5e-09 i
0 1 1 1 1 1 1 1 1

0O 50 100 150 200 250 300 350 400 450
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 129

Delay to Sinks

Delay t® Sinks

2e-08 |
1.8e-08

1.6e-08
1.4e-08
1.2e-08
le-08
8e-09
6e-09
4e-09
2e-09

5e-08
4 5e-08
4e-08

3.5e-08}

3e-08
2.5e-08
2e-08
1.5e-08
1le-08
5e-09

dsip

'VPack with VPlace
T-VPack with VPlace—————
T-VPack with T-VPlace

50 100 150 200 250 300 350 400 450

Sinks (Sorted From Highest to Lowest)

elliptic

T T T T T T — T

" VPack with VPlace
T-VPack with VPlace———-
T-VPack with T-VPlace -

200 400 600 800
Sinks (Sorted From Highest to Lowest)

1000 1200 1400



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 130

ex1010
4.5e'08 N T T T T T R T T T
Pack with VPlace
4e-08 T TVPack with-VPlage =
T-VPack with T-VPlace—-
3.5e-08 C 4

%) B T T

E 3e-08 ]

n i il

g 2.5e-08

= 2e-08 ]

[}

- 1.5e-08} -
le-08} -
5e-09 -

O 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9
Sinks (Sorted From Highest to Lowest)
exsp
38-08 T T T T - T T
. VPack with VPlace
T-VPack with VPlace-——-
2.5e-08 —_T-VPack with T-VPlace -

]

E 2e-08 | .

n

£ 15e-08f ]

o

)

- le-08} -
5e-09 -

O 1 1 1 1 1 1

0 10 20 30 40 50 60 70
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 131

frisc
8e-08 . ; ; — .
VPack with VPlace
7e-08 T-VPack with VPlace------- -
T-VPack with T-VPlace
6e-08 -
Q2 :
= 5e-08 ™ .
)
£ 4e08} ]
©
8 3e-08 + -
2e-08 -
1le-08} ‘ -
0 1 1 1 1 1
0 200 400 600 800 1000 1200
Sinks (Sorted From Highest to Lowest)
misex3
38-08 T T T T R T T
VPack with VPlace
i T-VPack with VPlace——
2.5e-08F T with T-VPlace 1
: T T
E 2e-08 | T e i
)
g 1.5e-08} -
©
)]
0O 1le-08 .
5e-09 - .
0 ! ! ! ! ! !

0 2 4 6 8 10 12 14
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 132

pdc
6e'08 T T T T T R T T
VPack with VPlace
: T-VPack with VPlace
5e-08 T-VPack with T-VPlace 1
) o
E 4e-08 e — S
0]
£  3e08f S T — S— S
> -
©
(]
) 2e-08 -
1le-08 | -
O ! ! ! ! ! ! !
0 5 10 15 20 25 30 35 40
Sinks (Sorted From Highest to Lowest)
s298
6e-08 T T T - T T
VPack with VPlace
T-VPack with VPlace———
5€-08 | T-VPack with T-VPlace 1
%]
E 4e-08 | .
)
§ 3e-08 | -
«
(D)
(@) 2e-08 -
1e-08 | -
O 1 1 1 1 1 1
0 2 4 6 8 10 12 14

Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 133

Delay to Sinks

Delay t® Sinks

s38417

5e-08
4.5e-08
4e-08
3.5e-08
3e-08
2.5e-08
2e-08
1.5e-08
le-08
5e-09

=T

4e-08
3.5e-08
3e-08

2.5e-08}
2e-08

1.5e-08
1le-08
5e-09

VF"ack V\/ith VPiace

oT

T-VPack with VPlace————— 1
T-VPack with T-VPlace

200 400 600 800 1000 1200 1400 1600
Sinks (Sorted From Highest to Lowest)

s38584.1

VPack with VPlace
T-VPack with VPlace—- ]
T-VPack with T-VPlace -

200 400 600 800 1000 1200 1400 1600
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 134

seq
3e-08 . . ; — . .
VPack with VPlace
N T-VPack with VPlace-————-
2.5e-08F T-VPack with T-VPlace -
m
E 2e-08F _
N
8 1.5e-08} |
>
«
(]
(@] 1le-08 ¢t i
5e-09 i
O ! ! ! ! ! !
0 5 10 15 20 25 30 35
Sinks (Sorted From Highest to Lowest)
spla
56‘08 T T T T R T T T
VPack with VPlace
4.5e-08 T-VPack with VPlace—— 1
4e-08 - T-VPack with T-VPlace—-
[ 3.5e-08f
7 3e-08f
g 2.5e-08}
z
g 2e-08
1.5e-08}
1le-08 | :
5e-09 3
0 1 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 135

tseng

4e-08 . : , —

VPack with VPlace

3.5e-08 T-VPack with VPlace——— i
T-VPack with T-VPlace

3e-08

2.5e-08| '
2e-08

1.5e-08

Delay to Sinks

le-08
5e-09

O 1 1 1 1 1
0 100 200 300 400 500 600
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 136

C.4 Low-Stess Sink Delay Distriliions: Size 8 Cluster

In this section we present the post place-and-route sink delay wlisind for the 20 layest
MCNC benchmark circuits using size 8 clusters. The delays that we present ang-seds
which we defined in Section 3.10FT-VPlace, we set the adayi Criticality Exponent to 8, and
A to 0.5.

alu4
3.5e-08 . , | . |
VPack with VPlace
3e-08 T-VPack with VPlace———-— |
R — ck with T-VPlace
%) 25e-08F v T
4
£
v 2e-08 |
e
& 1.5e-08f )
()
a
1le-08 |
5e-09 |
0 L 1 | | | .

0 1 2 3 4 5 6 7
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 137

4e-08

3.5e-08F-

3e-08
2.5e-08
2e-08
1.5e-08

Delay t® Sinks

1le-08
5e-09

3.5e-08

3e-08

2.50-08]

2e-08

1.5e-08

Delay t® Sinks

1le-08

5e-09

apex2

VPack with VPlace
T-VPack with VPlace————

0.5 1 1.5
Sinks (Sorted From Highest to Lowest)

apex4

'VPack with VPlace
T-VPack with VPlace——
ck with T-VPlace

2

4 6 8 10 12 14 16 18

Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 138

Delay ® Sinks

Delay to Sinks

bigkey

2e-08

1.8e-08f

1.6e-08
1.4e-08
1.2e-08
1le-08
8e-09
6e-09
4e-09
2e-09

T T T T T T . T

'VPack with VPlace
T-VPack with VPlace—- 1
T-VPack with T-VPlace-

50 100 150 200 250 300 350 400 450

Sinks (Sorted From Highest to Lowest)

clma

9e-08
8e-08
7e-08
6e-08
5e-08
4e-08
3e-08
2e-08
le-08

VPack with VPlace
T-VPack with VPlace-—-- 1
T-VPack with T-VPlace—

20

40 60 80 100 120

Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 139

Delay to Sinks

Delay t® Sinks

des

3e-08

2.5e-08

2e-08

1.5e-08

1le-08

5e-09

4 5e-08
4e-08
3.5e-08

3e-08 |
2.5e-08L . I

2e-08
1.5e-08
1le-08
5e-09

T

VPack with VPlace
T-VPack with VPlace—————
T-VPack with T-VPlace 1

50 100 150 200 250

Sinks (Sorted From Highest to Lowest)

diffeq

'VPack with VPlace
T-VPack with VPlace—- 1
T-VPack with T-VPlace -

50 100 150 200 250 300 350 400 450
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 140

dsip
2.5e-08 T T T T T — T T
VPack with VPlace
T-VPack with VPlace———-
2e-08 I T-VPack with T-VPlace
9]
=
175) 1.5e-08. -
g
5
> 1le-08 - -
Q
5e-09 -
O 1 1 1 1 1 1 1 1
0O 50 100 150 200 250 300 350 400 450
Sinks (Sorted From Highest to Lowest)
elliptic
7e-08 . . — .
VPack with VPlace
6e-08 T‘VPaCkW|th VPlace—- |
T-VPack with T-VPlace
0 5e-08 i
4
=
n 4e-08 - .
g
E 3e-08+ -
[}
)
2e-08 .
1le-08 - .
0 1 1 1 1 1 1

0 200 400 600 800 1000 1200 1400
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 141

ex1010
6e'08 T T T T T N T T T
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, VPack with VPlace
T-VPack with VPlace -
5e-08 ; S
0 e o - _
f 4e-08
)
2  3e08} |
>
©
()
(@) 2e-08 - _
1le-08 | i
0 ! ! ! ! ! ! ! !
0 1 2 3 4 5 6 7 8 9
Sinks (Sorted From Highest to Lowest)
exsp
3.5e-08 - . ; — ; :
VPack with VPlace
3e-08 |- T-VPack with VPlace-——— |
N T-VPack with T-VPlace
" 2.5e-08 - l
4
£
N 2e-08 | ]
e
& 1.5e-08} ]
)
o
1le-08 _
5e-09 - i
0 ! ! ! ! ! !

0 10 20 30 40 50 60 70
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 142

frisc
9e-08 . ; : — .
VPack with VPlace
8e-08 1 T-VPack with VPlace .
T-VPack with T-VPlace—-
7e-08 .

%] s

.—;54 6e-08 i

(/) I~ -

g 5e-08

E‘ 4e-08 i

()

(@) 3e-08 -
2e-08 |+ 1
1e-08 | ) i

O ! ! ! ! 1

0 200 400 600 800 1000 1200
Sinks (Sorted From Highest to Lowest)
misex3
3.56-08 T T T T A T T
VPack with VPlace
3e-08 F- T-VPack with VPlace——— |
e T-VPack with T-VPlace

9 25e-08f “*»l,,ff,ffffffffffjffiii?fifi_i?_iiitfii_itfiitf:i;jfj_j:j I

£

n 2e-08 t ]

e

&  15e-08f ]

(]

o

1e-08 | i
5e-09 |+ i
O 1 1 1 1 1 1

0 2 4 6 8 10 12 14
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 143

pdc
\7Pack \}vith VP'Iace

9e-08 . . .
8e-08

7e-08
6e-08
5e-08 .
4e-08
3e-08
2e-08
1le-08

O 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
Sinks (Sorted From Highest to Lowest)

Delay to Sinks

s$298

7e-08 . : . —

VPack with VPlace

6e-08f T-VPack with VPlace |
T-VPack with T-VPlace

5e-08

4e-08

3e-08

Delay t® Sinks

2e-08

1le-08

O 1 1 1 1 1 1
0 2 4 6 8 10 12 14
Sinks (Sorted From Highest to Lowest)




APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 144

s38417
6e'08 T T T T T R T T
VPack with VPlace
T-VPack with VPlace———-
5e-08 T-VPack with T-VPlace 1

0 :

E 4e-08 t.

)

2 3e08}

>

©

()

a 2e-08 |

1le-08 |
O 1 1 1 1 1 1 1 -
0 200 400 600 800 1000 1200 1400 1600
Sinks (Sorted From Highest to Lowest)
s38584.1
4.5e-08 . . : T . :
VPack with VPlace
4e-08 1 T-VPack with VPlace————- 1
T-VPack with T-VPlace
3.5e-08 -

)]

E 3e-08 -

wn 1

2 2.5e-08

= 2e-08 1

(O]

- 1.5e-08 _
1le-08 -
5e-09 ]

0 1 1 1 1 1 1 1

0O 200 400 600 800 1000 1200 1400 1600
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 145

seq
4e-08 . : . — . :
VPack with VPlace
3.5e-08}F T-VPack with VPlace——— i
T-VPack with T-VPlace
3e-08 i
0
x —_—
£ 2.5e-08 i
)
§ 2e-08 ]
©
8 1.5e-08 i
1le-08 i
5e-09 - i
O 1 1 1 1 1 1
0 5 10 15 20 25 30 35
Sinks (Sorted From Highest to Lowest)
spla
5e-08 T T T T T N T T T
VPack with VPlace
4.5e-08 - T-VPack with VPlace——— 1
4e-08 | \\-\VPack with T-VPlace-----
I 3.5e-08+ \
C
D 3e-08
g 25e-08f
3
g 2e-08 -
1.5e-08
1le-08 \
5e-09 - -
O ! ! ! ! ! ! ! !

0 5 10 15 20 25 30 35 40 45
Sinks (Sorted From Highest to Lowest)



APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 146

tseng

4e-08 . , , _
VPack with VPlace

3.5e-08 T-VPack with VPlace |
T-VPack with T-VPlace

3e-08 -
2.5e-08

2e-08

1.5e-08

Delay to Sinks

1le-08

5e-09

O 1 1 1 1 1
0 100 200 300 400 500 600
Sinks (Sorted From Highest to Lowest)



147

References

[Acte99]

[Alte98]

[Alte95]

[Betz97a]

[Betz97b]

[Betz98a]

[Betz98b]

[Betz98c]

[Betz99]

S. Kaptanoglu et. al.,A" new high density and ery low cost reprogrammable
FPGA Architecture”’FPGA 1999, pp. 3 - 12.

Altera Inc.,Data Book 1998.
Altera Inc., “MAX+PLUS Il Getting Startetl1995

V. Betz and J. Rose, “ClustBased Logic Blocks for FPGAs: Areafiefency vs.
Input Sharing and SiZe|EEE Custom Intgrated Cicuits Confeence Santa
Clara, CA,1997, pp. 551-554.

V. Betz and J. Rose, “VPR: A MePacking, Placement and Routingdrl for
FPGA Research]nt’| Workshop on FPL1997, pp. 213-222.

V.Betz and J. Rose, “WoMuch Logic Should Go in an FPGA Logic Block?,
IEEE Design and 8st Mayazine Spring 1998pp. 10-15.

V. Betz, ‘Architecture and CAD for Speed and Area Optimization of FPGAls,
D. DissertationUniversity of Dronto,1998.

V. Betz, “VPR and VRck Users Manual (\érsion 4.17),May 5, 1998. Available

for download fom http://wwweecgtoronto.edu/~vaughn/vpr/vitml).

V. Betz, J. Rose, A. Marquard@rchitectue and CAD for Deep-Submaor
FPGAs Kluwer Academic Publishers, 1999.



148

[Boes93]

[Brow92]

[Brow96]

[Chen94]

[Cong94]

[Cong96]

[EImo48]

[Fran92]

[Gallog]

[Hame98]

[Haug87]

[Hitc83]

K. Boese, A. Kahng, B. McGoand G. Robins, “Fidelity and Ne@mptimality of
Elmore-Based Routing ConstructicnECCAD, 1993, pp. 81 - 84.

S. Brawn, R. Francis, J. Rose, and Z. VraneBie|d-Programmable Gate Aays
Kluwer Academic Publishers, 1992.

S. Bravn and J. Rose, “FPGA and CPLD Architectures:utofial; IEEE Design
& Test of Computar Summer 1996, pp. 42-57.

C. Cheng, “RISA: Accurate and figient Placement Routability Modelirig,
ICCAD, 1994, pp. 690 - 695.

J. Cong and YDing, “Flovmap: An Optimal €chnology Mapping Algorithm for
Delay Optimization in Lookup-dble Based FPGA DesighdEEE Trans. on
CAD,Jan. 1994, pp 1-12.

J. Cong, J. Peck and. Ding, “RASP: A General Logic Synthesis System for
SRAM-based FPGASACM Symp. on FPGA4996, pp. 137 - 143

W. C. Elmore, “The Tansient Response of Damped Linear Neks with Rarticu-
lar Regard to Wdeband Amplifiers,J. Applied Physigsvol. 19, January 1948, pp.
55-63.

J. Frankle, “Iteratie and Adaptie Slack Allocation for Performance-Dein Lay-
out and FPGA RoutingDAC, 1992, pp. 536 - 542.

D. Gallovay, “Implementation of Grayscale Cegrsion for \ldeo Image Process-

ing on the Tansmogrifier2a; Personal Communication.

I. Hamer “Implementation of DES on theadnsmogrifier2a; Personal Communi-

cation.

P. Hauge, R. Najrand E. Y6ffa, “Circuit Placement for Predictable Performahce,
ICCAD, 1987, pp. 88-91.

R. Hitchcock, G. Smith and D. Cheng,iffiing Analysis of ComputeHardware’
IBM Journal of Resea@h and De&elopment,Jan. 1983, pp. 100 - 105.



149

[Kehl93]

[Kirk83]

[Leve98]

[Luce98]
[Marq99]

[Meta92]
[Nag95]

[Okam96]

[Padios]

[Rama94]

[Ries95]

[Rose90]

[Rose91]

M. Khellah, S. Bravn and Z. Vranesic, “Modelling Routing Delays in SRAM-
based FPGA5Proc. Canadian Confon VLS) 1993, pp. 1042 - 1056.

S. Kirkpatrick, C. Gelatt and M.&¢chi, “Optimization by Simulated Annealiihg,
ScienceMay 13, 1983, pp. 671 - 680.

P. Leventis, “Using edif2blif @rsion 1.0,June 30, 1998 Available for download
from http://wwweecgtoronto.edu/~leenti/edif2blif/edif2blithtm]).

Lucent TechnologiesFPGA Data Book1998

A. Marquardt, “Using ClusteBased Logic Blocks andiming-Driven Racking to
Improve FPGA Speed and DensitfFPGA,1999, pp 37-46.

Meta-Software,Hspice Users Manua 1992.

S. Nag and R. Rutenh&Performance-Dxien Simultaneous Place and Route for
Row-Based FPGAs”, ICCAD 1995, pp. 332 - 338.

T. Okamoto and J. Cong, “Befed Steiner fiee Construction with We Sizing for
Interconnect Layout OptimizatidnlCCAD, 1996, pp. 44 - 49.

K. Padalia, “Implementation of Grayscale @ension for \fdeo Image Processing

on the Tansmogrifier2a; Personal Communication.

S. Raman, C. Liu, and L. Joneg, Delay Driven FPGA Placement Algorithin,
ACM Proceedings Ewr-DAC with Euo-VHDL, 1994, pp. 277 - 282.

B. Riess and G. Ettelt, “SPEEDast and Hifcient Timing Driven Placemerit,
IEEE International Symposium on @iiits and System$995

J. Rose, R. J. Francis, D.Wwis and PChaw, “Architecture of Programmable Gate
Arrays: The Hiect of Logic Block Functionality on Area tidiency,” IEEE Jur-
nal of Solid State Ciuits,Oct. 1990, pp. 1217 - 1225.

J. Rose and S. Bno. “Flexibility of Interconnection Structures for Field-Pro-
grammable Gate ArraysJSSC March 1991, pp. 277 - 282.



150

[Rose93]

[Sauc93]

[Sent92]

[Swar95]

[Swar98a]

[Swar98b]

[Vantos]

[Vant99]

[West93]

[Xili94]
[Xili97]
[Xili98]

[Yang91]

J. Rose, A. El Gamal and A. Sangaoni-Mincentelli, ‘Architecture of Field-Pro-
grammable Gate ArraysProceedings IEEEyol. 81, no. 7, July 1993, pp. 1013 -
1029.

G. SaucierD. Brasen, J. Hiol, “&titioning with Cone StructurésiCCAD 1993,
pp. 236 - 239.

E. M. Sentwoich et al, “SIS: A System for Sequential Circuit Analysigd.
Report No. UCB/ERL M92/4University of California, Ber&ley, 1992.

W. Swartz and C. Sechen, iffiing Driven Placement for Lge Standard Cell Cir-
cuits; DAC, 1995, pp. 211 - 215.

J. Svartz, V. Betz and J. RoseA“Fast Routability-Driven Router for FPGAS,
FPGA 1998, pp. 140 - 149.

J. Swvartz, ‘A high-Speed iming-Aware Router for FPGASM.A.Sc. Thesis, Uni-
versity of Dronto, 1998.

Vantis Corporation, “VF1 Field Programmable Gate Atr&reliminary Data
Sheet1998.

O. Agrawal et. al. , An Innovative, Sgmented High Performance FPGArfily
with Variable-Grain-Architecture and idé-gating Functions, FPGA 1999, pp.
17 - 26.

N. Weste and K EshraghiaRrinciples of CMOS VLSI Design; A Systeenspec-
tive; Second Edition, Addisonedle, 1993.

Xilinx Inc., The Pogrammable Lgic Data Book1994.
Xilinx Inc., “XC5200 Series of FPGAsData Book 1997.

Xilinx Inc., “Virtex 2.5 V Field Programmable Gate Array®dvance Poduct
Data Sheet1998.

S. Yang, “Logic Synthesis and Optimization Benchmarksrswwn 3.0, Tech.

Report,Microelectronics Center of North Carolina, 1991.



151

[Ye98] A. Ye, “Procedural @&ture Mapping on FPGAsM.A.Sc. Thesis, Univsity of
Toronto, 1998

[Yous90] H. Youssef and E. Shragdz, “Timing Constraints for Correct Performarice,
ICCAD, 1990, pp. 24 - 27



