Ultra-Fast Automatic Placement
for FPGAS

by

Yaska Sankar

A thesis submitted in conformity with the requirements
for the dgree of Master of Applied Science
Graduate Department of Electrical and Computer Engineering

University of Toronto

© Copyright by Yaska Sankar 1999

Abstract

Ultra-Fast Automatic Placement for FPGAs

Master of Applied Science, 1999
Yaska Sankar
Department of Electrical and Computer Engineering
University of Toronto

The demand for high-speed Field-Programmable Gate Array (FPGA) compilation tools has
escalated for three reasons: first, as FPG¥icdecapacity has gwn, the computation time
devoted to placement and routing of circuits haswgranore dramatically than thevailable
computer pwer. Second, therexests a subset of users who are willing to accept a reduction in the
quality of result (using a lger FPGA or more resources on &egi FPGA) in gchange for a
high-speed compilation. Third, high-speed compile has been a long-standing desire of users of
FPGA-based custom computing machines, since their compile time requirements are ideally
closer to those of gular computers.

This thesis focuses on the placement phase of the compile process, and presents an ultra-
fast placement algorithm for FPGAs. The algorithm is based on a combination of muwigble-le
bottom-up clustering and hierarchical simulated annealing.

It provides superior area resultges a knevn high-quality placement tool on a set oglar
benchmark circuits, when both are restricted to a short run tionex&mple, in 10 seconds of
placement time on a 300 MHz Sun Ultrd&€, the ultra-&st tool realizes arvarage wirelength
improvement of 30% compared to the high-quality tool. It can also generate a placement for a
100,000-@te circuit in 10 seconds that is only 31%rse than a high-quality placement thaesk
524 seconds using a pure simulated annealing implementaiothi$ circuit, the ultragst tool
achieves this lgel of placement quality 5 timeadter than the high-quality tool.

In addition, when operating in itagtest mode, the ultradt placement tool can ptide an
accurate estimate of the wirelength achi#e with good quality placement (within 6%, on
average). This can be used, in conjunction with a routing pregdtoteery quickly determine the

routability of a gven circuit on a gien FPGA deice.

Acknowledgments

| am profoundly grateful to my advisafonathan Rose, for aling me to drav upon his
vast technical xpertise, his infectious zeal, and his @rering confidence in my abilities as a
researcherl am indebted to him for setting high standards for his students in both technical
achierement and communication, and for goingdred the duties of a supervisor to act as a
teachermentoy promoter motivator, counselgrand Igyal supporterl value his technical lessons,
patience, encouragement, sage advice, aneeaddh enthusiastic guidance during my time here.

| have also greatly benefited from the colleetwisdom of the members of Professor Rese’
research group: aughn Betz, Jordan &z, Mohammed Khalid, Ste Witon, Mike Hutton,
Sandy Marquardt, Rob McCready anduPLeventis. | am particularly grateful toadghn not
only for faithfully providing the infrastructure and support of the saitevused to house this
work, kut also for the time, advice, and guidance tieretl throughout. Jordan andighn merit
special thanks for their helpful and insightful comments on an earlier draft of this thesis.

My time here wuld hare beendr less educational and eygle without the antics of my
mary friends and colleagues in LP392 and SF2206: the other founding members cditieuisf
Package Deal (Jason iNual Beverage Engineer” Podaimaadghn “Mrt Optimal” Betz, Jordan
“Human Torch” Swartz), Sandy “Brmatting Monlkey” Marquardt, Qiang “Be A Man” \&ng,
Jason A., AndyMarcus, Ali, Warren, Mazen, Mcent, Mark, Khalid, JéfDave, Jaad, Rob, ken,
Wai, Nirmal, Rawul, Guy Dan, Al, Derek, Rob, Gia, Sushglith, Marcel, Jane, &in, Bob, Aris,
John, Sudarsan, Duncan, and the Electric Fielders softball teams with whom | had the distinct
pleasure of playing, to name amMeThey are wholly responsible for proking stimulating
discussions and pvaling spirited dversions, and | thank them for it.

| consider myself fortunate to kwoa fev kind souls whose friendship, support,
encouragement, advice, and willingness to listen made things bearable durinfjatk tilhes
and delightful the rest of the time: 8¢ John, HeatheMike VDR and Na.

Whatever success | wa achieed here | we to the steadbt support, encouragement,
patience, dith and lee of my parents and my brother

Finally, this work would not hae been possible without the financial support from the
Natural Sciences and Engineering Research Council, theetdity of Toronto, Communications
and Information €chnology Ontario, Lucentethnologies Inc., Xilinx Corporation, and the

Information Technology Research Centre of Ontario.

Table of Contents

(@ gF=T o (= A I 1 0o 11 [ox o] o 1SS 1
00 A Y/ o (V7 1 o o TR 1
1.2 GOAIS BNU SCENAIOS.cviviiiriesiieiieee e st sttt st sa et sb e e e et saesbenaeas 3
1.3 ReSearch APPrOaChcuoiiiiee e 5
1.4 TheSISOrganiZaLiONcccueeeesieeieseeseetesee e eee s e sre e e sseesseeneesseesseensesseesseessesseenns 5
Chapter 2 Background and PrevioUS WOrK ... 6
2.1 Definition of FPGA Placement Problem ... 6
2.2 Placement AlQOItNMS........oouo oo 8
2.2.1 TIMDEIWOIT ... 8
2.2.2 Hierarchical Clustering and ANNEaliNG.........ccoveriirierieienee e 11
2.2.3 VPR - Versatile Place and ROULE.............ccoveriiiiienene s 13
2.2.4 Algorithms Based on Variations of Hierarchical Clustering and
Simulated Annealing - NRG and Simulated Quenching..........cccceecveveeieenennne. 15
2.2.5 Choice of Starting Temperature for Simulated Annealingccoceveeiiennenne 17
2.3 Clustering AlQOrithmMS........ccoooi e 19
2.3.1 Using Clustering to Reduce Problem Complexity.........cccovererneninnenieenene 19
2.3.2 Cost Functions Used to Build CIUSLEN'S.........ccoveiirenenenineeee s 20
2.4 Fast Compile AlQOrtNMS..........oiiie e 23
P2 o | - RS SSRN 23
2.4.2 GAMA e nraes 24
2.4.3 Fast Placement for FPGAs via Automatic Floorplanningcccccevvevienncee. 25
2.4.4 Fast Routing and Difficulty PrediCtion...........ccccevvriinenieneeneeeeese e 26
2.5 SUMMIEIY ...ttt ettt st e st e s st e e e as e e e abe e s abe e e sbeeesabeeesaneeesaneeas 26
Chapter 3 Ultra-Fast Placement Algorithm ... 27
3.1 OVErview Of APPrOACH.......ccviie e ceese ettt ae e te e e steeaesreenneennens 27
3.2 MUItIPIE-LEVEl CIUSLEITNG.coeeiieeieeiesiesie et s nee e 29
3.2.1 Description of AlQOrithMm........cccvieiiieeecce e 29
3.2.2 Clustering EXAMPIE........cooiiiiiereeesee et 30
3.2.3 Complexity Of CIUSLEIING.......ccoveiieieieerieeie et eee e 32

3.3 Placement of CluStersS at EGCh LEVE!cooeea 34

3.3.1 Constructive Placement Of CIUSLENS.........ccovriiiiriree s 34

3.3.2 Simulated-Annealing-Based Iterative Improvement of Placement 36

3.3.3 FANOUL ... e a e 39

3.3.4 Complexity of PlaCement.........c.ccceviiieiieiiieccie et 40

3.4 Determination of the Quality-Time Envelope Parameters............cccoevevenenenenienne. 41
3.4.1 Cluster Parameter EXPerimeNtS.........cccocieiiieeiieiiie et eses et 41

3.4.2 Placement Parameter EXPEriMENLScccvvereerierieriesie s 43

3.5 SUMMIAIY ...t e e st e e e sab e e e ear e e sba e e ebae e ssaeesnneeas 46
Chapter 4 Experimental RESUITS.........ccooiiiiiiinineeeeeee et 47
4.1 Target FPGA ATCHITECIUIE.occveeiie ittt st 47
4.2 Benchmark Circuits and CAD FIOWcocveiiiieiiee e 47
4.3 BasiS Of COMPAITSON.....ccuiiiiiiiecitiecieeitee et e see et e s e sbe e ste s e e aeesseesareesreeenseenseas 438
4.4 Comparisons Between Ultra-Fast Algorithm and VPR..........ccoiininncnenee 50
4.5 Wirelength EStimation @nd ACCUIACYcueeiueeiieiiieeiie e cieesiee e esiee st 58
4.6 Practical Usage of Ultra-Fast Placementcooeeveieiinenene e 63
N 1 172 TR 66
Chapter 5 Conclusions and FULUr@ WOrKcceceeieiieninenine e 67
5.1 Conclusions and CONtIDULIONS..........c.orieriiriierierie e 67
5.2 FUIUME WOTK ...ttt sttt ettt ae e neenae s e e naeenennreennnennens 68
REFEI BNCES.....ceeeee ettt s b e nb et be et e et sae e re e 70

List of Tables

Table 2.1:
Table 3.1:
Table 3.2:
Table 3.3:

Table4.1:

Table4.2:

Table4.3:

Table4.4:

Table 4.5:

Automatic temperature update schedule for VPR. [Betz97]ccccoovevvvveveennne 14
Cluster scores for candidate blocks in example of Figure 3.4..........ccoeeeienene 32
Constructive versus random initial cluster placement.ccccovcveeevceceecenene 36
Effect of starting temperature calculation on annealing for

MCNC CIFCUIT CIMAL ..ttt 38
Comparison between ultra-fast placement tool and VPR for 20 benchmark
circuits. One set of placement parameters was employed for each tool

such that their run times were close and they were part of the

quality-time envelope for their respective tools.cccevvevevceereece s 55
Comparison between ultra-fast placement tool and VPR across

20 circuitsfor very Short FUN TIMES.ccecveiiereereeesee e 56
Comparison between ultra-fast placement tool and VPR across

20 circuitsfor [oNger FUN TIMES.........cccueeeereeie e 57
Quality of wirelength prediction capability of ultra-fast placement tool

using placement data from Table 4.1 (mean run time = 11.4 seconds). 61
Quality of wirelength prediction capability of ultra-fast placement tool

using placement data from Table 4.2 (mean run time = 5.5 seconds). 62

Vi

List
Figure 2.1:

Figure 2.2:

Figure 3.1:
Figure 3.2:
Figure 3.3
Figure 3.4
Figure 3.5:

Figure 3.6:
Figure 3.7:

Figure 3.8:

Figure 3.9:

of Figures

Simple example of FPGA placement.ccoveveriereiie e 7
Pseudo-code for abasic simulated annealing-based placement

algorithm. [Sech85] [BEtZO8]ccceevieierieiece et 9
High-level view of fast placement algorithm. ..., 28
Abstract view of multi-level clustering and placement...........cccecceveeveeceerneenee. 29
Pseudo-code for multi-level clustering algorithm. ..., 31
ClUSLENTNG EXAMPIE.cceeceee ettt te e e e nneennens 31
Graph of percentage of total flat nets absorbed versus cluster size

for one level of clustering on MCNC circuit frisc (3692 blocks).ccccuenneee 33
Pseudo-code for constructive cluster or intra-cluster placement........................ 35

Graphs of placement cost degradation and percentage of total flat pins
remaining after nets above threshold ignored, each versus fanout

threshold for MCNC CIFCUIT CIMALooveiviiiriieeeeree e 40
Placement quality-time plot (20 circuit average) for ultra-fast

placement tool using different combinations of annealing schedules on

1-level, Size-64 clustered CIFCUITS.ooeiieriereeie e 42
Placement quality-time curves (20 circuit average) for ultra-fast

placement tool using a sample of annealing parameters and varying

1-level cluster SizeSfrom 410 4096.ccoeerieiierienene s 43

Figure 3.10: Placement quality-time plot (20 circuit average) for ultra-fast

Figure 4.1:
Figure 4.2:

Figure 4.3:

placement tool using different fanout thresholds above which nets are

ignored on circuits with fixed cluster and placement parameters. 45
Island-style FPGA architecture and basic logic block contents............ccc.c........ 48
VPR placement quality-time trade-off (20 circuit average) using
annealing schedules that form the envelope..........cccveereece e 50
Placement quality-time envelope curves (20 circuit average) for VPR

and new ultra-fast placement tOOI.ccceeverericiece e 51

Vil

Figure 4.4.

Figure 4.5:

Figure 4.6:

Figure 4.7

Figure 4.8:

Figure 4.9:

Placement quality-time envelope curves (20 circuit average) for VPR

and new ultra-fast placement tool, highlighting the point at which the

CUNVES IMEEL. ...t e ettt e e e e e e e e e e e e e s e s e nnb e e e e e e e e e e sannrrees

Placement quality versus time envelope curves (20 circuit average)

for VPR and new ultra-fast placement tool (linear scale).ccceccvvennnne.

Mean absol ute difference in wirelength (between mean wirelength

and individual circuit results) versus mean run time for parameters

forming ultra-fast placement tool envelope.cccccevveveeceneece e,

Comparison of predicted ultra-fast placement quality versustime

envel ope with actual envelope for MCNC circuit clma

(8383 10gIC BIOCKS)......vieciieeiieiie et

Comparison of predicted ultra-fast placement envel ope with actual

envelope for circuit marb (5535 logic blocks).ccccvvcveiieicieieceecee,

Comparison of predicted ultra-fast placement envel ope with actual

envelope for synthetic circuit beast20k (19600 logic blocks).....................

viii

...... 53

....... 59

....... 64

Introduction

Chapter 1

| ntroduction

1.1 Motivation

Field-programmable aje arrays (FPGAS) fi@ been highly successful becauseythan
realize ay digital circuit simply by the specification of the millions of bits that control a sea of
programmable logic and interconnect. The ability of an FPGA to be re-programmable within a
system diers designers the ability to implementféient circuits, fix errors in circuits, or addwme
features to@sting circuits in a matter of seconds. This programmabilitgggFPGAS significant
adwantages eer customized application-specific igtated circuits (ASICs): figbility, quick
time-to-marlet, zero non-recurring engineering costs, and easieigdety. All these benefits do
come at a price, leever, in that circuits realized on an FPGA typically ocgap least ten times
the area and operate at least three timaegeslthan their ASIC counterparts [Bv62].

A set of automated computarded design (CAD) tools is necessary in order to generate an
FPGA programming bitstream that implements a desired circuit. Theseamotivols first tad
the circuit description (where the circuit is specified in a hardwdescription language such as
VHDL, or in schematic form) through the synthesis stage, where the circuit is represented as a
netlist of technology-mapped logic blocks and connectiooowing this, the CAD tools per-
form the placement and routing steps. During placement, the logic blocks implementing the cir-
cuit are assigned to pséical locations on the FPGA such that the wiring area is minimized. In

routing, the point-to-point connections are made by specifying whigsiqat switches are acti-

Introduction

vated in the programmable wiring such that full routability is agteand circuit speed is maxi-

mized. This can be used to generate the programming bitstream. The complete set of tasks the
CAD tools perform to translate a circuit description into a programming bitstreamvis kag

FPGA compilation.

One ley advantage of FPGAsver mask-programmableate arrays and ASICs is that yhe
provide quick turnaround times for circuit designers between the conception of the circuit and its
implementation on a chip. Maver, this rapid prototyping adwntage has been reduced as the
capacities of these programmablevides grov. While current CAD algorithms pvade high-
guality solutions, therequire a great deal of CPU time, and the compilation times fp [&r-
cuits are graving more rapidly than thevailable computer peer. This adersely impacts: hard-
ware designers, who mustaiv longer to map their designs to FPGAs; logic emulation system
users, who must compile hundreds of FPGAs at a time [Quic98]; and FPGA-based custom com-
puting machine users, who desire compilation times similar to those of a microprocessor

Place-and-route times for g FPGAs at present (those with approximately 5000 lookup-
table (LUT) / flip-flop pairs and higher) can last mdrours on a modern processand there is
no guarantee of successful completioor Example, an 8383 LUT circuit (approximately
100,000 gtes) requires almost 1.2 hours for placement and routing using the Xilinx M1 CAD
tools (version 4.1.2) [Xili98] on a 300 MHz Sun Ultra&RC workstation [Svar98b]. for a sub-
set of designers, these prohizlly long compile times may nullify ggains that had been real-
ized by using FPGAs in the first place. Since the time-to-etatantage and ability to create
rapid prototypes are gerely compromised, some users may opt to return to ¢kl wf mask-
programmed gte arrays (MPGAS) or standard cellsthmillion-gate FPGAS on the horizon, it
is imperatve to design FPGA compilation tools that will scale well withicke sizes, and pwide
an acceptable tradefdfetween qualityand compile time [Rose97]. Only then will the character-
istic FPGA benefits ofafst design and maradturing gcles be maintained. &tontend that there

are users who are willing to sacrifice circuit quality for speed of compilation.

1. We define quality as the wirelength required by the circuit or the speed at which the circuit can operate
when mapped to the FPGA. Greater wirelength will require the use afea FIPGA or the use of more
resources on aygn FPGA than is otherwise necessary

Introduction

These trends puide a compelling mote to e&plore methods fordst compilation for
FPGAs. In this thesis, we shall focus on the placement phase of the FPGA compile process and
present an ultraast placement tool that aims to minimize area [Sank99]. Althougst airning-
driven placement tool should also seek to minimize circuit delaybeliee that area-based min-
imization is a prudent first step. Furthermore, while topsrdpartitioning, floorplanning, macro-
based placement, and incremental placement methods may be cited as alternate approaches t
mitigating the long compile times of thextegyeneration of laye FPGAs, we contend that there

will always be a need for adt, flat placement tool.

1.2 Goalsand Scenarios

There are tw main objecties of our &st placement tool: 1) to proe placementsery
quickly with the minimum amount of deadation in circuit qualityand 2) to preide ery fast
predictions as feedback to the user based oratitgolacements generated.

In order to precisely articulate what we mean dst placement, we ha set the follaing
goal for our placement tool: be able to perform a full placement of a 100a0@&igcuit in 10
seconds on a modern CPUe\Wkeligre this goal is justifiable:x¢remely fist placement is essen-
tial if it is to be used as a guide within upstream CAD tools, or in emulation systems and reconfig-
urable computing applications, or to satisfy impatient hardvdesigners. More importantiye
wish to ensure that the running timeeries linearly with the size of circuit, and has a small propor-
tionality constant. This is crucial because as long as our algorithms are of linearxtynaple
close to that, the same technologyawhements that permit FPGAviees to become more dense
also increase processor speeds. Therefore, our algorithm will scale well.

A key element of ourdst placement tool is that wef@f a tunable “knob” that ales the
user to smoothly trade quality for compile time. So, not only do we aim vadpronore area-éf
cient placements inery short run times, we also aim to yice high-quality placements\gn
longer run times. & further &pect that FPGA users will benefit from being able to run a quick
placement of their circuit, rather tharadvfor a complete high-quality placement, to ascertain
what size FPGA dace to purchase to implement their design.

In addition, since some placement problems mayxberaely dificult (the circuit barely
fits onto the déce, and the CAD tools need a great deal of time to generate a usable placement)
or impossible (the circuit cannot fit onto thevide), we belige it is important to quickly supply

the user with the predicted arearsus compile time tradefdbr a circuit of similar size.

Introduction

We ervision three scenarios in whichst compile wuld be used, once a user has designed
a circuit and tageted an FPGA of a specific size:

1. If the user gplicitly states a compile time restriction, then tlastfCAD tools should
estimate hev much &tra space -- or wo much lager a deice -- will be necessary for
the design to be placed in the desired running time, and produce the placement.

2. Alternatiely, if the user gplicitly states that the design must fit into the desired FPGA,
then the &st tools can inform the user of one of the fellm: that the circuit can be
placed and routed quickly (and pide the placement and routing files), that the circuit
will be placed and routed\gn more time, or that the task is impossible. Tloekvby
Swartz et al. ders a method for making the “fit/no-fit” predictigiven a placement and
its total wirelength [Swar98al].

3. The user is supplied with an arearsus compile-time tradefofurve and selects the
point appropriate to his goals. In this case, there must [ieieotf free space in the
FPGA. Those users willing to sacrifice circuit area faxsdr compile time, via the tun-
able “knob”, can accommodate the increased areaveralenays: thg can reduce the
complity of a single design by partitioning the circuit onto multiple FPGASs, or can
select an FPGA with greater logic capacitiiey can also eliminate part of the circuit by
reducing the amount of parallelism in the haadsv

Our second goal is toverage ourdst placement tool to prale fast feedback to the user in

a number of areas. 8\prwide, for a gven compile time restriction, an estimate ofwhmuch

extra area the circuit will require with that much timevated to placement. Cuoersely for a

given area restriction, we pride an estimate of the shortest amount of time needed to produce a
placement that will fit. Furthermore, we furnish, in that short amount of time, an estimate of what
the wirelength wuld be if we allaved the placement tool to run without a compile time restric-
tion and try to attain maximum qualityh so doing, we can quickly supply to &uz’ prediction

tool [Swar98a] a rough idea of what the final best placement will be, which can then be used to
inform the user quickly and reliably of whether or not the circuit will fit onto thgeetad FPGA.

This fast estimation of high-quality wirelength, as well as the u#ish-placement, may be
exploited by the CAD tools that precede the placement stage to qualiegvhat the circuit

will look lik e after placement. These are all useful features, since some FPGA users bemoan the
fact that may industry FPGA CAD tools do not priole adequate predictability with respect to

area and speed.

Introduction

1.3 Research Approach

Our eperimental research methodologyoalves first @amining an risting academic
FPGA CAD tool, VPR [Betz97], which is kmm to pravide high-quality placement and routing
solutions @er a lage suite of benchmark circuits in a reasonable amount of timend-deter-
mined heov well VPR performs wer a series of dérent run times for a set of & circuits from a
variety of sources, we createasf placement algorithm that can be incorporated into ¥ PiRa-
structure. In this &y, we can ma& a &ir evaluation of hav well our nev placement tool performs
with respect to both run time and area compared taiatirgy tool on the same platform, with the
same set of lge benchmark circuits and the samggatal FPGA architecture. 8then gamine
the influence of thearious enhancements to the placement algorithm tha¢ makltra-fast”,
and mak some empirical obsetrons. V¢ also dfer some insight into theaét prediction of
high-quality wirelength and its accusa@iven a &st placement, and Wwathis is \aluable feed-
back to the useFinally, we explore simple methods to predict the areasus compile time rela-
tionship of a circuit before it is placed, and thevoke the ultra-fst placement algorithm with
appropriate automatically generated parameters to meet either a compile time or an area restric-

tion.

1.4 ThesisOrganization

This thesis is @anized as follas: Chapter 2 presents some of thevigngs work done in
developing and applying VLSI placement algorithms for FPGAS, although little of thik is
primarily taigeted tavards our stated goal of high-speed compilatioa.algo discuss some of the
prior work conducted in the related area of clustering, as well as the remdénaecomplished in
algorithms and tools tgeted for &st FPGA compilation. In Chapter 3, we describe the details of
our ultra-aast placement algorithm. In Chapter 4, wieioé \ariety of results obtained from run-
ning our tool on a suite of ige benchmark circuits, using a simple and general FPGA architec-
ture. W provide a direct comparison between our tool and avknbigh-quality placement tool
with respect to run time and area, and present results oasiuwirelength prediction scheme.
Finally, Chapter 5 highlights some of theylconclusions of this ark and proposes directions for

future research in this area.

Background and Previous Work

Chapter 2

Background and Previous Work

In this chaptera precise definition of the placement problem for FPGAs wgiqed, fol-
lowed by a brief description of some of the valet previous work in this area. This background
material is d¥ided into sections a@ring general VLSI placement algorithms, the use of cluster-
ing algorithms to reduce problem comyptg, and algorithms specifically designed to address the

issue of st compile for FPGAs.

2.1 Definition of FPGA Placement Ppblem

In the plysical layout stage of circuit synthesis, placementWdlbdigh-level design, tech-
nology-independent logic optimization, and technology mapping to a set of basic blatcks, b
precedes the routing stage where actual interconnections are made between blocks. The basic
placement problem for FPGAs dias with a technology-mapped netlist of logic blckk'eput
and output (I/0O) pads, and their interconnections. The result of placement is an assignment of the
blocks and pads to specificysical locations of the FPGA that minimizes a specific cost function
[Brow92]. A logic block is the basic unit of an FPGA that performs a specified logic function. A
netlist is a gpegraph representation of a circuit, where eaetiex represents a circuit element
(block), and eachyiperedge, or net, represents a wire that connects a set of blocks todygtwbr

is an I/O block that is the ghical interbice between the circuit and the outsideld: Placement

1. For this thesis, a logic block will be one 4-input lookup table (4-LUT) and one D flip-flop.

Background and Previous Work

refers to the mapping of the circuit elements in the netlist onto the circuit elements igdicalph
architecture of the tget deice [Leng90]. In the specific case of FPGA placement, it is a mapping
of blocks and pads in the circuit netlist to the blocks and pads arranged orysimlpRPGA

array as shan in Figure 2.1.

Circuit Netlist Placement

ZAIN

N

A\

Z
7.

Figure 2.1: Simple éample of FPGA placement.

More formally the FPGA placement problem can Bpressed as [Leng90]:

» Given: a lypegraphG = (V, E) representing the circuit, whexéis the set of ertices
(blocks), ancE is the set of edges (nets), with edge cogt [0 R, for eache U E;
(V= n; an FPGA grid of size x s, wherer, sCO N, andr [5= n.

* Find: all placements -- mappings: V - [1,r] % [1, 5] of blocks to block locations on

the FPGA grid.

* Minimize: a cost functior(p).

Since we hee stated our ultraakt placement goal to be to pide an area-&tient
placement gry quickly we will attempt to minimize the total wirelength (length of routing wire)
required to map the circuit to the FPGA. This is because the cost ofvibe deproportional to
the amount of silicon required to implement ite \an minimize the amount of silicon required
(and thus the déce cost) by minimizing the area required to wire the circuit components
together Since this total wiring area is only kmo after the routing stage, arfegftive estimator is

needed at the preceding placement stage, and estimated total wirelength haswedo beo

Background and Previous Work

suitable [Leng90]. Other cost functions thatédeen used as placement quality metrics include
circuit delay and wiring densityThe basic placement problem is Wwmto be NP-hard, and
therefore may heuristics hee been emplged [Leng90]. The follaing section describes some of

these heuristics.

2.2 Placement Algorithms

Suneys of VLSI placement algorithms arefered in [Shah91] and [Hana72], which
describe three mainavieties that are currently most popular: 1) Min-cut, or partitioning-based
placement algorithms [DunlI85] [Huan97]; 2) Analytical placement algorithms that use quadratic
programming [Klei91] [Sigl91] [Alpe97a] [Alpe97b], some of which incorporate itegati
improvement [Doll91]; 3) Simulated-annealing-based placement algorithms [Kirk83] [Sech85]
[Sech88] [Sun95] [Betz97] [Sarr97]. Rreus simulated-annealing-based placement toole ha
achieved similar or higher quality solutions compared to the other types of placement algorithms,
though in some cases, with longe&eeution times. Consequentiyur ultra-ast placement algo-
rithm is based on simulated annealing, and its performance is measaiest agother knen
high-quality simulated-annealing implementatioor Ehis reason, this section focuses on simu-

lated-annealing-based placement algorithms.

2.2.1 TimberWolf
TimberWblf [Sech85] [Sech88] is an irgeated set of placement and routing tools that pro-

vided the first simulated-annealing-based placement algorithegtitey standard cells, macro/
custom cells, andage arrays. The basic simulated annealing algorithm proposed in [Kirk&3] w
adapted to xplore a number of dérent placement configurations stochastically to minimize a
cost function that estimateserall wiring area. Figure 2.2 she the pseudo-code for the simu-
lated annealing algorithm, and [Sech85] contains a detailed description of the basic algorithm and
the \arious cost functions used for thefeient types of placement problems.

The central idea of the algorithm is the notion that #mogation of numerous placement
configurations is guided by a paramef€r(temperature), that determines the probability of
whether configurations that reduce the quality of the placement will be accepted in the process of
searching through ddrent placements. This temperatuadue is gradually reduced as the search
space isxplored. Gven a random initial placement, a source module is chosen randomly (either

a cell or an 1/O pad). Then, aget location is chosen at random for this module such that it lies

Background and Previous Work

X = Initial_Random_Placement();
T = Set_Initial_Bmperature(); /* T=§*/
Diimit = Set_Initial_Range_Limit(); /* R,it = whole chip */
while (Exit_Criterion() == &lse) { /* annealing not done yet */
while (Inner_Loop_Criterion() ==allse) { /* work per temperature not done yet *
Xnav = Generate_Mee (X, Djmit);
[* returns a n& configuration generated incrementally fromvooes one */
[* by random pairwisex@hange or translation within range limit */
AC = Cost(X,qy) - Cost(X); /* calculate change in cost */
r = Get_Random_Number(0,1);
[* r = random number uniformly distuited between 0 and 1 */
if (r < e-AC/T)
X = Xnhavs /¥ update current placement */
[* always accept mee (p=1) if it impraves placementdC < 0) */
/* accept “bad” mees (AC > 0) with probability p = *C/T %/
/*when T is lage, all bad mees likely to be accepted, */
/* when T is small, only bad nves with smalAC likely to be accepted */
} /* end inner loop */
[* exploration at current temperature complete */
T = Update_€mperature(, T); /*T =aT */
Diimit = Update_Range_Limit(fi);
} /* end outer loop */
[* annealing complete, X = final placement solution */

Figure 2.2: Pseudo-code for a basic simulated annealing-based placement algorithi
[Sech85] [Betz98]

within the displacement range specified by a range limit mechanism, andyitectar house the
same type of module. If that tgat location is occupied, then thegar module is sapped with
the source module (pairwise interchange) and the cost of the resulting placeruehtated. If
the taget location is originally empgythen the cost of the weplacement with only the source
module displaced to the tgt location (single block translation) saguated. In either case, if the

new cost is less than the cost of theyimas undisturbed placement, thevaas accepted. If the

new cost is more, then the m®is only accepted with probabiliiyAC/T, whereAC is the change

in placement cost due to the weoor svap, andT is the current temperature. Adaralue ofT is
used at the lggnning, meaning that almost all nes, irrespecte of cost, are accepted. As the

placement quality impres with the accumulation of mes, the temperature is gradually

Background and Previous Work

reduced, making it less Bky that m@es that dgrade the placement will be acceptedeiiually

the \alue ofT is so lav that only mees which impree the placement quality are accepted, mak-
ing the heuristic greedy at that point. The paramEisrwhat permits probabilistic hill-climbing
to tale place and helps the placement solutiicabeing caught in local minima.

The rate at which the temperature is reduced (called the temperature aptate), the
number of configurations tokplore at each temperature (kwo as the inner loop criterion, or
InnerNum), the it criterion by which the annealing algorithm terminates, and thevimiraof
the range limiting mechanism are all crucial details that are specifieddomeating schedule. In
TimberWblf, the \alue ofa starts at 0.8, is gradually increased to 0.95, and gradually decreased
back to 0.8 wer the course of the entire anneal. This is to ensure that for the portions of the anneal
where the cost function is decreasing rapithig configuration space isgored more shaly and
thoroughly The number of mas generated per temperature is set to 20-100 times the number of
modules in the circuit. The range limit mechanism that sets bounds on the displacement of a mod-
ule during a mee or svap is adjusted so that it is the entire chip at the outset, ahdeaseases,
so does the windwo of permissible tayet locations. Finallythe annealer terminates when the cost
function over the last three temperatures is found to be unchanging.

The original cost function used for standard cell placement consists of three components: 1)
the total estimated wirelengtij, which is computed as the suweo all nets of the half-perime-

ter of the bounding box that encompasses all the pins on each net; 2) a penalty fBagtion (
ary overlap between cells; 3) a penalty functi®g) for row length mismatches, which ensures
that the lengths of thews of cells do notary considerably from each othdhe cost function
can be rpressed as:

C = W+uPgy+APg (2.2)
The two penalty components (and their scaliagtbrs,u andA) do not arise for FPGAs since all
logic blocks are of equal size and shape, and logic blocks are onedlto svap with other

logic blocks, and 1/0 pads are alled to svap only with other pads.

10

Background and Previous Work

2.2.2 Hierarchical Clustering and Annealing

An innovative hierarchical clustering and placement algorithm is proposed in [Sun95] and

is incorporated into an updatedrgion of TmberWblf (TimberWbIfSC v7.0). As an imprement

to the preious cost function in imberWblf, the penalty functions are eliminated, and only the
total wirelength term remains. If a m@potentially violates a volength limit, it is discarded. If a
move is accepted, cells in thefedted rovs are shifted to pvent ary cell overlap. Thus, wery
placement generated is a feasible one. Thised wirelength-based cost function is an incremen-
tal one leeping track of the change in placement cA€l)(and has t@ components: 1) the
change in net lengthg\{V) for those nets connected to the cell or cells that weneedhor

swapped; 2) the change in net lengthg/g) for those nets connected to cells in tHfecéd ravs

that need to be shifted as a result of therenar svap. The former componert\V, is computed

exactly, while the latterAWg, is estimated, Ut in both cases the computationastf The reised
cost function can be written as:
AC = AW+ AWq (2.2)

The hierarchical placement methodology consists of clustering and simulated-annealing
phases, and it proceeds as fatofirst, the original, laye, flat netlist is condensed usingtiev-
els of clustering, the details of which will beveoed in Section 2.3.2. The purpose of this cluster-
ing is to reduce the compiligy of the circuit so that it is easier to place. It tries to group those cells
that will eventually be close to each other in the final placement, and collapsesyaitatagts as
possible into the clusters whiledping the size of the clusters the same.

Following this bottom-up clustering, the al@osimulated annealing algorithm is enmysd
to do a top-den placement of thearious leels of netlists. The taresulting clustered netlists
are subjected to a 3-stage annealing schedule: in the first stage, a high temperature anneal is per
formed on the top-ieel netlist of clusters for the first 50% of the total number ofeadhat are
attempted. After the topael clusters are decomposed into firsteleclusters, each firstyel
cluster is randomly placed within the boundaries laid out by the tab-dRister in which it \&s
contained. Then, the xelower level (first level) of clusters are annealed from 50% to 70% of the

total number of mees. Upon decomposing the first«é clusters and placing the original flat

11

Background and Previous Work

cells within the first-leel cluster boundaries, the final annealing stage is conducted yougtipe
final 30% of all the mees. In each of the latter tbnstages, the cells or clusters are permitted to
move across the cluster boundaries specified from theogms higher lgel, and the initial tem-
perature at each stage is computed as:
—AW
T — ———
0" log(R

accept)

(2.3)

whereAW is the @erage change in wirelength aRghcept IS the desired ratio of acceptedvas

to attempted mees. Oer the whole placement process, all timing requirements (restrictions on
circuit delay) are satisfied as well.

The combination of hierarchical clustering and annealingesety speed up the entire
placement process, with run times that are between 3.6 and 7.5 dsterstiian those obtained
using the preous \ersion of the tool, imberWblfSC v6.0. The werage reduction in wirelength
between imberWbIfSC v7.0 and imberWblfSC v6.0 is 12%. When compared to the quadratic
placement tool Gordian/Domino, the placements producedrbgePWblfSC v7.0 hae 8% less
wirelength on gerage, and require between 3% and 26% less run time on circuits with more than
5000 cells.

In [Roy93], hierarchical clustering and annealing are utilized to perform FPGA placement.
A clustering and annealing-based, timingvdn, N-way chip partitioner is used as a global place-
ment tool for a single-chip FPGAI€1) with emphasis on both wirelength an@eution time. A
bottom-up hierarchical clustering is used to geethose modules that form “natural” clusters
(dense subgraphs, in the accumutativeighted graph used to represent the circuit netlist). Then,
the clusters are refined through an adapichnique where clusters are gest so that small nets
(2-pin nets, typically) are collapsed and thrduts of lage nets are reduced. This means the total
number of nets in the clustered netlist is reduced andvdrage &nout of the remaining inter
cluster nets is reduced. These both assist in speeding up the annealing-based partitioning/place-
ment.

Once the p¥sical chip is partitioned inthl sub-chips, the core iswiled into a grid of bins,
to male the wirelength calculation more accurate. The clusters of modules are alédgdob
the simulated-annealing-basBewvay partitioner is imoked. The clusters are med from bin to

bin as the annealer progresses, and the location of a cluster is the center of the bin in which it cur-

12

Background and Previous Work

rently resides. The cost function consists of total weighted wirelewtfwhere wirelength is
estimated using the sum across all nets of the half-perimeter bounding box for each net), and a
penalty Py, for timing violations (sum of all the penaltiegeo all critical paths specified). The
cost function can be written as:

C=W+P, (2.4)

For lage nets, an incremental net-span updating scheme is used, and since the granularity
of the grid is a single bin, and the algorithm operates on clusters of blocks, the updating is simpler
and fster than with the flat netlist. Mes are generated as mentionedipresly, with the added
restriction that roughly the same utilization in each bin (amount of logic clusters per bin) needs to
be maintained. Once the annealing-based partitioning phase is complete, the clusters within each
of theN partitions are decomposed, and detailed placement of the constituent flat modules is per-
formed using a v temperature flat anneal. Compared to an industrial placement tool, this tech-

nique reduced the total number of unrouted nets that remain after routing by 90%.

2.2.3 VPR - Versatile Place and Route
In [Betz97] [Betz98], a dynamic adayei annealing schedule that leads to high-quality

placements for FPGA circuits in a reasonable amount of run time is described. It includes some of
the features from the avk done on annealing schedules by Huang et al. [Huan86], Lam and
Delosme [Lam88], and Satz and Sechen [@r90], lut it also implements a mel temperature
update scheme and stopping criterion. The annealing schedule parameters are adjusted automati
cally depending upon the size of the circuit, and a bounding box wirelength cost function is used
with correction &ctors for multi-terminal nets [Chen94].

The initial temperature is set to 20 times the standaritifen in cost after a set oo

moves are made, wheld, s iS the total number of logic blocks and pads in the circuit. Since

the initial placement is a random assignment of logic blocks and pads toytheaplarray this

ensures that the temperature is high enough that almost all initasnane accepted. At each
temperaturelnnerNum ENbIocks4/3 moves are attempted, where the scalagfdrinnerNum has a

default value of 10. The temperature is reduced in suclwathat if there is little change in cost
either due to the acceptance rate being tao(logh quality placement already) or too high (poor

placement quality), the temperature is reduced bygeidraction. So, as long as the cost is

13

Background and Previous Work

changing significantly and a substantial number ofesplut not all, are being accepted, the tem-
perature is reduced more genty that this space of placement configurationgpsoeed more
thoroughly Table 2.1 shews hav the temperature updatactor a, is automatically determined

according to what the acceptance rate ofesonas at the last temperature stage.

Table2.1: Automatic temperature update schedule for VPR. [Betz97]

Fraction (()lf? al\zlz;;s Accepted Temperature UpdateaEtor (1)
Racoept > 0-96 0.5
0.8 <Raceept < 0.96 0.9
0.15 <Rgggept < 0.8 0.95
Racoept < 0.15 0.8

A range limiting mechanism is used to maintain gdalcceptance rate of 44%. If the
acceptance ratalfs belav 44%, the range within which candidates for pairwisaepsiare found
is shrunk. Coversely if the acceptance rate gve bggond 44%, the range ixganded. This is

accomplished using the follang relationship between theweange limit Dpey jimit), the prei-
ous range limitDg g jimit), and the préous acceptance ratiRgecepnt :

D = Doig_jimit {1-0.44+ R (2.5)

new_limit accept)
Note that if the acceptance ratio isaetly 44%, there is no change in the range limit, and

that Dpey jimit IS restricted to the range [1, maximum FPGA dimension]. This range limit then
gradually shrinks eer the course of the anneal fromveong the whole chip at the gi@ning,
when the acceptance ratio is typicalgry high, davn to 1 (nearest neighbors) at the end of the
anneal when only local refinement is tolerated.

Finally, the annealer terminates when the temperatli® ielav a certain fraction of the

average cost per net. If there &gy nets in the circuit, and thererage placement coster all
the maes at the current temperatureCisst, the annealend criterion, T;, can then bexpressed
as:

< 0.005[Cost

T N

(2.6)

nets

14

Background and Previous Work

VPR placement parameters that can be specified by the user from the command line

include: the initial temperatur@{), the &it temperatureT;), the temperature updatactor (),

the scaling dctor (nnerNum) for the number of maes to mak at each temperature, and the ini-
tial random seed (as long as the same seed for the random number generator is used, the place
ment algorithm is deterministic). These alldhe user to tune the placement tool to achie
different quality ersus run time trade4{sffor a particular circuit.

VPR also addresses the longeution time of typical simulated annealing implementations
by performing &st incremental bounding box updates whesluating the cost of a placement
after a meoe or svap. For each net, a data structure contains not only the coordinates of the four
sides of the net bounding box, it also contains the number of pins on the net that lie on each side.
This information is used to determine thevreget bounding box after a aw by only &amining
the pins that meed rather than a brute force calculation faerg pin on the décted net.

VPR currently holds the ovld record among academic FPGA placement and routing tools
with the minimum total number of tracks required to place and route a set of standard benchmark
circuits [Betz97b].

2.2.4 AlgorithmsBased on Variations of Hierarchical Clustering and
Simulated Annealing - NRG and Simulated Quenching

In [Sarr97], the NRG standard cellwdoased placement tool is proposed. It performs in
succession a global placement, a detailed placement, and a final refinement, each of which is
based on simulated annealing. The main objestare to reduce the search space of potential
placement configurations to obtain higher quality resaktef and to proide a st prediction of
the high-quality placement possible using NRG itself. The placement problemdisddinto a
global placement phase and a detailed placement phase. Thatimotis that a good global
placement can assign modules to approximate locations quickly and the detailed placement con-
cerns itself with the»act location and timing of a moduleygn the constraints set by the global
placement.

In the global placement phase, flat modules are assigned to a coarse grid via annealing,
where each grid location (“bin”) can hold multiple modules. The cost function being minimized

includes total bounding box wirelengt®{;re EncTH) @Nd a penalty functioPggcp) to prevent

unbalanced numbers of modules in each bin on the global placement grid. So, the cost of a place-

mentx is given by:

15

Background and Previous Work

f(¥) = PwireLenaTH * APsaep (2.7)
whereA is a scalingdctor The authors gue that this is diérent from clustering modules in the
flat netlist first, @en though the goal of problem simplification is the samey Téason that oper-
ating on the flat netlist (rather than a netlist ofwigible clusters) prades more flribility, and
that clustering modules tek a local vie of the placement problem rather than a global one.

In the detailed placement phase, the global bin assignments from the annealed result of the
global placement phase are decomposed into the flat grid. Thew, tankperature annealing
schedule is used to perform the detailed placement of the modules, minimizing a cost function
consisting of wirelength,w@rlap penaltyand rov penalty The follov-up refinement phase shifts
cells to remwee ary remaining @erlap.

The grid size for the global placement phase isedrat using a binary search to minimize
the diference in wirelength between ary fast global placement and ary fast detailed place-
ment for that grid size. Each phase is sped up by simply reducing the numbeesfatiempted
by the annealer at each temperature. NRG waehiwirelengths that are as good or better than
those obtained by the commerciarsion of TmberWblf for a set of fie benchmark circuits. In
addition, NRG can be used to quickly obtain an estimate of the wirelength NRG itself zde pro
when allaved to achiee the highest quality placement. NR®/irelength predictions are 3 - 20%
more than the actual wirelengths from high-quality NRG placements. Fittalyrun time of
NRG can reduced by up to actor of tw, if a quality dgradation of 1 - 3% can be tolerated.

In [Sato97], an iterate, partitioning-based placement algorithm Wwnoas “simulated
guenching” (SQ) is proposed for linear (1-dimensional) placement problems. pdaons of
the algorithm mimic ideas from simulated annealing; the algorithm operates in theirfgllo
manner:

* “Moves” are generated by partitioning the linear placement of blocks into subgroups

using a particular pitch (subgroup size) and a randomly chofsat; of

» A force walue for each block in each subgroup is computed based only on the nets that

cross subgroups; a forcealue represents the direction in which vimg a block
decreases the length of an irseibgroup net connected to that block. These accumulated
force \alues are then used to sort the blocks within each subgroup.

» This process is repeated multiple times witHedént partitionings of the netlist, each

with the same pitch,ut different ofsets.

16

Background and Previous Work

» After a number of iterations, the pitchlue (subgroup siz@) is reduced according to a
predetermined “schedulgd,=p - 0.03 * pp/ logyp) (this is similar to temperature reduc-
tion in simulated annealing), and the entire procedure is repeated until thegtiteh v
falls belav 2.
When this method is compared to a pure simulated annealing implementation, similar wirelength
results are obtained for a set @y small MCNC benchmark circuits vig91], it SQ ehibits
superior run time. Heever, for the MCNC circuit s38417, the SQ algorithm requires 8 hours to

reach a stable solution when run on a 166 MHz Hyperspanicstation.

2.2.5 Choiceof Starting Temperature for Simulated Annealing

One crucial feature of grautomatically-generated, dynamic, and adapinnealing sched-

ule for a \ariety of circuits is the choice of the starting temperafyjefor a gven placement. The

reason is that if the temperature is set too high, subsequent annealing wil} tlesteasting
placement structure, which nmexsk ay previous work toward placing the circuit useless. Con-
versely if the temperature is set tooMpthe annealer is unkgdty to improse upon the xasting
placement significant)yas it will be unable to escape local minima.

In [Rose90], a method is proposed to compute a good starting temperature for simulated
annealing placements. The idea is that theigtsea temperature for avgn simulated annealing
placement where the placement is in a state of equilibrium. In this state, therjpecied net
change in the cost function after a set ova® which implies that thexpected change in place-
ment cost is zero:

E(AC) = 0 (2.8)
Let P(AC) be the probability that a nae with change in cogiC is generated from the current
placement state. If this distubon is knavn, then ifN is the number of me@s attempted on the

current placement, we carpgess Equation (2.8) as:

E(AC) = [(ACP(AC) [Pyceery(AC)) GAC = 0 (2.9)

wherePyccent(AC) is the probability that a nve with costAC is accepted. From Section 2.2.1, we

KNOow Pyecent(AC) is commonly defined as:

17

Background and Previous Work

[b(_AC)/T AC>0
P (AC) = O ’ (2.10)
accept ’ AC <0
By substituting Equation (2.10) into Equation (2.9)0 tseparate inggals are obtained:
0 00
E(AC) = [(ACP(AC)) dAC + [(AC [P(AC) =Ty dac = o (2.11)
—00 0

So, the equilibrium temperature of asg@n simulated annealing placement with avkno
distribution P(AC) is the temperatur€ = Tg, for which Equation (2.11) is satisfied.

The process of calculating this equilibrium temperature fovengplacement is informally
referred to as a “simulated thermométar order to implement this temperature measurement
scheme to compute the equilibrium temperature fovengplacement, a set Nfdiscrete samples
is used to approximate the continuous distidn of AC over all mwes. This means Equation
(2.9) can be written as:

N
E(AC) = 3 (AC; [P(AC)) [Pagee(AC)) = 0 (2.12)
i=1

Ideally, P(AC;) is measured on a running simulated annealing process while at the equilibrium
temperatureTg, . However, if each moei is actually being generated, then the number ofesi0
produced with a change in cas€; will be N OP(AC;). That means m@s with a particular

change in cost will be generated with about the same fregasnitig would appear in the con-
tinuous distrilntion. So, as long ds is suficiently lage, the set of sample wmes generated will
approximate the distrition of AC over all possible mees, and théd’(AC;) term in Equation
(2.12) is inherent from the me generation and in the calculationEgAC).

The simulated thermometer &kan initial placement of blocks, and performs gelanum-
ber of maves (N), none of which are permitted to change the placement. The change in cost asso-

ciated with each mei is recorded4&C;), as well as whether the m®would have been accepted

or not, based on Equation (2.10). Tixgression folE(AC) in Equation (2.12) is thervaluated,
and a binary searctver temperature is performed to find the temperature at whichpleeted
value of the werall change in placement cost is zero. When the temperatiues Ty, that satis-
fies Equation (2.12) is found, the temperature at which tlemgilacement is in a state of equilib-

rium is determined, and this is a suitable initial temperaturegio la@nealing the placement.

18

Background and Previous Work

As the binary search for the equilibrium temperature progresses, only the probability of

accepting “bad” mees is afected (moes that increase the placement cofyan(AC) for
AC;>0). So, the only portions of Equation (2.12) that need to be recomputed are those for each

recorded “bad” mee at a particular temperature during the search. This simplifies and speeds up
the calculation. It is also important to ensure that enouglesnare made to obtain an accurate
probability distrilution for P(AC;). Between 10,000 and 100,000 vee are recommended

[Rose90].

2.3 Clustering Algorithms

In this section we discuss the nvation behind using netlist clustering algorithms to speed
up heuristics that sodvproblems such as placement and partitioning, and list some of the cost

functions used in the prior research toldb good clusters.

2.3.1 Using Clustering to Reduce Problem Complexity

Whether the problem is partitioning or placement, the virtues of using bottom-up netlist
clustering are well documented in [Sun95] yR8] [Shin93] [Hage97] [Kary97] [Alpe97c]. The
primary goal of this clustering is to reduce the problem size so that a smaller and more easily solv-
able problem is obtained. This assists in decreasing the time required foratatgarithms to
obtain a good solution for theverall problem.

A clustering groups netlist modules into disjoint subsetsykras clusters. When the mod-
ules are paakd into each clustethe netlist that is induced is a condensexéion of the original
problem that may be s@d more easily and quicklyhis is particularly crucial for itera algo-
rithms whose performance tend togoede as the problem size and comijeincrease. Hagen
and Kahng suggest that the adtage dered by clustering in reducing the problem size permits
the algorithm operating on the condensed problem to focus on the nifiestitdénd time-con-
suming portion [Hage97]. Both [Sun95] and {R8] state that through fettive netlist cluster-
ing, the number of clusters to manipulate, the number of-ahister nets and pins, and the
average &nout of the remaining nets are all substantially reduced. This can decrease the computa-

tion time required by an order of magnitude compared to operating on the original flat netlist.

19

Background and Previous Work

If one level of clustering is institient to simplify the complaty of the problem, then addi-
tional levels of clustering (hierarchical or multivel clustering) may be performed until the prob-
lem size becomes manageablatiWnulti-level clustering, the compaction of the original flat
netlist can proceed more gentlyith progressiely smaller clustered netlists being produced at
each leel of the hierarch Intuitively, the benefit of multi-kel clustering is that the iteraé
improvement strai@y has more opportunities for refinement. Furthermore, as the refinement
moves from coarser to finendels, the iteratie algorithm canaid bad local minima because of
the lage steps tadn at the highestvels of the hierargh The progressely smaller and more
detailed steps at thever levels of the hierarghenable the algorithm to find good final solutions
[Alpe9T7c].

In the specific case of hierarchical placement, the clusteringssasva bottom-up prepro-
cessing step. A good clustering algorithm should identify those groups of blocks that are tightly
coupled in the netlist and will end up being placed in close proximity in the final placememt. Ev
though top-den partitioning achiees the same dde-and-conquer philosophas clustering
(though starting from a global wieand working its way dawvn to a local viev of the circuit), the
growth in circuit size may makthis problem prohibie (this is wly clustering is used to sim-
plify large partitioning problems). It is important,wever, that the clustering step bast itself,
otherwise the speedup benefits are nullified. As well, the clusters shouwldtlvéth as uniform
a size as possible, since algorithms thaswalusters become lesdeetive when the sizes of the
objects ary greatly [Sun95]. Placement algorithms tend teehaore success in minimizing the
net lengths of v fanout nets rather than higlinout nets [RgA3]. Consequent)ycreating a hier-
arcly of clusters that shrinks the problem size, so thatwaege &nout of a net is reduced, can

be adantageous to achimg both good quality and run time.

2.3.2 Cost Functions Used to Build Clusters
In [Sun95], tvo levels of clustering are performed prior to hierarchical simulated annealing-
based placement. A singlevéd of clusters is constructed in linear time based on conrmigcti
with the clusters hang similar size. The cost function is designed so that nets with samalliff
are absorbed into a single clusfEnese nets are easier to fit in a single cluster than nets of greater

fanout. Each netis assigned a weigh; that is iversely proportional to itathout. So, if the set

of pinson netisFj, w; = 1/ (F0U- 1). A tree model for multi-terminal nets is used, which means

20

Background and Previous Work

that ann-pin net has-1 edges; if that net spansclusters, then there amnel1 intercluster edges,

and if there ar¢ pins of that net contained in a clustidyen that cluster hgsl edges. LeBy be
the set of all pins contained within clustefThe weight,W,, of clusterk is then defined as the

sum of all the edge weights in that cluster:

W, = Za (|Fin B -1) 0w, (2.13)

i|(F; A By) # 00

The first component of the product term in the summation represents the number of edges of net
that are completely contained within clusteNote that if the entire netag absorbed by cluster
(all pins of net are contained within boundaries of cludtgrthe total edge weight due to that net
would be 1. LetN be the desired number of clusters to be constructed at a speficTlee
objective of the clustering algorithm is to maximize the cost fund@idrelow, without violating

the constraints on cluster capacity (a minimum and maximum size for clusters at a spebjffic le
N
C = z W, (2.14)
k=1

[Sun95] emplgs a simulated annealing algorithm toild the clusters while maximizing the
above cost function, where blocks areagwed or meed across clusters as long as the blocks
have connections in each cluster

In [Roy93], a bottom-up hierarchical technique is also used to construct clusters for parti-
tioning. An accumulatie weighted graph is used to represent the circuit netlist, where each node
represents a circuit module, and each edge indicates a net containing thoselés. Am-pin
net then results in(n-1)/2 edges in the complete graph. The clusterirggetarthose nodes in the
graph that qualify to be mged with each otheAs in [Sun95], each net is weighted by the
inverse of its &nout, (1/0-1), for ann-pin net). All the edges betweeweey pair of nodes in the
graph are collapsed into single edges with a total weight equal to the sum of all the edge weights
between the same dwnodes.

In the first clustering phase, “natural” clusters are constructed from those nodes which are
connected by edges thatveawveight greater than some threshold. This tends to cluster the most
dense subgraphs from the weighted graph of the netlist, and higélsrdé clustering proceed in

the same @y with a condensed netlist of clusters and an updaieeé Yor the threshold.

21

Background and Previous Work

The second phase of clustering uses an adaptethod to refine the clusters created in the
first phase. Its goal is to further simplify the netlist while making sure the sizes of the clusters are
approximately equal. Small clusters on 2-pin nets arg@deiogether to form lger clusters, it
if there are no such nets remaining, then the smallest cluster on the multi-terminal net with the
largest inout is meged with a gren small clustein this way, both the total number of nets in the
revised netlist is reduced, and theeeage netdnout of the remaining nets is also reduced. The
clustered netlist is then transferred to the partitioning/placement tool.

In [Shin93], a single kel of bottom-up clustering is utilized to simplify a partitioning prob-
lem, as well as prade a hierarchical partitioning tool with a good initial solution that canfoe ef
ciently evaluated. The intuition is that a clustering-based initial partitioning solution is superior to
a random solution since the blocks that aregeerinto clusters should ultimately reside in the
same partition.

The clustering process @fies by considering each circuit block a cluster itself (cluster size
= 1). LetCommonNets(C, D) represent the set of nets common to clusteasndD, Pins(C) and
Pins(D) represent the set of pins contained in clusteasdD, respectiely, Cluster Sze(C, D) be
the size of the ve cluster formed by mgmg C andD, andAvgCluster Sze be the aerage size of

all the clusters. The “closeness” ofawlustersC andD is given by [Shin93]:

|CommonNets(C, D)| %} DCIusterSize(C, D)0

closeness(C, D) = min(|Pins(C)|, [Pins(D)|) AvgClusterSize U

(2.15)

The first component measures the strength of the attraction between the clusters, while the second
component is the penalty for creating clusters with unbalanced sizes, whose influence is con-
trolled by the scalingaictor a. The pairs of clusters with the highest closeness scores agedner

until the desired number of clusters is reached. Afterdlsters are mged, the closeness scores

of all the other décted clusters are updated to reflect the change.

Once all the clusters are constructed, the clustered netlist is partitioned multiple times, and
the best solution is passed on to the flat partitioner for further refinement. The combined cluster-
ing and 2-lgel partitioning methodology leads to high quality partitioning results in a reasonable
execution time.

In [Alpe97c], multi-level clustering is used to simplify the partitioning problem. Tag-v
ous levels of clustered netlists are passed to a hierarchical partitioning tool for repeated partition-
ing and decomposition of the clusters while maintaining the partitions from thieyseigher

level of the hierarch

22

Background and Previous Work

The clustering at a gén level meges 2 blocks (or clusters) at a time in the fellg man-
ner: an unclustered bloek is meged with a gren blockv if w has the highest connegty to v,

according to the cost function bel¢Alpe97c]:

1 5 -+
A(v) DA(w) e|:|{e|(v§e,WD e)} o

whereA(v) andA(w) are the respeet areas of blockgandw, ande represents each net common

conn(v,w) = (2.16)

to bothv andw. The (1 /¢|) component reflects that blocks connectedwofemout nets are pre-
ferred, and the (1 /A(v) DA(w))) term indicates that blocks with smaller areas are preferred for
meiging to maintain clusters with balanced sizes. If there is no suitable unclustereditoek
blockv is assigned to itsven separate clusteets with &nout 10 and up are ignored for the pur-
pose of calculatingonn(v,w), and the clustering at avgn level terminates when a specified frac-

tion of all blocks hae been clustered.

2.4 Fast Compile Algorithms

While there gists a great deal of prious work on VLSI placement algorithms that can be
applied tevards FPGAs, and these algorithms succeearyging dgrees in minimizing the wir-
ing area occupied by a circuiteny fev of them hae as their primary goal the minimization of
run time. In this section, we describe some of the recerk dealing with &st compilation for
FPGAs.

241 Lola

Gehringand Ludwig [Gehr98] describe ast placement tool in the cortef a set of inte-
grated CAD tools for the Xilinx XC6200 FPGA architecture. Itveis a Lola HDL specification
[Wirt96] into an FPGA programming bitstream in the order of seconds. Their congtraot
deterministic placement algorithm operates only on a hierarchical description of a circuit that con-
tains rgular subcircuits and is represented by parameterized templatesedtusdsspecified
position hints and proceeds in a bottom-aghion to place the inn@most subcircuits, and then
recursvely places the lger array structures andpression trees. Simple heuristics for placing
these structures are empdal to place the grlar bit-sliced designs that often occur in datapath

circuits. The designer is permitted to manually indeer to proide hints and feedback to the

23

Background and Previous Work

automatic placer that pre-places parts of the circuit. Since the circuit hieisurclaintained, the
user can easily modify the placement manually ovideofurther hints to constrain future itera-
tions of the placerUpon reaching a placement solution, the specific placement information for
each subcircuit is passed on t@®y instance of that template.

The placement algorithm is of linear comptg and is &st - a circuit of 11,748 config-
urable logic blocks (CLBs) as placed in 33.5 seconds on a 166 MHz Intel Pentium. The Xilinx
XC6264 is the tayet deice. The authors admit that their stigtedoes not lead to dense layouts,

and that for lager circuits, manual floorplanning may be required.

242 GAMA

Callahan et al. [Call98] combinadt placement with module mapping in their GAMA tool.
It is used to synthesize bit-sliced datapath circuits quickly by treating the placement and mapping
problems jointly as a tree wering problem. A datafie graph representation of the circuit is split
into trees, and a linegime implementation of bottom-up dynamic programming is used to per-
form the simultaneous module mapping and netathodule placement. While creating a tree
covering for a particular module, a linear placement is formed hytiaf the module with the
best cwoers of its &nin trees. Modules within a subtree are placed contigyarsiythe size of a
modules fanin trees are used to estimate routing delays that form part of the cost function used to
evaluate diferent coers and placements. Once placement within a tree is complete, a greedy heu-
ristic is emplged to perform the global placement of the trees that seeks to place trees on the crit-
ical path close to each othekfter post-coering and post-placement local optimizations are
made, each module is generated on demand, rather thgngdpgrom a static library of mod-
ules with diferent widths, shapes, and orientations.

By opting to maintain the hierarchical datapath circuit structure, rather than flattening the
design to a netlist ofages, the authors are able xpleit specialized features of theirgat FPGA
device architectures, such asst carry chains. Tlreobtain good results when ggting the Xilinx
XC4000 aamily and &plore the trade-dtbetween optimizing for area (minimum number of con-
figurable logic blocks, CLBs, required) and for delay (minimizing critical path delay through the

dataflav graph, or minimizing the number of CLBs while meeting a specific timing constraint).

24

Background and Previous Work

The authors admit that only a subset of all possible linear orderings of optimized modules are
evaluated, and so an optimal placement cannot be ensuregvétoGAMA can be beneficial in
situations where placement quality may be sacrificed for compilation time; it cadegpeoquick

initial solution for further iteratie refinement or when agt estimate of placement cost is needed.

2.4.3 Fast Placement for FPGAs via Automatic Floorplanning

In [Tess98], compile-time B€ient placement for FPGAs is approached using ASIC floor-
planning techniques. By considering portions of the circuit being mapped to the FPGA as pre-
placed and pre-routed macrocells, the compile times fge ldesigns can be decreased from an
hour to mere minutes, although there is bothvareearea and circuit speed penadltging macros
and floorplanning tends to yield ast placement resultubfollowing it up with some amount of
annealing tends to smooth outyazongestion and permits bettevobe utilization. Furthermore,
if inter-macro routing is not tan into account during the floorplanning stage, this can lead to
longer routing times than those obtained by using classical flat place-and-route heuristics due to
the increase in total wirelength.

For circuits with an eplicit hierarchical structure, an itenadi stratgy using relatie cell
placement, cell rotation, and cell mirroring is used to aehike goal of minimum interconnec-
tion wirelength. The method firstvalves finding optimized layouts for a set of macrocells that
will be stored in a library database. Since each macrocell is small, this doeged enuch
time, and only needs to be done once. The circuit is then neglyrbipartitioned using classical
algorithms to create a slicing floorplan with minimum cut size, where each leaf in the binary slic-
ing tree is a single macro. Then, floorplan sizing is performed using a bottom-up dynamic pro-
gramming approach. All feasible shape combinations eatiaed in this tngersal from the
leaves to the root of the floorplanslicing tree, and those which consume too much area are
pruned. A top-dan slicing tree treersal is then performed, and at eackel®f the traersal, the
combination of macrocells that fits the shape constraints laid out in tieysretep is chosen
such that wirelength isgpt at a minimum. At the end of this stage, the floorplan contains a list of
macro locations, shapes, and orientations that result in a macrocell placement on the minimum-

sized square FPGA that can accommodate it.

25

Background and Previous Work

2.4.4 Fast Routing and Difficulty Prediction

In [Swar98a], the routing phase of ttest FPGA compile is addressed. It is the complement
to this work and together tlyeform the st Compile Project at the Wersity of Toronto. Svartz
et al. present abt routability-diven FPGA routerand later propose adt timing-avare router in
[Swar98b]. Their enhancements to the basic maze router include using a more \aggitepth-
first search technigue to route nets from sources to sinks, the choicgedfstaks when routing
multi-terminal nets, routing the nets in decreasing ordeamdut, and reducing problem com-
plexity by dividing the FPGA into uniformly-sized bins. Anothegykcontritution of this vork is
the feedback praded to the user of the predictedfidifilty of a given routing problem. @en a
placement and a @et FPGA, the tool estimates the minimum number of tracks per channel
required to route the circuit on thevgn FPGA from the bounding-box wirelength placement
cost. It then compares this figure to the actual numbewafalle tracks per channel on the
device, and informs the user that either the circuit can be routed quibklyit can be routed

given more time, or that it is unroutable@n the current tget FPGA.

2.5 Summary

In this chapterwe prwvided definitions for the FPGA placement problem and the wdst-f
placement problem. @/then reiewed some of the prior evk done in general VLSI placement
algorithms, focusing on simulated annealing-based heuristeal$ discussed pieus eforts
that used clustering to simplify and speed up placement and partitioning problems aritie v
cost functions empieed to lild clusters from a flat netlist. Finallywe presented some of the
recent vork accomplished in creatingdt compilation tools for FPGAs. This prdes the back-
ground information necessary to understand the design details of theasttfdaicement algo-

rithm, which is described in the xtechapter

26

Ultra-Fast Placement Algorithm

Chapter 3
Ultra-Fast Placement Algorithm

In this chapterthe components of the ultrast placement algorithm are described, includ-
ing the parameters that alldhe exchange of wirelength for compile time éthen describe o

we determined a stable set of these parameters Heatigithe best quality-time tradd-of

3.1 Overview of Approach

Recall that the placement problem for FPGAgibe with a technology-mapped netlist of
logic blocks, 1/0 pads, and their interconnections. The output is an assignment of the blocks and
pads to specific pisical locations of the FPGA.oTachiee ultra-high-speed placement for
FPGAs, we hild upon the clustering and hierarchical simulated annealing algorithm described in
[Sun95] and the adapé annealing schedule of [Betz97] [Betz98J Witeagrate it into the infra-
structure preided by VPR (the ¥rsatile Place and Route tool presented in [Betz97]).

Figure3.1 illustrates the frameork for the algorithm [Sank99]. The first stage is a multi-
level, bottom-up clustering of the logic blocks. Note that we do not incorporate 1/0O pads into the
clusters of logic blocks, since thbave restrictions on their placement. The clustering is parame-

terized as follws: a total ofL different levels of clustering will be performed. At eaclééi, s

blocks (or clusters) at the pieus level are grouped into a clustéira circuit contains a total if

logic blocks, then after a singlevid of clustering (leel 1), there aréN/s,clusters. These clus-
ters can be grouped &g to create a secondsé of clustering, withs, first-level clusters in each
second-leel clustey giving [LIN/s, [V s,[clusters at the topvel (level 2), and so on.

Once all the required clustering is done, placement must be performed atveac tlee

newly-formed hierarchl. We emply a two-step approach at eaclvéé an initial constructie

27

Ultra-Fast Placement Algorithm

Circuit
Cluster Parameters l
clustering levels, L _.I Hierarchical clustering of logic I
blocks/cluster at each level, blocks based on connectivity
Sq1, S2,--- S1-1, S

Placement Parameters L
To. Tr, o, InnerNum Constructive cluster placement
at each level — and annealing of clusters
at level i
fanout threshold, maxfan

I Decompose clusters at level i I

<>—

Yes

Constructive block placement
and annealing of blocks
at flat level

'

Legal placement of logic blocks and 1/0 pads

Figure 3.1: High-level view of fast placement agorithm.

placement followed by iterative improvement using simulated annealing. The parameters of the
anneal are tuned to secure a good quality-time trade-off, as described below. Figure 3.2 illustrates
an abstract view of the multi-level clustering and placement. Our goal is to achieve high-speed
placement by quickly making good and fast global decisions at the higher levels of the hierarchy,
and following this with iterative local improvement at each level. Our choices of algorithms are
guided by the following objective: reduce the complexity of alarge placement problem by divid-
ing it into manageabl e portions, and then employ known heuristics that are simple, fast, and effec-
tive on each portion. As we have seen in Chapter 2, multi-level clustering has been used to
simplify and speed up the solution of large placement and partitioning problems. This serves as

the motivation behind using this approach to attack the fast placement problem for FPGAS.

28

Ultra-Fast Placement Algorithm

Level 0 Levell Level 2

N D:’ D:’ D:’ D:Hlogicblock

I/O pad
Multi-level Clustering Coarse placement of clusters

ey

N

W

Figure 3.2: Abstract viev of multi-level clustering and placement.

3.2 Multiple-Level Clustering

3.2.1 Description of Algorithm

The first step of the ultraaét placement algorithm is a multi4g bottom-up clustering of
logic blocks. The input to the clustering step is a netli$t tdgic blocks and their interconnec-
tions, the number of clusteringvids, L, and the cluster size at eactdks;, S,,... 5 . We restrict
the cluster sizess) to be perfect squares (4, 16, 25, 64...) in order to simplify the grid resizing
operations at theavious leels of placement. The task is to crelateeparate netlists of clusters of
logic blocks and their interconnections, where each blockveer®vel cluster is assigned to a
unique highetevel cluster gactly once, and each clustgy, (thekth cluster at leeli) has at most
s blocks or clusters from the pieus level, i-1.

The clustering algorithm lgens by randomly choosing a logic block as a seed, and assign-
ing it to the first slot in a clustdach unclustered block connected to that seed is assigned a score
that rates he much the block belongs to this clust€his scorew, for each candidate blodk
has two components: (1) the number of connections between the candidate and the cluster being
constructed, with each connection weighted by #meodit of the net on which it lies, as in

[Sun95], and (2) the number of nets thaiwad be completely absorbed if this candidate were

29

Ultra-Fast Placement Algorithm

added to the current clust&¥e say that a net mbsorbed by a cluster if all the blocks on that net
are contained within that single clustémwe denote] to represent the set of nets shared between

the candidate block and the clustec under constructiorl; as the set of pins on nef! J, and
A as the set of nets absorbed by adding candidate bltzlclusterc, then the score can be

expressed as:
1
WL = — _+|A (31)
° J§J|PJ|_1 |bc|

With this function, blocks on le-fanout nets and on nets that are about to be absorbed are
preferred when dilding the clusters. The candidate block with the highest score is added to the
next available cluster slot, and if the cluster is full, avnene is started with a werandomly
selected seed block. This process is repeated until all the blocks are clustered. The result is a
netlist of clusters with absorbed nets and redundant pinssegm@é proceed in a similar man-
ner to create furthervels in the clustering hierarghThe pseudo-code for the clustering algo-
rithm is presented in Figure 3.3.

The number of clusteringVels,L and the size of the clusters at eackeles, can be aried

to allow the trade-dfbetween compile time and qualits the size of the clusters increases, the
placement problems become simpler because more details are higid#here is less accurate
representation of the netlist and thereforedopquality may result. By focusing on the collapse of
low-fanout nets via clustering, we are implying that blocks connected to those nets will be placed
in close proximity after a high-quality flat placement. Furthermore, thevadrabthese nets from

the global vigv of the circuit and the use of clustering to reduce Weeage anout of the remain-

ing non-absorbed nets will allothe placement phase tovdée its attention at highenlels in the
hierarcly to nets whose lengths are mordidiflt to minimize in a flat placement scheme, and do

S0 in a much quick fashion.

3.2.2 Clustering Example

Figure 3.4 preides an rample to illustrate the clustering algorithm. The cluster under con-
struction can hold up to four blocks, and three of its slots are filled with logic Mpgkendz. In
order to fill the remainingvailable cluster slot, wexamine the candidate blocks that share con-
nections with the current clustddpon adding block to the clusterthe most recent addition,

scores are incrementally updated or assigned to blocks thatrdyecnaenected to the cluster and

30

Ultra-Fast Placement Algorithm

Input: # of clustering Mels,L; cluster size at eachviel,s; .. 5.
procedurecluster _blocks {

1 curr_level = 1;

2 Repeat {

3 Repeat {

4 Start nev cluster and flushuzket structure;

5 Select random seed block;

6 Repeat {

7 for each candidate blodkconnected to seed {

8 Compute/incrementally update cluster scagg,from (3.1);
9 Store score indxcket structure;

10 if (Wi > Whest_block) {

11 best_block = b;

12 } *endif */

13 } I* end for */

14 Add best_block to next free cluster slot;

15 seed =best_block;

16 } until (cluster is full || no more blocks at thisvé to cluster)
17 } until all logic blocks at this Ieel are clustered

18 Revise netlist at this kel -> remwe absorbed nets and redundant pins;
19 curr_level++; /* proceed to nd level of clustering */

20 }until all L levels of clustering complete

} I* end cluster_blocks */

Figure 3.3: Pseudo-code for multiakel clustering algorithm.

. logic block

/

[y —

(on

L —

y\
.
q) L

cluster c

ﬁ__l

Figure 3.4: Clustering ample.

31

Ultra-Fast Placement Algorithm

those that are on nets about to be absorbed. The cost function in Equatiorvé3.fh)egscores in
Table 3.1.

Table 3.1: Cluster scores for candidate blocks xample of Figure 3.4.

Block | Cluster Scor¢
1.50
0.83
0
0.50
0.33

ol 0| T| o

Note that based on its cluster score being the highest, bleabuld be chosen for the
remaining free cluster slover blocksb, d, e, andc, respectrely. In fact, blockc would not @en
be considered as a candidate since it does not shapm@anections with the clustéfhe attrac-
tiveness of blocla is apparent from its sharing a single 3-pin net with the cluster and that this net
would be absorbed if blockwas added to the clustdfthere are @ailable cluster slots and none
of the remaining unclustered candidate blocks shareamnections with the cluster under con-
struction, then a candidate is selected randomly and assigned tattfre@slot.

Figure 3.5 illustrates ho cluster size influences the amount of absorption of nets resulting
from a single leel of clustering for one circuit in our benchmark suite. Note then éor rela-
tively small cluster sizes (between 2 and 10 logic blocks per cluster), a significant proportion of
flat nets are collapsed (25-60%), and up to 80% of the nets from the original netlist are eliminated
with a cluster size that is under 100 blocks. While the datarshrothe graph as obtained from
clustering a single circuit using tifent cluster sizes, and the results fronfied#int circuits are

influenced by theirdnout distrilotion, these trends are apparent in all the circuits.

3.2.3 Complexity of Clustering

The score assigned toyacandidate block changes only when a net connected to that block
is first connected to a clust@r when that net is about to be absorbed (i.e.ualblockb of the
pins on nej are contained in cluster and the cluster has amadlable slot). The list of the best
scores and associated candidates is maintained uokatksorted data structure in order to per-
form fast updates [Corm90]. Thaudket structure, which is sorted by score, only needs to be

flushed when a cluster is full. LBt be the number of logic blockk, be the number of nets on

32

Ultra-Fast Placement Algorithm

100.0

80.0 r i

% of total 60.0

nets
absorbed
40.0 - |
20.0 + |
O-o . | . | . | . L
1 10 100 1000 10000

Cluster size (blocks)

Figure 3.5: Graph of percentage of total flat nets absorte#dus cluster
size for one Ieel of clustering on MCNC circuftrisc (3692 blocks).

each logic blockf,ox be the maximumainout of ag net in the circuit, and be the size of the
cluster The compleity of the algorithm can be dead by observing that when generating the
clusters, the algorithm muskamine each of thil blocks once, each of thénets connected to
the block, and each of the other pins on those nets. X&msieation occurs either upon adding a
block to a cluster or when a net is about to be absorbed. The &dgnplethe clustering algo-
rithm is thus ONK[},). If we clip the walue off,,,, by restricting the clustering algorithm from
examining nets ab a certaindnout threshold, this is a lineaime algorithm. This bound is sat-
isfied at higher beels of clustering as well, siné¢is scaled dan by a &ctor of the cluster size
(9), K is scaled up by at most actor ofs (and is often less than that), afyg, is likely to
decrease. Practically speaking, the clusteringiig fast: a 20,000 4-LUT circuit can be clustered
into clusters of size 64 in 2.1 seconds on a 300MHz Sun UARGRwvorkstation.

33

Ultra-Fast Placement Algorithm

3.3 Placement of Clustersat Each L evel

Once we hee constructed the hierancbf clusters, placement must occur at eacéllélhe
placement algorithm consists ofdwteps: construet placement follwved by simulated-anneal-

ing-based iterate improrement.

3.3.1 Constructive Placement of Clusters

Given a netlist of clusters and their interconnections, we first perform a random placement
of all the 1/0 pads in the circuit at the highesteleof the hierarch This pravides anchor points
for the constructie placement of the clusters. Note that subsequent optimization steps will change
this initial pad placement.

The constructie placement determines positions for three separate groups of clusters: (1)
those connected to output pads, (2) those connected to input pads, and (3) those connected tc
other logic clusters. It computes, for each cluster in each group in succession, the arithmetic mean
position of all the clusters and pads it is connected to thatdleeady been placed. The cluster is
then placed as close to this “center ofvgyé as possible. The initial placement of the pads pro-
vides the guidance for this constructiore Wave found that this method prides a superior start-
ing point for the subsequent itexettiimprovement step compared to using a simple random
placement. Experiments also shthat this placement results in a slightly better quality-time
trade-of than an initial random placement. The pseudo-code for the constrgtister place-
ment step is shvan in Figure 3.6.

At lower levels in the hierargh the same construeé approach is used, with threecep-
tions: (1) there is no initial pad placement -- pads are placed in the sanhegre clusters are; (2)
if a block has not yet been placed and its position is needed for the mean calculation, the geomet-
ric center of the highdevel cluster it is contained within is used as the position; (3) each of the
cluster contents is placed as close to its calculated “centenityyrahile remaining within the
prescribed cluster boundaries.

At each leel of the hierarch it is possible to perform multiple iterations of the constvecti
placement algorithm prior to the itersiimprovement step. The objeet is to refine the place-
ment using the same construetialgorithm it making use of the complete placement informa-
tion available from the pngous iteration. This helps to fix the problem that early in the first

iteration, pads and clusters are placed withgateinformation on the location of the clusters to

34

Ultra-Fast Placement Algorithm

Input: netlist of clusters, 1/0 pads, and interconnections, higrdecal number

procedureplace clusters (int curr_level) {

1 calculate grid size for clusters avédcurr_level;

2 if (curr_level == top level in hierarcly) {

3 sort clusters into lissorted_clusterg], in following order:
clusters connected to output pads, input pads, and the rest;

4 do random pad placement;

5 }

6 else { /* lowver levels of hierarci */

7 calculate boundaries induced by eacteldcurr_level+1) cluster;

8 sorted clustery]] = list of clusters and pads at/&d curr_level;

9 } *endif*/

10 k=0;
11 while not all clusters and padsviesbeen placed {
12 curr_cluster = sorted_clustergK];
13 total_x =total_y =total _connections = 0;
14 for each connectiorronn, to curr_cluster {
15 if (curr_level !=top level in hierarcly) && (conn is unplaced)
16 use center of cluster awkd curr_level+1;
17 if (conn has been assigned gaélocation)
18 total_x +=conn.x; total_y += conn.y; total connections++;
19 } I*end for */
20 mean_x =total x/total _connections;
21 mean_y = total_y /total _connections;
22 placecurr_cluster as close tonfean_x, mean y);
[* without violating array or induced cluster boundaries */
23 labelcurr_cluster as placednum clusters placed++;
24 k++; /* examine n&t unplaced cluster or pad */

25 }/* end while */
} I* end place _clusters*/

Figure 3.6: Pseudo-code for construadicluster or intra-cluster placement.

which theg are connected. Although multiple passes of the consteuplacement algorithm
tended to impree the wirelength slightly at eachvéd in the hierarch there vas no significant
difference in final placement cost at eacteleafter the simulated annealing-based iteeati
improvement phase, irrespeaiof the number of iterations performed by the constreigtiacer
Table 3.2 shes a comparison between the constuectluster placement algorithm and a

quick and simple random placement at clusteringléebelaov the top leel. After the prescribed
clustering vas completed, a top¥el placement w&s performed with our construai placement
algorithm. At all succesgly lower levels, the initial cluster placementw performed using the

constructve algorithm, in one case, and a random placement algorithm, in the Tathesrsure

35

Ultra-Fast Placement Algorithm

that the comparisonas fir, in both cases the folleup iteratve improvement phase at eaclvéd

was the same. The data simis the geometric mean of the normalized final placement cost and
the associated meameayall run time across 20 benchmark circuits, using tHerdift initial clus-

ter placement algorithmsoF 1 and 2 leels of clustering, there is a slight benefit in placement
guality at the gpense of a slight increase in run time when using the cons&ytéicement algo-
rithm. For 3 levels of clustering, the dérence between the twalgorithms appears tevor the
random placement algorithm. Note that this is a comparison forwéis leelov the top leel of

the hierarcl; the constructie placement algorithm deérs a better quality-run time tradd-of

than a random placement of the topeleclusters.

Table 3.2: Constructie versus random initial cluster placement.

Length of Constructve Random
Cluster ﬁ?g?;’g/‘ép Mean | Geometric Mean| Mean | Geometric Mean
Hvel limprovemend 1S | \irelongth | Tme | Wirelengn
Phase Vireleng ime Vireleng
(s) |(20 circuit aerage] (s) |(20 circuit aerage
1 short 7.36 1.567 6.10 1.589
medium 13.09 1.250 11.77 1.265
long 61.76 1.036 60.20 1.042
2 short 7.96 1.595 6.71 1.622
medium 13.69 1.279 12.30 1.292
long 61.78 1.048 58.87 1.065
3 short 9.77 1.581 8.13 1.594
medium 15.28 1.266 13.80 1.262
long 62.70 1.050 61.74 1.046

3.3.2 Simulated-Annealing-Based Iterative | mprovement of Placement

Following the constructe placement of clusters and pads at lawel in the hierarcpy we
improve its quality using simulated annealing-based [Kirk83] [Sech85] Weratnprosement
before proceeding to the xtdower level. Refer to Chapter 2 for a description of the basic simu-
lated annealing method as it is applied to placemeathak adapted the annealing implementa-
tion in VPR described in [Betz97] [Betz98].

36

Ultra-Fast Placement Algorithm

One important issue is whether or not to restrict the motion of blocks to remain within the
cluster boundaries of the most recent clusteelléNe hare experimentally determined that at
every level of the hierarch it is much better to allav the blocks being placed toove across the
cluster boundaries. This still means that the coarse placement fromvtvaiptiesel is useful; if
the boundaries are strictly enforcedwager, then placement quality dafs. 1o demonstrate this,
an periment vas run on a set of 20 benchmark circuits comparing placing flat blocks within
cluster boundaries to placing them across the boundaries. A sivgll®felustering vas speci-
fied, with identical cluster sizes and identical togeleand flat-lgel placement parameters. In
both cases, a geometrigeaage run time of 14.04 secondasaobtained across the 20 circuits.
However, the geometric\eerage normalized placement costsn.23 when blocks were ailed
to cross cluster boundaries, while a cost of 1.8% wbtained when the blocks were restricted to
moving only within those boundaries.

The ley parameters that control the quality-time tradef@f simulated annealing are:

» The starting temperatur&,. This is a crucial parametdrecause if the temperature is set

too high, the subsequent annealing will desthe placement structurewadoped at pre-
vious levels in the hierarch If it is set too lav, then insuicient optimization will be per-

formed. W emply three diferent mechanisms for determining. The first is to

employ the temperature “measurement” mechanism (simulated thermometer) suggested
in [Rose90] -- here, the initial temperature is determined by finding the temperature at
which the placement appears to be at equilibrium. The second is to set the initial temper-
ature to zero (a “quench”, where only ves that impree the placement cost are
accepted), and the third is to set the starting temperature tedavdilkie, greater than

zero. In the ne section, we xplore which of these approaches is most appropriate for
different quality-time trade-bpoints.

In Table 3.3, we shw the efect of \arying the starting temperature for the fallap

anneal at the flat el after a single kel of clustering of the MCNC [&hg91] circuit

clma. A constructie top-level placement, a folle-up top-level quench, and a construc-

tive flat placement were performed. The starting temperature for thev-ghioflat
anneal vas \aried from 100 den to 0.025, the»at temperature as fixed at 0.01, and

the number of mees attempted per temperaturasnadjusted so that theevall run

times were comparable. The final placement costs obtained were compared to using the

37

Ultra-Fast Placement Algorithm

simulated thermometer to determine the starting temperature and proceeding with an
automatic flat anneal where the temperature updaterfand ®it temperature are com-
puted dynamicallyThe usefulness of the simulated thermometer is apparent when com-
pared to the quality-time tradetaibtained using pre-specified starting temperatures that
do not tale into account the state of the current placement. The run times are, $umilar

the placement with l@est cost is generated by the anneal that uses the thermometer
Note that as the starting temperature is reduced from 100 to 0.1, hill-climbing is still
accomplished, lt in smaller amounts in the same amountxetation time. Hwever, at

very low temperatures (< 0.1), the annealer is caught in local minima that farelttib
escape, and there are not enough temperature steps for significant optimization. The ther-
mometer permits a nice tradd-between these wwranges of temperatures, and is com-
puted dynamically using the current placement of the circuit in questiory &vah in

the hierarcly, hence it is more raist and adapte than a static choice of starting temper-

ature.

Table 3.3: Effect of starting temperature calculation on annealing for MCNC cicbug.

To Run Time Normalized
(s) Placement Cost
100 23.52 2.29
10 22.04 2.22
1 21.92 1.97
0.1 21.76 1.22
0.025 21.64 1.35
thermometer 21.87 1.21
(0.089)

* The number of “mees” per temperature, callethherNum.” The basic annealing algo-
rithm of VPR [Betz97] magsInnerNum D\lb|ocks4/3 moves at each temperature, where
Npiocks IS the total number of blocks and pads. The pararh@terNum determines he

much work is done per temperature.
» The temperature updatactor a. This factor is the amount by which the temperature is

reduced between iterations of the main annealer 6y, € all). A lower value for

a results in adster anneal,ut also a reduction in qualityPR [Betz97] automatically

38

Ultra-Fast Placement Algorithm

adjustsa as described in Section 2.2.3; wevdndound that squaring the automatic
increases the speed with which the algorithnvemes with little reduction in quality
» The «it criterion -- what causes the annealing to stop -- is either a pre-specified temper-

ature at which the annealing terminat&$ ¢r when one of the folleing two conditions

are met: (i) the temperature is less than 1% ofvwheage cost per net, or (ii) theesiage
cost wer the last three temperatures is unchanged.
We have identified three types of schedules that permit ugglmes the quality-time space

thoroughly: (1) an aggress, dynamic, adapte schedule with automatic calculations Tgr T,

anda; (2) a quench (all mes made at temperature = 0), where no hill-climbing is permitted; (3)

a manually-specified schedule where takigs ofTy, T anda are fixed. Schedule (1) is an anneal

tailored to the current placement of the circuit, whaitéts level of granularity schedule (2) is a
greedy heuristic, and schedule (3) is a shordfianneal. In all three cases, we can trade quality

for compile time by &rying thelnnerNum parameter

3.3.3 Fanout

Another enhancement that we implement to speed up the placement is to ignore nets with
large fanout. This is useful because a highdut net will lilely cover much of the FPGA and so it
is harder to reduce its wirelength. By ignoring netsvaba certain dnout threshold (called
maxfan in our tool), the placement problem is further simplified. If we set the thresholdwpo lo
however, we may lack enough information to create a good placement. Note that both the
clustering and placement steps ignore the netgeathis thresholdmnaxfan.

To illustrate hav varying the &nout threshold impacts the amount of information remaining
in the netlist and the subsequent placement qualigyconducted a set okmeriments on the
MCNC [Yang91] circuit clma. Thealue ofmaxfan was \aried from 1 to 10000.df¥ each of these
fanout thresholds, the nets witdnbut greater thamaxfan were remwed from the netlist, and the
percentage of total flat pins that remained in the circag mecorded. Then, a high-quality simu-
lated annealing-based placement tool, VPR [Betz97] [Betz%,ran on the simplified netlist.
After the anneal terminated, the ignored nets were reinstated, and theasasimpared to that
obtained when the original circuitas placed (with no nets ignored). In Fig@ré, the percentage
of total pins remaining and the percentage increase in VPR placement costaraskianctions
of the fanout thresholdmaxfan, for this circuit. Clearlywhen all nets with more than 2 pins are

ignored (maxfan = 1), there is not enough information left to perform a good placement (only

39

Ultra-Fast Placement Algorithm

30% of the pins remain), and the qualitygdedation is seere (nearly 3 times the wirelength).
However, when the dnout threshold is raised to 10 (nets with 11 pins and lesgaiie &ver 50%
of the pins in the netlist are intact, and the resulting annealed placement has a less than 30%

increase in wirelength compared to annealing the origeraian of clma.

200.0 200.0
clma - 8527 blocks
% 150.0 1 150.0
increase]
in] % of total
. 1 ins
simulated ; 5 . 41000 "™
annealing -] remaining
placement o
cost u
A 50.0 1 50.0
0.0 P o

i 0.0
100 1000 10000

Fanout abwe which nets are ignored

Figure 3.7: Graphs of placement costgtadation and percentage of total flat pins remaining
after nets abee threshold ignored, eackrgus &nout threshold for MCNC circuitma.

3.3.4 Complexity of Placement

At ary level in the hierarch the initial constructie placement algorithm hasovet-case
time complaity O(NpjocksBEFhnax), With Npjoas 10gic blocks and pad¥ pins per block, and a
maximum &nout off,,,, for ary net in the circuit. Just as with the clustering algorithm, this is
because we muskamine each block (or clusterxaetly once, gamine each net connected to
that block, andxamine &ery other block on that net. Furthermore, Rgraining only those nets
belov a certain&nout threshold, we can ensure that it remains a ltimaaralgorithm. Thexgper-
iments described in the mieus section and Figu@7, in which nets abe a certain dnout
threshold are ignored, indicate that, practicatlis possible to pnade an gen tighter bound on
the compleity of the constructie placement algorithm.

Assume there amd logic blocks andKI+PO) pads in the circuit, and that we choose a uni-

form cluster size o$ at each Ieel of the hierarchh For the follov-up simulated annealing algo-

40

Ultra-Fast Placement Algorithm

rithm, we explore at each el i (i = 0..L) at mostinnerNum C{(N/s)+ Pl+PO)*2 configurations
per temperature. The intelligent starting temperature calculation and aggedaptie anneal-
ing schedule typically ensure that we do not search througly tearperatures pervel in the

clustering hieraroh This means that the annealing algorithmbrst-case time comptdy is

bounded by Oy oas”) and is typically less than that.

3.4 Determination of the Quality-Time Envelope
Parameters

In this section, we describe theperiments used to identify the set of parameters for the
ultra-fast placement tool and choose those parameters. Therecasetsvof parameters: those
that control the clustering, and those that control the weratiprorement of the placement. Our
goal is to determine the parameters that lead to the best quality-time tr&olesof tool, which
we call theenvelope parameters. Please note that the details of the actual FPGA architecture and

the other parts of the CAD fhoare gven in Chapter 4.

3.4.1 Cluster Parameter Experiments

The key parameters of the multipledel clustering approach are the number of clustering
levels () and the cluster sizes at eacvelds; ... s). We first explored a single kel of clustering
with L = 1. To determine the cluster sizalue §;) that pravides the best quality-time tradefof
we ran the placement tool on a set of benchmark circuitsaretithe cluster size from 4 to 4096
by pavers of 4. Br the subsequent itenai improvement placement, mardifferent annealing
parameters were run in order to determine the complete quality-time tfgoessibilities. Br
example, Figure.8 is a plot of the geometric mean normalized placement wirelength (with
respect to the best possible placement obtained by VPR [Betz93lisvthe geometric mean run
time, across a set of 20 benchmark circuits. In that figure, the clusterirgg wiae set to 64.

We performed similargeriments and generated the same edov \alues ofs; = 4, 16,
64, 256, 1024 and 4096, and determined that @ahees of 64 and 16 resulted in the bestést
cost) quality-time trade-bturve. Figure3.9 shavs the comparison of the quality-time cesfor
each walue ofs;, and we chose to use 64 as ourvEleluster size in the placement parameter
experiments that foll. This results in netlists withieer clusters that are kg&r in size compared

to a 1-level cluster size of 16.

41

Ultra-Fast Placement Algorithm

2.5 | |

®—@ |evl auto, inum1=0.1, lev0 auto, inum0=0.001-1
=—# |ev] auto, inum1=0.1, lev0 quench, inum0=0.1 7
A—a levl auto, inum1=0.1, levO T0=0.1, inum0=0.1-1
L ¥—Y lev1 auto, inum1=0.1, levO TO=1, inum0=1 4
® @ levl auto, inuml1=1, lev0 auto, inum0=0.001-1
m-----m |evl auto, inum1=1, levO quench, inum0=0.1
A-----Alevl auto, inum1=1, levO T0=0.1, inum0=0.1-1
V-----¥ levl auto, inum1=1, lev0 TO=1, inum0=1
levl T0=0.1, inum1=0.01, levO auto, inum0=0.001-1 7
levl T0=0.1, inum1=0.01, levO quench, inum0=0.1
20 L levl T0=0.1, inum1=0.01, levO T0=0.1, inum0=0.1-1 o
levl T0=0.1, inum1=0.01, lev0 TO=1, inum0=1
G— -©levl quench, inum1=10, lev0 auto, inum0=0.001-1
&— 4 levl quench, inum1=10, lev0 quench, inum0=0.1
44— - levl quench, inum1=10, lev0 T0=0.1, inum0=0.1-1
] ¥— - levl quench, inum1=10, lev0 TO=1, inum0=1 7

Geometric mean normalized placement cost

1.0

Geometric mean run time (seconds)

Figure 3.8: Placement quality-time plot (20 circuiexage) for ultradst placement tool
using diferent combinations of annealing schedules orvéhlsize-64 clustered circuits.

We performed similar studies far= 2 and 3 leels of clustering. These studies are prob-
lematic as there are mamore parameters txglore: forL = 2, the alues ofs; ands, must both
be set; folL = 3, the alues ofs;, s, andsy must all be specified. Furthermore, annealing parame-
ters must be specified at each of thosel&e The gperiments demonstrated that for= 2, the
values ofs; = 64 ands, = 4 were found to ok best, and in a Ve cases, the quality-run time
trade-of was superior to the best of the= 1 ewelope. for L = 3, the walues for §;,5,,s3) of
(64,4,4), (64,16,4) and (256,4,4) were all found to belzdoout the sameuball of these settings
yielded results that were no better than those obtained dcro$sand 2. This may be due to the

sizes of the laye circuits in our benchmark suite; after 2els of clustering, the circuits Y&

42

Ultra-Fast Placement Algorithm

2.0

1.5 -

o ---- @ cluster size = 4
- & cluster size = 16
A—Aa cluster size = 64
&~ — O cluster size = 256
O— -a cluster size = 1024
A— -4 cluster size = 4096

Geometric mean normalized placement cost

1.0 - -
1 10 100

Geometric mean run time (seconds)

Figure 3.9: Placement quality-time cueg (20 circuit @erage) for ultradst placement tool
using a sample of annealing parameters amgivg 1-level cluster sizes from 4 to 4096.

already been transformed into avféarge clusters (tens of clusters, each with 256 total flat
blocks). So, an additionalMel of clustering does little to further simplify the placement problem,
and may een cost both time (because of thera processing at Vel 3) and area (an additional

level of grid resizing must be performed, which mayeadely afect the grid size at the flatiel).

3.4.2 Placement Parameter Experiments

The net set of parameters to tune is the set of simulated annealing parameters described in
Section 3.3.2. Recall that we settled on the set of three types of schedules described in Section

3.3.2: (1) an automatic anneal using a simulated thermometer to cofgpdyg@mamically calcu-

43

Ultra-Fast Placement Algorithm

lated \alues forT; anda, and \ariablelnnerNum; (2) a quench withariablelnnerNum; (3) a fixed
anneal withTy = 0.1,T; = 0.01,a = 0.8, and aariablelnnerNum. We explored the combinations

of these schedules at the clustered and flatdeof the hierargh for circuits clustered with = 1

ands; = 64 blocks per clustethe scatter plot of geometric mean normalized placement@ost v

sus geometric mean run time across 20 circuitsvengin Figure3.8, and note the compiiéy of
the \arious combinations of schedulesrBhort run times, the eglope is comprised of a quench
(schedule 2) at the topviel with InnerNum = 10, and the short, &l annealing schedule (sched-
ule 3) at the flat kel with InnerNum of 0.1 to 0.5. Br longer run times, the e@lope consists of
the automatic anneal (schedule 1) at the tegl iith InnerNum = 1 and the automatic anneal at
the flat level with InnerNum from 0.2 to 1. In each case, though, itiglent that there are alterna-
tive schedules that come reasonably close twiging the same quality-time tradetds the
envelope.

Similar combinations of annealing schedules were attempted for 2 anel 8liestered cir-

cuits. In the case of circuits with= 2 levels of clustering and cluster sizesg € 64,s, = 4), the

ervelope parameters leading to short run times consist of a quench at theetqfelel 2), a
guench at kel 1 (both withinnerNum = 10), and a fied anneal at the flatvel with InnerNum
from 0.01 to 1. Br medium run times, the 2vel ervelope consists of a quench at the togele
with InnerNum = 10, a short fied anneal at lel 1 withInnerNum = 1, and at the flat\Vel, either
an automatic annedinherNum from 0.1 to 0.5) or a short & anneallfinerNum from 0.2 to 1).
For longer run times, the 2Mel ervelope consists of fed anneals atvel 2 and lgel 1 (both
with InnerNum = 1) and a flat automatic annelinerNum = 1), or a top-leel automatic anneal
(InnerNum = 1), a leel 1 fixed anneallfnerNum = 1), and a flat automatic annebirerNum
from 0.5to 1).

The placement quality-time eslope formed by the placement parameters fon8Heus-
tered circuits is no better than the Ydeand 2-lgel ervelopes. Examples of such 34 anneal-
ing schedulesl(= 3,s; = 64,s, = 4,53 = 4) are: a top-leel (level 3) quenchlfinerNum = 1), a
fixed anneal at lel 2 and lgel 1 (nnerNum = 1) and a flat fied anneall@nerNum from 0.5 to
1); a top-leel fixed anneallinerNum = 0.1), a fied anneal at el 2 and lgel 1 (nnerNum = 1),
and a flat automatic annedhiferNum = 0.5). Once agn, although these sets of placement
parameters resulted in the best quality-time traflésofour ultra-ast tool, there are alternagi

schedules that achvie results that are approximately as good.

44

Ultra-Fast Placement Algorithm

In order to determine the bestlwe of the &nout thresholdmaxfan (the \alue of ainout

aborve which the nets are ignored), we performedxaeement withL = 1 ands; = 64 and aried

the fanout threshold. Figur® 10 is a scatter plot of qualitgrsus run time,\eeraged wer 20 cir-

cuits, for \arious alues of &nout threshold and annealing schedules. The circular dots represent
the quality when no nets are ignored, and the other pointg thlgoquality when more nets are
ignored -- for &nout thresholds ranging from 1000 to 1. Itv&lent that &cessvely low fanout
thresholds eliminateaf too much placement information from the circuit, hence the ageadie

tion is huge. Hwever, when nets withdnout @er 100 are ignored, we\saa fev seconds of

placement time with almost nogladation in quality

4.0 ¢

@ no nets ignored, level_1 auto, innernum_1=1, level_0 auto, innernum_0=0.01-1
W maxfan =1

4 maxfan = 2

A maxfan =5

<4maxfan =10

V¥ maxfan = 20

» maxfan = 50

r -+ maxfan = 100 B
30 L x maxfan = 1000 -

L 2

20 - R]

Geometric mean normalized placement cost

10 | e - o
1 10 100

Geometric mean run time (seconds)

Figure 3.10: Placement quality-time plot (20 circuitexage) for ultradst placement tool
using diferent fitnout thresholds akie which nets are ignored on circuits withefilxcluster
and placement parameters.

45

Ultra-Fast Placement Algorithm

3.5 Summary

In this chapterthe details of the ultraat placement algorithm were described. The algo-
rithm begins with a bottom-up, multipleakel clustering phase to simplify the placement problem.
It is followed by a tw-step hierarchical placement algorithm: at eaghllef the hierarcp an
initial constructve placement of the clusters éaskplace, folleved by a simulated-annealing-based
refinement. The algorithms were shoto hae linear time complaty if nets abeoe a certain
fanout threshold were ignored. They kunable parameters of both the clustering (number of clus-
ter levels, cluster sizes) and placement (starting temperaturéemperature, temperature update
factor number of mees per temperatureariout threshold) algorithms were presented. The
search for the eelope parameters that pide the best quality-time tradetdbr the ultra-ast
tool was described, and the specific clustering and placement parameters that forveltpgeen
were furnished.

In the na&t chapterwe will establish the baseline placement results to which we will com-
pare the placements produced by our uligt-tool. This will be follwed by a comprehens
evaluation of the quality-time performance of the ultaatftool and a description and results of

the types of prediction information that are weyed by the tool.

46

Experimental Results

Chapter 4

Experimental Results

In this chapterwe compare the meultra-fast placement tool to arxisting and knawn
high-quality placement tool, VPR [Betz97].e/élso discuss thagt prediction of high-quality
wirelength and theafst prediction of the placement qualigrsus run time relationship of avgn
circuit. We first describe the FPGA architecture used in #pe@mental comparisons and the

overall CAD flow.

4.1 Target FPGA Architecture

For our placementxperiments, we use an island-style FPGA with a logic block that con-
tains a single 4-input lookup table (4-LUT) and a single D flip-flop. This simple and most basic
FPGA architecture is illustrated in Figutel. Each block has 6 pins: 4 inputs, 1 output, and 1
clock. We will assume the FPGA has dedicated resources for routing the clock, reset, and other

global nets. W also assume an 1/O pad pitch-to-logic block ratio of 2.

4.2 Benchmark Circuitsand CAD Flow

We have collected 20 Iaye circuits from a ariety of sources: 14 of the circuits originate
from the MCNC suite [#ng91], one comes from the RAsuite [Babb97], one is a synthetic cir-
cuit generated by GEN [Hutt97], and the remaining four are designs created foartbedgri-
fier-2 Rapid Prototyping System [WiO7] at the Unversity of Toronto [Ye99] [Hame98]

47

Experimental Results

Logic Logic Logic
Block Block Block

Logic Logic /Logic\
Block Block \Block/

Logic Logic Logic
Block Block Block

Figure 4.1: Island-style FPGA architecture and basic logic block contents.

[Leve98]. Each circuit &s optimized using SIS [Sent92], and technology mapped into 4-LUTs
using Flavmap and Flarpack [Cong94]. VRCK [Betz97] was used to pack the netlists of 4-
LUTs and flip-flops into basic logic blocks. The sizes of the 20 benchmark circuits range from
3000 to 20,000 logic blocks.

We hare implemented ourakt placement tool within the framerk of VPR. Since it is a
good estimator of wiring area, we use the bounding box wirelength of all nets in the circuit to
compare the quality of placement of each circuit from each to®lméasure only the time used
to perform clustering and placement, and do not include the initial input file reading time and
parsing (this is no more than 5 seconds for thgekrcircuit). All @periments are run on a 300
MHz Sun UltraSRRC workstation.

4.3 Basisof Comparison

We use the pure simulated annealing-based VPR as the basis for comparison t@ our ne
placement algorithm. In order to compare to the quality-time trafd=snie for VPR, we needed
to vary the schedule parameters for VPR itself, in a manner similar to that described in Chapter 3
for our tool, to determine mowell we can do with respect to placement quality and time using
VPR alone.

48

Experimental Results

To obtain the erelope of the quality-time cuevfor VPR, we dried each of thedy simu-

lated annealing parameters -- initial temperatiig, €Xxit temperatureTg), temperature update

factor @), and scalingdctor for the number of mres to attempt per temperatubengrNum). We
used the three types of schedules described in Section 3.3.2: (1) an automatic annealing schedule

(To, T, anda calculated dynamically and adjusted depending upon the quality of the placement)

with variable InnerNum; (2) a quench (greedy heuristic) with variabtaerNum; (3) a fixed

annealing schedule, in which we either swé&gkeepingT;, o, andinnerNum constant, or sweep
a, keepingTy, T;, andinnerNum constant.

We ran each unique annealing schedule on all 20 circuits, recorded the run time and wire-
length, and normalized the wirelength for each run orvangcircuit to that achied by VPR
when run under its “ast” option on that same circuit. This specific VPR option is similar to its
default parameters that are tuned to generate high-quality placemeeqst #gnat one-tenth of the
configurations arexplored at each temperature (the scaliactdrinnerNum is 1 under “-ast”,
and 10 by defult). Typically, this increases the placement cost by at most 1084yith a fictor
of 10 speedup in placement time. Essentidlig a \ery high quality placement that is obtained in
a reasonable amount of time. The normalized wirelengths and run times wereetfagyed geo-
metrically across all 20 circuits touvgi a single (placement time, placement cost) pair for each dis-
tinct annealing schedule. It is from thegperiments that we determined thevelope of the best
VPR annealer parameters to specify across all 20 circuits.

The enelope containing the annealing schedules that produced the best quality-time trade-
off consisted of parts of three types of schedules vétrakilelnnerNum (between 0 and 100): a

quench, an anneal wily = 1, T; = 0.01, andx = 0.8, and an automatic anneal with dynamically-
updatedTy, T;, anda. Figure4.2 illustrates the geometric mean normalized placement cost

(bounding-box wirelength)ersus geometric mean run time across all 20 benchmark circuits for
the three schedules that form the quality-timestope for VPR.

There is not much diérence in wirelength and run time among the schedulesti@neely
short run times (< 3 seconds)eWbsere that for run times in the 10 to 100 second range, there is
ample room for impreement; anaerage of 80-100%xéra wiring area is likly unacceptable to a

circuit designer een within 10 seconds of placement time. The figure alswshioat as more

49

Experimental Results

time is xpended on placement and more configurations\aleated, the benefit of probabilistic
hill climbing becomes readily apparent. The emepresenting a greedy annealing schedule
(quench) shes that placement solutions in this range cannot escape local minima, aedytsli

from those schedules that accept some bagmim order to reach global minima.

7.0 [
2 .
f_,) 6.0 j‘-_ ®—@ auto, innernum = 0.001-1 j
GC) [=-----m quench, innernum = 0, 0.01-100
e ‘m & — ¢ T0 =1, innernum = 0.01-10
€50 .
@ L
o L
° L
& 4.0 - e
©
S
2 3.0 -]
c
©
£
o 20 - .
©
g L
S 1.0 - .
O
0.0]
0.1 1.0 10.0 100.0 1000.0

Geometric mean run time (seconds)

Figure4.2: VPR placement quality-time tradef¢20 circuit average) using annealing
schedules that form theaxiope.

4.4 Comparisons Between Ultra-Fast Algorithm and
VPR

A head-to-head comparison between the ulisd-placement tool and VPR is possible by
first running each set of placement parameters that lies onvbleea of the respewet tool on
every circuit in the benchmark suite. Then, the placement quality results are normalized to those
obtained by running VPR under its ddt” option (described atwe), and the geometric mean

placement cost and mean run time are calculated for each set of parameters across all circuits.

50

Experimental Results

Figure 4.3 isaplot of both the best VPR quality-time envel ope and the new ultra-fast place-

ment tool quality-time envelope. It indicates that the ultra-fast placement tool has a clear advan-

tage for both short run times (10 seconds or less) and medium run times (from 10 to 100 seconds).

In 10 seconds, our placement tool requires only 30% more wirelength on average (than the best

4.0

2.0

Geometric mean normalized placement cost

1.0

4 - -4 VPR Envelope
oo Ultra—Fast Placement Envelope

10 100
Geometric mean run time (seconds)

1000

Figure 4.3: Placement quality-time envelope curves (20 circuit average) for VPR

and new ultra-fast placement tool.

possible placement using VPR), while VPR requires at least 80% more wirelength on average. In

just 3.5 seconds, our ultra-fast tool generates placements requiring approximately 50% more

wirelength on average, whereas placements produced by VPR in the same amount of time require

between 2.5 and 3 times the wirelength on average. Furthermore, while VPR can achieve an aver-

age area penalty of 10% in over 100 seconds, our placement tool can attain this level in less than

30 seconds. If we allowed our placement tool to run without a compile time restriction, it would

produce placements that would be very nearly what VPR can achieve, since both tools are based

51

Experimental Results

on similar implementations of simulated annealing. Thisigeat from the graph: within 60 sec-
onds on werage, the ultraalst placement tool yields amemage wirelength that is within 5% of
that obtained via VPR’ high-quality anneal. Win 115 seconds orvarage, the ultraasst tool
generates placements that are of the same quality as the high-quality anneals from VPR.
Figure4.3 also demonstrates that by manipulating the parameters afsth@ldcement tool, we
can realize a smooth tradd-between placement quality ankeeution time.

Figure 4.4 shes the erelope cures from the tw placement tools and highlights the point
at which the cures intersect, which is at approximately 250 secondsyvrage amount of time
required by VPR to produce high-quality placements of the circuits in the benchmark suite. Fig-
ure 4.5 shas the emelope cures from the tw placement tools using a linear scale for the time

axis, focusing on short and medium run times.

4.0

A\
1% AN
o N
(&) A
5. |
% 3.0 - N & - -4 VPR Envelope .
S i . e——e Ultra—Fast Placement Envelope
= “a
© \\
[¢D) N
N i
g 20 |
5 I
c
c
I
[}
= I
2 1.0 - |
Q L
S
o
(¢}
Q)

1 10 100 1000

Geometric mean run time (seconds)

Figure 4.4: Placement quality-time galope cures (20 circuit eerage) for VPR and
new ultra-fast placement tool, highlighting the point at which the esimmeet.

52

Experimental Results

4.0

& - -4 VPR Envelope

30 7 *\ e——e Ultra—Fast Placement Envelope |
: \

Geometric mean normalized placement cost

1.0

0.0 20.0 40.0 60.0
Geometric mean run time (seconds)

Figure4.5: Placement qualityarsus time erelope cures (20 circuit eerage) for
VPR and ner ultra-fast placement tool (linear scale).

Table4.1 provides a more detailed comparison between VPR and the adtrgpiicement

tool with one particular set of parametdrs: 2 levels of clustering with cluster sizeg= 64 and
s, = 4, with the top-leel and leel-1 annealing schedules being quenches (witer Num = 10), a
flat anneal withTy = 0.1 (nnerNum = 0.5), and nets akie fanout 100 ignorednfaxfan = 100).

From Figure4.3, we note that the mean run time for this schedule across our 20-circuit bench-
mark suite is 11.4 seconds with a mean normalized placement cost of 1.22 fitust ¢tf find

directly comparable run times between the twols; we then select a schedule from the VPR
ervelope that has a run time that is as close as possible (mean run time = 14.2 seconds; mean nor:
malized placement cost = 1.82). The columnsaifi@4.1 gve the circuit name, the circuit size in
number of logic blocks and nets, the run time and normalized placement cost obtained using our
fast tool, the comparable data using VPR, and the percentage reduction in placement cost due to

the ultra-fst tool compared to VPR. The tablewhkdhat the ultragst placer wins in a compari-

53

Experimental Results

son with VPR for gery circuit in our suite, posting a superior wirelength in a significantly shorter
run time. Note that for this particular set of ultestfplacement parameters, the reduction in wire-
length compared to VPR ranges from 13% to 51%, withvarage reduction of 33% in 20% less
time.

Table4.2 and &ble4.3 prwvide additional comparisons between our ulastfplacement
tool and VPR for gry short and soméhat longer run times, respealy. In both cases, the ultra-
fast placer prades laver wirelength in the same amount of placement time or lessdoy eir-
cuit in the test suite. Naturajlgs more time is deted to placing the circuits, the f@ifence in
wirelength results between the ultest tool and VPR becomes smallésr the short run times
(geometric mean run time of 5.5 seconds for the ultsa-fool), the @erage reduction in wire-
length compared to VPR (8.9 seconds per runvenage) vas approximately 30% in 37% less
time. For the longer run times (geometric mean run time of 24.4 seconds for theastttadl),
the arerage reduction in wirelength compared to VPR (26.6 seconds per ruarage) vas wer
18% in 7% less time.

The true measure of quality of avgh placement is whether or not it can be successfully
routed on the tget FPGA. Although we Iva not attempted to routeyaof the ultra-&st place-
ments, [Svar98b] has shen that wirelength and routability correlatetremely well. Therefore,
we are satisfied that our ultrast placements are superior to those produced by VPR, based solely

on wirelength for the range of compile times of interest.

54

Experimental Results

Table4.1: Comparison between ultrast placement tool and VPR for 20 benchmark circuits.
One set of placement parameteesvemplged for each tool such that their run times were close
and thg were part of the quality-time eelope for their respeet tools.

et vr [Ureres

Circuit IIB_I(;?:LCS # Nets Run Normalized Run Normalized Red;JnCtlon

Time | Placement | Time | Placement | Placement
(9 Cost (9 Cost Cost
clma 8383 8444 21.71 1.20 29.79 1.83 34.4
spla 3690 3706 6.37 1.22 7.26 1.63 25.2
s38584.1 | 6447 6484 14.55 1.29 18.35 2.33 44.6
s38417 6406 6434 13.33 1.22 16.88 1.87 34.8
frisc 3556 3575 6.15 1.21 7.04 1.63 25.8
pdc 4575 4591 8.43 1.20 10.35 1.52 21.1
ex1010 4598 4608 7.69 1.23 10.53 1.67 26.3
elliptic 3604 3734 6.05 1.15 7.16 1.60 28.1
beast20k | 19600 | 20000 | 108.34 1.16 128.10 1.34 13.4
bubble sort] 12293 | 12311 | 41.08 1.29 53.65 2.14 39.7
firle 6975 6994 16.31 1.32 20.86 2.19 39.7
iirl6 3739 3773 6.93 1.15 7.57 2.16 46.8
mac64 4307 4374 8.94 1.19 10.19 1.69 29.6
ochip64 | 4083 | 4101 6.85 1.13 10.63 2.30 50.9
ralu32 3662 3184 5.96 1.25 6.69 1.66 24.7
spsdes 3363 3366 5.22 1.21 6.47 1.70 28.8
des_fm 4786 4791 9.25 1.34 13.25 1.69 20.7
des_sis 5351 5356 11.12 1.24 14.14 1.67 25.7
wood 7432 7524 17.54 1.24 22.15 2.00 38.0
marb 5535 5639 11.61 1.26 13.72 2.15 41.4
Geometric Aerage 11.37 1.22 14.17 1.82 33.0
Arithmetic Average 16.67 1.22 20.74 1.84 33.7

55

Experimental Results

Table4.2: Comparison between ultradt placement tool and VPR across 20 circuits éoy v
short run times.

e |

Circuit é@gifs #Nets Run Normalized Run Normalized :Jr:: o

Time | Placement | Time | Placement | Placement
(9 Cost (9 Cost Cost
clma 8383 8444 10.13 1.31 16.95 1.84 28.8
spla 3690 3706 3.21 1.33 5.40 1.71 22.2
s38584.1 | 6447 6484 6.82 1.46 12.14 2.45 40.4
s38417 6406 6434 6.08 1.35 10.81 2.00 325
frisc 3556 3575 3.19 1.35 4.45 1.72 215
pdc 4575 4591 4.35 1.31 6.50 1.60 18.1
ex1010 4598 4608 3.81 1.47 6.28 1.70 13.5
elliptic 3604 3734 3.08 1.25 5.12 1.66 24.7
beast20k | 19600 | 20000 | 55.75 1.30 76.59 1.65 21.2
bubble sort] 12293 | 12311 | 18.39 1.49 32.33 2.25 33.8
firl6 6975 6994 7.63 1.48 13.60 2.38 37.8
iirl6 3739 3773 3.32 1.31 5.07 2.36 44.5
mac64 4307 4374 4.54 1.38 6.32 1.97 29.9
ochip64 4083 4101 3.18 1.42 6.32 2.59 45.2
ralu32 3662 3184 2.92 1.37 4.16 181 24.3
spsdes 3363 | 3366 2.53 1.35 411 1.80 25.0
des_fm 4786 4791 4.36 1.55 6.78 1.82 14.8
des_sis 5351 5356 5.17 1.47 8.15 1.83 19.7
wood 7432 7524 8.11 1.36 15.19 2.21 38.5
marb 5535 5639 5.51 1.42 8.87 2.50 43.2
Geometric Aerage 5.49 1.39 8.90 1.97 29.4
Arithmetic Average 8.10 1.39 12.76 1.99 30.2

56

Experimental Results

Table 4.3: Comparison between ultragt placement tool and VPR across 20 circuits for longer

run times.

rrares G

Circuit é@gifs # Nets Run Normalized Run Normalized :Jr:: o

Time | Placement | Time | Placement | Placement
(9 Cost (9 Cost Cost
clma 8383 8444 51.78 1.07 54.90 1.31 18.3
spla 3690 3706 14.09 1.11 15.26 1.26 119
s38584.1 | 6447 6484 35.58 1.16 34.34 1.43 18.9
s38417 6406 6434 28.88 1.10 33.97 1.34 17.9
frisc 3556 3575 13.12 1.12 13.82 1.35 17.0
pdc 4575 4591 19.08 1.07 20.48 1.29 17.1
ex1010 4598 4608 17.87 1.08 19.60 1.15 6.1
elliptic 3604 3734 14.54 1.09 13.82 1.35 19.3

beast20k | 19600 | 20000 | 212.87 1.06 221.51 1.06 0

bubble sort] 12293 | 12311 | 85.82 1.17 98.61 1.45 19.3
firle 6975 6994 35.25 1.13 40.96 144 215
iirl6 3739 3773 12.86 1.08 15.03 1.59 32.1
mac64 4307 4374 17.01 1.06 18.97 1.27 16.5
ochip64 4083 4101 15.98 1.00 17.03 1.63 38.7
ralu32 3662 3184 11.71 1.12 12.95 1.34 16.4
spsdes 3363 | 3366 | 12.07 1.10 12.68 1.34 17.9
des_fm 4786 4791 17.31 1.22 21.26 1.29 5.4
des_sis 5351 5356 20.86 1.15 24.54 1.34 14.2
wood 7432 7524 43.55 1.17 41.09 1.52 23.0
marb 5535 5639 23.04 1.16 27.17 1.69 314
Geometric Aerage 24.41 1.11 26.59 1.36 18.4
Arithmetic Average 35.16 1.11 37.90 1.37 19.0

57

Experimental Results

4.5 Wireength Estimation and Accuracy

One vay to use adst placement tool,ven if the user is not interested in sacrificing an
final circuit quality is to use it as a routability estimator for aegi netlist. Swartz et al. [S\ar98a]
shav how to predict if a circuit will route on agn FPGA, gren the wirelength of the placement
of a circuit and the number of tracks per channel in thgetdfPGA. The dreback of their
approach is that the placement must beAkndMe propose that ouasét placement algorithm be
used to obtainery fast and accurate estimates of the fbeat placement wirelength. The idea is
that we can run thesét placement tool in one of itery fastest modes, measure the wirelength of
that placement, and then estimate the best attainable wirelength by decreasing the wirelength by
the typical amount that thast mode is usuallyevse than the best mode. The quality of the result
depends on the consistgraf difference in wirelength between thaest mode and the best mode.
This can be measured by determiningvhauch the normalized placement cost for each circuit,
in the fast mode, aries from the mean normalized placement cost across all circuits.

Figure4.6 is a plot of thewerage diference of each circu#’normalized wirelength from
the mean wer all circuits ersus diferent run times of the ultra$t placement tool obtained from
the quality-time evelope parameters. ¢Tobtain this graph, we calculate the absoluteifice
between the geometric mean normalized placement cost across all circuits and the actual normal-
ized placement cost for each of the 20 benchmarks for each ast pfdcement parameterse W
then compute the arithmetic mean of theskeihces (and call it mean absolute error) and plot it
versus the geometric mean run time thaswbtained for the set of circuits for this set of parame-
ters.)

Figure4.6 shaevs that, as we auld epect, longer compile times produce more accurate
wirelength estimates. Impressly, even placements in short run times result in accurate estimates
-- for example, an @erage 10 second run time results in e@rage absolute error in normalized
placement cost of less than 5%.

We can therefore use thast placement wirelength as an accurate estimator of the final best

placement wirelength.

58

Experimental Results

0.20
0.15 -

0.10 -

Mean absolute error

0.05 |-

0.00 : - ! L
1 10 100

Geometric mean run time (seconds)

Figure4.6: Mean absolute dérence in wirelength (between mean wirelength and
individual circuit results) @sus mean run time for parameters forming ulsa-f
placement tool erelope.

Table4.4 illustrates anxample of &st wirelength estimation for each of the circuits in our
benchmark suite. used the same set of ultestf placement parameters as that used to generate
the data in @ble4.1, and recorded both the run time and varelength result in each case. From
the ewelope cure in Figure4.3, we knav the mean normalized wirelength for this set of param-
eters across all circuits to be 1.22, or 22%dathan the highest-quality wirelength attainable by
VPR. Figured.6 indicates that the mean absolute error for that set of parameters is 0.044 (4.4%).

Our pessimistic prediction of high quality wirelength can be written as:

Wirelengthloredicteol = B DWirelength i a— fast 4.1)
= — = 42)
Wirelength, o, maiizeq — AbsoluteError

59

Experimental Results

The predicted high-quality wirelength for aven circuit is proportional to the wirelength
obtained from the ultraakt placement tool. The scalinactor, 3, is composed of the didrence
between the normalized wirelength for the set of ultistparameters chosen (geometricaligra
aged across all circuits) and the\poaisly described mean absolute error in normalized wire-
length for the same set of placement parameters.

For the &le in Bble4.4, Predicted \Welength = Ultra-last Wrelength / (1.22-0.044).

We use this formula to compute a wirelength estimate for each circuit based ast fladement
wirelength result, and compare it to the Wmchigh-quality wirelength for each circuit from VPR.

For 16 of the circuits, our pessimistic estimate is between 0.89% and 13.75% higher than the
actual high-quality wirelength, and in onlydwases is the error greater than 10%. In four cases,
the estimator &s not pessimistic enough, predicting a wirelength tlzst etween 1.71% and
3.93% less than the actual high-quality wirelengther@W, the aerage absolute error of the wire-
length estimator as 4.91% for the set of placement parameters that yielded a mean run time of
just over 11 seconds.

Another kample of &st wirelength prediction for each circuit in the benchmark suite is
provided in Table4.5. Here, the placement data froeble4.2 was used. Thevarage ultradst
placement time @as just 5.5 seconds, the mean normalized wirelength B89, and the mean
absolute error as 0.066 (from Figuréd.6). The predicted wirelengths were between 0.94% and
17.20% higher than the actual VPR high-quality wirelengths, with six estimaed@%. There
were five instances where the pessimistic estimate underpredicted the actual wirelength, with
none greater than 5%. Naturalyith such a shortv@rage run time, the predictions based on the
ultra-fast placements tend to be less accurate than those obtained during the longer placement

times in Bble4.4, lut the aerage absolute error is still merely 6%.

60

Experimental Results

Table 4.4: Quality of wirelength prediction capability of ultrast placement tool using
placement data fromable4.1 (mean run time = 11.4 seconds).

o R_un Ultra-Fast _Predicteq \/_PR Actu_al %
Circuit Time Plgcement ngh-Quallty ngh-Quallty Error
(9 Wirelength | Wirelength Wirelength

clma 21.71 1786 1514 1491 +1.55
spla 6.37 763 646 625 +3.37
s38584.1 | 14.55 901 763 696 +9.70
$38417 13.33 883 748 726 +3.12
frisc 6.15 685 580 566 +2.58
pdc 8.43 1096 929 917 +1.35
ex1010 7.69 843 715 688 +3.84
elliptic 6.05 588 499 513 -2.75
beast20k | 108.34 7522 6374 6485 -1.71
bubble sort] 41.08 1632 1383 1262 +9.57
firle 16.31 1108 939 841 +11.62
iirl6 6.93 464 393 404 -2.63
mac64 8.94 660 560 555 +0.89
ochip64 6.85 350 297 309 -3.93
ralu32 5.96 506 429 405 +5.85
spsdes 5.22 527 447 434 +2.88
des_fm 9.25 857 127 639 +13.75
des_sis 11.12 826 700 665 +5.33
wood 17.54 1085 920 873 +5.32
marb 11.61 617 523 492 +6.39
Arithmetic Average Absolute Error 4.91

61

Experimental Results

Table 4.5: Quality of wirelength prediction capability of ultrast placement tool using
placement data fromable4.2 (mean run time = 5.5 seconds).

o R_un Ultra-Fast _Predicteq \/_PR Actu_al %
Circuit Time Plgcement ngh-Quallty ngh-Quallty Error
(9 Wirelength | Wirelength Wirelength

clma 10.13 1958 1485 1491 -0.40
spla 3.21 832 631 625 +0.94
s38584.1 6.82 1018 772 696 +10.88
s38417 6.08 981 744 726 +2.52
frisc 3.19 763 578 566 +2.18
pdc 4.35 1202 911 917 -0.63
ex1010 3.81 1014 769 688 +11.76
elliptic 3.08 643 488 513 -4.87
beast20k | 55.75 8446 6404 6485 -1.25
bubble sort] 18.39 1881 1426 1262 +12.99
firle 7.63 1248 946 841 +12.53
iirl6 3.32 527 400 404 -0.93
mac64 4.54 766 581 555 +4.70
ochip64 3.18 438 332 309 +7.60
ralu32 2.92 557 422 405 +4.20
spsdes 2.53 584 443 434 +1.98
des_fm 4.36 987 749 639 +17.20
des_sis 5.17 976 740 665 +11.29
wood 8.11 1188 901 873 +3.16
marb 5.51 698 530 492 +7.69
Arithmetic Average Absolute Error 5.98

62

Experimental Results

4.6 Practical Usage of Ultra-Fast Placement

We have presented results obtained from running an uisa{placement tool agst a
known pure simulated-annealing-based placement tool, anginshow it can be used forabt
high-quality wirelength estimation. In this section, we discuss fwech a placement package can
be used in a practical setting, specify the iaiegfto the useand describe what the tool does
when the user ants a circuit to be placed quickly

In order for ultra-&st placement to be accessible to the, tisertool should prade two key
features:

* Immediate feedback to the user upon reading in the circuit to be placed; this feedback

consists of thex@ected placement qualitgksus compile time cuevdisplayed in a win-
dow on the uses screen.
» Given either a compile time restricti@an a wirelength restriction, specified by the user
at the command-line, the tool should automatically determine the appropriate parameters
(clustering and placement) arnxkeute the ultragst placement algorithm.

The predictor of the quality-time eslope cure for a gven circuit vas deeloped using the
fast placement data irafble4.1, the 20-circuit\zerage quality-time emlope, and the size of the
circuits in the benchmark suite, in logic blocks. Adapting terage quality-time emlope to
generate the @plope for a specific circuit requires more than just a simple scaling based on cir-
cuit size.

First, the ultradst placement times of all 20 benchmark circuits for the chosen set of place-
ment parameters are plotted as a function of circuit size. A diing then performed. Using the
fitted function and the size of the circuit to be placed, the estimated run time fovéhapen
parameters woked in Table4.1 is calculated for the circuit in questione\8all this the estimated
10-second run time. Then, to determine each remaining estimated run time oretbpesfor the
given circuit, we simply scale this “10-second run time” point on the estimatvetbpa by the
ratio between the corresponding run time on trexrage evelope and the “10-second run time”
point on the gerage evelope. In each case, the corresponding estimated normalized wirelength is
taken to be the geometric mean normalized wirelength obtained across all circuits for the same set
of ervelope parameters. Examples of this prediction scheme asm $bothree diferent circuits

in Figure4.7, Figure4.8, and Figurd.9, along with the actuah$t placer quality-time grlopes.

63

Experimental Results

2.0
@ Ultra—Fast Placement Envelope
x——> Predicted Envelope
17
o
o
=
c
[}
=
@
8
215+ .
o
[}
N
©
£
o
zZ
1.0 *
1

Run time (seconds)

Figure 4.7: Comparison of predicted ultra-fast placement quality versustime
envel ope with actual envelope for MCNC circuit clma (8383 logic blocks).

2.0

® Ultra—Fast Placement Envelope
»——= Predicted Envelope

Normalized placement cost
|_\
(6)]
T

1.0 L
100

Run time (seconds)

Figure 4.8: Comparison of predicted ultra-fast placement envelope
with actual envelope for circuit marb (5535 logic blocks).

64

Experimental Results

2.0
® Ultra—Fast Placement Envelope
»—= Predicted Envelope
17
o
o
=
()
IS
@
8
S 15 - 1
°
(7]
N
©
£
o
2
1.0 I R —
10 100 1000

Run time (seconds)

Figure 4.9: Comparison of predicted ultrast placement @elope with
actual emelope for synthetic circutteast20k (19600 logic blocks).

Note that the prediction scheme tracks the acastlgdlacer erelope quite closely in each
case. This is a simplistic scheme based only on circuit size, and one that performs some amount of
analysis of the circuit structurea(fout distrilntion) should performwen better

Once the predicted quality-timewetope has been calculated and presented to the user (via
a pop-up windw), this information is stored to assist in the automatic generaticasbplace-
ment parameters based on the circuit size and eitheea @iea or compile time restrictiorarka
compile time restriction, a search is performed of the estimatedope run times to determine
the closest schedule to the desired compile time, and the associated clustering and placement
parameters are retvied via table lookup. Then, a simple scaling of liwveerNum parameter
(number of maes per temperature) at the flatdeis done, based on thefdifence between the
estimated erelope run time and the desired run time restrictioith \MI the st placer parame-
ters nov specified, the algorithm isvoked, and an ultraakt placement is producecdrFan area
restriction, a similar procedure is folled, except that the area restrictions are first translated into

compile time restrictions based on the predicted quality-timele@pe.

65

Experimental Results

4.7 Summary

In this chapter, we showed how the envelope curve for the quality-time trade-off for a high-
quality simulated-annealing-based placement tool, VPR, was determined. This was used as the
metric of comparison for our ultra-fast placer for both quality and time, and also for fast predic-
tion of high-quality wirelength. We then showed a detailed comparison of the ultra-fast placement
tool with VPR, and the results indicate that in the compile time regions of interest, the ultra-fast
placer provides superior wirelength in a shorter time for every circuit in the benchmark suite. We
further described the method to perform fast high-quality wirelength prediction, and presented
some impressive results using this scheme. Finally, in order to properly alow the user to interact
with the ultra-fast placement tool, two features are incorporated into the tool and discussed -- pre-
diction of the quality-time relationship for an unknown circuit given its size and automatic gener-

ation of fast placer parameters given either a compile time or quality restriction for that circuit.

66

Conclusions and Future Work

Chapter 5

Conclusions and Future Work

5.1 Conclusonsand Contributions

We have obsered that when mapping circuits to an FPGA, the timetbal to placement
and routing dominates the synthesis procesth #dwances in process technolo@PGA deice
capacities will continue to gng and the size and comgilty of circuits being mapped to them
will increase accordinglyTherefore, ®isting CAD algorithms will need to adapt to ensure that
the placement and routing times for such circuits andtéeg will not werwhelm the user by tak-
ing hours or days to complete. It is our belief that some FPGA users are willivg tgpgguality
of the mapped circuit -- accepting a circuit that occupies more areawenaFHGA or requires a
larger FPGA -- in Bchange for obtaining that resukry quickly

The first contrilntion of this vork was the gploration of the parameter space at our disposal
through an ®isting pure simulated-annealing-based tool, VPR [Betz97] [Betz98], that wvenkno
to produce high-quality placements. In the course of wploeation of this parameter space that
defines all possible annealing schedules (starting temperauirgemperature, temperature
reduction &ctor and number of m@s to attempt at each temperature), wevegldothe best qual-
ity-time trade-of that is achieable. While high-quality placements are attainable innaHen-
dred seconds, a designer must be willing to accept 80-100% more arearageaor a gen
large circuit if a placement is desired within 10 seconds.

We restricted our focus in this thesis to the placement phase of layout synthesis for FPGA
circuits and demonstrated that an ul@atfplacement algorithm based on multiplelecluster-
ing, constructie placement, and simulated-annealing-based refinenweks well in relation to

an «isting high-quality pure simulated annealing placement tool. ltiges superior area results

67

Conclusions and Future Work

across a set of lge benchmark circuits (those containing between 3000 and 20,000 total logic
and 1/O blocks) compared to VPR when both tools are instructedea@pgdroximately the same
amount of time to generate a placement. &le, in 10 seconds on a 300 MHz Sun UltraS-
PARC, our ultra-&st tool can achie an &erage area penalty of less than 30% (compared to high-
guality placements that require oresage wer 250 seconds to produce), while the best that VPR
can achiee is an 80% area penalfy placement of a 100,00&tg circuit is produced by our tool

in 10 seconds that is only 31%okge than a high-quality placement from VPR that requires 524
seconds; our ultraakt tool achiges this lgel of placement quality 5 timeadter than VPR. Fur-
thermore, it taks VPR approximately 100 seconds to ashi@n aerage area penalty of 10%tb

the ultra-Bst tool can attain the samedéin less than 30 seconds. If weveano compile time
restrictions, then our algorithm produces placements that approach the same quality as VPR;
within 60 seconds orvarage, placements are produced with\arage wirelength that is within

5% of that obtained using VPR.

The placement algorithm alis the user to smoothly trade quality of placement (bounding-
box wirelength, a good estimator of wiring area) for compile timee\plored the space wered
by these parameters to find the best quality-tinvelepe and sheed that its evelope is signifi-
cantly better than that possible with the pure simulated annealing formulation of \éP&sed/
this evelope to quickly and successfully predict the qualégsus run time relationship of a spe-
cific circuit that has not yet been placedegi only the size of the circuit in logic blocks. This
predicted evelope vas returned to the user as feedback, aasl wged to automatically generate
the required placement parameters to meet aspssified compile time or area restriction.

We also shaed that the ultraast placement tool can be used aash éstimator of the final
high-quality wirelength that is aclved when the pure simulated annealing placement tool is
tuned to achie minimum wirelength with no restriction on compile time. Thist fwirelength
prediction scheme is successful with a mean absolute error of 6% between the estimated and
actual high-quality wirelengthver the set of laye benchmark circuits, in anexage run time of
merely 5.5 seconds on a 300 MHz Sun UltralSe.

5.2 FutureWork

This thesis has pwided the first gploration of \ery fast, flat placement, be it for FPGAs or
as part of automated layout synthesis packagesater ayrays or standard cells. wiwer, there

are mawg areas within this topic taxplore more thoroughly

68

Conclusions and Future Work

First, a fist placement tool that is timing-gen should be deloped. Further imprements
to the st placement tool should includepéoiting both the hierarghthat is inherent in the cir-
cuit structure, as well as the topology of the underlying routing architecture ofgheR&GA.

In the future, it would be interesting and beneficial tepore a &st quadratic-program-
ming-based placement algorithm or one based on tem-aoin-cut partitioning, and determine
their quality-time trade-éfrelationships. Both of these techniques are based on popular place-
ment algorithms that ka been implemented in CAD tools, and twd be interesting to com-
pare their performance and predietability with our tool.

Another interesting area to pursue is the refinement angratiien of the ést high-quality
wirelength estimator with the dii€ulty predictor preided by an eisting fast router [Swr98a]. It
would also be fruitful to xtend the prediction scheme to incorporatst festimation of circuit
speed and peer dissipation as well. Finallp completedst synthesis package should be on the
road map of anfast compile project, inggating the risting work in fast placement and routing
with fast technology mappingagt partitioning, and perhapges fast logic optimization andaét

high-level synthesis, all of which should trade quality of result for compile time.

69

References

[Alpe97a] C. J. Alpert, TE Chan, D. J. -H. Huang, A. B. Kahng, I. L. MavkP. Mulet, and K. én,
“Faster Minimization of Linear \kelength for Global PlacemehtACM Symposium on
Physical Design, 1997, pp. 4-11.

[Alpe97b] C. J. Alpert, TChan, D. J. -H. Huang, I. Mask, and K. Yan, “Quadratic Placement #s-
ited;” ACM/IEEE Design Automation Conference, 1997, pp. 752-757.

[Alpe97c] C. J. Alpert, J. -H. Huang, and A. Kahng, “Multiég Circuit Rartitioning, Proc. ACM/IEEE
Design Automation Conference, 1997, pp. 530-533.

[Babb97] J. Babb, M. Frank, E. ®Whgold, R. Barua, M. dylor, J. Kim, S. Degabhaktuni, PFinch, and
A. Agarnwal, “The RAN Benchmark Suite: Computation Structures for General Purpose
Computing, Proc. IEEE Symposium on FPGAs for Custom Computing Machines, 1997, pp.
161-171.

[Betz97] V. Betz and J. Rose, “VPR: A NePacking, Placement and Routingadl for FPGA
Research, Proc. Intl. Workshop on Field Programmable Logic and Applications, 1997, pp.
213-222.

[Betz97b] V. Betz, “The FPGA Place-and-Route Challehgé&997. (Available from http://
www.eecg.toronto.edu/~vaughn/challenge/challenge.html).

[Betz98] V. Betz, ‘Architecture and CAD for Speed and Area Optimization of FPGRAsD. Thesis,
University of Toronto, Department of Electrical and Computer Engineering, 1998.

[Brow92] S. D. Bravn, R. J. Francis, J. Rose, and Z. G. Vrands@d-Programmable Gate Arrays,
Norwell, MA: Kluwer Academic Publishers, 1992.

[Callog] T. J. Callahan, .PChong, A. DeHon, and J. &Wrzynek, “Fast Module Mapping and
Placement for Datapaths in FPGA®roc. 6th ACM/SIGDA Intl. Symposium on FPGASs,
1998, pp. 123-132.

[Chen94] C. Cheng, “RISA: Accurate andfigient Placement Routability ModelirigProc. Intl. Con-
ference on Computer-Aided Design, 1994, pp. 690-695.

[Cong94] J. Cong and YDing, “Flovmap: An Optimal €chnology Mapping Algorithm for Delay
Optimization in Lookup-@ble Based FPGA DesighdEEE Transactions on Computer-
Aided Design, Jan. 1994, pp. 1-12.

[Corm90] T.H. Cormen, C. E. Leiserson, and R. Lvésit,Introduction to Algorithms, Cambridge, MA:
MIT Press, 1990.

70

[Doll91]

[Dunl85]

[Gehr98]

[Hage97]

[Hame98]

[Hana72]

[Huan97]

[Huan86]

[Hutt97]

[Kary97]

[Kirks3]

[Kleiod]

[Lam88]

[Leng90]

[Leve9s8]

[Lewi97]

[Quic98]

K. Doll, F. Johannes, and G. Sigl, “DOMINO: Deterministic Placement lugment with
Hill-Climbing Capabilities’, Proc. VLS) 1991, pp. 91-100.

A. E. Dunlop and B. WKernighan, A Procedure for Placement of Standard-Cell VLSI Cir-
cuits; IEEE Transactions on Computéided Designvol. 4, no. 1, Jan. 1985, pp. 92-98.

S. W Gehring and S. H. -M. Ludwig, &dst Intgrated Dols for Circuit Design with FPGAs,
Proc. 6th ALM/SIGDA Intl. Symposium on FPGAE998, pp. 133-139.

L. W. Hagen and A. B. Kahng, “Combining Problem Reduction and Adaplultistart: A
New Technigue for Superior Iteraé Rartitioning; IEEE Transactions on Computétided
Design vol. 16, no. 7, July 1997, pp. 709-717.

I. Hamer “Implementation of DES onr&nsmogrifier2a; Personal Communicatiqrii998.

M. Hanan and J. M. #rtzbeg, “Placement &chniques,in Design Aitomation of Digital
Systems, alume 1: Theory andethniques M. A. Breuer Ed., Englevood Cliffs, NJ:
Prentice-Hall, 1972, pp. 213-281.

D. Huang and A. Kahng, ‘@titioning-Based Standard-Cell Global Placement with an Exact
Objective; ACM Symposium on Physical Desjdi®97, pp. 18-25.

M. Huang, F Romeo, and A. Sangianni-Vincentelli, ‘An Efficient General Cooling
Schedule for Simulated Annealihdlroc. Intl. Confeence on Computekided Design1986,
pp. 381-384.

M. Hutton, J. Rose, and D. Corneil, “Generation of Synthetic Sequential Benchmark Cir-
cuits; Proc. 5th AM/SIGDA Intl. Symposium on FPGAE997, pp. 149-155.

G. Karypis, R. Aggrwal, V. Kumar and S. ShekhafMultilevel Hypegraph Rrtitioning:
Application in VLSI Domairf, Proc. ACM/IEEE Design Atomation Confemnce 1997, pp.
526-529.

S. Kirkpatrick, C. D. Gelatt, and M.. Rlecchi, “Optimization by Simulated Annealihg,
Sciencevol. 220, no. 4598, May 13, 1983, pp. 671-680.

J. M. Kleinhans, G. Sigl,.AV. Johannes, and K. J. Antreich, “GORDIAN: VLSI Placement
by Quadratic Programming and Slicing OptimizatiolEEE Transactions on Computer
Aided Designvol. 10, no. 3, Marl1991, pp. 356-365.

J. Lam and J. Delosme, “Performance of avNennealing Schedule,Proc. ACM/IEEE
Design Aitomation Confarnce 1988, pp. 306-311.

T. Lencauer Combinatorial Algorithms for Intgrated Cicuit Layouf Chichester: John Wy
& Sons, 1990.

P. Leventis, “Using edif2blif \rsion 1.0, University of Toronto, Department of Electrical
and Computer Engineering, 1998véilable for download fsm http://wwweecgtoronto.edu/
~leventi/edif2blif/edif2blithtml).

D. M. Lewis, D. R. Gallavay, M. van lerssel, J. Rose, and@haw, “The Transmogrifier2: A
1 Million Gate Rapid Prototyping SystémProc. 5th ACM/SIGDA Intl. Symposium on
FPGAs 1997, pp. 53-61.

Quickturn Design Systems IndChe Mecury Design ¥rification System1998. Available
from http://wwwguickturn.con).

71

[Rose90]

[Rose97]

[Roy93]

[Sank99]

[Sarr97]

[Sato97]

[Sech85]

[Sech88]

[Sent92]

[Shah91]

[Shin93]

[Sigl91]

[Sun95]

[Swar98a]

[Swar98b]

[Swar90]

[Tess98]

[Wirt96]

[Xili9g]

J. Rose, WKlebsch, and J. WIf, “Temperature Measurement and Equilibrium Dynamics of
Simulated Annealing Placemeritl-EE Transactions on Computer-Aided Design, vol. 9, no.
3, Mar. 1990, pp. 253-259.

J. Rose and D. Hill,Architecture and Bfsical Design Challenges for One-Million Gate
FPGAs and Bgond; Proc. 5th ACM/S GDA Intl. Symposium on FPGAs, 1997, pp. 129-132.

K. Roy and C. SechenA'Timing Driven N-Way Chip and Multi-Chip &rtitionet” Proc.
Intl. Conference on Computer-Aided Design, 1993, pp. 240-247.

Y. Sankar and J. Rose, rading Quality for Compile ime: Ultra-Fast Placement for
FPGAS; to appear in Proc. 7th ACM/S GDA Intl. Symposium on FPGAs, 1999.

M. Sarrafzadeh and M. &g, “NRG: Global and Detailed Placemé&Rr,oc. Intl. Conference
on Computer-Aided Design, 1997, pp. 532-537.

S. Sato, “Simulated Quenching: A WdPlacement Method for Module GeneratioRroc.
Intl. Conference on Computer-Aided Design, 1997, pp. 538-541.

C. Sechen and A. Sanganni-Mncentelli, “The TmberWolf Placement and Routing
Packagé, IEEE Journal of Solid-Sate Circuits, vol. 20, no. 2, Apr1985, pp. 510-522.

C. SechenyLS Placement and Global Routing Using Smulated Annealing, Norwell, MA:
Kluwer Academic Publishers, 1988.

E. M. Sentwich et al., “SIS: A System for Sequential Circuit Analysikch. Report No.
UCB/ERL M92/41, University of California, Ber&ley, 1992.

K. Shahookar and.Pvazumder “VLSI Cell Placement @chniques, ACM Computing
Surveys, vol. 23, no. 2, June 1991, pp. 143-220.

H. Shin and C. Kim,A Simple Yet Efective Technique for Brtitioning; |EEE Transactions
on VLY Systems, vol. 1, no. 3, Sept. 1993, pp. 380-386.

G. Sigl, K. Doll, and FM. Johannes, Analytical Placement: A Linear or a Quadratic
Objective Function?,Proc. ACM/IEEE Design Automation Conference, 1991, pp. 427-432.

W. Sun and C. Sechen, ‘figient and Efective Placement for &y Laige Circuits, |EEE
Transactions on Computer-Aided Design, vol. 14, no. 3, Mar1995, pp. 349-359.

J. S. Swartz, V Betz, and J. RoseA“Fast Routability-Dnven Router for FPGAS Proc. 6th
ACM/SGDA Intl. Symposium on FPGAs, 1998, pp. 140-149.

J. S. Swartz, ‘A High-Speed iming-Aware Router for FPGAsSM.A.&. Thesis, University of
Toronto, Department of Electrical and Computer Engineering, 1998.

W. Swartz and C. Sechen, “MeAlgorithms for Placement and Routing of Macro Cells,
Proc. Intl. Conference on Computer-Aided Design, 1990, pp. 336-339.

R. Tessier “Fast Place and Route Approaches for FPGR&b.D. Thesis, Massachusetts
Institute of Bchnology Department of Electrical Engineering and Computer Science, 1998.

N. Wirth, “The Language Lola and Programmablevides in Baching Digital Circuit
Design; Proc. 2nd Intl. Andrei Ershov Memorial Conference, 1996.

Xilinx Corporation, The Xilinx Foundation Series 1.4, 1998. Pfvailable from http://
WWW.xilinx.com).

72

[Yang9l] S. Yang, “Logic Synthesis and Optimization Benchmarlessidn 3.0, Tech. Report, Micro-
electronics Centre of North Carolina, 1991.

[Ye99] A. Ye, “Procedural @&ture Mapping on FPGASM.A.Sc. Thesis, University of Toronto,
Department of Electrical and Computer Engineering, 1999.

73

