
A High-Speed Timing-Aware Router
for FPGAs

by

Jordan S. Swartz

A thesis submitted in conformity with the requirements

for the degree of Master of Applied Science

Department of Electrical and Computer Engineering

University of Toronto

© Copyright by Jordan S. Swartz 1998

Abstract

A High-Speed Timing-Aware Router for FPGAs

Master of Applied Science, 1998
Jordan S. Swartz

Department of Electrical and Computer Engineering
University of Toronto

Digital circuits can be realized almost instantly using Field-Programmable Gate Arrays

(FPGAs), but unfortunately the CAD tools used to generate FPGA programming bit-streams often

require several hours to compile large circuits. We contend that there exists a subset of designers

who are willing to pay for much faster compile times by having to use more resources on a given

FPGA, a larger FPGA, or some decrease in the circuit speed.

A significant portion of the compile time tends to be spent in the placement and routing

phases of the compile. This thesis focuses on the routing phase and proposes a new high-speed

timing-aware routing algorithm. The execution speed of the new router is very fast when the

FPGA contains at least 10% more routing resources than the minimum required by a circuit. For

example, when targeting a model of the Xilinx 4000XL FPGA, the routing time for a 250,000

gate circuit is 127 seconds on a 300 MHz UltraSPARC. The circuit delay is only 19% higher

compared to a high-quality timing-driven router.

Since some routing problems are inherently difficult and will unavoidably take a long time

to route, the practical use of high-speed routing requires that the tool must be able to predict if the

routing task is: (i) difficult and will take a long time to complete, or (ii) impossible to complete. In

this research, we present a method for making these predictions and show that it is accurate.
iii

iv

Acknowledgments

I would like to thank my advisor Jonathan Rose for providing direction, advice, and

encouragement. He has taught me a great deal about research, writing, and presenting. It was a

great privilege to work with him.

I owe a special thanks to Vaughn Betz who helped me in countless ways during my degree,

including: providing the VPR source code and supporting it, providing invaluable feedback and

insight into my work, editing this thesis, and for being so generous with his time.

I would also like to thank all of my friends and colleagues in the Computer and Electronics

Group, including: Alex, Ali, Andy, Dan, Dave, Guy, Jason A., Jason P., Javad, Jeff, Ken, Khalid,

Marcus, Mark, Mazen, Mike, Nirmal, Paul, Qiang, Rob, Sandy, Steve, Vincent, Warren, and

Yaska.

I am extremely grateful to my parents and my sisters for providing constant encouragement

and support during the past two years.

I would also like to acknowledge funding for this work from the Natural Sciences and

Engineering Research Council, Lucent Technologies Inc., MICRONET, and the University of

Toronto. I would also like to thank Dr. C.T. Chen for arranging my visit to Lucent.
v

vi

Table of Contents
Chapter 1 Introduction..1

1.1 Thesis Organization ...3

Chapter 2 Background and Previous Work ..5

2.1 FPGA Architecture Terminology ..5

2.2 Definition of the FPGA Routing Problem ...7

2.3 Routing Algorithms ...8

2.3.1 Maze Routing Algorithm ..8

2.3.2 Rip-Up and Re-Route Algorithm and Multi-Iteration Algorithm.....................9

2.3.3 Separated Global and Detailed Routers ..10

2.3.3.1 CGE..10

2.3.3.2 SEGA ...11

2.3.3.3 FPR...12

2.3.4 Combined Global and Detailed Routers ...14

2.3.4.1 TRACER ..14

2.3.4.2 GBP ..15

2.3.4.3 SROUTE ..16

2.3.4.4 Pathfinder ...17

2.3.4.5 VPR ..19

2.3.5 High-Speed Compile Routers ...23

2.3.5.1 Plane Parallel A* Maze Router ..23

2.3.5.2 Negotiated A* Router...24

2.4 Wirelength and Routability Prediction ..24

2.4.1 RISA ..24

2.4.2 Classification of Routing Difficulty...26

2.5 Xilinx XC4000XL Series of FPGAs..27

2.5.1 Logic Block Architecture..28

2.5.2 Routing Architecture...29

2.6 Summary ..32
vii

Chapter 3 Routing Algorithm...33

3.1 Experimental FPGA Architectures ..33

3.1.1 Simple FPGA Architecture ...34

3.1.2 4000X-like FPGA Architecture ..34

3.1.2.1 Logic-Block Architecture...35

3.1.2.2 Routing Architecture ..36

3.1.2.3 Delay Model ...37

3.2 Base Algorithm ..38

3.3 Compile-Time Enhancements..38

3.3.1 Directed Search...38

3.3.2 Fast Routing Schedule ..43

3.3.3 Net Ordering ...44

3.3.4 Sink Ordering..44

3.3.5 Binning..45

3.3.5.1 Bin Size ..48

3.3.5.2 Empty Bins...49

3.3.5.3 Routing Architecture and Circuit Size Dependence49

3.4 Circuit Delay Enhancements..51

3.4.1 Switch Counting ...51

3.4.2 Track Segment Utilization ..54

3.5 Summary of Enhancement Effectiveness ..57

3.5.1 Simple Architecture ..57

3.5.2 4000X-Like Architecture ..57

3.6 Summary ..60

Chapter 4 Experimental Results...61

4.1 Benchmark Circuits ...61

4.2 Simple Architecture Experiments ..62

4.2.1 Quality: Minimum Track Count ...62

4.2.2 Compile Time ...63

4.3 4000X-Like Architecture Experiments..66

4.3.1 Quality: Minimum Track Count ...66

4.3.2 Compile Time ...67
viii

4.3.3 Quality: Circuit Delay...68

4.3.4 Reducing the Compile Time ...70

4.4 Summary ..71

Chapter 5 Practical Issues...73

5.1 Difficulty Prediction ..73

5.1.1 Estimating Total Wirelength...74

5.1.2 Estimating Track Count ..75

5.1.3 Difficulty Classification..77

5.1.4 Demonstrations of Difficulty Prediction...78

5.2 Controlling the Difficulty of Routing Problems ..82

5.3 Summary ..86

Chapter 6 Conclusions...89

6.1 Suggestions for Future Research ...90
ix

x

List of Figures
Figure 2.1: (a) Island-style FPGA architecture, (b) connection box.....................................6

Figure 2.2: Switch boxes: (a) planar, (b) non-planar Wilton [5] ..6

Figure 2.3: Example of segmented routing architecture...7

Figure 2.4: FPGA routing architecture and graph representation...8

Figure 2.5: (a) Breadth-first search maze router, (b) directed search maze router9

Figure 2.6: Three possible thumbnails for a 3x3 partitioning [20]13

Figure 2.7: Pseudocode for the Pathfinder routing algorithm [30].......................................19

Figure 2.7: Examples of correction factors...25

Figure 2.8: Detailed view of a XC4000E/XL logic block [28]...28

Figure 2.9: Overview of routing for a logic block (shaded = 4000XL only) [28]................29

Figure 2.10: Detailed view of routing for a logic block [28]..31

Figure 3.1: (a) Simple FPGA routing architecture, (b) Simple FPGA logic block34

Figure 3.2: 4000X-like logic block...35

Figure 3.3: Pseudocode for Directed Search Router...39

Figure 3.4: Example of ExpectedCost ..41

Figure 3.5: Compile time vs. α for simple architecture..42

Figure 3.6: Compile time and circuit delay vs. α, (a) low-stress routing problems,

(b) difficult routing problems, using the 4000X-like architecture......................43

Figure 3.7: Two methods of routing a multi-terminal net: (a) closest sinks first,

(b) furthest sinks first..45

Figure 3.8: Example of the binning technique..46

Figure 3.9: Average low-stress compile time vs. minimum binning fanout.........................47

Figure 3.10: Low-stress compile time vs. minimum binning fanout for circuits

spla and clma..50

Figure 3.11: Examples of routing use pass transistor and buffered switches52

Figure 3.12: An example of counting pass transistor switches...53

Figure 3.13: Example of SwichCount...53

Figure 3.14: Average compile time vs. β, (a) low-stress routing problems,

(b) difficult routing problems, for 4000X-like architecture55
xi

Figure 3.15: Example of the affect of different base costs ...56

Figure 4.1: Compile time vs. available tracks for clma (8383 logic blocks)65

Figure 4.2: (a) Compile time vs. % extra tracks, (b) Compile time vs.

% extra tracks (zoomed) ...71

Figure 4.3: Circuit delay vs. % extra tracks...72

Figure 5.1: Placement from VPR with 30% extra logic blocks..83

Figure 5.2: Placement with 30% extra logic blocks placed in columns84

Figure 5.3: Placement with 30% extra logic blocks placed in diagonals..............................85
xii

List of Tables
Table 1.1: Place and route times for Xilinx M1 (using 300 MHz UltraSPARC)2

Table 2.1: Correction factors for nets with up to fifty terminals [39]....................................25

Table 2.3: The XC4000E/XL family [28]..27

Table 2.2: Routability predictors ...27

Table 2.4: Routing resources per logic block in 4000XL parts [28]30

Table 3.1: Track segments in 4000X-like architecture..36

Table 3.2: Compile times for different bin size scaling factors...48

Table 3.3: Base cost of different routing resources ...56

Table 3.4: Effectiveness of directed search and binning for simple architecture58

Table 3.5: Effectiveness of enhancements for 4000X-like architecture

(X enabled, -- disabled)...59

Table 4.1: Benchmark circuits ...62

Table 4.2: Minimum track counts for the simple architecture...63

Table 4.3: Compile times for simple architecture..64

Table 4.4: Minimum track counts for 4000X-like architecture ...67

Table 4.5: Compile times for 4000X-like architecture ...68

Table 4.6: Circuit delays for 4000X-like architecture ..69

Table 5.1: Correction factors up to 50 for 4000X-like architecture75

Table 5.2: Utilization for simple architecture ..76

Table 5.3: Utilization for 4000X-like architecture ..77

Table 5.4: Definition of routing classes...78

Table 5.5: Track count estimates for the simple architecture ..79

Table 5.6: Track count estimates for 4000X-like architecture ..79

Table 5.7: Difficulty prediction for simple architecture (LS=low-stress,

DF=difficult, IM=impossible)...80

Table 5.8: Difficulty prediction for 4000X-like architecture (LS=low-stress,

DF=difficult, IM=impossible)...81

Table 5.9: Results from 30% extra logic blocks experiments ...86

Table 5.10: Results for increasing % extra logic blocks in diagonal pattern........................87
xiii

xiv

Introduction
Chapter 1

Introduction

Advances in technology over the past several decades have been driven by the fast pace of

growth in the microelectronics industry. One rapidly growing area of microelectronics is Field-

Programmable Gate Arrays (FPGAs), that allow digital circuits to be realized almost instantly.

FPGAs require the use of Computer-Aided Design (CAD) tools that transform a designer’s

high-level circuit description into a bit-stream used to program the FPGA. Unfortunately, as the

capacity of FPGAs has continued to increase, the CAD tools have become increasingly slower,

sometimes requiring the better part of a day to complete.

CAD tools for FPGAs usually consist of the following steps: logic synthesis, placement,

and routing [1]. The vast majority of the compile time tends to be spent in the placement and

routing steps. For example, Table 1.1 shows the total place and route times for a number of

MCNC benchmark circuits [2] using the Xilinx M1 CAD tool (version 4.12) [3]. All of the

compile times were measured on a 300MHz UltraSPARC processor. For each circuit the target

FPGA was filled to no more than 80% capacity, which should be considered a relatively easy

placement and routing task. The smallest circuit required approximately 4 minutes for placement

and routing. The largest circuit, which is approximately 5 times larger than the smallest circuit,

required more than one hour for placement and routing. This is 20 times longer than the compile

time for the smallest circuit.

For some designers, these compile times are too long. If the problem is any harder (higher

utilization of the FPGA), the compile times are known to exceed many hours. There is also some

evidence to suggest that compile time is a non-linear function of circuit size, such as the data in

Table 1.1, so the larger FPGAs of the future will take even longer to compile, despite anticipated
1

Introduction
increases in computer power. This work focuses on the routing portion of the compile and seeks to

develop a high-speed routing tool for FPGAs.

We can divide the set of FPGA designers into two classes: those who are willing to sacrifice

some result quality to obtain a large speedup in compile time; and those users who are not willing

to sacrifice any quality, regardless of the compile time. By sacrificing quality, we mean accepting

lower FPGA utilization and slower circuit speeds. We contend that there are a significant number

of users who are willing to sacrifice quality, and this work addresses those users. Note that even

users who demand high quality results could still use a high-speed routing tool to estimate

whether or not their circuit will fit in the target FPGA and to estimate the circuit speed, before

running a slower high-quality router.

 The routing problem can be solved faster by reducing the demand on the FPGA routing

resources, which can be achieved by lowering the utilization of the FPGA. The utilization of an

FPGA can be lowered by either reducing the size of the circuit being targeted for the FPGA, or by

using a larger FPGA than needed to simply fit the circuit.

 Another way in which the routing problem can be solved faster is by spending less effort

trying to optimize the critical path of a circuit. Routers that spend a significant amount of effort to

optimize the critical path of a circuit are known as “timing-driven” routers. We call routers that

obtain reasonable circuit speeds, without spending as much effort as a timing-driven router,

“timing-aware” routers.

An example of an application where users would be willing to trade FPGA utilization for a

large speedup in compile time is the FPGA-based custom computing world. In these applications,

highly-parallel computations are implemented in FPGAs to achieve a large run-time speedup

compared to running the computations using software. High-speed compile is crucial for FPGA-

based custom computing, because a standard software compiler runs in seconds or minutes. These

Table 1.1: Place and route times for Xilinx M1 (using 300 MHz UltraSPARC)

Circuit
Approximate
Gate Count

Xilinx M1 (ver. 4.12)
Place and Route

Time (s)

alu4 18,000 214

frisc 42,000 1038

s38417 76,000 1660

clma 100,000 4229
2

Introduction
users can lower the utilization of the FPGAs, in exchange for faster compile times, by using less

parallelism and hence less hardware. Less parallelism will increase the computation run-time, but

this will be offset by a large reduction in the FPGA compile time.

Another example of an application where high-speed compile is desperately needed is large

FPGA emulation systems, such as the Quickturn Mercury Design Verification System [4].

Emulation systems consist of hundreds of FPGAs that have to be compiled. Circuit speed is not

important, because the operating speed is limited by the large inter-FPGA routing delay. If the

user can tolerate having to use more FPGAs to realize their system, a significant compile-time

speedup is possible.

To assess how much result quality actual users of FPGAs would be willing to sacrifice for

high-speed compile, we posted a question to the usenet newsgroup “comp.arch.fpga”. We asked

designers whether they would be willing to trade some result quality to receive a routing

significantly faster (a few minutes as opposed to a few hours). Out of the seven responses, six of

the designers definitely wanted high-speed CAD tools, but all of designers were reluctant to trade

too much quality for faster results. Four of the respondents said that they would certainly use such

tools to get an idea of where their design stood during the design cycle, but would still use high-

quality CAD tools for the final compile.

The specific goal of this thesis is to develop a high-speed timing-aware router for FPGAs,

capable of routing a 250,000-gate circuit in under one minute. For the compile time to remain

extremely fast for even larger FPGAs, we also want to develop a routing algorithm with as near

linear run-time complexity as possible.

1.1 Thesis Organization

This thesis is organized as follows: Chapter 2 provides background information on previous

routing algorithms, routability prediction, and the commercial FPGA upon which one of our

experimental architectures is modeled. The routing algorithms, which are the basis for the new

high-speed routing algorithm, are described in detail.

Chapter 3 describes the new high-speed timing-aware routing algorithm.

Chapter 4 demonstrates the compile speed of the new high-speed router and makes

comparisons to two existing high-quality routers. It also compares the routability and circuit

speed of the new high-speed router to the same high-quality routers.
3

Introduction
Chapter 5 explores practical issues relating to the use of ultra-fast routing tools by actual

users. It describes a method of predicting how long a circuit will take to route and demonstrates

the accuracy and efficiency of the technique. This chapter also explores how the difficulty of a

routing problem changes as the logic capacity of the target FPGA increases.

Chapter 6 contains conclusions and suggestions for future work.

Figure 1.1:

(1.1)
4

Background and Previous Work
Chapter 2

Background and Previous Work

In this chapter, we begin by reviewing FPGA architecture terminology and giving a brief

definition of the FPGA routing problem. We then give an overview of many of the different

routing algorithms developed for FPGAs. We also review some work on routability prediction and

conclude with a description of the Xilinx XC4000XL FPGA architecture.

2.1 FPGA Architecture Terminology

All of the routing algorithms described in this chapter assume an FPGA architecture similar

to the island-style FPGA shown in Figure 2.1. The following terminology from Brown et al [1]

has become the standard method for describing an island-style FPGA architecture. Each logic

block has input and output (I/O) pins that connect to track segments through a connection box.

The number of track segments that a particular I/O pin connects to in a connection box is called

the connection box flexibility (Fc). The number of tracks per channel is W, which is also called the

track count. Figure 2.1 (a) shows the programmable connections for one connection box, with

Fc = 0.5W.

Track segments connect to other track segments through switch boxes. The number of track

segments that an incoming track segment connects to is called the switch box flexibility (Fs).

Figure 2.2 shows the connections for one track segment for two switch boxes with Fs = 3. A

switch box is called planar if it is impossible to leave a switch box on a different track number

then the one used to enter the switch box. Figure 2.2 (a) shows the connections for one track in a

planar switch box. In a planar architecture, the track number is selected in the connection box at
5

Background and Previous Work
the output pin of a logic block. A switch box is called non-planar if it is possible to leave a switch

box on a different track number then the one used to enter the switch box. Figure 2.2 (b) shows the

connections for one track in a non-planar switch box (track 0 is the incoming track), known as the

Wilton switch box [5]. In a non-planar architecture, it is possible to switch from one track number

to another track number in every switch box; these types of routing architectures improve

routability, as shown in [5].

FPGA architectures that contain multiple lengths of track segments are called segmented

routing architectures. For track segments that span more than one logic block, the track segment

will pass through one or more switch boxes without passing through a series switch. Figure 2.3

Logic Block

Connection Box

Switch Box

Figure 2.1: (a) Island-style FPGA architecture, (b) connection box

(a)

(b)

Channel SegmentTrack Segment

0
1
2

0
1
2

0 1 2

0 1 2

0
1
2

0
1
2

0 1 2

0 1 2

Figure 2.2: Switch boxes: (a) planar, (b) non-planar Wilton [5]

(a) (b)
6

Background and Previous Work
shows an example of part of an FPGA with a segmented routing architecture containing a single-

length, double-length, and quad-length track segment.

2.2 Definition of the FPGA Routing Problem

Many of the routing algorithms described in this chapter were designed by considering the

routing problem as finding a path for each net through a directed graph (G). Figure 2.4 shows a

small portion of an FPGA and its representation as a graph. The logic blocks (A, B), the I/O pins

(OP, IP1, IP2), and the track segments (1, 2, 3, 4, 5) are represented as a set of nodes (V) and there

is a set of directed edges (E) representing possible connections between the various routing

resources.

The routing problem is defined as follows: for a circuit to be successfully routed in an

FPGA, a path through the routing graph G must be found for every net to connect from its source

terminal to every one of its sink terminals. The paths for different nets are usually chosen to

minimize the total number of track segments required by the circuit and possibly to minimize the

circuit delay. A path for a net is legal if every node in the path is used by at most one net (except

for logic block nodes which may be the start or end of multiple nets). For a circuit to be

successfully routed, legal routes must be found for every net.

The routing problem is difficult to solve, since the choice of a certain path for one net may

block the best paths for other nets or possibly make it impossible to route other nets without over-

using certain routing resources. Routing congestion occurs when a routing resource, such as a

track segment or an I/O pin, is over-used.

Figure 2.3: Example of segmented routing architecture

Single

Double

Quad

Series Switch
Logic Block

Switch Box
7

Background and Previous Work
2.3 Routing Algorithms

In this section, we describe many of the academic routing algorithms developed for FPGAs.

We start with a description of the basic maze routing algorithm, the rip-up and re-route algorithm,

and the multi-iteration algorithm, which are the basis for many of algorithms described in this

section. We then review a number of algorithms, sub-divided into two classes: separated global

and detailed routers, and combined global and detailed routers. Finally, two algorithms designed

specifically to reduce execution time are described.

2.3.1 Maze Routing Algorithm

The maze router, developed by Lee [6], is the basis for many of the routing algorithms

described in this section. The maze routing algorithm was designed to find the shortest path

between two points on a rectangular grid, using a breadth-first search. The algorithm is

guaranteed to find a path, if one exists. When applied to an FPGA, the maze routing algorithm

starts at the source node of a net and expands each neighboring node. The neighboring nodes of

each expanded node are then expanded. Expansions continue until the sink node of the net is

reached, or all nodes have been visited and no path has been found.

A B

1

2 3

A

B

OP

2

3

Figure 2.4: FPGA routing architecture and graph representation

Logic Block

Switch

Track Segment
4 5

1

IP1

4

5

IP2

OP IP1
IP2
8

Background and Previous Work
One of the biggest weaknesses of this algorithm is that it can be very slow, since a large

number of the nodes in a graph will have to be visited to route a net. There have been various

improvements to the basic maze router to improve the run-time. Rubin showed that using a depth-

first search could significantly reduce the run-time, while still finding the shortest path between

two nodes [8]. Rubin also showed that when routing a two-terminal net, the selection of the

starting terminal for the search can significantly reduce the run-time. Choosing a terminal located

closer to one of the four corners of the rectangular grid helps to reduce the run-time since the

edges of the grid impose boundaries on the search.

Soukup [7] altered the basic algorithm to make it expand nodes that were successively

closer to the sink of a net, creating a directed search algorithm. Soukup showed that a directed

search algorithm provides an order of magnitude speedup over the basic maze routing algorithm.

Figure 2.5 shows an example of how the maze router expansions would proceed for (a) a breadth-

first search and (b) a directed search. The source of the net is marked with an “S” and the target

sink is marked with a “T”. The black squares mark blocked nodes or congestion. The directed

search expands significantly fewer nodes than the breadth-first search, since the search expands

directly towards the target sink. If there is a significant amount of congestion, the directed search

may end up expanding most of the nodes to find a path to the target sink. In the worst case, the

directed search has to expand as many nodes as the breadth-first search.

2.3.2 Rip-Up and Re-Route Algorithm and Multi-Iteration
Algorithm

Since the routing resources in an FPGA are limited, routing algorithms face the problem of

dealing with routing congestion. The problem is that routing one net using particular resources

S

T

1
1

1
1
2

2 2

2
2

2

2

2 3
3

3
3

3
3

3
3

3
3

3

S

T

1
1

1
1

2

2
2 3
3

3
4

4

4
5

5

5
6

6

6

Figure 2.5: (a) Breadth-first search maze router, (b) directed search maze router

(a) (b)
9

Background and Previous Work
may make it impossible to route some other nets. There have been two main types of algorithms

to deal with the congestion problem. The first type of algorithm is known as rip-up and re-route,

such as the work done by Linsker [9] or Kuh and Marek-Sadowska [10]. With rip-up and re-route

algorithms, nets using resources that are congested are ripped-up and re-routed. The success is

dependent on the choice of which nets to rip-up and the order in which ripped-up nets are re-

routed.

Another solution to the congestion problem, known as the multi-iteration approach, was

conceived by Nair [11]. A routing iteration is the ripping-up and re-routing of every single net.

The nets are not ripped-up all at once, but instead each net is ripped-up separately (leaving all the

other nets in place) and re-routed. Several iterations are performed to alleviate routing congestion.

Nets are routed in the same order in each iteration, but only one net is ripped-up at a time.

Congestion is identified by keeping track of the number of nets currently occupying each routing

resource node. Any node with an occupancy greater than one is considered congested. Nair’s

technique is very effective for resolving congestion problems, because nets in non-congested

areas can also be relocated to allow nets using congested resources to be routed more easily.

Now that we have described some of the basic techniques used by many routing algorithms,

in the next two sections we describe several routing algorithms in more detail.

2.3.3 Separated Global and Detailed Routers

The following routing algorithms are classified as separated global and detailed routers.

Here the solution to the routing problem is performed in two steps to make the problem easier to

solve. A global routing algorithm is first applied to choose channel segments (see Figure 2.1a) for

routing each net, without choosing the exact tracks and switches within each channel. After global

routing, a detailed routing algorithm is used to choose the exact tracks and switches. The detailed

router is usually restricted to routing nets using the channel segments chosen by the global router.

2.3.3.1 CGE

The Course Graph Expansion (CGE) routing algorithm, developed by Brown et al [12], is

the first academic routing algorithm developed for island-style FPGAs. CGE is a routability-

driven router, although timing critical nets can be assigned a higher priority in the routing

algorithm.
10

Background and Previous Work
The global routing algorithm used by CGE is the LocusRoute global routing algorithm for

standard cells [13]. In the LocusRoute algorithm, multi-terminal nets are broken up into two-

terminal nets. Each two-terminal net is then routed using a minimum length path. Paths are

chosen so as to balance the nets among all the channels.

The CGE detailed routing algorithm is divided into two steps. In the first step, each global

route is expanded into a set of alternative detailed routes--each makes specific choices of track

segments and switches. For some nets, there may be a vast number of possible detailed routes, so

a pruning algorithm is used to limit the number of detailed routes stored for each net (this reduces

the memory requirements and speeds up the algorithm). In the second step, a detailed route is

chosen for each net; the detailed route with the fewest routing resources used by detailed routes

for other nets is chosen. The router also takes into account nets that have only one possible

detailed route and nets that are timing critical. After choosing a detailed route for a net, all of the

other nets are updated to remove any detailed routes that use any of the resources just allocated. If

it is impossible to route any nets, then multiple iterations with rip-up and re-route are attempted.

Only nets using the congested channel segments are ripped-up and re-routed. For the ripped-up

nets, new detailed routes are expanded using less aggressive pruning for each successive iteration.

The experimental architecture used for testing CGE was similar to the Xilinx 3000 series

FPGA [14]. All the track segments were single-length segments with Fs=6 and Fc=0.6W.

Comparisons were made to a maze routing algorithm, where the maze router was restricted to

using track segments within the same global routes as CGE. CGE was able to route a set of

benchmark circuits in an average of 35% less tracks per channel compared to the maze router.

2.3.3.2 SEGA

The Segment Allocator (SEGA) routing algorithm [15] [16] is an extension of the CGE

algorithm to target FPGAs with segmented routing architectures.

The global router used with SEGA is almost identical to that used with CGE. One important

enhancement is the addition of bend reduction to penalize any bends in the global route for a net

[17]. Since the underlying routing architecture contains some track segments which are longer

than unit length, a global route with fewer bends allows the detailed router to use longer track

segments. Bend reduction was shown to significantly reduce the total number of tracks per

channel required by circuits, compared to not using bend reduction.
11

Background and Previous Work
The detailed router for SEGA is based on the same principal as CGE, in that the global

routes are expanded into a set of detailed routes for each two-terminal net and one detailed route

is chosen for implementing each two-terminal net. However, besides a cost function to minimize

congestion, SEGA also contains two cost functions for minimizing circuit delay that make the

router timing-aware. The first cost function contains two terms: one term to prefer longer track

segments to cover a long distance, rather than several short segments; and the other term to make

sure that a long segment is not wasted to go a very short distance. The other cost function uses the

Rubinstein-Penfield delay model [18] for calculating the delay of a net. The delay is calculated for

each possible detailed route of a two-point connection, and the fastest route is chosen.

Another enhancement in SEGA versus CGE is a method to reduce the wirelength and delay

of multi-terminal nets. In CGE, all of the two-terminal nets that were decomposed from multi-

terminal nets may be routed in any order. Little effort is made to re-use track segments of two-

terminal nets that are actually part of the same multi-terminal net. Re-using track segments can

significantly reduce the track count as well as the circuit delay. To re-use track segments, all of the

two-terminal nets comprising a multi-terminal net are routed together, with the largest multi-

terminal nets routed first (where the size is the sum of the estimated length for each two-terminal

net.) The two-terminal nets are routed in order from longest to shortest. As the routing proceeds,

track segments used for other two-terminal nets that are part of the same multi-terminal net are re-

used as much as possible.

Experiments with SEGA were run on an FPGA architecture similar to the Xilinx 4000

series FPGA [14], containing single-length, double-length, and long-length track segments, with

Fs=3 and Fc=W. There were no other results to compare with at the time of this work, although

experiments showed how the various enhancements significantly improved the track count and

delay of circuits.

2.3.3.3 FPR

FPR, developed by Alexander et al [20], is a combined placement and global routing

algorithm, followed by detailed routing. This algorithm, which is purely routability-driven, tries

to simultaneously optimize source-sink pathlength, total wirelength, and track count.

The combined placement and global routing algorithm is based on a technique called

thumbnail partitioning. The basic idea is that the entire FPGA is divided into a 3 x 3 grid, where
12

Background and Previous Work
each logic block is contained in exactly one region of the grid. The placement of logic blocks is

improved using simulated annealing [19] to move logic blocks between regions. Each region is

then subdivided into 3 x 3 sub-regions and simulated annealing is used on the sub-regions. Each

region is recursively subdivided and improved, until each region contains exactly one logic block.

The cost function for the placement algorithm uses pre-computed 3 x 3 Rectilinear Steiner

Arborescences1 (RSA) [23], also called thumbnails, that connect all of the net terminals across

partition boundaries. One thumbnail is chosen for each net; the objective is to minimize the total

source-sink pathlength and the total wirelength across all of the nets, while also balancing

congestion between adjacent regions. If a net has more than one terminal in a region, they are

counted as one terminal. Figure 2.6 shows an example of three possible thumbnails for a set of

points in a 3 x 3 partitioning.

Once the placement algorithm has completed and each region contains exactly one logic

block, global routing can be performed using the thumbnails assigned to nets at each level of

recursion. At each level of recursion, a switch box is assigned to each point where a thumbnail

crosses a partition boundary. The maximum number of nets assigned to each switch box along a

boundary is calculated by taking the total number of nets crossing the boundary divided by the

number of switch boxes along the boundary. Once the lowest level of recursion is reached, every

net will have a global route assigned.

The detailed routing algorithm assigns specific track segments and switches to each net,

within the channel segments and switch boxes specified by the combined placement and global

routing algorithm. Each net is routed one at time, using a Steiner tree construction method known

as Iterated-KMB (IKMB) [21]. If a net is impossible to route within the channel segments chosen

by the global router, then the detailed router is allowed to use channel segments outside the

1. An RSA is a rectilinear tree that contains the shortest path from the source terminal to each sink terminal
[23].

Figure 2.6: Three possible thumbnails for a 3x3 partitioning [20]

Thumbnail

Partition
Boundary
13

Background and Previous Work
chosen global route. If a net is still unroutable, then all of the nets are routed again, routing the

unroutable nets first. The detailed router tries a number of iterations before declaring failure.

IKMB is based on the Kou, Markowsky and Berman (KMB) algorithm [22]. The KMB

algorithm constructs Steiner trees which are within twice the cost of the optimal Steiner tree, in

polynomial time. For a net, IKMB (in the context of FPGAs) iteratively tries many of the switch

boxes in the net as possible Steiner points. The switch boxes that reduce the cost of the net by the

largest amount are chosen as the final Steiner points.

Using an architecture similar to the Xilinx 3000 series FPGA, FPR was only an average of

4% better than CGE at minimizing track count across a number of benchmark circuits. Using an

architecture similar to the Xilinx 4000 series FPGA, comparisons were made to SEGA and GBP

(see Section 2.3.4.2). FPR was 13% better, on average, than SEGA at minimizing track count.

FPR was only an average of 6% better than GBP at minimizing track count.

2.3.4 Combined Global and Detailed Routers

Routers that use separate global and detailed routing algorithms may suffer what is termed

the mapping anomaly [27]. Since the global router does not know the details of the switch box and

connection box architecture, the detailed router may not be able to route all of the nets using the

assigned global routes. Combined global and detailed routers do not suffer from the mapping

anomaly, since decisions about the channel segments and the specific track segments and switches

are made at the same time. In this section, we describe a number of combined global and detailed

routing algorithms.

2.3.4.1 TRACER

The TRACER routing algorithm, designed by Lee and Wu [24], is a timing-driven

algorithm. The routing algorithm is split into three steps: delay and congestion estimation; initial

routing; and rip-up and re-routing.

The purpose of the delay and congestion estimation step is to determine a criticality for each

net based on the estimated minimum delay for each net and the amount of congestion a net may

have to avoid for successful routing. Each net is routed using a breadth-first maze routing

algorithm, ignoring any over-use of routing resources. Since each net is allowed to use the best

routing resources, a measure of the minimum delay and the slack [25] of each net can be
14

Background and Previous Work
calculated. For the delay calculations, full path-based timing analysis is performed, using an

implementation of the Elmore delay model [26]. The congestion for each net is calculated based

on the use of the routing resources (by all of the nets) contained within the bounding box of the

net.

In the second step, each of the nets is routed again, using a breadth-first maze router. The

nets are routed in order of decreasing criticality. Routing resources are not allowed to be over-

used, unless there is no other way to route a net.

The final step, rip-up and re-routing, is divided into two parts: congestion resolution and

delay resolution. In congestion resolution, a rip-up and re-route approach is used to try and

resolve any congestion problems from the initial routing. A simulated-evolution algorithm is used

to choose which nets to rip-up and re-route. Nets are selected randomly to be ripped-up and re-

routed, so that any net may be selected for rip-up and re-route, not just the nets using congested

resources. Nets that have a much larger wirelength compared to the minimum estimated

wirelength or nets using a large number of over-used routing resources, have a higher likelihood

of being chosen for rip-up. The simulated evolution algorithm continues until there are no more

routing resources over-used or a time limit is exceeded and failure is declared.

In delay resolution, nets that are part of paths where the timing constraints have been

exceeded are ripped-up and re-routed, using a similar algorithm to congestion resolution. Nets on

paths that exceed the timing constraints and nets on paths that are well under the timing

constraints have a higher likelihood of being chosen for rip-up. Again, either the constraints are

met or failure is declared after exceeding a time limit.

The FPGA architecture used for testing TRACER was an island-style FPGA with all single-

length track segments and Fc=W and Fs=3. Experiments were run on a set of small benchmarks

circuits and comparisons made to CGE and SEGA. Compared to CGE and SEGA, TRACER

reduced the average track count by 29% and the average circuit delay by 27%.

2.3.4.2 GBP

The Greedy Bin Packing (GBP) routing algorithm, by Wu and Marek-Sadowska [27], is a

routability-driven router. In this work, the routing problem is considered as a bin packing

problem, where the bins are the routing tracks. The goal is to fill each of the bins with as many

nets as possible and to use as few bins (routing tracks) as possible.
15

Background and Previous Work
The algorithm starts by breaking multi-terminal nets into two terminal nets. A confronting

graph is created, where each net is a node and there are edges between nodes where two nets have

pins in the same channel segment. Nets are then packed into bins (tracks), based upon information

from the confronting graph and the length of nets. Nets are placed in only one bin at a time, until

that bin full.

One important assumption made in this work is that the routing architecture is planar (see

Section 2.1), otherwise it is not possible to use this routing algorithm. At the time that this work

was completed, the Xilinx 4000 architecture was a planar architecture, but newer architectures

such as the Xilinx 4000XL [28] are non-planar.

GBP reduced the average track count by 17%, on average, compared to CGE and SEGA.

GBP required 30% more tracks per channel, on average, compared to TRACER.

2.3.4.3 SROUTE

SROUTE, developed by Wilton [5], is a routability-driven router designed for exploring

FPGA architectures with embedded memory. SROUTE is able to target island-style architectures

and is also moderately fast.

In the SROUTE algorithm, multiple routing iterations are used to resolve congestion, during

which every net is re-routed. During the first iteration, the nets are routed in the given order.

During successive iterations, nets that could not be routed in the previous iteration are routed first.

The inner-loop of the router uses a directed search maze router. The cost function for the directed

search algorithm is based on the Manhattan distance to the target. Multi-terminal nets are routed

one sink at a time, starting with the sink closest to the source of the net. For subsequent sinks, the

sink that is closest to any part of the existing net is chosen as the next target; routing is continued

from the part of the net closest to this target. If the directed maze router should fail to route a net,

then a breadth-first maze router is used to try and route the net.

Experiments were run using a planar architecture with only unit length track segments,

Fs=3, and Fc=W. SROUTE was able to route as set of benchmark circuits using 16% less tracks

per channel, on average, compared to SEGA; 15% less tracks per channel, on average, compared

to GBP; and 9% less tracks per channel, on average, compared to FPR. SROUTE required 11%

more tracks per channel, on average, compared to TRACER. Experiments were also run that
16

Background and Previous Work
measured up to a 5 times speedup in execution time compared to a purely breadth-first search

maze router.

2.3.4.4 Pathfinder

The Pathfinder routing algorithm, designed by Ebeling et al [30], is both a routability-driven

and a timing-driven router. While the Pathfinder algorithm was designed to target the specialized

Triptych FPGA architecture [31], it is a general routing algorithm that can be applied to almost

any type of FPGA architecture. One of key differences between this work and previous work is

that the Pathfinder algorithm tries to simultaneously optimize track count and circuit delay. We

give more detail about this algorithm compared to the other algorithms, because much of our

work is built upon the Pathfinder algorithm.

The Pathfinder algorithm is based upon Nair’s method of iterative maze routing for custom

integrated circuits [11]. During each iteration, every net is ripped-up and re-routed, in the same

order during each iteration. During early iterations, nets are allowed to share routing resources

with other nets. As the iterations proceed, the sharing of routing resources is penalized, increasing

gradually with each iteration. (Note that Nair’s algorithm does not allow routing resources to be

overused.) After a large number of iterations (up to a few hundred), the nets will negotiate among

congested resources to try and find a way to successfully route the circuit, allocating key

resources to the nets that need them the most. By re-routing all of the nets during each iteration,

nets that do not absolutely require congested routing resources can also be relocated.

The basic Pathfinder algorithm routes nets using a breadth-first maze routing algorithm. A

cost function is applied to each node (routing resource) to try and minimize congestion and the

delay of more critical nets. The cost function, C(n), applied to each node n by the maze router is:

(2.1)

where d(n) is the intrinsic delay of node n, Cost(n) is the congestion cost of using node n, and

A(i,j) is the slack ratio from the source of net i to the jth sink of net i. The congestion cost is calcu-

lated as:

(2.2)

where b(n) is the base cost of using node n (set to the intrinsic delay of node n), h(n) is the histor-

ical congestion penalty based upon the over-use of node n during previous routing iterations, and

p(n) is the present congestion penalty based on the over-use of node n during the current routing

C n() A i j,() d n()⋅ 1 A i j,()–[] Cost n()⋅+=

Cost n() b n() h n()+[] p n()⋅=
17

Background and Previous Work
iteration. The exact methods for calculating p(n) and h(n) were not given in [30].

The slack ratio is defined as:

(2.3)

where D(i,j) is the longest path delay through the circuit that contains the path from the source of

net i to the jth sink and Dmax is the critical path delay of the circuit. If a connection lies on the crit-

ical path, then A(i,j) will equal 1.0, and cost function Equation (2.1) will be weighted completely

towards optimizing delay. If a connection lies on a path with a large slack, and is therefore non-

critical, A(i,j) will approach 0, and the cost function (2.1) will be heavily weighted towards mini-

mizing congestion. A value of A(i,j) between 0 and 1 will cause the router to try and minimize

both delay and congestion. Note that setting A(i,j) to 0 for all nets makes the router completely

routability-driven.

Figure 2.7 shows pseudocode for the complete Pathfinder routing algorithm. For the first

iteration of the router, all of the nets are marked as critical by setting A(i,j) to 1 for all nets (line 1).

For each net there is an associated routing tree (RT) that stores the path to each sink in the net. On

line 5, the RT for net i is initialized with just the source of the net. The loop from lines 6 to 16

performs the routing to each sink of net i. The source-sink paths with the largest slack ratios (most

critical) are routed first. When routing to a sink, all of the routing resources already in the RT are

added to the priority queue (PQ), so that routing to the next sink may continue from any resource

already part of the net (line 7). The loop from lines 8 to 12 explores the routing graph until the

target sink is reached. Once the target sink is reached, the congestion cost for all the nodes on the

new path are updated and the nodes are added to the RT (lines 13 to 16). At the end of each

iteration, all of the path delay and slack ratios are recalculated (line 19), so that the router can

adjust the cost function of Equation (2.1) to try and balance congestion and circuit delay.

Two enhancements are described in [30] to increase the execution speed of the Pathfinder

algorithm. The first enhancement adds a directed-search term to the cost function used for routing

nets. The directed-search term used is a lower bound on the cost given by Equation (2.1). This

allows the router to choose nodes that are successively closer to the target sink, which reduces the

run-time compared to a breadth-first search. The second enhancement is to re-route only the nets

that are using congested nodes during successive iterations, instead of re-routing every net. This

requires more iterations to successfully route a circuit, but each iteration is faster, resulting in a

small reduction in the run-time.

A i j,() D i j,() Dmax⁄=
18

Background and Previous Work
In [32], experiments were run targeting the Xilinx 3000 series FPGA. In these experiments,

the track counts were fixed and comparisons were made between the implemented circuit speeds

of Pathfinder versus the Xilinx routing tool. Pathfinder was shown to provide about 11% better

circuit speed on average. No comparisons were made to any of the other routers described in this

chapter.

2.3.4.5 VPR

The Versatile Place and Route (VPR) tool, designed by Betz et al [34] [33], is a complete

place and route system designed for exploring FPGA architectures. The router is based primarily

on the Pathfinder routing algorithm, with some key enhancements to improve the track count,

circuit speed, and compile time. VPR contains two routers: one router is routability-driven, and

the other router is timing-driven. We describe VPR’s routing algorithms in detail for two reasons:

first, our work was incorporated into the VPR code base, re-using much of the routing algorithm

code and using the placement tool and the architecture generation algorithms; second, we use

VPR as our basis for experimental comparisons.

[1] A(i,j) ← 1 for all net sources i and sinks j
[2] While shared resources exist
[3] Loop over all net sources i
[4] Rip up routing tree RT(i)

[5] RT(i) ← net source i
[6] Loop over all sinks t(i,j) in decreasing A(i,j) order

[7] PQ ← RT(i) at cost A(i,j)·d(n) for each node n in RT(i)
[8] Loop until t(i,j) is found
[9] Remove lowest cost node m from PQ
[10] Add all neighboring nodes n of node m to PQ with
[11] cost = Cost(n) + path cost from source to m
[12] End
[13] Loop over nodes n in path t(i,j) to source i (backtrace)
[14] Update Cost(n)
[15] Add n to RT(i)
[16] End
[17] End
[18] End
[19] Calculate path delay and A(i,j)
[20] End

Figure 2.7: Pseudocode for the Pathfinder routing algorithm [30].
19

Background and Previous Work
The routability-driven routing algorithm in VPR is very similar to the breadth-first

routability-driven Pathfinder algorithm, with a few important changes and enhancements.

The first enhancement is a change to the congestion cost function used for evaluating a

routing resource node n. The congestion cost function used by VPR is:

(2.4)

where b(n), h(n), and p(n) are the base cost, historical congestion penalty, and present congestion

penalty, as defined in Section 2.3.4.4. Equation (2.4) is different from Equation (2.2) in that all the

terms are multiplied together rather than adding b(n) and h(n), to avoid having to normalize b(n)

and h(n).

In Pathfinder, the base costs of routing resource nodes are set to their intrinsic delay values.

VPR sets the bases costs of almost all of the routing resources to 1. The only exceptions are input

pins, which are given a base cost of 0.95. This causes the router to expand any input pins reached

first and speeds up the routability-driven router by up to 1.5 to 2 times. The base costs used by

VPR resulted in a 10% average decrease in track count, compared to using the original Pathfinder

base costs.

The present congestion penalty, p(n), is calculated by VPR as:

(2.5)

where occupancy is the number of nets presently using node n, capacity(n) is the maximum num-

ber of nets that can legally use node n, and pfac is a value that scales the present congestion pen-

alty. The present congestion penalty is updated whenever a net is ripped-up and re-routed.

The historical congestion penalty, h(n), is calculated by VPR as:

(2.6)

where i is the iteration number, and hfac is a value that scales the historical congestion penalty.

The historical congestion penalty is updated after each routing iteration.

The values of pfac and hfac comprise what is called the routing schedule [33]. Normally, the

default routing schedule of VPR is used, where the value for pfac is set to 0.5 or less in the first

iteration and increased by 1.5 to 2 times in subsequent iterations [33]. The value of hfac is set to

any value between 0.2 and 1, and remains constant in subsequent iterations [33]. With the default

routing schedule, VPR usually requires several iterations to route a circuit. The router can be sped

Cost n() b n() h n() p n()⋅ ⋅=

p n() 1 max 0 occupancy n() 1 capacity n()–+[] p fac⋅,()+=

h n()i
1 i, 1=

h n()i 1–
max 0 occupancy n() capacity n()–[] h fac⋅,() i 1>,+




=

20

Background and Previous Work
up by two to three times by setting pfac and hfac to 10000, called the fast routing schedule. The fast

routing schedule forces the router to avoid over-using routing resources if possible, resulting in a

reduction in the number of routing iterations. For easy problems, the router can sometimes route

the circuit in just one iteration. The fast routing schedule typically requires only 2% to 4% more

tracks over the best track count for a circuit by VPR.

Another important enhancement in VPR versus Pathfinder is the manner in which the

routing tree is placed back on the priority queue when routing a multi-terminal net. Recall that the

Pathfinder algorithm empties the PQ after each sink is reached in a multi-terminal net, and puts

the complete RT back on the PQ (see Figure 2.7, line 7). For very high-fanout nets, the RT is very

large, requiring significant CPU time simply to place the RT on the PQ for each sink. VPR

contains a much more efficient method, called the optimized breadth-first search, where the PQ is

left in its current state after reaching a sink, and just the new portion of the routing used to reach

the new sink is added back onto the PQ. The search for the next sink is then continued as normal.

The optimized breadth-first search enhancement results in an order-of-magnitude speedup,

compared to using the regular breadth-first search.

In comparison to all of the other routers described in this chapter, VPR is able to achieve the

lowest track counts across a series of smaller benchmark circuits, containing circuits with up to

358 logic blocks. The routability-driven VPR router obtained a 10% lower track count, on

average, compared to the next best router, TRACER. Using the VPR global router with the

detailed router of SEGA, the routability-driven VPR router achieved a 14% lower track count, on

average, compared to SEGA. Using a series of much larger benchmark circuits containing up to

8383 logic blocks, VPR used 70% fewer tracks per channel, on average, compared to SEGA.

The timing-driven routing algorithm of VPR is also based upon Pathfinder, but the timing-

driven component is handled differently by VPR. In Pathfinder, a linear delay model is used,

where each routing resource has a constant delay and the delays are summed to find the path

delay. For track segments that are connected using buffers, the linear delay is accurate. But, for

track segments that are connected using pass transistors, the linear delay model is highly

inaccurate, because it fails to take into account the fact that the delay through a pass transistor

depends on the other elements connected to the pass transistor. It is shown in [33] how the linear

delay model causes the router to choose incorrect paths among alternatives. VPR uses the Elmore

delay model [26], which models the delay of pass transistors more accurately than the linear delay

model. The cost function used by the timing-driven routing algorithm in VPR is:
21

Background and Previous Work
(2.7)

where crit(i,j) is the criticality of the net being routed, d(n,Elmore) is the elmore delay of node n,

and Cost(n) is the congestion cost of node n as given in Equation (2.4). Unlike the intrinsic delay

value which is constant, the Elmore delay must be calculated dynamically, depending on the

structure of the routing resources used to reach this node n. The criticality serves the same pur-

pose as the slack ratio in Pathfinder, it is used to balance congestion and timing optimization. The

criticality is defined as:

(2.8)

where slack(i,j) is the slack between the source of net i and the sink j, and Dmax is the critical path

delay of the circuit. VPR sets the maximum criticality value to 0.99 so that no net will completely

ignore congestion.

Since the Elmore delay depends on the exact structure of connections for a net and the net is

being changed as each sink is routed, it is necessary to update the Elmore delay of each node in

the net after routing each sink in the net. Referring to Figure 2.7, the Elmore delays for all the

nodes in RT(i) would be updated after reaching each sink in a net (line 16).

The optimized breadth-first search describe for the routability-driven router cannot be

utilized with the timing-driven router, since the Elmore delay which must be updated for all the

nodes in the current expansion after reaching each sink in the net. Since placing the whole routing

tree back on the priority queue for each sink of a net and re-starting the breadth-first search is very

time consuming, a directed search is used instead of a breadth-first search. The decision to

implement a directed search was based on results from the present research in [36] that showed a

large speedup in the compile-time from using a directed search within the Pathfinder algorithm.

The directed search uses an estimate of the total cost given by Equation (2.7) to reach the target

sink. The estimate assumes that connections of the same length or type as the current node being

expanded will be used to reach the target sink and that the shortest path will be used. Using the

directed search, the timing-driven VPR router is 10 times faster, on average, compared to the

routability-driven VPR router.

Comparisons were made between the routability-driven and timing-driven routers of VPR,

using a model of the Xilinx 4000XL FPGA, developed as part of the present research. In

comparing the two routers, the timing-driven VPR router produced circuits with 2.5 times less

c n() crit i j,() d n Elmore,()⋅ 1 crit i j,()–[] Cost n()⋅+=

crit i j,() min 1 slack i j,()
Dmax

--------------------------– 
  0.99, 

 =
22

Background and Previous Work
delay, on average, than the routability-driven VPR router. The timing-driven VPR router only

required 6% extra tracks per channel, on average, compared to the routability-driven VPR router.

2.3.5 High-Speed Compile Routers

In this section, we describe two routing algorithms that were designed specifically to reduce

the execution time of routing.

2.3.5.1 Plane Parallel A* Maze Router

The Plane Parallel A* maze routing algorithm, designed by Palczewksi [38], is a unique

approach to routing an FPGA using a parallel approach. The algorithm is only routability-driven.

The basic idea of the plane parallel approach is that instead of searching track segments one

at a time, all of the track segments in a single channel segment are searched in parallel. The

parallelism comes from the way in which the state of the search is stored. The occupancy of tracks

in each channel segment is stored as a W-bit vector, where W is the numbers of tracks per

channel. A “one” represents a track segment that is free and a “zero” represents a track segment

that is blocked or occupied. A switch box is implemented as a transition function that takes an

input bit-vector and transforms it into an output bit-vector for each side of the switch box. The

transition function is implemented as a fast look-up table.

Each multi-terminal net is routed as a set of two-terminal nets. For each two-terminal net, a

directed search maze router, using the plane parallel algorithm, is used to find a pruned set of

paths from the source to the sink. Exact track segments and switches are then chosen by traversing

backwards from the sink to the source.

Experiments with the Plane Parallel A* algorithm were run on an FPGA architecture

containing only single-length segments with a planar switch box (The exact details about the

architecture were not well described). The benchmark circuits were randomly generated netlists,

with up to 1000 two-terminal nets. It was shown that the Plane Parallel A* algorithm provided up

to an 8 times speedup over a traditional directed algorithm that expands only one track segment at

a time.

A major shortcoming of the Plane Parallel A* algorithm is that it cannot properly route an

FPGA with a segmented routing architecture. The occupancy of each track segment is stored a
23

Background and Previous Work
single bit, so information about the length of track segments is lost. For similar reasons, it is also

difficult to extend the Plane Parallel A* algorithm to be timing-driven.

2.3.5.2 Negotiated A* Router

The Negotiated A* router, developed by Tessier [35], is based primarily on the routability-

driven router of VPR [34]. The major enhancement of this router is the concept of “domain

negotiation”, designed to improve the compile-time for routing planar architectures. A domain is

synonymous to a track number. Recall that a planar architecture is one where it is impossible to

switch from one track number to another track number, except at the output pins of logic blocks.

The basic idea behind domain negotiation is to choose a track for routing a net where as many

sinks as possible can be reached on this one track. Many high-fanout nets will have to use a

number of tracks for successful routing, but choosing the tracks correctly can allow the router to

complete much more quickly.

The negotiated A* router was shown to require the same track counts as the breadth-first

router of VPR. The benefit of using domain negotiation was that the time to complete the routing

of circuits using their minimum track counts was about twice as fast compared to not using

domain negotiation.

2.4 Wirelength and Routability Prediction

In this section, we describe wirelength and routability prediction approaches that we use as

a basis for some of our work.

2.4.1 RISA

RISA, developed by Cheng [39], is a placement algorithm for standard cells. The placement

algorithm is simulated annealing [19]. The cost function for the algorithm uses the bounding box

wirelength for each net, but has an enhancement to more accurately predict wirelength. We review

this enhanced wirelength model as we make use of it in the present work.

The basic bounding box wirelength prediction assumes that the wirelength of a net is equal

to the half-perimeter bounding box wirelength. This is correct for nets with two or three terminals,
24

Background and Previous Work
but for nets with four or more terminals, the half-perimeter bounding box does not account for the

extra wire needed to reach all of the terminals.

The RISA wirelength prediction approach scales the half-perimeter bounding box

wirelength of a net by a correction factor that accounts for the extra wire needed for nets with

more than three terminals. For example, a net with just two or three terminals will have a

correction factor of 1.0 as shown in Figure 2.7. The crossing count of a four terminal net is about

1.08, since extra wiring is need to reach the fourth terminal, as shown in Figure 2.7.

The correction factors for different fanout nets were determined by creating thousands of

Steiner trees for randomly distributed net terminals and averaging the correction factor for each of

the different fanout nets. Table 2.1 lists the correction factors given in [39] for nets with up to fifty

terminals,

Table 2.1: Correction factors for nets with up to fifty terminals [39]

Num.
Terminals

Correctio
n

Factor

Num.
Terminals

Correctio
n

Factor

2 ~ 3 1.00 15 1.69

4 1.08 20 1.89

5 1.15 25 2.07

6 1.22 30 2.23

7 1.28 35 2.39

8 1.34 40 2.54

9 1.40 45 2.66

10 1.45 50 2.79

2 terminals 3 terminals

Figure 2.7: Examples of correction factors

4 terminals

half-perimeter
bounding box

terminal
wire extra wire

correction factor = 1 correction factor = 1 correction factor = 1.08
25

Background and Previous Work
The correction factors are used to estimate the amount of wiring required by a single net by

simply scaling the half-perimeter bounding box of a net by the appropriate correction factor. It is

possible to also use the RISA wirelength model to estimate the wirelength of nets in FPGAs, since

FPGAs, like standard cells, use vertical and horizontal routing.

2.4.2 Classification of Routing Difficulty

Chan et al [40] developed an algorithm to predict the routability of a technology mapped

netlist, before placement of the netlist. Their method for classifying the difficulty of routing

problems is relevant to our present work.

To predict whether or not a circuit will route successfully in a given FPGA, an estimate of

the routing resources needed by the circuit is required. If the target FPGA has more routing

resources than required by the circuit, then the circuit is considered routable.

An estimate of the minimum track count (West) required by a circuit is calculated using

stochastic wirelength models developed by El Gamal [41] and Sastry and Parker [42]. Both of

these models require the average number of pins per logic block and the average wirelength of a

routed net. The average number of pins per logic block is known. The average wirelength of a

routed net is estimated using a wirelength distribution model developed by Feuer [43]. The model

developed by Feuer requires the Rent parameter to calculate the average interconnection length.

Since the Rent parameter depends on the structure of a circuit and its placement, the Rent

parameter is estimated from an initial placement of the circuit.

Given the estimated track count, West, and the track count for the target FPGA, WFPGA, the

difficulty of routing a circuit is predicted. If the circuit requires more tracks per channel than

available in the target FPGA, then the circuit is unroutable. If the target circuit requires less tracks

per channel than in the target FPGA, then the circuit is easily routable. Unfortunately, because

West is an estimate of the track count for a circuit, there will inevitably be some error in the

estimate. An error in the estimated track count will affect the classification of a problem when

West is very close to WFPGA. Therefore, using a margin of error of ±0.5 tracks per channel, when

West lies within ±0.5 tracks per channel of WFPGA, the circuit is considered marginally routable.

Marginally routable means that it is unknown whether the circuit is routable. Table 2.2 lists the

three classifications and their conditions.
26

Background and Previous Work
Using a model of the Xilinx 4000 series FPGA, the routability predictor was tested on a set

of 26 benchmark circuits. Five circuits that were impossible to route were identified correctly.

Two marginally routable circuits were incorrectly predicted as impossible to route. A number of

easily routable circuits were declared marginally routable. Overall, the routability predictor was

able to predict, with reasonable accuracy, the difficulty of routing a circuit before placing the

circuit.

2.5 Xilinx XC4000XL Series of FPGAs

In the section, we describe the Xilinx XC4000XL Series of FPGAs [28] in detail, because

one of our experimental architectures is based on this architecture. The XC4000XL series of

FPGAs contains high-capacity, high-performance devices. Table 2.3 shows all of the parts

available in the 4000 family, including the E series parts. Every part contains user-configurable

Table 2.2: Routability predictors

Predicted Difficulty Condition

Unroutable West > WFPGA + 0.5

Easily Routable West < WFPGA - 0.5

Marginally Routable WFPGA - 0.5 < West < WFPGA + 0.5

* Max values of Typical Gate Range include 20-30% of CLBs used as RAM.

Device
Logic
Cells

Max Logic
Gates

(No RAM)

Max. RAM
Bits

(No Logic)

Typical
Gate Range

(Logic and RAM)*
CLB

Matrix
Total
CLBs

Number
of

Flip-Flops
Max.

User I/O
XC4003E 238 3,000 3,200 2,000 - 5,000 10 x 10 100 360 80
XC4005E/XL 466 5,000 6,272 3,000 - 9,000 14 x 14 196 616 112
XC4006E 608 6,000 8,192 4,000 - 12,000 16 x 16 256 768 128
XC4008E 770 8,000 10,368 6,000 - 15,000 18 x 18 324 936 144
XC4010E/XL 950 10,000 12,800 7,000 - 20,000 20 x 20 400 1,120 160
XC4013E/XL 1368 13,000 18,432 10,000 - 30,000 24 x 24 576 1,536 192
XC4020E/XL 1862 20,000 25,088 13,000 - 40,000 28 x 28 784 2,016 224
XC4025E 2432 25,000 32,768 15,000 - 45,000 32 x 32 1,024 2,560 256
XC4028EX/XL 2432 28,000 32,768 18,000 - 50,000 32 x 32 1,024 2,560 256
XC4036EX/XL 3078 36,000 41,472 22,000 - 65,000 36 x 36 1,296 3,168 288
XC4044XL 3800 44,000 51,200 27,000 - 80,000 40 x 40 1,600 3,840 320
XC4052XL 4598 52,000 61,952 33,000 - 100,000 44 x 44 1,936 4,576 352
XC4062XL 5472 62,000 73,728 40,000 - 130,000 48 x 48 2,304 5,376 384
XC4085XL 7448 85,000 100,352 55,000 - 180,000 56 x 56 3,136 7,168 448

Table 2.3: The XC4000E/XL family [28]
27

Background and Previous Work
Random Access Memory (RAM) in each configurable logic block (CLB). The 4000XL parts are

fabricated in a 0.35 µm process. The 4000XL is an island-style FPGA architecture and in the next

two sections we discuss the logic block architecture and the routing architecture.

2.5.1 Logic Block Architecture

A simplified view of the 4000XL logic block architecture is shown Figure 2.8 (which does

not include the RAM and carry logic). Each logic block contains two 4-input lookup tables (4-

LUTs), one 3-LUT, two D-type flip-flops, and two 16x1 banks of RAM. Each logic block has

carry logic to allow carry chains to be formed using high-speed direct connections between

adjacent logic blocks.

Each of the 4-LUTs receives its inputs from the inputs to the logic block (F and G). The 3-

LUT can receive its inputs from two sources, either all from inputs to the logic block (C), or from

one or both of the outputs of the 4-LUTs (F' and G'). It is possible to realize a number of different

types of functions, ranging from two functions of four inputs and a third function of three inputs,

up to some functions of nine inputs.

LOGIC
FUNCTION

OF
G1-G4

G4

G3

G2

G1

G'

LOGIC
FUNCTION

OF
F1-F4

F4

F3

F2

F1

F'

LOGIC
FUNCTION

OF
F', G',
AND
H1

H'

DIN
F'
G'
H'

DIN
F'
G'
H'

G'
H'

H'
F'

S/R
CONTROL

D

EC
RD

Bypass

Bypass

SD
YQ

XQ

Q

S/R
CONTROL

D

EC
RD

SD
Q

1

1

K
(CLOCK)

Multiplexer Controlled

Y

X

DIN/H2H1 SR/H0 EC

C1 • • • C4
4

Figure 2.8: Detailed view of a XC4000E/XL logic block [28]
28

Background and Previous Work
2.5.2 Routing Architecture

Figure 2.9 shows the overall routing architecture of the 4000XL. The shaded arrows

indicate extra routing resources that are only present in the 4000XL parts. The extra routing is

required to successfully route circuits in the larger parts.

Table 2.4 gives the number of each type of track segment in each routing channel for the

4000XL. There are four types of general routing resources: single-length segments, double-length

segments, quad-length segments, and long-length segments (which span the entire FPGA).

Figure 2.10 shows a detailed view of the routing resources for one logic block. There are

two types of connections between routing resources:

1. Connections between track segments of the same length.

2. Connections between track segments of different lengths.

The switch box used for the switching of single-length and double-length track segments is shown

in Figure 2.10, highlighted by a solid box in the centre. The switch box is planar with Fs=3. Each

of the switch points in a switch box is composed of six pass transistor switches. The double-

length track segments rotate at the end of each logic block tile, so that each double-length will

switch at every other switch box.

A switch box for quad-length track segments is shown by a solid box in the upper-left

corner of Figure 2.10. The quad-length segments rotate in groups of four, so that each quad-length

segment switches at every fourth switch box. Each quad to quad connection contains six pass

Quad

Quad

Single

Double

Long

Direct
Connect

Long

CLB

Long Global
Clock

Long Double Single Global
Clock

Carry
Chain

Direct
Connect

Figure 2.9: Overview of routing for a logic block (shaded = 4000XL only) [28]
29

Background and Previous Work
transistors and one buffer that can be used by any one of the incoming quad segments to drive

outgoing segments. The buffers are useful for implementing high-speed connections that span a

long distance.

The long-length track segments do not switch to any other long-length segments in the logic

block. Long-length segments connect to other long-length segments in the orthogonal direction at

the edges of the FPGA. There are two types of long-length segments: the first type contain a

programmable splitter in the middle of the segment to allow the long segment to be split into two

independent segments; the other type contains buffers at the 1/4, 1/2, and 3/4 points of the

segment. These buffers also improve the performance for FPGAs with very large array sizes.

There are also many connections between segments of different lengths. In each logic

block, most of the quad-length track segments connect to single and double-length segments in

the orthogonal direction using pass transistor switches. These connections are highlighted by the

two solid circles in Figure 2.10. The rotation of quad and double track segments causes the

connections to shift in each logic block tile. Long-length segments connect to single-length

segments in the orthogonal direction. These connections do not change from tile to tile.

Table 2.4: Routing resources per logic block in 4000XL parts [28]

4000XL

Routing Resource Vertical
Horizonta

l

Single-Length
Track Segment

8 8

Double-Length
Track Segment

4 4

Quad-Length
Track Segment

12 12

Long-Length
Track Segment

10 6

Direct Connects 2 2

Globals 8 0

Carry Logic 1 0

Total 45 32
30

Background and Previous Work
The connection boxes, for connecting logic block pins to track segments, are highlighted by

dashed boxes in Figure 2.10. The inputs to the logic block have Fc=W, while the outputs have

Fc=0.25W.

F1

C1

G1

F2 C2 G2

F3

C3

G3

F4 C4 G4

K

X

Y

XQ

YQ

LONGSINGLE

DOUBLE

LONG

GLOBAL

QUAD

LONG

SINGLE

DOUBLE

LONG

LONG

DOUBLE

DOUBLE
QUAD

GLOBAL

Common to XC4000E and XC4000X

XC4000X only

Programmable Switch Matrix

CLB

DIRECT
FEEDBACK

DIRECT

FEEDBACK

Figure 2.10: Detailed view of routing for a logic block [28]
31

Background and Previous Work
2.6 Summary

In this chapter, we have introduced some basic FPGA terminology and given an overview of

many different routing algorithms. We looked at previous work on high-speed routing algorithms

and described the algorithms upon which our high-speed routing is based in detail. We also

described some previous work on routability prediction. Finally, we described the Xilinx

XC4000XL architecture in detail.

In the next chapter, we describe a new high-speed timing-aware routing algorithm for

FPGAs.
32

Routing Algorithm
Chapter 3

Routing Algorithm

In this chapter, we describe a new high-speed timing-aware routing algorithm for FPGAs.

We begin by describing the two experimental architectures used to evaluate the effectiveness of

the high-speed algorithm. We then describe our base algorithm and enhancements designed to

reduce the execution time and improve the circuit delay. Finally, we present a summary of the

effectiveness of each of the algorithm enhancements, based on experiments.

When discussing the effectiveness of the algorithm enhancements, we make reference to

two classes of routing problem: a routing problem is difficult if there are only just enough routing

resources in the FPGA to route a circuit; a routing problem is low-stress if there are significantly

more routing resources in the FPGA than required by a circuit. It is straightforward to

experimentally make a routing problem either difficult or low-stress by controlling the amount of

routing resources in the target FPGA.

For all of the experimental results presented in this section, the experiments were run on a

set of ten large benchmark circuits, which are described in the next chapter.

3.1 Experimental FPGA Architectures

In this section, we describe the two FPGA architectures we used to experiment with the

high-speed algorithm. We describe them in this chapter because details of the two architectures

are required to fully understand much of the material in this chapter.
33

Routing Algorithm
3.1.1 Simple FPGA Architecture

The simple FPGA architecture was used in the early stages of this work, to quickly gauge

how much compile time speedup was possible. It is also the architecture that has been used in

much of the previous FPGA routing research.

All of the track segments in the simple architecture are single-length. The switch boxes are

the Wilton switch box (described in Section 2.1), with flexibility Fs=3. Figure 3.1 (a) shows part

of the routing architecture.

The simple architecture consists of logic blocks containing one 4-LUT and one D-flip-flop.

The output of the logic block can be taken from either the 4-LUT or the D-flip-flop. There is one

input pin on each side of the logic block and the output pin is on the bottom side of the logic

block. The connection boxes have flexibility Fc=W, for both inputs and outputs. Figure 3.1 (b)

shows a logic block for the simple FPGA architecture.

3.1.2 4000X-like FPGA Architecture

We modeled a “4000X-like” FPGA architecture that closely resembles the Xilinx 4000XL

architecture described in Section 2.5. A number of changes and simplifications were made to the

4000XL architecture, because it is too difficult and time-consuming to precisely capture a

commercial architecture. In this section, we describe the logic block and routing architecture of

our 4000X-like architecture, highlighting differences from the real 4000XL architecture.

4-input
LUT D FF Output

Clock

Inputs

Figure 3.1: (a) Simple FPGA routing architecture, (b) Simple FPGA logic block

(a)

(b)
34

Routing Algorithm
3.1.2.1 Logic-Block Architecture

Recall from Section 2.5.1 that the real 4000XL contains a logic block with two 4-LUTs, one

3-LUT, and two D-flip-flops. Each logic block has 11 inputs and 3 outputs. To make things

simpler, we implemented a logic block supported by our logic synthesis tools. The 4000X-like

logic block contains four 4-LUTs and four D-flip-flops, as shown in Figure 3.2. Each logic block

contains 10 inputs and 4 outputs. The logic blocks only have 10 inputs, since inputs can be shared

by all of the 4-LUTs within the logic block [48]. Each of the logic block outputs can be registered

or unregistered, and can also be fed-back internally as an input to another 4-LUT.

For the real 4000XL, the input pin connection box has flexibility Fc=W and the output pin

connection box has flexibility Fc=0.25W. For the 4000X-like architecture, the output pins have

connection box flexibility Fc=0.25W. We reduced the Fc value for the input pin connection box to

Fc=0.3W, since the inputs of the logic block can be routed to any of the four 4-LUTs.

The real 4000XL logic block also contains direct interconnect (nearest-neighbour

connections between adjacent logic blocks) and high-speed carry chains for arithmetic. We did

not capture these features, as they require the use of higher-level CAD tools that support direct

interconnect and carry chains.

Figure 3.2: 4000X-like logic block

4-input
LUT

D FF

. .
 .

. .
 .

4

4
Outputs

Clock

10
Inputs

10

4-input
LUT

D FF
. .

 .

. .
 .
35

Routing Algorithm
3.1.2.2 Routing Architecture

The routing architecture of the real 4000XL architecture was captured as closely as

possible, with some simplifications to make the routing architecture easier to capture in VPR and

to allow for easier scaling of the number of tracks per channel. We need to scale the track count to

measure the minimum track count for a circuit and to control the difficulty of routing problems.

Recall from Section 2.5 that the real 4000XL architecture contains four different types of

track segments; single-length, double-length, quad-length, and long-length track segments. The

4000X-like architecture uses the exact same length of track segments. For our experimental

architecture we need to be able to vary the track count, so instead of choosing a fixed track count

like the real 4000XL architecture, we use the percentages of each type of track segment given in

Table 3.1. When varying the track count, we choose track lengths to maintain the percentages in

Table 3.1 as closely as possible. The real 4000XL architecture also has slightly different numbers

of tracks in the x and y direction. We chose to simplify the architecture by using the same number

of track segments in both directions.

The single-length track segments in our 4000X-like architecture are exactly the same as

those in the real 4000XL architecture. Recall from Section 2.5.2, that the switch box is planar and

the switches are all pass transistor switches. The double-length segments are also identical to the

real 4000XL architecture. Half of the double-length segments switch in each switch box, using

pass transistors.

In the real 4000XL architecture, the quad-length track segments switch after every fourth

logic block, with one quarter of the segments switching in every switch box. We captured this

exact same staggering in the 4000X-like architecture. In the real 4000XL architecture, the quad-

length segments switch at the two ends using pass transistor switches, with one set of optional

buffers that can be used instead of any of the pass transistors. We chose to use buffered switches to

Table 3.1: Track segments in 4000X-like architecture

Segment Length % of Total

single 25.0

double 12.5

quad 37.5

long (spans whole FPGA) 25.0
36

Routing Algorithm
connect between every quad-length track segment, because the optional buffer feature is not

supported by VPR.

Recall from Section 2.4.2, that quad-length track segments also switch to single and double-

length track segments at every switch box. Also, recall from Figure 2.10 that the rotation of the

quad tracks means that at each switch box, different quad-length track segments connect to

different single and double-length track segments. We captured the switching between quad-

length segments and segments of other lengths exactly as specified in the real 4000XL

architecture. When scaling our architecture, we simply replicate the switching pattern.

The long track segments in the real 4000XL architecture span the whole FPGA and do not

connect at intersections, except at the edge of the FPGA. Some of the long segments are split in

the middle using a tri-state buffer, allowing the long segment to be split into two independent

segments. The remaining long track segments can be split into quarters. We chose to place buffers

at each quarter of every long track segment in the 4000X-like architecture, again for ease of

implementation. As in the real 4000XL, intersecting long track segments do not connect, except at

the edges of the FPGA.

3.1.2.3 Delay Model

To calculate reasonable critical path delays, it is important to have a realistic delay model.

VPR contains an Elmore delay model for an FPGA with a segmented routing architecture

containing both pass transistor and buffer switches [33]1. We use the same timing model for the

4000X-like architecture. The Elmore delay model requires a number of resistance, capacitance,

and delay values for components such as pass transistor switches, buffers, logic block I/Os, and

I/O pads. Realistic values were extracted from the TMSC 0.35 µm CMOS process [49]. More

information about how the delay values were obtained can be found in [33]. We do not list the

values for the various components of the delay model, as the data is confidential.

Now that we have described the two experimental FPGA architectures, in the rest of this

chapter we describe the new high-speed timing-aware routing algorithm.

1. Many thanks to Vaughn Betz for graciously providing the delay model.
37

Routing Algorithm
3.2 Base Algorithm

In this section, we briefly review the routability-driven VPR routing algorithm [34],

described in detail in Section 2.3.4.5, because the new high-speed algorithm is based on this

algorithm.

Recall that the routability-driven VPR router is an enhanced version of the routability-

driven PathFinder algorithm [30], described in Section 2.3.4.4. Multiple routing iterations are

used to route nets, during which every net is ripped-up and re-routed. In a given iteration, routing

resources are allowed to be over-used, but the penalty for over-using routing resources is

gradually increased during successive iterations. This gradual increase in the penalty for over-

used resources causes the nets using these resources to use other uncongested resources. It may

require several iterations to successfully route a circuit. If a circuit cannot be routed after 30

iterations, failure is declared.

While VPR obtains very high-quality results, the execution times are fairly long. The long

execution times are due to the fairly inefficient breadth-first search and the large number of

routing iterations required to route a circuit (typically 10 to 20 iterations).

In the next two sections, we describe enhancements to this base algorithm to reduce the

compile time and the circuit delay.

3.3 Compile-Time Enhancements

In this section we describe five enhancements to the base routing algorithm to improve the

compile time.

3.3.1 Directed Search

Recall from Section 2.3.1 that the breadth-first search used by many maze routers, including

the routability-driven VPR router, spend a significant amount of time exploring paths in the wrong

direction. A directed search is more efficient because it expands routing resources that lie closer to

the target sink first (see Figure 2.5), reaching the target sink much faster compared to a breadth-

first search, especially when there is little routing congestion. A directed search was tried as an

enhancement to the PathFinder algorithm in [30], but no experimental data was presented.
38

Routing Algorithm
Although the concept of a directed search is not new, it is important to describe the precise

implementation, as there are many different ways to implement it, each with different quality.

Figure 3.3 lists pseudocode for the enhanced routability-driven router, that has been altered to

employ a directed search [36]. This pseudocode is essentially the same as the pseudocode given

for the Pathfinder routing algorithm, so we refer the reader to Section 2.3.4.4 for a detailed

description. The key enhancement to the base algorithm is the directed search. The directed

search is implemented as part of the cost function on line 9 in Figure 3.3. The cost of using a

routing resource node m, TotalCost(m), is calculated as:

(3.1)

PathCost(m) is the total of the cost of all of the routing resource nodes used to reach node m; it

accounts for both the number of track segments used to reach node m and any congestion encoun-

tered along the path. When there is no routing congestion along the path to node m, PathCost(m)

is simply a count of the total number of track segments used to reach node m. PathCost(m) is cal-

culated as:

(3.2)

where Cost(l) is the congestion cost for node l, which is calculated as:

[1] Loop until no shared resources exist or maximum number iterations exceeded
[2] Loop over all net sources i
[3] Rip up routing tree RT(i)

[4] RT(i) ← net source i
[5] Loop over all sinks t(i,j)

[6] PQ ← RT(i) with cost=α·ExpectedCost(m,j) for each node m in RT(i)
[7] Loop until t(i,j) is found
[8] Remove lowest cost node m from PQ
[9] Add all neighbouring nodes n of node m to PQ with

cost=TotalCost(m)
[10] End
[11] Loop over nodes n in path t(i,j) to source i (backtrace)
[12] Update p(n) for node n
[13] Add n to RT(i)
[14] End
[15] End
[16] End
[17] Update h(n) for all nodes
[18] End

Figure 3.3: Pseudocode for Directed Search Router

TotalCost m() PathCost m() α ExpectedCost m j,()⋅+=

PathCost m() Cost l()
l path from RT(i) to m∈

∑=
39

Routing Algorithm
(3.3)

Here b(l) is the base cost for using node l, p(l) is the present congestion penalty for node l, and h(l)

is the historical congestion penalty for node l. The base cost for track segments is 1.0, input pins

0.95, and output pins 1.0. The present congestion penalty and the historical congestion penalty are

calculated as described in Section 2.3.4.5.

The term ExpectedCost(m,j) in Equation (3.1) is a measure of the expected distance

remaining from node m to reach the target sink j. The ExpectedCost term turns the basic algorithm

into a directed search. If two routing resource nodes have the same PathCost, but one node is

further away from the target sink than the other node, the closer node will have a lower

ExpectedCost, and hence a lower TotalCost.

The expected distance is determined by counting the minimum number of track segments of

the same length as node m required to reach the target sink j. We assume that the same type of

track segments will be used to reach the target sink and that the track segments along the shortest

path are actually available. This is an approximation, because in the 4000X-like architecture it is

possible to switch between different length track segments. But, in many cases, if the router starts

on a certain length track segment it will use more of the same type of track segment to reach the

source. If there is routing congestion, then the router may be forced to switch to a different length

track segment.

Figure 3.4 illustrates a simple example of the ExpectedCost, where the number on each

track segment is the ExpectedCost to reach the sink. Starting from the source, the sink can be

reached by using either a single-length segment or one of two double-length segments. Using the

single-length segment would require three more single-length segments to reach the sink. The

double-length segment, shown in black, would require just one more segment to reach the sink.

The other double-length segment, shown in gray, would two more segments to reach the sink,

since the starting point of the track segment is offset from the source logic block.

The factor α in Equation (3.1) is called the direction factor, it determines how aggressively

the router drives towards the target sink. In Equation (3.1), a higher value of α means that the

router is more concerned about nearness to the target sink from node n (the ExpectedCost term)

than the length of the path to reach node n or routing congestion along the path (the PathCost

term). With an α of 0 the search is equivalent to a breadth-first search. An α value greater than 0 is

a directed search. The larger the α value, the harder the router will try to route towards the target

sink by going around congestion, before trying to find a shorter path. Very large values of α will

Cost l() b l() h l() p l()⋅ ⋅=
40

Routing Algorithm
often result in excessively long connections, in the presence of congestion, since the nearness of

the target sink is more important than wirelength.

To determine the best value of α for the simple architecture, we routed ten benchmark

circuits (described in Chapter 4) using multiple values of α between 1.0 and 2.0. We routed each

circuit with two different track counts. The first track count was near the minimum track count

required by each circuit to make the problem difficult and the second track count was 30% higher

than the minimum track count to make the problem low-stress. Figure 3.5 shows a plot of the

average compile time, for both difficult and low-stress routing problems, versus the direction

factor. For the low-stress routing problems, the compile time is fairly constant for any direction

factor greater than 1.0. For the difficult routing problems, the compile time is fastest for values of

α between 1.1 and 1.6. For direction factors greater than 1.6, the router is creating even more

congestion by selecting unusually long paths to go around congestion, which makes the routing

problems even more difficult to complete. We chose to use an α value of 1.5 for the simple

architecture.

We also measured the direction factor for the 4000X-like architecture, using the same 10

benchmark circuits. Again, we routed each circuit with two track counts--one to make the

problem difficult and one to make the problem low-stress. For the 4000X-like architecture we also

measured the circuit delay for each value of α. We extended the range of α values from 0.5 to 3.0,

because some interesting effects occurred outside the 1.0 to 2.0 range.

Figure 3.6 (a) shows the average compile time and circuit delay versus the direction factor,

for low-stress routing problems. The average compile time for low-stress problems is the shortest

for values of α greater than or equal to 1.0. Since there is little routing congestion, the router can

proceed directly towards a target sink, without detouring. For values of α less than 1.0, the router

is behaving more like a breadth-first router, since the pathlength is weighted higher than the

Figure 3.4: Example of ExpectedCost

Source Sink

1 0

12 0

123 0
41

Routing Algorithm
ExpectedCost in Equation (3.1). The average circuit delay for low-stress problems is near

minimum for values of α less than or equal to 2.0; in this range the circuit delays are between 90

nanoseconds and 92 nanoseconds. For direction factors greater than 2.0 the circuit delay starts to

increase, reaching 96 nanoseconds for an α value of 3.0. For large values of α the router is

extremely directed and will accept the first path found for a net, even if the path has a large delay.

Figure 3.6 (b) shows the average compile time and circuit delay versus the direction factor,

for difficult routing problems. The average compile time for difficult routing problems is the

shortest for values of α between 1.0 and 2.0. For values of α less than 1.0 the router is again

behaving more like a breadth-first router, since the pathlength is weighted higher than the

ExpectedCost. For values of α greater than 2.0 the router is creating even more congestion by

selecting unusually long paths to go around congestion. The circuit delay for the difficult routing

problems is near minimum for all values of α between 0.5 and 2.0. For direction factors greater

than 2.0 the router is again extremely directed and will accept the first path found for a net, even if

the path has a large delay.

Given all of the data for both low-stress and difficult routing problems, we chose to use a

direction factor of 1.001 for the 4000X-like architecture.

1.0 1.2 1.4 1.6 1.8 2.0
Direction Factor (α)

0

20

40

60

80

A
ve

ra
ge

 C
om

pi
le

 T
im

e
(s

)

difficult
low -stress

Figure 3.5: Compile time vs. α for simple architecture
42

Routing Algorithm
3.3.2 Fast Routing Schedule

Recall from Section 2.3.4.5 that a fast routing schedule can be used to speed up the

routability-driven VPR router by 2 or 3 times, requiring only 2% to 4% more tracks, compared to

using the default routing schedule. The fast routing schedule sets the penalties for over-using

routing resources to 10000 for both the present congestion penalty, p(n), and the historical

congestion penalty, h(n). This forces the router to avoid over-using routing resources unless

absolutely necessary--resulting in a decrease in the total number of routing iterations.

When the fast routing schedule is applied to the new high-speed router, there is a significant

reduction in the compile time. Using the directed search with the fast routing schedule produces

an average speedup of 17 times over using the directed search with the default routing schedule.

Overall, using the directed search with the fast routing schedule is 50 times faster on

average, compared to the routability-driven VPR router also using the fast routing schedule.

Figure 3.6: Compile time and circuit delay vs. α, (a) low-stress routing problems, (b) difficult
routing problems, using the 4000X-like architecture

(a) (b)

0.0 1.0 2.0 3.0
Direction Factor (α)

10

15

20

25

30

35

40

A
ve

ra
ge

 C
om

pi
le

 T
im

e
(s

)
Compile Time

88

90

92

94

96

A
ve

ra
ge

 C
ir

cu
it

D
el

ay
 (

ns
)

Circuit Delay

0.0 1.0 2.0 3.0
Direction Factor (α)

50

100

150

200

250

A
ve

ra
ge

 C
om

pi
le

 T
im

e
(s

)

Compile Time

100

105

110

115

120

A
ve

ra
ge

 C
ir

cu
it

D
el

ay
 (

ns
)

Circuit Delay
43

Routing Algorithm
3.3.3 Net Ordering

In the presence of significant routing congestion, routing a high-fanout net is far more

difficult than routing a low-fanout net. This is because very high-fanout nets tend to have sinks

that cover most of the area of an FPGA, and therefore require many routing resources. On the

other hand, low fanout nets (especially 2 terminal nets) tend to be very localized, requiring

minimal routing resources.

Our goal is high-speed compilation and we want to route all of the nets successfully in just

one iteration; therefore, we route the most difficult nets first, when there is no routing congestion.

There is a higher likelihood of routing an easier net successfully in the presence of congestion,

compared to a difficult net. Therefore, we route the nets in order from highest fanout to lowest

fanout. Before starting the first iteration, a heap sort is used to sort the nets.

We ran experiments, using the 4000X-like architecture, to measure the effectiveness of the

net ordering enhancement. We found that net ordering improved the compile time for difficult

routing problems by 23%, on average, compared to routing the nets in the order which they

appeared in the circuit netlist. For low-stress routing problems, there was no improvement in

compile time, since there was little routing congestion when routing any of the nets.

Net ordering also helps to improve the circuit delay, since there is a high probability that the

critical path of the circuit will involve the highest fanout nets. By routing the highest fanout nets

first, they have a better chance of using faster routing resources. Through experimentation, it was

found that for difficult routing problems, routing the highest fanout nets first improved the circuit

delay by an average of 11%, compared to routing the nets in the order which they appeared in the

circuit netlist. For low-stress routing problems, the circuit delay improved by an average of 14%.

3.3.4 Sink Ordering

Another way to reduce the compile time is to choose the order in which the sinks of a multi-

terminal net are routed. Figure 3.7 shows two examples of the affect that sink ordering could have

on routing a three terminal net. Figure 3.7 (a) shows how routing the to the closest sink first can

result in better re-use of the routing resources compared to (b) where the furthest sink is routed

first.

Routing nets more efficiently with fewer routing resources makes the routing problem

easier to solve in two ways: First, there are more routing resources available for nets that are
44

Routing Algorithm
routed later. With more routing resources available for routing other nets, it is more likely that the

circuit can be routed in fewer iterations. Second, routing nets more efficiently also requires fewer

priority queue operations, which results in a decrease in compile time.

Unfortunately, the topology of the sinks in a high-fanout net affects how well routing

resources may be re-used. For some nets, randomly ordering the sinks may be somewhat better

than ordering the sinks by distance from the source. But, in other cases a random ordering may be

much worse than ordering the sinks. We found that ordering the sinks from closest to furthest

provided an overall improvement in compile time for every circuit we tested.

Using the 4000X-like architecture, we found that compile times for both low-stress and

difficult problems improved by 21%, on average, when the closest sinks were routed first,

compared to routing the sinks in the order which they appeared in the circuit netlist. Note that the

closest-first sink ordering reduced the circuit delay of difficult routing problems by an average of

10%, but had no effect on the circuit delay of low-stress problems.

In SROUTE [5], a similar sink ordering is used, except that the ordering is determined

during run-time. When routing a net, the next sink chosen as a target by the router is the sink

which is closest to any part of the existing routing tree. For very high-fanout nets, SROUTE

requires significant computation time to find the closest sink. For our method, the sinks for each

net only have to be sorted once, before the first routing iteration.

3.3.5 Binning

 The algorithm described in Figure 3.3 is somewhat inefficient, because the entire routing

tree is placed on the priority queue when starting to route each sink of a net. This is often

(a)

Figure 3.7: Two methods of routing a multi-terminal net: (a) closest sinks first, (b) furthest
sinks first

(b)

sink 1 sink 2sink 1 sink 2

source source
45

Routing Algorithm
unnecessary because, for higher fanout nets, most of the current routing tree is unlikely to be

involved in the subsequent connections. The priority queue is essentially used to sort the track

segments in order of increasing distance to the sink, so that the first track segment removed from

the priority queue is typically the closest one to the sink. In the worst case, for an FPGA

containing N logic blocks and a net with N sinks, this approach exhibits O(N2logN) behaviour for

the net. Since many circuits have at least a few extremely high fanout nets, this typically slows the

router.

To overcome this effect, we devised a technique called binning. The key idea is that only the

portions of the current routing tree that are closest to the current target sink need to be placed on

the priority queue. Figure 3.8 illustrates a simple example of the binning technique. In this

example there are four bins, each containing one quarter of the total track segments. A net with

fanout three is being routed, and two of the three sinks have already been routed. When routing

the last sink, instead of placing the entire net on the priority queue, only those parts of the net in

bin 4 are placed on the priority queue, thus reducing the number of priority queue operations. For

relatively low fanout nets, binning does not save many priority queue operations. However, when

used on very high fanout nets, binning significantly reduces the number of priority queue

operations.

We define the minimum binning fanout (MBF) as the minimum fanout below which the

binning enhancement is not used. To determine the best MBF value, we routed a number of

benchmark circuits (described in Chapter 4) using MBFs ranging from 1 to 10,000, and averaged

the results across all the circuits. Figure 3.9 shows a plot of the average low stress compile time

versus different values of MBF, for the simple FPGA architecture. Any nets with fanout equal to

Bin 1 Bin 2

Bin 4Bin 3

Figure 3.8: Example of the binning technique
46

Routing Algorithm
or greater than the MBF were routed using binning. For an MBF of 1, binning is used for all the

nets, and the average compile time is about 16 seconds. The average compile time decreases to a

minimum of about 5 seconds, with an MBF of 4. The average compile time starts to increase

noticeably when the MBF exceeds 100. For an MBF of 10000, binning is not used at all. Based on

Figure 3.9, we chose to only use binning for nets with fanout greater than 50, although any value

between 4 and 100 produces nearly equal results.

The pseudocode of Figure 3.3 can be altered to use binning by replacing line 6 with:

PQ ← Nodes in bin containing j, with cost=α·ExpectedCost(n,j) for each node n in bin

This line places the contents of the bin containing the target sink j onto the priority queue. While

updating the routing tree for net i, the new nodes are added to their corresponding bin by adding

the following line after line 13:

Add node n to corresponding bin

There are three key issues that have to be addressed with binning: the size of the bins; what

to do when a bin containing a sink does not contain any part of the routing tree for the net; and

how the underlying routing architecture and the size of the circuit limit the effectiveness of

binning.

1 10 100 1000 10000
Minimum Binning Fanout

0

5

10

15

20

A
ve

ra
ge

 C
om

pi
le

 T
im

e
(s

)

Figure 3.9: Average low-stress compile time vs. minimum binning fanout
47

Routing Algorithm
3.3.5.1 Bin Size

If the bin size is too small (in the extreme case the segments in just one logic block tile),

then the quality of the routing degrades since an insufficient amount of the prior route is available

as potential “start points” for the connection to the sink in that bin. If the bin size is too large (in

the extreme case the entire FPGA), then unnecessary segments will be put on the priority queue

and the compile time will increase. Since the average distance between sinks can vary for

different nets, our router computes the bin size based on the span of each net.

Before a net is routed, the average area per sink is calculated as the area of the bounding box

of the net terminals divided by the number of sinks. The bin size for a net is calculated as the

average area per sink multiplied by the bin size scaling factor. The bin size scaling factor

increases the bin size, to increase the probability that a bin containing a sink will also contain a

sufficient amount of the routing tree to make a connection to the sink.

To determine a suitable value for the bin size scaling factor, we routed ten benchmark

circuits (described in Chapter 4) using different values for the bin size scaling factor. Table 3.2

lists the bin size scaling factors, the average minimum track count, the average compile time for

difficult routing problems, and the average compile time for low-stress routing problems.

The average minimum track count is nearly equal for all the different bin size scaling

factors. The average compile time for low-stress problems is nearly constant for scaling factors

greater than or equal to 1.0. The compile time for low-stress problems with a bin size scaling

factor of 0.5 is about 20% higher, on average, compared to the other bin size scaling factors. The

extra time is a result of the bins being too small, so that the bins do not contain enough of the

routing tree to allow a connection to a sink to be found quickly.

Table 3.2: Compile times for different bin size scaling factors

Bin Size
Scaling Factor

Geometric Average
Minimum Track

Count

Geometric Average
Difficult

Compile Time (s)

Geometric Average
Low-Stress

Compile Time (s)

0.5 13.6 114.5 6.6

1.0 13.6 81.8 5.4

4.0 13.7 94.5 5.4

9.0 13.7 122.8 5.6
48

Routing Algorithm
For the difficult routing problems, the bin size scaling factor of 1.0 produced the fastest

average compile time. For a bin size scaling factor of 0.5, the bins do not contain enough of the

routing tree to allow a connection to a sink to be found quickly. For scaling factors greater than

1.0, each bin contains much more of the routing tree than required make quick connections. Based

on the results in Table 3.2, we chose to use a bin size scaling factor of 1.0.

3.3.5.2 Empty Bins

If the bin containing a sink does not contain any part of the route so far, then the portions of

the net in its eight neighbouring bins are added to the priority queue. The neighbouring bins may

contain parts of the route relatively close to the target sink. If the neighbouring bins are also

empty, then the entire pre-existing routing tree is placed on the priority queue. In the best case for

an FPGA containing N logic blocks and a net with N sinks, if every sink could be routed using

just the routing in the bin containing the sink, the run-time complexity for the net would be

reduced by a factor of N to O(NlogN). This is assuming that the entire routing tree never has to be

placed back onto the priority queue. In reality, the routing tree will have to be placed back onto the

priority queue at least a few times, so we expect the behaviour to be somewhere in between

O(NlogN) and O(N2logN).

3.3.5.3 Routing Architecture and Circuit Size Dependence

For the simple architecture, which contains only unit-length track segments, we found

binning to be highly effective for reducing the compile time. Through experimentation with

binning, we found that the low-stress compile time improved by 50% on average, compared to

just using a directed search without binning.

Using the same circuits with our 4000X-like architecture, we found that binning was no

longer effective for the following two reasons:

1. By packing a circuit into an architecture containing a logic block with four 4-LUTs, the

number of pins on the highest fanout net is reduced by up to four times, compared to a

logic block with one 4-LUT. Also, the area that the highest fanout net can cover is

reduced by four times. In total, routing the highest fanout net using the 4000X-like archi-

tecture is approximately one sixteenth as difficult compared routing the same net using

the simple architecture. Figure 3.10 shows the minimum binning fanout (MBF) versus
49

Routing Algorithm
compile time for two circuits, for the simple architecture. The smaller circuit, spla,

shows almost no improvement in compile across the range of MBFs. The bigger circuit,

clma, shows a speedup of about 3 times for the range of MBFs from 1 to 400, compared

to not binning any nets (MBF of 1000). Therefore we can conclude that the effectiveness

of binning depends on the size of the routing problem.

2. The second reason that binning is not effective is due to the segmented routing architec-

ture of the 4000X-like architecture. The simple architecture contains just single-length

segments, which fit into exactly one bin. The 4000X-like architecture contains various

length segments, which do not always fit into exactly one bin. For example, a long-length

track segment may cross 10 bin boundaries. After placing the contents of a bin back on

the priority queue, if the router decides to expand a long-length segment, then all of rout-

ing resources attached to the long-length segment must be placed on the priority queue.

Compared to a single-length track segment, a long-length track segment is attached to

many more routing resources, requiring much more time to expand all of the neighbour-

ing resources.

We tried routing circuits on the 4000X-like architecture with the long-length segments

replaced by quad-length segments, and still found binning to be ineffective. The reduction in the

size of the problem appears to be the dominating factor. For this work the largest available

Figure 3.10: Low-stress compile time vs. minimum binning fanout for circuits spla and clma

1 10 100 1000 10000
Minimum Binning Fanout (MBF)

0

20

40

60
C

om
pi

le
 T

im
e

(s
)

spla (3690 logic blocks)
clma (8383 logic blocks)
50

Routing Algorithm
benchmark circuit contained about 20,000 4-LUTs. For even larger benchmark circuits (more

than 100,000 4-LUTs) binning should once again prove an effective way to reduce the compile

time.

3.4 Circuit Delay Enhancements

The enhancements described in the previous section were principally designed to improve

the compile time, although the net ordering and sink ordering also improved the circuit delay. In

this section we describe enhancements to the base algorithm designed specifically to improve the

circuit delay. These enhancements were tested only with the 4000X-like architecture, since it

contains a segmented routing architecture and a realistic delay model.

Many of the routing algorithms described in Chapter 2 are completely routability-driven--

they do not make any attempt to optimize circuit delay. The problem with completely ignoring

delay is that the resulting circuit delays can be extremely large. For example, in comparing the

routability-driven VPR router to the timing-driven VPR router, the circuit delays for 20 MCNC

circuits were 1.5 to 5 times worse for the routability-driven router [33]. At the other extreme are

fully path-based timing-driven routers, such as the timing-driven VPR router, that use full path-

based timing analysis to optimize circuit delay when routing circuits. The timing-driven VPR

router requires a number of iterations (typically 6 to 10) for nets to successfully negotiate for the

use of timing critical resources (even for low-stress routing problems), which leads to long

compile times.

A middle ground, alternative approach is a net-based (as opposed to a path-based) approach.

Here we simply work to ensure that no net has an overly long delay. We term this kind of

approach “timing-aware”, as opposed to fully path-based timing driven. While a timing-aware

approach may not be able to achieve as high-quality circuit delays as those of a timing-driven

router, the circuit delays will be significantly improved over purely routability-driven routers.

In the next two sections we describe two enhancements to the new high-speed routing

algorithm to make it a timing-aware algorithm.

3.4.1 Switch Counting

The most common way in which delay is built up in a net is by connecting a large number

of pass transistor switches in series, since the delay through pass transistors grows quadratically
51

Routing Algorithm
as the number of pass transistors increases [50]. The delay of a net can be improved by avoiding

long sequences of pass transistors and using some buffers instead, since the delay through a

number of buffers grows linearly [50].

Figure 3.12 shows two examples for routing a two-terminal net using a mixture of pass

transistor and buffered switches. Using the Elmore delay model, the delay of the net in Figure

3.12 (a) is 1.875 ns. If one of the pass transistor switches is replaced by a buffer, as shown in

Figure 3.12 (b), then the delay decreases to 1.125ns.

One way in which long sequences of pass transistor switches can be avoided is by counting

the number of pass transistors used to reach a particular routing resource and adding the count

into the cost function used by the router in Equation (3.1). When the number of pass transistors

grows large, the cost of the current path will become very expensive, causing the router to try to

find a path that uses a buffered resource. The number of pass transistors that are in a sequence is

squared, like the Elmore delay, because this is more realistic than simply counting pass

transistors.

Figure 3.12 shows an example of how the switch count is calculated. Each sequence of pass

transistor switches, separated by at least one buffer, is counted and squared. We define

SwitchCount(n) as the sum of the number of pass transistors in each sequence squared, used to

reach node n

We add the SwitchCount to Equation (3.1) as:

(3.4)

where β is the switch count weight. β is between 0 and 1 and controls how many pass transistors

in a series the router will tolerate before trying an alternative route. With a β of 0, the router com-

pletely ignores switch counting, while a β of 1 causes the router to try and avoid even short series

Source Sink

Figure 3.11: Examples of routing use pass transistor and buffered switches

Source Sink

(a) Elmore Delay = 1.875 ns

(b) Elmore Delay = 1.125 ns

Rpass = 500 Ω
Cwire = 250 fF
Tbuff = 125 ps
Rbuff = 500 Ω

TotalCost n() PathCost n() α ExpectedCost n j,() β SwitchCount n()⋅+⋅+=
52

Routing Algorithm
of pass transistors by trying to use more buffered resources. A large value for β will also cause an

increase in the compile time, because the SwitchCount factor in Equation (3.4) will start to domi-

nate the directed search, and more time is spent back-tracking to search for buffered resources.

An example of the effect of the switch count is shown in Figure 3.13. In this example we

use the cost function given in Equation (3.4) with α = 1.0 and β = 0.2 for simplicity. The net being

routed contains four sinks, and the first three sinks have already been routed using double-length

segments, which are connected using pass transistor switches. When trying to connect to the

fourth sink, there are two choices: use another double-length segment (shown in grey); or use a

quad-length segment originating from the source of the net. In this example, the router will

choose the quad-length segment, because the SwitchCount has made the cost of choosing the

double-length segment higher. While choosing the quad-length segment may not be as good for

overall wirelength, it is a necessary choice for reducing the delay of the net.

To determine the best value for the switch count weight, β, we routed a number of

benchmark circuits using values of β between 0.0 and 1.0. We measured the average compile time

and circuit delay for low-stress and difficult routing problems.

Source node n

SwitchCount(n) = 22 + 32 +12 = 14

Figure 3.12: An example of counting pass transistor switches

sink

source

1

2 3 4
TotalCost = 1 + 0 + 0.2*32 = 2.8

cost = 1 + 1 + 0 = 2.0

Figure 3.13: Example of SwichCount

= pass transistor switch

Path
Cost

Expected
Cost

Switch
Count
53

Routing Algorithm
Figure 3.14 (a) shows a plot of the average compile time and circuit delay versus β, for low-

stress routing problems. The compile time for low-stress problems increases as the value of β

increases. As β increases, the router tries increasingly harder to find paths with fewer pass

transistor switches, requiring more compile time. The circuit delay for low-stress problems is

highest for a β value of 0.0, since the router does not pay any attention to minimizing the use of

pass transistor switches. For any value of β greater than 0.0 the circuit delay is near its minimum;

since there is little routing congestion, the router has an easy time avoiding the use of long series

of pass transistor switches.

Figure 3.14 (b) shows a plot of the average compile time and circuit delay versus β, for

difficult routing problems. The compile time for difficult problems increases as the value of β

increases, again due to the increasing effort by the router to find paths with fewer pass transistor

switches. The circuit delay for difficult problems is fairly large for a β value of 0.0, since the

router does not pay any attention to minimizing the use of pass transistor switches. For any values

of β between 0.01 and 0.4, the circuit delay is near its minimum value. The average circuit delay

starts to increase significantly for values of β greater than 0.4. A large β value causes the router to

use up most of the fast routing resources for the nets routed first; this makes it difficult to route the

remaining nets without using a large number of pass transistor switches, since the routing

problems are difficult and there is a limited number of buffered routing resources.

Given all of the data for both low-stress and difficult routing problems, we chose to use a

switch count weight of 0.1 for the 4000X-like architecture.

Overall, through experimentation on the 4000X-like architecture, just using switch counting

improved the circuit delay for difficult problems by an average of 18%, compared to not using

switch counting. For low-stress problems, the circuit delay improved by an average of 12%,

compared to not using switch counting. The extra expansion operations required by switch

counting increased the compile time by an average of 96% for difficult problems and by an

average of 47% for low-stress problems, compared to not using switch counting.

3.4.2 Track Segment Utilization

Besides avoiding long chains of pass transistor switches, another source of delay in routing

is caused by using the incorrect length of track segments to reach a sink. Utilization is defined as
54

Routing Algorithm
the length of a track segment that is actually required in making a connection divided by the total

length of the track segment [51].

If a sink lies just one logic block away from the source, then using a long-length segment

will result in extra delay for that net. Conversely, if a sink lies on the opposite side of the FPGA

from the source, then using single-length segments to go all the way across the FPGA will also

result in extra delay for the net. In both these cases, track segments are used improperly and

unnecessary delay is added to the connection. The switch counting enhancement already ensures

that short unbuffered track segments are avoided for long connections. But, since circuits usually

contain many short low-fanout connections, it is also important to choose segments to go short

distances appropriately.

 Recall from Equation (2.4), that the base cost is the expense for using a routing resource.

For our simple architecture, since all of the track segments are unit length, utilization is not an

issue. We use the same base costs as VPR for the simple architecture, as shown in Table 3.3.

(Recall that the input pin has a slightly lower base cost, so that the router will expand input pins

before other routing resources.) For an FPGA with a segmented routing architecture, having less

expensive base costs for shorter segments ensures that the shortest segment will be chosen when

there are multiple segments that reach the target sink, which is equivalent to the concept of

Figure 3.14: Average compile time vs. β, (a) low-stress routing problems, (b) difficult routing
problems, for 4000X-like architecture

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0
Switch Count Weight (β)

10

20

30

40

A
ve

ra
ge

 C
om

pi
le

 T
im

e
(s

)
Compile Time

80

90

100

110

A
ve

ra
ge

 C
ir

cu
it

D
el

ay
 (

ns
)

Circuit Delay

0.0 0.2 0.4 0.6 0.8 1.0
Switch Count Weight (β)

0

200

400

600

800

A
ve

ra
ge

 C
om

pi
le

 T
im

e
(s

)

Compile Time

100

110

120

130

A
ve

ra
ge

 C
ir

cu
it

D
el

ay
 (

ns
)

Circuit Delay
55

Routing Algorithm
utilization in the SEGA router [15]. For the 4000X-like architecture, we set the base costs of

shorter track segments to slightly smaller values than the base costs of longer track segments, as

listed in Table 3.3.

An example of the effect of different base costs is shown in Figure 3.15. In this example we

are trying to route from the source of a net to a target sink that lies two units away. We could use

two single-length segments to reach the target. Alternatively, we could reach the target with just

one double-length, quad-length, or long-length segment. In this case, it makes the most sense to

use the double-length segment since it is does not waste any part of a wire and reaches the sink

directly. If the quad-length or long-length segment were chosen, then at least half of a track

segment would be wasted. Since the cost of the double-length segment is the cheapest, it will be

chosen. If all the segments had a base cost of 1.0, then any of the segments could be chosen to

reach the target sink.

Through experimentation, we found that for difficult routing problems, the circuit delay

improved by an average of 17%, compared to not using the segment utilization enhancement.

Table 3.3: Base cost of different routing resources

Resource
Simple

Architecture
[34]

4000X-like
Architecture

single-length track segment 1.00 0.97

double-length track segment N/A 0.98

quad-length track segment N/A 0.99

long-length track segment N/A 1.00

logic block output pin 1.00 1.00

logic block input pin 0.95 0.95

source 1.00 1.00

sink 0 0

Total Distance = 2Source

S T
Target

Single

Double

Quad

Long

Cost=0.98

Cost=0.99

Cost=1.00

Figure 3.15: Example of the affect of different base costs

Cost=2*0.97=1.94
56

Routing Algorithm
Similarly, for low-stress routing problems, the circuit delay improved by an average of 5%,

compared to not using the segment utilization enhancement.

3.5 Summary of Enhancement Effectiveness

Throughout this chapter, we have described the results of experiments to measure the

effectiveness of each of the routing algorithm enhancements. In this section, we provide a

summary of all of the enhancement experiments for both architectures.

3.5.1 Simple Architecture

In this section, we summarize the effectiveness of the directed search and binning. We

compare the high-speed router to the routability-driven VPR router, using the simple architecture.

Recall from Section 3.3.5, that binning was only effective for reducing the compile time using the

simple architecture.

We made measurements using the routability-driven VPR router, the high-speed router

using only the directed search, and the high-speed router using the directed search and binning.

We ran all of the routers using the fast routing schedule. In Table 3.4 we list each of the routers,

the average minimum track count, the routing time for difficult problems, and the average routing

time for low-stress problems. (Note that Wmin is defined as the minimum track count required to

route a circuit, we make a routing problem low-stress by using 30% more tracks than Wmin.)

None of the enhancements significantly increased the average minimum track count over

the routability-driven VPR router. For the difficult routing problems, using only a directed search

produced a 5.6 times speedup, on average, compared to VPR. Binning resulted in another 1.6

times speedup, on average, for the difficult routing problems. For the low-stress routing problems,

using only a directed search produced nearly a 50 times speedup, on average, compared to VPR.

The addition of binning provided another 1.8 times speedup, on average.

3.5.2 4000X-Like Architecture

In this section, we summarize the effectiveness of the rest of the algorithm enhancements.

We compare the relative effectiveness of using different combinations of the enhancements. For
57

Routing Algorithm
these measurements we used the 4000X-like architecture, since all of the enhancements in

Table 3.5 affect the circuit delay.

Table 3.5 lists all of the possible combinations of enhancements (in which X = enabled, --

 = disabled) and the experimental results for the enhancements. For each combination of

enhancements, we measured the average minimum track count, the average compile time for

difficult and low-stress routing problems, and the average circuit delay for difficult and low-stress

routing problems.

The highlighted rows mark where just one enhancement is enabled (these are the results

presented for each enhancement earlier in this chapter). The first observation is that the minimum

track count is relatively constant across all combinations of enhancements, varying by just 5%.

An interesting combination of enhancements is the combination of net ordering and sink

ordering (line 4). The combination of these enhancements improved the difficult compile time and

the low stress circuit delays more than using each of these enhancements separately. Similarly, the

combination of switch counting and segment utilization (line 13) improved the difficult and low-

stress circuit delays more, compared to using each of these enhancements separately.

Another observation from Table 3.5 is that for all the combinations of enhancements where

switch counting is enabled, the compile time is up to twice as long for both low-stress and difficult

routing problems, compared to when switch counting is disabled. For all of these cases the circuit

delay is improved when switch counting is enabled. For example, the average compile for difficult

Table 3.4: Effectiveness of directed search and binning for simple architecture

Difficult Routing Problems
(Wmin tracks)

Low Stress Problems
(Wmin + 30% tracks)

Algorithm

Geometric
Average

Minimum
Track Count

Geometric
Average

Compile Time (s)

Speedup
over VPR

Geometric
Average

Compile Time (s)

Speedup
over VPR

Routability-Driven
VPR Router

(Breadth-First Search)

13.8 837 -- 435 --

High-Speed Router
with Directed Search

14.0 150 5.6 9 48.3

High-Speed Router
with Directed Search

and Binning

14.0 94 8.9 5 87.0
58

Routing Algorithm
routing problems is 246.5 seconds in row 8 and 486.7 seconds in row 16. The average circuit

delay improves from 160.4 ns to 132.9 ns.

Overall, having all the enhancements enabled (row 16) produced the best results on average

across both difficult and low stress routing cases. Other combinations of enhancements were

slightly better for some of the measured compile times and circuit delays, but did not provide as

good results across all the measurements.

Table 3.5: Effectiveness of enhancements for 4000X-like architecture (X enabled, -- disabled)

Algorithm Enhancement
Average Compile

Time (s)
Average

Circuit Delay (ns)

Switch
Counting

Util-
ization

Net
Ordering

Sink
Ordering

Average
Minimum

Track Count
Difficult

Low-
Stress

Difficult
Low-
Stress

1 -- -- -- -- 51.5 320.5 15.2 194.5 113.1

2 -- -- -- X 52.1 253.8 12.0 174.9 113.6

3 -- -- X -- 50.6 246.5 17.0 172.7 99.2

4 -- -- X X 51.0 235.9 15.7 173.6 95.7

5 -- X -- -- 50.8 274.9 12.7 162.2 107.5

6 -- X -- X 51.4 206.4 11.7 168.1 109.3

7 -- X X -- 50.4 264.3 15.8 135.2 97.6

8 -- X X X 50.3 246.5 15.7 139.5 102.7

9 X -- -- -- 52.0 629.1 22.4 160.4 99.9

10 X -- -- X 52.2 619.2 21.2 145.8 96.9

11 X -- X -- 50.5 505.3 23.2 127.5 94.2

12 X -- X X 50.6 539.0 21.3 129.6 90.0

13 X X -- -- 51.5 609.1 22.0 148.5 97.4

14 X X -- X 52.6 405.4 18.7 146.6 96.1

15 X X X -- 50.3 480.7 22.5 128.0 93.0

16 X X X X 50.5 486.7 19.7 132.9 89.9
59

Routing Algorithm
3.6 Summary

In this chapter, we described enhancements to the basic routing algorithm aimed at

increasing the execution speed and reducing the circuit delay. The enhancements were: directed

search, fast routing schedule, net ordering, sink ordering, binning, switch counting, and segment

utilization. We also presented a summary of the effectiveness of all the routing algorithm

enhancements.

In the next, chapter we present experimental results for the new high-speed timing-aware

router.
60

Experimental Results
Chapter 4

Experimental Results

In this chapter, we present the results of experiments run to measure the ability to minimize

track count, execution speed, and circuit delay of the new high-speed timing-aware routing

algorithm. We start by describing the benchmark circuits used and then present the results from

experiments run using the simple FPGA architecture. We then present results from experiments

run using the 4000X-like architecture.

4.1 Benchmark Circuits

To experiment with the new high-speed router, we required a set of large benchmark

circuits. Unfortunately, very large circuits are difficult to obtain, but we did manage to collect 10

suitable circuits. The benchmark circuits are listed in Table 4.1. The circuit sizes range from 3556

4-LUTs up to 19,600 4-LUTs. Eight of the circuits are the largest circuits from the MCNC suite

[2]. The other two circuits were created using the synthetic benchmark circuit generator (GEN)

[45]. Although the latter circuits are actually somewhat more difficult than real circuits, we

believe they are perfectly reasonable test cases for the compile time issue.

Each of the MCNC circuits was synthesized with the SIS [46] package and technology

mapped using Flowmap [47]. The technology-mapped circuits were then packed into logic blocks

using VPACK [34]. The synthetic circuits were only packed into logic blocks using VPACK as

they were generated in technology-mapped form. Each circuit was then placed using VPR.1

1. The VPR placement tool was run using the “-fast” option that speeds up the execution time by about 10
times, with 5% to 10% quality degradation.
61

Experimental Results
4.2 Simple Architecture Experiments

In this section, we use the simple FPGA architecture to compare the ability to minimize

track count and execution speed of the new high-speed router to the routability-driven VPR router.

These experiments also serve to compare the directed search used by the new router to the

breadth-first search used by the routability-driven VPR router.

For the high-speed router, all of the compile time enhancements were enabled (directed

search, fast routing schedule, net ordering, sink ordering, and binning). The routability-driven

VPR router was also run in its fastest mode, using the fast routing schedule.

4.2.1 Quality: Minimum Track Count

In the first experiment, we compare the quality of the high-speed router to the routability-

driven VPR router, by comparing the minimum track count needed to successfully route each of

the benchmark circuits.

To measure the minimum track count for each circuit, we started with a very low track

count and increased the track count by one track until the circuit could be routed. Table 4.2 lists

the minimum track counts for each of the benchmark circuits, using both routers. Recall that we

define Wmin as the minimum track count required by the high-speed router to route a circuit. The

Table 4.1: Benchmark circuits

Circuit Source # 4-LUTs

beast16k GEN 15680

beast20k GEN 19600

clma MCNC 8383

elliptic MCNC 3604

ex1010 MCNC 4598

frisc MCNC 3556

pdc MCNC 4575

s38417 MCNC 6406

s38584.1 MCNC 6447

spla MCNC 3690
62

Experimental Results
new high-speed router is clearly of high quality, since it achieved the same track count as VPR on

9 out of 10 circuits and only required one extra track for the other circuit.

4.2.2 Compile Time

In this section, we compare the compile time of the high-speed router to that of the

routability-driven VPR router.

Since the compile time of any router is strongly affected by the difficulty of the routing

problem, we will vary the difficulty of the problem. Recall that we define WFPGA as the number of

tracks per channel in the target FPGA. The difficulty of the routing problem is controlled by using

different values of WFPGA--the closer WFPGA is to the Wmin of the circuit, the harder the routing

problem gets.

We routed each of the benchmark circuits using both the new high-speed router and the

routability-driven VPR router. For each circuit we used track counts ranging from Wmin up to

Wmin + 20% track per channel. Table 4.3 lists the benchmark circuits, the compile times for both

routers, and the speedup of the high-speed router over VPR. All of the compile times were

measured on a 300 MHz UltraSPARC 3200 with 1 GByte of memory, and do not include the time

Table 4.2: Minimum track counts for the simple architecture

Circuit
Routability-Driven VPR

Min.Track Count

High-Speed Router
Min. Track Count

(Wmin)

%
Difference

beast16k 23 23 0.0

beast20k 29 29 0.0

clma 12 12 0.0

elliptic 12 12 0.0

ex1010 13 14 7.7

frisc 12 12 0.0

pdc 16 16 0.0

s38417 8 8 0.0

s38584.1 8 8 0.0

spla 14 14 0.0

Total 148 148 0.0
63

Experimental Results
to parse the netlist and generate the routing graph. For the largest circuit the parse and graph

generation time is 20 seconds. The largest circuit, beast20k, requires 200 MBytes of memory.

At Wmin tracks per channel, the high-speed router is 6.9 times faster, on average, than the

routability-driven VPR router. At these track counts, the routing problems are difficult, bordering

on impossible to route. The large amount of congestion slows down the directed search

considerably. For the two largest circuits, beast16k and beast20k, the high-speed router is over 25

times faster than the routability-driven VPR router, although the high-speed router still requires

several minutes to compile each circuit. For the rest of the circuits, the high-speed router is

between 1.6 and 19.8 times faster than VPR.

As WFPGA increases, the routing problems become significantly easier since there is less

routing congestion. The directed search is more efficient at routing nets when there is less

congestion. The average compile time of both routers decreases, but the high-speed router

achieves a much greater speedup compared to VPR. At Wmin + 20%, the high-speed router is 58

Table 4.3: Compile times for simple architecture

WFPGA Wmin Wmin + 10% Wmin + 20%

Circuit
VPR

Time (s)

High-
Speed
Router

Time (s)

Speed
up

VPR
Time (s)

High-
Speed
Router

Time (s)

Speed
up

VPR
Time (s)

High-
Speed
Router

Time (s)

Speed
up

beast16k 23761 183 129.8 7079 42 168.5 5522 26 212.4

beast20k 19678 775 25.4 16321 110 148.4 13142 68 193.3

clma 1264 483 2.6 2029 40 50.7 840 18 46.7

elliptic 241 29 8.3 133 8 16.6 198 4 49.5

ex1010 316 16 19.8 206 4 51.5 109 2 54.5

frisc 262 163 1.6 257 11 23.4 190 4 47.5

pdc 639 353 1.8 497 22 22.6 581 7 83.0

s38417 330 59 5.6 193 27 7.1 142 8 17.8

s38584.1 338 86 3.9 81 26 3.1 88 10 8.8

spla 326 78 4.2 255 9 28.3 259 2 129.5

Geometric
Average

837 122 6.9 564 20 28.2 465 8 58.1
64

Experimental Results
times faster on average compared to VPR. Notice that for the largest MCNC circuit, clma, the

high-speed router is 46.7 times faster than VPR. For the largest circuit, beast20k, the high-speed

router is 193.3 times faster than VPR. Although not shown in the table, with Wmin + 30% extra

tracks, the beast20k can be routed in only 20 seconds by the high-speed router.

It is instructive to observe how the compile time of the high-speed router changes as the

available track count, WFPGA, increases. Figure 4.1 plots the routing time for the high-speed

router and VPR versus the number of tracks available, for the 8383 logic block circuit clma. It is

clear that once there are sufficient tracks the new router completely routes the circuit in about 6

seconds, independent of the number of tracks. The speedup as WFPGA increases comes from two

factors: fewer routing iterations (eventually, only 1) are needed to resolve congestion; and the

directed search can more rapidly route each net when there is little routing congestion to detour

around. Observe that the routability-driven VPR router takes a great deal more time, and the time

increases as WFPGA increases (for large WFPGA) because of the breadth-first search nature of the

VPR router.

Now that we have demonstrated the high quality and fast execution speed for the high-speed

router targeting the simple architecture, in the next section we present the results from

experiments run using the 4000X-like architecture.

Figure 4.1: Compile time vs. available tracks for clma (8383 logic blocks)

10 15 20 25
Tracks per Channel (WFPGA)

0

1000

2000

3000

C
om

pi
le

 T
im

e
(s

)

High-Speed Router
Routability-Driven VPR Router
65

Experimental Results
4.3 4000X-Like Architecture Experiments

In this section, we use the 4000X-like FPGA architecture to compare the ability to

minimize track count, execution speed, and circuit delay of the new high-speed router to the

timing-driven VPR router. Our main reasons for carrying out these experiments were: first, to

measure the performance of the new high-speed router targeting a realistic FPGA architecture;

and second, to the compare the high-speed router to the timing-driven VPR router.

For the high-speed router, all of the compile time and circuit delay enhancements were

enabled. Recall from Chapter 3, that the two circuit delay enhancements were switch counting

and track segment utilization.

4.3.1 Quality: Minimum Track Count

In the first experiment, we compare the quality of the high-speed router to the timing-driven

VPR router, by comparing the minimum track count needed to successfully route each of the

benchmark circuits.

The results were obtained using the same procedure described for the simple architecture in

Section 4.2.1. Table 4.4 list the benchmark circuits, the minimum track count for each router, and

the percent difference. The high-speed router requires an average of 11% more tracks per channel,

compared to the timing-driven VPR router.

There are many differences between the high-speed timing-aware router and the timing-

driven VPR router, so it is unclear exactly why our router is not able to route circuits as efficiently

as VPR. One key difference between the two routers is the trade-off between routability and delay.

Recall from Section 2.3.4.5 that the timing-driven VPR router assigns a criticality to each net

based on the slack of the net. Nets that are non-critical pay more attention to routability, while

nets that are critical pay more attention to minimizing delay. The high-speed router uses a fixed

trade-off between routability and delay, so that all of the nets are routed with the same attention

given to routability and delay; nets that are non-critical are not necessarily routed with the shortest

wirelength.
66

Experimental Results
4.3.2 Compile Time

In this section, we compare the compile time of the high-speed router to the compile time of

the timing-driven VPR router. Similar to Section 4.2.2, we measured the compile times over a

range of track counts, ranging from Wmin up to Wmin + 20% tracks per channel.

Table 4.5 lists the benchmark circuits, the compile time for the timing-driven VPR router

and the high-speed router, and the speedup of the high-speed router over VPR. Execution times

were again measured on a 300 MHz UltraSPARC.

At Wmin tracks, the high-speed router requires an average of 2.7 times more compile time

than the timing-driven VPR router. At these track counts, our router is operating on the edge of

routability for all of the circuits, while VPR is operating closer to the low-stress range. At

Wmin + 10% tracks, the high-speed router is 2.5 times faster, on average, compared to VPR. At

Wmin + 20%, the high-speed router is 5.2 times faster, on average, compared to VPR.

It is interesting to note that the timing-driven VPR router is significantly faster compared to

the routability-driven VPR router (see Section 4.2.2), since the timing-driven VPR router uses a

directed search. The high-speed routing algorithm is still somewhat faster than the timing-driven

Table 4.4: Minimum track counts for 4000X-like architecture

Circuit
VPR Min

Track
Count

High-Speed
Router

Min. Track
Count (Wmin)

%
difference

beast16k 71 79 11.3

beast20k 84 92 9.5

clma 47 53 10.6

elliptic 38 42 10.5

ex1010 39 42 7.7

frisc 37 39 5.4

pdc 55 63 14.5

s38417 32 36 12.5

s38584.1 28 32 14.3

spla 51 57 11.8

Total 482 535 11.0
67

Experimental Results
VPR router, since the high-speed router tries more aggressively to route a circuit in just one

iteration. The timing-driven VPR router tries to balance routability and circuit delay over a

number of iterations, typically requiring 6 to 10 iterations, even for low-stress routing problems.

4.3.3 Quality: Circuit Delay

Now that we have established the execution speed for the new high-speed router, we now

measure the ability of the high-speed router to minimize circuit delay compared to the timing-

driven VPR router. We once again use track counts ranging from Wmin up to Wmin + 20% tracks

per channel.

Table 4.6 lists the benchmark circuits, the circuit delays for the high-speed router and the

timing-driven VPR router, and the percentage difference between the two routers. The circuit

delays were calculated using the timing analyzer of VPR.

At Wmin tracks, the high-speed router has 60% more circuit delay, on average, compared to

the timing-driven VPR router. Since we are routing at the very minimum track count for each

Table 4.5: Compile times for 4000X-like architecture

WFPGA Wmin Wmin + 10% Wmin + 20%

Circuit
VPR

Time (s)

High
Speed
Router

Time (s)

Speed
up

VPR
Time (s)

High
Speed
Router

Time (s)

Speed
up

VPR
Time (s)

High
Speed
Router

Time (s)

Speed
up

beast16k 515 1235 0.4 551 141 3.9 378 70 5.4

beast20k 918 2137 0.4 839 233 3.6 815 127 6.4

clma 246 407 0.6 183 42 4.4 257 28 9.2

elliptic 79 199 0.4 53 38 1.4 51 19 2.7

ex1010 110 280 0.4 93 52 1.8 84 15 5.6

frisc 65 169 0.4 53 35 1.5 56 10 5.6

pdc 159 610 0.3 153 33 4.6 156 20 7.8

s38417 100 196 0.5 81 58 1.4 77 45 1.7

s38584.1 75 277 0.3 46 34 1.4 55 12 4.6

spla 129 570 0.2 110 24 4.6 109 13 8.4

Geometric
Average

159 425 0.4 130 52 2.5 130 25 5.2
68

Experimental Results
circuit, there is so much congestion that the router is forced to route many of the nets using paths

with large delays.

As the track count increases, the circuit delay for the high-speed router decreases. At

Wmin + 20% tracks the high-speed router is just 16% worse on average compared to VPR. With

less congestion, the high-speed router is able to effectively reduce the delay caused by long

sequences of pass transistors by using the switch counting enhancement. The segment utilization

enhancement is also effective at reducing the circuit delay by avoiding the use of long segments

for short nets. The delay of the beast20k decreased from 84% worse than VPR at Wmin tracks, to

only 19% worse than VPR at Wmin + 20% tracks.

Now that we have measured the ability to minimize track count, execution speed, and

circuit delay of the high-speed router when all of the compile time and circuit delay enhancements

are enabled, in the next section we demonstrate how the compile time can be further reduced.

Table 4.6: Circuit delays for 4000X-like architecture

WFPGA Wmin Wmin + 10% Wmin + 20%

Circuit
VPR

 Delay
(ns)

High
Speed
Router
 Delay

(ns)

%
diff.

VPR
 Delay

(ns)

High
Speed
Router
 Delay

(ns)

%
diff.

VPR
 Delay

(ns)

High
Speed
Router
 Delay

(ns)

%
diff.

beast16k 121 225 86 116 146 26 120 123 3

beast20k 180 332 84 168 194 15 163 194 19

clma 100 135 35 96 115 17 97 121 25

elliptic 77 149 94 63 89 41 62 77 24

ex1010 70 97 39 64 74 16 58 74 28

frisc 87 127 46 80 100 25 83 103 24

pdc 77 98 27 78 82 5 75 88 17

s38417 56 84 50 66 81 23 60 68 13

s38584.1 40 94 135 40 52 30 40 49 23

spla 71 123 73 69 82 19 69 75 9

Geometric
Average

81 133 60 78 95 19 77 91 16
69

Experimental Results
4.3.4 Reducing the Compile Time

Recall from Section 3.5, that when the switch counting enhancement was enabled for the

high-speed router the circuit delay improved by up to an average of 20%, but the compile time

nearly doubled. In this section we measure the affect of disabling the switch counting

enhancement, as the routing problem difficulty changes.

We routed each of benchmark circuits using the high-speed router with all of the

enhancements enabled, the high-speed router with the switch counting enhancement disabled, and

the timing-driven VPR router. Using track counts ranging from Wmin tracks up to Wmin + 30%

extra tracks for each of the benchmark circuits, we measured the compile time and circuit delay

for each circuit. In this section we present the results graphically, as it is instructive to observe

graphically how the compile time and circuit delay of the high-speed timing-aware router changes

as the available track count increases.

Figure 4.2 (a) plots the average compile time for the high-speed router with all the router

enhancements enabled, the high-speed router with switch counting disabled, and the timing-

driven VPR router, versus the percentage extra tracks. At Wmin tracks per channel, the timing-

driven VPR router is faster than both versions of the high-speed router. With just 5% extra tracks

both versions of the high-speed router are faster than VPR. Once there are 10% extra tracks, the

high-speed router with and without switch counting disabled is clearly much faster than VPR. The

speedup as the percentage extra tracks increases comes from two factors: fewer routing iterations

(eventually, only 1) are needed to resolve congestion; and the directed search can more rapidly

route each net when there is little congestion to detour around. Also notice that the high-speed

router with switch counting disabled is always faster than the high-speed router with all the

enhancements enabled.

Observe that the VPR router takes a great deal more compile time, and the time relatively

stays constant as the percentage extra tracks increases. Figure 4.2 (b) gives a close-up view of the

10% to 30% extra track region of Figure 4.2 (a). We observe that at 30% extra tracks, the high-

speed router with all the enhancements enabled requires 20 seconds, on average. The high-speed

router with switch counting disabled requires only 15 seconds, on average.

Figure 4.3 (a) plots the average circuit delay for the high-speed router with all the router

enhancements enabled, the high-speed router with switch counting disabled, and the timing-

driven VPR router, versus the percentage extra tracks. With no extra tracks, both versions of the
70

Experimental Results
high-speed router have a very difficult time minimizing circuit delay, due to the large amount of

routing congestion. As the percentage extra tracks increases, the high-speed router with all the

enhancements enabled is able to reduce the circuit delay, settling to within 20% of VPR, on

average, with just 5% extra tracks. The high-speed router with switch counting disabled always

has at least 35% higher circuit delay than VPR, on average.

If we compare Figure 4.2 (a) and Figure 4.3, we can see that there is a trade-off between

compile time and circuit delay. In situations where circuit delay is not important, the router can be

run with switch counting disabled to obtain the fastest compile time. When circuit delay is

important, the router can be run with the all enhancements enabled, which will improve the circuit

delay by about 20%, requiring up to twice as much compile time, on average, compared to when

switch counting is disabled.

4.4 Summary

In this chapter, we presented the results of experiments run on the simple FPGA

architecture and 4000X-like FPGA architecture. We measured the ability of the high-speed router

0 10 20 30
% Extra Tracks

0

100

200

300

400

500

C
om

pi
le

 T
im

e
(s

ec
on

ds
)

VPR
No Switch Counting
All Enhancements

Figure 4.2: (a) Compile time vs. % extra tracks, (b) Compile time vs. % extra tracks (zoomed)

(a) (b)

10 15 20 25 30
% Extra Tracks

0

50

100

150

C
om

pi
le

 T
im

e
(s

ec
on

ds
)

VPR
No Switch Counting
All Enhancements
71

Experimental Results
to minimize the track count for the two architectures and found that it is excellent for the simple

architecture, but not quite as good for the 4000X-like architecture. We demonstrated the

extremely fast execution time of the high-speed router on large benchmark circuits--the largest

circuit, beast20k, can be compiled in 68 seconds targeting the simple architecture and 127

seconds targeting the 4000X-like architecture (with 20% extra routing resources). We also

demonstrated the ability of the high-speed router to minimize circuit delay; with only 5% extra

routing resources, the average circuit delay was only 20% higher, compared to the timing-driven

VPR router.

In the next chapter we consider two issues in the practical use of a high-speed router.

0 10 20 30
% Extra Tracks

60

80

100

120

140

C
ir

cu
it

D
el

ay
 (

ns
)

VPR
No Switch Counting
All Enhancements

Figure 4.3:Circuit delay vs. % extra tracks

(4.1)
72

Practical Issues
Chapter 5

Practical Issues

In this chapter, we consider issues in the practical use of an ultra-fast router. The first issue

is difficulty prediction--detecting early on when a routing problem is impossible or difficult (and

will take a long time to solve). The second issue deals with how to practically reduce the difficulty

of a routing problem in the context of using a real family of FPGAs.

5.1 Difficulty Prediction

When routing a circuit in an FPGA, there may be times when the circuit is difficult or

impossible to route. Existing routers spend a very long time routing difficult circuits and for

impossible problems they can take several hours simply to declare failure. There is almost no

benefit to using an ultra-fast router if the user ever has to wait a long time for a circuit to be routed

(without being warned at the start) or to declare failure.

Therefore, a key aspect of ultra-fast routing is the ability to quickly predict when the routing

problem is very hard or impossible. In both of these cases, it is important to inform the user that

the result will either be a long time coming, or simply isn’t possible to achieve. When a routing

problem is difficult or impossible, the designer has two main options: reduce the amount of logic

in the circuit or move to a larger device.

In this section, we describe an approach for predicting the difficulty of routing a circuit

given the placement of the circuit and information about the target FPGA. This method

presupposes that there is a fast way of generating a placement, which is the subject of related

research [52].
73

Practical Issues
To predict the difficulty of routing a circuit, two pieces of information are required: the

number of tracks per channel in the target FPGA (which is known beforehand), and an estimate of

the minimum track count required to route the circuit. To determine the minimum track count, an

estimate of the total wirelength for the circuit is needed.

5.1.1 Estimating Total Wirelength

We can calculate the total estimated wirelength for a circuit from its placement using the

placement-based wirelength model described in Section 2.4.1. Recall that the wirelength needed

to route a net can be estimated by multiplying the half-perimeter bounding-box wirelength of the

net terminals by the fanout-based correction factor. We can obtain an estimate of the total

wirelength by summing the estimated wirelength for every net.

For the simple FPGA architecture, we found that the correction factors given in RISA for

nets with up to 50 terminals (see Table 2.1) were very accurate. To determine the correction

factors for higher fanout nets, we routed the larger MCNC benchmark circuits ignoring

congestion, and recorded the actual wirelength for each net. By dividing the actual wirelength by

the bounding box half-perimeter wirelength, we obtained average correction factors for nets with

more than 50 terminals. Instead of storing discrete values for all the correction factors for nets

with more than 50 terminals, we fit the data to equations (5.1) and (5.2) using the “least squares

approximation”. C(k) is the correction factor and k is the number of terminals. With these

correction factors, our estimates of total wirelength are within 5% of the actual wirelength for all

of our benchmark circuits. (Note that linearly extrapolating the RISA correction factors led to

estimates of total wirelength that were up to 25% too high.)

(5.1)

(5.2)

For the 4000X-like FPGA architecture, we found that the correction factors from RISA

were too low. This is because the amount of wiring required to route nets is higher for the 4000X-

like architecture, compared to the simple architecture. To improve the correction factors for the

4000X-like architecture, we reran the same experiments used to determined the correction factors

for the simple architecture. For nets of fanout less than 50, we use the correction factors listed in

Table 5.1. For nets with fanout greater than 50, we fit the data to equation (5.3) using the least

squares approximation.

C k() 2.6 2–×10 k 1.49 for 50 < k < 85+⋅=

C k() 1.8 6–×10 k
2 1.1 2–×10 k 2.79 for k 85≥+⋅+⋅–=
74

Practical Issues
(5.3)

By using the fanout-based correction factors we can obtain an estimate of the total

wirelength for a circuit and then calculate the estimated track count.

5.1.2 Estimating Track Count

Using the total estimated wirelength, the estimated track count, Westimate, can be calculated

as:

(5.4)

where N is the total number of logic blocks in the target FPGA and U is the track segment utiliza-

tion. The track segment utilization is the fraction of the total number of track segments in the

FPGA that a router can typically use before congestion prevents some nets from being routed. The

denominator term is the total number of usable channels in the FPGA. By dividing the total esti-

mated wirelength by the number of usable channels, we get the number of tracks required per

channel.

 The utilization figure captures elements of the complexity of both routing a particular

FPGA architecture and the circuit being routed on that architecture. This is a complicated

interaction, and it is over-simplified to represent these issues as a constant; however, as explained

below, this works for our purposes.

Table 5.1: Correction factors up to 50 for 4000X-like architecture

Fanout
Correction

Factor
Fanout

Correction
Factor

1 1.00 10 2.05

2 1.25 15 2.45

3 1.39 20 2.69

4 1.55 25 3.22

5 1.64 30 3.45

6 1.76 35 3.50

7 1.77 40 3.80

8 1.89 45 4.03

9 1.98 50 4.45

C k() 2 2–×10 k 4.4 for k > 50+⋅=

W estimate
total estimated wirelength

2 N U⋅ ⋅
---=
75

Practical Issues
The utilization, U, can be determined experimentally for a router using Equation (5.4) and a

set of benchmark circuits. By using the total estimated wirelength for each circuit and substituting

the actual minimum track count for Westimate, U can be calculated for each circuit.

Table 5.2 lists each of the benchmark circuits from Chapter 4, the size of each circuit, Wmin,

the total estimated wirelength, and the utilization calculated using Equation (5.4). These results

are for the simple FPGA architecture. The values of U range from 0.45 up to 0.60 and the average

value is 0.54. The utilization is always less than 1.0, since it impossible to use all of the routing

resources in an FPGA for routing a circuit. The small variance in the value of U is caused by the

errors in the total estimated wirelength for each circuit. It is important to note that since the values

of U are relatively constant across different circuits, the average value for U can be used for

calculating the estimated track count with Equation (5.4).

Table 5.3 lists the utilization results for the 4000X-like architecture. The values of U range

from 0.69 up to 0.81 and the average value is 0.74. Notice that the average utilization is higher for

the 4000X-like architecture, compared to the simple architecture. Certain features of the 4000X-

like architecture are more flexible, compared to the simple architecture. With a more flexible

architecture, it is easier to use more of the total routing resources, resulting in an increased

Table 5.2: Utilization for simple architecture

Circuit
Logic
Blocks

Wmin
Total Estimated

Wirelength
Utilization (U)

beast16k 15680 23 404619 0.56

beast20k 19600 29 615294 0.54

clma 8383 12 120360 0.60

elliptic 3604 12 42169 0.49

ex1010 4598 14 57599 0.45

frisc 3556 12 49132 0.58

pdc 4575 16 81767 0.56

s38417 6406 8 57262 0.56

s38584.1 6447 8 53154 0.52

spla 3690 14 56051 0.54

Average 0.54
76

Practical Issues
utilization figure. One might surmise that the simple architecture, with only single-length track

segments and a non-planar switch box, would be more flexible than the 4000X-like architecture,

with its segmented routing architecture. The method for estimating total wirelength already

accounts for the difference in segment lengths, since the bounding-box correction factors were

determined separately for each architecture. In addition, there are two features of the 4000X-like

architecture that make it more flexible than the simple architecture. The 4000X-like architecture

contains larger logic blocks with more pins, compared to the simple architecture, so there is more

flexibility in choosing input and output pins. The 4000X-like architecture also contains more

tracks per channel, compared to the simple architecture, for routing the equivalent circuit. It is

easier to route a circuit when the FPGA contains larger channels; a larger channel is more flexible,

allowing more nets to be packed into the channel. For example, if two tracks are wasted in a

channel containing ten tracks in total, then only 80% of the channel is utilized. If two tracks are

wasted in a channel containing forty tracks in total, then 95% of the channel is utilized.

5.1.3 Difficulty Classification

Now that we have a method for calculating the estimated track count for a circuit, we need a

method for predicting the difficulty of routing a circuit. Clearly, the difficulty of routing a circuit

Table 5.3: Utilization for 4000X-like architecture

Circuit
Logic
Blocks

Wmin
Total Estimated

Wirelength
Utilization (U)

beast16k 3937 79 451079 0.73

beast20k 4929 92 649044 0.72

clma 2121 53 156277 0.70

elliptic 903 42 57592 0.76

ex1010 1191 42 74896 0.75

frisc 892 39 56235 0.81

pdc 1194 63 103132 0.69

s38417 1604 36 89670 0.78

s38584.1 1612 32 81558 0.79

spla 953 57 74858 0.69

Average 0.74
77

Practical Issues
is a function of the estimated track count for the circuit and the number of tracks in the target

FPGA; recall that we call the number of tracks in the FPGA, WFPGA.

When the number of tracks in the FPGA is less than the estimated number of tracks required

by the circuit, we classify the problem as impossible. Recall from Figure 4.1 in Chapter 4, that as

the track count is increased from the minimum required by a circuit, the compile time for the

high-speed router quickly decreases to a near minimum value with only ten percent extra tracks

per channel. Therefore, we classify a problem as difficult if the target FPGA has less than the

minimum track count required by the circuit plus ten percent. If the FPGA has more tracks per

channel than the minimum track count required by the circuit plus ten percent, we classify the

problem as low-stress. Table 5.4 summarizes the three classifications.

5.1.4 Demonstrations of Difficulty Prediction

To test the difficulty prediction scheme, we use the ten benchmark circuits from Chapter 4.

We executed the predictor for each circuit to determine the estimated track count using Equation

(5.4) after placement. Westimate requires less than less than one second to calculate for the largest

benchmark circuit, providing the user with feedback on the problem classification very quickly.

Table 5.5 lists the actual minimum track count (as determined by the router) and the estimated

track count for each benchmark circuit for the simple architecture. The last column in Table 5.5

shows the difference between Westimate and Wmin. For nine of the circuits, the estimates are within

±1 track per channel. For the remaining circuit, the estimate is two tracks per channel lower than

the actual minimum track count.

Table 5.6 lists the actual minimum track count and estimated minimum track count for each

of the benchmark circuits, using the 4000X-like architecture. The estimates are accurate to within

±4 track per channel or ±10% of the actual minimum track counts.

Table 5.4: Definition of routing classes

Classification
Typical Range of Tracks

Per Channel in FPGA

Impossible WFPGA< Westimate

Difficult Westimate ≤ WFPGA< 1.1Westimate

Low-Stress WFPGA ≥ 1.1Westimate
78

Practical Issues
The unavoidable inaccuracies in determining West will result in some mistakes by the

prediction scheme of Table 5.4. To illustrate the effect of these inaccuracies in predicting

difficulty, we ran two sets of experiments, one on the simple architecture and the other on the

4000X-like architecture. For the simple architecture we ran the router on each benchmark circuit

using five different track counts: the minimum required by the circuit Wmin (see Table 5.5),

Wmin + 1, Wmin - 1, Wmin - 2, and Wmin - 3. We chose these values because it is within this range

Table 5.5: Track count estimates for the simple architecture

Circuit Wmin Westimate Difference % Difference

beast16k 23 24 +1 4.3

beast20k 29 29 0 0.0

clma 12 13 +1 8.3

elliptic 12 11 -1 -8.3

ex1010 14 12 -2 -14.3

frisc 12 13 +1 8.3

pdc 16 16 0 0.0

s38417 8 8 0 0.0

s38584.1 8 8 0 0.0

spla 14 14 0 0.0

Table 5.6: Track count estimates for 4000X-like architecture

Circuit Wmin Westimate Difference % Difference

beast16k 79 80 +1 1.3

beast20k 92 93 +1 1.1

clma 53 50 -3 -5.7

elliptic 42 43 +1 2.4

ex1010 42 44 +2 4.8

frisc 39 43 +4 10.3

pdc 63 59 -4 -6.3

s38417 36 39 +3 8.3

s38584.1 32 35 +3 9.4

spla 57 53 -4 -7.0
79

Practical Issues
that inaccuracies in Westimate will effect the routability predictor. Table 5.7 lists for each circuit:

the correct (Crct) difficulty level for each circuit based on the definition from Table 5.4, the

reported (Rpt) difficulty by the router using Westimate and applying the predictor from Table 5.4,

and the routing time (for the difficult and low-stress cases). The following key is used: LS=low-

stress, DF=difficult, and IM=impossible.

There are three types of errors in Table 5.7, impossible routing problem predicted as

difficult, difficult routing problems predicted as impossible, and low-stress routing problems

predicted as difficult. The four test cases where difficult problems were predicted as impossible

are highlighted with shading in Table 5.7. The impossible routing problems predicted as difficult

are the most intolerable type of errors because these cause the user to waste time waiting for a

circuit that is impossible to route. The worst outcome of a difficult problem being predicted as

impossible is that the user ends up taking action to make their circuit routable, even though it was

already routable. For low-stress problems that are predicted as difficult, if the user decides to let

the router continue, their circuit will route very quickly.

Table 5.7: Difficulty prediction for simple architecture (LS=low-stress, DF=difficult,
IM=impossible)

Circuit Wmin-3 Wmin-2 Wmin-1 Wmin Wmin+1

Crct Rpt Crct Rpt Crct Rpt Crct Rpt
Time

(s)
Crct Rpt

Time
(s)

beast16k IM IM IM IM IM IM DF IM 291 DF DF 95

beast20k IM IM IM IM IM IM DF DF 430 DF DF 326

clma IM IM IM IM IM IM DF IM 909 DF DF 191

elliptic IM IM IM IM IM DF LS DF 34 LS LS 25

ex1010 IM IM IM DF IM DF LS LS 31 LS LS 5

frisc IM IM IM IM IM IM DF IM 173 LS DF 39

pdc IM IM IM IM IM IM DF DF 928 DF DF 99

s38417 IM IM IM IM IM IM DF DF 79 LS LS 15

s38584.1 IM IM IM IM IM DF LS LS 33 LS LS 16

spla IM IM IM IM IM IM DF DF 91 LS DF 22
80

Practical Issues
To test difficulty prediction on the 4000X-like architecture, we chose test cases in which the

track counts vary by percentages. The five different track counts were: Wmin, Wmin-10%, Wmin-

5%, Wmin, Wmin+5%, Wmin+10%, Wmin+15%, and Wmin+20%. Table 5.8 lists the results for the

difficulty predictor. In this table, the correct difficulty is given at the top of each column, based on

the definition from Table 5.4. Each column in the table lists the reported (Rpt) difficulty by the

router using Westimate and applying the predictor from Table 5.4, and the routing time where

applicable. Again, there are the same three types of prediction errors described for the simple

architecture. There is one more type of error in Table 5.8, difficult routing problems predicted as

low-stress. These types of errors are not too serious, since the worst outcome is that the user ends

up waiting several minutes for a circuit to route, even though the router classified the problem as

low-stress. The three test cases where difficult problems were predicted as impossible are

highlighted with shading in Table 5.8.

Clearly, the mistake of predicting an impossible problem as difficult cannot be tolerated by

any user. The purpose of difficulty prediction is to ensure that a user is never kept waiting hours

Table 5.8: Difficulty prediction for 4000X-like architecture (LS=low-stress, DF=difficult,
IM=impossible)

Circuit
Wmin-10%
(crct=IM)

Wmin-5%
(crct=IM)

Wmin

(crct=DF)
Wmin+5%
(crct=DF)

Wmin+10%
(crct=LS)

Wmin+15%
(crct=LS)

Wmin+20%
(crct=LS)

Rpt Rpt Rpt
Time

(s)
Rpt

Time
(s)

Rpt
Time

(s)
Rpt

Time
(s)

Rpt
Time

(s)

beast16k IM IM IM 200 DF 201 DF 80 LS 38 LS 39

beast20k IM IM IM 472 DF 229 DF 86 LS 65 LS 67

clma IM DF DF 477 LS 52 LS 32 LS 20 LS 19

elliptic IM IM IM 142 DF 63 DF 38 LS 18 LS 13

ex1010 IM IM IM 148 DF 69 DF 38 LS 9 LS 6

frisc IM IM IM 92 IM 51 DF 12 DF 5 DF 5

pdc IM DF DF 257 LS 28 LS 18 LS 12 LS 12

s38417 IM IM IM 164 IM 71 DF 47 DF 33 LS 15

s38584.
1

IM IM IM 196 IM 48 DF 28 DF 40 LS 32

spla IM DF DF 315 LS 50 LS 11 LS 12 LS 8
81

Practical Issues
for a circuit that is impossible to route. To prevent these errors we have to give up some accuracy

to improve the reliability. For our predictor, targeting the simple architecture, whenever the

estimated track count for a circuit is not at least two tracks less then number of tracks in the

FPGA, the circuit must be declared impossible to route (Westimate > WFPGA - 2 => impossible).

Similarly, for the 4000X-like architecture, when the estimated track count for a circuit is not at

least 5% less then the number of tracks in the FPGA, the circuit must be declared impossible to

route (Westimate > 0.95WFPGA => impossible). With these tolerances, there will be more difficult

routing problems predicted as impossible, but no impossible routing problems predicted as

difficult.

Now that we have described a fast and accurate method for predicting the difficulty of a

routing problem, in the next section we look at how the difficulty of a routing problem is

controlled in real industrial FPGAs.

5.2 Controlling the Difficulty of Routing Problems

When we demonstrated our difficulty prediction algorithm in the last section, we explicitly

changed the difficulty of each problem by changing the number of tracks per channel for each

circuit. As we added more tracks, the circuits became increasingly easier to route. In the academic

world, we assume that our FPGA has exactly the number of logic blocks required for the

particular circuit we are compiling and that we can control the number of tracks per channel.

Unfortunately, in the real world it would be impractical to have FPGA devices where the

number of logic blocks and the number of tracks per channel could be varied. Instead an FPGA

family will usually consist of a set of parts with different numbers of logic blocks, but the same

number of tracks per channel in each device. In some FPGA families the tracks per channel is

increased for parts over a certain size [28]. When a designer is targeting a circuit to an FPGA

device, they choose the smallest device that their circuit will fit in and try to route the circuit. If

the circuit cannot be routed, the designer can either take out some of their logic or use a larger

device. When moving to a bigger device, the routing associated with the extra empty logic blocks

can make routing a circuit easier, if the extra logic blocks are placed in areas of the circuit where

there is routing congestion.

In our work on high-speed routing we have already shown in Chapter 5 that by increasing

the number of tracks per channel in an FPGA, the routing time for a circuit is significantly
82

Practical Issues
reduced. It would also be interesting to understand how adding extra logic blocks to a circuit

affects the routability, when the track count is held constant.

When placing a circuit into an FPGA with more logic blocks than in the circuit, the

placement of the extra empty logic blocks is very important. If the extra logic blocks are simply

placed around the outside of all the circuit logic blocks, then the circuit is not any easier to route.

This is because most of the logic blocks do not have proximity to the extra routing. Any

placement tool that simply tries to minimize wirelength will place the logic block in precisely this

fashion. Figure 5.1 shows a placement from VPR for a circuit targeting an FPGA with 30% more

logic blocks then in the circuit. Since VPR tries to minimize wirelength, all of the circuit logic

blocks are grouped together in the middle of the FPGA.

To make better use of extra logic blocks, a placement tool that knows how to balance

routing congestion is required. This placement tool not only has to balance routing congestion,

but also has to understand how to make use of the extra logic blocks to balance routing

congestion. It is possible to alter the cost function for a placement tool, such as VPR, to try and

reduce routing congestion by placing the extra logic block in highly congested areas of the circuit.

Instead of trying to reduce congestion in highly concentrated areas of the FPGA, another

Figure 5.1: Placement from VPR with 30% extra logic blocks
83

Practical Issues
approach is to reduce the overall routing congestion of a circuit by placing the extra logic blocks

in a regular pattern throughout the FPGA. For example, with 30% extra logic blocks for a circuit,

the extra logic blocks could be placed in equally spaced columns or rows throughout the FPGA,

as shown for a circuit in Figure 5.3.

An even better method for reducing routing congestion is to place the extra logic blocks in a

diagonal pattern, as shown a circuit in Figure 5.3. The diagonal pattern improves routability more

than the column pattern, because the circuit logic blocks have increased proximity to the extra

routing. When placing the extra logic blocks in columns, the circuit logic blocks only have access

to extra routing for travelling vertically in the FPGA. With the diagonal pattern, the circuit logic

blocks have access to extra vertical and horizontal routing.

Using the benchmark circuits from Chapter 4, we ran experiments using the column and

diagonal patterns and measured the minimum track counts for each circuit with the different

placements. To place the circuits, the placement tool in VPR was altered to mark logic blocks in

the desired pattern as illegal for use. The 4000X-like architecture, described in Section 3.1.2, was

used for these experiments. Table 5.9 lists the circuits used and minimum track counts for three

different placements: a placement using the minimum FPGA size for the circuit; a placement

Figure 5.2: Placement with 30% extra logic blocks placed in columns
84

Practical Issues
using 30% extra logic blocks in the column pattern; and a placement with 30% extra logic blocks

in the diagonal pattern. The minimum track count for the column pattern is 11.8% smaller, on

average, compared to the minimum track count for the minimum sized placement. The diagonal

pattern is superior to the column pattern, reducing the average minimum track count by 16.6%,

compared to the minimum size placement.

We are also interested in how the minimum track count of a circuit improves as the

percentage of extra logic blocks is increased. To measure the improvement in minimum track

count, we placed each of the benchmark circuits using 30%, 50%, and 100% extra logic blocks.

These percentages allow diagonal lines of empty logic blocks to be placed after every third,

second, and single diagonal line of circuit logic blocks, respectively. These experiments were also

run using the 4000X-like architecture. Table 5.10 lists each of the benchmark circuits and the

minimum track counts for each placement. With only 30% extra logic blocks, which is equivalent

to using 77% of the logic blocks in an FPGA, the minimum track count improves by 16.6%, on

average. With 50% extra logic blocks, which is equivalent to using 67% of the logic blocks in an

FPGA, the minimum track count improves by 22.8%, on average. The overall minimum track

Figure 5.3: Placement with 30% extra logic blocks placed in diagonals
85

Practical Issues
count improves as the percentage extra logic blocks increases, but the effectiveness of using the

extra logic blocks decreases as more logic blocks are added.

The results from Table 5.10 can be used along with the difficulty prediction scheme from

Section 5.1 to estimate the size of FPGA needed for a circuit. First, assuming that the FPGA has

the same number of logic blocks in the circuit, an estimate of the minimum track count is

calculated. If the estimated track count for the circuit is less than the track count of the FPGA

family, then the circuit should be routable in the smallest device that fits the circuit. If the

estimated track count for the circuit is larger than the track count of the FPGA family, then the

results from Table 5.10 can be used to estimate the size of FPGA needed.

5.3 Summary

In the chapter, we described our difficulty prediction algorithm and demonstrated the

accuracy. We also looked at how to control of the difficulty of a routing problem in the context of

real industrial FPGAs.

Table 5.9: Results from 30% extra logic blocks experiments

Minimum Size
Placement

Column
Placement

Diagonal
Placement

Circuit Wmin Wmin
%

Improvement
Wmin

%
Improvement

beast16k 79 68 16.2 66 19.7

beast20k 92 81 13.6 79 16.5

clma 53 47 12.8 45 17.8

elliptic 42 39 7.7 38 10.5

ex1010 42 37 13.5 34 23.5

frisc 39 35 11.4 34 14.7

pdc 63 57 10.5 56 12.5

s38417 36 33 9.1 31 16.1

s38584.1 32 29 10.3 26 23.1

spla 57 49 16.3 49 16.3

Geometric
Average

50.6 45.1 11.8 43.2 16.6
86

Practical Issues
In the next chapter, we summarize our work and give suggestions for future research.

Table 5.10: Results for increasing % extra logic blocks in diagonal pattern

Minimum Size
Placement

30% Extra
Logic Blocks

50% Extra
Logic Blocks

100% Extra
Logic Blocks

Circuit Wmin Wmin % Imp. Wmin % Imp. Wmin % Imp.

beast16k 79 66 19.7 62 27.4 55 43.6

beast20k 92 79 16.5 73 26.0 63 46.0

clma 53 45 17.8 42 26.2 38 39.5

elliptic 42 38 10.5 35 20.0 31 35.5

ex1010 42 34 23.5 34 23.5 29 44.8

frisc 39 34 14.7 33 18.2 30 30.0

pdc 63 56 12.5 52 21.1 45 40.0

s38417 36 31 16.1 30 20.0 26 38.5

s38584.1 32 26 23.1 26 23.1 23 39.1

spla 57 49 16.3 46 23.9 39 46.2

Geometric
Average

50.6 43.2 16.6 41.2 22.8 35.0 40.0
87

Practical Issues
88

Conclusions
Chapter 6

Conclusions

The objective of this thesis was to design a high-speed timing-aware routing algorithm for

FPGAs. Using the routability-driven VPR router as our basic routing algorithm, we were able

significantly increase the execution speed using five enhancements. Most of the speedup was

obtained using an aggressive directed search, but the novel binning enhancement was able to

provide another factor of two speedup.

The compile time enhancements were tested using a set of ten large benchmark circuits

ranging in size from 45,000 gates up to 250,000 gates. When targeting a simple FPGA

architecture, the high-speed router was able to route all of the circuits in an average of 8 seconds,

using 20% extra routing resources for each circuit. This was 58 times faster than the routability-

driven VPR router. When targeting a model of the Xilinx 4000XL FPGA, the high-speed router

was able to route all of the circuits in an average of 25 seconds, using 20% extra routing resources

for each. This was 5 times faster compared to the timing-driven VPR router.

We also designed two router enhancements to improve the circuit delay of our basic routing

algorithm. The switch counting enhancement provided the biggest improvement in circuit delay,

by avoiding long series connections of pass transistor switches. We tested the circuit delay

enhancements using a model of the Xilinx 4000XL architecture and found that with only 5% extra

routing resources per circuit, the high-speed router achieved average circuit delays within 20% of

the circuit delays produced by the timing-driven VPR router.

The model of the Xilinx 4000XL FPGA developed for this work captured most of the

important details of the real 4000XL routing architecture, allowing us to experiment on a realistic

architecture. The 4000X-like architecture was used in [33] to make comparisons of a commercial
89

Conclusions
FPGA architecture to proposed new FPGA architectures. The model was also downloaded for use

by two other universities and one company.

 We also looked at two practical issues in the use of an ultra-fast router with a real family of

FPGAs. The first issue was difficulty prediction--detecting early on when a routing problem is

impossible or difficult. We developed a new difficulty prediction scheme capable of quickly and

accurately predicting the difficulty of routing a circuit from its placement. Using the 4000X-like

architecture, the estimated minimum track for each benchmark circuit was within ±10% of the

actual minimum track count.

The second practical issue dealt with controlling the difficulty of routing problems in the

context of real FPGAs. We implemented an approach to improve the overall routability of a

circuit by placing extra empty logic blocks in a regular diagonal pattern throughout the FPGA. We

showed that by using an FPGA with 30% more logic blocks than required by each benchmark

circuit, the required minimum track count decreased by an average of 17%. We also showed that

the routability improved further when using even more empty logic blocks.

6.1 Suggestions for Future Research

The binning algorithm was an important compile time enhancement, but as we described in

Chapter 3 it was not effective for FPGAs with segmented routing architectures. Improvements to

the binning algorithm to deal with segmented routing architectures are needed.

The circuit delay enhancements produced results reasonably close to those of a timing-

driven router. Ultimately, it would be useful to try and develop a high-speed timing-driven router.

The difficulty prediction algorithm was very quick and accurate, but it is clearly desirable to

predict the difficulty of a routing problem before placing the circuit. Work done by Chan et al [40]

already addresses the issue of pre-placement routability prediction by using stochastic wirelength

models to predict the wirelength for nets. It would be interesting to try using an ultra-fast

placement tool to get a very quick placement for a circuit, with a consistent quality degradation,

and then apply our difficulty prediction algorithm. This idea is currently being researched by

Sankar [52].

Our scheme for improving the routability of a circuit by placing extra empty logic blocks in

a diagonal pattern was a very simple method. Designing a placement algorithm capable of
90

Conclusions
intelligently by placing extra logic blocks in congested areas of a circuit should improve the

routability even further.

 Finally, one difficulty in carrying out this work was obtaining very large benchmark

circuits. We used GEN to create two of large circuits, but other sources of more realistic large

circuits are required. A new set of extremely large benchmark circuits would be helpful in the

development of future CAD algorithms.
91

Conclusions
92

References

[1] S. Brown, R. Francis, J. Rose, and Z. Vranesic, Field-Programmable Gate Arrays, Kluwer

Academic Publishers, 1992.

[2] S. Yang, “Logic Synthesis and Optimization Benchmarks, Version 3.0,” Tech. Report,

Microelectronics Centre of North Carolina, 1991.

[3] Xilinx Corporation, The Xilinx Foundation Series 1.4, 1998, available from

www.xilinx.com.

[4] Quickturn Design Systems, Inc., The Mercury Design Verification System, 1998, available

from www.quickturn.com.

[5] S. Wilton, “Architectures and Algorithms for Field-Programmable Gate Arrays with

Embedded Memories,” Ph.D. Dissertation, University of Toronto, 1997. (Available for

download from http://www.ee.ubc.ca/~stevew/publications.html).

[6] C. Y. Lee, “An Algorithm for Path Connections and its Applications,” IRE Trans. Electron.

Comput., Vol. EC=10, 1961, pp. 346 - 365.

[7] J. Soukup, “Fast Maze Router,” Proc. 15th Design Automation Conf., June 1978, pp. 100-

102.

[8] F. Rubin, “The Lee Path Connection Algorithm,” IEEE Trans. Computers, Sept. 1974, pp.

907 - 914.

[9] R. Linsker, “An iterative-improvement penalty-function driven wire routing system,” IBM J.

Res. Develop., vol. 28, no. 5, 1984, pp. 613-624.

[10] E. S. Kuh and M. Marek-Sadowska, “Global routing,” in Layout Design and Verification, T.

Ohtsuki, Ed. New York: Elsevier Science, 1986, pp. 169-198.

[11] R. Nair, “A Simple Yet Effective Technique for Global Wiring,” IEEE Trans. on CAD,

March 1987, pp. 165-172.

[12] S. Brown, J. Rose, Z. G. Vranesic, “A Detailed Router for Field-Programmable Gate

Arrays,” IEEE Trans. on CAD, May 1992, pp. 620 - 628.
93

[13] J. S. Rose, “Parallel Global Routing for Standard Cells,” IEEE Trans. on CAD, Oct. 1990,

pp. 1085 - 1095.

[14] Xilinx Inc., The Programmable Logic Data Book, 1994.

[15] G. Lemieux, S. Brown, “A Detailed Router for Allocating Wire Segments in FPGAs,” ACM/

SIGDA Physical Design Workshop, 1993, pp. 215 - 226.

[16] S. Brown, M. Khellah and G. Lemieux, “Segmented Routing for Speed-Performance and

Routability in Field-Programmable Gate Arrays,” Journal of VLSI Design, Vol. 4, No. 4,

1996, pp. 275 - 291.

[17] B. Tseng, J. Rose and S. Brown, “Using Architectural and CAD Interactions to Improve

FPGA Routing Architectures,” First International ACM/SIGDA Workshop on Field-

Programmable Gate Arrays, February 1992, pp. 3-8.

[18] J. Rubinstein, P. Penfield and M. Horowitz, “Signal Delay in RC Tree Networks,” IEEE

Transactions on Computer Aided Design of Integrated Circuits and Systems, Vol. CAD-2,

No. 3, July 1983.

[19] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by Simulated Annealing,”

Science, May 13, 1983, pp. 671 - 680.

[20] M. Alexander, J. Cohoon, J. Ganley and G. Robins, “Performance-Oriented Placement and

Routing for Field-Programmable Gate Arrays,” European Design Automation Conf., 1995,

pp. 80 - 85.

[21] M. Alexander, J. Cohoon, J. Ganley and G. Robins, “An Architecture-Indepedent Approach

to FPGA Routing Based on Multi-Weighted Graphs,” DAC, September 1994, pp. 259 - 264.

[22] L. Kou, G. Markowsky, and L. Berman, “A Fast Algorithm for Steiner Trees,” Acta

Informatica, no. 15, 1981, pp. 141 -145.

[23] S. K. Rao, P. Sadayappan, F. K. Hwang, and P. W. Shor, “The Rectilinear Steiner

Arborescence Problem,” Algorithmica, 1992, pp. 277 - 288.

[24] Y.-S. Lee, A. Wu, “A Performance and Routability Driven Router for FPGAs Considering

Path Delays,” DAC, 1995, pp. 557 - 561.

[25] J. Frankle, “Iterative and Adaptive Slack Allocation for Performance-Driven Layout and

FPGA Routing,” DAC, 1992, pp. 536 - 542.

[26] W. C. Elmore, “The transient response of damped linear networks with particular regard to

wideband amplifiers,” J. Appl Phys., vol. 19, no. 1, 1948, pp. 55-63.

[27] Y.-L. Wu, M. Marek-Sadowska, “An Efficient Router for 2-D Field-Programmable Gate

Arrays,” European Design Automation Conf., 1994, pp. 412 - 416.

[28] Xilinx, XC4000E and XC4000X Series Field Programmable Gate Arrays, Product
94

Specification, November 1997, available from www.xilinx.com.

[29] Y.-L. Wu, M. Marek-Sadowska, “Orthogonal Greedy Coupling -- A New Optimization

Approach to 2-D FPGA Routing,” DAC, 1995, pp. 568 - 573.

[30] C. Ebeling, L. McMurchie, S. A. Hauck and S. Burns, “Placement and Routing Tools for

the Triptych FPGA,” IEEE Trans. on VLSI, Dec. 1995, pp. 473 - 482.

[31] G. Borriello, C. Ebeling, S. Hauck, and S. Burns, “The triptych FPGA architecture,” IEEE

Trans. on VLSI Systems, vol. 3, no. 4, December 1995, pp. 491-501.

[32] L. McMurchie, C. Ebeling, “PathFinder: A Negotiation-Based Performance-Driven Router

for FPGAs,” FPGA, 1995, pp. 111-117.

[33] V. Betz, “Architectures and Algorithms for Field-Programmable Gate Arrays,” Ph.D.

Dissertation, University of Toronto, 1998.

[34] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA

Research,” International Workshop on FPL, 1997, pp. 213-222.

[35] R. Tessier, “Negotiated A* Routing for FPGAs,” 5th Canadian Workshop on Field

Prorgrammable Devices, Montreal, Quebec, Canada, June 1998, pp. 14-19.

[36] J. Swartz, V. Betz and J. Rose, “A Fast Routability-Driven Router for FPGAs,” FPGA,

1998, pp. 140 - 149.

[37] Y.-L. Wu and D. Chang, “On the NP-completeness of regular 2-D FPGA routing

architectures and a novel solution,” in Proceedings of the IEEE International Conference on

Computer-Aided Design, 1994, pp. 362-366.

[38] M. Placzewski, “Plane Parallel A* Maze Router and Its Application to FPGAs,” DAC,

1992, pp. 691 - 697.

[39] C. Cheng, “RISA: Accurate and Efficient Placement Routability Modeling,” ICCAD, 1994,

pp. 690 - 695.

[40] P. K. Chan, M. Schlag, J. Y. Zien, “On Routability Prediction for Field-Programmable Gate

Arrays,” DAC, 1993, pp. 326-330.

[41] A. El Gamal, “Two-Dimensional Stochastic Model for Interconnections in Master Slice

Integrated Circuits,” IEEE Trans. CAS, Feb. 1981, pp. 127-138.

[42] S. Sastry and A. C. Parker, “Stochastic Models for Wireability Analysis of Gate Arrays,”

IEEE Trans. on CAD, CAD-5(1), January 1986, pp. 52 - 65.

[43] M. Feuer, “Connectivity of Random Logic,” IEEE TC, Jan. 1982, pp. 29-33.

[44] K. Roy and M. Mehendale, “Optimization of Channel Segmentation for Channelled

Architecture FPGAs,” CICC, May 1992, pp. 4.4.1-4.4.4.
95

[45] M. Hutton, J. Rose, and D. Corneil, “Generation of Synthetic Sequential Benchmark

Circuits,” FPGA, 1997, pp. 149-155.

[46] E. M. Sentovich et. al, “SIS: A System for Sequential Circuit Analysis,” Tech. Report No.

UCB/ERL M92/41, University of California, Berkeley, 1992.

[47] J. Cong and Y. Ding, “Flowmap: An Optimal Technology Mapping Algorithm for Delay

Optimization in Lookup-Table Based FPGA Designs,” IEEE Trans. on CAD, Jan. 1994, pp.

1-12.

[48] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA

Research,” Int’l Workshop on FPL, 1997, pp. 213-222.

[49] Canadian Microelectronics Corporation, 0.35 Mixed-Mode Polycide 3.3V/5V Design Rule,

Doc. no. CMC-636-TSMC-TA-1098-4003, 1997.

[50] N. Weste, K Eshraghian, Principles of CMOS VLSI Design: A Systems Perspective, 2nd

Edition, AT&T, 1993.

[51] K. Roy and M. Mehendale, “Optimization of Channel Segmentation for Channelled

Architecture FPGAs,” CICC, May 1992, pp. 4.4.1-4.4.4.

[52] Y. Sankar, “Ultra-Fast Placement for FPGAs,” M.A.Sc. Dissertation, University of Toronto,

1998.
96

	A High-Speed Timing-Aware Router
	for FPGAs
	by
	Jordan S. Swartz
	A thesis submitted in conformity with the requirements
	for the degree of Master of Applied Science
	Department of Electrical and Computer Engineering
	University of Toronto
	© Copyright by Jordan S. Swartz 1998
	Abstract
	A High-Speed Timing-Aware Router for FPGAs
	Master of Applied Science, 1998
	Jordan S. Swartz
	Department of Electrical and Computer Engineering
	University of Toronto

	Acknowledgments
	Table of Contents
	Chapter 1 Introduction 1
	Chapter 2 Background and Previous Work 5
	Chapter 3 Routing Algorithm 33
	Chapter 4 Experimental Results 61
	Chapter 5 Practical Issues 73
	Chapter 6 Conclusions 89

	List of Figures
	List of Tables
	Chapter 1 Introduction
	Table 1.1: Place and route times for Xilinx M1 (using 300 MHz UltraSPARC)

	alu4
	18,000
	214
	frisc
	42,000
	1038
	s38417
	76,000
	1660
	clma
	100,000
	4229
	1.1 Thesis Organization
	Figure 1.1:
	(1.1)

	Chapter 2 Background and Previous Work
	2.1 FPGA Architecture Terminology
	Figure 2.1: (a) Island-style FPGA architecture, (b) connection box
	Figure 2.2: Switch boxes: (a) planar, (b) non-planar Wilton [5]
	Figure 2.3: Example of segmented routing architecture

	2.2 Definition of the FPGA Routing Problem
	Figure 2.4: FPGA routing architecture and graph representation

	2.3 Routing Algorithms
	2.3.1 Maze Routing Algorithm
	Figure 2.5: (a) Breadth-first search maze router, (b) directed search maze router

	2.3.2 Rip-Up and Re-Route Algorithm and Multi-Iteration Algorithm
	2.3.3 Separated Global and Detailed Routers
	2.3.3.1 CGE
	2.3.3.2 SEGA
	2.3.3.3 FPR
	Figure 2.6: Three possible thumbnails for a 3x3 partitioning [20]

	2.3.4 Combined Global and Detailed Routers
	2.3.4.1 TRACER
	2.3.4.2 GBP
	2.3.4.3 SROUTE
	2.3.4.4 Pathfinder
	(2.1)
	(2.2)
	(2.3)
	[1] A(i,j) ¨ 1 for all net sources i and sinks j
	[2] While shared resources exist
	[3] Loop over all net sources i
	[4] Rip up routing tree RT(i)
	[5] RT(i) ¨ net source i
	[6] Loop over all sinks t(i,j) in decreasing A(i,j) order
	[7] PQ ¨ RT(i) at cost A(i,j)·d(n) for each node n in RT(i)
	[8] Loop until t(i,j) is found
	[9] Remove lowest cost node m from PQ
	[10] Add all neighboring nodes n of node m to PQ with
	[11] cost = Cost(n) + path cost from source to m
	[12] End
	[13] Loop over nodes n in path t(i,j) to source i (backtrace)
	[14] Update Cost(n)
	[15] Add n to RT(i)
	[16] End
	[17] End
	[18] End
	[19] Calculate path delay and A(i,j)
	[20] End

	2.3.4.5 VPR
	(2.4)
	(2.5)
	(2.6)
	(2.7)
	(2.8)

	2.3.5 High-Speed Compile Routers
	2.3.5.1 Plane Parallel A* Maze Router
	2.3.5.2 Negotiated A* Router

	2.4 Wirelength and Routability Prediction
	2.4.1 RISA
	Figure 2.7: Examples of correction factors
	Table 2.1: Correction factors for nets with up to fifty terminals [39]

	2 ~ 3
	1.00
	15
	1.69
	4
	1.08
	20
	1.89
	5
	1.15
	25
	2.07
	6
	1.22
	30
	2.23
	7
	1.28
	35
	2.39
	8
	1.34
	40
	2.54
	9
	1.40
	45
	2.66
	10
	1.45
	50
	2.79
	2.4.2 Classification of Routing Difficulty
	Table 2.2: Routability predictors

	Unroutable
	West > WFPGA + 0.5
	Easily Routable
	West < WFPGA - 0.5
	Marginally Routable
	WFPGA - 0.5 < West < WFPGA + 0.5
	2.5 Xilinx XC4000XL Series of FPGAs
	Table 2.3: The XC4000E/XL family [28]
	2.5.1 Logic Block Architecture
	Figure 2.8: Detailed view of a XC4000E/XL logic block [28]

	2.5.2 Routing Architecture
	Figure 2.9: Overview of routing for a logic block (shaded = 4000XL only) [28]
	Table 2.4: Routing resources per logic block in 4000XL parts [28]

	Single-Length
	Track Segment
	8
	8
	Double-Length
	Track Segment
	4
	4
	Quad-Length
	Track Segment
	12
	12
	Long-Length
	Track Segment
	10
	6
	Direct Connects
	2
	2
	Globals
	8
	0
	Carry Logic
	1
	0
	1. Connections between track segments of the same length.
	2. Connections between track segments of different lengths.
	Figure 2.10: Detailed view of routing for a logic block [28]
	2.6 Summary
	Chapter 3 Routing Algorithm
	3.1 Experimental FPGA Architectures
	3.1.1 Simple FPGA Architecture
	Figure 3.1: (a) Simple FPGA routing architecture, (b) Simple FPGA logic block

	3.1.2 4000X-like FPGA Architecture
	3.1.2.1 Logic-Block Architecture
	Figure 3.2: 4000X-like logic block

	3.1.2.2 Routing Architecture
	Table 3.1: Track segments in 4000X-like architecture

	Segment Length
	% of Total
	single
	25.0
	double
	12.5
	quad
	37.5
	long (spans whole FPGA)
	25.0
	3.1.2.3 Delay Model
	3.2 Base Algorithm
	3.3 Compile-Time Enhancements
	3.3.1 Directed Search
	[1] Loop until no shared resources exist or maximum number iterations exceeded
	[2] Loop over all net sources i
	[3] Rip up routing tree RT(i)
	[4] RT(i) ¨ net source i
	[5] Loop over all sinks t(i,j)
	[6] PQ ¨ RT(i) with cost=a·ExpectedCost(m,j) for each node m in RT(i)
	[7] Loop until t(i,j) is found
	[8] Remove lowest cost node m from PQ
	[9] Add all neighbouring nodes n of node m to PQ with cost=TotalCost(m)
	[10] End
	[11] Loop over nodes n in path t(i,j) to source i (backtrace)
	[12] Update p(n) for node n
	[13] Add n to RT(i)
	[14] End
	[15] End
	[16] End
	[17] Update h(n) for all nodes
	[18] End
	Figure 3.3: Pseudocode for Directed Search Router
	(3.1)
	(3.2)
	(3.3)
	Figure 3.4: Example of ExpectedCost
	Figure 3.5: Compile time vs. a for simple architecture
	Figure 3.6: Compile time and circuit delay vs. a, (a) low-stress routing problems, (b) difficult routing problems, using the 4000X-like architecture

	3.3.2 Fast Routing Schedule
	3.3.3 Net Ordering
	3.3.4 Sink Ordering
	Figure 3.7: Two methods of routing a multi-terminal net: (a) closest sinks first, (b) furthest sinks first

	3.3.5 Binning
	Figure 3.8: Example of the binning technique
	Figure 3.9: Average low-stress compile time vs. minimum binning fanout
	3.3.5.1 Bin Size
	Table 3.2: Compile times for different bin size scaling factors

	0.5
	13.6
	114.5
	6.6
	1.0
	13.6
	81.8
	5.4
	4.0
	13.7
	94.5
	5.4
	9.0
	13.7
	122.8
	5.6
	3.3.5.2 Empty Bins
	3.3.5.3 Routing Architecture and Circuit Size Dependence
	1. By packing a circuit into an architecture containing a logic block with four 4-LUTs, the number of pins on the highest fanout...
	Figure 3.10: Low-stress compile time vs. minimum binning fanout for circuits spla and clma
	2. The second reason that binning is not effective is due to the segmented routing architecture of the 4000X-like architecture. ...

	3.4 Circuit Delay Enhancements
	3.4.1 Switch Counting
	Figure 3.11: Examples of routing use pass transistor and buffered switches
	Figure 3.12: An example of counting pass transistor switches
	(3.4)
	Figure 3.13: Example of SwichCount
	Figure 3.14: Average compile time vs. b, (a) low-stress routing problems, (b) difficult routing problems, for 4000X-like architecture

	3.4.2 Track Segment Utilization
	Table 3.3: Base cost of different routing resources

	single-length track segment
	1.00
	0.97
	double-length track segment
	N/A
	0.98
	quad-length track segment
	N/A
	0.99
	long-length track segment
	N/A
	1.00
	logic block output pin
	1.00
	1.00
	logic block input pin
	0.95
	0.95
	source
	1.00
	1.00
	sink
	0
	0
	Figure 3.15: Example of the affect of different base costs
	3.5 Summary of Enhancement Effectiveness
	3.5.1 Simple Architecture
	Table 3.4: Effectiveness of directed search and binning for simple architecture

	Routability-Driven
	VPR Router
	(Breadth-First Search)
	13.8
	837
	--
	435
	--
	High-Speed Router
	with Directed Search
	14.0
	150
	5.6
	9
	48.3
	High-Speed Router
	with Directed Search
	and Binning
	14.0
	94
	8.9
	5
	87.0
	3.5.2 4000X-Like Architecture
	Table 3.5: Effectiveness of enhancements for 4000X-like architecture (X enabled, -- disabled)

	1
	--
	--
	--
	--
	51.5
	320.5
	15.2
	194.5
	113.1
	2
	--
	--
	--
	X
	52.1
	253.8
	12.0
	174.9
	113.6
	3
	--
	--
	X
	--
	50.6
	246.5
	17.0
	172.7
	99.2
	4
	--
	--
	X
	X
	51.0
	235.9
	15.7
	173.6
	95.7
	5
	--
	X
	--
	--
	50.8
	274.9
	12.7
	162.2
	107.5
	6
	--
	X
	--
	X
	51.4
	206.4
	11.7
	168.1
	109.3
	7
	--
	X
	X
	--
	50.4
	264.3
	15.8
	135.2
	97.6
	8
	--
	X
	X
	X
	50.3
	246.5
	15.7
	139.5
	102.7
	9
	X
	--
	--
	--
	52.0
	629.1
	22.4
	160.4
	99.9
	10
	X
	--
	--
	X
	52.2
	619.2
	21.2
	145.8
	96.9
	11
	X
	--
	X
	--
	50.5
	505.3
	23.2
	127.5
	94.2
	12
	X
	--
	X
	X
	50.6
	539.0
	21.3
	129.6
	90.0
	13
	X
	X
	--
	--
	51.5
	609.1
	22.0
	148.5
	97.4
	14
	X
	X
	--
	X
	52.6
	405.4
	18.7
	146.6
	96.1
	15
	X
	X
	X
	--
	50.3
	480.7
	22.5
	128.0
	93.0
	16
	X
	X
	X
	X
	50.5
	486.7
	19.7
	132.9
	89.9
	3.6 Summary
	Chapter 4 Experimental Results
	4.1 Benchmark Circuits
	Table 4.1: Benchmark circuits

	beast16k
	GEN
	15680
	beast20k
	GEN
	19600
	clma
	MCNC
	8383
	elliptic
	MCNC
	3604
	ex1010
	MCNC
	4598
	frisc
	MCNC
	3556
	pdc
	MCNC
	4575
	s38417
	MCNC
	6406
	s38584.1
	MCNC
	6447
	spla
	MCNC
	3690
	4.2 Simple Architecture Experiments
	4.2.1 Quality: Minimum Track Count
	Table 4.2: Minimum track counts for the simple architecture

	beast16k
	23
	23
	0.0
	beast20k
	29
	29
	0.0
	clma
	12
	12
	0.0
	elliptic
	12
	12
	0.0
	ex1010
	13
	14
	7.7
	frisc
	12
	12
	0.0
	pdc
	16
	16
	0.0
	s38417
	8
	8
	0.0
	s38584.1
	8
	8
	0.0
	spla
	14
	14
	0.0
	4.2.2 Compile Time
	Table 4.3: Compile times for simple architecture

	beast16k
	23761
	183
	129.8
	7079
	42
	168.5
	5522
	26
	212.4
	beast20k
	19678
	775
	25.4
	16321
	110
	148.4
	13142
	68
	193.3
	clma
	1264
	483
	2.6
	2029
	40
	50.7
	840
	18
	46.7
	elliptic
	241
	29
	8.3
	133
	8
	16.6
	198
	4
	49.5
	ex1010
	316
	16
	19.8
	206
	4
	51.5
	109
	2
	54.5
	frisc
	262
	163
	1.6
	257
	11
	23.4
	190
	4
	47.5
	pdc
	639
	353
	1.8
	497
	22
	22.6
	581
	7
	83.0
	s38417
	330
	59
	5.6
	193
	27
	7.1
	142
	8
	17.8
	s38584.1
	338
	86
	3.9
	81
	26
	3.1
	88
	10
	8.8
	spla
	326
	78
	4.2
	255
	9
	28.3
	259
	2
	129.5
	Figure 4.1: Compile time vs. available tracks for clma (8383 logic blocks)
	4.3 4000X-Like Architecture Experiments
	4.3.1 Quality: Minimum Track Count
	Table 4.4: Minimum track counts for 4000X-like architecture

	beast16k
	71
	79
	11.3
	beast20k
	84
	92
	9.5
	clma
	47
	53
	10.6
	elliptic
	38
	42
	10.5
	ex1010
	39
	42
	7.7
	frisc
	37
	39
	5.4
	pdc
	55
	63
	14.5
	s38417
	32
	36
	12.5
	s38584.1
	28
	32
	14.3
	spla
	51
	57
	11.8
	Total
	482
	535
	11.0
	4.3.2 Compile Time
	Table 4.5: Compile times for 4000X-like architecture

	beast16k
	515
	1235
	0.4
	551
	141
	3.9
	378
	70
	5.4
	beast20k
	918
	2137
	0.4
	839
	233
	3.6
	815
	127
	6.4
	clma
	246
	407
	0.6
	183
	42
	4.4
	257
	28
	9.2
	elliptic
	79
	199
	0.4
	53
	38
	1.4
	51
	19
	2.7
	ex1010
	110
	280
	0.4
	93
	52
	1.8
	84
	15
	5.6
	frisc
	65
	169
	0.4
	53
	35
	1.5
	56
	10
	5.6
	pdc
	159
	610
	0.3
	153
	33
	4.6
	156
	20
	7.8
	s38417
	100
	196
	0.5
	81
	58
	1.4
	77
	45
	1.7
	s38584.1
	75
	277
	0.3
	46
	34
	1.4
	55
	12
	4.6
	spla
	129
	570
	0.2
	110
	24
	4.6
	109
	13
	8.4
	Geometric
	Average
	159
	425
	0.4
	130
	52
	2.5
	130
	25
	5.2
	4.3.3 Quality: Circuit Delay
	Table 4.6: Circuit delays for 4000X-like architecture

	beast16k
	121
	225
	86
	116
	146
	26
	120
	123
	3
	beast20k
	180
	332
	84
	168
	194
	15
	163
	194
	19
	clma
	100
	135
	35
	96
	115
	17
	97
	121
	25
	elliptic
	77
	149
	94
	63
	89
	41
	62
	77
	24
	ex1010
	70
	97
	39
	64
	74
	16
	58
	74
	28
	frisc
	87
	127
	46
	80
	100
	25
	83
	103
	24
	pdc
	77
	98
	27
	78
	82
	5
	75
	88
	17
	s38417
	56
	84
	50
	66
	81
	23
	60
	68
	13
	s38584.1
	40
	94
	135
	40
	52
	30
	40
	49
	23
	spla
	71
	123
	73
	69
	82
	19
	69
	75
	9
	Geometric
	Average
	81
	133
	60
	78
	95
	19
	77
	91
	16
	4.3.4 Reducing the Compile Time
	Figure 4.2: (a) Compile time vs. % extra tracks, (b) Compile time vs. % extra tracks (zoomed)
	Figure 4.3: Circuit delay vs. % extra tracks

	4.4 Summary
	(4.1)

	Chapter 5 Practical Issues
	5.1 Difficulty Prediction
	5.1.1 Estimating Total Wirelength
	(5.1)
	(5.2)
	Table 5.1: Correction factors up to 50 for 4000X-like architecture

	1
	1.00
	10
	2.05
	2
	1.25
	15
	2.45
	3
	1.39
	20
	2.69
	4
	1.55
	25
	3.22
	5
	1.64
	30
	3.45
	6
	1.76
	35
	3.50
	7
	1.77
	40
	3.80
	8
	1.89
	45
	4.03
	9
	1.98
	50
	4.45
	(5.3)
	5.1.2 Estimating Track Count
	(5.4)
	Table 5.2: Utilization for simple architecture

	beast16k
	15680
	23
	404619
	0.56
	beast20k
	19600
	29
	615294
	0.54
	clma
	8383
	12
	120360
	0.60
	elliptic
	3604
	12
	42169
	0.49
	ex1010
	4598
	14
	57599
	0.45
	frisc
	3556
	12
	49132
	0.58
	pdc
	4575
	16
	81767
	0.56
	s38417
	6406
	8
	57262
	0.56
	s38584.1
	6447
	8
	53154
	0.52
	spla
	3690
	14
	56051
	0.54
	Table 5.3: Utilization for 4000X-like architecture

	beast16k
	3937
	79
	451079
	0.73
	beast20k
	4929
	92
	649044
	0.72
	clma
	2121
	53
	156277
	0.70
	elliptic
	903
	42
	57592
	0.76
	ex1010
	1191
	42
	74896
	0.75
	frisc
	892
	39
	56235
	0.81
	pdc
	1194
	63
	103132
	0.69
	s38417
	1604
	36
	89670
	0.78
	s38584.1
	1612
	32
	81558
	0.79
	spla
	953
	57
	74858
	0.69
	5.1.3 Difficulty Classification
	Table 5.4: Definition of routing classes

	Impossible
	WFPGA< Westimate
	Difficult
	Westimate £ WFPGA< 1.1Westimate
	Low-Stress
	WFPGA ³ 1.1Westimate
	5.1.4 Demonstrations of Difficulty Prediction
	Table 5.5: Track count estimates for the simple architecture

	beast16k
	23
	24
	+1
	4.3
	beast20k
	29
	29
	0
	0.0
	clma
	12
	13
	+1
	8.3
	elliptic
	12
	11
	-1
	-8.3
	ex1010
	14
	12
	-2
	-14.3
	frisc
	12
	13
	+1
	8.3
	pdc
	16
	16
	0
	0.0
	s38417
	8
	8
	0
	0.0
	s38584.1
	8
	8
	0
	0.0
	spla
	14
	14
	0
	0.0
	Table 5.6: Track count estimates for 4000X-like architecture

	beast16k
	79
	80
	+1
	1.3
	beast20k
	92
	93
	+1
	1.1
	clma
	53
	50
	-3
	-5.7
	elliptic
	42
	43
	+1
	2.4
	ex1010
	42
	44
	+2
	4.8
	frisc
	39
	43
	+4
	10.3
	pdc
	63
	59
	-4
	-6.3
	s38417
	36
	39
	+3
	8.3
	s38584.1
	32
	35
	+3
	9.4
	spla
	57
	53
	-4
	-7.0
	Table 5.7: Difficulty prediction for simple architecture (LS=low-stress, DF=difficult, IM=impossible)
	Table 5.8: Difficulty prediction for 4000X-like architecture (LS=low-stress, DF=difficult, IM=impossible)

	beast16k
	IM
	IM
	IM
	200
	DF
	201
	DF
	80
	LS
	38
	LS
	39
	beast20k
	IM
	IM
	IM
	472
	DF
	229
	DF
	86
	LS
	65
	LS
	67
	clma
	IM
	DF
	DF
	477
	LS
	52
	LS
	32
	LS
	20
	LS
	19
	elliptic
	IM
	IM
	IM
	142
	DF
	63
	DF
	38
	LS
	18
	LS
	13
	ex1010
	IM
	IM
	IM
	148
	DF
	69
	DF
	38
	LS
	9
	LS
	6
	frisc
	IM
	IM
	IM
	92
	IM
	51
	DF
	12
	DF
	5
	DF
	5
	pdc
	IM
	DF
	DF
	257
	LS
	28
	LS
	18
	LS
	12
	LS
	12
	s38417
	IM
	IM
	IM
	164
	IM
	71
	DF
	47
	DF
	33
	LS
	15
	s38584. 1
	IM
	IM
	IM
	196
	IM
	48
	DF
	28
	DF
	40
	LS
	32
	spla
	IM
	DF
	DF
	315
	LS
	50
	LS
	11
	LS
	12
	LS
	8
	5.2 Controlling the Difficulty of Routing Problems
	Figure 5.1: Placement from VPR with 30% extra logic blocks
	Figure 5.2: Placement with 30% extra logic blocks placed in columns
	Figure 5.3: Placement with 30% extra logic blocks placed in diagonals
	Table 5.9: Results from 30% extra logic blocks experiments

	beast16k
	79
	68
	16.2
	66
	19.7
	beast20k
	92
	81
	13.6
	79
	16.5
	clma
	53
	47
	12.8
	45
	17.8
	elliptic
	42
	39
	7.7
	38
	10.5
	ex1010
	42
	37
	13.5
	34
	23.5
	frisc
	39
	35
	11.4
	34
	14.7
	pdc
	63
	57
	10.5
	56
	12.5
	s38417
	36
	33
	9.1
	31
	16.1
	s38584.1
	32
	29
	10.3
	26
	23.1
	spla
	57
	49
	16.3
	49
	16.3
	Geometric
	Average
	50.6
	45.1
	11.8
	43.2
	16.6
	Table 5.10: Results for increasing % extra logic blocks in diagonal pattern

	beast16k
	79
	66
	19.7
	62
	27.4
	55
	43.6
	beast20k
	92
	79
	16.5
	73
	26.0
	63
	46.0
	clma
	53
	45
	17.8
	42
	26.2
	38
	39.5
	elliptic
	42
	38
	10.5
	35
	20.0
	31
	35.5
	ex1010
	42
	34
	23.5
	34
	23.5
	29
	44.8
	frisc
	39
	34
	14.7
	33
	18.2
	30
	30.0
	pdc
	63
	56
	12.5
	52
	21.1
	45
	40.0
	s38417
	36
	31
	16.1
	30
	20.0
	26
	38.5
	s38584.1
	32
	26
	23.1
	26
	23.1
	23
	39.1
	spla
	57
	49
	16.3
	46
	23.9
	39
	46.2
	Geometric
	Average
	50.6
	43.2
	16.6
	41.2
	22.8
	35.0
	40.0
	5.3 Summary
	Chapter 6 Conclusions
	6.1 Suggestions for Future Research
	References
	[1] S. Brown, R. Francis, J. Rose, and Z. Vranesic, Field-Programmable Gate Arrays, Kluwer Academic Publishers, 1992.
	[2] S. Yang, “Logic Synthesis and Optimization Benchmarks, Version 3.0,” Tech. Report, Microelectronics Centre of North Carolina, 1991.
	[3] Xilinx Corporation, The Xilinx Foundation Series 1.4, 1998, available from www.xilinx.com.
	[4] Quickturn Design Systems, Inc., The Mercury Design Verification System, 1998, available from www.quickturn.com.
	[5] S. Wilton, “Architectures and Algorithms for Field-Programmable Gate Arrays with Embedded Memories,” Ph.D. Dissertation, University of Toronto, 1997. (Available for download from http://www.ee.ubc.ca/~stevew/publications.html).
	[6] C. Y. Lee, “An Algorithm for Path Connections and its Applications,” IRE Trans. Electron. Comput., Vol. EC=10, 1961, pp. 346 - 365.
	[7] J. Soukup, “Fast Maze Router,” Proc. 15th Design Automation Conf., June 1978, pp. 100- 102.
	[8] F. Rubin, “The Lee Path Connection Algorithm,” IEEE Trans. Computers, Sept. 1974, pp. 907 - 914.
	[9] R. Linsker, “An iterative-improvement penalty-function driven wire routing system,” IBM J. Res. Develop., vol. 28, no. 5, 1984, pp. 613-624.
	[10] E. S. Kuh and M. Marek-Sadowska, “Global routing,” in Layout Design and Verification, T. Ohtsuki, Ed. New York: Elsevier Science, 1986, pp. 169-198.
	[11] R. Nair, “A Simple Yet Effective Technique for Global Wiring,” IEEE Trans. on CAD, March 1987, pp. 165-172.
	[12] S. Brown, J. Rose, Z. G. Vranesic, “A Detailed Router for Field-Programmable Gate Arrays,” IEEE Trans. on CAD, May 1992, pp. 620 - 628.
	[13] J. S. Rose, “Parallel Global Routing for Standard Cells,” IEEE Trans. on CAD, Oct. 1990, pp. 1085 - 1095.
	[14] Xilinx Inc., The Programmable Logic Data Book, 1994.
	[15] G. Lemieux, S. Brown, “A Detailed Router for Allocating Wire Segments in FPGAs,” ACM/ SIGDA Physical Design Workshop, 1993, pp. 215 - 226.
	[16] S. Brown, M. Khellah and G. Lemieux, “Segmented Routing for Speed-Performance and Routability in Field-Programmable Gate Arrays,” Journal of VLSI Design, Vol. 4, No. 4, 1996, pp. 275 - 291.
	[17] B. Tseng, J. Rose and S. Brown, “Using Architectural and CAD Interactions to Improve FPGA Routing Architectures,” First International ACM/SIGDA Workshop on Field- Programmable Gate Arrays, February 1992, pp. 3-8.
	[18] J. Rubinstein, P. Penfield and M. Horowitz, “Signal Delay in RC Tree Networks,” IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, Vol. CAD-2, No. 3, July 1983.
	[19] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by Simulated Annealing,” Science, May 13, 1983, pp. 671 - 680.
	[20] M. Alexander, J. Cohoon, J. Ganley and G. Robins, “Performance-Oriented Placement and Routing for Field-Programmable Gate Arrays,” European Design Automation Conf., 1995, pp. 80 - 85.
	[21] M. Alexander, J. Cohoon, J. Ganley and G. Robins, “An Architecture-Indepedent Approach to FPGA Routing Based on Multi-Weighted Graphs,” DAC, September 1994, pp. 259 - 264.
	[22] L. Kou, G. Markowsky, and L. Berman, “A Fast Algorithm for Steiner Trees,” Acta Informatica, no. 15, 1981, pp. 141 -145.
	[23] S. K. Rao, P. Sadayappan, F. K. Hwang, and P. W. Shor, “The Rectilinear Steiner Arborescence Problem,” Algorithmica, 1992, pp. 277 - 288.
	[24] Y.-S. Lee, A. Wu, “A Performance and Routability Driven Router for FPGAs Considering Path Delays,” DAC, 1995, pp. 557 - 561.
	[25] J. Frankle, “Iterative and Adaptive Slack Allocation for Performance-Driven Layout and FPGA Routing,” DAC, 1992, pp. 536 - 542.
	[26] W. C. Elmore, “The transient response of damped linear networks with particular regard to wideband amplifiers,” J. Appl Phys., vol. 19, no. 1, 1948, pp. 55-63.
	[27] Y.-L. Wu, M. Marek-Sadowska, “An Efficient Router for 2-D Field-Programmable Gate Arrays,” European Design Automation Conf., 1994, pp. 412 - 416.
	[28] Xilinx, XC4000E and XC4000X Series Field Programmable Gate Arrays, Product Specification, November 1997, available from www.xilinx.com.
	[29] Y.-L. Wu, M. Marek-Sadowska, “Orthogonal Greedy Coupling -- A New Optimization Approach to 2-D FPGA Routing,” DAC, 1995, pp. 568 - 573.
	[30] C. Ebeling, L. McMurchie, S. A. Hauck and S. Burns, “Placement and Routing Tools for the Triptych FPGA,” IEEE Trans. on VLSI, Dec. 1995, pp. 473 - 482.
	[31] G. Borriello, C. Ebeling, S. Hauck, and S. Burns, “The triptych FPGA architecture,” IEEE Trans. on VLSI Systems, vol. 3, no. 4, December 1995, pp. 491-501.
	[32] L. McMurchie, C. Ebeling, “PathFinder: A Negotiation-Based Performance-Driven Router for FPGAs,” FPGA, 1995, pp. 111-117.
	[33] V. Betz, “Architectures and Algorithms for Field-Programmable Gate Arrays,” Ph.D. Dissertation, University of Toronto, 1998.
	[34] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA Research,” International Workshop on FPL, 1997, pp. 213-222.
	[35] R. Tessier, “Negotiated A* Routing for FPGAs,” 5th Canadian Workshop on Field Prorgrammable Devices, Montreal, Quebec, Canada, June 1998, pp. 14-19.
	[36] J. Swartz, V. Betz and J. Rose, “A Fast Routability-Driven Router for FPGAs,” FPGA, 1998, pp. 140 - 149.
	[37] Y.-L. Wu and D. Chang, “On the NP-completeness of regular 2-D FPGA routing architectures and a novel solution,” in Proceedings of the IEEE International Conference on Computer-Aided Design, 1994, pp. 362-366.
	[38] M. Placzewski, “Plane Parallel A* Maze Router and Its Application to FPGAs,” DAC, 1992, pp. 691 - 697.
	[39] C. Cheng, “RISA: Accurate and Efficient Placement Routability Modeling,” ICCAD, 1994, pp. 690 - 695.
	[40] P. K. Chan, M. Schlag, J. Y. Zien, “On Routability Prediction for Field-Programmable Gate Arrays,” DAC, 1993, pp. 326-330.
	[41] A. El Gamal, “Two-Dimensional Stochastic Model for Interconnections in Master Slice Integrated Circuits,” IEEE Trans. CAS, Feb. 1981, pp. 127-138.
	[42] S. Sastry and A. C. Parker, “Stochastic Models for Wireability Analysis of Gate Arrays,” IEEE Trans. on CAD, CAD-5(1), January 1986, pp. 52 - 65.
	[43] M. Feuer, “Connectivity of Random Logic,” IEEE TC, Jan. 1982, pp. 29-33.
	[44] K. Roy and M. Mehendale, “Optimization of Channel Segmentation for Channelled Architecture FPGAs,” CICC, May 1992, pp. 4.4.1-4.4.4.
	[45] M. Hutton, J. Rose, and D. Corneil, “Generation of Synthetic Sequential Benchmark Circuits,” FPGA, 1997, pp. 149-155.
	[46] E. M. Sentovich et. al, “SIS: A System for Sequential Circuit Analysis,” Tech. Report No. UCB/ERL M92/41, University of California, Berkeley, 1992.
	[47] J. Cong and Y. Ding, “Flowmap: An Optimal Technology Mapping Algorithm for Delay Optimization in Lookup-Table Based FPGA Designs,” IEEE Trans. on CAD, Jan. 1994, pp. 1-12.
	[48] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA Research,” Int’l Workshop on FPL, 1997, pp. 213-222.
	[49] Canadian Microelectronics Corporation, 0.35 Mixed-Mode Polycide 3.3V/5V Design Rule, Doc. no. CMC-636-TSMC-TA-1098-4003, 1997.
	[50] N. Weste, K Eshraghian, Principles of CMOS VLSI Design: A Systems Perspective, 2nd Edition, AT&T, 1993.
	[51] K. Roy and M. Mehendale, “Optimization of Channel Segmentation for Channelled Architecture FPGAs,” CICC, May 1992, pp. 4.4.1-4.4.4.
	[52] Y. Sankar, “Ultra-Fast Placement for FPGAs,” M.A.Sc. Dissertation, University of Toronto, 1998.

