
Cluster-Based Architecture,
Timing-Driven Packing and

Timing-Driven Placement for FPGAs

by

Alexander R. Marquardt

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Department of Electrical and Computer Engineering
University of Toronto

© Copyright by Alexander Ronald Marquardt, 1999

ii

Abstract

Cluster-Based Architecture, Timing-Driven Packing and
Timing-Driven Placement for FPGAs

Master of Applied Science, 1999
Alexander R. Marquardt

Department of Electrical and Computer Engineering
University of Toronto

As process geometries shrink into the deep-submicron region, interconnect resistance and capaci-

tance account for an increasingly significant portion of the delay of circuits implemented in Field-

Programmable Gate Arrays (FPGAs). One way to improve FPGA speed is to employ logic-

cluster-based architectures which have high-speed local connections among groups of logic

elements. In this work we show what size logic-cluster results in the best area-speed trade-off.

To obtain the best choices for a cluster-based architecture, we use computer aided design (CAD)

tools to experimentally evaluate architectures with different sized logic clusters. As part of this

CAD flow, we develop a timing-driven algorithm that packs logic elements into these clusters. In

addition, we develop a timing-driven placement algorithm that results in significant improvements

in FPGA speed over existing non-timing-driven algorithms.

iii

Acknowledgments

I would like to thank my advisor Jonathan Rose for providing direction, motivation, and advice

throughout this work. He has taught me a great deal about FPGA research.

I would also like to give thanks to Vaughn Betz. He and I spent many hours discussing FPGA

architecture and CAD, and each discussion we had was educational.

I would also like to thank the students in Jonathan’s research group, Yaska, Jordan, Khalid, Rob,

and Paul. Through our weekly meetings, and through other informal meetings, we have shared

many ideas.

I am grateful to my parents for giving me constant support and encouragement throughout my life

and always having faith in me.

iv

Table of Contents

CHAPTER 1 Introduction .1

1.1 Cluster-Based Logic Blocks. .3

1.2 Timing-Driven Packing .4

1.3 Timing-Driven Placement. .4

1.4 Thesis Organization .5

CHAPTER 2 Background and Previous Work .7

2.1 Overview of FPGA Architecture .7

2.1.1 Cluster-Based Logic Blocks .8

2.2 CAD for FPGAs .10

2.2.1 Timing Analysis. .11

2.2.2 Packing Algorithms for Cluster-Based FPGAs. .12

2.2.2.1 The VPack Logic Cluster Packing Tool. .13

2.2.2.2 RASP .15

2.2.3 Placement. .15

2.2.3.1 Simulated Annealing. .16

2.2.3.2 The VPR Placement Tool (VPlace) .18

2.2.3.3 Timing-Driven Placement. .18

TimberWolfSC. .19
PROXI .20

2.3 Summary. .21

CHAPTER 3 Timing-Driven and Connection-Driven Packing .23

3.1 Experimental Methodology .23

v

3.2 Timing-Driven Packing: T-VPack .25

3.2.1 Timing Analysis and Delay Models .27

3.2.2 Timing-Driven Packing Description .27

3.2.2.1 Preliminary Definitions. .28

3.2.2.2 Seed Selection and Attraction Function .32

3.2.3 Algorithm Analysis .33

3.2.4 Computational Complexity .34

3.3 Connection-Driven Packing: C-VPack. .36

3.3.1 Attraction Function .37

3.3.2 Time Complexity. .38

3.4 Result Quality of T-VPack, C-VPack, and VPack. .39

3.5 Summary. .43

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 45

4.1 Trade-offs in Cluster-Based FPGAs. .45

4.2 Architecture Modeling .46

4.2.1 Area Model .47

4.2.2 Delay Model. .47

4.2.3 Effect of Cluster Size on the Physical Length of FPGA Routing Segments.49

4.2.4 Sizing Routing Transistors to Compensate for Different

 Physical Segment Lengths .50

4.3 FPGA Architectural Parameters. .51

4.3.1 Basic Architecture .51

4.3.2 Inputs Required vs. Cluster Size .52

4.3.3 Routing Architecture .53

4.3.4 Flexibility of Logic Block to Routing Interconnect vs. Cluster Size.54

4.4 Architecture Evaluation Metric: Area-Delay Product .56

4.5 Speed and Area-Efficiency vs. Cluster Size. .57

4.5.1 Discussion of Delay vs. Cluster Size Results .62

4.6 Effect of Cluster Size on Compile Time. .64

4.7 Summary. .65

CHAPTER 5 Timing-Driven Placement .67

5.1 Introduction. .67

5.2 Timing-Driven Placement: T-VPlace. .68

5.2.1 Delay Modeling and Cost Function. .68

5.2.1.1 Delay Lookup Matrix .70

5.2.1.2 Cost Function .71

vi

5.2.2 Algorithm Tuning .74

5.2.3 Verification of the Fidelity of the Placement Estimated Critical Path Delay79

5.2.4 Time Complexity. .80

5.3 Results: VPlace vs. T-VPlace. .81

5.4 Summary. .84

CHAPTER 6 Conclusions and Future Work .87

6.1 Conclusions and Contributions. .87

6.2 Future Work .88

APPENDIX A MCNC Benchmarks .89

APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters 91

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 103

C.1 Placement Estimated Sink Delay Distributions: Size 1 Clusters.103

C.2 Low-Stress Sink Delay Distributions: Size 1 Clusters. .114

C.3 Placement Estimated Sink Delay Distributions: Size 8 Clusters.125

C.4 Low-Stress Sink Delay Distributions: Size 8 Clusters. .136

vii

List of Tables

TABLE 3.1 Effects of using tie-breakers, and the recompute timing

interval (cluster size = 8).. .35

TABLE 3.2 Comparison of VPack, T-VPack, and C-VPack

result quality (Cluster Size = 8).. .40

TABLE 3.3 Net absorption and inputs used (cluster size 8). .41

TABLE 4.1 Important intra-cluster delays in TSMC’s 0.35µm CMOS process.48

TABLE 4.2 Inputs required for 98% utilization for VPack and T-VPack55

TABLE 4.3 Routing area vs. Fc, input for various cluster sizes .56

TABLE 5.1 Effect of re-timing-analysis in the outer loop. .75

TABLE 5.2 Effect of re-timing-analysis in the inner loop. .75

TABLE 5.3 Effect of Criticality_Exponent with aλ value of 0.5..76

TABLE 5.4 Effect of Criticality_Exponent with aλ value of 1. .77

TABLE 5.5 Effect ofλ with an adaptive Criticality_Exponent of 879

TABLE 5.6 Post-place-and-route comparison of VPlace and

T-VPlace (cluster size = 1).. .82

TABLE 5.7 Post-place-and-route comparison of VPlace and

T-VPlace (cluster size = 8).. .83

TABLE 5.8 Post-place-and-route comparison with Xilinx-like architecture

(cluster size = 4).. .85

TABLE A.1 MCNC benchmark circuits. .89

viii

List of Figures

FIGURE 1.1 Example logic cluster containing two LUTs [BETZ99].3
FIGURE 2.1 A generic FPGA [Brow92] .8
FIGURE 2.2 Logic cluster and basic logic element (BLE) .9
FIGURE 2.3 CAD flow .10
FIGURE 2.4 Packing example. .13
FIGURE 2.5 Pseudo-code for VPack [Betz98b, Betz99] .14
FIGURE 2.6 Pseudo-code of a generic Simulated Annealing-based placer

[Betz98b, Betz99]. .17
FIGURE 3.1 Architecture evaluation CAD flow [Betz98b, Betz99].24
FIGURE 3.2 Pseudo-code for T-VPack. .26
FIGURE 3.3 Determining BaseBLECrit from connection criticalities..28
FIGURE 3.4 Example of first criticality tie-breaker. .30
FIGURE 3.5 Example of second criticality tie-breaker. .31
FIGURE 3.6 Post place and route T-VPack alpha trade-off curves.33
FIGURE 3.7 Post place and route C-VPAck alpha trade-off curves..38
FIGURE 3.8 Why reducing the number of nets in a circuit is good42
FIGURE 4.1 Structure and speed paths of a logic cluster.. .48
FIGURE 4.2 Effect of cluster size on physical length of routing segments.49
FIGURE 4.3 Effect of cluster size on tile length .50
FIGURE 4.4 Inputs required for 98% utilization vs. cluster Size .53
FIGURE 4.5 FPGA with length 4 segments, 50% buffered and 50%

pass transistor switches. .54
FIGURE 4.6 Total area vs. cluster size.. .58
FIGURE 4.7 Area components vs. cluster size.. .59
FIGURE 4.8 Critical path delay vs. cluster size. .60
FIGURE 4.9 Area-delay product vs. cluster size. .61

ix

FIGURE 4.10 Inter-cluster and intra-cluster nets on the critical path..62
FIGURE 4.11 Breakdown of critical path delay into inter-cluster and

intra-cluster components. .63
FIGURE 4.12 Decrease in logical manhattan distance as cluster size increases.64
FIGURE 4.13 Variation of circuit compile time with logic cluster size..65
FIGURE 5.1 Pseudo-code T-VPlace.. .69
FIGURE 5.2 Graph showing fidelity of placement estimated critical path..80

1

CHAPTER 1 Introduction

Field-Programmable Gate Arrays (FPGAs) have become one of the most popular implementation

media for digital circuits, and since their introduction in 1984, FPGAs have become a multi-

billion dollar industry. The key to the success of FPGAs is their programmability, which allows

any circuit to be instantly realized by appropriately programming an FPGA.

FPGAs have some compelling advantages over Standard Cells or Mask-Programmed Gate Arrays

(MPGAs): faster time-to-market, lower non-recurring engineering costs (NRE), and easier debug-

ging. Additionally, FPGAs offer designers the ability to fix errors or to add features to systems

that have already been manufactured. FPGAs are also useful for implementing designs that are

low volume or are required immediately, since they do not require extensive manufacturing like

Standard Cells or MPGAs.

The benefits offered by FPGAs come at a price — FPGAs are at least three times slower, and

require at least ten times the area of MPGAs [Brow92]. This loss in speed is mainly due to the fact

that logic in FPGAs is connected via programmable switches, while in Standard Cells or MPGAs,

logic is directly connected with metal wires. The programmable switches in FPGAs have high

resistance and capacitance compared to the metal wiring in Standard Cells or MPGAs, and

therefore reduce circuit speed. Interconnect delay is more significant (a larger proportion of

circuit delay) in FPGAs than it is in MPGAs or Standard Cells, and consequently it is more

important to minimize the interconnect delay in FPGAs than it is in MPGAs or Standard Cells.

CHAPTER 1 Introduction 2

Another important factor affecting circuit delay is the process used in the manufacture of an

FPGA. As process geometries shrink into the deep-submicron region, interconnect1 resistance

and capacitance become increasingly significant — smaller processes which result in improve-

ments in logic speed do not result in similar improvements in interconnect speed. The result of

this is that as processes shrink, interconnect delay accounts for an increasing proportion of total

circuit delay. Clearly each process shrink makes interconnect delay more and more significant,

and it must be minimized to achieve the best possible circuit performance.

The quality of the computer-aided design (CAD) tools used to map circuits into an FPGA and the

quality of the FPGA architecture can have a significant impact on the FPGA’s performance. It is

clear that interconnect delay is an increasingly important factor in the overall performance of an

FPGA, so it is crucial that FPGA CAD tools and FPGA architectures minimize this delay. Our

research focuses on the following two areas

1. Exploring FPGA logic block architectures to minimize interconnect delay, and

2. Developing CAD tools that minimize interconnect delay.

It is important that FPGA architecture and CAD be studied in concert, since architectural features

must be properly utilized by CAD tools to be of any benefit, and CAD tool enhancements cannot

be properly evaluated without a good architecture. In this thesis, we are concerned with

improving FPGA performance without sacrificing large amounts of area. To accomplish this we

investigate three promising aspects of FPGA architecture and CAD: Logic-cluster based FPGA

architectures, timing-driven packing, and timing-driven placement. These three areas are

described in the following sections.

1. Interconnect is the wiring and switches that connect logic elements.

CHAPTER 1 Introduction 3

1.1 Cluster-Based Logic Blocks

An important factor affecting the area and speed of an FPGA is the logic block (logic cluster)

architecture used within the FPGA. In general a logic cluster consists one or more “basic logic

elements” (BLEs) connected by fast local interconnect [Betz98b, Betz99], where the BLE

(described fully in Section 2.1.1) that we use consists of a 4-LUT and a register. Figure1.1 shows

an example logic cluster consisting of two BLEs and local interconnect. The size of the logic

cluster (number of BLEs it contains) used in an FPGA architecture can have a dramatic effect on

its area and performance. Previous work [Betz98b] demonstrated the effect of cluster size on area

efficiency. Also, in [Betz98b] it was speculated that as cluster size is increased, circuit speed

would be improved. As cluster size is increased, two things happen

1. More critical path connections are able to use the fast local interconnect rather than using slow

inter-cluster (between cluster) interconnect, but this local interconnect becomes slower.

2. More connections are completely absorbed within clusters so less inter-cluster routing is

required (reducing area), but the local interconnect area per cluster is growing quadratically

(increasing area).

BLE
Logic Logic

FPGALogic Cluster

BLE

Local
Inter-

(X-Bar)

Cluster
Outputs

Cluster
Inputs

FIGURE 1.1 Example logic cluster containing two LUTs [BETZ99]

connect

CHAPTER 1 Introduction 4

We are concerned with determining the effect of logic cluster size on circuit speed as well as area

and finding what size logic cluster has the best area-delay trade-off. To our knowledge no work

has been done which simultaneously investigates logic clusters with respect to both area and

speed.

1.2 Timing-Driven Packing

To fairly evaluate different size logic clusters with respect to speed, it is important that the CAD

tools take advantage of the fast local interconnect within the clusters in order to minimize the

critical path delay. A packing algorithm selects how BLEs in a circuit are to be mapped into logic

clusters, while a “timing-driven packing” algorithm attempts to map BLEs along the critical path

into the fewest number of clusters so that many critical path connections use fast local intercon-

nect. We give a more formal definition of packing in Section 2.2.2.

1.3 Timing-Driven Placement

Placement involves selecting the coordinates in the FPGA where each logic cluster will be

mapped to. A timing-driven placement algorithm attempts to map logic clusters that are on the

critical path into physical locations that are close together so as to minimize the amount of inter-

connect through which the critical signal must travel. Previous work [Betz99, Betz98b] has done

a good job considering timing during routing, but it did not consider timing during placement.

While there is evidence that timing-driven placement improves speed for standard cells, there has

been no clear quantification of how much the improvement is for FPGAs. A goal of this work is

to determine what improvements can be obtained with timing-driven placement. Placement is

formally defined in Section 2.2.3.

CHAPTER 1 Introduction 5

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 describes FPGA architecture and CAD, and gives

an overview of existing CAD tools. Chapter 3 introduces a new timing-driven logic block packing

algorithm. Chapter 4 describes architecture experiments that evaluate different size logic clusters

with respect to area and speed. Chapter 5 describes a new timing-driven placement algorithm.

Finally, in Chapter 6 we present our conclusions and suggestions for future work.

(1.1)

CHAPTER 1 Introduction 6

7

CHAPTER 2 Background and Previous
Work

In this chapter, we first give an overview of FPGA architecture with a focus on logic block archi-

tecture. After this we discuss the CAD flow used to map circuits into FPGAs including an intro-

duction to timing analysis, and a detailed review of logic cluster packing, placement, and timing-

driven placement.

2.1 Overview of FPGA Architecture

In general, an FPGA consists of logic blocks, I/O blocks, and programmable routing as shown in

Figure2.1. To implement a circuit in an FPGA, each of the logic blocks in the FPGA are appro-

priately programmed to perform a small portion of the functionality of the desired circuit, and

each of the I/O blocks is programmed to be an input pad or an output pad as required by the

circuit. Then these functional portions and I/Os are all appropriately connected through the pro-

grammable routing. The logic block used in an FPGA can have a significant impact on the perfor-

mance of an FPGA, and since we are interested in determining the effects and trade-offs of

cluster-based logic blocks, we describe cluster-based logic blocks below.

CHAPTER 2 Background and Previous Work 8

2.1.1 Cluster-Based Logic Blocks

We are interested in studying logic blocks that consist of a grouping ofbasic logic elements

(BLEs) connected with fast local interconnect. In general, a BLE is a small indivisible unit

combining sequential and combinational logic, while the BLE that we study consists of a 4-LUT

and a flip-flop as shown in Figure2.2-b. A logic block combining many BLEs is known as alogic

cluster [Betz99, Betz98b]. An example of a logic cluster is the Logic Array Blocks used in

Altera’s FLEX 6K, FLEX 8K, and FLEX 10K parts [Alte98a], as well as the Configurable Logic

Blocks used in the Xilinx 5200 [Xili97] and Virtex [Xili98] parts. Figure2.2-a shows the

structure of a logic cluster that consists of one or more BLEs and the routing required to connect

them together.

The clusters that we study arefully-connected, meaning that any BLE input can connect to any

cluster input or any BLE output. Since the cluster is fully connected it is possible to bring a net

into the cluster on a single cluster input, and route this net to many BLEs within the cluster via the

local routing. This allows the number of nets brought into the cluster (number of cluster inputs

FIGURE 2.1 A generic FPGA [Brow92]

Logic
block I/O block

Programmable
routing

CHAPTER 2 Background and Previous Work 9

used) to be less than the total number of BLE inputs within the cluster. Another benefit of fully

connected clusters is that CAD tools are simplified since all BLEs within the cluster are logically

equivalent.

A logic cluster consisting of BLEs is described with the following four parameters [Betz99,

Betz98b]:

1. The size of (number of inputs to) a LUT (K),

2. The number of BLEs in a cluster (N),

3. The number of inputs to the cluster for use as inputs by the LUTs (I), and

4. The number of clock inputs to a cluster (for use by the registers),Mclk.

The work of [Betz99, Betz98b] focused on logic clusters in which the LUT size,K, is 4 and the

number of clock pins on a cluster, Mclk, is 1 — this is the case shown in Figure2.2. The total

number of BLE inputs isK·N, however, only I inputs are brought into the cluster. [Betz98b]

showed that a good rule of thumb1 is to design logic clusters withI=2·N + 2. Also shown was that

FPGAs composed of logic clusters of size 1-10 BLEs (with the exception of size 2) have the best

area efficiency. This research did not consider the effect of cluster size on circuit speed, however,

it was speculated that larger cluster sizes would have a positive impact on FPGA performance.

1. This rule of thumb applies to the case when the LUT size,K, is 4. An interesting direction for future research
would be to study the interactions between LUT size,K, the number of inputs to a cluster, I, and the number of
BLEs in a cluster, N, and determine the best combination of these parameters.

Clock

DFF Out
Inputs 4-

LUT

BLE

 .
. .

Clock

Inputs

#1

Outs

(a) Logic Cluster (b) Basic Logic Element (BLE)

BLE
#N

Local
RoutingI

N(X-Bar)

FIGURE 2.2 Logic cluster and basic logic element (BLE)

CHAPTER 2 Background and Previous Work 10

2.2 CAD for FPGAs

Figure2.3 illustrates the CAD flow that is used to evaluate FPGA architectures and CAD algo-

rithms. This CAD flow mirrors the actual CAD flow employed by FPGA and ASIC designers.

Each circuit we use is logic-optimized by SIS [Sent92] and then technology-mapped into 4-LUTs

by FlowMap [Cong94]. VPack [Betz98b] is then used to group the LUTs and registers into logic

clusters1 of the desired size. Finally, we use VPR [Betz98b, Betz99] to place (determine the x, y

position of each cluster in the FPGA) and route (connect the wires) each circuit. VPR’s timing-

driven router extracts the elmore delay [Elmo48] of each routed net, and performs a path-based

timing analysis to determine the delay of the circuit’s critical path. Finally, VPR uses a transistor-

based area model [Betz98b, Betz99] to estimate the total layout area required by this FPGA to

implement each circuit.

1. Note, following the convention of [Betz98b] our CAD flow shows packing and placement as two separate steps.
After packing, we treat a logic cluster as an indivisible unit which is then placed. This division is not always nec-
essary (depending on the CAD flow used), but we impose it in order to simplify the CAD tools. Another approach
would be to eliminate packing, and allow the placement algorithm to move LUTs and registers freely between dif-
ferent clusters. This approach to placement would considerably increase the computational complexity of the
placement algorithm, but would likely produce better results.

Circuit

Logic Optimization

Technology Map to 4-LUTs

Pack BLEs into Logic Clusters

Placement

Routing

Timing and Area Results

Cluster
Size (N)

FIGURE 2.3 CAD flow

CHAPTER 2 Background and Previous Work 11

In this section we first describe how timing analysis is used to evaluate a circuit’s speed, and how

it guides timing-driven algorithms. Then we discuss two packing algorithms VPack and RASP.

After this we discuss placement, and give an overview of Simulated Annealing and VPR’s

placement tool, and we discuss several timing-driven placement approaches.

2.2.1 Timing Analysis

Timing analysis [Hitc83] has two main purposes:

1. To determine the final maximum speed that a circuit implementation can achieve.

2. To determine the delay of all the paths and connections in a circuit during placement and rout-

ing, and use these as a guide to reduce the total circuit delay.

To perform a timing analysis, we must first represent the circuit as a directed graph. Nodes in the

graph represent input and output pins of circuit elements such as LUTs, registers, and I/O pads.

Connections1 between these nodes are modeled with edges in the graph. These edges are

annotated with a delay corresponding to the physical delay between the nodes.

To determine the delay of the circuit, a breadth first traversal is performed on the graph starting at

sources (input pads, and register outputs). Then we compute thearrival time, Tarrival, at all nodes

in the circuit with the following equation

(2.1)

Where node i is the node currently being computed, and delay(j,i) is the delay value of the edge

joining node j to node i. The delay of the circuit is then the maximum arrival time, Dmax, of all

nodes in the circuit.

1. In a graph representation of the circuit we define a “connection” to be an edge between a net driver and any of its
terminals.

Tarr ival i() Max j fanin i()∈∀ Tarr ival j() delay j i,()+{ }=

CHAPTER 2 Background and Previous Work 12

To guide a placement or routing algorithm, it is useful to know how much delay may be added to

a connection before the path that the connection is on becomes critical. The amount of delay that

may be added to a connection before it becomes critical is called theslack [Hitc83] of that con-

nection. To compute the slack of a connection, we must compute therequired arrival time, Tre-

quired, at every node in the circuit. We first set the Trequired at all sinks (output pads and register

inputs) to be Dmax. Required arrival time is then propagated backwards starting from the sinks

with the following equation

(2.2)

Finally, the slack of a connection driving node,i, is defined as:

(2.3)

2.2.2 Packing Algorithms for Cluster-Based FPGAs

A packing algorithm takes a netlist consisting of LUTs and registers and produces a netlist con-

sisting of logic clusters. This involves combining the LUTs and registers into BLEs, and then

grouping the BLEs into logic clusters (Figure2.4).

There are two main constraints that packing algorithms must meet:

1. The number of BLEs must be less than the cluster size,N.

2. The number of distinct inputs generated outside the cluster and used as inputs to BLEs within

the cluster must be less than or equal to the number of cluster inputs,I.

Trequi red i() Min j fanout i()∈∀ Trequi red j() delay i j,()–{ }=

Slack i j,() Trequi red j() Tarr ival i()– delay i j,()–=

CHAPTER 2 Background and Previous Work 13

Altera has an in-house tool [Alte95] that targets cluster-based logic blocks, and Xilinx has an in-

house tool targeting the “cluster-like” logic blocks of the 5200 [Xili97] and Virtex [Xili98]

FPGAs, however to our knowledge, this work has not been made publicly available. In this

section we discuss two publicly available packing algorithms, VPack [Betz98b] and RASP

[Cong96].

2.2.2.1 The VPack Logic Cluster Packing Tool

VPack [Betz98b, Betz99] takes a netlist of LUTs and registers, and produces a netlist of logic

clusters. All parameters relating to the logic clustering (N, I, K, Mclk) are specified at run-time.

VPack first groups LUTs and registers into BLEs, and then packs the BLEs into logic clusters.

The pseudo-code for the VPack algorithm is given in Figure2.5 [Betz98b, Betz99].

The VPack algorithm has two optimization goals. The first is to pack each logic cluster to its

capacity to minimize the number of clusters needed. The second goal is to minimize the number

of inputs to each cluster in order to reduce the number of connections required between clusters.

BLEs

A

B

C

D Clusters

Pack

Netlist of BLEs Netlist of Clusters

E

F G H

C D

A B

E H

F G

FIGURE 2.4 Packing example

CHAPTER 2 Background and Previous Work 14

Vpack uses a greedy algorithm to construct each cluster sequentially. At the start of each cluster

operation, VPack selects as a “seed” an unclustered BLEwith the most used inputs, and then

places this “seed” into a clusterC. Then VPack selects a new BLE, B to pack intoC based on the

attraction thatB has toC. Attraction is determined by the number of inputs and outputs thatB and

C have in common:

(2.4)

BLEs are added to the current cluster until it cannot fit any more, at which point packing begins

on a new cluster. The process terminates when there are no more unclustered BLEs left.

Let: UnclusteredBLEs be the set of BLEs not contained in any cluster
C be the set of BLEs contained in the current cluster
LogicClusters be the set of clusters (where each cluster is a set of

BLEs)

UnclusteredBLEs = PatternMatchToBLEs (LUTs, Registers);
LogicClusters = NULL;

while (UnclusteredBLEs != NULL) { /* More BLEs to cluster */
C = GetBLEwithMostUsedInputs (UnclusteredBLEs);
while (|C| < N) { /* Cluster is not full */

BestBLE = MaxAttractionLegalBLE (C, UnclusteredBLEs);
if (BestBLE == NULL) /* No BLE can be added to cluster */

break;
UnclusteredBLEs = UnclusteredBLEs - BestBLE;
C = C∪ BestBLE;

}
LogicClusters = LogicClusters∪ C;

}

FIGURE 2.5 Pseudo-code for VPack [Betz98b, Betz99]

Attraction B() Nets B() Nets C()∩=

CHAPTER 2 Background and Previous Work 15

The time complexity of this algorithm is O(kmax⋅K⋅n) which is a result of the fact that when each

BLE is clustered (n BLEs) we must examine all of the nets attached to the BLE (K nets), and we

must examine all BLEs that each net fans out to (maximum fanout = kmax). This results in an

execution time of about four seconds to pack the largest MCNC1 circuit (clma) [Yang91] on a 296

MHz UltraSPARC-II processor.

2.2.2.2 RASP

In [Cong96] the RASP logic block packing tool is described. This tool is capable of mapping

circuits represented as a network of LUTs into several different types of logic blocks. This

algorithm uses a “closeness” cost function to weigh the desirability of mapping LUTs into the

same logic block. This closeness cost function can be set up to prefer to minimize delay or area, or

to maximize routability. The closeness of two LUTs is marked on an edge in a “compatibility

graph” if it is allowable to pack the two LUTs into one logic block. If the LUTs cannot be packed

together (i.e. they violate some hard constraint such as number of inputs or BLEs allowed) then

there is no edge put into the compatibility graph. The packing step selects LUTs to pack together

by performing a maximum weighted matching on the compatibility graph. The complexity of this

algorithm is O(nm) where n is the number of LUTs, and m is the number of edges in the compati-

bility graph. With the logic blocks used in our research, the number of edges, m, in the compati-

bility graph is O(n2), which leads to an algorithm complexity of O(n3).

2.2.3 Placement

Placement is the process by which a netlist of circuit blocks (I/Os or logic clusters) is mapped into

physical locations in an FPGA. The locations that blocks are mapped to can significantly affect

the performance of the FPGA. There are three main goals that placement algorithms may attempt

to satisfy:

1. We give a brief overview of the 20 largest MCNC circuits in Appendix A.

CHAPTER 2 Background and Previous Work 16

1. To minimize the amount of wiring required, which we refer to as wirelength-driven place-

ment.

2. To balance the wiring density across the FPGA, called routability-driven placement.

3. Minimize the delay of the critical path(s), called timing-driven placement.

Placement algorithms may simultaneously satisfy one or more of these goals.

In the remainder of this section we review the Simulated Annealing algorithm that is commonly

applied to placement problems. Then we discuss the Simulated Annealing-based placer built into

VPR [Betz98b, Betz99] which we call VPlace. After this we review various timing-driven

placement approaches.

2.2.3.1 Simulated Annealing

The Simulated Annealing placement algorithm mimics the annealing process used to gradually

cool molten metal to produce high-quality metal structures [Kirk83]. A Simulated Annealing-

based placer initially places logic clusters and I/Os (circuit blocks) randomly into physical

locations in an FPGA. Then the placement is iteratively improved by randomly swapping blocks

and evaluating the goodness of each swap with a cost function. If the move will result in a

reduction in the placement cost, then the move is accepted. If the move would cause an increase

in the placement cost, then the move may still be accepted even though it makes the placement

worse. The purpose of accepting some “bad” moves is to prevent the Simulated Annealing-based

placer from becoming trapped in a local minimum.

The probability of accepting a “bad” move is given by e-∆C/T, where∆C is the positive change in

cost function that acceptance of the move would result in, and T is a parameter called temperature

that controls the likelihood of accepting each move. Initially, a Simulated Annealing-based placer

starts at a high temperature, so that almost all moves are accepted, then the temperature is

gradually reduced so that the probability of accepting moves that make the placement worse

becomes very low. In the final stages of placement only moves that decrease the placement cost

are accepted.

CHAPTER 2 Background and Previous Work 17

In the final (low temperature) stages of the placement, if all blocks in the FPGA are considered for

swapping, most swaps will be rejected because they result in large positive changes in the cost

function. To increase the number of accepted moves at low temperatures, only blocks that are

close together should be considered for swapping since “local swaps” tend to result in relatively

small changes in the placement cost. Accordingly, a Simulated Annealing-based placer uses a

parameter called Rlimit (“range limiter”) that controls how close together circuit blocks must be to

be considered for swapping. Initially, Rlimit spans the entire FPGA which means that blocks on

opposite sides of the FPGA may be considered for swapping. As the placement proceeds, Rlimit is

decreased, so that in the final stages of placement, only blocks that are close together are consid-

ered for swapping.

In Figure2.6 we show the pseudo-code for a generic Simulated Annealing-based placer, as

presented in [Betz98b, Betz99].

S = RandomPlacement ();
T = InitialTemperature ();
Rlimit = InitialRlimit ();

while (ExitCriterion () == False) { /* “Outer loop” */
while (InnerLoopCriterion () == False) { /* “Inner loop” */

Snew = GenerateViaMove (S, Rlimit);
∆C = Cost (Snew) - Cost (S);
if (∆C < 0) {

S = Snew /*Move is good, accept*/
}
else {

r = random (0,1);

if (r < e-∆C/T) {
S = Snew; /*Move is bad, accept any way*/

}
}

} /* End “inner loop” */
T = UpdateTemp ();
Rlimit = UpdateRlimit ();

} /* End “outer loop” */

FIGURE 2.6 Pseudo-code of a generic Simulated Annealing-based placer [Betz98b, Betz99].

CHAPTER 2 Background and Previous Work 18

2.2.3.2 The VPR Placement Tool (VPlace)

In this document we will refer to the placement algorithm used within VPR as VPlace. VPlace is

a Simulated Annealing-based placement algorithm that attempts to minimize the wirelength of

the resulting circuit by placing circuit blocks that are on the same net close together. To accom-

plish this, VPlace uses a bounding-box based “linear congestion” [Betz98b, Betz99] cost function

to estimate wirelength requirements. The VPlace algorithm follows the format of the pseudo-code

shown in Figure2.6.

The linear congestion cost function has the following functional form [Betz98b, Betz99]

(2.5)

where there are Nnets in the circuit. The cost of each net, i, is determined by its horizontal span,

bbx(i), and its vertical span, bby(i). The q(i) factor compensates for the fact that the bounding box

wire length model underestimates the wiring necessary to connect nets with more than three ter-

minals. The values used for q(i) were obtained from [Chen94] so that q(i) is set to 1 for nets with

3 or fewer terminals, and it slowly increases to 2.79 for nets with 50 terminals. Beyond 50 termi-

nals, the q(i) function linearly increases at the rate of

q(i) = 2.79 + 0.02616·(Num_Terminals - 50). (2.6)

The complexity of this algorithm is O(n4/3) where n is the number of blocks in the circuit.

2.2.3.3 Timing-Driven Placement

Placement algorithms that attempt to minimize the critical path delay of the resulting circuits are

called timing-driven. There are different approaches to minimizing critical path delay in timing-

driven placement algorithms. One approach which we call “path-based” timing-driven placement

computes path delays at every stage of the placement, and uses theses delays in its cost function.

This path-based approach is computationally expensive since path delays must be continuously

re-computed. Another approach is “connection-based” timing-driven placement, which involves

Cost linear congestion q i() bbx i() bby i()+[]⋅
i 1=

Nnets

∑=

CHAPTER 2 Background and Previous Work 19

performing a path-based timing analysis and assigning slacks to each connection in the circuit.

Then during placement, more attention is paid to connections with low slack, but the more global

view of the complete path delay is not used. It is also possible to combine connection-based and

path-based timing-driven placement by periodically performing a full path analysis based on the

current placement, and then updating the slacks on individual connections.

In this section we discuss the existing timing-driven placement algorithms that are most relevant

to our work.

TimberWolfSC

The TimberWolfSC timing driven placement algorithm for row-based standard cell ICs is

presented in [Swar95]. This algorithm uses a Simulated Annealing approach to placement. In this

algorithm, net delay is computed as

(2.7)

Where Tdriver is the intrinsic delay of the driver, Rdriver is the resistance of the driver, Cnet is the

estimated capacitance of the net, and Cgates is the gate input capacitance of all sinks on the net. The

arrival time at the sink of a path is the summation of all of the net delays along that path. This for-

mulation of delay assumes that the driver resistance is much larger than the wiring resistance (so

that it can ignore wiring resistance). The fact that wiring resistance is ignored likely makes these

net delays optimistic, especially for circuits implemented in deep-submicron processes where

wiring resistance and delay is significant.

The cost function used in this algorithm penalizes any paths where the arrival time is greater than

the required (user defined) arrival time with the following:

(2.8)

The total timing penalty Pt is the sum of all critical path penalties.

Net Delay Tdr iver Rdr iver Cnet Cgates+()⋅+=

Penal ty Tarr ival Trequi red–=

CHAPTER 2 Background and Previous Work 20

(2.9)

The cost function consists of two terms, a wire length term represented by W, total timing penalty,

Pt, and a trade-off variableλ that trades off between the two terms

(2.10)

The authors of [Swar95] found that setting

(2.11)

gave the best results, where∆W is the average change in wire length and∆Pt is the average

change in the timing penalty measured during the first “outer loop” iteration of a Simulated

Annealing algorithm. This implies that changes in the timing penalty are three times as important

as changes in the wire length.

The authors presented results for three MCNC standard cell circuits, for which timing informa-

tion was previously available. Compared to the previous results they reduced delay by 28% - 50%

at an area cost of between 2.5% and 6%. It is not clear from the paper how the previous timing

results were obtained. This algorithm is path based, so the computational complexity is likely

quite high, but is not revealed in the paper.

PROXI

In [Nag95] a performance-driven simultaneous place and route algorithm (PROXI) is presented.

After each placement perturbation in the anneal, a small subset of relevant nets (previously

unroutable and newly disturbed nets) is ripped up and rerouted with a fast maze router. As the

placement evolves the critical path is evaluated. The cost function used in this algorithm is

(2.12)

Pt Penal ty
paths∀
∑=

Cost W λ Pt⋅+=

λ 3
∆W

∆Pt

---------⋅=

Cost Wr R Wt T⋅+⋅=

CHAPTER 2 Background and Previous Work 21

Where R is the number of unrouted nets and T is the critical path. Wr and Wt are weights that are

determined adaptively at runtime so as to normalize the components of the cost function so that

each term contributes equally to the cost function. This algorithm is unique in that it performs

placement and routing simultaneously — most place and route software does placement first, and

then routes the placed circuit. Performing placement and routing in one stage should theoretically

give better results than a two stage (place then route) algorithm, however it is much more compu-

tationally expensive.

This algorithm achieves 8% - 15% improvement in delay when compared to the Xilinx XACT5.0

place and route system. This algorithm, however, has a significant disadvantage in CPU compile

time compared to the XACT5.0 tool, ranging from 6 times for the smallest design (12x12 array),

to 11 times for the largest design (16x16 array).

2.3 Summary

In this chapter we presented an overview of FPGA architecture including a description of cluster

based logic blocks [Betz99, Betz98b]. Then we discussed CAD for FPGAs. This included discus-

sions of timing analysis, packing algorithms, and placement.

TABLE 1.1
TABLE 2.1

CHAPTER 2 Background and Previous Work 22

23

CHAPTER 3 Timing-Driven and
Connection-Driven
Packing

In this chapter we first discuss the experimental methodology that we use to evaluate different

CAD algorithms and FPGA architectures. Then we introduce two new packing algorithms that are

extensions to the VPack [Betz98b, Betz99] algorithm. The first is a timing-driven packing

algorithm that we call T-VPack, and the second is a connection-absorption-driven packing

algorithm that we call C-VPack. We then compare the results of both of these algorithms to the

results of VPack.

3.1 Experimental Methodology

The CAD flow that we use to evaluate different CAD algorithms and FPGA architectures is the

same as in [Betz98b, Betz99], and is given in Figure3.1. First each circuit is logic-optimized by

SIS [Sent92] and technology mapped into 4-LUTs by FlowMap [Cong94]. T-VPack (described in

Section 3.2) is then used to group the LUTs and registers into logic clusters of the desired size

with the desired number of inputs. Then VPR is used to place and route each circuit. The

placement algorithm in VPR is simulated annealing based and optimizes the final placement to

minimize the required routing area. The router in VPR is fully timing-driven and attempts to

minimize the critical path delay (given the current placement). After placement and routing, we

CHAPTER 3 Timing-Driven and Connection-Driven Packing 24

know the estimated area and track width required to implement each circuit and the estimated

critical path delay, where area and delay values are computed using the area and delay models

described in the next chapter.

Figure3.1 shows how VPR computes the minimum number of tracks in which a circuit will

route, which we refer to as ahigh-stress routing. Basically VPR repeatedly routes each circuit

with different channel widths (number of tracks per channel), scaling the FPGA’s architecture

until it finds the minimum number of tracks in which the circuit will route. We define alow-stress

routing (as does [Swar98a]) to occur when an FPGA has 20% more routing resources than the

minimum required to route a given circuit. We feel that low-stress routings are indicative of how

an FPGA will generally be used (it is rare that a user will utilize 100% of all routing and logic

FIGURE 3.1 Architecture evaluation CAD flow [Betz98b, Betz99].

Min #
tracks?

Circuit

Adjust channel
capacities (W)

Logic optimization (SIS)
Technology map to 4-LUTS (FlowMap + Flowpack)

Pack FFs and LUTs into logic clusters (T-VPack)

Placement (VPR)

Routing (VPR, timing-driven router)

No

Yes ‹ Wmin determined

(N, I, K)

Cluster
Parameters

Routing
Architecture
Parameters
(Fc, etc.)

Routing with W = 1.2 Wmin (VPR, timing-driven router)

Determine critical path delay and transistor area to build FPGA (VPR + TransCount)

CHAPTER 3 Timing-Driven and Connection-Driven Packing 25

resources), so many of our delay results are based on low-stress routings. We also present results

that are based on an infinite1 number of routing resources. These infinite routing results tell us the

best possible router-achievable speed of a circuit given the current packing and placement of that

circuit. We feel that is a useful indicator of how well a packing or placement algorithm performs

with respect delay.

By allowing the channel width to vary, and searching for the minimum routable width, we can

detect small improvements in FPGA architectures or CAD algorithms that might otherwise go

unnoticed. Compare this to mapping a circuit into a fixed size FPGA — this would only tell us if

the circuit fit or not. A “binary” result like this makes it is difficult to draw conclusions about new

architectures or CAD algorithms.

3.2 Timing-Driven Packing: T-VPack

Our timing-driven logic block packing algorithm, T-VPack, attempts not only to pack each logic

block to capacity and minimize the number of cluster inputs used, but also to minimize the

number of inter-cluster (between cluster) connections on the critical path(s). The local routing

within clusters is faster than the general-purpose routing between logic clusters, so reducing the

number of inter-cluster connections on the critical path(s) reduces circuit delay. The basic

operation of the algorithm is the same as that of the VPack algorithm described in Section 2.2.2.1

with a few modifications. We show the pseudo-code for the T-VPack algorithm in Figure3.2.

T-VPack first performs a timing analysis (defined in Section 2.2.1) to determine the critical

path(s) of the circuit. Then T-Vpack finds a “seed” BLE by selecting a BLE on the critical path(s)

rather than selecting a BLE with the most used inputs. BLEs are then added to the current cluster

1. Infinite routing resource results are delay results from the router when it ignores congestion, i.e. the router is
allowed to use a single resource for multiple un-related connections. This allows the router to allocate the fastest
possible resource for every connection in the circuit. See [Betz98b, Betz99] for a detailed description of how the
router in VPR works.

CHAPTER 3 Timing-Driven and Connection-Driven Packing 26

based on the attraction they have to the current cluster, where the attraction function is modified

to prefer to absorb connections along the critical paths(s). After each cluster is full, packing

begins on a new cluster.

In this section we first discuss timing-analysis and delay modeling within T-VPack. Then we give

details of the algorithm implementation. After this we provide an analysis of T-VPack to see the

effect of various parameters within T-VPack. Finally after this we analyze the complexity of the

algorithm.

Let: UnclusteredBLEs be the set of BLEs not contained in any cluster
C be the set of BLEs contained in the current cluster
LogicClusters be the set of clusters (where each cluster is a set of BLEs)

UnclusteredBLEs = PatternMatchToBLEs (LUTs, Registers);
LogicClusters = NULL;

ComputeCriticalities();
BLEsSinceLastCriticalityRecompute = 0;

while (UnclusteredBLEs != NULL) { /* More BLEs to cluster */

C = GetMostCriticalBLE (UnclusteredBLEs);
BLEsSinceLastCriticalityRecompute ++;

while (|C| < N) { /* Cluster is not full */

if (BLEsSinceLastCriticalityRecompute >= RecomputeInterval) {
ComputeCriticalities();
BLEsSinceLastCriticalityRecompute = 0;

}

BestBLE = MaxAttractionLegalBLE (C, UnclusteredBLEs);
if (BestBLE == NULL) /* No BLE can be added to cluster */

break;
UnclusteredBLEs = UnclusteredBLEs - BestBLE;
C = C∪ BestBLE;
BLEsSinceLastCriticalityRecompute ++;

}
LogicClusters = LogicClusters∪ C;

}

FIGURE 3.2 Pseudo-code for T-VPack

CHAPTER 3 Timing-Driven and Connection-Driven Packing 27

3.2.1 Timing Analysis and Delay Models

To minimize the number of inter-cluster connections on the critical path(s), T-VPack first needs to

determine which connections are on the critical path(s). Accordingly, T-VPack performs a timing

analysis to determine the slack of each connection between BLEs. The timing analyzer within T-

VPack models three types of delay: the delay through a BLE, orLogicDelay, the connection delay

between blocks within the same cluster orIntraClusterConnectionDelay, and the connection

delay between blocks that are in different clusters, orInterClusterConnectionDelay. The delay of

a connection between two BLEs in different logic clusters is not known until after a circuit has

been placed and routed, so T-VPack approximates the delay between clusters as a constant Inter-

ClusterConnectionDelay. Note that this leads to some inaccuracy in T-VPack’s estimate of where

the critical path(s) lies, so that sometimes T-VPack will be attempting to shorten a path that will

not be part of the post-place-and-route critical path(s). The performance of T-VPack is not very

sensitive to the exact values chosen for these three delay parameters. Throughout this work we set

LogicDelay to 0.1, IntraClusterConnectionDelay to 0.1 and InterClusterConnectionDelay to 1.0.

Note that the timing analysis can be performed as often as the user specifies, i.e. a timing analysis

can be performed after each BLE is clustered, or at the other end of the spectrum timing analysis

may be done once at the beginning of the algorithm execution and never again. The effect of this

recompute interval is discussed in Section 3.2.3.

3.2.2 Timing-Driven Packing Description

After a timing analysis is complete, we are able to begin packing. This section describes how we

determine which BLE will be selected as a “seed” for each cluster, and how BLEs to be added to

each cluster are selected. We first define many sub-equations that are used in selecting a cluster

seed and in the attraction function. After these preliminaries, we finally present how we select a

cluster seed, and our new attraction function.

CHAPTER 3 Timing-Driven and Connection-Driven Packing 28

3.2.2.1 Preliminary Definitions

We define the criticality of a connection,i, to be

(3.1)

whereMaxSlack is the largest slack amongst all connections in the circuit.

The Criticality of a BLE is computed as follows. Let us first define the base criticality of an

unclustered BLE, orBaseBLECrit(B). BaseBLECrit is defined slightly differently depending on

whether we are choosing a seed BLE for a new cluster or computing the attraction of a BLE to the

current cluster:

1. When we are choosing a seed BLE, BaseBLECrit(B) is the maximum ConnectionCriticality

value amongst all of BLEB’s connections; or

2. When we are computing the attraction of a BLE to the current cluster, BaseBLECrit(B) is the

maximum ConnectionCriticality value amongst all the connections joining BLEB to BLEs

within the cluster currently being packed,C. If a BLE does not have any connections toC then

its base criticality score is zero.

ConnectionCr i tical i ty i() 1 slack i()
MaxSlack
--------------------------–=

FIGURE 3.3 Determining BaseBLECrit from connection criticalities.

BLE BLE

BLE BLE

Cluster, C

0.95

0.75
0.65

0.97

BaseBLECrit = 0.97

BaseBLECrit = 0.95

CHAPTER 3 Timing-Driven and Connection-Driven Packing 29

In Figure3.3 we illustrate how the BaseBLECrit values are assigned when we are computing the

attraction of a BLE to the current cluster. Each connection between unclustered BLEs and BLEs

within the clusterC is labelled with its ConnectionCriticality value. Notice how the base critical-

ity of each BLE is set to the highest criticality amongst the connections between it and the cluster

being packed.

During packing, multiple BLEs often have the same base criticality value. In this case, we use a

tie-breaker mechanism to select which BLEs are the most beneficial to pack. This mechanism is

designed to choose (from the BLEs tied with the highest base criticality value) the BLE whose

packing would reduce the length of the largest number of critical paths. This is best illustrated by

an example.

In Figure3.4 we have darkened connections and BLEs on the critical paths. Notice that when

selecting which BLEs to place into a cluster, it is more beneficial to absorb certain critical BLEs

over other critical BLEs. In this case, absorbing BLEs X, Y, and Z would be much more beneficial

than absorbing BLEs Q, T, and V. We can see that absorbing X, Y, and Z affects three partially-

overlapping critical paths, and will shorten the lengths of the critical path(s) that seven other BLEs

(Q, R, S, T, U, V and W) are on. On the other hand, absorbing Q, T, and V affects only one critical

path, and will not reduce the criticality of any other BLEs, since all the other critical BLEs would

still lie on a critical path after the packing of Q, T, and V into a single cluster. Clearly it is best to

cluster BLEs that reduce the criticalities of the most other BLEs.

We define three variables that keep track of the number of critical paths that each BLE in the

circuit affects. First we defineInputPathsAffected as the number of critical paths between timing

path sources (primary inputs or register outputs) and the BLE currently being labelled. Next we

define OutputPathsAffected as the number of critical paths between the BLE currently being

labelled and the timing path sinks (primary outputs or register inputs). Finally, we define Total-

PathsAffected as the sum of the previous two variables. The calculation of these variables is

explained below.

CHAPTER 3 Timing-Driven and Connection-Driven Packing 30

An example of the computation of InputPathsAffected is shown in Figure3.4. In this figure each

BLE is labelled with its InputPathsAffected value. We assign all timing path source nodes an

InputPathsAffected value of one. Then we perform a breadth-first traversal of the circuit starting

at the sources, and define the InputPathsAffected value as

(3.2)

wheremost critical inputs(B) refers to all of the BLE(s) driving the connections onB’s input(s)

that have a criticality value equal to the largest criticality of any input onB. The OutputPathsAf-

fected variable is calculated in the same manner, but it starts at timing path sink nodes and works

back toward the timing path sources.

(3.3)

TotalPathsAffected is then simply

(3.4)

FIGURE 3.4 Example of first criticality tie-breaker.

1

1

2

2
3

3

31 1

1

Y

X

V

W

T

U

Q

R

S

Z

Timing path
sources

Timing path
sinks

BLEs on

BLEs not on

InputPathsAffected(S) = 1

critical path(s)

critical path(s)

1

2

2

4

InputPathsAffected B() InputPathsAffected D()
D∀ most cr i ti cal inputs B()∈

∑=

OutputPathsAffected B() OutputPathsAffected D()
D∀ most cr i ti cal outputs B()∈

∑=

TotalPathsAffected B() InputPathsAffected B() OutputPathsAffected B()+=

CHAPTER 3 Timing-Driven and Connection-Driven Packing 31

When two BLEs have the same BaseBLECrit, we break the tie by choosing to insert the BLE with

the higher TotalPathsAffected value in the cluster. While this breaks most ties, it does not resolve

all of them. Consider the simple circuit shown in Figure3.5, and the selection of a seed BLE for

the first cluster. There is only one path through the circuit, so all 4 BLEs are on the critical path,

and have a BaseBLECrit value of 1. Similarly, all 4 BLEs have a TotalPathsAffected value of 2, so

we have a four-way tie for the best BLE to use as a seed. Figure3.5(a) shows a potential outcome

if we randomly choose one of the four tied BLEs as the cluster seed when the cluster size is 2. If

we choose BLE F as the cluster seed, and then BLE G is chosen as the second BLE in this cluster,

we have “marooned” BLEs E and H — it is not possible to pack either E or H with its fan-in or

fan-out. If instead, we choose BLE H as the seed of the first cluster (as Figure3.5(b) shows), the

first cluster would contain G and H, and E and F could still be packed together into one cluster.

Clearly, the clustering shown in Figure3.5(b) is preferable to that of Figure3.5(a).

We use a second tie-breaker mechanism to break ties not resolved by the first tie-breaker to reduce

the likelihood of “marooning” BLEs. We always choose to pack the tied BLE that is the farthest

from the timing path sources (i.e. is the closest to the timing sinks).1 In Figure3.5, for example,

this second tie-breaker causes T-VPack to always choose BLE H as the seed of the first cluster, so

the superior clustering solution of Figure3.5(b) is achieved.

The criticality of a BLE is its BaseBLECrit slightly adjusted by these two tie-breakers:

(3.5)

1. Note that choosing to always pack the tied BLE closest to the timing path sources would work just as well. The
key is simply to ensure that one consistently chooses BLEs from one end of a chain of tied BLEs, rather than from
the middle or from a mix of the two ends.

E F G H

(a) BLE F chosen as seed of first cluster

E F G H

(b) BLE H chosen as seed of first cluster

First cluster First cluster

FIGURE 3.5 Example of second criticality tie-breaker.

Cr i tical i ty B() BaseBLECr i t B() ε TotalPathsAffected B() ε2
Dsource B()⋅+⋅+=

CHAPTER 3 Timing-Driven and Connection-Driven Packing 32

whereε is a small number (e.g. 0.01) to ensure that the second two terms function only as tie-

breakers, and Dsource(B) is a BLE’s distance, or level, from the timing path sources. We show the

effectiveness of incorporating these tie-breakers in Section 3.2.3.

3.2.2.2 Seed Selection and Attraction Function

Now that we have all of the preliminary definitions out of the way, we can explain how we select

a cluster seed and define our attraction function.

The seed BLE packed into a new cluster is the unclustered BLE with the highestCriticality. Once

a seed is chosen, the attraction function used to determine the next unclustered BLE,B, to be

added to the current cluster, C, is:

(3.6)

Notice that the second term in (3.6) is essentially the attraction function from the original VPack

algorithm. The MaxNets factor in the denominator of this term is the maximum number of nets

that could connect to any BLE (I + N +Mclk) and simply normalizes the magnitude of the second

term. The first term in (3.6) promotes the grouping of BLEs with high criticalities (defined below)

into the current cluster to minimize delay. α is a parameter that controls the trade-off between net

sharing and delay minimization. Ifα is 0, we have an algorithm that focuses solely on minimizing

the number of used inputs to a cluster, and is equivalent1 to the basic VPack algorithm described

in Section 2.2.2.1. Ifα is 1, the algorithm focuses solely on minimizing the delay of a circuit,

with no regard for how many nets are shared by the BLEs within a cluster. Using the CAD flow

described in Section 2.2 we have experimentally determined that any α value in the range from

0.4 to 0.9 produces the best quality packings in terms of both post-place-and-route delay and

routing area (channel width). The trade-off curves for channel width and critical path delay vs.α

1. The attraction function is equivalent to the VPack attraction function if α is 0, but the seed selection is still based
on the maximum criticality.

Attraction B() α Cr i tical i ty B()⋅ 1 α–() Nets B() Nets C()∩
MaxNets

--⋅+=

CHAPTER 3 Timing-Driven and Connection-Driven Packing 33

for an architecture using size 8 clusters are shown in Figure3.6. In this figure, the critical path

delay is computed based on an architecture with infinite routing resources. Throughout our work

we setα to 0.75.

3.2.3 Algorithm Analysis

In this algorithm, there are two factors that may impact the quality of the packing solutions. First,

what is the effect of the tie-breaker enhancements on the overall quality. Second, the complexity

of T-VPack depends on how often timing analysis is performed on the circuit as BLEs are packed

into logic clusters, so we are interested in how often we should recompute timing information to

get the best results. We call this the recompute interval. We perform a new timing analysis if the

number of BLEs packed since the last timing analysis is greater than or equal to the recompute

interval. The pseudo-code for T-VPack was given in Figure3.2.

45

46

47

48

49

50

51

52

53

54

55

56

0 0.2 0.4 0.6 0.8 1
3.25e-08

3.3e-08

3.35e-08

3.4e-08

3.45e-08

3.5e-08

3.55e-08

3.6e-08
Minimum Channel Width

Critical Path Delay

FIGURE 3.6 Post place and route T-VPack alpha trade-off curves.

α

M
in

im
um

 C
ha

nn
el

 W
id

th
(2

0
B

en
ch

m
ar

k
G

eo
m

et
ric

 Ave
ra

ge
)

C
rit

ic
al

 P
at

h
D

el
ay

 (
s)

(2
0

B
en

ch
m

ar
k

G
eo

m
et

ric
 Ave

ra
ge

)

CHAPTER 3 Timing-Driven and Connection-Driven Packing 34

In Table3.1 we show the effect of the tie-breakers and the recompute interval. This table shows

that in the infinite routing case, the tie-breakers improve the post-place-and route speed by about

4% compared to not using these tie-breakers. It also shows that computing the critical path only

once during the algorithm execution and using tie-breakers results in a 2% speed degradation

compared to recomputing the timing information after each BLE is clustered and using tie-

breakers. The low stress routing case shows that the three cases have roughly the same critical

path delay. We feel that the infinite routing results are a good indicator of how well the packing

algorithm performs with the various options since these infinite routing results reduce variations

due to the router.

It is likely that the reason that the recompute interval has such a small effect on the quality of the

resulting circuits is because the T-VPack predicted critical path (which uses the same delay for

each inter-cluster connection) and the post-place-and-route critical path are different enough that

there is no benefit to updating connection criticalities as more information about the circuit

packing becomes available. Since the post-place-and-route quality is not dramatically affected by

the recompute interval, we use a recompute interval of ∞ (compute criticality once) for the results

presented in the remainder of this thesis. This dramatically reduces the execution time of our

algorithm as we discuss below.

3.2.4 Computational Complexity

The computational complexity of T-VPack depends on how often timing analysis is performed on

the circuit as BLEs are packed into logic clusters. If timing analysis is performed after each BLE

is packed (a recompute interval of 1), the algorithm has the most up-to-date view of the criticality

of each BLE, but the algorithm is O(n2), where n is the number of BLEs in the circuit. This com-

plexity is the result of O(n) BLEs to pack, and each timing analysis being an O(n) operation. In

this case T-VPack requires about fifteen minutes on a 300 MHz UltraSparc workstation to pack

the largest MCNC benchmark circuit (clma) [Yang91], which contains 8383 BLEs.

CHAPTER 3 Timing-Driven and Connection-Driven Packing 35

a. The results shown in Table3.1 were computed with an older version of VPR than the results displayed in
Table3.2. Also, the architecture used for this experiment has a lower Fc value than the architecture used to gener-
ate Table3.2. For these reasons, the numbers shown here (for the tie-breakers enabled and compute criticality once
case) do not exactly match the size 8 cluster T-VPack results which we present in Table3.2 (although they are
quite close). Since all results shown in this table are generated with thesame router and Fc values, it provides an
accurate comparison of tie-breakers and the recompute interval. However, comparisons should not be made
between Table3.1 and Table3.2.

TABLE 3.1 Effects of using tie-breakers, and the recompute timing interval (cluster size = 8).a

Circuit

Minimum Channel Width for
Successful Routing (Wmin)

Post-Place-and-Route Critical
Path (ns)
W = ∞b

Post-Place-and-Route Critical
Path (ns)

W = Wmin + 20%

With Tie
Breakers

and
Criticality

 Always
Up to Date

No Tie
Breakers

and
Criticality

 Always
Up to Date

With Tie
Breakers

and
Compute
Criticality

 Once

With Tie
Breakers

and
Criticality

 Always
Up to Date

No Tie
Breakers

and
Criticality

 Always
Up to Date

With Tie
Breakers

and
Compute
Criticality

 Once

With Tie
Breakers

and
Criticality

 Always
Up to Date

No Tie
Breakers

and
Criticality

 Always
Up to Date

With Tie
Breakers

and
Compute
Criticality

 Once

alu4 43 42 42 25.2 27.2 25.6 29.9 28.3 28.0

apex2 50 58 54 30.2 32.6 35.6 35.9 34.3 33.1

apex4 60 54 58 27.1 29.8 25.5 31.5 31.4 30.1

bigkey 28 25 26 15.7 21.4 16.4 17.2 21.7 17.7

clma 68 68 66 63.6 80.3 64.0 67.3 82.1 66.0

des 29 31 31 28.1 28.2 27.5 28.7 28.4 28.3

diffeq 34 33 34 30.2 30.0 26.5 34.6 31.2 30.1

dsip 23 23 24 17.9 18.1 20.2 20.5 18.0 21.9

elliptic 47 48 55 40.1 40.5 40.5 52.9 48.8 54.7

ex1010 63 59 62 41.4 49.1 42.8 44.9 50.8 49.3

ex5p 59 56 58 28.9 29.1 28.4 29.7 3.32 33.2

frisc 55 55 58 55.0 54.6 55.9 65.0 62.2 63.1

misex3 47 48 48 23.1 25.3 25.2 27.3 33.2 31.4

pdc 76 82 78 47.3 48.6 52.5 72.8 52.5 63.3

s298 31 32 32 48.7 53.4 49.5 57.6 59.4 67.0

s38417 44 44 44 39.3 43.4 41.6 40.8 43.9 42.7

s38584.1 43 44 44 35.5 32.0 29.3 36.6 33.9 38.1

seq 54 54 51 25.9 30.3 26.9 29.0 32.6 30.6

spla 69 69 68 38.9 42.1 41.0 59.0 48.2 46.3

tseng 29 29 36 28.9 29.6 29.0 32.1 33.7 30.1

Geom. Av. 45.1 45.1 46.1 32.5 35.0 33.0 37.7 37.8 37.6

CHAPTER 3 Timing-Driven and Connection-Driven Packing 36

We demonstrated in the previous section that it is not necessary to always have an up to date view

of the critical path, and in fact never recomputing the timing information (recompute interval =∞)

results in an average degradation of only 2%. If timing analysis is performed only after every P

BLEs are packed, the algorithm complexity is O(n2/P). If it performs timing analysis only once

before any BLEs have been packed, the algorithm has the same complexity as VPack:

O(kmax⋅K⋅n) where kmax is the maximum number of terminals of any net andK is the number of

inputs to each BLE. As with VPack, this complexity is the result of the fact that after each BLE is

clustered (n BLEs) we must examine all of the nets attached to the BLE (K nets), and we must

examine all BLEs that each net fans out to (maximum fanout = kmax). In this timing analyze only

once case, T-VPack requires only a few seconds to pack the largest MCNC circuit (clma). We feel

that this time-quality trade-off is the best for our purposes, so the remainder of our T-VPack

results are based on packing solutions in which the recompute interval is∞.

3.3 Connection-Driven Packing: C-VPack

As we will show in Section 3.4, our T-VPack algorithm on average requires fewer post-place-and-

route tracks to implement the benchmark circuits than VPack. This is a result of the fact that a

side effect of T-VPack is that many connections (and hence low fanout nets) are completely

absorbed into logic clusters. This occurs because the attraction function used in T-VPack prefers

to pack a BLE with its fan-in or fan-out BLEs, rather than packing it with BLEs that it has many

nets in common with. Because of the realization that absorbing connections is good for area, we

decided to design an algorithm with this as a goal.

Our connection-absorption-driven logic block packing algorithm, C-VPack, attempts not only to

pack each logic block to capacity and minimize the number of cluster inputs used, but also to

minimize the number of inter-cluster (between cluster) connections in the resulting circuit. This

b. Note that the congestion-oblivious (infinite routing) delay isnot a lower bound on the achievable delay. In fact
there is currently no known algorithm to route a net with guaranteed minimum Elmore delay, short of exhaustively
searching all possibilities [Boes93].

CHAPTER 3 Timing-Driven and Connection-Driven Packing 37

algorithm isnot timing driven, so it has no concept of where the critical path lies, or what BLEs

are critical. The basic operation of the algorithm is the same as that of the VPack algorithm

described in Section 2.2.2.1: C-VPack first chooses an unclustered BLE as the seed of a new

cluster, and then sequentially adds unclustered BLEs with the greatest attraction to the current

cluster until the cluster is full. Then this process is repeated until all BLEs have been packed. The

seed is selected in the same manner as in VPack, however the C-VPack algorithm differs from

VPack in the attraction function it uses.

3.3.1 Attraction Function

C-VPack packs clusters together in a manner that minimizes the number of inter-cluster connec-

tions in the resulting circuit. With this goal in mind, the attraction function used to select the

unclustered BLE,B, to add to the current cluster, C, is:

(3.7)

The first term in (3.7) promotes the grouping of BLEs with highConnectionGains (the number of

point to point connections betweenB andC) into the current cluster to minimize the number of

inter-cluster connections.α is a parameter that controls the trade-off between net sharing and

connection absorption. Ifα is 0, we have an algorithm that focuses solely on minimizing the

number of used inputs to a cluster, and is basically equivalent to the basic VPack algorithm

described in Section 2.2.2.1. Ifα is 1, the algorithm focuses solely on minimizing the number of

inter-cluster connections remaining, with no regard for how many nets are shared by the BLEs

within a cluster. Using the CAD flow described in Section 2.2 we have experimentally determined

that any α value in the range from 0.7 to 0.9 produces the best quality packings in terms of both

post-place-and-route delay and routing area (channel width). The trade-off curves for channel

width and critical path delay vs. alpha for an architecture using size 8 clusters are shown in

Figure3.7. In this figure, the critical path delay is computed based on an architecture with infinite

routing resources. In the remainder of this thesis, C-VPack hasα set to 0.75.

Attraction B() α ConnectionGain B()⋅ 1 α–() Nets B() Nets C()∩⋅+=

CHAPTER 3 Timing-Driven and Connection-Driven Packing 38

3.3.2 Time Complexity

The time complexity of the C-VPack algorithm is the same as the original VPack algorithm,

O(kmax⋅K⋅n) where kmax is the maximum number of terminals of any net,K is the number of inputs

to each BLE, and n is the number of BLEs in the circuit. As with VPack, this complexity is the

result of the fact that after a BLE is put into a cluster (n BLEs) we must examine all of the nets

attached to the BLE (K nets), and we must examine all BLEs that each net fans out to (maximum

fanout = kmax).

46

48

50

52

54

56

58

0 0.2 0.4 0.6 0.8 1
3.5e-08

3.55e-08

3.6e-08

3.65e-08

3.7e-08

3.75e-08
Minimum Channel Width

Critical Path Delay

FIGURE 3.7 Post place and route C-VPAck alpha trade-off curves.

Alpha

M
in

im
um

 C
ha

nn
el

 W
id

th
(2

0
B

en
ch

m
ar

k
G

eo
m

et
ric

 Ave
ra

ge
)

C
rit

ic
al

 P
at

h
D

el
ay

 (
s)

(2
0

B
en

ch
m

ar
k

G
eo

m
et

ric
 Ave

ra
ge

)

CHAPTER 3 Timing-Driven and Connection-Driven Packing 39

3.4 Result Quality of T-VPack, C-VPack, and VPack

Table3.2 summarizes the performance of the basic VPack algorithm and the enhanced, T-VPack

and C-VPack algorithms for the 20 largest MCNC1 [Yang91] benchmark circuits. The logic

cluster targeted in this experiment contains 8 BLEs. The first column gives the circuit names. The

second, third and fourth columns compare the number of inputs (I) required to achieve 98% logic

utilization where logic utilization is defined as

(3.8)

Notice that compared to the original VPack algorithm, T-VPack requires an average of 8% fewer

cluster inputs to achieve 98% utilization, and C-VPack requires 10% fewer cluster inputs. The

reason for this surprising result is that the criticality term in the T-VPack attraction function (3.6)

makes T-VPack favour clustering a BLE with its fan-in or fan-out vs. clustering it with BLEs with

which it shares inputs. The ConnectionGain term in the C-VPack attraction function (3.7) has a

similar effect. Other researchers have also found that grouping circuit blocks with their fan-in or

fan-out tends to be an effective clustering technique [Sauc93].

The remaining columns in Table3.2 compare the post-place-and-route performance of circuits

packed with the three different algorithms. The CAD flow used to generate these results is the

same as the CAD flow described in Section 3.1. To generate the results listed in these columns,

the number of inputs per cluster was set to 18. The architecture used in the experiments that

produced these results is described in Section 4.2.

Three columns in Table3.2 list the minimum number of tracks per channel (Wmin) required to suc-

cessfully route the packed circuit produced by each algorithm. Compared to VPack, T-VPack

results in circuits that require 16% fewer tracks for successful routing, while C-VPack results in

circuits that require 19% fewer tracks. To understand the reason for this surprising result, one

1. We give a brief summary of the 20 largest MCNC circuits in Appendix A.

uti l i zation

num logic blocks
cluster size

num clusters used
--=

CHAPTER 3 Timing-Driven and Connection-Driven Packing 40

a. Note that the congestion-oblivious (infinite routing) delay isnot a lower bound on the achievable delay. In fact
there is currently no known algorithm to route a net with guaranteed minimum Elmore delay, short of exhaustively
searching all possibilities [Boes93].

TABLE 3.2 Comparison of VPack, T-VPack, and C-VPack result quality (Cluster Size = 8).

Circuit

Cluster Inputs (I)
Required for 98% Logic

Utilization

Minimum Channel
Width for Successful

Routing (Wmin)

Post-Place-and-Route
Critical Path (ns)

W = ∞a

Post-Place-and-Route
Critical Path (ns)
W = Wmin + 20%

VPack T-
VPack

C-
VPack VPack T-

VPack
C-

VPack VPack T-
VPack

C-
VPack VPack T-

VPack
C-

VPack

alu4 20 16 17 55 39 40 28.1 25.1 28.8 30.7 27.9 30.7

apex2 19 19 18 58 55 52 37.5 32.7 34.7 37.9 34.5 37.2

apex4 19 20 19 53 52 51 28.5 25.5 28.3 34.5 32.9 31.4

bigkey 15 12 13 41 27 28 17.4 16.6 17.8 18.7 17.5 25.5

clma 17 17 16 75 64 65 82.9 64.7 71.9 84.3 77.1 79.4

des 19 17 17 36 29 31 28.8 27.4 26.6 29.9 29.4 28.4

diffeq 16 15 14 37 33 28 38.5 26.6 34.4 41.3 31.6 40.8

dsip 28 13 13 41 23 24 19.2 20.2 16.4 23.1 22.2 21.1

elliptic 16 17 16 57 49 43 50.2 40.1 56.2 60.5 49.1 69.5

ex1010 20 20 19 61 58 54 45.4 42.7 46.1 53.0 56.3 52.2

ex5p 19 20 20 55 53 52 27.6 28.1 27.6 31.9 30.9 33.1

frisc 16 16 17 57 58 50 75.0 56.4 61.2 80.2 65.3 68.8

misex3 18 18 18 49 43 44 25.5 25.3 27.0 29.1 30.6 29.6

pdc 20 18 18 82 76 72 56.7 52.7 54.3 57.9 81.8 62.0

s298 18 15 15 48 28 31 49.9 49.7 58.1 58.0 63.3 70.3

s38417 14 14 14 47 42 39 51.2 41.6 46.1 59.7 45.0 53.7

s38584.1 13 12 12 43 44 38 39.6 29.3 37.0 40.2 30.3 41.3

seq 18 17 17 57 47 49 30.2 27.2 27.9 31.5 37.0 30.1

spla 19 18 18 76 59 64 47.0 41.0 40.8 48.3 47.0 49.6

tseng 17 18 14 39 33 26 37.1 29.0 36.2 38.2 33.8 41.0

Arith. Av. 18.1 16.6 16.3 53.4 45.6 44.1 40.8 35.1 38.9 44.5 42.2 44.8

%Diff w.r.t
VPack

— -8.3% -10% — -14.6% -17.4% — -14.0% -4.7% — -5.2% +0.6%

Geom. Av. 17.8 16.4 16.1 51.9 43.4 42.0 37.7 33.0 36.1 41.2 38.9 41.7

%Diff w.r.t
VPack

— -7.9% -9.6% — -16.3% -19.1% — -12.5% -4.2% — -5.6% +1.2%

CHAPTER 3 Timing-Driven and Connection-Driven Packing 41

must compare the structure of the packed circuits produced by the three algorithms. Since T-

VPack and C-VPack prefer to cluster a BLE with BLEs in its fan-in or fan-out, rather than with

other BLEs that share inputs with it, these algorithms produce circuit packings in which many

low-fanout nets have been completely absorbed into logic clusters. Overall, the output of T-VPack

and C-VPack have fewer nets to route between clusters than the output of VPack, but the average

fanout of each inter-cluster net is higher (more cluster inputs are used) with these algorithms than

with VPack (see Table3.3). The net result is that the output of T-VPack and C-VPack is somewhat

easier to route than the output of VPack.1 An example of why net absorption is good is given in

Figure3.8 — this figure demonstrates that each net to be routed requires its own track, and

multiple point to point connections that are on the same net are able to share a track. An important

factor in reducing the minimum required channel width is to minimize the number of nets

remaining in the circuit (by absorbing many nets into clusters).

1. This result shows the importance of using a full CAD flow, including placement and routing, to evaluate many
FPGA issues. It would have been difficult to guess that the output of T-VPack and C-VPack would be easier to
route than the output of VPack without actually placing and routing the outputs of all of the packing algorithms. In
fact, since the circuit packings produced by T-VPack and C-VPack have more point-to-point connections to route
between clusters (despite having fewer nets) one would likely guess that T-VPack and C-VPack generated circuits
would be more difficult to route.

TABLE 3.3 Net absorption and inputs used (cluster size 8)

Algorithm

Average
Percentage of Nets

Absorbed

Average Number
of Cluster Inputs

Used

VPack 16.4% 12.09

T-VPack 40.6% 13.56

C-VPack 41.2% 13.41

CHAPTER 3 Timing-Driven and Connection-Driven Packing 42

The post-place-and-route critical path columns in Table3.2 compare the relative speeds of

circuits implemented with the three different packing algorithms. One set of post-place-and-route

speed results assumes that the circuits have essentially an infinite amount of general purpose

routing available. In this case, the router is able to focus entirely on speed optimization, rather

than congestion avoidance, so we obtain a good estimate of the speed difference between the two

packings when the circuits are mapped into routing-rich FPGAs. The W = Wmin + 20% speed

results, on the other hand, show the speed difference between the two packings when an FPGA

has a more limited amount of interconnect — only 20% more than the minimum required by each

circuit packing. Remember that T-VPack and C-VPack produce circuits that require fewer tracks

to route than circuits generated by VPack. Since our low stress delay results are based on this

minimum width + 20%, a low stress routing is more difficult for T-VPack and C-VPack circuits

vs. VPack circuits since the router has fewer tracks to select from. We therefore think that the

infinite routing delay results give a better (more fair) comparison of the algorithms.

in

out

in

out
in

out

in
out

inin

in
out

VPack T-VPack

ininout

in

2 Nets and

Clusters

in

out

in

out
in

outout

in in
out

inin

in
out

inin connections.
6 pt. to pt.

Clusters

4 Nets and

connections.
4 pt. to pt.

RouteRoute

and
C-VPack

FIGURE 3.8 Why reducing the number of nets in a circuit is good

4 Tracks
Required

2 Tracks
Required

CHAPTER 3 Timing-Driven and Connection-Driven Packing 43

As one would expect, T-VPack decreases delay vs. VPack — by 12.5% (a 14% increase in speed)

for the unlimited interconnect case, and 5.6% (a 6% increase in speed) for the limited interconnect

case, on average. Note also that in the limited interconnect case, the T-VPack circuits are faster

than those of VPack despite the fact that the router is being given significantly (16%) fewer tracks

to route them than it is given for the VPack-generated packings.

The C-VPack algorithm reduces delay by 4.2% (a 4.4% increase in speed) for the unlimited inter-

connect case compared to VPack. In the limited interconnect case, C-VPack circuit delays are

only 1.2% more (a 1.2% reduction in speed) than VPack delays, despite the fact that the router has

been given significantly (19%) fewer tracks to route them than it is given for the VPack-generated

packings.

3.5 Summary

In this chapter we introduced two new packing algorithms, T-VPack, and C-VPack. Overall, it is

clear that T-VPack is better than VPack in terms of both circuit speed and routing area required.

C-VPack on the other hand, is better than VPack in terms of area, but has worse speed for the low

stress case and has better speed for the unlimited interconnect case.

CHAPTER 3 Timing-Driven and Connection-Driven Packing 44

45

CHAPTER 4 The Effect of Cluster Size
on FPGA Speed and
Density

In this chapter we investigate the speed and area-efficiency of FPGAs employing logic clusters

(described in Section 2.1.1) as their logic block. We are particularly interested in the effect that

cluster size has on FPGA speed and density. In the next section we discuss the trade-offs involved

in selecting the proper cluster size for a cluster-based FPGA. After this, Section 4.2 explains how

we model the area and speed of various FPGA architectures. Section 4.3 describes various archi-

tectural parameters that define the FPGAs used in our experiments. Section 4.4 describes the

area-delay product that we use to evaluate the quality of different FPGA architectures. In sections

4.5 and 4.6 we explore key architectural questions concerning how circuit speed, FPGA area-effi-

ciency, and compile time are affected by the size of the logic cluster used. Finally, Section 4.7

summarizes our results.

4.1 Trade-offs in Cluster-Based FPGAs

Much of the speed and area-efficiency of an FPGA is determined by the logic block it employs. In

a cluster-based FPGA (described in Section 2.1.1), there are clear trade-offs between cluster size

and FPGA speed and area. If a very small logic cluster is used (few BLEs per logic cluster), many

logic blocks are required to implement each circuit, and many connections must be routed

between the numerous logic blocks. Since routing consumes most of the area and accounts for

most of the delay in FPGAs, a small logic block often results in poor area-efficiency and speed

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 46

due to the excessive routing required to connect all the logic blocks. If, on the other hand, a very

large logic block is employed (many BLEs per logic cluster), fewer logic blocks are required to

implement each circuit, but the logic block area and delay may become excessive, again resulting

in poor area-efficiency and speed. Choosing the best size for an FPGA logic block therefore

involves balancing complex trade-offs.

We are interested in determining the best cluster size for cluster-based architectures (described in

Section 2.1.1). This style of logic block is of interest for several reasons. First, the Altera Flex

series FPGAs [Alte98], the Xilinx 5200 and Virtex FPGAs [Xili97, Xili98], the newest Actel

[Acte99], and the Vantis VF1 FPGAs [Vant99] all employ cluster-based logic blocks, so research

concerning the best size of logic clusters is of clear commercial interest. Second, prior research

[Betz98b] has shown that the area-efficiency of large logic clusters is quite competitive with that

of FPGAs using single look-up table (LUT) logic blocks. Third, an FPGA composed of large

logic clusters requires fewer logic blocks to implement a circuit than an FPGA using a more fine-

grained block. This reduces the size of the placement and routing problem, and hence design

compile time — an increasingly important concern as the logic capacity of FPGAs rises. Finally,

cluster-based logic blocks can improve FPGA speed compared to single-BLE logic blocks by

reducing the number of connections on the critical path that must be routed between logic blocks.

We are interested in two aspects concerning the design of cluster-based logic blocks. First, how

many LUTs should be included in a cluster to create FPGAs with the best combination of speed

and area-efficiency? Second, how is the time required to compile a circuit affected by the size of

logic cluster used?

4.2 Architecture Modeling

In this section we first describe the area and delay models that we use to evaluate the various

FPGA architectures. After this we describe the effect that varying cluster size has on segment

lengths, and transistor sizing.

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 47

4.2.1 Area Model

The area model that we use is based on counting the number ofminimum-width transistor areas

required to implement each FPGA architecture, which is the same model as was used in [Betz98b,

Betz99]. A minimum-width transistor area is simply the layout area occupied by the smallest tran-

sistor that can be contacted in a process, plus the minimum spacing to another transistor above it

and to its right [Betz98b]. By counting the number of minimum-width transistor areas required to

implement an FPGA, rather than the number of square microns that these transistors would

occupy, we obtain a process-independent estimate of the FPGA area. The area model that we use

is described in detail in [Betz98b, Betz99].

We use a program calledTransCount [Betz99], to determine the area of a cluster-based logic

block (including the local cluster routing) with any values ofN, I, K, andMclk. This program

models such effects as buffer resizing as a function of the fanout of the connections within a logic

block, and builds multi-stage buffers when high drive strengths are required. Since the area of an

FPGA includes both logic block area and routing area, we use VPR to determine the transistor-

count of the area taken by the routing for each FPGA of interest, and by adding this area to the

logic block area we obtain the total FPGA area.

4.2.2 Delay Model

The delays of the connections within logic clusters were found by performing SPICE simulations

using TSMC’s 0.35µm process for each structure in the cluster. Figure4.1 shows the major struc-

tures and speed paths in a logic cluster. Important delay values through this cluster are shown in

Table4.1, while some delays cannot be listed because the process information is proprietary and

was obtained under a non-disclosure agreement. The architectures corresponding to the numbers

shown in this table had the number of inputs per cluster set to the number of inputs required for an

average utilization (defined in Section 3.4, Equation 3.8) of 98% (which is shown in Section

4.3.2) when the circuits are packed with T-VPack.

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 48

VPR has a built in delay estimator that uses amodified Elmore delay [Elmo48] model to estimate

the delay of each connection in the routing. The modifications to the Elmore delay are described

in [Okam96], and are such that it can be used to estimate delay of circuits containing buffers,

resistors, and capacitors. After every connection’s delay in the circuit has been computed, VPR

TABLE 4.1 Important intra-cluster delays in TSMC’s 0.35µm CMOS process.

Cluster Size (N) A to B (ps) B to C and D to C (ps) C to D (ps) B to D (ps)

1 (No local routing
muxes)

760 140 (and noD to C
path)

379 519

2 760 687 379 1066

4 760 761 379 1140

8 760 902 379 1281

16 760 1054 379 1433

20 760 1081 379 1460

R
ou

tin
g

w
ire

 s
egm

en
t

F
c,

in

FF

R
ou

tin
g

w
ire

 s
egm

en
t

N
+

I
BLE

Logic Cluster

N
BLEs

A
B C

D

Local
routing
muxes

Input
connection

block buffers
{

{ {

Local
buffers

4
LUT

& muxes

FIGURE 4.1 Structure and speed paths of a logic cluster.

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 49

performs a path-based timing analysis using these inter-cluster connection delay values (Elmore

delay) and intra-cluster delay values (Table4.1). A full description of the timing-analyzer used in

VPR is available in [Betz98b] or [Betz99].

4.2.3 Effect of Cluster Size on the Physical Length of FPGA Routing
Segments

As we increase the cluster size, both the logic area per cluster and routing area per cluster grow.

Figure4.2 demonstrates how a tile (a logic block plus its associated routing) grows as cluster size

is increased. This increased tile size results in routing segments with the same logical length

having different physical lengths for logic clusters of different sizes.

We define the measured length of a routing segment as its physical length. The resistance and

capacitance of a routing segment grow linearly with the segment’s physical length. We have

experimentally determined the average rate at which the FPGA tiles grow with cluster size, and

have used this information to appropriately scale the routing segment resistance and capacitance

values for the various cluster sizes. The increase in the resistance and capacitance of routing

segments as the size of the FPGA logic block increases is an important effect that has often been

{

Channel
width

channel
width{

Segment length
Increased segment length

Increase
cluster
size

Increased
logic
area

Increased
routing

area

per cluster

per cluster

Increased

Logic
clusterLogic

cluster

FIGURE 4.2 Effect of cluster size on physical length of routing segments.

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 50

neglected in prior FPGA architecture research. In Figure4.3 we show experimental results

showing the effect of cluster size on tile length. We use the ratio of the actual values in this curve

to accurately scale routing segment lengths for different cluster sizes.

4.2.4 Sizing Routing Transistors to Compensate for Different Physical
Segment Lengths

To compensate for differences in the capacitance and resistance of routing segments in FPGAs

using different sizes of logic clusters, we scale the routing pass transistors and buffers. All of our

pass transistor and buffer scaling is in relation to a base architecture that has been area-delay

optimized for clusters of size four. From this base architecture, we linearly scale routing buffers

and pass transistors depending on the relation between the new segment lengths and the base

segment length. For example, in an FPGA with size 16 clusters, the physical segment length is

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10 12 14 16 18 20

FIGURE 4.3 Effect of cluster size on tile length

Cluster Size (N)

T
ile

 L
en

gt
h

(
)

(2
0

B
en

ch
m

ar
k

G
eo

m
et

ric
 Ave

ra
ge

)
M

in
im

um
 W

id
th

 T
ra

ns
is

to
rs

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 51

approximately two times longer than in an architecture with size 4 clusters. To maintain roughly

the same speed per routing segment, we increase the size of the routing switches connecting to

each wire by a factor of 2. In Section 4.5 we verify that this linear scaling of buffers and pass-tran-

sistors with physical segment length provides good results.

VPR models changes in delay caused by resizing buffers and pass-transistors in the routing, and it

also accurately models the area required for different sizes of routing pass-transistors and buffers.

4.3 FPGA Architectural Parameters

To evaluate the speed and area of an FPGA employing logic clusters for its logic blocks, we must

choose not only the logic block architecture, but also a routing architecture, transistor sizes, and

the flexibility of the logic block to routing interface. The following sections detail the architec-

tural parameters used in our experiments.

4.3.1 Basic Architecture

We investigateisland-style FPGAs in which each logic cluster is surrounded by routing channels

on all four sides with the logic cluster input and output pins evenly distributed around the logic

cluster perimeter. This type of FPGA was described in Section 2.1. For our experiments each

circuit is mapped to the smallest square FPGA with enough logic clusters and I/O pads to accom-

modate it.

For our experiments, we vary the number of I/O pads per row or column depending on the cluster

size. Since a large cluster size requires fewer clusters to implement a given circuit, we require

more I/O pads per row or column. We set the number of I/O pads per row or column to

(4.1)Pads 2 Cluster_Size⋅=

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 52

Setting the number of I/O pads per row or column with the above equation keeps the total number

of I/O pads roughly the same for each FPGA architecture, independent of the cluster size that is

used.

Recall from Section 2.1.1 that we can describe a logic cluster with four parameters: the number of

logic inputs (I), the number of BLEs (LUTs and registers) in a cluster (N), the number of clock

inputs (Mclk), and the number of inputs to each LUT (K). In this chapter we fix the number of

clocks per cluster at one for all our experiments, since the MCNC benchmark circuits we use to

evaluate architectures all have only one clock. We set the number of inputs to each LUT, K, to 4,

since previous research has shown LUTs of this size are the most area-efficient [Rose90], and

because this is the LUT size used in most commercial FPGAs. We describe how we set the

number of inputs,I, in the next section.

4.3.2 Inputs Required vs. Cluster Size

Previous work [Betz98b] has examined the issue of how many cluster inputs are required for 98%

utilization (defined in Section 3.4, Equation 3.8) of the logic clusters. This research, however,

used VPack to map logic into the clusters. Since we are using our new T-VPack algorithm for

packing in our cluster-based logic block experiments, and because we showed in Section 3.4 that

T-VPack has better utilization than VPack, it is prudent to re-run these experiments with T-

VPack. Figure4.4 and Table4.2 show the number of inputs required to achieve an average utili-

zation of 98% vs. cluster size for both VPack and T-VPack1. We use the T-VPack results of this

experiment to set the number of inputs per cluster for the remainder of our architecture studies.

1. This shows that T-VPack reduces the number of inputs required vs. VPack for 98% utilization at large cluster
sizes. The fact that the two curve have different requirements for the number of inputs is an example of the depen-
dencies between FPGA architecture and CAD.

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 53

4.3.3 Routing Architecture

We define the number of logic blocks that a routing segment spans as the logical length of that

segment. In [Betz98b, Betz99] it is shown that an architecture in which routing segments have a

logical length of four, with 50% of the segments connected by tri-state buffers and 50% connected

by pass-transistors, provides good area-efficiency and speed for FPGAs containing logic clusters

of size four. This routing architecture is shown in Figure4.5. We implicitly assume that this

routing architecture is good for architectures containing logic clusters of all sizes, and we use this

routing architecture in all of our experiments. Ideally, one would find the best routing architecture

for each FPGA employing a different cluster size, but this would require a huge amount of effort.

By basing all of our experiments on this routing architecture, we may slightly favor architectures

with size four clusters over other architectures.

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16 18 20

T-Vpack
Vpack

FIGURE 4.4 Inputs required for 98% utilization vs. cluster Size

Cluster Size (N)

N
um

be
r

of
 C

lu
st

er
 In

pu
ts

 (I)
(2

0
B

en
ch

m
ar

k
Ave

ra
ge

)

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 54

4.3.4 Flexibility of Logic Block to Routing Interconnect vs. Cluster
Size

For a cluster of size 1 [Rose91] showed that a good value of Fc (the number of routing tracks to

which each logic block pin can connect) is W (the total number of tracks in a channel); This value

of Fc means that each logic block pin can connect to any routing track in an adjacent channel.

However, for large clusters, setting Fc to W provides far more routing flexibility than is required,

wasting area.

[Betz98b] found that a more appropriate level of routing flexibility results when the Fc value for

logic block output pins, Fc,output is set to W/N, so all the experiments in the next section use this

value. This choice of Fc,output ensures that all the routing tracks in each channel can be driven by at

least one output from each cluster.

Logic
cluster

Logic
cluster

Logic
cluster

Logic
cluster

Logic
cluster

Logic
cluster

Logic
cluster

Logic
cluster

Logic
cluster

Logic
cluster

FIGURE 4.5 FPGA with length 4 segments, 50% buffered and 50% pass transistor switches.

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 55

Choosing the appropriate value for Fc,input involves finding the best trade-off between track width

and area per track as follows

1. As Fc,input is increased, fewer tracks are required to implement a given circuit since the router

has more choices of which track each input can connect to.

2. Each track takes more area as Fc,input is increased since there are more switches on each track

(Note that routing area is determined by transistor area, not wiring area [Betz98b, Betz99]).

TABLE 4.2 Inputs required for 98% utilization for VPack and T-VPack

Cluster Size VPack T-VPack

1 4 4

2 6 7

3 9 9

4 11 11

5 13 12

6 15 14

7 17 16

8 19 18

9 21 19

10 23 21

11 25 22

12 27 24

13 29 25

14 32 27

15 33 28

16 35 30

17 37 32

18 39 33

19 41 35

20 44 36

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 56

Therefore, we must determine the point at which the best trade-off occurs. We have run experi-

ments on size 4, 8, 14, and 20 clusters to determine the best Fc,input values as shown in Table4.3,

and have linearly interpolated between these results for other cluster sizes. Note, for these experi-

ments, we have noticed that the critical path is not affected by the Fc,,input values chosen, so we

choose the Fc,input value based only on the area results.

4.4 Architecture Evaluation Metric: Area-Delay Product

In this section we define thearea-delay product metric, which we feel is useful for evaluating

different architectures with respect to both speed and area. This is a reasonable architecture

metric for two reasons:

a. The MCNC circuits used for these experiments are the 10 smallest circuits
of the 20 circuits shown in Appendix A.

TABLE 4.3 Routing area vs. Fc, input for various cluster sizesa

Fc, input

Routing Area for various cluster sizes
(in millions of minimum-width transistors)

4 8 14 20

0.1 — — — 1.51

0.2 — — 1.38 1.41

0.3 — 1.29 1.34 1.41

0.4 1.47 1.27 1.34 1.42

0.5 1.45 1.28 1.37 1.46

0.6 1.44 1.30 — —

0.7 1.45 — — —

0.8 1.49 — — —

0.9 1.50 — — —

BestFc,input
value

0.6 0.4 0.3 0.2

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 57

1. Intuitively, we want to find the point at which we are sacrificing the least amount of area for the

most improvement in speed. Given that we can always trade area for speed (see below), and

speed for area, it makes sense to combine these two factors into one curve to see where the best

trade-off occurs.

2. The computational throughput of an FPGA (on a parallel algorithm) is simply the number of

functional units multiplied by the clock speed. Another way of looking at this is,throughput =

(1/area per functional unit) ⋅ (1/delay). Therefore by minimizing the area-delay product, we

maximize throughput.

There are two main factors that can affect the area-delay product of an FPGA: transistor sizing

and the FPGA architecture. In general, the speed of an FPGA can be increased (to a point) by

sizing up the buffers and transistors within the FPGA, but this increases area. Alternatively, the

FPGA can be made smaller by sizing down the buffers and transistors, but this degrades the

FPGA performance.

Throughout this chapter, we will size the transistors in each FPGA architecture to minimize the

FPGA's area-delay product. Only by resizing transistors appropriately for each architecture in this

way can we fairly compute the speed and area-efficiency of FPGAs with different logic block

architectures.

4.5 Speed and Area-Efficiency vs. Cluster Size

In this section we study the effect that varying cluster size has on the area and delay of implemen-

tations of the benchmark circuits. To obtain our results, we use the experimental flow given in

Section 3.1 for 20 MCNC benchmark circuits, and we present the geometric averages of the

results for these circuits. For all of the experiments in this section we set the number of inputs,I,

for a cluster of sizeN to the minimum value that allows T-VPack to achieve 98% logic utilization

(as shown in Figure4.4). This value ofI allows full utilization of our logic clusters, while keeping

the complexity (hence area) of the clusters to a minimum.

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 58

In Figures 4.6 and 4.8, we show the geometric average over the benchmark circuits of the total

FPGA area required and the critical path delay, respectively. Note that we are showing three

different routing transistor sizings in each of these graphs to ensure that we do not unfairly

penalize any architecture with an inappropriate transistor sizing. The solid curves show the area

and delay when we use the “normal” transistor sizing described in Section 4.2.4, while the dashed

curves show the results when we use transistors that are one-half or double the size of those in the

“normal” case. Notice that we can indeed trade speed for area by resizing routing transistors —

the half transistor size results have less area, but greater delay, while the double transistor size

results have less delay, but greater area.

Figure4.7 shows the effect that varying cluster size has on the area required to implement the

benchmark circuits. Area is affected by two factors.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

0 2 4 6 8 10 12 14 16 18 20

Regular Transistor Size
Half Transistor Size

Double Transistor Size

FIGURE 4.6 Total area vs. cluster size.

Cluster Size (N)

To
ta

l A
re

a
(2

0
B

en
ch

m
ar

k
G

eo
m

et
ric

 Ave
ra

ge
)

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 59

1. As we increase cluster size up to about size 9, the routing requirements between clusters is

reduced since many connections are completely absorbed within the clusters. After size 9, the

routing area begins to increase. We believe that the reason for this increase is because large

clusters make it difficult for the placer to do a good job minimizing wirelength. This is the

result of each cluster being connected to so many nets that it is sharing nets with essentially

every other cluster. It is therefore likely that when the placer moves these large clusters to

improve the wire-length of some nets, this same move will increase the wire-length of many

other nets.

2. As we increase cluster size, the total area taken by the multiplexers within each cluster grows

quadratically, but the number of clusters required to implement a circuit is decreasing. This

results in a linear increase in the total area taken by all the logic clusters. For sufficiently large

clusters, the area reductions in the routing are overtaken by the increased area required to

implement the larger clusters.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

0 2 4 6 8 10 12 14 16 18 20

Total Area
Routing Area
Cluster Area

FIGURE 4.7 Area components vs. cluster size.

Cluster Size (N)

A
re

a
(2

0
B

en
ch

m
ar

k
G

eo
m

et
ric

 Ave
ra

ge
)

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 60

Figure4.8 shows that circuit speed increases significantly as we increase the cluster size. As one

increases the cluster size from size 1 to 7, the circuit speed rapidly increases — with the “normal”

transistor sizing, a size 7 logic cluster leads to circuits which are 51% faster than those imple-

mented with a size 1 cluster. Increases in cluster size pastN = 7 produce smaller incremental

speed gains. For example, with the “normal” transistor sizing, a cluster of size 20 is 7% faster

than a cluster of size 7.

In Figure4.9, we show how the geometric average of the area-delay product achieved by the

benchmark circuits varies with cluster size, again for three different transistor sizings. Notice that

the “normal” transistor sizing provides the best area-delay product for all the architectures except

a cluster size of 1, indicating that linearly scaling routing transistor size with the length of a

layout tile is a good method to size transistors. For a cluster of size 1, however, the normal transis-

tor sizing is smaller than optimal, and the double transistor size FPGA has a 7.5% lower area-

delay product than the normal transistor size FPGA. There is a broad minimum in the area-delay

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

7e-08

8e-08

0 2 4 6 8 10 12 14 16 18 20

Regular Transistor Size
Half Transistor Size

Double Transistor Size

FIGURE 4.8 Critical path delay vs. cluster size.

Cluster Size (N)

C
rit

ic
al

 P
at

h
D

el
ay

 (
ns

)
(2

0
B

en
ch

m
ar

k
G

eo
m

et
ric

 Ave
ra

ge
)

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 61

product for cluster sizes from 4 to 10. A cluster of size 7 has the lowest area-delay product, but

any cluster size between 4 and 10 is within 12% of the minimum, and hence would be a reason-

able choice. Notice that moderate-size logic clusters significantly improve the area-delay product

of an FPGA vs. using a single BLE logic block. Comparing a size 7 logic cluster (with the normal

transistor sizing) to a size 1 logic cluster (with double-sized transistors — the best for this cluster

size), one sees that the size 7 logic cluster has an area-delay product that is 33% lower than that of

a size 1 cluster. An FPGA using a size 7 logic cluster is simultaneously 21% faster (a 17% delay

reduction), and requires 19% less area than an FPGA using a size 1 logic cluster.

FIGURE 4.9 Area-delay product vs. cluster size.

Cluster Size (N)

A
re

a-
D

el
ay

 P
ro

du
ct

(2
0

B
en

ch
m

ar
k

G
eo

m
et

ric
 Ave

ra
ge

)

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0 2 4 6 8 10 12 14 16 18 20

Regular Transistor Size
Half Transistor Size

Double Transistor Size

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 62

4.5.1 Discussion of Delay vs. Cluster Size Results

In Figure4.10 we show the relationship between the number of intra-cluster (fast) and inter-

cluster (slower) connections on the critical path as a function of cluster size. As cluster size is

increased, the number of intra-cluster connections on the critical path increases, and the number

of inter-cluster connections decreases. This provides a circuit speedup since intra-cluster connec-

tions are faster than inter-cluster connections.1

Interestingly, the number of inter-cluster nets on the critical path does not decrease as much with

cluster size as the inter-cluster delay decreases with cluster size (see Figure4.11). From size 2 to

size 20 we have a reduction in the number of inter-cluster nets on the critical path of 13%

1. As cluster size is increased, intra-cluster multiplexer, buffer and wiring delays increase. If we were to increase the
size of cluster to very large values, this effect would eventually result in intra-cluster delays becoming large
enough that any gains obtained by making connections local to the cluster would be lost.

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20

Intra-Cluster Nets on Critical Path
Inter-Cluster Nets on Critical Path

FIGURE 4.10 Inter-cluster and intra-cluster nets on the critical path.

Cluster Size (N)

N
um

be
r

of
 N

et
s

on
 C

rit
ic

al
 Pa

th
(2

0
B

en
ch

m
ar

k
G

eo
m

et
ric

 Ave
ra

ge
)

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 63

(Figure4.10); compare this to the inter-cluster component of the critical path delay, which has

been reduced by 39% over the same range (Figure4.11). This means the circuit speedup visible in

Figure4.11 for larger cluster sizes is not only caused by a reduction in the number of inter-cluster

connections on the critical path, but also by inter-cluster connections on the critical path

becoming faster.

The improvement in inter-cluster delay with increased cluster size is caused primarily by a

reduction in the “logical” manhattan distance spanned by connections in the FPGA, as illustrated

in Figure4.12. By sizing the routing pass transistors and buffers1 (as discussed in Section 4.2.4)

to compensate for the increased physical length of routing wire segments associated with larger

clusters, the delay of each routing segment has remained roughly constant. Since the total number

1. Changes in delay and area due to different size routing buffers and pass transistors are accounted for in the timing
and area models used in this research.

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

0 2 4 6 8 10 12 14 16 18 20

Total Path Delay
Inter-Cluster Delay
Intra-Cluster Delay

FIGURE 4.11 Breakdown of critical path delay into inter-cluster and intra-cluster components.

Cluster Size (N)

C
rit

ic
al

 P
at

h
D

el
ay

 C
om

po
ne

nt
s

(n
s)

(2
0

B
en

ch
m

ar
k

G
eo

m
et

ric
 Ave

ra
ge

)

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 64

of routing segments on the critical path has decreased due to the reduction of the “logical”

manhattan distance, the result is a greater improvement in circuit delay than the reduction in the

number of inter-cluster nets on the critical path would indicate.

4.6 Effect of Cluster Size on Compile Time

In this section we demonstrate that cluster-based FPGA architectures can significantly improve

compile time. Figure4.13 shows how the average CPU time (on a 300 MHz UltraSparc worksta-

tion) required to implement circuits varies with cluster size. The solid line in Figure4.13 shows

the total (packing, placement, and routing) compile time, while the three dashed lines show the

individual components of this compile time. The routing time is the time taken for low-stress

routings (minimum width + 20%).

As larger logic clusters are employed in an FPGA the time to compile circuits is dramatically

reduced. This occurs because as larger clusters are employed, fewer of these clusters are required

to implement each circuit. Since the size of a placement problem is proportional to the number of

logic clusters that a circuit is mapped to, this dramatically reduces placement time. In

Figure4.13, for example, one can see that the placement time is reduced by a factor of 8.8 times

FIGURE 4.12 Decrease in logical manhattan distance as cluster size increases.

A B A B

Cluster size 4

1 2 3 4 1 2

Logical manhattan distance
A to B = 4

Cluster size 16
Logical manhattan distance

A to B = 2

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 65

as the cluster size increases from 1 to 20. Larger logic clusters also reduce the routing time. This

is the result of more connections using the local cluster routing, with the effect that the router has

fewer inter-cluster connections to route. For example, using a size 20 logic cluster reduces routing

time by 2.7 times vs. using a size 1 cluster. Building an FPGA with a size 20 logic cluster reduces

the total CPU time required for placement and routing by 7 times vs. a size 1 logic cluster.

4.7 Summary

Using the area-delay product evaluation metric, we have demonstrated that logic clusters contain-

ing between 4 and 10 BLEs all achieve good performance, so any cluster in this range is a reason-

able choice. Compared to FPGAs using a single BLE logic block, logic clusters in this size range

achieve significant area and speed improvements. For example, an FPGA employing a size 7 logic

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14 16 18 20

Total Compile Time
Routing Compile Time

Placement Compile Time
Packing Compile Time

FIGURE 4.13 Variation of circuit compile time with logic cluster size.

Cluster Size (N)

E
xe

cu
tio

n
Tim

e
(s

)
(2

0
B

en
ch

m
ar

k
G

eo
m

et
ric

 Ave
ra

ge
)

CHAPTER 4 The Effect of Cluster Size on FPGA Speed and Density 66

cluster requires 19% less area, achieves 21% higher speed, and has an area-delay product 33%

lower than an FPGA using a single BLE logic block. Additionally, large logic clusters signifi-

cantly reduce design compile time. Size 7 and 20 logic clusters reduce placement and routing

time by 4.6 times and 7 times compared to a single BLE logic block, respectively.

67

CHAPTER 5 Timing-Driven Placement

In this chapter we first give a brief introduction to timing-driven placement. After this we describe

our new timing-driven placement algorithm, and how we have tuned various parameters within

the algorithm. Then we give results comparing the speed and area of circuits placed with the new

timing-driven algorithm to circuits placed with an existing non-timing-driven algorithm.

5.1 Introduction

Recall that placement is the process by which a netlist of circuit blocks (which are either I/Os or

logic clusters) are mapped onto physical locations in an FPGA. The location of the circuit blocks

can significantly affect the performance of the FPGA. A timing-driven placement algorithm

attempts to map circuit blocks that are on the critical path into physical locations that are close

together so as to minimize the amount of interconnect that critical signals must traverse.

The VPR place and route tool [Betz99, Betz98b] incorporates a timing-driven router, but does not

consider timing during placement (VPR’s placement tool VPlace is described in Section 2.2.3.2).

A timing-driven router can only produce routings that are as good as the placement on which the

routing is performed, so to extract more speed out of an FPGA it is essential that timing-driven

placement algorithms be used. Previous timing-driven placement algorithms (described in Section

CHAPTER 5 Timing-Driven Placement 68

2.2.3.3) have done a good job in reducing circuit delay, but they are very computationally inten-

sive. To be useful, a timing-driven placement algorithm must produce high quality placements in

reasonable amounts of time.

5.2 Timing-Driven Placement: T-VPlace

We have developed a new placement tool called T-VPlace which is an extension to VPlace

(described in Section 2.2.3.2) and is integrated into VPR. T-VPlace is both wireability-driven

(minimizing wiring requirements)and timing-driven. It is essential to consider both the goal of

minimizing wiring and reducing critical path delay because a timing-driven only approach will

lead to circuits that require an unacceptable amount of routing resources. T-VPlace simulta-

neously considers critical path delay and wireability and finds a reasonable compromise between

the two. T-VPlace is simulated annealing-based and it uses the same annealing schedule as

VPlace (as discussed in Section 2.2.3.1). In Figure5.1 we show the pseudo-code for the T-VPlace

algorithm. The following sections describe T-VPlace in detail.

5.2.1 Delay Modeling and Cost Function

To maximize speed, T-VPlace must model the delay of each connection and the available slack

for each connection. In this section we will discuss the computation of these two components as

well as how they are combined into our new cost function.

For a placement algorithm to minimize the delay of the resulting circuits in a reasonable amount

of time, accurate delay modeling is required. To model delay we compute adelay lookup matrix

which contains the delay between a source and a sink located at (xsource, ysource) and (xsink, ysink),

depending only on∆x = |xsource - xsink| and∆y = |ysource - ysink|. In this model, the delay between the

two locations depends only on the relative distance between the two locations. The delay lookup

matrix is described more thoroughly in Section 5.2.1.1.

CHAPTER 5 Timing-Driven Placement 69

It is also essential that timing analysis be done in an efficient manner. To make sure that the com-

putation time spent performing timing analysis does not significantly degrade the placement

compile time, we periodically perform a timing analysis after a certain number of simulated-

annealing swaps are completed. This means that the slack values (obtained by this “infrequent”

timing-analysis) used in the placer may be based on delay values that do not precisely reflect the

S = RandomPlacement ();
T = InitialTemperature ();
Rlimit = InitialRlimit ();
Criticality_Exponent = ComputeNewExponent();

ComputeDelayMatrix();

while (ExitCriterion () == False) { /* “Outer loop” */

TimingAnalyze(); /*Perform a timing-analysis and update each connections criticality*/
Previous_Costlinear congestion= Costlinear congestion(S); /*wirelength minimization normalization term*/
Previous_Timing_Cost = Timing_Cost(S); /*delay minimization normalization term*/

while (InnerLoopCriterion () == False) { /* “Inner loop” */

Snew = GenerateViaMove (S, Rlimit);
∆Timing_Cost = Timing_Cost(Snew) - Timing_Cost(S);
∆Costlinear congestion = Costlinear congestion(Snew) - Costlinear congestion(S);
∆C = λ·(∆Timing_Cost/Prev_Timing_Cost) +

(1-λ)·(∆Costlinear congestion/Previous_Costlinear congestion); /*new cost fcn*/
if (∆C < 0) {

S = Snew /*Move is good, accept*/
}
else {

r = random (0,1);

if (r < e-∆C/T) {
S = Snew; /*Move is bad, accept any way*/

}
}

} /* End “inner loop” */

T = UpdateTemp ();
Rlimit = UpdateRlimit ();
Criticality_Exponent = ComputeNewExponent();

} /* End “outer loop” */

FIGURE 5.1 Pseudo-code T-VPlace.

CHAPTER 5 Timing-Driven Placement 70

connection delays of the current placement. We have experimentally determined how often a

timing analysis must be done to get the best results, and we discuss these experiments in Section

5.2.2.

Finally, we need a new cost function that takes into account both the slack of each connection,

and the delay on each connection. By reducing delay on connections with little slack while

increasing delay on connections with lots of slack, we are able to reduce the critical path. We have

developed a cost function based on slack and delay that is described in Section 5.2.1.2.

5.2.1.1 Delay Lookup Matrix

To allow an efficient assessment of the delay between blocks that are∆x and∆y distance apart in

a tile-based FPGA1 we compute a delay lookup matrix indexed by∆x and∆y. To compute a given

(∆x, ∆y) entry in the matrix, we employ the VPR router to determine the delay between two

blocks that are (∆x, ∆y) distance apart. To do this, a source block is placed at a location (xsource,

ysource) in the FPGA, and a sink block is placed at (xsource+∆x, ysource+∆y). Then VPR’s timing-

driven router is used to perform a routing between the two blocks, and the delay is recorded in the

delay lookup matrix at location (∆x, ∆y). This process is then repeated for every possible∆x and

∆y value in the FPGA.

Since we use the timing driven router to compute the delay between blocks, we are able to take

advantage of architectural features in the FPGA, i.e. if two blocks are on opposite sides of the

FPGA and there is a long line crossing the FPGA, the timing-driven router will recognize this and

the delay lookup matrix will reflect the smallest possible delay (the one using the long line)

between the two locations. The reason that we use the smallest possible delay between two blocks

1. A tile-based FPGA is one in which the FPGA structure is homogenous (i.e. every x,y location in the FPGA is
physically constructed with identical tiles). Since most FPGA architectures are tile-based and because the archi-
tectures we use are tile based, we obtain accurate delay estimates by exploiting this uniformity and only comput-
ing delays based on∆x and∆y values.

CHAPTER 5 Timing-Driven Placement 71

to compute the values in the delay lookup matrix is because we assume that after placement, the

router will be smart enough to use the fastest resource to connect two locations on the critical

path.

5.2.1.2 Cost Function

To properly balance the trade-off between wirelength minimization and critical path minimiza-

tion, we have developed a new cost function that we call thenormalized-trade-off-∆cost function.

Before we discuss this new cost function we need to introduce some definitions that are used in

our cost function.

We first introduce a new term calledTiming_Cost. This is the portion of the cost function that will

be responsible for minimizing the critical path delay. Timing_Cost is based on theCriticality of

each connection, theDelay of each connection, and a user definedCriticality_Exponent. Where

the Delay for each connection is obtained from the delay lookup matrix, the Criticality_Exponent

is defined below, and Criticality is defined as follows

(5.1)

where Dmax is the maximum arrival time of all sinks in the circuit, and Slack is the amount of

delay that can be added to a connection without increasing the critical path delay (Dmax and slack

were described in detail in Section 2.2.1).

In our new cost equation, to control the relative importance of connections with different criticali-

ties, we compute a power of the Criticality of each connection depending on a variable called

Criticality_Exponent (i.e. CriticalityCriticality_Exponent). The purpose of including an exponent on the

Criticality in our new cost function is to heavily weight connections that are critical, while giving

less weight to connections that are non-critical.

Cr i tical i ty i() 1 Slack i()
Dmax

---------------------–=

CHAPTER 5 Timing-Driven Placement 72

The Criticality_Exponent that we use can beeither constant or “adaptive”. An adaptive

Criticality_Exponent is an exponent that gradually increases as the annealing temperature

decreases. The reasoning behind this is that during the initial stages of the anneal, the current

critical path is likely to significantly change, while at later stages of the annealing process the

placer has a better idea of where the critical path lies. It is intuitively beneficial at these latter

stages to heavily weight the critical path more than at the initial stages. To do this we have

developed an equation that slowly increases the Criticality_Exponent starting at a user defined

initial value calledInit_Exp, up to its final user defined value calledFinal_Exp. This involves

making use of an existing variable called Rlimit [Betz98b, Betz99] (described in Section 2.2.3.1)

that we can use to derive the desired behavior for the Criticality_Exponent. Remember that Rlimit

determines the range that the placer will consider for swapping blocks. Initially Rlimit spans the

entire chip (it is the maximum value of either the x or y dimension of the FPGA), and at the end

of the anneal it considers only adjacent blocks (it is one). Since this variable is a good indicator of

how far along the anneal is, and because it is changing gradually, we can use it as a guide to

gradually increase our Criticality_Exponent with the following equation

(5.2)

where Curr_Rlimit is the current value of Rlimit. Final_Rlimit is always one, and Initial_Rlimit spans

the entire chip.

We now define the Timing_Cost of a connection,i, as follows

(5.3)

And the total Timing_Cost for a circuit is the sum of the Timing_Cost of all of its connections as

follows

Cr i tical i ty_Exponent

1
Curr_Rl imi t Final_Rl imi t–

Ini t_Rl imi t Final_Rl imi t–
---– Final_Exp Ini t_Exp–[] Ini t_Exp+⋅

=

Timing_Cost i() Delay i() Cr i tical i ty i()Cr i tical i ty_Exponent⋅=

CHAPTER 5 Timing-Driven Placement 73

(5.4)

We are now ready to discuss our normalized-trade-off-∆cost function. Our normalized-trade-off-

∆cost function depends on thechange in Timing_Cost and Costlinear congestion (given in Section

2.2.3.2, Equation 2.5). It uses a trade-off variable calledλ to determine how much weight to give

each component. To normalize the weight of these two components we use two normalization1

variables called Previous_Timing_Cost and the Previous_Costlinear congestion that are updated at

every temperature. The effect of these two normalization components is to make the function

weight the two components only with theλ variable, independent of their actual values. This is

convenient because it automatically adjusts the weights of the two components so that the

algorithm is always allocatingλ importance to changes in the Timing_Cost, and (1-λ) importance

to changes in the Costlinear congestion. If λ is 1 then we have an algorithm that focuses only on timing,

but ignores wirelength minimization. Ifλ is 0, then we have the original VPlace algorithm that

focuses only on minimizing wirelength. We now present the normalized-trade-off-∆cost function

(5.5)

We use this cost function in our algorithm without modifying the annealing schedule from VPlace

(described in Section 2.2.3.1). Since the annealing schedule is “adaptive”2, it performs well with

this new cost function. Whenλ is 0 this new cost function attempts to minimize only wirelength

like the original VPlace algorithm, however the results are slightly (about 3%) worse for the post-

1. For example, if we have aλ value of 0.7, we want every move to be 70% due to changes in Timing_Cost, and 30%
due to changes in Costlinear congestion. If we did not normalize, and we had Timing_Cost values that were orders of
magnitude less than Costlinear congestion then the cost function would only be affected by changes in the Costlinear
congestion even though we desired this to only account for 30% of the change in total cost. Another benefit of this
normalized approach is that as the temperature changes, we are constantly re-normalizing the weights of the two
components. Compare this to other approaches that only normalize the components once at the beginning of the
algorithm [Swar95], which means that if the two components change at different rates, this normalization will
become increasingly inaccurate, and will inadvertently allocate more weight to one of the component than was
desired.

2. For a full description of the adaptive annealing schedule, see [Betz98b, Betz99]

Timing_Cost Timing_Cost i()
i ci rcui t⊂∀

∑=

∆C λ ∆Timing_Cost
Previous_Timing_Cost
-- 1 λ–()

∆Cost l inear congestion

Previous_Cost l inear congestion
---⋅+⋅=

CHAPTER 5 Timing-Driven Placement 74

place-and-route channel width. It is likely that we could have fine-tuned the schedule for this new

normalized-trade-off-∆cost function, but we did not feel that this degradation was significant

enough to warrant the extra effort.

5.2.2 Algorithm Tuning

In our algorithm there are parameters that must be tuned to get the best performance. We must

find the best value forλ, the best Criticality_Exponent (and whether it should be constant or adap-

tive), and determine how often we must re-timing analyze the circuit during placement. To find

the best values for these parameters, we performed experiments on the 20 largest MCNC circuits,

using size one clusters, and the same architecture as described in Section 4.3.

By using the delays from the delay lookup matrix annotated onto connections in the circuits, we

are able to obtain critical path delay estimates from the placement algorithm without performing a

routing. These estimates allow us to fairly compare different algorithm parameters in a reasonable

amount of computation time. We will later show in Section 5.2.3 that these placement estimates

are a good tool (have good fidelity with respect to the final routed delay) for comparing values for

different parameters.

The first parameter that we discuss is the re-timing analysis interval. For this experiment we set

the value ofλ to 1 (fully timing-driven) and the Criticality_Exponent to 1. We then varied how

often we re-timing analyze the circuit and update the connection Criticalities and Slacks. The

sweep went from once at the beginning of execution all the way up to re-analyzing timing within

the inner loop of the placement algorithm. We present two tables showing the effect of this re-

analysis interval. The first results shown in Table5.1 are for timing analysis in the outer loop of

the placement algorithm. This first column in this table shows the number of temperature changes

between each timing-analysis (which we call the re-timing-analysis interval), the second column

shows the placement estimated critical path, and the third column shows the Costlinear congestion.

CHAPTER 5 Timing-Driven Placement 75

Table5.2 shows the effect of re-timing-analyzing the circuit in the inner loop of the placement

algorithm. The first column shows how many re-timing-analysis are being performed in the inner

loop of the annealer at each temperature, the second column shows the placement estimated

critical path, and the third column shows the Costlinear congestion.

TABLE 5.1 Effect of re-timing-analysis in the outer loop

Re-Timing-Analysis
Interval

Placement
Estimated

Critical Path (ns)
(20 Circuit
Geometric
Average)

Costlinear congestion

1 39.3 529.6

2 39.5 531.1

4 40.1 530.5

8 40.5 531.0

16 39.5 530.3

32 41.4 534.5

64 41.3 528.3

128 43.0 522.9

Never 43.0 522.9

TABLE 5.2 Effect of re-timing-analysis in the inner loop

Number of Re-Timing-
Analysis in the Inner

Loop at Each
Temperature

Placement
Estimated

Critical Path (ns)
(20 Circuit
Geometric
Average)

Costlinear congestion

1 39.3 529.6

10 39.2 528.8

50 40.1 525.6

100 39.7 530.9

CHAPTER 5 Timing-Driven Placement 76

These results indicate that performing a timing analysis once per temperature is sufficient to

obtain the best placement results. Surprisingly, timing-analyzing more than this causes a very

small degradation in the performance (with respect to delay) of the placement algorithm,

however, this is likely due to random effects of the simulated annealing placement algorithm. It

appears that this re-analysis interval does not affect the bounding box cost of the placement. For

the remainder of our experiments, we set T-VPack to re-timing-analyze each circuit once per tem-

perature change.

The next parameter that we will discuss is the Criticality_Exponent. We have performed two sets

of experiments to determine the best value for the Criticality_Exponent, in the first experiment we

have set λ to 0.5, and have used both constant Criticality_Exponent and adaptive

Criticality_Exponent values. We then performed the same experiments withλ set to 1. Again, all

of the results presented are the placement estimated critical paths and Costlinear congestion.

TABLE 5.3 Effect of Criticality_Exponent with aλ value of 0.5.

Criticality_Exponent

Adaptive Criticality_Exponent
(Init_Exp = 1) Constant Criticality_Exponent

Placement
Estimated

Critical Path (ns)
(20 Circuit
Geometric
Average)

Costlinear congestion

Placement Estimated
Critical Path (ns)

(20 Circuit Geometric
Average)

Costlinear congestion

1 38.9 342.0 38.9 342.0

2 37.1 342.3 37.1 343.4

3 35.7 343.4 35.9 344.0

4 34.6 344.0 34.8 344.7

5 34.2 341.5 34.7 343.7

6 34.3 341.5 34.8 341.6

7 33.9 339.5 34.3 339.6

8 34.0 339.9 34.3 340.1

9 34.4 336.5 33.8 339.6

10 33.9 336.5 34.3 337.9

11 34.6 336.1 34.3 336.3

CHAPTER 5 Timing-Driven Placement 77

We first show the effect of the constant and adaptive Criticality_Exponents withλ = 0.5 in

Table5.3. These results show that increasing the criticality exponent up to about size 8 or 9

improves the placement estimated critical path, at which point no more gains are apparent. These

experiments show that the adaptive Criticality_Exponent is slightly better than the constant

Criticality_Exponent (in most cases the critical path is less, and in all cases the Costlinear congestion is

less). These results also show that large exponents improve the Costlinear congestion. This is not sur-

prising since large exponents make very few connections have a high Timing_Cost, and all other

connections have an insignificant Timing_Cost. As a result, the placement algorithm is able to

focus on minimizing only area for nets that do not have a critical connection (which is likely the

majority of nets).

The next experiment (Table5.4) shows that whenλ = 1, an exponent value of 2 or 3 is the best. It

also shows that using the adaptive Criticality_Exponent is slightly better than using a constant

Criticality_Exponent. Compared to the results that we displayed in Table5.3 the critical path is

worse, and the Costlinear congestion is much worse. It is surprising that the delay results for aλ value

TABLE 5.4 Effect of Criticality_Exponent with aλ value of 1

Criticality_Exponent

Adaptive Criticality_Exponent
(Init_Exp = 1) Constant Criticality_Exponent

Placement
Estimated Critical

Path (ns)
(20 Circuit
Geometric
Average)

Costlinear congestion

Placement Estimated
Critical Path (ns) (20

Circuit Geometric
Average)

Costlinear congestion

1 39.3 529.6 39.3 529.6

2 36.3 545.4 36.4 540.9

3 35.3 561.1 36.1 567.4

4 35.9 581.9 37.6 593.3

5 36.1 606.9 36.5 623.8

6 40.1 651.5 40.2 681.0

7 40.3 693.1 43.8 717.3

CHAPTER 5 Timing-Driven Placement 78

of 1 are worse than aλ value of 0.5 since inλ = 1 case, the algorithm is only attempting to

minimize delay, while in theλ = 0.5 case the algorithm is considering both delay and wirelength

minimization. This result deserves more discussion.

When we set up the algorithm to only minimize delay (by settingλ=1), it attempts to minimize

the current critical path at the cost of extending other non-critical paths. Since we are only re-

timing-analyzing the circuit once per temperature, the algorithm has many moves between

updates of the connection criticalities and slacks. This means that it is likely that the algorithm is

able to significantly reduce critical paths during one iteration of the outer loop, but at the same

time inadvertently make other paths very critical. This oscillation effect makes it difficult for the

placement algorithm to converge onto the best placement solution.

By including a wirelength minimization term in the cost equation, we are able to reduce the oscil-

lations of the placement. This is because, the wirelength term will not let the placer make moves

that significantly increase the wirelength of the placement, even if the move would significantly

reduce the current critical path. Effectively, the wirelength term acts as a damper on the delay

minimization term in our cost function.

The above results show that using an adaptive Criticality_Exponent value of 8 with a trade-off of

0.5 provides the best results so far. Based on these results, we use an adaptive

Criticality_Exponent set to 8, and perform a sweep ofλ. The results of this sweep are shown in

Table5.5.

This table shows that an algorithm that is only wirelength driven produces the best Costlinear conges-

tion. It also shows that an algorithm with aλ of 0.9 produces circuits with the best placement

estimated critical path delay. A λ of 1 is bad for both critical path, and delay for the reasons

explained above. We feel that settingλ to 0.5 provides the best compromise between wirelength

and critical path minimization, and so the remainder of our experiments use this value.

CHAPTER 5 Timing-Driven Placement 79

5.2.3 Verification of the Fidelity of the Placement Estimated Critical
Path Delay

In the previous section we used placement estimated critical path delays to compare different

parameters used in the placement algorithm. It is interesting to see how much correlation there is

between this estimate and the actual post-place-and-route critical path delays. To study the corre-

lation, we present aλ sweep graph with a Criticality_Exponent of 8 in Figure5.2. This graph

shows the infinite routing resource post-place-and-route delay, the low-stress post-place-and-route

delay, and the placement estimated post-place-and-route delay. There is a excellent correlation

between the placement estimated critical path and the infinite routing-resource critical path, addi-

tionally the low-stress results follow the same trend as the placement-estimated results. We

therefore believe that our placement-estimated delay results are a valid indicator of the best values

for the various parameters that we evaluated in the previous section.

TABLE 5.5 Effect ofλ with an adaptive Criticality_Exponent of 8

λ

Placement
Estimated

Critical Path (ns)
(20 Circuit
Geometric
Average)

Costlinear congestion

0 51.6 312.7

0.1 40.0 315.8

0.2 37.8 318.5

0.3 36.7 322.8

0.4 35.6 331.1

0.5 34.0 339.8

0.6 33.2 353.6

0.7 32.5 373.9

0.8 32.5 400.7

0.9 32.4 439.7

1 43.4 725.3

CHAPTER 5 Timing-Driven Placement 80

5.2.4 Time Complexity

The complexity of our algorithm is essentially the same as VPlace. We perform a timing analysis

once per temperature change which is an O(n) operation. At each temperature we execute the

inner loop of the placer O(n4/3) times (i.e. we perform O(n4/3) swaps). In the inner loop we have an

incremental-bounding-box-update operation that is worst case O(kmax), where Kmax is the fanout

of the largest net in the circuit. The average case complexity for this bounding box update is O(1)

[Betz98b, Betz99]. Also in the inner loop is the computation of the Timing_Cost for each connec-

tion affected by a swap. This is also O(kmax). In the average case this is O(kavg) where kavg is the

average fanout of all nets in the circuit. Since kavg is typically quite small, the average complexity

of this Timing_Cost computation is O(1) as well. The overall result is that our algorithm is worst

case O[(kmax·n)4/3], but on average it is O(n4/3). Our algorithm takes about 2.5 times as long as

VPlace to place the largest MCNC circuit (clma).

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

0 0.2 0.4 0.6 0.8 1

Low-Stress Post-Place-and-Route
Infinite Routing Post-Place-and-Route

Placement Estimated

FIGURE 5.2 Graph showing fidelity of placement estimated critical path.

λ

C
rit

ic
al

 P
at

h
(n

s)
(2

0
B

en
ch

m
ar

k
Ave

ra
ge

)

CHAPTER 5 Timing-Driven Placement 81

5.3 Results: VPlace vs. T-VPlace

In this section we compare the post-place-and-route results from VPlace and T-VPlace. We show

the results for size 1,4, and 8 clusters. We also show the effect of using T-VPack with T-VPlace vs.

using VPack with VPlace. Again, our results are the average of the 20 MCNC benchmark circuits,

and we use the routing architecture described in Section 4.3. Additionally, all of the results that

we present are based on an adaptive Criticality_Exponent of 8, and a re-timing-analysis interval of

once per temperature change.

The first results that we present are for size 1 clusters. We show post-place-and-route VPlace

results and T-VPlace results. Table5.6 shows that for the infinite routing case, T-VPlace improves

circuit speed by about 42% (a 30% decrease in delay) on average compared to VPlace. For the

low stress routing case, T-VPlace improves circuit speed by 25% (a 20% reduction in delay) on

average compared to VPlace. The cost of this speed gain is only a 5% increase in the minimum

channel width. It is likely that the low-stress routing results do not show the same improvement in

speed as the infinite routing results due to the fact that the placement algorithm has made it more

difficult for the router to optimize the critical path(s). This is because T-VPlace produces circuits

that have shorter critical paths than VPlace, but more of them1. The result is that the router has

many more paths to shorten, making it more difficult in the low-stress routing case for the router

to get close to the “lower bound” that the infinite routing results represent.

The next results that we present in Table5.7 are for size 8 clusters. In this case, we show VPlace

results for VPack and T-VPack, and T-VPlace results for T-VPack. This allows us to evaluate the

combined effect of using T-VPack and T-VPlace (our contributions) vs. using VPack and VPlace.

This table shows that when we have infinite routing resources, T-VPack combined with T-VPlace

speeds up circuit speed by 39% (a 28% reduction in delay) compared to using Vpack and VPlace.

If we compare only the placement algorithms using the same packing algorithm, we see that T-

VPlace improves circuit speed by 21% (an 18% reduction in delay) compared to using VPlace.

1. We show the critical path distributions in Appendix C.

CHAPTER 5 Timing-Driven Placement 82

TABLE 5.6 Post-place-and-route comparison of VPlace and T-VPlace (cluster size = 1).

Circuit

Post-Place-and-Route Minimum
Channel Width (Wmin)

Post-Place-and-Route Critical
Path (ns)
W = ∞

Post-Place-and-Route Critical
Path (ns)

W = Wmin + 20%

VPlace T-VPlace
(λ = 0)

T-VPlace
(λ = 0.5) VPlace T-VPlace

(λ = 0)
T-VPlace
(λ = 0.5) VPlace T-VPlace

(λ = 0)
T-VPlace
(λ = 0.5)

alu4 14 14 14 40.3 40.4 29.8 42.4 41.2 33.4

apex2 15 17 16 46.9 46.3 32.3 47.7 46.5 48.8

apex4 17 16 18 40.9 44.8 28.2 42.0 46.8 31.7

bigkey 13 13 10 36.0 35.2 21.6 36.7 35.4 25.2

clma 16 16 17 90.2 91.1 72.3 116.0 166.0 130.0

des 11 12 11 40.5 48.9 30.2 50.4 57.4 43.7

diffeq 11 11 12 35.2 37.5 30.8 38.9 41.0 34.9

dsip 12 12 12 27.9 27.2 21.7 28.3 28.8 22.9

elliptic 14 16 15 70.6 76.1 46.1 79.5 79.6 58.1

ex1010 14 15 15 85.0 77.5 52.9 96.2 78.6 70.5

ex5p 17 17 19 39.6 40.4 28.1 42.7 42.7 43.5

frisc 16 17 18 70.8 73.2 59.6 76.8 79.6 61.6

misex3 14 15 15 39.0 40.2 26.6 39.3 75.0 34.3

pdc 22 21 24 81.7 74.5 49.9 122.0 114.0 73.0

s298 11 12 12 74.8 72.0 53.6 116.0 78.7 77.8

s38417 11 11 12 61.7 71.0 33.7 70.0 74.6 37.2

s38584.1 11 11 11 45.3 44.1 31.8 49.7 44.3 36.4

seq 16 16 16 45.7 41.0 28.1 46.4 43.7 39.5

spla 18 18 20 58.4 67.4 39.7 74.8 100.0 69.4

tseng 9 10 11 33.7 33.1 28.3 39.8 38.4 33.1

Geom. Av. 13.78 14.22 14.50 50.1 51.0 35.2 57.1 59.2 45.7

%diff w.r.t
VPlace

— +3.2% +5.2% — +1.8% -29.7% — +1.04% -20.0%

CHAPTER 5 Timing-Driven Placement 83

TABLE 5.7 Post-place-and-route comparison of VPlace and T-VPlace (cluster size = 8).

Circuit

Post-Place-and-Route Minimum
Channel Width (Wmin)

Post-Place-and-Route Critical
Path (ns)
W = ∞

Post-Place-and-Route Critical
Path (ns)

W = Wmin + 20%

VPack
with

VPlace

T-
VPack
with

VPlace

T-
VPack
with

T-
VPlace
(λ = 0)

T-
VPack
with

T-
VPlace

(λ = 0.5)

VPack
with

VPlace

T-
VPack
with

VPlace

T-
VPack
with

T-
VPlace
(λ = 0)

T-
VPack
with

T-
VPlace

(λ = 0.5)

VPack
with

VPlace

T-
VPack
with

VPlace

T-
VPack
with

T-
VPlace
(λ = 0)

T-
VPack
with

T-
VPlace

(λ = 0.5)

alu4 55 39 38 38 28.1 25.1 24.8 22.6 30.7 27.9 32.7 29.4

apex2 58 55 55 50 37.5 32.7 31.8 26.6 37.9 34.5 35.0 30.8

apex4 53 52 52 53 28.5 25.5 26.7 22.3 34.5 32.9 34.2 27.6

bigkey 41 27 27 28 17.4 16.6 17.8 12.8 18.7 17.5 18.4 16.2

clma 75 64 68 68 82.9 64.7 66.7 48.5 84.3 77.1 67.5 58.3

des 36 29 29 29 28.8 27.4 26.7 22.3 29.9 29.4 29.9 25.3

diffeq 37 33 32 33 38.5 26.6 28.1 26.6 41.3 31.6 28.7 28.3

dsip 41 23 24 24 19.2 20.2 18.3 12.3 23.1 22.2 19.3 15.4

elliptic 57 49 50 50 50.2 40.1 40.5 34.6 60.5 49.1 51.2 46.8

ex1010 61 58 59 59 45.4 42.7 43.8 35.1 53.0 56.3 55.0 42.1

ex5p 55 53 51 50 27.6 28.1 26.7 23.4 31.9 30.9 31.2 31.0

frisc 57 58 56 56 75.0 56.4 58.4 48.3 80.2 65.3 63.6 54.7

misex3 49 43 46 44 25.5 25.3 25.2 23.6 29.1 30.6 28.1 27.4

pdc 82 76 75 78 56.7 52.7 46.9 35.3 57.9 81.8 58.3 50.2

s298 48 28 28 31 49.9 49.7 47.2 44.4 58.0 63.3 80.6 64.0

s38417 47 42 44 45 51.2 41.6 40.6 30.5 59.7 45.0 46.1 40.8

s38584.1 43 44 44 45 39.6 29.3 28.7 26.0 40.2 30.3 30.6 27.2

seq 57 47 48 50 30.2 27.2 26.6 23.2 31.5 37.0 30.1 26.1

spla 76 59 61 68 47.0 41.0 36.0 30.7 48.3 47.0 45.7 35.3

tseng 39 33 34 33 37.1 29.0 29.3 28.8 38.2 33.8 33.5 31.0

Geom. Av. 51.9 43.4 43.9 44.3 37.7 33.0 32.5 27.2 41.2 38.9 38.0 33.1

% diff w.r.t
Vpack
with
VPlace

— -16.4% -15.4% -14.6% — -12.5% -13.8% -27.9% — -5.6% -7.8% -19.7%

CHAPTER 5 Timing-Driven Placement 84

Also shown are low-stress delay results which show that T-VPack combined with T-VPlace

speeds up circuit execution by 25% (a 20% reduction in delay) compared to using Vpack and

VPlace. If we compare only the placement algorithms using the same packing algorithm, we see

that T-VPlace improves circuit speed by 16% (a 14% reduction in delay) compared to using

VPlace.

The results shown in Table5.8 are for a Xilinx 4000x-like architecture presented in [Swar98b].

The logic block used in this experiment is a logic cluster consisting of 4 BLEs with 10 inputs. The

routing contains 25% length 1 wires, 12.5% length 2 wires, 37.5% length 4 wires, and 25% “one-

quarter longs”, whose length is one-fourth of the chip. The length 1 and 2 wires connect with pass

transistors, while the longer wires connect with tri-state buffers. As well, there are pass-transistor

switches connecting length 4 wires to the length 1 and 2 wires, and connecting the one-quarter

longs to the length 1 wires. In this table we show results for T-VPlace withλ=0 and λ=0.5. The

λ=0 results are essentially the same as what the original VPlace would produce, so we have not

generated results using VPlace on this particular architecture.

These results show that incorporating timing information into the cost function results in a

speedup of 22% (an 18% reduction in delay) in the infinite routing case, and a speedup of 14% (a

12% reduction in delay) for the low-stress routing case. The cost of this is a 5% increase in the

minimum channel width.

5.4 Summary

In this chapter we discussed our new timing-driven placement algorithm T-VPlace. In our discus-

sions, we explained how various parameters within the algorithm were selected. We also

discussed the complexity of our algorithm, which is the same as that of VPlace, and takes about

2.4 times as long as VPlace to place the largest circuit (clma). After this, we demonstrated the

improvements resulting from our new algorithm compared to the existing non-timing-driven

VPlace algorithm. We showed for an architecture with size 1 clusters, T-VPlace was able to speed

CHAPTER 5 Timing-Driven Placement 85

up the resulting circuits by 40% at a cost of only about a 5% increase in the minimum channel

width. For size 8 clusters, T-VPlace was able to speed up the resulting circuits by 21% with only a

5% increase in the minimum channel width. Overall, it is clear that timing-driven placement can

significantly improve performance without making large sacrifices in area.

TABLE 5.8 Post-place-and-route comparison with Xilinx-like architecture (cluster size = 4).

Circuit

Post-Place-and-Route Minimum
Channel Width (Wmin)

Post-Place-and-Route Critical
Path (ns)
W = ∞

Post-Place-and-Route Critical
Path (ns)

W = Wmin + 20%

T-VPlace
(λ = 0)

T-VPlace
(λ = 0.5)

T-VPlace
(λ = 0)

T-VPlace
(λ = 0.5)

T-VPlace
(λ = 0)

T-VPlace
(λ = 0.5)

alu4 27 27 31.7 28.2 33.7 35.0

apex2 34 34 34.6 30.9 42.2 43.6

apex4 34 35 32.9 26.3 46.8 35.7

bigkey 17 19 20.9 15.3 27.2 23.8

clma 41 45 70.2 58.6 80.8 67.4

des 18 19 31.1 24.9 32.8 31.3

diffeq 23 23 35.5 32.1 36.6 32.8

dsip 16 20 20.6 13.7 29.1 19.3

elliptic 31 31 51.6 40.1 60.6 51.1

ex1010 36 37 54.9 45.7 64.4 62.4

ex5p 33 34 31.6 26.2 36.4 34.0

frisc 39 38 63.9 51.5 79.2 56.7

misex3 32 33 30.0 24.8 34.6 29.1

pdc 47 51 57.6 43.2 78.2 56.6

s298 22 25 66.6 48.4 78.3 78.8

s38417 28 29 42.7 38.0 48.5 42.7

s38584.1 27 29 29.5 29.3 34.5 34.6

seq 32 33 32.7 25.6 38.4 34.1

spla 43 44 51.0 38.0 63.0 62.5

tseng 18 19 31.2 29.7 34.6 31.4

Geom. Av. 28.5 30.0 38.5 31.5 45.9 40.4

%diff w.r.t. λ = 0 — +5.2% — -18.2% — -12.0%

CHAPTER 5 Timing-Driven Placement 86

87

CHAPTER 6 Conclusions and Future
Work

6.1 Conclusions and Contributions

The goal of this thesis was to explore new architectures and CAD algorithms to reduce FPGA

delay without sacrificing large amounts of area. This involved exploring cluster-based FPGA

architectures, as well as developing new timing-driven packing and placement algorithms.

In Chapter 3 we described a new packing algorithm called T-VPack. This algorithm was designed

to absorb critical path connections into logic clusters to take advantage of the fast speed offered

by intra-cluster connections. T-VPack not only improved the delay of the resulting circuits, but

also improved the area. Compared to VPack, T-VPack generated circuits that required 16% fewer

tracks to route and were 13% faster.

In Chapter 4 we studied the effectiveness of using logic-cluster based FPGA architectures.

Previous work [Betz98b, Betz99] had studied the effectiveness of logic clusters with respect to

area-efficiency, however that work did not consider the effect of logic clusters on FPGA speed.

We believe that our work is the first to study logic-cluster based architectures with respect to both

speed and area. Using the area-delay product metric we showed that an FPGA architecture should

be composed of logic clusters containing between 4 and 10 basic logic elements.

CHAPTER 6 Conclusions and Future Work 88

In order to reduce FPGA delay, it is important that placement algorithms consider delay. In

Chapter 5 we developed a new timing-driven placement algorithm called T-VPlace and we ran

many experiments to tune various parameters within the algorithm. Our algorithm significantly

reduced the post-place-and-route critical path delay of the resulting circuits. For an FPGA with

size 1 clusters, T-VPlace reduced the critical path by 30% (a speed increase of 42%) compared to

using VPlace, while only sacrificing a small amount of routing area. Additionally, our algorithm

was quite computationally efficient — it only took 2.4 times as long to place the largest MCNC

circuit as VPlace.

6.2 Future Work

This thesis explored three approaches to improving FPGA performance, cluster-based logic

blocks, timing-driven packing, and timing-driven placement.

In the future, it would be interesting to see how a cluster-based architecture with LUTs other than

size 4 or a combination of different size LUTs would perform. For FPGAs composed of these

new logic clusters, it would be interesting to see how many inputs are required for full utilization,

and how flexible the routing interface should be.

Another area of interest would be to study an FPGA with nearest-neighbor interconnects. These

connections would allow critical paths to be routed between clusters using fast nearest-neighbor

connections rather than using the relatively slow inter-cluster routing. To study this issue, it would

be necessary to develop new CAD tools capable of exploiting this enhancement.

Finally, our CAD flow has an arbitrary division between packing and placement. It would be

interesting to see how much improvement could be obtained by removing this arbitrary division

and allowing the placer to freely place BLEs anywhere within the FPGA. This would increase the

CPU compile time, but it may be worth it if the gains are significant.

89

APPENDIX A MCNC Benchmarks

In this appendix we give a description of the 20 MCNC circuits that we use in our experiments.

TABLE A.1 MCNC benchmark circuits

Circuit

Circuit Description Circuit Description
(after mapping to BLEs)

Number of
LUTs

Number of
Latches

Number of
Nets

Number of
Inputs

Number of
Outputs

Number of
BLEs

Number of
Nets

Number of
Point to

Point
Connections

alu4 1522 0 1536 14 8 1522 1536 5408

apex2 1878 0 1917 39 3 1878 1916 6692

apex4 1262 0 1271 9 19 1262 1271 4479

bigkey 1707 224 2194 263 197 1707 1936 6313

clma 8381 33 8797 383 82 8383 8445 30462

des 1591 0 1847 256 245 1591 1847 6110

diffeq 1494 377 1935 64 39 1497 1561 5296

dsip 1370 224 1823 229 197 1370 1599 5645

elliptic 3602 1122 4855 131 114 3604 3735 12634

ex1010 4598 0 4608 10 10 4598 4608 16078

APPENDIX A MCNC Benchmarks 90

ex5p 1064 0 1072 8 63 1064 1072 4002

frisc 3539 886 4445 20 116 3556 3576 12772

misex3 1397 0 1411 14 14 1397 1411 4968

pdc 4575 0 4591 16 40 4575 4591 17193

s298 1930 8 1942 4 6 1931 1935 6951

s38417 6096 1463 7588 29 106 6406 6435 21344

s38584.1 6281 1260 7580 39 304 6447 6485 20840

seq 1750 0 1791 41 35 1750 1791 6193

spla 3690 0 3706 16 46 3690 3706 13808

tseng 1046 385 1483 52 122 1047 1099 3760

TABLE A.1 MCNC benchmark circuits

Circuit

Circuit Description Circuit Description
(after mapping to BLEs)

Number of
LUTs

Number of
Latches

Number of
Nets

Number of
Inputs

Number of
Outputs

Number of
BLEs

Number of
Nets

Number of
Point to

Point
Connections

91

APPENDIX B VPack and T-VPack Sink
Delay Distributions: Size
8 Clusters

In this appendix we present pre-place-and-route sink-delay distributions for the 20 largest MCNC

circuits as computed by VPack and T-VPack using the unit delay models that we described in

Section 3.2.1. All of the results that we show in this appendix are for size 8 clusters. The T-VPack,

results were obtained with anα of 0.75 and never re-timing analyzing.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7

D
el

ay
 to

 S
in

ks
 (

U
ni

t D
el

ay
 M

od
el

)

�

Sinks (Sorted From Highest to Lowest)

alu4

VPack
T-VPack

APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters 92

0

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2

D
el

ay
 to

 S
in

ks
 (

U
ni

t D
el

ay
 M

od
el

)

�

Sinks (Sorted From Highest to Lowest)

apex2

VPack
T-VPack

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16 18

D
el

ay
 to

 S
in

ks
 (

U
ni

t D
el

ay
 M

od
el

)

�

Sinks (Sorted From Highest to Lowest)

apex4

VPack
T-VPack

APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters 93

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150 200 250 300 350 400 450

D
el

ay
 to

 S
in

ks
 (

U
ni

t D
el

ay
 M

od
el

)

�

Sinks (Sorted From Highest to Lowest)

bigkey

VPack
T-VPack

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120

D
el

ay
 to

 S
in

ks
 (

U
ni

t D
el

ay
 M

od
el

)

�

Sinks (Sorted From Highest to Lowest)

clma

VPack
T-VPack

APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters 94

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250

D
el

ay
 to

 S
in

ks
 (

U
ni

t D
el

ay
 M

od
el

)

�

Sinks (Sorted From Highest to Lowest)

des

VPack
T-VPack

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350 400 450

D
el

ay
 to

 S
in

ks
 (

U
ni

t D
el

ay
 M

od
el

)

�

Sinks (Sorted From Highest to Lowest)

diffeq

VPack
T-VPack

APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters 95

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150 200 250 300 350 400 450

D
el

ay
 to

 S
in

ks
 (

U
ni

t D
el

ay
 M

od
el

)

�

Sinks (Sorted From Highest to Lowest)

dsip

VPack
T-VPack

0

2

4

6

8

10

12

14

16

18

0 200 400 600 800 1000 1200 1400

D
el

ay
 to

 S
in

ks
 (

U
ni

t D
el

ay
 M

od
el

)

�

Sinks (Sorted From Highest to Lowest)

elliptic

VPack
T-VPack

APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters 96

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9

D
el

ay
 to

 S
in

ks
 (

U
ni

t D
el

ay
 M

od
el

)

�

Sinks (Sorted From Highest to Lowest)

ex1010

VPack
T-VPack

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70

D
el

ay
 to

 S
in

ks
 (

U
ni

t D
el

ay
 M

od
el

)

�

Sinks (Sorted From Highest to Lowest)

ex5p

VPack
T-VPack

APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters 97

0

5

10

15

20

25

0 200 400 600 800 1000 1200

D
el

ay
 to

 S
in

ks
 (

U
ni

t D
el

ay
 M

od
el

)

�

Sinks (Sorted From Highest to Lowest)

frisc

VPack
T-VPack

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14

D
el

ay
 to

 S
in

ks
 (

U
ni

t D
el

ay
 M

od
el

)

�

Sinks (Sorted From Highest to Lowest)

misex3

VPack
T-VPack

APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters 98

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35 40

D
el

ay
 to

 S
in

ks
 (

U
ni

t D
el

ay
 M

od
el

)

�

Sinks (Sorted From Highest to Lowest)

pdc

VPack
T-VPack

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14

D
el

ay
 to

 S
in

ks
 (

U
ni

t D
el

ay
 M

od
el

)

�

Sinks (Sorted From Highest to Lowest)

s298

VPack
T-VPack

APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters 99

0

2

4

6

8

10

12

14

0 200 400 600 800 1000 1200 1400 1600

D
el

ay
 to

 S
in

ks
 (

U
ni

t D
el

ay
 M

od
el

)

�

Sinks (Sorted From Highest to Lowest)

s38417

VPack
T-VPack

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200 1400 1600

D
el

ay
 to

 S
in

ks
 (

U
ni

t D
el

ay
 M

od
el

)

�

Sinks (Sorted From Highest to Lowest)

s38584.1

VPack
T-VPack

APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters 100

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30 35

D
el

ay
 to

 S
in

ks
 (

U
ni

t D
el

ay
 M

od
el

)

�

Sinks (Sorted From Highest to Lowest)

seq

VPack
T-VPack

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35 40 45

D
el

ay
 to

 S
in

ks
 (

U
ni

t D
el

ay
 M

od
el

)

�

Sinks (Sorted From Highest to Lowest)

spla

VPack
T-VPack

APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters 101

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600

D
el

ay
 to

 S
in

ks
 (

U
ni

t D
el

ay
 M

od
el

)

�

Sinks (Sorted From Highest to Lowest)

tseng

VPack
T-VPack

APPENDIX B VPack and T-VPack Sink Delay Distributions: Size 8 Clusters 102

103

APPENDIX C Sink Delay Distributions
for the 20 MCNC
Benchmark Circuits

In this appendix we present sink delay distributions for the 20 largest MCNC benchmark circuits.

Section C.1 presents the post-placement estimated sink delay distributions for the 20 largest

MCNC circuits implemented in an architecture with size 1 clusters. Then Section C.2 present

low-stress post-place-and-route results for the same circuits in the same architecture. After this,

Sections C.3 and C.4 present the placement-estimated and low-stress sink delay distributions for

the circuits implemented in an architecture with size 8 clusters.

C.1 Placement Estimated Sink Delay Distributions: Size 1 Clusters

In this section we present the post-placement sink delay distributions for the 20 largest MCNC

benchmark circuits using size 1 clusters. The delays that we present are placement-estimated

delays as we discussed in Section 5.2.2. For T-VPlace, we set the adaptive Criticality_Exponent to

8, andλ to 0.5.

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 104

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

4.5e-08

0 1 2 3 4 5 6 7

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

alu4

VPlace
T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

4.5e-08

5e-08

0 0.5 1 1.5 2

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

apex2

VPlace
T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 105

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

4.5e-08

0 2 4 6 8 10 12 14 16 18

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

apex4

VPlace
T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

0 50 100 150 200 250 300 350 400 450

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

bigkey

VPlace
T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 106

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

7e-08

8e-08

9e-08

1e-07

0 20 40 60 80 100 120

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

clma

VPlace
T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

4.5e-08

0 50 100 150 200 250

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

des

VPlace
T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 107

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

0 50 100 150 200 250 300 350 400 450

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

diffeq

VPlace
T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

0 50 100 150 200 250 300 350 400 450

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

dsip

VPlace
T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 108

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

7e-08

0 200 400 600 800 1000 1200 1400

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

elliptic

VPlace
T-VPlace

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

7e-08

8e-08

9e-08

0 1 2 3 4 5 6 7 8 9

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

ex1010

VPlace
T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 109

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

0 10 20 30 40 50 60 70

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

ex5p

VPlace
T-VPlace

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

7e-08

8e-08

0 200 400 600 800 1000 1200

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

frisc

VPlace
T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 110

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

0 2 4 6 8 10 12 14

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

misex3

VPlace
T-VPlace

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

7e-08

8e-08

9e-08

0 5 10 15 20 25 30 35 40

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

pdc

VPlace
T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 111

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

7e-08

8e-08

0 2 4 6 8 10 12 14

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

s298

VPlace
T-VPlace

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

7e-08

0 200 400 600 800 1000 1200 1400 1600

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

s38417

VPlace
T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 112

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

4.5e-08

5e-08

0 200 400 600 800 1000 1200 1400 1600

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

s38584.1

VPlace
T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

4.5e-08

5e-08

0 5 10 15 20 25 30 35

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

seq

VPlace
T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 113

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

0 5 10 15 20 25 30 35 40 45

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

spla

VPlace
T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

0 100 200 300 400 500 600

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

tseng

VPlace
T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 114

C.2 Low-Stress Sink Delay Distributions: Size 1 Clusters

In this section we present the post place-and-route sink delay distributions for the 20 largest

MCNC benchmark circuits using size 1 clusters. The delays that we present are low-stress which

we defined in Section 3.1. For T-VPlace, we set the adaptive Criticality_Exponent to 8, andλ to

0.5.

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

4.5e-08

0 1 2 3 4 5 6 7

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

alu4

VPlace
T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 115

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

4.5e-08

5e-08

0 0.5 1 1.5 2

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

apex2

VPlace
T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

4.5e-08

0 2 4 6 8 10 12 14 16 18

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

apex4

VPlace
T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 116

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

0 50 100 150 200 250 300 350 400 450

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

bigkey

VPlace
T-VPlace

0

2e-08

4e-08

6e-08

8e-08

1e-07

1.2e-07

1.4e-07

0 20 40 60 80 100 120

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

clma

VPlace
T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 117

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

0 50 100 150 200 250

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

des

VPlace
T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

0 50 100 150 200 250 300 350 400 450

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

diffeq

VPlace
T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 118

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

0 50 100 150 200 250 300 350 400 450

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

dsip

VPlace
T-VPlace

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

7e-08

8e-08

0 200 400 600 800 1000 1200 1400

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

elliptic

VPlace
T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 119

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

7e-08

8e-08

9e-08

1e-07

0 1 2 3 4 5 6 7 8 9

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

ex1010

VPlace
T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

4.5e-08

0 10 20 30 40 50 60 70

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

ex5p

VPlace
T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 120

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

7e-08

8e-08

0 200 400 600 800 1000 1200

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

frisc

VPlace
T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

0 2 4 6 8 10 12 14

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

misex3

VPlace
T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 121

0

2e-08

4e-08

6e-08

8e-08

1e-07

1.2e-07

1.4e-07

0 5 10 15 20 25 30 35 40

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

pdc

VPlace
T-VPlace

0

2e-08

4e-08

6e-08

8e-08

1e-07

1.2e-07

0 2 4 6 8 10 12 14

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

s298

VPlace
T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 122

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

7e-08

8e-08

0 200 400 600 800 1000 1200 1400 1600

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

s38417

VPlace
T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

4.5e-08

5e-08

0 200 400 600 800 1000 1200 1400 1600

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

s38584.1

VPlace
T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 123

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

4.5e-08

5e-08

0 5 10 15 20 25 30 35

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

seq

VPlace
T-VPlace

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

7e-08

8e-08

0 5 10 15 20 25 30 35 40 45

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

spla

VPlace
T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 124

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

0 100 200 300 400 500 600

D
el

ay
 to

 S
in

ks

Sinks (Sorted From Highest to Lowest)

tseng

VPlace
T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 125

C.3 Placement Estimated Sink Delay Distributions: Size 8 Clusters

In this section we present the post-placement estimated sink delay distributions for the 20 largest

MCNC benchmark circuits using size 8 clusters. The delays that we present are placement-

estimated delays as we discussed in Section 5.2.2. For T-VPlace, we set the adaptive

Criticality_Exponent to 8, andλ to 0.5.

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

0 1 2 3 4 5 6 7

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

alu4

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 126

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

0 0.5 1 1.5 2

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

apex2

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

0 2 4 6 8 10 12 14 16 18

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

apex4

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 127

0

2e-09

4e-09

6e-09

8e-09

1e-08

1.2e-08

1.4e-08

1.6e-08

1.8e-08

0 50 100 150 200 250 300 350 400 450

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

bigkey

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

7e-08

8e-08

9e-08

0 20 40 60 80 100 120

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

clma

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 128

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

0 50 100 150 200 250

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

des

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

0 50 100 150 200 250 300 350 400 450

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

diffeq

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 129

0

2e-09

4e-09

6e-09

8e-09

1e-08

1.2e-08

1.4e-08

1.6e-08

1.8e-08

2e-08

0 50 100 150 200 250 300 350 400 450

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

dsip

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

4.5e-08

5e-08

0 200 400 600 800 1000 1200 1400

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

elliptic

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 130

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

4.5e-08

0 1 2 3 4 5 6 7 8 9

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

ex1010

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

0 10 20 30 40 50 60 70

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

ex5p

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 131

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

7e-08

8e-08

0 200 400 600 800 1000 1200

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

frisc

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

0 2 4 6 8 10 12 14

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

misex3

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 132

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

0 5 10 15 20 25 30 35 40

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

pdc

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

0 2 4 6 8 10 12 14

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

s298

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 133

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

4.5e-08

5e-08

0 200 400 600 800 1000 1200 1400 1600

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

s38417

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

0 200 400 600 800 1000 1200 1400 1600

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

s38584.1

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 134

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

0 5 10 15 20 25 30 35

D
el

ay
 to

 S
in

ks

Sinks (Sorted From Highest to Lowest)

seq

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

4.5e-08

5e-08

0 5 10 15 20 25 30 35 40 45

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

spla

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 135

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

0 100 200 300 400 500 600

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

tseng

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 136

C.4 Low-Stress Sink Delay Distributions: Size 8 Clusters

In this section we present the post place-and-route sink delay distributions for the 20 largest

MCNC benchmark circuits using size 8 clusters. The delays that we present are the low-stress

which we defined in Section 3.1. For T-VPlace, we set the adaptive Criticality_Exponent to 8, and

λ to 0.5.

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

0 1 2 3 4 5 6 7

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

alu4

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 137

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

0 0.5 1 1.5 2

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

apex2

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

0 2 4 6 8 10 12 14 16 18

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

apex4

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 138

0

2e-09

4e-09

6e-09

8e-09

1e-08

1.2e-08

1.4e-08

1.6e-08

1.8e-08

2e-08

0 50 100 150 200 250 300 350 400 450

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

bigkey

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

7e-08

8e-08

9e-08

0 20 40 60 80 100 120

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

clma

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 139

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

0 50 100 150 200 250

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

des

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

4.5e-08

0 50 100 150 200 250 300 350 400 450

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

diffeq

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 140

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

0 50 100 150 200 250 300 350 400 450

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

dsip

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

7e-08

0 200 400 600 800 1000 1200 1400

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

elliptic

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 141

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

0 1 2 3 4 5 6 7 8 9

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

ex1010

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

0 10 20 30 40 50 60 70

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

ex5p

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 142

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

7e-08

8e-08

9e-08

0 200 400 600 800 1000 1200

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

frisc

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

0 2 4 6 8 10 12 14

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

misex3

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 143

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

7e-08

8e-08

9e-08

0 5 10 15 20 25 30 35 40

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

pdc

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

7e-08

0 2 4 6 8 10 12 14

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

s298

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 144

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

0 200 400 600 800 1000 1200 1400 1600

D
el

ay
 to

 S
in

ks

Sinks (Sorted From Highest to Lowest)

s38417

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

4.5e-08

0 200 400 600 800 1000 1200 1400 1600

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

s38584.1

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 145

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

0 5 10 15 20 25 30 35

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

seq

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

4.5e-08

5e-08

0 5 10 15 20 25 30 35 40 45

D
el

ay
 to

 S
in

ks

�

Sinks (Sorted From Highest to Lowest)

spla

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

APPENDIX C Sink Delay Distributions for the 20 MCNC Benchmark Circuits 146

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

0 100 200 300 400 500 600

D
el

ay
 to

 S
in

ks

Sinks (Sorted From Highest to Lowest)

tseng

VPack with VPlace
T-VPack with VPlace

T-VPack with T-VPlace

147

References

[Acte99] S. Kaptanoglu et. al., “A new high density and very low cost reprogrammable

FPGA Architecture”,FPGA, 1999, pp. 3 - 12.

[Alte98] Altera Inc.,Data Book, 1998.

[Alte95] Altera Inc., “MAX+PLUS II Getting Started,” 1995

[Betz97a] V. Betz and J. Rose, “Cluster-Based Logic Blocks for FPGAs: Area-Efficiency vs.

Input Sharing and Size,” IEEE Custom Integrated Circuits Conference, Santa

Clara, CA,1997, pp. 551-554.

[Betz97b] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for

FPGA Research,” Int’l Workshop on FPL, 1997, pp. 213-222.

[Betz98a] V.Betz and J. Rose, “How Much Logic Should Go in an FPGA Logic Block?,”

IEEE Design and Test Magazine, Spring 1998,pp. 10-15.

[Betz98b] V. Betz, “Architecture and CAD for Speed and Area Optimization of FPGAs,” Ph.

D. Dissertation,University of Toronto,1998.

[Betz98c] V. Betz, “VPR and VPack User’s Manual (Version 4.17),” May 5, 1998. (Available

for download from http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html).

[Betz99] V. Betz, J. Rose, A. Marquardt,Architecture and CAD for Deep-Submicron

FPGAs, Kluwer Academic Publishers, 1999.

148

[Boes93] K. Boese, A. Kahng, B. McCoy and G. Robins, “Fidelity and Near-Optimality of

Elmore-Based Routing Constructions,” ICCAD, 1993, pp. 81 - 84.

[Brow92] S. Brown, R. Francis, J. Rose, and Z. Vranesic,Field-Programmable Gate Arrays,

Kluwer Academic Publishers, 1992.

[Brow96] S. Brown and J. Rose, “FPGA and CPLD Architectures: A Tutorial,” IEEE Design

& Test of Computers,Summer 1996, pp. 42-57.

[Chen94] C. Cheng, “RISA: Accurate and Efficient Placement Routability Modeling,”

ICCAD, 1994, pp. 690 - 695.

[Cong94] J. Cong and Y. Ding, “Flowmap: An Optimal Technology Mapping Algorithm for

Delay Optimization in Lookup-Table Based FPGA Designs,” IEEE Trans. on

CAD, Jan. 1994, pp 1-12.

[Cong96] J. Cong, J. Peck and Y. Ding, “RASP: A General Logic Synthesis System for

SRAM-based FPGAs,” ACM Symp. on FPGAs, 1996, pp. 137 - 143

[Elmo48] W. C. Elmore, “The Transient Response of Damped Linear Networks with Particu-

lar Regard to Wideband Amplifiers,” J. Applied Physics, Vol. 19, January 1948, pp.

55-63.

[Fran92] J. Frankle, “Iterative and Adaptive Slack Allocation for Performance-Driven Lay-

out and FPGA Routing,” DAC, 1992, pp. 536 - 542.

[Gall98] D. Galloway, “Implementation of Grayscale Conversion for Video Image Process-

ing on the Transmogrifier-2a,” Personal Communication.

[Hame98] I. Hamer, “Implementation of DES on the Transmogrifier-2a,” Personal Communi-

cation.

[Haug87] P. Hauge, R. Nair, and E. Yoffa, “Circuit Placement for Predictable Performance,”

ICCAD, 1987, pp. 88-91.

[Hitc83] R. Hitchcock, G. Smith and D. Cheng, “Timing Analysis of Computer-Hardware,”

IBM Journal of Research and Development, Jan. 1983, pp. 100 - 105.

149

[Kehl93] M. Khellah, S. Brown and Z. Vranesic, “Modelling Routing Delays in SRAM-

based FPGAs,” Proc. Canadian Conf. on VLSI, 1993, pp. 1042 - 1056.

[Kirk83] S. Kirkpatrick, C. Gelatt and M. Vecchi, “Optimization by Simulated Annealing,”

Science, May 13, 1983, pp. 671 - 680.

[Leve98] P. Leventis, “Using edif2blif Version 1.0,” June 30, 1998. (Available for download

from http://www.eecg.toronto.edu/~leventi/edif2blif/edif2blif.html).

[Luce98] Lucent Technologies, FPGA Data Book, 1998

[Marq99] A. Marquardt, “Using Cluster-Based Logic Blocks and Timing-Driven Packing to

Improve FPGA Speed and Density”,FPGA,1999, pp 37-46.

[Meta92] Meta-Software,Hspice User’s Manual, 1992.

[Nag95] S. Nag and R. Rutenbar, “Performance-Driven Simultaneous Place and Route for

Row-Based FPGAs”, ICCAD 1995, pp. 332 - 338.

[Okam96] T. Okamoto and J. Cong, “Buffered Steiner Tree Construction with Wire Sizing for

Interconnect Layout Optimization,” ICCAD, 1996, pp. 44 - 49.

[Padi98] K. Padalia, “Implementation of Grayscale Conversion for Video Image Processing

on the Transmogrifier-2a,” Personal Communication.

[Rama94] S. Raman, C. Liu, and L. Jones, “A Delay Driven FPGA Placement Algorithm,”

ACM Proceedings Euro-DAC with Euro-VHDL, 1994, pp. 277 - 282.

[Ries95] B. Riess and G. Ettelt, “SPEED: Fast and Efficient Timing Driven Placement,”

IEEE International Symposium on Circuits and Systems, 1995

[Rose90] J. Rose, R. J. Francis, D. Lewis and P. Chow, “Architecture of Programmable Gate

Arrays: The Effect of Logic Block Functionality on Area Efficiency,” IEEE Jour-

nal of Solid State Circuits, Oct. 1990, pp. 1217 - 1225.

[Rose91] J. Rose and S. Brown. “Flexibility of Interconnection Structures for Field-Pro-

grammable Gate Arrays,” JSSC, March 1991, pp. 277 - 282.

150

[Rose93] J. Rose, A. El Gamal and A. Sangiovanni-Vincentelli, “Architecture of Field-Pro-

grammable Gate Arrays,” Proceedings IEEE, vol. 81, no. 7, July 1993, pp. 1013 -

1029.

[Sauc93] G. Saucier, D. Brasen, J. Hiol, “Partitioning with Cone Structures,” ICCAD 1993,

pp. 236 - 239.

[Sent92] E. M. Sentovich et al, “SIS: A System for Sequential Circuit Analysis,” Tech.

Report No. UCB/ERL M92/41, University of California, Berkeley, 1992.

[Swar95] W. Swartz and C. Sechen, “Timing Driven Placement for Large Standard Cell Cir-

cuits,” DAC, 1995, pp. 211 - 215.

[Swar98a] J. Swartz, V. Betz and J. Rose, “A Fast Routability-Driven Router for FPGAs,”

FPGA, 1998, pp. 140 - 149.

[Swar98b] J. Swartz, “A high-Speed Timing-Aware Router for FPGAs,” M.A.Sc. Thesis, Uni-

versity of Toronto, 1998.

[Vant98] Vantis Corporation, “VF1 Field Programmable Gate Array,” Preliminary Data

Sheet, 1998.

[Vant99] O. Agrawal et. al. , “An Innovative, Segmented High Performance FPGA Family

with Variable-Grain-Architecture and Wide-gating Functions,” FPGA, 1999, pp.

17 - 26.

[West93] N. Weste and K Eshraghian,Principles of CMOS VLSI Design; A System Perspec-

tive; Second Edition, Addison Wesley, 1993.

[Xili94] Xilinx Inc., The Programmable Logic Data Book, 1994.

[Xili97] Xilinx Inc., “XC5200 Series of FPGAs”,Data Book, 1997.

[Xili98] Xilinx Inc., “Virtex 2.5 V Field Programmable Gate Arrays”,Advance Product

Data Sheet, 1998.

[Yang91] S. Yang, “Logic Synthesis and Optimization Benchmarks, Version 3.0,” Tech.

Report,Microelectronics Center of North Carolina, 1991.

151

[Ye98] A. Ye, “Procedural Texture Mapping on FPGAs”,M.A.Sc. Thesis, University of

Toronto, 1998

[Yous90] H. Youssef and E. Shragowitz, “Timing Constraints for Correct Performance,”

ICCAD, 1990, pp. 24 - 27

