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Abstract

A High-Speed Timing-Aware Router for FPGAs

Master of Applied Science, 1998
Jordan S. Swartz

Department of Electrical and Computer Engineering
University of Toronto

Digital circuits can be realized almost instantly using Field-Programmable Gate Arrays 

(FPGAs), but unfortunately the CAD tools used to generate FPGA programming bit-streams often 

require several hours to compile large circuits. We contend that there exists a subset of designers 

who are willing to pay for much faster compile times by having to use more resources on a given 

FPGA, a larger FPGA, or some decrease in the circuit speed.

A significant portion of the compile time tends to be spent in the placement and routing 

phases of the compile. This thesis focuses on the routing phase and proposes a new high-speed 

timing-aware routing algorithm. The execution speed of the new router is very fast when the 

FPGA contains at least 10% more routing resources than the minimum required by a circuit. For 

example, when targeting a model of the Xilinx 4000XL FPGA, the routing time for a 250,000 

gate circuit is 127 seconds on a 300 MHz UltraSPARC. The circuit delay is only 19% higher 

compared to a high-quality timing-driven router.

Since some routing problems are inherently difficult and will unavoidably take a long time 

to route, the practical use of high-speed routing requires that the tool must be able to predict if the 

routing task is: (i) difficult and will take a long time to complete, or (ii) impossible to complete. In 

this research, we present a method for making these predictions and show that it is accurate.
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Introduction
Chapter 1  

Introduction

Advances in technology over the past several decades have been driven by the fast pace of 

growth in the microelectronics industry. One rapidly growing area of microelectronics is Field-

Programmable Gate Arrays (FPGAs), that allow digital circuits to be realized almost instantly.

FPGAs require the use of Computer-Aided Design (CAD) tools that transform a designer’s 

high-level circuit description into a bit-stream used to program the FPGA. Unfortunately, as the 

capacity of FPGAs has continued to increase, the CAD tools have become increasingly slower, 

sometimes requiring the better part of a day to complete.

CAD tools for FPGAs usually consist of the following steps: logic synthesis, placement, 

and routing [1]. The vast majority of the compile time tends to be spent in the placement and 

routing steps. For example, Table 1.1 shows the total place and route times for a number of 

MCNC benchmark circuits [2] using the Xilinx M1 CAD tool (version 4.12) [3]. All of the 

compile times were measured on a 300MHz UltraSPARC processor. For each circuit the target 

FPGA was filled to no more than 80% capacity, which should be considered a relatively easy 

placement and routing task. The smallest circuit required approximately 4 minutes for placement 

and routing. The largest circuit, which is approximately 5 times larger than the smallest circuit, 

required more than one hour for placement and routing. This is 20 times longer than the compile 

time for the smallest circuit.

For some designers, these compile times are too long. If the problem is any harder (higher 

utilization of the FPGA), the compile times are known to exceed many hours. There is also some 

evidence to suggest that compile time is a non-linear function of circuit size, such as the data in 

Table 1.1, so the larger FPGAs of the future will take even longer to compile, despite anticipated 
1



Introduction
increases in computer power. This work focuses on the routing portion of the compile and seeks to 

develop a high-speed routing tool for FPGAs.

We can divide the set of FPGA designers into two classes: those who are willing to sacrifice 

some result quality to obtain a large speedup in compile time; and those users who are not willing 

to sacrifice any quality, regardless of the compile time. By sacrificing quality, we mean accepting 

lower FPGA utilization and slower circuit speeds. We contend that there are a significant number 

of users who are willing to sacrifice quality, and this work addresses those users. Note that even 

users who demand high quality results could still use a high-speed routing tool to estimate 

whether or not their circuit will fit in the target FPGA and to estimate the circuit speed, before 

running a slower high-quality router.

 The routing problem can be solved faster by reducing the demand on the FPGA routing 

resources, which can be achieved by lowering the utilization of the FPGA. The utilization of an 

FPGA can be lowered by either reducing the size of the circuit being targeted for the FPGA, or by 

using a larger FPGA than needed to simply fit the circuit.

 Another way in which the routing problem can be solved faster is by spending less effort 

trying to optimize the critical path of a circuit. Routers that spend a significant amount of effort to 

optimize the critical path of a circuit are known as “timing-driven” routers. We call routers that 

obtain reasonable circuit speeds, without spending as much effort as a timing-driven router, 

“timing-aware” routers.

An example of an application where users would be willing to trade FPGA utilization for a 

large speedup in compile time is the FPGA-based custom computing world. In these applications, 

highly-parallel computations are implemented in FPGAs to achieve a large run-time speedup 

compared to running the computations using software. High-speed compile is crucial for FPGA-

based custom computing, because a standard software compiler runs in seconds or minutes. These 

Table 1.1: Place and route times for Xilinx M1 (using 300 MHz UltraSPARC)

Circuit
Approximate
Gate Count

Xilinx M1 (ver. 4.12)
Place and Route

Time (s)

alu4 18,000 214

frisc 42,000 1038

s38417 76,000 1660

clma 100,000 4229
2



Introduction
users can lower the utilization of the FPGAs, in exchange for faster compile times, by using less 

parallelism and hence less hardware. Less parallelism will increase the computation run-time, but 

this will be offset by a large reduction in the FPGA compile time.

Another example of an application where high-speed compile is desperately needed is large 

FPGA emulation systems, such as the Quickturn Mercury Design Verification System [4]. 

Emulation systems consist of hundreds of FPGAs that have to be compiled. Circuit speed is not 

important, because the operating speed is limited by the large inter-FPGA routing delay. If the 

user can tolerate having to use more FPGAs to realize their system, a significant compile-time 

speedup is possible.

To assess how much result quality actual users of FPGAs would be willing to sacrifice for 

high-speed compile, we posted a question to the usenet newsgroup “comp.arch.fpga”. We asked 

designers whether they would be willing to trade some result quality to receive a routing 

significantly faster (a few minutes as opposed to a few hours). Out of the seven responses, six of 

the designers definitely wanted high-speed CAD tools, but all of designers were reluctant to trade 

too much quality for faster results. Four of the respondents said that they would certainly use such 

tools to get an idea of where their design stood during the design cycle, but would still use high-

quality CAD tools for the final compile.

The specific goal of this thesis is to develop a high-speed timing-aware router for FPGAs, 

capable of routing a 250,000-gate circuit in under one minute. For the compile time to remain 

extremely fast for even larger FPGAs, we also want to develop a routing algorithm with as near 

linear run-time complexity as possible.

1.1 Thesis Organization

This thesis is organized as follows: Chapter 2 provides background information on previous 

routing algorithms, routability prediction, and the commercial FPGA upon which one of our 

experimental architectures is modeled. The routing algorithms, which are the basis for the new 

high-speed routing algorithm, are described in detail.

Chapter 3 describes the new high-speed timing-aware routing algorithm.

Chapter 4 demonstrates the compile speed of the new high-speed router and makes 

comparisons to two existing high-quality routers. It also compares the routability and circuit 

speed of the new high-speed router to the same high-quality routers. 
3



Introduction
Chapter 5 explores practical issues relating to the use of ultra-fast routing tools by actual 

users. It describes a method of predicting how long a circuit will take to route and demonstrates 

the accuracy and efficiency of the technique. This chapter also explores how the difficulty of a 

routing problem changes as the logic capacity of the target FPGA increases.

Chapter 6 contains conclusions and suggestions for future work.

Figure 1.1:

(1.1)
4



Background and Previous Work
Chapter 2  

Background and Previous Work

In this chapter, we begin by reviewing FPGA architecture terminology and giving a brief 

definition of the FPGA routing problem. We then give an overview of many of the different 

routing algorithms developed for FPGAs. We also review some work on routability prediction and 

conclude with a description of the Xilinx XC4000XL FPGA architecture.

2.1 FPGA Architecture Terminology

All of the routing algorithms described in this chapter assume an FPGA architecture similar 

to the island-style FPGA shown in Figure 2.1. The following terminology from Brown et al [1]

has become the standard method for describing an island-style FPGA architecture. Each logic 

block has input and output (I/O) pins that connect to track segments through a connection box. 

The number of track segments that a particular I/O pin connects to in a connection box is called 

the connection box flexibility (Fc). The number of tracks per channel is W, which is also called the 

track count. Figure 2.1 (a) shows the programmable connections for one connection box, with 

Fc = 0.5W.

Track segments connect to other track segments through switch boxes. The number of track 

segments that an incoming track segment connects to is called the switch box flexibility (Fs). 

Figure 2.2 shows the connections for one track segment for two switch boxes with Fs = 3. A 

switch box is called planar if it is impossible to leave a switch box on a different track number 

then the one used to enter the switch box. Figure 2.2 (a) shows the connections for one track in a 

planar switch box. In a planar architecture, the track number is selected in the connection box at 
5
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the output pin of a logic block. A switch box is called non-planar if it is possible to leave a switch 

box on a different track number then the one used to enter the switch box. Figure 2.2 (b) shows the 

connections for one track in a non-planar switch box (track 0 is the incoming track), known as the 

Wilton switch box [5]. In a non-planar architecture, it is possible to switch from one track number 

to another track number in every switch box; these types of routing architectures improve 

routability, as shown in [5].

FPGA architectures that contain multiple lengths of track segments are called segmented 

routing architectures. For track segments that span more than one logic block, the track segment 

will pass through one or more switch boxes without passing through a series switch. Figure 2.3

Logic Block

Connection Box

Switch Box

Figure 2.1: (a) Island-style FPGA architecture, (b) connection box

(a)

(b)

Channel SegmentTrack Segment

0
1
2

0
1
2

0 1 2

0 1 2

0
1
2

0
1
2

0 1 2

0 1 2

Figure 2.2: Switch boxes: (a) planar, (b) non-planar Wilton [5]

(a) (b)
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Background and Previous Work
shows an example of part of an FPGA with a segmented routing architecture containing a single-

length, double-length, and quad-length track segment.

2.2 Definition of the FPGA Routing Problem

Many of the routing algorithms described in this chapter were designed by considering the 

routing problem as finding a path for each net through a directed graph (G). Figure 2.4 shows a 

small portion of an FPGA and its representation as a graph. The logic blocks (A, B), the I/O pins 

(OP, IP1, IP2), and the track segments (1, 2, 3, 4, 5) are represented as a set of nodes (V) and there 

is a set of directed edges (E) representing possible connections between the various routing 

resources.

The routing problem is defined as follows: for a circuit to be successfully routed in an 

FPGA, a path through the routing graph G must be found for every net to connect from its source 

terminal to every one of its sink terminals. The paths for different nets are usually chosen to 

minimize the total number of track segments required by the circuit and possibly to minimize the 

circuit delay. A path for a net is legal if every node in the path is used by at most one net (except 

for logic block nodes which may be the start or end of multiple nets). For a circuit to be 

successfully routed, legal routes must be found for every net.

The routing problem is difficult to solve, since the choice of a certain path for one net may 

block the best paths for other nets or possibly make it impossible to route other nets without over-

using certain routing resources. Routing congestion occurs when a routing resource, such as a 

track segment or an I/O pin, is over-used.

Figure 2.3: Example of segmented routing architecture

Single

Double

Quad

Series Switch
Logic Block

Switch Box
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2.3 Routing Algorithms

In this section, we describe many of the academic routing algorithms developed for FPGAs. 

We start with a description of the basic maze routing algorithm, the rip-up and re-route algorithm, 

and the multi-iteration algorithm, which are the basis for many of algorithms described in this 

section. We then review a number of algorithms, sub-divided into two classes: separated global 

and detailed routers, and combined global and detailed routers. Finally, two algorithms designed 

specifically to reduce execution time are described.

2.3.1 Maze Routing Algorithm

The maze router, developed by Lee [6], is the basis for many of the routing algorithms 

described in this section. The maze routing algorithm was designed to find the shortest path 

between two points on a rectangular grid, using a breadth-first search. The algorithm is 

guaranteed to find a path, if one exists. When applied to an FPGA, the maze routing algorithm 

starts at the source node of a net and expands each neighboring node. The neighboring nodes of 

each expanded node are then expanded. Expansions continue until the sink node of the net is 

reached, or all nodes have been visited and no path has been found.

A B

1

2 3

A

B

OP

2

3

Figure 2.4: FPGA routing architecture and graph representation

Logic Block

Switch

Track Segment
4 5

1

IP1

4

5

IP2

OP IP1
IP2
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One of the biggest weaknesses of this algorithm is that it can be very slow, since a large 

number of the nodes in a graph will have to be visited to route a net. There have been various 

improvements to the basic maze router to improve the run-time. Rubin showed that using a depth-

first search could significantly reduce the run-time, while still finding the shortest path between 

two nodes [8]. Rubin also showed that when routing a two-terminal net, the selection of the 

starting terminal for the search can significantly reduce the run-time. Choosing a terminal located 

closer to one of the four corners of the rectangular grid helps to reduce the run-time since the 

edges of the grid impose boundaries on the search.

Soukup [7] altered the basic algorithm to make it expand nodes that were successively 

closer to the sink of a net, creating a directed search algorithm. Soukup showed that a directed 

search algorithm provides an order of magnitude speedup over the basic maze routing algorithm. 

Figure 2.5 shows an example of how the maze router expansions would proceed for (a) a breadth-

first search and (b) a directed search. The source of the net is marked with an “S” and the target 

sink is marked with a “T”. The black squares mark blocked nodes or congestion. The directed 

search expands significantly fewer nodes than the breadth-first search, since the search expands 

directly towards the target sink. If there is a significant amount of congestion, the directed search 

may end up expanding most of the nodes to find a path to the target sink. In the worst case, the 

directed search has to expand as many nodes as the breadth-first search.

2.3.2 Rip-Up and Re-Route Algorithm and Multi-Iteration 
Algorithm

Since the routing resources in an FPGA are limited, routing algorithms face the problem of 

dealing with routing congestion. The problem is that routing one net using particular resources 

S

T

1
1

1
1
2

2 2

2
2

2

2

2 3
3

3
3

3
3

3
3

3
3

3

S

T

1
1

1
1

2

2
2 3
3

3
4

4

4
5

5

5
6

6

6

Figure 2.5: (a) Breadth-first search maze router, (b) directed search maze router

(a) (b)
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may make it impossible to route some other nets. There have been two main types of algorithms 

to deal with the congestion problem. The first type of algorithm is known as rip-up and re-route, 

such as the work done by Linsker [9] or Kuh and Marek-Sadowska [10]. With rip-up and re-route 

algorithms, nets using resources that are congested are ripped-up and re-routed. The success is 

dependent on the choice of which nets to rip-up and the order in which ripped-up nets are re-

routed.

Another solution to the congestion problem, known as the multi-iteration approach, was 

conceived by Nair [11]. A routing iteration is the ripping-up and re-routing of every single net. 

The nets are not ripped-up all at once, but instead each net is ripped-up separately (leaving all the 

other nets in place) and re-routed. Several iterations are performed to alleviate routing congestion. 

Nets are routed in the same order in each iteration, but only one net is ripped-up at a time. 

Congestion is identified by keeping track of the number of nets currently occupying each routing 

resource node. Any node with an occupancy greater than one is considered congested. Nair’s 

technique is very effective for resolving congestion problems, because nets in non-congested 

areas can also be relocated to allow nets using congested resources to be routed more easily.

Now that we have described some of the basic techniques used by many routing algorithms, 

in the next two sections we describe several routing algorithms in more detail.

2.3.3 Separated Global and Detailed Routers

The following routing algorithms are classified as separated global and detailed routers. 

Here the solution to the routing problem is performed in two steps to make the problem easier to 

solve. A global routing algorithm is first applied to choose channel segments (see Figure 2.1a) for 

routing each net, without choosing the exact tracks and switches within each channel. After global 

routing, a detailed routing algorithm is used to choose the exact tracks and switches. The detailed 

router is usually restricted to routing nets using the channel segments chosen by the global router.

2.3.3.1 CGE

The Course Graph Expansion (CGE) routing algorithm, developed by Brown et al [12], is 

the first academic routing algorithm developed for island-style FPGAs. CGE is a routability-

driven router, although timing critical nets can be assigned a higher priority in the routing 

algorithm. 
10
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The global routing algorithm used by CGE is the LocusRoute global routing algorithm for 

standard cells [13]. In the LocusRoute algorithm, multi-terminal nets are broken up into two-

terminal nets. Each two-terminal net is then routed using a minimum length path. Paths are 

chosen so as to balance the nets among all the channels.

The CGE detailed routing algorithm is divided into two steps. In the first step, each global 

route is expanded into a set of alternative detailed routes--each makes specific choices of track 

segments and switches. For some nets, there may be a vast number of possible detailed routes, so 

a pruning algorithm is used to limit the number of detailed routes stored for each net (this reduces 

the memory requirements and speeds up the algorithm). In the second step, a detailed route is 

chosen for each net; the detailed route with the fewest routing resources used by detailed routes 

for other nets is chosen. The router also takes into account nets that have only one possible 

detailed route and nets that are timing critical. After choosing a detailed route for a net, all of the 

other nets are updated to remove any detailed routes that use any of the resources just allocated. If 

it is impossible to route any nets, then multiple iterations with rip-up and re-route are attempted. 

Only nets using the congested channel segments are ripped-up and re-routed. For the ripped-up 

nets, new detailed routes are expanded using less aggressive pruning for each successive iteration.

The experimental architecture used for testing CGE was similar to the Xilinx 3000 series 

FPGA [14]. All the track segments were single-length segments with Fs=6 and Fc=0.6W. 

Comparisons were made to a maze routing algorithm, where the maze router was restricted to 

using track segments within the same global routes as CGE. CGE was able to route a set of 

benchmark circuits in an average of 35% less tracks per channel compared to the maze router.

2.3.3.2 SEGA

The Segment Allocator (SEGA) routing algorithm [15] [16] is an extension of the CGE 

algorithm to target FPGAs with segmented routing architectures. 

The global router used with SEGA is almost identical to that used with CGE. One important 

enhancement is the addition of bend reduction to penalize any bends in the global route for a net 

[17]. Since the underlying routing architecture contains some track segments which are longer 

than unit length, a global route with fewer bends allows the detailed router to use longer track 

segments. Bend reduction was shown to significantly reduce the total number of tracks per 

channel required by circuits, compared to not using bend reduction.
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The detailed router for SEGA is based on the same principal as CGE, in that the global 

routes are expanded into a set of detailed routes for each two-terminal net and one detailed route 

is chosen for implementing each two-terminal net. However, besides a cost function to minimize 

congestion, SEGA also contains two cost functions for minimizing circuit delay that make the 

router timing-aware. The first cost function contains two terms: one term to prefer longer track 

segments to cover a long distance, rather than several short segments; and the other term to make 

sure that a long segment is not wasted to go a very short distance. The other cost function uses the 

Rubinstein-Penfield delay model [18] for calculating the delay of a net. The delay is calculated for 

each possible detailed route of a two-point connection, and the fastest route is chosen.

Another enhancement in SEGA versus CGE is a method to reduce the wirelength and delay 

of multi-terminal nets. In CGE, all of the two-terminal nets that were decomposed from multi-

terminal nets may be routed in any order. Little effort is made to re-use track segments of two-

terminal nets that are actually part of the same multi-terminal net. Re-using track segments can 

significantly reduce the track count as well as the circuit delay. To re-use track segments, all of the 

two-terminal nets comprising a multi-terminal net are routed together, with the largest multi-

terminal nets routed first (where the size is the sum of the estimated length for each two-terminal 

net.) The two-terminal nets are routed in order from longest to shortest. As the routing proceeds, 

track segments used for other two-terminal nets that are part of the same multi-terminal net are re-

used as much as possible.

Experiments with SEGA were run on an FPGA architecture similar to the Xilinx 4000 

series FPGA [14], containing single-length, double-length, and long-length track segments, with 

Fs=3 and Fc=W. There were no other results to compare with at the time of this work, although 

experiments showed how the various enhancements significantly improved the track count and 

delay of circuits.

2.3.3.3 FPR

FPR, developed by Alexander et al [20], is a combined placement and global routing 

algorithm, followed by detailed routing. This algorithm, which is purely routability-driven, tries 

to simultaneously optimize source-sink pathlength, total wirelength, and track count.

The combined placement and global routing algorithm is based on a technique called 

thumbnail partitioning. The basic idea is that the entire FPGA is divided into a 3 x 3 grid, where 
12
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each logic block is contained in exactly one region of the grid. The placement of logic blocks is 

improved using simulated annealing [19] to move logic blocks between regions. Each region is 

then subdivided into 3 x 3 sub-regions and simulated annealing is used on the sub-regions. Each 

region is recursively subdivided and improved, until each region contains exactly one logic block.

The cost function for the placement algorithm uses pre-computed 3 x 3 Rectilinear Steiner 

Arborescences1 (RSA) [23], also called thumbnails, that connect all of the net terminals across 

partition boundaries. One thumbnail is chosen for each net; the objective is to minimize the total 

source-sink pathlength and the total wirelength across all of the nets, while also balancing 

congestion between adjacent regions. If a net has more than one terminal in a region, they are 

counted as one terminal. Figure 2.6 shows an example of three possible thumbnails for a set of 

points in a 3 x 3 partitioning. 

Once the placement algorithm has completed and each region contains exactly one logic 

block, global routing can be performed using the thumbnails assigned to nets at each level of 

recursion. At each level of recursion, a switch box is assigned to each point where a thumbnail 

crosses a partition boundary. The maximum number of nets assigned to each switch box along a 

boundary is calculated by taking the total number of nets crossing the boundary divided by the 

number of switch boxes along the boundary. Once the lowest level of recursion is reached, every 

net will have a global route assigned.

The detailed routing algorithm assigns specific track segments and switches to each net, 

within the channel segments and switch boxes specified by the combined placement and global 

routing algorithm. Each net is routed one at time, using a Steiner tree construction method known 

as Iterated-KMB (IKMB) [21]. If a net is impossible to route within the channel segments chosen 

by the global router, then the detailed router is allowed to use channel segments outside the 

1. An RSA is a rectilinear tree that contains the shortest path from the source terminal to each sink terminal 
[23].

Figure 2.6: Three possible thumbnails for a 3x3 partitioning [20]

Thumbnail

Partition
Boundary
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chosen global route. If a net is still unroutable, then all of the nets are routed again, routing the 

unroutable nets first. The detailed router tries a number of iterations before declaring failure.

IKMB is based on the Kou, Markowsky and Berman (KMB) algorithm [22]. The KMB 

algorithm constructs Steiner trees which are within twice the cost of the optimal Steiner tree, in 

polynomial time. For a net, IKMB (in the context of FPGAs) iteratively tries many of the switch 

boxes in the net as possible Steiner points. The switch boxes that reduce the cost of the net by the 

largest amount are chosen as the final Steiner points. 

Using an architecture similar to the Xilinx 3000 series FPGA, FPR was only an average of 

4% better than CGE at minimizing track count across a number of benchmark circuits. Using an 

architecture similar to the Xilinx 4000 series FPGA, comparisons were made to SEGA and GBP 

(see Section 2.3.4.2). FPR was 13% better, on average, than SEGA at minimizing track count. 

FPR was only an average of 6% better than GBP at minimizing track count.

2.3.4 Combined Global and Detailed Routers

Routers that use separate global and detailed routing algorithms may suffer what is termed 

the mapping anomaly [27]. Since the global router does not know the details of the switch box and 

connection box architecture, the detailed router may not be able to route all of the nets using the 

assigned global routes. Combined global and detailed routers do not suffer from the mapping 

anomaly, since decisions about the channel segments and the specific track segments and switches 

are made at the same time. In this section, we describe a number of combined global and detailed 

routing algorithms.

2.3.4.1 TRACER

The TRACER routing algorithm, designed by Lee and Wu [24], is a timing-driven 

algorithm. The routing algorithm is split into three steps: delay and congestion estimation; initial 

routing; and rip-up and re-routing. 

The purpose of the delay and congestion estimation step is to determine a criticality for each 

net based on the estimated minimum delay for each net and the amount of congestion a net may 

have to avoid for successful routing. Each net is routed using a breadth-first maze routing 

algorithm, ignoring any over-use of routing resources. Since each net is allowed to use the best 

routing resources, a measure of the minimum delay and the slack [25] of each net can be 
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calculated. For the delay calculations, full path-based timing analysis is performed, using an 

implementation of the Elmore delay model [26]. The congestion for each net is calculated based 

on the use of the routing resources (by all of the nets) contained within the bounding box of the 

net.

In the second step, each of the nets is routed again, using a breadth-first maze router. The 

nets are routed in order of decreasing criticality. Routing resources are not allowed to be over-

used, unless there is no other way to route a net.

The final step, rip-up and re-routing, is divided into two parts: congestion resolution and 

delay resolution. In congestion resolution, a rip-up and re-route approach is used to try and 

resolve any congestion problems from the initial routing. A simulated-evolution algorithm is used 

to choose which nets to rip-up and re-route. Nets are selected randomly to be ripped-up and re-

routed, so that any net may be selected for rip-up and re-route, not just the nets using congested 

resources. Nets that have a much larger wirelength compared to the minimum estimated 

wirelength or nets using a large number of over-used routing resources, have a higher likelihood 

of being chosen for rip-up. The simulated evolution algorithm continues until there are no more 

routing resources over-used or a time limit is exceeded and failure is declared.

In delay resolution, nets that are part of paths where the timing constraints have been 

exceeded are ripped-up and re-routed, using a similar algorithm to congestion resolution. Nets on 

paths that exceed the timing constraints and nets on paths that are well under the timing 

constraints have a higher likelihood of being chosen for rip-up. Again, either the constraints are 

met or failure is declared after exceeding a time limit.

The FPGA architecture used for testing TRACER was an island-style FPGA with all single-

length track segments and Fc=W and Fs=3. Experiments were run on a set of small benchmarks 

circuits and comparisons made to CGE and SEGA. Compared to CGE and SEGA, TRACER 

reduced the average track count by 29% and the average circuit delay by 27%.

2.3.4.2 GBP

The Greedy Bin Packing (GBP) routing algorithm, by Wu and Marek-Sadowska [27], is a 

routability-driven router. In this work, the routing problem is considered as a bin packing 

problem, where the bins are the routing tracks. The goal is to fill each of the bins with as many 

nets as possible and to use as few bins (routing tracks) as possible.
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The algorithm starts by breaking multi-terminal nets into two terminal nets. A confronting

graph is created, where each net is a node and there are edges between nodes where two nets have 

pins in the same channel segment. Nets are then packed into bins (tracks), based upon information 

from the confronting graph and the length of nets. Nets are placed in only one bin at a time, until 

that bin full.

One important assumption made in this work is that the routing architecture is planar (see 

Section 2.1), otherwise it is not possible to use this routing algorithm. At the time that this work 

was completed, the Xilinx 4000 architecture was a planar architecture, but newer architectures 

such as the Xilinx 4000XL [28] are non-planar.

GBP reduced the average track count by 17%, on average, compared to CGE and SEGA. 

GBP required 30% more tracks per channel, on average, compared to TRACER.

2.3.4.3 SROUTE

SROUTE, developed by Wilton [5], is a routability-driven router designed for exploring 

FPGA architectures with embedded memory. SROUTE is able to target island-style architectures 

and is also moderately fast.

In the SROUTE algorithm, multiple routing iterations are used to resolve congestion, during 

which every net is re-routed. During the first iteration, the nets are routed in the given order. 

During successive iterations, nets that could not be routed in the previous iteration are routed first. 

The inner-loop of the router uses a directed search maze router. The cost function for the directed 

search algorithm is based on the Manhattan distance to the target. Multi-terminal nets are routed 

one sink at a time, starting with the sink closest to the source of the net. For subsequent sinks, the 

sink that is closest to any part of the existing net is chosen as the next target; routing is continued 

from the part of the net closest to this target. If the directed maze router should fail to route a net, 

then a breadth-first maze router is used to try and route the net.

Experiments were run using a planar architecture with only unit length track segments, 

Fs=3, and Fc=W. SROUTE was able to route as set of benchmark circuits using 16% less tracks 

per channel, on average, compared to SEGA; 15% less tracks per channel, on average, compared 

to GBP; and 9% less tracks per channel, on average, compared to FPR. SROUTE required 11% 

more tracks per channel, on average, compared to TRACER. Experiments were also run that 
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measured up to a 5 times speedup in execution time compared to a purely breadth-first search 

maze router.

2.3.4.4 Pathfinder

The Pathfinder routing algorithm, designed by Ebeling et al [30], is both a routability-driven 

and a timing-driven router. While the Pathfinder algorithm was designed to target the specialized 

Triptych FPGA architecture [31], it is a general routing algorithm that can be applied to almost 

any type of FPGA architecture. One of key differences between this work and previous work is 

that the Pathfinder algorithm tries to simultaneously optimize track count and circuit delay. We 

give more detail about this algorithm compared to the other algorithms, because much of our 

work is built upon the Pathfinder algorithm.

The Pathfinder algorithm is based upon Nair’s method of iterative maze routing for custom 

integrated circuits [11]. During each iteration, every net is ripped-up and re-routed, in the same 

order during each iteration. During early iterations, nets are allowed to share routing resources 

with other nets. As the iterations proceed, the sharing of routing resources is penalized, increasing 

gradually with each iteration. (Note that Nair’s algorithm does not allow routing resources to be 

overused.) After a large number of iterations (up to a few hundred), the nets will negotiate among 

congested resources to try and find a way to successfully route the circuit, allocating key 

resources to the nets that need them the most. By re-routing all of the nets during each iteration, 

nets that do not absolutely require congested routing resources can also be relocated.

The basic Pathfinder algorithm routes nets using a breadth-first maze routing algorithm. A 

cost function is applied to each node (routing resource) to try and minimize congestion and the 

delay of more critical nets. The cost function, C(n), applied to each node n by the maze router is:

(2.1)

where d(n) is the intrinsic delay of node n, Cost(n) is the congestion cost of using node n, and 

A(i,j) is the slack ratio from the source of net i to the jth sink of net i. The congestion cost is calcu-

lated as:

(2.2)

where b(n) is the base cost of using node n (set to the intrinsic delay of node n), h(n) is the histor-

ical congestion penalty based upon the over-use of node n during previous routing iterations, and 

p(n) is the present congestion penalty based on the over-use of node n during the current routing 

C n( ) A i j,( ) d n( )⋅ 1 A i j,( )–[ ] Cost n( )⋅+=

Cost n( ) b n( ) h n( )+[ ] p n( )⋅=
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iteration. The exact methods for calculating p(n) and h(n) were not given in [30].

The slack ratio is defined as:

(2.3)

where D(i,j) is the longest path delay through the circuit that contains the path from the source of 

net i to the jth sink and Dmax is the critical path delay of the circuit. If a connection lies on the crit-

ical path, then A(i,j) will equal 1.0, and cost function Equation (2.1) will be weighted completely 

towards optimizing delay. If a connection lies on a path with a large slack, and is therefore non-

critical, A(i,j) will approach 0, and the cost function (2.1) will be heavily weighted towards mini-

mizing congestion. A value of A(i,j) between 0 and 1 will cause the router to try and minimize 

both delay and congestion. Note that setting A(i,j) to 0 for all nets makes the router completely 

routability-driven.

Figure 2.7 shows pseudocode for the complete Pathfinder routing algorithm. For the first 

iteration of the router, all of the nets are marked as critical by setting A(i,j) to 1 for all nets (line 1). 

For each net there is an associated routing tree (RT) that stores the path to each sink in the net. On 

line 5, the RT for net i is initialized with just the source of the net. The loop from lines 6 to 16 

performs the routing to each sink of net i. The source-sink paths with the largest slack ratios (most 

critical) are routed first. When routing to a sink, all of the routing resources already in the RT are 

added to the priority queue (PQ), so that routing to the next sink may continue from any resource 

already part of the net (line 7). The loop from lines 8 to 12 explores the routing graph until the 

target sink is reached. Once the target sink is reached, the congestion cost for all the nodes on the 

new path are updated and the nodes are added to the RT (lines 13 to 16). At the end of each 

iteration, all of the path delay and slack ratios are recalculated (line 19), so that the router can 

adjust the cost function of Equation (2.1) to try and balance congestion and circuit delay. 

Two enhancements are described in [30] to increase the execution speed of the Pathfinder 

algorithm. The first enhancement adds a directed-search term to the cost function used for routing 

nets. The directed-search term used is a lower bound on the cost given by Equation (2.1). This 

allows the router to choose nodes that are successively closer to the target sink, which reduces the 

run-time compared to a breadth-first search. The second enhancement is to re-route only the nets 

that are using congested nodes during successive iterations, instead of re-routing every net. This 

requires more iterations to successfully route a circuit, but each iteration is faster, resulting in a 

small reduction in the run-time.

A i j,( ) D i j,( ) Dmax⁄=
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In [32], experiments were run targeting the Xilinx 3000 series FPGA. In these experiments, 

the track counts were fixed and comparisons were made between the implemented circuit speeds 

of Pathfinder versus the Xilinx routing tool. Pathfinder was shown to provide about 11% better 

circuit speed on average. No comparisons were made to any of the other routers described in this 

chapter.

2.3.4.5 VPR

The Versatile Place and Route (VPR) tool, designed by Betz et al [34] [33], is a complete 

place and route system designed for exploring FPGA architectures. The router is based primarily 

on the Pathfinder routing algorithm, with some key enhancements to improve the track count, 

circuit speed, and compile time. VPR contains two routers: one router is routability-driven, and 

the other router is timing-driven. We describe VPR’s routing algorithms in detail for two reasons: 

first, our work was incorporated into the VPR code base, re-using much of the routing algorithm 

code and using the placement tool and the architecture generation algorithms; second, we use 

VPR as our basis for experimental comparisons.

[1] A(i,j) ← 1 for all net sources i and sinks j
[2] While shared resources exist
[3] Loop over all net sources i
[4] Rip up routing tree RT(i)

[5] RT(i) ← net source i
[6] Loop over all sinks t(i,j) in decreasing A(i,j) order

[7] PQ ← RT(i) at cost A(i,j)·d(n) for each node n in RT(i)
[8] Loop until t(i,j) is found
[9] Remove lowest cost node m from PQ
[10] Add all neighboring nodes n of node m to PQ with
[11] cost = Cost(n) + path cost from source to m
[12] End
[13] Loop over nodes n in path t(i,j) to source i (backtrace)
[14] Update Cost(n)
[15] Add n to RT(i)
[16] End
[17] End
[18] End
[19] Calculate path delay and A(i,j)
[20] End

Figure 2.7: Pseudocode for the Pathfinder routing algorithm [30].
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The routability-driven routing algorithm in VPR is very similar to the breadth-first 

routability-driven Pathfinder algorithm, with a few important changes and enhancements.

The first enhancement is a change to the congestion cost function used for evaluating a 

routing resource node n. The congestion cost function used by VPR is:

(2.4)

where b(n), h(n), and p(n) are the base cost, historical congestion penalty, and present congestion 

penalty, as defined in Section 2.3.4.4. Equation (2.4) is different from Equation (2.2) in that all the 

terms are multiplied together rather than adding b(n) and h(n), to avoid having to normalize b(n)

and h(n).

In Pathfinder, the base costs of routing resource nodes are set to their intrinsic delay values. 

VPR sets the bases costs of almost all of the routing resources to 1. The only exceptions are input 

pins, which are given a base cost of 0.95. This causes the router to expand any input pins reached 

first and speeds up the routability-driven router by up to 1.5 to 2 times. The base costs used by 

VPR resulted in a 10% average decrease in track count, compared to using the original Pathfinder 

base costs.

The present congestion penalty, p(n), is calculated by VPR as:

(2.5)

where occupancy is the number of nets presently using node n, capacity(n) is the maximum num-

ber of nets that can legally use node n, and pfac is a value that scales the present congestion pen-

alty. The present congestion penalty is updated whenever a net is ripped-up and re-routed.

The historical congestion penalty, h(n), is calculated by VPR as:

(2.6)

where i is the iteration number, and hfac is a value that scales the historical congestion penalty. 

The historical congestion penalty is updated after each routing iteration.

The values of pfac and hfac comprise what is called the routing schedule [33]. Normally, the 

default routing schedule of VPR is used, where the value for pfac is set to 0.5 or less in the first 

iteration and increased by 1.5 to 2 times in subsequent iterations [33]. The value of hfac is set to 

any value between 0.2 and 1, and remains constant in subsequent iterations [33]. With the default 

routing schedule, VPR usually requires several iterations to route a circuit. The router can be sped 

Cost n( ) b n( ) h n( ) p n( )⋅ ⋅=

p n( ) 1 max 0 occupancy n( ) 1 capacity n( )–+[ ] p fac⋅,( )+=

h n( )i
1 i, 1=

h n( )i 1–
max 0 occupancy n( ) capacity n( )–[ ] h fac⋅,( ) i 1>,+




=

20



Background and Previous Work
up by two to three times by setting pfac and hfac to 10000, called the fast routing schedule. The fast 

routing schedule forces the router to avoid over-using routing resources if possible, resulting in a 

reduction in the number of routing iterations. For easy problems, the router can sometimes route 

the circuit in just one iteration. The fast routing schedule typically requires only 2% to 4% more 

tracks over the best track count for a circuit by VPR.

Another important enhancement in VPR versus Pathfinder is the manner in which the 

routing tree is placed back on the priority queue when routing a multi-terminal net. Recall that the 

Pathfinder algorithm empties the PQ after each sink is reached in a multi-terminal net, and puts 

the complete RT back on the PQ (see Figure 2.7, line 7). For very high-fanout nets, the RT is very 

large, requiring significant CPU time simply to place the RT on the PQ for each sink. VPR 

contains a much more efficient method, called the optimized breadth-first search, where the PQ is 

left in its current state after reaching a sink, and just the new portion of the routing used to reach 

the new sink is added back onto the PQ. The search for the next sink is then continued as normal. 

The optimized breadth-first search enhancement results in an order-of-magnitude speedup, 

compared to using the regular breadth-first search.

In comparison to all of the other routers described in this chapter, VPR is able to achieve the 

lowest track counts across a series of smaller benchmark circuits, containing circuits with up to 

358 logic blocks. The routability-driven VPR router obtained a 10% lower track count, on 

average, compared to the next best router, TRACER. Using the VPR global router with the 

detailed router of SEGA, the routability-driven VPR router achieved a 14% lower track count, on 

average, compared to SEGA. Using a series of much larger benchmark circuits containing up to 

8383 logic blocks, VPR used 70% fewer tracks per channel, on average, compared to SEGA.

The timing-driven routing algorithm of VPR is also based upon Pathfinder, but the timing-

driven component is handled differently by VPR. In Pathfinder, a linear delay model is used, 

where each routing resource has a constant delay and the delays are summed to find the path 

delay. For track segments that are connected using buffers, the linear delay is accurate. But, for 

track segments that are connected using pass transistors, the linear delay model is highly 

inaccurate, because it fails to take into account the fact that the delay through a pass transistor 

depends on the other elements connected to the pass transistor. It is shown in [33] how the linear 

delay model causes the router to choose incorrect paths among alternatives. VPR uses the Elmore 

delay model [26], which models the delay of pass transistors more accurately than the linear delay 

model. The cost function used by the timing-driven routing algorithm in VPR is:
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(2.7)

where crit(i,j) is the criticality of the net being routed, d(n,Elmore) is the elmore delay of node n, 

and Cost(n) is the congestion cost of node n as given in Equation (2.4). Unlike the intrinsic delay 

value which is constant, the Elmore delay must be calculated dynamically, depending on the 

structure of the routing resources used to reach this node n. The criticality serves the same pur-

pose as the slack ratio in Pathfinder, it is used to balance congestion and timing optimization. The 

criticality is defined as:

(2.8)

where slack(i,j) is the slack between the source of net i and the sink j, and Dmax is the critical path 

delay of the circuit. VPR sets the maximum criticality value to 0.99 so that no net will completely 

ignore congestion. 

Since the Elmore delay depends on the exact structure of connections for a net and the net is 

being changed as each sink is routed, it is necessary to update the Elmore delay of each node in 

the net after routing each sink in the net. Referring to Figure 2.7, the Elmore delays for all the 

nodes in RT(i) would be updated after reaching each sink in a net (line 16).

The optimized breadth-first search describe for the routability-driven router cannot be 

utilized with the timing-driven router, since the Elmore delay which must be updated for all the 

nodes in the current expansion after reaching each sink in the net. Since placing the whole routing 

tree back on the priority queue for each sink of a net and re-starting the breadth-first search is very 

time consuming, a directed search is used instead of a breadth-first search. The decision to 

implement a directed search was based on results from the present research in [36] that showed a 

large speedup in the compile-time from using a directed search within the Pathfinder algorithm. 

The directed search uses an estimate of the total cost given by Equation (2.7) to reach the target 

sink. The estimate assumes that connections of the same length or type as the current node being 

expanded will be used to reach the target sink and that the shortest path will be used. Using the 

directed search, the timing-driven VPR router is 10 times faster, on average, compared to the 

routability-driven VPR router.

Comparisons were made between the routability-driven and timing-driven routers of VPR, 

using a model of the Xilinx 4000XL FPGA, developed as part of the present research. In 

comparing the two routers, the timing-driven VPR router produced circuits with 2.5 times less 

c n( ) crit i j,( ) d n Elmore,( )⋅ 1 crit i j,( )–[ ] Cost n( )⋅+=

crit i j,( ) min 1 slack i j,( )
Dmax
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delay, on average, than the routability-driven VPR router. The timing-driven VPR router only 

required 6% extra tracks per channel, on average, compared to the routability-driven VPR router.

2.3.5 High-Speed Compile Routers

In this section, we describe two routing algorithms that were designed specifically to reduce 

the execution time of routing.

2.3.5.1 Plane Parallel A* Maze Router

The Plane Parallel A* maze routing algorithm, designed by Palczewksi [38], is a unique 

approach to routing an FPGA using a parallel approach. The algorithm is only routability-driven.

The basic idea of the plane parallel approach is that instead of searching track segments one 

at a time, all of the track segments in a single channel segment are searched in parallel. The 

parallelism comes from the way in which the state of the search is stored. The occupancy of tracks 

in each channel segment is stored as a W-bit vector, where W is the numbers of tracks per 

channel. A “one” represents a track segment that is free and a “zero” represents a track segment 

that is blocked or occupied. A switch box is implemented as a transition function that takes an 

input bit-vector and transforms it into an output bit-vector for each side of the switch box. The 

transition function is implemented as a fast look-up table.

Each multi-terminal net is routed as a set of two-terminal nets. For each two-terminal net, a 

directed search maze router, using the plane parallel algorithm, is used to find a pruned set of 

paths from the source to the sink. Exact track segments and switches are then chosen by traversing 

backwards from the sink to the source.

Experiments with the Plane Parallel A* algorithm were run on an FPGA architecture 

containing only single-length segments with a planar switch box (The exact details about the 

architecture were not well described). The benchmark circuits were randomly generated netlists, 

with up to 1000 two-terminal nets. It was shown that the Plane Parallel A* algorithm provided up 

to an 8 times speedup over a traditional directed algorithm that expands only one track segment at 

a time.

A major shortcoming of the Plane Parallel A* algorithm is that it cannot properly route an 

FPGA with a segmented routing architecture. The occupancy of each track segment is stored a 
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single bit, so information about the length of track segments is lost. For similar reasons, it is also 

difficult to extend the Plane Parallel A* algorithm to be timing-driven.

2.3.5.2 Negotiated A* Router

The Negotiated A* router, developed by Tessier [35], is based primarily on the routability-

driven router of VPR [34]. The major enhancement of this router is the concept of “domain 

negotiation”, designed to improve the compile-time for routing planar architectures. A domain is 

synonymous to a track number. Recall that a planar architecture is one where it is impossible to 

switch from one track number to another track number, except at the output pins of logic blocks. 

The basic idea behind domain negotiation is to choose a track for routing a net where as many 

sinks as possible can be reached on this one track. Many high-fanout nets will have to use a 

number of tracks for successful routing, but choosing the tracks correctly can allow the router to 

complete much more quickly.

The negotiated A* router was shown to require the same track counts as the breadth-first 

router of VPR. The benefit of using domain negotiation was that the time to complete the routing 

of circuits using their minimum track counts was about twice as fast compared to not using 

domain negotiation.

2.4 Wirelength and Routability Prediction

In this section, we describe wirelength and routability prediction approaches that we use as 

a basis for some of our work.

2.4.1  RISA

RISA, developed by Cheng [39], is a placement algorithm for standard cells. The placement 

algorithm is simulated annealing [19]. The cost function for the algorithm uses the bounding box 

wirelength for each net, but has an enhancement to more accurately predict wirelength. We review 

this enhanced wirelength model as we make use of it in the present work.

The basic bounding box wirelength prediction assumes that the wirelength of a net is equal 

to the half-perimeter bounding box wirelength. This is correct for nets with two or three terminals, 
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but for nets with four or more terminals, the half-perimeter bounding box does not account for the 

extra wire needed to reach all of the terminals.

The RISA wirelength prediction approach scales the half-perimeter bounding box 

wirelength of a net by a correction factor that accounts for the extra wire needed for nets with 

more than three terminals. For example, a net with just two or three terminals will have a 

correction factor of 1.0 as shown in Figure 2.7. The crossing count of a four terminal net is about 

1.08, since extra wiring is need to reach the fourth terminal, as shown in Figure 2.7.

The correction factors for different fanout nets were determined by creating thousands of 

Steiner trees for randomly distributed net terminals and averaging the correction factor for each of 

the different fanout nets. Table 2.1 lists the correction factors given in [39] for nets with up to fifty 

terminals,

Table 2.1: Correction factors for nets with up to fifty terminals [39]

Num.
Terminals

Correctio
n

Factor

Num.
Terminals

Correctio
n

Factor

2 ~ 3 1.00 15 1.69

4 1.08 20 1.89

5 1.15 25 2.07

6 1.22 30 2.23

7 1.28 35 2.39

8 1.34 40 2.54

9 1.40 45 2.66

10 1.45 50 2.79

2 terminals 3 terminals

Figure 2.7: Examples of correction factors

4 terminals

half-perimeter
bounding box

terminal
wire extra wire

correction factor = 1 correction factor = 1 correction factor = 1.08
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The correction factors are used to estimate the amount of wiring required by a single net by 

simply scaling the half-perimeter bounding box of a net by the appropriate correction factor. It is 

possible to also use the RISA wirelength model to estimate the wirelength of nets in FPGAs, since 

FPGAs, like standard cells, use vertical and horizontal routing.

2.4.2  Classification of Routing Difficulty

Chan et al [40] developed an algorithm to predict the routability of a technology mapped 

netlist, before placement of the netlist. Their method for classifying the difficulty of routing 

problems is relevant to our present work.

To predict whether or not a circuit will route successfully in a given FPGA, an estimate of 

the routing resources needed by the circuit is required. If the target FPGA has more routing 

resources than required by the circuit, then the circuit is considered routable.

An estimate of the minimum track count (West) required by a circuit is calculated using 

stochastic wirelength models developed by El Gamal [41] and Sastry and Parker [42]. Both of 

these models require the average number of pins per logic block and the average wirelength of a 

routed net. The average number of pins per logic block is known. The average wirelength of a 

routed net is estimated using a wirelength distribution model developed by Feuer [43]. The model 

developed by Feuer requires the Rent parameter to calculate the average interconnection length. 

Since the Rent parameter depends on the structure of a circuit and its placement, the Rent 

parameter is estimated from an initial placement of the circuit.

Given the estimated track count, West, and the track count for the target FPGA, WFPGA, the 

difficulty of routing a circuit is predicted. If the circuit requires more tracks per channel than 

available in the target FPGA, then the circuit is unroutable. If the target circuit requires less tracks 

per channel than in the target FPGA, then the circuit is easily routable. Unfortunately, because 

West is an estimate of the track count for a circuit, there will inevitably be some error in the 

estimate. An error in the estimated track count will affect the classification of a problem when 

West is very close to WFPGA. Therefore, using a margin of error of ±0.5 tracks per channel, when 

West lies within ±0.5 tracks per channel of WFPGA, the circuit is considered marginally routable. 

Marginally routable means that it is unknown whether the circuit is routable. Table 2.2 lists the 

three classifications and their conditions.
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Using a model of the Xilinx 4000 series FPGA, the routability predictor was tested on a set 

of 26 benchmark circuits. Five circuits that were impossible to route were identified correctly. 

Two marginally routable circuits were incorrectly predicted as impossible to route. A number of 

easily routable circuits were declared marginally routable. Overall, the routability predictor was 

able to predict, with reasonable accuracy, the difficulty of routing a circuit before placing the 

circuit.

2.5 Xilinx XC4000XL Series of FPGAs

In the section, we describe the Xilinx XC4000XL Series of FPGAs [28] in detail, because 

one of our experimental architectures is based on this architecture. The XC4000XL series of 

FPGAs contains high-capacity, high-performance devices. Table 2.3 shows all of the parts 

available in the 4000 family, including the E series parts. Every part contains user-configurable 

Table 2.2: Routability predictors

Predicted Difficulty Condition

Unroutable West > WFPGA + 0.5

Easily Routable West < WFPGA - 0.5

Marginally Routable WFPGA - 0.5 < West < WFPGA + 0.5

* Max values of Typical Gate Range include 20-30% of CLBs used as RAM.

Device
Logic
Cells

Max Logic
Gates

(No RAM)

Max. RAM
Bits

(No Logic)

Typical
Gate Range

(Logic and RAM)*
CLB

Matrix
Total
CLBs

Number
of

Flip-Flops
Max.

User I/O
XC4003E 238 3,000 3,200 2,000 - 5,000 10 x 10 100 360 80
XC4005E/XL 466 5,000 6,272 3,000 - 9,000 14 x 14 196 616 112
XC4006E 608 6,000 8,192 4,000 - 12,000 16 x 16 256 768 128
XC4008E 770 8,000 10,368 6,000 - 15,000 18 x 18 324 936 144
XC4010E/XL 950 10,000 12,800 7,000 - 20,000 20 x 20 400 1,120 160
XC4013E/XL 1368 13,000 18,432 10,000 - 30,000 24 x 24 576 1,536 192
XC4020E/XL 1862 20,000 25,088 13,000 - 40,000 28 x 28 784 2,016 224
XC4025E 2432 25,000 32,768 15,000 - 45,000 32 x 32 1,024 2,560 256
XC4028EX/XL 2432 28,000 32,768 18,000 - 50,000 32 x 32 1,024 2,560 256
XC4036EX/XL 3078 36,000 41,472 22,000 - 65,000 36 x 36 1,296 3,168 288
XC4044XL 3800 44,000 51,200 27,000 - 80,000 40 x 40 1,600 3,840 320
XC4052XL 4598 52,000 61,952 33,000 - 100,000 44 x 44 1,936 4,576 352
XC4062XL 5472 62,000 73,728 40,000 - 130,000 48 x 48 2,304 5,376 384
XC4085XL 7448 85,000 100,352 55,000 - 180,000 56 x 56 3,136 7,168 448

Table 2.3: The XC4000E/XL family [28]
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Random Access Memory (RAM) in each configurable logic block (CLB). The 4000XL parts are 

fabricated in a 0.35 µm process. The 4000XL is an island-style FPGA architecture and in the next 

two sections we discuss the logic block architecture and the routing architecture.

2.5.1 Logic Block Architecture

A simplified view of the 4000XL logic block architecture is shown Figure 2.8 (which does 

not include the RAM and carry logic). Each logic block contains two 4-input lookup tables (4-

LUTs), one 3-LUT, two D-type flip-flops, and two 16x1 banks of RAM. Each logic block has 

carry logic to allow carry chains to be formed using high-speed direct connections between 

adjacent logic blocks.

Each of the 4-LUTs receives its inputs from the inputs to the logic block (F and G). The 3-

LUT can receive its inputs from two sources, either all from inputs to the logic block (C), or from 

one or both of the outputs of the 4-LUTs (F' and G'). It is possible to realize a number of different 

types of functions, ranging from two functions of four inputs and a third function of three inputs, 

up to some functions of nine inputs.

LOGIC
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OF
G1-G4

G4
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G2

G1
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FUNCTION

OF
F1-F4

F4

F3

F2

F1
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Figure 2.8: Detailed view of a XC4000E/XL logic block [28]
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2.5.2 Routing Architecture

Figure 2.9 shows the overall routing architecture of the 4000XL. The shaded arrows 

indicate extra routing resources that are only present in the 4000XL parts. The extra routing is 

required to successfully route circuits in the larger parts.

Table 2.4 gives the number of each type of track segment in each routing channel for the 

4000XL. There are four types of general routing resources: single-length segments, double-length 

segments, quad-length segments, and long-length segments (which span the entire FPGA). 

Figure 2.10 shows a detailed view of the routing resources for one logic block. There are 

two types of connections between routing resources:

1. Connections between track segments of the same length.

2. Connections between track segments of different lengths.

The switch box used for the switching of single-length and double-length track segments is shown 

in Figure 2.10, highlighted by a solid box in the centre. The switch box is planar with Fs=3. Each 

of the switch points in a switch box is composed of six pass transistor switches. The double-

length track segments rotate at the end of each logic block tile, so that each double-length will 

switch at every other switch box.

A switch box for quad-length track segments is shown by a solid box in the upper-left 

corner of Figure 2.10. The quad-length segments rotate in groups of four, so that each quad-length 

segment switches at every fourth switch box. Each quad to quad connection contains six pass 

Quad

Quad

Single

Double

Long

Direct
Connect

Long

CLB

Long Global
Clock

Long Double Single Global
Clock

Carry
Chain

Direct
Connect

Figure 2.9: Overview of routing for a logic block (shaded = 4000XL only) [28]
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transistors and one buffer that can be used by any one of the incoming quad segments to drive 

outgoing segments. The buffers are useful for implementing high-speed connections that span a 

long distance.

The long-length track segments do not switch to any other long-length segments in the logic 

block. Long-length segments connect to other long-length segments in the orthogonal direction at 

the edges of the FPGA. There are two types of long-length segments: the first type contain a 

programmable splitter in the middle of the segment to allow the long segment to be split into two 

independent segments; the other type contains buffers at the 1/4, 1/2, and 3/4 points of the 

segment. These buffers also improve the performance for FPGAs with very large array sizes.

There are also many connections between segments of different lengths. In each logic 

block, most of the quad-length track segments connect to single and double-length segments in 

the orthogonal direction using pass transistor switches. These connections are highlighted by the 

two solid circles in Figure 2.10. The rotation of quad and double track segments causes the 

connections to shift in each logic block tile. Long-length segments connect to single-length 

segments in the orthogonal direction. These connections do not change from tile to tile.

Table 2.4: Routing resources per logic block in 4000XL parts [28]

4000XL

Routing Resource Vertical 
Horizonta

l

Single-Length
Track Segment

8 8

Double-Length
Track Segment

4 4

Quad-Length
Track Segment

12 12

Long-Length
Track Segment

10 6

Direct Connects 2 2

Globals 8 0

Carry Logic 1 0

Total 45 32
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The connection boxes, for connecting logic block pins to track segments, are highlighted by 

dashed boxes in Figure 2.10. The inputs to the logic block have Fc=W, while the outputs have 

Fc=0.25W.
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Figure 2.10: Detailed view of routing for a logic block [28]
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2.6 Summary

In this chapter, we have introduced some basic FPGA terminology and given an overview of 

many different routing algorithms. We looked at previous work on high-speed routing algorithms 

and described the algorithms upon which our high-speed routing is based in detail. We also 

described some previous work on routability prediction. Finally, we described the Xilinx 

XC4000XL architecture in detail. 

In the next chapter, we describe a new high-speed timing-aware routing algorithm for 

FPGAs.
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Chapter 3  

Routing Algorithm

In this chapter, we describe a new high-speed timing-aware routing algorithm for FPGAs. 

We begin by describing the two experimental architectures used to evaluate the effectiveness of 

the high-speed algorithm. We then describe our base algorithm and enhancements designed to 

reduce the execution time and improve the circuit delay. Finally, we present a summary of the 

effectiveness of each of the algorithm enhancements, based on experiments.

When discussing the effectiveness of the algorithm enhancements, we make reference to 

two classes of routing problem: a routing problem is difficult if there are only just enough routing 

resources in the FPGA to route a circuit; a routing problem is low-stress if there are significantly 

more routing resources in the FPGA than required by a circuit. It is straightforward to 

experimentally make a routing problem either difficult or low-stress by controlling the amount of 

routing resources in the target FPGA.

For all of the experimental results presented in this section, the experiments were run on a 

set of ten large benchmark circuits, which are described in the next chapter.

3.1 Experimental FPGA Architectures

In this section, we describe the two FPGA architectures we used to experiment with the 

high-speed algorithm. We describe them in this chapter because details of the two architectures 

are required to fully understand much of the material in this chapter.
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3.1.1 Simple FPGA Architecture

The simple FPGA architecture was used in the early stages of this work, to quickly gauge 

how much compile time speedup was possible. It is also the architecture that has been used in 

much of the previous FPGA routing research.

All of the track segments in the simple architecture are single-length. The switch boxes are 

the Wilton switch box (described in Section 2.1), with flexibility Fs=3. Figure 3.1 (a) shows part 

of the routing architecture.

The simple architecture consists of logic blocks containing one 4-LUT and one D-flip-flop. 

The output of the logic block can be taken from either the 4-LUT or the D-flip-flop. There is one 

input pin on each side of the logic block and the output pin is on the bottom side of the logic 

block. The connection boxes have flexibility Fc=W, for both inputs and outputs. Figure 3.1 (b) 

shows a logic block for the simple FPGA architecture. 

3.1.2 4000X-like FPGA Architecture

We modeled a “4000X-like” FPGA architecture that closely resembles the Xilinx 4000XL 

architecture described in Section 2.5. A number of changes and simplifications were made to the 

4000XL architecture, because it is too difficult and time-consuming to precisely capture a 

commercial architecture. In this section, we describe the logic block and routing architecture of 

our 4000X-like architecture, highlighting differences from the real 4000XL architecture.

4-input
LUT D FF Output

Clock

Inputs

Figure 3.1: (a) Simple FPGA routing architecture, (b) Simple FPGA logic block

(a)

(b)
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3.1.2.1 Logic-Block Architecture

Recall from Section 2.5.1 that the real 4000XL contains a logic block with two 4-LUTs, one 

3-LUT, and two D-flip-flops. Each logic block has 11 inputs and 3 outputs. To make things 

simpler, we implemented a logic block supported by our logic synthesis tools. The 4000X-like 

logic block contains four 4-LUTs and four D-flip-flops, as shown in Figure 3.2. Each logic block 

contains 10 inputs and 4 outputs. The logic blocks only have 10 inputs, since inputs can be shared 

by all of the 4-LUTs within the logic block [48]. Each of the logic block outputs can be registered 

or unregistered, and can also be fed-back internally as an input to another 4-LUT.

For the real 4000XL, the input pin connection box has flexibility Fc=W and the output pin 

connection box has flexibility Fc=0.25W. For the 4000X-like architecture, the output pins have 

connection box flexibility Fc=0.25W. We reduced the Fc value for the input pin connection box to 

Fc=0.3W, since the inputs of the logic block can be routed to any of the four 4-LUTs.

The real 4000XL logic block also contains direct interconnect (nearest-neighbour 

connections between adjacent logic blocks) and high-speed carry chains for arithmetic. We did 

not capture these features, as they require the use of higher-level CAD tools that support direct 

interconnect and carry chains.

Figure 3.2: 4000X-like logic block
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3.1.2.2 Routing Architecture

The routing architecture of the real 4000XL architecture was captured as closely as 

possible, with some simplifications to make the routing architecture easier to capture in VPR and 

to allow for easier scaling of the number of tracks per channel. We need to scale the track count to 

measure the minimum track count for a circuit and to control the difficulty of routing problems.

Recall from Section 2.5 that the real 4000XL architecture contains four different types of 

track segments; single-length, double-length, quad-length, and long-length track segments. The 

4000X-like architecture uses the exact same length of track segments. For our experimental 

architecture we need to be able to vary the track count, so instead of choosing a fixed track count 

like the real 4000XL architecture, we use the percentages of each type of track segment given in 

Table 3.1. When varying the track count, we choose track lengths to maintain the percentages in 

Table 3.1 as closely as possible. The real 4000XL architecture also has slightly different numbers 

of tracks in the x and y direction. We chose to simplify the architecture by using the same number 

of track segments in both directions. 

The single-length track segments in our 4000X-like architecture are exactly the same as 

those in the real 4000XL architecture. Recall from Section 2.5.2, that the switch box is planar and 

the switches are all pass transistor switches. The double-length segments are also identical to the 

real 4000XL architecture. Half of the double-length segments switch in each switch box, using 

pass transistors.

In the real 4000XL architecture, the quad-length track segments switch after every fourth 

logic block, with one quarter of the segments switching in every switch box. We captured this 

exact same staggering in the 4000X-like architecture. In the real 4000XL architecture, the quad-

length segments switch at the two ends using pass transistor switches, with one set of optional 

buffers that can be used instead of any of the pass transistors. We chose to use buffered switches to 

Table 3.1: Track segments in 4000X-like architecture

Segment Length % of Total

single 25.0

double 12.5

quad 37.5

long (spans whole FPGA) 25.0
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connect between every quad-length track segment, because the optional buffer feature is not 

supported by VPR.

Recall from Section 2.4.2, that quad-length track segments also switch to single and double-

length track segments at every switch box. Also, recall from Figure 2.10 that the rotation of the 

quad tracks means that at each switch box, different quad-length track segments connect to 

different single and double-length track segments. We captured the switching between quad-

length segments and segments of other lengths exactly as specified in the real 4000XL 

architecture. When scaling our architecture, we simply replicate the switching pattern.

The long track segments in the real 4000XL architecture span the whole FPGA and do not 

connect at intersections, except at the edge of the FPGA. Some of the long segments are split in 

the middle using a tri-state buffer, allowing the long segment to be split into two independent 

segments. The remaining long track segments can be split into quarters. We chose to place buffers 

at each quarter of every long track segment in the 4000X-like architecture, again for ease of 

implementation. As in the real 4000XL, intersecting long track segments do not connect, except at 

the edges of the FPGA.

3.1.2.3 Delay Model

To calculate reasonable critical path delays, it is important to have a realistic delay model. 

VPR contains an Elmore delay model for an FPGA with a segmented routing architecture 

containing both pass transistor and buffer switches [33]1. We use the same timing model for the 

4000X-like architecture. The Elmore delay model requires a number of resistance, capacitance, 

and delay values for components such as pass transistor switches, buffers, logic block I/Os, and 

I/O pads. Realistic values were extracted from the TMSC 0.35 µm CMOS process [49]. More 

information about how the delay values were obtained can be found in [33]. We do not list the 

values for the various components of the delay model, as the data is confidential.

Now that we have described the two experimental FPGA architectures, in the rest of this 

chapter we describe the new high-speed timing-aware routing algorithm.

1. Many thanks to Vaughn Betz for graciously providing the delay model.
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3.2 Base Algorithm

In this section, we briefly review the routability-driven VPR routing algorithm [34], 

described in detail in Section 2.3.4.5, because the new high-speed algorithm is based on this 

algorithm.

Recall that the routability-driven VPR router is an enhanced version of the routability-

driven PathFinder algorithm [30], described in Section 2.3.4.4. Multiple routing iterations are 

used to route nets, during which every net is ripped-up and re-routed. In a given iteration, routing 

resources are allowed to be over-used, but the penalty for over-using routing resources is 

gradually increased during successive iterations. This gradual increase in the penalty for over-

used resources causes the nets using these resources to use other uncongested resources. It may 

require several iterations to successfully route a circuit. If a circuit cannot be routed after 30 

iterations, failure is declared.

While VPR obtains very high-quality results, the execution times are fairly long. The long 

execution times are due to the fairly inefficient breadth-first search and the large number of 

routing iterations required to route a circuit (typically 10 to 20 iterations).

In the next two sections, we describe enhancements to this base algorithm to reduce the 

compile time and the circuit delay.

3.3 Compile-Time Enhancements

In this section we describe five enhancements to the base routing algorithm to improve the 

compile time.

3.3.1 Directed Search

Recall from Section 2.3.1 that the breadth-first search used by many maze routers, including 

the routability-driven VPR router, spend a significant amount of time exploring paths in the wrong 

direction. A directed search is more efficient because it expands routing resources that lie closer to 

the target sink first (see Figure 2.5), reaching the target sink much faster compared to a breadth-

first search, especially when there is little routing congestion. A directed search was tried as an 

enhancement to the PathFinder algorithm in [30], but no experimental data was presented.
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Although the concept of a directed search is not new, it is important to describe the precise 

implementation, as there are many different ways to implement it, each with different quality. 

Figure 3.3 lists pseudocode for the enhanced routability-driven router, that has been altered to 

employ a directed search [36]. This pseudocode is essentially the same as the pseudocode given 

for the Pathfinder routing algorithm, so we refer the reader to Section 2.3.4.4 for a detailed 

description. The key enhancement to the base algorithm is the directed search. The directed 

search is implemented as part of the cost function on line 9 in Figure 3.3. The cost of using a 

routing resource node m, TotalCost(m), is calculated as:

(3.1)

PathCost(m) is the total of the cost of all of the routing resource nodes used to reach node m; it 

accounts for both the number of track segments used to reach node m and any congestion encoun-

tered along the path. When there is no routing congestion along the path to node m, PathCost(m)

is simply a count of the total number of track segments used to reach node m. PathCost(m) is cal-

culated as:

(3.2)

where Cost(l) is the congestion cost for node l, which is calculated as:

[1] Loop until no shared resources exist or maximum number iterations exceeded
[2] Loop over all net sources i
[3] Rip up routing tree RT(i)

[4] RT(i) ← net source i
[5] Loop over all sinks t(i,j)

[6] PQ ← RT(i) with cost=α·ExpectedCost(m,j) for each node m in RT(i)
[7] Loop until t(i,j) is found
[8] Remove lowest cost node m from PQ
[9] Add all neighbouring nodes n of node m to PQ with 

cost=TotalCost(m)
[10] End
[11] Loop over nodes n in path t(i,j) to source i (backtrace)
[12] Update p(n) for node n
[13] Add n to RT(i)
[14] End
[15] End
[16] End
[17] Update h(n) for all nodes
[18] End

Figure 3.3: Pseudocode for Directed Search Router

TotalCost m( ) PathCost m( ) α ExpectedCost m j,( )⋅+=

PathCost m( ) Cost l( )
l path from RT(i) to m∈

∑=
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(3.3)

Here b(l) is the base cost for using node l, p(l) is the present congestion penalty for node l, and h(l)

is the historical congestion penalty for node l. The base cost for track segments is 1.0, input pins 

0.95, and output pins 1.0. The present congestion penalty and the historical congestion penalty are 

calculated as described in Section 2.3.4.5.

The term ExpectedCost(m,j) in Equation (3.1) is a measure of the expected distance

remaining from node m to reach the target sink j. The ExpectedCost term turns the basic algorithm 

into a directed search. If two routing resource nodes have the same PathCost, but one node is 

further away from the target sink than the other node, the closer node will have a lower 

ExpectedCost, and hence a lower TotalCost. 

The expected distance is determined by counting the minimum number of track segments of 

the same length as node m required to reach the target sink j. We assume that the same type of 

track segments will be used to reach the target sink and that the track segments along the shortest 

path are actually available. This is an approximation, because in the 4000X-like architecture it is 

possible to switch between different length track segments. But, in many cases, if the router starts 

on a certain length track segment it will use more of the same type of track segment to reach the 

source. If there is routing congestion, then the router may be forced to switch to a different length 

track segment. 

Figure 3.4 illustrates a simple example of the ExpectedCost, where the number on each 

track segment is the ExpectedCost to reach the sink. Starting from the source, the sink can be 

reached by using either a single-length segment or one of two double-length segments. Using the 

single-length segment would require three more single-length segments to reach the sink. The 

double-length segment, shown in black, would require just one more segment to reach the sink. 

The other double-length segment, shown in gray, would two more segments to reach the sink, 

since the starting point of the track segment is offset from the source logic block.

The factor α in Equation (3.1) is called the direction factor, it determines how aggressively 

the router drives towards the target sink. In Equation (3.1), a higher value of α means that the 

router is more concerned about nearness to the target sink from node n (the ExpectedCost term) 

than the length of the path to reach node n or routing congestion along the path (the PathCost 

term). With an α of 0 the search is equivalent to a breadth-first search. An α value greater than 0 is 

a directed search. The larger the α value, the harder the router will try to route towards the target 

sink by going around congestion, before trying to find a shorter path. Very large values of α will 

Cost l( ) b l( ) h l( ) p l( )⋅ ⋅=
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often result in excessively long connections, in the presence of congestion, since the nearness of 

the target sink is more important than wirelength.

To determine the best value of α for the simple architecture, we routed ten benchmark 

circuits (described in Chapter 4) using multiple values of α between 1.0 and 2.0. We routed each 

circuit with two different track counts. The first track count was near the minimum track count 

required by each circuit to make the problem difficult and the second track count was 30% higher 

than the minimum track count to make the problem low-stress. Figure 3.5 shows a plot of the 

average compile time, for both difficult and low-stress routing problems, versus the direction 

factor. For the low-stress routing problems, the compile time is fairly constant for any direction 

factor greater than 1.0. For the difficult routing problems, the compile time is fastest for values of 

α between 1.1 and 1.6. For direction factors greater than 1.6, the router is creating even more 

congestion by selecting unusually long paths to go around congestion, which makes the routing 

problems even more difficult to complete. We chose to use an α value of 1.5 for the simple 

architecture.

We also measured the direction factor for the 4000X-like architecture, using the same 10 

benchmark circuits. Again, we routed each circuit with two track counts--one to make the 

problem difficult and one to make the problem low-stress. For the 4000X-like architecture we also 

measured the circuit delay for each value of α. We extended the range of α values from 0.5 to 3.0, 

because some interesting effects occurred outside the 1.0 to 2.0 range.

Figure 3.6 (a) shows the average compile time and circuit delay versus the direction factor, 

for low-stress routing problems. The average compile time for low-stress problems is the shortest 

for values of α greater than or equal to 1.0. Since there is little routing congestion, the router can 

proceed directly towards a target sink, without detouring. For values of α less than 1.0, the router 

is behaving more like a breadth-first router, since the pathlength is weighted higher than the 

Figure 3.4: Example of ExpectedCost

Source Sink

1 0

12 0

123 0
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ExpectedCost in Equation (3.1). The average circuit delay for low-stress problems is near 

minimum for values of α less than or equal to 2.0; in this range the circuit delays are between 90 

nanoseconds and 92 nanoseconds. For direction factors greater than 2.0 the circuit delay starts to 

increase, reaching 96 nanoseconds for an α value of 3.0. For large values of α the router is 

extremely directed and will accept the first path found for a net, even if the path has a large delay.

Figure 3.6 (b) shows the average compile time and circuit delay versus the direction factor, 

for difficult routing problems. The average compile time for difficult routing problems is the 

shortest for values of α between 1.0 and 2.0. For values of α less than 1.0 the router is again 

behaving more like a breadth-first router, since the pathlength is weighted higher than the 

ExpectedCost. For values of α greater than 2.0 the router is creating even more congestion by 

selecting unusually long paths to go around congestion. The circuit delay for the difficult routing 

problems is near minimum for all values of α between 0.5 and 2.0. For direction factors greater 

than 2.0 the router is again extremely directed and will accept the first path found for a net, even if 

the path has a large delay.

Given all of the data for both low-stress and difficult routing problems, we chose to use a 

direction factor of 1.001 for the 4000X-like architecture.
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3.3.2 Fast Routing Schedule

Recall from Section 2.3.4.5 that a fast routing schedule can be used to speed up the 

routability-driven VPR router by 2 or 3 times, requiring only 2% to 4% more tracks, compared to 

using the default routing schedule. The fast routing schedule sets the penalties for over-using 

routing resources to 10000 for both the present congestion penalty, p(n), and the historical 

congestion penalty, h(n). This forces the router to avoid over-using routing resources unless 

absolutely necessary--resulting in a decrease in the total number of routing iterations.

When the fast routing schedule is applied to the new high-speed router, there is a significant 

reduction in the compile time. Using the directed search with the fast routing schedule produces 

an average speedup of 17 times over using the directed search with the default routing schedule.

Overall, using the directed search with the fast routing schedule is 50 times faster on 

average, compared to the routability-driven VPR router also using the fast routing schedule.

Figure 3.6: Compile time and circuit delay vs. α, (a) low-stress routing problems, (b) difficult 
routing problems, using the 4000X-like architecture
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3.3.3 Net Ordering

In the presence of significant routing congestion, routing a high-fanout net is far more 

difficult than routing a low-fanout net. This is because very high-fanout nets tend to have sinks 

that cover most of the area of an FPGA, and therefore require many routing resources. On the 

other hand, low fanout nets (especially 2 terminal nets) tend to be very localized, requiring 

minimal routing resources.

Our goal is high-speed compilation and we want to route all of the nets successfully in just 

one iteration; therefore, we route the most difficult nets first, when there is no routing congestion. 

There is a higher likelihood of routing an easier net successfully in the presence of congestion, 

compared to a difficult net. Therefore, we route the nets in order from highest fanout to lowest 

fanout. Before starting the first iteration, a heap sort is used to sort the nets.

We ran experiments, using the 4000X-like architecture, to measure the effectiveness of the 

net ordering enhancement. We found that net ordering improved the compile time for difficult 

routing problems by 23%, on average, compared to routing the nets in the order which they 

appeared in the circuit netlist. For low-stress routing problems, there was no improvement in 

compile time, since there was little routing congestion when routing any of the nets.

Net ordering also helps to improve the circuit delay, since there is a high probability that the 

critical path of the circuit will involve the highest fanout nets. By routing the highest fanout nets 

first, they have a better chance of using faster routing resources. Through experimentation, it was 

found that for difficult routing problems, routing the highest fanout nets first improved the circuit 

delay by an average of 11%, compared to routing the nets in the order which they appeared in the 

circuit netlist. For low-stress routing problems, the circuit delay improved by an average of 14%.

3.3.4 Sink Ordering

Another way to reduce the compile time is to choose the order in which the sinks of a multi-

terminal net are routed. Figure 3.7 shows two examples of the affect that sink ordering could have 

on routing a three terminal net. Figure 3.7 (a) shows how routing the to the closest sink first can 

result in better re-use of the routing resources compared to (b) where the furthest sink is routed 

first.

Routing nets more efficiently with fewer routing resources makes the routing problem 

easier to solve in two ways: First, there are more routing resources available for nets that are 
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routed later. With more routing resources available for routing other nets, it is more likely that the 

circuit can be routed in fewer iterations. Second, routing nets more efficiently also requires fewer 

priority queue operations, which results in a decrease in compile time.

Unfortunately, the topology of the sinks in a high-fanout net affects how well routing 

resources may be re-used. For some nets, randomly ordering the sinks may be somewhat better 

than ordering the sinks by distance from the source. But, in other cases a random ordering may be 

much worse than ordering the sinks. We found that ordering the sinks from closest to furthest 

provided an overall improvement in compile time for every circuit we tested.

Using the 4000X-like architecture, we found that compile times for both low-stress and 

difficult problems improved by 21%, on average, when the closest sinks were routed first, 

compared to routing the sinks in the order which they appeared in the circuit netlist. Note that the 

closest-first sink ordering reduced the circuit delay of difficult routing problems by an average of 

10%, but had no effect on the circuit delay of low-stress problems.

In SROUTE [5], a similar sink ordering is used, except that the ordering is determined 

during run-time. When routing a net, the next sink chosen as a target by the router is the sink 

which is closest to any part of the existing routing tree. For very high-fanout nets, SROUTE 

requires significant computation time to find the closest sink. For our method, the sinks for each 

net only have to be sorted once, before the first routing iteration.

3.3.5 Binning

 The algorithm described in Figure 3.3 is somewhat inefficient, because the entire routing 

tree is placed on the priority queue when starting to route each sink of a net. This is often 

(a)

Figure 3.7: Two methods of routing a multi-terminal net: (a) closest sinks first, (b) furthest 
sinks first

(b)

sink 1 sink 2sink 1 sink 2

source source
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unnecessary because, for higher fanout nets, most of the current routing tree is unlikely to be 

involved in the subsequent connections. The priority queue is essentially used to sort the track 

segments in order of increasing distance to the sink, so that the first track segment removed from 

the priority queue is typically the closest one to the sink. In the worst case, for an FPGA 

containing N logic blocks and a net with N sinks, this approach exhibits O(N2logN) behaviour for 

the net. Since many circuits have at least a few extremely high fanout nets, this typically slows the 

router.

To overcome this effect, we devised a technique called binning. The key idea is that only the 

portions of the current routing tree that are closest to the current target sink need to be placed on 

the priority queue. Figure 3.8 illustrates a simple example of the binning technique. In this 

example there are four bins, each containing one quarter of the total track segments. A net with 

fanout three is being routed, and two of the three sinks have already been routed. When routing 

the last sink, instead of placing the entire net on the priority queue, only those parts of the net in 

bin 4 are placed on the priority queue, thus reducing the number of priority queue operations. For 

relatively low fanout nets, binning does not save many priority queue operations. However, when 

used on very high fanout nets, binning significantly reduces the number of priority queue 

operations. 

We define the minimum binning fanout (MBF) as the minimum fanout below which the 

binning enhancement is not used. To determine the best MBF value, we routed a number of 

benchmark circuits (described in Chapter 4) using MBFs ranging from 1 to 10,000, and averaged 

the results across all the circuits. Figure 3.9 shows a plot of the average low stress compile time 

versus different values of MBF, for the simple FPGA architecture. Any nets with fanout equal to 

Bin 1 Bin 2

Bin 4Bin 3

Figure 3.8: Example of the binning technique
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or greater than the MBF were routed using binning. For an MBF of 1, binning is used for all the 

nets, and the average compile time is about 16 seconds. The average compile time decreases to a 

minimum of about 5 seconds, with an MBF of 4. The average compile time starts to increase 

noticeably when the MBF exceeds 100. For an MBF of 10000, binning is not used at all. Based on 

Figure 3.9, we chose to only use binning for nets with fanout greater than 50, although any value 

between 4 and 100 produces nearly equal results.

The pseudocode of Figure 3.3 can be altered to use binning by replacing line 6 with:

PQ ← Nodes in bin containing j, with cost=α·ExpectedCost(n,j) for each node n in bin

This line places the contents of the bin containing the target sink j onto the priority queue. While 

updating the routing tree for net i, the new nodes are added to their corresponding bin by adding 

the following line after line 13:

Add node n to corresponding bin

There are three key issues that have to be addressed with binning: the size of the bins; what 

to do when a bin containing a sink does not contain any part of the routing tree for the net; and 

how the underlying routing architecture and the size of the circuit limit the effectiveness of 

binning.
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3.3.5.1 Bin Size

If the bin size is too small (in the extreme case the segments in just one logic block tile), 

then the quality of the routing degrades since an insufficient amount of the prior route is available 

as potential “start points” for the connection to the sink in that bin. If the bin size is too large (in 

the extreme case the entire FPGA), then unnecessary segments will be put on the priority queue 

and the compile time will increase. Since the average distance between sinks can vary for 

different nets, our router computes the bin size based on the span of each net.

Before a net is routed, the average area per sink is calculated as the area of the bounding box 

of the net terminals divided by the number of sinks. The bin size for a net is calculated as the 

average area per sink multiplied by the bin size scaling factor. The bin size scaling factor 

increases the bin size, to increase the probability that a bin containing a sink will also contain a 

sufficient amount of the routing tree to make a connection to the sink.

To determine a suitable value for the bin size scaling factor, we routed ten benchmark 

circuits (described in Chapter 4) using different values for the bin size scaling factor. Table 3.2

lists the bin size scaling factors, the average minimum track count, the average compile time for 

difficult routing problems, and the average compile time for low-stress routing problems.

The average minimum track count is nearly equal for all the different bin size scaling 

factors. The average compile time for low-stress problems is nearly constant for scaling factors 

greater than or equal to 1.0. The compile time for low-stress problems with a bin size scaling 

factor of 0.5 is about 20% higher, on average, compared to the other bin size scaling factors. The 

extra time is a result of the bins being too small, so that the bins do not contain enough of the 

routing tree to allow a connection to a sink to be found quickly.

Table 3.2: Compile times for different bin size scaling factors

Bin Size
Scaling Factor

Geometric Average
Minimum Track

Count

Geometric Average
Difficult

Compile Time (s)

Geometric Average
Low-Stress

Compile Time (s)

0.5 13.6 114.5 6.6

1.0 13.6 81.8 5.4

4.0 13.7 94.5 5.4

9.0 13.7 122.8 5.6
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For the difficult routing problems, the bin size scaling factor of 1.0 produced the fastest 

average compile time. For a bin size scaling factor of 0.5, the bins do not contain enough of the 

routing tree to allow a connection to a sink to be found quickly. For scaling factors greater than 

1.0, each bin contains much more of the routing tree than required make quick connections. Based 

on the results in Table 3.2, we chose to use a bin size scaling factor of 1.0.

3.3.5.2 Empty Bins

If the bin containing a sink does not contain any part of the route so far, then the portions of 

the net in its eight neighbouring bins are added to the priority queue. The neighbouring bins may 

contain parts of the route relatively close to the target sink. If the neighbouring bins are also 

empty, then the entire pre-existing routing tree is placed on the priority queue. In the best case for 

an FPGA containing N logic blocks and a net with N sinks, if every sink could be routed using 

just the routing in the bin containing the sink, the run-time complexity for the net would be 

reduced by a factor of N to O(NlogN). This is assuming that the entire routing tree never has to be 

placed back onto the priority queue. In reality, the routing tree will have to be placed back onto the 

priority queue at least a few times, so we expect the behaviour to be somewhere in between 

O(NlogN) and O(N2logN).

3.3.5.3 Routing Architecture and Circuit Size Dependence

For the simple architecture, which contains only unit-length track segments, we found 

binning to be highly effective for reducing the compile time. Through experimentation with 

binning, we found that the low-stress compile time improved by 50% on average, compared to 

just using a directed search without binning.

Using the same circuits with our 4000X-like architecture, we found that binning was no 

longer effective for the following two reasons:

1. By packing a circuit into an architecture containing a logic block with four 4-LUTs, the 

number of pins on the highest fanout net is reduced by up to four times, compared to a 

logic block with one 4-LUT. Also, the area that the highest fanout net can cover is 

reduced by four times. In total, routing the highest fanout net using the 4000X-like archi-

tecture is approximately one sixteenth as difficult compared routing the same net using 

the simple architecture. Figure 3.10 shows the minimum binning fanout (MBF) versus 
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compile time for two circuits, for the simple architecture. The smaller circuit, spla, 

shows almost no improvement in compile across the range of MBFs. The bigger circuit, 

clma, shows a speedup of about 3 times for the range of MBFs from 1 to 400, compared 

to not binning any nets (MBF of 1000). Therefore we can conclude that the effectiveness 

of binning depends on the size of the routing problem.

2. The second reason that binning is not effective is due to the segmented routing architec-

ture of the 4000X-like architecture. The simple architecture contains just single-length 

segments, which fit into exactly one bin. The 4000X-like architecture contains various 

length segments, which do not always fit into exactly one bin. For example, a long-length 

track segment may cross 10 bin boundaries. After placing the contents of a bin back on 

the priority queue, if the router decides to expand a long-length segment, then all of rout-

ing resources attached to the long-length segment must be placed on the priority queue. 

Compared to a single-length track segment, a long-length track segment is attached to 

many more routing resources, requiring much more time to expand all of the neighbour-

ing resources.

We tried routing circuits on the 4000X-like architecture with the long-length segments 

replaced by quad-length segments, and still found binning to be ineffective. The reduction in the 

size of the problem appears to be the dominating factor. For this work the largest available 

Figure 3.10: Low-stress compile time vs. minimum binning fanout for circuits spla and clma
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benchmark circuit contained about 20,000 4-LUTs. For even larger benchmark circuits (more 

than 100,000 4-LUTs) binning should once again prove an effective way to reduce the compile 

time.

3.4 Circuit Delay Enhancements

The enhancements described in the previous section were principally designed to improve 

the compile time, although the net ordering and sink ordering also improved the circuit delay. In 

this section we describe enhancements to the base algorithm designed specifically to improve the 

circuit delay. These enhancements were tested only with the 4000X-like architecture, since it 

contains a segmented routing architecture and a realistic delay model.

Many of the routing algorithms described in Chapter 2 are completely routability-driven--

they do not make any attempt to optimize circuit delay. The problem with completely ignoring 

delay is that the resulting circuit delays can be extremely large. For example, in comparing the 

routability-driven VPR router to the timing-driven VPR router, the circuit delays for 20 MCNC 

circuits were 1.5 to 5 times worse for the routability-driven router [33]. At the other extreme are 

fully path-based timing-driven routers, such as the timing-driven VPR router, that use full path-

based timing analysis to optimize circuit delay when routing circuits. The timing-driven VPR 

router requires a number of iterations (typically 6 to 10) for nets to successfully negotiate for the 

use of timing critical resources (even for low-stress routing problems), which leads to long 

compile times. 

A middle ground, alternative approach is a net-based (as opposed to a path-based) approach. 

Here we simply work to ensure that no net has an overly long delay. We term this kind of 

approach “timing-aware”, as opposed to fully path-based timing driven. While a timing-aware 

approach may not be able to achieve as high-quality circuit delays as those of a timing-driven 

router, the circuit delays will be significantly improved over purely routability-driven routers.

In the next two sections we describe two enhancements to the new high-speed routing 

algorithm to make it a timing-aware algorithm.

3.4.1 Switch Counting

The most common way in which delay is built up in a net is by connecting a large number 

of pass transistor switches in series, since the delay through pass transistors grows quadratically 
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as the number of pass transistors increases [50]. The delay of a net can be improved by avoiding 

long sequences of pass transistors and using some buffers instead, since the delay through a 

number of buffers grows linearly [50].

Figure 3.12 shows two examples for routing a two-terminal net using a mixture of pass 

transistor and buffered switches. Using the Elmore delay model, the delay of the net in Figure 

3.12 (a) is 1.875 ns. If one of the pass transistor switches is replaced by a buffer, as shown in 

Figure 3.12 (b), then the delay decreases to 1.125ns.

One way in which long sequences of pass transistor switches can be avoided is by counting 

the number of pass transistors used to reach a particular routing resource and adding the count 

into the cost function used by the router in Equation (3.1). When the number of pass transistors 

grows large, the cost of the current path will become very expensive, causing the router to try to 

find a path that uses a buffered resource. The number of pass transistors that are in a sequence is 

squared, like the Elmore delay, because this is more realistic than simply counting pass 

transistors.

Figure 3.12 shows an example of how the switch count is calculated. Each sequence of pass 

transistor switches, separated by at least one buffer, is counted and squared. We define 

SwitchCount(n) as the sum of the number of pass transistors in each sequence squared, used to 

reach node n

We add the SwitchCount to Equation (3.1) as:

(3.4)

where β is the switch count weight. β is between 0 and 1 and controls how many pass transistors 

in a series the router will tolerate before trying an alternative route. With a β of 0, the router com-

pletely ignores switch counting, while a β of 1 causes the router to try and avoid even short series 

Source Sink

Figure 3.11: Examples of routing use pass transistor and buffered switches

Source Sink

(a) Elmore Delay = 1.875 ns

(b) Elmore Delay = 1.125 ns

Rpass = 500 Ω
Cwire = 250 fF
Tbuff = 125 ps
Rbuff = 500 Ω

TotalCost n( ) PathCost n( ) α ExpectedCost n j,( ) β SwitchCount n( )⋅+⋅+=
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of pass transistors by trying to use more buffered resources. A large value for β will also cause an 

increase in the compile time, because the SwitchCount factor in Equation (3.4) will start to domi-

nate the directed search, and more time is spent back-tracking to search for buffered resources.

An example of the effect of the switch count is shown in Figure 3.13. In this example we 

use the cost function given in Equation (3.4) with α = 1.0 and β = 0.2 for simplicity. The net being 

routed contains four sinks, and the first three sinks have already been routed using double-length 

segments, which are connected using pass transistor switches. When trying to connect to the 

fourth sink, there are two choices: use another double-length segment (shown in grey); or use a 

quad-length segment originating from the source of the net. In this example, the router will 

choose the quad-length segment, because the SwitchCount has made the cost of choosing the 

double-length segment higher. While choosing the quad-length segment may not be as good for 

overall wirelength, it is a necessary choice for reducing the delay of the net.

To determine the best value for the switch count weight, β, we routed a number of 

benchmark circuits using values of β between 0.0 and 1.0. We measured the average compile time 

and circuit delay for low-stress and difficult routing problems.

Source node n

SwitchCount(n) = 22 + 32 +12 = 14

Figure 3.12: An example of counting pass transistor switches

sink

source

1

2 3 4
TotalCost = 1 + 0 + 0.2*32 = 2.8

cost = 1 + 1 + 0 = 2.0

Figure 3.13: Example of SwichCount

= pass transistor switch

Path
Cost

Expected
Cost

Switch
Count
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Figure 3.14 (a) shows a plot of the average compile time and circuit delay versus β, for low-

stress routing problems. The compile time for low-stress problems increases as the value of β

increases. As β increases, the router tries increasingly harder to find paths with fewer pass 

transistor switches, requiring more compile time. The circuit delay for low-stress problems is 

highest for a β value of 0.0, since the router does not pay any attention to minimizing the use of 

pass transistor switches. For any value of β greater than 0.0 the circuit delay is near its minimum; 

since there is little routing congestion, the router has an easy time avoiding the use of long series 

of pass transistor switches.

Figure 3.14 (b) shows a plot of the average compile time and circuit delay versus β, for 

difficult routing problems. The compile time for difficult problems increases as the value of β

increases, again due to the increasing effort by the router to find paths with fewer pass transistor 

switches. The circuit delay for difficult problems is fairly large for a β value of 0.0, since the 

router does not pay any attention to minimizing the use of pass transistor switches. For any values 

of β between 0.01 and 0.4, the circuit delay is near its minimum value. The average circuit delay 

starts to increase significantly for values of β greater than 0.4. A large β value causes the router to 

use up most of the fast routing resources for the nets routed first; this makes it difficult to route the 

remaining nets without using a large number of pass transistor switches, since the routing 

problems are difficult and there is a limited number of buffered routing resources.

Given all of the data for both low-stress and difficult routing problems, we chose to use a 

switch count weight of 0.1 for the 4000X-like architecture.

Overall, through experimentation on the 4000X-like architecture, just using switch counting 

improved the circuit delay for difficult problems by an average of 18%, compared to not using 

switch counting. For low-stress problems, the circuit delay improved by an average of 12%, 

compared to not using switch counting. The extra expansion operations required by switch 

counting increased the compile time by an average of 96% for difficult problems and by an 

average of 47% for low-stress problems, compared to not using switch counting.

3.4.2 Track Segment Utilization

Besides avoiding long chains of pass transistor switches, another source of delay in routing 

is caused by using the incorrect length of track segments to reach a sink. Utilization is defined as 
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the length of a track segment that is actually required in making a connection divided by the total 

length of the track segment [51].

If a sink lies just one logic block away from the source, then using a long-length segment 

will result in extra delay for that net. Conversely, if a sink lies on the opposite side of the FPGA 

from the source, then using single-length segments to go all the way across the FPGA will also 

result in extra delay for the net. In both these cases, track segments are used improperly and 

unnecessary delay is added to the connection. The switch counting enhancement already ensures 

that short unbuffered track segments are avoided for long connections. But, since circuits usually 

contain many short low-fanout connections, it is also important to choose segments to go short 

distances appropriately.

 Recall from Equation (2.4), that the base cost is the expense for using a routing resource. 

For our simple architecture, since all of the track segments are unit length, utilization is not an 

issue. We use the same base costs as VPR for the simple architecture, as shown in Table 3.3. 

(Recall that the input pin has a slightly lower base cost, so that the router will expand input pins 

before other routing resources.) For an FPGA with a segmented routing architecture, having less 

expensive base costs for shorter segments ensures that the shortest segment will be chosen when 

there are multiple segments that reach the target sink, which is equivalent to the concept of 

Figure 3.14: Average compile time vs. β, (a) low-stress routing problems, (b) difficult routing 
problems, for 4000X-like architecture
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utilization in the SEGA router [15]. For the 4000X-like architecture, we set the base costs of 

shorter track segments to slightly smaller values than the base costs of longer track segments, as 

listed in Table 3.3.

An example of the effect of different base costs is shown in Figure 3.15. In this example we 

are trying to route from the source of a net to a target sink that lies two units away. We could use 

two single-length segments to reach the target. Alternatively, we could reach the target with just 

one double-length, quad-length, or long-length segment. In this case, it makes the most sense to 

use the double-length segment since it is does not waste any part of a wire and reaches the sink 

directly. If the quad-length or long-length segment were chosen, then at least half of a track 

segment would be wasted. Since the cost of the double-length segment is the cheapest, it will be 

chosen. If all the segments had a base cost of 1.0, then any of the segments could be chosen to 

reach the target sink.

Through experimentation, we found that for difficult routing problems, the circuit delay 

improved by an average of 17%, compared to not using the segment utilization enhancement. 

Table 3.3: Base cost of different routing resources

Resource
Simple

Architecture
[34]

4000X-like
Architecture

single-length track segment 1.00 0.97

double-length track segment N/A 0.98

quad-length track segment N/A 0.99

long-length track segment N/A 1.00

logic block output pin 1.00 1.00

logic block input pin 0.95 0.95

source 1.00 1.00

sink 0 0

Total Distance = 2Source

S T
Target

Single

Double

Quad

Long

Cost=0.98

Cost=0.99

Cost=1.00

Figure 3.15: Example of the affect of different base costs

Cost=2*0.97=1.94
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Similarly, for low-stress routing problems, the circuit delay improved by an average of 5%, 

compared to not using the segment utilization enhancement.

3.5 Summary of Enhancement Effectiveness

Throughout this chapter, we have described the results of experiments to measure the 

effectiveness of each of the routing algorithm enhancements. In this section, we provide a 

summary of all of the enhancement experiments for both architectures.

3.5.1 Simple Architecture

In this section, we summarize the effectiveness of the directed search and binning. We 

compare the high-speed router to the routability-driven VPR router, using the simple architecture. 

Recall from Section 3.3.5, that binning was only effective for reducing the compile time using the 

simple architecture.

We made measurements using the routability-driven VPR router, the high-speed router 

using only the directed search, and the high-speed router using the directed search and binning. 

We ran all of the routers using the fast routing schedule. In Table 3.4 we list each of the routers, 

the average minimum track count, the routing time for difficult problems, and the average routing 

time for low-stress problems. (Note that Wmin is defined as the minimum track count required to 

route a circuit, we make a routing problem low-stress by using 30% more tracks than Wmin.) 

None of the enhancements significantly increased the average minimum track count over 

the routability-driven VPR router. For the difficult routing problems, using only a directed search 

produced a 5.6 times speedup, on average, compared to VPR. Binning resulted in another 1.6 

times speedup, on average, for the difficult routing problems. For the low-stress routing problems, 

using only a directed search produced nearly a 50 times speedup, on average, compared to VPR. 

The addition of binning provided another 1.8 times speedup, on average.

3.5.2 4000X-Like Architecture

In this section, we summarize the effectiveness of the rest of the algorithm enhancements. 

We compare the relative effectiveness of using different combinations of the enhancements. For 
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these measurements we used the 4000X-like architecture, since all of the enhancements in 

Table 3.5 affect the circuit delay. 

Table 3.5 lists all of the possible combinations of enhancements (in which X = enabled, --

 = disabled) and the experimental results for the enhancements. For each combination of 

enhancements, we measured the average minimum track count, the average compile time for 

difficult and low-stress routing problems, and the average circuit delay for difficult and low-stress 

routing problems.

The highlighted rows mark where just one enhancement is enabled (these are the results 

presented for each enhancement earlier in this chapter). The first observation is that the minimum 

track count is relatively constant across all combinations of enhancements, varying by just 5%.

An interesting combination of enhancements is the combination of net ordering and sink 

ordering (line 4). The combination of these enhancements improved the difficult compile time and 

the low stress circuit delays more than using each of these enhancements separately. Similarly, the 

combination of switch counting and segment utilization (line 13) improved the difficult and low-

stress circuit delays more, compared to using each of these enhancements separately.

Another observation from Table 3.5 is that for all the combinations of enhancements where 

switch counting is enabled, the compile time is up to twice as long for both low-stress and difficult 

routing problems, compared to when switch counting is disabled. For all of these cases the circuit 

delay is improved when switch counting is enabled. For example, the average compile for difficult 

Table 3.4: Effectiveness of directed search and binning for simple architecture

Difficult Routing Problems
(Wmin tracks)

Low Stress Problems
(Wmin + 30% tracks)

Algorithm

Geometric
Average

Minimum
Track Count

Geometric
Average

Compile Time (s)

Speedup
over VPR

Geometric
Average

Compile Time (s)

Speedup
over VPR

Routability-Driven
VPR Router

(Breadth-First Search)

13.8 837 -- 435 --

High-Speed Router
with Directed Search

14.0 150 5.6 9 48.3

High-Speed Router
with Directed Search

and Binning

14.0 94 8.9 5 87.0
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routing problems is 246.5 seconds in row 8 and 486.7 seconds in row 16. The average circuit 

delay improves from 160.4 ns to 132.9 ns.

Overall, having all the enhancements enabled (row 16) produced the best results on average 

across both difficult and low stress routing cases. Other combinations of enhancements were 

slightly better for some of the measured compile times and circuit delays, but did not provide as 

good results across all the measurements. 

Table 3.5: Effectiveness of enhancements for 4000X-like architecture (X enabled, -- disabled)

Algorithm Enhancement
Average Compile 

Time (s)
Average

Circuit Delay (ns)

Switch
Counting

Util-
ization

Net
Ordering

Sink
Ordering

Average
Minimum

Track Count
Difficult

Low-
Stress

Difficult
Low-
Stress

1 -- -- -- -- 51.5 320.5 15.2 194.5 113.1

2 -- -- -- X 52.1 253.8 12.0 174.9 113.6

3 -- -- X -- 50.6 246.5 17.0 172.7 99.2

4 -- -- X X 51.0 235.9 15.7 173.6 95.7

5 -- X -- -- 50.8 274.9 12.7 162.2 107.5

6 -- X -- X 51.4 206.4 11.7 168.1 109.3

7 -- X X -- 50.4 264.3 15.8 135.2 97.6

8 -- X X X 50.3 246.5 15.7 139.5 102.7

9 X -- -- -- 52.0 629.1 22.4 160.4 99.9

10 X -- -- X 52.2 619.2 21.2 145.8 96.9

11 X -- X -- 50.5 505.3 23.2 127.5 94.2

12 X -- X X 50.6 539.0 21.3 129.6 90.0

13 X X -- -- 51.5 609.1 22.0 148.5 97.4

14 X X -- X 52.6 405.4 18.7 146.6 96.1

15 X X X -- 50.3 480.7 22.5 128.0 93.0

16 X X X X 50.5 486.7 19.7 132.9 89.9
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3.6 Summary

In this chapter, we described enhancements to the basic routing algorithm aimed at 

increasing the execution speed and reducing the circuit delay. The enhancements were: directed 

search, fast routing schedule, net ordering, sink ordering, binning, switch counting, and segment 

utilization. We also presented a summary of the effectiveness of all the routing algorithm 

enhancements.

In the next, chapter we present experimental results for the new high-speed timing-aware 

router.
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Chapter 4  

Experimental Results

In this chapter, we present the results of experiments run to measure the ability to minimize 

track count, execution speed, and circuit delay of the new high-speed timing-aware routing 

algorithm. We start by describing the benchmark circuits used and then present the results from 

experiments run using the simple FPGA architecture. We then present results from experiments 

run using the 4000X-like architecture.

4.1 Benchmark Circuits

To experiment with the new high-speed router, we required a set of large benchmark 

circuits. Unfortunately, very large circuits are difficult to obtain, but we did manage to collect 10 

suitable circuits. The benchmark circuits are listed in Table 4.1. The circuit sizes range from 3556 

4-LUTs up to 19,600 4-LUTs. Eight of the circuits are the largest circuits from the MCNC suite 

[2]. The other two circuits were created using the synthetic benchmark circuit generator (GEN) 

[45]. Although the latter circuits are actually somewhat more difficult than real circuits, we 

believe they are perfectly reasonable test cases for the compile time issue. 

Each of the MCNC circuits was synthesized with the SIS [46] package and technology 

mapped using Flowmap [47]. The technology-mapped circuits were then packed into logic blocks 

using VPACK [34]. The synthetic circuits were only packed into logic blocks using VPACK as 

they were generated in technology-mapped form. Each circuit was then placed using VPR.1

1. The VPR placement tool was run using the “-fast” option that speeds up the execution time by about 10 
times, with 5% to 10% quality degradation.
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4.2 Simple Architecture Experiments

In this section, we use the simple FPGA architecture to compare the ability to minimize 

track count and execution speed of the new high-speed router to the routability-driven VPR router. 

These experiments also serve to compare the directed search used by the new router to the 

breadth-first search used by the routability-driven VPR router.

For the high-speed router, all of the compile time enhancements were enabled (directed 

search, fast routing schedule, net ordering, sink ordering, and binning). The routability-driven 

VPR router was also run in its fastest mode, using the fast routing schedule.

4.2.1 Quality: Minimum Track Count

In the first experiment, we compare the quality of the high-speed router to the routability-

driven VPR router, by comparing the minimum track count needed to successfully route each of 

the benchmark circuits.

To measure the minimum track count for each circuit, we started with a very low track 

count and increased the track count by one track until the circuit could be routed. Table 4.2 lists 

the minimum track counts for each of the benchmark circuits, using both routers. Recall that we 

define Wmin as the minimum track count required by the high-speed router to route a circuit. The 

Table 4.1: Benchmark circuits

Circuit Source # 4-LUTs

beast16k GEN 15680

beast20k GEN 19600

clma MCNC 8383

elliptic MCNC 3604

ex1010 MCNC 4598

frisc MCNC 3556

pdc MCNC 4575

s38417 MCNC 6406

s38584.1 MCNC 6447

spla MCNC 3690
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new high-speed router is clearly of high quality, since it achieved the same track count as VPR on 

9 out of 10 circuits and only required one extra track for the other circuit.

4.2.2 Compile Time

In this section, we compare the compile time of the high-speed router to that of the 

routability-driven VPR router.

Since the compile time of any router is strongly affected by the difficulty of the routing 

problem, we will vary the difficulty of the problem. Recall that we define WFPGA as the number of 

tracks per channel in the target FPGA. The difficulty of the routing problem is controlled by using 

different values of WFPGA--the closer WFPGA is to the Wmin of the circuit, the harder the routing 

problem gets.

We routed each of the benchmark circuits using both the new high-speed router and the 

routability-driven VPR router. For each circuit we used track counts ranging from Wmin up to 

Wmin + 20% track per channel. Table 4.3 lists the benchmark circuits, the compile times for both 

routers, and the speedup of the high-speed router over VPR. All of the compile times were 

measured on a 300 MHz UltraSPARC 3200 with 1 GByte of memory, and do not include the time 

Table 4.2: Minimum track counts for the simple architecture

Circuit
Routability-Driven VPR

Min.Track Count

High-Speed Router
Min. Track Count

(Wmin)

%
Difference

beast16k 23 23 0.0

beast20k 29 29 0.0

clma 12 12 0.0

elliptic 12 12 0.0

ex1010 13 14 7.7

frisc 12 12 0.0

pdc 16 16 0.0

s38417 8 8 0.0

s38584.1 8 8 0.0

spla 14 14 0.0

Total 148 148 0.0
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to parse the netlist and generate the routing graph. For the largest circuit the parse and graph 

generation time is 20 seconds. The largest circuit, beast20k, requires 200 MBytes of memory. 

At Wmin tracks per channel, the high-speed router is 6.9 times faster, on average, than the 

routability-driven VPR router. At these track counts, the routing problems are difficult, bordering 

on impossible to route. The large amount of congestion slows down the directed search 

considerably. For the two largest circuits, beast16k and beast20k, the high-speed router is over 25 

times faster than the routability-driven VPR router, although the high-speed router still requires 

several minutes to compile each circuit. For the rest of the circuits, the high-speed router is 

between 1.6 and 19.8 times faster than VPR.

As WFPGA increases, the routing problems become significantly easier since there is less 

routing congestion. The directed search is more efficient at routing nets when there is less 

congestion. The average compile time of both routers decreases, but the high-speed router 

achieves a much greater speedup compared to VPR. At Wmin + 20%, the high-speed router is 58 

Table 4.3: Compile times for simple architecture

WFPGA Wmin Wmin + 10% Wmin + 20%

Circuit
VPR

Time (s)

High-
Speed
Router

Time (s)

Speed
up

VPR
Time (s)

High-
Speed
Router

Time (s)

Speed
up

VPR
Time (s)

High-
Speed
Router

Time (s)

Speed
up

beast16k 23761 183 129.8 7079 42 168.5 5522 26 212.4

beast20k 19678 775 25.4 16321 110 148.4 13142 68 193.3

clma 1264 483 2.6 2029 40 50.7 840 18 46.7

elliptic 241 29 8.3 133 8 16.6 198 4 49.5

ex1010 316 16 19.8 206 4 51.5 109 2 54.5

frisc 262 163 1.6 257 11 23.4 190 4 47.5

pdc 639 353 1.8 497 22 22.6 581 7 83.0

s38417 330 59 5.6 193 27 7.1 142 8 17.8

s38584.1 338 86 3.9 81 26 3.1 88 10 8.8

spla 326 78 4.2 255 9 28.3 259 2 129.5

Geometric
Average

837 122 6.9 564 20 28.2 465 8 58.1
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times faster on average compared to VPR. Notice that for the largest MCNC circuit, clma, the 

high-speed router is 46.7 times faster than VPR. For the largest circuit, beast20k, the high-speed 

router is 193.3 times faster than VPR. Although not shown in the table, with Wmin + 30% extra 

tracks, the beast20k can be routed in only 20 seconds by the high-speed router.

It is instructive to observe how the compile time of the high-speed router changes as the 

available track count, WFPGA, increases. Figure 4.1 plots the routing time for the high-speed 

router and VPR versus the number of tracks available, for the 8383 logic block circuit clma. It is 

clear that once there are sufficient tracks the new router completely routes the circuit in about 6 

seconds, independent of the number of tracks. The speedup as WFPGA increases comes from two 

factors: fewer routing iterations (eventually, only 1) are needed to resolve congestion; and the 

directed search can more rapidly route each net when there is little routing congestion to detour 

around. Observe that the routability-driven VPR router takes a great deal more time, and the time 

increases as WFPGA increases (for large WFPGA) because of the breadth-first search nature of the 

VPR router.

Now that we have demonstrated the high quality and fast execution speed for the high-speed 

router targeting the simple architecture, in the next section we present the results from 

experiments run using the 4000X-like architecture.

Figure 4.1: Compile time vs. available tracks for clma (8383 logic blocks)
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4.3 4000X-Like Architecture Experiments

In this section, we use the 4000X-like FPGA architecture to compare the ability to 

minimize track count, execution speed, and circuit delay of the new high-speed router to the 

timing-driven VPR router. Our main reasons for carrying out these experiments were: first, to 

measure the performance of the new high-speed router targeting a realistic FPGA architecture; 

and second, to the compare the high-speed router to the timing-driven VPR router.

For the high-speed router, all of the compile time and circuit delay enhancements were 

enabled. Recall from Chapter 3, that the two circuit delay enhancements were switch counting 

and track segment utilization.

4.3.1 Quality: Minimum Track Count

In the first experiment, we compare the quality of the high-speed router to the timing-driven 

VPR router, by comparing the minimum track count needed to successfully route each of the 

benchmark circuits.

The results were obtained using the same procedure described for the simple architecture in 

Section 4.2.1. Table 4.4 list the benchmark circuits, the minimum track count for each router, and 

the percent difference. The high-speed router requires an average of 11% more tracks per channel, 

compared to the timing-driven VPR router.

There are many differences between the high-speed timing-aware router and the timing-

driven VPR router, so it is unclear exactly why our router is not able to route circuits as efficiently 

as VPR. One key difference between the two routers is the trade-off between routability and delay. 

Recall from Section 2.3.4.5 that the timing-driven VPR router assigns a criticality to each net 

based on the slack of the net. Nets that are non-critical pay more attention to routability, while 

nets that are critical pay more attention to minimizing delay. The high-speed router uses a fixed 

trade-off between routability and delay, so that all of the nets are routed with the same attention 

given to routability and delay; nets that are non-critical are not necessarily routed with the shortest 

wirelength.
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4.3.2 Compile Time

In this section, we compare the compile time of the high-speed router to the compile time of 

the timing-driven VPR router. Similar to Section 4.2.2, we measured the compile times over a 

range of track counts, ranging from Wmin up to Wmin + 20% tracks per channel.

Table 4.5 lists the benchmark circuits, the compile time for the timing-driven VPR router 

and the high-speed router, and the speedup of the high-speed router over VPR. Execution times 

were again measured on a 300 MHz UltraSPARC.

At Wmin tracks, the high-speed router requires an average of 2.7 times more compile time 

than the timing-driven VPR router. At these track counts, our router is operating on the edge of 

routability for all of the circuits, while VPR is operating closer to the low-stress range. At 

Wmin + 10% tracks, the high-speed router is 2.5 times faster, on average, compared to VPR. At 

Wmin + 20%, the high-speed router is 5.2 times faster, on average, compared to VPR.

It is interesting to note that the timing-driven VPR router is significantly faster compared to 

the routability-driven VPR router (see Section 4.2.2), since the timing-driven VPR router uses a 

directed search. The high-speed routing algorithm is still somewhat faster than the timing-driven 

Table 4.4: Minimum track counts for 4000X-like architecture

Circuit
VPR Min

Track
Count

High-Speed
Router

Min. Track
Count (Wmin)

%
difference

beast16k 71 79 11.3

beast20k 84 92 9.5

clma 47 53 10.6

elliptic 38 42 10.5

ex1010 39 42 7.7

frisc 37 39 5.4

pdc 55 63 14.5

s38417 32 36 12.5

s38584.1 28 32 14.3

spla 51 57 11.8

Total 482 535 11.0
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VPR router, since the high-speed router tries more aggressively to route a circuit in just one 

iteration. The timing-driven VPR router tries to balance routability and circuit delay over a 

number of iterations, typically requiring 6 to 10 iterations, even for low-stress routing problems.

4.3.3 Quality: Circuit Delay

Now that we have established the execution speed for the new high-speed router, we now 

measure the ability of the high-speed router to minimize circuit delay compared to the timing-

driven VPR router. We once again use track counts ranging from Wmin up to Wmin + 20% tracks 

per channel.

Table 4.6 lists the benchmark circuits, the circuit delays for the high-speed router and the 

timing-driven VPR router, and the percentage difference between the two routers. The circuit 

delays were calculated using the timing analyzer of VPR.

At Wmin tracks, the high-speed router has 60% more circuit delay, on average, compared to 

the timing-driven VPR router. Since we are routing at the very minimum track count for each 

Table 4.5:  Compile times for 4000X-like architecture

WFPGA Wmin Wmin + 10% Wmin + 20%

Circuit
VPR

Time (s)

High
Speed
Router

Time (s)

Speed
up

VPR
Time (s)

High
Speed
Router

Time (s)

Speed
up

VPR
Time (s)

High
Speed
Router

Time (s)

Speed
up

beast16k 515 1235 0.4 551 141 3.9 378 70 5.4

beast20k 918 2137 0.4 839 233 3.6 815 127 6.4

clma 246 407 0.6 183 42 4.4 257 28 9.2

elliptic 79 199 0.4 53 38 1.4 51 19 2.7

ex1010 110 280 0.4 93 52 1.8 84 15 5.6

frisc 65 169 0.4 53 35 1.5 56 10 5.6

pdc 159 610 0.3 153 33 4.6 156 20 7.8

s38417 100 196 0.5 81 58 1.4 77 45 1.7

s38584.1 75 277 0.3 46 34 1.4 55 12 4.6

spla 129 570 0.2 110 24 4.6 109 13 8.4

Geometric
Average

159 425 0.4 130 52 2.5 130 25 5.2
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circuit, there is so much congestion that the router is forced to route many of the nets using paths 

with large delays.

As the track count increases, the circuit delay for the high-speed router decreases. At 

Wmin + 20% tracks the high-speed router is just 16% worse on average compared to VPR. With 

less congestion, the high-speed router is able to effectively reduce the delay caused by long 

sequences of pass transistors by using the switch counting enhancement. The segment utilization 

enhancement is also effective at reducing the circuit delay by avoiding the use of long segments 

for short nets. The delay of the beast20k decreased from 84% worse than VPR at Wmin tracks, to 

only 19% worse than VPR at Wmin + 20% tracks.

Now that we have measured the ability to minimize track count, execution speed, and 

circuit delay of the high-speed router when all of the compile time and circuit delay enhancements 

are enabled, in the next section we demonstrate how the compile time can be further reduced.

Table 4.6:  Circuit delays for 4000X-like architecture

WFPGA Wmin Wmin + 10% Wmin + 20%

Circuit
VPR

 Delay
(ns)

High
Speed
Router
 Delay

(ns)

%
diff.

VPR
 Delay

(ns)

High
Speed
Router
 Delay

(ns)

%
diff.

VPR
 Delay

(ns)

High
Speed
Router
 Delay

(ns)

%
diff.

beast16k 121 225 86 116 146 26 120 123 3

beast20k 180 332 84 168 194 15 163 194 19

clma 100 135 35 96 115 17 97 121 25

elliptic 77 149 94 63 89 41 62 77 24

ex1010 70 97 39 64 74 16 58 74 28

frisc 87 127 46 80 100 25 83 103 24

pdc 77 98 27 78 82 5 75 88 17

s38417 56 84 50 66 81 23 60 68 13

s38584.1 40 94 135 40 52 30 40 49 23

spla 71 123 73 69 82 19 69 75 9

Geometric
Average

81 133 60 78 95 19 77 91 16
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4.3.4 Reducing the Compile Time

Recall from Section 3.5, that when the switch counting enhancement was enabled for the 

high-speed router the circuit delay improved by up to an average of 20%, but the compile time 

nearly doubled. In this section we measure the affect of disabling the switch counting 

enhancement, as the routing problem difficulty changes.

We routed each of benchmark circuits using the high-speed router with all of the 

enhancements enabled, the high-speed router with the switch counting enhancement disabled, and 

the timing-driven VPR router. Using track counts ranging from Wmin tracks up to Wmin + 30% 

extra tracks for each of the benchmark circuits, we measured the compile time and circuit delay 

for each circuit. In this section we present the results graphically, as it is instructive to observe 

graphically how the compile time and circuit delay of the high-speed timing-aware router changes 

as the available track count increases.

Figure 4.2 (a) plots the average compile time for the high-speed router with all the router 

enhancements enabled, the high-speed router with switch counting disabled, and the timing-

driven VPR router, versus the percentage extra tracks. At Wmin tracks per channel, the timing-

driven VPR router is faster than both versions of the high-speed router. With just 5% extra tracks 

both versions of the high-speed router are faster than VPR. Once there are 10% extra tracks, the 

high-speed router with and without switch counting disabled is clearly much faster than VPR. The 

speedup as the percentage extra tracks increases comes from two factors: fewer routing iterations 

(eventually, only 1) are needed to resolve congestion; and the directed search can more rapidly 

route each net when there is little congestion to detour around. Also notice that the high-speed 

router with switch counting disabled is always faster than the high-speed router with all the 

enhancements enabled.

Observe that the VPR router takes a great deal more compile time, and the time relatively 

stays constant as the percentage extra tracks increases. Figure 4.2 (b) gives a close-up view of the 

10% to 30% extra track region of Figure 4.2 (a). We observe that at 30% extra tracks, the high-

speed router with all the enhancements enabled requires 20 seconds, on average. The high-speed 

router with switch counting disabled requires only 15 seconds, on average.

Figure 4.3 (a) plots the average circuit delay for the high-speed router with all the router 

enhancements enabled, the high-speed router with switch counting disabled, and the timing-

driven VPR router, versus the percentage extra tracks. With no extra tracks, both versions of the 
70



Experimental Results
high-speed router have a very difficult time minimizing circuit delay, due to the large amount of 

routing congestion. As the percentage extra tracks increases, the high-speed router with all the 

enhancements enabled is able to reduce the circuit delay, settling to within 20% of VPR, on 

average, with just 5% extra tracks. The high-speed router with switch counting disabled always 

has at least 35% higher circuit delay than VPR, on average.

If we compare Figure 4.2 (a) and Figure 4.3, we can see that there is a trade-off between 

compile time and circuit delay. In situations where circuit delay is not important, the router can be 

run with switch counting disabled to obtain the fastest compile time. When circuit delay is 

important, the router can be run with the all enhancements enabled, which will improve the circuit 

delay by about 20%, requiring up to twice as much compile time, on average, compared to when 

switch counting is disabled.

4.4 Summary

In this chapter, we presented the results of experiments run on the simple FPGA 

architecture and 4000X-like FPGA architecture. We measured the ability of the high-speed router 
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Experimental Results
to minimize the track count for the two architectures and found that it is excellent for the simple 

architecture, but not quite as good for the 4000X-like architecture. We demonstrated the 

extremely fast execution time of the high-speed router on large benchmark circuits--the largest 

circuit, beast20k, can be compiled in 68 seconds targeting the simple architecture and 127 

seconds targeting the 4000X-like architecture (with 20% extra routing resources). We also 

demonstrated the ability of the high-speed router to minimize circuit delay; with only 5% extra 

routing resources, the average circuit delay was only 20% higher, compared to the timing-driven 

VPR router.

In the next chapter we consider two issues in the practical use of a high-speed router.
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Chapter 5  

Practical Issues

In this chapter, we consider issues in the practical use of an ultra-fast router. The first issue 

is difficulty prediction--detecting early on when a routing problem is impossible or difficult (and 

will take a long time to solve). The second issue deals with how to practically reduce the difficulty 

of a routing problem in the context of using a real family of FPGAs.

5.1 Difficulty Prediction

When routing a circuit in an FPGA, there may be times when the circuit is difficult or 

impossible to route. Existing routers spend a very long time routing difficult circuits and for 

impossible problems they can take several hours simply to declare failure. There is almost no 

benefit to using an ultra-fast router if the user ever has to wait a long time for a circuit to be routed 

(without being warned at the start) or to declare failure.

Therefore, a key aspect of ultra-fast routing is the ability to quickly predict when the routing 

problem is very hard or impossible. In both of these cases, it is important to inform the user that 

the result will either be a long time coming, or simply isn’t possible to achieve. When a routing 

problem is difficult or impossible, the designer has two main options: reduce the amount of logic 

in the circuit or move to a larger device. 

In this section, we describe an approach for predicting the difficulty of routing a circuit 

given the placement of the circuit and information about the target FPGA. This method 

presupposes that there is a fast way of generating a placement, which is the subject of related 

research [52].
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To predict the difficulty of routing a circuit, two pieces of information are required: the 

number of tracks per channel in the target FPGA (which is known beforehand), and an estimate of 

the minimum track count required to route the circuit. To determine the minimum track count, an 

estimate of the total wirelength for the circuit is needed.

5.1.1 Estimating Total Wirelength

We can calculate the total estimated wirelength for a circuit from its placement using the 

placement-based wirelength model described in Section 2.4.1. Recall that the wirelength needed 

to route a net can be estimated by multiplying the half-perimeter bounding-box wirelength of the 

net terminals by the fanout-based correction factor. We can obtain an estimate of the total 

wirelength by summing the estimated wirelength for every net.

For the simple FPGA architecture, we found that the correction factors given in RISA for 

nets with up to 50 terminals (see Table 2.1) were very accurate. To determine the correction 

factors for higher fanout nets, we routed the larger MCNC benchmark circuits ignoring 

congestion, and recorded the actual wirelength for each net. By dividing the actual wirelength by 

the bounding box half-perimeter wirelength, we obtained average correction factors for nets with 

more than 50 terminals. Instead of storing discrete values for all the correction factors for nets 

with more than 50 terminals, we fit the data to equations (5.1) and (5.2) using the “least squares 

approximation”. C(k) is the correction factor and k is the number of terminals. With these 

correction factors, our estimates of total wirelength are within 5% of the actual wirelength for all 

of our benchmark circuits. (Note that linearly extrapolating the RISA correction factors led to 

estimates of total wirelength that were up to 25% too high.)

(5.1)

(5.2)

For the 4000X-like FPGA architecture, we found that the correction factors from RISA 

were too low. This is because the amount of wiring required to route nets is higher for the 4000X-

like architecture, compared to the simple architecture. To improve the correction factors for the 

4000X-like architecture, we reran the same experiments used to determined the correction factors 

for the simple architecture. For nets of fanout less than 50, we use the correction factors listed in 

Table 5.1. For nets with fanout greater than 50, we fit the data to equation (5.3) using the least 

squares approximation.

C k( ) 2.6 2–×10 k 1.49     for 50 < k < 85+⋅=

C k( ) 1.8 6–×10 k
2 1.1 2–×10 k 2.79     for k 85≥+⋅+⋅–=
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(5.3)

By using the fanout-based correction factors we can obtain an estimate of the total 

wirelength for a circuit and then calculate the estimated track count.

5.1.2 Estimating Track Count

Using the total estimated wirelength, the estimated track count, Westimate, can be calculated 

as:

(5.4)

where N is the total number of logic blocks in the target FPGA and U is the track segment utiliza-

tion. The track segment utilization is the fraction of the total number of track segments in the 

FPGA that a router can typically use before congestion prevents some nets from being routed. The 

denominator term is the total number of usable channels in the FPGA. By dividing the total esti-

mated wirelength by the number of usable channels, we get the number of tracks required per 

channel.

 The utilization figure captures elements of the complexity of both routing a particular 

FPGA architecture and the circuit being routed on that architecture. This is a complicated 

interaction, and it is over-simplified to represent these issues as a constant; however, as explained 

below, this works for our purposes. 

Table 5.1: Correction factors up to 50 for 4000X-like architecture

Fanout
Correction

Factor
Fanout

Correction
Factor

1 1.00 10 2.05

2 1.25 15 2.45

3 1.39 20 2.69

4 1.55 25 3.22

5 1.64 30 3.45

6 1.76 35 3.50

7 1.77 40 3.80

8 1.89 45 4.03

9 1.98 50 4.45

C k( ) 2 2–×10 k 4.4     for k > 50+⋅=

W estimate
total estimated wirelength

2 N U⋅ ⋅
-----------------------------------------------------------------------=
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The utilization, U, can be determined experimentally for a router using Equation (5.4) and a 

set of benchmark circuits. By using the total estimated wirelength for each circuit and substituting 

the actual minimum track count for Westimate, U can be calculated for each circuit. 

Table 5.2 lists each of the benchmark circuits from Chapter 4, the size of each circuit, Wmin, 

the total estimated wirelength, and the utilization calculated using Equation (5.4). These results 

are for the simple FPGA architecture. The values of U range from 0.45 up to 0.60 and the average 

value is 0.54. The utilization is always less than 1.0, since it impossible to use all of the routing 

resources in an FPGA for routing a circuit. The small variance in the value of U is caused by the 

errors in the total estimated wirelength for each circuit. It is important to note that since the values 

of U are relatively constant across different circuits, the average value for U can be used for 

calculating the estimated track count with Equation (5.4).

Table 5.3 lists the utilization results for the 4000X-like architecture. The values of U range 

from 0.69 up to 0.81 and the average value is 0.74. Notice that the average utilization is higher for 

the 4000X-like architecture, compared to the simple architecture. Certain features of the 4000X-

like architecture are more flexible, compared to the simple architecture. With a more flexible 

architecture, it is easier to use more of the total routing resources, resulting in an increased 

Table 5.2: Utilization for simple architecture

Circuit
# Logic
Blocks

Wmin
Total Estimated

Wirelength
Utilization (U)

beast16k 15680 23 404619 0.56

beast20k 19600 29 615294 0.54

clma 8383 12 120360 0.60

elliptic 3604 12 42169 0.49

ex1010 4598 14 57599 0.45

frisc 3556 12 49132 0.58

pdc 4575 16 81767 0.56

s38417 6406 8 57262 0.56

s38584.1 6447 8 53154 0.52

spla 3690 14 56051 0.54

Average 0.54
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utilization figure. One might surmise that the simple architecture, with only single-length track 

segments and a non-planar switch box, would be more flexible than the 4000X-like architecture, 

with its segmented routing architecture. The method for estimating total wirelength already 

accounts for the difference in segment lengths, since the bounding-box correction factors were 

determined separately for each architecture. In addition, there are two features of the 4000X-like 

architecture that make it more flexible than the simple architecture. The 4000X-like architecture 

contains larger logic blocks with more pins, compared to the simple architecture, so there is more 

flexibility in choosing input and output pins. The 4000X-like architecture also contains more 

tracks per channel, compared to the simple architecture, for routing the equivalent circuit. It is 

easier to route a circuit when the FPGA contains larger channels; a larger channel is more flexible, 

allowing more nets to be packed into the channel. For example, if two tracks are wasted in a 

channel containing ten tracks in total, then only 80% of the channel is utilized. If two tracks are 

wasted in a channel containing forty tracks in total, then 95% of the channel is utilized.

5.1.3 Difficulty Classification

Now that we have a method for calculating the estimated track count for a circuit, we need a 

method for predicting the difficulty of routing a circuit. Clearly, the difficulty of routing a circuit 

Table 5.3: Utilization for 4000X-like architecture

Circuit
# Logic
Blocks

Wmin
Total Estimated

Wirelength
Utilization (U)

beast16k 3937 79 451079 0.73

beast20k 4929 92 649044 0.72

clma 2121 53 156277 0.70

elliptic 903 42 57592 0.76

ex1010 1191 42 74896 0.75

frisc 892 39 56235 0.81

pdc 1194 63 103132 0.69

s38417 1604 36 89670 0.78

s38584.1 1612 32 81558 0.79

spla 953 57 74858 0.69

Average 0.74
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is a function of the estimated track count for the circuit and the number of tracks in the target 

FPGA; recall that we call the number of tracks in the FPGA, WFPGA.

When the number of tracks in the FPGA is less than the estimated number of tracks required 

by the circuit, we classify the problem as impossible. Recall from Figure 4.1 in Chapter 4, that as 

the track count is increased from the minimum required by a circuit, the compile time for the 

high-speed router quickly decreases to a near minimum value with only ten percent extra tracks 

per channel. Therefore, we classify a problem as difficult if the target FPGA has less than the 

minimum track count required by the circuit plus ten percent. If the FPGA has more tracks per 

channel than the minimum track count required by the circuit plus ten percent, we classify the 

problem as low-stress. Table 5.4 summarizes the three classifications.

5.1.4 Demonstrations of Difficulty Prediction

To test the difficulty prediction scheme, we use the ten benchmark circuits from Chapter 4. 

We executed the predictor for each circuit to determine the estimated track count using Equation 

(5.4) after placement. Westimate requires less than less than one second to calculate for the largest 

benchmark circuit, providing the user with feedback on the problem classification very quickly. 

Table 5.5 lists the actual minimum track count (as determined by the router) and the estimated 

track count for each benchmark circuit for the simple architecture. The last column in Table 5.5

shows the difference between Westimate and Wmin. For nine of the circuits, the estimates are within 

±1 track per channel. For the remaining circuit, the estimate is two tracks per channel lower than 

the actual minimum track count.   

Table 5.6 lists the actual minimum track count and estimated minimum track count for each 

of the benchmark circuits, using the 4000X-like architecture. The estimates are accurate to within 

±4 track per channel or  ±10% of the actual minimum track counts.

Table 5.4: Definition of routing classes

Classification
Typical Range of Tracks

Per Channel in FPGA

Impossible WFPGA< Westimate

Difficult Westimate ≤ WFPGA< 1.1Westimate

Low-Stress WFPGA ≥ 1.1Westimate
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The unavoidable inaccuracies in determining West will result in some mistakes by the 

prediction scheme of Table 5.4. To illustrate the effect of these inaccuracies in predicting 

difficulty, we ran two sets of experiments, one on the simple architecture and the other on the 

4000X-like architecture. For the simple architecture we ran the router on each benchmark circuit 

using five different track counts: the minimum required by the circuit Wmin (see Table 5.5), 

Wmin + 1, Wmin - 1, Wmin - 2, and Wmin - 3. We chose these values because it is within this range 

Table 5.5: Track count estimates for the simple architecture

Circuit Wmin Westimate Difference % Difference

beast16k 23 24 +1 4.3

beast20k 29 29 0 0.0

clma 12 13 +1 8.3

elliptic 12 11 -1 -8.3

ex1010 14 12 -2 -14.3

frisc 12 13 +1 8.3

pdc 16 16 0 0.0

s38417 8 8 0 0.0

s38584.1 8 8 0 0.0

spla 14 14 0 0.0

Table 5.6: Track count estimates for 4000X-like architecture

Circuit Wmin Westimate Difference % Difference

beast16k 79 80 +1 1.3

beast20k 92 93 +1 1.1

clma 53 50 -3 -5.7

elliptic 42 43 +1 2.4

ex1010 42 44 +2 4.8

frisc 39 43 +4 10.3

pdc 63 59 -4 -6.3

s38417 36 39 +3 8.3

s38584.1 32 35 +3 9.4

spla 57 53 -4 -7.0
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that inaccuracies in Westimate will effect the routability predictor. Table 5.7 lists for each circuit: 

the correct (Crct) difficulty level for each circuit based on the definition from Table 5.4, the 

reported (Rpt) difficulty by the router using Westimate and applying the predictor from Table 5.4, 

and the routing time (for the difficult and low-stress cases). The following key is used: LS=low-

stress, DF=difficult, and IM=impossible.

There are three types of errors in Table 5.7, impossible routing problem predicted as 

difficult, difficult routing problems predicted as impossible, and low-stress routing problems 

predicted as difficult. The four test cases where difficult problems were predicted as impossible 

are highlighted with shading in Table 5.7. The impossible routing problems predicted as difficult 

are the most intolerable type of errors because these cause the user to waste time waiting for a 

circuit that is impossible to route. The worst outcome of a difficult problem being predicted as 

impossible is that the user ends up taking action to make their circuit routable, even though it was 

already routable. For low-stress problems that are predicted as difficult, if the user decides to let 

the router continue, their circuit will route very quickly.

Table 5.7: Difficulty prediction for simple architecture (LS=low-stress, DF=difficult, 
IM=impossible)

Circuit Wmin-3 Wmin-2 Wmin-1 Wmin Wmin+1

Crct Rpt Crct Rpt Crct Rpt Crct Rpt
Time

(s)
Crct Rpt

Time
(s)

beast16k IM IM IM IM IM IM DF IM 291 DF DF 95

beast20k IM IM IM IM IM IM DF DF 430 DF DF 326

clma IM IM IM IM IM IM DF IM 909 DF DF 191

elliptic IM IM IM IM IM DF LS DF 34 LS LS 25

ex1010 IM IM IM DF IM DF LS LS 31 LS LS 5

frisc IM IM IM IM IM IM DF IM 173 LS DF 39

pdc IM IM IM IM IM IM DF DF 928 DF DF 99

s38417 IM IM IM IM IM IM DF DF 79 LS LS 15

s38584.1 IM IM IM IM IM DF LS LS 33 LS LS 16

spla IM IM IM IM IM IM DF DF 91 LS DF 22
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To test difficulty prediction on the 4000X-like architecture, we chose test cases in which the 

track counts vary by percentages. The five different track counts were: Wmin, Wmin-10%, Wmin-

5%, Wmin, Wmin+5%, Wmin+10%, Wmin+15%, and Wmin+20%. Table 5.8 lists the results for the 

difficulty predictor. In this table, the correct difficulty is given at the top of each column, based on 

the definition from Table 5.4. Each column in the table lists the reported (Rpt) difficulty by the 

router using Westimate and applying the predictor from Table 5.4, and the routing time where 

applicable. Again, there are the same three types of prediction errors described for the simple 

architecture. There is one more type of error in Table 5.8, difficult routing problems predicted as 

low-stress. These types of errors are not too serious, since the worst outcome is that the user ends 

up waiting several minutes for a circuit to route, even though the router classified the problem as 

low-stress. The three test cases where difficult problems were predicted as impossible are 

highlighted with shading in Table 5.8.

Clearly, the mistake of predicting an impossible problem as difficult cannot be tolerated by 

any user. The purpose of difficulty prediction is to ensure that a user is never kept waiting hours 

Table 5.8: Difficulty prediction for 4000X-like architecture (LS=low-stress, DF=difficult, 
IM=impossible)

Circuit
Wmin-10%
(crct=IM)

Wmin-5%
(crct=IM)

Wmin

(crct=DF)
Wmin+5%
(crct=DF)

Wmin+10%
(crct=LS)

Wmin+15%
(crct=LS)

Wmin+20%
(crct=LS)

Rpt Rpt Rpt
Time

(s)
Rpt

Time
(s)

Rpt
Time

(s)
Rpt

Time
(s)

Rpt
Time

(s)

beast16k IM IM IM 200 DF 201 DF 80 LS 38 LS 39

beast20k IM IM IM 472 DF 229 DF 86 LS 65 LS 67

clma IM DF DF 477 LS 52 LS 32 LS 20 LS 19

elliptic IM IM IM 142 DF 63 DF 38 LS 18 LS 13

ex1010 IM IM IM 148 DF 69 DF 38 LS 9 LS 6

frisc IM IM IM 92 IM 51 DF 12 DF 5 DF 5

pdc IM DF DF 257 LS 28 LS 18 LS 12 LS 12

s38417 IM IM IM 164 IM 71 DF 47 DF 33 LS 15

s38584.
1

IM IM IM 196 IM 48 DF 28 DF 40 LS 32

spla IM DF DF 315 LS 50 LS 11 LS 12 LS 8
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for a circuit that is impossible to route. To prevent these errors we have to give up some accuracy 

to improve the reliability. For our predictor, targeting the simple architecture, whenever the 

estimated track count for a circuit is not at least two tracks less then number of tracks in the 

FPGA, the circuit must be declared impossible to route (Westimate > WFPGA - 2 => impossible). 

Similarly, for the 4000X-like architecture, when the estimated track count for a circuit is not at 

least 5% less then the number of tracks in the FPGA, the circuit must be declared impossible to 

route (Westimate > 0.95WFPGA => impossible). With these tolerances, there will be more difficult 

routing problems predicted as impossible, but no impossible routing problems predicted as 

difficult.

Now that we have described a fast and accurate method for predicting the difficulty of a 

routing problem, in the next section we look at how the difficulty of a routing problem is 

controlled in real industrial FPGAs.

5.2 Controlling the Difficulty of Routing Problems

When we demonstrated our difficulty prediction algorithm in the last section, we explicitly 

changed the difficulty of each problem by changing the number of tracks per channel for each 

circuit. As we added more tracks, the circuits became increasingly easier to route. In the academic 

world, we assume that our FPGA has exactly the number of logic blocks required for the 

particular circuit we are compiling and that we can control the number of tracks per channel. 

Unfortunately, in the real world it would be impractical to have FPGA devices where the 

number of logic blocks and the number of tracks per channel could be varied. Instead an FPGA 

family will usually consist of a set of parts with different numbers of logic blocks, but the same 

number of tracks per channel in each device. In some FPGA families the tracks per channel is 

increased for parts over a certain size [28]. When a designer is targeting a circuit to an FPGA 

device, they choose the smallest device that their circuit will fit in and try to route the circuit. If 

the circuit cannot be routed, the designer can either take out some of their logic or use a larger 

device. When moving to a bigger device, the routing associated with the extra empty logic blocks 

can make routing a circuit easier, if the extra logic blocks are placed in areas of the circuit where 

there is routing congestion.

In our work on high-speed routing we have already shown in Chapter 5 that by increasing 

the number of tracks per channel in an FPGA, the routing time for a circuit is significantly 
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reduced. It would also be interesting to understand how adding extra logic blocks to a circuit 

affects the routability, when the track count is held constant. 

When placing a circuit into an FPGA with more logic blocks than in the circuit, the 

placement of the extra empty logic blocks is very important. If the extra logic blocks are simply 

placed around the outside of all the circuit logic blocks, then the circuit is not any easier to route. 

This is because most of the logic blocks do not have proximity to the extra routing. Any 

placement tool that simply tries to minimize wirelength will place the logic block in precisely this 

fashion. Figure 5.1 shows a placement from VPR for a circuit targeting an FPGA with 30% more 

logic blocks then in the circuit. Since VPR tries to minimize wirelength, all of the circuit logic 

blocks are grouped together in the middle of the FPGA.

To make better use of extra logic blocks, a placement tool that knows how to balance 

routing congestion is required. This placement tool not only has to balance routing congestion, 

but also has to understand how to make use of the extra logic blocks to balance routing 

congestion. It is possible to alter the cost function for a placement tool, such as VPR, to try and 

reduce routing congestion by placing the extra logic block in highly congested areas of the circuit. 

Instead of trying to reduce congestion in highly concentrated areas of the FPGA, another 

Figure 5.1: Placement from VPR with 30% extra logic blocks
83



Practical Issues
approach is to reduce the overall routing congestion of a circuit by placing the extra logic blocks 

in a regular pattern throughout the FPGA. For example, with 30% extra logic blocks for a circuit, 

the extra logic blocks could be placed in equally spaced columns or rows throughout the FPGA, 

as shown for a circuit in Figure 5.3.

An even better method for reducing routing congestion is to place the extra logic blocks in a 

diagonal pattern, as shown a circuit in Figure 5.3. The diagonal pattern improves routability more 

than the column pattern, because the circuit logic blocks have increased proximity to the extra 

routing. When placing the extra logic blocks in columns, the circuit logic blocks only have access 

to extra routing for travelling vertically in the FPGA. With the diagonal pattern, the circuit logic 

blocks have access to extra vertical and horizontal routing.

Using the benchmark circuits from Chapter 4, we ran experiments using the column and 

diagonal patterns and measured the minimum track counts for each circuit with the different 

placements. To place the circuits, the placement tool in VPR was altered to mark logic blocks in 

the desired pattern as illegal for use. The 4000X-like architecture, described in Section 3.1.2, was 

used for these experiments. Table 5.9 lists the circuits used and minimum track counts for three 

different placements: a placement using the minimum FPGA size for the circuit; a placement 

Figure 5.2: Placement with 30% extra logic blocks placed in columns
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using 30% extra logic blocks in the column pattern; and a placement with 30% extra logic blocks 

in the diagonal pattern. The minimum track count for the column pattern is 11.8% smaller, on 

average, compared to the minimum track count for the minimum sized placement. The diagonal 

pattern is superior to the column pattern, reducing the average minimum track count by 16.6%, 

compared to the minimum size placement.

We are also interested in how the minimum track count of a circuit improves as the 

percentage of extra logic blocks is increased. To measure the improvement in minimum track 

count, we placed each of the benchmark circuits using 30%, 50%, and 100% extra logic blocks. 

These percentages allow diagonal lines of empty logic blocks to be placed after every third, 

second, and single diagonal line of circuit logic blocks, respectively. These experiments were also 

run using the 4000X-like architecture. Table 5.10 lists each of the benchmark circuits and the 

minimum track counts for each placement. With only 30% extra logic blocks, which is equivalent 

to using 77% of the logic blocks in an FPGA, the minimum track count improves by 16.6%, on 

average. With 50% extra logic blocks, which is equivalent to using 67% of the logic blocks in an 

FPGA, the minimum track count improves by 22.8%, on average. The overall minimum track 

Figure 5.3: Placement with 30% extra logic blocks placed in diagonals
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count improves as the percentage extra logic blocks increases, but the effectiveness of using the 

extra logic blocks decreases as more logic blocks are added.

The results from Table 5.10 can be used along with the difficulty prediction scheme from 

Section 5.1 to estimate the size of FPGA needed for a circuit. First, assuming that the FPGA has 

the same number of logic blocks in the circuit, an estimate of the minimum track count is 

calculated. If the estimated track count for the circuit is less than the track count of the FPGA 

family, then the circuit should be routable in the smallest device that fits the circuit. If the 

estimated track count for the circuit is larger than the track count of the FPGA family, then the 

results from Table 5.10 can be used to estimate the size of FPGA needed.

5.3 Summary

In the chapter, we described our difficulty prediction algorithm and demonstrated the 

accuracy. We also looked at how to control of the difficulty of a routing problem in the context of 

real industrial FPGAs.

Table 5.9: Results from 30% extra logic blocks experiments

Minimum Size
Placement

Column
Placement

Diagonal
Placement

Circuit Wmin Wmin
%

Improvement
Wmin

%
Improvement

beast16k 79 68 16.2 66 19.7

beast20k 92 81 13.6 79 16.5

clma 53 47 12.8 45 17.8

elliptic 42 39 7.7 38 10.5

ex1010 42 37 13.5 34 23.5

frisc 39 35 11.4 34 14.7

pdc 63 57 10.5 56 12.5

s38417 36 33 9.1 31 16.1

s38584.1 32 29 10.3 26 23.1

spla 57 49 16.3 49 16.3

Geometric
Average

50.6 45.1 11.8 43.2 16.6
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In the next chapter, we summarize our work and give suggestions for future research.

Table 5.10:  Results for increasing % extra logic blocks in diagonal pattern

Minimum Size
Placement

30% Extra
Logic Blocks

50% Extra
Logic Blocks

100% Extra
Logic Blocks

Circuit Wmin Wmin % Imp. Wmin % Imp. Wmin % Imp.

beast16k 79 66 19.7 62 27.4 55 43.6

beast20k 92 79 16.5 73 26.0 63 46.0

clma 53 45 17.8 42 26.2 38 39.5

elliptic 42 38 10.5 35 20.0 31 35.5

ex1010 42 34 23.5 34 23.5 29 44.8

frisc 39 34 14.7 33 18.2 30 30.0

pdc 63 56 12.5 52 21.1 45 40.0

s38417 36 31 16.1 30 20.0 26 38.5

s38584.1 32 26 23.1 26 23.1 23 39.1

spla 57 49 16.3 46 23.9 39 46.2

Geometric
Average

50.6 43.2 16.6 41.2 22.8 35.0 40.0
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Chapter 6  

Conclusions

The objective of this thesis was to design a high-speed timing-aware routing algorithm for 

FPGAs. Using the routability-driven VPR router as our basic routing algorithm, we were able 

significantly increase the execution speed using five enhancements. Most of the speedup was 

obtained using an aggressive directed search, but the novel binning enhancement was able to 

provide another factor of two speedup.

The compile time enhancements were tested using a set of ten large benchmark circuits 

ranging in size from 45,000 gates up to 250,000 gates. When targeting a simple FPGA 

architecture, the high-speed router was able to route all of the circuits in an average of 8 seconds, 

using 20% extra routing resources for each circuit. This was 58 times faster than the routability-

driven VPR router. When targeting a model of the Xilinx 4000XL FPGA, the high-speed router 

was able to route all of the circuits in an average of 25 seconds, using 20% extra routing resources 

for each. This was 5 times faster compared to the timing-driven VPR router.

We also designed two router enhancements to improve the circuit delay of our basic routing 

algorithm. The switch counting enhancement provided the biggest improvement in circuit delay, 

by avoiding long series connections of pass transistor switches. We tested the circuit delay 

enhancements using a model of the Xilinx 4000XL architecture and found that with only 5% extra 

routing resources per circuit, the high-speed router achieved average circuit delays within 20% of 

the circuit delays produced by the timing-driven VPR router.

The model of the Xilinx 4000XL FPGA developed for this work captured most of the 

important details of the real 4000XL routing architecture, allowing us to experiment on a realistic 

architecture. The 4000X-like architecture was used in [33] to make comparisons of a commercial 
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FPGA architecture to proposed new FPGA architectures. The model was also downloaded for use 

by two other universities and one company.

 We also looked at two practical issues in the use of an ultra-fast router with a real family of 

FPGAs. The first issue was difficulty prediction--detecting early on when a routing problem is 

impossible or difficult. We developed a new difficulty prediction scheme capable of quickly and 

accurately predicting the difficulty of routing a circuit from its placement. Using the 4000X-like 

architecture, the estimated minimum track for each benchmark circuit was within ±10% of the 

actual minimum track count.

The second practical issue dealt with controlling the difficulty of routing problems in the 

context of real FPGAs. We implemented an approach to improve the overall routability of a 

circuit by placing extra empty logic blocks in a regular diagonal pattern throughout the FPGA. We 

showed that by using an FPGA with 30% more logic blocks than required by each benchmark 

circuit, the required minimum track count decreased by an average of 17%. We also showed that 

the routability improved further when using even more empty logic blocks.

6.1 Suggestions for Future Research

The binning algorithm was an important compile time enhancement, but as we described in 

Chapter 3 it was not effective for FPGAs with segmented routing architectures. Improvements to 

the binning algorithm to deal with segmented routing architectures are needed.

The circuit delay enhancements produced results reasonably close to those of a timing-

driven router. Ultimately, it would be useful to try and develop a high-speed timing-driven router.

The difficulty prediction algorithm was very quick and accurate, but it is clearly desirable to 

predict the difficulty of a routing problem before placing the circuit. Work done by Chan et al [40]

already addresses the issue of pre-placement routability prediction by using stochastic wirelength 

models to predict the wirelength for nets. It would be interesting to try using an ultra-fast 

placement tool to get a very quick placement for a circuit, with a consistent quality degradation, 

and then apply our difficulty prediction algorithm. This idea is currently being researched by 

Sankar [52].

Our scheme for improving the routability of a circuit by placing extra empty logic blocks in 

a diagonal pattern was a very simple method. Designing a placement algorithm capable of 
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intelligently by placing extra logic blocks in congested areas of a circuit should improve the 

routability even further.

 Finally, one difficulty in carrying out this work was obtaining very large benchmark 

circuits. We used GEN to create two of large circuits, but other sources of more realistic large 

circuits are required. A new set of extremely large benchmark circuits would be helpful in the 

development of future CAD algorithms.
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	84
	15
	5.6
	frisc
	65
	169
	0.4
	53
	35
	1.5
	56
	10
	5.6
	pdc
	159
	610
	0.3
	153
	33
	4.6
	156
	20
	7.8
	s38417
	100
	196
	0.5
	81
	58
	1.4
	77
	45
	1.7
	s38584.1
	75
	277
	0.3
	46
	34
	1.4
	55
	12
	4.6
	spla
	129
	570
	0.2
	110
	24
	4.6
	109
	13
	8.4
	Geometric
	Average
	159
	425
	0.4
	130
	52
	2.5
	130
	25
	5.2
	4.3.3 Quality: Circuit Delay
	Table 4.6: Circuit delays for 4000X-like architecture


	beast16k
	121
	225
	86
	116
	146
	26
	120
	123
	3
	beast20k
	180
	332
	84
	168
	194
	15
	163
	194
	19
	clma
	100
	135
	35
	96
	115
	17
	97
	121
	25
	elliptic
	77
	149
	94
	63
	89
	41
	62
	77
	24
	ex1010
	70
	97
	39
	64
	74
	16
	58
	74
	28
	frisc
	87
	127
	46
	80
	100
	25
	83
	103
	24
	pdc
	77
	98
	27
	78
	82
	5
	75
	88
	17
	s38417
	56
	84
	50
	66
	81
	23
	60
	68
	13
	s38584.1
	40
	94
	135
	40
	52
	30
	40
	49
	23
	spla
	71
	123
	73
	69
	82
	19
	69
	75
	9
	Geometric
	Average
	81
	133
	60
	78
	95
	19
	77
	91
	16
	4.3.4 Reducing the Compile Time
	Figure 4.2: (a) Compile time vs. % extra tracks, (b) Compile time vs. % extra tracks (zoomed)
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	Table 5.1: Correction factors up to 50 for 4000X-like architecture





	1
	1.00
	10
	2.05
	2
	1.25
	15
	2.45
	3
	1.39
	20
	2.69
	4
	1.55
	25
	3.22
	5
	1.64
	30
	3.45
	6
	1.76
	35
	3.50
	7
	1.77
	40
	3.80
	8
	1.89
	45
	4.03
	9
	1.98
	50
	4.45
	(5.3)
	5.1.2 Estimating Track Count
	(5.4)
	Table 5.2: Utilization for simple architecture



	beast16k
	15680
	23
	404619
	0.56
	beast20k
	19600
	29
	615294
	0.54
	clma
	8383
	12
	120360
	0.60
	elliptic
	3604
	12
	42169
	0.49
	ex1010
	4598
	14
	57599
	0.45
	frisc
	3556
	12
	49132
	0.58
	pdc
	4575
	16
	81767
	0.56
	s38417
	6406
	8
	57262
	0.56
	s38584.1
	6447
	8
	53154
	0.52
	spla
	3690
	14
	56051
	0.54
	Table 5.3: Utilization for 4000X-like architecture

	beast16k
	3937
	79
	451079
	0.73
	beast20k
	4929
	92
	649044
	0.72
	clma
	2121
	53
	156277
	0.70
	elliptic
	903
	42
	57592
	0.76
	ex1010
	1191
	42
	74896
	0.75
	frisc
	892
	39
	56235
	0.81
	pdc
	1194
	63
	103132
	0.69
	s38417
	1604
	36
	89670
	0.78
	s38584.1
	1612
	32
	81558
	0.79
	spla
	953
	57
	74858
	0.69
	5.1.3 Difficulty Classification
	Table 5.4: Definition of routing classes


	Impossible
	WFPGA< Westimate
	Difficult
	Westimate £ WFPGA< 1.1Westimate
	Low-Stress
	WFPGA ³ 1.1Westimate
	5.1.4 Demonstrations of Difficulty Prediction
	Table 5.5: Track count estimates for the simple architecture


	beast16k
	23
	24
	+1
	4.3
	beast20k
	29
	29
	0
	0.0
	clma
	12
	13
	+1
	8.3
	elliptic
	12
	11
	-1
	-8.3
	ex1010
	14
	12
	-2
	-14.3
	frisc
	12
	13
	+1
	8.3
	pdc
	16
	16
	0
	0.0
	s38417
	8
	8
	0
	0.0
	s38584.1
	8
	8
	0
	0.0
	spla
	14
	14
	0
	0.0
	Table 5.6: Track count estimates for 4000X-like architecture

	beast16k
	79
	80
	+1
	1.3
	beast20k
	92
	93
	+1
	1.1
	clma
	53
	50
	-3
	-5.7
	elliptic
	42
	43
	+1
	2.4
	ex1010
	42
	44
	+2
	4.8
	frisc
	39
	43
	+4
	10.3
	pdc
	63
	59
	-4
	-6.3
	s38417
	36
	39
	+3
	8.3
	s38584.1
	32
	35
	+3
	9.4
	spla
	57
	53
	-4
	-7.0
	Table 5.7: Difficulty prediction for simple architecture (LS=low-stress, DF=difficult, IM=impossible)
	Table 5.8: Difficulty prediction for 4000X-like architecture (LS=low-stress, DF=difficult, IM=impossible)

	beast16k
	IM
	IM
	IM
	200
	DF
	201
	DF
	80
	LS
	38
	LS
	39
	beast20k
	IM
	IM
	IM
	472
	DF
	229
	DF
	86
	LS
	65
	LS
	67
	clma
	IM
	DF
	DF
	477
	LS
	52
	LS
	32
	LS
	20
	LS
	19
	elliptic
	IM
	IM
	IM
	142
	DF
	63
	DF
	38
	LS
	18
	LS
	13
	ex1010
	IM
	IM
	IM
	148
	DF
	69
	DF
	38
	LS
	9
	LS
	6
	frisc
	IM
	IM
	IM
	92
	IM
	51
	DF
	12
	DF
	5
	DF
	5
	pdc
	IM
	DF
	DF
	257
	LS
	28
	LS
	18
	LS
	12
	LS
	12
	s38417
	IM
	IM
	IM
	164
	IM
	71
	DF
	47
	DF
	33
	LS
	15
	s38584. 1
	IM
	IM
	IM
	196
	IM
	48
	DF
	28
	DF
	40
	LS
	32
	spla
	IM
	DF
	DF
	315
	LS
	50
	LS
	11
	LS
	12
	LS
	8
	5.2 Controlling the Difficulty of Routing Problems
	Figure 5.1: Placement from VPR with 30% extra logic blocks
	Figure 5.2: Placement with 30% extra logic blocks placed in columns
	Figure 5.3: Placement with 30% extra logic blocks placed in diagonals
	Table 5.9: Results from 30% extra logic blocks experiments



	beast16k
	79
	68
	16.2
	66
	19.7
	beast20k
	92
	81
	13.6
	79
	16.5
	clma
	53
	47
	12.8
	45
	17.8
	elliptic
	42
	39
	7.7
	38
	10.5
	ex1010
	42
	37
	13.5
	34
	23.5
	frisc
	39
	35
	11.4
	34
	14.7
	pdc
	63
	57
	10.5
	56
	12.5
	s38417
	36
	33
	9.1
	31
	16.1
	s38584.1
	32
	29
	10.3
	26
	23.1
	spla
	57
	49
	16.3
	49
	16.3
	Geometric
	Average
	50.6
	45.1
	11.8
	43.2
	16.6
	Table 5.10: Results for increasing % extra logic blocks in diagonal pattern

	beast16k
	79
	66
	19.7
	62
	27.4
	55
	43.6
	beast20k
	92
	79
	16.5
	73
	26.0
	63
	46.0
	clma
	53
	45
	17.8
	42
	26.2
	38
	39.5
	elliptic
	42
	38
	10.5
	35
	20.0
	31
	35.5
	ex1010
	42
	34
	23.5
	34
	23.5
	29
	44.8
	frisc
	39
	34
	14.7
	33
	18.2
	30
	30.0
	pdc
	63
	56
	12.5
	52
	21.1
	45
	40.0
	s38417
	36
	31
	16.1
	30
	20.0
	26
	38.5
	s38584.1
	32
	26
	23.1
	26
	23.1
	23
	39.1
	spla
	57
	49
	16.3
	46
	23.9
	39
	46.2
	Geometric
	Average
	50.6
	43.2
	16.6
	41.2
	22.8
	35.0
	40.0
	5.3 Summary
	Chapter 6 Conclusions
	6.1 Suggestions for Future Research
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