
Ultra-Fast Automatic Placement
for FPGAs

by

Yaska Sankar

A thesis submitted in conformity with the requirements

for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

© Copyright by Yaska Sankar 1999

ii

Abstract

Ultra-Fast Automatic Placement for FPGAs

Master of Applied Science, 1999
Yaska Sankar

Department of Electrical and Computer Engineering
University of Toronto

The demand for high-speed Field-Programmable Gate Array (FPGA) compilation tools has

escalated for three reasons: first, as FPGA device capacity has grown, the computation time

devoted to placement and routing of circuits has grown more dramatically than the available

computer power. Second, there exists a subset of users who are willing to accept a reduction in the

quality of result (using a larger FPGA or more resources on a given FPGA) in exchange for a

high-speed compilation. Third, high-speed compile has been a long-standing desire of users of

FPGA-based custom computing machines, since their compile time requirements are ideally

closer to those of regular computers.

This thesis focuses on the placement phase of the compile process, and presents an ultra-

fast placement algorithm for FPGAs. The algorithm is based on a combination of multiple-level,

bottom-up clustering and hierarchical simulated annealing.

It provides superior area results over a known high-quality placement tool on a set of large

benchmark circuits, when both are restricted to a short run time. For example, in 10 seconds of

placement time on a 300 MHz Sun UltraSPARC, the ultra-fast tool realizes an average wirelength

improvement of 30% compared to the high-quality tool. It can also generate a placement for a

100,000-gate circuit in 10 seconds that is only 31% worse than a high-quality placement that takes

524 seconds using a pure simulated annealing implementation. For this circuit, the ultra-fast tool

achieves this level of placement quality 5 times faster than the high-quality tool.

In addition, when operating in its fastest mode, the ultra-fast placement tool can provide an

accurate estimate of the wirelength achievable with good quality placement (within 6%, on

average). This can be used, in conjunction with a routing predictor, to very quickly determine the

routability of a given circuit on a given FPGA device.

iii

Acknowledgments

I am profoundly grateful to my advisor, Jonathan Rose, for allowing me to draw upon his

vast technical expertise, his infectious zeal, and his unwavering confidence in my abilities as a

researcher. I am indebted to him for setting high standards for his students in both technical

achievement and communication, and for going beyond the duties of a supervisor to act as a

teacher, mentor, promoter, motivator, counselor, and loyal supporter. I value his technical lessons,

patience, encouragement, sage advice, and above all, enthusiastic guidance during my time here.

I have also greatly benefited from the collective wisdom of the members of Professor Rose’s

research group: Vaughn Betz, Jordan Swartz, Mohammed Khalid, Steve Wilton, Mike Hutton,

Sandy Marquardt, Rob McCready and Paul Leventis. I am particularly grateful to Vaughn not

only for faithfully providing the infrastructure and support of the software used to house this

work, but also for the time, advice, and guidance he offered throughout. Jordan and Vaughn merit

special thanks for their helpful and insightful comments on an earlier draft of this thesis.

My time here would have been far less educational and enjoyable without the antics of my

many friends and colleagues in LP392 and SF2206: the other founding members of the infamous

Package Deal (Jason “Virtual Beverage Engineer” Podaima, Vaughn “Mr. Optimal” Betz, Jordan

“Human Torch” Swartz), Sandy “Formatting Monkey” Marquardt, Qiang “Be A Man” Wang,

Jason A., Andy, Marcus, Ali, Warren, Mazen, Vincent, Mark, Khalid, Jeff, Dave, Javad, Rob, Ken,

Wai, Nirmal, Paul, Guy, Dan, Alex, Derek, Rob, Gia, Sush, Keith, Marcel, Jane, Kevin, Bob, Aris,

John, Sudarsan, Duncan, and the Electric Fielders softball teams with whom I had the distinct

pleasure of playing, to name a few. They are wholly responsible for provoking stimulating

discussions and providing spirited diversions, and I thank them for it.

I consider myself fortunate to know a few kind souls whose friendship, support,

encouragement, advice, and willingness to listen made things bearable during the difficult times

and delightful the rest of the time: Steve, John, Heather, Mike VDP, and Nav.

Whatever success I have achieved here I owe to the steadfast support, encouragement,

patience, faith and love of my parents and my brother.

Finally, this work would not have been possible without the financial support from the

Natural Sciences and Engineering Research Council, the University of Toronto, Communications

and Information Technology Ontario, Lucent Technologies Inc., Xilinx Corporation, and the

Information Technology Research Centre of Ontario.

iv

Table of Contents
Chapter 1 Introduction...1

1.1 Motivation...1

1.2 Goals and Scenarios..3

1.3 Research Approach ...5

1.4 Thesis Organization ..5

Chapter 2 Background and Previous Work ...6

2.1 Definition of FPGA Placement Problem ..6

2.2 Placement Algorithms...8

2.2.1 TimberWolf..8

2.2.2 Hierarchical Clustering and Annealing..11

2.2.3 VPR - Versatile Place and Route ...13

2.2.4 Algorithms Based on Variations of Hierarchical Clustering and

Simulated Annealing - NRG and Simulated Quenching15

2.2.5 Choice of Starting Temperature for Simulated Annealing17

2.3 Clustering Algorithms...19

2.3.1 Using Clustering to Reduce Problem Complexity...19

2.3.2 Cost Functions Used to Build Clusters ..20

2.4 Fast Compile Algorithms..23

2.4.1 Lola ..23

2.4.2 GAMA ...24

2.4.3 Fast Placement for FPGAs via Automatic Floorplanning25

2.4.4 Fast Routing and Difficulty Prediction ..26

2.5 Summary ...26

Chapter 3 Ultra-Fast Placement Algorithm ...27

3.1 Overview of Approach..27

3.2 Multiple-Level Clustering...29

3.2.1 Description of Algorithm...29

3.2.2 Clustering Example..30

3.2.3 Complexity of Clustering...32

v

3.3 Placement of Clusters at Each Level ..34

3.3.1 Constructive Placement of Clusters ...34

3.3.2 Simulated-Annealing-Based Iterative Improvement of Placement36

3.3.3 Fanout ..39

3.3.4 Complexity of Placement...40

3.4 Determination of the Quality-Time Envelope Parameters..41

3.4.1 Cluster Parameter Experiments..41

3.4.2 Placement Parameter Experiments ..43

3.5 Summary ...46

Chapter 4 Experimental Results..47

4.1 Target FPGA Architecture..47

4.2 Benchmark Circuits and CAD Flow...47

4.3 Basis of Comparison ...48

4.4 Comparisons Between Ultra-Fast Algorithm and VPR..50

4.5 Wirelength Estimation and Accuracy ...58

4.6 Practical Usage of Ultra-Fast Placement ..63

4.7 Summary ...66

Chapter 5 Conclusions and Future Work...67

5.1 Conclusions and Contributions ...67

5.2 Future Work ..68

References ...70

vi

List of Tables
Table 2.1: Automatic temperature update schedule for VPR. [Betz97]14

Table 3.1: Cluster scores for candidate blocks in example of Figure 3.4.32

Table 3.2: Constructive versus random initial cluster placement. ..36

Table 3.3: Effect of starting temperature calculation on annealing for

MCNC circuit clma. ..38

Table 4.1: Comparison between ultra-fast placement tool and VPR for 20 benchmark

circuits. One set of placement parameters was employed for each tool

such that their run times were close and they were part of the

quality-time envelope for their respective tools. ...55

Table 4.2: Comparison between ultra-fast placement tool and VPR across

20 circuits for very short run times..56

Table 4.3: Comparison between ultra-fast placement tool and VPR across

20 circuits for longer run times..57

Table 4.4: Quality of wirelength prediction capability of ultra-fast placement tool

using placement data from Table 4.1 (mean run time = 11.4 seconds).61

Table 4.5: Quality of wirelength prediction capability of ultra-fast placement tool

using placement data from Table 4.2 (mean run time = 5.5 seconds).62

vii

List of Figures
Figure 2.1: Simple example of FPGA placement. ..7

Figure 2.2: Pseudo-code for a basic simulated annealing-based placement

algorithm. [Sech85] [Betz98]...9

Figure 3.1: High-level view of fast placement algorithm. ..28

Figure 3.2: Abstract view of multi-level clustering and placement......................................29

Figure 3.3: Pseudo-code for multi-level clustering algorithm. ...31

Figure 3.4: Clustering example...31

Figure 3.5: Graph of percentage of total flat nets absorbed versus cluster size

for one level of clustering on MCNC circuit frisc (3692 blocks).33

Figure 3.6: Pseudo-code for constructive cluster or intra-cluster placement........................35

Figure 3.7: Graphs of placement cost degradation and percentage of total flat pins

remaining after nets above threshold ignored, each versus fanout

threshold for MCNC circuit clma. ...40

Figure 3.8: Placement quality-time plot (20 circuit average) for ultra-fast

placement tool using different combinations of annealing schedules on

1-level, size-64 clustered circuits. ..42

Figure 3.9: Placement quality-time curves (20 circuit average) for ultra-fast

placement tool using a sample of annealing parameters and varying

1-level cluster sizes from 4 to 4096. ..43

Figure 3.10: Placement quality-time plot (20 circuit average) for ultra-fast

placement tool using different fanout thresholds above which nets are

ignored on circuits with fixed cluster and placement parameters.45

Figure 4.1: Island-style FPGA architecture and basic logic block contents.48

Figure 4.2: VPR placement quality-time trade-off (20 circuit average) using

annealing schedules that form the envelope...50

Figure 4.3: Placement quality-time envelope curves (20 circuit average) for VPR

and new ultra-fast placement tool. ...51

viii

Figure 4.4: Placement quality-time envelope curves (20 circuit average) for VPR

and new ultra-fast placement tool, highlighting the point at which the

curves meet...52

Figure 4.5: Placement quality versus time envelope curves (20 circuit average)

for VPR and new ultra-fast placement tool (linear scale).53

Figure 4.6: Mean absolute difference in wirelength (between mean wirelength

and individual circuit results) versus mean run time for parameters

forming ultra-fast placement tool envelope. ..59

Figure 4.7: Comparison of predicted ultra-fast placement quality versus time

envelope with actual envelope for MCNC circuit clma

(8383 logic blocks)...64

Figure 4.8: Comparison of predicted ultra-fast placement envelope with actual

envelope for circuit marb (5535 logic blocks). ..64

Figure 4.9: Comparison of predicted ultra-fast placement envelope with actual

envelope for synthetic circuit beast20k (19600 logic blocks)............................65

Introduction

1

Chapter 1

Introduction

1.1 Motivation
Field-programmable gate arrays (FPGAs) have been highly successful because they can

realize any digital circuit simply by the specification of the millions of bits that control a sea of

programmable logic and interconnect. The ability of an FPGA to be re-programmable within a

system offers designers the ability to implement different circuits, fix errors in circuits, or add new

features to existing circuits in a matter of seconds. This programmability gives FPGAs significant

advantages over customized application-specific integrated circuits (ASICs): flexibility , quick

time-to-market, zero non-recurring engineering costs, and easier debugging. All these benefits do

come at a price, however, in that circuits realized on an FPGA typically occupy at least ten times

the area and operate at least three times slower than their ASIC counterparts [Brow92].

A set of automated computer-aided design (CAD) tools is necessary in order to generate an

FPGA programming bitstream that implements a desired circuit. These software tools first take

the circuit description (where the circuit is specified in a hardware description language such as

VHDL, or in schematic form) through the synthesis stage, where the circuit is represented as a

netlist of technology-mapped logic blocks and connections. Following this, the CAD tools per-

form the placement and routing steps. During placement, the logic blocks implementing the cir-

cuit are assigned to physical locations on the FPGA such that the wiring area is minimized. In

routing, the point-to-point connections are made by specifying which physical switches are acti-

Introduction

2

vated in the programmable wiring such that full routability is achieved and circuit speed is maxi-

mized. This can be used to generate the programming bitstream. The complete set of tasks the

CAD tools perform to translate a circuit description into a programming bitstream is known as

FPGA compilation.

One key advantage of FPGAs over mask-programmable gate arrays and ASICs is that they

provide quick turnaround times for circuit designers between the conception of the circuit and its

implementation on a chip. However, this rapid prototyping advantage has been reduced as the

capacities of these programmable devices grow. While current CAD algorithms provide high-

quality solutions, they require a great deal of CPU time, and the compilation times for large cir-

cuits are growing more rapidly than the available computer power. This adversely impacts: hard-

ware designers, who must wait longer to map their designs to FPGAs; logic emulation system

users, who must compile hundreds of FPGAs at a time [Quic98]; and FPGA-based custom com-

puting machine users, who desire compilation times similar to those of a microprocessor.

Place-and-route times for large FPGAs at present (those with approximately 5000 lookup-

table (LUT) / flip-flop pairs and higher) can last many hours on a modern processor, and there is

no guarantee of successful completion. For example, an 8383 LUT circuit (approximately

100,000 gates) requires almost 1.2 hours for placement and routing using the Xilinx M1 CAD

tools (version 4.1.2) [Xili98] on a 300 MHz Sun UltraSPARC workstation [Swar98b]. For a sub-

set of designers, these prohibitively long compile times may nullify any gains that had been real-

ized by using FPGAs in the first place. Since the time-to-market advantage and ability to create

rapid prototypes are severely compromised, some users may opt to return to the world of mask-

programmed gate arrays (MPGAs) or standard cells. With million-gate FPGAs on the horizon, it

is imperative to design FPGA compilation tools that will scale well with device sizes, and provide

an acceptable trade-off between quality1 and compile time [Rose97]. Only then will the character-

istic FPGA benefits of fast design and manufacturing cycles be maintained. We contend that there

are users who are willing to sacrifice circuit quality for speed of compilation.

1. We define quality as the wirelength required by the circuit or the speed at which the circuit can operate
when mapped to the FPGA. Greater wirelength will require the use of a larger FPGA or the use of more
resources on a given FPGA than is otherwise necessary.

Introduction

3

These trends provide a compelling motive to explore methods for fast compilation for

FPGAs. In this thesis, we shall focus on the placement phase of the FPGA compile process and

present an ultra-fast placement tool that aims to minimize area [Sank99]. Although a fast timing-

driven placement tool should also seek to minimize circuit delay, we believe that area-based min-

imization is a prudent first step. Furthermore, while top-down partitioning, floorplanning, macro-

based placement, and incremental placement methods may be cited as alternate approaches to

mitigating the long compile times of the next generation of large FPGAs, we contend that there

will always be a need for a fast, flat placement tool.

1.2 Goals and Scenarios
There are two main objectives of our fast placement tool: 1) to provide placements very

quickly with the minimum amount of degradation in circuit quality, and 2) to provide very fast

predictions as feedback to the user based on the fast placements generated.

In order to precisely articulate what we mean by fast placement, we have set the following

goal for our placement tool: be able to perform a full placement of a 100,000-gate circuit in 10

seconds on a modern CPU. We believe this goal is justifiable: extremely fast placement is essen-

tial if it is to be used as a guide within upstream CAD tools, or in emulation systems and reconfig-

urable computing applications, or to satisfy impatient hardware designers. More importantly, we

wish to ensure that the running time varies linearly with the size of circuit, and has a small propor-

tionality constant. This is crucial because as long as our algorithms are of linear complexity or

close to that, the same technology advancements that permit FPGA devices to become more dense

also increase processor speeds. Therefore, our algorithm will scale well.

A key element of our fast placement tool is that we offer a tunable “knob” that allows the

user to smoothly trade quality for compile time. So, not only do we aim to provide more area-effi-

cient placements in very short run times, we also aim to provide high-quality placements given

longer run times. We further expect that FPGA users will benefit from being able to run a quick

placement of their circuit, rather than wait for a complete high-quality placement, to ascertain

what size FPGA device to purchase to implement their design.

In addition, since some placement problems may be extremely difficult (the circuit barely

fits onto the device, and the CAD tools need a great deal of time to generate a usable placement)

or impossible (the circuit cannot fit onto the device), we believe it is important to quickly supply

the user with the predicted area versus compile time trade-off for a circuit of similar size.

Introduction

4

We envision three scenarios in which fast compile would be used, once a user has designed

a circuit and targeted an FPGA of a specific size:

1. If the user explicitly states a compile time restriction, then the fast CAD tools should

estimate how much extra space -- or how much larger a device -- will be necessary for

the design to be placed in the desired running time, and produce the placement.

2. Alternatively, if the user explicitly states that the design must fit into the desired FPGA,

then the fast tools can inform the user of one of the following: that the circuit can be

placed and routed quickly (and provide the placement and routing files), that the circuit

will be placed and routed given more time, or that the task is impossible. The work by

Swartz et al. offers a method for making the “fit/no-fit” predictiongiven a placement and

its total wirelength [Swar98a].

3. The user is supplied with an area versus compile-time trade-off curve and selects the

point appropriate to his goals. In this case, there must be sufficient free space in the

FPGA. Those users willing to sacrifice circuit area for a faster compile time, via the tun-

able “knob”, can accommodate the increased area in several ways: they can reduce the

complexity of a single design by partitioning the circuit onto multiple FPGAs, or can

select an FPGA with greater logic capacity. They can also eliminate part of the circuit by

reducing the amount of parallelism in the hardware.

Our second goal is to leverage our fast placement tool to provide fast feedback to the user in

a number of areas. We provide, for a given compile time restriction, an estimate of how much

extra area the circuit will require with that much time devoted to placement. Conversely, for a

given area restriction, we provide an estimate of the shortest amount of time needed to produce a

placement that will fit. Furthermore, we furnish, in that short amount of time, an estimate of what

the wirelength would be if we allowed the placement tool to run without a compile time restric-

tion and try to attain maximum quality. In so doing, we can quickly supply to Swartz’ prediction

tool [Swar98a] a rough idea of what the final best placement will be, which can then be used to

inform the user quickly and reliably of whether or not the circuit will fit onto the targeted FPGA.

This fast estimation of high-quality wirelength, as well as the ultra-fast placement, may be

exploited by the CAD tools that precede the placement stage to quickly gauge what the circuit

will look lik e after placement. These are all useful features, since some FPGA users bemoan the

fact that many industry FPGA CAD tools do not provide adequate predictability with respect to

area and speed.

Introduction

5

1.3 Research Approach
Our experimental research methodology involves first examining an existing academic

FPGA CAD tool, VPR [Betz97], which is known to provide high-quality placement and routing

solutions over a large suite of benchmark circuits in a reasonable amount of time. Having deter-

mined how well VPR performs over a series of different run times for a set of large circuits from a

variety of sources, we create a fast placement algorithm that can be incorporated into VPR’s infra-

structure. In this way, we can make a fair evaluation of how well our new placement tool performs

with respect to both run time and area compared to an existing tool on the same platform, with the

same set of large benchmark circuits and the same physical FPGA architecture. We then examine

the influence of the various enhancements to the placement algorithm that make it “ultra-fast”,

and make some empirical observations. We also offer some insight into the fast prediction of

high-quality wirelength and its accuracy, given a fast placement, and how this is valuable feed-

back to the user. Finally, we explore simple methods to predict the area versus compile time rela-

tionship of a circuit before it is placed, and then invoke the ultra-fast placement algorithm with

appropriate automatically generated parameters to meet either a compile time or an area restric-

tion.

1.4 Thesis Organization
This thesis is organized as follows: Chapter 2 presents some of the previous work done in

developing and applying VLSI placement algorithms for FPGAs, although little of this work is

primarily targeted towards our stated goal of high-speed compilation. We also discuss some of the

prior work conducted in the related area of clustering, as well as the recent work accomplished in

algorithms and tools targeted for fast FPGA compilation. In Chapter 3, we describe the details of

our ultra-fast placement algorithm. In Chapter 4, we offer a variety of results obtained from run-

ning our tool on a suite of large benchmark circuits, using a simple and general FPGA architec-

ture. We provide a direct comparison between our tool and a known high-quality placement tool

with respect to run time and area, and present results of our fast wirelength prediction scheme.

Finally, Chapter 5 highlights some of the key conclusions of this work and proposes directions for

future research in this area.
Table 1.1:
Figure 1.1:

Background and Previous Work

6

Chapter 2

Background and Previous Work

In this chapter, a precise definition of the placement problem for FPGAs is provided, fol-

lowed by a brief description of some of the relevant previous work in this area. This background

material is divided into sections covering general VLSI placement algorithms, the use of cluster-

ing algorithms to reduce problem complexity, and algorithms specifically designed to address the

issue of fast compile for FPGAs.

2.1 Definition of FPGA Placement Problem
In the physical layout stage of circuit synthesis, placement follows high-level design, tech-

nology-independent logic optimization, and technology mapping to a set of basic blocks, but

precedes the routing stage where actual interconnections are made between blocks. The basic

placement problem for FPGAs begins with a technology-mapped netlist of logic blocks1, input

and output (I/O) pads, and their interconnections. The result of placement is an assignment of the

blocks and pads to specific physical locations of the FPGA that minimizes a specific cost function

[Brow92]. A logic block is the basic unit of an FPGA that performs a specified logic function. A

netlist is a hypergraph representation of a circuit, where each vertex represents a circuit element

(block), and each hyperedge, or net, represents a wire that connects a set of blocks together. A pad

is an I/O block that is the physical interface between the circuit and the outside world. Placement

1. For this thesis, a logic block will be one 4-input lookup table (4-LUT) and one D flip-flop.

Background and Previous Work

7

refers to the mapping of the circuit elements in the netlist onto the circuit elements in the physical

architecture of the target device [Leng90]. In the specific case of FPGA placement, it is a mapping

of blocks and pads in the circuit netlist to the blocks and pads arranged on the physical FPGA

array, as shown in Figure 2.1.

More formally, the FPGA placement problem can be expressed as [Leng90]:

• Given: a hypergraphG = (V, E) representing the circuit, whereV is the set of vertices

(blocks), andE is the set of edges (nets), with edge costsw(e) ∈ R+ for eache ∈ E;

V= n; an FPGA grid of sizer × s, wherer, s ∈ N, andr ⋅ s ≥ n.

• Find: all placements -- mappingsp : V → [1, r] × [1, s] of blocks to block locations on

the FPGA grid.

• Minimize: a cost functionc(p).

Since we have stated our ultra-fast placement goal to be to provide an area-efficient

placement very quickly, we will attempt to minimize the total wirelength (length of routing wire)

required to map the circuit to the FPGA. This is because the cost of the device is proportional to

the amount of silicon required to implement it. We can minimize the amount of silicon required

(and thus the device cost) by minimizing the area required to wire the circuit components

together. Since this total wiring area is only known after the routing stage, an effective estimator is

needed at the preceding placement stage, and estimated total wirelength has been shown to be

Circuit Netlist Placement

Figure 2.1: Simple example of FPGA placement.

Background and Previous Work

8

suitable [Leng90]. Other cost functions that have been used as placement quality metrics include

circuit delay and wiring density. The basic placement problem is known to be NP-hard, and

therefore many heuristics have been employed [Leng90]. The following section describes some of

these heuristics.

2.2 Placement Algorithms
Surveys of VLSI placement algorithms are offered in [Shah91] and [Hana72], which

describe three main varieties that are currently most popular: 1) Min-cut, or partitioning-based

placement algorithms [Dunl85] [Huan97]; 2) Analytical placement algorithms that use quadratic

programming [Klei91] [Sigl91] [Alpe97a] [Alpe97b], some of which incorporate iterative

improvement [Doll91]; 3) Simulated-annealing-based placement algorithms [Kirk83] [Sech85]

[Sech88] [Sun95] [Betz97] [Sarr97]. Previous simulated-annealing-based placement tools have

achieved similar or higher quality solutions compared to the other types of placement algorithms,

though in some cases, with longer execution times. Consequently, our ultra-fast placement algo-

rithm is based on simulated annealing, and its performance is measured against another known

high-quality simulated-annealing implementation. For this reason, this section focuses on simu-

lated-annealing-based placement algorithms.

2.2.1 TimberWolf

TimberWolf [Sech85] [Sech88] is an integrated set of placement and routing tools that pro-

vided the first simulated-annealing-based placement algorithms targeting standard cells, macro/

custom cells, and gate arrays. The basic simulated annealing algorithm proposed in [Kirk83] was

adapted to explore a number of different placement configurations stochastically to minimize a

cost function that estimates overall wiring area. Figure 2.2 shows the pseudo-code for the simu-

lated annealing algorithm, and [Sech85] contains a detailed description of the basic algorithm and

the various cost functions used for the different types of placement problems.

The central idea of the algorithm is the notion that the exploration of numerous placement

configurations is guided by a parameter, T (temperature), that determines the probability of

whether configurations that reduce the quality of the placement will be accepted in the process of

searching through different placements. This temperature value is gradually reduced as the search

space is explored. Given a random initial placement, a source module is chosen randomly (either

a cell or an I/O pad). Then, a target location is chosen at random for this module such that it lies

Background and Previous Work

9

within the displacement range specified by a range limit mechanism, and the target can house the

same type of module. If that target location is occupied, then the target module is swapped with

the source module (pairwise interchange) and the cost of the resulting placement is evaluated. If

the target location is originally empty, then the cost of the new placement with only the source

module displaced to the target location (single block translation) is evaluated. In either case, if the

new cost is less than the cost of the previous undisturbed placement, the move is accepted. If the

new cost is more, then the move is only accepted with probabilitye -∆C/T, where∆C is the change

in placement cost due to the move or swap, andT is the current temperature. A large value ofT is

used at the beginning, meaning that almost all moves, irrespective of cost, are accepted. As the

placement quality improves with the accumulation of moves, the temperature is gradually

X = Initial_Random_Placement();
T = Set_Initial_Temperature(); /* T=T0 */
Dlimit = Set_Initial_Range_Limit(); /* Dlimit = whole chip */
while (Exit_Criterion() == false) { /* annealing not done yet */

while (Inner_Loop_Criterion() == false) { /* work per temperature not done yet */
Xnew = Generate_Move(X, Dlimit);
/* returns a new configuration generated incrementally from previous one */
/* by random pairwise exchange or translation within range limit */
∆C = Cost(Xnew) - Cost(X); /* calculate change in cost */
r = Get_Random_Number(0,1);
/* r = random number uniformly distributed between 0 and 1 */

if (r < e -∆C/T)
X = Xnew; /* update current placement */

/* always accept move (p=1) if it improves placement (∆C < 0) */

/* accept “bad” moves (∆C > 0) with probability p = e-∆C/T */
/* when T is large, all bad moves likely to be accepted, */
/* when T is small, only bad moves with small∆C likely to be accepted */

} /* end inner loop */
/* exploration at current temperature complete */
T = Update_Temperature(α, T); /* T = αT */
Dlimit = Update_Range_Limit(Dlimit);

} /* end outer loop */
/* annealing complete, X = final placement solution */

Figure 2.2: Pseudo-code for a basic simulated annealing-based placement algorithm.
[Sech85] [Betz98]

Background and Previous Work

10

reduced, making it less likely that moves that degrade the placement will be accepted. Eventually,

the value ofT is so low that only moves which improve the placement quality are accepted, mak-

ing the heuristic greedy at that point. The parameterT is what permits probabilistic hill-climbing

to take place and helps the placement solution avoid being caught in local minima.

The rate at which the temperature is reduced (called the temperature update factor, α), the

number of configurations to explore at each temperature (known as the inner loop criterion, or

InnerNum), the exit criterion by which the annealing algorithm terminates, and the behaviour of

the range limiting mechanism are all crucial details that are specified by anannealing schedule. In

TimberWolf, the value ofα starts at 0.8, is gradually increased to 0.95, and gradually decreased

back to 0.8 over the course of the entire anneal. This is to ensure that for the portions of the anneal

where the cost function is decreasing rapidly, the configuration space is explored more slowly and

thoroughly. The number of moves generated per temperature is set to 20-100 times the number of

modules in the circuit. The range limit mechanism that sets bounds on the displacement of a mod-

ule during a move or swap is adjusted so that it is the entire chip at the outset, and asT decreases,

so does the window of permissible target locations. Finally, the annealer terminates when the cost

function over the last three temperatures is found to be unchanging.

The original cost function used for standard cell placement consists of three components: 1)

the total estimated wirelength (W), which is computed as the sum over all nets of the half-perime-

ter of the bounding box that encompasses all the pins on each net; 2) a penalty function (PO) for

any overlap between cells; 3) a penalty function (PR) for row length mismatches, which ensures

that the lengths of the rows of cells do not vary considerably from each other. The cost function

can be expressed as:

(2.1)

The two penalty components (and their scaling factors,µ andλ) do not arise for FPGAs since all

logic blocks are of equal size and shape, and logic blocks are only allowed to swap with other

logic blocks, and I/O pads are allowed to swap only with other pads.

C W µPO λPR+ +=

Background and Previous Work

11

2.2.2 Hierarchical Clustering and Annealing

An innovative hierarchical clustering and placement algorithm is proposed in [Sun95] and

is incorporated into an updated version of TimberWolf (TimberWolfSC v7.0). As an improvement

to the previous cost function in TimberWolf, the penalty functions are eliminated, and only the

total wirelength term remains. If a move potentially violates a row length limit, it is discarded. If a

move is accepted, cells in the affected rows are shifted to prevent any cell overlap. Thus, every

placement generated is a feasible one. The revised wirelength-based cost function is an incremen-

tal one keeping track of the change in placement cost (∆C), and has two components: 1) the

change in net lengths (∆W) for those nets connected to the cell or cells that were moved or

swapped; 2) the change in net lengths (∆WS) for those nets connected to cells in the affected rows

that need to be shifted as a result of the move or swap. The former component,∆W, is computed

exactly, while the latter, ∆WS, is estimated, but in both cases the computation is fast. The revised

cost function can be written as:

(2.2)

The hierarchical placement methodology consists of clustering and simulated-annealing

phases, and it proceeds as follows: first, the original, large, flat netlist is condensed using two lev-

els of clustering, the details of which will be covered in Section 2.3.2. The purpose of this cluster-

ing is to reduce the complexity of the circuit so that it is easier to place. It tries to group those cells

that will eventually be close to each other in the final placement, and collapses as many flat nets as

possible into the clusters while keeping the size of the clusters the same.

Following this bottom-up clustering, the above simulated annealing algorithm is employed

to do a top-down placement of the various levels of netlists. The two resulting clustered netlists

are subjected to a 3-stage annealing schedule: in the first stage, a high temperature anneal is per-

formed on the top-level netlist of clusters for the first 50% of the total number of moves that are

attempted. After the top-level clusters are decomposed into first-level clusters, each first-level

cluster is randomly placed within the boundaries laid out by the top-level cluster in which it was

contained. Then, the next lower level (first level) of clusters are annealed from 50% to 70% of the

total number of moves. Upon decomposing the first-level clusters and placing the original flat

∆C ∆W ∆W S+=

Background and Previous Work

12

cells within the first-level cluster boundaries, the final annealing stage is conducted, occupying the

final 30% of all the moves. In each of the latter two stages, the cells or clusters are permitted to

move across the cluster boundaries specified from the previous higher level, and the initial tem-

perature at each stage is computed as:

(2.3)

where is the average change in wirelength andRaccept is the desired ratio of accepted moves

to attempted moves. Over the whole placement process, all timing requirements (restrictions on

circuit delay) are satisfied as well.

The combination of hierarchical clustering and annealing serves to speed up the entire

placement process, with run times that are between 3.6 and 7.5 times faster than those obtained

using the previous version of the tool, TimberWolfSC v6.0. The average reduction in wirelength

between TimberWolfSC v7.0 and TimberWolfSC v6.0 is 12%. When compared to the quadratic

placement tool Gordian/Domino, the placements produced by TimberWolfSC v7.0 have 8% less

wirelength on average, and require between 3% and 26% less run time on circuits with more than

5000 cells.

In [Roy93], hierarchical clustering and annealing are utilized to perform FPGA placement.

A clustering and annealing-based, timing-driven,N-way chip partitioner is used as a global place-

ment tool for a single-chip FPGA (N=1) with emphasis on both wirelength and execution time. A

bottom-up hierarchical clustering is used to merge those modules that form “natural” clusters

(dense subgraphs, in the accumulative weighted graph used to represent the circuit netlist). Then,

the clusters are refined through an adaptive technique where clusters are merged so that small nets

(2-pin nets, typically) are collapsed and the fanouts of large nets are reduced. This means the total

number of nets in the clustered netlist is reduced and the average fanout of the remaining inter-

cluster nets is reduced. These both assist in speeding up the annealing-based partitioning/place-

ment.

Once the physical chip is partitioned intoN sub-chips, the core is divided into a grid of bins,

to make the wirelength calculation more accurate. The clusters of modules are already built, so

the simulated-annealing-basedN-way partitioner is invoked. The clusters are moved from bin to

bin as the annealer progresses, and the location of a cluster is the center of the bin in which it cur-

T 0
∆W–
Raccept()log

------------------------------=

∆W

Background and Previous Work

13

rently resides. The cost function consists of total weighted wirelength,W, (where wirelength is

estimated using the sum across all nets of the half-perimeter bounding box for each net), and a

penalty, Pt, for timing violations (sum of all the penalties over all critical paths specified). The

cost function can be written as:

(2.4)

For large nets, an incremental net-span updating scheme is used, and since the granularity

of the grid is a single bin, and the algorithm operates on clusters of blocks, the updating is simpler

and faster than with the flat netlist. Moves are generated as mentioned previously, with the added

restriction that roughly the same utilization in each bin (amount of logic clusters per bin) needs to

be maintained. Once the annealing-based partitioning phase is complete, the clusters within each

of theN partitions are decomposed, and detailed placement of the constituent flat modules is per-

formed using a low temperature flat anneal. Compared to an industrial placement tool, this tech-

nique reduced the total number of unrouted nets that remain after routing by 90%.

2.2.3 VPR - Versatile Place and Route

In [Betz97] [Betz98], a dynamic adaptive annealing schedule that leads to high-quality

placements for FPGA circuits in a reasonable amount of run time is described. It includes some of

the features from the work done on annealing schedules by Huang et al. [Huan86], Lam and

Delosme [Lam88], and Swartz and Sechen [Swar90], but it also implements a novel temperature

update scheme and stopping criterion. The annealing schedule parameters are adjusted automati-

cally depending upon the size of the circuit, and a bounding box wirelength cost function is used

with correction factors for multi-terminal nets [Chen94].

The initial temperature is set to 20 times the standard deviation in cost after a set ofNblocks

moves are made, whereNblocks is the total number of logic blocks and pads in the circuit. Since

the initial placement is a random assignment of logic blocks and pads to the physical array, this

ensures that the temperature is high enough that almost all initial moves are accepted. At each

temperature,InnerNum ⋅ Nblocks
4/3moves are attempted, where the scaling factorInnerNum has a

default value of 10. The temperature is reduced in such a way that if there is little change in cost

either due to the acceptance rate being too low (high quality placement already) or too high (poor

placement quality), the temperature is reduced by a larger fraction. So, as long as the cost is

C W Pt+=

Background and Previous Work

14

changing significantly and a substantial number of moves, but not all, are being accepted, the tem-

perature is reduced more gently, so that this space of placement configurations is explored more

thoroughly. Table 2.1 shows how the temperature update factor, α, is automatically determined

according to what the acceptance rate of moves was at the last temperature stage.

A range limiting mechanism is used to maintain a target acceptance rate of 44%. If the

acceptance rate falls below 44%, the range within which candidates for pairwise swaps are found

is shrunk. Conversely, if the acceptance rate grows beyond 44%, the range is expanded. This is

accomplished using the following relationship between the new range limit (Dnew_limit), the previ-

ous range limit (Dold_limit), and the previous acceptance ratio,Raccept :

(2.5)

Note that if the acceptance ratio is exactly 44%, there is no change in the range limit, and

that Dnew_limit is restricted to the range [1, maximum FPGA dimension]. This range limit then

gradually shrinks over the course of the anneal from covering the whole chip at the beginning,

when the acceptance ratio is typically very high, down to 1 (nearest neighbors) at the end of the

anneal when only local refinement is tolerated.

Finally, the annealer terminates when the temperature falls below a certain fraction of the

average cost per net. If there areNnets nets in the circuit, and the average placement cost over all

the moves at the current temperature isCost, the annealer exit criterion,Tf, can then be expressed

as:

(2.6)

Table 2.1: Automatic temperature update schedule for VPR. [Betz97]

Fraction of Moves Accepted
(Raccept)

Temperature Update Factor (α)

Raccept > 0.96 0.5

0.8 < Raccept ≤ 0.96 0.9

0.15 < Raccept ≤ 0.8 0.95

Raccept ≤ 0.15 0.8

Dnew_limit Dold_limit 1 0.44– Raccept+()⋅=

T f
0.005 Cost⋅

Nnets
------------------------------<

Background and Previous Work

15

VPR placement parameters that can be specified by the user from the command line

include: the initial temperature (T0), the exit temperature (Tf), the temperature update factor (α),

the scaling factor (InnerNum) for the number of moves to make at each temperature, and the ini-

tial random seed (as long as the same seed for the random number generator is used, the place-

ment algorithm is deterministic). These allow the user to tune the placement tool to achieve

different quality versus run time trade-offs for a particular circuit.

VPR also addresses the long execution time of typical simulated annealing implementations

by performing fast incremental bounding box updates when evaluating the cost of a placement

after a move or swap. For each net, a data structure contains not only the coordinates of the four

sides of the net bounding box, it also contains the number of pins on the net that lie on each side.

This information is used to determine the new net bounding box after a swap by only examining

the pins that moved rather than a brute force calculation for every pin on the affected net.

VPR currently holds the world record among academic FPGA placement and routing tools

with the minimum total number of tracks required to place and route a set of standard benchmark

circuits [Betz97b].

2.2.4 Algorithms Based on Variations of Hierarchical Clustering and
Simulated Annealing - NRG and Simulated Quenching

In [Sarr97], the NRG standard cell, row-based placement tool is proposed. It performs in

succession a global placement, a detailed placement, and a final refinement, each of which is

based on simulated annealing. The main objectives are to reduce the search space of potential

placement configurations to obtain higher quality results faster, and to provide a fast prediction of

the high-quality placement possible using NRG itself. The placement problem is divided into a

global placement phase and a detailed placement phase. The motivation is that a good global

placement can assign modules to approximate locations quickly and the detailed placement con-

cerns itself with the exact location and timing of a module, given the constraints set by the global

placement.

In the global placement phase, flat modules are assigned to a coarse grid via annealing,

where each grid location (“bin”) can hold multiple modules. The cost function being minimized

includes total bounding box wirelength (PWIRELENGTH) and a penalty function (PGBCD) to prevent

unbalanced numbers of modules in each bin on the global placement grid. So, the cost of a place-

mentx is given by:

Background and Previous Work

16

(2.7)

whereλ is a scaling factor. The authors argue that this is different from clustering modules in the

flat netlist first, even though the goal of problem simplification is the same. They reason that oper-

ating on the flat netlist (rather than a netlist of indivisible clusters) provides more flexibility , and

that clustering modules takes a local view of the placement problem rather than a global one.

In the detailed placement phase, the global bin assignments from the annealed result of the

global placement phase are decomposed into the flat grid. Then, a low temperature annealing

schedule is used to perform the detailed placement of the modules, minimizing a cost function

consisting of wirelength, overlap penalty, and row penalty. The follow-up refinement phase shifts

cells to remove any remaining overlap.

The grid size for the global placement phase is arrived at using a binary search to minimize

the difference in wirelength between a very fast global placement and a very fast detailed place-

ment for that grid size. Each phase is sped up by simply reducing the number of moves attempted

by the annealer at each temperature. NRG achieves wirelengths that are as good or better than

those obtained by the commercial version of TimberWolf for a set of five benchmark circuits. In

addition, NRG can be used to quickly obtain an estimate of the wirelength NRG itself can provide

when allowed to achieve the highest quality placement. NRG’s wirelength predictions are 3 - 20%

more than the actual wirelengths from high-quality NRG placements. Finally, the run time of

NRG can reduced by up to a factor of two, if a quality degradation of 1 - 3% can be tolerated.

In [Sato97], an iterative, partitioning-based placement algorithm known as “simulated

quenching” (SQ) is proposed for linear (1-dimensional) placement problems. Many portions of

the algorithm mimic ideas from simulated annealing; the algorithm operates in the following

manner:

• “Moves” are generated by partitioning the linear placement of blocks into subgroups

using a particular pitch (subgroup size) and a randomly chosen offset;

• A force value for each block in each subgroup is computed based only on the nets that

cross subgroups; a force value represents the direction in which moving a block

decreases the length of an inter-subgroup net connected to that block. These accumulated

force values are then used to sort the blocks within each subgroup.

• This process is repeated multiple times with different partitionings of the netlist, each

with the same pitch, but different offsets.

f x() PWIRELENGTH λPGBCD+=

Background and Previous Work

17

• After a number of iterations, the pitch value (subgroup size,p) is reduced according to a

predetermined “schedule”,p = p - 0.03 * (p / log2p) (this is similar to temperature reduc-

tion in simulated annealing), and the entire procedure is repeated until the pitch value

falls below 2.

When this method is compared to a pure simulated annealing implementation, similar wirelength

results are obtained for a set of very small MCNC benchmark circuits [Yang91], but SQ exhibits

superior run time. However, for the MCNC circuit s38417, the SQ algorithm requires 8 hours to

reach a stable solution when run on a 166 MHz Hypersparc workstation.

2.2.5 Choice of Starting Temperature for Simulated Annealing

One crucial feature of any automatically-generated, dynamic, and adaptive annealing sched-

ule for a variety of circuits is the choice of the starting temperature,T0, for a given placement. The

reason is that if the temperature is set too high, subsequent annealing will destroy the existing

placement structure, which makes any previous work toward placing the circuit useless. Con-

versely, if the temperature is set too low, the annealer is unlikely to improve upon the existing

placement significantly, as it will be unable to escape local minima.

In [Rose90], a method is proposed to compute a good starting temperature for simulated

annealing placements. The idea is that there exists a temperature for a given simulated annealing

placement where the placement is in a state of equilibrium. In this state, there is no expected net

change in the cost function after a set of moves, which implies that the expected change in place-

ment cost is zero:

(2.8)

Let P(∆C) be the probability that a move with change in cost∆C is generated from the current

placement state. If this distribution is known, then ifN is the number of moves attempted on the

current placement, we can express Equation (2.8) as:

(2.9)

wherePaccept(∆C) is the probability that a move with cost∆C is accepted. From Section 2.2.1, we

know Paccept(∆C) is commonly defined as:

E ∆C() 0=

E ∆C() ∆C P ∆C() Paccept ∆C()⋅ ⋅() ∆Cd

∞–

∞

∫ 0= =

Background and Previous Work

18

(2.10)

By substituting Equation (2.10) into Equation (2.9), two separate integrals are obtained:

(2.11)

So, the equilibrium temperature of a given simulated annealing placement with a known

distribution P(∆C) is the temperatureT = Teq for which Equation (2.11) is satisfied.

The process of calculating this equilibrium temperature for a given placement is informally

referred to as a “simulated thermometer.” In order to implement this temperature measurement

scheme to compute the equilibrium temperature for a given placement, a set ofN discrete samples

is used to approximate the continuous distribution of ∆C over all moves. This means Equation

(2.9) can be written as:

(2.12)

Ideally, P(∆Ci) is measured on a running simulated annealing process while at the equilibrium

temperature,Teq . However, if each move i is actually being generated, then the number of moves

produced with a change in cost∆Ci will be N ⋅ P(∆Ci). That means moves with a particular

change in cost will be generated with about the same frequency as they would appear in the con-

tinuous distribution. So, as long asN is sufficiently large, the set of sample moves generated will

approximate the distribution of ∆C over all possible moves, and theP(∆Ci) term in Equation

(2.12) is inherent from the move generation and in the calculation ofE(∆C).

The simulated thermometer takes an initial placement of blocks, and performs a large num-

ber of moves (N), none of which are permitted to change the placement. The change in cost asso-

ciated with each move i is recorded (∆Ci), as well as whether the move would have been accepted

or not, based on Equation (2.10). The expression forE(∆C) in Equation (2.12) is then evaluated,

and a binary search over temperature is performed to find the temperature at which the expected

value of the overall change in placement cost is zero. When the temperature value,Teq, that satis-

fies Equation (2.12) is found, the temperature at which the given placement is in a state of equilib-

rium is determined, and this is a suitable initial temperature to begin annealing the placement.

Paccept ∆C() e
∆C–() T⁄ ,

1,



= ∆C 0>
∆C 0≤

E ∆C() ∆C P ∆C()⋅() ∆Cd

∞–

0

∫ ∆C P ∆C() e
∆C–() T⁄⋅ ⋅() ∆Cd

0

∞

∫+ 0= =

E ∆C() ∆Ci P ∆Ci() Paccept ∆Ci()⋅ ⋅()
i 1=

N

∑ 0= =

Background and Previous Work

19

As the binary search for the equilibrium temperature progresses, only the probability of

accepting “bad” moves is affected (moves that increase the placement cost --Paccept(∆Ci) for

∆Ci>0). So, the only portions of Equation (2.12) that need to be recomputed are those for each

recorded “bad” move at a particular temperature during the search. This simplifies and speeds up

the calculation. It is also important to ensure that enough moves are made to obtain an accurate

probability distribution for P(∆Ci). Between 10,000 and 100,000 moves are recommended

[Rose90].

2.3 Clustering Algorithms
In this section we discuss the motivation behind using netlist clustering algorithms to speed

up heuristics that solve problems such as placement and partitioning, and list some of the cost

functions used in the prior research to build good clusters.

2.3.1 Using Clustering to Reduce Problem Complexity

Whether the problem is partitioning or placement, the virtues of using bottom-up netlist

clustering are well documented in [Sun95] [Roy93] [Shin93] [Hage97] [Kary97] [Alpe97c]. The

primary goal of this clustering is to reduce the problem size so that a smaller and more easily solv-

able problem is obtained. This assists in decreasing the time required for iterative algorithms to

obtain a good solution for the overall problem.

A clustering groups netlist modules into disjoint subsets, known as clusters. When the mod-

ules are packed into each cluster, the netlist that is induced is a condensed version of the original

problem that may be solved more easily and quickly. This is particularly crucial for iterative algo-

rithms whose performance tend to degrade as the problem size and complexity increase. Hagen

and Kahng suggest that the advantage offered by clustering in reducing the problem size permits

the algorithm operating on the condensed problem to focus on the most difficult and time-con-

suming portion [Hage97]. Both [Sun95] and [Roy93] state that through effective netlist cluster-

ing, the number of clusters to manipulate, the number of inter-cluster nets and pins, and the

average fanout of the remaining nets are all substantially reduced. This can decrease the computa-

tion time required by an order of magnitude compared to operating on the original flat netlist.

Background and Previous Work

20

If one level of clustering is insufficient to simplify the complexity of the problem, then addi-

tional levels of clustering (hierarchical or multi-level clustering) may be performed until the prob-

lem size becomes manageable. With multi-level clustering, the compaction of the original flat

netlist can proceed more gently, with progressively smaller clustered netlists being produced at

each level of the hierarchy. Intuitively, the benefit of multi-level clustering is that the iterative

improvement strategy has more opportunities for refinement. Furthermore, as the refinement

moves from coarser to finer levels, the iterative algorithm can avoid bad local minima because of

the large steps taken at the highest levels of the hierarchy. The progressively smaller and more

detailed steps at the lower levels of the hierarchy enable the algorithm to find good final solutions

[Alpe97c].

 In the specific case of hierarchical placement, the clustering serves as a bottom-up prepro-

cessing step. A good clustering algorithm should identify those groups of blocks that are tightly

coupled in the netlist and will end up being placed in close proximity in the final placement. Even

though top-down partitioning achieves the same divide-and-conquer philosophy as clustering

(though starting from a global view and working its way down to a local view of the circuit), the

growth in circuit size may make this problem prohibitive (this is why clustering is used to sim-

plify large partitioning problems). It is important, however, that the clustering step be fast itself,

otherwise the speedup benefits are nullified. As well, the clusters should be built with as uniform

a size as possible, since algorithms that swap clusters become less effective when the sizes of the

objects vary greatly [Sun95]. Placement algorithms tend to have more success in minimizing the

net lengths of low fanout nets rather than high fanout nets [Roy93]. Consequently, creating a hier-

archy of clusters that shrinks the problem size, so that the average fanout of a net is reduced, can

be advantageous to achieving both good quality and run time.

2.3.2 Cost Functions Used to Build Clusters

In [Sun95], two levels of clustering are performed prior to hierarchical simulated annealing-

based placement. A single level of clusters is constructed in linear time based on connectivity,

with the clusters having similar size. The cost function is designed so that nets with small fanout

are absorbed into a single cluster. These nets are easier to fit in a single cluster than nets of greater

fanout. Each neti is assigned a weightwi that is inversely proportional to its fanout. So, if the set

of pins on neti is Fi, wi = 1 / (Fi - 1). A tree model for multi-terminal nets is used, which means

Background and Previous Work

21

that ann-pin net hasn-1 edges; if that net spansm clusters, then there arem-1 inter-cluster edges,

and if there arej pins of that net contained in a cluster, then that cluster hasj-1 edges. LetBk be

the set of all pins contained within clusterk. The weight,Wk, of clusterk is then defined as the

sum of all the edge weights in that cluster:

(2.13)

The first component of the product term in the summation represents the number of edges of neti

that are completely contained within clusterk. Note that if the entire net was absorbed by clusterk

(all pins of neti are contained within boundaries of clusterk), the total edge weight due to that net

would be 1. LetN be the desired number of clusters to be constructed at a specific level. The

objective of the clustering algorithm is to maximize the cost functionC below, without violating

the constraints on cluster capacity (a minimum and maximum size for clusters at a specific level):

(2.14)

[Sun95] employs a simulated annealing algorithm to build the clusters while maximizing the

above cost function, where blocks are swapped or moved across clusters as long as the blocks

have connections in each cluster.

In [Roy93], a bottom-up hierarchical technique is also used to construct clusters for parti-

tioning. An accumulative weighted graph is used to represent the circuit netlist, where each node

represents a circuit module, and each edge indicates a net containing those two nodes. Ann-pin

net then results inn(n-1)/2 edges in the complete graph. The clustering targets those nodes in the

graph that qualify to be merged with each other. As in [Sun95], each net is weighted by the

inverse of its fanout, (1/(n-1), for ann-pin net). All the edges between every pair of nodes in the

graph are collapsed into single edges with a total weight equal to the sum of all the edge weights

between the same two nodes.

In the first clustering phase, “natural” clusters are constructed from those nodes which are

connected by edges that have weight greater than some threshold. This tends to cluster the most

dense subgraphs from the weighted graph of the netlist, and higher levels of clustering proceed in

the same way with a condensed netlist of clusters and an updated value for the threshold.

W k F i Bk∩ 1–() wi⋅
i∀ F i Bk∩() ∅≠〈 | 〉

∑=

C W k
k 1=

N

∑=

Background and Previous Work

22

The second phase of clustering uses an adaptive method to refine the clusters created in the

first phase. Its goal is to further simplify the netlist while making sure the sizes of the clusters are

approximately equal. Small clusters on 2-pin nets are merged together to form larger clusters, but

if there are no such nets remaining, then the smallest cluster on the multi-terminal net with the

largest fanout is merged with a given small cluster. In this way, both the total number of nets in the

revised netlist is reduced, and the average net fanout of the remaining nets is also reduced. The

clustered netlist is then transferred to the partitioning/placement tool.

In [Shin93], a single level of bottom-up clustering is utilized to simplify a partitioning prob-

lem, as well as provide a hierarchical partitioning tool with a good initial solution that can be effi-

ciently evaluated. The intuition is that a clustering-based initial partitioning solution is superior to

a random solution since the blocks that are merged into clusters should ultimately reside in the

same partition.

The clustering process begins by considering each circuit block a cluster itself (cluster size

= 1). LetCommonNets(C, D) represent the set of nets common to clustersC andD, Pins(C) and

Pins(D) represent the set of pins contained in clusters C and D, respectively, ClusterSize(C, D) be

the size of the new cluster formed by merging C andD, andAvgClusterSize be the average size of

all the clusters. The “closeness” of two clustersC andD is given by [Shin93]:

(2.15)

The first component measures the strength of the attraction between the clusters, while the second

component is the penalty for creating clusters with unbalanced sizes, whose influence is con-

trolled by the scaling factor, α. The pairs of clusters with the highest closeness scores are merged

until the desired number of clusters is reached. After two clusters are merged, the closeness scores

of all the other affected clusters are updated to reflect the change.

Once all the clusters are constructed, the clustered netlist is partitioned multiple times, and

the best solution is passed on to the flat partitioner for further refinement. The combined cluster-

ing and 2-level partitioning methodology leads to high quality partitioning results in a reasonable

execution time.

In [Alpe97c], multi-level clustering is used to simplify the partitioning problem. The vari-

ous levels of clustered netlists are passed to a hierarchical partitioning tool for repeated partition-

ing and decomposition of the clusters while maintaining the partitions from the previous higher

level of the hierarchy.

closeness C D,() CommonNets C D,()
min Pins C() Pins D(),()
-- α ClusterSize C D,()

AvgClusterSize
---⋅ 

 –=

Background and Previous Work

23

The clustering at a given level merges 2 blocks (or clusters) at a time in the following man-

ner: an unclustered blockw is merged with a given blockv if w has the highest connectivity to v,

according to the cost function below [Alpe97c]:

(2.16)

whereA(v) andA(w) are the respective areas of blocksv andw, ande represents each net common

to bothv andw. The (1 / |e|) component reflects that blocks connected to low fanout nets are pre-

ferred, and the (1 / (A(v) ⋅ A(w))) term indicates that blocks with smaller areas are preferred for

merging to maintain clusters with balanced sizes. If there is no suitable unclustered blockw, then

block v is assigned to its own separate cluster. Nets with fanout 10 and up are ignored for the pur-

pose of calculatingconn(v,w), and the clustering at a given level terminates when a specified frac-

tion of all blocks have been clustered.

2.4 Fast Compile Algorithms
While there exists a great deal of previous work on VLSI placement algorithms that can be

applied towards FPGAs, and these algorithms succeed to varying degrees in minimizing the wir-

ing area occupied by a circuit, very few of them have as their primary goal the minimization of

run time. In this section, we describe some of the recent work dealing with fast compilation for

FPGAs.

2.4.1 Lola

Gehring and Ludwig [Gehr98] describe a fast placement tool in the context of a set of inte-

grated CAD tools for the Xilinx XC6200 FPGA architecture. It converts a Lola HDL specification

[Wirt96] into an FPGA programming bitstream in the order of seconds. Their constructive and

deterministic placement algorithm operates only on a hierarchical description of a circuit that con-

tains regular subcircuits and is represented by parameterized templates. It takes user-specified

position hints and proceeds in a bottom-up fashion to place the inner-most subcircuits, and then

recursively places the larger array structures and expression trees. Simple heuristics for placing

these structures are employed to place the regular bit-sliced designs that often occur in datapath

circuits. The designer is permitted to manually intervene to provide hints and feedback to the

conn v w,() 1
A v() A w()⋅
----------------------------- 1

e

e e v e w e∈,∈(){ }∈
∑⋅=

Background and Previous Work

24

automatic placer that pre-places parts of the circuit. Since the circuit hierarchy is maintained, the

user can easily modify the placement manually or provide further hints to constrain future itera-

tions of the placer. Upon reaching a placement solution, the specific placement information for

each subcircuit is passed on to every instance of that template.

The placement algorithm is of linear complexity and is fast - a circuit of 11,748 config-

urable logic blocks (CLBs) was placed in 33.5 seconds on a 166 MHz Intel Pentium. The Xilinx

XC6264 is the target device. The authors admit that their strategy does not lead to dense layouts,

and that for larger circuits, manual floorplanning may be required.

2.4.2 GAMA

Callahan et al. [Call98] combine fast placement with module mapping in their GAMA tool.

It is used to synthesize bit-sliced datapath circuits quickly by treating the placement and mapping

problems jointly as a tree covering problem. A dataflow graph representation of the circuit is split

into trees, and a linear-time implementation of bottom-up dynamic programming is used to per-

form the simultaneous module mapping and relative module placement. While creating a tree

covering for a particular module, a linear placement is formed by abutting the module with the

best covers of its fanin trees. Modules within a subtree are placed contiguously, and the size of a

module’s fanin trees are used to estimate routing delays that form part of the cost function used to

evaluate different covers and placements. Once placement within a tree is complete, a greedy heu-

ristic is employed to perform the global placement of the trees that seeks to place trees on the crit-

ical path close to each other. After post-covering and post-placement local optimizations are

made, each module is generated on demand, rather than copying it from a static library of mod-

ules with different widths, shapes, and orientations.

By opting to maintain the hierarchical datapath circuit structure, rather than flattening the

design to a netlist of gates, the authors are able to exploit specialized features of their target FPGA

device architectures, such as fast carry chains. They obtain good results when targeting the Xilinx

XC4000 family and explore the trade-off between optimizing for area (minimum number of con-

figurable logic blocks, CLBs, required) and for delay (minimizing critical path delay through the

dataflow graph, or minimizing the number of CLBs while meeting a specific timing constraint).

Background and Previous Work

25

The authors admit that only a subset of all possible linear orderings of optimized modules are

evaluated, and so an optimal placement cannot be ensured. However, GAMA can be beneficial in

situations where placement quality may be sacrificed for compilation time; it can provide a quick

initial solution for further iterative refinement or when a fast estimate of placement cost is needed.

2.4.3 Fast Placement for FPGAs via Automatic Floorplanning

In [Tess98], compile-time efficient placement for FPGAs is approached using ASIC floor-

planning techniques. By considering portions of the circuit being mapped to the FPGA as pre-

placed and pre-routed macrocells, the compile times for large designs can be decreased from an

hour to mere minutes, although there is both a severe area and circuit speed penalty. Using macros

and floorplanning tends to yield a fast placement result, but following it up with some amount of

annealing tends to smooth out any congestion and permits better device utilization. Furthermore,

if inter-macro routing is not taken into account during the floorplanning stage, this can lead to

longer routing times than those obtained by using classical flat place-and-route heuristics due to

the increase in total wirelength.

For circuits with an explicit hierarchical structure, an iterative strategy using relative cell

placement, cell rotation, and cell mirroring is used to achieve the goal of minimum interconnec-

tion wirelength. The method first involves finding optimized layouts for a set of macrocells that

will be stored in a library database. Since each macrocell is small, this does not expend much

time, and only needs to be done once. The circuit is then recursively bipartitioned using classical

algorithms to create a slicing floorplan with minimum cut size, where each leaf in the binary slic-

ing tree is a single macro. Then, floorplan sizing is performed using a bottom-up dynamic pro-

gramming approach. All feasible shape combinations are evaluated in this traversal from the

leaves to the root of the floorplan’s slicing tree, and those which consume too much area are

pruned. A top-down slicing tree traversal is then performed, and at each level of the traversal, the

combination of macrocells that fits the shape constraints laid out in the previous step is chosen

such that wirelength is kept at a minimum. At the end of this stage, the floorplan contains a list of

macro locations, shapes, and orientations that result in a macrocell placement on the minimum-

sized square FPGA that can accommodate it.

Background and Previous Work

26

2.4.4 Fast Routing and Difficulty Prediction

In [Swar98a], the routing phase of the fast FPGA compile is addressed. It is the complement

to this work and together they form the Fast Compile Project at the University of Toronto. Swartz

et al. present a fast routability-driven FPGA router, and later propose a fast timing-aware router in

[Swar98b]. Their enhancements to the basic maze router include using a more aggressive, depth-

first search technique to route nets from sources to sinks, the choice of target sinks when routing

multi-terminal nets, routing the nets in decreasing order of fanout, and reducing problem com-

plexity by dividing the FPGA into uniformly-sized bins. Another key contribution of this work is

the feedback provided to the user of the predicted difficulty of a given routing problem. Given a

placement and a target FPGA, the tool estimates the minimum number of tracks per channel

required to route the circuit on the given FPGA from the bounding-box wirelength placement

cost. It then compares this figure to the actual number of available tracks per channel on the

device, and informs the user that either the circuit can be routed quickly, that it can be routed

given more time, or that it is unroutable given the current target FPGA.

2.5 Summary
In this chapter, we provided definitions for the FPGA placement problem and the ultra-fast

placement problem. We then reviewed some of the prior work done in general VLSI placement

algorithms, focusing on simulated annealing-based heuristics. We also discussed previous efforts

that used clustering to simplify and speed up placement and partitioning problems and the various

cost functions employed to build clusters from a flat netlist. Finally, we presented some of the

recent work accomplished in creating fast compilation tools for FPGAs. This provides the back-

ground information necessary to understand the design details of the ultra-fast placement algo-

rithm, which is described in the next chapter.

Ultra-Fast Placement Algorithm

27

Chapter 3

Ultra-Fast Placement Algorithm

In this chapter, the components of the ultra-fast placement algorithm are described, includ-

ing the parameters that allow the exchange of wirelength for compile time. We then describe how

we determined a stable set of these parameters that give us the best quality-time trade-off.

3.1 Overview of Approach
Recall that the placement problem for FPGAs begins with a technology-mapped netlist of

logic blocks, I/O pads, and their interconnections. The output is an assignment of the blocks and

pads to specific physical locations of the FPGA. To achieve ultra-high-speed placement for

FPGAs, we build upon the clustering and hierarchical simulated annealing algorithm described in

[Sun95] and the adaptive annealing schedule of [Betz97] [Betz98]. We integrate it into the infra-

structure provided by VPR (the Versatile Place and Route tool presented in [Betz97]).

Figure3.1 illustrates the framework for the algorithm [Sank99]. The first stage is a multi-

level, bottom-up clustering of the logic blocks. Note that we do not incorporate I/O pads into the

clusters of logic blocks, since they have restrictions on their placement. The clustering is parame-

terized as follows: a total ofL different levels of clustering will be performed. At each level i, si

blocks (or clusters) at the previous level are grouped into a cluster. If a circuit contains a total ofN

logic blocks, then after a single level of clustering (level 1), there areN/s1 clusters. These clus-

ters can be grouped again to create a second level of clustering, withs2 first-level clusters in each

second-level cluster, giving N/s1 / s2 clusters at the top level (level 2), and so on.

Once all the required clustering is done, placement must be performed at each level of the

newly-formed hierarchy. We employ a two-step approach at each level: an initial constructive

Ultra-Fast Placement Algorithm

28

placement followed by iterative improvement using simulated annealing. The parameters of the

anneal are tuned to secure a good quality-time trade-off, as described below. Figure 3.2 illustrates

an abstract view of the multi-level clustering and placement. Our goal is to achieve high-speed

placement by quickly making good and fast global decisions at the higher levels of the hierarchy,

and following this with iterative local improvement at each level. Our choices of algorithms are

guided by the following objective: reduce the complexity of a large placement problem by divid-

ing it into manageable portions, and then employ known heuristics that are simple, fast, and effec-

tive on each portion. As we have seen in Chapter 2, multi-level clustering has been used to

simplify and speed up the solution of large placement and partitioning problems. This serves as

the motivation behind using this approach to attack the fast placement problem for FPGAs.

Circuit

Hierarchical clustering of logic
blocks based on connectivity

Constructive cluster placement

Legal placement of logic blocks and I/O pads

Figure 3.1: High-level view of fast placement algorithm.

Cluster Parameters

clustering levels, L
blocks/cluster at each level,

Placement Parameters

T0, Tf, α, InnerNum
at each level

s1, s2,... sL-1, sL

Decompose clusters at level i

i = L

i = i -1;
i = 0?

Yes

No

Constructive block placement

fanout threshold, maxfan

and annealing of blocks
at flat level

and annealing of clusters
at level i

Ultra-Fast Placement Algorithm

29

3.2 Multiple-Level Clustering

3.2.1 Description of Algorithm

The first step of the ultra-fast placement algorithm is a multi-level bottom-up clustering of

logic blocks. The input to the clustering step is a netlist ofN logic blocks and their interconnec-

tions, the number of clustering levels,L, and the cluster size at each level, s1, s2,... sL. We restrict

the cluster sizes (si) to be perfect squares (4, 16, 25, 64...) in order to simplify the grid resizing

operations at the various levels of placement. The task is to createL separate netlists of clusters of

logic blocks and their interconnections, where each block or lower-level cluster is assigned to a

unique higher-level cluster exactly once, and each clusterci,k (thekth cluster at level i) has at most

si blocks or clusters from the previous level, i-1.

The clustering algorithm begins by randomly choosing a logic block as a seed, and assign-

ing it to the first slot in a cluster. Each unclustered block connected to that seed is assigned a score

that rates how much the block belongs to this cluster. This score,wb, for each candidate blockb

has two components: (1) the number of connections between the candidate and the cluster being

constructed, with each connection weighted by the fanout of the net on which it lies, as in

[Sun95], and (2) the number of nets that would be completely absorbed if this candidate were

Level 0 Level 1 Level 2

Multi-level Clustering Coarse placement of clusters

Level 2 Level 1 Level 0

Figure 3.2: Abstract view of multi-level clustering and placement.

logic block

I/O pad

Ultra-Fast Placement Algorithm

30

added to the current cluster. We say that a net isabsorbed by a cluster if all the blocks on that net

are contained within that single cluster. If we denoteJ to represent the set of nets shared between

the candidate blockb and the clusterc under construction,Pj as the set of pins on netj ∈ J, and

Abc as the set of nets absorbed by adding candidate blockb to clusterc, then the score can be

expressed as:

(3.1)

With this function, blocks on low-fanout nets and on nets that are about to be absorbed are

preferred when building the clusters. The candidate block with the highest score is added to the

next available cluster slot, and if the cluster is full, a new one is started with a new randomly

selected seed block. This process is repeated until all the blocks are clustered. The result is a

netlist of clusters with absorbed nets and redundant pins removed. We proceed in a similar man-

ner to create further levels in the clustering hierarchy. The pseudo-code for the clustering algo-

rithm is presented in Figure 3.3.

The number of clustering levels,L and the size of the clusters at each level, si can be varied

to allow the trade-off between compile time and quality. As the size of the clusters increases, the

placement problems become simpler because more details are hidden, but there is less accurate

representation of the netlist and therefore lower quality may result. By focusing on the collapse of

low-fanout nets via clustering, we are implying that blocks connected to those nets will be placed

in close proximity after a high-quality flat placement. Furthermore, the removal of these nets from

the global view of the circuit and the use of clustering to reduce the average fanout of the remain-

ing non-absorbed nets will allow the placement phase to devote its attention at higher levels in the

hierarchy to nets whose lengths are more difficult to minimize in a flat placement scheme, and do

so in a much quicker fashion.

3.2.2 Clustering Example

Figure 3.4 provides an example to illustrate the clustering algorithm. The cluster under con-

struction can hold up to four blocks, and three of its slots are filled with logic blocksx, y, andz. In

order to fill the remaining available cluster slot, we examine the candidate blocks that share con-

nections with the current cluster. Upon adding blockz to the cluster, the most recent addition,

scores are incrementally updated or assigned to blocks that are newly connected to the cluster and

wb
1

P j 1–

j J∈
∑ Abc+=

Ultra-Fast Placement Algorithm

31

Input: # of clustering levels,L; cluster size at each level, s1 .. sL

procedurecluster_blocks {
1 curr_level = 1;
2 Repeat {
3 Repeat {
4 Start new cluster and flush bucket structure;
5 Select random seed block;
6 Repeat {
7 for each candidate blockb connected to seed {
8 Compute/incrementally update cluster score,wb, from (3.1);
9 Store score in bucket structure;
10 if (wb > wbest_block) {
11 best_block = b;
12 } /* end if */
13 } /* end for */
14 Add best_block to next free cluster slot;
15 seed =best_block;
16 } until (cluster is full || no more blocks at this level to cluster)
17 } until all logic blocks at this level are clustered
18 Revise netlist at this level -> remove absorbed nets and redundant pins;
19 curr_level++; /* proceed to next level of clustering */
20 } until all L levels of clustering complete
} /* end cluster_blocks */

Figure 3.3: Pseudo-code for multi-level clustering algorithm.

x y

z

a

b

c

d

e

Figure 3.4: Clustering example.

cluster

logic block

Ultra-Fast Placement Algorithm

32

those that are on nets about to be absorbed. The cost function in Equation (3.1) gives the scores in

Table 3.1.

Note that based on its cluster score being the highest, blocka would be chosen for the

remaining free cluster slot over blocksb, d, e, andc, respectively. In fact, blockc would not even

be considered as a candidate since it does not share any connections with the cluster. The attrac-

tiveness of blocka is apparent from its sharing a single 3-pin net with the cluster and that this net

would be absorbed if blocka was added to the cluster. If there are available cluster slots and none

of the remaining unclustered candidate blocks share any connections with the cluster under con-

struction, then a candidate is selected randomly and assigned to the next free slot.

Figure 3.5 illustrates how cluster size influences the amount of absorption of nets resulting

from a single level of clustering for one circuit in our benchmark suite. Note that even for rela-

tively small cluster sizes (between 2 and 10 logic blocks per cluster), a significant proportion of

flat nets are collapsed (25-60%), and up to 80% of the nets from the original netlist are eliminated

with a cluster size that is under 100 blocks. While the data shown in the graph was obtained from

clustering a single circuit using different cluster sizes, and the results from different circuits are

influenced by their fanout distribution, these trends are apparent in all the circuits.

3.2.3 Complexity of Clustering

The score assigned to any candidate block changes only when a net connected to that block

is first connected to a cluster, or when that net is about to be absorbed (i.e. all but blockb of the

pins on netj are contained in clusterc, and the cluster has an available slot). The list of the best

scores and associated candidates is maintained in a bucket-sorted data structure in order to per-

form fast updates [Corm90]. The bucket structure, which is sorted by score, only needs to be

flushed when a cluster is full. LetN be the number of logic blocks,K be the number of nets on

Table 3.1: Cluster scores for candidate blocks in example of Figure 3.4.

Block Cluster Score

a 1.50

b 0.83

c 0

d 0.50

e 0.33

Ultra-Fast Placement Algorithm

33

each logic block,fmax be the maximum fanout of any net in the circuit, ands be the size of the

cluster. The complexity of the algorithm can be derived by observing that when generating the

clusters, the algorithm must examine each of theN blocks once, each of theK nets connected to

the block, and each of the other pins on those nets. This examination occurs either upon adding a

block to a cluster or when a net is about to be absorbed. The complexity of the clustering algo-

rithm is thus O(N⋅K⋅fmax). If we clip the value offmax by restricting the clustering algorithm from

examining nets above a certain fanout threshold, this is a linear-time algorithm. This bound is sat-

isfied at higher levels of clustering as well, sinceN is scaled down by a factor of the cluster size

(s), K is scaled up by at most a factor of s (and is often less than that), andfmax is likely to

decrease. Practically speaking, the clustering is very fast: a 20,000 4-LUT circuit can be clustered

into clusters of size 64 in 2.1 seconds on a 300MHz Sun UltraSPARC workstation.

1 10 100 1000 10000
0.0

20.0

40.0

60.0

80.0

100.0

Cluster size (blocks)

% of total
nets

absorbed

Figure 3.5: Graph of percentage of total flat nets absorbed versus cluster
size for one level of clustering on MCNC circuitfrisc (3692 blocks).

Ultra-Fast Placement Algorithm

34

3.3 Placement of Clusters at Each Level
Once we have constructed the hierarchy of clusters, placement must occur at each level. The

placement algorithm consists of two steps: constructive placement followed by simulated-anneal-

ing-based iterative improvement.

3.3.1 Constructive Placement of Clusters

Given a netlist of clusters and their interconnections, we first perform a random placement

of all the I/O pads in the circuit at the highest level of the hierarchy. This provides anchor points

for the constructive placement of the clusters. Note that subsequent optimization steps will change

this initial pad placement.

The constructive placement determines positions for three separate groups of clusters: (1)

those connected to output pads, (2) those connected to input pads, and (3) those connected to

other logic clusters. It computes, for each cluster in each group in succession, the arithmetic mean

position of all the clusters and pads it is connected to that have already been placed. The cluster is

then placed as close to this “center of gravity” as possible. The initial placement of the pads pro-

vides the guidance for this construction. We have found that this method provides a superior start-

ing point for the subsequent iterative improvement step compared to using a simple random

placement. Experiments also show that this placement results in a slightly better quality-time

trade-off than an initial random placement. The pseudo-code for the constructive cluster place-

ment step is shown in Figure 3.6.

At lower levels in the hierarchy, the same constructive approach is used, with three excep-

tions: (1) there is no initial pad placement -- pads are placed in the same way logic clusters are; (2)

if a block has not yet been placed and its position is needed for the mean calculation, the geomet-

ric center of the higher-level cluster it is contained within is used as the position; (3) each of the

cluster contents is placed as close to its calculated “center of gravity” while remaining within the

prescribed cluster boundaries.

At each level of the hierarchy, it is possible to perform multiple iterations of the constructive

placement algorithm prior to the iterative improvement step. The objective is to refine the place-

ment using the same constructive algorithm but making use of the complete placement informa-

tion available from the previous iteration. This helps to fix the problem that early in the first

iteration, pads and clusters are placed without exact information on the location of the clusters to

Ultra-Fast Placement Algorithm

35

which they are connected. Although multiple passes of the constructive placement algorithm

tended to improve the wirelength slightly at each level in the hierarchy, there was no significant

difference in final placement cost at each level after the simulated annealing-based iterative

improvement phase, irrespective of the number of iterations performed by the constructive placer.

Table 3.2 shows a comparison between the constructive cluster placement algorithm and a

quick and simple random placement at clustering levels below the top level. After the prescribed

clustering was completed, a top-level placement was performed with our constructive placement

algorithm. At all successively lower levels, the initial cluster placement was performed using the

constructive algorithm, in one case, and a random placement algorithm, in the other. To ensure

Input: netlist of clusters, I/O pads, and interconnections, hierarchy level number
procedureplace_clusters (int curr_level) {
1 calculate grid size for clusters at level curr_level;
2 if (curr_level == top level in hierarchy) {
3 sort clusters into list,sorted_clusters[], in following order:

clusters connected to output pads, input pads, and the rest;
4 do random pad placement;
5 }
6 else { /* lower levels of hierarchy */
7 calculate boundaries induced by each level (curr_level+1) cluster;
8 sorted clusters[] = list of clusters and pads at level curr_level;
9 } /* end if */
10 k = 0;
11 while not all clusters and pads have been placed {
12 curr_cluster = sorted_clusters[k];
13 total_x = total_y = total_connections = 0;
14 for each connection,conn, to curr_cluster {
15 if (curr_level != top level in hierarchy) && (conn is unplaced)
16 use center of cluster at level curr_level+1;
17 if (conn has been assigned a legal location)
18 total_x += conn.x; total_y += conn.y; total_connections++;
19 } /* end for */
20 mean_x = total_x / total_connections;
21 mean_y = total_y / total_connections;
22 placecurr_cluster as close to (mean_x, mean_y);

/* without violating array or induced cluster boundaries */
23 labelcurr_cluster as placed;num_clusters_placed++;
24 k++; /* examine next unplaced cluster or pad */
25 } /* end while */
} /* end place_clusters */

Figure 3.6: Pseudo-code for constructive cluster or intra-cluster placement.

Ultra-Fast Placement Algorithm

36

that the comparison was fair, in both cases the follow-up iterative improvement phase at each level

was the same. The data shown is the geometric mean of the normalized final placement cost and

the associated mean overall run time across 20 benchmark circuits, using the different initial clus-

ter placement algorithms. For 1 and 2 levels of clustering, there is a slight benefit in placement

quality at the expense of a slight increase in run time when using the constructive placement algo-

rithm. For 3 levels of clustering, the difference between the two algorithms appears to favor the

random placement algorithm. Note that this is a comparison for the levels below the top level of

the hierarchy; the constructive placement algorithm delivers a better quality-run time trade-off

than a random placement of the top-level clusters.

3.3.2 Simulated-Annealing-Based Iterative Improvement of Placement

Following the constructive placement of clusters and pads at any level in the hierarchy, we

improve its quality using simulated annealing-based [Kirk83] [Sech85] iterative improvement

before proceeding to the next lower level. Refer to Chapter 2 for a description of the basic simu-

lated annealing method as it is applied to placement. We have adapted the annealing implementa-

tion in VPR described in [Betz97] [Betz98].

Table 3.2: Constructive versus random initial cluster placement.

Cluster
Levels

Length of
Follow-up
Iterative

Improvement
Phase

Constructive Random

Mean
Run
Time
(s)

Geometric Mean
Normalized
Wirelength

(20 circuit average)

Mean
Run
Time
(s)

Geometric Mean
Normalized
Wirelength

(20 circuit average)

1 short 7.36 1.567 6.10 1.589

medium 13.09 1.250 11.77 1.265

long 61.76 1.036 60.20 1.042

2 short 7.96 1.595 6.71 1.622

medium 13.69 1.279 12.30 1.292

long 61.78 1.048 58.87 1.065

3 short 9.77 1.581 8.13 1.594

medium 15.28 1.266 13.80 1.262

long 62.70 1.050 61.74 1.046

Ultra-Fast Placement Algorithm

37

One important issue is whether or not to restrict the motion of blocks to remain within the

cluster boundaries of the most recent cluster level. We have experimentally determined that at

every level of the hierarchy it is much better to allow the blocks being placed tomove across the

cluster boundaries. This still means that the coarse placement from the previous level is useful; if

the boundaries are strictly enforced, however, then placement quality suffers. To demonstrate this,

an experiment was run on a set of 20 benchmark circuits comparing placing flat blocks within

cluster boundaries to placing them across the boundaries. A single level of clustering was speci-

fied, with identical cluster sizes and identical top-level and flat-level placement parameters. In

both cases, a geometric average run time of 14.04 seconds was obtained across the 20 circuits.

However, the geometric average normalized placement cost was 1.23 when blocks were allowed

to cross cluster boundaries, while a cost of 1.51 was obtained when the blocks were restricted to

moving only within those boundaries.

The key parameters that control the quality-time trade-off for simulated annealing are:

• The starting temperature,T0. This is a crucial parameter, because if the temperature is set

too high, the subsequent annealing will destroy the placement structure developed at pre-

vious levels in the hierarchy. If it is set too low, then insufficient optimization will be per-

formed. We employ three different mechanisms for determiningT0. The first is to

employ the temperature “measurement” mechanism (simulated thermometer) suggested

in [Rose90] -- here, the initial temperature is determined by finding the temperature at

which the placement appears to be at equilibrium. The second is to set the initial temper-

ature to zero (a “quench”, where only moves that improve the placement cost are

accepted), and the third is to set the starting temperature to a fixed value, greater than

zero. In the next section, we explore which of these approaches is most appropriate for

different quality-time trade-off points.

In Table 3.3, we show the effect of varying the starting temperature for the follow-up

anneal at the flat level after a single level of clustering of the MCNC [Yang91] circuit

clma. A constructive top-level placement, a follow-up top-level quench, and a construc-

tive flat placement were performed. The starting temperature for the follow-up flat

anneal was varied from 100 down to 0.025, the exit temperature was fixed at 0.01, and

the number of moves attempted per temperature was adjusted so that the overall run

times were comparable. The final placement costs obtained were compared to using the

Ultra-Fast Placement Algorithm

38

simulated thermometer to determine the starting temperature and proceeding with an

automatic flat anneal where the temperature update factor and exit temperature are com-

puted dynamically. The usefulness of the simulated thermometer is apparent when com-

pared to the quality-time trade-off obtained using pre-specified starting temperatures that

do not take into account the state of the current placement. The run times are similar, but

the placement with lowest cost is generated by the anneal that uses the thermometer.

Note that as the starting temperature is reduced from 100 to 0.1, hill-climbing is still

accomplished, but in smaller amounts in the same amount of execution time. However, at

very low temperatures (< 0.1), the annealer is caught in local minima that are difficult to

escape, and there are not enough temperature steps for significant optimization. The ther-

mometer permits a nice trade-off between these two ranges of temperatures, and is com-

puted dynamically using the current placement of the circuit in question at any level in

the hierarchy, hence it is more robust and adaptive than a static choice of starting temper-

ature.

• The number of “moves” per temperature, called “InnerNum.” The basic annealing algo-

rithm of VPR [Betz97] makesInnerNum ⋅ Nblocks
4/3 moves at each temperature, where

Nblocks is the total number of blocks and pads. The parameterInnerNum determines how

much work is done per temperature.

• The temperature update factor, α. This factor is the amount by which the temperature is

reduced between iterations of the main annealer loop (Tnew = α⋅Told). A lower value for

α results in a faster anneal, but also a reduction in quality. VPR [Betz97] automatically

Table 3.3: Effect of starting temperature calculation on annealing for MCNC circuitclma.

T0
Run Time

(s)
Normalized

Placement Cost

100 23.52 2.29

10 22.04 2.22

1 21.92 1.97

0.1 21.76 1.22

0.025 21.64 1.35

thermometer
(0.089)

21.87 1.21

Ultra-Fast Placement Algorithm

39

adjustsα as described in Section 2.2.3; we have found that squaring the automaticα

increases the speed with which the algorithm converges with little reduction in quality.

• The exit criterion -- what causes the annealing to stop -- is either a pre-specified temper-

ature at which the annealing terminates (Tf) or when one of the following two conditions

are met: (i) the temperature is less than 1% of the average cost per net, or (ii) the average

cost over the last three temperatures is unchanged.

We have identified three types of schedules that permit us to explore the quality-time space

thoroughly: (1) an aggressive, dynamic, adaptive schedule with automatic calculations forT0, Tf,

andα; (2) a quench (all moves made at temperature = 0), where no hill-climbing is permitted; (3)

a manually-specified schedule where the values ofT0, Tf andα are fixed. Schedule (1) is an anneal

tailored to the current placement of the circuit, whatever its level of granularity, schedule (2) is a

greedy heuristic, and schedule (3) is a short, fixed anneal. In all three cases, we can trade quality

for compile time by varying theInnerNum parameter.

3.3.3 Fanout

Another enhancement that we implement to speed up the placement is to ignore nets with

large fanout. This is useful because a high-fanout net will likely cover much of the FPGA and so it

is harder to reduce its wirelength. By ignoring nets above a certain fanout threshold (called

maxfan in our tool), the placement problem is further simplified. If we set the threshold too low,

however, we may lack enough information to create a good placement. Note that both the

clustering and placement steps ignore the nets above this threshold,maxfan.

To illustrate how varying the fanout threshold impacts the amount of information remaining

in the netlist and the subsequent placement quality, we conducted a set of experiments on the

MCNC [Yang91] circuit clma. The value ofmaxfan was varied from 1 to 10000. For each of these

fanout thresholds, the nets with fanout greater thanmaxfan were removed from the netlist, and the

percentage of total flat pins that remained in the circuit was recorded. Then, a high-quality simu-

lated annealing-based placement tool, VPR [Betz97] [Betz98], was run on the simplified netlist.

After the anneal terminated, the ignored nets were reinstated, and the cost was compared to that

obtained when the original circuit was placed (with no nets ignored). In Figure3.7, the percentage

of total pins remaining and the percentage increase in VPR placement cost are shown as functions

of the fanout threshold,maxfan, for this circuit. Clearly, when all nets with more than 2 pins are

ignored (maxfan = 1), there is not enough information left to perform a good placement (only

Ultra-Fast Placement Algorithm

40

30% of the pins remain), and the quality degradation is severe (nearly 3 times the wirelength).

However, when the fanout threshold is raised to 10 (nets with 11 pins and less are kept), over 50%

of the pins in the netlist are intact, and the resulting annealed placement has a less than 30%

increase in wirelength compared to annealing the original version of clma.

3.3.4 Complexity of Placement

At any level in the hierarchy, the initial constructive placement algorithm has worst-case

time complexity O(Nblocks⋅K⋅fmax), with Nblocks logic blocks and pads,K pins per block, and a

maximum fanout offmax for any net in the circuit. Just as with the clustering algorithm, this is

because we must examine each block (or cluster) exactly once, examine each net connected to

that block, and examine every other block on that net. Furthermore, by examining only those nets

below a certain fanout threshold, we can ensure that it remains a linear-time algorithm. The exper-

iments described in the previous section and Figure3.7, in which nets above a certain fanout

threshold are ignored, indicate that, practically, it is possible to provide an even tighter bound on

the complexity of the constructive placement algorithm.

Assume there areN logic blocks and (PI+PO) pads in the circuit, and that we choose a uni-

form cluster size ofs at each level of the hierarchy. For the follow-up simulated annealing algo-

1 10 100 1000 10000
0.0 0.0

50.0 50.0

100.0 100.0

150.0 150.0

200.0 200.0

%
increase

in
simulated
annealing
placement

cost

% of total
pins

remaining

Fanout above which nets are ignored

clma - 8527 blocks

Figure 3.7: Graphs of placement cost degradation and percentage of total flat pins remaining
after nets above threshold ignored, each versus fanout threshold for MCNC circuitclma.

Ultra-Fast Placement Algorithm

41

rithm, we explore at each level i (i = 0...L) at mostInnerNum ⋅ ((N/si)+PI+PO)4/3 configurations

per temperature. The intelligent starting temperature calculation and aggressive adaptive anneal-

ing schedule typically ensure that we do not search through many temperatures per level in the

clustering hierarchy. This means that the annealing algorithm’s worst-case time complexity is

bounded by O(Nblocks
4/3) and is typically less than that.

3.4 Determination of the Quality-Time Envelope
Parameters

In this section, we describe the experiments used to identify the set of parameters for the

ultra-fast placement tool and choose those parameters. There are two sets of parameters: those

that control the clustering, and those that control the iterative-improvement of the placement. Our

goal is to determine the parameters that lead to the best quality-time trade-off for our tool, which

we call theenvelope parameters. Please note that the details of the actual FPGA architecture and

the other parts of the CAD flow are given in Chapter 4.

3.4.1 Cluster Parameter Experiments

The key parameters of the multiple-level clustering approach are the number of clustering

levels (L) and the cluster sizes at each level (s1 ... sL). We first explored a single level of clustering

with L = 1. To determine the cluster size value (s1) that provides the best quality-time trade-off,

we ran the placement tool on a set of benchmark circuits and varied the cluster size from 4 to 4096

by powers of 4. For the subsequent iterative improvement placement, many different annealing

parameters were run in order to determine the complete quality-time trade-off possibilities. For

example, Figure3.8 is a plot of the geometric mean normalized placement wirelength (with

respect to the best possible placement obtained by VPR [Betz97]) versus the geometric mean run

time, across a set of 20 benchmark circuits. In that figure, the clustering sizes1 was set to 64.

We performed similar experiments and generated the same curve for values ofs1 = 4, 16,

64, 256, 1024 and 4096, and determined that the values of 64 and 16 resulted in the best (lowest

cost) quality-time trade-off curve. Figure3.9 shows the comparison of the quality-time curves for

each value ofs1, and we chose to use 64 as our 1-level cluster size in the placement parameter

experiments that follow. This results in netlists with fewer clusters that are larger in size compared

to a 1-level cluster size of 16.

Ultra-Fast Placement Algorithm

42

We performed similar studies forL = 2 and 3 levels of clustering. These studies are prob-

lematic as there are many more parameters to explore: forL = 2, the values ofs1 ands2 must both

be set; forL = 3, the values ofs1, s2 ands3 must all be specified. Furthermore, annealing parame-

ters must be specified at each of those levels. The experiments demonstrated that forL = 2, the

values ofs1 = 64 ands2 = 4 were found to work best, and in a few cases, the quality-run time

trade-off was superior to the best of theL = 1 envelope. For L = 3, the values for (s1,s2,s3) of

(64,4,4), (64,16,4) and (256,4,4) were all found to behave about the same, but all of these settings

yielded results that were no better than those obtained acrossL = 1 and 2. This may be due to the

sizes of the large circuits in our benchmark suite; after 2 levels of clustering, the circuits have

1 10 100
Geometric mean run time (seconds)

1.0

1.5

2.0

2.5

G
eo

m
et

ric
 m

ea
n

no
rm

al
iz

ed
 p

la
ce

m
en

t c
os

t
lev1 auto, inum1=0.1, lev0 auto, inum0=0.001−1
lev1 auto, inum1=0.1, lev0 quench, inum0=0.1
lev1 auto, inum1=0.1, lev0 T0=0.1, inum0=0.1−1
lev1 auto, inum1=0.1, lev0 T0=1, inum0=1
lev1 auto, inum1=1, lev0 auto, inum0=0.001−1
lev1 auto, inum1=1, lev0 quench, inum0=0.1
lev1 auto, inum1=1, lev0 T0=0.1, inum0=0.1−1
lev1 auto, inum1=1, lev0 T0=1, inum0=1
lev1 T0=0.1, inum1=0.01, lev0 auto, inum0=0.001−1
lev1 T0=0.1, inum1=0.01, lev0 quench, inum0=0.1
lev1 T0=0.1, inum1=0.01, lev0 T0=0.1, inum0=0.1−1
lev1 T0=0.1, inum1=0.01, lev0 T0=1, inum0=1
lev1 quench, inum1=10, lev0 auto, inum0=0.001−1
lev1 quench, inum1=10, lev0 quench, inum0=0.1
lev1 quench, inum1=10, lev0 T0=0.1, inum0=0.1−1
lev1 quench, inum1=10, lev0 T0=1, inum0=1

Figure 3.8: Placement quality-time plot (20 circuit average) for ultra-fast placement tool
using different combinations of annealing schedules on 1-level, size-64 clustered circuits.

Ultra-Fast Placement Algorithm

43

already been transformed into a few large clusters (tens of clusters, each with 256 total flat

blocks). So, an additional level of clustering does little to further simplify the placement problem,

and may even cost both time (because of the extra processing at level 3) and area (an additional

level of grid resizing must be performed, which may adversely affect the grid size at the flat level).

3.4.2 Placement Parameter Experiments

The next set of parameters to tune is the set of simulated annealing parameters described in

Section 3.3.2. Recall that we settled on the set of three types of schedules described in Section

3.3.2: (1) an automatic anneal using a simulated thermometer to computeT0, dynamically calcu-

1 10 100
Geometric mean run time (seconds)

1.0

1.5

2.0

G
e

o
m

e
tr

ic
 m

e
a

n
 n

o
rm

a
liz

e
d

 p
la

ce
m

e
n

t
co

st

cluster size = 4
cluster size = 16
cluster size = 64
cluster size = 256
cluster size = 1024
cluster size = 4096

Figure 3.9: Placement quality-time curves (20 circuit average) for ultra-fast placement tool
using a sample of annealing parameters and varying 1-level cluster sizes from 4 to 4096.

Ultra-Fast Placement Algorithm

44

lated values forTf andα, and variableInnerNum; (2) a quench with variableInnerNum; (3) a fixed

anneal withT0 = 0.1,Tf = 0.01,α = 0.8, and a variableInnerNum. We explored the combinations

of these schedules at the clustered and flat levels of the hierarchy, for circuits clustered withL = 1

ands1 = 64 blocks per cluster. The scatter plot of geometric mean normalized placement cost ver-

sus geometric mean run time across 20 circuits is given in Figure3.8, and note the complexity of

the various combinations of schedules. For short run times, the envelope is comprised of a quench

(schedule 2) at the top level with InnerNum = 10, and the short, fixed annealing schedule (sched-

ule 3) at the flat level with InnerNum of 0.1 to 0.5. For longer run times, the envelope consists of

the automatic anneal (schedule 1) at the top level with InnerNum = 1 and the automatic anneal at

the flat level with InnerNum from 0.2 to 1. In each case, though, it is evident that there are alterna-

tive schedules that come reasonably close to providing the same quality-time trade-off as the

envelope.

Similar combinations of annealing schedules were attempted for 2 and 3-level clustered cir-

cuits. In the case of circuits withL = 2 levels of clustering and cluster sizes (s1 = 64,s2 = 4), the

envelope parameters leading to short run times consist of a quench at the top level (level 2), a

quench at level 1 (both withInnerNum = 10), and a fixed anneal at the flat level with InnerNum

from 0.01 to 1. For medium run times, the 2-level envelope consists of a quench at the top level

with InnerNum = 10, a short fixed anneal at level 1 withInnerNum = 1, and at the flat level, either

an automatic anneal (InnerNum from 0.1 to 0.5) or a short fixed anneal (InnerNum from 0.2 to 1).

For longer run times, the 2-level envelope consists of fixed anneals at level 2 and level 1 (both

with InnerNum = 1) and a flat automatic anneal (InnerNum = 1), or a top-level automatic anneal

(InnerNum = 1), a level 1 fixed anneal (InnerNum = 1), and a flat automatic anneal (InnerNum

from 0.5 to 1).

The placement quality-time envelope formed by the placement parameters for 3-level clus-

tered circuits is no better than the 1-level and 2-level envelopes. Examples of such 3-level anneal-

ing schedules (L = 3, s1 = 64,s2 = 4, s3 = 4) are: a top-level (level 3) quench (InnerNum = 1), a

fixed anneal at level 2 and level 1 (InnerNum = 1) and a flat fixed anneal (InnerNum from 0.5 to

1); a top-level fixed anneal (InnerNum = 0.1), a fixed anneal at level 2 and level 1 (InnerNum = 1),

and a flat automatic anneal (InnerNum = 0.5). Once again, although these sets of placement

parameters resulted in the best quality-time trade-off for our ultra-fast tool, there are alternative

schedules that achieve results that are approximately as good.

Ultra-Fast Placement Algorithm

45

In order to determine the best value of the fanout threshold,maxfan (the value of fanout

above which the nets are ignored), we performed an experiment withL = 1 ands1 = 64 and varied

the fanout threshold. Figure3.10 is a scatter plot of quality versus run time, averaged over 20 cir-

cuits, for various values of fanout threshold and annealing schedules. The circular dots represent

the quality when no nets are ignored, and the other points show the quality when more nets are

ignored -- for fanout thresholds ranging from 1000 to 1. It is evident that excessively low fanout

thresholds eliminate far too much placement information from the circuit, hence the area degrada-

tion is huge. However, when nets with fanout over 100 are ignored, we save a few seconds of

placement time with almost no degradation in quality.

1 10 100
Geometric mean run time (seconds)

1.0

2.0

3.0

4.0

G
eo

m
et

ric
 m

ea
n

no
rm

al
iz

ed
 p

la
ce

m
en

t c
os

t

no nets ignored, level_1 auto, innernum_1=1, level_0 auto, innernum_0=0.01−1
maxfan = 1
maxfan = 2
maxfan = 5
maxfan = 10
maxfan = 20
maxfan = 50
maxfan = 100
maxfan = 1000

Figure 3.10: Placement quality-time plot (20 circuit average) for ultra-fast placement tool
using different fanout thresholds above which nets are ignored on circuits with fixed cluster

and placement parameters.

Ultra-Fast Placement Algorithm

46

3.5 Summary
In this chapter, the details of the ultra-fast placement algorithm were described. The algo-

rithm begins with a bottom-up, multiple-level clustering phase to simplify the placement problem.

It is followed by a two-step hierarchical placement algorithm: at each level of the hierarchy, an

initial constructive placement of the clusters takes place, followed by a simulated-annealing-based

refinement. The algorithms were shown to have linear time complexity if nets above a certain

fanout threshold were ignored. The key tunable parameters of both the clustering (number of clus-

ter levels, cluster sizes) and placement (starting temperature, exit temperature, temperature update

factor, number of moves per temperature, fanout threshold) algorithms were presented. The

search for the envelope parameters that provide the best quality-time trade-off for the ultra-fast

tool was described, and the specific clustering and placement parameters that form the envelope

were furnished.

In the next chapter, we will establish the baseline placement results to which we will com-

pare the placements produced by our ultra-fast tool. This will be followed by a comprehensive

evaluation of the quality-time performance of the ultra-fast tool and a description and results of

the types of prediction information that are conveyed by the tool.

Experimental Results

47

Chapter 4

Experimental Results

In this chapter, we compare the new ultra-fast placement tool to an existing and known

high-quality placement tool, VPR [Betz97]. We also discuss the fast prediction of high-quality

wirelength and the fast prediction of the placement quality versus run time relationship of a given

circuit. We first describe the FPGA architecture used in the experimental comparisons and the

overall CAD flow.

4.1 Target FPGA Architecture
For our placement experiments, we use an island-style FPGA with a logic block that con-

tains a single 4-input lookup table (4-LUT) and a single D flip-flop. This simple and most basic

FPGA architecture is illustrated in Figure4.1. Each block has 6 pins: 4 inputs, 1 output, and 1

clock. We will assume the FPGA has dedicated resources for routing the clock, reset, and other

global nets. We also assume an I/O pad pitch-to-logic block ratio of 2.

4.2 Benchmark Circuits and CAD Flow
We have collected 20 large circuits from a variety of sources: 14 of the circuits originate

from the MCNC suite [Yang91], one comes from the RAW suite [Babb97], one is a synthetic cir-

cuit generated by GEN [Hutt97], and the remaining four are designs created for the Transmogri-

fier-2 Rapid Prototyping System [Lewi97] at the University of Toronto [Ye99] [Hame98]

Experimental Results

48

[Leve98]. Each circuit was optimized using SIS [Sent92], and technology mapped into 4-LUTs

using Flowmap and Flowpack [Cong94]. VPACK [Betz97] was used to pack the netlists of 4-

LUTs and flip-flops into basic logic blocks. The sizes of the 20 benchmark circuits range from

3000 to 20,000 logic blocks.

We have implemented our fast placement tool within the framework of VPR. Since it is a

good estimator of wiring area, we use the bounding box wirelength of all nets in the circuit to

compare the quality of placement of each circuit from each tool. We measure only the time used

to perform clustering and placement, and do not include the initial input file reading time and

parsing (this is no more than 5 seconds for the largest circuit). All experiments are run on a 300

MHz Sun UltraSPARC workstation.

4.3 Basis of Comparison
We use the pure simulated annealing-based VPR as the basis for comparison to our new

placement algorithm. In order to compare to the quality-time trade-off curve for VPR, we needed

to vary the schedule parameters for VPR itself, in a manner similar to that described in Chapter 3

for our tool, to determine how well we can do with respect to placement quality and time using

VPR alone.

Figure 4.1: Island-style FPGA architecture and basic logic block contents.

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

LUT
4

inputs clock

D
FF

output

Experimental Results

49

To obtain the envelope of the quality-time curve for VPR, we varied each of the key simu-

lated annealing parameters -- initial temperature (T0), exit temperature (Tf), temperature update

factor (α), and scaling factor for the number of moves to attempt per temperature (InnerNum). We

used the three types of schedules described in Section 3.3.2: (1) an automatic annealing schedule

(T0, Tf, andα calculated dynamically and adjusted depending upon the quality of the placement)

with variable InnerNum; (2) a quench (greedy heuristic) with variableInnerNum; (3) a fixed

annealing schedule, in which we either sweepT0, keepingTf, α, andInnerNum constant, or sweep

α, keepingT0, Tf, andInnerNum constant.

We ran each unique annealing schedule on all 20 circuits, recorded the run time and wire-

length, and normalized the wirelength for each run on a given circuit to that achieved by VPR

when run under its “-fast” option on that same circuit. This specific VPR option is similar to its

default parameters that are tuned to generate high-quality placements, except that one-tenth of the

configurations are explored at each temperature (the scaling factorInnerNum is 1 under “-fast”,

and 10 by default). Typically, this increases the placement cost by at most 10%, but with a factor

of 10 speedup in placement time. Essentially, it is a very high quality placement that is obtained in

a reasonable amount of time. The normalized wirelengths and run times were then averaged geo-

metrically across all 20 circuits to give a single (placement time, placement cost) pair for each dis-

tinct annealing schedule. It is from these experiments that we determined the envelope of the best

VPR annealer parameters to specify across all 20 circuits.

The envelope containing the annealing schedules that produced the best quality-time trade-

off consisted of parts of three types of schedules with variableInnerNum (between 0 and 100): a

quench, an anneal withT0 = 1,Tf = 0.01, andα = 0.8, and an automatic anneal with dynamically-

updatedT0, Tf, and α. Figure4.2 illustrates the geometric mean normalized placement cost

(bounding-box wirelength) versus geometric mean run time across all 20 benchmark circuits for

the three schedules that form the quality-time envelope for VPR.

There is not much difference in wirelength and run time among the schedules for extremely

short run times (< 3 seconds). We observe that for run times in the 10 to 100 second range, there is

ample room for improvement; an average of 80-100% extra wiring area is likely unacceptable to a

circuit designer even within 10 seconds of placement time. The figure also shows that as more

Experimental Results

50

time is expended on placement and more configurations are evaluated, the benefit of probabilistic

hill climbing becomes readily apparent. The curve representing a greedy annealing schedule

(quench) shows that placement solutions in this range cannot escape local minima, and it diverges

from those schedules that accept some bad moves in order to reach global minima.

4.4 Comparisons Between Ultra-Fast Algorithm and
VPR

A head-to-head comparison between the ultra-fast placement tool and VPR is possible by

first running each set of placement parameters that lies on the envelope of the respective tool on

every circuit in the benchmark suite. Then, the placement quality results are normalized to those

obtained by running VPR under its “-fast” option (described above), and the geometric mean

placement cost and mean run time are calculated for each set of parameters across all circuits.

0.1 1.0 10.0 100.0 1000.0
Geometric mean run time (seconds)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

G
eo

m
et

ric
 m

ea
n

no
rm

al
iz

ed
 p

la
ce

m
en

t c
os

t

auto, innernum = 0.001−1
quench, innernum = 0, 0.01−100
T0 = 1, innernum = 0.01−10

Figure 4.2: VPR placement quality-time trade-off (20 circuit average) using annealing
schedules that form the envelope.

Experimental Results

51

Figure 4.3 is a plot of both the best VPR quality-time envelope and the new ultra-fast place-

ment tool quality-time envelope. It indicates that the ultra-fast placement tool has a clear advan-

tage for both short run times (10 seconds or less) and medium run times (from 10 to 100 seconds).

In 10 seconds, our placement tool requires only 30% more wirelength on average (than the best

possible placement using VPR), while VPR requires at least 80% more wirelength on average. In

just 3.5 seconds, our ultra-fast tool generates placements requiring approximately 50% more

wirelength on average, whereas placements produced by VPR in the same amount of time require

between 2.5 and 3 times the wirelength on average. Furthermore, while VPR can achieve an aver-

age area penalty of 10% in over 100 seconds, our placement tool can attain this level in less than

30 seconds. If we allowed our placement tool to run without a compile time restriction, it would

produce placements that would be very nearly what VPR can achieve, since both tools are based

1 10 100 1000
Geometric mean run time (seconds)

1.0

2.0

3.0

4.0

G
eo

m
et

ric
 m

ea
n

no
rm

al
iz

ed
 p

la
ce

m
en

t c
os

t

VPR Envelope
Ultra−Fast Placement Envelope

Figure 4.3: Placement quality-time envelope curves (20 circuit average) for VPR
and new ultra-fast placement tool.

Experimental Results

52

on similar implementations of simulated annealing. This is evident from the graph: within 60 sec-

onds on average, the ultra-fast placement tool yields an average wirelength that is within 5% of

that obtained via VPR’s high-quality anneal. Within 115 seconds on average, the ultra-fast tool

generates placements that are of the same quality as the high-quality anneals from VPR.

Figure4.3 also demonstrates that by manipulating the parameters of the fast placement tool, we

can realize a smooth trade-off between placement quality and execution time.

Figure 4.4 shows the envelope curves from the two placement tools and highlights the point

at which the curves intersect, which is at approximately 250 seconds, the average amount of time

required by VPR to produce high-quality placements of the circuits in the benchmark suite. Fig-

ure 4.5 shows the envelope curves from the two placement tools using a linear scale for the time

axis, focusing on short and medium run times.

1 10 100 1000
Geometric mean run time (seconds)

0.0

1.0

2.0

3.0

4.0

G
eo

m
et

ric
 m

ea
n

no
rm

al
iz

ed
 p

la
ce

m
en

t c
os

t

VPR Envelope
Ultra−Fast Placement Envelope

Figure 4.4: Placement quality-time envelope curves (20 circuit average) for VPR and
new ultra-fast placement tool, highlighting the point at which the curves meet.

Experimental Results

53

Table4.1 provides a more detailed comparison between VPR and the ultra-fast placement

tool with one particular set of parameters:L = 2 levels of clustering with cluster sizess1 = 64 and

s2 = 4, with the top-level and level-1 annealing schedules being quenches (withInnerNum = 10), a

flat anneal withT0 = 0.1 (InnerNum = 0.5), and nets above fanout 100 ignored (maxfan = 100).

From Figure4.3, we note that the mean run time for this schedule across our 20-circuit bench-

mark suite is 11.4 seconds with a mean normalized placement cost of 1.22. It is difficult to find

directly comparable run times between the two tools; we then select a schedule from the VPR

envelope that has a run time that is as close as possible (mean run time = 14.2 seconds; mean nor-

malized placement cost = 1.82). The columns of Table4.1 give the circuit name, the circuit size in

number of logic blocks and nets, the run time and normalized placement cost obtained using our

fast tool, the comparable data using VPR, and the percentage reduction in placement cost due to

the ultra-fast tool compared to VPR. The table shows that the ultra-fast placer wins in a compari-

0.0 20.0 40.0 60.0
Geometric mean run time (seconds)

1.0

2.0

3.0

4.0

G
eo

m
et

ric
 m

ea
n

no
rm

al
iz

ed
 p

la
ce

m
en

t c
os

t

VPR Envelope
Ultra−Fast Placement Envelope

Figure 4.5: Placement quality versus time envelope curves (20 circuit average) for
VPR and new ultra-fast placement tool (linear scale).

Experimental Results

54

son with VPR for every circuit in our suite, posting a superior wirelength in a significantly shorter

run time. Note that for this particular set of ultra-fast placement parameters, the reduction in wire-

length compared to VPR ranges from 13% to 51%, with an average reduction of 33% in 20% less

time.

Table4.2 and Table4.3 provide additional comparisons between our ultra-fast placement

tool and VPR for very short and somewhat longer run times, respectively. In both cases, the ultra-

fast placer provides lower wirelength in the same amount of placement time or less for every cir-

cuit in the test suite. Naturally, as more time is devoted to placing the circuits, the difference in

wirelength results between the ultra-fast tool and VPR becomes smaller. For the short run times

(geometric mean run time of 5.5 seconds for the ultra-fast tool), the average reduction in wire-

length compared to VPR (8.9 seconds per run on average) was approximately 30% in 37% less

time. For the longer run times (geometric mean run time of 24.4 seconds for the ultra-fast tool),

the average reduction in wirelength compared to VPR (26.6 seconds per run on average) was over

18% in 7% less time.

The true measure of quality of a given placement is whether or not it can be successfully

routed on the target FPGA. Although we have not attempted to route any of the ultra-fast place-

ments, [Swar98b] has shown that wirelength and routability correlate extremely well. Therefore,

we are satisfied that our ultra-fast placements are superior to those produced by VPR, based solely

on wirelength for the range of compile times of interest.

Experimental Results

55

Table 4.1: Comparison between ultra-fast placement tool and VPR for 20 benchmark circuits.
One set of placement parameters was employed for each tool such that their run times were close

and they were part of the quality-time envelope for their respective tools.

Circuit
#

Logic
Blocks

Nets

Ultra-Fast
Placement

VPR
Ultra-Fast

%
Reduction

in
Placement

Cost

Run
Time

(s)

Normalized
Placement

Cost

Run
Time

(s)

Normalized
Placement

Cost

clma 8383 8444 21.71 1.20 29.79 1.83 34.4

spla 3690 3706 6.37 1.22 7.26 1.63 25.2

s38584.1 6447 6484 14.55 1.29 18.35 2.33 44.6

s38417 6406 6434 13.33 1.22 16.88 1.87 34.8

frisc 3556 3575 6.15 1.21 7.04 1.63 25.8

pdc 4575 4591 8.43 1.20 10.35 1.52 21.1

ex1010 4598 4608 7.69 1.23 10.53 1.67 26.3

elliptic 3604 3734 6.05 1.15 7.16 1.60 28.1

beast20k 19600 20000 108.34 1.16 128.10 1.34 13.4

bubble sort 12293 12311 41.08 1.29 53.65 2.14 39.7

fir16 6975 6994 16.31 1.32 20.86 2.19 39.7

iir16 3739 3773 6.93 1.15 7.57 2.16 46.8

mac64 4307 4374 8.94 1.19 10.19 1.69 29.6

ochip64 4083 4101 6.85 1.13 10.63 2.30 50.9

ralu32 3662 3184 5.96 1.25 6.69 1.66 24.7

spsdes 3363 3366 5.22 1.21 6.47 1.70 28.8

des_fm 4786 4791 9.25 1.34 13.25 1.69 20.7

des_sis 5351 5356 11.12 1.24 14.14 1.67 25.7

wood 7432 7524 17.54 1.24 22.15 2.00 38.0

marb 5535 5639 11.61 1.26 13.72 2.15 41.4

Geometric Average 11.37 1.22 14.17 1.82 33.0

Arithmetic Average 16.67 1.22 20.74 1.84 33.7

Experimental Results

56

Table 4.2: Comparison between ultra-fast placement tool and VPR across 20 circuits for very
short run times.

Circuit
#

Logic
Blocks

Nets

Ultra-Fast
Placement

VPR
Ultra-Fast

%
Reduction

in
Placement

Cost

Run
Time

(s)

Normalized
Placement

Cost

Run
Time

(s)

Normalized
Placement

Cost

clma 8383 8444 10.13 1.31 16.95 1.84 28.8

spla 3690 3706 3.21 1.33 5.40 1.71 22.2

s38584.1 6447 6484 6.82 1.46 12.14 2.45 40.4

s38417 6406 6434 6.08 1.35 10.81 2.00 32.5

frisc 3556 3575 3.19 1.35 4.45 1.72 21.5

pdc 4575 4591 4.35 1.31 6.50 1.60 18.1

ex1010 4598 4608 3.81 1.47 6.28 1.70 13.5

elliptic 3604 3734 3.08 1.25 5.12 1.66 24.7

beast20k 19600 20000 55.75 1.30 76.59 1.65 21.2

bubble sort 12293 12311 18.39 1.49 32.33 2.25 33.8

fir16 6975 6994 7.63 1.48 13.60 2.38 37.8

iir16 3739 3773 3.32 1.31 5.07 2.36 44.5

mac64 4307 4374 4.54 1.38 6.32 1.97 29.9

ochip64 4083 4101 3.18 1.42 6.32 2.59 45.2

ralu32 3662 3184 2.92 1.37 4.16 1.81 24.3

spsdes 3363 3366 2.53 1.35 4.11 1.80 25.0

des_fm 4786 4791 4.36 1.55 6.78 1.82 14.8

des_sis 5351 5356 5.17 1.47 8.15 1.83 19.7

wood 7432 7524 8.11 1.36 15.19 2.21 38.5

marb 5535 5639 5.51 1.42 8.87 2.50 43.2

Geometric Average 5.49 1.39 8.90 1.97 29.4

Arithmetic Average 8.10 1.39 12.76 1.99 30.2

Experimental Results

57

Table 4.3: Comparison between ultra-fast placement tool and VPR across 20 circuits for longer
run times.

Circuit
#

Logic
Blocks

Nets

Ultra-Fast
Placement

VPR
Ultra-Fast

%
Reduction

in
Placement

Cost

Run
Time

(s)

Normalized
Placement

Cost

Run
Time

(s)

Normalized
Placement

Cost

clma 8383 8444 51.78 1.07 54.90 1.31 18.3

spla 3690 3706 14.09 1.11 15.26 1.26 11.9

s38584.1 6447 6484 35.58 1.16 34.34 1.43 18.9

s38417 6406 6434 28.88 1.10 33.97 1.34 17.9

frisc 3556 3575 13.12 1.12 13.82 1.35 17.0

pdc 4575 4591 19.08 1.07 20.48 1.29 17.1

ex1010 4598 4608 17.87 1.08 19.60 1.15 6.1

elliptic 3604 3734 14.54 1.09 13.82 1.35 19.3

beast20k 19600 20000 212.87 1.06 221.51 1.06 0

bubble sort 12293 12311 85.82 1.17 98.61 1.45 19.3

fir16 6975 6994 35.25 1.13 40.96 1.44 21.5

iir16 3739 3773 12.86 1.08 15.03 1.59 32.1

mac64 4307 4374 17.01 1.06 18.97 1.27 16.5

ochip64 4083 4101 15.98 1.00 17.03 1.63 38.7

ralu32 3662 3184 11.71 1.12 12.95 1.34 16.4

spsdes 3363 3366 12.07 1.10 12.68 1.34 17.9

des_fm 4786 4791 17.31 1.22 21.26 1.29 5.4

des_sis 5351 5356 20.86 1.15 24.54 1.34 14.2

wood 7432 7524 43.55 1.17 41.09 1.52 23.0

marb 5535 5639 23.04 1.16 27.17 1.69 31.4

Geometric Average 24.41 1.11 26.59 1.36 18.4

Arithmetic Average 35.16 1.11 37.90 1.37 19.0

Experimental Results

58

4.5 Wirelength Estimation and Accuracy
One way to use a fast placement tool, even if the user is not interested in sacrificing any

final circuit quality, is to use it as a routability estimator for a given netlist. Swartz et al. [Swar98a]

show how to predict if a circuit will route on a given FPGA, given the wirelength of the placement

of a circuit and the number of tracks per channel in the target FPGA. The drawback of their

approach is that the placement must be known. We propose that our fast placement algorithm be

used to obtain very fast and accurate estimates of the finalbest placement wirelength. The idea is

that we can run the fast placement tool in one of its very fastest modes, measure the wirelength of

that placement, and then estimate the best attainable wirelength by decreasing the wirelength by

the typical amount that the fast mode is usually worse than the best mode. The quality of the result

depends on the consistency of difference in wirelength between the fast mode and the best mode.

This can be measured by determining how much the normalized placement cost for each circuit,

in the fast mode, varies from the mean normalized placement cost across all circuits.

Figure4.6 is a plot of the average difference of each circuit’s normalized wirelength from

the mean over all circuits versus different run times of the ultra-fast placement tool obtained from

the quality-time envelope parameters. (To obtain this graph, we calculate the absolute difference

between the geometric mean normalized placement cost across all circuits and the actual normal-

ized placement cost for each of the 20 benchmarks for each set of fast placement parameters. We

then compute the arithmetic mean of these differences (and call it mean absolute error) and plot it

versus the geometric mean run time that was obtained for the set of circuits for this set of parame-

ters.)

Figure4.6 shows that, as we would expect, longer compile times produce more accurate

wirelength estimates. Impressively, even placements in short run times result in accurate estimates

-- for example, an average 10 second run time results in an average absolute error in normalized

placement cost of less than 5%.

We can therefore use the fast placement wirelength as an accurate estimator of the final best

placement wirelength.

Experimental Results

59

Table4.4 illustrates an example of fast wirelength estimation for each of the circuits in our

benchmark suite. We used the same set of ultra-fast placement parameters as that used to generate

the data in Table4.1, and recorded both the run time and raw wirelength result in each case. From

the envelope curve in Figure4.3, we know the mean normalized wirelength for this set of param-

eters across all circuits to be 1.22, or 22% larger than the highest-quality wirelength attainable by

VPR. Figure4.6 indicates that the mean absolute error for that set of parameters is 0.044 (4.4%).

Our pessimistic prediction of high quality wirelength can be written as:

(4.1)

(4.2)

1 10 100
Geometric mean run time (seconds)

0.00

0.05

0.10

0.15

0.20

M
ea

n
ab

so
lu

te
 e

rr
or

Figure 4.6: Mean absolute difference in wirelength (between mean wirelength and
individual circuit results) versus mean run time for parameters forming ultra-fast

placement tool envelope.

Wirelengthpredicted β Wirelengthultra fast–⋅=

β 1

Wirelengthnormalized AbsoluteError–
--=

Experimental Results

60

The predicted high-quality wirelength for a given circuit is proportional to the wirelength

obtained from the ultra-fast placement tool. The scaling factor, β, is composed of the difference

between the normalized wirelength for the set of ultra-fast parameters chosen (geometrically aver-

aged across all circuits) and the previously described mean absolute error in normalized wire-

length for the same set of placement parameters.

For the example in Table4.4, Predicted Wirelength = Ultra-Fast Wirelength / (1.22-0.044).

We use this formula to compute a wirelength estimate for each circuit based on the fast placement

wirelength result, and compare it to the known high-quality wirelength for each circuit from VPR.

For 16 of the circuits, our pessimistic estimate is between 0.89% and 13.75% higher than the

actual high-quality wirelength, and in only two cases is the error greater than 10%. In four cases,

the estimator was not pessimistic enough, predicting a wirelength that was between 1.71% and

3.93% less than the actual high-quality wirelength. Overall, the average absolute error of the wire-

length estimator was 4.91% for the set of placement parameters that yielded a mean run time of

just over 11 seconds.

Another example of fast wirelength prediction for each circuit in the benchmark suite is

provided in Table4.5. Here, the placement data from Table4.2 was used. The average ultra-fast

placement time was just 5.5 seconds, the mean normalized wirelength was 1.39, and the mean

absolute error was 0.066 (from Figure4.6). The predicted wirelengths were between 0.94% and

17.20% higher than the actual VPR high-quality wirelengths, with six estimates over 10%. There

were five instances where the pessimistic estimate underpredicted the actual wirelength, with

none greater than 5%. Naturally, with such a short average run time, the predictions based on the

ultra-fast placements tend to be less accurate than those obtained during the longer placement

times in Table4.4, but the average absolute error is still merely 6%.

Experimental Results

61

Table 4.4: Quality of wirelength prediction capability of ultra-fast placement tool using
placement data from Table4.1 (mean run time = 11.4 seconds).

Circuit
Run
Time

(s)

Ultra-Fast
Placement
Wirelength

Predicted
High-Quality
Wirelength

VPR Actual
High-Quality
Wirelength

%
Error

clma 21.71 1786 1514 1491 +1.55

spla 6.37 763 646 625 +3.37

s38584.1 14.55 901 763 696 +9.70

s38417 13.33 883 748 726 +3.12

frisc 6.15 685 580 566 +2.58

pdc 8.43 1096 929 917 +1.35

ex1010 7.69 843 715 688 +3.84

elliptic 6.05 588 499 513 -2.75

beast20k 108.34 7522 6374 6485 -1.71

bubble sort 41.08 1632 1383 1262 +9.57

fir16 16.31 1108 939 841 +11.62

iir16 6.93 464 393 404 -2.63

mac64 8.94 660 560 555 +0.89

ochip64 6.85 350 297 309 -3.93

ralu32 5.96 506 429 405 +5.85

spsdes 5.22 527 447 434 +2.88

des_fm 9.25 857 727 639 +13.75

des_sis 11.12 826 700 665 +5.33

wood 17.54 1085 920 873 +5.32

marb 11.61 617 523 492 +6.39

Arithmetic Average Absolute Error 4.91

Experimental Results

62

Table 4.5: Quality of wirelength prediction capability of ultra-fast placement tool using
placement data from Table4.2 (mean run time = 5.5 seconds).

Circuit
Run
Time

(s)

Ultra-Fast
Placement
Wirelength

Predicted
High-Quality
Wirelength

VPR Actual
High-Quality
Wirelength

%
Error

clma 10.13 1958 1485 1491 -0.40

spla 3.21 832 631 625 +0.94

s38584.1 6.82 1018 772 696 +10.88

s38417 6.08 981 744 726 +2.52

frisc 3.19 763 578 566 +2.18

pdc 4.35 1202 911 917 -0.63

ex1010 3.81 1014 769 688 +11.76

elliptic 3.08 643 488 513 -4.87

beast20k 55.75 8446 6404 6485 -1.25

bubble sort 18.39 1881 1426 1262 +12.99

fir16 7.63 1248 946 841 +12.53

iir16 3.32 527 400 404 -0.93

mac64 4.54 766 581 555 +4.70

ochip64 3.18 438 332 309 +7.60

ralu32 2.92 557 422 405 +4.20

spsdes 2.53 584 443 434 +1.98

des_fm 4.36 987 749 639 +17.20

des_sis 5.17 976 740 665 +11.29

wood 8.11 1188 901 873 +3.16

marb 5.51 698 530 492 +7.69

Arithmetic Average Absolute Error 5.98

Experimental Results

63

4.6 Practical Usage of Ultra-Fast Placement
We have presented results obtained from running an ultra-fast placement tool against a

known pure simulated-annealing-based placement tool, and shown how it can be used for fast

high-quality wirelength estimation. In this section, we discuss how such a placement package can

be used in a practical setting, specify the interface to the user, and describe what the tool does

when the user wants a circuit to be placed quickly.

In order for ultra-fast placement to be accessible to the user, the tool should provide two key

features:

• Immediate feedback to the user upon reading in the circuit to be placed; this feedback

consists of the expected placement quality versus compile time curve displayed in a win-

dow on the user’s screen.

• Given either a compile time restrictionor a wirelength restriction, specified by the user

at the command-line, the tool should automatically determine the appropriate parameters

(clustering and placement) and execute the ultra-fast placement algorithm.

The predictor of the quality-time envelope curve for a given circuit was developed using the

fast placement data in Table4.1, the 20-circuit average quality-time envelope, and the size of the

circuits in the benchmark suite, in logic blocks. Adapting the average quality-time envelope to

generate the envelope for a specific circuit requires more than just a simple scaling based on cir-

cuit size.

First, the ultra-fast placement times of all 20 benchmark circuits for the chosen set of place-

ment parameters are plotted as a function of circuit size. A curve fit is then performed. Using the

fitted function and the size of the circuit to be placed, the estimated run time for the envelope

parameters invoked in Table4.1 is calculated for the circuit in question. We call this the estimated

10-second run time. Then, to determine each remaining estimated run time on the envelope for the

given circuit, we simply scale this “10-second run time” point on the estimated envelope by the

ratio between the corresponding run time on the average envelope and the “10-second run time”

point on the average envelope. In each case, the corresponding estimated normalized wirelength is

taken to be the geometric mean normalized wirelength obtained across all circuits for the same set

of envelope parameters. Examples of this prediction scheme are shown for three different circuits

in Figure4.7, Figure4.8, and Figure4.9, along with the actual fast placer quality-time envelopes.

Experimental Results

64

1 10 100
Run time (seconds)

1.0

1.5

2.0

N
or

m
al

iz
ed

 p
la

ce
m

en
t c

os
t

Ultra−Fast Placement Envelope
Predicted Envelope

Figure 4.7: Comparison of predicted ultra-fast placement quality versus time
envelope with actual envelope for MCNC circuit clma (8383 logic blocks).

1 10 100
Run time (seconds)

1.0

1.5

2.0

N
or

m
al

iz
ed

 p
la

ce
m

en
t c

os
t

Ultra−Fast Placement Envelope
Predicted Envelope

Figure 4.8: Comparison of predicted ultra-fast placement envelope
with actual envelope for circuit marb (5535 logic blocks).

Experimental Results

65

Note that the prediction scheme tracks the actual fast placer envelope quite closely in each

case. This is a simplistic scheme based only on circuit size, and one that performs some amount of

analysis of the circuit structure (fanout distribution) should perform even better.

Once the predicted quality-time envelope has been calculated and presented to the user (via

a pop-up window), this information is stored to assist in the automatic generation of fast place-

ment parameters based on the circuit size and either a given area or compile time restriction. For a

compile time restriction, a search is performed of the estimated envelope run times to determine

the closest schedule to the desired compile time, and the associated clustering and placement

parameters are retrieved via table lookup. Then, a simple scaling of theInnerNum parameter

(number of moves per temperature) at the flat level is done, based on the difference between the

estimated envelope run time and the desired run time restriction. With all the fast placer parame-

ters now specified, the algorithm is invoked, and an ultra-fast placement is produced. For an area

restriction, a similar procedure is followed, except that the area restrictions are first translated into

compile time restrictions based on the predicted quality-time envelope.

10 100 1000
Run time (seconds)

1.0

1.5

2.0

N
or

m
al

iz
ed

 p
la

ce
m

en
t c

os
t

Ultra−Fast Placement Envelope
Predicted Envelope

Figure 4.9: Comparison of predicted ultra-fast placement envelope with
actual envelope for synthetic circuitbeast20k (19600 logic blocks).

Experimental Results

66

4.7 Summary
In this chapter, we showed how the envelope curve for the quality-time trade-off for a high-

quality simulated-annealing-based placement tool, VPR, was determined. This was used as the

metric of comparison for our ultra-fast placer for both quality and time, and also for fast predic-

tion of high-quality wirelength. We then showed a detailed comparison of the ultra-fast placement

tool with VPR, and the results indicate that in the compile time regions of interest, the ultra-fast

placer provides superior wirelength in a shorter time for every circuit in the benchmark suite. We

further described the method to perform fast high-quality wirelength prediction, and presented

some impressive results using this scheme. Finally, in order to properly allow the user to interact

with the ultra-fast placement tool, two features are incorporated into the tool and discussed -- pre-

diction of the quality-time relationship for an unknown circuit given its size and automatic gener-

ation of fast placer parameters given either a compile time or quality restriction for that circuit.

Conclusions and Future Work

67

Chapter 5

Conclusions and Future Work

5.1 Conclusions and Contributions
We have observed that when mapping circuits to an FPGA, the time devoted to placement

and routing dominates the synthesis process. With advances in process technology, FPGA device

capacities will continue to grow, and the size and complexity of circuits being mapped to them

will increase accordingly. Therefore, existing CAD algorithms will need to adapt to ensure that

the placement and routing times for such circuits and devices will not overwhelm the user by tak-

ing hours or days to complete. It is our belief that some FPGA users are willing to give up quality

of the mapped circuit -- accepting a circuit that occupies more area on a given FPGA or requires a

larger FPGA -- in exchange for obtaining that result very quickly.

The first contribution of this work was the exploration of the parameter space at our disposal

through an existing pure simulated-annealing-based tool, VPR [Betz97] [Betz98], that is known

to produce high-quality placements. In the course of our exploration of this parameter space that

defines all possible annealing schedules (starting temperature, exit temperature, temperature

reduction factor, and number of moves to attempt at each temperature), we showed the best qual-

ity-time trade-off that is achievable. While high-quality placements are attainable in a few hun-

dred seconds, a designer must be willing to accept 80-100% more area on average for a given

large circuit if a placement is desired within 10 seconds.

We restricted our focus in this thesis to the placement phase of layout synthesis for FPGA

circuits and demonstrated that an ultra-fast placement algorithm based on multiple-level cluster-

ing, constructive placement, and simulated-annealing-based refinement works well in relation to

an existing high-quality pure simulated annealing placement tool. It provides superior area results

Conclusions and Future Work

68

across a set of large benchmark circuits (those containing between 3000 and 20,000 total logic

and I/O blocks) compared to VPR when both tools are instructed to take approximately the same

amount of time to generate a placement. For example, in 10 seconds on a 300 MHz Sun UltraS-

PARC, our ultra-fast tool can achieve an average area penalty of less than 30% (compared to high-

quality placements that require on average over 250 seconds to produce), while the best that VPR

can achieve is an 80% area penalty. A placement of a 100,000-gate circuit is produced by our tool

in 10 seconds that is only 31% worse than a high-quality placement from VPR that requires 524

seconds; our ultra-fast tool achieves this level of placement quality 5 times faster than VPR. Fur-

thermore, it takes VPR approximately 100 seconds to achieve an average area penalty of 10%, but

the ultra-fast tool can attain the same level in less than 30 seconds. If we have no compile time

restrictions, then our algorithm produces placements that approach the same quality as VPR;

within 60 seconds on average, placements are produced with an average wirelength that is within

5% of that obtained using VPR.

The placement algorithm allows the user to smoothly trade quality of placement (bounding-

box wirelength, a good estimator of wiring area) for compile time. We explored the space covered

by these parameters to find the best quality-time envelope and showed that its envelope is signifi-

cantly better than that possible with the pure simulated annealing formulation of VPR. We used

this envelope to quickly and successfully predict the quality versus run time relationship of a spe-

cific circuit that has not yet been placed, given only the size of the circuit in logic blocks. This

predicted envelope was returned to the user as feedback, and was used to automatically generate

the required placement parameters to meet a user-specified compile time or area restriction.

We also showed that the ultra-fast placement tool can be used as a fast estimator of the final

high-quality wirelength that is achieved when the pure simulated annealing placement tool is

tuned to achieve minimum wirelength with no restriction on compile time. This fast wirelength

prediction scheme is successful with a mean absolute error of 6% between the estimated and

actual high-quality wirelength over the set of large benchmark circuits, in an average run time of

merely 5.5 seconds on a 300 MHz Sun UltraSPARC.

5.2 Future Work
This thesis has provided the first exploration of very fast, flat placement, be it for FPGAs or

as part of automated layout synthesis packages for gate arrays or standard cells. However, there

are many areas within this topic to explore more thoroughly.

Conclusions and Future Work

69

First, a fast placement tool that is timing-driven should be developed. Further improvements

to the fast placement tool should include exploiting both the hierarchy that is inherent in the cir-

cuit structure, as well as the topology of the underlying routing architecture of the target FPGA.

In the future, it would be interesting and beneficial to explore a fast quadratic-program-

ming-based placement algorithm or one based on top-down min-cut partitioning, and determine

their quality-time trade-off relationships. Both of these techniques are based on popular place-

ment algorithms that have been implemented in CAD tools, and it would be interesting to com-

pare their performance and predictive ability with our tool.

Another interesting area to pursue is the refinement and integration of the fast high-quality

wirelength estimator with the difficulty predictor provided by an existing fast router [Swar98a]. It

would also be fruitful to extend the prediction scheme to incorporate fast estimation of circuit

speed and power dissipation as well. Finally, a complete fast synthesis package should be on the

road map of any fast compile project, integrating the existing work in fast placement and routing

with fast technology mapping, fast partitioning, and perhaps even fast logic optimization and fast

high-level synthesis, all of which should trade quality of result for compile time.

Table 5.1:
Figure 5.1:

(5.1)

70

References

[Alpe97a] C. J. Alpert, T. F. Chan, D. J. -H. Huang, A. B. Kahng, I. L. Markov, P. Mulet, and K. Yan,
“Faster Minimization of Linear Wirelength for Global Placement,” ACM Symposium on
Physical Design, 1997, pp. 4-11.

[Alpe97b] C. J. Alpert, T. Chan, D. J. -H. Huang, I. Markov, and K. Yan, “Quadratic Placement Revis-
ited,” ACM/IEEE Design Automation Conference, 1997, pp. 752-757.

[Alpe97c] C. J. Alpert, J. -H. Huang, and A. Kahng, “Multilevel Circuit Partitioning,” Proc. ACM/IEEE
Design Automation Conference, 1997, pp. 530-533.

[Babb97] J. Babb, M. Frank, E. Waingold, R. Barua, M. Taylor, J. Kim, S. Devabhaktuni, P. Finch, and
A. Agarwal, “The RAW Benchmark Suite: Computation Structures for General Purpose
Computing,” Proc. IEEE Symposium on FPGAs for Custom Computing Machines, 1997, pp.
161-171.

[Betz97] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA
Research,” Proc. Intl. Workshop on Field Programmable Logic and Applications, 1997, pp.
213-222.

[Betz97b] V. Betz, “The FPGA Place-and-Route Challenge,” 1997. (Available from http://
www.eecg.toronto.edu/~vaughn/challenge/challenge.html).

[Betz98] V. Betz, “Architecture and CAD for Speed and Area Optimization of FPGAs,” Ph.D. Thesis,
University of Toronto, Department of Electrical and Computer Engineering, 1998.

[Brow92] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic,Field-Programmable Gate Arrays,
Norwell, MA: Kluwer Academic Publishers, 1992.

[Call98] T. J. Callahan, P. Chong, A. DeHon, and J. Wawrzynek, “Fast Module Mapping and
Placement for Datapaths in FPGAs,” Proc. 6th ACM/SIGDA Intl. Symposium on FPGAs,
1998, pp. 123-132.

[Chen94] C. Cheng, “RISA: Accurate and Efficient Placement Routability Modeling,” Proc. Intl. Con-
ference on Computer-Aided Design, 1994, pp. 690-695.

[Cong94] J. Cong and Y. Ding, “Flowmap: An Optimal Technology Mapping Algorithm for Delay
Optimization in Lookup-Table Based FPGA Designs,” IEEE Transactions on Computer-
Aided Design, Jan. 1994, pp. 1-12.

[Corm90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to Algorithms, Cambridge, MA:
MIT Press, 1990.

71

[Doll91] K. Doll, F. Johannes, and G. Sigl, “DOMINO: Deterministic Placement Improvement with
Hill-Climbing Capabilities,” Proc. VLSI, 1991, pp. 91-100.

[Dunl85] A. E. Dunlop and B. W. Kernighan, “A Procedure for Placement of Standard-Cell VLSI Cir-
cuits,” IEEE Transactions on Computer-Aided Design, vol. 4, no. 1, Jan. 1985, pp. 92-98.

[Gehr98] S. W. Gehring and S. H. -M. Ludwig, “Fast Integrated Tools for Circuit Design with FPGAs,”
Proc. 6th ACM/SIGDA Intl. Symposium on FPGAs, 1998, pp. 133-139.

[Hage97] L. W. Hagen and A. B. Kahng, “Combining Problem Reduction and Adaptive Multistart: A
New Technique for Superior Iterative Partitioning,” IEEE Transactions on Computer-Aided
Design, vol. 16, no. 7, July 1997, pp. 709-717.

[Hame98] I. Hamer, “Implementation of DES on Transmogrifier-2a,” Personal Communication, 1998.

[Hana72] M. Hanan and J. M. Kurtzberg, “Placement Techniques,” in Design Automation of Digital
Systems, Volume 1: Theory and Techniques, M. A. Breuer, Ed., Englewood Cliffs, NJ:
Prentice-Hall, 1972, pp. 213-281.

[Huan97] D. Huang and A. Kahng, “Partitioning-Based Standard-Cell Global Placement with an Exact
Objective,” ACM Symposium on Physical Design, 1997, pp. 18-25.

[Huan86] M. Huang, F. Romeo, and A. Sangiovanni-Vincentelli, “An Efficient General Cooling
Schedule for Simulated Annealing,” Proc. Intl. Conference on Computer-Aided Design, 1986,
pp. 381-384.

[Hutt97] M. Hutton, J. Rose, and D. Corneil, “Generation of Synthetic Sequential Benchmark Cir-
cuits,” Proc. 5th ACM/SIGDA Intl. Symposium on FPGAs, 1997, pp. 149-155.

[Kary97] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel Hypergraph Partitioning:
Application in VLSI Domain,” Proc. ACM/IEEE Design Automation Conference, 1997, pp.
526-529.

[Kirk83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,”
Science, vol. 220, no. 4598, May 13, 1983, pp. 671-680.

[Klei91] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich, “GORDIAN: VLSI Placement
by Quadratic Programming and Slicing Optimization,” IEEE Transactions on Computer-
Aided Design, vol. 10, no. 3, Mar. 1991, pp. 356-365.

[Lam88] J. Lam and J. Delosme, “Performance of a New Annealing Schedule,” Proc. ACM/IEEE
Design Automation Conference, 1988, pp. 306-311.

[Leng90] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, Chichester: John Wiley
& Sons, 1990.

[Leve98] P. Leventis, “Using edif2blif Version 1.0,” University of Toronto, Department of Electrical
and Computer Engineering, 1998. (Available for download from http://www.eecg.toronto.edu/
~leventi/edif2blif/edif2blif.html).

[Lewi97] D. M. Lewis, D. R. Galloway, M. van Ierssel, J. Rose, and P. Chow, “The Transmogrifier-2: A
1 Million Gate Rapid Prototyping System,” Proc. 5th ACM/SIGDA Intl. Symposium on
FPGAs, 1997, pp. 53-61.

[Quic98] Quickturn Design Systems Inc.,The Mercury Design Verification System, 1998. (Available
from http://www.quickturn.com).

72

[Rose90] J. Rose, W. Klebsch, and J. Wolf, “Temperature Measurement and Equilibrium Dynamics of
Simulated Annealing Placements,” IEEE Transactions on Computer-Aided Design, vol. 9, no.
3, Mar. 1990, pp. 253-259.

[Rose97] J. Rose and D. Hill, “Architecture and Physical Design Challenges for One-Million Gate
FPGAs and Beyond,” Proc. 5th ACM/SIGDA Intl. Symposium on FPGAs, 1997, pp. 129-132.

[Roy93] K. Roy and C. Sechen, “A Timing Driven N-Way Chip and Multi-Chip Partitioner,” Proc.
Intl. Conference on Computer-Aided Design, 1993, pp. 240-247.

[Sank99] Y. Sankar and J. Rose, “Trading Quality for Compile Time: Ultra-Fast Placement for
FPGAs,” to appear in Proc. 7th ACM/SIGDA Intl. Symposium on FPGAs, 1999.

[Sarr97] M. Sarrafzadeh and M. Wang, “NRG: Global and Detailed Placement,” Proc. Intl. Conference
on Computer-Aided Design, 1997, pp. 532-537.

[Sato97] S. Sato, “Simulated Quenching: A New Placement Method for Module Generation,” Proc.
Intl. Conference on Computer-Aided Design, 1997, pp. 538-541.

[Sech85] C. Sechen and A. Sangiovanni-Vincentelli, “The TimberWolf Placement and Routing
Package,” IEEE Journal of Solid-State Circuits, vol. 20, no. 2, Apr. 1985, pp. 510-522.

[Sech88] C. Sechen,VLSI Placement and Global Routing Using Simulated Annealing, Norwell, MA:
Kluwer Academic Publishers, 1988.

[Sent92] E. M. Sentovich et al., “SIS: A System for Sequential Circuit Analysis,” Tech. Report No.
UCB/ERL M92/41, University of California, Berkeley, 1992.

[Shah91] K. Shahookar and P. Mazumder, “VLSI Cell Placement Techniques,” ACM Computing
Surveys, vol. 23, no. 2, June 1991, pp. 143-220.

[Shin93] H. Shin and C. Kim, “A Simple Yet Effective Technique for Partitioning,” IEEE Transactions
on VLSI Systems, vol. 1, no. 3, Sept. 1993, pp. 380-386.

[Sigl91] G. Sigl, K. Doll, and F. M. Johannes, “Analytical Placement: A Linear or a Quadratic
Objective Function?,” Proc. ACM/IEEE Design Automation Conference, 1991, pp. 427-432.

[Sun95] W. Sun and C. Sechen, “Efficient and Effective Placement for Very Large Circuits,” IEEE
Transactions on Computer-Aided Design, vol. 14, no. 3, Mar. 1995, pp. 349-359.

[Swar98a] J. S. Swartz, V. Betz, and J. Rose, “A Fast Routability-Driven Router for FPGAs,” Proc. 6th
ACM/SIGDA Intl. Symposium on FPGAs, 1998, pp. 140-149.

[Swar98b] J. S. Swartz, “A High-Speed Timing-Aware Router for FPGAs,” M.A.Sc. Thesis, University of
Toronto, Department of Electrical and Computer Engineering, 1998.

[Swar90] W. Swartz and C. Sechen, “New Algorithms for Placement and Routing of Macro Cells,”
Proc. Intl. Conference on Computer-Aided Design, 1990, pp. 336-339.

[Tess98] R. Tessier, “Fast Place and Route Approaches for FPGAs,” Ph.D. Thesis, Massachusetts
Institute of Technology, Department of Electrical Engineering and Computer Science, 1998.

[Wirt96] N. Wirth, “The Language Lola and Programmable Devices in Teaching Digital Circuit
Design,” Proc. 2nd Intl. Andrei Ershov Memorial Conference, 1996.

[Xili98] Xilinx Corporation, The Xilinx Foundation Series 1.4, 1998. (Available from http://
www.xilinx.com).

73

[Yang91] S. Yang, “Logic Synthesis and Optimization Benchmarks, Version 3.0,” Tech. Report, Micro-
electronics Centre of North Carolina, 1991.

[Ye99] A. Ye, “Procedural Texture Mapping on FPGAs,” M.A.Sc. Thesis, University of Toronto,
Department of Electrical and Computer Engineering, 1999.

Table 6.1:
(6.1)

