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2019

One of the key challenges for the FPGA industry going forward is to make the task of designing hardware

easier. A significant portion of that design task is the creation of the interconnect pathways between

functional modules. Interconnect synthesis tools and Network-on-Chip architectures have been developed

to solve this problem. They allow the designer to specify desired connectivity at an abstract logical

level, and automate the physical details of the interconnect implementation. In this work, we introduce

a new approach to automatically synthesizing interconnect, based on the composition of many simple

hardware primitives that each perform an elementary routing, translation, storage, or delay function.

This approach is embodied in a new design tool called GENIE, which produces RTL implementations

of complete systems containing a designer’s functional modules connected with automatically-generated

interconnect, whose generation is guided by an initial logical system specification. GENIE leverages its

piecemeal approach to interconnect generation to offer more automation and optimization capabilities to

the designer than are provided by existing tools. One such capability is the generation of interconnect for

“fine-grained” applications in which the overall small size of the system, need for simple communication

protocols, and tight latency requirements would incur too high of a performance or area penalty to

make productive use of automation with existing methods. We also introduce a new type of user design

specification called synchronization constraints that allow GENIE to build low-cost, backpressure-free

interconnect for applications with fixed-latency modules and achieve correct cycle-level timing using

a minimum amount of automatically-inserted delay elements. GENIE’s other optimization capabilities

include automatic clock domain crossing insertion, interconnect pipelining, and a limited form of network

topology generation guided by application performance requirements. Using both FPGA synthesis and

RTL simulation of the generated systems, we evaluate GENIE and its features using two applications that

serve as extensive and detailed case studies. We also compare GENIE against other system generation

tools, NoC architectures, and hand-written RTL interconnect implementations, and are able to show

equivalent or higher quality implementations with lower design effort.
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Chapter 1

Introduction

Field-Programmable Gate Arrays (FPGAs) offer an alternative to ASIC manufacturing, providing re-

duced cost, faster turnaround times, and broader access to digital hardware design to a wider audience.

However, designing hardware that targets FPGAs still remains relatively difficult and time-consuming

compared to writing software. With software, application behavior is specified as a series of instructions

that must be executed. In hardware design, behavior is a consequence of physical structure and its

connectivity, and the translation from behavior to structure is a nontrivial task with an immense degree

of freedom. Many physical implementations can exist for the same logical functionality. These imple-

mentation choices have physical consequences – differences in area and resource usage, and differences

in achievable performance due to signal propagation delays. These are some of the extra considerations,

on top of planning an application’s desired behavior, that make hardware design challenging.

The primary motivation for this work is to make hardware design for FPGAs easier. There are many

different ways to approach this problem, but a common thread among them is the raising of the level of

design abstraction. At the time of this writing, the primary input to FPGA compilation toolchains is

an RTL (Register Transfer Level) description of the design written in a Hardware Description Language

(HDL) such as Verilog or VHDL. Although higher-level design tools exist, they must first emit RTL, as

this is the lowest-common-denominator representation accepted by the synthesis and technology mapping

front-ends of FPGA toolchains. RTL specifies a design in terms of registers and combinational logic,

with data moving from register to register every clock cycle, possibly passing through combinational

logic that computes and transforms the data. This provides a fairly low level of abstraction, but one

that is able to map to the underlying FPGA resources with no ambiguity in terms of clock cycle-level

timing. The explicitness of cycle-level timing makes mapping application behavior to RTL challenging.

Raising the level of design abstraction above RTL requires creating a tool that generates RTL to

be consumed by the FPGA implementation toolchain. Such a tool could accept some higher-level

abstraction or design methodology, and thus streamline the user’s design entry experience. Many broad

categories of such tools already exist. One popular category of hardware design abstractions is High-

Level Synthesis (HLS). The goal of HLS tools is to allow the designer to describe their application

using languages like C/C++ or OpenCL, focusing entirely on specifying behaviour, much like a software

programmer would. The hardware implementation’s structure, connectivity, and cycle-level timing are

no longer the designer’s concern, and are generated automatically by the tool. While HLS is successful

at lowering the effort required to create a correct and functional design, it is fundamentally a behavioral

1
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rather than structural design paradigm, meaning that it may be challenging to guide the underlying

hardware implementation to optimize the result for resource utilization or performance.

System integration tools are another category of hardware design abstractions, and are the focus

of this thesis. They view an application as a series of functional modules that communicate with each

other. This structural description mirrors the physical nature of hardware, and that of RTL, with the key

difference being that the links between modules represent an abstract desire for communication instead

of concrete physical implementations. The physical implementation of these links, the interconnect,

is automatically generated by the tool, along with an instantiation of the functional modules. This

approach could also be used together with other design abstractions. In theory, the functional modules

could be created using any method, such as HLS or RTL, as long as they have the appropriate signal

interface with the interconnect. Given that functional modules are opaque black boxes that are provided

ready-made to a system integration tool, their instantiation in the final system is a convenient, if trivial

automation, and we can consider the main work performed by system integration tools to be the synthesis

of interconnect.

Interconnect itself is hardware, whose purpose within the larger application is to implement com-

munication between functional modules. The possible design space of such circuits is large, and they

can be challenging to implement correctly. At the extreme, a single wire is the simplest form of inter-

connect, but it can only enable point-to-point unidirectional communications between one source and

one sink with zero cycles of delay. In general, the communication needs of an application are more

complex, and require the interconnect to have some logic and functionality of its own. For example,

if there is a requirement for a source to communicate with one of many sinks, the complexity of the

interconnect is increased. In this case, there must exist some logic in the interconnect which takes the

source’s specification of which sink it wishes to send data to (via some form of address signal) and uses

it to direct traffic to the appropriate destination. An even more complex scenario is if multiple sources

wish to communicate with one sink. An arbiter circuit may be required to permit only one source access

to the sink, and to stall the others. In order to have well-performing interconnect, physical design must

be taken into consideration, such as the pipelining of links. In some cases, registers may need to be

inserted into the interconnect to balance the latencies of converging paths, and enable correct circuit

operation. For either performance or correctness, there may be many legal locations to insert registers,

each with differing total area costs. Non-trivial interconnect is also necessary when interfacing one clock

domain with another, as is the problem of selecting the locations of clock domain boundaries. This large

design space, coupled with the possibility of evolving communication requirements, motivates the need

for automated generation of interconnect.

Our central hypothesis is that FPGA hardware design effort can be reduced by advancing the capa-

bilities of automated interconnect synthesis tools. Reduction of design effort can be achieved in multiple

ways, for example:

• Enabling the use of automated interconnect synthesis tools for types of designs which could not

previously be targeted in a productive manner.

• Achieving better performance metrics (clock frequency, area usage) than with existing tools.

• Providing the user an interface protocol that reduces the amount of effort required to adapt their

functional modules to work with automated interconnect synthesis.
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• Adding optimization capabilities to an automated interconnect synthesis flow which enable a rapid

exploration of the design space via the changing of a few high-level specifications.

We explore our hypothesis, and these avenues to achieving a reduction in design effort, by developing

a new tool called GENIE – the GENeric Interconnect Engine. One of its capabilities is expanding

the set of use cases in which automated interconnect synthesis yields productivity gains. Existing

tools implicitly require that functional modules have a minimum size/complexity, or granularity, to

make automatic generation worthwhile. We develop a high-level system representation and automated

synthesis framework that allows the expression of fine-grained systems, which are smaller than the

minimum size/complexity required by existing tools. For these types of systems, the resulting resource

utilization and performance of our generated hardware is superior, and approaches that of hand-coded

RTL.

In addition to design granularity, another assumption made by existing design concerns the cycle-

level timing of hardware. Due to current tools’ focus on interoperability with Intellectual Property (IP)

cores, the signal interfaces between functional modules and interconnect tend to be standardized. To

allow flexibility in timing, these standard interfaces feature latency-insensitivity, allowing for a variable

and possibly unknown number of clock cycles to complete a transmission. The downside of latency-

insensitivity is that it incurs interconnect overhead, narrowing the list of functional module design styles

that yield productive usage of system integration tools. As part of our work, we create a means for the

designer to include fixed-latency modules in their systems without the use of latency-insensitive protocols,

allowing for the generation of lower-cost interconnect. This is achieved through the creation of a new

class of timing constraints that specify cycle-level data arrival relationships on high-level communication

links.

The two themes and general goals present throughout our research are automation and optimization.

Automation of interconnect synthesis concerns the creation of the interconnect itself – by following a

high-level specification from the designer, the tool frees them from the task of specifying the hardware

manually at the RTL level. In addition to generating hardware that is correct, it is important that

resource utilization and performance are sacrificed as little as possible in exchange for these productivity

gains.

Optimization complements automation, and we will explore its role in interconnect synthesis. In

the vast design space of interconnect hardware, certain design points yield better or worse performance

and area utilization for a given application’s communication requirements. Two of the notable examples

we explore are the optimization of interconnect topology, and the automatic insertion of registers. We

present novel algorithms to perform these tasks as well as an appropriate set of user specification inputs

that define the optimization goals.

The contributions of this work are embodied by our GENIE tool, and include:

• A complete open-source end-to-end system generation flow that begins with high-level specification

and produces synthesizable SystemVerilog output.

• The ability to automatically synthesize interconnect for fine-grained systems in a productive man-

ner.

• The ability to create backpressure-free interconnect for systems containing fixed-latency functional

modules by automating cycle-accurate synchronization, and introducing a new type of user speci-

fication, synchronization constraints, that control this flow.
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• An automatic interconnect pipelining flow based on a new algorithm.

• An automatic topology generation flow that attempts to reduce interconnect area while satisfying

application performance requirements.

The remainder of this thesis is organized as follows: Chapter 2 provides related background on existing

interconnect synthesis tools and techniques. Chapter 3 introduces the GENIE system integration tool,

describing its inputs, outputs, and synthesis flow at a high level. This is complemented by Chapter 4,

which describes the hardware micro-architecture of the interconnect that GENIE synthesizes. Chapter 5

introduces the two applications that will be used as test cases and benchmarks for evaluating the work

presented in Chapters 6-9, which contain detailed descriptions of the features of GENIE that realize our

main contributions. Finally, Chapter 10 concludes.



Chapter 2

Background

This chapter reviews the context of our work and previous work related to our research. One of the main

contributions of this work is the creation of a new system integration tool, so we begin with an overview

of existing tools that perform a similar function. Next, we review related work in the study and design

of on-chip networks, specifically those that target FPGAs. The remaining background covers specialized

aspects of interconnect generation techniques, such as topology selection and automatic pipelining.

2.1 System Integration Tools

The inputs and outputs of a generic system integration tool are shown in Figure 2.1. System integration

tools generate an RTL description of a complete interconnected system from a logical system specifica-

tion. This specification defines instances of user-provided functional modules and logical links between

them. Logical links originate and terminate at interfaces, which are higher-level groupings of HDL ports

of the functional modules. The signals within an interface have roles in communication, such as flow

control or carrying data, and the semantics and timing of these signal roles conform to a protocol that is

well-defined and understood by the tool. From the system specification, the tool outputs an HDL mod-

ule that contains instantiations of the user’s functional modules connected by auto-generated physical

interconnect that realizes the desired logical connectivity. For example, in Figure 2.1, the system specifi-

Interconnect

Logical Link

Tool

System
Specification

Func. Modules

Communication
Specification

Generated
System

(RTL)

Interface

Figure 2.1: Inputs and outputs of a system integration tool
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cation contains three functional modules, each with one interface. Two logical links are defined between

these interfaces: one each from the left modules, sending to the right module. This logical specification

is realized by the tool as a 2-to-1 multiplexer controlled by an arbiter, followed by a register.

In addition to the structural system specification, metadata about the nature of the communication

between functional modules (the “Communication Specification” in Figure 2.1) may also be provided as

input. Examples include the bandwidth or latency requirements of specific links, a customized weighting

of arbitration shares, or information relating to the timing of transmissions over logical links. This

information may be used by the tool to guide the generation of interconnect.

The above description of a generic system integration tool has many existing concrete realizations,

including those that target FPGAs. One of the motivations for our research is the observation that

these existing products have been specialized to fit a narrow (but very common) set of use cases within

the Electronic Design Automation market, limiting their potential for automation and optimization of

interconnect. We explore these existing tools, and their limitations, in the next sections.

2.1.1 FPGA Vendor Tools

The major FPGA vendors provide design software suites for their devices, and system integration tools

are included among these. Intel (formerly Altera) has Qsys [7], Xilinx has the Vivado IP Integrator

[69], and Lattice has LatticeMico [47]. They provide a GUI-based means of design entry, as well as

scripting-based (TCL) to instantiate modules and define links.

Modularity and reusability are heavily emphasized, with the goal being to allow a user to create a

working system without writing any HDL. Their main use case is the creation of Systems-on-Chip (SoC)

containing one or more soft microprocessors, memory blocks, and peripherals. A large library of these

and other Intellectual Property (IP) blocks is provided, although it is possible to include custom HDL

modules as well.

As a result of this SoC-centric focus, existing FPGA system integration tools are built mainly around

memory-mapped communication. This is very natural and convenient for processors, but, as will be

discussed later, is limiting in the general case. The main interface and communication protocols expected

by FPGA system integration tools are standard protocols such as ARM AMBA AXI [9] or Avalon-MM

[34]. Functional modules use these to interface with the tool-generated interconnect fabrics.

A secondary, but still popular, use case is streaming generic data between components. For example, a

series of individual modules, each performing a different kind transformation on input data, can be daisy-

chained together to perform a complex signal processing function. Instead of memory-mapped protocols,

streaming protocols like AXI Streaming [8] and Avalon-ST [34] are used. These are less structured, often

just consisting of the raw data and handshaking signals for flow control. As a result, the interconnect for

such a point-to-point link is often implemented as wires with no logic or registers, and so the degree of

automation performed by a tool is low. More sophisticated interconnect must be explicitly instantiated

by the user in the same fashion as the functional modules that perform application-related tasks.

2.2 Networks-on-Chip

NoCs [36] are a general class of interconnect. Taken to the extreme, one could claim that any form of

interconnect, down to a single wire, can be classified as a NoC. However, NoCs are usually understood

to refer to packet-switched networks containing switches, buffers and wires arranged in a nontrivial
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topology such as a mesh or a ring. Furthermore, multiple end-to-end communications flows between

functional modules share the same physical resources in a time-multiplexed manner. Virtual channels

(VCs) [27, 28] and related mechanisms help ensure that no one flow can stall overall forward progress

on a shared physical link.

The development of NoCs was motivated by concerns over the scalability of the performance of shared

buses in multi-processor systems-on-chip (MPSoCs). The use of NoCs on FPGAs is a distinct, and

more recent development than their general usage in ASIC MPSoCs. Projects such as the CONNECT

network generator [58] and the Split/Merge [32] NoC are FPGA-specific NoC architectures. Their

designers recognized that the relative costs of primitive circuit elements such as wires and multiplexers

are radically different when designing for FPGAs versus bare silicon [68]. Thus, rather than simply

porting the HDL code for ASIC-targeted NoCs to FPGAs, a ground-up redesign was needed that took

these differences into account. Examples of these differences include lower achievable clock frequencies,

the ratio of the availability of routing and logic resources, and the expense of large multiplexers and on-

chip storage. The general trend of FPGA-targeted NoCs is “less is more” – favouring the composition of

simple circuit elements that map well to FPGA resources. FPGA-based NoCs provide important lessons

for building our own interconnect architecture, and three examples are described next in detail.

2.2.1 CONNECT

The CONfigurable Network Creation Tool, by Papamichael and Hoe [58], comprises both an FPGA

NoC architecture as well as an automated tool for customizing and generating networks built using this

architecture. The architecture favours wider and slower links between routers compared to ASIC-based

NoCs, preferring to use more of the existing wiring on an FPGA rather than attempt to time-multiplex

data over fewer wires at higher clock frequencies. Similarly, routers only have a single pipeline stage,

with the stated goal of taking advantage of the lower target clock frequency achievable on FPGAs. In

the results of their original paper, they mainly achieved an area reduction over the baseline ASIC NoC

design, combined with a frequency reduction. They claim to recover the lost performance by widening

their network from 32 to 128 bits while maintaining the same clock frequency. On modern FPGAs,

increasing the width causes a clock frequency penalty due to place and route effects, when the topology

is sufficiently complex [67]. Recovering bandwidth purely by focusing on width, and neglecting clock

frequency, may no longer be as viable a solution. In the design of our network, we still elect to use as

wide a bus width as is required to transmit all the user’s data signals, plus control signals, as a single

word. However, we do this mainly to escape the latency overheads of serialization/deserialization and

enable a simple design approaching the semantics of bare RTL bus wires.

In CONNECT, buffers are kept small so that they can fit in an FPGA’s distributed RAM resources.

These are available at more locations throughout the chip, rather than the comparatively large block

RAMs which are few and have their locations centralized to certain columns on the FPGA. The inclusion

of buffering makes CONNECT a fairly conventional NoC architecture compared to some recent ones like

Hoplite[40].

An important observation made by this work is that the reconfigurability of FPGAs lends well to

customizing interconnect to meet a specific application’s communication requirements. This is reflected

in the web-based generation tool, which allows a user to customize many aspects of the network and

architecture – in far more combinations than would be feasible to individually verify for a conservative

ASIC-based target. The network topology can be chosen from a predefined list, or a custom one created
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with a GUI. Link width and flow control scheme, and buffer depth and allocation policy, are examples

of other settings that can be changed.

Ultimately, the generator emits synthesizable Verilog. There are no system integration features –

one chooses a topology and the number of endpoints, and only the interconnect is created. From an

ease-of-use perspective, this does not fully address the complete end-to-end system generation problem.

2.2.2 Split/Merge NoC

This style of FPGA NoC architecture utilizes two interconnect routing primitives named Split and Merge,

which first appeared in [41] and further developed by Huan and DeHon [32]. Split nodes have one input

and many outputs, and forward an input packet to one of the output ports based on its intended

destination. Merge nodes have many inputs and one output, and arbitrate among many competing

inputs to forward one of them to the output. Thus, instead of using a traditional monolithic “router”

that contains many input ports and many output ports, the tasks of arbitration and distribution of

packets are performed by separate, decomposed primitives. This separation provides more opportunities

for pipelining the links between interconnect primitives, yielding higher clock frequencies than the single-

stage router design of the CONNECT architecture. Networks with arbitrary topologies can be created

by choosing a suitable arrangement of Split and Merge nodes.

In the abstract of the Huan/DeHon paper, the development of this architecture seems to be a direct

response to the low clock frequencies achieved by CONNECT. The main focus was to increase the

amount of pipelining to achieve a higher clock frequency. Compared to CONNECT, Split/Merge was

able to achieve 3x the clock frequency with a 4 cycle pipeline, consuming up to 37% more area, most

of which is in memory rather than LUTs. Just like CONNECT, the architecture maintains the NoC

tradition of buffering packets at the input of each primitive. Unlike CONNECT, header information

is sent in a separate flit preceding the data flits, as with higher frequencies it is no longer a priority

to maximize data widths. However, virtual channels are absent, instead favouring the use of separate

physical networks, which in theory should be beneficial for reducing hardware complexity and cycle time,

but at the expense of area.

Our research is heavily inspired by the Split/Merge architecture, but lacks the mandatory buffering

that would otherwise increase baseline latency and consume memory resources. However, we found

Split/Merge to be a good starting point for its insight into decomposing network functionality into

simple primitives. The original work also did not provide a tool for generating either interconnect or a

full system with functional modules.

2.2.3 Hoplite

Hoplite [40] is a minimalist FPGA NoC architecture. It lacks any buffering, instead deflecting traffic

through unused channels within a torus topology. A packet can continue circulating within the network

until it is able to progress to its original destination. Hoplite routers are designed to be as simple as

possible and to map well to the underlying FPGA logic resources. These design choices yield significant

area savings and clock frequency gains over the previous two FPGA NoC architectures mentioned in

this section. A Hoplite router has 1/26 the LUT usage of a comparable CONNECT router and 1/30 the

usage of a Split+Merge router. The clock frequency gains over each were 3.3x and 1.55x respectively.

The Hoplite paper explores the design of the network micro-architecture in detail and ways of design-
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ing it around vendor-specific FPGA LUT architectures, which is a level of FPGA-specific targeting that

was not addressed in CONNECT or Split/Merge. While this attention to architecture yields impressive

clock frequency and area gains, deflection routing has a negative impact on latency. A Hoplite deflection-

routed torus has an average latency two orders of magnitude greater than a comparable buffered mesh

or torus, at a 0.1 injection rate of uniform random traffic on a 10 × 10 grid of processing elements.

Throughput can be recovered by using the equivalent area to instantiate more Hoplite networks and

taking advantage of the low resource and higher achievable clock frequency. One implication of these

results was that Hoplite deflection-routed toruses may be a more attractive option than buffered net-

works for systems where the functional modules themselves are small (at or below 2000 logic elements

by their account). We also explore this complexity-matching between functional modules and intercon-

nect in Chapter 6, where we explore building suitable interconnect between finer-granularity functional

modules.

A follow-up work, FastTrack [38], is an improvement on the Hoplite architecture, aiming to make

even better use of available FPGA wiring than its predecessor. It still uses deflection routing, but routers

now have additional connections to non-adjacent routers via “express links” that allow skipping of hops.

These links are designed to map to longer wires on the FPGA such that the NoC architecture leverages

the diversity of wire lengths present in the underlying FPGA fabric. Throughput gains of 1.5-2.5x are

observed over baseline Hoplite at previously-problematic injection rates above 0.1, with average latency

reduction in the order of 2-7x depending on injection rate and router configuration.

Deflection routing is feasible only for certain topologies and practically usable at lower injection

rates [53]. This is why we will opt for a “primitive decomposition” approach like Split/Merge as a

baseline architecture for our work, as there are many viable combinations of primitives that yield func-

tional topologies. However, we also choose to eliminate buffers as a mandatory part of our architecture,

adopting this characteristic of Hoplite and deflection-routed networks while diverging from the baseline

Split/Merge design. This is necessary to match the latencies achievable with hand-coded RTL in ap-

plications where buffering is not necessary. The Hoplite work inspires a strong attention to designing

network primitives that map well to FPGA resources, although we do not consider the underlying wiring

architecture like FastTrack does.

2.3 Topology Synthesis

A network’s topology is defined by the arrangement of its routing primitives and wires. It is a key design

parameter in the design of interconnect. Part of our research concerns the development of a new method

of automatically generating a network topology based on an application’s communication requirements.

This will be presented in Chapter 9.

The fundamental problem of topology synthesis is the automation of the design of a network’s topol-

ogy in order to minimize, maximize, or otherwise satisfy some objective. We will see a common pattern

in our cited works on this topic in the nature of this objective: the generated topology must satisfy

a hard set of criteria (for example, latency or bandwidth) while performing a best-effort minimization

of some other metric such as area or power. It should also be mentioned that since networks exist as

abstract mathematical entities as well as concrete things at all physical scales, we will limit our interest

to those techniques that target on-chip interconnect on either FPGAs or ASICs. Much of the early work

on topology synthesis was first in the realm of ASICs, focusing on either packet-switched NoCs or shared
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bus architectures, so we will examine those first.

One such early work is by Pinto et al. [59] which does not consider the physical shape or layout of

its functional modules or interconnect primitives, and therefore forms the topology synthesis problem

in a more abstract mathematical manner. In their formulation, there exists a communication graph

representing the desired logical links between functional modules, as well as hard bandwidth requirements

for each link. There also exists a characterized properties of interconnect primitives, which are nodes

and links with annotated costs (maximum length/bandwidth for links, area/power for switches). The

problem becomes one to find an implementation graph, consisting of interconnect primitives, that the

logical communication graph can map to. This is stated as an exact problem, and the remainder of the

work deals with ways in which to reduce its complexity to make it more computationally tractable. This

approach is frequently cited by later works as a pure abstract formulation of the problem.

Srinavasan et al. [66] developed a flow which consumes a list of rectangular functional modules along

with a communication graph specifying the flows between the modules as well as their required band-

widths and latencies. This is now an example of an approach that begins to take into account physical

dimensions of modules. The objective is to generate a floorplanned system with routers, functional

modules, and a mapping of logical traffic flows to physical network links such that bandwidth/latency

constraints are satisfied while attempting to minimize power and router count. The topology synthesis

flow invokes a floorplanner to lay out the functional modules in a cost-sensitive way. Routers are implied

to exist at the corners of the placed functional modules, and the shape/size of the routers is assumed

to be negligible. An ILP formulation assigns transmissions to network links. This is an example of a

“one-shot” solution that does not need to iterate back to previous steps to evaluate a broader set of

topological possibilities.

As a counter-example, Murali et al. [54] address some of the shortcomings of the previously mentioned

flow and consider the shape and size of routers, as well as whether or not timing closure is possible in

the generated solution. Their approach is iterative: given N functional modules, N different topologies

are independently explored, ranging from one in which all modules are connected to one router, to one

where each module gets its own router. For each topology, the N nodes are partitioned among the

routers by min-cut of required transmission bandwidth, transmissions are assigned to physical links,

and the full system is floorplanned to measure its cost and to check for timing violations. Once again,

there is a hard constraint to satisfy (bandwidth for transmissions) and a best-effort attempt to minimize

a choice of power or transmission hop count. The best out of N topologies is selected, and it is not

clear up front which one that will be. This is an important observation – once the physical parameters

of interconnect primitives are considered (area, performance, power), as well as how they change with

parameterization (for example, the number of ports on a router), it is less clear whether a design with

fewer expensive primitives will be better than one with more abundant but simple primitives. This issue

of difficult-to-estimate cost impact of topological choices will also be a theme that appears in our work

on topology optimization in Chapter 9.

Another example of an iterative process is Xu et al. [71]. The important difference from the previous

work is the approach used to construct the candidate topologies. Rather than walking through N

possibilities, a greedy hierarchical partitioning is performed of the communicating nodes, where each

partition receives a router. Different order traversal produces different results, and more than one is

considered and its cost fully evaluated.

One common feature of interconnection networks is the assumption that multiple logical transmissions
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will share a physical link. It is then required to ensure that the utilization of that link is not exceeded.

Rather than using an average measure such as bandwidth, it is possible to make more detailed time-

domain traffic characterizations that consider the possibility that two links may fully utilize the same

channel and never compete as long as they do not overlap in time.

One such example of this is the work by Murali et al. [55]. Their approach emits a partial crossbar

design (rather than a packet-switched NoC, as we have been mostly seeing up to this point) that min-

imizes the latency caused by temporal overlap of transmissions sharing the network. This is achieved

by beginning with a full crossbar and determining which nodes can share network resources while still

satisfying performance requirements, so it is also an example of an iterative approach that gradually

refines its topology. Temporal overlap is constantly evaluated by referring to traces obtained from an

initial time-based simulation of the application. The space of candidate crossbar configurations is tested

via binary search.

A similar topology synthesis approach by Cong et al. [19] generates networks optimized for power

and area containing arbitrary-radix routers. Their flow begins with a topology that exactly matches

the logical connectivity, and iteratively refines it such that network cost is reduced at the expense of

resource sharing and performance degradation. Groups of transmissions can be mapped to a lower-cost

shared bus when the user explicitly marks them as mutually temporally exclusive. This explicit marking

of temporally exclusive transmissions, rather than simulation, is the most similar to what we will adopt

in our approach.

Rather than beginning with an initial topology that exactly matches logical connectivity, another

possibility is to begin at a single switch that handles all communications, and then iteratively split it

into several switches until conditions are satisfied. This is what Ho et al. [30] proposed. Their technique

generates application-specific network topologies that have zero contention between transmissions, guided

by knowledge of which transmissions overlap in time. The mapping of logical links to physical links is

done with simulated annealing and approximate graph colouring, to reduce the complexity of the exact

mapping problem.

Despite being ASIC-targeted, there are useful general approaches that can be found in the works we

have cited thus far. Notably, the need to evaluate multiple candidate topologies to estimate the exact

impact of topological choices, which seems inevitable once simplifying assumptions are no longer made

about the end-to-end system generation flow. There were also many different approaches as to how to

iterate over the space of possible topologies to evaluate as candidates. Nevertheless, there do also exist

FPGA-targeted topology synthesis approaches.

For example, Kapre et al. have studied the performance/area tradeoffs of Butterfly Fat Tree (BFT)

topologies on FPGAs [41, 39]. They build BFT networks using two types of switches (t and π), each

consisting of Split and Merge primitives [41, 32] (that are also used in our work) rather than traditional

NoC routers. By changing the ratio of t to π switches (controlled by a dimensionless Rent parameter), the

bisection bandwidth of the BFT topology can be adjusted to match a particular application’s needs. Note

that rather than use bandwidth and latency constraints directly, a single abstract parameter is exposed

to the user to turn, and to explore the space of generated topologies to evaluate which ones satisfy

their needs. This conveniently sidesteps the lack of exact physical control and characterization when

synthesizing for FPGAs. There are exceptions, such as the authors’ related work on Hoplite, where the

interconnect was manually and explicitly placed and routed by hand into a regular predictable pattern.

The ShrinkWrap Compiler [18] is a tool that generates optimized interconnects for applications cre-
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ated using the CoRAM framework [17], which automates the creation of memory hierarchies. ShrinkWrap

creates the interconnect between the auto-generated memory components and the user’s application mod-

ules, optimized according to the application’s communication patterns, which are explicitly specified by

writing C-based control threads. Similar to our work, the ShrinkWrap interconnect uses segregated uni-

directional tree-based networks, but the overall flow is specifically tailored to the generation of memory

hierarchies.

2.4 Automatic Pipelining

In the GENIE tool described in this research, we automatically insert registers into the interconnect for

performance. There is a body of existing work in retiming and automatic pipelining of circuits in more

general contexts [23].

Retiming [49] is a technique to move combinational logic relative to sequential elements such that

register-to-register combinational delays are balanced. However, it cannot insert new registers in a way

that would change the total number of pipeline stages. Similarly, there exist techniques that do not

change the number of pipeline stages, but instead provide automation in the form of generating global

pipeline control logic [43, 56].

Elastic buffers are FIFO structures that can be implemented using registers, or the two latches within

a register [14]. Connecting functional modules via elastic buffers enables one style of latency-insensitive

design [13] in which there is no centralized control of pipelines. Rather, handshaking (ready, valid)

signals are used to indicate the presence of data or to apply backpressure locally between neighbouring

functional units and elastic buffers. If a circuit is designed in a latency-insensitive manner, algorithms

and transformations exist [57, 37] that are able to automatically insert or remove elastic buffers, thus

automatically pipelining the circuit.

On FPGAs, elastic buffers are more expensive than plain registers. Since the master/slave latches

within each register are not directly accessible, at least two whole registers must be recruited to form an

elastic buffer. This makes a latency-insensitive design style prohibitive for complexity-sensitive applica-

tions. In these situations, another purpose of inserting registers is for maintaining correctness, rather

than performance. The underlying buffer minimization problem [31, 29] aims to ensure the correct num-

ber of cycles of delay between functional units by inserting the fewest number of registers. It can be

formulated as an integer programming problem, but has had refinements made by others to improve

its asymptotic runtime complexity through decomposition approaches [15] or graph-theoretic reformu-

lations [11]. The buffer minimization problem has also found use in High-Level Synthesis (HLS) tools

[21, 12]. There, hardware modules representing operations in a control/data flow graph are scheduled

to begin at a certain clock cycle in order to satisfy dependencies, which naturally leads to the problem

of determining the optimal locations for delay element insertion.

The cited works on automatic pipelining either insert registers for performance (in a latency-insensitive

system), or insert registers for correctness (in statically-scheduled systems). One of our contributions is

a combined approach that handles both design styles coexisting in the same system.
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The GENeric Interconnect Engine

This chapter presents a high-level overview of the GENIE interconnect synthesis and system integration

tool, which is the concrete realization of the automation and optimization techniques that comprise the

contributions of our research.

GENIE builds systems that contain user-created functional modules connected with auto-generated

interconnect. Each system is built from an input specification provided by the user, which describes the

interfaces of the system’s functional modules and establishes logical links that represent transmissions

between them. As shown in Figure 3.1, the input is specified programmatically from a script file written

in the Lua [60] programming language. In contrast with a purely static data-like representation such

as an XML or JSON, executing a programming language as input allows the user to leverage looping

constructs, variable declarations, and command line argument parsing to enable complex design space

exploration and automated instantiation of modules. Lua was chosen over similar languages such as

Python for its ease of embedding – the entire Lua interpreter and standard library consist of several .c

and .h files that can be directly included as part of the GENIE host application.

This host application, labeled “GENIE Tool” in Figure 3.1, is merely a thin wrapper that executes

Lua scripts and forwards the calls to an underlying C++ library containing GENIE’s actual interconnect

synthesis and system building flow. This flow library could conceivably be used by other design tools

(such as HLS compilers) that require the synthesis of interconnect as part of their flow. In this case,

such a tool would make the C++ library calls directly, bypassing the Lua language layer and the need

for passing any files to GENIE.

The GENIE flow implements each system described in the user’s input specification. Logical links

are realized into interconnect that is optimized for area, subject to optionally-provided performance

constraints. Optimization decisions are informed by estimating the interconnect’s area and timing char-

acteristics. This is done by querying a database of interconnect primitives, which is stored on-disk and

is shipped with the tool. The database contains area and timing models for many parameterizations of

each GENIE interconnect primitive. The output of the flow is a SystemVerilog module for each system,

containing instantiations of the user’s modules and of GENIE’s interconnect primitives, which are also

shipped with the tool.

The remainder of this chapter describes, in more detail, the input specification, the nature of GENIE’s

interconnect, and the synthesis flow itself. We begin with an overview of the philosophy of the design

choices made when developing the aforementioned aspects.

13
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Figure 3.1: High-level overview of the GENIE tool architecture

3.1 Design Philosophy

The development of GENIE was motivated by gaps in existing interconnect synthesis approaches, and

by opportunities to explore new combinations of existing approaches and algorithms in the context

of a system-building tool. To do so required developing a flexible approach in the generation of the

interconnect itself and choosing an appropriate abstraction for the user to specify their design. This

section covers the motivation and design of these aspects of GENIE.

3.1.1 Interconnect Generation Approach

Our approach to interconnect synthesis is to build bottom-up from small modules that perform as few

functions as possible. We begin by asserting that the ultimate purpose of interconnect is to realize the

transmission of data between a set of sources and sinks. In general, this requires some storage and

processing in addition to the physical transmission of electrical signals over wires. A non-exhaustive list

of such interconnect functionality includes:

• Distribution: Selectively directing data to one (or a subset) of many possible destinations, thus

implementing one-to-many communication.

• Arbitration: Selecting one input from a set of many inputs, implementing many-to-one commu-

nication.

• Storage: Holding data in-place in order to temporarily match a discontinuity between the presence

of data at a source, and the ability to consume data at a sink.

• Delay Matching: Delaying data by a specific, fixed number of clock cycles in order to align the

arrival of two or more streams of data at a common sink.

• Pipelining: Breaking long chains of combinational interconnect logic to achieve higher perfor-

mance.

• Clock Crossing: Passing data between two unrelated clock domains.
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• Conversion: Performing arbitrary combinational logic to transform interconnected-related control

signals, such as addressing information, between different representations.

One possible way to design interconnect building blocks is to create large, monolithic modules that

perform several of these functions in a tightly-coupled manner. This is the essence of a traditional

Network-on-Chip router, as seen for example in the CONNECT [58] framework for FPGAs. These

routers have, in general, many input ports and output ports, meaning they implement both arbitration

and distribution, and also contain input and/or output buffers. However, this tight coupling specializes,

and thus limits, the kinds of applications that the network can be used for. For example, the number

of internal pipeline stages of a router sets a lower bound on end-to-end latency, adding unnecessary

overhead to systems that do not require the full functionality and complexity offered. The design

philosophy behind GENIE is to generalize, rather than specialize, in terms of supported application

design styles, so this approach was not chosen.

One of the earlier attempts to “crack open” the monolithic FPGA router design came in the form

of the Split/Merge NoC [41, 32]. Here, two different kinds of interconnect modules were proposed: split

and merge nodes. Split nodes are dedicated to distribution, and merge nodes to arbitration. Each has

a variable number of possible inputs or outputs, and nodes can be chained together in different ways

to create arbitrary network topologies. The original work proposed buffers at the input of every split

and merge node, resulting in some coupling of functionality and baseline primitive complexity, but it

was an improvement (in terms of clock frequency and area) over CONNECT, and continued the trend

of moving away from ASIC-style monolithic router designs.

GENIE’s interconnect design takes the next logical step and decouples the functionality within build-

ing blocks even further. We propose six different kinds of interconnect modules, each performing as few

interconnect-related functions as possible, which will be presented in greater detail in Section 3.3. With

GENIE’s approach, each module has low design complexity and functionality, and richer functionality

is obtained by chaining different modules together. This approach has two key benefits:

• The ability to productively automate the creation of interconnect for target applications of smaller

size than would be possible with existing approaches, and thus incurring less performance and area

overhead.

• Providing new opportunities for application-specific optimizations, given by the large space of

combinations of small primitives. A similar approach has been used to create optimized chains of

floating-point operators for FPGAs [46].

3.1.2 Input Specification Design

The choice of specification abstraction is crucial to the ability to easily express design intent, as well

as providing a tool enough knowledge about the application to enable it to perform application-specific

optimizations.

A system-building tool’s design abstraction is structural and is essentially a higher-level version of

the structural subset of HDLs like Verilog or VHDL. HDLs use ports (input, output, and bidirectional)

that are used as the endpoints for nets. All HDL ports and nets are of the same “type”: they are an

abstraction for zero-cycle transmission of one bit of data, lacking any additional communication-related

usage information. This semantically-neutral communication abstraction makes HDLs a good lowest



Chapter 3. The GENeric Interconnect Engine 16

common denominator for hardware design, but necessarily limits an FPGA synthesis tool’s ability to

provide meaningful design automation and optimization capabilities.

Interfaces and logical links are the system-building tool analogies to HDL ports and nets. They

serve as endpoints and as specifiers of the existence and direction of transmissions, respectively. These

transmissions have richer and more specific semantic meaning than that of the HDL abstraction. A

common use case is that of memory-mapped communication, owing to the system-on-chip-centric focus

of existing commercial system-building tools, in which a microprocessor is the central actor. The two

fundamental operations are reads and writes, using a memory address to indicate a destination. This

leads to two types of interfaces: masters, which initiate requests, and slaves, which respond to requests.

By specifying logical links between multiple masters and multiple slaves, a tool is instructed to generate

all the necessary arbitration and address decoding interconnect, offering a great deal of automation and

simplicity to the user – as long as their intent was to create a system with memory-mapped peripherals.

We desire GENIE’s communication protocol to be more general and not tied to a specific and narrow

use case such as memory-mapping. Similar to our strategy for interconnect building blocks, complex and

specialized protocols should be implementable by building upon the simple one that is offered. At the

same time, we wish to do this to an extent that maintains a certain level of design automation (otherwise,

HDLs already trivially satisfy the first goal). To satisfy both goals, we have chosen the following features

to be included in our communication abstraction to the user:

• Multicast Addressing: Addressing is necessary for any communication abstraction in which

transmissions are sent to different destinations under the runtime control of user logic. Multicast

addressing gives a more general capability to send to more than one destination (or all possible

destinations) at the same time. Broadcasting is trivially available in the HDL net abstraction and

it is limiting to prevent a higher-level communication protocol from offering it as well.

• Flow control: The ability to specify valid data only on some clock cycles, and ability for a sink

to indicate the availability to receive data. Even if user endpoints do not require flow control for a

particular application, these signals are fundamentally necessary to be generated and/or consumed

by the interconnect for many-to-one communications. Any time two transmissions can contend for

the same output, one must be stalled or slowed somehow.

• Packetization: Allowing a transmission to span multiple consecutive clock cycles. In theory,

support for this could entirely be left up to implementation by the user as a generic data signal on

top of the protocol that is provided. After all, multi-cycle transmissions are just many one-cycle

transmissions. However, without explicit packetization added to the interconnect protocol, multiple

simultaneous transmissions from different sources may arrive in an interleaved manner at a sink

that is incapable of maintaining separate buffering and state for reconstructing each transmission.

Explicit packetization allows for a policy of preventing this scenario by forcing arbiters, within

the interconnect, to wait for an entire transmission to pass through before granting an output to

another waiting input.

Given the above requirements, we have developed our own protocol that strives for the required

balance of generality and automation capability. The flow control and packetization aspects lead to

the existence of signals that resemble low level general streaming protocols such as AXI-Stream [8] and

Avalon-ST [34]. With the addition of signals for (multicast) addressing, different transmissions can be
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routed to different destinations in the network. We call our resulting protocol Routed Streaming (RS)

and provide a more descriptive overview in Section 3.2.3.

However, in addition to RS interfaces, auxiliary/utility interface types are also needed for more

mundane tasks such as delivering clock and reset signals. Regular single-bit HDL nets would suffice

for these (and is, in fact, how they are ultimately implemented in GENIE), but there is still semantic

value to identifying a clock signal as a clock signal, as it allows the association of a clock domain to a

data-carrying RS interface. Another important and separate type of interface is a “conduit” that acts

as a catch-all for any kind of communication that is unsupported by the tool’s abstractions. It is a

multi-bit data bus that is translated verbatim into HDL nets. A common use of conduits is to interface

with elements external to the FPGA such as I/O, peripherals, and off-chip memory controllers.

Our choices for designing the RS protocol aim to be general, but do not cover all possible commu-

nication features. Notably missing is support for virtual channels, which is an extension to flow control

that the interconnect would explicitly have to be designed to understand to realize its potential as a

deadlock-breaker. Using more physical channels is a way of getting around this, as was noted in the

work on the Split/Merge NoC[32], which included the argument that FPGAs have enough wires to make

this practical.

3.2 Input Specification

Having provided some context for design choices, this section proceeds to provide a more top-down

description of GENIE’s input specification.

3.2.1 Functional Modules

The purpose of a system integration tool is to instantiate and connect instances of functional modules

together. The “functional” refers to the fact that these are user-created hardware modules that perform

application-specific functions related to computation or storage, in contrast with interconnect modules

that are later automatically instantiated by the tool and are used to facilitate communication. Examples

of functional modules include processors, hardware accelerators, peripherals, and on-chip memory blocks

– exactly the same kinds of building blocks that existing network-on-chip and FPGA system integration

tools were designed to connect together. In addition to these classic examples, GENIE aims to enable the

practicality of connecting together finer-grained modules, such as individual state machines and small

sections of datapaths.

A functional module definition in GENIE is a thin wrapper around an actual user-provided Verilog

module. In addition to the associated Verilog module’s name, a functional module definition has its own

name (which can be different), and a set of interface definitions, which are described in the next section.

3.2.2 Interfaces

An interface consists of one or more HDL signals, each with a prescribed role. The available signal roles,

and the requirements for the presence or absence of each role, is dependent on the type of interface.

Altogether, GENIE defines four interface types: Routed Streaming for general communication, and three

others for utility purposes, as previously described in Section 3.1.2. Each of the four interface types exists
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in a “source” and “sink” variant and can exist either as part of a functional module, or as a top-level

interface of a system. The available interface types are:

• Clock: Contains a single signal of role ‘clock’ that specifies a clock source or clock sink.

• Reset: Contains a single signal of role ‘reset’ that specifies a reset source or reset sink.

• Conduit: Contains one or more arbitrary-width signals that GENIE will realize as wires and

otherwise leave untouched for interconnect synthesis. Each signal can have a role of ‘in’, ‘out’, or

‘inout’ that are only used to specify an absolute direction for the signal, and say nothing of its

purpose. Multiple signals of the same role must be distinguished by an additional user-assigned

“tag” parameter which is an arbitrary, but unique, text string. GENIE will connect signals with

matching tags when connecting conduit interfaces.

• Routed Streaming: This is the main interface type that GENIE uses to specify module-to-

module communications, using the Routed Streaming protocol which is described in the next

section. RS interfaces have an associated clock interface, which implicitly specifies a clock domain.

Additional metadata can be defined for some interface types. One example already mentioned is that

of RS interfaces having a reference to an associated Clock interface. Additional interface properties will

be discussed in detail when describing relevant parts of the interconnect synthesis flow.

3.2.3 Routed Streaming Protocol and Interfaces

One of the design goals of GENIE was to allow a wider range of communication types than existing system

integration tools. Existing popular interface protocols such as AXI [9] and Avalon [34] offer a designer

two choices (via two flavors of each protocol): express desired communication as memory-mapped reads

and writes and receive a high amount of automated interconnect synthesis, or express communication

as low-level point-to-point streaming links and receive no such benefits. GENIE’s Routed Streaming

protocol seeks to bridge that gap. It allows the user to specify unidirectional communication of zero or

more named streams of data of arbitrary bit width, with optional flow control, addressing, and variable

packet length. The presence or absence of the signal roles within an RS interface, associated with each

of those functions, dictates the needs of the communication link, and is used by GENIE to generate

interconnect that is only as complex as necessary. The protocol is header-less, using separate signals

rather than including control information in-line with the data, which takes advantage of the abundance

of wiring on FPGAs. A packet/transmission is at least one flit long (one clock cycle in the transmitting

clock domain), and its length is dynamically variable via an optional “end of packet” control signal. The

following signal roles are available for RS interfaces:

• Data: The data being transmitted, of arbitrary bit width. Multiple data signals are allowed within

an RS interface, distinguished using a unique user-specified tag, similar to Conduit interfaces. Data

signals from a remote interface, sharing the same tag, will be connected by GENIE. Conversely, it

is possible to have zero data signals in an interface, for interrupt signal-like communication using

the other flow control signals alone.

• Valid: Flow control signal, of width 1, specifying valid data this cycle. It is optional, and its

absence is assumed to mean that valid data is being transmitted every cycle.
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• Ready: Flow control signal, of width 1, that is an input to transmitting interfaces and an output

in receiving interfaces. Indicates that data is ready to be transmitted this cycle. If absent on a

receiving interface, it is assumed the interface is always ready to receive valid data and will not

stall incoming transmissions.

• Address: Used by transmitting interfaces to select one or more destinations for a transmission,

and by receiving interfaces to determine the source of incoming transmissions. Either use case is

optional. Addresses are integer IDs that are associated with a logical link that connects two RS

interfaces, rather than with an interface itself. By emitting an address, a source interface selects

one or more links that share that address, and thus implicitly select one or more remote sink

interfaces to send data to. Similarly, a sink interface receives an address, identifying an RS links,

and thus implicitly the source of the transmission.

• EOP: End-of-Packet signal that is asserted on the last cycle of a transmitted packet. It is optional,

and if absent, specifies that each packet is of length 1. It is similar to the EOP signal in the Avalon-

MM and Avalon-ST protocols.

RS interfaces are a superset of traditional streaming interfaces used by Avalon and AXI. To implement

the use case of memory-mapped communication, a pair of RS interfaces can be used at each end – one for

sending read requests and write requests+data, and one for receiving read reply data. GENIE’s address

scheme cannot be used directly as a memory address, and an extra automation/convenience layer to

make this possible can be considered as future work.

3.2.4 System Definitions

A system is a canvas on which functional modules are instantiated and logical links are specified. One

or more system definitions serve as the input to GENIE, and the fully-realized HDL implementations of

each system are emitted as the output. Each system has a unique name that also serves as the name

of the HDL module GENIE will generate for the system. Within a system definition, each functional

module instance is also given a unique name. The interfaces of the instantiated modules can then be

referred to hierarchically by specifying the name of the instance and the name of the enclosed interface.

This is used when specifying the endpoints of logical links.

In addition to connecting the interfaces of functional modules to each other, it is necessary to give the

system connectivity to the outside world. To facilitate this, the user is able to add interface definitions

to the system itself, as if it were a functional module. The HDL signal names specified in these interface

definitions name future Verilog signals that will be created as top-level inputs and outputs when the

HDL module for the system is generated by GENIE. Within the system, logical links may now also be

defined between these top-level interfaces and the interfaces of modules instantiated within the system.

Because GENIE treats a system definition identically to a functional module definition, hierarchical

design is possible – systems may be instantiated within other systems.

3.2.5 Logical Links

Logical links connect a source interface to a sink interface of the same type, and they are part of a

system’s definition. For the three utility-class interface types (clock, reset, and conduit), a logical link

simply creates (one or more) HDL nets in the correct direction. Between RS interfaces, a logical link
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specifies the existence of a transmission from the source to the sink at some unspecified time during the

application’s lifecycle.

X
addr

Y
addrAX AY

Selected Link
src addr = AX

sink addr = AY

Other Links
src addr = not AX

Other Links
sink addr = not AY

Figure 3.2: Selection of RS links by RS interfaces

Links between RS interfaces have optional source address and sink address properties that form the

basis for GENIE’s addressing scheme. Figure 3.2 illustrates an example, in which a source RS interface

X and a sink RS interface Y exist, and have many outgoing and incoming links defined. In particular,

there exists a link between X and Y , which the user annotated with a source address of AX and a

sink address of AY . GENIE interprets this specification to mean: when the address signal belonging to

interface X drives the value AX , the link between X and Y is selected and a transmission between X and

Y occurs. When this transmission occurs, if sink interface Y has an address signal (which is optional,

and would be an input) then the interconnect will drive it with the value AY . Because addresses are

annotated on links rather than directly on sources or sinks, this allows a particular sink interface to be

known by many different source addresses, each potentially different for every connected source interface

(and vice-versa). With this addressing system, source interfaces are able to select a destination, or

multiple simultaneous destinations, for a transmission by driving an address value that matches the

source address parameter annotated on the links that terminate at the desired destination(s). Similarly,

it allows a sink to be informed about which source is sending an incoming transmission, corresponding

to a link’s sink address parameter. To our knowledge, this is a new functionality not present in existing

on-chip communication protocols.

A trivial use case for this information would be for a module to discern the source of a request and

direct the reply back to the requester. However, this behavior is no different than memory mapped

read semantics, where it is expected that a read request from a master will generate a response back

to the source of the request. A more interesting use case would be for the receiving module to perform

completely different behavior depending on the source, for example, to prioritize requests from certain

sources by directing them to a different internal queue, or to bypass a cache for a transmission from one

source but not from another. Again, since addresses are properties of links, different addresses need not

even correspond to different physical sources/destinations – it is entirely possible to have one source,

one sink, and many logical links between them, differing only in source and/or sink addresses. These

logical links may or may not end up sharing the same physical interconnect. The address information in

this case effectively acts as an extra data field at the receiver, which could be used to express priority or

mode of a request. In another configuration, there can be one source, multiple sinks, and links from the

source to the sink having non-unique source addresses. This enables multicast transmission, as when an

address is emitted, all matching links are used.

Our addressing scheme is also unique in that it is entirely optional. In the absence of any source

addresses annotated on a source interface’s outgoing links, broadcast occurs. If the source interface lacks

an “address” signal role, then all outgoing links are assumed to be selected when a transmission occurs.
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This functionality can recreate simple point-to-point communications which does not require addresses

at all, and replicating the semantics of a low-level HDL net, adding to the generality of GENIE’s input

abstraction.

Other per-link properties exist to inform GENIE of the nature of the application transmissions carried

across the links. RS links can have optional packet size and importance properties that describe the size

and desired bandwidth of transmissions. Similar to traditional timing constraints, GENIE can use these

specifications to optimize the generated interconnect in an application-specific manner. These will be

elaborated in detail when explaining the relevant parts of the GENIE flow.

3.2.6 Lua Specification Example

In this section we provide a small design example that demonstrates GENIE’s Lua-based specification

front-end, incorporating the elements described above. The system being created is called “TestSys”

and is shown in Figure 3.3. It contains four functional modules. A dispatch unit generates a stream of

16-bit numbers and alternatively send them to either one of two consumers: an inverter module that

complements each 16-bit value, and a reverser module that bit-reverses each received value. These are

serialized into a single stream of values that are received by a final “xorer” module that keeps a running

XOR of all values received, which is the final output of the system. Each module (including the system

itself) has clock, reset, and RS interfaces which are shown and named in the figure.
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Figure 3.3: Example GENIE System

We will now walk through the Lua code that, when provided to the GENIE tool, will generate this system.

First, GENIE’s ‘builder’ package is imported, and a Builder object is created and arbitrarily named

‘‘b’’. This provides the user an object-oriented interface to write the remainder of the specification,

using Lua’s : operator to perform method calls on b to define modules, systems, links, and so forth.

1 −− Create a GENIE bu i l d e r ob j e c t

2 require ’ bu i l d e r ’

3 local b = gen i e .Bu i l d e r . n ew ( )

This object is a stateful wrapper around a more advanced underlying GENIE API that would normally

require a more explicit style of coding. For example, to define a new RS interface, one would have to

specify the name of a previously-defined module for which the new interface would belong to. In contrast,

by using the Builder wrapper, the target module is implicitly assumed to be the last module that was
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defined. By using a Builder object, the imperative set of method calls used to define the hierarchical

structure of GENIE objects instead resembles a declarative (for example, XML-based) representation,

reducing redundancy and simplifying the syntax for the user.

Next, we define the functional modules and their interfaces, which will later be instantiated within

a system. The first module is the dispatcher. The component method begins a module definition given

its name. By default, this will also be the name of the associated Verilog module. Each of its three

interfaces is created and named. The clock and reset interfaces, named ‘clk’ and ‘rst’, are by default

associated with Verilog ports on the module of the same names. The RS interface, named ‘out’ (which

is associated with the clock interface upon definition) contains many signals of varying roles, which are

added on lines 8–11.

4 b : component ( ’ d i spatch ’ )

5 b : c l o c k s i n k ( ’ c l k ’ )

6 b : r e s e t s i n k ( ’ r s t ’ )

7 b : r s s r c ( ’ out ’ , ’ c l k ’ )

8 b : s i g n a l ( ’ v a l i d ’ , ’ o v a l i d ’ )

9 b : s i g n a l ( ’ ready ’ , ’ i r e ady ’ )

10 b : s i g n a l ( ’ data ’ , ’ o data ’ , ’WIDTH’ )

11 b : s i g n a l ( ’ address ’ , ’ o addr ’ , 1)

Note that the indentation is purely cosmetic and is meant to signify hierarchy. As previously mentioned,

during each method call to the Builder object, the target of the operation is implicitly known to be the

last applicable parent object – each signal is implicitly attached to the last-created interface, which in

this case is the RS source called “out”. The presence of valid and ready signals (which are optional)

indicates full support of flow control and backpressure by this interface. The data signal contains the

payload, and the address signal allows the interface to select one of two destinations. The first argument

to each signal method is the type/role of signal, the second is the name of the Verilog signal, and the

third is the size in bits for signal roles that support configurable bit widths. The data signal on line 10

has parameterizable width, and will be set to 16 upon instantiation later. The address signal has width

1 since it needs to select two destinations only.

Lines 12–45 define the other three functional modules and their interfaces.

12 b : component ( ’ i n v e r t e r ’ )

13 b : c l o c k s i n k ( ’ c l k ’ )

14 b : r e s e t s i n k ( ’ r e s e t ’ )

15 b : r s s i n k ( ’ in ’ , ’ c l k ’ )

16 b : s i g n a l ( ’ v a l i d ’ , ’ i v a l i d ’ )

17 b : s i g n a l ( ’ ready ’ , ’ o ready ’ )

18 b : s i g n a l ( ’ data ’ , ’ i d a t a ’ , ’WIDTH’ )

19 b : r s s r c ( ’ out ’ , ’ c l k ’ )

20 b : s i g n a l ( ’ v a l i d ’ , ’ o v a l i d ’ )

21 b : s i g n a l ( ’ ready ’ , ’ i r e ady ’ )

22 b : s i g n a l ( ’ data ’ , ’ o data ’ , ’WIDTH’ )

23

24 b : component ( ’ xorer ’ )

25 b : c l o c k s i n k ( ’ c l k ’ )

26 b : r e s e t s i n k ( ’ r e s e t ’ )

27 b : r s s i n k ( ’ in ’ , ’ c l k ’ )

28 b : s i g n a l ( ’ v a l i d ’ , ’ i v a l i d ’ )

29 b : s i g n a l ( ’ ready ’ , ’ o ready ’ )

30 b : s i g n a l ( ’ data ’ , ’ i d a t a ’ , ’WIDTH’ )
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31 b : s i g n a l ( ’ address ’ , ’ i l p ’ , 1)

32 b : r s s r c ( ’ out ’ , ’ c l k ’ )

33 b : s i g n a l ( ’ v a l i d ’ , ’ o v a l i d ’ )

34 b : s i g n a l ( ’ ready ’ , ’ i r e ady ’ )

35 b : s i g n a l ( ’ data ’ , ’ o data ’ , ’WIDTH’ )

36

37 b : component ( ’ r e v e r s e r ’ )

38 b : c l o c k s i n k ( ’ c l k ’ )

39 b : r e s e t s i n k ( ’ r e s e t ’ )

40 b : r s s i n k ( ’ in ’ , ’ c l k ’ )

41 b : s i g n a l ( ’ v a l i d ’ , ’ i v a l i d ’ )

42 b : s i g n a l ( ’ ready ’ , ’ o ready ’ )

43 b : s i g n a l ( ’ data ’ , ’ i d a t a ’ , ’WIDTH’ )

44 b : r s s r c ( ’ out ’ , ’ c l k ’ )

45 b : s i g n a l ( ’ v a l i d ’ , ’ o v a l i d ’ )

46 b : s i g n a l ( ’ ready ’ , ’ i r e ady ’ )

47 b : s i g n a l ( ’ data ’ , ’ o data ’ , ’WIDTH’ )

Next, the system itself is defined. Its clock and reset interfaces are created the same as with functional

modules, on lines 49 and 50. Lines 51–58 instantiate the functional modules and provide names to the

instances. This is where the WIDTH parameter is given a concrete value of 16 bits for each instance.

48 b : system ( ’ TestSys ’ )

49 b : c l o c k s i n k ( ’ SysClk ’ )

50 b : r e s e t s i n k ( ’ GlobReset ’ )

51 b : i n s t anc e ( ’ d i spatch ’ , ’ t h e d i spa t ch ’ )

52 b : int param ( ’WIDTH’ , ’ 16 ’ )

53 b : i n s t anc e ( ’ i n v e r t e r ’ , ’ t h e i n v e r t e r ’ )

54 b : int param ( ’WIDTH’ , ’ 16 ’ )

55 b : i n s t anc e ( ’ r e v e r s e r ’ , ’ t h e r e v e r s e r ’ )

56 b : int param ( ’WIDTH’ , ’ 16 ’ )

57 b : i n s t anc e ( ’ xorer ’ , ’ xorro ’ )

58 b : int param ( ’WIDTH’ , ’ 16 ’ )

The clock and reset connections are defined next. Top-level clock and reset interfaces, named SysClk and

GlobReset, are connected to each of the 4 modules’ clock and reset inputs. To automate this process,

a loop is used. Interfaces are identified with hierarchical dot notation, and are built programmatically

using the Lua string concatenation operator (..). For example, the first invocation of line 61 will define

a clock link from ‘SysClk’ to ‘the dispatch.clk’.

59 for dest in Set .mkvalues { ’ t h e d i spa t ch ’ , ’ t h e i n v e r t e r ’ ,

60 ’ t h e r e v e r s e r ’ , ’ xorro ’ } do

61 b : c l o c k l i n k ( ’ SysClk ’ , des t . . ’ . ’ . . ’ c l k ’ )

62 b : r e s e t l i n k ( ’ GlobReset ’ , des t . . ’ . ’ . . ’ r e s e t ’ )

63 end

Set.mkvalues() is part of a utility package included with GENIE, not part of the base Lua language

or libraries, that assists in manipulating sets of objects.

The RS link definitions follow, using the rs link method. This takes two additional optional argu-

ments in addition to the source and sink interface path: the source address and the sink address. This

binds the logical RS link to the values emitted or consumed by the interfaces’ address signals. For

example, line 65 specifies that the logical link from the dispatcher’s ‘out’ interface to the reverser’s ‘in’
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interface has a source address of ‘1’, meaning that this transmission will occur when the dispatcher emits

the value ‘1’ out of its address signal.

The fourth argument, used on lines 66 and 67, is a sink address. This associates the logical link with

an address seen at the sink. When the xorro module receives a transmission from the inverter module,

the xorro module’s address signal will see a value of ‘0’. A Lua nil for the 3rd argument leaves the

source address of each link unspecified, since the inverter and reverser can only send to one destination

anyway. In general, the source address and sink address associated with each RS link can differ.

64 b : r s l i n k ( ’ t h e d i s pa t ch . ou t ’ , ’ t h e i n v e r t e r . i n ’ , 0)

65 b : r s l i n k ( ’ t h e d i s pa t ch . ou t ’ , ’ t h e r e v e r s e r . i n ’ , 1)

66 b : r s l i n k ( ’ t h e i n v e r t e r . o u t ’ , ’ x o r r o . i n ’ , nil , 0)

67 b : r s l i n k ( ’ t h e r e v e r s e r . o u t ’ , ’ x o r r o . i n ’ , nil , 1)

68 b : export ( ’ xo r r o . ou t ’ , ’ Result ’ )

Finally, line 68 introduces a convenient method of both creating a top-level system interface and con-

necting it to something. The export method creates a top-level interface called Result of the same type,

and compatible direction, as the existing xorro module’s ‘out’ interface – which is a Routed Streaming

source. This short-hand both creates the Result interface, the appropriate signal definitions (which

match those of the exported interface), and creates an RS link. Additional examples of GENIE Lua

specification code are available in Appendix A.

3.3 Interconnect Building Blocks

This section describes the nature of the physical interconnect that GENIE creates to implement the

user’s input specification. It is a preview of Chapter 4 which will explore the circuit design in more

detail. Here, we wish to only introduce the building blocks themselves, of which there are six, and the

motivation for which was previously laid down in Section 3.1.

3.3.1 Routing Primitives

The task of routing data within a network is a combined effort of distribution and arbitration between

an array of sources and an array of sinks. We refer to the modules that perform these tasks, jointly, as

routing primitives. In GENIE, distribution and arbitration are performed by split and merge nodes,

respectively. Unlike the UPenn/Caltech split and merge nodes, ours are purely combinational and contain

no pipelining or buffering in their data paths. We keep the advantages offered by having separate split

and merge nodes: they can be arranged in arbitrary patterns to implement different network topologies.

Split nodes have a single input and a parameterizable number of outputs. The data payload between

the input and outputs is passed through unmodified, and the only logic within a split node is related

to flow control: given a one-hot bit vector of size N, a 1-to-N split node will present the data as valid

to a specific subset of its output ports. This allows the network to be generalized to support multicast

transmissions.

Merge nodes have a parameterizable number of input ports, and one output. The data path is simply

a multiplexer. It is controlled by a round-robin arbiter that is capable of selecting a different input every

cycle. A stripped-down variant of the merge node exists that eliminates the complex arbiter given the

knowledge that none of the expected transmissions through the merge node will temporally overlap.

This will be described in more detail in Chapter 4.
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3.3.2 Elastic Buffer

The elastic buffer primitive is a FIFO with a depth of two words and a latency of one cycle, built out

of two registers and a multiplexer. A detailed block diagram is available in the next chapter, presented

as Figure 4.5. Depending on the required usage context, it can provide storage, delay matching, and/or

pipelining. When no backpressure is present on its connected links, most of the elastic buffer is optimized

away by the FPGA toolchain leaving just a register. When backpressure is present, it acts like a FIFO,

but from a timing perspective, its latency of one cycle makes it appear equivalent to a single register.

Throughout this document, we use the terms “elastic buffer” and “register” interchangeably in the

context of interconnect that GENIE generates, since this single primitive can act as both.

3.3.3 Delay Buffer

A delay buffer primitive is an inelastic buffer that delays data for a fixed number of clock cycles.

Its behavior is equivalent to a chain of cascaded registers, but it is designed to instead use the FPGA’s

distributed RAM when the width and depth are large enough to yield a higher density than the equivalent

chained register implementation. Delay buffer primitives are only used for delay matching purposes in

applications that use fixed-delay pipelined functional blocks.

3.3.4 Clock Domain Converter

The GENIE clock domain converter joins two parts of the network that are synchronized to different

clock domains. It is implemented using a FIFO backed by FPGA distributed memory, so it performs

storage/buffering as a side effect.

3.3.5 Converter

A GENIE converter module is the sixth and final primitive. It is a parameterizable lookup table,

which is a generalization of the underlying FPGA’s fixed-size lookup tables. It is used for translating

between the address signals emitted and consumed by the user’s functional modules, and address spaces

internal/private to the interconnect that are automatically generated by the GENIE flow. As an example,

split nodes expect a one-hot bit vector specifying the intended destination, while a user module uses

a sequential fully-encoded integer address. One or more converter modules will be inserted into the

interconnect to match these representations.

3.3.6 Inter-Primitive Links

User functional modules, and GENIE-inserted interconnect modules, are woven together using standard

FPGA wiring. To aim for generality, GENIE does not prescribe a specific interconnect data width, nor

a specific multiplicative width alignment (eg. multiples of bytes or powers of two). Separate wires are

used to carry data payload and interconnect control signals, in parallel. Previous work, such as the

CMU Split/Merge network [32] used a similar approach, as opposed to multiplexing control information

with data using packet headers. This design choice of having separate wires for control signals offers the

simplest hardware implementation, avoiding the need for serialization/deserialization logic that would

also increase the lowest available latency by two cycles. If we wish for our interconnect synthesis tool

to encroach on design scenarios that were previously only available with hand-coded RTL, we must
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support a zero-latency combinational paradigm that matches the semantics of a bus of raw RTL nets.

There certainly are advantages to packetizing the total data over multiple clock cycles using a narrower

link width in scenarios where the extra complexity and latency are tolerable. This is the domain of

traditional NoC architectures, and we leave GENIE’s support of such types of links to future work.

3.4 The GENIE Flow

This section provides a high-level overview of the entire GENIE flow – the operations that take the user’s

specifications at one end and produce SystemVerilog output at the other. Individual parts of the flow

will be elaborated on in detail in later chapters, together with results that illustrate the efficacy of the

various contributions made in this work.

The bulk of the GENIE flow operates on the Routed Streaming (RS) logical links present in the user’s

input specification. Clock, reset, and conduit links are straightforwardly realized as Verilog nets at the

end of the flow – their logical and physical representations are essentially equivalent. The realization of RS

links, however, involves the potential insertion of interconnect primitives to realize routing, conversion,

and synchronization tasks that are specified or implied by the the logical connectivity of the RS links,

their RS interface endpoints, and user-provided communication metadata.

Systems are the objects of largest operational granularity in the GENIE flow – each system is pro-

cessed independently, and in an order that respects the user’s design hierarchy. Within each system, the

network formed by RS interfaces and RS logical links is first partitioned into domains. A domain is a

connected component of the RS network, which itself can be visualized as a directed bipartite graph with

RS source interfaces on one side and RS sink interfaces on the other. Figure 3.4 illustrates an example

system with three domains. The squares represent RS source or sink interfaces, which although not

shown, are either embedded within functional module instances or are top-level interfaces of the system

itself.

System

RS Link

RS Interface

Domain

Figure 3.4: A GENIE system whose RS logical links comprise three domains

Domains are automatically extracted by GENIE from the input specification, and are processed

independently. There exist two types of domains, which affects the complexity of the downstream

processing:

• Auto Topology: GENIE will automatically generate and optimize a physical network topology for

the logical links in the domain, which determines the arrangement and connectivity of interconnect

routing primitives. This is the default.
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• Manual Topology: Here, the user explicitly instantiates and connects routing primitives as part

of the input specification. GENIE will use the specified topology instead of creating its own. A

domain is automatically marked as ‘manual’ if any of its RS interfaces are explicitly connected by

the user in this manner.

Domains, by construction, are disconnected from each other at the level of logical links. Generally,

this remains true in terms of physical interconnect as well. As will be elaborated on in Chapter 9, the

physical topologies generated for auto topology domains remain on separate networks, allowing each to

be processed and optimized independently, reducing the size of each problem. However, for manually-

specified domains, there is no restriction preventing the user from creating a physical topology that

spans multiple logical domains, allowing their logical links to share physical interconnect resources.
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Figure 3.5: GENIE Outer Flow

Figure 3.5 provides an overview of the per-system flow, referred to as the “Outer Flow”, that begins at

the input specification and ends at generated SystemVerilog. The processing paths for the two different

kinds of domains (auto and manual topology) are shown. The automatic topology flow is an iterative

optimization loop that will be described in detail in Chapter 9 and its goal is to minimize area while

respecting user performance constraints. Common to both domain types is the “Inner Flow” which,

given a network topology, builds a detailed representation of a domain’s interconnect and itself contains

several different optimization problems that we address in this work. The Outer Flow concludes by

merging all separately-processed domains and writing the SystemVerilog representation of the entire

system (functional modules and interconnect) to a file. By this point, the external interfaces of the

generated system have been finalized, and the Outer Flow can repeat for other systems that hierarchically

instantiate the original system as a functional module.

The GENIE Inner Flow, shown in Figure 3.6 takes as input a partially-realized domain that has a

defined topology, meaning the input already contains a specific arrangement and instantiation of split

and merge nodes. The function of the Inner Flow is to insert all the other necessary interconnect

primitives to create a functioning fragment of the network. We now give an overview of the different

tasks performed by the Inner Flow.

3.4.1 Low-level Topology Refinement

This is a post-processing step performed on the topology given as input to the Inner Flow, and occurs for

both manually-specified and automatically-generated topology domains. Here, merge nodes with a large

number of inputs are restructured into equivalent trees of smaller-input merge nodes. The maximum
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Figure 3.6: GENIE Inner Flow

number of inputs of a merge node in the restructured tree is dependent on the FPGA technology. For

example, on 6-input LUT architectures [6, 70], merge nodes of four inputs or less can be implemented

using a single level of LUTs in the datapath (which is a multiplexer). Both the original large merge node,

and the restructured tree, are still combinational at this point in the flow. The key goal of restructuring

is to provide more possible locations into which registers can be inserted later in the flow, versus a single

large merge node.

3.4.2 Routing

After a domain’s topology is finalized for the present invocation of the Inner Flow, the next step is

to route each logical link as a transmission through the interconnect that has been generated so far –

which consists of just split nodes, merge nodes, and placeholder physical links between them. Presently,

GENIE statically routes transmissions using Dijkstra’s shortest path algorithm on a graph with the RS

interfaces of user modules, split nodes, and merges nodes being the vertices and the placeholder links

being edges, all of equal cost/distance.

Future extensions to GENIE could add an API to specify manual routing to complement the existing

ability to manually specifying the topology. Enhancements to the automatic routing could also be

made, such that transmissions are routed based on the existing occupancy of physical links by other

transmissions and thus avoiding areas of known traffic congestion.

3.4.3 Addressing

After a domain’s logical RS links have been statically routed through its network of split and merge

nodes, those routing decisions are realized in an Addressing phase. Here, an internally-visible address is

assigned to each logical link and “converter” primitives are inserted into the interconnect to and from

this representation.

Addressing and routing are related due to the role of split nodes in GENIE. Split nodes are the only

locations where a transmission can enter and then leave out of multiple possible output ports, hence
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steering the transmission in the correct predetermined direction, or directions. This is decided based

on a bit vector, called a split mask that is an input signal into the split node and is supplied with the

incoming transmission. Each bit in a split mask corresponds to one output of the split node, indicating

that the input should be replicated to that output. This in theory allows GENIE (albeit in future

versions) to support any style user-visible address representation – memory-mapped, X/Y mesh, and so

forth, as long as that representation is convertible into a split mask for each split node.

Implementation of a larger range of addressing protocols on top of the split mask interface is left as

future work. In the current version of GENIE, the user-facing RS protocol implements only one of many

possible addressing schemes as an initial proof-of-concept of this overall design philosophy. As previously

described in Section 3.2.5, each RS link has up to two possible addresses associated with it: a source

address and a sink address. The address signal at an RS source or sink interface is matched up with a

logical link in order to implicitly select a destination, or identify a source. Effectively, from the point of

view of an individual RS sink (source), all remote sources (sinks) have a well-defined address. However,

from the point of view of the domain as a whole, conflicts could arise between the local points of view of

individual sources or sinks. For example, the address “2” could be used by source X to identify sink Y ,

but source W could use “2” to identify sink Z. The interconnect would have no hope of routing traffic

unambiguously to either sink.

To resolve these possible ambiguities, the Addressing stage of the Inner Flow needs to generate an

internal domain address mapping for the domain. An address mapping here is defined as an association

between an address and one or more logical links. This results in a total of three different types of

address mappings within a domain:

• User mappings: The mappings local to each RS source or sink interface. They need not globally

agree with each other. This mapping is entirely determined by the user.

• Split masks: The bit vectors entering each split node can also be considered address mappings,

as they associate a numeric value with one (or a group) of transmissions that share a particular

output port on the split node. These mappings are local to each split node, and depend on the

domain’s topology and routing.

• Domain mapping: An intermediate address mapping that is designed such that it is unambigu-

ously convertible between all present user mappings and all split masks. There is one per domain,

and it is generated by the Addressing stage of the Inner Flow.

Each address mapping is encoded by an address signal of the appropriate width, and more than one

such mapping/signal can be present at any point within the interconnect. After determining the domain

mappings, GENIE inserts converter primitives at boundaries between different mappings.

Figure 3.7 shows an example domain with four RS interfaces (sources A/B and sinks C/D) connected

with a shared bus topology consisting of one merge node and one split node. There are six total address

mappings, each represented by a different colour. This is the most general case – if sinks C and D did

not care about the sources of their transmissions (as would be decided by the user), they would not have

or need user address mappings, bringing the total down to four. Converter primitives are inserted near

each RS source or sink to convert each user address mapping to/from the domain mapping (in purple).

There is a fifth converter inserted immediately before the split node which generates a split mask (green)

from the domain mapping. While the split mask is consumed at the split node, the domain mapping

must continue to pass through the split node in order to reach the converters located before C and D.
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Figure 3.7: Address mappings and locations of converter primitives (rounded rectangles)

Figure 3.8: Example address encodings for each logical link

Figure 3.8 provides example encodings for each address representation shown in Figure 3.7. The six

color-coded address representations appear as columns in the table. Here we assume four transmissions

(logical RS links): A to C, A to D, B to C, and a multicast transmission from B to CD. Each is initiated by

one of the sending interfaces (A or B) by asserting that interface’s encoding of the desired transmission,

which corresponds to the “source address” of the RS link during link definition. For example, if A wishes

to send to C, it asserts address “2”, and if B wishes to send to (only) C, it asserts address “16”. The sink

encodings of each transmission are observed at receiving interfaces C and D. The unicast transmission

from B will appear as address “9” at C, and the multicast transmission from B will appear as “10” at

C and “6” at D.

The user-defined encodings are fixed and are part of the input specification. GENIE must determine

an appropriate internal address representation (in general, there could be many co-existing simultane-

ously in different parts of the system, although we currently do not explore this possibility). At each

split node, the correct split mask must be generated to allow transmissions to be routed correctly. Since

the shown split node has two outputs, each corresponds to one bit of the mask.

Many opportunities exist for implementing optimizations for reducing the required number of con-

verter primitives. For example, if sinks C and D did not require receiving sink addresses, the internal

domain mapping could simply be merged with the split mask. Of course, this may not be possible

if there existed more than one split node, which fed off the same address representation. Rotation of

split node outputs could be used to coerce favourable splitmask encodings. If A and B’s user mappings

happened to agree on their labellings for transmissions to C and D, the two converters adjacent to A

and B could be replaced with a single converter after the merge node. Furthermore, if the user decided
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to implement one-hot source address encodings directly, neither the split mask nor the internal domain

mapping would be required. Clearly, there is a rich optimization problem here, and we leave exploration

of this space to future work. For our initial solution to this problem, we create a domain mapping with

unique integer IDs for each transmission, and a splitmask conversion occurs preceding each split node.

Some optimization may occur during combinational logic synthesis in the downstream FPGA toolchain.

3.4.4 Protocol Carriage and Width Determination

GENIE views the connections that it creates between interconnect primitives as “physical links”, in

contrast to the logical RS links that the user specifies as input. A single physical link is really an

abstraction for a bundle of separate control and/or data signals. Different physical links will carry

a different subset of possible signal types. Each signal is ultimately produced and consumed by an

interconnect primitive or user functional module. In order for a signal to be delivered to its point

of consumption, it must be carried by all upstream physical links. This requires that the physical

links be sized appropriately, and that intervening interconnect primitives be parameterized correctly to

accommodate the cumulative width of all signals passing through them.

The Protocol Carriage step of the Inner Flow determines which physical links must carry which

signals, based on the locations of producers and consumers of each signal type in the interconnect. In

Figure 3.6, it appears several times as “Protocol Update”, since incremental updates may be necessary

after any other flow step that inserts or modifies interconnect primitives.

For the links and primitives that simply pass a signal through without producing or consuming it,

a consistent packing of signals into a single bit vector is performed. This is not trivial – a single set of

wires can be used to carry different signal types at different times, as a result of upstream multiplexing

performed by merge nodes. After this stage is performed, an important result is that each physical link

now has an exact known size in bits. This allows algorithms present in the proceeding stages of the

Inner Flow to make optimization decisions based on link width.

3.4.5 Clock Domain Crossing

GENIE supports designs that have multiple clock domains. During the Inner Flow, clock domain

converter primitives are inserted into the interconnect at boundaries between different user clock domains.

Establishing these boundaries is an optimization problem in which the goal is to minimize the total area

cost of clock domain crossing hardware. It arises from the fact that while the associated clock domains

of the user’s RS interfaces are fixed and known, the clock domains of the intervening interconnect

primitives are free variables. Each possible assignment of clock domains to interconnect primitives can

yield a different number of clock domain crossing points, with each such point potentially having a

different link width in bits and therefore a different cost.

This optimization problem has been studied in the context of application-specific NoCs [44], and is

an instance of a multiterminal cut problem on a directed graph, which is NP-hard in the general case

[25]. GENIE uses an approximate heuristic approach that assigns one clock domain at a time. Further

details on the algorithm will be presented in Section 6.2.3.
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3.4.6 Register Insertion

Up to this point in the GENIE Inner Flow, all interconnect primitives that have been inserted (except

for clock domain crossing units) are purely combinational in the parts of their data paths that forward

signals from an input to an output. The path from any user functional module’s source RS interface,

to a sink RS interface, incurs 0 cycles of latency. Following GENIE’s design philosophy of composition

of elemental interconnect functions, the addition of registers is accomplished separately and optionally.

Inserting registers (actually elastic buffer primitives, as discussed in our interchangeable use of the terms

in Section 3.3.2) serves two distinct purposes: synchronization, and interconnect pipelining.

Synchronization is related to the functional correctness of the user application, and has nothing to

do with performance. One of the design styles that GENIE aims to generalize and provide automation

capability to is the set of designs that eschew the use of backpressure-based flow control and instead

contain pipelined functional modules that have known and fixed processing latency from inputs to

outputs. In such designs, removal of flow control makes the functional modules (and the resulting

interconnect) cheaper in terms of area and complexity. The trade-off is that pipeline delays must

now be balanced across different functional modules, such that multiple branching paths through the

interconnect re-converge with identical total latencies. To support this, GENIE allows a designer to

annotate functional modules with known fixed latencies, specified from each RS sink interface (module

input) to RS source interface (module output). Another specification extension, a set of synchronization

constraints, allows the designer to specify the desired latency relationships between chains of RS logical

links that span multiple hops of intervening fixed-latency functional blocks. GENIE then inserts the

correct (and minimal total) number of registers into the interconnect to realize the constraints. This is

done by transforming the constraints and specifications into an integer linear program (ILP), much the

same as in an HLS scheduling problem [31, 15, 11].

The other purpose of inserting registers into the interconnect is to pipeline it and reduce the maximum

total combinational logic delay. To do this, GENIE creates a timing graph of the interconnect generated

thus far, before any register insertion. This graph contains delays measured in units of LUT delays,

specific to an FPGA device family. These are stored in a database containing characterized area and

timing information for each of GENIE’s interconnect primitive types. It is populated during an offline

characterization phase that synthesizes each primitive, in many parameterizations, through a full back-

end FPGA CAD flow. Based on the timing graph for the domain’s interconnect, an optimization problem

is formulated that aims to determine the locations where elastic buffers should be inserted such that

no buffer-to-buffer combinational delay exceeds a specified threshold. A trivial solution is to pipeline

every possible link, so the optimization goal is set to minimize the total number of elastic buffer stages,

weighted by each link’s total bit width.

Both of the register insertion sub-problems (pipelining and synchronization) generate ILP constraints

that are solved and optimized simultaneously. The result of the solution provides the numbers, and

locations, of the required elastic buffers. Details are found in Chapter 8.

3.5 Summary

This chapter provided a high-level overview of the GENIE tool, including a rationale for our overall

interconnect synthesis methodology, the design of the user input specification, and our choice of primitive

module building blocks. In the next chapter, we describe these building blocks in much more detail. A
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complete Lua design example was also given to demonstrate how the user interacts with the tool. The

brief tour of the inner and outer synthesis flows in Section 3.4 is a preview of upcoming chapters that

focus on specific interconnect transformations and optimizations.



Chapter 4

Interconnect Microarchitecture

This chapter elaborates on the quick overview of GENIE’s six types of interconnect primitives previously

described in Section 3.3. Here, we discuss the design of each primitive in detail at the RTL level. Each

has many possible parameterizations and optional capabilities, in order to provide the generality and

complexity needed in some user designs, and simplicity and low overhead for designs that do not. A

change of parameters affects a primitive’s area and timing, which must be modeled and predicted to

enable interconnect optimization. We begin with a discussion of this modeling infrastructure, as it is

common to all primitives.

4.1 Area and Timing Modeling

In order to make tradeoffs during various decisions, any optimization process needs a reasonably accurate

way to measure the impact of each decision. To enable this within GENIE, we store the resource utiliza-

tion and combinational logic depth of each primitive, under different parameterizations, in a database.

There are two types of parameters: those that directly correspond to Verilog module parameters in the

primitive’s source code (for example, a data bus width), and those that indicate the presence or absence

of certain input/output control signals. That is, when an input port is tied to a constant, or an output

port is left unconnected, this causes the FPGA synthesis tool to optimize away logic within the primitive,

yielding changes in area and timing that should be captured. One common example is the presence or

lack of a ‘ready’ signal used for backpressure, as not all user designs need this functionality.

For each primitive, a specific setting of parameters yields a data point in a multi-dimensional space.

This data point contains area and timing values that are originally obtained by synthesizing each prim-

itive for a specific FPGA architecture using the back-end CAD software and extracting from the com-

pilation report in an automated manner. To avoid sampling the entire parameter space, which would

be costly in terms of time and storage, the LUT-based implementation of each primitive is studied to

identify opportunities for parameter decoupling and using interpolation or extrapolation. These will be

explored in the sections pertaining to each primitive.

4.1.1 Area

Area values are used primarily by the topology optimization loop in GENIE’s Outer Flow. The area

of an entire domain (after passing through the Inner Flow) is estimated and compared to that of other

34
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topology choices. The area information at each data point in a primitive’s multi-dimensional parameter

space contains three values: the number of combinational LUTs, the number of registers, and the number

of embedded RAM cells (no GENIE primitives use block RAM resources).

The effect of some types of parameters on area usage is linear and predictable. For example, varying

the width of a data path usually incurs a replication of existing resources, with a fixed marginal per-bit

cost. Since we place few restrictions on the user’s data width, this is advantageous, as it would be

impractical to store each possible width parameterization for every primitive. Instead, we can maintain

database entries for widths of 1 and 2 bits (while keeping all other parameters constant), and extrapolate

the area usage to any desired bit width beyond 2 bits.

4.1.2 Timing

Timing values are used for automatic interconnect pipelining in GENIE’s Inner Flow, as briefly described

in Section 3.4.6. There, registers are inserted between modules to limit the longest chain of combinational

LUT stages seen in the overall system. The timing information at each data point in a primitive’s multi-

dimensional parameter space is a table of variable size in which each row stores one point-to-point delay.

A row contains three entries: source name, destination name, and the logic depth in number of FPGA

LUTs from that source to that destination. The source and destination are names of input and output

ports (respectively) of the primitive module. Either one (but not both) can also be a special name

called “INT” which refers to an internal unspecified register within the primitive. This allows the timing

modeling to capture three types of delays: a specific input port to a specific output port, a specific input

port to any internal register, any internal register to a specific output port.

The combinational delays are stored as a number of LUT stages as these vary less across FPGA

compile runs than absolute nanosecond values and are independent of device speed grade. It would be

a straightforward modification to store absolute delays instead, as the algorithm that consumes these

timing values (covered in Section 8.2), just sees them as integer cost values.

4.2 Merge Node

...

arbiter
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Figure 4.1: Full-featured merge node design

A merge node forwards one of its N inputs to its output, stalling the rest. Each input is a bundle

that contains these types of signals:

• Data, of W bits wide
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• Valid

• End-of-Packet (EOP)

• Ready (travels in reverse direction)

When multiple inputs are valid, the merge node will select the current input to be serviced based on

a round-robin arbitration policy. Once an input is selected, it remains selected until it raises its EOP

signal. As mentioned in Section 3.1.2, this is sufficient to ensure that multi-cycle transmissions arrive at

their final destinations without being interleaved with parts of other simultaneous transmissions bound

for the same destination, removing the need for user modules to maintain extra buffering and state.

Future work may loosen and generalize this policy to enable more aggressive traffic balancing within the

interconnect.

Figure 4.1 illustrates the merge node architecture when all signals are present. The data path that

implements the actual selection and forwarding of the input to the output is just an N -to-1 multiplexer,

which is the simplest possible FPGA-based implementation for this task. The duty of the merge node’s

control logic (the arbiter) is to provide the multiplexer select signal, which is coloured blue in the figure.

This is a function of which inputs are currently requesting access (the input valid signals), the arbiter’s

internal state, and the output-side EOP and ready signals. The incoming ready signal is back-propagated

only to the currently-selected input (zeroing the others), which has the effect of stalling the non-selected

inputs.

4.2.1 Arbiter

en
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ctrl
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ready out
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Figure 4.2: Round-robin arbiter design

The arbiter block within Figure 4.1 is shown in detail in Figure 4.2. It uses a priority encoder to

identify the first of the N inputs that is high, yielding an index log2(N) bits wide. To avoid a lower-

indexed input from monopolizing and starving the others, the priority encoder also takes the index of

the last-serviced input, which it uses as a starting point to begin scanning the valid signals. It does so

in a circular manner, wrapping around through index 0.

The last-serviced input, held in the register, is updated at the end of the initial clock cycle of every

transmission. On subsequent clock cycles, the registered value also serves as a means to lock the output

of the arbiter at the same fixed value until the transmission ends. A state machine controls this behaviour
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as well as the updating of the register. It monitors the merge node’s sink-side ready, valid, and EOP

signals, the congruence of which determines when data is actually sent and received, and additionally

when the end of the transmission is reached. Its two states represent being in the initial cycle of the

transmission, and the state of being in the subsequent cycles.

If a particular domain does not use end-of-packet signals or backpressure, GENIE will tie these signals

within the domain’s interconnect blocks (and specifically, its merge nodes) to constant values. This will

cause the FPGA synthesis flow to optimize out parts of both the merge node and the arbiter.

4.2.2 Parameters and Area Usage

Merge nodes have the following parameters:

• N: The number of inputs.

• W: The width of the data port.

• BP: Whether the ready signal is used or not.

• EOP: Whether the eop signal is used or not.

The area and timing database contains parameterizations of N from 2 up to a fixed number. Merge

nodes with more inputs than this hard maximum are restructured into trees during the Inner Flow.

When N becomes large enough to require implementing the priority encoder and multiplexers using

multiple levels of LUTs, the area consumption of the merge node becomes hard to predict, hence the

need to empirically record each parameterization of N . However, parameterizations of W only need

exist for values of 1 and 2, with extrapolation used to estimate other values. This is because W only

affects the mux for the data signal, with each extra data bit having the same marginal area cost.

For example area usage, a parameterization of N,W,BP,EOP = {4, 2, 1, 1} consumes 12 6-LUTs1

and 3 registers, with a marginal cost of 1 LUT per extra W . The largest combinational delay is 4 LUT

stages, from the valid input to internal registers.

4.2.3 Conflict-Free Merge Node

If the user can guarantee that certain transmissions will never overlap in time, and some subset of these

transmissions happen to be routed by GENIE through a merge node, then a large optimization can be

made to its design. Specifically, since only one input can be valid at a time, there is no need for an

arbiter – each valid signal can be ANDed with its corresponding data signal and the result ORed to

generate the output data. The resulting simplified merge node design is shown in Figure 4.3.

Note that the EOP signal is no longer consumed by the merge node, so it and other such signals

are combined into what is now called the ‘data’. Also, while the merge node itself no longer produces

stalling (via a lowered ready signal), it can still propagate downstream ready signals upstream. This

backpressure functionality costs no area, and combined with the irrelevance of the EOP signal leaves

only the N and W parameters for this version of the merge node. The area usage for N,W = {4, 2} is

reduced to seven 6-LUTs and no registers, with the maximum combinational delay reduced to two LUT

stages.

1Arria 10 device
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Figure 4.3: Conflict-free merge node design

4.3 Split Node
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Figure 4.4: Split node design with multicast

The split node has one input and N outputs, and its function is to replicate its input to one or more

of its outputs. The input contains data of W bits wide that is forwarded unmodified to each output.

All of the complexity of the split node is in gating and manipulating the valid and ready control signals

that belong to the input as well as each of the N outputs. An N -bit-wide split mask signal accompanies

the input, each bit of which selects an output to forward the input data to. The split node’s logic is

trivial if it is only required to support unicast operation, in which at most one output is enabled at a

time. The logic expressions for each downstream valid signal, and the upstream ready signal, become:

valid outi = valid in & maski

ready out = (ready in0 | !mask0) & (ready in1 | !mask1) & · · · & (ready inN−1 | !maskN−1)

However, this is not sufficient for multicast, since not all selected outputs may necessarily be ready to

accept the data simultaneously. Without modification, the result would be incorrect behavior in which

outputs that are ready will continue to receive duplicate copies of data until every output signals that

it is ready. One option is to withhold all the output valid signals until every selected output is ready.

However, this will result in deadlock with downstream merge nodes, which need incoming valid signals

to be present in order to generate upstream ready signals.

The solution used is shown in Figure 4.4. Here, a done register exists for every output port. It is set

to 1 if its associated output port has successfully received the data and other selected outputs have not

yet done so. It is used to gate each output’s valid signal to avoid the duplicate transmission of data on

subsequent cycles. It is also taken into account when generating the upstream ready signal – outputs

marked as ‘done’ do not contribute to the generation of backpressure. Thus, the output ready signal
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goes high only when every selected output has received the data, in either the current or a previous

clock cycle. When this occurs (signaled by valid in and ready out being high), all the done registers

belonging to each output are cleared in preparation for the next transmission. The described behaviour

is shown as synchronous clear and preset signals on each register in the figure for clarity, and in reality

is implemented using D and enable signals.

4.3.1 Parameters and Area Usage

Split nodes have the following parameters:

• N: The number of outputs.

• BP: Whether the ready signal is used or not.

• NO MULTICAST: Whether to disable support for multicast transmissions.

The width of the data port, W is also a parameter to the actual HDL module, but since output data is

just replicated from input data, it has no effect on the area or timing of the split node.

The Inner Flow and area/timing database support split nodes up to 32 outputs, after which they are

broken up into trees of smaller nodes. A full-featured 16-output split node with ofN,BP,NO MULTICAST

= {16, 1, 0} consumes 43 LUTs and 16 registers. Removing the ready signals (BP = 0) reduces the usage

to 23 LUTs and no registers. Further removing support for multicast yields 16 LUTs (one per output)

and no registers, and this is the same case as with multicast but no backpressure (removal of ready

signals optimizes away the same circuitry).

As future work, it may be possible to model the area and performance of the split node at an even

finer level of detail, taking into account downstream traffic conditions per-output. If it is known that

a particular output will never experience a stall, then its “ready in” signal will be tied high and not

contribute to the combinational logic driving the associated “done” register or the “ready out” signal.

4.4 Elastic Buffer

In literature [14], elastic buffers are FIFOs of arbitrary finite capacity used to implement elastic circuits,

where local decentralized flow control through Ready and Valid signals allows a series of functional

modules to synchronize the production and consumption of data, thus enabling a latency-insensitive

design style.

GENIE’s elastic buffer primitive is a FIFO of depth 2 implemented using registers. It can be used

to perform pipelining, delay matching, and buffering, depending on the usage context. The input side

and output side each have three signals: data of parameterizable width W , valid, and ready. Data and

valid travel forwards from input side to output side, and ready travels backwards. The ready signal is

optional and can be omitted, which reduces the entire elastic buffer primitive to two sets of registers:

one for the data (containing W registers) and one register for the valid signal.

Figure 4.5 shows the design of the fully-functional elastic buffer. There are two pairs of registers, each

holding a copy of the incoming valid and data signals: data0/valid0 and data1/valid1. In the normal

mode operation (when the incoming ready is 1) the incoming data and valid signals flow through just the

data0/valid0 registers and to the output, and the data1/valid1 contain a copy of the same valid/data
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Figure 4.5: Elastic buffer design.

but are unused. However, once the output side becomes stalled, data0/valid0 must hold their value,

while data1/valid1 continue to accept one more token. Figure 4.6 illustrates this behaviour.

Figure 4.6: Elastic buffer timing diagram for stall handling. Valid signals are high only when the
associated data signals are shown to have a value.

After the stall has cleared, data0/valid0 receive the held token from data1/valid1 before resuming

normal operation. The design accomplishes two things: it pipelines both the forward valid/data signals

as well as the backward-traveling ready signal, and does so without the loss of data during a stall. For

Intel/Altera architectures, the actual design of the elastic buffer avoids using combinational logic to

implement the 2-to-1 multiplexer in the figure. Instead, the extra SLOAD and SDATA register control

signals are used. This optimization, shown in Figure 4.7, is important when the link width W is large,

as each bit of data would normally consume combinational LUTs for the multiplexing.
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Figure 4.7: Using register control signals to implement a 2-to-1 multiplexer



Chapter 4. Interconnect Microarchitecture 41

4.4.1 Parameters and Area Usage

The elastic buffer’s only parameter is the data width W . The area/timing database only needs to

store entries for a baseline value of W since the resource usage for arbitrary values of W can be easily

extrapolated. When using the ready signal (in full elastic buffer mode), each additional data bit consumes

2 registers (one within data0 and one within data1). When not using the ready signal, only 1 extra

register is consumed per data bit, and in this mode, the entire elastic buffer consists only of the valid0

and data0 registers and no combinational logic. The delay through the elastic buffer is 1 clock cycle, and

it incurs no combinational delays beyond the OR gate, which is a single 2-input LUT unless optimized

away during logic synthesis by merging it with upstream/downstream logic.

4.5 Clock Crosser

A clock crosser primitive is a dual-clock FIFO. The flow control signals (valid/ready) at both the input

end and the output end are used to derive the ‘read’, ‘write’, ‘empty’, and ‘full’ FIFO control signals.

Currently, the FIFO is instantiated from the FPGA vendor’s library of primitives, as it is well-optimized

for the target technology. The only constraint that we impose on the FIFO is to prefer the use of

distributed RAM rather than block RAM, for timing purposes – distributed RAM is spatially abundant

and is thus easier to place closer to upstream and downstream interconnect. The trade-off of using

distributed RAM is lower capacity, but since our need is simply to provide clock-crossing ability, any

depth is acceptable.

4.5.1 Parameters and Area Usage

The only parameter is the data width W . It affects the number of parallel distributed RAM blocks that

must be used. On Altera architectures, the distributed RAM is a maximum of 20 bits wide [33], so one

extra block is used for every 20 bits of W . Additional logic and registers are used to maintain FIFO

read and write pointers, convert between binary and Gray encoding, and send the pointers from one

clock domain into the other safely. These are fixed costs independent of W .

4.5.2 Future Work

Using a dual-clock FIFO is the most general solution that is guaranteed to provide correct behaviour but

may not necessarily be optimized for certain applications. If, for example, the two clocks are synchronized

and related in frequency by an integer (or rational) multiple, knowledge of this relationship could be

used to use just logic and registers and avoid the need for a memory-based FIFO. This opportunity

would present itself in applications that use double-pumped clocking schemes for parts of their design.

Different circuits would be used if the source was the faster or the slower of the two clock domains, to

avoid losing data during the worst case of continuous usage.

Additionally, if it was known that transmissions occur infrequently (and never reach continuous

usage), a low-cost clock crossing solution using a full handshake could be used, even if the clock domains

were unrelated. All of these optimization opportunities have yet to be explored in GENIE’s interconnect

synthesis flow.
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4.6 Address Converter

The Address Converter is a generalized sparse lookup table of arbitrary size that maps input values of

WIN bits wide to output values of WOUT bits wide. They are inserted during the Inner Flow to convert

between different address representations (as previously discussed in Section 3.4.3). A converter has

N total input-to-output mappings, and not every possible input value needs to have a mapping (it is

allowable for N ≤ 2WIN ). When an unrecognized input value is presented, undefined behaviour occurs.

This is caught with an assertion during RTL simulation of the generated SystemVerilog, and is intended

to catch erroneous behavior by user modules that emit undefined addresses.

Aside from the table geometry parameters already mentioned (N , WIN , and WOUT ), the contents of

the table itself are also provided as vector-type parameters to each Address Converter module instance.

The design synthesizes to pure combinational logic. In addition to being dependent on the table size,

the nature of the generated LUTs will be dependent on the table contents as well. Thus, it is difficult to

estimate the number of LUTs used, and the combinational logic depth, of the synthesized implementation

without ourselves replicating the FPGA logic synthesis and optimization algorithms. Currently, we

estimate the LUT usage with a worst-case bound: logk(WIN ) ·WOUT , where k is the FPGA LUT size.

This often is an overestimation, as in addition to finding a more compact representation, logic synthesis

finds ways to merge the converter logic with upstream or downstream logic as well.

4.7 Delay Buffer

Delay Buffer primitives are a drop-in replacement for long chains of consecutive Elastic Buffers that were

inserted during the register insertion phase of the Inner Flow. When such chains of registers are inserted,

it is not for pipelining, but for synchronizing and matching delays with fixed-latency functional blocks.

Rather than using registers, the Delay Buffer is implemented using RAM, preferably of the distributed,

rather than block, variety. The replacement of register chains with Delay Buffers is intended as an

area-saving optimization, as a single Intel LAB block configured as distributed RAM can hold 32 20-bit

words or 64 10-bit words in the same area that normally would contain a single 20-bit word if using

registers.

valid in
Simple DP

RAM
wraddr

wrdata

wren

rdaddr

rddata

write ptr
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read ptr

valid out
data out
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enen

Figure 4.8: Delay buffer design

The Delay Buffer takes incoming {data, valid} signals as input and delays them by N cycles as the

output. Figure 4.8 illustrates the design. It uses read and write pointers to index a RAM, like a FIFO.

However, unlike a traditional FIFO, the pointers are always incremented in tandem and are a fixed

(the maximum) distance part. The effect is to delay both valid and non-valid (empty) inputs, without

internal compaction of non-valid entries. This reflects the primitive’s intended as a delay element for
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fixed-latency systems. Nevertheless, a ready signal is supported for edge cases where the segment of

physical interconnect occupied by a Delay Buffer is used for both fixed-latency and latency-sensitive

communications. In this case, the ready signal is pipelined, and is used to disable the incrementing of

the read/write pointers, stalling the entire RAM delay chain contents in lockstep.

This can be seen in the fact that the valid signals are combined with the data signals and not treated

specially for control purposes.

4.7.1 Parameters and Area Usage

The Delay Chain’s parameters are the data width W and the number of cycles to delay, N . The presence

or absence of the ready signal is also considered when looking up area usage and timing in the primitive

database. Without the ready signal, the read and write pointers remain, and increment forever at a

fixed distance apart.

Including the Clock Crosser, the Delay Buffer is the only other GENIE primitive that uses RAM

resources. Unlike the Clock Crosser, the Delay Buffer’s RAM usage is dependent on two parameters,

N and W , and both affect the usage in a stepwise manner. On Intel devices, distributed RAM blocks

contain 640 bits arranged as either 32 words of 20 bits of 64 words of 10 bits. Multiple such blocks will

need to be chained together in parallel to cover the necessary width (W ), while any extra depth (N) is

handled by additional downstream Delay Buffer instances with separate read/write pointers.

The total resources consumed by a Delay Buffer include the necessary number of distributed RAM

blocks along with the pointer management logic and registers. When deciding to replace a chain of

Elastic Buffers with one or more Delay Buffers, we weigh the cost of both options to decide whether

the replacement is fruitful or not. However, in corner cases where the product of width and depth

is sufficiently small, it is entirely possible that the back-end CAD software will choose to implement

the distributed RAM block as registers anyway. We found that this occurs, on the Arria 10 FPGA,

when the width-depth product is less than 32. Several entries in the primitive database exist for such

parameterizations (sparsely, in increasing powers of two for width and depth), and the nearest largest

entry is chosen during lookup. Such area lookups will show zero memory usage, and only logic and

registers, as reported by Quartus synthesis results when the database was built. This will help GENIE

avoid inserting Delay Buffers in these corner cases, in a somewhat data-driven way.
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Example Applications

In this chapter, we introduce two real applications that will be used as the basis for the experiments

performed in Chapters 6–9 to measure and validate our research contributions. We choose to concentrate

our efforts into investigating two fully realized applications in great depth and detail rather than using

a broader set of benchmarks and only lightly discussing their inner workings. Examining the detailed

design problems that arise within these applications is required to fully appreciate our contributions.

The designs of the applications will be revisited in later chapters as each relevant design problem and

contribution is examined.

5.1 LU Decomposition

Our first application is an LU decomposition engine, originally based on a design by Zhang et al. [73]

and used in our previously published work on GENIE [61, 62, 63]. Its function is to receive a square

matrix A as input and decompose it into a lower-triangular matrix L and upper-triangular matrix U such

that L× U = A. The matrices are stored in off-chip DDR SDRAM memory in IEEE 754 floating-point

format and are operated on by a configurable number N of Compute Elements (CEs). The off-chip

memory is accessed through a configurable number M of independent memory controllers. Coordination

of the entire system is performed by a control unit. Figure 5.1 illustrates the top-level design of the LU

decomposition engine, which includes these components. This application, and the way we choose to

implement it, has many features that yield interesting and diverse interconnect-related design problems:

• Multiple independent external memory interfaces.

• Two independent clock domains.

• Productive use of broadcast and multicast communication.

• Combining fixed-latency and latency-insensitive design styles.

• Network topology exploration and optimization.

• Fine-granularity system and interconnect design.

The last point, related to fine-granularity design, is a key contribution of our work, and refers to

the design of each Compute Element. In addition to constructing the system shown in Figure 5.1 (the

44
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MEM MEM MEM

…
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CTRL

N = #CE

M = #MEM
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Figure 5.1: Top-level block diagram of the LU decomposition engine

so-called coarse-grained context), we are able to automate the construction of the smaller system within

each CE – a context in which existing system and interconnect building tools are not well-suited for, as

we will show in Chapter 6. Furthermore, a more detailed description of the connectivity between the

components of Figure 5.1 will show that the topology of the network implementing the interconnect can

be customized to take advantage of the application’s communication patterns. Chapter 9 will discuss

another key contribution in which these topologies are automatically generated and optimized for area,

based on a user-provided description of the underlying communication patterns. Some of these details

will be covered later in this chapter, but first we will describe the functionality of the LU decomposition

engine in order to motivate the interconnect design problems.

5.1.1 Operation

The input matrix A is divided into blocks of 64 × 64 elements, such that there are a total of B × B
blocks. Blocking improves the spatial locality of data access and reduces off-chip memory bandwidth

[16]. Matrix A is processed in-place by the algorithm such that the output matrices L and U end up

occupying the same space originally occupied by A. The outer loop of the algorithm iterates over square

sub-matrices of A of progressively smaller size, with the first sub-matrix being A itself, with bounds (0, 0)

to (B−1, B−1) in units of 64 × 64 blocks. Subsequent sub-matrices have bounds (1, 1) to (B−1, B−1),

(2, 2) to (B − 1, B − 1) and so forth, with the top-left corner of the current sub-matrix indexed by k in

general.

Algorithm 1 describes this outer k loop in more detail. For each sub-matrix indexed by k, there is

one serial round of computation followed by multiple parallel rounds of computation. A round delegates

the processing of matrix columns to individual CEs. The serial round processes the first column of the

sub-matrix, and the parallel rounds process the remaining columns, with each parallel round processing

up to N columns at a time. This partitioning arises due to the data dependencies between blocks:

processing each block (x, y) within a sub-matrix requires a left block at (k, y) as input, which must be

processed first. Therefore, we process the first column at x = k serially, and then use the full parallelism

afforded by the hardware to process all remaining columns in parallel. The processing of the first column

requires extra steps and extra hardware, and we decided to give only CE0 that hardware, which is why
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it is always tasked to do the serial round.

ALGORITHM 1: Outer loop of blocked LU decomposition algorithm

// Process every sub-matrix

for k = 0 to B − 1 do
// First serial round

Dispatch just CE0 to process column k from y = k to y = B − 1
// Subsequent parallel rounds

x = k + 1
while x < B do

Dispatch all N CEs to process columns x through x+N − 1 from y = k to y = B − 1
x = x+N

end

end

Figure 5.2 illustrates several aspects of the algorithm on a matrix with dimension B = 7 blocks,

or 448 × 448 individual elements. The hardware is parameterized to contain N = 4 CEs and M = 2

memory controllers. Subfigure 5.2a) shows the first three sub-matrices corresponding to the first three

values of k for the outer loop. Subfigure 5.2b) delineates the three rounds of computation that occur for

outer loop iteration k = 1, along with which CEs are assigned to which columns. The first serial round,

round 0, is always assigned to CE0. The next round, round 1, is the first parallel round, and can use all

4 available CEs to process the next 4 columns. The final round, round 2, is also a parallel round, but

since only 1 column remains, it is processed by a single CE.

CL

U

k

0 2 3 0 1 2

round MEM 0 MEM 1

a) b) c) d)

0 1 2 3 4 5 6col#

CE#

0 1 2k = 0 1 2

Figure 5.2: a) Outer k loop passes 0, 1, and 2. b) Computation rounds 0, 1, and 2 and respective
CE-to-column assignments for pass k = 1 with N = 4 CEs. c) Locations of L and U blocks for a C
block at (4, 3). d) Matrix column to memory controller mappings for M = 2

In the parallel rounds, a column x is assigned to the CE with index x mod N . As shown in Subfigure

5.2d), each column x is also held by memory controller x mod M . This striped column-to-memory

mapping evenly divides the memory bandwidth between memory controllers when performing parallel

computation rounds. Together with the column-to-CE mapping, this also limits the set of memory

controllers that any CE (except CE0) must communicate with, which will simplify and segregate the

resulting design of the interconnect.

Subfigure 5.2c) is a re-statement of the data dependencies that each block has on previously-processed

blocks, for a block C within a parallel computation round. In addition to C depending on its left block L,

it also depends on a top block, U . The dependency on L is satisfied with the serial/parallel computation

round partitioning, and the dependency on U is satisfied by each CE processing its assigned column of

blocks in a serial top-to-bottom fashion. The U block is cached within each CE after it is created as

output. Note that the block L will be used by every block in the same row, as input, and therefore each
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CE processing those columns will be requesting it for reading. Rather than reading the same L block

up to N times, we will read this block once and broadcast it to waiting CEs, saving bandwidth and

providing a compelling use case for multicast-capable interconnect.

5.1.2 Communication Patterns

Here, we describe the transmissions that occur between the control unit, memory controllers, and CEs.

Understanding these communication requirements provides the basis for creating suitable interconnect,

and in Chapter 7 will provide the necessary context for understanding the design space of possible

network topology optimizations. We begin by summarizing all types of traffic in Table 5.1, which we

then explain in further detail.

Table 5.1: Logical communication links used in the LU decomposition engine. Each line of the table
represents a family of links, differing in the type of traffic, the source, and/or the destination.

Type Source Dest Data Bits
Writes CE 0 MEM (any) 272

CE n > 0 MEM n % M
Read Requests CE 0 MEM (any) 20

CE n > 0 MEM n % M
CE (any) CTRL
CTRL MEM (any)

Read Responses MEM (any) CE (all, broadcast) 272
MEM n % M CE n

Go Messages CTRL CE (any) 25
Done Messages CE (any) CTRL 0

There are two broad categories of transmissions that occur in the system: control messages (Go

and Done) between the control unit and CEs, and memory traffic (reads and writes) used to access the

memory controllers. The control messages are used to dispatch work to the CEs from the outer algorithm

loop and indicate work completion back to the control unit. The Go messages contain a relatively small

data payload (25 bits) indicating the assigned matrix column and row bounds. Done messages contain

no data payload. Both message types are infrequent and low-bandwidth compared to memory traffic.

Memory accesses are used to read or write off-chip SDRAM in units of one matrix block at a time.

A matrix block is a 64 × 64 array of 32-bit floating-point numbers, represented as 512 words of 256

bits to match the memory controller interface. There are three types of memory traffic: read requests,

read responses, and writes. Read requests are relatively small (20 bits), as they only contain an address.

They are sent to a memory controller to initiate a read of matrix data. Read responses complete a read

request and deliver matrix data back to one or more CEs, and write transmissions deliver a block of

matrix data from a CE to a memory controller, together with address information. Read responses and

writes contain the block data payload, and are relatively large since they span 256 bits (plus control

information) in space and 512 cycles in time.

Writes are unicast transmissions: they are always sent from one CE to one memory controller.

However, reads exist in both unicast and multicast varieties. A multicast read, as mentioned above, is

used to read a single L block from a memory controller and send it to all CEs simultaneously instead

of reading the same block N times in a unicast manner. Figure 5.3 summarizes all of the possible types

of memory traffic. Subfigure 5.3a) shows unicast read request, read response, and write transmissions.
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These can be generally used for all block types. Subfigure 5.3b) depicts the special read requests and

responses that occur when a CE requests an L block.

CE CE CE

MEM MEM MEM

…

…

CTRL

rdreq

rdresp

CE CE

MEM MEM

rdreq

rdresp wrreq

a) b)

Figure 5.3: a) Unicast reads and writes. b) Multicast read request and response sequence.

When reading L blocks during a parallel processing round, CEs will direct their read requests to

the control unit instead of a memory controller. The control unit, which knows how many outstanding

CEs are currently dispatched in the processing round, waits for all such read requests to arrive. It then

forwards a single copy of the read request to the appropriate memory controller with a special flag set

within, such that when the read reply is generated, it is broadcast to all CEs simultaneously. This

scheme is possible in part due to the active CEs operating nearly in lockstep. The CEs process their

assigned columns of blocks top-to-bottom and the block processing times are constant. Figure 5.4 is a

more detailed view of the difference between regular unicast read requests/responses and multicast read

request/responses for a system with N = 16 and M = 4.

As previously mentioned, each CE (except CE0) will only ever be responsible for processing certain

columns of the matrix, and each memory controller only holds specific matrix columns (see Figure 5.2).

This has the effect of segregating the interconnect required to support memory transmissions. For exam-

ple, for performing writes, not every CE needs to be connected to every memory controller. Figure 5.5

illustrates the necessary connectivity for N = 8 CEs and M = 4 memory controllers: only CE0 needs to

reach all memory controllers when performing writes, but the other CEs only need to write to one mem-

ory controller. Read requests have a similar segregation effect, although the control node is included.

Read replies do require every memory to be able to reply to every CE, but only as a result of having
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by the Control Node and forwarded to a single memory controller. d) Left block contents are multicasted
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Figure 5.5: Required connectivity between CEs and memory controllers for Write transmissions in a
system with N = 8 and M = 4

to broadcast replies to L block reads. Figure 5.4 provides an example of these segregation effects for all

the types of read request and reply traffic. In Chapter 7, these special communication requirements of

each type of memory traffic will be exploited to create optimized interconnect.

5.1.3 Compute Element Design

In addition to the outer LU system, we are interested in exploring the automated generation of intercon-

nect for the smaller, finer-granularity system within each Compute Element. Each CE contains several

communicating components, shown in Figure 5.6. Of note are five internal caches, each of which can

hold one matrix block. They are operated on by the compute pipeline that implements the innermost

loops of the LU decomposition algorithm. CE 0 has a more complex pipeline than the other CEs, as

it must perform floating-point division. A local control unit orchestrates computation and the reading

and writing of matrix blocks, operations that are handled by a marshaller unit.

Marshaller

Control Pipeline

Cachesread req

read resp

write

read req

read resp

write

Top
Left0

Left1

Cur0

Cur1

do block

done

write

read resp

go

done

read req

do
write

read
done

write
done

System Clock Compute Clock

Figure 5.6: Compute Element architecture

The caches are named based on the type of block they hold: Left, Current, or Top. There is only one

Top cache, but two Left caches and two Current caches, in order to implement double-buffering. While

the pipeline operates on cache blocks Li and Ci, the marshaller is filling or writing back the other two

cache blocks, L1−i and C1−i. The sharing of the caches between the pipeline and marshaller yields rich

opportunities for interconnect design, making use of multicast (to fill multiple caches simultaneously)

and leveraging user-decreed guarantees of temporal exclusivity between the two components that access

the caches. These will be explored in more detail in Chapter 6.

The pipeline and the caches also operate on their own Compute clock domain, separate from the
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System clock that is used by the rest of the CE and outside of the CE. Having to also cross clock domains

between the marshaller, pipeline, and caches adds additional complexity and optimization opportunities

to interconnect design.

The main difference between the inner CE system and the outer LU system lies in the sizes of the

communicating functional modules relative to the interconnect. We will show in Chapter 6 that our

approach of building interconnect bottom-up from simple primitives yields superior results, with far less

interconnect area overhead than existing approaches.

5.2 Convolutional Neural Network

Our second application is a Convolutional Neural Network (CNN) implementation for image classification

on FPGAs. It will be used in Chapter 8 as the motivating example for one of our major contributions,

which is the introduction of a new type of user specification that allows an interconnect synthesis tool

to synchronize a network of fixed-latency functional units while optimizing the generated interconnect

for area usage. First, we will present some necessary algorithmic background for the application.

5.2.1 Background

CNNs are a machine learning technique [48] and have been effectively used for speech recognition [4],

playing the game of Go [72], and the image classification application [42] that we focus on. CNNs operate

in two modes: training and inference. Training ‘teaches’ the network to classify inputs, and involves

feedback. Inference is a feed-forward process that uses the trained neural network to classify inputs.

Our hardware supports the inference mode only, expecting the network to have been previously trained

offline.

For image classification, each input image is split into its three color channels, and these two-

dimensional slices are stacked to form a three-dimensional volume. This volume undergoes a chain

of different computation stages (“layers”), each producing an intermediate volume that represents pro-

gressively higher-order features of the original image. The final output is a low-dimensional array that

directly represents the probabilities of different image categories. The most time-consuming [20] pro-

cessing stages are the convolutional layers from which CNNs derive their name. Our hardware only

implements the processing of these convolutional layers.

Each convolutional layer takes its input, convolves it with Nk different kernels, and produces its

output. The input, kernels, and output can be visualized as three-dimensional volumes. Each kernel

volume is populated by weights that were calculated during the offline training process, and are constants

during the inference operation of the convolutional layer. To produce one element (voxel) of the output

volume, a dot product is calculated between one of the Nk kernel volumes and an equally-sized subvolume

of the input. This is then summed with a per-kernel constant bias value that was also produced offline

during training. The process of producing one output voxel is illustrated in Figure 5.7, and stated in a

more precise mathematical manner in Equation 5.1.

out(xo, yo, j) = biasj +

kw−1∑
x=0

kw−1∑
y=0

kd−1∑
z=0

kernj(x, y, z) · inp(x+ x0, y + y0, z) (5.1)

To generate the entire output volume, multiple such dot products are calculated. Each time, a
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Figure 5.7: Visualization of the dot product between a kernel and a kernel-sized subvolume of the input.
This produces a single output voxel.

different kernel and/or a different image sub-volume is chosen. The choice of kernel changes the z

coordinate of the output voxel. Moving the boundaries of the sub-volume ‘window’ within the input

volume, in the x and y dimensions, also moves the location of the output voxel in the x and y dimensions.

The amount by which the input volume window moves each time in the x or y dimension is called the

stride. Equation 5.1 assumes a stride of 1 for simplicity, and our hardware also only implements a stride

of 1 as a proof-of-concept. Note that during the production of the output volume, many dot product

operations share either the same kernel or the same region of the input volume. This will be exploited to

produce many output voxels in parallel while sharing data through the use of multicast communication.

5.2.2 Hardware Design

Figure 5.8a shows the top-level design of the CNN implementation. It is capable of processing one

convolutional layer at a time, which requires storage for the input volume, kernel volumes, and output

volumes. All three are held off-chip in DDR3 SDRAM. Working subsets of the image volume and kernel

volumes are cached on-chip in the blocks marked “Input Bufs” and “Kernel Bufs” respectively. The

“Iterator” blocks generate streams of addresses for reading their respective Input and Kernel buffers,

thereby implementing the loops of the triple summation of Equation 5.1. As can be intuited from that

equation, many reads of input and kernel volumes are required to produce a single output voxel – there is

much more reading than writing. Therefore the output is left un-cached and written directly to off-chip

memory by the “Output Writer“ block.

The compute array performs many dot-product operations in parallel using N ×M dot product units

(DPUs), each of which produces one output voxel. Figure 5.8b provides a close-up view of the compute

array and connections between the DPUs, iterators, and buffers. The N parameter indicates the number

of input buffers, and M the number of kernel buffers. Changing N and M affects the parallelism and

computational capability of the hardware, and is unrelated to the sizes of the input, output, and kernel

volumes, which are runtime-adjustable parameters. Each DPU receives input and kernel data every

cycle, which are multiplied and internally accumulated into a single output voxel, implementing the

volume dot product operation. At the end of this operation, each DPU shifts out its output voxel to the

right of the figure, towards the Output Writer for storage into off-chip memory.

Input, kernel, and output voxels are 16-bit fixed point values. Every connection in Figure 5.8 between
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Figure 5.8: a) Top-level block diagram of the CNN engine. b) Detailed view of the iterators, buffers,
and compute array.

the input/kernel buffer outputs and the DPU inputs is 256 bits wide, carrying 16 voxels. Thus, each

DPU receives 16 kernel and 16 input voxels per cycle. Internally, a DPU is an array of 8 independent

Arria 10 DSP blocks configured in multiply-accumulate mode. Each DSP block performs two 16-bit

multiplies: one image voxel multiplied with one kernel voxel, and another image voxel multiplied with

its corresponding kernel voxel. The two products are summed internally within the DSP block, producing

a total of eight partial sums, one for each DSP block. These eight, 16-bit partial sums are fed through

a soft adder tree to produce the final 16-bit output voxel value. The final addition of the bias value is

performed outside the DPUs, in the Output Writer block that writes to off-chip memory.

5.2.3 Operation

A dot product operation iterates over two 3D volumes of voxels of equal size. One volume is the entirety

of a kernel, and the other is a kernel-sized subvolume of the input volume. For correct operation, a voxel

from the kernel, and a matching voxel from the input, must arrive simultaneously at a DPU at a given

clock cycle. This is complicated by the fact that the image and kernel data may take paths of unequal

length to reach each DPU. We will now explain these paths in detail, as they are central to the design

problem that will be later explored in Chapter 8.

The beginning of a dot product compute phase is globally synchronized by a 1-bit “launch” signal

generated by the control unit, and is received by all input and kernel iterator units. The iterators then

proceed to generate one 9-bit voxel read address per cycle. These addresses are directed towards an

input, or kernel, buffer. Reading kernel buffers is straightforward – there is a 1-to-1 connection between

an iterator and a kernel buffer. However, reading image buffers is more complicated. To provide the

correct input voxel to each DPU, any given iterator reads from a different image buffer every cycle, in

a permuted fashion: during clock cycle x, iterator y reads from image buffer I(x+y)%N . The need for

such connectivity is illustrated in Figure 5.8b by the “permutation” blocks in the input volume data

paths, which are shorthands for (logical) full crossbars. After being read, every buffer (kernel and input)

produces a 256 bit wide output containing 16 sequential 16-bit voxels, and these are broadcast to a row
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or column of DPUs within the compute array.

Due to the asymmetrical complexity of the kernel and input volume data paths, it may be necessary

to pipeline the latter to mitigate the cost of the two N × N full crossbars, one of which is 256 bits

wide. Doing so would introduce skew between the kernel and (now pipelined) input delivery paths to a

DPU, which would have to be corrected. There are many ways to accomplish this, each with a trade-off

in area usage and design complexity for the user. In Chapter 8, we will study this synchronization

problem and use it to motivate one of our contributions: a method for an interconnect synthesis tool to

automatically provide fixed-latency synchronization given high-level data delivery constraints from the

user, while simultaneously attempting to minimize area.

The important transmissions occurring within the CNN engine are summarized in Table 5.2. Two

“loader” modules, one for kernel and image data, are not shown in Figure 5.8 and represent the interface

to OCM (off-chip memory) and periodically update the contents of the kernel and image buffers. Note

the many broadcast transmissions for kernel and image data from on-chip buffers to DPUs. Each image

buffer sources N possible transmissions, with each transmission broadcasting to one of the N columns of

DPUs. No two image buffers broadcast to the same column simultaneously, and this is reflected through

mutual exclusivity constraints on the transmissions.

Table 5.2: Logical communication links used in the CNN inference engine. Each line of the table
represents a family of links, differing in the type of traffic, the source, and/or the destination.

Type Source Dest Data Bits
OCM Fill K Loader K Buffer (any) 256

IMG Loader IMG Buffer (any)
Launch Signal CTRL ITER (all) 0

K Buf (all)
Read Address ITER (any) IMG Buf (any) 9
K data K Buf i DPUs (all in row i) 256
IMG data IMG buf (any) DPUs (all in column 0) 256

DPUs (all in column 1)
..
DPUs (all in column N-1)

Result DPU (any) Output Writer 16



Chapter 6

Fine-Grained Interconnect Synthesis

This chapter demonstrates the first of our three contributions to FPGA interconnect synthesis: the

ability to automatically generate and optimize interconnect for fine-grained systems. Originally, this

work was presented in two papers [61, 62]. The results in this chapter have been updated to use newer

versions of tools (both GENIE and Qsys) and synthesized for a newer FPGA architecture.

We begin this chapter by defining the fine-grained design context and how it differs from the tradi-

tional (coarse-grained) context that is the main use case for existing automatic interconnect synthesis.

This will be followed by a more detailed examination of features within the GENIE synthesis flow that

provide benefit for fine-grained designs. Then, we will show the effectiveness of our approach by us-

ing GENIE to build the interconnect for the LU decomposition engine introduced in Chapter 5.1, and

compare it against two other implementations: one created by an existing tool (Intel Qsys Pro[7]), and

one in which the entire system, including interconnect, is created manually in Verilog. In addition to

measuring area and clock frequency, we are interested in attempting to qualitatively, and quantitatively,

measure the ease of use experienced by the designer in creating the application using each of the three

approaches.

6.1 On Design Granularity

We use the term ‘granularity’ to refer to the size and complexity of functional modules that commu-

nicate over an interconnect fabric. Originally, the desire to create a distinction between ‘fine-grained’

and ‘coarse-grained’ functional modules arose from attempting to characterize the typical use cases for

existing interconnect synthesis tools. In order for a functional module to participate in automated inter-

connect synthesis, its interfaces must conform to a protocol expected by the tool. The types of required

signals specified by a protocol will impose a minimum complexity for any module that implements them.

If this complexity is unacceptable or inconvenient, it discourages the use of the tool to build interconnect

in an automated fashion.

For example, for a tool which generates memory-mapped interconnect, modules that can express

their communications as memory reads and writes will be more suitable than ones that don’t. In this

case, processors and peripherals would be a natural fit, but using the same tool to connect together sub-

modules of the processor, such as its register file and control logic, would not be a productive use case.

Instead, such sub-components would be connected together with ad-hoc, tightly coupled interconnect

54
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that does not have the assumptions and requirements of a heavyweight interface protocol – they, and the

interconnect that joins them, are of finer granularity than their parent processor module in the design

hierarchy.

Another more general feature present in communication protocols is backpressure, in the form of a

‘ready’ signal or a credit system [26]. This allows modules to operate correctly in the face of variable

communication latency, either due to dynamic traffic congestion or due to the implementation and

topology of the interconnect itself. Backpressure allows modules to temporally decouple, on a cycle-by-

cycle basis, from the operation of other modules in the system, and enables modularity and design re-use.

However, it too imposes a minimum baseline complexity for the design of a module. If an automated

interconnect-building tool’s protocol demanded the use of a backpressure signal, an application would

be required to implement it even if it did not have use for it (for example, if the communication modules

used tightly-coupled cycle-accurate global synchronization). Even if this is as simple as tying a ready

signal to a constant ‘1’, the interconnect complexity would be greater than necessary for the task. This

may discourage the designer from using an automated tool to build interconnect, and they may instead

opt to use ad-hoc fine-grained interconnect, rather than the latency-insensitive interconnect generated

by the tool.

To add to protocol-related concerns, the other aspect of a module’s granularity is its size. Even if a

module is a natural fit for a communication protocol imposed by an interconnect synthesis tool, it may

still represent an unproductive use case if the expected area overhead of the generated interconnect is

sufficiently large compared to the area of the module. From these considerations, we can summarize

some characteristics of fine and coarse granularity. Coarser-grained modules and interconnect:

• Use more complex interface protocols that require signals that either are specific to one style

of communications (with memory-mapping as an example), or require backpressure signals that

temporally decouple the module from the interconnect.

• Tend to be larger, both due to the required protocol-induced complexity and due to avoiding

interconnect area overhead relative to module size.

In contrast, finer granularity is characterized by:

• Simpler protocols with fewer mandatory signal types, enabling a wider range of communication

styles. The theoretical lower limit would be the un-typed wires provided directly by HDLs.

• Smaller in size, with a single lookup table forming a lower limit.

These are not hard definitions, but intuitively observed trends. It is possible, for example, for there to

exist a memory-mapped protocol that does not use backpressure and requires the user to specify a fixed

round-trip read latency through their modules, but still generate large and heavyweight interconnect

that would be classified as coarse-grained. Conversely, it is possible for an otherwise-lightweight protocol

to require the use of backpressure, but for the associated tool to generate interconnect with low enough

area overhead to be classified as fine-grained interconnect and permit productive use in automatically

connecting smaller modules.

The case for GENIE’s interconnect being finer -grained than that of existing tools was made in

Section 3.1 through the bottom-up approach of combining simple interconnect primitives. What we

show in this chapter is that this approach allows productive automation of interconnect synthesis for

systems with finer-grained components.
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6.2 Fine-grained GENIE Flow Features

The original papers [61, 62] covered by this chapter were our first published works on GENIE and its

interconnect synthesis flow. We introduced and described features of this flow that simplified and aided

the creation of fine-grained interconnect. Three of these features were Latency Introspection, conflict-

free Merge nodes, and the automated insertion of clock crossing logic, each of which is described in turn

in the following sub-sections.

6.2.1 Latency Introspection

The fine-grained design context is associated with a tighter coupling of functional modules with intercon-

nect. One form that this coupling takes is cycle-accurate knowledge of communication latencies. When

backpressure is not used, functional module design is simplified as it does not need to accept or respond

to stalls generated by the interconnect. However, without backpressure, the functional module design

and interconnect design must now closely cooperate to ensure correct behavior. Our initial solution to

this problem was a feature called Latency Introspection, which allows a functional module, at compile

time, to query the latency in cycles of generated interconnect paths. The functional module could then

use this knowledge to pipeline and delay its internal signals by the correct amount of cycles to re-align

with returned data from the interconnect.

In GENIE, Latency Introspection is achieved with an API call within the user specification. As pa-

rameters, it takes a previously-declared Routed Streaming link between two functional module interfaces,

and the name of a Verilog parameter. Upon interconnect generation, the flow declares that parameter

within the auto-generated Verilog and assigns it the latency, in cycles of the requested path. The pa-

rameter can be passed into functional modules in the system so that they can adjust their internals

accordingly.

Later, GENIE was augmented with Synchronization Constraints and automatic register insertion,

which supersedes some of the use cases of Latency Introspection. Instead of informing functional modules

of fixed interconnect latencies and forcing the designer to compensate, these new features allowed GENIE,

and the generated interconnect itself, to compensate for fixed latencies outside of functional modules.

These features will be later covered in Chapter 8.

6.2.2 Conflict-Free Merge Nodes

GENIE provides the user the ability to specify extra hints about their application’s communication

behavior. One of these hints is the assignment of transmissions to mutual-exclusion groups. This

specifies that transmissions belonging to one group will never occur at the same time as transmissions

from another group, guaranteed by the user’s functional module design. If a user does specify mutual

exclusion groups, and if temporally mutually-exclusive transmissions are present at the inputs of a

generated Merge node in the interconnect, the GENIE flow will convert that Merge node into its no-

conflict variant (see Section 4.2.3). The Compute Element design explored in this chapter contains such

transmissions, providing an opportunity for interconnect optimization. It is another example of the

cooperation of application and interconnect design that is characteristic of fine-grained systems.
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6.2.3 Automatic Clock Crossing Insertion

One of the stages of the GENIE flow is the automated insertion of clock crossing logic. It is driven by

an algorithm that optimizes clock domain boundaries within generated interconnect in order to reduce

area. While relevant to all design contexts, it can be especially important in fine-grained designs as

interconnect represents a potentially significant fraction of total system area. This is the case within the

Compute Element design being studied, as it includes a clock domain transition.

When a design contains multiple clock domains, there is an interesting optimization problem that

arises when crossing between any two domains: where in the generated interconnect network should the

transition occur? For example, consider a GENIE Split node that has its inputs driven by a functional

module belonging to one clock domain, and its outputs connected to functional modules of a second

clock domain. Placing a clock crossing at the input of the Split node would be cheaper than inserting

two crossings, one at each output. When the network contains a complex topology of Split and Merge

nodes, the optimal choice may not be obvious. GENIE intelligently chooses the point at which the

minimum total number of signals undergo the crossing, because each signal incurs a non-trivial cost.

The process occurs in two phases: determination of clock crossing boundaries, followed by the insertion

of clock crossing primitives (described in Section 4.5) at the determined clock domain boundaries.

Algorithm 2 represents the work of the first phase, determining the clock domain boundaries within

a GENIE interconnect domain (which is a connected component of the entire system). It represents the

interconnect domain as a directed graph G = (V,E). Vertices represent Routed Streaming Interfaces

belonging to both designer-specified functional modules and those of internally-generated interconnect

primitives. C(v) represents the clock domain of each vertex, and initially only some vertices will have

this assignment, from a set of domains K. The objective of the algorithm is to find the best clock domain

assignment for each of the remaining unlabeled vertices.

Directed edges between the vertices represent physical connectivity between the corresponding mod-

ule interfaces. Each edge e has a weight W (e) that represents the cost of placing a clock domain crossing

there, and this weight is initialized at graph creation time. The weight/cost is a function of the number

of data bits on that link plus the nominal fixed overheads of maintaining a dual-clock FIFO such as

read/write pointer registers. The clock domain assignment problem is formulated as a multi-way-cut

[24] problem: to partition the graph into connected components (one for each clock domain) while min-

imizing the total weight of the boundary edges between them. This problem is NP-hard for more than

two clock domains, and Algorithm 2 is based on a greedy approximation which, instead of considering

all clock domains simultaneously, looks at two clock domains at a time.

The algorithm requires that each clock domain be represented with a single terminal vertex. We

create each terminal in the set T by merging together all vertices that share the corresponding clock

domain. The vertex merging procedure is explicitly laid out in Algorithm 3. We then assign one clock

domain at a time by repeatedly finding a minimum cut between one of the terminal vertices ti and a

merged vertex representing all other terminal vertices s0. This is accomplished with a standard min-cut

(dual of max-flow) algorithm [22] which returns the total weight of the minimal cut costi and a residual

graph Ri. A greedy decision is made to choose the terminal vertex that yields the least-cost two-way cut.

The vertices in that terminal’s partition are assigned its corresponding clock domain, and are removed

from the graph. With one fewer unassigned clock domain, the process repeats until all vertices are

assigned a domain.

Finally, after the algorithm terminates and all RS Interfaces have an assigned clock domain, GENIE
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ALGORITHM 2: Area-Minimizing Clock Domain Assignment

inputs : connectivity G=(V,E), edge weights W, partial clock assignments C, clock domains K
output: clock assignments C for all v ∈ V
T := {}
// Collapse all vertices that share a clock domain, add them to T
foreach k ∈ K do

Uk := (u0, u1, u2, · · · ∈ V | C(ui) = k) // all ports driven by clock k
MergeVertices(G, Uk)
T := T ∪ {u0} // one terminal vertex per clock domain

end
// Assign clock domains one at a time, removing them from a copy of G as we go

H := G
while |T | > 1 do

// Try the terminal for each remaining unassigned clock domain

foreach ti ∈ T do
// Merge the terminals for all the other domains into a single vertex s0
H ′ := H
U := (s0, s1, · · · ∈ T | sj 6= ti)
MergeVertices(H ′, U)
// Find the min-cut between source ti and sink s0
// Memoize the residual graph Ri and total cut weight costi
Ri, costi := MinSTcut(H ′, W , ti, s0)

end
// Choose the clock domain terminal that yielded the smallest-weight cut

costbest := smallest costi
// Assign all reachable vertices the corresponding clock domain

foreach v ∈ Rbest reachable from tbest do
C(v) := C(tbest)
remove v from H

end
T := T \ {tbest}

end
// Only one clock domain remains, do a trivial assignment

foreach v ∈ H do
C(v) := C(the one member of T )

end

ALGORITHM 3: MergeVertices(G, U)

inputs : G=(V,E), list of vertices to merge U=(u0, u1, u2, . . . )
output: updated G with vertices from U merged into uo

E := E \ {(x, y) | x, y ∈ U} // remove edges between members of U
// Transfer outgoing edges to u0

foreach (x, y) ∈ {E | x ∈ Uk ∧ y /∈ Uk} do
E := E \ {(x, y)}
E := E ∪ {(u0, y)}

end
// Repeat for incoming edges

// ...

V := V \ {u1, u2, u3, . . . }

inserts clock crosser primitives at clock domain boundaries. It is worth noting that the problem of

minimizing clock crossing in networks-on-chip has been previously studied. Kulkarni et al. [45] have

examined the runtime and accuracy trade-offs of using brute force, exact (using an ILP formulation),

and heuristic approaches to solving this optimization problem. Our heuristic differs from theirs, and



Chapter 6. Fine-Grained Interconnect Synthesis 59

considers the varying cost (due to data width) of each interconnect link, rather than minimizing the

number of clock crossing points alone.

6.3 Compute Element Design

This section is a continuation of Section 5.1.3 which briefly introduced the design and functionality of

a Compute Element (CE) within the larger LU Decomposition Engine example application. The CE

will serve as the design to demonstrate GENIE’s effectiveness at building interconnect for fine-grained

systems. We will now describe in more detail the logical transmissions that occur within a CE and

provide context for the fine-grained interconnect that will be built to carry these transmissions. Later,

we will compare different implementations of this interconnect, built using GENIE and other tools.

6.3.1 Structure and Functionality

We begin with an overview of how the CE and its components operate, as this is important for under-

standing the communications between them. A CE processes a specific column of blocks from the matrix

being operated on by reading the blocks from external memory and writing back transformed data in

their place. Figure 6.1 (a duplicate of Figure 5.6) shows the communicating functional modules within

a CE, of which there are eight:

Marshaller

Control Pipeline

Cachesread req

read resp

write

read req

read resp

write

Top
Left0

Left1

Cur0

Cur1

do block

done

write

read resp

go

done

read req

do
write

read
done

write
done

System Clock Compute Clock

Figure 6.1: Compute Element architecture, restated)

• A Control unit to orchestrate the fetching, processing, and writing back of blocks.

• Five Caches that store the matrix blocks being operated on locally within the CE.

• A computation Pipeline, which reads from and writes to the caches to produce the processed

results.

• A data Marshaller to transfer matrix blocks to and from the caches and external memory outside

the CE.

There are five independent dual-ported cache blocks in total: Top, Left0, Left1, Current0, and

Current1. They are named after the types of blocks they store during processing, and relate to the
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spatial relationships between the cached blocks within the larger matrix. The Left and Current blocks

are also double-buffered for increased performance, with the numerical suffix indicating which buffer it

belongs to. While Curi and Lefti are being accessed by the Pipeline, the Marshaller accesses Cur1−i and

Left1−i for transferring blocks from or to off-chip memory. The Top block is rarely written to (once by

the Marshaller, and once by the Pipeline at the very top of the column of blocks) and does not require

double-buffering.

T
C L T

C L

T CL T

L C

Current block
Top/Left blocks

k k+1

k

k+1

Figure 6.2: Aliasing of Top, Left, and Current blocks within the current submatrix, whose top-leftmost
block has coordinates (k, k).

The CE’s purpose within the LU Decomposition Engine is to process all the blocks within its assigned

column of blocks from the current sub-matrix of the outer loop of the algorithm (see Algorithm 1). To

process one block at coordinates (i, j), the CE requires three as input: the existing block at (i, j) called

the Current block, the block at (i, k) called the Left block, and the block at (k, j) called the Top block.

The Marshaller is responsible for filling the associated caches before the Pipeline can operate on them.

Afterwards, it writes the transformed Current block back to off-chip memory. For edge cases where

i == k or j == k these blocks can alias to one another as shown in Figure 6.2. Due to this aliasing,

the Marshaller and Pipeline will sometimes write the same data to two or three different caches. In the

Marshaller’s case, when it writes duplicate data it also writes to the same addresses of the target caches,

which is behavior that maps well to a single multicast transmission.

The CE has two clock domains in order to decouple the performance requirements of processing

matrix blocks and transferring them to and from off-chip memory. Processing a block requires O(n3)

accesses to matrix elements by the Pipeline, while reading and writing back a block’s contents to off-chip

memory is O(n2) where n is the block size (64 in our case). The Pipeline and Caches operate using

the “Compute Clock” and the rest of the design uses the “System Clock”, including the coarse-grained

interconnect linking the CE with the greater LU Decomposition system. The boundary between the two

clock domains is shown in Figure 6.1.

6.3.2 Communication Behavior

There are two classes of communications present within the CE shown in Figure 6.1: low-throughput

control messages (shown as dashed arrows), and high-throughput matrix block read requests, read

replies, and writes (shown as solid arrows). The former, while being point-to-point and not performance-

demanding, can still benefit from automated interconnect synthesis rather than being implemented by

hand, either because of the need to cross clock domains (Control to Pipeline), or the potential need to
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pipeline the links to close timing later in the design cycle.

Figure 6.3: High-throughput read and write transmissions between the Marshaller, Pipeline, and Caches

In contrast, the high-throughput communications links, whose logical connectivity is depicted in

Figure 6.3, require high-performance and non-trivial interconnect. They send data words (or requests

for data words) every cycle, and originate or terminate at the read or write port of one of the five Caches.

The communication requirements for each block type (Top, Left, and Current) are asymmetrical:

• The Top cache (of which there is only one) is only ever read by the Pipeline.

• The two Left caches also only read by the Pipeline, but only one at a time.

• The two Current caches can be read by both the Pipeline and the Marshaller simultaneously, but

in a non-overlapping fashion.

• All of the five caches can be written by either the Pipeline or the Marshaller. Either can write

to multiple caches from the sets {Top, Cur0, Left0} and {Cur1, Left1} simultaneously, but the

Pipeline and Marshaller will never write to both sets.

These communication requirements represent different levels of complexity, ranging from what amounts

to trivial direct links (for the Top cache reads) to the complex spatial and temporal relationships of the

write paths. For all but two links (Pipeline to Top Cache reads), some mix of one-to-many or many-to-

one communications is needed, requiring distribution or arbitration hardware within the interconnect.

The Pipeline and Marshaller perform writes of identical data to some subset of the Caches, which changes

at runtime, and thus requires either multicast capability or multiple write ports. The double-buffering

of the Caches is explicitly managed by the application and guarantees that the Marshaller and Pipeline

never compete for the same Cache’s read or write port. This application-specific behaviour presents

opportunities to optimize the design of the interconnect to reduce area and increase performance.

Read requests are 12 bits wide, and specify an address within a cache. Read replies are 256 bits

wide, and carry multiple words of data to feed the Pipeline’s SIMD datapath. Writes contain both an

address and data and are 268 bits wide. It is important to mention the relatively large width of these

connections, since it makes the interconnect’s area usage that much more sensitive to its architecture.
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6.3.3 Three CE Variants

To evaluate GENIE’s fine-grained interconnect synthesis capability, we create three different implemen-

tations of the CE and its interconnect: one generated by GENIE, a manually-written and optimized

reference design, and one generated using Intel’s Qsys[7] system integration tool. This allows us to com-

pare GENIE against the best possible hardware (at the expense of design time) and against an existing

automated synthesis tool (at the possible expense of one or more performance or area metrics).

Each variant is a different realization of the CE system shown in Figure 5.6. In the Qsys variant, two

different communication protocols are used: Avalon-MM (memory-mapped), and Avalon-ST (streaming)

[34]. Connections to the Caches map naturally to random-access reads and writes, so we implement those

using Avalon-MM, using an extra address bit to select between buffers of double-buffered Caches. The

remaining connections, which are point-to-point and have no memory-like semantics, are implemented

using Avalon-ST.

In the GENIE variant, all connections in Figure 5.6 are implemented using Routed Streaming or

Conduit interfaces. The Marshaller and Pipeline interfaces that write to the caches use multicast ad-

dressing: every possible combination of destination caches (which is fewer than the maximum of 25) is

mapped to a unique Source Address on the initiating interface. The memory address (for writes, and

for read requests) is actually part of the data payload as an (additional) signal of type data.

The manual variant’s interconnect is designed by hand in SystemVerilog, using application-specific

design optimizations. Some optimizations, and interconnect design, match what GENIE is capable of

producing automatically, which is already quite minimal. However, some optimizations are not available

in GENIE, making the manual variant theoretically better-performing. Notable examples include:

• Clock crossing: The manual variant directs all traffic flowing from one domain to another (and

with similar backpressure requirements) into a single clock crossing FIFO, rather than separate

FIFOs for each transmission as GENIE does. While the total number of bits undergoing crossing

remains the same in both cases, combining all signals into fewer FIFOs amortizes the cost of FIFO

control logic and achieves better packing of data into FPGA distributed RAM blocks.

• Centralized double-buffering control: Some of the caches are double-buffered. When the

Marshaller and Pipeline write to, or read from caches, the choice of which buffer to access is

contained within the read or write request in the GENIE version – the Split and Merge nodes in

the interconnect are controlled locally by the data stream. In the manual version, we the designers

recognize that buffers are swapped rarely and not on a cycle-by-cycle basis, so some of the buffer

steering interconnect can be controlled centrally from the Main Control unit as it prepares to launch

a computation or data marshalling phase. This blurring of functional module and interconnect

boundaries is possible when the entire design is created by hand.

Additional differences between the three variants are described in the next section.

The manual variant existed before the development of GENIE and served as an inspiration for

the kinds of automation and optimization features that would be desirable in a new tool. However,

we attempted to capture and “factor out” a design paradigm in a generic way and not to specialize

GENIE for perfectly re-creating the manually-generated interconnect of the CE, as described above in

the differences between the manual and GENIE-generated variants.
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6.3.4 Variant Implementation Comparison

Here, we highlight some important differences between the interconnect implementations of each variant

in order to give some context to the results in Section 6.4. The goal of automation is to improve designer

productivity while generating hardware with acceptable area and performance. To that end, we also

hope to provide a qualitative picture of the design effort required to create each variant. We will focus

on how each variant handles the following aspects of the CE design, since they required the greatest

interconnect complexity:

• Clock domain crossing

• Marshaller-to-Cache read path

• Pipeline-to-Cache read paths

• Cache write paths

Clock Domain Crossing

Both the Marshaller-to-Cache connections and the Control-to-Pipeline connections cross clock domain

boundaries, which is handled differently among the three variants. In the manual variant, there exist

three clock-crossing FIFOs for the whole design: one for connections travelling from Compute Clock

to System Clock (read replies) and two in the other direction (one for read requests, and one for all

other non-backpressured signals combined together into a single bus). There is also a full-handshake-

based clock crosser for the single-bit ‘done’ signal that is emitted from the Pipeline after every block is

processed. Its inability to be combined into the data portion of the three other FIFOs meant it would

otherwise have to have its own FIFO – which is unnecessary overhead for an intermittent single-bit

signal.

Qsys performs automatic clock crossing for Avalon-MM connections, inserting dual-clock FIFOs when

a master and slave are on different clock domains. However, it inserts FIFOs after routing traffic to

multiple destinations, causing each destination path to have its own FIFO, including 9 FIFOs which

must accommodate the cache read/write data width (256+ bits). Finally, no automatic clock crossing

is performed on the Avalon-ST connections for the low-bandwidth control messages, requiring manual

instantiation of clock crossing adapters from the Qsys component library.

The GENIE implementation has one clock-crossing FIFO for each connection (for a total of five),

rather than the two used in the manual variant. All Marshaller-to-Cache write paths share a single FIFO,

which GENIE inserts before a split node that broadcasts to up to five caches. This was determined using

the algorithm described in Section 6.2.3. The total number of FIFO memory bits is thus identical to the

manual variant, but there is extra logic overhead since each FIFO requires its own read/write pointer

and metastability protection registers. The upside is that all Routed Streaming connections receive

automated clock crossing, with no designer intervention needed.

Marshaller-to-Cache Reads

Cache reads from the Marshaller need to be able to stall if the system outside the CE is unable to accept

the outgoing read reply data. Both the GENIE and Manual variants use the backpressure generated
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outside the CE, in the form of a ready signal, as a means to stall the reading of the Marshaller-Caches-

Marshaller read pipeline on a cycle-by-cycle basis.

The Avalon-MM protocol has backpressure for read requests in the form of the waitrequest signal

role, allowing slaves (the Cache read ports) to stall the Master (the Marshaller). However, there exists

no signal that allows the Marshaller to stall read data returning from the Caches. Our solution was

to add a FIFO to the Marshaller to buffer this data until it can be sent outside the CE, and reserving

space in this FIFO before sending any read requests to the Caches. Note that this missing functionality

in Qsys requires extra effort for the designer to mitigate, while also costing area. This is not a general

limitation of memory-mapped protocols, as, for example, AMBA AXI[9] has backpressure support for

request and reply paths, but is itself cumbersome to use since many signals are mandatory.

Pipeline-to-Cache Reads

Read and write access to (some) of the cache blocks is shared between the Pipeline and Marshaller.

However, due to double-buffering of the Caches, and careful orchestration by the Control logic, the

design of the CE guarantees no competition between the Pipeline and Marshaller for the same buffer.

This is ideal, because in theory it allows the Pipeline to operate as if it has sole point-to-point access to

the Caches with the benefit of deterministic latency, simplifying the design.

This is the case in the hand-made variant. The Pipeline’s access to the two buffers of the caches is

achieved with a multiplexer controlled directly by the Control logic. It switches buffers at the correct

times, ensuring that the Pipeline and Marshaller never compete for cache accesses. The round-trip

latency of the read path through this interconnect and through the caches themselves is fixed and

known by the Pipeline, allowing it to use simple register chains to delay other signals, instead of a more

expensive latency-insensitive construct such as a FIFO.

GENIE’s implementation of the read path is similar to the hand-made variant. The specification

for the read request/response paths contains a hint that the Marshaller and Pipeline will never simul-

taneously compete for the same Cache ports, resulting in simplified Merge nodes that are equivalent to

the muxes of the hand-made variant. The effective difference is that these muxes are controlled locally

(by the incoming Valid signals) rather than centrally by the Control logic. Using Latency Introspection

(described in Section 6.2.1), the Pipeline is able to know the exact fixed latency of the GENIE-generated

read path interconnect and can avoid using FIFOs, just like the hand-made version.

The Qsys interconnect inserts arbiters that allow both the Marshaller and Pipeline to access the read

ports of the two ‘current’ caches Cur0 and Cur1, which are the only caches among the five which can be

read by both the Pipeline and Marshaller. Qsys has no way of knowing our application’s dynamic behav-

ior, and the inserted arbiters are designed for the worst/general case in which simultaneous competition

is possible. This increases the interconnect complexity to more than what is necessary. It also forces

us to make changes to the Pipeline module. Even though we, the designers, know that the Pipeline

should never encounter competition for reading the Caches, Qsys refuses to generate the system unless

we add the Avalon-MM waitrequest signal as an input to the Pipeline’s master interface, to handle the

potential stalls that are expected in the general case. Even after satisfying this requirement of adding

the signal, it became evident that we could not even ignore its presence – stalls were being inexplicably

generated by the interconnect despite the transmissions facing no competition. This is visible in the

simulation fragment shown in Figure 6.4 as a ready signal that is deasserted for one cycle.

The stall always manifests in this manner: a deassertion for one exactly one cycle. There are two
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Figure 6.4: Unexpected stall generated by Qsys interconnect

methods to handle this stall within the Pipeline. The most correct and general way is to insert a

FIFO, which increases cost and complexity. The other method, which will only work in the case of this

particular observed stall behavior, is with a pair of registers and a multiplexer, which have less impact

on area and timing than the FIFO. Both versions will be explored as sub-variants of the Qsys CE design

variant when we report results in Section 6.4.

The preceding issue affected only reads to the two Current Block caches. The other caches either do

not require the addition of a stall signal, or the signal can be truly ignored without further modifications

to the affected functional modules, as no stalls of the type in Figure 6.4 occur. The issue for those

is now the determination of the fixed round-trip read latency through the caches. Without a Latency

Introspection mechanism like the one GENIE has, we were forced to either study the generated Verilog,

or perform simulation, to discover these latencies.

This detailed study into the differing implementations of the Pipeline-to-Cache read request and

read reply networks illustrates the extra analysis, simulation, and overall design effort required to use

an automatic interconnect synthesis tool in a use case for which it is not designed.

6.3.5 Cache Write Network Topology

The GENIE interconnect’s Split and Merge nodes can be arranged to form many different topologies.

As described in Section 3.4, each interconnect domain in a system can have its own topology, and can

either be generated automatically or be customized manually. By default, GENIE creates a ‘sparse

crossbar’ topology automatically based on each domain’s user-specified logical connectivity. At the time

of the writing of this chapter’s original representative papers, GENIE did not yet have the ability to

further optimize an auto-generated sparse crossbar topology to minimize its area, based on application

communication patterns. However, manual specification of topologies was still possible. In this section,

we apply this ability to the fine-grained CE system, exploiting an opportunity to reduce the area of one

of the network domains: the Marshaller-to-Cache and Pipeline-to-Cache write requests. By doing so,

the GENIE-generated interconnect is able to take advantage of the CE’s unique communication patterns

to reduce area in the same way that the manual variant of the CE does. Doing so will require extra

effort from the designer, but less so than creating such specialized interconnect by hand.

The default topology used by GENIE is its built-in sparse crossbar topology. It is programmatically

generated according to two rules:

1. Every source with multiple sinks generates a Split node.

2. Every sink with multiple sources generates a Merge node.

This scheme is also known as slave-side arbitration [34] and it has the property that competition for

network bandwidth occurs only at the sink, since there exists a dedicated physical path for each source-

to-sink logical path. This is the scheme used by Qsys interconnect, with different arbitration/distribution

primitives in place of GENIE’s Split and Merge nodes, and is the only available option.
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Figure 6.5: Sparse Crossbar (default) and Optimized (application-specific) topology implementations for
Write Requests. The networks are built from (S)plit and (M)erge nodes.

The Pipeline and Marshaller are guaranteed to never compete for Cache access within the CE, and

this can be taken advantage of to create the area-optimized topology for Cache Write Request links

shown in Figure 6.5. The Top cache, although not itself double-buffered, logically belongs to buffer set

0, as it holds the top-most block in the column – the buffer index that holds a particular block in a

column alternates every row and begins at 0. This is an application-specific nuance that allows such an

interconnect optimization to be possible.

Compared to a crossbar topology, the custom topology reduces the number of Merge nodes from five

to two without creating any contention points in the network. In both topologies, the Merge nodes are

of the simplified conflict-free type (Section 4.2.3), as the logical transmissions through them have been

explicitly marked as temporally exclusive in the user’s input specification. Even so, write requests are 268

bits wide, and the removal of three of them still represents non-trivial savings, which will be quantified

in Section 6.4. The additional two Split nodes incur minimal overhead as their cost is independent of

payload width.

This fine-tuning of topology design would normally only be possible with hand-crafted Verilog, as

is the case with our manual CE variant. GENIE provides a much simpler alternative via manual

topology specification while re-using the same logical connectivity specification, thereby allowing fine-

grained design optimization and topology exploration without giving up the convenience of automation.

6.4 Results

In this section, we quantitatively compare the three Compute Element variants described in Section 6.3.3

in order to judge the efficacy (and ease of use) of GENIE in generating fine-grained interconnect. Au-

tomation should increase productivity and make life easier for the designer. The implementation issues

discussed in Section 6.3.4 give a qualitative view of the designer effort required. In this section we

measure the amount of source code (and tool specification code) line counts as a first-order quantitative

approximation of the difficulty of creating each CE variant. Automation should also strive to produce

a high-quality interconnect implementation. We obtain the area and Fmax of each variant after being

synthesized, placed, and routed on an FPGA. After comparing the three CE implementations, we also

measure the effects of the different interconnect optimizations that GENIE offers and how much each of

them contributes to the GENIE CE variant’s comparisons against the other two variants.
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6.4.1 Methodology

Among the three CE variants (Manual, GENIE, Qsys), the GENIE and Qsys variants each have several

configurations of interconnect that we will test and compare. Four configurations of the GENIE variant

were created, differing in the combinations of two interconnect optimizations that can be selectively

turned on or off for the synthesis flow. The first of these optimizations is enabling the use of the

manually-specified application-optimized topology for the CE’s write request network instead of the

default sparse crossbar topology (both options are shown in Figure 6.5). The second optimization is to

allow GENIE to infer conflict-free Merge nodes within the interconnect that implements accesses to the

double-buffered caches. This is normally on by default, but can be explicitly disabled as a flow option.

The resulting four GENIE variant configurations are:

• GENIE BOTH: Application-optimized topology for cache writes, conflict-free Merge nodes are

permitted.

• GENIE TOPO: Application-optimized topology for cache writes, standard Merge nodes used

throughout.

• GENIE MUTEX: Sparse crossbar topology for cache writes, conflict-free Merge nodes are per-

mitted.

• GENIE NONE: Sparse crossbar topology for cache writes, standard Merge nodes used through-

out.

These four configurations will be compared against each other in Section 6.4.4. In the comparison

between the three CE variants (Manual, GENIE, Qsys), the GENIE BOTH configuration will be used.

For the Qsys variant, two configurations will be tested. They differ in their handling of the single-

cycle stalls generated by the Qsys interconnect and experienced by the Pipeline when it issues read

requests to either of the Cur Caches. The two possibilities were described in detail in Section 6.3.4:

• QSYS FIFO: The Pipeline uses a memory-backed FIFO to absorb the stall generated by the

Qsys when a stream of cache read requests is issued. This is a more general and technically correct

solution, requires more complex hardware, but the hardware in question can be an off-the-shelf

vendor-provided FIFO implementation.

• QSYS REG: The Pipeline uses a custom purpose-built circuit, backed by registers, that imple-

ments a 2-deep FIFO capable of absorbing exactly one stall cycle generated by the Qsys inter-

connect. This option only became available after detailed manual examination of simulations. It

requires less complex hardware, but requires additional HDL code to be written.

Qsys offers some limited parameterization of its interconnect generation flow. One important option

changes the amount of pipelining inserted into the interconnect, and has four possible settings: 1, 2, 3,

or 4 registers. We used the maximum setting of 4 registers for both QSYS FIFO and QSYS REG.

6.4.2 Source Code Line Count

Our first set of results investigates the number of lines of source code (including scripting input lines

for the two tools) required to create both the functional modules and interconnect for each CE variant.
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Figure 6.6: CE Code Line Count

Line counts were obtained using the CLOC [2] tool, which ignores comments and blank lines. For the

interconnect portion, we are interested in the size of the specification directly written by the designer.

In the Qsys and GENIE variants, this would be the size of the scripts (written in TCL and Lua,

respectively) that are given as input to the tools to describe the system’s communicating components

and logical connectivity. The manual variant’s interconnect is written in Verilog, as are the functional

modules in all three variants. Table 6.1 compares the source code line counts between the three variants,

divided into interconnect and functional module categories.

Table 6.1: CE Code Line Count
Variant I/C + TOP FUNC TOTAL

Manual 612 1242 1854

GENIE 326 1346 1672

Qsys (FIFO) 453 1511 1964

Qsys (REG) 453 1544 1997

GENIE vs. Manual -47% +8.4% -9.8%

GENIE vs. Qsys (FIFO) -19% -11% -15%

Note that the manual variant’s 612 lines of interconnect source code include 316 lines solely dedicated

to the top-level Verilog module which instantiates all the other modules; this is referred to as “TOP” in

the table heading. This glue code does not specify any true functionality, yet comprises a large portion

of the source code base. Figure 6.6 gives it its own category to provide a better comparison of “real”

interconnect specification size, which is 296 lines for the manual variant. Nevertheless, using either

system integration tool spares the designer from having to manually write the top-level instantiation

code, so we include it together with interconnect in the “Interconnect + Top” category in Table 6.1.

The design of the functional modules is also affected by the choice of interconnect synthesis tool, in

order to be compatible with protocols or mitigate lack of features, as described in Section 6.3.4. The

GENIE variant requires 8.4% more functional code than the manual variant, with minor architectural

changes to the Cache modules. It also required 11% less functional code than the smaller Qsys variant

(the smaller, FIFO-based version), which required the more significant changes described in Section 6.3.4.

This highlights an important qualitative component of design effort that is not completely captured
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by line counts alone. The difference between the two Qsys variants is only 33 lines of code out of almost

2000. However, as described in Section 6.3.4, a significant amount of simulation, analysis, and design

effort (which are also likely not transferable to other designs) was required on the part of the designer to

write those 33 extra lines. Without this extra effort, yielding the Qsys FIFO variant (which still requires

a relatively intrusive modification to the Pipeline module) achieves a poor clock frequency compared to

GENIE, as will be shown in the next set of results.

If a designer were to create the Compute Element with GENIE in mind from the very beginning,

they would need to write 9.8% less total source code than with no automation at all, with an even

greater reduction of 47% if considering just the interconnect and top module. The respective savings

over Qsys are 11% (total) and 19% (interconnect only), using the more optimistic comparison against

the FIFO-based configuration. Implementing the two-register stall handler for the Qsys variant requires

33 extra lines of code, and much more time looking at simulation output.

The reduction in source code line count versus entirely manually-written Verilog is small, but even if

it were zero, there would still be other benefits to automating the creation of fine-grained interconnect:

the reduction of design, testing, and debugging time. As we will show next, GENIE also produces

interconnect that is on par quantitatively, in terms of frequency and area, with the manually-written

Verilog variant.

6.4.3 Area and Clock Frequency

Next, we measure the achieved clock frequencies of each variant. These are measured for the entire

synthesized CE, not just the interconnect in isolation. Synthesis of each variant was performed using

Intel Quartus Prime Pro version 17.0, targeting a large Arria 10 10AX115N2F45E1SG device, with the

expectation of low congestion and device utilization. All top-level non-clock inputs and outputs terminate

at Virtual IOs (dead-end LUTs) instead of real device pins. Both clock domains in the design were over-

constrained to 1 GHz, and frequency results were geometrically averaged over six random seeds. The raw,

uncapped frequencies reported by the TimeQuest timing analyzer were used, rather than the “Restricted

Fmax” which is limited by the minimum pulse width of the device.

Table 6.2: Compute Element Clock Frequency

Variant Compute Clock System Clock

Manual (MHz) 493 641

GENIE (MHz) 476 619

Qsys (FIFO) (MHz) 291 512

Qsys (REG) (MHz) 460 533

GENIE vs. Manual -3.4% -3.4%

GENIE vs. Qsys (FIFO) +64% +21%

GENIE vs. Qsys (REG) +3.5% +16%

Table 6.2 shows the achieved frequencies for both clock domains for each variant, and a relative

comparison of GENIE against the other two variants. Against the manual variant, the GENIE-generated

CE achieves clock frequencies that are only 3.4% worse. In both cases, the critical paths for the Compute

clock are in the floating-point divider that is part of the Pipeline component. This is ideal, as it signals

that the interconnect is not the bottleneck of the design. Clock crossing circuitry that enters a distributed
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RAM based FIFO is the location of the critical paths for the System clocks of both the manual and

GENIE variants.

The comparison of GENIE against Qsys differs significantly between the two possible configurations

of the Qsys CE Pipeline, which uses the Compute clock domain. The critical path within the FIFO-based

Qsys variant is within the FIFO, achieving a clock frequency of only 291 MHz – GENIE achieves 64%

higher. This is not the fault of the interconnect, as the FIFO lays within the CE’s compute modules.

For a more fair comparison, the register-based Qsys variant’s critical path is once again within the

floating-point divider, which is the same as in the GENIE and manual variants. Here, GENIE only

has a 3.5% advantage in Compute clock frequency. This floating-point divider is fed directly from the

interconnect, which may explain why a change in interconnect implementation is changing the Fmax

despite the critical path appearing within a functional module.

For another interesting comparison, it is possible to reduce the number of registers that Qsys inserts

into its interconnect from the maximum of 4 (which we used) to the default value of 2. In this case, the

critical path is within the Qsys interconnect, achieving a clock frequency of just 358 MHz, even in the

‘fairer’ register-based version. However, even though Qsys is capable of achieving similar Compute clock

frequencies, we will see (below) that it requires significantly more resources to do so. In the System

clock domain, GENIE outperforms the FIFO- and register-based Qsys configurations by 21% and 16%

respectively. The difference could be attributable to noise, as the System clock side does not change

between the two configurations.

Table 6.3: Compute Element Area Usage

Variant ALM M20K

Manual 2521 40

GENIE 2508 40

Qsys (FIFO) 8110 108

Qsys (REG) 7987 101

GENIE vs. Manual -0.5% 0%

GENIE vs. Qsys (FIFO) -69% -63%

GENIE vs. Qsys (REG) -69% -60%

Table 6.3 provides the area usage of the three variants, in terms of Arria 10 Adaptive Logic Modules

(representing logic, registers, and distributed memory) and M20K memory blocks. All variants also use

8 DSP (hard multiplier) blocks in addition to what is shown.

The GENIE-generated CE is on par with the manual variant in terms of area. Slight differences in

logic and register usage exist, but not enough to significantly change the observed result after packing

into ALMs is performed. These differences are mainly attributable to where multiplexers and registers

are placed in the interconnect, and the number of clock crossing FIFOs.

The Qsys interconnect contains an over-abundance of clock-crossing FIFOs (as discussed in Section

6.3.4), as well as additional FIFOs used to buffer cache read data. The increased number of FIFOs,

and the fact that the GENIE and manual variants use distributed memory instead of M20Ks for their

FIFOs, explains the high observed M20K usage for Qsys. In terms of logic, registers, and distributed

RAM, GENIE uses 69% fewer ALMs than either Qsys configuration. Predictably, the FIFO-based

Qsys configuration uses seven more memory blocks than the smaller and less complex register-based

configuration.
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Table 6.4: Clock Frequency, Area, and Source Code Effects of GENIE Optimizations

Configuration Compute (MHz) System (MHz) Area (ALMs) Code (Lines)

NONE 411 629 3157 292

TOPO 459 651 2757 302

MUTEX 471 614 2902 316

BOTH 476 619 2508 326

TOPO vs NONE +12% +3.5% -13% +24

MUTEX vs NONE +14% -2.4% -8% +10

BOTH vs NONE +16% -1.6% -21% +34

Recall that both Qsys configurations are created by instructing Qsys to use the maximum amount

of interconnect pipelining (4 stages). If we reduce this setting to the default of 2, the ALM usage is

significantly reduced, to 4437 and 4373 for the FIFO- and register-based configurations, respectively.

These are still much larger than GENIE’s CE.

6.4.4 Effects of Application-Specific Interconnect Optimizations

Up to this point, all GENIE results have used the GENIE BOTH configuration which enables both the

custom cache write topology and conflict-free merge node optimizations. Here, we will analyze in detail

how much each optimization, in isolation, contributes to GENIE’s clock frequency, area, and source

code line count results. Table 6.4 presents the clock frequency, area, and source code line counts of four

GENIE-generated Compute Elements.

The two optimizations being examined mainly affect the Merge nodes within the interconnect: the

optimized topology (GENIE TOPO) reduces the total number of Merge nodes in the Cache Write

network domain, while the no-conflict optimization (GENIE MUTEX) simplifies the remaining ones.

We see a total design area reduction caused by each optimization separately: 13% fewer ALMs due

to the optimized topology, and 8% fewer ALMs resulting from the no-conflict Merge nodes. The total

result is additive, reducing the CE area by 21% when both optimizations are enabled. The Cache Write

network domain has a 268 bit wide data path, and reductions and simplifications of Merge nodes in this

part of the interconnect have great effect.

In terms of clock frequency, only the Compute clock domain should be affected. Any effects on the

System clock can be attributed to noise, and serve as a comparison for the significance of the Compute

clock results. The replacement of fully-functional Merge nodes with simpler, no-conflict Merge nodes

yields a slightly better clock frequency improvement (GENIE MUTEX, 14%) compared to reducing the

number of fully-functional merge nodes (GENIE TOPO, 12%). Together, both optimizations yield a

16% overall clock frequency improvement over the baseline.

The two optimizations studied here require extra specification code to be written by the designer,

totaling 34 lines of Lua code. In Chapter 9, we will introduce an algorithm that is capable of automatically

creating the optimized topology of the GENIE TOPO configuration given only the transmission mutual

exclusivity hints used in GENIE MUTEX.
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6.5 Conclusion

We have shown GENIE’s applicability in a fine-granularity design space that has been neglected by

existing tools. Using a realistic design example, we demonstrated significant clock frequency and area

improvements over a commercial system-building tool, and comparable results to hand-designed inter-

connect. Qualitative differences in ease-of-use were also examined, related to the effort required by the

designer to interface functional modules with the interconnect. Due to a mandatory requirement for sup-

porting stalls generated by the interconnect, the Qsys version of the system required unwelcome changes

to the design that either degraded clock frequency and area efficiency or required significant simulation

effort to mitigate. GENIE did not require such changes. Quantitatively, GENIE required 9.8% fewer

lines of total source code to describe the complete system, versus a hand-made implementation. This

figure rises to 47% if considering only the code to design the interconnect. The cost of this productivity

gain was a 3.5% degradation in clock frequencies, and less than a percent difference in ALM usage. This

demonstrates that the automation and ease of use provided by the tool, our primary goal, does not

detract from the interconnect’s performance in a frugal fine-granularity design context. Ultimately, our

crude measurement of number of lines of source code neglects the fact that not all source code is equally

difficult to write – high-level scripting code requires a different amount of design and debugging effort

than HDL.

Against Qsys, GENIE achieved clock frequency gains of 64% and 21% in the Compute Element’s

two clock domains, and a 69%/60% reduction in ALM usage and RAM usage respectively. These

gains demonstrate the efficacy of GENIE’s automatic clock crossing insertion algorithm and lightweight

Split/Merge interconnect microarchitecture in a fine-granularity design.

We examined two of GENIE’s optimizations that depended heavily on exploiting application-specific

communication patterns: mutually-exclusive sharing (which creates simplified Merge nodes), and cus-

tomizable topologies (which can reduce the number of expensive Merge nodes). Our single design example

was able to take advantage of both of them, together providing a 16 % clock frequency improvement and

a 21 % reduction in area. These optimizations took advantage of double-buffering, which is a common

enough design technique and communication pattern that we foresee these optimizations being useful in

other applications as well.

The next chapter will focus on coarse-grained interconnect synthesis while re-using the CE design

studied here as a sub-module.



Chapter 7

Coarse-Grained Design Exploration

After demonstrating GENIE’s fine-grained interconnect synthesis capabilities in Chapter 6, we now ex-

amine its application to larger, coarser-grained systems in this chapter. This is the domain of traditional

interconnect synthesis tools [7, 69], and Network on Chip architectures [36]. For our benchmark appli-

cation, we use the full LU Decomposition Engine design previously described in Chapter 5.1. It consists

of many instances of the Compute Element sub-system that the last chapter focused on in detail, com-

bined with off-chip memory controllers and a central control unit. The communication between these

components was designed to be latency-insensitive and is thus more amenable to existing communication

protocols.

This chapter is based on our paper from ICFPT 2015 titled Automatic FPGA System and Interconnect

Construction with Multicast and Customizable Topology [63]. Much of the requisite (re)introduction to

GENIE, its features and synthesis flow, and the LU application, will not be necessary, as those topics

have been covered in previous chapters. Instead, the focus will be on exploring the design space of the

LU application using GENIE’s automated interconnect and system-building capabilities. As we have

done in the previous chapter, we will be investigating how enabling and tuning GENIE flow parameters

affect performance and area usage. We will also be comparing the LU application built using GENIE’s

interconnect versus two other versions, built with Intel’s Qsys tool [7] and the CONNECT [58] packet-

switched FPGA Network-on-Chip interconnect. This will allow us to evaluate GENIE’s ability to build

large systems in the same coarse-grained design context that existing tools have been designed to service.

The comparison to CONNECT is new, and was not in the original paper.

7.1 System Design

The LU decomposition engine’s high-level design and operation are described in Section 5.1. In this

section, we provide additional implementation details that are both common among, and specific to, the

three different interconnect methods – GENIE, Qsys, and CONNECT – being compared.

7.1.1 Common Implementation Details

The LU application contains one or more Compute Elements (CEs). In this chapter, a common CE

design will be used irrespective of the coarse-grained interconnect that connects the CEs and other

system components together. This CE design will use GENIE-generated fine-grained interconnect and

73
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corresponds to the best-performing configuration examined previously in Chapter 6. When generating

the CE, GENIE is configured to use an optimized write request network topology and conflict-free Merge

nodes. It also uses a “maximum logic depth” setting of 5 levels, which ends up leaving the interconnect

data paths unregistered everywhere except for the cache write request network, which receives one level

of registers. Of the two clock domains present in the LU application, the Compute Clock is internal to

the CEs. Therefore, using a common CE design should ideally yield minimal variation in the Compute

Clock domain frequency when varying the outer coarse-grained system interconnect. We will show that

this is not the case, and offer a hypothesis related to the nature of FPGA placement and routing.

In addition to CEs, the LU system also contains a variable number of memory controllers. For

internal design reasons, this number M must be a power of two, as must the number of CEs (N).

Increasing M increases the available memory bandwidth and permits the addition of more CEs to the

system without experiencing a plateau in performance. Each of the M memory controller nodes does

not directly communicate with off-chip memory, but rather buffers and converts the large read and write

requests of 64× 64 matrix blocks to bursts of appropriate size that can be consumed by actual, vendor

and device-specific off-chip memory controllers, which we do not instantiate in our design. Instead,

each of our M nodes terminates in a set of Virtual I/O pins (implemented as logic cells) that carry the

request/reply signals that would normally be forwarded to a “real” off-chip memory controller provided

by Intel in the Quartus IP library. The purpose of this design choice is to allow us to experiment with

values of M that would not be feasible to synthesize on an actual FPGA due to pin and bank placement

constraints (and fixed number of hardened memory interface PHYs available). However, such designs

may still be physically realizable in future work by using external memory solutions that communicate

over the more plentiful high-speed serial interfaces on FPGAs, such as FBDIMM[35] and Hybrid Memory

Cube[52].

The CEs, memory controller nodes, and central control unit are designed to communicate over a

GENIE-generated interconnect fabric. In order to use a different system-level fabric (such as Qsys or

CONNECT), protocol conversion modules are inserted at each system-facing interface. The design and

area overhead of each type of interface will be discussed in the respective sections.

7.1.2 GENIE Interconnect

The GENIE-built version of the LU application will serve as the baseline for comparing all others.

However, before doing so, we would also like to investigate the effects of a variety of parameters and

features within the design space of GENIE-generated systems.

The most important of these is the performance improvement yielded by the “Left Block broadcast”

optimization that is specific to the LU application, in which certain matrix blocks that are requested by

all running CEs can be read just once from a memory controller and broadcast to the CEs, instead of

being read redundantly multiple times. More details were previously described in Section 5.1.2. GENIE

is the only one of the three interconnects being compared that is capable of implementing the multicast

transmissions necessary to make this optimization possible. We will be comparing the total application

runtime of the system when using this optimization, versus having this optimization forcibly turned

off, in which CEs request all matrix blocks as unicast transmissions directly from memory controllers,

resulting in redundant reads. This comparison will be made across multiple values of N and M , as it

is expected the benefits of the optimization will only be seen when memory bandwidth demand exceeds

supply. The version of the LU system with the Left Block broadcast optimization forcibly turned off
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also provides a fairer baseline against which to compare the application cycle counts for the other two,

non-multicast-capable, versions of the system.

Another adjustable parameter for GENIE is the maximum interconnect logic depth. This controls

the amount of registers automatically inserted into the interconnect for pipelining. This parameter D

indicates to GENIE that elastic buffer primitives should be inserted no more than D consecutive logic

levels (in LUTs) apart. It includes the combinational logic depth “looking in” to user’s functional mod-

ules through Routed Streaming interfaces, which the user can specify with an additional parameter that

defaults to 0, indicating that the interface is immediately registered. Since the CEs that comprise the

LU system are universally built with GENIE in this chapter, using GENIE to build both the coarse-

grained LU system and fine-grained CE contents presents opportunities for cross-hierarchy-boundary

optimization in this regard. Specifically for logic depth, it should be possible for the GENIE-generated

CE to automatically annotate its system-facing interfaces with the correct logic depth looking into the

CE. Unfortunately, this is not yet the case, and is future work. For this reason, the logic depths of the

CE interfaces have been manually annotated to their correct values to mimic this future functionality.

GENIE’s default maximum logic depth is 5 levels, but we will also sweep other values to produce a perfor-

mance/area trade-off, which will better inform GENIE’s comparison against the other two interconnect

types later. The details of the automatic pipelining mechanism will be explained in Chapter 8.

7.1.3 Qsys Interconnect

In order to build the LU system using Qsys, the interfaces of the CEs, memory controllers, and control

node must be made to use the Avalon-MM [34] protocol. Instances of a protocol conversion module

are inserted to make this possible, specially made for the LU application’s five types of transmissions.

Logically, the largest change is mapping integer destination addresses to byte addresses within a global

memory map. For communications that were not memory-like to begin with, such as the Go messages

from the control node to each CE, this is a minor inconvenience. Expressing the Done messages that are

sent from all CEs to the control node as memory writes (to a single address) is necessary to receive the

benefits of automatically-inserted interconnect that handles arbitration and contention of those messages.

The three memory-like transmission types (read request, read reply, write request) map very naturally

to Avalon ‘read’ and ‘write’ transactions, as this is what the protocol was designed for. Read requests

and replies are not considered as two distinct types of transactions by Qsys, which slightly simplifies

the interfaces of the memory controllers compared to the GENIE and CONNECT versions. Specifically,

read replies do not experience backpressure – the Qsys interconnect contains memory buffers that hold

the replies, and only grants read requests access to the memory controller if there exists sufficient space

in the reply buffers. As a result, memory controllers do not have to receive backpressure at the reply

side, nor do they need to remember the destination for each read reply, as that is kept track of within

the interconnect. However, these buffers and additional interconnect complexity will incur an area cost,

as we will show in our results. The convenience of not having separate request and reply transmissions

also makes the Left Block broadcast optimization impossible with Qsys.

Qsys provides some parameterization of its memory-mapped interconnect. The “Limit interconnect

pipeline stages to:” setting permits Qsys to insert between 0 and 4 (inclusive) pipeline stages into the

interconnect data path. This parameter, which we will shorten to R, acts like GENIE’s D setting in that

it enables a trade-off between performance and area usage. Unlike D, increasing R increases the number

of registers. The four possible nonzero values of R correspond to the four locations within the Qsys
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interconnect fabric that the designers decided that registers are best placed. A more detailed control of

(even additional, beyond four) register placement is possible manually within the GUI, in a way that

could be specific to each application, but we did not explore these additional settings. Qsys’ default

value for R is 2, but we also consider using the maximum value of 4 when benchmarking Qsys against

GENIE and CONNECT.

7.1.4 CONNECT Interconnect

The CONfigurable NEtwork Creation Tool (CONNECT) [58], which was mentioned in Section 2.2.1 is

a packet-switched NoC architecture designed with FPGAs in mind. Unlike GENIE and Qsys, it only

generates the interconnect itself and does not create the full system that includes the instances of the

functional modules. The tool itself is available publicly as a web-based interface [51] that permits the

user to configure the network’s parameters, after which it sends an email containing synthesizable Verilog

source code. CONNECT’s architecture uses monolithic routers that contain input and output buffers

and support virtual channels. Figure 7.1 illustrates the router architecture.

Figure 7.1: CONNECT’s Router Architecture, sourced from [58]

Unlike the GENIE and Qsys versions of the LU system, which each create five separate interconnect

domains for the five types of traffic, the CONNECT version contains a single network that carries all

possible transmission types. This is done to respect the use case that CONNECT was designed for. As a

result, the protocol conversion modules in front of each CE contain additional multiplexing and arbitra-

tion to create a single output interface from three previously-separate interfaces (done messages, write

requests, read requests). Neither the memory controllers nor the control node require such multiplexing,

since they only send one type of transmission. In order for the network to carry all possible transmis-

sion types, we introduced a “transmission type” field within our data payload, which was already made

wide enough to contain the largest of the transmission types (272 bits, used for write requests and read

replies), bringing the total data width to 275 bits. Additionally, CONNECT requires fields within each

flit to indicate the destination address, virtual channel number, and an “end-of-packet” flag, yielding

a final flit width of 283 bits. The entirety of a data word is contained inside each flit to stay true to

CONNECT’s design philosophy of utilizing many parallel wires for links. Splitting each large data word

into multiple flits would penalize maximum throughput in this minimally-pipelined router architecture.

The network was configured with (N+M+1) bidirectional endpoints, representing the CEs, memory

controllers, and the control node. Every endpoint is attached to a router, and the routers can be arranged
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in a multitude of ways to create different network topologies. Our goal is mainly to evaluate GENIE, so

evaluating many topologies for our CONNECT network would represent unnecessary effort. However,

in order to have a fair comparison against GENIE, the topology that we do choose for the CONNECT

network should be a good representative of that architecture’s capabilities and intended use. To that

end, we will evaluate the area and performance of two different topologies that represent opposing points

of the design space:

• Bidirectional Ring: There exists one router per node and the routers are connected with two

rings carrying data in opposing directions. Each memory controller node is placed after a group

of N/M CE nodes in the ring. Each group of N/M CEs are the CEs that will mainly communi-

cate with the neighbouring memory controller node, effectively partitioning the ring into locally-

communicating regions that better utilize available bandwidth. This design point maximizes the

amount of routers, and minimizes the amount of network ports (and buffers) and complexity of

arbitration internal to the router.

• Hub: Shown in Figure 7.2, this topology contains one router per memory controller node, but no

routers associated with the CEs or control node. The N/M CEs that primarily communicate with

each memory controller are attached to that same router, allowing efficient local communication.

These M routers are connected via a bidirectional ring, whose network links are only used for some

phases of the application computation loop. The control node is arbitrarily attached to one of the

routers. This topology minimizes the number routers, but each router has many ports.

Figure 7.2: CONNECT “Hub” topology for N = 16 and M = 4. Orange nodes are CEs, blue rectangles
are memory controllers, and the green rectangle is the control node. Only 4 routers are used, shown in
the center.

In order to avoid deadlocks and improve performance, especially in the ring topology, we will configure

CONNECT with two virtual channels: VC 1 will carry read replies, while VC 0 (which has higher

priority) will be used for all the other types of traffic. As with the Qsys interconnect, CONNECT does
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not support multicast transmissions. This makes the Left Block broadcast optimization impossible to

implement.

The set of parameters used to generate our CONNECT networks is shown in Figure 7.3. The

topologies explored were Double Ring as well as our custom hub-based one. The number of endpoints

equals N + M + 1 for any given configuration. Two virtual channels were used to separate requests

and responses. “Peek Flow Control” was selected as an alternative to the default credit-based flow

control, and provides a similar valid/ready handshaking scheme as used by the protocols of GENIE and

Qsys. The advanced settings were left to their defaults except for “Use Virtual Links”, which prevents

fragmentation of long multi-cycle transmissions at their destinations, also matching the behavior of

GENIE and Qsys.

Figure 7.3: Settings used to generate the CONNECT network. The topology and number of endpoints
will vary. Here, they are set up for N = 16, M = 4, and a bidirectional ring topology.

7.2 Results

In this section, we will measure the clock frequency, area usage, and simulated application runtime of the

various design points within the design spaces previously described in Section 7.1. Our goal here is to

explore each of the three interconnect design spaces in isolation first, before performing a head-to-head

comparison in the next section. The large number of parameters merits a separate examination and

commentary on the performance of each interconnect architecture and how they scale with the size of

the application. First, we will describe our experimental methodology.

7.2.1 Experimental Methodology

There are two classes of results we are collecting: synthesis for area and clock frequency, and simulation

for application run time. For synthesis, we use Quartus Prime 17.0 Pro Edition and target an Arria

10 10AX115N2F45E1SG device. This is the largest device, at the fastest speed grade, available for this
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Intel device family. Clock frequencies are measured for both clock domains, using a geometric average

over four placement seeds. When measuring area, we separately include combinational lookup table and

register usage. Distributed memory usage is only reported for the CONNECT interconnect, and it is

not used by any of the other interconnect variants. No block memory or DSP blocks are used by any

interconnect variant, so these are not reported at all. We also include the Adaptive Logic Module (ALM)

count, which better represents total packed area utilization of combinational logic, registers, distributed

memory (where applicable). Area is measured for the interconnect only, while clock frequencies are

reported for the entire system.

Simulations are carried out in ModelSim 10.4c using a testbench that simulates off-chip memory

controllers. The controller model is simple: it adds 30 clock cycles of latency to each request (read or

write) before carrying it out, simulating the row and column access overheads of DDR SDRAM. The

incoming requests are delayed in a pipelined fashion rather than serially adding 30 cycles to each request.

The LU application processes an input matrix, and outputs a matrix of the same size. We generate

a random square matrix whose dimensions are multiples of 64 element blocks. Correctness was verified

against a software reference implementation, using spot checks on various sizes of matrix dimensions and

application size (N and M parameters). This is a lengthy process, requiring up to a day per run. In

order to expedite data collection, the LU application was configured for “Performance-only Simulation”,

in which no data is computed, but each Compute Element simply waits the correct number of cycles in

order to simulate the computation that would have occurred. This reduces the required simulation time

to approximately 20 minutes. Computation time is deterministic and not data dependent, which makes

this simplification accurate. Only control and handshaking signals are properly simulated, and this is

enough to measure application performance.

Even if the processed data is meaningless in this performance-only simulation mode, it is still crucial

to choose an input matrix size that will exercise all available hardware and interconnect. For a system

with N CEs, this number is (N + 1)× (N + 1) blocks. Recall that the outer loop of the LU algorithm

(Algorithm 1) first performs a serial pass using CE0 on the first column, then utilizes as many CEs as

necessary to process the remaining columns. This parallel computation pass will thus need N remaining

columns of matrix data to utilize all N CEs. In general, matrices containing (1+kN) blocks will exhibit

this optimal use of CEs, on their first outer loop pass.

7.2.2 GENIE: Benefits of Multicast

One of the key advantages of GENIE over the other two types of interconnect is the Left Block broad-

cast optimization that is possible due to multicast transmissions. Here, we will measure the resulting

performance improvement when it is enabled, versus when it is not. The goal of this optimization is to

reduce the memory bandwidth utilized by CEs. Naturally, this only affects performance if memory (and

interconnect) bandwidth is the bottleneck, rather than the computation. Thus, we expect to observe

a performance improvement only for greater ratios of N to M . Additionally, since the CEs’ compute

pipelines operate on their own separate Compute Clock, the ratio of this clock frequency to the System

Clock frequency (which governs the memory and interconnect) will also affect the memory bandwidth

demands of the CEs.

In Table 7.1, we show the total application runtimes of LU systems of various sizes, built using

GENIE, and with the Left Block broadcast optimization enabled (“BCAST”) and forcibly disabled

(“NO BCAST”). The simulations are run with a 400 MHz Compute Clock and two different frequencies
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for the System Clock: 300 MHz and 200 MHz. These frequencies are representative of the range of

achieved clock frequencies seen in the remainder of this chapter.

Table 7.1: Simulated runtimes in milliseconds and resulting speedups achieved from enabling Left Block
broadcast in GENIE-generated LU systems of various sizes.

400 MHz/300 MHz 400 MHz/200 MHz
Size BCAST NO BCAST Speedup BCAST NO BCAST Speedup

N1 M1 991 991 1.000 993 993 1.000
N2 M1 520 520 1.000 522 521 0.999
N4 M1 284 285 1.003 285 286 1.004
N8 M1 166 167 1.006 167 168 1.010
N16M1 105 106 1.013 107 130 1.210
N32M1 76 94 1.227 93 122 1.309

N4 M2 284 285 1.004 285 286 1.006
N8 M2 165 166 1.008 166 168 1.011
N16M2 104 106 1.013 105 108 1.025
N32M2 71 79 1.101 72 95 1.319

N16M4 104 105 1.012 104 106 1.019
N32M4 71 73 1.026 71 86 1.205

We observe that runtime decreases asN is increased, as expected. IncreasingM only further decreases

runtime when memory bandwidth demand is high due to an initially large N/M ratio, for example, going

from N32M1 → N32M2 → N32M4. The speedup due to enabling Left Block broadcast is also included in

Table 7.1, and we can see that it too only helps runtime when memory bandwidth demand is high.

Instances of significant reductions of 10% or more are bolded, and are more numerous when the memory

and interconnect clock runs at 200 MHz rather than 300 MHz. Figure 7.4 plots just this speedup for

both clock frequency configurations and illustrates these trends more clearly.
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Figure 7.4: Speedup due to enabling Left Block broadcast for two clock frequency ratios across many
system sizes.

The goal of this comparison was to provide a detailed real-world use case of how multicast-capable

interconnect can benefit an application designer. In addition to improving performance, one can use

it to reduce system complexity while maintaining performance: at a 300 MHz System Clock and with

32 compute elements and only one memory controller, the effect of enabling this multicast-powered

application optimization yields a better run time (76 ms) than adding a second memory controller
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(79 ms).

7.2.3 GENIE: Maximum Logic Depth

Here, we vary the amount of automatic pipelining performed by GENIE by varying the parameter D,

which is the maximum allowable logic depth. Four different values of D are tested: 5, 4, 3, and 2, with

decreasing values corresponding to more pipelining. This generates several frequency and area curves,

presented in Tables 7.2/7.3 and Figures 7.5/7.6.

The results illustrate the ability to trade off performance for area. Decreasing D has the effect of

increasing the System clock frequency, which is the clock domain used for the interconnect at this level of

the application’s design hierarchy. Figure 7.5 illustrates that the effect is more pronounced for systems

of sufficiently large size, with 8 or more compute elements. A point of diminishing returns is reached as

D continues to decrease, where the clock frequency no longer increases.

Area usage, however, continues to increase as D decreases, as shown by the ALM and register usage

curves in Figure 7.6. The intent of this particular experiment is to choose “high-performance” and “low

area” GENIE system variant to allow a fair comparison against Qsys, which is also able to vary the

amount of interconnect pipelining. Based on the frequency and area results seen here, a reasonable

“high-performance” value of D would be 3, as it provides similar performance to D = 2 but with lower

area cost. The D = 5 and D = 3 parameterizations will be used in Section 7.2.6 for the final comparison

against the other tools.

Table 7.2: Achieved System and Compute clock frequencies in MHz for GENIE-generated LU systems
versus system size and maximum logic depth.

D5 D4 D3 D2
Size System Compute System Compute System Compute System Compute

N1 M1 360 474 364 498 371 490 368 501
N2 M1 377 468 365 426 383 433 376 448
N4 M1 364 461 375 452 385 459 369 458
N8 M1 321 430 377 455 369 460 376 451
N16M1 318 411 323 416 331 418 329 390
N32M1 219 391 274 411 276 393 270 387

N4 M2 378 457 377 459 370 457 378 458
N8 M2 344 435 369 456 361 434 382 460
N16M2 315 381 327 398 357 414 356 409
N32M2 270 401 292 392 302 385 319 391

N16M4 291 399 329 409 349 403 337 388
N32M4 258 393 300 390 308 397 305 399

7.2.4 Qsys: Interconnect Pipelining

Here, we collect similar results for Qsys-generated LU systems. In addition to varying the system size,

we use two settings for the amount of interconnect pipelining provided by Qsys: two stages (the tool’s

default) and four stages (the maximum allowed value). Doing so will allow us to choose a fair comparison

point against GENIE and CONNECT.

Table 7.4 and Figure 7.7 provide the achieved clock frequencies for the Qsys results, and Table 7.5 and

Figure 7.8 provide the area consumption. As expected, using the higher level of interconnect pipelining
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Figure 7.5: Achieved System Clock frequencies for GENIE-generated LU systems versus system size and
maximum logic depth.

Table 7.3: Area usage (ALM, combinational LUTs, and registers) of GENIE-generated interconnect
versus system size and maximum logic depth.

D5 D4 D3 D2
Size ALM COMB REG ALM COMB REG ALM COMB REG ALM COMB REG

N1 M1 229 29 875 233 29 873 428 31 1466 439 32 1504
N2 M1 356 338 922 390 347 1002 651 348 1941 1018 354 3051
N4 M1 606 412 1113 1729 445 4870 1786 440 5026 1952 467 5616
N8 M1 1152 1109 1484 3639 1185 10052 3883 1187 10677 3873 1189 10633
N16M1 3818 2054 9221 7033 2063 18813 7230 2118 19467 7309 2104 19519
N32M1 7365 4293 16749 14244 4515 37307 14434 4504 37876 14425 4517 37905

N4 M2 1397 1004 3327 1578 1006 3459 2066 1575 5619 3205 1602 9053
N8 M2 2015 1527 3734 3200 1557 6914 4589 2374 11405 5736 2383 15407
N16M2 3548 2422 5655 6860 3901 14258 8753 4379 22609 9516 4385 24899
N32M2 7006 5135 10567 13595 6458 31626 15151 6844 40753 16206 6901 43755

N16M4 7717 4846 15589 10676 4839 26623 12478 5689 33481 14927 5796 39962
N32M4 9896 6145 17732 15897 10371 41819 20418 10366 55001 21332 10445 58076

(R = 4 versus R = 2) achieves higher clock frequencies at the expense of more area, specifically in terms

of register usage.

7.2.5 CONNECT: Topology

The only design parameter we will examine for the CONNECT-based interconnect is the network topol-

ogy. We are interested in whether a double ring or hub-based (Figure 7.2) topology would make the

better candidate for comparison against GENIE.

Using a single system size of N = 16 and M = 4, we compare the achieved system clock frequencies

and interconnect area utilization of systems built using these two topologies. The systems were also

simulated (using fixed Compute/System clock frequencies of 300/200 MHz respectively) to obtain the

time required to process a 17×17-block matrix). The results are presented in Table 7.6. We observe that

the double ring consumes 8.4 % more packed area but yields a two-fold increase in achieved interconnect

frequency. While the double ring employs many more routers, each router is of lower cardinality than

the four routers used in the hub topology, which is likely responsible for the difference observed in

clock frequency. The simulated application runtime of the double ring based system is less than a

percent slower than the hub-based system – the application is compute-bound and not utilizing the full
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Figure 7.6: ALM, combinational LUT, and register usage for GENIE-generated interconnect versus
system size and maximum logic depth.
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Table 7.4: Achieved System and Compute Clock frequencies in MHz of Qsys-generated LU systems
versus system size and number of interconnect pipeline stages(R).

R2 R4
Size System Compute System Compute

N1 M1 335 495 351 475
N2 M1 312 447 375 410
N4 M1 298 460 376 463
N8 M1 269 458 379 466
N16M1 254 417 328 408
N32M1 196 393 226 416

N4 M2 307 457 392 459
N8 M2 290 450 380 453
N16M2 251 410 355 384
N32M2 221 387 271 402

N16M4 286 412 344 402
N32M4 231 388 263 383
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Figure 7.7: Achieved System Clock frequencies for Qsys-generated LU systems versus system size and
number of interconnect pipeline stages(R).

throughput of the network. Meanwhile, the increased number of hops in the double ring network is

likely responsible for the small observed runtime difference, as the increased latency would affect the

serial portions of computation of the outer loop. Because the double ring topology has a significant

clock frequency advantage over the hub topology for relatively little area cost, we will use it to represent

CONNECT in the comparison against GENIE and Qsys.

7.2.6 GENIE vs. Qsys vs. CONNECT

Here, we select five versions of the LU system to perform a final comparison of clock frequency, area,

and application execution time:

• GENIE D3: A high-performance variant of the GENIE interconnect that uses a maximum logic

depth of 3.

• GENIE D5: An area-efficient variant of the GENIE interconnect that uses a maximum logic

depth of 5.
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Table 7.5: ALM, combinational LUT, and register usage of Qsys-generated interconnect versus system
size and number of interconnect pipeline stages(R).

R2 R4
Size ALM COMB REG ALM COMB REG

N1 M1 37 62 53 36 60 49
N2 M1 346 685 274 1185 810 3189
N4 M1 746 1366 475 2125 1506 5425
N8 M1 1489 2403 767 4086 2772 9698
N16M1 2947 4791 1405 7806 5168 18290
N32M1 6341 10824 3079 15511 10203 35657

N4 M2 1486 2670 1921 3593 2838 9602
N8 M2 2951 5445 3609 6248 5582 16288
N16M2 5895 10355 7010 12026 10359 29971
N32M2 11806 20264 13767 23457 19955 57092

N16M4 13691 20040 7529 16840 16226 43323
N32M4 17510 30801 14555 32949 30397 81408

Table 7.6: Clock frequency, area, and application runtime results for two different topologies of the
CONNECT variant of an N = 16M = 4 LU system
Topology System Clock Compute Clock ALM LUT REG Mem. ALM Runtime
Double Ring 185 MHz 421 MHz 24084 24897 3957 9930 26.03 ms
Hub 92 MHz 395 MHz 22236 22155 2139 4230 25.99 ms
Double Ring
vs. Hub

+ 101% + 6.6% + 8.3% + 12.4% + 85% + 135% + 0.2%

• QSYS R4: High-performance Qsys, 4 stages of interconnect pipelining.

• QSYS R2: Area-efficient Qsys, 2 stages of interconnect pipelining.

• CONNECT: Double ring topology CONNECT network.

The two versions of GENIE and Qsys represent performance-prioritized and area-prioritized corners of

the design space. The performance-prioritized corners (GENIE D3 and QSYS R4) will compete for

clock frequency, where the area-prioritized corners (GENIE D5 and QSYS R2) will compete for area

utilization. The two Qsys variants (area-prioritized R = 2 and performance-prioritized R = 4) comprise

a corresponding set of contenders for the Qsys interconnect.

Previously in Section 7.2.3, we determined that using a maximum logic depth of less than 3 when

creating GENIE interconnect yields diminishing returns, hence our usage of D = 3 as the higher perfor-

mance corner. Maximum logic depths of greater than 5 are possible, but as we will soon show, a setting

of D = 5 for GENIE matches up with Qsys’ corresponding area-prioritized corner in such a way that

there exist both wins and losses in area in GENIE’s favour.

Area, clock frequency, and application performance will be swept across eight different system sizes,

ranging from (N = 8,M = 1) to (N = 32,M = 4). This is a slightly smaller range of sizes than have

been used previously in this chapter, as system sizes of N = 4 and smaller are being ignored.

We will begin with the area comparison. Table 7.7 provides absolute area usages for the five variants

in terms of packed area (ALMs) and pre-packed combinational LUTs (COMB) and registers (REG).

Two additional tables re-interpret this data as relative comparisons. Table 7.8 compares the GENIE

area-prioritized variant (D = 5) against the Qsys and CONNECT variant, showing how much smaller
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Figure 7.8: ALM, combinational LUT, and register usage for Qsys-generated interconnect versus system
size and number of interconnect pipeline stages(R).

or larger, in percent, each GENIE system is relative to the corresponding Qsys or CONNECT system.

Table 7.9 repeats this comparison for the GENIE performance-prioritized variant (D = 3). Figure 7.9

displays the absolute area comparison in bar chart form.

Comparing the area-prioritized interconnects, GENIE D5 consumes less packed area (ALMs) than

Qsys R2 and CONNECT in most cases. The exceptions are the two systems in which there are a large

number of compute elements (N = 16 and N = 32) and only one memory controller (M = 1). Here,

GENIE consumes 16% and 30% more ALMs than Qsys, respectively, with the absolute differences being

900-1000 ALMs. With larger systems and more complex interconnect requirements due to additional

memory controllers, GENIE provides an ever-increasing area savings, topping out at 43% at the largest
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Table 7.7: Absolute ALM, combinational LUT, and register usage for GENIE, Qsys, and CONNECT-
generated systems.

N8M1 N16M1 N32M1 N8M2 N16M2 N32M2 N16M4 N32M4
GENIE D5 ALM 1152 3818 7365 2015 3548 7006 7717 9896

COMB 1109 2054 4293 1527 2422 5135 4846 6145
REG 1484 9221 16749 3734 5655 10567 15589 17732

GENIE D3 ALM 3883 7230 14434 4589 8753 15151 12478 20418
COMB 1187 2118 4504 2374 4379 6844 5689 10366
REG 10677 19467 37876 11405 22609 40753 33481 55001

QSYS R2 ALM 1489 2947 6341 2951 5895 11806 13691 17510
COMB 2403 4791 10824 5445 10355 20264 20040 30801
REG 767 1405 3079 3609 7010 13767 7529 14555

QSYS R4 ALM 4086 7806 15511 6248 12026 23457 16840 32949
COMB 2772 5168 10203 5582 10359 19955 16226 30397
REG 9698 18290 35657 16288 29971 57092 43323 81408

CONNECT ALM 11164 20002 38662 12574 21705.2 39697 24084 42898
COMB 11426 20626 39246 12901 22091 40672 24897 43485
REG 1863 3311 6207 2073 3585 6609 3957 6981

system configuration (N = 32,M = 4). For the performance-prioritized corners, GENIE D3 consistently

consumes fewer ALMs than Qsys R4, from 5% at the smallest system (N = 1,M = 1) to 38% at the

largest.

CONNECT has the poorest area utilization out of all the five variants, and is already configured with

a relatively area-efficient double ring topology. With the same number of network nodes, a topology

with more bisection bandwidth such as a mesh would have more ports and links, further increasing the

area. Even the high-performance GENIE D3 variant, which consumes more area than GENIE D5, yields

a minimum 48% ALM savings versus CONNECT.

Several interesting observations arise when examining the usage of individual FPGA resource types

by the different interconnects. In terms of combinational logic, GENIE consistently uses fewer look-up

tables than the other two interconnect types, and CONNECT uses the most. However, GENIE is register-

heavy, and CONNECT is the opposite. As we will see in the clock frequency comparison, this design

strategy will hurt CONNECT’s results there. Against Qsys, GENIE tends to use more registers when

comparing the area-prioritized corners, and fewer registers when comparing the performance-optimized

corners. In the former case, GENIE still wins in packed area more often than not. For example, for the

N = 16M = 4 system, GENIE D5 uses over twice the number of registers as QSYS R2, yet still wins in

packed area by 44%. If clock frequencies and (architectural) FPGA interconnect delays increase in the

future, register-heavy designs may be a more favourable design strategy.

Next, we compare achieved clock frequencies. We are mainly concerned with the system clock

frequency, as in the LU application, this clock domain drives the interconnect. However, the compute

clock is also recorded, as it will be used to perform an accurate simulation during the runtime comparison.

Table 7.10 contains the achieved clock frequencies for both clock domains, as well as a geometric mean,

across ALL interconnect types, per system size. These will be used to drive simulations. Figure 7.10

graphs the system clock frequencies only. Relative comparisons, of the two GENIE variants versus the

three others as a baseline, are provided in Table 7.11. Each entry corresponds to a percentage increase,

or decrease, over a Qsys or CONNECT system clock frequency for a given system size.

When prioritizing clock frequency, the GENIE D3 and Qsys R4 variants are of interest, as they

were designed to maximize performance. Excepting the smallest systems, GENIE consistently achieves
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Table 7.8: Relative area usage of area-prioritized GENIE variant (D = 5) versus Qsys and CONNECT.
Results in GENIE’s favour are shown in green.

N8M1 N16M1 N32M1 N8M2 N16M2 N32M2 N16M4 N32M4
QSYS R2 ALM -23% +30% +16% -32% -40% -41% -44% -43%

COMB -54% -57% -60% -72% -77% -75% -76% -80%
REG +93% +556% +444% +3% -19% -23% +107% +22%

QSYS R4 ALM -72% -51% -53% -68% -70% -70% -54% -70%
COMB -60% -60% -58% -73% -77% -74% -70% -80%
REG -85% -50% -53% -77% -81% -81% -64% -78%

CONNECT ALM -90% -81% -81% -84% -84% -82% -68% -77%
COMB -90% -90% -89% -88% -89% -87% -81% -86%
REG -20% +178% +170% +80% +58% +60% +294% +154%

Table 7.9: Relative area usage of performance-prioritized GENIE variant (D = 3) versus Qsys and
CONNECT. Results in GENIE’s favour are shown in green.

N8M1 N16M1 N32M1 N8M2 N16M2 N32M2 N16M4 N32M4
QSYS R2 ALM +161% +145% +128% +55% +48% +28% -9% +17%

COMB -51% -56% -58% -56% -58% -66% -72% -66%
REG +1292% +1286% +1130% +216% +223% +196% +345% +278%

QSYS R4 ALM -5% -7% -7% -27% -27% -35% -26% -38%
COMB -57% -59% -56% -57% -58% -66% -65% -66%
REG +10% +6% +6% -30% -25% -29% -23% -32%

CONNECT ALM -65% -64% -63% -64% -60% -62% -48% -52%
COMB -90% -90% -89% -82% -80% -83% -77% -76%
REG +473% +488% +510% +450% +531% +517% +746% +688%

Table 7.10: System and Compute clock freqeuencies (in MHz) of the five final interconnect types versus
system size. The geometric mean is calculated per-column for each clock domain.

N8M1 N16M1 N32M1 N8M2 N16M2 N32M2 N16M4 N32M4
GENIE D5 Sys 321 318 219 344 315 270 291 258

Compute 430 411 391 435 381 401 399 393
GENIE D3 Sys 369 331 276 361 357 302 349 308

Compute 460 418 393 434 414 385 403 397
QSYS R2 Sys 269 254 196 290 251 221 286 231

Compute 458 417 393 450 410 387 412 388
QSYS R4 Sys 379 328 226 380 355 271 344 263

Compute 466 408 416 453 384 402 402 383
CONNECT Sys 201 189 167 200 192 171 185 170

Compute 452 419 398 440 406 389 421 394
Geomean Sys 300 278 214 307 286 242 284 241

Compute 453 415 398 442 399 393 407 391

a higher clock frequency than Qsys at this performance-focused corner. The largest observed gains

are 17% and 22%, while the two losses to Qsys are by 2% and 5% at N8M1 and N8M2 respectively.

CONNECT is the poorest performer, and struggles to achieve 200 MHz. Its low register-to-logic ratio

corroborates these results. At the area-prioritized design corner, still consistently achieves higher clock

frequencies than Qsys R2, by up to 26%. Even in the “unfair” comparison to performance-prioritized

Qsys R4, area-prioritized GENIE D5 achieves a frequency within 2% for the largest-sized LU system.

Finally, we compare application execution times. These are measured in simulation, using a 33× 33

block matrix as input, to ensure that the largest systems tested, which have 32 compute elements, are

fully utilized during at least one iteration of the LU decomposition algorithm’s outer loop. This will
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Figure 7.9: ALM, combinational LUT, and register usage for GENIE, Qsys, and CONNECT-generated
systems.

measure the impact of each interconnect variant on cycle count, rather than cycle time as reported by

the previous clock frequency results. Since there are two clock domains in the application, a cycle count

cannot be reported in a frequency-neutral way, as the ratio between the two clock frequencies affects the

cycle count. Therefore, we must choose some System and Compute clock frequency to simulate at, and

report the time taken. One possibility would be to simply use the achieved clock frequencies reported

in Table 7.10, unique to each system size and interconnect variant. While this would give the most

accurate estimate of application runtime, it would also obscure the effect of cycle count on performance

between the interconnect variants. At the other extreme, choosing a single System and Compute clock

frequency for all data points would be unrealistic, as the system clock frequencies drop significantly

as system size increases, and a single choice would be either too optimistic for large systems or too
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Table 7.11: Achieved system clock frequency of both GENIE variants (D = 3 and D = 5) relative to
Qsys and CONNECT variants. Results in GENIE’s favour are shown in green.

N8M1 N16M1 N32M1 N8M2 N16M2 N32M2 N16M4 N32M4
GENIE D3 QSYS R2 +37% +30% +41% +24% +42% +37% +22% +33%
vs. QSYS R4 -2% +1% +22% -5% +1% +11% +2% +17%

CONNECT +84% +75% +66% +80% +86% +77% +89% +81%
GENIE D5 QSYS R2 +19% +25% +12% +19% +26% +22% +2% +12%
vs. QSYS R4 -15% -3% -3% -9% -11% -1% -15% -2%

CONNECT +59% +68% +31% +72% +64% +58% +57% +51%
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Figure 7.10: Achieved system clock frequency for GENIE, Qsys, and CONNECT-generated systems.

Table 7.12: Simulated execution times for processing a 33 × 33 block matrix, in milliseconds, for the
three interconnect types.

N8M1 N16M1 N32M1 N8M2 N16M2 N32M2 N16M4 N32M4
GENIE D3 146.49 101.33 89.47 149.39 104.06 72.83 102.20 72.69
QSYS R4 147.13 106.17 113.95 150.08 104.97 83.48 103.46 77.87
CONNECT 147.54 118.85 128.92 150.46 106.21 97.13 103.87 78.22
GENIE vs.
Qsys

-0.43% -4.56% -21.48% -0.46% -0.87% -12.76% -1.23% -6.66%

GENIE vs.
CONNECT

-0.71% -14.74% -30.61% -0.71% -2.02% -25.02% -1.61% -7.07%

pessimistic for small systems. As a compromise, we elected to choose a System and Clock frequency

common to all interconnect types but different for each system size – for each of the eight sizes from

N8M1 to N32M4, there will be a single Compute and System clock, calculated as the geometric mean

of achieved frequencies from all five interconnect variants at that system size. These frequencies appear

at the bottom of Table 7.10. In this comparison however, we will only look at three variants: the two

performance-oriented variants, GENIE D3 and QSYS R4, and CONNECT.

Table 7.12 provides the resulting run times in milliseconds, and relative comparisons of GENIE

versus the Qsys and CONNECT runtimes. Recall that GENIE is capable of supporting multicast, and

the Left Block broadcast optimization is able to make more efficient use of interconnect resources. As we

previously saw in Section 7.2.2, the effect of this optimization becomes more prominent as the bandwidth

demand on extant memory controllers increases, which occurs at higher ratios of N to M . The greatest

effect is at N32M1 with a 21% speedup over Qsys and 31% over CONNECT. CONNECT performs the

worst, likely due to the poor bisection bandwidth offered by its double ring topology, which is shared



Chapter 7. Coarse-Grained Design Exploration 91

for all network traffic. This is in contrast to the GENIE and Qsys interconnect fabrics, which use

separate networks for each traffic type. We could have used a different network topology, with similar

area characteristics, for the CONNECT design point to alleviate this bandwidth shortage. However, as

we saw in Section 7.2.5, topologies that increase the cardinality of each router will suffer a penalty in

clock frequency, which may negate any cycle count reduction.

7.3 Conclusion

In this chapter, we built a hardware system composed of coarse-grained functional modules and connected

with GENIE and two other types of interconnect synthesis tools/architectures: Qsys and CONNECT.

Across a range of system sizes, the GENIE interconnect performed favourably in terms of area, clock

frequency, and application runtime. Within the possible design space of interconnect, each tool had

parameters that could prioritize the generated interconnect for performance or for area, and we performed

comparisons at both corners. The most significant benefit of GENIE was application-specific, in that its

support of multicast enabled the LU factorization engine to better utilize available bandwidth and often

complete the computation in less time than when using non-multicast-capable interconnect to build the

application.

In summary, GENIE has shown to be more than capable of targeting coarse-grained systems, even

when compared against other tools that were also designed for the same purpose. We note again that

the LU factorization application explored in this chapter contains main instances of the fine-grained

Compute Element that was studied in Chapter 6, and that a single invocation of the GENIE tool was

all that was required to build both the outer coarse-grained system as well as the fine-grained system

submodules. This provides some opportunities for optimizations across hierarchy boundaries, which we

leave as future work to explore.



Chapter 8

Automatic Pipelining and

Synchronization

This chapter covers two related features of the GENIE interconnect synthesis flow:

• Automatic Pipelining: The insertion of registers into the interconnect in order to increase

performance by limiting the maximum number of consecutive combinational logic stages.

• Synchronization: The intentional insertion of delays into the interconnect to allow exact cycle-

accurate relationships between arrival times of transmissions, with the goal of enabling correct and

functional globally-synchronized communication without the use of backpressure signals.

At first glance, these are not related – pipelining is a structural change used to increase clock frequency,

and synchronization is related to cycle counts and correct circuit operation, and does not prescribe a

specific physical implementation of how delays are achieved. However, GENIE implements the delays

required to perform synchronization also by inserting registers. In both the case of pipelining and

synchronization, there can exist many choices of where to insert registers into the interconnect, and

some choices cost more total registers than others, yielding an optimization problem. GENIE solves

both the pipelining and synchronization problems simultaneously using a unified register insertion engine

that uses Integer Linear Programming (ILP) to find the area-optimal locations where registers need to

be inserted to solve both problems. The automatic pipelining stage and the synchronization stage of

the GENIE flow both emit ILP constraints to feed this unified solver. Note that we will refer to the

‘insertion of registers’ throughout this chapter to imply the insertion of GENIE Elastic Buffer primitives

(described in Section 4.4), which comprise two registers when backpressure is used, and a single register

when it is not.

The case study application for this chapter will be the convolutional neural network inference engine

that was previously described in Section 5.2. The design of this application makes use of globally

synchronized communications, as well as requiring pipelining to achieve high performance, and thus

presents an ideal test case. However, we will first begin this chapter by describing the two separate

features, synchronization and automatic pipelining, in isolation. This will be followed by results of using

these features within GENIE to implement the convolutional neural network application.

92
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8.1 Synchronization

A consequence of designing hardware at a high level of abstraction is the loss of knowledge or control

over the detailed implementation. Specifically in the case of automated interconnect synthesis, the

boundary between the designer and the tool is enshrined in the contract of the interface protocol. As we

have mentioned before, existing signaling protocols such as Avalon[7] or AXI[9] employ the use of flow

control and backpressure signals in order to allow maximum freedom in interconnect implementation.

As a result, a functional module cannot assume, in general, that the interconnect will provide a specific

end-to-end latency, or that the latency will even be constant during system operation. This presents

a challenge when functional modules require synchronized data arrival from two or more sources. To

guarantee synchronization even in the face of unknown interconnect latency, FIFOs or similar constructs

can be inserted just before the functional module inputs, and dequeued when the module sees fit.

The alternative would be to manually create the interconnect with explicit, fixed, known latencies,

such that the data arrives at each functional module input at the correct clock cycle by design. While this

removes the area penalty incurred by FIFOs, it requires significantly more effort for the designer. They

must either create the interconnect in HDL, giving up the productivity advantage of automated tooling,

or (if their tools allow) manually specify the locations of registers in the interconnect. Not only must

they add the correct number of registers, but they could potentially select among many equally-valid

locations to insert them, with some yielding higher area usage than others.
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Figure 8.1: Three solutions for ensuring that inputs at module D arrive at the same time: a) Using an
automated system-building tool and modifying module D (as D′) by adding FIFOs at its inputs, or b)
building the interconnect manually and adding two pipeline stages after module B or c) before module
B.

Figure 8.1 illustrates a motivating example, containing four functional modules, of such a synchro-
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nization problem. Here, modules B and C are internally fully pipelined with fixed input-to-output

latencies of 2 and 4 clock cycles, respectively. Each takes a 9-bit input and produces a 256-bit output,

as a block RAM might commonly do, for example. Module D requires matching inputs to arrive during

the same clock cycle. If a tool is used to build this system, the four modules would be connected with

abstract logical links that are synthesized to an implementation with an unknown latency. The designer

may employ the solution shown in Figure 8.1(a), where module D is wrapped inside a new module D′

that adds two 256 bit wide FIFOs to synchronize the data arrival at the inputs. However, if the designer

had full control over the design of the interconnect, they may opt instead to use balancing registers to

add the correct, fixed amount of extra latency to synchronize data arrival, and avoid the unnecessary

hardware complexity of FIFOs. Two equally-valid solutions are shown in Figures 8.1(b) and 8.1(c),

with the latter having the lower area usage of 18 (versus 512) registers. The choice of (c) over (b) may

be trivial to see in this example, but a larger more complex system would present the designer with

less-obvious choices.

In our original paper [64] titled Synchronization Constraints for Interconnect Synthesis, we pro-

posed augmenting an interconnect synthesis tool (GENIE) with the ability to automatically create area-

optimal, fixed-latency interconnect in response to the synchronization needs of the designer’s application,

effectively enabling solutions such as Figure 8.1(c) to be generated automatically. This is accomplished

by accepting, from the designer, a set of synchronization constraints, which take the form of equations

or inequalities that relate the end-to-end latencies of one or more logical links and a constant. GENIE

then uses these constraints during interconnect creation by inserting the correct number of balancing

registers, favouring solutions that use the minimal amount of total registers. The remainder of this

section will be a description and formulation of these synchronization constraints, and how they can be

used to help the user describe new types of interconnect requirements.

8.1.1 System Representation

Before we describe the synchronization constraint feature of GENIE, we will first revisit its baseline

system and connection representation as seen from the point of view of the designer. Systems contain

one or more functional modules containing interfaces. Some of these interfaces are Routed Streaming

interfaces (see Section 3.2.3) that participate in complex automated interconnect synthesis. These are

referred to as “logical links” in Figure 8.2. Ultimately, GENIE realizes these logical RS links as physical

interconnect, which appear as “physical links” in the figure along with some of GENIE’s interconnect

primitives: a Split and Merge node (which also communicate with other modules not shown), and an

elastic buffer. Synchronization constraints are processed later in the GENIE flow, after other interconnect

primitives (Split, Merge, clock domain converters, address converters) have already been inserted and

connected together.

8.1.2 Internal Links and Chains

In the existing representation, logical links originate and terminate at the interfaces of functional mod-

ules. In order to capture the type of global synchronization requirements depicted in the opening example

shown in Figure 8.1, we must first extend the basic system representation with the ability to specify

communication through modules. Internal links serve this purpose – they define a communication path

from one of a component’s receiving interfaces to one of its transmitting ones, following the flow of
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Figure 8.2: Baseline GENIE system representation

data. Each internal link has an associated fixed latency, in clock cycles, and is explicitly specified by the

designer as part of a functional module’s definition. It is also possible for an interface to participate in

multiple internal links within a module, each with a different latency. Internal links are created with a

distinct GENIE API call, available both in Lua and the C++ library.

After introducing internal links, we can now define a higher-level type of construct called a chain,

which captures a transmission beginning at one module, through zero or more intermediate modules,

and terminating at an ultimate destination. A chain defines a contiguous set of one or more logical links

and internal links. Figure 8.3 illustrates an example of a chain spanning three modules - A, B, and C.

The intermediate module B has an internal latency of 5 clock cycles, which is defined by its internal link.

s m m s

physical interconnect internal
link

logical link #1

chain

5

A B C
logical link #2

Figure 8.3: A chain spanning three modules A, B, and C, with its constituent two logical links and one
internal link within B that has a latency of 5 clock cycles. Each logical link will be realized into the
example interconnect shown.

8.1.3 Synchronization Constraints

Recall that the goal of this feature is to automatically generate interconnect that obeys user-specified

synchronization constraints. Now, with the ability to capture transmissions spanning multiple modules

using chains, we are ready to introduce the formulation of the constraints proper. Given a set of N ≥ 1

chains h1, h2, . . . , hN , a synchronization constraint takes the form:

h1 ± h2 ± · · · ± hN op K (8.1)

where op is a comparison operator (one of <,≤,=,≥, >), and K is an integer. Each term hi represents

the end-to-end latency, in clock cycles, of that chain. This general form allows the designer to specify
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Figure 8.4: The example in Figure 8.1 restated using a synchronization constraint. The two chains from
A to D are constrained by the user to have equal latency.

arbitrary latency relationships between chains, or to bound the latency of an individual chain. A chain

(and its constituent logical links) can participate in multiple constraints.

Figure 8.4 restates the example system in Figure 8.1 as an input to GENIE using chains, logical

links, and synchronization constraints. The explicitly-specified physical interconnect in the original

example has been replaced with logical links between components A, B, C, and D, whose interfaces

have been named ‘in’ and ‘out’ (with D having two inputs ‘in1’ and ‘in2’). The latencies of B and

C are captured with internal links. The requirement for D’s inputs to arrive simultaneously has been

captured as a synchronization constraint between two chains h0 = {A.out → B.in,B.out → D.in1}
and h1 = {A.out → C.in, C.out → D.in2}, with the constraint being that h0 = h1. The GENIE API

introduces several new functions that allow the user to define chains of arbitrary length, and define

synchronization constraints on these chains in the general form of Equation 8.1. Refer to Appendix A.3

for a description of these functions.

8.1.4 Optimization Problem Formulation

In general, there may be many legal solutions that satisfy a set of synchronization constraints, differing

in the number of total inserted registers; ideally, we would like to find the solution that yields the fewest.

Here, we will formulate this goal as an Integer Linear Programming optimization problem. While the

problem will be presented in isolation for clarity, in reality it will be solved simultaneously with the

automatic pipelining constraints described in the next section of this chapter. This combined problem

will be restated in Section8.3.

Let C be the set of all user-provided constraints, each taking the form of Equation 8.1. For a

constraint c ∈ C, let Hc represent the set of chains that appear on the left hand side. A chain h ∈ Hc

has an associated set of logical links, Gh, which is a subset of all logical links G. Chains also traverse

internal links, that are represented by the set T. Let P be the set of all physical links between existing

GENIE interconnect primitives. By splicing registers into physical links, cycles of delay can be added

in appropriate places to satisfy the overall set of synchronization constraints. If we define L(p) as the

number of registers to insert into physical link p, then the goal of the overall optimization problem is
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to solve L(p) for all p ∈ P. We also wish to satisfy the constraints using the minimum total amount of

registers. If W (p) represents each physical link’s width in bits, then this objective can be codified as the

minimization of the following cost function:

# of registers =
∑
p∈P

W (p)L(p) (8.2)

Figure 8.5 illustrates the relationship between an example chain h0 and its constituent logical, inter-

nal, and physical links, as well as the properties W and L of physical links. The width W of a physical

link includes the widths of all constituent signals of the Routed Streaming logical links that travel over

the physical link. These widths can vary throughout the physical network, as does the presence or

absence of RS protocol signals. The latency L of a physical link is a numerical annotation that is only

later realized as extra registers.

g0,0

h0
g0,1

p1 p2 p3 p4 p5p0

t0,0W(p1)
L(p4)

Figure 8.5: A single chain consisting of one internal link and two logical links, which are synthesized
into interconnect containing a total of four primitives and six physical links p0 through p5. W (p1) is the
width in bits of link p1 and L(p4) is the necessary extra latency, in cycles, of p4.

To solve the set of constraints C, each constraint c ∈ C is first converted from the form of Equa-

tion 8.1, as provided by the user, into that of Equation 8.3 by expanding each chain term hi into its

constituent physical links pi and internal links ti:

h1 ± h2 ± · · · ± hN op Kc (8.1)

L(p0)± · · · ± L(pN ) op Kc ± L(t0)± ...± L(tM ) (8.3)

The left-hand side consists of unknowns (the latency of physical links to solve for), and the right-

hand side contains constants (the user’s constraint constant Kc together with the fixed latencies of

internal links denoted by L(ti)). The GENIE interconnect primitives that exist prior to register insertion

currently have zero latency, but for generality’s sake, any future primitives that do have non-zero latency

should have their latencies included on the right-hand side. The resulting system of inequalities is in

a canonical form suitable for solving using integer programming: the (nonnegative, integer) unknown

variables L(p) are on the left-hand side, and constants are on the right-hand side. A solution to the

synchronization problem yields the values of L(p) for all for all p, subject to the optimization criterion

of minimizing the cost function of Equation 8.2, which is linear with respect to the unknown variables

L(p).
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8.1.5 Variable Latency and Backpressure

The presented use cases for automatic synchronization are for fixed-latency modules without backpres-

sure. There are currently no restrictions on using variable-latency modules (which use a valid signal) or

those with backpressure (which additionally use a ready signal) from participating in automated syn-

chronization, but GENIE still expects a single latency value to be annotated on each internal link. These

additional use cases do not require synchronization for correctness, which is accomplished explicitly with

flow control signals, hence making the presented use case for synchronization constraints redundant.

Could there still be a use for synchronization constraints for performance, rather than correctness

purposes, in systems that ensure correctness via valid/ready signals? If a system has reconverging paths,

it may be the case that a multi-input module representing a reconvergence point stalls all upstream inputs

until all inputs have a valid token. In this situation, the branch (or chain, in GENIE’s parlance) with the

longest latency determines the latency of the final output. If the reconverging path is part of a loop, this

latency directly translates into throughput, even if every functional module in isolation would be capable

of accepting and producing one output per cycle in a fully-pipelined fashion. To increase throughput,

additional capacity (in the form of registers or other storage elements) would need to be added on

every other chain to match the latency of the longest chain. In principle, the existing synchronization

constraint mechanism (with the constraints specifying equality for all chains) could insert the necessary

capacity. If a module’s latency is variable, the user would annotate its worst-case latency. This is similar

to existing buffer insertion problems [29] targeting performance.

8.2 Automatic Interconnect Pipelining

This section describes GENIE’s automatic interconnect pipelining functionality. The outcome of the

process is similar to that of synchronization, in that registers will be inserted into existing locations in

the interconnect. However, the goal is different: rather than to insert cycles of latency, the purpose of

registers will be to break long combinational paths to increase clock frequency. For the synchronization

problem, we were concerned with determining the value of L(p) for all p, representing the latency in

cycles to insert into a physical interconnect link, which is a count of the number of registers that will be

inserted. For pipelining a link p, we re-use the same variable L(p), but are only interested whether it is

0 or greater than 0, with the exact count not being important.

We have decided to pipeline based on combinational logic depth, which is a count of the number

of technology-dependent FPGA LUTs traversed by signals through the interconnect. To pipeline the

interconnect thus requires inserting registers such that the number of LUTs between any two registers is

less than some fixed value. The other option would have been to pipeline based on absolute delays (for

example, in nanoseconds). While theoretically more accurate, this approach would have required even

more device specificity than logic depth, namely the estimation of delays across multiple process, voltage,

and temperature corners, which can vary across different sizes of FPGAs within a single architecture.

Our work also ignores FPGA interconnect delay, with ‘interconnect’ here referring to the low-level

wiring, switching, and signal driver circuitry within the device that is controlled by configuration bits.

Knowledge of this component of signal delay would require placement and routing information, which is

beyond the scope of a tool that generates HDL.

1. Annotate each existing interconnect primitive with estimated logic depth values.



Chapter 8. Automatic Pipelining and Synchronization 99

2. Create a timing graph from the set of interconnect primitives and their physical connectivity.

3. Deploy the on the timing graph to emit a series of ILP constraints on L(p) to ensure register

presence.

4. Traverse the timing graph and emit a series of ILP constraints on L(p) to ensure register presence.

This step is performed by our novel Snake Algorithm.

5. Solve for L(p) subject to the constraints, with the goal of minimizing register usage. This solution

can include any additional constraints on L(p) specified by the user for synchronization purposes,

solving both problems simultaneously.

8.2.1 Annotation of Logic Depth

GENIE maintains a database, for every interconnect primitive, containing area usage and timing (logic

depth) information. This was previously described in Section 4.1. For automatic pipelining, we require

use of the timing information. For each primitive type (Split node, Merge node, etc), and for various

parameterizations of it (eg. “backpressure used” vs. “backpressure not used”, number of input ports,

etc), we store the combinational logic depth between:

• Each input port and output port.

• Each input port and an internal buried register.

• Internal buried registers to each output port.

where the granularity of representation is that of individual HDL ports. The logic depths are obtained by

synthesizing each primitive, in each parameterization, with the back-end FPGA CAD software in a test

harness, and storing the results in a database that GENIE loads when it is executed. This logic depth

information is necessary for building a timing graph that will be used to perform automatic pipelining.

When the synchronization/pipelining stage of the GENIE flow is run, the parameterizations of thus-

far-existing interconnect primitives are known, and the timing information for them can be obtained

from the database. However, the granularity of GENIE’s interconnect synthesis at this time in the flow

is that of “physical links”, which employ the Routed Streaming protocol. At this level of abstraction, a

port or connection is not an HDL port or HDL wire, but a bundle of related signals of different roles (eg.

data, valid, ready, address, etc.). Since the individual HDL ports of an interconnect primitive module

are treated together as a single interface (and HDL wires to/from them treated as a single physical link)

the detailed logic depths obtained from the database are simplified and worst-cased (using the longest

possible path) to obtain representative values.

Figure 8.6 shows an example. Here an interconnect primitive has a single RS input port called

in iface and a single output port called out iface. Only the data and valid signals are being used on

each, and the appropriate parameterization has been obtained from GENIE’s database. The obtained

logic depths from both of the input port’s constituent HDL ports, I DATA and I VALID have arcs to

internal registers (collectively labeled “INT”) and to one or both of the output HDL ports. The ones

that terminate in internal registers, having depths of 1 and 3, are worst-cased to a single value of 3 and

annotated as in iface’s logic depth value. Only a single internal-to-HDL-output arc exists with a depth

of 1, so this is kept as the annotated value of out iface’s logic depth. The worst-case HDL input to
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Figure 8.6: Left: Timing database representation of logic depths for an example interconnect primitive,
at the level of HDL ports. Right: GENIE view of the same primitive at the level of RS interfaces, with
timing database depths worst-cased to single representative values.

HDL output logic depth is 2, so this is used as the single representative logic depth from in iface to

out iface.

As a consequence of this level of abstraction, when physical links between interconnect modules have

register insertion performed, it is performed uniformly on all constituent HDL signals that are part

of that bundle. The reason for the detailed explanation of this annotation is mainly to highlight its

limitation and the possibility of future work in which the constituent signals are treated independently

and can be pipelined by potentially differing amounts, as long as global end-to-end correctness and

synchronization are maintained.

Thus far, the discussion has been about annotating logic depth on GENIE interconnect primitives

only. However, we have also provided the ability for the designer to annotate the RS interfaces of their

own functional modules with an optional logic depth attribute. This is a single integer, defaulting to

zero, which represents the number of combinational logic stages from any member HDL port of the RS

interface, to some internal register deep within the module. For combinational paths through a user

module, which do not terminate at an internal register, the user can define internal links between an

input port and an output port, internally within a module. These are the same types of links previously

introduced for the synchronization functionality in the previous section. However, instead of specifying

a latency (which would imply the number of that many registers), the user can (mutually exclusively,

of course) specify a logic depth instead, defining a combinational path through the module. Both the

port-based and internal-link-based logic depth annotations must be manually measured or estimated by

the user, and become part of the input to GENIE. With this feature, GENIE is able to pipeline the

interconnect taking the logic depth within (and through) users’ modules into account.

8.2.2 Timing Graph Creation

After all the interconnect primitive modules have been annotated with their logic depths, the interconnect

modules, user modules, and physical connectivity between them are transformed into a timing graph.

This is a directed, and possibly cyclic, graph that preserves the data flow direction in the original

hardware netlist, and is annotated with logic depth values. It will be used to lay down ILP constraints

for automatic pipelining The vertices in the timing graph represent one of two possible things: possible

locations of pipeline registers on physical links between modules, and known locations of registers within

the cores of the modules. If vertices represent (fixed and possible) registers, then the edges represent

combinational logic paths between them, annotated with logic depth values as weights.
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Figure 8.7: Top: Example domain with four modules (user and interconnect) with internal registered
cores (red), inter-module physical links (black), and purely combinational internal links (blue). Logic
depth values are annotated with letters a-h. Bottom: Timing graph extracted from the above. Red
vertices represent terminal, internal registered cores. Black vertices represent pipeline-able locations on
inter-module links. The edge weights are logic depths.

Figure 8.7 illustrates the process using an example interconnect domain with four modules: a user

module with one interface acting as a source, a middle module which could be a 2-output Split node,

and two more user modules acting as sinks. Logic depth values of both the interface-to-internal-register

variety (red) and interface-to-interface variety (blue) are labeled with the letters a through h. Each of the

three external physical links becomes a black vertex in the extracted timing graph. The red vertices in

the timing graph represent the cores of the four modules. These are locations of inflexible registers that

ultimately initiate or terminate combinational logic paths. Because of this, directed graph connectivity

is intentionally cut through red vertices. For example, the core of the center module, which is fed by one

input interface and itself feeds two output interfaces, is not represented as a single vertex in the timing

graph, but instead as three separate vertices.

As a final step, the timing graph is post-processed to remove edges with zero weights. The two

vertices bordering a zero-weight edge are combined into one vertex that arbitrarily takes the identity

of one of the original vertices, such that it continues to represent a single pipeline-able physical link.

For the case of zero-weight edges that originate or terminate at an internal vertex (one that does not

represent a physical link, but a connection to an internal module register), the internal vertex and the

edge are culled from the graph completely. These steps are not strictly necessary, but they reduce the

size of the timing graph and simplify both the operation and understanding of the traversal algorithm.

In the following sections, it is assumed that all weights are nonzero integer values.

8.2.3 Timing Graph Traversal

Here we provide a high-level overview of how the timing graph is traversed and give intuitive reasoning

behind the more formal description of the Snake Algorithm presented in the next sections. The goal of

timing graph traversal is to generate a set of ILP constraints on the variables L(p) which, when satisfied,

guarantee a minimum number of registers to be inserted within contiguous segments of physical links.

The criterion for pipelining is a user-specified maximum logic depth, specifying the longest desired
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combinational path between two registers. In GENIE, this value defaults to five stages and can be

specified on a per-system basis. A trivial solution would of course be to pipeline every link, but this

would, in the general case, require more area than necessary. Additionally, just as with synchronization

constraints, there can be many legal solutions that yield different area results. Thus, there exists an

optimization problem here, similar to the one with synchronization constraints. In fact, the two problems

share the same ILP optimization goal function, and this will be described later in the appropriate section.

b c da

v0 v1 v2 v3 v4

Figure 8.8: A path within a larger timing graph containing five vertices v0-v4 and edge weights a-d.

Before attempting to solve the pipelining problem on an entire timing graph, we will first examine the

simpler problem of pipelining a smaller section of the graph. Figure 8.8 shows such a section. Recall that

vertices represent the locations of registers (either fixed existing ones prior to pipelining, or pipeline-

able locations located on inter-module physical links). Edges represent combinational paths between

registers, and are annotated with logic depths. Figure 8.8 is a path containing five vertices, and could be

located anywhere within the timing graph. Let it also be a path where pipelining is definitely required:

that is, the sum of the edge weights a through d, representing logic depths, exceeds the user’s desired

maximum logic depth specification Dmax. We say that such a linear subgraph is overweight. Then, as

long as each of the individual weights is less than or equal to Dmax, we can successfully pipeline this

section of the graph by setting some combination of L(v1), L(v2), and L(v3) to at least 1, including the

trivial solution of setting all three to nonzero values, which would pipeline every link. Note that we are

not concerned here with the extreme ends of this section at v0 or v4, as inserting registers there does

not affect the Dmax-satisfiability of the section under consideration.

Let us impose two additional conditions on this hypothetical subgraph. In addition to having a

total weight exceeding Dmax, let the values of the weights be such that by removing either a or d from

consideration, the respective remaining sums (b + c + d) or (a + b + c) would be less than or equal

to Dmax. If both of these conditions are satisfied, then the requirement for successfully pipelining the

subgraph becomes much simpler: it is now merely sufficient that at least one of L(v1), L(v2), or L(v3) is

nonzero. Expressed as an inequality, this requirement can be written as L(v1)+L(v2)+L(v3) > 0, which

is directly representable as an input constraint to an ILP problem, which we call a pipeline constraint.

More generally, we say that an overweight linear subgraph with vertices labeled v0 through vN is

minimally overweight if placing a register at locations v1 or vN−1 partitions the subgraph into two linear

subgraphs whose weights are less than or equal to Dmax. It follows that in a minimally-overweight

subgraph, placing a register at any location from v1 through vN−1 yields a similar result – moving the

partition point between the two extremes can not yield a total partition weight greater than observed at

the extremes, as the weights are nonnegative. A pipeline constraint, specifying that at least one vertex

from v1 through vN−1 should contain a register, is enough to successfully constrain the subgraph for

successful pipelining.

Our approach to pipelining the entire timing graph is therefore to visit all of its minimally-overweight

subgraphs, and for each, emit a single pipeline constraint. Each subgraph must have at least three

vertices: a head, a tail, and at least one interior vertex representing a pipeline-able location. By

simultaneously solving all pipeline constraints, yielding a solution to the variables L(p) and then inserting
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registers according to L(p), there will exist no locations in the timing graph where more than Dmax

consecutive logic stages are found. This is the essence of our Snake Algorithm, whose main focus is to

perform an orderly traversal of the entire timing graph to visit all the necessary minimally-overweight

subgraphs.

8.2.4 Snake Algorithm: Linear Case

The Snake Algorithm is a novel method that we developed to construct a pipelining problem using ILP.

First we will introduce it in a simplified way, by operating on a timing graph that consists of a linear

chain of vertices, starting and ending on internal vertices belonging to modules. The full algorithm

simply deconstructs a more general timing graph into many such linear subgraphs and operates much in

the same way, with additional steps added to handle branching, loops, and reconvergence in the graph.

Our example graph in Figure 8.9 has ten vertices, v0 − v9, with the logic depths indicated on the edges.

Let Dnm be the sum of edge weights starting at vertex vn and ending at vertex vm. For example, let us

use a maximum logic depth Dmax of 5.

Figure 8.9: Snake Algorithm in operation on a linear timing graph.

The current state of the algorithm is represented by the snake – a set of adjacent vertices within the

graph, defining a path from a tail vertex to a head vertex. The weight of the snake Dsnake is equal to

D(tail)(head). Initially, the snake contains just the source terminal vertex of the graph. In Figure 8.9a,

this is v0, and it is both the tail and the head of the snake. Next, the head of the snake advances

forwards until the snake is overweight, meaning Dsnake > Dmax. If this never occurs, then pipelining is

not required at all and we are done. However, in Figure 8.9b, this occurs when the head reaches v5, as

the addition of weight D45 = 3 brings the snake over the weight limit of 5. At this point, the section of

the graph contained within the snake definitely requires pipelining, but we can not guarantee that this

can be accomplished with just a single register, which would be the ideal case and allow us to create a

single ILP pipeline constraint.
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The next step is to remedy this by advancing the tail forward as far as possible until the snake

becomes minimally-overweight. In Figure 8.9c, this occurs when the tail reaches v2, as the next weight

D23 = 2, if subtracted from Dsnake, would cause the snake to stop being overweight. After advancing

the tail, Figure 8.9d is the result. The snake is now minimally-overweight and we can emit a pipeline

constraint, requiring that at least one register be placed within the snake, excluding the tail and head

vertices. In Figure 8.9d, we can see that these are the two vertices v3 and v4, and the emitted constraint

is also displayed. The variable L(p) is the number of registers to insert into physical link p, and each

vertex represents a possible pipeline register location for an associated physical link.

This constraint will ensure that a pipeline register will be inserted for the physical link represented

by v3, v4, or both. Note that by successfully pipelining the range v2-v5, we also guarantee that this suc-

cessfully pipelines v0-v5, which was the original range covered by the snake before its tail was advanced.

This is important, as at first glance it appears that the section of the graph to the left of the snake, v0-v2

is neglected by the pipeline constraint and that more than Dmax consecutive logic stages may remain in

the overall graph even after registers are inserted. Our argument against this is as follows: assume the

worst case, in which the solution to the pipeline constraint emitted at d) results in only a single register

inserted at v4. It is the worst case because this would give the range v0-v4 the greatest chance of being

overweight. However, we know that the cumulative weight for this range, W04, is less than or equal to

Dmax, because in step b), we advanced the head from v4 to v5 for that exact same reason. Therefore,

the satisfaction of the emitted pipeline constraint at step d) also guarantees that the entire graph up to

the head vertex will be successfully pipelined.

Finally, in step e), we move the tail forward one vertex, and since the snake was minimally-overweight

at step d), we now have a non-overweight snake with a total weight of 4. The algorithm now repeats

from step b), advancing the head forwards until the snake is overweight again, which will happen when

the head reaches v7 and the snake weight becomes 7. Looking forward, repeating the next step, step c),

will move the tail forward to v4, where the snake will be minimally-overweight again. Note that due to

the pipeline constraint emitted during step d), at least one register is guaranteed to be placed at either

v3 or v4 meaning that at worst, if it is placed at v3, it would act as a terminal red vertex and reduce the

remainder of the pipelining problem to the situation shown in Figure 8.9a. If the register is placed even

further forwards, then it is an even more optimistic scenario, as not only does the problem resemble a),

but there is already at least one register placed in the remainder of the path ahead. At this point, steps

b) through e) repeat and the algorithm terminates when the head attempts to move past the end of the

graph. The output is a set of pipeline constraints, the number of which depends on the weights in the

graph.

8.2.5 Snake Algorithm: General Case

Finally, we can extend the idea behind the Snake Algorithm presented in 8.2.4 to a general timing

graph. The approach is to traverse every possible source vertex to sink vertex path in the graph, and

treat each like the linear case previously presented. A source vertex is one with only outgoing directed

edges, and a sink vertex only has incoming edges. Additional bookkeeping is employed to avoid visiting

the same parts of the graph more than once, and to avoid having the number of extracted linear paths be

a quadratic function of the number of source and sink vertices. The state of the algorithm now contains

many snakes, rather than one snake, stored within a stack Q. The snakes in the stack are completely

processed one at a time, as per Section 8.2.4, but will spawn additional child snakes when encountering
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divergence points in the graph. These snakes are pushed onto the stack for later continuation. The

global algorithm state also includes a set of visited vertices, which is initially empty. Each snake has the

following properties:

• The list of vertices that are currently in its body, including the head vertex at the front and the

tail vertex at the end.

• The number of vertices within its body that have not been previously visited by any other snake.

• The weight of all edges currently spanned by the snake.

The full Snake Algorithm is presented as Algorithm 4. The queue is populated with initial snakes

on Line 3. In order to process each snake, three phases are performed, corresponding roughly to Sec-

tion 8.2.4: advancing the snake’s head (Line 11), advancing its tail (Line 23), and emitting an ILP

constraint (Line 31). Advancing the head now requires taking into account all the possible vertices

that the head can advance into. Each such possible vertex, stored in the set N , yields a new extended

snake, and these are pushed onto the stack. The (arbitrarily) topmost of these pushed snakes completely

replaces the initial un-extended snake, assuming its identity, and processing resumes from there. The

other pushed snakes will end up being resumed later.

There is also a change in how the tail advancement works, compared to the introduction given in

Section 8.2.4. Previously, the snake’s tail was advanced as far as possible while keeping the snake

overweight, and the vertices in the interior of the snake on the open set (head, tail) would participate

in ILP constraints. For algorithmic simplicity, the semantics have changed somewhat: the tail is now

advanced one step further, until the snake stops being overweight. Then, the tail vertex becomes part

of the ILP constraint, on the half-open set [head, tail). The result is the same, but it avoids the need to

backtrack the tail once discovering loss of overweight status, or to look ahead to individual edge weights

rather than considering the total weight of the snake alone at any given time.

Vertices are only marked visited once they leave a snake through its tail. If at any time a snake

contains only previously-visited vertices, then processing of it can be terminated early. This is how cycles

and reconvergence in the graph are handled. The output of the algorithm is a set of ILP constraints.

Traversal of the graph is bounded by the number of edges, which also bounds the maximum number of

ILP constraints emitted. However, an ILP constraint containing only one vertex (one physical link) is

trivial, as it guarantees a solved value of 1.

8.3 Solution of Synchronization and Pipeline Constraints

In this section, we describe the simultaneous solution of the synchronization constraints specified by

the user from Section 8.1 and the pipeline constraints emitted by the Snake Algorithm in Section 8.2.

Both synchronization and pipeline constraints involve the integer variables L(p) that correspond to the

number of registers that should be inserted on a physical link p.

The optimization goal remains the same as it did in Section 8.1.4: to minimize the total number of 1-

bit register elements inserted into the system. For any given physical link p, this is a product of its width

in bits W (p) and the number of inserted register stages L(p). To summarize, the inputs to the final ILP

problem are shown in Equations 8.4. From top to bottom, it contains synchronization constraints, each

of which constrains the L variables as a function of a user-chosen relational operator op, a user-chosen
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ALGORITHM 4: Snake Algorithm for Generating ILP Pipeline Constraints

inputs : timing graph G = (V,E) with edge weights D, maximum logic depth Dmax

output: zero or more ILP constraints on L(p)
1 Q = {}
2 visited = {}

// Initialize Q with snakes, one for each source vertex in G
3 foreach {v ∈ V | [u, v] /∈ E ∀u ∈ V } do
4 s = snake{.verts = {v}, .weight = 0, .unvisited = 1}
5 Q.push(s)

6 end
7 while !Q.empty do

// Grab a snake off the stack and process it completely

8 s = Q.pop()
9 snake done = false

10 while !snake done do
// Advance head of snake until it is overweight

11 while s.weight ≤ Dmax do
// Examine all possible next vertices the snake head can move forward into

12 N = {n ∈ V | [s.head, n] ∈ E} foreach n ∈ N do
13 newsnake = s // Construct a new snake based on s, with new head vertex

14 newsnake.verts.push head(n)
15 newsnake.weight += D([s.head, n]) // Add new edge weight to snake

16 if n /∈ visited then
17 newsnake.unvisited++ // Update unvisited vertex count

18 end
19 Q.push(newsnake)

20 end
// s resumes as one of the extended snakes just pushed, if any

21 if !Q.empty then s = Q.top else snake done = true, break

22 end
// Advance tail of snake until it just becomes underweight, or too short

23 while s.weight > Dmax and |s.verts| > 2 do
24 old tail = s.verts.pop tail()
25 visited = visited ∪{old tail} // Mark outgoing tail as visited

26 s.weight -= D([old tail, s.tail]) // Reduce snake weight

27 end
28 if s.unvisited == 0 then // Snake only contains visited vertices, can stop early

29 snake done = true
30 break

31 end
// Include all vertices in the half-open interval [tail, head) in the constraint

32 emit ILP constraint: L(s.verts[tail]) + L(s.verts[tail + 1]) + · · ·+ L(s.verts[head− 1]) > 0

33 end

34 end
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constant Kc, and the fixed latencies of modules’ internal links L. Next come the pipeline constraints

emitted by the Snake Algorithm, each constraining the sum of one or more L variables to be nonzero.

Finally comes the optimization goal which is to minimize the total number of inserted registers. GENIE

internally uses the lpsolve [1] package to solve the ILP problem.

After solving for L, we only need to insert the corresponding number of registers on each physical

link. However, before inserting the actual registers, there exist two additional optimization steps that

transform the interconnect based on the solved values of L, which we describe in the next two sections.

L(p0)± · · · ± L(pN ) op Kc ± L(t0)± ...± L(tM )

· · ·

L(p0) + L(p1) + · · ·+ L(pJ) > 0

· · ·

minimize :
∑
∀p

W (p)L(p)

(8.4)

8.3.1 Systolic Retiming Transform
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Figure 8.10: Left: a Split node feeding four physical links with differing latencies. Right: applying
systolic retiming, the number of required register stages is reduced from 7 down to 3.

After solving for L for every physical link, situations may arise similar to the one on the left side of

Figure 8.10. Here, a Split node fans out to four physical links that were each assigned different values

of L. Each link feeds some other interconnect or user module, labeled A through D. Realizing this

assignment would require 7 register stages – the sum of the 2, 2, and 3 register stages for destinations

B, C, and D. However, if we allow for the freedom to change the topology of interconnect primitives

after initial latency assignment, a cheaper solution can be found, as shown in the right side of the figure

where an extra Split node is used to reduce the cost to three register stages. We call this optimization

the systolic retiming transform. The overall process is:

1. Sort the Split node’s fanout physical links into bins by their latency assignments L(p).

2. Remove the initial Split node.

3. Create a Split node for each bin from step 1.

4. Connect each Split node from step 3 to the original destinations in the respective latency bins, but

reset the latency on these new physical links to 0.

5. Connect the Split nodes together with physical links whose latencies are the differences between

successive bins.
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6. The last Split node can be removed and its sole fanout reassigned to the second-last Split node.

After performing the transform, new values of L exist on the updated interconnect. Note that the

timing as observed by A, B, C, and D is not affected. Since the original Split node is replaced with one

or more Split nodes with lesser cardinality than the original, the number of logic stages for each Split

node should also be less than the original, which ensures that the existing pipelining provided by the

new register placements is sufficient. As future work, a similar transformation could be performed on

Merge nodes.

8.3.2 Long Register Chain Optimization

The second kind of post-ILP optimization that we perform involves choosing the type of interconnect

primitives used to realize the values of L(p). Nominally, this would simply be GENIE elastic buffer

primitives (Section 4.4). However, if a the value of L is sufficiently large for a particular physical link,

inserting that many consecutive elastic buffers into that link may not be the most area-efficient option.

Instead, we may opt to replace that entire chain of elastic buffers with a single Delay Buffer primitive

(Section 4.7) that implements the required number of delay cycles using FPGA distributed memory. For

each physical link, the estimated area costs of the two approaches (chain of elastic buffers vs. single delay

buffer primitive) are compared, and the cheapest option is chosen. The estimated cost is a function of

both the width of the link in bits as well as the number of cycles of delay requested by the L value for

that link. Lookups in GENIE’s primitive area database (Section 4.1.1) are used, and take into account

the stepwise area consumption characteristics (with respect to width and depth) of distributed memory

blocks.

8.3.3 Summary

The combined optimization problem of satisfying synchronization constraints and automatic pipelining

is solved with ILP, yielding a value of L(p) for every physical link p in an interconnect domain. Then,

the systolic retiming transform is performed on Split nodes with multiple fanout and differing L values

on outgoing physical links. Finally, the (possibly transformed) domain’s L values are realized physically

as either elastic buffers or delay buffer primitives, completing the entire register insertion portion of the

GENIE flow.

8.4 Results

In this final section, we present results that demonstrate both the effectiveness and limitations of the

synchronization and automatic pipelining flows that have been described in this chapter. First, we

will focus on automatic pipelining in isolation, in both fine- and coarse-grained systems, using the LU

Decomposition application. The goal here will be to demonstrate the effects on clock frequency and area

as a result of changing the amount of automatic pipelining. Some of these results have been collected in

previous chapters, and will simply be referred to.

Then, we will shift our focus to studying the use of synchronization constraints on the Convolutional

Neural Network application introduced in Section 5.2. Synchronization is an issue of correctness rather

than quality of area/frequency results, so the focus here will be a more detailed study to show that the

GENIE synchronization flow is indeed inserting registers in intelligent and correct locations to enable
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a functional design. Finally, we will return to automatic pipelining, but on the CNN design, where we

will examine some of the limitations of our approach, which relies on the bounding of logic depth alone

and ignores the real distances that signals need to travel as a result of FPGA placement.

Clock frequency and area measurements are obtained through full compilation and timing analysis in

Quartus Prime Pro 17.0, targeting an Arria 10 device – 10AX115N2F45E1SG for LU engine designs, and

10AX115S2F45I2SGES for the CNN. Clock frequencies were geometrically averaged over six compilation

seeds.

8.4.1 Automatic Pipelining: LU Decomposition Engine

Our first set of results demonstrates the effectiveness of automatic pipelining by observing how varying

the maximum logic depth parameter, Dmax, affects interconnect area usage and total system clock

frequency. The application being tested is the LU Decomposition Engine from Section 5.1, specifically

the outer (coarse-grained) level of design hierarchy. Automatic pipelining is enabled for the inner fine-

grained CE design as well, but Dmax is kept constant at the default of 5 stages, while we vary the Dmax

for the outer level. This experiment was previously performed in Section 7.2.3 as part of a design space

parameter sweep for comparing GENIE against other tools. Data and conclusions may be found there.

8.4.2 Automatic Pipelining: Compute Element

Up to this point, the effects of automatic pipelining have only been observed as measurements of area and

clock frequency. It would also be instructive to observe the detailed effects on individual register insertion

on a smaller, but still realistic, design example. The LU and CNN design examples are relatively large,

such that excepting trivially small parameterization of those applications, there are too many functional

and interconnect modules to effectively visualize at the level of detail of individual registers. Here, we will

study the effects of automatic pipelining on the much smaller fine-grained Compute Element subsystem

of the LU engine, which can be illustrated in its entirety at our desired level of detail.

Figure 8.11 shows netlists containing the CE’s functional modules (in green), GENIE-inserted in-

terconnect primitives (in white), automatically-inserted registers (in red), and the connections between

them. Each connection is a Routed Streaming physical link representing a bundle of different sig-

nal types. The three illustrated systems differ in the values of Dmax supplied to GENIE’s automatic

pipelining process. Using a sufficiently large value of 10, no extra registers are inserted, yielding the

unpipelined version in Subfigure a). The subsequent Subfigures b) and c) use smaller values of Dmax,

5 and 3 respectively, which increase the amount of inserted registers, shown as red rectangles. Note

that the two register stages seen in Subfigure b), where Dmax = 5, do not reappear at a more aggressive

setting of Dmax = 3 in Subfigure c). They are instead replaced by two stages of pipelining, which further

subdivide the combinational logic in that part of the CE, which happens to correspond to the cache write

paths. This is the most complex interconnect in the CE, with two sources and five sinks, and it is not

surprising that the longest combinational paths exist there, and are therefore pipelined first.

We also swept Dmax across a wider range of values to perform the same clock frequency and area

analysis for the CE as we previously did with the coarse-grained outer LU system. These results are

in Table 8.1. The critical path in both clock domains lies within the functional modules, explaining

why the clock frequencies (notably the compute clock) do not change much with additional interconnect

pipelining. The interconnect register count, however, does change, confirming our previous detailed
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observations.

Table 8.1: Achieved system and compute clock frequencies and interconnect register count for generated
CE versus maximum logic depth.

Dmax 1 2 3 4 5 6 10
Compute Clk (MHz) 487 497 488 487 471 485 465
System Clk (MHz) 630 629 613 633 622 630 610
Registers 9429 4017 3024 2987 1484 1317 845

8.4.3 Synchronization Constraints: CNN

The remainder of the results in this chapter will focus on the Convolutional Neural Network design,

which requires precise cycle-level synchronization of transmissions to ensure correct behavior. Recall

that the design has a two dimensional array of Dot Product Units (DPUs) containing N columns and

typically 16 rows. Each DPU has two inputs: image data, and kernel data, and these two streams of data

must arrive simultaneously. This poses an issue due to the differing latencies of intervening functional

modules, as well as due to registers inserted by GENIE within the interconnect itself. Figure 8.12

illustrates an example of such a situation for the inputs of a single DPU. The image delivery paths are

generally longer, requiring registers on the kernel path to compensate. Here, four extra registers would

be needed to achieve this.

We specify several sets of synchronization constraints to guide GENIE into inserting the necessary

delay registers. These are shown in Figure 8.13. A naive approach would lead to the creation of a

significant number of synchronization constraints to achieve our goal: these would be used to equalize

the delays between the single kernel data chain feeding each DPU and the N×N total possible image data

chains to that DPU. Since there are N × 16 DPUs, many total constraints would be required. However,

we can reduce the required number of constraints by decomposing the synchronization problem into

two phases. First, as illustrated in Figure 8.13a, we first create a single set of N2 constraints between

chains hR, which start at the launch signal and terminate only as far as the image buffer inputs. These

will ensure that the image iterators and buffers process through the image data in perfect lock-step by

synchronizing the arrival of the “launch” control signal that begins iteration, as well as the iterated

addresses that are fed into the image buffers. To finalize the decomposition, in Figure 8.13b we return

to the original problem of synchronizing kernel and image data. However, rather than touching all N2

image data chains, we only need N of them: the ones that go through a single (arbitrary) iterator and

each image buffer. These are constrained to match each other, as well as the single kernel data chain hK0

which represents the single kernel buffer that feeds the DPU at location (0, 0) of the array. The transitive

nature of equality causes the constraints from subfigures a) and b) together to implicitly recover all the

necessary paths.

Finally, we present the results of the application of synchronization constraints to the system. The

goal is to demonstrate that registers have been correctly inserted, into intelligent area-minimizing loca-

tions, to compensate for delay differences. The CNN system was configured as follows:

• Synchronization constraints: Enabled, and specified as described above. Functional modules

are also annotated with the correct internal links, specifying input-to-output pipeline latencies.

• Topology: Manually-specified, containing two N ×N full crossbars using split and merge nodes:
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Figure 8.11: Compute Element system netlist with three levels of automatic pipelining: a) Dmax = 10,
b) Dmax = 5, c) Dmax = 3. User functional modules are shown in green, and inserted register stages in
red.
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Figure 8.13: Chains and synchronization constraints used to ensure simultaneous input and kernel data
delivery to DPUs. a) Chains hR and related constraints used to equalize delays from all image iterators
to a single image buffer I0. There are N similar sets of these for each of the remaining image buffers.
b) Chains hI represent complete image data paths to a DPU, but through a limited subset of all N ×N
possible such paths to each DPU. Constraints force equal delays among them and also with kernel data
chain hK0 to ensure the overall synchronization goal.

one between the iterators and image buffers, and one between the image buffers and DPU columns.

At the top of each DPU column is a split node that broadcasts to all 16 DPUs within that column.

The launch signal is similarly broadcast, via a split node, to all kernel buffers and all iterators.

• Pipelining: Also manually-specified for this demonstration. We place one pipeline stage within

each of the two full crossbars, matching the implied interconnect delays in Figure 8.12. Addi-

tionally, to make the synchronization problem more interesting and challenging, we also manually

systolically pipeline the row- and column- wide data broadcasts such that each row/column of

DPUs receives its vertically/horizontally-broadcasted image/kernel data one cycle later than the

previous row/column.

Figure 8.14 displays the resulting array. The automatically-inserted synchronization registers (in

yellow) exist to balance the delays caused by the manually-specified pipeline registers (in white) as

well as the pipeline latency inherent to each functional module. Several interesting phenomena can be

observed here. First, the common latency difference between all kernel and all image paths (4 cycles)

has been realized as a chain of four consecutive synchronization registers inserted at the very start of the

kernel data paths, where it is cheapest to do so, as the launch control signal is a single bit wide. The one

cycle systolic difference between each row’s image data broadcasts is compensated for with additional,

cheap, 1-bit-wide registers that offset every subsequent kernel buffer. Note that the matching systolic
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Figure 8.14: DPU array resulting from the application of the synchronization constraints. Automatically-
inserted balancing registers are shown in yellow, and manually-specified pipeline registers are in white.
Each crossbar also contains a single pipeline register.

appearance of these registers was automatically created due to the Systolic Retiming Transform described

in Section 8.3.1. Without it, the ith kernel buffer would have had an independent i-register chain between

it and the launch signal, with O(M2) total such registers, where M is the number of kernel buffers.

Due to the crossbars present in the image data path, the cheap compensation method that was

performed for the kernel data is not available for the image data paths, as every register that delays

the launch signal would affect all columns. Instead, the ILP solution inserts synchronization registers

later in the image data paths, where every physical link is 256 bits wide, after the second full crossbar.

Every column receives an additional cycle of delay compared to the previous column. After the first

column, it becomes cheaper to implement the delay using a Memory Delay primitive rather than a chain

of actual registers, so here we see the invocation of the other post-processing optimization, described in

Section 8.3.2. This optimization alleviates some of the otherwise-egregious area cost that would exist

for a chain of N 256-bit-wide synchronization registers for large N .

Finally, it is important to ensure that this result produced by GENIE is actually functionally correct.
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Table 8.2: Clock frequency and interconnect area usage for CNN design generated with all-automatic
pipelining subject to Dmax values of 5 and 3.

N=4 N=6 N=8 N=11
D5 D3 D5 D3 D5 D3 D5 D3

FMAX 313 319 261 260 220 211 167 174
ALM 2805 2371 4156 4991 7909 10165 15789 34915
COMB 3961 2934 4101 4307 7702 9922 19107 17366
REG 2710 6925 4061 7317 5407 30546 7124 74695
MEM 10 10 10 10 10 10 10 10

We ensured correctness through RTL simulation in ModelSim 10.4c, by validating the simulated CNN

output against a golden output generated by a software model.

8.4.4 Automatic Pipelining: CNN

We now return to automatic pipelining, but applied to the CNN design. With the LU design, we

successfully demonstrated the ability to increase achieved clock frequency by increasing the amount of

automatic pipelining, at the natural cost of increased area for the additional registers (Section 7.2.3).

With the CNN design, we will also test the limitations of our logic-depth-based automatic pipelining

approach. Specifically, we will compare CNN systems that are completely automatically pipelined against

those that start to include manually-specified pipelining in more and more sections of the design. The

regions chosen to manually pipeline are those that designer intuition would indicate have a good chance

of relaxing the pressure on the FPGA CAD placement and routing engine and compensate for long

signal propagation distances, therefore increasing achieved clock frequency beyond what an approach

solely based on logic depth can offer.

In all experiments, the synchronization constraints described previously are also enabled, as they are

required to end up with a functionally-correct design. Some of these automatically-inserted registers

will compensate for the delays introduced by the manual and/or automatic pipeline registers that are

the focus of the experiments, further demonstrating the interplay and dependence of the two GENIE

flows described in this chapter. To limit the complexity of our analysis, a consistent manually-specified

interconnect topology is used throughout, whereas later, in Chapter 9, it too will be allowed to vary and

be automatically generated by the tool.

Fully Automatic Pipelining

First, we begin by observing what happens when we allow GENIE to automatically-perform pipelining

based on logic depth alone. We utilize two different values of the maximum logic depth, Dmax: the

default of 5, and a more aggressive value of 3. The results can be observed in Figure 8.15, which shows

where the automatic pipeline registers are inserted. Here we see part of the CNN’s computation array

corresponding to the image data paths, containing the N image address iterators and N image data

buffers, each of which feeds a column of 16 DPUs. Only this part of the design is shown, as these

are the only locations where pipeline registers were required to be inserted to satisfy maximum logic

depth constraints. Additional compensation registers were also automatically added within the kernel

data paths, due to satisfaction of synchronization constraints, and are not shown. The two Split/Merge

layers form two full crossbars, which are simplified for illustration.
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Figure 8.15: Locations of automatically-inserted pipeline registers for the CNN design under all-
automatic pipelining, subject to Dmax values of 5 and 3.

We can see that under Dmax = 5, a single stage of N 256-bit registers were added between the

second full crossbar and the final Split node. Under Dmax = 3, these registers remain, but an additional

two sets of N2 registers are inserted in between the Split and Merge nodes of each full crossbar. These

are costly locations to insert pipeline stages, but this is the only available solution for achieving a

Dmax requirement of 3 LUT stages. The associated effects on clock area and frequency are given in

Table 8.2, which sweeps four different CNN array sizes, parameterized by N = 4, 6, 8 and 11. The

results provide the achieved clock frequency (FMAX), and the number of ALMs, combinational LUTs,

registers, and distributed memory ALMs used in clock domain conversion or delay elements. The area

numbers are for all GENIE-generated interconnect in the design, not just the image data path section

shown in Figure 8.15. Notably, the number of registers increases significantly under Dmax = 3 versus

Dmax = 5, in the super-linear fashion expected from the pipelining of the N2 crossbars. However, the

clock frequency is not significantly affected by the extra pipelining: it changes by at most 4% across the

four system sizes.

Semi-Manual Pipelining

A designer may be satisfied with the achieved clock frequency under fully automatic pipelining, however,

we would like to know if even higher performance is possible by utilizing pipelining techniques that would

not be available when considering logic depth alone. The CNN design can be challenging to place and

route on an FPGA and achieve a high clock frequency. It contains many functional modules: image

and kernel buffers, iterators, and the DPU array. Some of these require full crossbar connectivity with

256-bit data widths, and the image/kernel buffers utilize block RAM, restricting their possible placement

to certain columns on the FPGA. A tool such as GENIE, which ultimately only outputs RTL, is unaware

of such physical design considerations. However, a human designer may intuitively realize the inherent
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Figure 8.17: Detailed manual register placement in the three manually-pipelined CNN regions.

timing closure challenges and add pipelining for the sole reason of making it simpler for signals to cross

large distances on the chip. In the next three iterations of the CNN design, we will incrementally

relax GENIE’s automatic control over pipelining and manually specify some pipeline register locations.

This is achieved during manual topology specification, in which links between modules, split nodes, and

merge nodes may have an explicitly-specified number of register stages (which further constrain the ILP

solution at the granularity of physical links).

Figure 8.16 illustrates the regions we will manually pipeline, and Figure 8.17 shows exactly where the
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Table 8.3: Achieved clock frequency and area for all automatic and manual pipeline schemes across four
sizes of CNN system.
N=4 Fmax ALM COMB REG MEM N=6 Fmax ALM COMB REG MEM
D5 313 2805 3961 2710 10 D5 261 4156 4101 4061 10
D3 319 2371 2934 6925 10 D3 260 4991 4307 7317 10
SYSTOL 331 9258 3850 30879 400 SYSTOL 283 15054 4022 47749 660
SYSTOL
+ P1

339 9289 3851 30948 400
SYSTOL
+ P1

287 14727 4025 48049 660

SYSTOL
+ P1 + P2

375 10541 3832 36309 400
SYSTOL
+ P1 + P2

320 16851 5035 53861 660

N=8 Fmax ALM COMB REG MEM N=11 Fmax ALM COMB REG MEM
D5 220 7909 7702 5407 10 D5 167 15789 19107 7124 10
D3 211 10165 9922 30546 10 D3 174 34915 17366 74695 10
SYSTOL 261 23104 9286 64999 920 SYSTOL 185 36386 19306 90190 1310
SYSTOL
+ P1

267 23200 9256 64959 920
SYSTOL
+ P1

195 35887 18847 90606 1310

SYSTOL
+ P1 + P2

279 24465 9236 71663 920
SYSTOL
+ P1 + P2

200 36941 19407 97700 1310

registers will be placed in each region. Region P1 is the image data delivery section that was previously

the only area that was automatically pipelined under both Dmax = 5 and Dmax = 3. The very regular

two-stage pipelining proposed for region P1 is more aggressive than Dmax = 5 was (which only had one

stage), but avoids pipelining the N2 connections within each full crossbar like Dmax = 3 did. It is also

possible that with too many registers, the design actually becomes harder to place and route, so in our

manual scheme for P1 we only place pipeline registers after the output of each merge node, yielding 2N

total registers versus 2N2 +N .

The “SYSTOL” region takes place within the compute array, where we manually pipeline the delivery

of kernel and image data in a systolic fashion. This arrangement was previously used to stress-test the

synchronization constraint functionality in Section 8.4.3. The intuition behind placing pipeline registers

in the array is to provide more slack to distribute the long and wide broadcast data to the 2D array of

DPUs.

Finally, the P2 region exists between the off-chip memory and the kernel/image buffers. These are

the links that periodically fill the on-chip buffers as their contents are processed. This is significant, as

these links are on a separate clock domain from the one that we have been measuring and the one on

which we hope to increase clock frequency. Intuitively, without the proposed manually-placed registers,

there would be a fully-combinational high-fanout broadcast, which would restrict the placement of the

kernel and image buffers.

The results are displayed in Table 8.3. Each quadrant is a different system size, parameterized

by a different value of N . Within each quadrant, all pipelining configurations (including the first two

fully-automatic pipeline schemes) are included, giving clock frequency and area measurements. The

three manual configurations add an ever-increasing amount of manual pipelining, starting with just the

“SYSTOL” region, and then incrementally adding “P1” and then “P2”. Automatic pipelining, under a

maximum logic depth of 5, is still applied under the SYSTOL-only configuration, before it is completely

overridden after the introduction of the P1 manual pipelining.

All three installments of manual pipelining achieve a higher clock frequency than either of the

automatic-only D5 and D3 configurations. When combining SYSTOL, P1, and P2, this yields a 15-

25% improvement over the automatically-pipelined D3 configuration. SYSTOL alone adds a significant
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amount of registers to achieve the first clock frequency bump, so it is tempting to conclude that this

is simply a case of area/performance tradeoff – throwing more registers at the problem than automatic

pipelining would normally perform on its own. However, observing the gain seen when adding the P2

manual pipeline region, we can see that there is more happening: adding extra registers in an unrelated

clock domain gives us up to 10% better clock frequency in the compute domain.

What we can conclude from this is that there is much room for improvement in automatic pipelining

in terms of considering physical design characteristics beyond simple combinational logic depth. The

ideal place for an automatic pipelining algorithm would be during FPGA place and route, where such

information is known to an exact degree. Intel’s Stratix 10 [50] FPGAs and accompanying Quartus

Prime software are an example of such an approach, where pipelining is performed during placement

and routing, with the aid of special registers embedded within FPGA interconnect links.



Chapter 9

Automatic Topology Optimization

This chapter describes a method of automatic topology generation and optimization within the GENIE

interconnect synthesis flow. It is based on the short paper Automatic Topology Optimization for FPGA

Interconnect Synthesis [65].

Recall that GENIE’s interconnect microarchitecture uses two primitives to perform all routing: the

Split node and the Merge node. Different arrangements of Split and Merge nodes can be composed to

create different interconnect topologies. This set of possibilities enables tradeoffs between area usage and

performance of the resulting system. GENIE partitions the user’s logical connectivity into connected

components called domains, and each domain may either have a manual topology (in which Split and

Merge nodes are explicitly instantiated and connected by the user), or an automatically-generated and

optimized topology. The automatic topology generation process is guided by information, provided by

the user, about the transmissions represented by the logical links in a domain, with the goal being to

create a topology that satisfies the user’s communication requirements while minimizing interconnect

area usage. We will describe the nature of these transmission communication specifications as well as

the topology creation and optimization process. Results will be provided that demonstrate successful

and unsuccessful use cases of automatic topology optimization within real designs. First, we will begin

by motivating our need for automatic topology creation and optimization.

9.1 Motivation

Routed Streaming links, defined by the user, represent logical transmissions that must traverse GENIE-

generated physical interconnect to arrive at their destinations. The topology of a GENIE interconnect

domain constrains the available paths that transmissions can take, and defines the maximum available

throughput. Specifically, Merge nodes are the locations within a network topology where one physical

link (the Merge node’s output) must be shared among all of the Merge node’s inputs.

Figure 9.1 illustrates three different topologies that connect two source interfaces X and Y to four

sink interfaces A, B, C, and D. The leftmost topology is the most complex, using four merge nodes and

two split nodes, but it provides the maximum possible throughput. In contrast, the rightmost topology

uses the fewest routing primitives, but forces all transmissions to share the central link connecting the

Merge node to the Split node. Going from left to right, there is a trend of reduced resource usage at the

cost of reduced maximum throughput.

119
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Figure 9.1: Three different topologies that permit routing of transmissions from sources X and Y to
sinks A, B, C, and D.

However, the effect of topology on performance is highly dependent on the transmissions themselves.

If, for example, sources X and Y sent short infrequent bursts of data to one out of the four sinks in

Figure 9.1, then all three topologies would perform equally, and it would be advantageous to simply

choose the one with the smallest area. Similarly, if X rarely communicated with C or D, and Y rarely

with A and B, then the center topology would provide nearly as good performance as the fully-connected

case, but with less area. Nevertheless, with a sufficient number of simultaneous transmissions, any

simplification of the fully-connected topology on the left would result in reduced performance. Provided

with knowledge about an application’s transmissions and their demands on the interconnect, it should

be possible to make intelligent topological decisions.

Our goal will be to allow GENIE to automatically construct topologies that minimize area usage while

simultaneously respecting performance constraints provided by the user. This will require additional

inputs from the user to specify these constraints, as well as modifications to the overall GENIE synthesis

flow.

9.2 Transmission Specifications

There are three types of topology-related optional specifications that the user may annotate Routed

Streaming logical links with. These provide GENIE with information about transmissions’ performance

requirements and are used to guide the topology synthesis and optimization process.

The first type of specification is transmission mutual exclusivity. This is a guarantee from the user

that the transmissions represented by two or more RS links will never occur at the same time, or

overlap temporally in any way. The user knows this because they are responsible for the design of their

functional modules, and therefore also for the initiation of transmissions into the interconnect. If GENIE

is also provided with this knowledge, it will know that such non-conflicting transmissions will not incur

any penalty or throughput degradation if they are made to share a Merge node. Additionally, if all

transmissions through a Merge node are non-conflicting, a simpler and less-costly Merge node can be

instantiated that lacks complex arbitration circuitry (see Section 4.2.3).

The second specification is importance, which is an optional value that can be attached to each

transmission by the user. A transmission’s importance is a dimensionless value between 0 and 1 indicating

how much the user desires that that transmission avoid contention with other transmissions. A value

of 1 indicates that this transmission should encounter as little contention as possible, and a value of

0 means that the user does not care how much contention it encounters. Since contention results

in throughput loss, importance becomes a way of specifying throughput requirements, relative to a

“best case” that we will described in Section 9.3. By specifying importance, the user gives GENIE
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permission to reduce performance (up to a point) in exchange for potential area savings via the sharing

of interconnect resources. The default value of a transmission’s importance is 1, meaning that when

generating topologies, GENIE will not sacrifice any performance.

The third specification is the transmission’s packet length in clock cycles. This is the total size of

a transmission in bits, divided by the interface’s data width, and rounded up. If left unspecified, the

default is 1. RS interfaces use the EOP (End-of-Packet) signal to dynamically specify the length of a

transmission, but GENIE cannot know that information at system generation time, hence the need for

this new specification, which would then represent a worst (longest) case. By knowing a transmission’s

packet size, the topology optimization process can be more aware of the performance impact resulting

from transmissions being forced to share interconnect resources. The details of how contention between

transmissions is modeled will be described in Section 9.4.

9.3 Topology Generation and Optimization Flow

Figure 9.2 is a high-level overview of the entire GENIE flow, as first presented in Section 3.4. It

illustrates where topology generation and optimization fits in – as an iterative loop performed only for

interconnect domains that do not have a user-overridden explicit manual topology. The input to the

automatic topology flow is the functional modules and logical RS connectivity for just one domain, and

this includes all annotations and constraints (such as importance) associated with the logical RS links. A

‘topology’ in the specific context of this flow is then just the same interconnect domain but with Split and

Merge nodes added in, along with physical links connecting the Split, Merge and user functional modules.

The box labeled ‘Inner Flow’ is responsible for adding additional interconnect primitives in between the

Split and Merge nodes and is where the bulk of GENIE’s automating and optimization capabilities

perform their work. This transforms a topology into a fully functional netlist for that domain, suitable

for final HDL output. However, many possible topologies will be explored and iterated upon to attempt

to find the one with lowest cost while still satisfying the user’s performance requirements. A key part of

this process is estimating the area cost of each topological choice, and belongs in the “Estimate Area”

step that is performed after a topological candidate is run through the Inner Flow. The remainder of

this section details the different phases of the topology generation and optimization flow.

Inner 
Flow

Extract
Domains

Init/Refine
Topology

Estimate
Area

Merge
Domains

Write
HDL

Inner 
Flow

Input
Specification

system.sv
...
...

...

...

Auto Topology Domain

Manual Topology Domain

Figure 9.2: GENIE Outer Flow
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Figure 9.3: a) A set of logical connections between the interfaces of functional modules within an
interconnect domain. b) The logical connectivity realized as a sparse crossbar topology using Split
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Current
Best

Topology

New Topo #1

New Topo #2

New Topo #3

refin
e

Inner Flow

check
perf

Inner Flow

Est. Area

Est. Area

TAKE
MIN.
AREA

update best

Inner Flow Est. Area

Figure 9.4: The topology optimization loop

9.3.1 Initial Crossbar Topology

The logical connectivity of the domain is initially mapped to a sparse crossbar implemented using Split

and Merge nodes, an example of which is shown in Figure 9.3. A sparse crossbar is used as a starting

point because it offers the least possible contention and greatest possible throughput, should that be

the user’s desire. The initial crossbar topology is used as a baseline for area and performance, and all

further topologies will be created by incrementally simplifying this crossbar.

9.3.2 Topology Optimization Loop

After the initial crossbar topology is created, it becomes the “current best” topology and enters the

optimization loop, which is illustrated in Figure 9.4. This is a more detailed view of the loop than

in Figure 9.2. From the current best topology, new topologies are generated by performing a single

refinement step. This combines two existing Merge nodes into a single Merge node followed by a Split

node (Figure 9.5). By reducing the total number of Merge nodes by one, area consumption may decrease,

but contention between transmissions may increase, reducing performance.

One refinement step only combines two Merge nodes, and every existing pair of Merge nodes is

considered, independently. This yields many possible new candidate topologies, all derived from the

current best topology. Candidates that fail to meet performance requirements are rejected, but those

that pass are processed by the GENIE Inner Flow to become complete interconnect implementations.

The area of each candidate topology’s full implementation is estimated, and the one with the lowest

estimated area is chosen to become the new “current best” topology. This loop continues until either: no

further refined candidate topologies can be found that meet performance requirements, or, no candidate

topologies have an estimated area lower than the current best. This current best topology then becomes

the output of the loop.



Chapter 9. Automatic Topology Optimization 123

x

y

p

r
q

p

r
q

q

r

x

y
s

m2

px y

m1

q

r

y p

x

m12

A B C D

E F
E F

A
B C

D

Figure 9.5: A topology refinement step, which combines two Merge nodes and adds a Split node. The
transmissions (x,y,p,q,r) routed over physical links (A-F) now face greater contention.

The initial crossbar topology and its subsequent refinements yield a limited space of possible topolo-

gies achievable with this method. For example, rings and meshes are types of topologies can not arise

from GENIE’s automatic topology flow, although they are still possible to create via manual topology

specification. The method is also inherently greedy, and may arrive at a local rather than global min-

imum. An exhaustive traversal of the search space would yield all the possible partitions of the set of

merge nodes in a domain, where each partition corresponds to a set of merge nodes that would ultimately

be combined into a single merge node via a refinement step similar to Figure 9.5. Given m merge nodes,

there are B(m) such partitions, where B(m) is the mth Bell Number, for which the tightest known

asymptotic bound is currently O
((

0.792m
ln(m+1)

)m)
[10]. Our greedy approach, in contrast, has complexity

O(m3). The runtime performance will be measured in Section 9.7.5.

9.4 Contention Model

In order for a candidate topology to be deemed acceptable and continue through the optimization loop,

it must meet the user’s performance requirements. To formalize these requirements, we must first discuss

how the performance impact of topological decisions is quantified. This is done by modeling contention

between transmissions as they enter a shared Merge node. Contention is a worst-case upper bound

on the number of clock cycles that a transmission must wait at the input of a Merge node before its

round-robin arbiter circuit grants it permission to proceed. The transmission is then allowed to proceed

in its entirety, which is indicated by its end-of-packet (EOP) signal. In the worst case, a transmission

will be forced to wait for all other contending transmissions to finish passing through the Merge node,

being delayed for a number of clock cycles equal to the sums of the contending transmissions’ packet

lengths. The packet lengths are annotated explicitly by the user, and should ideally match the actual

runtime lengths of the transmissions as demarcated by their EOP signals.

To define contention more formally, consider two transmissions tx and ty. They contend if all the

following are true:

• There exists a Merge node M with two physical interconnect links Px and Py as inputs, such that

Px carries transmission tx and Py carries ty.

• Any physical link Pz that carries both tx and ty is downstream of M .

• tx and ty are not explicitly marked as mutually-exclusive by the user.
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The second condition is equivalent to saying that if tx and ty have already contended before reaching

M , they can not contend at M . Next, we define the incremental contention of transmission tx due to

transmission ty as:

R(tx, ty) =

L(ty) if tx, ty contend

0 otherwise
(9.1)

where L(ty) is the user-specified packet length of ty. Finally, we obtain the total worst-case contention

experienced by a transmission tx by summing its incremental contention due to every other transmission:

C(tx) =

ty 6=tx∑
ty

R(tx, ty) (9.2)

9.5 Criteria for Acceptable Performance

Having defined contention, we can resume explanation of the criteria by which the topology optimization

flow accepts or rejects a candidate topology produced by a refinement step. This will depend on the

contention experienced by transmissions in the new topology, which in turn depend on importance,

packet lengths, and explicit mutual exclusivity of transmissions as annotated by the user. Recall that

the importance of a transmission t, I(t), is a value between 0 and 1 with 1 reflecting the user’s desire

for maximum performance for t. Since a sparse crossbar ensures minimal contention, it is used as the

baseline for defining the throughput experienced by a transmission when its importance is set to 1.

Let C0(t) be the total contention experienced by transmission t when sent through a sparse crossbar

topology, from its source to its destination. A fresh topology x produced by a refinement step will

potentially have a different contention, Cx(t), for t. That topology x is deemed to have acceptable

performance if the following is true:

C0(t)

Cx(t)
≥ I(t) ∀ t (9.3)

The condition in Equation 9.3 requires that every transmission have a total contention in the new

topology that is no worse than in the sparse crossbar topology, up to a factor equal to the transmission’s

importance. There is elegance to this construction: in one extreme, if all transmission importances are

set to 1, then only topologies that are as good as the crossbar will be acceptable. At the other extreme,

with importances set to 0, all possible topologies are acceptable, up to and including ones consisting

of a single Merge node. Levels of importance moving down from 1 will give rise to more contention in

exchange for lower cost. The results given in Section 9.7.2 will illustrate the trade-off enabled by various

values of importance.
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9.6 Area Modeling

The final key component of the topology optimization flow is the ability to rapidly estimate the area

impact of topological decisions. This can only be done after a topology has been elaborated into a full

interconnect implementation by the Inner Flow, as it is not enough to simply count the number of Split

or Merge nodes in a topology. This is because a topological change, such as the addition/removal of

Split or Merge nodes, or even changing the number of inputs/outputs on existing Split/Merge nodes,

can have cascading downstream effects on area consumption as a result of the various processing stages

and optimizations performed within the Inner Flow. As an example, Split and Merge nodes will change

in combinational logic depth as their internal complexity changes with the addition/removal of inputs or

outputs. This will lead to a different numbers of registers to be inserted by the automatic pipelining stage

of the Inner Flow. Counter-intuitive area effects can also occur: two 2-input Merge nodes may require less

area than a combined 4-input Merge node if the inputs to each 2-to-1 Merge node have registers preceding

them, causing the combinational logic to vanish and be implemented with SLOAD/SDATA signals

(Figure 4.7). The area models described in Chapter 4 take into account many such parameterizations of

interconnect primitives, which depend on work performed in the Inner Flow that is ultimately dependent

on the topology.

GENIE uses a single score to estimate its generated interconnect area, and this is equal to the sum

of combinational LUT and register usage, summed over every primitive. As future work, the user could

elect to prioritize LUT or register usage, which would introduce weighting factors to the area score

calculation.

9.7 Results

In this section, we will evaluate our topology optimization approach using the design examples from

Chapter 5. There exist two types of useful features that are made available through the use of topology

optimization:

• The user specifies mutual temporal exclusivity between transmissions, resulting in a simplified

topology with lower area usage and no performance loss relative to the default crossbar topology.

• The user specifies a reduced importance (less than 1) on transmissions that do conflict, yielding a

topology that loses some performance in exchange for reduced area usage.

Both situations will be investigated as two separate experiments, using the LU factorization application

described in Section 5.1. Specifically, we examine the coarse-grained outer design rather than the internal

fine-grained design of each Compute Element.

The application will be parameterized to have N = 16 compute elements and M = 4 memory

controllers. Additionally, there is the central Control Node that coordinates the CEs and aggregates

Left Block Broadcast read requests, as previously described in Section 5.1.2. In that same section,

we described the three types of memory traffic that occurs between the CEs, memory controllers, and

Control Node:

• Read requests from CEs to MEMs, CEs to CTRL, and CTRL to MEMs: one flit containing address

information (20 bits)
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Figure 9.6: a/b): Unicast read requests and read responses. c) Read requests for left blocks aggregated
by the Control Node and forwarded to a single memory controller. d) Left block contents are multicasted
from a memory controller to all CEs.

• Read replies from controllers to CEs: 512 flits of read data (272 bits each);

• Write requests from CEs to controllers: 512 flits of write data (272 bits each)

Of these three, the first two present the most interesting use cases for topology optimization and

area/performance trade-offs, so we will focus on them for the evaluation of our flow. Recall that the

read request and read reply transmissions occur in both unicast and multicast variants, with the multi-

casts used for delivering Left block data in an efficient manner. These two types of memory reads are

summarized in Figure 9.6, which is a copy of Figure 5.4.

For unicast traffic, the 16 CEs are divided into groups of four and each group is associated with

one of the four memory controllers. The CEs issue read requests to the controller associated with their

group (Figure 9.6a) and receive the corresponding replies (9.6b). For Left block reads, the 16 CEs issue

their requests to the control node, which then forwards a single copy of the request to ONE of the four

controllers (9.6c). Then, a single reply transmission is broadcast back to all of the CEs (9.6d). Controller

#0 is used as an example in the figure, but three other similar possibilities (for each of the remaining

controllers) also exist.

If one were to overlay all possible read request (or read reply) transmissions together as a single

picture, it would result in all-to-all connectivity: every memory controller is accessed by each CE at some

point in time. However, there are properties concerning the timing and importance of the transmissions,

which if captured and specified by the user, could potentially yield optimizations to the interconnect

design, saving area over the default full crossbar needed for all-to-all connectivity while not impacting

overall performance in a significant way.

The first observation we make is that read requests are small in cycle length (one flit) compared

to their associated read replies (512 flits). Delaying the arrival of read requests at memory controllers

should minimally impact application performance if the controllers are throughput-bound by the read

replies. Secondly, the four possible multicast replies (such as the one shown in Figure 9.6) can never

occur simultaneously. That is, only one of the four memory controllers is ever broadcasting a reply at

any given time.

We will use these two observations to create importance, packet length, and mutual exclusion spec-

ifications for this application, and create two separate experiments to test our topology optimization
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flow’s ability to take advantage of these application-specific communication requirements.

9.7.1 Experimental Description and Methodology

Our first experiment will test the algorithm’s ability to trade off performance and area by varying

the importance of transmissions. Recall that in this application, the arrival of read requests at memory

controllers is not time-sensitive, and a delay of several cycles should not adversely impact total application

performance. This will be tested by assigning all read request transmissions the same importance, and

varying that value from 1 down to 0, while measuring the simulated application runtime (in clock cycles)

and interconnect area after a full run of FPGA synthesis, placement, and routing tools.

In the second experiment, we will exercise the ability to specify mutual exclusivity, specifically for the

read response network. We wish to see if the designer’s extra knowledge about the mutual exclusivity

between the four read response transmissions can be leveraged to reduce interconnect area with our

automated flow. To test this, we will specify, or omit, the necessary mutual exclusivity annotations from

the system input specification.

For both experiments, packet length specifications L(t) are provided for all transmissions t. GENIE

is used to generate the full system and interconnect, and this requires approximately 2 seconds on an

Intel Xeon E5-2643. The resulting SystemVerilog output is simulated to obtain application runtime (in

cycles), and synthesized with Quartus Prime Pro 17.0 for an Arria 10 FPGA (10AX115N2F45E1SG) to

obtain area utilization and clock frequency, which was geometrically averaged across six compilation

seeds. In addition to measuring the actual synthesized area of each result, we will provide the area

estimated by the algorithm, to assess the quality of the area modeling.

9.7.2 Experiment 1: Effects of Varying Importance

In our first experiment, we focus on the read request subnetwork within the LU application. All read

request transmissions are annotated with the same importance value, for which we use six different

values: 1, 0.3, 0.25, 0.2, 0.15, and 0. Aside from the extreme values of 1 and 0, the others four were

discovered manually through an initial broader sweep of values between 0 and 1. We chose the values for

which some change in the generated result (topology or area) was observed. We only wish to illustrate

effects on the generated system as a result of varying importance values – the ability to automatically

discover inflection points, such as the ones that we found manually, is left to future work.

The differences between the resulting automatically generated read request network topologies are

depicted in Figure 9.7. CEs are omitted in the figure for clarity – only the sinks of read request

transmissions (the memory controllers and the control node), and split and merge nodes, are shown. As

importance decreases, the five initial merge nodes (one for each sink) are combined more aggressively

until only one remains at importance 0. Although the network being optimized is relatively simple, it

illustrates the ability to generate new topologies in a sensible manner through the varying of importance.

Table 9.1 and Figure 9.8 provide the achieved system clock frequency, area (both estimated by GENIE

and actual post-place and route), and the latency in clock cycles of the read request network, versus

the chosen importance value of the read request transmissions. The area score is used by the topology

optimizer is the total number of LUTs and registers, and it decreases monotonically as importance is

reduced to 0. An importance of 0 yields interconnect that is 60% smaller than using an importance of

1. Note that this represents a 6.6% reduction of total interconnect area, when considering the entire
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Figure 9.7: The topology of the LU read request network for six different values of transmission impor-
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Table 9.1: Raw Results for Experiment 1
Importance 1 0.3 0.25 0.2 0.15 0

Fmax (MHz) 279 269 271 234 278 275

Area LUT 929 793 788 739 583 452
(Est.) REG 2111 2077 2052 1200 737 650

TOTAL 3040 2870 2840 1939 1320 1102

Area LUT 683 595 566 622 472 402
(Act.) REG 1567 1551 1531 896 580 506

TOTAL 2250 2146 2097 1518 1052 908

Latency (cycles) 7 11 15 15 15 19

system and not just the read request domain.

The price of this area reduction is an increase in worst-case latency, which was measured by simulating

a scenario in which all 16 CEs send unicast read requests simultaneously to their preferred memory

controllers, as shown in Figure 9.6a. We then recorded the clock cycle at which the last request arrived

at a memory controller. An importance value of 0 caused a 2.7x increase in this worst-case latency,

caused by the sharing of that topology’s single Merge node. However, when the full application was

simulated with real input data, and CEs were allowed to issue read requests at their natural rate,

the total application runtime remained constant at 5.46 million clock cycles, deviating by no more than

± 0.02% across the six chosen values of importance (and their associated network topologies). This result

illustrates that the read request network is not the critical communication path in this application, and

that it is a wise design decision to locally reduce the performance of the read request network in exchange

for area savings. By varying the importance values of transmissions, the user is able to automatically

take advantage of such application-specific opportunities in an automated manner.

We also illustrate the correspondence of GENIE’s area modeling and ground truth results obtained

after placement and routing. While GENIE over-estimates the area, likely due to not accounting for

synthesis optimizations, the estimates are sufficient to be able to compare the fitness of topologies in a

relative manner. The over-estimation is due to our area modeling being unable to fully predict all the

cross-module optimizations that Quartus is able to achieve during logic synthesis and placement/routing.
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Figure 9.8: Top to bottom: area, latency, and clock frequency of the read request network, versus
decreasing transmission importance.

9.7.3 Experiment 2: Effects of Mutual Exclusivity

In our second experiment, we examine the application’s read response (rather than read request) network.

These communication paths are relatively wide (256 bits) and expensive. As previously described, there

exist two kinds of read replies: unicast (Figure 9.6b) and multicast (Figure 9.6d). If only unicast replies

existed, the read reply network would naturally be segregated into four networks, one for each memory

controller. However, because of the existence of the multicast replies, all-to-all connectivity is required in

the general case. The four possible multicast reply transmissions can never occur simultaneously, which

is application-specific behavior that, if GENIE is made aware of, could result in a simpler topology than

a full crossbar.

Thus, our experiment tests two scenarios: one in which GENIE remains unaware of the mutual

exclusivity of the multicast reply transmissions (‘NO MUTEX’) and one in which mutual exclusivity is

specified (‘MUTEX’). Figure 9.9 demonstrates the two resulting topologies. Rather than showing all

16 CEs, only a single cluster of four remains for clarity – the remaining 12 have a similar, symmetric

connectivity as these four. In the NO MUTEX case, a full crossbar results, as expected: every CE must
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Table 9.2: Raw Results for Experiment 2
NO MUTEX MUTEX Change

Fmax (MHz) 273 279 +2.2%

Area LUT 4988 1340 -73%
(Est.) REG 38524 9212 -76%

TOTAL 43512 10552 -76%

Area LUT 4694 1240 -74%
(Act.) REG 37773 8835 -77%

TOTAL 42467 10075 -76%

accept transmissions from every memory controller, yielding a 4-to-1 merge node per CE. Additionally,

without knowledge of the transmissions’ mutual exclusivity, GENIE instantiates standard full-featured

Merge nodes that include round-robin arbiters. In the MUTEX case, the flow is made aware of mutual

exclusivity between the Phase 2 read response transmissions, and the algorithm deems that the four

merge nodes are allowed to be combined into a single node for the entire cluster. With the transmissions’

mutual exclusivity known to GENIE, it is able to implement the lone remaining Merge node as a conflict-

free variant (Section 4.2.3), further simplifying the interconnect.

The resulting area reduction within the read response network is significant – averaging 75% between

LUT, register, and total area score (LUT+REG). This represents a 61% reduction of total interconnect

area for the design, as the read response network is a significant component. The full clock frequency and

area measurements (estimated and actual) are provided in Table 9.2. There was no measured impact on

the total application cycle count (5.46 million) as a result of this optimization, which in essence, becomes

an entirely free one.

9.7.4 Fine-Grained Topology Optimization

In Chapter 6, we studied the fine-grained system within the LU application’s Compute Element. There,

a manually-specified custom topology was employed to reduce the area of the already very small in-

terconnect fabric. The specification of mutual transmission exclusivity was used in a limited manner,

which was only to infer the generation of conflict-free Merge nodes. However, if we enable the automatic

topology optimization flow, the same mutual exclusivity specifications yield an optimized topology that



Chapter 9. Automatic Topology Optimization 131

Table 9.3: Total GENIE Runtime for Various Design Parameterizations
Merge Topologies Topologies

Design Nodes Iterated Elaborated Runtime (s)
LU N16M4 16 676 148 1.73
LU N32M4 32 5452 1512 42
CNN N4 84 3486 480 18
CNN N5 101 5050 600 40
CNN N6 118 6903 720 78
CNN N7 135 375820 34995 5030
CNN N8 152 549286 47592 14619

is equivalent to the manually-specified one (as was illustrated in Figure 6.5). The results, compared to a

sparse crossbar (with and without conflict-free Merge nodes) are therefore also equivalent to those pre-

viously shown in Table 6.4, with the “ALL” case representing what an automatic topology optimization

flow would yield, if given mutual exclusivity specifications.

9.7.5 Performance and Quality of Results

The topology optimization results so far have only tested the LU factorization engine, whose interconnect

sub-networks have a comparatively small number of merge nodes. However, our other example appli-

cation – the convolutional neural network – demands more complex interconnect, and yields a larger

search space for our method to navigate. Table 9.3 provides the total GENIE executable run times in

seconds, as measured with the UNIX time command, for several different design parameterizations. The

intent is to illustrate the performance overhead due to the topology optimization loop.

The first column indicates the application (LU factorization engine or Convolutional Neural Network)

and its parameterized size (N/M for LU, and N for CNN). The second column specifies the number of

merge nodes contained within the most complex interconnect domain, whose topological optimization is

responsible for the majority of GENIE runtime. For LU, this was the read response network, which can

be optimized due to mutual exclusivity constraints. The importance of the read request transmissions

remained at 1, so that interconnect domain remained untouched. For the CNN design, the bottleneck

interconnect domain was the one which carried the synchronized transmissions between the functional

modules in Figure 5.8b. It too has optimization potential due to the mutual exclusivity of transmissions,

which in this case, are the non-overlapping image data that are broadcast to each column of DPUs.

The next two columns in the table are: the total number of topological candidates that were iterated

over, and the number of those candidates that satisfied contention requirements and went on to be

elaborated by the Inner Flow. The latter category is a subset of the former, and topologies that are

elaborate contribute significantly more to runtime than those that got rejected due to failing to meet

performance requirements. Finally, the last column is the GENIE runtime. With the first two LU

systems, we can see a large difference in run time between N = 32, which is the largest number of

compute units we have tested, and N = 161. The optimized read response topologies of both systems

matched that of Figure 9.9, which is the expected successful area-minimizing result.

However, for the CNN, there appears to be a dramatic discontinuity in measured runtime between

the N = 4, 5, 6 and N = 7, 8 designs. This arises from the topology refinement flow exiting early at a

1changing M has little effect on these times
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local minimum for the N = 4, 5, 6 cases. The topology, in these cases, never progresses past the initial

crossbar, and every single possible candidate refinement yielded a higher estimated area, causing the

known global minimum topology (the manually-specified one used in Chapter 8 to never be reached.

A deeper investigation reveals the cause of this to be the interaction of topology refinement with other

automatic processes within the GENIE flow, specifically pipelining and synchronization.

IMG s

m

m

DPU

DPU

Ks

s

Ks

2 3

2

IMG s m

DPU

DPU

Ks

s

Ks

2 3
s

2 1

for pipelining for synch.

Figure 9.10: Left: Section of the initial crossbar topology for an N = 4 CNN design. Right: Candidate
topology derived immediately from crossbar, differing by a single refinement step. Logic depths and
pipeline/synchronization registers are indicated.

Figure 9.10 illustrates what occurs during the topological exploration of the CNN network topology.

The Figure shows two DPUs that belong to the same column of the array, which in total contains 16

DPUs. Shown also are one of N image buffers, and the two kernel buffers that feed the DPUs. The left

side of the Figure is the state of the interconnect for the initial crossbar topology, which is the beginning

of the topological search space. This is just a slice of the overall topology relevant to the two DPUs,

as the Split and Merge nodes would also contain additional sinks/sources. Two levels of Split nodes

are used as to avoid a single N × 16 fanout Split node. During the elaboration of this topology, the

interconnect is automatically pipelined using the default maximum logic depth of 5, resulting in a single

inserted pipeline register in the location shown. This is inserted in response to the logic depths of 2, 3,

and 2 that are shown.

In the initial crossbar topology, every DPU is fed by a final no-conflict Merge node that collects

image data from one of the N image buffers. Since image data is broadcast within a column, any two

Merge nodes (including the two that are shown) are eligible for a refinement step that would lead to no

loss of application performance. The right side of the Figure indicates the resulting candidate topology

corresponding to the combination of the two Merge nodes shown. The refinement step combines the two

Merge nodes, but introduces a new Split node, which causes a chain of events that increases total area.

First, this Split node increases the total combinational logic depth, causing the automatic pipelining

process to insert an additional register, shown in orange. The addition of this extra register, in the

image data path, would cause a one cycle mismatch in arrival times between the kernel and image

data at the DPUs. Due to synchronization constraints being present in this design to avoid such a

scenario, two additional registers are inserted in response (shown in purple) to maintain kernel data

synchronization. In total, each candidate topology has one fewer Merge node, but three extra 256 bit

wide elastic buffers, compared to the crossbar, and thus the optimization loop exits early giving the

results shown.

For the larger N = 7, 8 CNN designs, exploration went much deeper into the search space, yielding

the longer runtimes and increased number of visited and elaborated topologies. In these cases, the Merge

nodes were of large enough size such that combining two of them generated sufficient area savings to

avoid a local minimum. The N = 8 CNN design reached the known area-minimal topology corresponding
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to the manually-specified topology used in Chapter 8. The N = 7 design stopped short of the global

minimum.

9.8 Conclusion

GENIE’s automatic topology optimization flow extends GENIE’s ability to generate optimized intercon-

nect in response to high-level performance requirements and communication characteristics provided by

the user. It is currently limited to creating crossbar-like topologies, and can be selectively applied to

some parts of a user’s design on a per-interconnect-domain basis. In many of the cases we have studied,

the automatic flow is able to replicate the structure of known-best manually-specified topologies in terms

of area usage. However, the greedy approach is susceptible to being trapped in local minima of the search

space, and future work should look at non-greedy optimization strategies. In the current approach, the

time required to explore the search space grows with the cube of the number of Merge nodes in an

interconnect domain, which yield significant runtime cost for the larger designs that we tested.

As future work, there exists a possibility to reduce this cost to O(M2) from O(M3) by re-using the

estimated area savings of previously-computed refinement steps. This will require care to avoid re-use

of stale results that become invalidated by the complex interplay of processes within the GENIE Inner

Flow that insert registers and other auxiliary interconnect primitives. Two Merge nodes considered for

combination early during the exploration of the search space might not be based on the same initial

topological starting conditions if reconsidered later in the search space. This same non-ideal interaction

of interconnect generation processes is a significant challenge to creating a viable topological exploration

method for an interconnect synthesis tool.
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Conclusion

In this work, we have presented and evaluated a new interconnect synthesis and system generation flow,

embodied in a tool called GENIE. Its core methodology is to create interconnect by combining together

many small and simple parameterizable primitives – an idea present in pre-existing work that we build

upon. This approach has unlocked many opportunities for new automation and optimization capabilities,

several of which we have studied and implemented in GENIE, forming several core contributions:

• The generation of interconnect for fine-grained systems, with lower area, performance, and interface

semantic overheads than pre-existing tools and approaches.

• Automatic cycle-level synchronization of applications containing fixed-latency modules, including

a flexible input specification method (“synchronization constraints”) for the user.

• An automatic logic-depth-based interconnect pipelining algorithm which also cooperates seamlessly

with synchronization constraints.

• A topology optimization flow that generates crossbar-like topologies while attempting to minimize

total interconnect area.

Notably, we have integrated these isolated features together into a complete system building tool

that navigates the engineering challenges of having all its numerous capabilities working together simul-

taneously, harmoniously, and sometimes in imperfect ways. We evaluated GENIE and its capabilities

using two complete design examples: an LU matrix factorization engine and a convolutional neural

network. These are fully functional designs which use multiple clock domains and off-chip memory, and

were either designed from the ground-up with GENIE or re-written from earlier incarnations based on

previous work. Using these two complete examples allowed us to perform a deeper analysis of real-world

use cases which would have been time-prohibitive had we used a more extensive benchmark set.

We performed a head-to-head comparison of GENIE’s output against that of two other existing

tools/methods, using the coarse-grained LU factorization design, which falls into the traditional use case

of such tools. In performance-centric use cases, GENIE attained an 11-22% clock frequency advantage

over Qsys for the largest tested parameterizations of the LU system, utilizing 7-38% fewer ALM resources.

When prioritizing area over performance, GENIE still maintained a 12-25% clock frequency advantage

over Qsys, while using up to 43% fewer ALMs. Against the CONNECT FPGA network-on-chip version
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of LU, the GENIE-generated systems outperformed it by a wide margin, yielding 31-89% higher clock

frequencies and 48-90% fewer ALMs.

We believe that we have demonstrated design effort reduction through an improved interconnect

synthesis and system building flow. Chapter 7 demonstrated improved quality-of-results over existing

tools for the same workloads, which can translate into achieving better results with the same effort, or

perhaps equivalent results with less effort. The combined register insertion flows of Chapter 8 give the

user the capability to rapidly explore the design space of their application. For example, automatic syn-

chronization ensures a correct output in the face of changing numbers, configurations, and arrangements

of functional modules, as well as across different manual customizations of interconnect pipelining. The

automatic pipelining functionality gives the user a knob to trade off area for clock frequency, adding

another dimension of exploring the design space and more rapidly converging on a final design.

For our novel use case of fine-grained interconnect synthesis in Chapter 6, we attempted to measure

design effort improvement quantitatively (through counting source code lines) as well as qualitatively

(by recounting the challenging experiences and processes required to use an existing system building tool

for this fine-grained use case). The line count numbers alone were not sufficient to quantify the actual

effort required to write each extra line, especially when attempting to match GENIE’s performance using

Qsys. We speculate that the only way to truly quantify total design effort would be through a controlled

study that measures the time required by engineers to complete the design task.

The creation of GENIE was motivated by the shortcomings of existing tools when creating certain

kinds of systems. The initial motivating use case was the LU Compute Element, which was originally

designed by hand for an unrelated project. Although a small system, the interconnect design was

sufficiently difficult and error-prone for us to desire some form of automation for future projects. However,

the CE’s communication patterns did not fit well with the memory-mapped idioms of existing tools like

Qsys, and the small system was sensitive to any introduced area and performance overheads. And so,

this initiated the push to ideologically deconstruct interconnect and interconnect synthesis into a small

set of conceptual functions and hardware primitives.

Along the way, it was noted that the automatically-generated hardware was, in some places, losing in

area or performance compared to hand-designed interconnect. In each instance, we asked “what knowl-

edge would an expert human designer need to make the decision to build the more efficient structure?”.

The first such examples were merge nodes which were being slowed down by correct-in-the-general-case

arbitration circuitry. By knowing that transmissions were mutually exclusive, the arbitration circuitry

would not be necessary. Each such analysis yielded a new piece of high-level specification that could

optionally be specified to GENIE to help it perform the same kinds of optimizations that would be done

by an expert designer. The end result is a tool that not only succeeds at its original motivating goal of

reducing design effort in fine-grained systems, but also offers automation and optimization capabilities

to more general use cases as well.

10.1 Future Work

There are numerous areas of potential future work on both the GENIE tool/flow itself, as well as analyses

and experiments that could be performed with its existing incarnation. Perhaps the most important such

work would be to continue to evaluate GENIE using more design examples beyond the two presented in

this thesis, which is a matter of expending more engineer-hours of effort.
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In such additional design examples, it would be beneficial to better-exercise the existing features of

GENIE, such as building a wider variety of network topologies (using manual specification) to build ana-

logues of existing NoC topologies like tori, rings, meshes, and fat trees using combinations of split/merge

primitives. Extending our automatic topology exploration to include these other classes of topologies

(beyond the crossbar sub-space that we currently explore) would also improve the capabilities of the

tool. Our current automatic topology exploration algorithm is prone to becoming stuck in local minima,

and its runtime does not scale well with input size. Alternate techniques such as simulated annealing

would be worthwhile to explore.

The current crossbar-like topologies generated automatically by GENIE are free from deadlocks

due to topology alone. If GENIE were to support more types of automatically-generated topologies,

it would be necessary to have more robust handling of potential deadlocks. The future work in this

area could be phased in through two tiers of increasing complexity: deadlock detection, and deadlock

avoidance. Detection on topology alone would be the simplest, but overly conservative: a message

informing the user that their (manually or automatically generated) topology could potentially (but

not for certain) cause a deadlock. Information about the actual transmissions would make detection

more accurate, and could potentially detect application-level deadlocks (ones that are a function of the

actual traffic). GENIE already has transmission information in the form of RS links, but aside from

mutual exclusivity, there is no sense of scheduling or causal/temporal relationships between them that

would be necessary for a detailed automated deadlock analysis. More complex techniques in which

GENIE actually avoids or prevent deadlocks could take place through routing changes, topological

modifications, or microarchitectural adjustments such as configuring virtual channels. All techniques

would benefit from more detailed knowledge about the user’s transmissions than is currently provided.

GENIE currently supports an arbitrary number of clock domains, but our design examples only use

two, and it may be instructive to stress-test the automatic clock domain crossing insertion by finding

(realistic) use cases that utilize three or more clock domains, since that is the regime in which the

underlying optimization problem enters NP-complete complexity.

We have shown the limitations of a purely logic-depth-based approach to automatic pipelining. Cer-

tainly, an avenue for future work would be finding methods of including the approximate effect of signal

propagation delay within pipelining criteria, as this is a significant portion of combinational delay on

modern FPGAs and large designs. As the majority of this thesis was completed before Intel introduced

their own version of automatic pipelining in Stratix 10 FPGAs, it would also be very instructive to

perform a new comparison using these newer FPGAs.

One type of optimization left unexplored in this work is that of automatically designing the binary

encodings for internal address representations of transmissions in an intelligent manner. Address con-

version, briefly touched upon in Section 3.4.3 is currently fairly primitive in GENIE, as the internal

representation of addresses (that enable Split nodes to route transmission to their destinations) are

monotonically-increasing unique integers. However, it may conceivably be possible to devise a scheme

that generates encodings that, based on network topology, simultaneity of transmissions, and the encod-

ings of addresses produced and consumed by user modules, would use fewer bits and/or fewer address

conversion primitives and thus create lower-cost interconnect.

On the micro-architecture front, the six interconnect primitives that GENIE currently uses can be

made more parameterizable. For example, the fully-functional Merge nodes currently has a round-robin

arbiter that gives equal weight to all incoming transmissions. A method to (first manually, then automat-
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ically) give different weights or time-shares to different transmissions could benefit certain applications.

GENIE currently lacks support for virtual channels, which may lead to deadlocked transmissions under

certain topologies. Some of this can be mitigated (and has been, in our design examples) through using

separate physical networks, but nevertheless the introduction of virtual channel capability would further

generalize the types of interconnect that GENIE is able to build.

10.1.1 GENIE and Other Design Tools

GENIE currently exists as a stand-alone application. A future goal would be to instead link the C++

library portion with another CAD tool, such as an HLS tool or graphical front-end, to serve as an

internal interconnect synthesis engine. One specific use case for existing HLS tools would be the ability

to integrate non-HLS RTL modules within the overall system. For the simpler use case of fixed-latency

modules, GENIE is presently capable of accepting user-defined latency annotations for every possible

input-to-output pair. If the modules generated by the HLS tool were similarly (and automatically)

annotated with latency information generated from a partial schedule, GENIE could stitch together the

HLS portion of the system with the user-provided RTL modules by using synchronization constraints.

It is reasonable to expect complex systems built with HLS to also interact with external memory or

I/O that introduces variable latency and the need for backpressure into the system. The discussion on

performance-oriented variable latency use cases for synchronization constraints in Section 8.1.5 applies

here.

10.1.2 GENIE and Hard NoCs

A case has been made for including hard Networks-on-Chip within the FPGA fabric [5], and they have

recently started to appear commercially in Xilinx’s Versal architecture [67] as part of its Adaptable

Compute Acceleration Platform (ACAP) devices, which also include a traditional FPGA fabric. In ad-

dition to providing high-bandwidth communication for user logic, it also provides dedicated connections

to already-hardened on-chip external memory and I/O interfaces such as DDR4 and PCI Express. A

future version of GENIE may wish to integrate hard NoCs as part of an overall interconnect synthesis

strategy, and we will briefly speculate on some possibilities.

One important consideration is that a NoC is not suitable for all types of communication. Since it

is a shared resource, bandwidth and latency are not necessarily guaranteed or predictable. Therefore,

latency-insensitive protocols are used at fabric egress ports (AXI4 memory mapped and streaming in

Versal’s case), which rules out mapping tightly-coupled fine-granularity communications, such as those

explored in Chapter 6, to the NoC. However, communications to and from off-chip memory would be

ideal for mapping. The fixed protocol also restricts the available data widths at the NoC interface.

Although the NoC protocol is fixed, as long as a streaming interface exists, it should be able to connect

with GENIE-generated interconnect, by using the subset of GENIE’s Routed Streaming protocol used

for latency-insensitive traffic – the ability to send data, have flow control, and select a destination are

sufficient. Some soft-logic address conversion would need to take place, further generalizing the existing

address representation problem.

One role that a future version of GENIE could play is automatically partitioning a system’s commu-

nications between a hard NoC and traditional soft logic. The most latency-insensitive communications

(those without tight latency bounds) would be ideal for the NoC, as long as bandwidth is available. To
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allocate bandwidth, Xilinx includes a CAD flow called the “network compiler” that performs a simi-

lar function to GENIE’s topology optimization – given a set of high-level communication requirements

(bandwidth and traffic class), it determines the optimal mapping to the NoC resources. Rather than

handling bandwidth allocation manually, GENIE could utilize such tools for the portions allocated to

the NoC (although a feedback/query mechanism would be ideal, to know the point at which further

mapping should be relegated to soft logic).

Before automatic partitioning, a good first step would be to allow the user to explicitly map certain

logical links to the NoC. Later, the type of communication links (whether they use backpressure or not),

combined with communication requirements (importance, packet size, and perhaps some constraint on

latency) could be used to automatically qualify links for NoC-mapping.

10.1.3 GENIE and Pipelined FPGA Interconnect

Another relatively new feature of FPGA fabrics is embedded interconnect registers, such as those found

in Intel’s Stratix 10 HyperFlex architecture [50]. These registers do not consume regular FF resources

found in logic blocks, and can be enabled selectively during placement and routing without otherwise

disturbing the netlist. This provides an ideal capability to automatically pipeline long links to improve

clock frequency while having complete physical knowledge, which is something that a tool like GENIE

lacks. However, this capability is hamstrung without an appropriate way to tell the FPGA toolchain

which nets are allowed to be pipelined.

Intel adds additional Verilog attributes that offer a basic form of GENIE’s synchronization constraints

– they state that all the wires of an HDL bus are allowed to be automatically pipelined (up to a maximum

amount), and that they all must have the same final latency. This allows automatic pipelining of feed-

forward paths without backpressure. In the future, GENIE could leverage these latency-insensitive net

attributes and replace its logic depth based automatic pipelining flow when targeting compatible FPGAs,

under certain conditions (for example, lack of simultaneously-present synchronization constraints).

Currently, GENIE’s elastic buffer primitives rely on register enable control signals, making them not

directly mappable to Stratix 10 embedded interconnect registers. When there exist many consecutive

pipeline stages (the exact number of which might not even be known at GENIE system generation

time), one could implement an alternate style of latency-insensitive channels in which a FIFO exists at

the destination and deasserts readiness when a certain threshold is reached. Both the forward path to

the FIFO, and ready signal backwards from the FIFO, could be pipelined without enable signals, and

therefore be mappable to embedded interconnect registers. This style has been shown [3] to have area

and frequency advantages on Stratix 10 when there exist multiple consecutive pipeline stages.

10.1.4 GENIE and ASIC Design

Although GENIE targets FPGAs, it may also be possible to generalize the tool to target ASIC design

as well. One of the challenges of FPGA design is the lack of control and visibility into the physical

implementation – placement and routing are automatic, and can not guarantee predictable area usage or

delays resulting from a given change to the logical design. For example, our choice of using combinational

logic depth instead of absolute delay for automatic pipelining was influenced by this.

If given a blank slate of silicon and a standard cell library, rather than an existing architecture to

map to, GENIE’s interconnect primitives could be stored in fully-implemented form and would have
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predictable area (now measured in physical units) and timing characteristics. It is not clear whether

GENIE would need to supplant some of the functions of a traditional ASIC design flow (floorplanning,

placement, routing) to fully take advantage of its knowledge of latency-insensitive links. In this context,

automatic pipelining would ideally be placement-aware and would run simultaneous to this flow. Even

if it does not, and simply hands off a netlist to an existing commercial flow, the accuracy of automatic

pipelining and topology area estimation could possibly improve.

As an aside, it is worthwhile to note that locked-down and predictable physical placement and rout-

ing are also possible in the FPGA space without the need for ASIC-level of control over the substrate.

The Hoplite NoC [40] has managed to create a physical interconnect implementation by manually plac-

ing logic and routing resources on the FPGA device with user constraints, yielding predictable area

and performance characteristics. Although highly architecture-specific, such techniques may be worth

investigating in an FPGA-targeted tool like GENIE.

10.2 Software Release

GENIE is an open source project, and its home page is located at http://www.eecg.toronto.edu/

~jayar/software/GENIE/. Additionally, the source code for GENIE, our example applications, and

raw data for experiments will be included as supplemental attachments to the digital submission of this

thesis.

http://www.eecg.toronto.edu/~jayar/software/GENIE/
http://www.eecg.toronto.edu/~jayar/software/GENIE/
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Lua Specification Examples

This appendix provides additional Lua code snippets that demonstrate the use of the multitude of GENIE

features described in the main document. It assumes familiarity with the basic example first provided in

Section 3.2.6. First, a small primer on Lua table syntax is given that may help in understanding some

of the code.

The Lua language only has one complex data type, the table, which is an associative map of key/value

pairs in which all keys must be unique. The types of each key and value, even within the same table,

can differ. Here is an example table, declared as a literal and assigned to a variable, containing five

key/value pairs with a mix of type combinations, with the last value being a table itself:

1 mytab = { ’ s t r i ngkey1 ’ : 42 , ’ A l i c e ’ : ’Bob ’ , 53 : ’ Char l i e ’ ,

2 12 : 34 , ’ i nn e r t ab l e ’ : { ’ innerkey ’ : ’ i nne rva lue ’ } }
3

4 −− modify t ab l e e n t r i e s us ing two d i f f e r e n t syntax v a r i a t i o n s

5 mytab.st r ingkey1 = 43 −− dot , works only f o r s t r i n g keys

6 mytab [ ’ A l i c e ’ ] = ’ Robert ’ −− [ ] a l s o works f o r a l l types o f keys

7 mytab .a l i c e = ’ Roberto ’

8 mytab [ 5 3 ] = 100 −− [ ] must be used f o r i n t e g e r keys

9

10 −− same syntax c r e a t e s new e n t r i e s

11 mytab.newkey = 6

12 mytab [ ’ anotherkey ’ ] = true

13

14 −− reads e n t r i e s

15 x = mytab [ 5 3 ] −− 100

16 y = mytab [ ’ A l i c e ’ ] −− Roberto

Arrays are simply tables with integer keys (starting at 1, not 0). The following code creates an array

where the values Alpha, Beta, 42, and Delta have implied keys 1, 2, 3, and 4 respectively:

17 ar r = { ’ Alpha ’ , ’ Beta ’ , 42 , ’ Delta ’ }
18

19 x = arr [ 3 ] −− x conta in s 42

Because entries in an array have unique implicit integer keys, duplicate values are allowed. For some

applications, it may be more convenient to work with sets, in which each member can only appear once.

These are simply tables where the desired members of the set appear as the keys instead of the values.

The associated value of each key is some dummy value, such as the boolean constant true.
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Many GENIE API functions accept a collection of items as one or more of their arguments. A

collection argument can be provided in one of three ways:

• A single scalar value (a collection of one thing)

• A table representing an array

• A table representing a set

A.1 Mutual Exclusivity

Routed Streaming links may be marked “mutually-exclusive”, which is a guarantee by the user that

they will never be driven simultaneously, nor temporally overlap in any way. GENIE can leverage this

user-provided hint in two ways:

• Instantiate a conflict-free Merge node within the interconnect if all its incoming links are mutually

exclusive.

• More aggressively combine Merge nodes during the automatic topology optimization loop.

GENIE provides two methods, exposed via the Builder interface, to mark exclusivity. make exclusive

accepts a single collection of links, marking them all mutually exclusive with respect to one another.

make exclusive multi accepts a variable number of collections of links, and marks each member of a

collection exclusive with all members of all other collections, but not with the collection it is part of.

1 −− Assume b i s a Bui lder ob j e c t

2 −− Create three RS l i n k s and s t o r e a r e f e r e n c e to each in a separa t e va r i a b l e

3 l i nk1 = b : r s l i n k ( src1 , s ink1 )

4 l i nk2 = b : r s l i n k ( src2 , s ink2 , srcAddr2 )

5 l i nk3 = b : r s l i n k ( src3 , s ink3 , nil , sinkAddr3 ) −− no s r c address , only s ink

6

7 −− Mark a l l th ree as e x c l u s i v e

8 b : make exc lus ive ({ l ink1 , l ink2 , l i nk3 })
9

10 −− Mark l ink1 , l i n k2 e x c l u s i v e with l i nk3 but not with each other

11 b : make exc lu s ive mu l t i ({ l ink1 , l i nk2 } , l i n k3 )

Note that all RS links that begin at the same physical RS interface (and are bound to different source

addresses) are automatically mutually exclusive by definition.

A.2 Manual Topology Specification

GENIE allows the user to explicitly specify a topology through manual creation and connection of Split

and Merge nodes. These explicitly-instantiated Split and Merge nodes are connected to each other, and

to the RS source/sink RS interfaces of functional modules, via special topological links. When connecting

a topological link to a Split/Merge node, the entire node is used as the source/sink of the connection.

Note that logical RS links must still be specified as usual, and will be automatically routed over the

explicitly-specified topological links using the shortest number of hops. Manual routing specification is

left as future work.
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The following code instantiates four modules. Two of them have RS source interfaces, and the other

two have RS sink interfaces. The four logical RS links between them form a full crossbar (both sources

to both sinks). Without manual topology specification, GENIE would automatically create two Split

and two Merge nodes. However, here we explicitly create a single Merge and single Split node and force

all traffic over a single shared connection:

1 −− Assumes :

2 −− b i s a Bui lder o b j e c t .

3 −− SrcMod i s a module with RS source i n t e r f a c e ’ send ’

4 −− SinkMod i s a module with RS s ink i n t e r f a c e ’ recv ’

5

6 b : system ( ’ SysDef ’ )

7 −− Create two sender modules and two r e c e i v e r modules

8 b : i n s t anc e ( ’ SrcMod ’ , ’ s r c1 ’ )

9 b : i n s t anc e ( ’ SrcMod ’ , ’ s r c2 ’ )

10 b : i n s t anc e ( ’ SinkMod ’ , ’ s ink1 ’ )

11 b : i n s t anc e ( ’ SinkMod ’ , ’ s ink2 ’ )

12

13 −− Create l o g i c a l RS l i n k s from both sourc e s to both s i nk s

14 b : r s l i n k ( ’ s r c 1 . s end ’ , ’ s i n k 1 . r e c v ’ )

15 b : r s l i n k ( ’ s r c 1 . s end ’ , ’ s i n k 2 . r e c v ’ )

16 b : r s l i n k ( ’ s r c 2 . s end ’ , ’ s i n k 1 . r e c v ’ )

17 b : r s l i n k ( ’ s r c 2 . s end ’ , ’ s i n k 2 . r e c v ’ )

18

19 −− Create a s i n g l e s p l i t node and s i n g l e merge node

20 b : s p l i t ( ’ t h e s p l i t ’ )

21 b : merge ( ’ the merge ’ )

22

23 −− Create t o p o l o g i c a l l i n k s from both sourc e s to the merge

24 b : t opo l i n k ( ’ s r c 1 . s end ’ , ’ the merge ’ )

25 b : t opo l i n k ( ’ s r c 2 . s end ’ , ’ the merge ’ )

26

27 −− Create t o p o l o g i c a l l i n k from the merge to t h e s p l i t

28 b : t opo l i n k ( ’ the merge ’ , ’ t h e s p l i t ’ )

29

30 −− Connect t h e s p l i t to the two s i nk s

31 b : t opo l i n k ( ’ t h e s p l i t ’ , ’ s i n k 1 . r e c v ’ )

32 b : t opo l i n k ( ’ t h e s p l i t ’ , ’ s i n k 2 . r e c v ’ )

A.3 Synchronization Constraints

The following complete Lua listing creates the example system from Figure 8.4. It assumes all data

widths to be 14 bits.

1 require ’ bu i l d e r ’

2 local b = gen i e .Bu i l d e r . n ew ( )

3

4 b : component ( ’A ’ )

5 b : c l o c k s i n k ( ’ c l k ’ )

6 b : r e s e t s i n k ( ’ r e s e t ’ )

7 b : r s s r c ( ’ out ’ , ’ c l k ’ )

8 b : s i g n a l ( ’ v a l i d ’ , ’ o v a l i d ’ )

9 b : s i g n a l ( ’ data ’ , ’ o data ’ , 14)
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10

11 b : component ( ’B ’ )

12 b : c l o c k s i n k ( ’ c l k ’ )

13 b : r e s e t s i n k ( ’ r e s e t ’ )

14 b : r s s i n k ( ’ in ’ , ’ c l k ’ )

15 b : s i g n a l ( ’ v a l i d ’ , ’ i v a l i d ’ )

16 b : s i g n a l ( ’ data ’ , ’ i d a t a ’ , 14)

17 b : r s s r c ( ’ out ’ , ’ c l k ’ )

18 b : s i g n a l ( ’ v a l i d ’ , ’ o v a l i d ’ )

19 b : s i g n a l ( ’ data ’ , ’ o data ’ , 14)

20 b : i n t e r n a l l i n k ( ’ in ’ , ’ out ’ , 2) −− l a t ency 2

21

22 b : component ( ’C ’ )

23 b : c l o c k s i n k ( ’ c l k ’ )

24 b : r e s e t s i n k ( ’ r e s e t ’ )

25 b : r s s i n k ( ’ in ’ , ’ c l k ’ )

26 b : s i g n a l ( ’ v a l i d ’ , ’ i v a l i d ’ )

27 b : s i g n a l ( ’ data ’ , ’ i d a t a ’ , 14)

28 b : r s s r c ( ’ out ’ , ’ c l k ’ )

29 b : s i g n a l ( ’ v a l i d ’ , ’ o v a l i d ’ )

30 b : s i g n a l ( ’ data ’ , ’ o data ’ , 14)

31 b : i n t e r n a l l i n k ( ’ in ’ , ’ out ’ , 4) −− l a t ency 4

32

33 b : component ( ’D ’ )

34 b : c l o c k s i n k ( ’ c l k ’ )

35 b : r e s e t s i n k ( ’ r e s e t ’ )

36 b : r s s i n k ( ’ in1 ’ , ’ c l k ’ )

37 b : s i g n a l ( ’ v a l i d ’ , ’ i v a l i d 1 ’ )

38 b : s i g n a l ( ’ data ’ , ’ i d a t a1 ’ , 14)

39 b : r s s i n k ( ’ in2 ’ , ’ c l k ’ )

40 b : s i g n a l ( ’ v a l i d ’ , ’ i v a l i d 2 ’ )

41 b : s i g n a l ( ’ data ’ , ’ i d a t a2 ’ , 14)

42

43 b : system ( ’ s y n c c n s t t e s t ’ )

44 b : c l o c k s i n k ( ’ c l k ’ )

45 b : r e s e t s i n k ( ’ r e s e t ’ )

46

47 −− I n s t a n t i a t e A,B,C,D and connect c l o c k s and r e s e t s

48 for name in Set .mkvalues { ’A ’ , ’B ’ , ’C ’ , ’D ’ } do

49 b : i n s t ance (name , name)

50 b : c l o c k l i n k ( ’ c l k ’ , name . . ’ . ’ . . ’ c l k ’ )

51 b : r e s e t l i n k ( ’ r e s e t ’ , name . . ’ . ’ . . ’ r e s e t ’ )

52 end

53

54 local l i n k ab = b : r s l i n k ( ’ A.out ’ , ’ B. in ’ )

55 local l i n k a c = b : r s l i n k ( ’ A.out ’ , ’ C. in ’ )

56 local l i nk bd = b : r s l i n k ( ’ B.out ’ , ’ D. in1 ’ )

57 local l i n k cd = b : r s l i n k ( ’ C.out ’ , ’ D. in2 ’ )

58

59 −− de f i n e sync c on s t r a i n t

60 b : s yn c c on s t r a i n t ({ l i nk ab , l i nk bd } , ’− ’ , { l i nk a c , l i n k cd } , ’= ’ , 0)

Internal links are specified with internal link, which accepts the name of two interfaces in the same

module and the latency between them. Synchronization constraints are defined with sync constraint,
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which expects one or more chain terms (each an ordered array of RS links) separated by ’+’ or ’-’ tokens,

followed by a relational operator and an integer constant.

A.4 Transmission Importance and Packet Size

The importance and packet size of a transmission are used during automatic topology optimization.

By default, all RS links have an importance of 1 and packet size of 1. Importance can be changed via

the set importance method of an RS link object, or be set on a source RS port with its importance

method to change the default importance of all outgoing transmissions. Similarly, the packet size of an

individual RS link is set with set packet size, and a port-wide default is set with packet size.

1 −− Al l RS l i n k s connected to i n s t an c e s o f t h i s i n t e r f a c e w i l l

2 −− by de f au l t have an importance o f 0 . 6 and packet s i z e o f 128

3 b : r s s r c ( ’ i facename ’ , ’ i f a c e c l k ’ )

4 b : s i g n a l ( . . . )

5 . . .

6 b : importance (0 . 6 )

7 b : p a c k e t s i z e (128)

8

9 −− This s p e c i f i c RS l i n k w i l l have importance 0 . 5 and packet s i z e o f 192

10 x = b : l i n k ( src1 , s ink1 )

11 x : importance (0 . 5 )

12 x : p a c k e t s i z e (192)

A.5 Automatic Pipelining Control

GENIE’s automatic pipelining inserts registers to enforce a maximum combinational logic depth. As

well as being a global command-line setting, it is possible to override the maximum logic depth on a

per-system basis:

1 b : system ( ’ sysname ’ )

2 b : max log ic depth (4 )

It is also possible to inform GENIE of the combinational logic depth “looking in” to a source or sink

interface of a user-defined functional module. GENIE will take these user logic depths into account when

pipelining. Without specifying this, GENIE assumes that the interface is fully registered and has a logic

depth of 0.

1 −− This source RS i n t e r f a c e has a worst−case l o g i c depth o f 2 LUTs be f o r e h i t t i n g

2 −− an i n t e r n a l r e g i s t e r with in the conta in ing module.

3 b : r s s r c ( ’ i facename ’ , ’ i f a c e c l k ’ )

4 b : s i g n a l ( . . . )

5 . . .

6 b : l o g i c d ep th (2 )
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