
On pin-to-wire routing in FPGAs

by

Niyati Shah

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science and Engineering
Graduate Department of Electrical & Computer Engineering

University of Toronto

Copyright c© 2012 by Niyati Shah

Abstract

On pin-to-wire routing in FPGAs

Niyati Shah

Master of Applied Science and Engineering

Graduate Department of Electrical & Computer Engineering

University of Toronto

2012

While FPGA interconnect networks were originally designed to connect logic block out-

put pins to input pins, FPGA users and architects sometimes become motivated to create

connections between pins and specific wires in the interconnect. These pin-to-wire con-

nections are motivated by both a desire to employ routing-by-abutment, in modular,

pre-laid out systems, and to make direct use of resources in the fabric itself. The goal of

this work is to measure the difficulty of forming such pin-to-wire connections. We show

that compared to a flat placement of the complete system, the routed wirelength and

critical path delay increase by 6% and 15% respectively, and the router effort increases 3.5

times. We show that while pin-to-wire connections impose increased stress on the router,

they can be used under some circumstances. We also measure the impact of increasing

routing architecture flexibility on these results, and propose a low-cost enhancement to

improve pin-to-wire routing.

ii

Acknowledgements

I would like to thank my supervisor Jonathan Rose, for his continual guidance, valuable

support and helpful insights, that have enabled me to develop not only as a researcher

and an engineer, but also as a person.

I would also like to thank Huimin (Hannah) Bian from Altera for some good sugges-

tions in this work and Jason Luu for his great support and advice.

I would like to give special thanks to University of Toronto for financially supporting

my research by granting me University of Toronto fellowships.

Further, I wish to thank all my colleagues in the Computer Group and in LP392, for

making my Masters so much more enjoyable.

Last but not the least, I would like to thank my parents, for their unwavering support

and encouragement throughout my Masters, and my friend Harpuneet for his continual

understanding, support, encouragement and humour. I could not have done this without

them.

iii

Contents

1 Introduction 1

1.1 Thesis Organization . 5

2 Background 6

2.1 FPGA Architecture . 6

2.1.1 Logic Block Architecture . 7

2.1.2 Routing Architecture . 8

2.2 FPGA CAD Flow . 10

2.2.1 The VPR Router . 13

2.3 Related Work . 17

2.3.1 Routing-by-Abutment . 17

2.3.2 Partial Reconfiguration . 18

2.3.3 Employing elements within the routing fabric 19

2.4 Summary . 21

3 Experiment Design and Results 22

3.1 Design Methodology . 22

3.2 Experiment 1: Easy Abutment-Oriented Routing or Basic Pin-to-Wire

Routing . 24

3.2.1 Algorithmic Modifications to the Routing Resource Graph and

Timing Driven Router . 28

iv

3.2.2 Experiment 1 Results . 30

3.3 Experiment 2: Harder Abutment Routing or Perturbed Pin-to-Wire Routing 32

3.4 Experiment 3: Dispersed Pin-to-Wire Routing 36

3.5 Experiment 4: Harder Dispersed (or Dispersed Perturbed) Pin-to-Wire

Routing . 40

3.6 Experiment 5: Effects of changing flexibility by varying channel width . . 42

3.6.1 Effects on Perturbed Pin-to-Wire Routing 43

3.6.2 Effects on Dispersed Perturbed Pin-to-Wire Routing 45

3.7 Summary . 48

4 Impact of Routing Architecture on Pin-to-Wire Routing 49

4.1 Design Methodology . 51

4.1.1 Caveat . 52

4.2 Effect of the Switch Block Flexibility Parameter (Fs) 54

4.2.1 Routing Resource Graph Generation Modifications 54

4.2.2 Impact of Increasing Fs on Pin-to-Pin Routing 56

4.2.3 Perturbed Pin-to-Wire Routing on Enhanced Architecture vs. Pin-

to-Pin Routing on Enhanced Architecture 59

4.2.4 Perturbed Pin-to-Wire Routing on Enhanced Architecture vs. Pin-

to-Pin Routing on Standard Architecture 61

4.2.5 Dispersed Perturbed Pin-to-Wire Routing on Enhanced Architec-

ture vs. Pin-to-Pin Routing on Enhanced Architecture 63

4.2.6 Dispersed Perturbed Pin-to-Wire Routing on Enhanced Architec-

ture vs. Pin-to-Pin Routing on Standard Architecture 65

4.3 Effect of the Input Connection Block Flexibility Parameter (Fcin) 67

4.3.1 Impact of Increasing Fcin on Pin-to-Pin Routing 67

4.3.2 Perturbed Pin-to-Wire Routing on Enhanced Architecture vs. Pin-

to-Pin Routing on Enhanced Architecture 70

v

4.3.3 Perturbed Pin-to-Wire Routing on Enhanced Architecture vs. Pin-

to-Pin Routing on Standard Architecture 73

4.3.4 Dispersed Perturbed Pin-to-Wire Routing on Enhanced Architec-

ture vs. Pin-to-Pin Routing on Enhanced Architecture 75

4.3.5 Dispersed Perturbed Pin-to-Wire Routing on Enhanced Architec-

ture vs. Pin-to-Pin Routing on Standard Architecture 77

4.4 Effect of the Output Connection Block Flexibility Parameter (Fcout) . . . 79

4.5 Determining a low cost architectural modification 80

4.6 Summary . 92

5 Conclusion 93

5.1 Future Work . 96

vi

List of Tables

3.1 Net and BLE Statistics . 23

3.2 Average Base Measurements acquired on the Base Routing 24

3.3 Percentage Increase in Average Metrics for the Easy Abutment Routing

Experiment . 31

3.4 Percentage Increase in Average Metrics for the Harder Abutment-Oriented

Routing Experiment . 34

4.1 Experiments performed for each architectural parameter, and their corre-

sponding Section numbers . 53

4.2 Circuit Stats Employed in Multiplexer Leg Computations 83

4.3 Average multiplexer leg count as a function of Fs and Fcin 84

4.4 Percentage Increase in Average Multiplexer Leg Count over Standard

Count as a function increasing Fs and Fcin 84

vii

List of Figures

1.1 An illustration of Routing-by-Abutment 2

2.1 An island-style FPGA architecture . 7

2.2 Structure of (a) basic logic element (BLE) (b) logic cluster. [1] 8

2.3 FPGA Architecture and Related Terminology. 9

2.4 FPGA CAD flow . 11

2.5 A routing resource graph corresponding to a portion of an FPGA whose

logic block contains a single 2-input, 1-output LUT [2] 13

2.6 Flow of VPR’s timing driven routing algorithm 15

3.1 Partitioned Layout . 25

3.2 A Multiple Crossing Double-Sided Net in the Original Netlist 26

3.3 Faux-Nets built from Net shown in Figure 3.2, now with just one crossing

point . 26

3.4 Selecting a Perturbed Boundary Wire Segment for a Double Sided Net . 33

3.5 Wirelength for Expts 1 and 2 . 34

3.6 Critical Path Delay for Expts 1 and 2 . 35

3.7 Heap Push Count for Expts 1 and 2 . 35

3.8 Heap Pop Count for Expts 1 and 2 . 36

3.9 Selecting a target wire segment from the base routing of a net for the

Dispersed Experiment . 38

viii

3.10 Faux-Nets built from the net shown in Figure 3.9 38

3.11 Percentage increase in geometric mean of Dispersed routing over Base

routing as a function of amount of pin-to-wire routing, for the wirelength

and critical path delay metrics . 39

3.12 Percentage increase in geometric mean of Dispersed routing over Base

routing as a function of amount of pin-to-wire routing, for the heap push

and pop count metrics . 39

3.13 Percentage increase in geometric mean of Dispersed Perturbed routing

over Base routing as a function of amount of pin-to-wire routing, for the

wirelength and critical path delay metrics 41

3.14 Percentage increase in geometric mean of Dispersed Perturbed routing over

Base routing as a function of amount of pin-to-wire routing, for the heap

push and pop count metrics . 41

3.15 Number of Unroutes (out of 20) as a function of increasing track count for

Perturbed pin-to-wire routing . 43

3.16 Percentage Increase in Geometric Mean of Perturbed routing over pin-to-

pin routing, as a function of increasing channel width, for the wirelength

and critical path delay metrics . 44

3.17 Percentage Increase in Geometric Mean of Perturbed routing over pin-to-

pin routing, as a function of increasing channel width, for the heap push

and pop count metrics . 44

3.18 Number of Unroutes (out of 20) as a function of increasing track count for

Dispersed Perturbed pin-to-wire routing 46

3.19 Percentage Increase in Geometric Mean of Dispersed Perturbed routing

over pin-to-pin routing, as a function of increasing channel width, for the

wirelength and critical path delay metrics 47

ix

3.20 Percentage Increase in Geometric Mean of Dispersed Perturbed routing

over pin-to-pin routing, as a function of increasing channel width, for the

heap push and pop count metrics . 47

4.1 Passing and Ending Wires at a Switch Block 55

4.2 Connections made by Passing and Ending Wires within a Switch Block . 55

4.3 Percentage Increase in Geometric Mean of Enhanced Base over Base as a

function of increasing Fs, for critical path delay and wirelength metrics . 57

4.4 Percentage Increase in Geometric Mean of Enhanced Base over Base as a

function of increasing Fs, for heap push and pop count metrics 57

4.5 Percentage Increase in Geometric Mean of Enhanced Perturbed over En-

hanced Base as a function of increasing Fs, for critical path delay and

wirelength metrics . 59

4.6 Percentage Increase in Geometric Mean of Enhanced Perturbed over En-

hanced Base as a function of increasing Fs, for heap push and pop count

metrics . 60

4.7 Percentage Increase in Geometric Mean of Enhanced Perturbed over Base

as a function of increasing Fs, for critical path delay and wirelength metrics 62

4.8 Percentage Increase in Geometric Mean of Enhanced Perturbed over Base

as a function of increasing Fs, for heap push and pop count metrics . . . 62

4.9 Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Enhanced Base as a function of increasing Fs, for critical path delay

and wirelength metrics . 64

4.10 Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Enhanced Base as a function of increasing Fs, for heap push and pop

count metrics . 64

x

4.11 Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Base as a function of increasing Fs, for critical path delay and wire-

length metrics . 65

4.12 Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Base as a function of increasing Fs, for heap push and pop count metrics 66

4.13 Number of Unroutes as a function of increasing Fs for Dispersed Perturbed

Pin-to-Wire Routing . 66

4.14 Percentage Increase in Geometric Mean of Enhanced Base over Base as a

function of increasing Fcin, for wirelength and critical path delay metrics 69

4.15 Percentage Increase in Geometric Mean of Enhanced Base over Base as a

function of increasing Fcin, for heap push and pop count metrics 69

4.16 Percentage Increase in Geometric Mean of Enhanced Perturbed over En-

hanced Base as a function of increasing Fcin, for critical path delay and

wirelength metrics . 70

4.17 Percentage Increase in Geometric Mean of Enhanced Perturbed over En-

hanced Base as a function of increasing Fcin, for heap push and pop count

metrics . 71

4.18 Percentage Increase in Geometric Mean of Enhanced Perturbed over Base

as a function of increasing Fcin, for heap push and pop count metrics . . 71

4.19 Percentage Increase in Geometric Mean of Enhanced Perturbed over Base

as a function of increasing Fcin, for critical path delay and wirelength metrics 74

4.20 Number of Unroutes as a function of increasing Fcin for Perturbed Pin-

to-Wire Routing . 74

4.21 Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Enhanced Base as a function of increasing Fcin, for critical path delay

and wirelength metrics . 76

xi

4.22 Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Enhanced Base as a function of increasing Fcin, for heap push and

pop count metrics . 76

4.23 Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Base as a function of increasing Fcin, for critical path delay and

wirelength metrics . 78

4.24 Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Base as a function of increasing Fcin, for heap push and pop count

metrics . 78

4.25 Number of Unroutes as a function of increasing Fcin for Dispersed Per-

turbed Pin-to-Wire Routing . 79

4.26 Number of Unroutes as a function of increasing multiplexer legs for Per-

turbed Pin-to-Wire Routing . 86

4.27 Percentage Increase in Geometric Mean of Enhanced Perturbed over Base

as a function of increasing Multiplexer Leg Count, for critical path delay

metrics . 86

4.28 Percentage Increase in Geometric Mean of Enhanced Perturbed over Base

as a function of increasing Multiplexer Leg Count, for wirelength metrics 87

4.29 Percentage Increase in Geometric Mean of Enhanced Perturbed over Base

as a function of increasing Multiplexer Leg Count, for heap push count

metrics . 88

4.30 Percentage Increase in Geometric Mean of Enhanced Perturbed over Base

as a function of increasing Multiplexer Leg Count, for heap pop count

metrics . 88

4.31 Number of Unroutes as a function of increasing multiplexer legs for Dis-

persed Perturbed Pin-to-Wire Routing 89

xii

4.32 Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Base as a function of increasing Multiplexer Leg Count, for critical

path delay metrics . 90

4.33 Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Base as a function of increasing Multiplexer Leg Count, for wirelength

metrics . 90

4.34 Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Base as a function of increasing Multiplexer Leg Count, for heap push

count metrics . 91

4.35 Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Base as a function of increasing Multiplexer Leg Count, for heap pop

count metrics . 91

xiii

Chapter 1

Introduction

Over the past decade, Field-Programmable Gate Arrays (FPGAs) have evolved dramat-

ically in logic density, size and complexity [3]. The largest FPGAs such as the Virtex 7

[4] consist of as many as 1.5 million Logic Elements. In addition, contemporary FPGA

architectures consist of a large number of logic blocks that provide specific functionality

including DSPs, memories, multiplexers and other special-purpose computational blocks

[5][6][7][8]. Thanks to these attributes, FPGAs now boast of enormous flexibility and

high compute power, in addition to offering lower time-to-market, lower non-recurring

engineering costs and high versatility. The high compute power and flexibility of FPGAs

have made them viable alternatives to ASICs and DSPs in some markets [9]. Hence, it

is but natural that they have found their way into several industries, including commu-

nications, aerospace and military and defence.

The high logic density and complexity of FPGAs also allows larger and more complex

circuits to be synthesized onto them. That in turn translates into even larger computing

requirements for the CAD tools running the design compilation and place and route.

These tools are run on CPUs, which have not kept pace with the increasing FPGA

design complexity [3]. As a result, FPGA CAD compile times threaten to increase to

unacceptable times. For moderate to large designs, compile times today lie anywhere

1

Chapter 1. Introduction 2

from a few hours to a few days. If left unaddressed, these increasing compile times would

make FPGAs impractical for use by designers. As Placement and Routing form a major

portion of the CAD compile time, eliminating or reducing those would potentially help

reduce compile times.

One way to eliminate a significant portion of the place and route time (and hence,

reduce compile time) is to employ pre-placed and pre-routed logic modules that connect

together by the abutment of wire segments at their interface. We refer to this technique

(a) Pre-placed and Pre-Routed Logic
Modules

Pre Defined!Wire!Segment!

Interface

a

b

c

d

Inputs
Pre Placed!and!

Routed!Adder!

from!Library

Pre Placed!and!

Routed!Divider!

from!Library

(b) Nets are pre-routed, from logic block output

pins to pre-selected wire segments in the

interface or from pre-selected wire segments in

the interface to logic block input pins

Pre Defined!Wire!Segment!

Interface

a

b

c

d

Inputs
Pre Placed!and!

Routed!Adder!

from!Library

Pre Placed!and!

Routed!Divider!

from!Library

LB

LB

(d) Synthesized Circuit

Pre Defined!Wire!Segment!

Interface

a

b

c

d

Inputs
Pre Placed!and!

Routed!Adder!

from!Library

Pre Placed!and!

Routed!Divider!

from!Library

f

Output

(c) On abutment, the two halves of the net
connect to form the complete net

Pre Defined!Wire!Segment!

Interface

a

b

c

d

Inputs
Pre Placed!and!

Routed!Adder!

from!Library

Pre Placed!and!

Routed!Divider!

from!Library

f

Output

LB

LB

 ! " # $ # % & '

Figure 1.1: An illustration of Routing-by-Abutment

Chapter 1. Introduction 3

as routing-by-abutment. This is somewhat similar to what is done for power grids using

ASIC standard cells [10] or for full custom VLSI design using hand designed datapath

cells [11]. Figure 1.1 illustrates an example in which the function f is synthesized using

routing-by-abutment. One advantage of this technique is that the abutting logic modules

can be created independently provided the specific wire segments that form the abutting

connections are known in advance. Moreover, the idea can be extended to connect several

logic modules that use the same wire abutment pattern. Clearly, as demonstrated in

Figure 1.1, for this idea to work, nets crossing between the modules would have to be

routed from logic block output pins to a specific wire segments or from a specific wire

segments to logic block input pins. We will refer to such connections as pin-to-wire

routing. Then, when the abutting modules would be placed next to each other, the two

halves of the nets would connect to form a complete net, thereby eliminating the need for

inter-modular routing. This elimination of inter-modular routing along with the coarse

placement of logic modules could help eliminate a significant portion of the compile time.

Clearly, for this technique to work, effective pin-to-wire routing is essential.

However, due to lack of interconnect flexibility, this requirement for effective pin-to-

wire routing conflicts with the basic purpose of the FPGA interconnection network, which

is pin-to-pin routing. Good architects of those networks [5],[6],[7],[8] choose a quantity of

routing and the total routing flexibility to satisfy the interconnection demand of broad

classes of application circuits, but only for pin-to-pin connections. This suggests that

there may be an insufficient quantity and flexibility of routing if connections are made

between pins and wire segments because there will be fewer stages of the interconnec-

tion network available for such connections. For example, for pin-to-wire routing, the

final connection block and intra-cluster routing multiplexers will be missing, giving far

fewer potential paths from start to finish. Similarly, for wire-to-pin routing, the output

connection block’s flexibility is missing. Thus, it is clear that pin-to-wire routing will

be more difficult, for each such connection, than pin-to-pin routing. However, most FP-

Chapter 1. Introduction 4

GAs are somewhat over-architected in the routing to ensure that circuits with widely

varying routing demand will achieve routability. We hypothesize that some of this extra

routability could make up for some of the loss of routability in pin-to-wire routing, and

hence, we seek to understand and measure if this is true. The goal of this work is to

experimentally measure the impact of pin-to-wire routing on routing wirelength, critical

path speed and router effort. We will do this using a two step approach. In the first

step, we run experiments that enable us to measure the various instances of pin-to-wire

routing on a fairly classical architecture. As a second step, we will vary the classical

architecture by adding or reducing flexibility and observe how it influences the results

of the experiments from the first step. In doing so we seek to understand how much

pin-to-wire routing could be used in an FPGA, and perhaps enable its above mentioned

application.

Studying pin-to-wire routing is also beneficial for motivations other than routing-by-

abutment. One such motivation arises in the use of partial reconfiguration of FPGA

modules [12]. Here, specific areas of the FPGA are designated to contain different func-

tional modules at different times, yet these must connect to neighbouring modules using

the same wire segments. This connectivity problem has been solved by using overlapping

‘proxy’ LUTs [13] at the cost of some significant amount of intervening logic. If the wire

segments themselves can be used to achieve abutment routing, it may reduce this cost.

Another motivation for pin-to-wire routing arises whenever an architect considers

making use of the circuits elements within the routing architecture itself: a classic ob-

servation in this realm is that although it is inefficient to implement multiplexers in an

FPGA using LUTs, it is ironic that the FPGA itself is full of multiplexers as the key

building blocks of the routing fabric. In order to make use of those multiplexers (after

architecturally modifying access to their selection inputs) there has to be an ability to

connect to specific data inputs on the routing multiplexers from output pins of logic

blocks.

Chapter 1. Introduction 5

By quantifying and analyzing the impact of pin-to-wire routing (the goal of this work),

we seek to enable some of its applications and provide a guide for FPGA architects and

designers.

1.1 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 presents background on

FPGA architecture terminology and tool flow. It also reviews prior related work in the

area. In Chapter 3 we describe our experimental methodology for measuring various

instances of pin-to-wire routing, and also give the results and understanding generated.

In Chapter 4, we measure the impact of routing architecture changes on pin-to-wire

routing. In Chapter 5, we conclude.

Chapter 2

Background

The objectives of this chapter are to review the basics of FPGA architecture, including

logic block architecture and routing architecture; to provide an overview of the CAD flow

needed to synthesize a circuit onto an FPGA; and to describe relevant prior work relating

to pin-to-wire routing including abutment-oriented routing, partial reconfiguration and

the use of circuit elements within the routing fabric as logic elements.

2.1 FPGA Architecture

An FPGA architecture consists of a set of logic blocks (LBs) that implement the logic

required by a circuit to be synthesized, Input/Output (I/O) blocks that communicate

with the off-chip world, and an interconnection network of programmable routing that

connects them.

This work targets a class of FPGA architectures known as island-style FPGAs. As

depicted in Figure 2.1, in this architecture style, logic blocks surrounded by programmable

interconnect are laid out in a 2-D array with I/O blocks at the periphery. The basic logic

block architecture and routing architecture are reviewed in subsections 2.1.1 and 2.1.2

respectively.

6

Chapter 2. Background 7

Figure 2.1: An island-style FPGA architecture

2.1.1 Logic Block Architecture

This work employs cluster-based logic blocks that have a two-level hierarchy; the first

level consists of a Basic Logic Element (BLE). In the academic literature, a BLE consists

of a K -input lookup table (LUT) and a register that are connected together as shown

in Figure 2.2a. The two-input multiplexer allows the BLE output to be either registered

or unregistered. The second level of hierarchy comprises of a collection of N BLEs. The

resulting structure of the cluster-based logic block is referred to as a logic cluster and

is illustrated in Figure 2.2b. A cluster-based logic block has I inputs and N outputs,

where I ≤ K·N . For the scope of this work, we set I according to equation 2.1, which

was suggested by Ahmed et al. [1] for 98% BLE utilization.

I =
K

2
(N + 1) (2.1)

The complete cluster-based logic block also contains local routing to interconnect the

BLEs. Note that the logic cluster depicted in Figure 2.2b is fully connected, as all of the

Chapter 2. Background 8

 Figure 2.2: Structure of (a) basic logic element (BLE) (b) logic cluster. [1]

K·N BLE inputs can connect to all of the I cluster inputs and the N cluster outputs.

Albeit, the logic blocks in commercial FPGAs are much more complex, but they still

employ a similar hierarchical cluster-based approach [5][6][7].

Each individual logic block implements a small portion of the logic required by the

circuit to be synthesized. Then, for the circuit’s logic functionality to be fully realized,

these blocks need to be connected to each other and to the I/O blocks. This connectivity

is provided by the routing architecture which is described in the following subsection.

2.1.2 Routing Architecture

In this section we will review the parameters used to describe a basic routing architecture

and also the notations used to denote those parameters.

As illustrated in Figure 2.3, in an island style FPGA, logic blocks are surrounded on

all four sides by routing channels of pre-fabricated wiring segments [2]. The length of

Chapter 2. Background 9

Connection

Block

Logic block pin

Programmable

Switch

Wire

Segment!

Length 1

Channel

Segment

Wire

Segment!

Length 2

Figure 2.3: FPGA Architecture and Related Terminology.

a routing channel that spans a single logic block is known as a channel segment. The

channel width, denoted by W, is given by the number of wires or tracks in a routing

channel.

The input and output pins on a logic block connect to some or all of the tracks in

the neighbouring channel segment via a connection block, which is a collection of pro-

grammable switches. The fraction of tracks in a neighbouring channel segment to which

an input pin can connect is called input connection block flexibility or Fcin. Likewise,

the fraction of tracks in a neighbouring channel segment that a output pin can drive is

known as output connection block flexibility or Fcout.

At the intersection of each horizontal and vertical channel, a switch block is located.

A switch block is a collection of programmable switches that allows some of the wire

segments incident on to it to connect to other wire segments [2]. The number of wire

segments that can be driven by a wire segment incident at a switch block is known as

switch block flexibility or Fs.

Chapter 2. Background 10

The length (L) of a wire segment is defined by the number of logic blocks it spans.

When L > 1, the starting points of the wire segments in a routing channel are generally

staggered to enhance routability, as each logic block can then reach another logic block

multiple units away by using just a single wire segment. It is assumed that all wire

segments (irrespective of their length) can connect to other wire segments and logic block

pins at their end points. For wire segments with L > 1, however, another architectural

parameter known as internal population becomes relevant. If a wire segment can drive

other wire segments from its interior, it is said to be internally switch block populated.

Likewise, if a wire segment can connect to logic block pins from its interior, it is said to

be internally connection block populated.

For the scope of this work, we will assume that the routing architecture employs

the single-driver approach [14] in which a wire segment can only be driven from one

end, as this is now the dominant commercial approach. Under this scenario, the output

connection block multiplexer and the switch block multiplexer driving a wire segment

are one and the same.

2.2 FPGA CAD Flow

The size and complexity of modern FPGAs make it impractical to manually configure

a circuit onto them, since doing so would require correctly configuring millions of pro-

grammable switches. Undoubtedly synthesizing even a single circuit manually would take

an unacceptably long time. Instead, FPGA users describe the circuit using Hardware

Description Languages (HDL) such as Verilog or VHDL. The CAD tools then take this

circuit description and perform many optimizations, ultimately turning it into a bitstream

configuration file that can be used to configure the FPGA. The bitstream configuration

sets the state of each programmable switch in the FPGA such that the desired circuit is

realized.

Figure 2.4 shows a typical FPGA CAD flow. The first step in the flow is known as

Chapter 2. Background 11

Circuit Description (Verilog, VHDL)

Logic Synthesis

Technology Mapping

Packing

Placement

Routing

Bitstream Configuration that can be

implemented on an FPGA

Figure 2.4: FPGA CAD flow

Logic Synthesis, and it performs two major tasks: first, it converts the circuit description

in HDL into a netlist of Boolean logic gates and other primitive structures present on the

physical FPGA (also known as elaboration). Second, it performs technology independent

logic optimizations on this netlist of basic logic gates to simplify the logic and remove any

redundancy. The next step in the flow, Technology Mapping, maps this optimized netlist

of basic logic gates to primitives specific to the FPGA (LUTs and flipflops). The end

result is a technology mapped netlist. The third step in the process, Packing, is essential

when the logic blocks present in the FPGA contain more than a single primitive such

as a LUT or BLE. During the Packing step, the technology mapped netlist obtained in

the previous step is mapped onto the complex cluster-based logic blocks present on the

FPGA. The optimization criteria for this step include packing connected LUTs together

so as to minimize the circuit delay and the wiring between logic blocks; and to utilize each

logic block to its maximum capacity so as to reduce the number of logic blocks required

Chapter 2. Background 12

to map the netlist [2]. Subsequently, the Placement step determines the location of the

logic blocks on the FPGA that would map each of the logic blocks required by the circuit.

Placing connected logic blocks together so as to reduce the amount of wiring required

to connect them and minimizing circuit delay are common optimization criteria at this

step.

Once the Placement step is complete and the location of each logic block in the

circuit has been determined, the final step in the process, known as Routing, connects

these placed logic blocks together by suitably configuring the programmable interconnect.

FPGA routers generally represent the routing architecture using a directed graph. Wire

segments and logic block input and output pins become nodes in this graph, while the

connectivity between them is represented by the graph edges. Once this directed graph

has been created, then the problem of routing logic blocks reduces to finding a path in

the graph between the logic block pins that need to be connected. The fixed and limited

number of routing resources in an FPGA dictate that this path be as short as possible.

Moreover, this path must be unique for each net, since sharing of resources between

nets would result in shorts. Accordingly, most routers include some sort of a congestion

avoidance algorithm to resolve routing resource contention amongst nets. Additionally,

some routers, known as timing driven routers, also aim to optimize the circuit’s delay

by ensuring that nets on or near the critical path are routed using short paths and fast

routing resources [2].

The exploration of pin-to-wire routing in this work requires modifications to the

routing step of the CAD flow, and the router employed for this work is the timing driven

router of VPR 5.0.2 [15]. The following subsection summarizes the details of this router

and its routing algorithm.

Chapter 2. Background 13

2.2.1 The VPR Router

VPR uses a routing resource graph [16] to represent the details of the FPGA’s routing

architecture [2]. Wire segments and logic block pins (input or output) become nodes

in this routing resource graph. The programmable switches become directed edges; a

unidirectional switch such as a buffer is represented using a single directed edge whereas

a bidirectional switch such as a pass transistor is represented using a pair of directed

edges between the appropriate pair of nodes [2].

Further, to model logically equivalent pins, such as those commonly found in FPGA

LUTs and/or logic blocks, the routing resource graph in VPR contains two additional

node types: source nodes and sink nodes. Logically equivalent pins are those that can

be exchanged for one another without changing the functionality of the logic, like the

input pins of an OR gate. Logically equivalent pins provide additional flexibility to the

router. For example, since all the pins on a LUT are logically equivalent, the router can

source

out (logic block

pin)

wire4

wire2

in2

sink

wire3

wire1

in1

2!LUT

out

in1 in2

wire4wire3

wire1

wire2

Figure 2.5: A routing resource graph corresponding to a portion of an FPGA whose logic

block contains a single 2-input, 1-output LUT [2]

Chapter 2. Background 14

complete a given connection using any LUT input pin, and the LUT configuration can be

altered to compensate for any re-ordering of connections [2]. The routing resource graph

contains a single source node for each logically-equivalent set of output pins, and a single

sink node for each logically-equivalent set of input pins [2]. A source node connects to

each of its corresponding output pin nodes via directed edges. Likewise, each input pin

node connects to its corresponding sink node via a directed edge. All nets begin at source

nodes and terminate at sink nodes. Figure 2.5 illustrates an example routing resource

graph.

The explicit connectivity information contained in the routing resource graph is not

enough to perform timing driven routing and timing analysis. Hence, each routing re-

source graph node has additional information associated with it, including its type (wire,

output pin, source etc.), location in the FPGA array, capacitance and metal resistance

[2]. Likewise, each graph edge is annotated with its “switch type”, so that information

regarding the switch, such as its intrinsic delay, equivalent resistance etc. can be easily

retrieved [2].

Once the routing resource graph has been created, the router can route nets on it

by connecting the required logic block input and output pins. To route the circuit’s

netlist, VPR’s timing driven router uses the Pathfinder [16] negotiated congestion-delay

algorithm. In this algorithm, the amount of importance each connection allocates to

reducing delay versus avoiding congestion is determined by how timing critical it is.

Timing critical connections pay more importance to reducing delay and less to avoiding

congestion. As a consequence, connections that are timing critical are routed using

fast (low-delay) paths even if they are congested, while connections that are non-timing

critical take slower uncongested paths. Pathfinder itself is based on Nair’s [17] iterative

approach. In the first iteration, nets are routed for minimum delay, permitting resource

overuse. Then, the penalty of using overused resources is incremented and each net

is ripped-up and re-routed. If resource overuse exists, the penalty of using overused

Chapter 2. Background 15

Route each net for minimum delay (allowing

resource overuse)

Increase penalty for overused resources

Perform Delay Extraction

Execute Timing Analysis (Slack Calculation)

Is routing

legal?

Generate and Output Placement and

Routing Statistics
Output Routing Failed

No

Yes

Have

maximum

routing

iterations been

reached?

No

Yes

Rip-up and Re-Route Each Net

Figure 2.6: Flow of VPR’s timing driven routing algorithm

resources is again incremented and another routing iteration is performed. This process of

increasing penalties for overused resources and ripping-up and re-routing signals continues

until a feasible routing solution is achieved or the maximum routing iterations are reached

(at which point, routing is declared infeasible for the given circuit). The penalty of using

overused resources gradually increases with the number of iterations. The result is that

timing critical connections, which pay less attention to congestion (or resource overuse),

tend to keep overused routing resources that are on their minimum delay paths whereas

Chapter 2. Background 16

non-timing critical connections, which pay more attention to congestion, are forced to

move away from their minimum delay path routing resources and use other (potentially

slower) routing resources, thereby resolving congestion.

In order to determine which connections are timing critical, a full timing analysis is

performed at the end of each routing iteration. In VPR, the criticality of a source-sink

connection for a net with source i and some sink j is given by the following equation:

Crit(i, j) = 1 − slack(i, j)

Dmax

[2] (2.2)

where Dmax represents the delay of the circuit’s critical path and slack(i,j) represents the

amount of delay that can be added to this connection before it becomes critical. The

value of Crit(i,j) can lie between 0 and 1, and the higher the value, the more critical the

connection. During each iteration, the delay extractor in VPR incrementally computes

the Elmore delay of each net as it is being routed, using a tree describing the net’s routing.

At the end of an iteration, the timing analyzer uses these delays in its slack calculations.

The timing analyzer can compute both the critical path of a circuit and the slack of

every source-sink connection to be routed [2]. It does so using a levelized timing graph,

which is a graph describing the circuit timing relationships. Once a routing iteration has

been completed, the net delays computed by the delay extractor are back-annotated into

the timing graph. Next, two breadth-first traversals of the timing graph are performed

to determine the critical path and the slack of each source-sink connection [2]. In the

subsequent routing iteration, the slack information is used to determine the criticality of

each source-sink connection. This criticality information is then employed to determine

whether a given connection focuses more on improving delay or on avoiding congestion.

Figure 2.6 illustrates the flow of VPR’s timing driven routing algorithm.

The timing driven router in VPR uses an A* or directed search [18] through the

routing resource graph to connect the required net terminals. This A* router is based on

the basic maze routing algorithm by Lee [19]. But unlike most basic maze routers that

perform a breadth first search through the interconnect to connect net terminals, the

Chapter 2. Background 17

directed search router starts at the net source and expands the wavefront in the direction

of the net sinks, resulting in a narrower wavefront. This ensures that the router does

not spend a large chunk of its time exploring wire segments in the wrong direction. The

router needs a sorted priority ordered queue to maintain a list of which nodes are to be

pursued while routing. This priority ordered queue is implemented in VPR using a heap

data structure. We use the heap push and pop operations performed by the router on

this queue to measure the router effort. The push count measures the number of nodes

that are placed on the heap as potential candidates for expansion, whereas the pop count

measures the number of nodes that are actually explored to arrive at the solution.

2.3 Related Work

In Chapter 1, we introduced three major motivations for pin-to-wire routing: first, a

desire to employ routing-by-abutment, as commonly done in custom VLSI, to build

modular, pre-laid out systems (and thereby reduce compile time for FPGAs). Second,

partial reconfiguration of FPGAs often requires that circuits in the FPGA connect by

abutment. Third, pin-to-wire routing is required to make use of resources that reside

within the routing fabric itself, such as the plentiful multiplexers in the fabric, or even

the configuration bits themselves. In the following subsections, we will review prior work

in each of these areas.

2.3.1 Routing-by-Abutment

As mentioned in the previous chapter, routing-by-abutment involves having pre-placed

and pre-routed logic modules that connect together by the abutment of the wire segments

at their interface.

An approach similar to this was adopted by Athanas et al. [12] to deal with the issue

of connecting between reconfigurable ‘sandbox’ regions in an FPGA. In this approach,

Chapter 2. Background 18

reconfigurable modules are encased in wrapper structures before placement and routing.

The wrapper structure provides anchor points for the module’s ports, which exist at

pre-defined locations so that compilation of different modules will overlap and therefore

connect. At run-time, module-level placement is performed with emphasis on reducing

the interconnect between neighbouring modules, and attempts to make use of routing-

by-abutment. If the placement is unable to achieve abutment of all the modules that

need to connect, then routing is performed using a greedy approach and is restricted to

the channel segment between adjacent modules. The routing architecture is abstracted

to make the routing solution fast. Both the use of anchor points and abstracted routing

implicitly sacrifice area and routed wire length to achieve the routing by abutment, but

the paper does not quantify how much. In this work, we are interested in measuring that

cost.

2.3.2 Partial Reconfiguration

When using the partial reconfiguration feature of an FPGA, each reconfigurable region

needs to be placed and routed independently, yet have connections between those regions.

Researchers have previously looked at several methods of making those connections.

The partial reconfiguration design flow provided by Xilinx [13] solves the boundary

crossing connection problem in a similar way, by using a fixed placement for a one-

input LUT that must be the same for every dynamic logic module that is placed in a

reconfigurable region. The routing to that LUT from the non-reconfigurable or static

region is determined during the configuration of the static region and is kept untouched

during the configuration of the partially reconfigurable region. However, routing to that

LUT within the reconfigurable region can vary based on the logic and the routing of

the dynamic module being implemented in that reconfigurable region. This LUT, one

of which is required for every signal that crosses the boundary, is called ‘proxy’ logic. A

clear disadvantage of this method is the logic overhead involved in implementing such

Chapter 2. Background 19

LUTs and also, the delay resulting from passing through the LUT (which is 0.4ns on a

Virtex II FPGA [20]).

Koch et al. [20] solve the problem of connection between regions by pre-assigning the

routes that flow between regions, eliminating the need for proxy logic. In an example

implementation of a reconfigurable instruction set for a processor, they use this approach

to connect 252 wires between a partially reconfigurable and a static region. Seventy-two

of these wires have a fanout of 5, and so the authors note that each of these wires would

require 5 proxy LUTs to cross the boundary; while the remaining wires would only require

a single proxy LUT to cross the boundary. In this example, Koch’s approach results in

a saving of 540 LUTs, which would have been required had the proxy LUT approach

been employed. Koch also points out that his method does not incur the extra delay for

passing through those LUTs. As a result, both the area occupied by the proxy logic LUTs

and the delay incurred for passing through them get eliminated. The authors do not,

however, indicate if there is any difficulty (in terms of area, wirelength, delay and router

effort) in the routing required around these pre-assigned wires, which is the purpose of

this research.

2.3.3 Employing elements within the routing fabric

In this subsection we will review two prior works that make use of the circuit elements

within the routing fabric: the first makes use of intra-cluster routing multiplexers, while

the second uses the switch block configuration bits to implement wide shallow user mem-

ories.

Moctar et al. [21] seek to make use of the intra-cluster routing multiplexers to imple-

ment shifters for floating point mantissa alignment. This requires signals to be routed

to the multiplexer’s inputs in a pre-specified order which means that there is pin-to-wire

routing. The authors measure the impact of this difficulty by measuring the increase in

minimum routing channel width. They show that the minimum routing channel width

Chapter 2. Background 20

increases proportionally with the number of shifters in the netlist. They do not observe

an increase in critical path delay, but it is also not clear how much stress their example

architectures are under. Also, the benchmarks used in their work are I/O limited with

relatively sparse logic block utilization, which would result in a relatively easier routing

problem.

Oldridge et al. [22] use the SRAM configuration bits within a switch block to imple-

ment wide shallow user memories. A given configuration bit in the switch block can only

be accessed using a single incoming wire and a single outgoing wire. This implies that in

order to use a given configuration bit as user memory, one has to drive its corresponding

incoming wire from a logic block output pin and drive a logic block input pin from the

corresponding outgoing wire. Clearly pin-to-wire routing occurs in this situation. The

authors recognize the difficulty and lack of flexibility associated with pin-to-wire routing

and take certain steps at both the placement and routing level to deal with it. During the

mapping stage of the CAD flow, the user circuit is mapped into switch block sized memo-

ries. However, these switch block memories are very demanding on the routing, and may

in cases when the memory size equals the channel width, cause a lot of congestion in their

surrounding channel segments. To prevent congestion hot spots, switch block memories

are placed a certain distance apart from each other. They are also placed away from

the FPGAs physical edges, as edge switch blocks tend to have fewer channel segments

around them and hence can cause higher congestion. The authors tested these placement

algorithm enhancements with the regular VPR timing driven router and a self-designed

benchmark circuit that consisted of a 2x2 crossbar with data buffers and an input data

width of 120 bits. In order to average out the dependence of the placer on the initial

random seed, they iterated every place and route attempt 10 times with different random

seeds. It was observed that with the normal router the benchmark circuit failed to route

5 times out of 10, even at high channel widths such as 150 or 160. To improve routability,

the authors enhanced the router such that it considered all the inputs of a given switch

Chapter 2. Background 21

block memory to be logically equivalent, and which user memory was stored in which

configuration bit was determined during routing. To ensure correctness, a switch block

memory’s outputs were routed once all its inputs had been correctly routed. Using the

enhanced version of the router, it was observed that the routability of the test circuit

improved considerably, increasing to as high as 9 times out of 10 for channel widths of

150 and 160. In this work, the authors faced the issue of pin-to-wire routing and dealt

with it by making placement and routing algorithm modifications; however, the experi-

ments were performed on a bi-directional routing architecture and the results were highly

context specific and based only on a single benchmark circuit.

2.4 Summary

This chapter has presented relevant prior work on FPGA architecture, routing algorithms,

and pin-to-wire routing methods. As discussed, prior work does not attempt to measure

the various difficulties of pin-to-wire routing, which we will describe next.

Chapter 3

Experiment Design and Results

This chapter describes our design methodology, followed by our experimental setups,

their corresponding results and the understanding generated from those results. It also

outlines the VPR [15] code changes required to enable these experiments.

3.1 Design Methodology

Our purpose is to measure the impact of pin-to-wire routing on area, speed and router

effort. We will do this in the context of a hypothetical (but fairly standard) FPGA

architecture and open-source tools. The set of architecture parameters for the FPGA

used in these experiments are as follows: The logic architecture is a homogeneous array of

logic clusters that contain four 4-input LUTs with 10 input pins per cluster. The routing

architecture employs the single-driver approach [14] with staggered length 4 segments,

a Wilton switch block [23] with Fs = 3 and a connection block with Fcin = 0.15 and

Fcout = 0.25. Note that all length 4 wire segments are internally switch block populated

[2]. The resulting switch block multiplexers range in size from 9-10 data inputs. The

delays are based on the iFar repository delays for a 45nm CMOS process [24] [25]. In

the following, we will also make use of the classical 20 largest MCNC benchmarks [26].

Although these benchmarks are relatively small, we expect that because there are many

22

Chapter 3. Experiment Design and Results 23

wires and switches, we will gain useful insight into the pin-to-wire question. Nevertheless,

the effect of fixed routing structures like carry chains would remain unknown, and be a

part of the future work.

Table 3.1 lists the set of circuits used in the experiments, and their characteristics -

Table 3.1: Net and BLE Statistics

Circuit # BLE’s Total Nets Single-Sided Nets Double Sided Nets

alu4 1522 1019 369 370 280

apex2 1878 1408 588 517 303

apex4 1262 959 331 332 296

bigkey 1707 1036 375 454 207

clma 8383 6133 2725 2663 745

des 1591 1499 416 939 144

diffeq 1497 1179 476 489 214

dsip 1370 919 379 371 169

elliptic 3604 2449 1066 887 496

ex1010 4598 3410 1534 1420 456

ex5p 1064 859 262 273 324

frisc 3556 2279 907 873 499

misex3 1397 996 406 339 251

pdc 4575 3178 1266 1174 738

s298 1931 1011 413 397 201

s38417 6406 5045 2304 2342 399

s38584.1 6447 4704 2187 2001 516

seq 1750 1286 492 452 342

spla 3690 2539 1046 902 591

tseng 1047 827 348 318 161

Chapter 3. Experiment Design and Results 24

the number of logic elements, the number of nets and several other attributes described in

the discussion below. To gather these statistics, the benchmark circuits were technology-

mapped using SIS [27], packed using T-V pack [28] and placed and routed using VPR

5.0.2 [15]. We will now present measurements of pin-to-wire routing in a number of

different experimental contexts. Most of these contexts are meant to be proxies for the

wiring-by-abutment motivations presented in the Introduction, with varying degrees of

difficulty.

3.2 Experiment 1: Easy Abutment-Oriented Rout-

ing or Basic Pin-to-Wire Routing

The first experiment is as follows: we begin by taking a benchmark circuit and run

packing using T-VPack [28], followed by placement and routing using VPR 5.0.2 [15],

which employs the timing-driven router described in [2]. This flow is used to determine

the minimum number of tracks per channel required to route; we then set the track

count to be 30% higher than this minimum (as is common [15]) for all experiments

with this circuit. However, we will explore the effect of this assumption later in the

chapter. The placement and routing step is then re-run at this track count, and we

measure the critical path delay, wirelength and router effort. These measurements form

the base measurements for that circuit. Table 3.2 gives the geometric mean (over the

entire benchmark suite), for each metric, for the base routing.

Table 3.2: Average Base Measurements acquired on the Base Routing

Routing Wirelength Critical Path Delay Heap Push Count Heap Pop Count

Problem (x 103 LBs) (x 10−9 seconds) (x 106) (x 106)

Base 397 4.68 21.6 2.26

Chapter 3. Experiment Design and Results 25

Single Sided Net Double Sided Net

Left Module Right Module
Boundary

column

Figure 3.1: Partitioned Layout

Next, to serve as a proxy for routing by abutment, we divide the circuit in half, by

drawing a vertical line down the middle of the circuit (creating a ‘middle’ or ‘boundary’

column of the layout) as illustrated in Figure 3.1. This partition gives rise to two modules

which we will call Left and Right. We will route these, in a sense, by abutment. The

placement of the Left and Right modules will remain intact from this original placement.

In our experiments, we will deal with two kinds of nets from this placement: those whose

sources and sinks reside wholly within the Left or Right modules (single-sided nets) and

those that cross from one side to the other (double-sided nets). We will use the double-

sided nets to model the inter-module nets in the routing-by-abutment approach. For

each circuit, Table 3.1 gives the number of nets that are on the left side, right side, and

the number that are double-sided.

In the first experiment, we re-run the routing of this same placement, but with the

following restrictions:

1. All single-sided nets are restricted to be routed on their respective sides, as would

Chapter 3. Experiment Design and Results 26

Left Module Right Module
Boundary

column

Figure 3.2: A Multiple Crossing Double-Sided Net in the Original Netlist

Faux Net 1 Boundary Wire Segment Faux Net 2

Left Module Right Module
Boundary

column

Figure 3.3: Faux-Nets built from Net shown in Figure 3.2, now with just one crossing

point

Chapter 3. Experiment Design and Results 27

be true in modules routed by abutment. (In the base routing, these nets could have

travelled across the boundary and back).

2. Every double-sided net will be split into two nets, called faux nets, one on the

Left and one on the Right. In addition, one of the wire segments in the base

routing of the double-sided net that crosses the middle column will be chosen as

the boundary wire segment for that net, as illustrated in Figure 3.2. If the source

of the net is on the left side of the boundary, then the left side faux net consists of

the source, all the left side sinks, and the boundary segment acting as a net sink.

The right side faux net consists of the boundary wire segment (acting as a source)

and the remaining right side sinks. (If the source is on the right side, then these

constructions reverse appropriately). The constructed faux nets for Figure 3.2 are

illustrated in Figure 3.3. Note that even though the base routing of the original

net may have crossed the middle more than once, in the new routing scenario it

will only cross once, as illustrated between Figures 3.2 and 3.3. This experiment

design decision, made to be similar to what would happen in routing-by-abutment,

has specific side-effects discussed in the results below.

We will also consider two different orderings of the routing process: the first is called

Contiguous Net Ordering (CO), in which nets are routed in the same order as the base

routing, and where the two faux nets that make up each double-sided net are routed one

after the other. We are interested in this base case, as we would generally expect the

results of this approach to be the most similar to the original base routing. The second

net ordering more directly reflects what would happen in routing-by-abutment, and is

called Partition-Wise Ordering (PWO): here all the nets in the netlist are rearranged

such that the Left nets are routed before the Right nets. This includes the faux nets,

and so all Left faux nets are routed together with left-sided single nets.

In all cases, the routing algorithm used is timing-driven. For the base case, the original

timing-driven VPR algorithm is used, and the circuit is run through timing analysis as

Chapter 3. Experiment Design and Results 28

usual to determine the critical path. However, to enable pin-to-wire routing, i.e. the

case where the double-sided nets are split into two faux nets, changes are made to the

routing resource graph and the timing driven router. These changes are described in the

following subsection.

3.2.1 Algorithmic Modifications to the Routing Resource Graph

and Timing Driven Router

To enable pin-to-wire routing, modifications to the VPR code are introduced in three

stages: before the routing step (pre-processing changes), at the routing step (routing

algorithm changes) and finally, after the routing step (post-processing changes). The

following paragraphs describe each of these in detail.

Pre-processing changes are changes that are performed before the routing step, to

prepare the netlist and the routing resource graph for pin-to-wire routing. The first

step in the pre-processing stage is to acquire the required wire segments, since they are

essential for pin-to-wire routing. To select these wire segments, code is added to VPR.

The code parses the base routing to acquire the desired set of boundary wire segments.

After the boundary wire segments have been procured, pin-to-wire routing is introduced

in the netlist. Introduction of pin-to-wire routing in the netlist is done in two steps.

First, we modify the routing resource graph so that the wire segments can act as both

sources and sinks. Second, each net in the netlist for which a boundary wire segment

has been selected is split into faux nets and the net’s sinks are distributed between these

faux nets. In addition, sources and sinks corresponding to the desired boundary wire

segment are added as the faux nets’ terminals. For one faux net, the source associated

with the boundary wire segment is added as a terminal, while for the other faux net

the sink associated with the boundary wire segment is added as a terminal. Additional

code is added to ensure that the net ordering can be changed between CO and PWO.

Once the new netlist has been generated, one last change is performed to prepare for

Chapter 3. Experiment Design and Results 29

the routing step: the bounding box generation is modified such that the faux nets can

calculate their bounding boxes using the boundary wire segments as terminals. Further,

for the experiments that simulate a routing-by-abutment scenario, the bounding boxes

of the nets are modified so that they are restricted to their designated modules. At this

stage the pre-processing of the netlist and the routing resource graph is complete.

The next phase of changes are the routing algorithm changes. These changes describe

the modifications made to the timing driven router so that it can correctly handle pin-

to-wire routing. Changes are made in two major areas: inside the cost functions, and

before the timing analyzer. First, we discuss the changes made to the cost functions. In

our experiments, we allowed the two faux nets corresponding to a single net to share the

boundary wire segment without triggering a resource overuse. To enable this sharing,

the cost functions were modified such that when the two faux nets corresponding to a

single real net reused the boundary wire segment, it would not be considered a resource

overuse; but if faux nets or even any other normal net attempted to share this boundary

wire segment, it would count as a resource overuse. Next, we discuss the changes made

prior to timing analysis. In actual routing-by-abutment, each logic module would be

placed and routed separately and the timing constraints for the pin-to-wire or wire-

to-pin nets would be derived using some estimation technique. However, instead of

doing that, to keep things simple, we perform timing analysis on the complete nets,

like would have been in pin-to-pin routing. The timing analyzer (as described in the

background subsection 2.2.1) is left unchanged, it only performs timing analysis on pin-

to-pin connections. As described in that subsection, the timing analyzer uses the delays of

each source-sink connection to compute the net slacks. But the delay calculations, which

are performed as the net is being routed, are performed on the nets of the new netlist.

Hence, additions had to be made to the code to calculate the net delays of the original

nets using the net delays of the new nets. Net delays of the two faux nets corresponding

to a single original net were combined to produce the net delay of the original net. Care is

Chapter 3. Experiment Design and Results 30

taken so that the delay for passing through the boundary wire segment is only accounted

for once. These complete net delays were then used for timing analysis by the timing

analyzer, which returned the slacks for each source to sink connection in the original

netlist. These net slacks were then used to allocate slacks to the source-sink connections

of the new netlist. The slacks for the pin-to-pin connections were copied as such from

the original net slacks. However, the slacks assigned to the faux nets need to be set

carefully. The slack assigned to the source-to-boundary connection is set to be the worst

case (smallest) slack for all of the downstream boundary-to-sink connections on the other

faux net. This is to ensure that the most critical source-sink connections on the other

side are fed by a net that is treated as equally critical, optimizing the speed in the most

appropriate way. Another minor change in this phase involved adding counters to the

code to measure heap push and pop counts.

Once the routing step is complete, the post-processing changes derive the routing

of the original netlist by processing the routing of the new netlist. The routing of the

faux nets corresponding to a single original net are merged back, while ensuring that the

merged net routing maintains a tree structure. The merged routing is then subjected to

checking, and placement and routing statistics are derived from it. The combination of

all the above changes enable the pin-to-wire experiments discussed in this chapter.

3.2.2 Experiment 1 Results

Before discussing the results, it is important to note that the selection of the boundary

wire segment turned out to be quite important - making poor choices for the set of

boundary segments could result in a deterministically unroutable circuit. (We also take

this as evidence that pin-to-wire routing can cause immediate problems). We found that

this unroutable situation occurred primarily in three ways: The first set of issues occurred

when there were several boundary segments in close proximity - if there are too many

that are too close together, they simply block each other from routing success. Also,

Chapter 3. Experiment Design and Results 31

Table 3.3: Percentage Increase in Average Metrics for the Easy Abutment Routing Ex-

periment

Net Order Wirelength Critical Path Delay Heap Push Count Heap Pop Count

CO -4% 5% 13% 104%

PWO -4% 5% 11% 99%

if an input or an output pin of a logic block is close to a set of unassociated boundary

segments (boundary segments assigned to nets that neither terminate nor originate at

this pin), then that pin might simply be blocked. So it is important to make sure that the

boundary segments are not too close together. The second issue occurred if the boundary

segment of an unidirectional wire simply pointed in the wrong direction, (left to right,

say) when the net needed to go the other way. The third issue occurred when both

the faux nets wanted to expand using the boundary segment and the boundary segment

had insufficient exit points, resulting in resource contention between the nets and hence,

routing failure.

For each of the cases (base, modified CO, modified PWO), we measure the total wire-

length required after routing, the critical path delay, and the router effort. As mentioned

in Subsection 2.2.1, the router effort, at a fixed channel width, is measured as the num-

ber of heap push and pop operations performed by the VPR router. The heap in VPR

contains the priority-ordered list of wiring segments to pursue while routing. The push

count measures the number of nodes that are placed on the heap as potential candidates

for expansion, whereas the pop count measures the number of nodes that are actually

explored to arrive at the solution.

Finally, we note that two of the circuits, bigkey and diffeq, failed to route in this

experiment (both for the CO and PWO net orderings), likely due to the reduced flexibility

of the wire sources and sinks.

Chapter 3. Experiment Design and Results 32

Table 3.3 gives the experimental results: the first column indicates which net ordering

was used, while the subsequent columns give the percentage increase in geometric mean

(across all benchmarks, relative to the base case), for total routed wirelength, critical

path delay, heap push count, and pop count, respectively. Please note that for these, and

any following computations, metric measurements relating to circuits that failed to route

were not included in the average. Interestingly, for the contiguous net order case (CO),

the total wirelength is actually lower than the base case. While we were surprised by

this, there are two explanations: first that the router is given a good starting point (one

of the crossing points in the base case) and so can use its effort to find better routes. The

second is that, for the double-sided nets, multiple crossings are forbidden in the approach

described above, and so the total net length may end up shorter, but sacrificing a better

connection for the more critical path. The latter hypothesis is borne out by the increase

in critical path delay. The most telling result is that the heap pop count has increased

by a factor of two. In other words, the router effort has significantly increased. We

conclude that the smaller number of choices available to the pin-to-wire connections in

the faux nets has increased the effort needed to succeed in routing. It is interesting, also,

to note that the routing order of the nets has little effect on the results, likely due to the

inherently iterative nature of the Pathfinder routing algorithm [29].

3.3 Experiment 2: Harder Abutment Routing or Per-

turbed Pin-to-Wire Routing

In experiment 1, the boundary nodes chosen were set to be the ones that the were chosen

in the original routing, base case. In experiment 2, we make one simple change to the

above. Here we explicitly choose a different segment than the one chosen in the original

routing, but in roughly the same row/column location of the original boundary segment.

The code implements this by starting at the original boundary wire segment and then

alternately testing wire segments lying above or below this wire segment (in the same

Chapter 3. Experiment Design and Results 33

Boundary

Column

Left

Module

Right

ModuleBoundary

Column

Left

Module

Right

Module

Perturbed Boundary

Wire Segment

Boundary

Column

Left

Module

Right

Module

Original Boundary

Wire Segment

Figure 3.4: Selecting a Perturbed Boundary Wire Segment for a Double Sided Net

channel segment), to check if they meet all the constraints as outlined in Subsection 3.2.2.

The first wire segment either above or below the given wire segment that satisfies these

constraints is selected as the new boundary wire segment. For vertical wire segments, the

code searches similarly in the left and right directions. As illustrated in Figure 3.4, by

doing so we are explicitly selecting a different segment than was known to have already

worked. We expect that this is more like the typical pin-to-wire routing situation faced in

abutment-style routing, where knowledge of a previous full route is not known. Table 3.4

gives the same summary results of this case, again compared to the base case, as in

Table 3.3. It is interesting to see that the results are dramatically different: the average

wirelength increases by about 6% (rather than decreasing) and the critical path delay

increases by about 16%, a significantly worse change. Furthermore, the router is now

working almost three and a half times harder in terms of heap pop counts, and 66% harder

on heap pushes. Clearly, there is some pain and suffering dealing with these boundary

routes (which represent on average 19% of all of the nets in Table 3.1). However, it is also

Chapter 3. Experiment Design and Results 34

Table 3.4: Percentage Increase in Average Metrics for the Harder Abutment-Oriented

Routing Experiment

Net Order Wirelength Critical Path Delay Heap Push Count Heap Pop Count

CO 6% 16% 67% 264%

PWO 6% 16% 66% 255%

0

20

40

60

80

100

120

140

160

180

W
ir
e
le
n
g
th

 (
in

 t
h
o
u
sa
n
d
s)

Base Easy Hard

Figure 3.5: Wirelength for Expts 1 and 2

interesting to note that these nets did mostly successfully route (with two exceptions,

of the circuits bigkey and des, both of which had a faux net for which no connecting

path existed), and as long as the boundary wire nodes are not too congested among

themselves, pin-to-wire routing can succeed at some cost.

Figures 3.5, 3.6, 3.7 and 3.8, give the circuit-by-circuit results for experiments 1 and

2 in wirelength, critical path delay, heap push count and heap pop count (we give results

for partition-wise ordering of nets only, since they were similar to the contiguous ordering

case).

Chapter 3. Experiment Design and Results 35

0

1

2

3

4

5

6

7

8

9

10

C
ri
ti
ca
l
P
a
th

 D
e
la
y

(i
n

 n
s)

Base Easy Hard

Figure 3.6: Critical Path Delay for Expts 1 and 2

0

20

40

60

80

100

120

140

160

180

H
e
a
p

 P
u
sh

 C
o
u
n
t
(i
n

 M
il
li
o
n
s)

Base Easy Hard

Figure 3.7: Heap Push Count for Expts 1 and 2

Chapter 3. Experiment Design and Results 36

0

5

10

15

20

25

30

35

H
e
a
p

 P
o
p

 C
o
u
n
t
(i
n

 M
il
li
o
n
s)

Base Easy Hard

Figure 3.8: Heap Pop Count for Expts 1 and 2

3.4 Experiment 3: Dispersed Pin-to-Wire Routing

The previous experiments focused on modelling the routing-by-abutment motivation pre-

sented first in the Introduction. Nevertheless, pin-to-wire routing is also motivated by

other applications attempting to use the plentiful multiplexers present in the FPGA’s

routing fabric [21] or to implement wide shallow memories using switch block configura-

tion bits [22]. Both these applications will benefit from knowing how much pin-to-wire

routing can be introduced in a netlist before the area, delay and routability of the routed

netlist are significantly impacted. We suspect that introducing a small amount of pin-

to-wire routing in a netlist may not be significantly detrimental to the final routing, but

that it will become more difficult as the amount is increased.

The next experiment allows the amount of pin-to-wire routing being introduced in a

netlist to vary. Once the base measurements have been acquired as described in subsec-

tion 3.2, the routing step is re-run on the same placement but with these modifications:

1. A fraction of nets from the netlist are selected, which sets the amount of pin-to-wire

routing in a netlist.

Chapter 3. Experiment Design and Results 37

2. For each selected net, a wire segment lying near the centre of the net’s bounding

box in the base routing of this net is chosen as the target wire segment for that net.

(This is similar to the boundary wire in experiments 1 and 2, except that it is not

constrained to be in the middle channel). This is illustrated in Figure 3.9.

3. The selected net will then be split and replaced by two faux nets. The sinks of

the net that lie on the same side of the target wire segment as the source of the

net form the sinks of the first faux net, with the target wire acting as a sink. The

remaining sinks form the part of the second faux net, for which the target wire

segment acts as a source. The constructed faux nets for the net in Figure 3.9 are

illustrated in Figure 3.10.

4. The nets are routed in the same order as in the base routing.

The experiment was run with four cases, where the number of nets selected ranged

through 20%, 30%, 50% and 100%.

Through this experiment we measured how an increasing fraction of selected nets, each

of which contains the pin-to-wire and wire-to-pin connections described above, would af-

fect the same metrics used in experiments 1 and 2. Figure 3.11 plots the percentage

increase in geometric mean (across all benchmarks, relative to the base case) for wire-

length and critical path delay against the fraction of all nets that are split (as described

above). Here we can see behaviour similar to Experiment 1, which shows the wirelength

decreasing (from 1% to 7%), and the critical path delay increasing from 4% to 16%.

The forced split again serves to prevent extra wire from yielding a reduced critical path.

Figure 3.12 plots the percentage increase in heap push and pop counts as the percentage

of split nets (and hence, pin-to-wire routing) increases. Here we also see a significant

increase in the router effort, in the worst case, the heap push count is doubled while the

heap pop count is sextupled. Clearly, the router is having to work much harder to make

these pin-to-wire connections.

Chapter 3. Experiment Design and Results 38

Net’s Bounding Box

Wire Segment at

the center

Figure 3.9: Selecting a target wire segment from the base routing of a net for the Dis-

persed Experiment

Faux net 2Target Wire SegmentFaux net 1

Figure 3.10: Faux-Nets built from the net shown in Figure 3.9

Chapter 3. Experiment Design and Results 39

 10

 5

0

5

10

15

20

0% 20% 40% 60% 80% 100% 120%

%
 I
n
cr
e
a
se

% of Nets Split

Critical!Path!Delay Wirelength

Figure 3.11: Percentage increase in geometric mean of Dispersed routing over Base rout-

ing as a function of amount of pin-to-wire routing, for the wirelength and critical path

delay metrics

0

100

200

300

400

500

600

0% 20% 40% 60% 80% 100% 120%

%
 I
n
cr
e
a
se

% of Nets Split

Heap Push Count Heap Pop Count

Figure 3.12: Percentage increase in geometric mean of Dispersed routing over Base rout-

ing as a function of amount of pin-to-wire routing, for the heap push and pop count

metrics

Chapter 3. Experiment Design and Results 40

It is interesting to note that only one circuit suffered failed to route across all of

experiment 3 - the circuit des when 100% of the nets were selected (the reason was that

there were too many targets in close proximity, which is a problem as described above).

Also, we calculated the average fraction of all of the used segments that were being ‘fixed’

as target segments in each experiment. When the percentage of nets split ranges from

20%, 30%, 50% to 100%, the fraction of target wire segments that make up all of the

routed segments ranges from 2.2%, 4.3%, 9.0% to 18%.

3.5 Experiment 4: Harder Dispersed (or Dispersed

Perturbed) Pin-to-Wire Routing

In experiment 3, the target wire segment was set to be one of the wire segments in the

net’s original routing chosen in the base case, lying near the centre of the net’s bounding

box. In this experiment, we explicitly select a target wire other than the original target

wire but in roughly the same row/column location. This is similar to the increase in

difficulty faced in experiment 2, and more like the expected pin-to-wire situation as

described there.

Figure 3.13 plots the percentage increase in geometric mean (across all benchmarks,

relative to the base case) for wirelength and critical path delay against the fraction of all

nets that are split (as described above). The results are quite different from experiment

3 – the wirelength increases from 1% to 15%, and the critical path delay increases from

8% to 33%. Figure 3.14 plots the percentage increase in heap push and pop counts as

the percentage of split nets (and hence, pin-to-wire routing) increases. There is also

a significant increase in the router effort, in the worst case, the heap push count is

quadrupled while the heap pop count increases by a factor of 14. Compared to experiment

3, eight circuits failed to route when 100% of the nets were selected, while three circuits

failed to route when 50% nets were selected. No routing failures were observed when 20%

Chapter 3. Experiment Design and Results 41

0

5

10

15

20

25

30

35

0% 20% 40% 60% 80% 100% 120%

%
 I
n
cr
e
a
se

% of Nets Split

Critical Path Delay Wirelength

Figure 3.13: Percentage increase in geometric mean of Dispersed Perturbed routing over

Base routing as a function of amount of pin-to-wire routing, for the wirelength and critical

path delay metrics

0

200

400

600

800

1000

1200

1400

0% 20% 40% 60% 80% 100% 120%

%
 I
n
cr
e
a
se

% of Nets Split

Heap Push Count Heap Pop Count

Figure 3.14: Percentage increase in geometric mean of Dispersed Perturbed routing over

Base routing as a function of amount of pin-to-wire routing, for the heap push and pop

count metrics

or 30% nets were selected. These failures in routing were a result of congestion, either

near the target wire segments or around the logic block input pins. This data indicated

that the router has to work extremely hard to make these pin-to-wire connections.

Chapter 3. Experiment Design and Results 42

3.6 Experiment 5: Effects of changing flexibility by

varying channel width

In all the experiments that we have performed so far the channel width used for each

circuit is 30% higher than its minimum channel width. This extra channel width is

allocated in accordance with common experimental practice; however, we realize that

this extra channel width puts all our benchmark circuits under relatively low stress when

subjected with pin-to-wire routing. As we mentioned previously, FPGAs are architected

such that circuits with even a very high demand for routing can route successfully. This

raises the question: what happens when circuits with high demands for routability, i.e.

circuits that are under high stress are subjected to pin-to-wire routing. Can such circuits

afford the cost of pin-to-wire? It also makes us curious to know what happens when

circuits under very low stress are subjected to pin-to-wire routing. To answer these

questions, we will use two of our most realistic previous experiments: Perturbed and

Dispersed Perturbed. For the Perturbed Experiment, we will only consider the PWO

net ordering, as results of the Perturbed Experiment in Section 3.3 indicate that the net

ordering has a negligible impact on the results. Similarly, for the Dispersed Perturbed

Experiment we will only consider the case in which 100% of the nets are selected for

splitting, i.e. when the circuits are subjected to the highest amount of pin-to-wire routing.

We will repeat these experiments while varying the channel width from zero to 50%

higher than minimum and observe the results. As the track count increases, we expect

the routability of the circuits to improve and the gap between pin-to-pin and pin-to-wire

routing to reduce.

In the following two subsections, we will study the impact of increasing track count

on Perturbed and Dispersed Perturbed pin-to-wire routing.

Chapter 3. Experiment Design and Results 43

3.6.1 Effects on Perturbed Pin-to-Wire Routing

As mentioned above, we repeat the Perturbed pin-to-wire routing experiment while grad-

ually increasing the track count from minimum to 50% higher than minimum. At the

minimum track count, circuits are under very high stress while at 50% higher than min-

imum track count circuits are under relatively low stress. Figure 3.15 plots the number

of unroutes as a function of increasing track count for the Perturbed pin-to-wire routing

experiment. Henceforth, we will use the term unroutes to refer to circuits that failed to

route. As can be seen from the graph, at minimum track count, when circuits are under

maximum stress, only 2 of the 20 benchmark circuits succeed in routing. But slightly

increasing the track count by 10% enables 9 of the 20 benchmarks to succeed routing.

The plot shows what we expected, that routability continues to improve as channel width

increases. The increase in unroutes from 0 to 1 when increasing the extra tracks from

40% to 50%, is due to the dependence of pin-to-wire routing on the target wire segments.

An unfortunate selection has resulted in the single unroute, but one can conclude that

increasing the track count certainly improves routability.

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60

N
u

m
b

e
r
 o

f
U

n
r
o

u
te

s

% increase in Channel Width over Minimum

Unroutes

Figure 3.15: Number of Unroutes (out of 20) as a function of increasing track count for

Perturbed pin-to-wire routing

Chapter 3. Experiment Design and Results 44

0

5

10

15

20

25

30

0 10 20 30 40 50 60

%
 I

n
c
r
e
a

s
e

% increase in Channel Width over Minimum

Critical Path Delay Wirelength

Figure 3.16: Percentage Increase in Geometric Mean of Perturbed routing over pin-to-pin

routing, as a function of increasing channel width, for the wirelength and critical path

delay metrics

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60

%
 I

n
c

r
e

a
s

e

% increase in Channel Width over Minimum

Heap Push Count Heap Pop Count

Figure 3.17: Percentage Increase in Geometric Mean of Perturbed routing over pin-to-

pin routing, as a function of increasing channel width, for the heap push and pop count

metrics

Chapter 3. Experiment Design and Results 45

Figure 3.16 plots the percentage increase in geometric mean of Perturbed routing over

pin-to-pin routing as a function of increasing track count, for the critical path delay and

wirelength metrics. Figure 3.17 gives the same summary of results, but for heap push

and pop count metrics. For each data point, both the Perturbed pin-to-wire routing and

the pin-to-pin routing have been performed on the same track count. From Figure 3.16

one can observe that the degradation in critical path delay oscillates between 16% and

19% degradation. The first data point only represents two benchmark circuits and so it is

not reliable. The curve indicates that increasing track count has no noticeable impact on

delay. On the other hand, increasing track count does reduce the wirelength degradation

by 5%. Hence, on increasing the track count, the performance gap between pin-to-pin

and pin-to-wire routing reduces. Finally, Figure 3.17 illustrates that the degradation in

both the heap push and pop count reduces with increasing track count. Again the first

data point can be ignored for the aforementioned reason. The slight increase in both

the heap push and pop count as the extra track count is increased from 40% to 50% can

be attributed to two probable causes: first, an unfortunate selection of the target wire

segments, and second, noise resulting from VPR’s pattern graph generator.

From the results, one can conclude that as the track count increases, the performance

gap between Perturbed pin-to-wire routing and pin-to-pin routing reduces. In the next

subsection, we will discuss how increasing the track count in the above manner influences

Dispersed Perturbed pin-to-wire routing.

3.6.2 Effects on Dispersed Perturbed Pin-to-Wire Routing

In Dispersed Perturbed pin-to-wire routing, circuits face significantly more pin-to-wire

routing than in the ‘perturbed’ case. Hence, it is interesting to observe how circuits under

varying levels of stress respond to such a high level of pin-to-wire routing. Figure 3.18

plots the number of unroutes as a function of increasing track count for the Dispersed

Perturbed pin-to-wire routing experiment. The graph shows that at low track counts,

Chapter 3. Experiment Design and Results 46

when circuits are under high stress levels, all benchmarks fail to route. As the track

count increases, and the circuit stress levels reduce, routability improves, with only 3

benchmarks failing to route at 50% higher than minimum channel width. We also plot

the percentage increase in geometric mean of Dispersed Perturbed routing over pin-to-pin

routing as a function of increasing track count. Figure 3.19 and Figure 3.20 summarize the

results. Again, for each data point, both the Dispersed Perturbed pin-to-wire routing and

the normal pin-to-pin routing have been performed on the same track count. Figure 3.19

illustrates that as the track count increases, the performance degradation in critical path

delay reduces. The performance degradation reduces by 13% as the extra available track

count increases from 20% to 50%. But the wirelength plot in Figure 3.19 indicates that

increasing the track count does not yield a noticeable decrease in wirelength degradation.

Like the delay, the router effort as illustrated in Figure 3.20 reduces with increase in track

count. One can hence conclude, that circuits under low stress definitely respond better in

the face of pin-to-wire routing, while circuits under extremely high stress maybe incapable

of handling high amount of pin-to-wire routing.

From observing the routability trend depicted in Figure 3.18, it can be concluded

that if one were to attempt to completely remove the unroutes resulting from pin-to-wire

0

5

10

15

20

25

0 10 20 30 40 50 60

N
u

m
b

e
r
 o

f
U

n
r
o

u
te

s

% increase in Channel Width over Minimum

Unroutes

Figure 3.18: Number of Unroutes (out of 20) as a function of increasing track count for

Dispersed Perturbed pin-to-wire routing

Chapter 3. Experiment Design and Results 47

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60

%
 I

n
c

r
e

a
s
e

% increase in Channel Width over Minimum

Critical Path Delay Wirelength

Figure 3.19: Percentage Increase in Geometric Mean of Dispersed Perturbed routing

over pin-to-pin routing, as a function of increasing channel width, for the wirelength and

critical path delay metrics

routing by simply increasing the track count, 50% or higher track count than minimum

would have to be employed. However, Figure 3.18 also depicts that the unroutes approach

zero even though 100% of the nets in the circuit are split to create pin-to-wire routing This

suggests that with lower amounts of pin-to-wire routing, zero unroutes can be achieved

even at track counts lower than 50% higher than minimum. Figure 3.15, which plots the

unroutes for the Perturbed case in which circuits face significantly lower amount of pin-

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60

%
 I

n
c

r
e
a

s
e

% increase in Channel Width over Minimum

Heap Push Count Heap Pop Count

Figure 3.20: Percentage Increase in Geometric Mean of Dispersed Perturbed routing over

pin-to-pin routing, as a function of increasing channel width, for the heap push and pop

count metrics

Chapter 3. Experiment Design and Results 48

to-wire routing than in Dispersed Perturbed case, illustrates this point, as zero unroutes

are achieved at 40% higher track count than minimum.

3.7 Summary

In this chapter, we observed the impact of pin-to-wire routing on the performance of the

router and a specific routing architecture. We performed two sets of experiments: first,

those that simulated a routing-by-abutment scenario, and second, those that varied the

amount of pin-to-wire routing in a netlist. The former indicated that pin-to-wire routing

resulted in a significant increase in wirelength, delay and router effort, and an occasional

loss of routability. The latter showed that as the amount of pin-to-wire routing present in

a netlist increases, the performance degradation in wirelength, delay and router effort also

increases and the routability decreases. We also noticed that reducing circuit stress levels

by increasing track count better enables them to combat pin-to-wire routing. However,

it is clear that the routing architecture will have a significant impact on the ability of

circuits to handle pin-to-wire routing. In the next chapter, we will study this impact.

Chapter 4

Impact of Routing Architecture on

Pin-to-Wire Routing

In the previous chapter, we measured the difficulty faced by a router and a specific routing

architecture in the face of pin-to-wire routing. We did so by performing four experiments,

which were called: Basic, Perturbed, Dispersed and Dispersed Perturbed. The first two

simulated a routing-by-abutment scenario while the last two measured the effect of the

amount of pin-to-wire routing on wirelength, delay and routability. However, it is clear

that the routing architecture itself will have a significant impact on pin-to-wire routing,

and so we measure that in this chapter. Recall our hypothesis that pin-to-wire routing

is inherently more difficult compared to pin-to-pin routing due to the reduced flexibility

available in connecting to or from a wire. This suggests that if there were more flexibility

in the architecture, then the challenges faced by pin-to-wire routing would be reduced.

The aim of this chapter is to test this hypothesis by performing a series of experiments

that add flexibility to the architecture used in Chapter 3. In doing so we seek to answer

the following two questions:

1. How does pin-to-wire routing compare to pin-to-pin routing on more flexible archi-

tectures?

49

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 50

2. Is there a good choice for a low cost architectural modification that better enables

pin-to-wire routing?

The experiments in Chapter 3 were performed on a classical architecture with the

following logic and routing architecture:

1. 4 x 4-input LUTs per cluster

2. 10 input pins per cluster

3. Fcin = 0.15 and Fcout = 0.25

4. Wilton Switch Block topology

5. Fs = 3

6. Length 4 segments with a staggered distribution and a single driver approach

7. Channel width 30% higher than minimum channel width

In this chapter we will enhance this architecture, which we will henceforth refer to

as the Standard Architecture, by individually modifying each of the following routing

architecture parameters: Fs (Section 4.2), Fcin (Section 4.3) and Fcout (Section 4.4). For

each we observe how these enhancements impact the results of pin-to-wire routing for the

two of our most realistic previous experiments: Perturbed and Dispersed Perturbed. For

the Perturbed experiment, we will only consider the PWO net ordering, as experiments in

Chapter 3 indicate that the net ordering has a negligible impact on the results. Similarly,

for the Dispersed Perturbed experiment, we will only consider the case in which 100%

of the nets are selected for splitting, i.e. when the circuits are subjected to the highest

amount of pin-to-wire routing. We conclude by presenting an approach for selecting a

cost effective enhancement, that can help architects determine which architecture would

yield the most benefit at the lowest cost.

The next section describes the design methodology we employ for the subsequent

experiments.

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 51

4.1 Design Methodology

As explained above, through the experiments we perform in this chapter we seek to answer

two questions: first, how does pin-to-wire routing compare to pin-to-pin routing on more

flexible architectures; and second, can we modify the Standard Architecture in some low

cost manner such that pin-to-wire routing is better enabled. Before we begin to answer

these questions, we will define some terms to make the discussion more clear. The first

term we define is called Enhanced Architecture, and it describes any architecture that has

been enhanced in flexibility over the Standard Architecture by increasing either the Fs,

Fcin or Fcout parameters, or a combination thereof. Recall that in Chapter 3, we defined

the term Base routing to refer to an instance of pin-to-pin routing when performed on the

Standard Architecture. Now we define Enhanced Base to mean an instance of pin-to-pin

routing when performed on an Enhanced Architecture. The next term we define is

Enhanced Perturbed, which refers to an instance of Perturbed pin-to-wire routing when

performed on an Enhanced Architecture. Similarly, we also define the term Enhanced

Dispersed Perturbed, to refer to an instance of Dispersed Perturbed pin-to-wire routing

when performed on an Enhanced Architecture. Also, at times, we will use the term En-

hanced Pin-to-Wire to collectively refer to Enhanced Perturbed and Enhanced Dispersed

Perturbed routing.

Now, in order to answer our first question, we need to compare pin-to-wire routing

when performed on an architecture with increased flexibility (over the Standard Archi-

tecture), to pin-to-pin routing, when performed on the exact same flexible architecture.

Accordingly, we need to compare Enhanced Pin-to-Wire to Enhanced Base as a function

of increasing architecture flexibility. Our second question can be answered by under-

standing how the impact of pin-to-wire routing changes in comparison to Base routing,

as the architecture flexibility is increased. Accordingly, we need to compare Enhanced

Pin-to-Wire to Base as a function of increasing architecture flexibility.

Consequently, as illustrated in Table 4.1, for each architectural parameter Fs, Fcin

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 52

and Fcout, we will do the following experiments:

1. Establish the baseline effect of increasing the desired architectural parameter on

pin-to-pin routing by comparing Enhanced Base to Base as a function of increasing

architecture flexibility

2. Explore how the gap between Perturbed pin-to-wire and pin-to-pin routing changes

with increase in architecture flexibility by comparing Enhanced Perturbed to En-

hanced Base as a function of increasing architecture flexibility

3. Observe whether Perturbed pin-to-wire routing gets better enabled on increasing

architecture flexibility by comparing Enhanced Perturbed to Base as a function of

increasing architecture flexibility

4. Repeat experiment 2, but for the Dispersed Perturbed pin-to-wire case

5. Repeat experiment 3, but for the Dispersed Perturbed pin-to-wire case

The reader is requested to refer to Table 4.1 as and when required to help navigate

through this chapter.

4.1.1 Caveat

A note on the accuracy of metrics. For all our subsequent experiments, the delay model

is inaccurately optimistic for the following three reasons: first, we have not modelled the

impact of increasing multiplexer sizes (as a result of increasing Fs, Fcin or Fcout), on the

multiplexer delays. Second, we have not modelled the fact that increasing routing archi-

tecture flexibility increases the tile size, and hence, the length of the wires. Longer wires

would result in higher delays. Third, we do not account for the parasitic capacitances

resulting from the input connection block multiplexers and/or routing switches.

In the next section, we observe the effects of increasing the switch block flexibility

parameter Fs.

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 53

T
ab

le
4.

1:
E

x
p

er
im

en
ts

p
er

fo
rm

ed
fo

r
ea

ch
ar

ch
it

ec
tu

ra
l

p
ar

am
et

er
,

an
d

th
ei

r
co

rr
es

p
on

d
in

g
S
ec

ti
on

n
u
m

b
er

s

#
E

x
p

er
im

en
t

A

v
s.

B
A

rc
h
it

ec
tu

re
P

ar
am

et
er

A
rc

h
it

ec
tu

re
R

ou
ti

n
g

A
rc

h
it

ec
tu

re
R

ou
ti

n
g

an
d

C
or

re
sp

on
d
in

g
S
ec

ti
on

#

P
ro

b
le

m
P

ro
b
le

m
F

s
F

c i
n

F
c o

u
t

1
E

n
h
an

ce
d

B
as

e
v
s.

B
as

e
E

n
h
an

ce
d

P
in

-t
o-

P
in

S
ta

n
d
ar

d
P

in
-t

o-
P

in
4.

2.
2

4.
3.

1
4.

4

2
E

n
h
an

ce
d

P
er

tu
rb

ed
v
s.

E
n
h
an

ce
d

B
as

e

E
n
h
an

ce
d

P
in

-t
o-

W
ir

e
E

n
h
an

ce
d

P
in

-t
o-

P
in

4.
2.

3
4.

3.
2

4.
4

3
E

n
h
an

ce
d

P
er

tu
rb

ed
v
s.

B
as

e

E
n
h
an

ce
d

P
in

-t
o-

W
ir

e
S
ta

n
d
ar

d
P

in
-t

o-
P

in
4.

2.
4

4.
3.

3
4.

4

4
E

n
h
an

ce
d

D
is

p
er

se
d

P
er

-

tu
rb

ed
v
s.

E
n
h
an

ce
d

B
as

e

E
n
h
an

ce
d

P
in

-t
o-

W
ir

e
E

n
h
an

ce
d

P
in

-t
o-

P
in

4.
2.

5
4.

3.
4

4.
4

5
E

n
h
an

ce
d

D
is

p
er

se
d

P
er

-

tu
rb

ed
v
s.

B
as

e

E
n
h
an

ce
d

P
in

-t
o-

W
ir

e
S
ta

n
d
ar

d
P

in
-t

o-
P

in
4.

2.
6

4.
3.

5
4.

4

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 54

4.2 Effect of the Switch Block Flexibility Parameter

(Fs)

Recall that the Switch Block Flexibility Parameter (Fs) determines the number of neigh-

bouring wire segments that can be driven by a given wire segment. Increasing Fs should

result in better pin-to-wire results. In this section, we first describe the code modifications

required to support fine-grained Fs increases, and then give experimental results.

4.2.1 Routing Resource Graph Generation Modifications

The original VPR 5.0.2 [15] code only allows Fs increments in multiples of 3. However,

incrementing Fs in steps of 3 adds a significant amount of flexibility to the architecture

at every step, preventing us from gaining insights on how pin-to-wire routing responds to

a more incremental increase in flexibility. To observe the impact of increasing flexibility

on a more minute scale, we will increase Fs in steps of 1. In order to enable this, the

routing graph generation algorithm had to be modified, which we now describe. Recall the

discussion of the routing resource graph generation in VPR described in Subsection 2.2.1.

Consider the switch block illustrated in Figure 4.1, in which we define two kinds of

wires incident on the switch block - an ending wire, which is a wire that terminates at

the switch block; and a passing wire, which is a wire that passes through the switch

block. Passing wires have typically only been used to drive wire segments orthogonal to

their direction (although they could drive parallel wires), whereas ending wires can drive

wire segments on both their orthogonal and opposing sides. Figure 4.2 illustrates these

connections. The key issue in enabling units-of-1 increases in switch block flexibility is

to choose which of the 3 sides an ending or passing wire will connect to. For values of

Fs that are multiples of 3, the connection pattern is left the same as that in the original

code (each wire segment drives Fs/3 wire segments on each side that it can drive). For

values of Fs that are not multiples of 3, we have either one (Fs modulo 3 = 1) or two (Fs

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 55

Passing Wires

Ending Wires

Figure 4.1: Passing and Ending Wires at a Switch Block

Orthogonal Side

Orthogonal Side

Orthogonal Side

Orthogonal Side

Opposing

Side

(a) Wire segments driven

by an ending wire

(b) Wire segments driven

by a passing wire

Figure 4.2: Connections made by Passing and Ending Wires within a Switch Block

modulo 3 = 2) extra connections available. For such values of Fs, we allocate the extra

connections as follows:

1. The ending wires use the extra connections available (either one or two), to connect

to their opposing sides

2. If one extra connection is available, the passing wire segments on a side use it to

alternately connect to either their top or bottom orthogonal side. If two extra con-

nections are available, each passing wire segment makes one additional connection

to its top orthogonal side and one to its bottom orthogonal side (Vertically oriented

passing wires use the extra connections similarly to connect to their left and right

orthogonal sides)

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 56

The ending wires always favor the opposing side since it was empirically observed that

providing extra connections on the opposing side led to better improvements in wirelength

and critical path delay. Which specific wire segments a given wire segment can drive on

any particular switch block side are determined using a switch block multiplexer size

balancing technique, adopted as is from the original VPR 5.0.2 algorithm.

4.2.2 Impact of Increasing Fs on Pin-to-Pin Routing

Let us begin by observing how conventional pin-to-pin routing responds to an increase

in Fs. This is related to prior work done by Rose et al. in [30] and Betz et al. in [2].

Intuitively, we would expect both wirelength and critical path delay to reduce with

increasing Fs. This is because increasing Fs adds flexibility and choices which can be

used to find more direct paths between the source and the sink. We would also expect the

heap push count to go up since at every wire segment we are now faced with more choices,

and hence, more potential nodes to explore. On the other hand, we can expect the heap

pop count to reduce, since more flexibility results in more options, making it easier to find

a solution and hence, reducing the number of nodes that are actually explored. Figure 4.3

depicts the percentage increase in geometric mean (over the entire benchmark suite), of

pin-to-pin routing performed on the Enhanced Architecture (Enhanced Base routing),

over pin-to-pin routing performed on the Standard Architecture (Base routing), as a

function of increasing Fs, for the critical path delay and wirelength metrics. Similarly,

Figure 4.4 gives the percentage increase in geometric mean of the heap push and pop

count metrics. As can be seen from both these figures, all of our expectations are borne

out, pin-to-pin routing behaves as expected.

Figure 4.3 shows that the critical path delay initially reduces with increase in flexi-

bility, with diminishing returns after Fs=4. This behaviour can be explained as follows:

the timing driven router in VPR 5.0.2, routes the critical path using the fastest resources

and shortest paths, and any increase in flexibility serves to make this path shorter and

faster. At some point; however, the path cannot be made any shorter due to the place-

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 57

 14

 12

 10

 8

 6

 4

 2

0

0 2 4 6 8 10 12 14 16

%
 I
n
c
r
e
a
s
e

Fs

Critical!Path!Delay Wirelength

Figure 4.3: Percentage Increase in Geometric Mean of Enhanced Base over Base as a

function of increasing Fs, for critical path delay and wirelength metrics

 40

 20

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16

%
 I
n
c
r
e
a
s
e

Fs

Heap!Push!Count Heap!Pop!Count

Figure 4.4: Percentage Increase in Geometric Mean of Enhanced Base over Base as a

function of increasing Fs, for heap push and pop count metrics

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 58

ment of the net’s terminals and/or other flexibility constraints (such as Fcin and Fcout).

Accordingly, the critical path delay initially improves but then flattens out. One may

note that the data indicates an increase in delay as Fs increases from 4 to 5, this increase

may most likely be noise resulting from VPR’s pattern graph generator. Recent work by

colleagues has illustrated that the pattern generator has some anomalies.

From Figure 4.3 one can also observe that unlike critical path delay, the routed

wirelength continues to reduce as flexibility increases. This is because wirelength here is

the total wirelength of all nets, critical as well as non-critical, and increasing flexibility

would certainly help reduce the path lengths of those less critical nets that had been

routed using slower longer paths. This improvement in wirelength does eventually flatten

out, when paths can no longer be made any shorter, dictated by the underlying placement.

The graph illustrates this, as an increase in Fs from 3 to 4 results in a 6% improvement

in wirelength, while an increase in Fs from 13 to 14 (or even 15) only results in a 1%

improvement in wirelength.

Figure 4.4 illustrates that the heap push count increases proportionally with an in-

crease in Fs (as expected), while the heap pop count initially reduces but then flattens

out. This can be attributed to the fact that initially when extra flexibility is introduced

in the architecture, solutions become easier to find, and hence, heap pop count reduces.

However, adding additional flexibility beyond Fs=6 does not help, since some basic num-

ber of nodes have to be explored to connect the sources to the sinks, owing to their

placement and/or other flexibility constraints (Fcin and Fcout).

Now that we have explored the baseline effect of enhancing the architecture, we will

next study the impact of increasing Fs on pin-to-wire routing, the focus of this research.

As mentioned before, we expect that adding flexibility to an FPGA architecture would

help mitigate the problems associated with pin-to-wire routing. To test this hypothesis,

we study the impact of increasing Fs on both Perturbed (subsections 4.2.3 and 4.2.4)

and Dispersed Perturbed (subsections 4.2.5 and 4.2.6) pin-to-wire routing.

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 59

4.2.3 Perturbed Pin-to-Wire Routing on Enhanced Architec-

ture vs. Pin-to-Pin Routing on Enhanced Architecture

In this subsection, we explore whether enhancing the architecture by increasing Fs reduces

the gap between Perturbed pin-to-wire routing and pin-to-pin routing. Figure 4.5 depicts

the percentage increase in geometric mean (over the entire benchmark suite), of Enhanced

Perturbed over Enhanced Base as a function of increasing Fs, for the wirelength and

critical path delay metrics. Figure 4.6 illustrates the percentage increase in geometric

mean for the heap push count and pop count metrics. In Figure 4.5 we can see that as Fs

increases, the performance gap between pin-to-wire and pin-to-pin routing reduces, for

both critical path delay and wirelength. The performance degradation in critical path

delay reduces by 5%, but it does not become negligible. The flattening of the critical

path delay curve indicates that adding additional flexibility can not help to mitigate

the difficulty faced in performing pin-to-wire routing. The small increase in delay as

Fs increases from 5 to 6, may be noise resulting from VPR’s pattern graph generator.

The degradation in routed wirelength also reduces by 5%, making the degradation in

wirelength almost negligible.

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

%
 I
n
c
r
e
a
s
e

Fs

Critical Path Delay Wirelength

Figure 4.5: Percentage Increase in Geometric Mean of Enhanced Perturbed over En-

hanced Base as a function of increasing Fs, for critical path delay and wirelength metrics

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 60

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

%
 I
n
c
r
e
a
s
e

Fs

Heap Push Count Heap Pop Count

Figure 4.6: Percentage Increase in Geometric Mean of Enhanced Perturbed over En-

hanced Base as a function of increasing Fs, for heap push and pop count metrics

As indicated in Figure 4.6, a small increase in Fs reduces the gap between pin-to-

pin and pin-to-wire routing for the heap push and pop count metrics. However, it is

interesting to note that increasing Fs any further does not reduce the extra router effort

resulting from pin-to-wire routing; rather, increases it. As Fs increases, the degradation

in heap push count stays relatively the same as compared to pin-to-pin routing, while the

degradation in heap pop count continues to worsen as compared to pin-to-pin routing.

The relatively constant increase in heap push count, even at high flexibility, is another

indication of the difficulty of pin-to-wire routing.

The increase in heap pop count can be explained as such: increasing Fs increases the

nodes to be explored and hence, the heap push count. More nodes on the heap creates

more paths to be explored, which is helpful if a solution could be obtained quickly. In

the case of pin-to-pin routing, the input connection block flexibility allows the input pin

to connect to a fraction of tracks in the neighbouring channel (for example, if W = 100

and Fcin = 0.15, then each input pin could connect to 15 tracks in each channel), and

in addition, since all input pins are logically equivalent, the router has many choices of

which wire segments to use to connect to the logic block input pins. Consequently, in

pin-to-pin routing, additional paths could potentially help in obtaining a solution quickly.

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 61

However, in pin-to-wire routing we have exactly one wire segment that needs to be driven.

Adding potential paths for exploration may result in paths being found such that they

lead close to the target wire segment but not actually to it. For example, a potential path

may lead to a wire segment in an adjacent track. In such cases, the router must back

track, looking for a new path. In pin-to-wire routing the final solutions are limited, and

yet, on increasing Fs, a large number of promising but unsuccessful paths are created.

The router is forced to explore these paths and hence, as Fs increases, the degradation

in heap pop count increases significantly. Clearly, the difficulty of pin-to-wire routing is

evident.

To summarize, a large increase in Fs reduces the gap between Perturbed pin-to-wire

routing and pin-to-pin routing for both critical path delay and wirelength metrics, but

significantly worsens the gap in router effort.

4.2.4 Perturbed Pin-to-Wire Routing on Enhanced Architec-

ture vs. Pin-to-Pin Routing on Standard Architecture

We are interested in knowing if there exists a low cost architectural modification that can

better enable pin-to-wire routing. Accordingly, in this section, we will explore whether

enhancing the architecture by increasing Fs better enables Perturbed pin-to-wire routing

as compared to pin-to-pin routing on the Standard Architecture. To study this we plot

the percentage increase in geometric mean (over the entire benchmark suite), of Enhanced

Perturbed over Base as a function of increasing Fs, for all the metrics. Figure 4.7 and

Figure 4.8 give the summary of the results. Recall from Section 3.3 that Perturbed pin-

to-wire routing suffered 2 unroutes on the Standard Architecture. A minor increase in Fs,

from 3 to 4, causes these unroutes to disappear. In addition, as illustrated in Figure 4.7,

this minor increase in flexibility greatly improves both critical path delay and wirelength.

The critical path delay and wirelength curves both flatten out for reasons explained in

subsection 4.2.2.

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 62

 15

 10

 5

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

%
 I
n
c
r
e
a
s
e

Fs

Critical!Path!Delay Wirelength

Figure 4.7: Percentage Increase in Geometric Mean of Enhanced Perturbed over Base as

a function of increasing Fs, for critical path delay and wirelength metrics

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

%
 I
n
c
r
e
a
s
e

Fs

Heap Push Count Heap Pop Count

Figure 4.8: Percentage Increase in Geometric Mean of Enhanced Perturbed over Base as

a function of increasing Fs, for heap push and pop count metrics

Similarly, as illustrated in Figure 4.8, a minor increase in flexibility also improves both

heap push and pop counts, and this may be attributed to the fact that solutions are now

easier to find. The reduction in pop count may be due to the fact that a small increase

in flexibility significantly improves connectivity, while at the same time not creating way

too many false potential paths. Figure 4.8 also demonstrates that beyond Fs=4, both

heap push and pop count increase with increasing Fs. The increase in heap push count

is for reasons explained in subsection 4.2.2 while the increase in heap pop count can be

attributed to the reasons explained in the previous subsection. The occasional decrease

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 63

in push and pop count with increasing Fs may be a result of noise caused by VPR’s

pattern graph generator.

In the following subsections, we will observe the impact of increasing Fs on Dispersed

Perturbed pin-to-wire routing.

4.2.5 Dispersed Perturbed Pin-to-Wire Routing on Enhanced

Architecture vs. Pin-to-Pin Routing on Enhanced Archi-

tecture

In this subsection, we observe how the gap between Dispersed Perturbed pin-to-wire

routing and pin-to-pin routing responds to an increase in flexibility. This experiment is

different from the one described in section 4.2.3, as unlike in that experiment, circuits

are now exposed to a much higher degree of pin-to-wire routing. Further, the routing-

by-abutment scenario is absent, i.e. nets are no longer restricted to designated FPGA

modules. Figure 4.9 depicts the percentage increase in geometric mean (over the entire

benchmark suite), of Enhanced Dispersed Perturbed over Enhanced Base as a function

of increasing Fs, for the wirelength and critical path delay metrics. Similarly, Figure 4.10

provides the percentage increase in geometric mean for the heap push count and pop

count metrics.

All metrics exhibit trends similar to those obtained when Enhanced Perturbed pin-

to-wire routing was compared to Enhanced Base routing, and for the same reasons.

However, as compared to that experiment, the decrease in the performance degradation

of wirelength and critical path delay with increasing flexibility are much more substantial.

It is interesting to note that increasing flexibility not only reduces the gap between pin-

to-pin and pin-to-wire routing for the wirelength metric, it actually makes pin-to-wire

wirelength better than that of pin-to-pin. This suggests that just like we did in the

Perturbed case, we have inadvertently sacrificed delay for wirelength.

The increase in the performance degradation of heap pop count with increasing Fs

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 64

 10

 5

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16

%
 I
n
c
r
e
a
s
e

Fs

Critical!Path!Delay Wirelength

Figure 4.9: Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Enhanced Base as a function of increasing Fs, for critical path delay and wirelength

metrics

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16

%
 I
n
c
r
e
a
s
e

Fs

Heap Push Count Heap Pop Count

Figure 4.10: Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Enhanced Base as a function of increasing Fs, for heap push and pop count metrics

is also much more substantial. Again, as in the case of Perturbed pin-to-wire routing,

we can observe that enhancing the architecture by increasing Fs does indeed reduce the

gap between pin-to-wire and pin-to-pin routing for the wirelength and critical path delay

metrics. For the router effort; however, the gap reduces provided Fs is not increased

beyond 6. In the next subsection, we will study whether enhancing the architecture by

increasing Fs better enables Dispersed Perturbed pin-to-wire routing.

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 65

4.2.6 Dispersed Perturbed Pin-to-Wire Routing on Enhanced

Architecture vs. Pin-to-Pin Routing on Standard Archi-

tecture

As in subsection 4.2.4, we plot the percentage increase in geometric mean of Enhanced

Dispersed Perturbed over Base as a function of increasing Fs, for all metrics. Figure 4.11

and Figure 4.12 give the summary of the results. As illustrated in Figure 4.13, we also

plot the variation in the number of circuits that failed to route as a function of increasing

Fs. As can be seen from Figure 4.13, routability improves significantly with increase in

Fs, reducing from 8 at Fs =3 to 0 at Fs=6. This in itself indicates that a small increase

in flexibility can certainly better enable Dispersed Perturbed pin-to-wire routing. The

plots also indicate that all the metrics have trends similar to those obtained in the case

of Perturbed pin-to-wire routing (subsection 4.2.4), again for the same reasons.

To summarize, we have observed that enhancing the architecture by adding a small

amount of Fs, much better enables pin-to-wire routing and also reduces the gap between

pin-to-pin and pin-to-wire routing for all the metrics. However, increasing Fs beyond 5 or

6, significantly increases the heap pop count, while not providing significant gains in the

 20

 10

0

10

20

30

40

0 2 4 6 8 10 12 14 16

%
 I
n
c
r
e
a
s
e

Fs

Critical!Path!Delay Wirelength

Figure 4.11: Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Base as a function of increasing Fs, for critical path delay and wirelength metrics

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 66

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10 12 14 16

%
 I
n
c
r
e
a
s
e

Fs

Heap Push Count Heap Pop Count

Figure 4.12: Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Base as a function of increasing Fs, for heap push and pop count metrics

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
u
m
b
e
r
 o
f
U
n
r
o
u
t
e
s

Fs

Unroutes

Figure 4.13: Number of Unroutes as a function of increasing Fs for Dispersed Perturbed

Pin-to-Wire Routing

other metrics. This indicates that keeping Fs between 4-6 (inclusive), yields maximum

benefits.

In the next section, we will observe the impact of increasing Fcin on pin-to-wire

routing.

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 67

4.3 Effect of the Input Connection Block Flexibility

Parameter (Fcin)

The input connection block flexibility parameter or Fcin determines the fraction of tracks

in the neighbouring channel that an input pin can connect to. We enhance the routing

architecture by slowly increasing Fcin from 0.15 (the Fcin value in the Standard Architec-

ture) to 0.50 and observe how these enhancements influence the results of both pin-to-pin

and pin-to-wire routing. The input connection block topology is generated by VPR 5.0.2

and has not been modified for this work.

4.3.1 Impact of Increasing Fcin on Pin-to-Pin Routing

Just like we did for Fs, we will begin by observing the impact of increasing Fcin on

conventional pin-to-pin routing. Again, this is related to prior work done by Rose et al.

in [30] and Betz et al. in [2]. Intuitively, when we increase Fcin, we expect critical path

delay, wirelength and router effort to decrease. The reason is as follows: when we increase

Fcin, the number of ways to enter a logic block input pin increase, and since a logic block

has a number of logically equivalent input pins (10 in our case), the number of ways of

entering a logic block increase significantly. This increase enables shorter connections

for nets, resulting in a decrease in both critical path delay and wirelength. The increase

in connectivity and the ease of entering a logic block also make it easy and quick for

the router to find a path connecting the net terminals, reducing both the heap pop and

push count. The router does not have to explore a lot of nodes to reach the sinks, which

reduces the heap pop count and since, fewer nodes are explored, fewer nodes are added

to the heap (only neighbouring nodes of the explored nodes are added to the heap), and

hence, the heap push count also reduces.

To measure the impact of increasing Fcin on pin-to-pin routing, we compare Enhanced

Base to Base as a function of increasing Fcin. Figure 4.14 plots the percentage increase

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 68

in geometric mean (over the entire benchmark suite), of Enhanced Base over Base as a

function of increasing Fcin, for the critical path delay and wirelength metrics. Similarly,

Figure 4.15 provides the percentage increase in geometric mean for the heap push and

pop count metrics. As can be seen from Figure 4.14 and Figure 4.15, all our expectations

are realized, all the metrics behave as expected.

Figure 4.14 depicts that the critical path delay reduces with increase in Fcin with

diminishing returns after Fcin=0.30. The explanation for this is the same as that given

in Subsection 4.2.2 i.e. adding Fcin flexibility beyond a certain point does not improve

critical path delay owing to the net terminals’ placement and/or other flexibility con-

straints (such as switch block flexibility). Figure 4.14 also demonstrates that the impact

on wirelength is much more pronounced, and the wirelength continues to improve with

increasing Fcin with diminishing returns after Fcin=0.45. Again, as explained in Sub-

section 4.2.2, the impact on wirelength is much more pronounced since wirelength gives

the total of wirelength of all nets in the circuit, both critical and non-critical and any in-

crease in flexibility certainly helps shorten those nets that had been routed using longer,

slower paths. At some point however, the added flexibility can no longer help owing

to the placement of the nets’ terminals and other flexibility constraints (such as switch

block flexibility). The graph illustrates this point, as the wirelength curve flattens out at

Fcin=0.45. Figure 4.15 illustrates that both the heap push and pop count continue to re-

duce with increasing Fcin, with diminishing returns after Fcin=0.40. The curves exactly

track each other, since as the flexibility increases, the router finds solutions quickly, less

nodes are explored to arrive at the solution (reduction in heap pop count), and accord-

ingly, fewer nodes are pushed on the heap (reduction in heap push count). For reasons

explained above, after a certain point, the added flexibility does not improve the router

effort, which is demonstrated by the flattening of the push and pop count curves.

Now that we have explored the baseline effect of enhancing the architecture, we

will next study the impact of increasing Fcin on pin-to-wire routing. In order to test

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 69

 18

 16

 14

 12

 10

 8

 6

 4

 2

0

0 0.1 0.2 0.3 0.4 0.5 0.6

%
 I
n
c
r
e
a
s
e

Fc
in

Critical!Path!Delay Wirelength

Figure 4.14: Percentage Increase in Geometric Mean of Enhanced Base over Base as a

function of increasing Fcin, for wirelength and critical path delay metrics

 45

 40

 35

 30

 25

 20

 15

 10

 5

0

0 0.1 0.2 0.3 0.4 0.5 0.6

%
 I
n
c
r
e
a
s
e

Fc
in

Heap!Push!Count Heap!Pop!Count

Figure 4.15: Percentage Increase in Geometric Mean of Enhanced Base over Base as a

function of increasing Fcin, for heap push and pop count metrics

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 70

our hypothesis that adding flexibility to an FPGA architecture would help mitigate the

problems associated with pin-to-wire routing, we study the impact of increasing Fcin on

both Perturbed pin-to-wire routing (subsections 4.3.2 and 4.3.3) and Dispersed Perturbed

pin-to-wire routing (subsections 4.3.4 and 4.3.5).

4.3.2 Perturbed Pin-to-Wire Routing on Enhanced Architec-

ture vs. Pin-to-Pin Routing on Enhanced Architecture

In this subsection, we explore whether enhancing the architecture by increasing Fcin re-

duces the gap between Perturbed pin-to-wire routing and pin-to-pin routing. Figure 4.16

depicts the percentage increase in geometric mean (over the entire benchmark suite), of

Enhanced Perturbed over Enhanced Base as a function of increasing Fcin, for the wire-

length and critical path delay metrics. Similarly, Figure 4.17 provides the percentage

increase in geometric mean for the heap push count and pop count metrics. As can

be observed from Figure 4.16, as the Fcin increases, i.e. as the architecture flexibility

increases, the gap between Perturbed pin-to-wire routing and pin-to-pin routing reduces.

However, the net reduction in the degradation of critical path delay and wirelength is

0

2

4

6

8

10

12

14

16

18

0 0.1 0.2 0.3 0.4 0.5 0.6

%
 I
n
c
r
e
a
s
e

Fc
in

Critical Path Delay Wirelength

Figure 4.16: Percentage Increase in Geometric Mean of Enhanced Perturbed over En-

hanced Base as a function of increasing Fcin, for critical path delay and wirelength

metrics

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 71

only 3% and 4% respectively. One can infer that although increasing Fcin reduces the

gap between pin-to-wire and pin-to-pin routing, the reduction is not very significant for

the delay and wirelength metrics. Moreover, both the delay and wirelength curves indi-

cate diminishing returns after an Fcin=0.40, implying that adding additional flexibility

does not help mitigate the difficulty faced in pin-to-wire routing. The slight increase in

wirelength when Fcin increases from 0.45 to 0.50 can be attributed to noise.

The impact of increasing Fcin on router effort is rather interesting as is depicted in

Figure 4.17. The performance degradation in both heap push and pop count initially

0

50

100

150

200

250

300

0 0.1 0.2 0.3 0.4 0.5 0.6

%
 I
n
c
r
e
a
s
e

Fc
in

Heap Push Count Heap Pop Count

Figure 4.17: Percentage Increase in Geometric Mean of Enhanced Perturbed over En-

hanced Base as a function of increasing Fcin, for heap push and pop count metrics

 50

0

50

100

150

200

250

300

0 0.1 0.2 0.3 0.4 0.5 0.6

%
 I
n
c
r
e
a
s
e

Fc
in

Heap!Push!Count Heap!Pop!Count

Figure 4.18: Percentage Increase in Geometric Mean of Enhanced Perturbed over Base

as a function of increasing Fcin, for heap push and pop count metrics

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 72

reduces with increase in flexibility, then increases and becomes constant. To understand

these trends, one must keep in mind that we are looking at the percentage increase

between pin-to-wire and pin-to-pin routing, which means that the graph is influenced by

the rates at which Perturbed pin-to-wire and pin-to-pin change in response Fcin.

Recall from Figure 4.15 in the last subsection that for pin-to-pin routing, both the

heap push and pop count reduce slowly but steadily with increase in Fcin until an Fcin

of 0.4, beyond which we get diminishing returns. Next, let us look at how Perturbed pin-

to-wire routing behaves in comparison to itself at increasing Fcin. For this we observe

Figure 4.18, which plots the percentage increase in geometric mean of Perturbed pin-

to-wire routing on Enhanced Architecture over Base routing, as a function of increasing

Fcin, for the heap push and pop count metrics. This plot shows that initially with a small

increase in flexibility both the heap push and pop count improve significantly, gradually

slowing down and giving diminishing returns after an Fcin of 0.30. In other words, for

pin-to-pin routing, the rate of improvement in router effort in response to increasing Fcin

is slow but steady with diminishing returns after Fcin=0.40; while for the Perturbed pin-

to-wire routing, the rate of improvement in router effort in response to increasing Fcin is

initially very high, but reduces quickly with diminishing returns after Fcin=0.30.

The net result can be seen in the plots of Figure 4.17, when Fcin changes from 0.15 to

0.20, since the improvement rate of pin-to-wire routing is higher than that of pin-to-pin,

we see a net reduction in degradation. When Fcin increases from 0.20 to 0.25, the rate of

improvement in pin-to-wire routing is slower than that of pin-to-pin and hence, we see an

increase in degradation. However, from Fcin of 0.25 to 0.30, the rate of improvement in

Perturbed pin-to-wire routing outperforms the rate of improvement in pin-to-pin routing,

and hence, we observe a decrease in the gap between Perturbed pin-to-wire and pin-to-

pin. After Fcin of 0.30, Perturbed pin-to-wire routing shows diminishing returns, while

pin-to-pin continues to improve until Fcin of 0.40, when it shows diminishing returns as

well. Consequently, in the heap push and pop count plots of Figure 4.17, we observe the

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 73

gap between Perturbed pin-to-wire and pin-to-pin increase from Fcin of 0.30 to 0.40 and

then stay constant.

To conclude, one can infer that a small increase in Fcin reduces the gap between

Perturbed pin-to-wire and pin-to-pin for all metrics. However, for the router effort,

adding flexibility beyond a certain point causes the gap to increase and then plateau.

This is because pin-to-pin routing continues to perform better than pin-to-wire routing

at increased flexbilities. Figure 4.16 and Figure 4.17 indicate that for maximum benefits,

Fcin should be kept in a range of 0.20-0.30.

Having studied whether enhancing the architecture by increasing Fcin reduces the

gap between Perturbed pin-to-wire routing and pin-to-pin routing, we will now explore

whether enhancing the architecture by increasing Fcin better enables Perturbed pin-to-

wire routing.

4.3.3 Perturbed Pin-to-Wire Routing on Enhanced Architec-

ture vs. Pin-to-Pin Routing on Standard Architecture

As mentioned in Subsection 4.1, we would like to discover a low cost architectural mod-

ification that can help us better enable Perturbed pin-to-wire routing. Thus, in this

subsection we test whether increasing architecture flexibility, by increasing Fcin, better

enables Perturbed pin-to-wire routing. To study this we plot the percentage increase in

geometric mean (over the entire benchmark suite), of Enhanced Perturbed over Base as

a function of increasing Fcin, for all the metrics. Figure 4.19 and Figure 4.18 give the

summary of the results. Figure 4.19 indicates that both critical path delay and wire-

length improve with increasing flexibility, but yield diminishing returns on increasing

Fcin beyond 0.45. These diminishing returns are due to reasons explained in Subsec-

tion 4.3.1. The improvement in both delay and wirelength can be attributed to the fact

that as flexibility increases, the number of ways of getting into a logic block increase,

and especially for wire-to-pin connections, solutions can be found which are shorter and

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 74

 20

 15

 10

 5

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6

%
 I
n
c
r
e
a
s
e

Fc
in

Critical!Path!Delay Wirelength

Figure 4.19: Percentage Increase in Geometric Mean of Enhanced Perturbed over Base

as a function of increasing Fcin, for critical path delay and wirelength metrics

0

1

2

3

4

0 0.1 0.2 0.3 0.4 0.5 0.6

N
u
m
b
e
r
 o
f
U
n
r
o
u
t
e
s

Fc
in

Unroutes

Figure 4.20: Number of Unroutes as a function of increasing Fcin for Perturbed Pin-to-

Wire Routing

faster. The wire-to-pin connections no longer have to hunt around for finding ways of

entering the logic blocks, they can use more direct paths.

Similarly, Figure 4.18 indicates that with increasing flexibility both heap push and

pop count reduce. As explained previously in Subsection 4.3.1, this is because increasing

Fcin significantly increases the number of ways in which a logic block can be entered,

making solutions quick and easy to find. Since solutions are found more quickly, less

nodes are explored (heap pop count reduces), and consequently, less nodes are pushed on

the heap (heap pop count reduces). However, the plot also indicates that increasing Fcin

beyond 0.30 yields diminishing returns and these diminishing returns are due to reasons

explained in Subsection 4.3.1. One can conclude that increasing Fcin certainly better

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 75

enables Perturbed pin-to-wire routing.

Finally, Figure 4.20 plots how many circuits fail to route (out of the 20 total bench-

mark circuits), as a function of increasing Fcin, when subjected with Perturbed pin-to-

wire routing. As can be seen adding flexibility by increasing Fcin does not significantly

improve routability for Perturbed pin-to-wire routing. This is because as mentioned in

Chapter 3, Section 3.3, unroutes in Perturbed pin-to-wire routing exist because there is

no connecting path between the net’s source and the target wire segment. Since increas-

ing Fcin does not increase the ways to get out of a logic block, or the ways to enter a

wire segment, it does not improve routability for Perturbed pin-to-wire routing. The oc-

casional increase in unroutes are due to the fact that the unroutes depend on the target

wires being selected, and as the architecture varies with increasing flexibility, the tar-

get wire selection varies slightly, and sometimes one selection is more unfortunate than

others.

In the following subsections, we will study the impact of increasing Fcin on Dispersed

Perturbed pin-to-wire routing.

4.3.4 Dispersed Perturbed Pin-to-Wire Routing on Enhanced

Architecture vs. Pin-to-Pin Routing on Enhanced Archi-

tecture

In this subsection, we observe how the gap between Dispersed Perturbed pin-to-wire

routing and pin-to-pin routing responds to an increase in Fcin. As previously mentioned,

this experiment is different from the one described in section 4.3.2, as unlike in that

experiment, circuits are now exposed to a much higher degree of pin-to-wire routing.

Also, the routing-by-abutment scenario is absent, i.e. nets are no longer restricted to

designated FPGA modules. Figure 4.21 depicts the percentage increase in geometric

mean (over the entire benchmark suite), of Enhanced Dispersed Perturbed over Enhanced

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 76

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6

%
 I
n
c
r
e
a
s
e

Fc
in

Critical Path Delay Wirelength

Figure 4.21: Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Enhanced Base as a function of increasing Fcin, for critical path delay and wirelength

metrics

0

200

400

600

800

1000

1200

1400

0 0.1 0.2 0.3 0.4 0.5 0.6

%
 I
n
c
r
e
a
s
e

Fc
in

Heap Push Count Heap Pop Count

Figure 4.22: Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Enhanced Base as a function of increasing Fcin, for heap push and pop count metrics

Base, as a function of increasing Fcin, for the wirelength and critical path delay metrics.

Similarly, Figure 4.22 provides the percentage increase in geometric mean for the heap

push count and pop count metrics. All metrics exhibit trends similar to those obtained

when Enhanced Perturbed was compared to Enhanced Base, and for the same reasons.

However, as compared to the Perturbed case, the decrease in the performance degradation

of wirelength and critical path delay with increasing flexibility are much more substantial.

It is interesting to note that increasing flexibility not only reduces the gap between pin-to-

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 77

pin and pin-to-wire routing for the wirelength metric, it makes it negligible. As indicated

in Figure 4.22, both heap push and pop count exhibit trends similar to those exhibited

while performing Perturbed pin-to-wire routing, i.e. their performance degradation in

comparison to pin-to-pin initially reduces, and then increases and plateaus. Again, as in

the case of Perturbed pin-to-wire routing, we can observe that enhancing the architecture

by increasing Fcin does indeed reduce the gap between pin-to-wire and pin-to-pin routing

for the critical path delay and wirelength metrics. For the router effort; however, the gap

reduces only as long as Fcin is not increased beyond 0.35. A slight increase in flexibility

reduces the gap, while adding too much flexibility again worsens the gap. In the next

subsection, we will study whether enhancing the architecture by increasing Fcin better

enables Dispersed Perturbed pin-to-wire routing.

4.3.5 Dispersed Perturbed Pin-to-Wire Routing on Enhanced

Architecture vs. Pin-to-Pin Routing on Standard Archi-

tecture

As in subsection 4.3.3, we plot the percentage increase in geometric mean of Enhanced

Dispersed Perturbed over Base, as a function of increasing Fcin, for all metrics. Fig-

ure 4.23 and Figure 4.24 give the summary of the results. The plots indicate that all the

metrics have trends similar to those obtained in case of Perturbed pin-to-wire routing

(subsection 4.3.3), again for the same reasons.

As illustrated in Figure 4.25, we also plot the variation in the number of circuits that

failed to route (out of 20 total circuits), as a function of increasing Fcin. As can be seen

from Figure 4.25, routability improves significantly with increase in Fcin. The unroutes

reduce from 8 at Fcin=0.15 to 3 at Fcin=0.40. The unroutes do not completely disappear

for as indicated in Chapter 3, Section 3.5, some of the unroutes in the Dispersed Perturbed

experiment were due to congestion around logic block input pins, while others were due

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 78

 20

 10

0

10

20

30

40

0 0.1 0.2 0.3 0.4 0.5 0.6

%
 I
n
c
r
e
a
s
e

Fc
in

Critical!Path!Delay Wirelength

Figure 4.23: Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Base as a function of increasing Fcin, for critical path delay and wirelength metrics

to congestion in the wire segments. Increasing Fcin can only help with the former and

hence, can only eliminate some of the unroutes, but not all. Also, as mentioned previously

in Subsection 4.3.3, the occasional increase in unroutes can be attributed to the fact that

the unroutes depend on the target wires being selected, and as the architecture varies

with increasing flexibility, the target wire selection varies slightly, and sometimes one

selection is more unfortunate than others. The decrease in unroutes is a clear indication

that increasing Fcin better enables Dispersed Perturbed pin-to-wire routing.

0

200

400

600

800

1000

1200

1400

0 0.1 0.2 0.3 0.4 0.5 0.6

%
 I
n
c
r
e
a
s
e

Fc
in

Heap Push Count Heap Pop Count

Figure 4.24: Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Base as a function of increasing Fcin, for heap push and pop count metrics

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 79

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6

N
u
m
b
e
r
 o
f
U
n
r
o
u
t
e
s

Fc
in

Unroutes

Figure 4.25: Number of Unroutes as a function of increasing Fcin for Dispersed Perturbed

Pin-to-Wire Routing

To summarize, we have observed that enhancing the architecture by adding a small

amount of Fcin much better enables pin-to-wire routing and also reduces the gap between

pin-to-pin and pin-to-wire routing, for all the metrics. However, increasing Fcin beyond

0.35 eliminates the reduction achieved in the gap between pin-to-pin and pin-to-wire

routing for the heap push and pop count metrics. This indicates that keeping Fcin

between 0.20-0.35 (inclusive) yields maximum benefits.

Next, we will observe the impact of increasing Fcout on pin-to-wire routing.

4.4 Effect of the Output Connection Block Flexibil-

ity Parameter (Fcout)

The output connection block flexibility parameter or Fcout determines the fraction of

tracks in the neighbouring channel that an output pin can drive. We enhance the rout-

ing architecture by slowly increasing Fcout from 0.25 (the Fcout value in the Standard

Architecture) to 0.50 and observe how these enhancements influence the results of both

pin-to-pin and pin-to-wire routing. The output connection block topology is generated

by VPR 5.0.2 and has not been modified for this work. Our experiments revealed that

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 80

increasing Fcout resulted in negligible improvements in both pin-to-pin and pin-to-wire

routing. Analysis revealed that the reason behind that was rather simple. Due to stag-

gering and our use of length 4 wire segments, only about one-fourth of the tracks in a

channel can be driven in any neighbouring channel segment. Since an Fcout of 0.25 allows

the output pin to drive one-fourth of the tracks in a neighbouring channel, at an Fcout of

0.25, the output pin is driving almost all the available wires in its neighbouring channel

segment. Hence, increasing Fcout any more has almost no effect since even though the

higher Fcout allows the output pin to drive more wires, more wires that can be driven are

not available. As a result, increasing Fcout yields negligible benefits for both pin-to-pin

and pin-to-wire routing.

4.5 Determining a low cost architectural modifica-

tion

In this section, we will present an approach for selecting a cost effective enhancement to

the routing architecture, that can help architects select which architecture would best

enable pin-to-wire routing at the lowest cost. We will also demonstrate an example use

of our approach to pick an enhancement that eliminates unroutes and minimizes the

degradation in router effort, while also reducing the performance degradation in both

wirelength and critical path delay.

Our first step in this direction would be to express the cost of each flexibility parameter

(either Fs or Fcin, we maintain Fcout at its value in the Standard Architecture as it had

a negligible impact on pin-to-wire routing), in terms of a common denominator. Second,

we use this metric to determine the costs of all our flexibility combinations. Next, we

enhance the routing architecture by simultaneously increasing a combination of these

parameters, and observe how that influences the performance degradation in pin-to-wire

routing when compared to Base. As mentioned above, our aim is to find a parameter

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 81

combination, that better enables pin-to-wire routing, while not significantly increasing

the cost of the routing architecture. Hence, in the third step, we plot the percentage

increase in geometric mean, of Enhanced Pin-to-Wire routing over Base routing, as a

function of increasing cost, for all metrics. We then use these plots to demonstrate how

to choose a low cost architecture that better enables pin-to-wire routing.

To execute our first step, we will begin by estimating the cost of Fs and Fcin in

terms of the number of multiplexer data inputs they generate. While this is a very rough

approximation of cost, it would enable us to get an idea of the cost of increasing different

architecture flexibility parameters. Since the multiplexer transistors are typically small

in size, it is reasonable to simply count the number of inputs as a proxy for area, as each

input leads to a roughly proportional number of transistors. Also, for the remainder of

this section, we will use the terms multiplexer inputs and multiplexer legs interchangeably.

Recall the details of FPGA’s logic block and routing architectures from Subsec-

tions 2.1.1 and 2.1.2 respectively. We will use that knowledge to establish the cost of the

Fcin parameter in terms of the number of multiplexer inputs it generates. Let us suppose

that Fcin = α, where α lies between 0 and 1. This means that any logic block input

pin can connect to α ·W tracks in its neighbouring channel segment. Consequently, the

input connection block multiplexer for any input pin in the routing architecture would

have α ·W multiplexer inputs. Since there are 10 input pins per logic block, the number

of input connection block multiplexer inputs per logic block would be given by 10 ·α ·W .

The number of logic blocks in a routing architecture depend on its grid size, and are

given by x · y, where x and y give the grid size in the x and y dimensions respectively.

Accordingly, the total multiplexer input count (for the entire routing architecture), as a

result of Fcin can be given by the equation 4.1, which is as follows:

Total Multiplexer inputs generated by the Fcin parameter = 10 · α ·W · x · y (4.1)

Next, we establish the cost of the Fs parameter in terms of the number of multiplexer

inputs it generates. Again, it is important to keep in mind the routing architecture as de-

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 82

scribed in Subsection 2.1.2 and the switch block description provided in Subsection 4.2.1.

As a result of the single driver approach, out of the W tracks per channel, only W
2

, are

incident upon any given switch block side. And due to staggering of length 4 wires,

only a quarter of these incident wires, are ending wires for a given switch block side.

Accordingly, at any switch block side, there are W
8

ending wires, and 3W
8

passing wires.

Each ending wire can drive a total of Fs other wire segments on the remaining switch

block sides, while each passing wire can drive only a total of 2Fs
3

+ Fs%3 wire segments

on its orthogonal sides. Thereby, the total wire segments any given switch block side

can drive are given by: W
8
· Fs+ 3W

8
· (2Fs

3
+ Fs%3). The number of wire segments that

the wires incident at a switch block can drive actually represent the number of multi-

plexer inputs they can generate. As a result one can say that for any switch block side,

W
8
· Fs+ 3W

8
· (2Fs

3
+ Fs%3) multiplexer inputs are generated. Since there are 4 sides in

a switch block, the number of multiplexer inputs generated per switch block then are:

1
2
(W ·Fs+ 3W · (2Fs

3
+Fs%3)). The number of switch blocks in the routing architecture

are given by (x+ 1) · (y + 1); and so,

Total Multiplexer inputs generated by the Fs parameter =
1

2
(W · Fs+3W · (

2Fs

3
+ Fs%3))

· (x+ 1) · (y + 1)

(4.2)

Now that we have established a common denominator in which both our metrics can

be expressed, we move to our second step, i.e. we compute the cost of our potential Fs

and Fcin combinations in terms of this metric. Table 4.2 gives the values of W, x and y

for each benchmark circuit, based on the Standard Architecture. Using these statistics

and equations 4.1 and 4.2, we computed the average cost in multiplexer legs (over the

entire benchmark suite), for each Fs and Fcin combination we plan to employ in our

subsequent experiments. Table 4.3 gives the results of these computations. We refer to

the average multiplexer leg count obtained on our Standard Architecture as the Standard

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 83

Count. We also calculate the percentage increase in the average multiplexer leg count of

an Enhanced Architecture, over that of the Standard Architecture, for each Fs and Fcin

combination. These computations are illustrated in Table 4.4.

Table 4.2: Circuit Stats Employed in Multiplexer Leg Computations

Benchmark minW+30% Grid Size

x y

alu4 48 20 20

apex2 62 23 23

apex4 60 19 19

bigkey 32 36 36

clma 68 47 47

des 34 42 42

diffeq 44 20 20

dsip 36 36 36

elliptic 60 31 31

ex1010 62 35 35

ex5p 62 17 17

frisc 62 30 30

misex3 52 19 19

pdc 78 35 35

s298 44 23 23

s38417 50 41 41

s38584.1 44 41 41

seq 60 22 22

spla 74 31 31

tseng 44 17 17

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 84

Table 4.3: Average multiplexer leg count as a function of Fs and Fcin

Average Multiplexer Leg Count (x 105) Fcin

Fs 0.15 0.2 0.3 0.4

3 2.56 2.76 3.16 3.56

4 3.42 3.62 4.03 4.43

5 4.29 4.49 4.89 5.3

6 4.51 4.71 5.11 5.51

7 5.37 5.58 5.98 6.38

8 6.24 6.44 6.85 7.25

9 6.46 6.66 7.06 7.46

12 8.41 8.61 9.01 9.42

15 10.4 10.6 11 11.4

Table 4.4: Percentage Increase in Average Multiplexer Leg Count over Standard Count

as a function increasing Fs and Fcin

% Increase Fcin

Fs 0.15 0.2 0.3 0.4

3 0 8 24 39

4 34 42 58 73

5 68 76 92 107

6 76 84 100 116

7 110 118 134 150

8 144 152 168 184

9 153 161 176 192

12 229 237 253 268

15 305 313 329 345

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 85

Next, we are going to observe the impact of increasing both Fs and Fcin on pin-to-

wire routing, for both Perturbed and Dispersed Perturbed cases. We plot the percentage

increase in geometric mean of Enhanced Perturbed over Base, as a function of percent-

age increase in average multiplexer leg count (over Standard Count), for all metrics.

Figures 4.30, 4.29, 4.28 and 4.27 give the summary of results. Figure 4.26 plots the

number of circuits that failed to route (out of twenty total benchmark circuits), as a func-

tion of increasing multiplexer leg count. Observe that these would be the same graphs we

would obtain, if we were to plot the percentage increase in geometric mean of Enhanced

Perturbed over Base as a function of increasing Fs and Fcin. In other words, each data

point on these graphs corresponds to an architecture with a particular Fs and Fcin value.

Table 4.4 can be used to look up the Fs and Fcin combination corresponding to a given

percentage increase in multiplexer leg count cost.

Using these plots, we will now show how our multiplexer leg count approach can be

used to pick low cost enhancements that yield maximum benefits. We will pick a low-

cost architecture that eliminates unroutes, and minimizes the degradation in critical path

delay and wirelength (i.e. gives maximum improvement in performance). Here, we focus

first on improving critical path delay and wirelength as opposed to router effort, because

we wish to respect one of our original motivations i.e. routing-by-abutment. In routing-

by-abutment inter-modular routing happens offline, and hence, performance is more of a

priority then reducing inter-modular compile time. Neverthless, we do demonstrate how

our approach can be applied to the heap push and pop count metrics, for readers that

are interested.

The plot in Figure 4.26 indicates that as the percentage increase in multiplexer leg

count increases, the unroutes tend to disappear. The points in red highlight the cost

enhancements for which the unroutes are zero. As our first goal is to eliminate unroutes,

for the remaining metrics, we will only consider architectures for whom the the unroutes

are zero. Our next main aim is to minimize the degradation in critical path delay.

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 86

0

1

2

3

4

0 50 100 150 200 250 300 350

N
u
m
b
e
r
o
f
U
n
ro
u
te
s
(O
u
t
o
f
2
0
)

% Increase in Multiplexer Leg Count over Standard

0

1

2

3

4

0 50 100 150 200 250 300 350

Points of Interest

Figure 4.26: Number of Unroutes as a function of increasing multiplexer legs for Per-

turbed Pin-to-Wire Routing

0

2

4

6

8

10

12

14

16

18

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

%
 I
n
cr
e
a
se

 i
n

 C
ri
ti
ca
l
P
a
th

 D
e
la
y

% Increase in Multiplexer Leg Count over Standard

Data points with unroutes

0

2

4

6

8

10

12

14

16

18

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

Data points without unroutes

0

2

4

6

8

10

12

14

16

18

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

Pareto Optimal

Figure 4.27: Percentage Increase in Geometric Mean of Enhanced Perturbed over Base

as a function of increasing Multiplexer Leg Count, for critical path delay metrics

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 87

 25

 20

 15

 10

 5

0

5

10

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

%
 I
n
cr
e
a
se

 i
n

 W
ir
e
le
n
g
th

% Increase in Multiplexer Leg Count over Standard

Data!points!with!unroutes

 25

 20

 15

 10

 5

0

5

10

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

Data!points!without!unroutes

 25

 20

 15

 10

 5

0

5

10

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

Pareto!Optimal

Figure 4.28: Percentage Increase in Geometric Mean of Enhanced Perturbed over Base

as a function of increasing Multiplexer Leg Count, for wirelength metrics

Figure 4.27 illustrates how the degradation in critical path delay varies with respect to

increasing multiplexer leg count. In that figure, the data points in red highlight the cost

enhancements for which the unroutes are zero. We plot the Pareto Optimal curve for

those data points, and using that pick an enhancement which gives maximum reduction

in degradation of critical path delay at a relatively low cost. Figure 4.27 highlights the

desired data point using a black circle, which corresponds to an increase in multiplexer

leg count of 73%. The Pareto Optimal curve demonstrates that going beyond this cost

enhancement yields diminishing returns. The 73% increase in multiplexer leg count

corresponds to Fs=4 and Fcin=0.40. Next, we repeat this procedure for the wirelength

metric, whose plot is illustrated in Figure 4.28. From the Figure we can observe that the

73% cost enhancement (highlighted using black circle), works for the wirelength metric

as well. Albeit, as the graph indicates, at higher costs, we could get more reduction in

the wirelength metric. However, that would require paying a high cost for a small gain.

Next, we repeat the procedure for the heap push and pop count metrics. Figures 4.29

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 88

 50

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350

%
 I
n
cr
e
a
se

 i
n

 H
e
a
p

 P
u
sh

 C
o
u
n
t

% Increase in Multiplexer Leg Count over Standard

Data!points!with!unroutes

 50

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350

Data!points!without!unroutes

 50

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350

Pareto!Optimal

Figure 4.29: Percentage Increase in Geometric Mean of Enhanced Perturbed over Base

as a function of increasing Multiplexer Leg Count, for heap push count metrics

0

50

100

150

200

250

300

350

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

%
 I
n
cr
e
a
se

 i
n

 H
e
a
p

 P
o
p

 C
o
u
n
t

% Increase in Multiplexer Leg Count over Standard

Data points with unroutes

0

50

100

150

200

250

300

350

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

Data points without unroutes

0

50

100

150

200

250

300

350

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

Pareto Optimal

Figure 4.30: Percentage Increase in Geometric Mean of Enhanced Perturbed over Base

as a function of increasing Multiplexer Leg Count, for heap pop count metrics

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 89

and 4.30 illustrate how increasing multiplexer leg count influences the heap push and pop

count metrics respectively. As is highlighted in both graphs, the 73% cost enhancement

works well for these metrics as well. So, using these plots, we can conclude that to

eliminate unroutes, and minimize degradation in critical path delay and wirelength, Fs

should be maintained at 4 and Fcin at 0.40.

Now, we repeat this procedure for the Dispersed Perturbed pin-to-wire routing case.

Figures 4.32, 4.33, 4.34 and 4.35 give the summary of results. Figure 4.31 plots the

number of circuits that failed to route (out of twenty total benchmark circuits), as a

function of increasing multiplexer leg count. On repeating our previous analysis, we

observe that for the Dispersed Perturbed case, paying an extra leg cost of 116% yields

our desired results. From Table 4.4, we can see that this cost corresponds to a Fs of 6 and

a Fcin of 0.40. The data points corresponding to this cost enhancement are highlighted

using a black circle in Figures 4.32, 4.33, 4.34 and 4.35.

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300 350

N
u
m
b
e
r
o
f
U
n
ro
u
te
s

 (
o
u
t
o
f
2
0
)

% Increase in Multiplexer Leg Count over Standard

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300 350

Points of Interest

Figure 4.31: Number of Unroutes as a function of increasing multiplexer legs for Dispersed

Perturbed Pin-to-Wire Routing

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 90

0

5

10

15

20

25

30

35

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

%
 I
n
cr
e
a
se

 i
n

 C
ri
ti
ca
l
P
a
th

 D
e
la
y

% increase in Multiplexer Leg Count over Standard

Data points with unroutes

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350

Data points without unroutes

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350

Pareto Optimal

Figure 4.32: Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Base as a function of increasing Multiplexer Leg Count, for critical path delay

metrics

 35

 30

 25

 20

 15

 10

 5

0

5

10

15

20

0 50 100 150 200 250 300 350

%
 I
n
cr
e
a
se

 i
n

 W
ir
e
le
n
g
th

% Increase in Multiplexer Leg Count over Standard

Data!points!with!unroutes

 35

 30

 25

 20

 15

 10

 5

0

5

10

15

20

0 50 100 150 200 250 300 350

Data!points!without!unroutes

 35

 30

 25

 20

 15

 10

 5

0

5

10

15

20

0 50 100 150 200 250 300 350

Pareto!Optimal

Figure 4.33: Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Base as a function of increasing Multiplexer Leg Count, for wirelength metrics

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 91

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350

%
 I
n
cr
e
a
se

 i
n

 H
e
a
p

 P
u
sh

 C
o
u
n
t

% Increase in Multiplexer Leg Count over Standard

Data points with unroutes

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350

Data points without unroutes

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350

Pareto Optimal

Figure 4.34: Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Base as a function of increasing Multiplexer Leg Count, for heap push count metrics

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300 350

%
 I
n
cr
e
a
se

 i
n

 H
e
a
p

 P
o
p

 C
o
u
n
t

% Increase in Multiplexer Leg Count over Standard

Data points with unroutes

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300 350

Data points without unroutes

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300 350

Pareto Optimal

Figure 4.35: Percentage Increase in Geometric Mean of Enhanced Dispersed Perturbed

over Base as a function of increasing Multiplexer Leg Count, for heap pop count metrics

Chapter 4. Impact of Routing Architecture on Pin-to-Wire Routing 92

4.6 Summary

In this chapter we measured the impact of routing architecture on pin-to-wire routing. We

did this by individually modifying each of Fs, Fcin and Fcout. In general, we discovered

that adding a small amount of flexibility better enables pin-to-wire routing while reducing

the gap between pin-to-pin and pin-to-wire routing. However, adding too much flexibility

either worsens the gap or shows no improvement in the gap in router effort between pin-

to-pin and pin-to-wire routing. We also presented an approach for selecting a low cost

architecture enhancement that yields maximum reduction in degradation at the lowest

cost. We showed that maintaining Fs in the range of 4-6 and Fcin at 0.40 gives us the

desired benefits.

Chapter 5

Conclusion

The goal of this work was to measure the difficulty of pin-to-wire routing in FPGAs by

measuring their impact on wirelength, critical path delay and router effort, as well as the

impact of FPGA architecture on those same metrics. To that end, we made the following

major contributions:

1. We designed experiments that measured the difficulty faced by a router and a rout-

ing architecture in face of pin-to-wire routing in a routing-by-abutment scenario.

Compared to normal pin-to-pin routing, the wirelength degraded by 6%, critical

path delay by 15% and the router effort increased by a factor of 3.5. There was

also a loss of routability as two of the twenty benchmarks failed to route. Further,

we realized that selection of the wire segment interface is very crucial to achieve

good routability and must be done with extreme care. We believe that this also

speaks to the difficulty of pin-to-wire routing.

2. We also measured the rate at which the difficulty of pin-to-wire routing increases

as the quantity of pin-to-wire routing in a netlist increases. We achieved this by

varying the fraction of nets in a netlist that were subjected to pin-to-wire routing,

from 20% to 100%. Results indicate that as the amount of pin-to-wire routing

in a netlist increases, the performance degradation for each metric increases. We

93

Chapter 5. Conclusion 94

measured the percentage increase in geometric mean (over the entire benchmark

suite) of pin-to-wire routing over pin-to-pin routing as a function of increasing pin-

to-wire routing in a netlist for all metrics. Results showed that when the percentage

of nets that were split increased from 20% to 100%, the percentage degradation in

wirelength increased from 1% to 15%, and in critical path delay from 8% to 33%.

Likewise, the router effort went from being 2x worse to 14x worse (as compared to

pin-to-pin routing). Further, the routability of the circuits was also impacted by

the amount of pin-to-wire routing, as the number of circuits that failed to route

increased from zero at 20% net split to eight at 100% net split.

3. Next, we measured how circuits under high stress, or ones with high demand for

routability, respond to pin-to-wire routing. We also measured how circuits under

extremely low stress responded to pin-to-wire routing. To acquire these measure-

ments, we repeated our previous experiments while varying the channel width from

minimum to 50% higher than minimum. Results indicated that circuits under high

stress find it difficult and at most times impossible to achieve routability when faced

with pin-to-wire routing. Routability improves as track count increases, i.e. cir-

cuits under low stress achieve routability much easily when faced with pin-to-wire

routing. Also, circuits under low stress levels suffer lower performance degradation

than circuits under high stress levels, when subjected with pin-to-wire routing.

4. Having studied the impact of pin-to-wire routing on a specific router and routing

architecture, we then explored the impact of routing architecture on pin-to-wire

routing. The goal was to answer two questions: first, does increasing architecture

flexibility reduce the performance gap between pin-to-wire and pin-to-pin routing

and second, does increasing architecture flexibility better enable pin-to-wire rout-

ing. Accordingly, we measured the impact of enhancing our standard architecture

by increasing each of Fs, Fcin, and Fcout. We observed that increasing Fcout had

Chapter 5. Conclusion 95

negligible impact on both pin-to-pin and pin-to-wire routing. For both Fs and Fcin,

we observed that increasing flexibility certainly better enabled pin-to-wire routing.

Moreover, a minor increase in flexibility did reduce the gap between pin-to-pin and

pin-to-wire routing for all metrics, but a large increase in flexibility either worsened

or gave no improvement in the gap in router effort. Hence, it was found that a small

increase in flexibility either Fs or Fcin yielded the best results.

5. Our final step was to suggest an approach for selecting a cost effective enhancement,

that can help architects determine which architecture would yield the most benefit

at the lowest cost. Using that approach, we found that maintaining Fs in the range

of 4-6 and Fcin at 0.40 gave significant reduction in the performance degradation

of wirelength and critical path delay, while maintaining a low degradation in router

effort. These suggested Fs and Fcin values correspond to a 73%-116% increase in

architecture cost over the cost of the standard architecture.

To summarize, one can observe that pin-to-wire routing is no doubt difficult, but it is

not impossible and with a careful selection of wire segment interface, can be done under

certain circumstances. Also, a relatively low cost enhancement to the routing architecture

can much better enable pin-to-wire routing while reducing the gap between pin-to-pin

and pin-to-wire routing.

Recall that we had three motivations for pin-to-wire routing, namely: routing-by-

abutment, partial-reconfiguration and the use of circuit elements within the routing fab-

ric. As mentioned in Chapter 2, to enable the first two motivations, an alternative

method to using pin-to-wire is the use of proxy logic. Given what we now know about

pin-to-wire routing, we are in a better position to answer the following question: how

does pin-to-wire routing compare to the proxy logic method? The answer to this question

is complex, and depends on many factors. We believe our results indicate that when the

amount of pin-to-wire routing needed is small, pin-to-wire routing would be cheaper (in

terms of both area and delay) as compared to the proxy logic method. However, when

Chapter 5. Conclusion 96

the amount of pin-to-wire routing required is large, and the architecture flexibility cannot

be increased (as would be the general case), then the proxy logic approach would work

better.

5.1 Future Work

This work lays the basis which can be used by architects in the future to make guided

decisions regarding the use and applications of pin-to-wire routing. In future, this work

can be extended to be performed on architectures with heterogeneity and on bigger,

industrial scale benchmarks. That would also address the question of the effect of the

presence of structured carry chains on pin-to-wire routing, which may have a strong

impact due to their relative inflexibility. It would also be interesting to explore how

routing-by-abutment can be used in practical ways.

Bibliography

[1] E. Ahmed and J. Rose, “The effect of LUT and cluster size on deep-submicron

FPGA performance and density,” Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on, vol. 12, pp. 288–298, Mar. 2004.

[2] J. Rose, V. Betz, and A. Marquardt, Architecture and CAD for Deep-Submicron

FPGAs. Norwell, Massachusetts: Kluwer Academic Publishers, 1999.

[3] P. Simpson and A. Jagtiani, “How to achieve faster com-

pile times in high-density FPGAs,” Altera, Jan. 2007. [Online].

Available: http://www.eetimes.com/design/programmable-logic/4015092/How-to-

achieve-faster-compile-times-in-high-density-FPGAs

[4] “Xilinx Announces worlds highest capacity FPGA,” Oct. 2011. [Online].

Available: http://www.eetimes.com/electronics-news/4230048/Xilinx-announces-

world-s-highest-capacity-FPGA

[5] D. Lewis, E. Ahmed, G. Baeckler, V. Betz, M. Bourgeault, D. Cashman, D. Gal-

loway, M. Hutton, C. Lane, A. Lee, P. Leventis, S. Marquardt, C. McClintock,

K. Padalia, B. Pedersen, G. Powell, B. Ratchev, S. Reddy, J. Schleicher, K. Stevens,

R. Yuan, R. Cliff, and J. Rose, “The Stratix II logic and routing architecture,” in

ACM/SIGDA FPGA, ser. FPGA ’05, 2005, pp. 14–20.

97

Bibliography 98

[6] D. Lewis, E. Ahmed, D. Cashman, T. Vanderhoek, C. Lane, A. Lee, and P. Pan,

“Architectural enhancements in Stratix-IIITM and Stratix-IVTM ,” in ACM/SIGDA

FPGA, ser. FPGA ’09, 2009, pp. 33–42.

[7] “Stratix IV Device Handbook,” Altera, Dec. 2011. [Online]. Available:

http://www.altera.com/literature/hb/stratix-iv/stratix4 handbook.pdf

[8] “7 Series FPGAs Overview,” Xilinx, Mar. 2012. [Online]. Available:

http://www.xilinx.com/support/documentation/data sheets/

ds180 7Series Overview.pdf

[9] N. I. (NI), “Introduction to FPGA Technology: Top 5 Benefits,” Apr. 2012.

[Online]. Available: http://www.ni.com/white-paper/6984/en

[10] M. Guruswamy, R. Maziasz, D. Dulitz, S. Raman, V. Chiluvuri, A. Fernandez, and

L. Jones, “Cellerity: A fully automatic layout synthesis system for standard cell

libraries,” in DAC, June 1997, pp. 327–332.

[11] C.-T. Lin, D.-S. Chen, Y.-W. Wang, and H.-H. Ho, “Modem floorplanning with

abutment and fixed-outline constraints,” in IEEE ISCAS, vol. 6, no. 6214–6217,

May 2005.

[12] P. Athanas, J. Bowen, T. Dunham, C. Patterson, J. Rice, M. Shelburne, J. Suris,

M. Bucciero, and J. Graf, “Wires on demand: Run-time communication synthesis

for reconfigurable computing,” in FPL, Aug. 2007, pp. 513–516.

[13] “Xilinx Partial Reconfiguration User Guide,” Xilinx, July 2011. [Online]. Available:

http://www.xilinx.com/support/documentation/sw manuals/

xilinx13 2/ug702.pdf

[14] G. Lemieux, E. Lee, M. Tom, and A. Yu, “Directional and single-driver wires in

FPGA interconnect,” in IEEE FPT, Dec. 2004, pp. 41–48.

Bibliography 99

[15] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. M. Fang, and J. Rose,

“VPR 5.0: FPGA cad and architecture exploration tools with single-driver routing,

heterogeneity and process scaling,” in ACM/SIGDA FPGA, 2009, pp. 133–142.

[16] C. Ebeling, L. McMurchie, S. Hauck, and S. Burns, “Placement and routing tools for

the Triptych FPGA,” Very Large Scale Integration (VLSI) Systems, IEEE Transac-

tions on, vol. 3, no. 4, pp. 473–482, Dec. 1995.

[17] R. Nair, “A Simple Yet Effective Technique for Global Wiring,” Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 6, no. 2, pp.

165–172, Mar. 1987.

[18] F. Rubin, “The Lee Path Connection Algorithm,” Computers, IEEE Transactions

on, vol. C-23, no. 9, pp. 907–914, Sept. 1974.

[19] C. Y. Lee, “An Algorithm for Path Connections and Its Applications,” Electronic

Computers, IRE Transactions on, vol. EC-10, no. 3, pp. 346–365, Sept. 1961.

[20] D. Koch, C. Beckhoff, and J. Torresen, “Zero logic overhead integration of partially

reconfigurable modules,” in SBCCI, 2010, pp. 103–108.

[21] Y. O. M. Moctar, N. George, H. Parandeh-Afshar, P. Ienne, G. G. Lemieux, and

P. Brisk, “Reducing the cost of floating-point mantissa alignment and normalization

in FPGAs,” in ACM/SIGDA FPGA, Feb. 2012, pp. 255–264.

[22] S. Oldridge and S. Wilton, “Placement and routing for FPGA architectures sup-

porting wide shallow memories,” in IEEE FPT, Dec. 2003, pp. 154–161.

[23] S. J. Wilton, “Architectures and Algorithms for Field-Programmable Gate Arrays

with Embedded Memory,” PhD thesis, University of Toronto, 1997. [Online].

Available: http://www.ece.ubc.ca/˜stevew/papers/pdf/thesis.pdf

Bibliography 100

[24] “iFAR intelligent FPGA Architecture Repository,” Feb. 2008. [Online]. Available:

http://www.eecg.utoronto.ca/vpr/architectures/

[25] I. Kuon and J. Rose, “Area and delay trade-offs in the circuit and architecture design

of FPGAs,” in ACM/SIGDA FPGA, 2008, pp. 149–158.

[26] S. Yang, Logic Synthesis and Optimization Benchmarks User Guide Version 3.0,

MCNC, Jan. 1991.

[27] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,

H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-vincentelli, “SIS: A

System for Sequential Circuit Synthesis,” Electronics Research Laboratory Memo-

randum No. UCB/ERL M92/41, Department of Electrical Engineering and Com-

puter Science University of California, Berkeley, Tech. Rep., May 1992.

[28] A. Marquardt, V. Betz, and J. Rose, “Timing-driven placement for FPGAs,” in

ACM/SIGDA FPGA, 2000, pp. 203–213.

[29] L. McMurchie and C. Ebeling, “Pathfinder: a negotiation-based performance-driven

router for fpgas,” in ACM FPGA, 1995, pp. 111–117.

[30] J. Rose and S. Brown, “Flexibility of interconnection structures for field-

programmable gate arrays,” Solid-State Circuits, IEEE Journal of, vol. 26, no. 3,

pp. 277–282, Mar. 1991.

