
Architectures and Algorithms for

Field-Programmable Gate Arrays

with Embedded Memory

by

Steven J.E. Wilton

A Thesis submitted in conformity with the requirements
for the Degree of Doctor of Philosophy in the

Department of Electrical and Computer Engineering,
University of Toronto

c Copyright by Steven Wilton 1997

Abstract

Architectures and Algorithms for Field-Programmable
Gate Arrays with Embedded Memory

Doctor of Philosophy, 1997
Steven J.E. Wilton

Department of Electrical and Computer Engineering
University of Toronto

Recent dramatic improvements in integrated circuit fabrication technology have led to

Field-Programmable Gate Arrays (FPGAs) capable of implementing entire digital systems,

as opposed to the smaller logic circuits that have traditionally been targeted to FPGAs.

Unlike the smaller circuits, these large systems often contain memory. Architectural support

for the e�cient implementation of memory in next-generation FPGAs is therefore crucial.

This dissertation examines the architecture of FPGAs with memory, as well as algo-

rithms that map circuits into these devices. Three aspects are considered: the analysis

of circuits that contain memory as well as the automated random generation of such cir-

cuits, the architecture and algorithms for stand-alone con�gurable memory devices, and

architectures and algorithms for the embedding of memory arrays in an FPGA.

We �rst present statistics gathered from 171 circuits with memory. These statistics

include the number of memories in each circuit and the width and depth of these memories.

We identify common interconnect patterns between memory and logic. These statistics are

then used to develop a circuit generator that stochastically generates realistic circuits with

memory that can be used as benchmark circuits in architectural studies.

Next, we consider the architecture of a stand-alone con�gurable memory that is exible

enough to implement memory con�gurations with di�erent numbers of memories, memory

widths and depths. Instrumental in this work is the algorithms that map memory con�gura-

tions to the device. These algorithms are used in an experimental framework to investigate

the e�ect of various architectural parameters on the exibility, chip area, and access time

of the con�gurable memory.

Finally, the architecture of an FPGA containing both embedded memory arrays and

i

logic elements is considered, along with new automatic placement and routing algorithms

that map circuits to the FPGA. We show that only 4 switches per memory block pin are

required in the interconnection between the memory arrays and logic elements, and even

lower in FPGAs with four or fewer memory arrays. In addition, we show that by providing

direct connections between memory arrays, the FPGA density can be improved slightly,

and the average memory access time can be improved by as much as 25%.

ii

Acknowledgements

First and foremost, I'd like to thank my supervisors Jonathan Rose and Zvonko Vranesic

for their technical advice, moral support, �nancial support, and the friendship that devel-

oped over my six years in Toronto. They have left a lasting impression that was invaluable

during my time here, and will remain so once I return to BC and embark on my own research

career.

I've also enjoyed working with all the members of the Computer and Electronics Groups.

Although the names are far too numerous to list here, I'd like to thank everyone for making

these six years so enjoyable.

I would also like to thank Jason Anderson, Vaughn Betz, Mike Hutton, and Mohammed

Khalid for their valuable technical discussions during our weekly group meetings.

The FPGA community has been extremely supportive of this project. I'd like to thank

employees at Altera, Xilinx, Lucent Technologies and Actel for giving me the opportunity to

present my work and ensuring that my work remained industrially relevant. I'd especially

like to thank Kerry Veenstra of Altera for supplying the results of a circuit survey and Igor

Kostarnov from Hewlett-Packard Labs for providing the Scribbler circuit.

Financial support for this project was provided by the Natural Sciences and Engineering

Research Council of Canada, MICRONET, the University of Toronto, and the Walter C.

Sumner Memorial Foundation.

iii

Contents

1 Introduction 1

1.1 Motivation : 1

1.2 Requirements of an FPGA Memory Architecture : : : : : : : : : : : : : : : 3

1.3 Coarse-Grained and Fine-Grained RAM : 4

1.4 Research Approach and Dissertation Outline : : : : : : : : : : : : : : : : : 5

2 Previous Work 7

2.1 Implementing Logical Memories : 7

2.2 Memory Resources in Gate Arrays : 9

2.3 Fine-Grained Memory Resources in FPGAs : : : : : : : : : : : : : : : : : : 10

2.3.1 Xilinx 4000 Architecture : 10

2.3.2 Lucent Technologies ORCA Architecture : : : : : : : : : : : : : : : 13

2.3.3 Crosspoint Architecture : 14

2.4 Coarse-Grained Memory Resources in FPGAs : : : : : : : : : : : : : : : : : 15

2.4.1 Altera FLEX 10K Architecture : 15

2.4.2 Actel 3200DX Architecture : 17

2.4.3 Lattice ispLSI 6192 Architecture : 17

2.4.4 Altera FLASHlogic : 18

2.4.5 Kawasaki Steel FPGA : 18

2.4.6 Plus Logic Architecture : 18

2.5 Chip Express Laser-Programmable Gate Array : : : : : : : : : : : : : : : : 19

2.6 FiRM Architecture : 19

2.7 Summary : 21

3 Circuit Analysis and Generation 22

iv

3.1 Motivation : 22

3.2 Circuit Analysis : 24

3.2.1 Logical Memory Con�gurations : 24

3.2.2 Logical Memory Clustering : 26

3.2.3 Interconnect Patterns : 30

3.2.4 Summary of Circuit Analysis : 35

3.3 Stochastic Circuit Generator : 36

3.3.1 Choosing the Logical Memory Con�guration : : : : : : : : : : : : : 36

3.3.2 Choosing Memory/Logic Interconnect Patterns and Number of Data-

in and Data-out Subcircuits : 39

3.3.3 Generating Logic Subcircuits : 41

3.3.4 Connecting Logic and Memories : 44

3.3.5 Additional Constraints : 44

3.4 Summary : 45

4 Stand-alone Con�gurable Memories: Architecture and Algorithms 46

4.1 Architectural Framework : 47

4.1.1 L1 Data Mapping Block : 48

4.1.2 L2 Data Mapping Block and Address Mapping Block : : : : : : : : 50

4.1.3 Wide Mapping Blocks : 53

4.2 Algorithms : 54

4.2.1 Trivial Checks : 55

4.2.2 Logical-to-Physical Mapping : 56

4.2.3 Place and Route : 67

4.2.4 Mapping Results : 71

4.3 Summary : 73

5 Evaluation of Stand-Alone Architectures 74

5.1 Methodology : 75

5.2 Area Model : 76

5.2.1 Array Area Model : 76

5.2.2 Routing Area Model : 78

5.2.3 Total Area : 80

v

5.2.4 Technology and layout parameters : : : : : : : : : : : : : : : : : : : 80

5.2.5 Area Measurements : 80

5.3 Access Time Model : 81

5.3.1 Array Delay : 82

5.3.2 Routing Delay : 83

5.3.3 Delay Results : 83

5.4 Architectural Study : 84

5.4.1 Number of Basic Arrays : 84

5.4.2 L1 Mapping Block Capability : 87

5.4.3 Data Bus Granularity : 89

5.4.4 L2 Switch Patterns : 91

5.5 External Pin Assignment Flexibility : 93

5.6 Conclusions : 97

6 Embedded Arrays: Architecture and Algorithms 99

6.1 Basic Architecture : 100

6.1.1 Memory Resources : 100

6.1.2 Logic Resources : 102

6.1.3 Memory/Logic Interconnect : 104

6.2 Implementation Tools : 106

6.2.1 Placement Program : 108

6.2.2 Routing Program : 111

6.2.3 Validation of Placement and Routing Tools : : : : : : : : : : : : : : 118

6.3 Summary : 122

7 The Memory/Logic Interface 124

7.1 Memory/Logic Interface Flexibility : 125

7.1.1 Methodology : 126

7.1.2 E�ect of Fm on FPGA with 16 Memory Blocks : : : : : : : : : : : : 133

7.1.3 E�ect of Fm on FPGAs with Fewer Memory Blocks : : : : : : : : : 139

7.1.4 E�ect of Connection Block Flexibility : : : : : : : : : : : : : : : : : 144

7.1.5 Memory at Edge of FPGA : 144

7.1.6 Summary of Flexibility Results : 147

vi

7.2 Enhancements to Support Memory-to-Memory

Connections : 148

7.2.1 Pins on Both Sides of Arrays : 148

7.2.2 Dedicated Memory-to-Memory Switches : : : : : : : : : : : : : : : : 152

7.3 Scribbler Circuit : 162

7.4 Conclusions : 167

8 Conclusions and Future Work 168

8.1 Dissertation Summary : 168

8.2 Future Work : 169

8.2.1 Architecture Studies : 169

8.2.2 Algorithm Studies : 170

8.2.3 Circuit Analysis Studies : 171

8.2.4 Long-Term Research : 172

vii

List of Tables

1.1 Example systems. : 3

2.1 Gate arrays with memory. : 9

2.2 Xilinx CLBs required to implement logical memories (from [1]). : : : : : : : 12

2.3 Summary of memory resources in commercial FPGAs. : : : : : : : : : : : : 21

3.1 Information available for example circuits. : : : : : : : : : : : : : : : : : : : 25

3.2 Additional logical memory statistics. : 26

3.3 Additional cluster statistics. : 30

3.4 Data-in and data-out interconnection type statistics. : : : : : : : : : : : : : 35

3.5 Probability distribution functions used to select the number of clusters and

logical memories per cluster. : 36

3.6 Probability distribution functions used to select depth and width of each

memory. : 38

3.7 Probability distribution for choosing interconnect type. : : : : : : : : : : : : 39

3.8 Probability distribution for choosing number of data-in and data-out subcir-

cuits. : 40

3.9 MCNC circuits used as logic subcircuits (* = only used as data sink subcircuit). 42

3.10 Default values for � and . : 44

3.11 SCIRC constraints. : 45

4.1 Architectural parameters. : 48

4.2 Symbol values for examples of Figure 4.10 and 4.11 : : : : : : : : : : : : : : 60

4.3 Array and data bus requirements for 128x16. : : : : : : : : : : : : : : : : : 63

4.4 Array and data bus requirements for 896x3. : : : : : : : : : : : : : : : : : : 63

4.5 Breakdown of how many organizations remain after elimination process. : : 64

viii

4.6 Symbol values for examples of Figure 4.15 : : : : : : : : : : : : : : : : : : : 66

4.7 Mapping results for FiRM architecture. : 72

4.8 Mapping results: B = 8192, N = 8, M = Q = 4, We� = f1; 2; 4; 8g. : : : : : 72

5.1 Technology parameters for the area model. : : : : : : : : : : : : : : : : : : 80

5.2 Area model predictions (results in mbe's). : : : : : : : : : : : : : : : : : : : 81

5.3 Model predictions (B = 8Kbits, N = 8;M = Q = 4;We� = f1; 2; 4; 8g). : : 83

5.4 L2 switch pattern results (B = 8K;N = 8;M = Q = 4;We� = f1; 2; 4; 8g). : 92

5.5 L2 switch pattern results (B = 64K;N = 16;M = Q = 8;We� = f1; 2; 4; 8; 16g). 92

6.1 Architectural parameters for embedded memory resources. : : : : : : : : : : 102

6.2 Minimum number of tracks/channel for various CAD ows. : : : : : : : : : 119

6.3 Comparison of directional and maze-routing algorithm results. : : : : : : : 120

6.4 CPU time requirements2 for router. : 121

6.5 Track count using disjoint and non-disjoint switch blocks. : : : : : : : : : : 121

6.6 Minimum number of tracks/channel. : 122

6.7 CPU time requirements for router. : 122

7.1 Circuit statistics. : 127

7.2 Architecture statistics. : 129

7.3 Net statistics. : 140

7.4 Statistics for Scribbler circuit. : 162

ix

List of Figures

2.1 Implementing a 256x16 logical memory using two 256x8 basic arrays. : : : : 8

2.2 Implementing a 2Kx1 logical memory using two 1Kx1 basic arrays. : : : : : 8

2.3 Applied Micro Circuits gate array oorplan from [2]. : : : : : : : : : : : : : 9

2.4 Mitsubishi gate array oorplan from [3]. : 10

2.5 One CLB con�gured as memory. : 11

2.6 XC4000E CLB con�gured as a 16x1 two-read port, one-write port memory. 11

2.7 One bit slice of a 128x8 memory implemented using Xilinx CLBs. : : : : : : 12

2.8 PFU con�gured as 16x4 memory in ORCA 2CA and 2TA. : : : : : : : : : : 13

2.9 Crosspoint CP20K architecture. : 14

2.10 Combining RLTs to construct a larger array. : : : : : : : : : : : : : : : : : 15

2.11 Floorplan of Altera FLEX 10K architecture. : : : : : : : : : : : : : : : : : : 16

2.12 Embedded array block in an Altera FLEX 10K CPLD. : : : : : : : : : : : : 16

2.13 512x24 memory implemented using six EABs. : : : : : : : : : : : : : : : : : 17

2.14 Floorplan of Chip Express CX2100 LPGA. : : : : : : : : : : : : : : : : : : 19

2.15 FiRM interconnect structure. : 20

3.1 Distribution of number of logical memories required. : : : : : : : : : : : : : 25

3.2 Distributions of logical memory widths and depths. : : : : : : : : : : : : : : 26

3.3 Logical memory connected to data-in, data-out, and address subcircuits. : : 28

3.4 Example clusters. : 28

3.5 Forward error correction decoder datapath from [4]. : : : : : : : : : : : : : 29

3.6 Cluster statistics. : 30

3.7 Logic subcircuit statistics (per cluster). : 31

3.8 A single cluster showing data-in and data-out networks. : : : : : : : : : : : 31

3.9 Point-to-point interconnect patterns for data-in network. : : : : : : : : : : : 32

x

3.10 Shared-connection interconnect patterns for data-in network. : : : : : : : : 33

3.11 Point-to-point pattern with no shu�ing. : 34

3.12 Resulting distribution of total number of logical memories. : : : : : : : : : : 37

3.13 Resulting distribution of total number of bits. : : : : : : : : : : : : : : : : : 38

3.14 Example of connecting data-in subcircuit to a logical memory. : : : : : : : : 41

4.1 General architecture for a standalone FCM. : : : : : : : : : : : : : : : : : : 48

4.2 L1 data mapping block. : 49

4.3 Two example mappings. : 50

4.4 Level 2 data and address mapping block topology (N =M = Q = 8). : : : 52

4.5 Implementation of two examples in Figure 4.3. : : : : : : : : : : : : : : : : 52

4.6 Two-stage address mapping block. : 53

4.7 Bi-directional switches in two-stage L2 data-mapping block. : : : : : : : : : 53

4.8 CAD ows. : 55

4.9 Two possible implementations of 896x3. : 56

4.10 Netlist for f896x3, 5Kx1g. : 58

4.11 Netlist for f896x3, 128x16g. : 58

4.12 Exhaustive logical-to-physical mapping algorithm for one logical memory : 61

4.13 First heuristic logical-to-physical mapping algorithm for one logical memory. 62

4.14 Algorithm to eliminate unnecessary data-widths for logical memory i : : : : 64

4.15 E�cient way to implement 896x3 that is missed by heuristic algorithm. : : 66

4.16 Solution for f896x3, 5Kx1g. : 70

4.17 Partial solution for f128x8, 128x8, 512x12g. : : : : : : : : : : : : : : : : : 70

5.1 Methodology for standalone memory experiments. : : : : : : : : : : : : : : 75

5.2 Floorplan of a single array (not to scale). : : : : : : : : : : : : : : : : : : : 77

5.3 Assumed layout of memory architecture. : 78

5.4 Assumed layout of memory architecture, 2 stages. : : : : : : : : : : : : : : : 78

5.5 Access time predictions: B = 64K;N = 32;M = Q = 8;We� = f1; 2; 4; 8g. : 84

5.6 Number of failures as a function of number of arrays (N). : : : : : : : : : : 86

5.7 Access time as a function of number of blocks (N). : : : : : : : : : : : : : : 87

5.8 Chip area as a function of number of arrays (N). : : : : : : : : : : : : : : : 87

5.9 Number of failures as a function of L1 mapping block capability. : : : : : : 88

xi

5.10 Access time as a function of L1 mapping block capability. : : : : : : : : : : 88

5.11 Chip area as a function of L1 mapping block capability. : : : : : : : : : : : 88

5.12 Failures as a function of data bus width: B = 64K;N = 16; 128 data pins. : 90

5.13 Delay/area as a function of data bus width: B = 64K;N = 16; 128 data pins. 90

5.14 L2 data block/address block switch patterns considered. : : : : : : : : : : : 92

5.15 A single logical memory that uses 4 data buses and 1 address bus. : : : : : 94

5.16 FiRM switch pattern for address and L2 data mapping blocks. : : : : : : : 95

5.17 Best switch patterns if one switch-set is added. : : : : : : : : : : : : : : : : 95

5.18 Best switch pattern if two switch-sets are added. : : : : : : : : : : : : : : : 96

5.19 Bus assignment exibility results. : 96

5.20 Best switch patterns if 3 and 6 switch-sets are added. : : : : : : : : : : : : 97

6.1 Floorplan showing memory and logic blocks. : : : : : : : : : : : : : : : : : : 101

6.2 An alternative oorplan with arrays distributed throughout the FPGA (not

considered in this dissertation). : 101

6.3 Three di�erent switch blocks. : 102

6.4 Routing a net from A to B. : 103

6.5 Correspondence between terminal label and physical switch block pin. : : : 104

6.6 Memory/logic interconnect structure. : 105

6.7 Memory/logic interconnect block. : 106

6.8 CAD ow. : 107

6.9 Pseudo-code for simulated annealing algorithm. : : : : : : : : : : : : : : : : 109

6.10 Pseudo-code for algorithm to route a single net. : : : : : : : : : : : : : : : : 112

6.11 Pseudo-code for algorithm to route all nets. : : : : : : : : : : : : : : : : : : 113

6.12 Nodes visited by the basic maze routing algorithm. : : : : : : : : : : : : : : 114

6.13 Example in which pruning should be limited to moves that are further in

both the X and Y dimensions. : 115

6.14 Example in which the cost of a node should reect both the distance from

the source and distance to the destination. : : : : : : : : : : : : : : : : : : : 115

6.15 Nodes visited by the directional search algorithm. : : : : : : : : : : : : : : : 116

6.16 Modi�ed pseudo-code for algorithm to route a single net. : : : : : : : : : : 117

6.17 Modi�ed pseudo-code for algorithm to route all nets. : : : : : : : : : : : : : 118

xii

7.1 Memory/logic interconnect block example from Chapter 6. : : : : : : : : : : 125

7.2 Methodology for memory/logic interconnect block experiments. : : : : : : : 130

7.3 Bi-directional re-powering switch. : 132

7.4 Average track requirement as a function of Fm for FPGA with 16 arrays. : 134

7.5 Bad case for memory/logic interconnect block of Chapter 6. : : : : : : : : : 134

7.6 No. of programmable connections as a function of Fm for FPGA with 16

arrays. : 138

7.7 Delay as a function of Fm for FPGA with 16 arrays. : : : : : : : : : : : : : 139

7.8 Average track requirement as a function of Fm. : : : : : : : : : : : : : : : : 140

7.9 A net connected to three memory blocks: three regions of low exibility. : : 141

7.10 E�ect of removing memory-to-memory connections. : : : : : : : : : : : : : : 142

7.11 Number of programmable connections as a function of Fm. : : : : : : : : : 143

7.12 Delay as a function of Fm. : 143

7.13 Track requirement results for two values of Fc. : : : : : : : : : : : : : : : : 145

7.14 Number of programmable connections for two values of Fc. : : : : : : : : : 145

7.15 Floorplan of FPGA with memory arrays at one edge. : : : : : : : : : : : : : 146

7.16 Track requirements results for FPGA with memory arrays at one edge. : : : 146

7.17 Area results for FPGA with memory arrays at one edge. : : : : : : : : : : : 147

7.18 Standard memory/logic interconnect structure for Fm = 1. : : : : : : : : : : 149

7.19 Circuitous route on standard architecture. : : : : : : : : : : : : : : : : : : : 149

7.20 Enhanced memory/logic interconnect structure for Fm = 1. : : : : : : : : : 150

7.21 Direct route on enhanced architecture. : 150

7.22 Track requirement results for architecture of Figure 7.20. : : : : : : : : : : : 151

7.23 An example where the router does not take advantage of extra switches. : : 151

7.24 Dedicated memory-memory connection architecture. : : : : : : : : : : : : : 153

7.25 Enhanced architecture example. : 154

7.26 Original architecture example. : 154

7.27 Routing results assuming standard router. : : : : : : : : : : : : : : : : : : : 155

7.28 Routing a logic net with and without memory-to-memory switches. : : : : : 156

7.29 Example of a memory net that uses an extra memory-to-memory switch. : : 158

7.30 Track results for an 8-array FPGA with memory-to-memory switches. : : : 159

7.31 Track results for an 16-array FPGA with memory-to-memory switches. : : : 159

xiii

7.32 Area results for an 8-array FPGA with memory-to-memory switches. : : : : 160

7.33 Area results for an 16-array FPGA with memory-to-memory switches. : : : 160

7.34 Delay results for an 8-array FPGA with memory-to-memory switches. : : : 161

7.35 Delay results for an 16-array FPGA with memory-to-memory switches. : : : 161

7.36 Track requirement results for Scribbler. : 163

7.37 Area results for Scribbler. : 163

7.38 Delay results for Scribbler. : 163

7.39 Track requirement results for Scribbler assuming memory-to-memory switches.164

7.40 Area results for Scribbler assuming memory-to-memory switches. : : : : : : 164

7.41 Delay results for Scribbler assuming memory-to-memory switches. : : : : : 164

7.42 One cluster in Scribbler. : 165

7.43 One cluster in Scribbler after logical-to-physical mapping. : : : : : : : : : : 166

7.44 Placement of four memory blocks from Figure 7.43. : : : : : : : : : : : : : : 166

8.1 An alternative oorplan with arrays distributed throughout the FPGA. : : 170

xiv

List of Symbols

Stand-Alone Architectural Parameters:

B Total memory bits

N Number of arrays

M Number of external data buses

Q Number of external address buses

Wnom Nominal width of each array and width of each data bus

We� Set of allowable data widths of each array

Embedded Array Architectural Parameters:

B Total memory bits

N Number of arrays

We� Set of allowable data widths of each array

M Number of pins in each memory block

G Number of logic blocks

W Vertical tracks per logic routing channel

Fm Number of tracks to which each memory block pin can connect

Fc Number of tracks to which each logic block pin can connect

Fs Number of choices o�ered to each incident track by a switch block

V Vertical tracks between each memory array

R Logic blocks per memory block in the horizontal dimension

Circuit and Implementation Parameters:

z Number of logical memories

di Depth of logical memory i

wi Width of logical memory i

n Total number of arrays to implement all logical memories

ni Number of arrays required to implement logical memory i

si Number of mux-groups in implementation of memory i

ni;j Arrays in mux-group j in implementation of memory i

ei;j E�ective data width of each array in mux-group j of

implementation of logical memory i

g Number of logic blocks in circuit

xv

Chapter 1

Introduction

1.1 Motivation

Since their introduction in 1985, Field-Programmable Gate Arrays (FPGAs) have rapidly

become the implementation medium of choice for many digital circuit designers. The recon-

�gurable nature of FPGAs provides risk-free large-scale integration that has been applied

in areas as diverse as telecommunications, high-speed graphics, and digital signal process-

ing. Unlike Mask-Programmed Gate Arrays (MPGAs), which must be personalized by the

MPGA vendor, FPGAs can be programmed by the user in minutes. For small and medium

volumes, this reduces the cost, and shortens the time-to-market.

Unfortunately, there is an area and speed penalty associated with user-con�gurability.

Unlike MPGAs, in which circuit elements are connected using metal wires, in an FPGA,

programmable switches are used to connect circuit elements. These programmable switches

add resistance and capacitance to all connections within a circuit, lowering the achievable

clock frequency. The switches also require signi�cant chip area, reducing the amount of

logic on each device. In some FPGAs, Static RAM (SRAM) bits are required to control the

programming switches, reducing the number of circuit elements even further. For the most

part, this has limited FPGAs to the implementation of relatively small logic subcircuits,

often the \glue-logic" portions of larger systems.

Recent years, however, have seen dramatic improvements in processing technology.

Today, 0.5�m and 0.35�m processes are common, 0.25�m processes are becoming avail-

1

able [5, 6], and even smaller feature sizes are on the horizon. These smaller feature sizes

have lead to impressive improvements in the density of integrated circuits (ICs), which, in

turn, have had a profound impact on the possible applications and design of ICs.

The impact of improving process technology is very evident in the evolution of FPGAs.

Recently, FPGA vendors have introduced devices capable of implementing relatively large

circuits and systems. These large systems are quite di�erent than the smaller logic sub-

circuits that have traditionally been the target of FPGAs. One of the key di�erences is

that these systems often contain memory. Therefore, next-generation FPGAs must be able

to e�ciently implement memory as well as logic. If they can not, the implementation of

such a system would require both FPGAs (for the logic portion of the system) and separate

memory chips. On-chip memory has several advantages:

� Implementing memory on-chip will likely decrease the number of chips required to

fully implement a system, reducing the system cost.

� Implementing memory and logic on separate chips will often limit the achievable clock

rate, since external pins (and board-level traces) must be driven with each memory

access. If the memory access time is part of the critical path delay of the circuit,

on-chip memory will allow a shorter clock period.

� For most FPGA packaging technologies, as the devices get larger, the number of logic

elements grows quadratically with the edge-length of the chip. The number of I/O

pins, however, grows only linearly. Thus, the availability of I/O pins is increasingly

becoming a problem. This problem is aggravated if an FPGA is connected to an

o�-chip memory, since many I/O pins on the FPGA must be devoted to address and

data connections. If the memory is implemented on-chip, these pins can be used for

other purposes.

Although several FPGA vendors have included support for memory on their latest de-

vices, there has been no published work that investigates how this memory support can

best be provided. In this dissertation, we investigate the requirements of such an FPGA,

and evaluate architectures for supporting memory in next-generation FPGAs.

2

System Memory Requirements1

Graphics Chip [7] eight 128x22, two 16x27

Neural Networks Chip [8] 16x80, 16x16

Translation Lookaside Bu�er [3] two 256x69 (bu�ers), 16x18 (register �le)

Proof-of-concept Viterbi decoder [9] three 28x16, one 28x3

Fast Divider [10] 2048x56, 4096x12 (ROM)

Communications Chip #1 two 1620x3, two 168x12, two 366x11

Communications Chip #2 six 88x8, one 64x24

Communications Chip #3 one 192x12

Table 1.1: Example systems.

1.2 Requirements of an FPGA Memory Architecture

Since FPGA memory will be used in many di�erent contexts, it must be exible. Table 1.1

shows a number of circuits described in recent circuits conferences and journals as well as

three circuits obtained from a Canadian telecommunications company; each of these circuits

requires a di�erent number of memories and di�erent memory sizes. In this dissertation,

we refer to the memory requirements of a single application circuit as a logical memory

con�guration. Each independent memory within a logical memory con�guration is referred

to as a logical memory. If two more more memories share address connections (i.e. receive

the same address from the logic at all times) they are considered to be a single logical

memory. Many con�gurations contain more than one logical memory; for example, the

Viterbi decoder in Table 1.1 requires four logical memories. The speci�cation of these four

memories, with their widths, speeds, and any other special requirements (such as dual-port

access) make up the circuit's logical memory con�guration. A good FPGA will be able to

implement circuits with a wide variety of logical memory con�gurations.

Another element of exibility not reected in Table 1.1 is that the logical memories

within a circuit will be used in many di�erent contexts, and will therefore communicate

with each other and with the logic in many di�erent ways. Some circuits require a single

large bank of memory that is connected directly to logic subcircuits. Other circuits might

contain smaller memories connected to a common bus; this bus then might drive (or be

driven by) one or more logic subcircuits. A third type of circuit might require many small

1In this dissertation, a memory written mxn consists of m words of n bits each.

3

memories distributed throughout the circuit, each connected to its own logic subcircuit.

Again, a good FPGA will be able to implement circuits that interact with memory in many

di�erent manners.

Flexibility is rarely free. In general, the more exible an FPGA architecture, the more

programmable switches and programming bits are required. Programmable switches add

delay to the paths within a circuit implementation; if these paths are part of the circuit's

critical path, the achievable clock speed will su�er. Similarly, the extra switches and pro-

gramming bits will use area that could otherwise be used for additional circuit elements.

The design of a good FPGA architecture involves �nding a balance between area, speed,

and exibility.

1.3 Coarse-Grained and Fine-Grained RAM

There are two approaches to creating an FPGA that can implement both memory and logic:

Fine-Grained: It is well known that logic can be e�ciently implemented using small (4-

input) lookup tables [11]. One approach to implementing RAM is to allow the user

to optionally use each of these 4-input lookup tables as a 16-bit RAM. These small

RAMs can then be combined to form larger logical memories [12, 13].

Coarse-Grained: A second approach is to use a heterogeneous architecture consisting of

two types of resources: small lookup tables to implement logic and larger arrays to

implement memory [14, 15].

Commercial examples of each type exist and are described in Chapter 2.

Consider the �ne-grained approach. Since each lookup table only contains 16 bits of

storage, many are needed to implement large logical memories. In addition, large address

decoders and data multiplexors are needed, which require even more lookup tables. Each of

these lookup tables has routing and other overhead. Clearly, large memories would quickly

�ll this sort of FPGA, leaving little room left to implement logic. In addition, connections

between the lookup tables must be made using programmable interconnect; this results in

longer and less predictable memory access times.

4

In a coarse-grained architecture, large logical memories can be implemented using only

a few memory arrays. In this case, the overhead of each array is amortized over many more

bits, leading to much denser and faster memory implementations. In this dissertation, we

concentrate on coarse-grained architectures.

There are two signi�cant drawbacks to the coarse-grained approach. First, heterogeneity

implies that the chip is partitioned into logic and memory resources when manufactured.

Since di�erent circuits have di�erent memory requirements, this \average-case" partition-

ing may lead to ine�cient implementations of logic-intensive or memory-intensive circuits.

This ine�ciency can be reduced by using unused memory arrays to implement logic; this

possibility is beyond the scope of this dissertation.

The second drawback of the coarse-grained approach is that the associated CAD algo-

rithms are likely to be more complex than their counterparts for homogeneous architectures,

since they must consider both logic and memory resources simultaneously. In the place-

ment phase, the placements of the logic blocks must inuence the placement of the memory

blocks, and vice-versa. In the routing phase, the tool must be aware of the di�erences

in exibility in the routing around the memory and logic blocks. The technology-mapping

phase for the heterogeneous architectures is also di�cult, since, as will be shown in the next

chapter, the memory blocks in these architectures often support multiple memory widths,

giving an additional degree of freedom that the technology-mapper must explore. This

dissertation addresses all of these issues.

1.4 Research Approach and Dissertation Outline

There are three parts to this research: circuit characterization, stand-alone con�gurable

memory architectures, and embedded memory architectures.

We �rst performed an extensive analysis of 171 large circuits that contain memory. The

statistics gathered include the number of logical memories in each circuit and the widths and

depths of the memories. We also examined how the logical memories were connected to the

logic portions of each circuit, and identi�ed common interconnect patterns. The results of

this analysis were then used to develop a stochastic circuit generator that generates realistic

circuits containing both logic and memory. The analysis and resulting circuit generator are

5

described in Chapter 3.

During the next phase of the research, we investigated con�gurable memory architectures

that are exible enough to support a wide variety of logical memory con�gurations, but

are fast and small enough to be suitable for inclusion in an FPGA. To isolate the issues

associated with the memory architecture, we �rst focused on stand-alone architectures in

which the address and data pins are connected directly to I/O pads. Chapter 4 describes

such an architecture, as well as algorithms that map a logical memory con�guration to

the physical device. Chapter 5 investigates the e�ects of varying various architectural

parameters on the device's exibility, chip area, and access time.

During the �nal phase of this research, we examined how the con�gurable memory

architecture can be embedded into an FPGA. An architecture containing both logic and

memory resources is presented in Chapter 6, along with algorithms that map circuits to

the FPGA. One of the key components of such a heterogeneous architecture is the interface

between the memory and logic resources. It is vital that the interface be exible enough to

support the many di�erent contexts in which the memories will be used, but small and fast

enough that e�cient circuit implementations are still possible. In Chapter 7, we focus on the

memory/logic interface, and experimentally investigate the e�ects of various architectural

parameters on the routability, area, and speed of the resulting FPGA.

Before any of this research is presented, however, the next chapter puts our work in

context by describing commercial FPGAs with memory as well as other related work.

6

Chapter 2

Previous Work

Virtually every major FPGA company o�ers FPGAs with some memory capabilities. These

existing devices are the focus of this chapter. An overview of the approach taken in standard

gate arrays, FPGAs, and a Laser-Programmable Gate Array (LPGA) family is presented in

Sections 2.2 to 2.5. Section 2.6 describes an experimental exible memory implementation.

We start, however, by discussing how these devices obtain their required exibility.

2.1 Implementing Logical Memories

One of the key requirements of any con�gurable memory architecture is that it must be

exible enough to implement a wide variety of logical memories. The underlying approach

for achieving exibility is the same across all the architectures that will be presented.

Each architecture that will be discussed consists of a collection of basic arrays; the

sizes of these arrays range from 16 bits to 2 Kbits. The �rst way exibility is achieved is

that, in many of the architectures, the aspect ratio of each basic array is con�gurable. For

example, each 2-Kbit array in the Altera 10K architecture (described in Section 2.4.1) can

be con�gured to one of 256x8, 512x4, 1Kx2, or 2Kx1.

The second way exibility is achieved applies to all architectures with more than one

basic array. In these architectures, the arrays can be combined in a programmable manner

to implement larger logical memories. To implement wide logical memories, the basic

arrays can be combined \horizontally" by sharing address lines between two or more arrays.

7

enable

address

data−in

data−out
256x8

enable

address

data−in

data−out
256x8

enable

address

data−in
bits 8−15

bits 0−7 bits 8−15

bits 0−7
data−out

Figure 2.1: Implementing a 256x16 logical memory using two 256x8 basic arrays.

enable

address

data−in

data−out

enable

address

data−in

data−out

1K x 1

1K x 1

data−out
(1 bit)

enable

data−in (1 bit)

address
bit 1−10

bit 0

Figure 2.2: Implementing a 2Kx1 logical memory using two 1Kx1 basic arrays.

Figure 2.1 shows such an example in which a 256x16 logical memory is implemented using

two 256x8 basic arrays. The enable and address lines are shared between the two arrays, but

each array implements a separate 8-bit slice of data. To implement deep logical memories,

the physical arrays can be combined \vertically". An example is shown in Figure 2.2, in

which a 2Kx1 logical memory is implemented using two 1Kx1 arrays. In this case, the

upper array implements all addresses with the LSB equal to 1, while addresses with the

LSB equal to 0 are implemented using the lower array. More complex larger memories can

be implemented by combining arrays both horizontally and vertically; examples of this will

be presented in Sections 2.3.1 and 2.4.1.

The architectures described in the next sections di�er widely in the number, size and

con�gurability of their basic blocks, as well as their support for combining arrays.

8

Company Reference Total Bits Number Basic Organization
of Arrays of Each Array

Applied Micro Circuits [2] 1280 bits 2 32x20 bits
Hitachi [16] 4608 bits 1 128x36 bits
Motorola [17] 4608 bits 2 64x36 bits
Fujitsu [18] 16384 bits 4 256x16 bits

Mitsubishi [3] 36864 bits 8 256x18 bits
Fujitsu [19] 65536 bits 16 256x16 bits

LSI Logic [20] up to 576 Kbits up to 8192 x 72

Table 2.1: Gate arrays with memory.

RAM

RAM

32x20

32x20

Logic
Elements

Figure 2.3: Applied Micro Circuits gate array oorplan from [2].

2.2 Memory Resources in Gate Arrays

Embedded memory arrays have been available in mask-programmed gate arrays since

the 1980s. Table 2.1 shows seven gate arrays and their memory resources (this table is not

meant to be an exhaustive list of all gate arrays with embedded memory). The memory

resources consist of a small number of large arrays; in some, the aspect ratio of each array

is con�gurable. The arrays can be combined using logic resources to form deeper and/or

wider memories. In addition, the logic cell of one of the gate arrays (from Mitsubishi [3])

was designed such that each logic element can implement one additional bit of memory. In

the LSI Logic product, a user-speci�ed memory size and shape is compiled and embedded

onto the gate array [20].

Figures 2.3 and 2.4 show the oorplans of two of these devices. In both cases, the arrays

were placed on the edge of the chip to allow simple connections between the memory and

I/O pads.

9

RAM
256x18

RAM
256x18

RAM
256x18

RAM
256x18

RAM
256x18

RAM
256x18

RAM
256x18

RAM
256x18

Logic
Elements

Figure 2.4: Mitsubishi gate array oorplan from [3].

2.3 Fine-Grained Memory Resources in FPGAs

The primary focus of this dissertation is memory resources in Field-Programmable Gate

Arrays. As described in the previous chapter, FPGA memory resources can be classi�ed

as either coarse-grained or �ne-grained. Fine-grained FPGA memory architectures consist

of many very small basic arrays distributed over the entire FPGA. Coarse-grained archi-

tectures, on the other hand, consist of only a few larger arrays. Both variants can be

found in currently available FPGAs. This section describes three commercial FPGAs using

a �ne-grained memory architecture, while Section 2.4 describes six products employing a

coarse-grained approach. Within both sections, the order of the products presented reects

the (approximate) exibility of the memory resources (most exible �rst).

2.3.1 Xilinx 4000 Architecture

The Xilinx XC4000 family of FPGAs was one of the �rst architectures with �ne-grained

memory resources [12, 21, 22]. Each FPGA in this family contains between 100 and 1024

con�gurable logic blocks (CLBs); each CLB contains contains two four-input lookup-tables,

a three-input lookup-table, two ip-ops, and glue logic, and can be used to implement

either logic or memory. Figure 2.5 shows a block diagram of a single CLB con�gured as a

memory. When used as a memory, each of the two 4-input lookup tables can be used as a

16-bit RAM; the external glue logic allows the user to optionally combine the 16-bit RAMs

into a 32x1 memory. The data output pins of each memory can be optionally connected

10

D1 D0WE

H1
H2
H3
H4

G1
G2
G3
G4

address
pins

data−in

data−out

write
enable

address
pins

data−in

data−out

write
enable

16x1

16x1

0

1

config.
bit

Figure 2.5: One CLB con�gured as memory.

WE

Data−in Data−out

Read Address

Write Address

WE

Data−in Data−out

Read Address

Write Address

16x1

16x1

G

F

G1−G4

F1−F4

WE

D0

Figure 2.6: XC4000E CLB con�gured as a 16x1 two-read port, one-write port memory.

to the three-input lookup-table or a ip-op. In the XC4000E parts, each memory can

be synchronous (edge-triggered) or level-sensitive, while in the XC4000 parts, only level-

sensitive memories are supported.

The XC4000E parts also have a \dual-port" mode in which the two four-input lookup

tables within a CLB are combined to form a 16-bit, two-read port, one-write port memory.

The 16 bits are replicated in the two lookup tables, and each replicated copy is used to

support one read port, as shown in Figure 2.6. During a write, both replicated copies are

updated.

In order to implement memories containing more than 32 bits, CLBs must be combined.

Figure 2.7 shows how one bit-slice of a 128x8 bit memory can be implemented on this archi-

11

G1/F1
G2/F2
G3/F3
G4/F4
D1

WE

X

D0

G1/F1
G2/F2
G3/F3
G4/F4
D1

WE

X

D0

G1/F1
G2/F2
G3/F3
G4/F4
D1

WE

X

D0

G1/F1
G2/F2
G3/F3
G4/F4
D1

WE

X

D0

DoutDin

2−4 DECODER

Address 0
Address 1

Write

Address 2
Address 3
Address 4
Address 5
Address 6

4−1 MUX

Figure 2.7: One bit slice of a 128x8 memory implemented using Xilinx CLBs.

Logical Memory CLBs for storage CLBs for glue logic Total CLBs

128x8 32 10 42
256x4 32 15 47
1Kx1 32 29 61
4Kx1 128 117 245

Table 2.2: Xilinx CLBs required to implement logical memories (from [1]).

tecture (the CLBs implementing the memory and output multiplexor would be replicated

8 times to implement the complete memory). The output multiplexor and address decoder

can also be implemented using CLBs; in this example, 10 CLBs are required to implement

the address decoder and eight multiplexors, in addition to the 32 CLBs required for storage.

Table 2.2 shows the number of CLBs required to implement larger logical memories (these

were obtained using the Xilinx XACT Development System and presented in [1]). Clearly,

large logical memories quickly �ll the chip, leaving little room left to implement logic.

12

read address

write address

data−in

data−out
address

data−in

clk

D Q

QD 16x4

write
enable

write
strobe

pulse
generator

Figure 2.8: PFU con�gured as 16x4 memory in ORCA 2CA and 2TA.

2.3.2 Lucent Technologies ORCA Architecture

The approach taken in the Lucent Technologies Optimized Recon�gurable Cell Array (ORCA)

architecture is similar to that taken in the Xilinx parts. In all ORCA FPGAs, each logic

block (called a Programmable Function Unit, PFU) contains four 4-input lookup tables,

four latches, and additional glue logic. Each PFU can be con�gured as either two 16x2

memories or a single 16x4 memory [13, 23, 24].

Further exibility is provided in the ORCA 2CA and 2TA parts. In these devices, sepa-

rate read and write addresses to each PFU can be provided by time-multiplexing them onto

the single set of address lines. Figure 2.8 shows a simpli�ed view of the PFU architecture

when con�gured as a 16x4 memory. The write address is supplied in one clock phase while

the read address is provided in the other. Besides supporting simultaneous reads and writes

from each PFU, this architecture also allows the implementation of a two-read, one-write

port RAM, similar to the dual-port mode of the Xilinx XC4000E FPGA.

The ORCA PFUs can be combined to implement larger logical memories in the same

manner as the Xilinx CLBs. Since the minimum data width of each PFU is two, the

minimum data width of any implemented logical memory is also two.

13

2.3.3 Crosspoint Architecture

The architecture of the Crosspoint CP20K family of FPGAs is shown in Figure 2.9 [25, 26].

The diagram shows two distinct types of building blocks: transistor-pair tiles (TPT) and

RAM-logic tiles (RLT). Each TPT contains one n-type transistor and one p-type transistor

and is aimed primarily at implementing the logic portions of a circuit. Memory can be

implemented using the RLTs; each RLT contains one bit of storage (RLTs also contain

additional circuitry to implement wide multiplexors and sequential logic elements).

ROUTING CHANNEL

ROUTING CHANNEL

TPT

RLT

Figure 2.9: Crosspoint CP20K architecture.

Figure 2.10 shows how RLTs can be combined to form logical memories. The RLTs are

connected using dedicated wordlines (read select and write select), a dedicated bitline (data),

and a dedicated column select line (four other pins not normally used when implementing

memory are not shown). The dedicated wordlines and column select lines can be connected

to TPTs at the edge of the chip; an additional RLT is required to connect the bitline to

TPTs (this additional RLT acts as a sense ampli�er). The wordlines can be split in the

middle of the chip meaning two independent memories can be implemented. The data

multiplexors and address decoder are implemented using TPTs. Since the largest FPGA in

the CP20K family contains 3684 RLTs, the maximum memory size that can be implemented

is slightly less than 3.6 Kbits.

14

RLT

RN WN

RWCS

RLT

RN WN

RWCS
RLT

RN WN

RWCS

RLT

RN WN

RWCS

READ
SELECT

WRITE
SELECT

COLUMN
SELECT

DATADATACOLUMN
SELECT

READ
SELECT

WRITE
SELECT

Figure 2.10: Combining RLTs to construct a larger array.

2.4 Coarse-Grained Memory Resources in FPGAs

All of the FPGAs described in the previous section are ine�cient when implementing large

memories. In this section we describe six commercial heterogeneous architectures which are

suitable for implementing circuits with large memory requirements.

2.4.1 Altera FLEX 10K Architecture

The Altera FLEX 10K family of programmable logic devices contain large embedded arrays

in which memory can be e�ciently implemented, as well as small lookup-tables suitable for

implementing logic [14, 27]. Members of this family contain between 3 and 12 Embedded

Array Blocks (EABs), each of which contains a 2-KBit array. The EABs are positioned in a

single column in the middle of the chip, as shown in Figure 2.11. The EABs are connected to

the logic array blocks (each of which contains eight 4-input lookup tables) using horizontal

and vertical routing channels.

Figure 2.12 shows a single EAB. The memory array within the EAB can be con�gured

as a 256x8, 512x4, 1024x2 or a 2048x1 memory. Registers can be optionally included before

the inputs and after the outputs of the array. Although not shown in the diagram, there

are also dedicated inputs that can be used to drive the clock inputs of each register and the

write enable input of the memory array.

This architecture can implement large memories much more e�ciently than the Xilinx

architecture described in Section 2.3.1. Each of the �rst three logical memories in Table 2.2

can be implemented using a single EAB; the fourth logical memory can be implemented

15

Logic Array Blocks

Horizontal
routing channels

Vertical routing channels

Embedded Array Blocks

Figure 2.11: Floorplan of Altera FLEX 10K architecture.

D Q

Data−in

(8, 4, 2,
 or 1 bit)

Memory
Array

(configurable to
 one of:
 256x8
 512x4
 1024x2
 2048x1)

D Q

D Q

Address

(8−11 bits)

Write
enable

(1 bit)

D Q (8, 4, 2,
 or 1 bit)

Data−out

Local
Inter−
 connect

Figure 2.12: Embedded array block in an Altera FLEX 10K CPLD.

using two EABs. Even larger logical memories can be created by combining EABs; Fig-

ure 2.13 shows how six EABs, each in their 256x8 mode, can be connected to implement a

512x24 logical memory.

16

256x8

EAB

256x8

EAB

256x8

EAB

256x8

EAB

256x8

EAB

256x8

EAB

address

data−in data−out

WE

data−in data−out

address

WE

2−
1 M

U
X

data−in data−out

address

WE

data−in data−out

address

WE

2−
1 M

U
X

data−in data−out

address

WE

256x8

EAB

256x8

EAB

256x8

EAB

data−in data−out

address

WE

256x8

EAB

256x8

EAB

256x8

EAB

2−
1 M

U
X 8

8

8

24

data−
out

8

8

8

24

data−
in

address

bit 0
bits 1−9

write

8

Figure 2.13: 512x24 memory implemented using six EABs.

2.4.2 Actel 3200DX Architecture

A similar approach is used in the Actel 3200DX family [15]. The FPGAs within this family

contain between 8 and 16 memory arrays, each of which can be con�gured as 32x8 or 64x4.

Unlike the Altera EABs, each Actel SRAM block contains independent read and write

address ports and separate read and write clocks. This is suitable for implementing bu�ers

which must be read and written simultaneously.

2.4.3 Lattice ispLSI 6192 Architecture

Lattice's approach to con�gurable memory is unique in that they o�er three devices which

are identical, except for the memory resources [28]. All three parts contain 4608 bits, but

di�er in the support circuitry for the arrays.

In the 6192FF part, the memory acts as a 256x18 or 512x9 �rst-in �rst-out (FIFO)

bu�er. The FIFO is dual-ported; one port is connected directly to I/O pins, while the other

17

is connected to the logic resources. I/O signals indicating bu�er \full", \empty", \almost

full", and \almost empty" are provided. The thresholds of \almost full" and \almost empty"

are adjustable by the user.

The 6192SM device contains a standard single-port memory; it can implement one

256x18 or 512x9 single-port logical memory or two 128x18 or 256x9 single-port logical

memories. The memory or memories can be either connected directly to I/O pins or to the

logic part of the FPGA.

In the 6192DMpart, the user can implement one dual-port 256x18 or 512x9 memory (the

option of creating two smaller memories is not provided). Since the memory is dual-ported,

it can be accessed from the I/O pins and the logic part of the FPGA simultaneously.

2.4.4 Altera FLASHlogic

The Altera FLASHlogic architecture (formerly marketed by Intel) consists of eight con�g-

urable function blocks (CFBs) connected using a global interconnect matrix [29]. Each CFB

can be con�gured to act either as a 22V10-like logic block or a 128x10 memory. Unlike the

other coarse-grained architectures, the aspect ratio of each memory is not con�gurable.

2.4.5 Kawasaki Steel FPGA

In 1990, the LSI Division of Kawasaki Steel described a prototype FPGA containing a single

8-Kbit SRAM block [30]. Dedicated FIFO control circuitry was also included, allowing the

memory to be used either as a FIFO bu�er or a random access memory. The data width

could be con�gured as 4 or 8.

2.4.6 Plus Logic Architecture

One of the earliest FPGA architectures with memory was proposed, but not marketed, by

Plus Logic, Inc. in 1989 [31]. Their FPSL5110 FPGA architecture, which was capable

of implementing 1000 to 2000 gates, contained a dual-port 1152 bit memory. The single

array could be con�gured as 32x36, 64x18, or 128x9. Like the Kawasaki Steel architecture,

it contained only one array, meaning it could be used to implement only a single logical

memory.

18

Logic resources

32−Kbit
Memory
Block

32−Kbit
Memory
Block

Figure 2.14: Floorplan of Chip Express CX2100 LPGA.

2.5 Chip Express Laser-Programmable Gate Array

The CX2000 Laser-Programmable Gate Array (LPGA) family from Chip Express also con-

tains embedded con�gurable memory [32]. Unlike an FPGA, an LPGA can not be pro-

grammed in the �eld, but must be programmed by the LPGA vendor. Proprietary laser

programming technology, however, results in a turn-around time as short as one day.

The CX2000 family of LPGAs contain between zero and four 32-Kbit blocks. Each

block can implement up to four independent single-port logical memories or two dual-

port memories. Although the details of the architecture are not available, Chip Express

advertises that the word width of these logical memories can be between 1 and 128 bits, and

the depth can be between 2 and 16K words. A oorplan of the CX2100 LPGA is shown in

Figure 2.14; this device contains two memory blocks, each in one corner of the chip [33].

2.6 FiRM Architecture

An experimental con�gurable memory implementation employing the coarse-grained ap-

proach is described in [1, 34]. The chip, called FiRM, is stand-alone; that is, the address

and data lines are connected directly to external I/O pins.

The memory resources of FiRM consist of four 1-Kbit arrays, each of which can be

con�gured as 128x8, 256x4, 512x2, or 1024x1. There are also four external I/O ports, each

of which contains address pins, data pins, and a block enable pin. The con�gurable arrays

and external pins are connected using a novel interconnect structure as shown in Figure 2.15.

19

I/O Port 4
I/O Port 3
I/O Port 2
I/O Port 1

Array 1

Array 2Array 3

Array 4 Note: Each bus contains address,
 data, and block enable lines

Figure 2.15: FiRM interconnect structure.

This interconnect serves two purposes: it allows arrays to be combined to implement larger

logical memories, and it connects the arrays to the external I/O ports. A key feature of

this interconnect is that it is not complete; not every array can be connected to every other

array and every I/O port. Yet, by taking advantage of the fact that all memory blocks are

identical, as are all I/O ports, the interconnect structure can implement as many logical

memory con�gurations as if a complete interconnect structure had been employed. The

interconnect requires only 220 pass-transistors and 27 con�guration bits. Had a complete

interconnect been used, at least 440 pass-transistors and 48 con�guration bits would have

been required.

Because of the e�cient interconnect employed, the complete FiRM chip was only 38%

larger than the four memory arrays without any recon�gurability. The access time of FiRM

was 89% slower than that of the base array.

An interesting feature of the FiRM architecture is that it can implement a two read-

port, one write-port logical memory by replicating data across two memory arrays. This

technique was later used in the Xilinx XC4000E FPGAs and the ORCA 2CA and 2TA

products as described in Sections 2.3.1 and 2.3.2.

20

2.7 Summary

Table 2.3 summarizes the capabilities of the commercial FPGAs and LPGA described in

this chapter. The devices are classi�ed into two categories: �ne-grained devices, which

contain many very small basic memory blocks, and coarse-grained devices, which contain

only a few large arrays. It is clear that the coarse-grained architectures implement large

memories more e�ciently, since the per-bit overhead is smaller.

FPGA / LPGA Type Basic Size of each Allowable data widths
Family arrays basic array for each basic array
Xilinx 4000 Fine 100-1024 32 bits 1,2
Lucent ORCA Fine 100-900 64 bits 2,4
Crosspoint CP20K Fine 3684 1 bit 1
Altera 10K Coarse 3-12 2 Kbits 1,2,4,8
Actel 3200DX Coarse 8-16 256 bits 4,8
Lattice ispLSI Coarse 1 4608 bits 9,18
Altera FLASHlogic Coarse 8 1280 bits 10
Kawasaki Steel FPGA Coarse 1 8 Kbits 4,8
Plus Logic Coarse 1 1152 bits 9,18,36
Chip Express CX2000 Coarse 0-4 32 Kbits unknown

Table 2.3: Summary of memory resources in commercial FPGAs.

Although some of the FPGAs described in this chapter have been available for several

years, there have been no published studies evaluating and comparing potential con�gurable

memory architectures (outside of the work related to this dissertation). This work is a �rst

step in that direction. In Chapters 4 through 7, important parameters will be identi�ed, and

several architectural experiments that give insight into the nature of con�gurable memory

will be presented. Before these experiments are described, however, it is important to

understand the applications that will use these devices; this is the focus of the next chapter.

21

Chapter 3

Circuit Analysis and Generation

In order to design a good FPGA architecture, a thorough understanding of the nature of

large digital circuits is essential. Circuit characterization for logic circuits is an active area of

research [35, 36]. Many of the circuits that will be implemented on next-generation FPGAs,

however, will contain signi�cant amounts of memory. Thus, a characterization of circuits

containing both logic and memory is required. Section 3.2 presents such an analysis.

As explained in the next section, one of the key reasons for performing this analysis is

that it can be used to build a circuit generator that stochastically generates realistic circuits

with memory. Such a generator was built, and is described in Section 3.3.

3.1 Motivation

The primary focus of this dissertation is the investigation of FPGAs with on-chip mem-

ory. The search for a \good" memory architecture is central to this work. There are two

approaches to developing this \good" architecture:

1. Enumerate all possible uses of the FPGA memory resources and create an architecture

that can implement them.

2. Experimentally implement many benchmark circuits on many architectures, and mea-

sure the implementation e�ciency of each device. The architecture that can most

e�ciently implement the benchmark circuits is deemed the best.

22

Ideally we could use the �rst approach. Unfortunately, just as it is impossible to enumerate

all possible uses of an FPGA, it is also impossible to enumerate all possible uses of FPGA

memory resources. Although some structures, such as queues and stacks, are obvious, there

are many uses of memories that are not obvious (such as the \microcoded" state machine

implementation used in [9]). Even if it was possible to enumerate all such memory structures

that we want the FPGA to support, the sizes, shapes, and connectivity of each structure

must be considered. A wide shallow stack would place signi�cantly di�erent demands on

the FPGA architecture than a narrow deep stack. Finally, even if such an exhaustive list

could be constructed, it would contain so much information that it would be impossible to

deduce a suitable FPGA memory architecture without experimentation.

Thus, in this research, as in many other FPGA architectural studies [11, 37, 38, 39, 40],

we have chosen the second approach { we \implement" many benchmark circuits on various

architectures, and estimate the e�ciency of each implementation. When performing such

experiments, it is important that we use enough benchmark circuits to thoroughly exercise

our architecture. In architectural studies concerning the logic part of an FPGA, it is common

to use 10 to 20 \real" circuits as benchmarks. This works well for these studies; since each of

these circuits contains hundreds (or thousands) of logic blocks, we can be con�dent that the

architecture under study is thoroughly exercised using only a few circuits. Most memory

circuits, however, only contain a few logical memories. Thus, to thoroughly exercise a

con�gurable memory architecture, we need hundreds (or thousands) of benchmark circuits

to achieve the same level of con�dence.

Unfortunately, we were unable to gather such a large number of complete circuits.

Instead, we generated them stochastically. We have developed a circuit generator that

stochastically creates realistic benchmark circuits; it is described in Section 3.3. Stochastic

circuit generators have been described elsewhere [35, 36]; however ours is the �rst generator

that generates circuits containing both logic and memory.

For our results to have meaning, it is important that these \circuits" be realistic. We en-

sure this by basing the generator on the results of a detailed circuit analysis. In Section 3.2,

we present a detailed structural analysis of circuits with signi�cant memory requirements.

Statistics gathered during the analysis are then used as probability distributions in the

circuit generator of Section 3.3.

23

3.2 Circuit Analysis

This section presents the analysis of circuits containing both logic and memory. It is pre-

sented in three parts: Subsection 3.2.1 presents statistics regarding the numbers, shapes,

and sizes of logical memories within circuits; Subsection 3.2.2 describes how these memories

tend to appear in \tightly-connected" groups or clusters and presents statistics regarding

the makeup of these clusters; and Subsection 3.2.3 describes common connection patterns

within these clusters.

3.2.1 Logical Memory Con�gurations

This analysis is based on 171 circuits containing memory. Data regarding these circuits

was obtained from several sources: recent conference proceedings, recent journal articles,

local designers at the University of Toronto, a major Canadian communications company,

and a customer study conducted by Altera. Only incomplete data about these circuits was

available; for none were we able to obtain a circuit netlist. The data obtained from Altera

consisted of statistics regarding how many memories appear in each of 125 circuits, as well

as the width and depth of 115 of the logical memories in these circuits. The data obtained

from the Canadian telecommunications company consisted of the number of memories in

each of 15 communication chips, as well as the width and depth of all 66 memories in these

15 circuits. The telecommunications company supplied additional information about each

memory indicating whether it was used as a RAM or ROM, and whether it was single-

or dual-ported. The most complete information was obtained for circuits described in

conference and journal articles as well as those from local designers. There were 31 such

circuits; for each we obtained information regarding the number of memories in each circuit,

the width and depths of the memories, whether the memories were used as RAMs or ROMs,

whether the memories were single- or dual-ported, and block diagrams that indicated how

the memories were connected to each other and to the logic portion of each circuit. Table 3.1

contains a summary of the information available for the circuits.

Since we wanted to focus our architecture studies on circuits that would use on-chip

memory, we did not include circuits requiring more than 128 Kbits and circuits with more

than 16 logical memories in our study. Most of the circuits were initially designed to be

24

Source Number Information Available
of Memory RAM/ single/dual block

Circuits Width/Depths ROM port diagrams

Altera 125 yes no no no
(for 115 memories only)

Local Designs and 31 yes yes yes yes
Conference/Journal (for all 87 memories)
Articles
Telecommunications 15 yes yes yes no
Company (for all 66 memories)

Table 3.1: Information available for example circuits.

Number
of Circuits

10

20

30

40

50

1 2 3 4 5 7 8 9 10 12

Number of Logical Memories

6

Total Circuits = 171

Figure 3.1: Distribution of number of logical memories required.

implemented on a gate array or custom chip.

Figure 3.1 shows the distribution of the number of logical memories in each circuit.

If more than one memory in a circuit shares address connections (i.e. receives the same

address from the logic at all times), these memories were counted as one logical memory. As

the graph shows, circuits with one or two logical memories are common while the demand

for higher numbers of logical memories decreases rapidly. Note that the horizontal axis is

the number of logical memories, not the number of physical arrays required to implement

the memories.

Figure 3.2 shows the distribution of widths and depths of the logical memories in the

analyzed circuits. Since we did not have memory width/depth information for all circuits

from Altera, the results only show the distribution for 268 of the 533 logical memories.

As the graphs show, the proportion of memories with depths in each power-of-two-interval

25

20

40

60

80

100

256−
511

1 2−
3

4−
7

8−
15

16−
31

32−
63

64−
127

128−
255

Width of Logical Memory

Number of
Logical
Memories

Total Memories = 268

256−
511

4−
7

8−
15

16−
31

32−
63

64−
127

128−
255

10

20

30

40

50

512−
1023

1024−
2047

2048−
4095

4096−
8191

Depth of Logical Memory

Number of
Logical
Memories

Total Memories = 268

Figure 3.2: Distributions of logical memory widths and depths.

Percentage of Widths that are a Power-of-Two 69%
Percentage of Depths that are a Power-of-Two 74%
Percentage of Memories used as ROMs 16%
Percentage of Memories that are Multi-ported 13%

Table 3.2: Additional logical memory statistics.

between 8 and 2048 is roughly constant, while the memory width distribution peaks at

about 8, and falls o� below 8 and above 16.

Finally, Table 3.2 shows some additional statistics compiled from our circuits. As shown

in the table, 69% of the widths and 74% of the depths are powers-of-two. Also, the majority

of logical memories are single-ported RAM blocks.

Note that these measurements are somewhat inuenced by the target implementation

of the analyzed circuits. Circuits originally intended for discrete-device implementations

would tend to use standard memory sizes. However, since most circuits originally had gate-

array or custom chip implementations, we believe the observed trends would be similar to

those for circuits targeted to an FPGA with memory.

3.2.2 Logical Memory Clustering

In this section, we examine how logical memories are connected to the logic portions of

circuits. In our set of circuits, memories often appear in \tightly connected" groups, where

all memories within a group perform a similar function. In this dissertation, each of these

26

groups is called a cluster. The following subsection precisely de�nes a cluster and presents

statistics regarding clusters.

Clusters

The logic portion of circuits can be divided into subcircuits. This is a natural consequence of

the top-down and bottom-up design approaches employed by most designers. The division

between these subcircuits is not always clear; subcircuits often share inputs, and common

expressions might be collapsed into or extracted out of each subcircuit. Nonetheless, the

discussion in this section will assume that the logic part of a circuit consists of identi�able

logic subcircuits.

Memories connect to logic through their address pins, data-in pins, data-out pins, and

other control pins (write enable and perhaps a clock). Each of these sets of pins is driven

by (or drives) one or more logic subcircuits. Figure 3.3 shows a simple circuit in which

separate subcircuits drive the address and data-in ports, while a third subcircuit consumes

data from the data-out port. Connections to the write enable and other control lines are

not shown. In the remainder of this chapter, we will refer to subcircuits driving the data-in

pins as data-in subcircuits, subcircuits driving the address pins as address subcircuits, and

subcircuits driven by the data-out pins as data-out subcircuits. Connections to control pins

will be ignored, since they make up only a small proportion of all connections, and can

often be grouped with the address connections.

A memory may have more than one data-in, data-out, or address subcircuit. In Fig-

ure 3.4(a), the memory is driven by two data-in subcircuits and drives two data-out sub-

circuits. This should not be confused with a dual-port memory; here, either the two data

subcircuits are multiplexed onto a single data port, or the data pins within the data port

are shared between the two data subcircuits. The next section will consider these mem-

ory/logic interconnect patterns in more detail. A single data-in or data-out circuit may

be connected to more than one logical memory, as shown in Figure 3.4(b). Examples with

several memories and several data-in or data-out subcircuits are also possible.

Figure 3.5 shows a larger example; this is a portion of the datapath of a forward error

correction decoder for a digital satellite receiver system [4]. In this circuit, the eight logical

memories can be grouped into �ve sets (denoted by dotted lines) where the memories in

each group share common data-in and data-out subcircuits.

27

Address
Pins

Data−in pins

Data−out pins

MEMORY

Memory/Logic Connection

Logic/Logic Connection

LOGIC

LOGIC

LOGIC

Figure 3.3: Logical memory connected to data-in, data-out, and address subcircuits.

LOGIC

Address
Pins

Data−in pins

Data−out pins

MEMORY

LOGIC

LOGIC

LOGIC LOGIC

Address
Pins

Data−in pins

Data−out pins

MEMORY Address
Pins

Data−in pins

Data−out pins

MEMORY

LOGIC

LOGIC

LOGIC

LOGIC

a) one logical memory b) multiple logical memories

Figure 3.4: Example clusters.

28

LOGIC

7x32

LOGIC LOGICLOGIC

9x32 9x32 16x32 921x8

LOGIC

64x64 64x64 64x64

LOGIC

64

64 64 64

Viterbi Module

Power Sum
Module

Euclidean
Module

Chien Search
Module

Delay Line
Module

LOGIC

Figure 3.5: Forward error correction decoder datapath from [4].

To speak of these groups more precisely, we de�ne a cluster as follows:

cluster: One or more logical memories in which all data-in ports are connected to a common

logic subcircuit (or set of logic subcircuits) or in which all data-out ports are connected

to a common logic subcircuit (or set of logic subcircuits).

The example of Figure 3.5 contains �ve clusters.

Note that Figure 3.5 does not show any address or control connections. We have chosen

to partition memories into clusters based on their data-port connections without regard

to the address and control connections. From our circuit survey, it appears that logical

memories that do not share a data subcircuit (i.e. are not in the same cluster) rarely share

an address or control subcircuit. Further work is needed to analyze address connection

patterns and determine what sort of patterns within a cluster are common.

Cluster Statistics

As shown in Table 3.1, we only had block diagrams for 31 of the example circuits. For each

of these circuits, we counted the number of clusters and the number of logical memories in

29

Percentage of Clusters where all Memories Have Same Width 95%
Percentage of Clusters where all Memories Have Same Depth 75%

Table 3.3: Additional cluster statistics.

each cluster. Figure 3.6 and Table 3.3 summarize the results. Clearly, circuits with only one

logical memory can contain at most one cluster; in Figure 3.6(a), these circuits are denoted

with a hatched bar. Of the remaining circuits, half contain two clusters, and just over one

third contain only one cluster.

Figure 3.6(b) shows the number of logical memories in each cluster. As the �gure

shows, 60% of the clusters consist of only one logical memory, while 30% consist of two

logical memories. Of those clusters containing more than one logical memory, 95% consist

of memories with the same width and 75% consist of memories with the same depth.

Figure 3.7 shows the distribution of the number of data-in and data-out subcircuits

connected to the memories in each cluster in the 31 circuits. These measurements are

approximate, since in some circuits it is di�cult to deduce how a piece of logic can best be

represented by a set of subcircuits. As the graphs show, the memories in most clusters are

connected to only a single data-in subcircuit and a single data-out subcircuit.

3.2.3 Interconnect Patterns

Figure 3.8 shows a high-level view of a cluster with four memories, three data-in subcircuits,

and three data-out subcircuits. The memories and logic are connected through data-in and

10

1 2 3 4

5

15Number
of Circuits

Number of Clusters

Circuits with only
one logical memory
Circuits with more than
one logical memory

Total Circuits=31

1 2 3 4 8

Number of
Clusters

10

20

30

Number of Logical Memories

Total Clusters = 53

a) number of clusters distribution b) number logical memories per cluster

Figure 3.6: Cluster statistics.

30

1 2 3 4 8

Number of
Clusters

10

20

30

Number of Data−in Subcircuits

Total Clusters = 40

1 2 3 4

Number of
Clusters

10

20

30

8
Number of Data−out Subcircuits

5

Total Clusters = 46

Figure 3.7: Logic subcircuit statistics (per cluster).

Memories

Data−in
Logic
Subcircuits

Data−out
Logic
Subcircuits

Data−in Network

Data−out Network

data−in
pins

data−out
pins

subcircuit
outputs

subcircuit
inputs

LOGICLOGICLOGIC

LOGIC LOGIC LOGIC

Figure 3.8: A single cluster showing data-in and data-out networks.

data-out networks. In our example circuits, these networks tend to fall into three categories.

Each category is discussed in the following subsections.

Category 1: Point-to-Point Patterns

Figure 3.9 shows four interconnect patterns that are common in data-in networks, all of

which we classify as point-to-point patterns. In all four patterns, each logic subcircuit output

pin drives exactly one data-in pin in one memory block.

The simplest pattern, in which a single memory is connected to a single data-in sub-

circuit, is shown in Figure 3.9(a). Example circuits that employ this pattern can be found

31

Logical
Memory

Logic
subcircuit

Logic
Subcircuit

Logical
Memory

Logic
Subcircuit

a) single logic/single memory b) multiple logic/single memory

Logical
Memory

Logic
Subcircuit

Logical
Memory

Logical
memory

Logic
subcircuit

Logical
memory

Logic
subcircuit

Logic
subcircuit

Logical
memory

Logical
memory

c) single logic/multiple memory d) multiple logic/multiple memory

Figure 3.9: Point-to-point interconnect patterns for data-in network.

in [41, 42, 43, 44]. Figure 3.9(b) shows how the pattern is extended to clusters with more

than one data-in subcircuit. Each logic subcircuit drives a subset of the data-in pins. This

is common in applications where there are several �elds in a single record (eg. a cache line

with a valid bit) [45]. The extension of this pattern to more than two logic subcircuits is

clear. In Figure 3.9(c), there is one data-in subcircuit but multiple memories. An example

of this pattern is in the Viterbi module of Figure 3.5. Other examples are in [7, 41]. Finally,

Figure 3.9(d) shows the most complex case; here, there are multiple data-in subcircuits and

multiple memories, and the connections between the logic and memory are \shu�ed" such

that all logic subcircuits drive at least one pin of each memory. An example of this pattern

can be found in [46], where input data is appended with a time-stamp as it is put into

FIFOs.

The same patterns are common in the data-out network. Examples of the single

logic/single memory pattern can be found in [42, 43, 47, 48, 49]. Examples of the multiple

logic/single memory pattern can be found in [50, 51]. Examples of the single logic/multiple

memory pattern are described in [7, 4, 43, 46, 52]. Finally, examples of the multiple

logic/multiple memory pattern can be found in [53].

32

Logic
Subcircuit

Logical
Memory

Logical
Memory

Logical
Memory

Logic
Subcircuit

Logic
Subcircuit

a) single logic/multiple memory b) multiple logic/single memory

Logical
Memory

Logic
Subcircuit

Logic
Subcircuit

Logic
Subcircuit

Logical
Memory

Logical
Memory

Logical
Memory

Tri−state
driver

c) multiple logic/multiple memory

Figure 3.10: Shared-connection interconnect patterns for data-in network.

Category 2: Shared-Connection Patterns

The second category of interconnect patterns is the shared-connection pattern. Like the

point-to-point patterns, the structure of shared-connection patterns depends on the number

of memory arrays and logic subcircuits. Figure 3.10 shows three di�erent cases.

In Figure 3.10(a), there is one logic subcircuit and two memory arrays. The data-in port

of each memory is driven by the same data (but presumably the memories have di�erent

address inputs or enable lines). An example of this can be found in [54] in which the

data-in ports of a scratch-pad memory and a FIFO are connected to a bus. As before, the

extension of this pattern to larger numbers of memories is clear. In the second pattern

(Figure 3.10(b)), any one of the several logic subcircuits can supply data to the memory

through multiplexor or tri-state bus. An example of this structure can be found in [49], in

which a multiprocessor network interface puts either a pre-formatted request packet or a

data-return packet into a queue before sending it on the network. Other examples can be

found in [55, 56]. Finally, Figure 3.10(c) shows an example with multiple memory and logic

subcircuits; each logic subcircuit is connected to a bus, which then drives the memories.

An example is in [57] in which a constant RAM and a data RAM are connected to a single

bus, which is, in turn, connected to several logic subcircuits.

33

Logical
memory

Logical
memory

Logical
memory

Logic
subcircuit

Logic
subcircuit

Logic
subcircuit

Figure 3.11: Point-to-point pattern with no shu�ing.

The patterns in Figure 3.10 can appear in the data-out network as well. Examples

of the single logic/multiple memory pattern can be found in [41, 54]. Examples of the

multiple logic/single memory pattern are in [54, 55, 58]. Finally, examples of the multiple

logic/multiple memory pattern are described in [57, 59].

Category 3: Point-to-Point Pattern with No Shu�ing

The �nal pattern that will be described only occurs when there are the same number of

data-in subcircuits as memories (or the same number of memories as data-out subcircuits).

In the example of Figure 3.11, the data-in pins of each memory are driven by exactly one

subcircuit. Since the three memories are connected to separate logic sources, it is tempting

to separate the memories into three clusters. It is possible, however, that these three logical

memories share a single data-out subcircuit. In that case, the memories are part of the

same cluster even though they do not share the same data-in connections. An example of

this is in [53], in which the data-in ports of two memories (a pixel memory and a coe�cient

memory) are driven by separate serial-to-parallel converters, while the data-out port of each

memory drives separate inputs of a large multiplier. Another example can be found in [52].

Pattern Statistics

We analyzed each of the data-in and data-out networks in each cluster in the 31 circuits for

which we had block diagrams, and classi�ed each into one of the three categories described in

the last three subsections. In some cases, the pattern did not fall into any of the categories;

in those cases, we took the category with the closest match. Table 3.4 shows the results

for all data-in and data-out networks except those connecting one memory to one logic

subcircuit. As the table shows, all three categories are well represented among the data-

34

Connection Type Count
Point-to-Point 5

Shared Connection 9
No Shu�ing 7

Connection Type Count
Point-to-Point 10

Shared Connection 14
No Shu�ing 0

a) Data-in Connection Types b) Data-out Connection Types

Table 3.4: Data-in and data-out interconnection type statistics.

in interconnects in our clusters, while the �rst two categories were approximately equally

common among the data-out interconnects.

3.2.4 Summary of Circuit Analysis

The analysis described in this section was presented in three parts: the number, shapes, and

sizes of logical memories, the number and sizes of clusters within circuits, and the intercon-

nect pattern within these clusters. With the exception of Table 3.3, we have not attempted

to investigate correlations between the various sets of statistics. The data in Table 3.4

was gathered from only 31 circuits; clearly this is not a large enough sample to estimate

meaningful correlations. Gathering more circuits, and measuring correlations between the

various statistics is left as future work. Nonetheless, we feel the analysis presented here is

su�cient to develop an accurate stochastic circuit generator. The remainder of this chapter

describes such a generator.

35

3.3 Stochastic Circuit Generator

This section describes a stochastic circuit generator developed using the statistics gath-

ered during the circuit analysis. As described earlier, such a generator is essential in the

architectural experiments described in the remainder of this dissertation.

Generating a circuit involves the following tasks:

1. Choosing a logical memory con�guration and division of logical memories into clusters.

2. Choosing an interconnect pattern for each cluster

3. Choosing the number of data-in/data-out subcircuits associated with each cluster

4. Generating the logic subcircuits

5. Connecting the logic subcircuits and logical memories together

The above tasks are described in the following subsections.

3.3.1 Choosing the Logical Memory Con�guration

The logical memory con�guration is chosen as follows:

1. The number of clusters is chosen based on the probability distribution shown in the

left half of Table 3.5. The numbers in this table were obtained by scaling the statistics

in Figure 3.6(a).

2. For each cluster, the probability distribution in the right half of Table 3.5 was used

to select the number of logical memories. This probability distribution was obtained

by scaling the statistics in Figure 3.6(b). The number of logical memories for each

Number of Clusters Probability
1 0.548
2 0.290
3 0.065
4 0.097

LMs per Cluster Probability
1 0.623
2 0.264
3 0.038
4 0.075

Table 3.5: Probability distribution functions used to select the number of clusters and
logical memories per cluster.

36

1 2 3 4 5 7 8 9 10 126 11 13 14 15 16

0.10

0.05

0.15

0.20

0.25

Probability

Total Number of Logical Memories

0.30

Figure 3.12: Resulting distribution of total number of logical memories.

cluster is chosen independently (and independent of the number of clusters). While

these relationships are probably not completely independent, we do not have enough

example circuits to accurately estimate the required partial probabilities to make a

more accurate approximation. As a partial validation of the assumption, consider

Figure 3.12. This �gure shows the distribution of total logical memories over all

clusters if the process described here is followed. Comparing this to Figure 3.1, the

total number of logical memories in our example circuits, we see that the generated

distribution is similar to the measured distribution. It is interesting to note that the

statistics presented in Figure 3.6 (and therefore the distribution in Figure 3.12) reect

only 31 of our example circuits, while the statistics presented in Figure 3.1 reect all

171 circuits. The similarity of the two �gures (3.12 and 3.1) suggests that we are

using enough example circuits to get reasonably accurate probabilities.

3. The width and depth of each logical memory is then determined. The probability

distributions in Table 3.6 are used to select a range of depths and widths (these

distribution functions were obtained by scaling the statistics in Figure 3.2). According

to Table 3.2, 69% of the widths and 74% of the depths in our example circuits were

powers-of-two. Thus, with a 69% probability (74% for the depth) we select the power-

of-two dimension within the selected range. If we do not select the power-of-two

dimension, all other values within the range are equally likely. The same width is

37

W
id
th

P
ro
b
ab
il
it
y

1
0.
03
0

2-
3

0.
01
9

4-
7

0.
06
3

8-
15

0.
34
7

16
-3
1

0.
29
9

32
-6
3

0.
14
6

64
-1
27

0.
07
8

12
8-
25
5

0.
00
7

25
6-
51
1

0.
01
1

D
ep
th

P
ro
b
a
b
il
it
y

4
-7

0
.0
2
3

8
-1
5

0
.1
1
8

1
6
-3
1

0
.1
4
1

3
2
-6
3

0
.1
1
5

6
4
-1
2
7

0
.0
9
5

12
8
-2
5
5

0
.1
3
0

25
6
-5
1
1

0
.1
3
4

51
2
-1
0
2
3

0
.1
1
1

10
2
4
-2
0
4
7

0
.0
8
0

20
4
8
-4
0
9
5

0
.0
3
1

40
9
6
-8
1
9
1

0
.0
2
2

T
ab
le
3.
6
:
P
ro
b
a
b
il
it
y
d
is
tr
ib
u
ti
on

fu
n
ct
io
n
s
u
se
d
to

se
le
ct
d
ep
th

an
d
w
id
th

of
ea
ch

m
em

o
ry
.

0.
10

0.
05

0.
15

P
ro

ba
bi

lit
y

32−63

64−127

128−255

256−511

512−1023

1024−2047

2048−4095

4096−8191

8192−16383

16384−32767

32768−65535

65536−131071

131072−262143

T
ot

al
 B

its
 in

 C
irc

ui
t

262144−524287

F
ig
u
re

3
.1
3:

R
es
u
lt
in
g
d
is
tr
ib
u
ti
on

of
to
ta
l
n
u
m
b
er

of
b
it
s.

u
se
d
fo
r
al
l
m
em

or
ie
s
w
it
h
in
ea
ch

cl
u
st
er
(f
ro
m
T
ab
le
3.
3,
95
%
of
ou
r
ex
am

p
le
cl
u
st
er
s

co
n
si
st
ed

of
m
em

or
ie
s
of

th
e
sa
m
e
w
id
th
).

T
h
e
sa
m
e
d
ep
th

fo
r
ea
ch

m
em

or
y
in

a

cl
u
st
er

is
u
se
d
w
it
h
a
7
5%

p
ro
b
ab
il
it
y
(t
h
is
n
u
m
b
er

is
al
so

fr
om

T
ab
le
3.
3)
.
F
o
r
th
e

ot
h
er

2
5
%

o
f
th
e
cl
u
st
er
s,
th
e
d
ep
th

fo
r
ea
ch

m
em

or
y
is
ch
os
en

in
d
ep
en
d
en
tl
y.

C
om

b
in
in
g
F
ig
u
re

3.
12

w
it
h
th
e
d
is
tr
ib
u
ti
on
s
in

T
ab
le
3.
6
gi
v
es

F
ig
u
re

3.
13
,
w
h
ic
h
is

th
e
d
is
tr
ib
u
ti
o
n
of

th
e
to
ta
l
n
u
m
b
er

of
b
it
s
in

th
e
ge
n
er
at
ed

ci
rc
u
it
s.

38

Connection Type Probability
Point-to-Point 0.34

Shared Connection 0.33
No Shu�ing 0.33

Connection Type Probability
Point-to-Point 0.50

Shared Connection 0.50
No Shu�ing 0

a) Data-in Connection Types b) Data-out Connection Types

Table 3.7: Probability distribution for choosing interconnect type.

4. Finally, we decide if each memory is a ROM or a RAM. According to Table 3.2, 16%

of the memories in the example circuits were ROMs. Thus, with a 16% probability,

we determine that the memories in a given cluster are ROMs (meaning no data-in

subcircuit needs to be generated). Each cluster is considered independently.

The current version of the generator does not generate circuits containing multiported

memory. If the model was to be used in a study that needed such circuits, the model could

be extended using the appropriate value from Table 3.2.

3.3.2 Choosing Memory/Logic Interconnect Patterns and Number of Data-

in and Data-out Subcircuits

For each cluster, the form of the data-in and data-out network is chosen as follows:

1. The interconnection type for the data-out network is chosen according to the proba-

bility distribution in Table 3.7. Because of the small numbers of samples in gathering

the statistics presented in Table 3.4, it may be misleading to use those numbers to

generate probabilities. The conclusion to be drawn from that table is that all three

interconnect types are well represented in the data-in case, and the �rst two are well

represented in the data-out case. The probabilities in Table 3.7 reect this conclusion.

For each cluster, the number of data-in and data-out subcircuits is chosen based on

the probability distribution in Table 3.8. These probabilities were obtained directly

from the statistics in Figure 3.7.

39

Number Probability
1 0.63
2 0.28
3 0.02
4 0.05
5 0.00
6 0.00
7 0.00
8 0.02

Number Probability
1 0.70
2 0.16
3 0.04
4 0.04
5 0.02
6 0.00
7 0.00
8 0.04

a) Data-in Subcircuits b) Data-out Subcircuits

Table 3.8: Probability distribution for choosing number of data-in and data-out subcircuits.

2. If a shared connection pattern is chosen, a multiplexor or a tri-state bus may be

required to connect the logic and memory properly. If this is so, a multiplexor is

constructed and included in the circuit. A multiplexor implementation was chosen

since tri-state drivers are in short supply on many commercial FPGAs.

3. For clusters not containing ROMs, steps 1 and 2 are repeated for the data-in network.

Note that choosing the number of subcircuits and the associated interconnect pattern

are, in general, not independent decisions. A point-to-point pattern with no shu�ing can

only be chosen if the number of logic subcircuits is the same as the number of logical

memories. Similarly, if a regular point-to-point pattern is chosen, there must be enough

logic subcircuits to sink (or source) every data pin in every logical memory. The number

of subcircuits and the interconnect pattern are chosen independently. If the number of

subcircuits and the chosen interconnect pattern conict, a new number of subcircuits is

chosen.

40

output
pad

Address subcircuit

3 copies of the same MCNC circuit

Logical
Memory

input
pads

data−in
pins

address pins

data−out
pins

Figure 3.14: Example of connecting data-in subcircuit to a logical memory.

3.3.3 Generating Logic Subcircuits

Once the interconnect patterns and the number of subcircuits associated with each cluster

are determined, the subcircuits themselves are generated. These subcircuits are chosen

randomly from 38 benchmark circuits from the Microelectronics Center of North Carolina

(MCNC) and listed in Table 3.9 [60]. The circuits are replicated enough times to supply

the appropriate number of inputs or sink the appropriate number of outputs. The circuits

in Table 3.9 are all combinational and contain between 24 and 184 �ve-input lookup tables.

Each circuit was optimized using SIS [61] (logic-independent optimization) and technology

mapped using FlowMap [62] into �ve-input lookup tables.

As an example, consider Figure 3.14. This diagram shows a 64x5 logical memory driven

by a single data-in subcircuit (the address and data-out subcircuits are not shown). The

MCNC circuit chosen to implement the subcircuit contains only 2 outputs; thus, it was

replicated 3 times in order to provide the 5 required data lines. The sixth subcircuit output

was not required, so it was connected to an output pad.

In Figure 3.14, a straightforward replication of the MCNC circuit would have resulted

in 12 input pins (4 for each copy of the circuit). Assuming a bit-sliced design, it is likely

that each copy of the circuit would share some inputs. In the �gure, two inputs to each copy

are shared among all copies. The extent to which inputs are shared is controlled by the

parameter �, which is the proportion of all inputs that should be shared. Subsection 3.3.4

discusses the selection of a value for �.

41

Circuit Number 5-LUTs Number Inputs Number Outputs

5xp1 40 7 10

9symml* 66 9 1

C432* 79 36 7

C499 66 41 32

C880 151 60 26

C1355 145 33 25

C1908 66 41 32

alu2 165 10 6

apex7 85 49 37

b12 40 15 9

b9 41 41 21

bw 28 5 28

c8 38 28 18

cht 37 47 36

clip 115 9 5

comp* 33 32 3

count 36 35 16

example2 119 85 66

f51m 30 8 8

frg1* 33 28 3

i2* 73 201 1

i5 66 133 66

inc 49 7 9

lal 32 26 19

misex2 32 25 18

my-adder 24 33 17

o64* 44 130 1

sao2 89 10 4

rd73 66 7 3

rd84 147 8 4

t481* 184 16 1

too-lrg* 162 38 3

ttt2 55 24 21

term1 83 34 10

unreg 32 36 16

vg2 43 25 8

x1 123 51 35

x4 144 94 71

Table 3.9: MCNC circuits used as logic subcircuits (* = only used as data sink subcircuit).

42

Data-out subcircuits are created in the same way, except that input-sharing is not done.

If multiple data-in or data-out subcircuits are to be created, a di�erent MCNC circuit is

chosen for each, and inputs are not shared between subcircuits.

Also associated with each logical memory is a single address subcircuit. In clusters

employing a shared-connection pattern using a multiplexor, a subcircuit is also required to

drive the multiplexor select lines. These subcircuit are generated and connected in the same

way as the data subcircuits.

Some of the circuits in Table 3.14 are marked with a *; this denotes circuits with a high

input pin to output pin ratio. As an extreme example, consider circuit i2, which has 102

inputs and only 1 output. If this circuit is used to construct a data-in subcircuit feeding a

memory with 8 data bits, the circuit must be replicated 8 times, meaning that the resulting

subcircuit will have 816 inputs (less if input sharing is done). Clearly this sort of circuit is

not amenable to driving the input pins of a wide memory. Because of this, circuits marked

with a * are not considered for data-in or address subcircuits.

In actual memory circuits, the memories are most likely to be connected to datapath-

oriented subcircuits. Table 3.9, however, includes a mixture of both datapath and random-

logic (non-datapath) subcircuits. This will not likely inuence the conclusions of architec-

tural experiments based on these memory circuits, however, since:

1. As explained above, the circuits are replicated enough times to supply the appropriate

number of inputs or sink the appropriate number of outputs. Thus, the composite

circuits will have many properties of datapath circuits, even though the subcircuits

upon which they are based may be random-logic.

2. Currently available placement tools usually have di�culty deducing structure in a

datapath circuit [63]. Thus, after placement, routing a datapath-oriented circuit is

not signi�cantly di�erent than routing a non-datapath oriented (random-logic) circuit.

An alternative to using MCNC circuits as building blocks would to be to use GEN,

which generates combinational and sequential logic circuits [35]. This is left as future work.

43

Parameter Default Value

� 0.5

 0.8

Table 3.10: Default values for � and .

3.3.4 Connecting Logic and Memories

For each cluster, the logic subcircuits are connected to the memories using the selected

interconnect pattern, and then the clusters are combined into a single circuit, with no

connections between the clusters. Unused circuit outputs are then randomly connected to

unused inputs to create connections between logic subcircuits, often in di�erent clusters.

The parameter controls how extensively this is done. For circuits with more inputs than

outputs, each output is examined individually, and with a probability of , it is connected

to a randomly chosen input. For circuits with more outputs than inputs, each input is

examined, and connected to a randomly chosen output with a probability of .

Estimating values of � and from block diagrams is di�cult. Rather than choose

values for these parameters based on gathered statistics, we have chosen values which result

in reasonable I/O pin to logic ratios. The default values are shown in Table 3.10. Clearly,

the higher the value of these two parameters, the lower the number of I/O pins.

3.3.5 Additional Constraints

The algorithm as described generates circuits based on the statistics presented earlier in

this chapter. Alternatively, the user can further constrain the circuit generation. The

constraints and their default values are shown in Table 3.11. After generating a circuit, the

circuit is compared to the constraints, and if any constraints are violated, it is thrown away

and a new circuit is generated.

44

Constraint Default
Minimum, maximum number of clusters 1, 4
Minimum, maximum number of memories per cluster 1, 4
Minimum, maximum number of data-in subcircuits per cluster 0, 4
Minimum, maximum number of data-out subcircuits per cluster 1, 4
Minimum, maximum number of bits per circuit 1, 1
Minimum, maximum number of logical memories per circuit 1, 16
Minimum, maximum number of 5-LUTs per circuit 1, 1

Table 3.11: SCIRC constraints.

3.4 Summary

In this chapter, we have presented analysis of circuits containing both logic and memory.

The analysis was based on 171 circuits obtained from 3 di�erent sources. These circuits

contained a total of 533 logical memories. Statistics regarding the number of memories,

the width and depths of each memory, whether the memories were used RAMs or ROMs,

whether they were single- or dual-ported were obtained. We also identi�ed three di�erent

commonly-occurring patterns in the interconnection between the memory and logic portions

of the circuits.

This chapter also described a circuit generator that generates stochastic, yet realistic

circuits containing both logic and memory. The statistics gathered during the analysis

are used as probability distributions in the selection of memory con�gurations and mem-

ory/logic interconnect patterns. The logic part of the circuits are constructed by connecting

many small benchmark logic subcircuits together and to the memory.

Since the generator is based so closely on the circuit analysis, we can be con�dent that

the generated circuits \look" realistic, but since they are generated stochastically, we can

generate as many as desired. This will be essential in the architectural experiments that

will be described in Chapters 5 and 7.

45

Chapter 4

Stand-alone Con�gurable

Memories: Architecture and

Algorithms

As shown in the last chapter, digital circuits have widely varying memory requirements. In

order to implement these circuits on an FPGA or an FPGA-based system, a memory that

can be con�gured to implement di�erent numbers of logical memories, each with di�erent

widths and depths, is essential. This chapter describes a family of such architectures, similar

to the FiRM Field-Con�gurable Memory described in [1, 34], along with algorithms to map

logical memories to these devices.

The architecture described in this chapter is assumed to be stand-alone; that is, there

are no logic blocks, and the address and data pins are connected directly to I/O pads. A key

application of such a chip is a recon�gurable system consisting of FPGAs, memory devices,

and interconnect [64, 65, 66, 67, 68]. In many of these systems, logical memories are packed

into standard o�-the-shelf memory chips. Usually, the logical memories will have a di�erent

size or aspect ratio than the physical memory devices. When this happens, either memory

is wasted, or the logical memories must be time-multiplexed onto the memory chips [69].

By providing memory resources that can better adapt to the requirements of circuits, more

e�cient circuit implementations are possible.

46

The architecture described in this chapter can also be embedded into an FPGA to

provide on-chip memory. The extension of this architecture to on-chip applications is the

focus of Chapters 6 and 7.

The discussion in this chapter has two parts: Section 4.1 describes the family of con-

�gurable memory architectures, and Section 4.2 presents algorithms for mapping logical

memory con�gurations to these con�gurable devices.

An early version the material in Section 4.1 also appears in [70].

4.1 Architectural Framework

The family of con�gurable memory architectures, illustrated in Figure 4.1, consists of B

bits divided evenly among N arrays (each with a single data port) that can be combined to

implement logical memory con�gurations. The e�ective aspect ratio of each array can be

con�gured using the L1 data mapping block; this is discussed further in Section 4.1.1.

The address and L2 data mapping blocks programmably connect arrays to each other

and to the external data and address buses. The external address and data buses are of

a �xed width and are connected directly to I/O pads; the user can access memory only

through these buses. We assume that a single bus can be used for only one logical memory

at a time. Therefore, if a memory does not use the entire bus, the rest is wasted. This

assumption simpli�es the design of the L2 data mapping and address mapping blocks; the

structure of these blocks is the focus of Section 4.1.2.

The parameters used to characterize each member of this architectural family are given

in Table 4.1 (a complete list of symbols is given at the beginning of this dissertation). In

the next chapter we vary these parameters and measure the e�ects on area, speed, and

exibility of the device; the range of parameter values considered in the next chapter is also

shown in Table 4.1 (this is not meant to indicate all reasonable parameter values). Since

each logical memory requires at least one array, one address bus, and one data bus, the

maximum number of logical memories that can be implemented on this architecture is the

minimum of M , Q, and N .

47

L2 Data Mapping Block

Address Mapping Block

Memory
Array

L1 Data
Mapping
Block

Memory
Array

L1 Data
Mapping
Block

Memory
Array

L1 Data
Mapping
Block

data
lines

address
lines

N memory arrays
Total bits = B

Q external address buses (width=log B)2

Wnom

Wnom

M external data buses (width of each bus = Wnom)

Figure 4.1: General architecture for a standalone FCM.

Parameter Meaning Range in next chapter

B Total bits 4 Kbits - 64 Kbits

N Number of arrays 4 - 64

M Number of external data buses 2 - 16

Q Number of external address buses 4 - 8

Wnom Nominal data width of each array 1 - 16

We� Set of allowable e�ective data widths of each array several

Table 4.1: Architectural parameters.

4.1.1 L1 Data Mapping Block

The exibility to implement many di�erent numbers and shapes of memories is achieved

by this architecture in two ways: by allowing the user to con�gure the e�ective data width

of each array (trading width for depth), and by allowing the user to combine arrays to

implement larger memories. First consider the e�ective data width of each array. Each

array has a nominal width of Wnom and depth of B=(NWnom). This nominal aspect ratio

can be altered by the level 1 (L1) data mapping block. Figure 4.2(a) shows an example

L1 data mapping block in which Wnom = 8. Each dot represents a programmable pass-

transistor switch. The set of horizontal tracks to which each vertical track i can be connected

48

b) 4 bit output configuration

memory array
(8 data lines)

L2 data
mapping
block 4 data

lines

memory array
(8 data lines)

L2 data
mapping
block

a) example with Wnom=8

L1 Data
Mapping
Block 1

2

Figure 4.2: L1 data mapping block.

(0 � i < Wnom) is:

T (i) = fi mod j : j � We�g (4.1)

where We� is the set of allowable e�ective data widths of each array.

In the example of Figure 4.2(a),We� = f1; 2; 4; 8g, meaning each array can be con�gured
to be one of B

N
x1, B

2N
x2, B

4N
x4, or B

8N
x8. Figure 4.2(b) shows two sets of switches, 1 and

2, that are used to implement the B
4N

x4 con�guration. One of the memory address bits is

used to determine which set of switches, 1 or 2, is turned on. Each set of switches connects

a di�erent portion of the memory array to the bottom four data lines.

Notice that the mapping block need not be capable of implementing all power-of-two

widths between 1 and Wnom. By removing every second switch along the bottom row of

the block in Figure 4.2(a), a faster and smaller mapping block could be obtained. The

resulting mapping block would only be able to provide an e�ective data width of 2, 4, or

8, however, meaning that the resulting architecture would be less exible. The impact of

removing L1 data mapping block switches on area, speed, and exibility will be examined

in the next chapter.

The detailed circuit diagram of the L1 data mapping block used in the FiRM chip can

be found in [1].

49

Address Mapping Block

1024x8 1024x81024x8 1024x8

L1 L1 L1 L1

External address bus

L2 Data mapping block

External data buses (4 buses, each 8 bits
wide, gives a 32 bit wide memory)

Address Mapping Block

1024x8 1024x81024x8 1024x8

L1 L1 L1 L1

L2 Data Mapping Block

effective data
width = 1

effective data
width = 4

External address bus
for 24576x1 logical memory

External address bus
for 2048x4 logical memory

External data bus for
24576x1 logical memory

External data bus for
2048x4 logical memory

a) 1024x32 b) 24Kx1 and 2048x4

Figure 4.3: Two example mappings.

4.1.2 L2 Data Mapping Block and Address Mapping Block

Memory exibility is also obtained by allowing the user to combine arrays to implement

larger memories. Figure 4.3(a) shows how four 1024x8 arrays can be combined to implement

a 1024x32 logical memory. In this case, a single external address bus is connected to each

array, while the data bus from each array is connected to separate external data buses

(giving a 32-bit data width). Each L1 data mapping block connects 8 array data lines

directly to the 8 L1 outputs.

Figure 4.3(b) shows how this architecture can be used to implement a con�guration

containing two logical memories: one 24Kx1 and one 2048x4. The three arrays implementing

the 24Kx1 memory are each con�gured as 8192x1 using the L1 data mapping block, and

each data line is connected to a single external data line using pass transistors. Two address

bits control the pass transistors; the value of these address bits determine which array drives

(or is driven by) the external data line. The 2048x4 memory can be implemented using the

remaining array, with the L1 block con�gured in the \by 4" mode.

The extent to which arrays can be combined depends on the exibility of the L2 data

and address mapping blocks. The address mapping block must be exible enough that each

array that is used in a single logical memory can be connected to the same external address

bus. The L2 data mapping block must be exible enough to combine arrays in two ways:

50

1. Arrays can be combined horizontally to implement wider logical memories. In this

case, each array must be connected to its own external data bus. An example of this

is shown in Figure 4.3(a).

2. Arrays can be combined vertically to implement a deeper logical memory. In this case,

the data buses of all arrays that implement this logical memory must be multiplexed

onto a single external data bus. An example of this is shown in Figure 4.3(b).

Of course, some logical memories can be implemented by combining arrays both horizontally

and vertically.

The topology of the switches in the L2 data mapping block and the address mapping

block determines the exibility of these blocks. If both of these mapping blocks are fully

populated, meaning any external bus (both address and data) can be connected to any

array, a very exible architecture would result. Unfortunately, the switches take chip area

and add capacitance to the routing lines, resulting in a larger and slower device than is

necessary. The switch topologies shown in Figure 4.4 provide a compromise between speed

and exibility. In this �gure, each dot represents a set of switches controlled by a single

programming bit, one switch for each bit in the bus (Wnom in the L2 data mapping block

and log2B in the address mapping block). This pattern is similar to that of the L1 data

mapping block described by Equation 4.1. In the L2 data mapping block, the set of buses

to which array i can be connected (0 � i < N) is:

B(i) = fi mod 2j : 0 � j � log2Mg (4.2)

where i and j are both integers. The pattern in the address mapping block is the same

with M replaced by Q. Although in the examples of Figure 4.4, M = Q = N , the same

formula applies for non-square mapping blocks. In the next chapter, this mapping block

topology will be compared to other possible patterns.

Figure 4.5 shows how a mapping block de�ned by Equation 4.2 with N = M = Q = 4

can be used to perform the connections required in the examples of Figure 4.3.

Note that the switch pattern restricts which arrays can be used to implement each logical

memory. In the example of Figure 4.5(b), if the �rst array had been used to implement the

2048x4 logical memory, then the 24Kx1 logical memory could not have been implemented.

Algorithms that determine how arrays should be combined, decide which arrays should

51

n L1 blocks
and arrays

external
data
buses

external
address
buses

n arrays

a) address mapping block
 width of each bus = log B2

b) L2 data mapping block
 width of each bus = Wnom

Figure 4.4: Level 2 data and address mapping block topology (N =M = Q = 8).

used bus segment

used switch

unused switch

Arrays and
L1 Mapping
Blocks

address

data
(32 bits)

L2 Data Mapping Block

Address Mapping Block

Arrays and
L1 Mapping
Blocks

L2 Data Mapping Block

Address Mapping Block

address 0

address 1

data 1

data 0

a) 1024x32 b) 24Kx1 and 2048x4

Figure 4.5: Implementation of two examples in Figure 4.3.

implement which logical memories, and decide how they should be connected to the external

buses are the focus of Section 4.2.

It is important to note that all the bits of a bus are routed as a unit through the L2

data and address mapping blocks. Thus, a single programming bit can be used to control

each set of Wnom switches in the L2 data mapping block and log2B switches in the address

mapping block. This results in a signi�cant savings in area, but also reduces the exibility

of the architecture. In the example of Figure 4.5(b), only one bit of the bottom data bus is

used; the others are wasted and can not be used for other logical memories.

In addition to address and data lines, write enable signals are required for each array.

The write enable lines can be switched in the L2 mapping block just as the data lines are.

In order to correctly update arrays for e�ective widths less than the nominal width, we

assume that the arrays are such that each column in the array can be selectively enabled.

52

8 arrays 8 arrays

4 external
address
buses

Figure 4.6: Two-stage address mapping block.

Figure 4.7: Bi-directional switches in two-stage L2 data-mapping block.

The address bits used to control the L1 mapping block can be used to select which array

column(s) are updated.

The detailed circuit diagram of the L2 data mapping and address mapping blocks used

in the FiRM chip can be found in [1].

4.1.3 Wide Mapping Blocks

For architectures with N > 8, the horizontal buses become heavily loaded and start dom-

inating the memory access time. For these wide blocks, the two-stage structure shown in

Figure 4.6 is assumed. This diagram shows the address mapping block; the L2 data map-

ping block is similar, with each inverter replaced by the bidirectional driver in Figure 4.7.

The number of sub-buses that each bus should be broken into depends on the width of

the original mapping block. Section 5.3 examines how this parameter a�ects the overall

memory access time.

53

4.2 Algorithms

The family of architectures described in the last section provides an e�cient, exible mech-

anism for implementing �eld-con�gurable memory. Such an architecture is of limited use,

however, without e�ective algorithms to map a user's memory con�gurations to the device.

This section describes such algorithms. The algorithms are general enough to map to ar-

chitectures with a wide variety of sizes and exibilities, and provide near-optimal solutions

over this wide architectural range.

The implementation of a logical memory on a physical memory architecture has two

main steps:

1. assign physical arrays to logical memories and determine the e�ective data width of

each array, and

2. combine these arrays using available routing resources and connecting them to the

external buses.

The CAD problem described here is similar to well-known CAD problems (for example,

implementing a logic circuit on an FPGA). The main di�erence is that because memories

are somewhat regular, and do not o�er as many implementation choices as logic o�ers, we

can write algorithms that perform much better than their corresponding general-purpose

counterparts. The algorithms presented in this chapter provide near-optimal solutions, even

for architectures with very little exibility (very few switches).

We have broken our algorithm into two parts as shown in Figure 4.8. The �rst phase,

which we call logical-to-physical mapping, maps each logical memory to a set of arrays, and

determines the e�ective data width of each of these arrays. This is analogous to technology

mapping, in which a logic circuit is mapped into a set of lookup tables [62, 71].

The second phase in our CAD ow is analogous to placement and routing. In this phase,

each mapped array is assigned a physical array such that it can be connected to the required

number of external buses. Because there are relatively few items to place and wires to route,

the placement and routing can be done simultaneously.

The remainder of this section describes these two algorithms in detail.

54

Logic Circuit

Set of LUTs

Placed LUTs

Technology Mapping

Placement

Routing

ANALOGOUS
 TO

Logical Memory
Configuration

Set of basic
arrays

Logical−Physical
Mapping

Placement and
Routing

Programming Pattern
Programming Pattern

a) Stand−alone Memory b) Standard FPGA

Figure 4.8: CAD ows.

4.2.1 Trivial Checks

Before attempting to map a logical memory con�guration to an architecture, we do the

following:

1. Ensure that the total number of bits in the logical memory con�guration does not

exceed the number of bits in the architecture.

2. Ensure that the total number of address and data pins required to implement the

logical memory con�guration does not exceed the number of address and data pins in

the architecture.

3. Ensure that the number of logical memories does not exceed the number of address

buses, data buses, and physical arrays in the architecture. Since each bus and array

can only be used to implement a single logical memory, con�gurations that fail this

test can not be implemented on the device.

These tests are trivial to perform and help quickly reject con�gurations which can not

possibly �t into the target architecture.

55

10

11 11 11

1Kx1 1Kx1 1Kx1

address

data (3 bits)

256x4 256x4 256x4 256x4

4 4 4 4

4

8 8 8 8

10

2

address

data (3 bits)

Figure 4.9: Two possible implementations of 896x3.

4.2.2 Logical-to-Physical Mapping

The �rst step in implementing a logical memory con�guration is to map each logical memory

onto arrays that are the size of the physical arrays on the target architecture. If a logical

memory can �t in one physical array, the mapping is trivial. If more than one physical

array is required, there are often several possible solutions; selecting between them is the

goal of the logical-to-physical mapping algorithm.

Consider the implementation of the logical memory f863x3g using 1-Kbit physical arrays
(B
N
= 1024) each with allowable data widths of 1,2,4, or 8 (We� = f1; 2; 4; 8g). Figure 4.9

shows two possible implementations. The �rst requires three arrays con�gured as 1024x1,

while the second requires four arrays con�gured as 256x4. In the second example, the

data buses incident to the arrays are multiplexed onto a single external data bus. The L2

mapping block described in Section 4.1 can implement this. In the �rst solution, however,

the L2 mapping block is not able to connect the data line from each array to a single

external data bus, since the L2 mapping block switches each bus as a unit. As explained in

Section 4.1.2, this reduces the number of programmable switches, and hence, the mapping

block area. Thus, if the �rst solution were implemented, three external data buses would

be used.

Which solution of Figure 4.9 is the best depends on the other logical memories within

the con�guration. Consider the example in Figure 4.10, in which the logical memory con�g-

uration f896x3,5Kx1g is mapped to an architecture with N = 8 (number of arrays),M = 4

56

(number of data buses), B
N
= 1024 (bits per array) and We� = f1; 2; 4; 8g (allowable data

widths for each array). The 5Kx1 logical memory requires at least �ve arrays. Since the

target architecture contains eight arrays in total, only three are left for the 896x3 memory.

Thus, only the �rst solution in Figure 4.9 will lead to a valid implementation.

Now consider the example in Figure 4.11, which shows how the logical memory con�g-

uration f896x3,128x16g can be mapped. Here, the 128x16 memory requires at least two

external data buses (since the width of each bus is 8 and the width of the memory is 16).

Since the target architecture only contains four external data buses, only two are available

for the 893x3 memory. Thus, the second solution in Figure 4.9 is used. These two examples

illustrate the complexities involved in �nding a valid logical-to-physical mapping.

In general, logical memory i will be implemented by ni arrays, divided into si subsets or

mux-groups. The number of arrays in each mux-group is denoted by ni;j (0 � j < si). The

data lines from these ni;j arrays are multiplexed onto a single external data bus; thus, the

implementation of logical memory i uses si external data buses. The e�ective width of each

array in mux-group j is denoted by ei;j (all arrays within a single mux-group have the same

e�ective width). Table 4.2 shows values for each of these symbols for the two examples of

Figures 4.10 and 4.11.

Each mux-group j implements a ei;j-bit wide slice of a logical memory. Therefore, the

total width of the implemented memory is the sum of the widths of all the mux-groups. If

the total number of bits in each array is B
N
, then the depth of the slice implemented by

mux-group j is B
Nei;j

� ni;j . To implement a logical memory of depth d, all slices must have
a depth of at least d.

57

1Kx1 1Kx1 1Kx1 1Kx1 1Kx1 1Kx1 1Kx1 1Kx1

LM0, address LM1, address

LM1, data (1 bit)
LM0, data (3 bits)

10

11 11 11

13

10 10 10 10 10 10 10 10

11 11 11 11 11

3

11

Figure 4.10: Netlist for f896x3, 5Kx1g.

LM0, address LM1, address

LM0, data (3 bits)

256x4 256x4 256x4 256x4

4 4 4 4

4

128x8 128x8

8 8 8 8

10
7

8 8

LM1, data (16 bits)

2

Figure 4.11: Netlist for f896x3, 128x16g.

58

The goal of the logical-to-physical mapping algorithm is to �nd values for these symbols.

More precisely, the problem de�nition is:

Given:

1. A logical memory con�guration consisting of z logical memories, each with depth

di and width wi (0 � i < z),

2. A description of an FCM architecture: B;Q;N;M; and We�.

Find: Values of ni, si, ni;j , and ei;j for 0 � i < z and 0 � j < si. These quantities de�ne

a logical-to-physical mapping consisting of, for each logical memory i,

1. The number of arrays to implement the logical memory, ni,

2. A partitioning of the ni arrays into si subsets (1 � si � ni). The size of each

subset j is denoted by ni;j ,

3. The e�ective data width of the arrays in each subset j, ei;j � We�.

Such that:

1. The logical-to-physical mapping \implements" the logical memory con�guration,

i.e. for each logical memory i (0 � i < z),

si�1X
j=0

ei;j � wi (4.3)

and �
B

Nei;j

�
ni;j � di for all j : 0 � j < si (4.4)

2. The mapping uses N or fewer arrays:

z�1X
i=0

ni � N (4.5)

3. The mapping uses M or fewer external data buses:

z�1X
i=0

si � M (4.6)

59

Symbol Meaning Figure 4.10 Figure 4.11

z Number of logical memories 2 2
d0 Depth of memory 0 896 896
w0 Width of memory 0 3 3
d1 Depth of memory 1 5K 128
w1 Width of memory 1 1 16
n0 Arrays for logical memory 0 3 4
s0 Mux-groups for logical memory 0 3 1
n0;0 Arrays for mux-group 0, logical memory 0 1 4
n0;1 Arrays for mux-group 1, logical memory 0 1 -
n0;2 Arrays for mux-group 2, logical memory 0 1 -
e0;0 E�ective data width, mux-group 0, log.mem 0 1 4
e0;1 E�ective data width, mux-group 1, log.mem 0 1 -
e0;2 E�ective data width, mux-group 2, log.mem 0 1 -
n1 Arrays for logical memory 1 5 2
s1 Mux-groups for logical memory 1 1 2
n1;0 Arrays for mux-group 0, logical memory 1 5 1
n1;1 Arrays for mux-group 1, logical memory 1 - 1
n1;2 Arrays for mux-group 2, logical memory 1 - -
e1;0 E�ective data width, mux-group 0, log.mem 1 1 8
e1;1 E�ective data width, mux-group 1, log.mem 1 - 8
e1;2 E�ective data width, mux-group 2, log.mem 1 - -

Table 4.2: Symbol values for examples of Figure 4.10 and 4.11
.

The above de�nition does not restrict the number of address buses in the logical-to-

physical mapping to be less than Q, even though this is clearly required for a valid im-

plementation. Since the address ports of all arrays that implement a logical memory are

connected together, the output logical-to-physical mapping will always require the same

number of address buses as there are logical memories. Assuming the trivial checks in Sec-

tion 4.2.1 pass, there will be at most Q logical memories, meaning the logical-to-physical

mapping will require Q or fewer address buses.

The logical-to-physical mapping solution is not concerned with the mapping from logical-

to-physical mapping elements to speci�c physical arrays on the device (i.e. placement), nor

the assignment of logical-to-physical mapping inputs and outputs to speci�c physical buses

on the device (i.e. routing). Section 4.2.3 will describe an algorithm that performs placement

and routing.

60

Exhaustive Algorithm

An exhaustive algorithm for solving the logical-to-physical mapping problem for a single

logical memory i is outlined in Figure 4.12. The outer loop runs through all possible values

of si. For each value of si, all possible assignments of ei;0 through ei;si�1 are found. Since

each ei;j can take on one of jWe�j values, a naive algorithm would run through all jWe�jsi
assignments. Many of these assignments are redundant, since the order of the j assignments

is irrelevant. For example, if si = 2, the assignments ei;0 = 2 and ei;1 = 4 are equivalent

to ei;0 = 4 and ei;1 = 2. A more accurate count of the number of possible combinations is

obtained from the following formula (from [72]):

number of combinations, C =

0
@ jWe�j+ si � 1

si

1
A =

�
jWe�j+ si � 1

�
!

si!
�
jWe�j � 1

�
!

(4.7)

For each of the C assignments for ei;0 through ei;si�1, the value of ni;j for each mux-group

can be calculated from Equation 4.4, and ni can be found by summing all ni;j for 0 � j < si.

It is then simple to check if the inequalities in Equations 4.3, 4.5, and 4.6 hold. If they do,

a valid implementation has been found. The run-time of this algorithm is O(M2C).

For con�gurations with more than one logical memory, the logical memories can not be

considered independently. Therefore, Equations 4.3, 4.5, and 4.6 must be calculated for all

values of si, and all possible assignments for ei;0 through ei;si�1 across all logical memories.

If there are z logical memories, the run time of the algorithm is:

O((M2C)z) = O(M2zCz)

If M = 4; jWe�j = 4, and z = 4, then C = 35 and M2zCz = 9:83x1010. Clearly, this

algorithm is not suitable for even moderate architecture sizes.

for si = 1 to M f
for all possible assignments of ei;j for 0 � j < si f

for j = 0 to si f
calculate ni;j from Equation 4.4

g
ni = sum of ni;j for 0 � j < si
if Equations 4.3, 4.5, and 4.6 hold then solution found, exit loop

g
g

Figure 4.12: Exhaustive logical-to-physical mapping algorithm for one logical memory

61

Heuristic Algorithm

The run-time of the algorithm can be improved by making the restriction that each array

that implements a single logical memory has the same e�ective data width (i.e. ei;j = ei

for all j : 0 � j < si) and the number of mux-groups implementing a single logical memory,

si, is dwi=eie. Figure 4.13 shows the new algorithm for a single logical memory. With this

restriction, the run-time for a single logical memory is O(jWe�j). If there are z logical

memories, the run-time is simply

O
� ��We�

��z �
If jWe�j = 4 and z = 4, then jWe�jz = 256. Clearly, this is better than the exhaustive

version, but is still too slow to be practical for architectures with jWe�j or z larger than 8.

If there are z logical memories, there are jWe�jz combinations of e0 through ez�1 that
must be checked. The algorithm can be made more e�cient by noting that, for most logical

memories, many e�ective widths (values of ei) do not make sense, and can be eliminated

without considering the other logical memories in the con�guration. For example, had the

128x16 memory in the second example of Section 4.2.2 been implemented with anything

other than 128x8 arrays, the logical memory would require more than 2 arrays and more

than 2 data buses (see Table 4.3). Thus, if the implementation using 128x8 arrays does not

lead to a valid solution, none of the other implementations will.

A 893x3 memory is an example of a memory for which it is not obvious which ar-

ray aspect ratio is the best choice. From Table 4.4, it can be seen that the 128x8 and

512x2 aspect ratios can be ruled out immediately. Since the 128x8 implementation requires

the same number of data buses as the 256x4 implementation, but requires more arrays,

the 128x8 implementation will never lead to a valid mapping if the 256x4 implementation

doesn't. Similarly, the 512x2 implementation requires the same number of arrays as the

for each ei � Weff f
si = dwi=eie
calculate ni;0 from Equation 4.4 /* ni;j the same for all j */

ni = ni;0 � si
if Equations 4.3, 4.5, and 4.6 hold then solution found, exit loop

g

Figure 4.13: First heuristic logical-to-physical mapping algorithm for one logical memory.

62

Array Organization Arrays Required, ni Data buses required, si
1024x1 16 16

512x2 8 8

256x4 4 4

128x8 2 2

Table 4.3: Array and data bus requirements for 128x16.

Array Organization Arrays Required, ni Data buses required, si
1024x1 3 3

512x2 4 2

256x4 4 1

128x8 7 1

Table 4.4: Array and data bus requirements for 896x3.

256x4 implementation, but needs an extra data bus. The remaining organizations, 1024x1

and 256x4, however, must both be considered as potential organizations for the arrays that

implement this logical memory. The two examples in Section 4.2.2 show cases where each

of the two organizations is the only one that can be chosen in order to implement the entire

con�guration.

In order to investigate how many array organization combinations can be eliminated in

this way, we generated 1,000,000 logical memory con�gurations using the circuit generator

described in Chapter 3. Of these, 422,156 passed the trivial checks described in Section 4.2.1.

These 442,156 con�gurations contained a total of 609,597 logical memories. For each logical

memory, we eliminated organizations according to the following rules (an algorithm that

implements these rules is shown in Figure 4.14):

1. If several array organizations lead to implementations that require the same number

of arrays but di�erent numbers of data buses, eliminate all organizations except those

that require the fewest number of data buses.

2. If several array organizations lead to implementations that require the same number

of data buses but di�erent numbers of arrays, eliminate all except those that require

the fewest number of arrays.

3. If several array organizations lead to implementations that require the same number

of arrays and data buses, eliminate all but one (it doesn't matter which).

63

output = �
for j = 1 to m f

arrays[j] = 1
g
for all e � Weff f

si = dwi=eie
calculate ni;0 from Equation 4.4 /* ni;j the same for all j */

ni = ni;0 � si
if arrays[si] > ni then f

arrays[si] = ni
beste[si] = e

g
g
` = 1
for j = 1 to m f

if (arrays[j] < `) f
` = arrays[j]
output = output [beste[j]

g
g

Figure 4.14: Algorithm to eliminate unnecessary data-widths for logical memory i

The architecture described earlier was assumed: N = 8 (number of arrays),M = 4 (number

of data buses), B
N
= 1024 (bits per array) and We� = f1; 2; 4; 8g (allowable data widths for

each array). Table 4.5 shows a break-down of how many organizations remained after the

elimination process was applied for each of the 609,597 logical memories. For most logical

memories, only one sensible organization was found.

Number of Count

Remaining

Organizations

joutputj

4 54

3 2232

2 16191

1 591120

Table 4.5: Breakdown of how many organizations remain after elimination process.

64

The elimination process described above is performed for each logical memory indepen-

dently. Once a list of potential organizations for each memory is constructed, all combina-

tions are considered (one element from each list), and those that violate the total array or

total data bus constraints are discarded. Since most lists will contain only one element, this

is very fast. Any combinations remaining represent valid solutions to the logical-to-physical

mapping problem.

Occasionally, more than one valid solution is found. Without information regarding the

location of the switches in the L2 data mapping block and the address mapping block, it

is impossible to ascertain which of the valid solutions (if any) will result in a successful

placement/routing (described in the next section). To avoid making an arbitrary decision

at this point, all valid solutions are passed to the placer/router. The placer/router is then

free to use which ever logical-to-physical mapping results in a successful place and route.

This is in contrast to most technology mapping algorithms for logic circuits, in which only

one valid mapping is passed to the placer/router.

As mentioned at the beginning of this section, this heuristic algorithm assumes that

all arrays used to implement the same logical memory have the same aspect ratio. This

assumption can sometimes cause the heuristic algorithm to miss a solution that the exhaus-

tive algorithm would �nd. For example, the 896x3 memory considered earlier can more

e�ciently be implemented as shown in Figure 4.15 (the symbol values are in Table 4.6).

When combined with another logical memory that requires 5 arrays and 2 data buses, this

mixed-organization implementation of 896x3 is the only implementation that would work.

65

LM0, address

LM0, data (3 bits)

10

2

2 1

1 99

2

10

1Kx1512x2512x2

Figure 4.15: E�cient way to implement 896x3 that is missed by heuristic algorithm.

Symbol Meaning Figure 4.15

z Number of logical memories 1
d0 Depth of memory 0 896
w0 Width of memory 0 3
n0 Arrays for logical memory 0 3
s0 Mux-groups for logical memory 0 2
n0;0 Arrays for mux-set 0, logical memory 0 2
n0;1 Arrays for mux-set 1, logical memory 0 1
e0;0 E�ective data width, mux-set 0, log.mem 0 2
e0;1 E�ective data width, mux-set 1, log.mem 0 1

Table 4.6: Symbol values for examples of Figure 4.15
.

66

4.2.3 Place and Route

Once the logical memories have been mapped to physical arrays, the next step is to assign

these arrays physical locations in the con�gurable memory architecture, and to connect

them to external pins:

Given:

1. A set of valid logical-physical mappings from the algorithm described in the

previous subsection

2. A description of an FCM architecture: B;Q;N;M; and We�.

Find:

1. A one-to-one mapping from each array in the input logical-to-physical mapping

to a physical array in the architecture,

2. A one-to-one mapping from each address bus in the input logical-to-physical

mapping to a physical address bus in the architecture such that all required

address bus to array connections can be made using the address block switches,

3. A one-to-one mapping from each data bus in the input logical-to-physical map-

ping to a physical data bus in the architecture such that all required data bus to

array connections can be made using the L2 data block switches.

Determining the �rst mapping in the above list is analogous to the placement problem in a

logic-based FPGA CAD ow and generating the remaining two mappings is analogous to

the routing problem.

Because of the scarcity of routing switches in the architectures described in Section 4.1,

the place and route tasks must be solved simultaneously. This is feasible because the

mapped circuits from the logical-to-physical mapper contain only a few (not more than N)

arrays, and the number of connections that must be routed is bounded by Q+M . This is

in contrast to standard FPGA placement and routing problems in which the complexity of

the architecture and circuits often force the two problems to be solved separately (although

algorithms that combine both have been proposed [73, 74, 75]).

67

Exhaustive Algorithm

The following algorithm exhaustively tests all possible placements and routings for a given

circuit on a given architecture:

for all input logical-to-physical mappings {

for all array placements {

for all address bus assignments {

if sufficient switches for address bus and array assignment {

for all data bus assignments {

if sufficient switches for data bus and array assignment {

solution found, exit algorithm

}

}

}

}

}

}

The outer loop runs through all logical-to-physical mappings from the algorithm de-

scribed in the previous section (recall that if more than one valid mapping is found, they

are all sent to the placer/router). The next loop runs through all possible array assign-

ments. In the worse case, there are N arrays and N ! such assignments. The inner loops run

through all possible data bus and address bus assignments. For each possible assignment,

the algorithm determines if there are su�cient switches to connect the external buses to the

arrays. If there are, a valid mapping has been found. If there are Q address buses and M

data buses to assign, the overall worst case complexity of this algorithm is O(N ! �M ! �Q!)
(ignoring the possibility of multiple logical-to-physical mappings). Clearly, this algorithm

is not feasible for large architectures (N , Q, or M greater than 8).

68

Heuristic Algorithm

In this section, we describe a heuristic algorithm to perform the same task. Like the heuris-

tic algorithm for the logical-to-physical translation, we process each memory sequentially,

beginning with the one that requires the fewest number of arrays. The algorithm, and its

application to the example of Figure 4.10, is described below:

1. Sort the logical memories by number of arrays required for implementation.

2. Start with the logical memory that requires the least number of arrays. Let ni be the

number of arrays required for this memory. In our example, we start with the 896x3

memory, for which ni = 3.

3. Find the least exible available address bus (the one with the fewest possible connec-

tions) that can connect to at least ni arrays. In our example, this would be address

bus 7, since all less exible address buses can connect to only 1 or 2 arrays (see

Figure 4.16).

4. Divide the number of arrays, ni, by the number of data buses required for this logical

memory, si. This gives the number of arrays to which each data bus must connect,

ni=si. In our example, the 896x3 memory requires 3 arrays and 3 data buses; therefore,

ni=si = 1.

5. Find the si least exible available data buses which each connect to ni=si di�erent

arrays. Only consider arrays that can connect to the current address bus. In our

example, data buses 1, 3, and 5 would be chosen (buses 2 and 4 can not be connected

to arrays which can also connect to address bus 7).

6. If si such data buses can not be found, repeat step 5 for the next least exible address

bus. If there are no more address buses, repeat steps 1 through 5 for the next logical-

to-physical mapping. If there are no more logical-to-physical mappings, the place and

route fails.

7. Mark the chosen address and data buses, as well as the chosen arrays, and repeat

steps 3 through 6 for the all remaining logical memories. Figure 4.16 shows the entire

solution for our example.

69

1
2

3
4

5
6

7
8

8
7

6
5

4
3

2
1

ADDRESS
BUSES

DATA
BUSES

ARRAYS AND
L1 MAPPING BLOCKLM 1 LM 1 LM 1 LM 1 LM 1LM 0 LM 0 LM 0

address 0

address 1

data 1

data 0

Unused switch
Used switch

Figure 4.16: Solution for f896x3, 5Kx1g.

1
2

3
4

5
6

7
8

8
7

6
5

4
3

2
1

ADDRESS
BUSES

DATA
BUSES

ARRAYS AND
L1 MAPPING BLOCK

address 0

address 1

data 1

data 0

LM 0LM 1

Figure 4.17: Partial solution for f128x8, 128x8, 512x12g.

As a second example, consider mapping the con�guration f128x8, 128x8, 512x12g on the
same architecture. The algorithm begins with the two smaller logical memories; the partial

solution for these two memories is shown in Figure 4.17. The third memory requires 3 data

buses; each of these buses must connect to 2 unused arrays. As can be seen in Figure 4.17,

three such buses are not available. Had the second 128x8 memory been implemented using

address bus 3 and data bus 3, however, the third memory could be implemented. This is an

example where the exhaustive algorithm would �nd a solution that the heuristic algorithm

misses. As will be shown in Section 4.2.4, such con�gurations are rare.

70

4.2.4 Mapping Results

In this section, we examine the e�ectiveness of the algorithms described in the previous

subsections. In particular, we compare the heuristic place and route algorithm with the

exhaustive version. We did not implement the exhaustive logical-to-physical algorithm, so

heuristic vs. exhaustive comparisons for that problem are not available.

There are four reasons why the above algorithms might fail to map a given logical

memory con�guration to a physical architecture:

1. One of the trivial checks in Section 4.2.1 might fail.

2. The logical-to-physical mapper may be unable to �nd a mapping that requires N or

fewer arrays. This can occur even if the total number of bits in the con�guration

is less than that of the architecture, since each physical array can only be used to

implement a single logical memory at a time. If a logical memory does not use an

entire array, those bits are wasted and can not be used for another logical memory. As

will be shown in Section 5.4.1, increasing the basic array granularity (making more,

smaller, basic arrays) reduces the number of mapping attempts that fail because of

this reason.

3. The logical-to-physical mapper may be unable to �nd a mapping that requires M or

fewer data buses. In architectures with N =M , this will never cause a failure if there

are su�cient arrays. In architectures with N > M , however, there may be su�cient

arrays but insu�cient data buses.

4. The switches in the mapping blocks may not be su�cient for the placer/router to

make the required connections between the basic arrays and external buses.

The algorithms described in the previous subsections were used to attempt to map

100,000 logical memory con�gurations onto an architecture with B = 4096, N = Q =M =

4, and We� = f1; 2; 4; 8g (this is the FiRM architecture described in [34]). Con�gurations

that failed any of the trivial checks in Section 4.2.1 were immediately discarded, as were

con�gurations that used less than 75% of the total bits on the target architecture.

Table 4.7 shows mapping results obtained using the heuristic algorithms described in

this chapter. As can be seen, of those con�gurations that passed the initial trivial checks,

71

Mapping Outcome Heuristic P&R

Successful 88.49%

Insu�cient physical arrays 1 11.51%

Insu�cient data buses 0%

Insu�cient switches 0%

Table 4.7: Mapping results for FiRM architecture.

Mapping Outcome Heuristic P&R Exhaustive P&R

Successful 88.27% 88.62%

Insu�cient physical arrays 8.58% 8.58%

Insu�cient data or address buses 2.34% 2.34%

Insu�cient switches 0.81% 0.46%

Table 4.8: Mapping results: B = 8192, N = 8, M = Q = 4, We� = f1; 2; 4; 8g.

88.5% could be successfully implemented by the heuristic algorithms. All the failures were

because the logical-to-physical mapper could not �nd a mapping using four or fewer arrays.

There were no failures because of insu�cient data buses; any con�gurations requiring more

than four data buses would also require more than four arrays. As stated in [34], the switch

pattern is su�cient to perform all required mappings; the �nal number in Table 4.7 agrees

with this result.

Because there were no failures in the place and route stage in this example, the exhaus-

tive place and route algorithm would perform no better. As an example of an architecture

where the exhaustive algorithm might �nd solutions that the heuristic place and router

might not, consider an architecture with B = 8192, N = 8, M = Q = 4, We� = f1; 2; 4; 8g.
Table 4.8 shows the mapping results obtained for 10,000 logical memory con�gurations us-

ing the heuristic and exhaustive place and route algorithms (the heuristic logical-to-physical

mapper was used in both cases). As can be seen, the failure rate of the heuristic algorithm

was only slightly worse than that of the exhaustive algorithm. The run-times of the two

algorithms were very di�erent however; the exhaustive algorithm took approximately 14

hours on an unloaded Sparc-4, while the heuristic algorithm took about 2 minutes.

1Includes mappings for which there were both insu�cient arrays and data buses

72

4.3 Summary

This chapter has described a family of standalone memory architectures consisting of an

interconnected set of arrays. There are two levels of con�gurability: the e�ective data

width of each array and the interconnection between these arrays. Together, they result

in an architecture that is exible enough to implement a wide variety of logical memory

con�gurations.

We have also described heuristic mapping algorithms that are able to take advantage

of the architecture's exibility. The �rst algorithm is analogous to the technology mapping

phase in FPGA logic implementation; a logical memory con�guration is mapped to a set of

arrays, each of which can be implemented by a single physical array in the architecture. The

second algorithm places the arrays in the con�gurable memory architecture and performs

the required routing between the arrays and external pins. Although this is a heuristic

algorithm, it was shown to perform virtually the same as an exhaustive algorithm for the

same problem.

In the next chapter, we continue with the con�gurable memory architecture, and exam-

ine the e�ect that each of the architectural parameters in Table 4.1 has on the exibility,

speed, and area of the architecture.

73

Chapter 5

Evaluation of Stand-Alone

Architectures

The standalone con�gurable memory architecture and mapping algorithms described in

the previous chapter form the framework for a very exible memory that can be used in

a wide variety of applications. In order to create a good con�gurable memory, however,

it is crucial to understand how various architectural parameters a�ect the exibility and

implementation cost of the device. In this chapter, we explore these tradeo�s. Speci�cally,

we examine the e�ects of changing the array granularity, data bus granularity, L1 data

mapping block structure, and the L2 mapping block switch patterns.

There are four competing goals when creating an FCM architecture:

1. The architecture should use as little chip area as possible.

2. The memories implemented on the architecture should have as low an access time as

possible.

3. The architecture should be exible enough to implement as many di�erent logical

memory con�gurations as possible.

4. For each logical memory con�guration that the architecture can implement, the ex-

ternal pin assignments should be as exible as possible.

74

After describing our experimental methodology in Sections 5.1 to 5.3, Section 5.4 com-

pares memory architectures based on the �rst three criteria listed above. An early version of

some material in Section 5.4 also appears in [70]. The fourth criteria, external pin exibility,

is the focus of Section 5.5.

5.1 Methodology

Although both SRAM technology and FPGA architectures have been studied extensively,

this is the �rst (published academic) study that combines the two in order to study the

architecture of �eld-con�gurable memory. As such, we can not rely on well-accepted exper-

imental methods.

Figure 5.1 shows our experimental approach. For each architecture under study, we use

the circuit generator of Chapter 3 to generate 100,000 benchmark circuits. The generator is

constrained so that all circuits use between 75% and 100% of the available bits in the target

device in order to stress the architecture. As explained in Chapter 3, the common technique

of using 10 to 20 \real" benchmark circuits will not su�ce for con�gurable memory archi-

tecture studies. Since circuits typically contain only a few logical memories, hundreds would

be required to thoroughly exercise the architectures. Only by using the circuit generator of

Chapter 3, can we create enough circuits for our experiments.

Each of the logical memory con�gurations in the 100,000 benchmark circuits is mapped

to each architecture using the heuristic algorithms described in Chapter 4. Each mapping

attempt either succeeds or fails; we count the number of failures and use the count as a

exibility metric. The architecture with the fewest failures is deemed the most exible.

AREA
MODELArchitectures

Logical Memory
Configurations

Number of
Failures

Chip Area

Access Time
LOGICAL−PHYSICAL
MAPPER AND
PLACER/ROUTER

ACCESS
TIME
MODEL

Figure 5.1: Methodology for standalone memory experiments.

75

In addition to exibility results, we also obtain area and access time estimates for each

architecture. Sections 5.2 and 5.3 describe detailed area and access time models developed

speci�cally for this purpose.

5.2 Area Model

Chip area is an important consideration in the design of any integrated circuit. The larger

a chip, the more expensive it will be, both because fewer larger chips can �t on a single

wafer, and because the larger a chip, the higher the probability of a defect rendering the

chip useless. Area comparisons will thus be an important part of the results in Section 5.4.

This section describes a model that estimates the chip area required by the standalone

con�gurable memory architecture as a function of the architectural parameters in Table 4.1.

In order to obtain a degree of process independence, a unit of area called a memory

bit equivalent (mbe) is used. One mbe is the area required to implement one 6-transistor

SRAM memory cell. This is the same approach as that employed in [76] and [77].

There are two components in the model: the area of each array and the area of the

routing between the arrays (data and address mapping blocks). Each will be described

separately.

5.2.1 Array Area Model

Figure 5.2 shows the assumed oorplan of a single array. The following equations are used

to estimate the area of the storage array, the x-decoder, the x-driver, the y-decoder, the

sense ampli�ers, and the control block. As mentioned above, all area measurements are in

mbe's.

Astorage = xwidth � ywidth = B=N

Axdec = xwidth � (XDECFIXED + XDECPERBIT � log2(xwidth))

Axdrive = XDECDRIVER � xwidth

Aydec = ywidth � (YDECFIXED +YDECPERBIT � log2(ywidth=Wnom))

Asense = SENSEAREA �Wnom

Acontrol = CONTROLAREA

76

The quantities in capital letters are technology dependent constants; Subsection 5.2.4 shows

values and units for these constants estimated from three Bell-Northern Research memories

and the FiRM layout [34]. The values of xwidth and ywidth indicate the dimensions (in bits)

of the storage array.

The total area of one array is simply the sum of these quantities:

Aarray = Astorage +Axdec +Axdrive + Aydec +Asense + Acontrol

In Section 5.2.2, the dimensions of each array will be required (the units for each dimension

is mbe0:5):

yarray = ywidth + XDECDRIVER+ XDECFIXED+ XDECPERBIT � log2(xwidth)

xarray = xwidth + YDECFIXED+ YDECPERBIT � log2
�ywidth

w

�
+
Asense

ywidth

Array

Wordline Driver

x−decoder

y−
decoder

S
ense

am
ps

Control
Logic

Address

Data

x
width

y
widthWord

Lines

Bit Lines

Figure 5.2: Floorplan of a single array (not to scale).

77

5.2.2 Routing Area Model

As described in Section 4.1.3, the L2 data and address mapping blocks can consist of

either one or two stages. For architectures with one stage mapping blocks, the oorplan of

Figure 5.3 is assumed. The address and data buses run down the middle of the layout, with

arrays on either side. The oorplan for architectures with a two-stage mapping block is

shown in Figure 5.4. Here, the upper level buses run horizontally and connect to the lower

level buses at their intersections.

Address and
Data Buses

Array Array Array

ArrayArrayArray

L1 Data
Mapping

L1 Data
Mapping

L1 Data
Mapping

L1 Data
Mapping

L1 Data
Mapping

L1 Data
Mapping

yarray

xbus

Figure 5.3: Assumed layout of memory architecture.

xarray
xbus

xbus

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

array

array

array

array

array

array

array

array

array

array

array

array

w*PM

Figure 5.4: Assumed layout of memory architecture, 2 stages.

78

L1 Mapping Block

The area of the L1 mapping block shown in Figure 4.2 can be approximated by:

AL1 = yarray �w � PM + pbits;L1 � PROGBIT

where PM is the minimum metal pitch (minimum distance between two adjacent metal

lines), PROGBIT is the area of one programming bit, and pbits;L1 is the number of pro-

gramming bits in the L1 mapping block.

Single level L2 data and address mapping blocks

In Figure 5.3, there areM �Wnom data lines and Q � dlog2(B=Wmin)e address lines (where
Wmin is the smallest value in We�). Thus, the width of the routing channel is:

xbus = Q �

�
log2

�
B

Wmin

��
� PM+M �Wnom � PM

The length of each of these lines is N � yarray=2; thus,

Abus;1 = xbus �
N � yarray

2

The total routing area for architectures with a single-level mapping block can be written

as:

Arouting = N �AL1 + Abus;1+ pbits � PROGBIT

where pbits is the total number of programming bits required for the particular connection

topology used, and PROGBIT is the size of a single programming bit.

Two-level L2 data and address mapping blocks

In these architectures, we must account for the area required by the upper-level buses. As

shown in Figure 5.4, the length of these buses is Msub � (xbus+2�w �PM+2�xarray) where
Msub is the number of sub-buses and the total width is xbus. Therefore,

Abus;2 = xbus �Msub � (xbus + 2 �Wnom � PM+ 2 � xarray)

79

Parameter Value

XDECDRIVER 6.4 mbe0:5

XDECFIXED 0.46 mbe0:5

XDECPERBIT 0.50 mbe0:5/bit
YDECFIXED 3.0 mbe0:5

YDECPERBIT 0.60 mbe0:5/bit
SENSEAREA 30 mbe

CONTROLAREA 260 mbe
PROGBIT 7.8 mbe

PM 0.23 mbe0:5

Table 5.1: Technology parameters for the area model.

The total routing area for these architectures is then:

Arouting = N �AL1 + Abus + Abus;2+ pbits � PROGBIT

5.2.3 Total Area

The total area is simply:

A = Arouting + N �Aarray

5.2.4 Technology and layout parameters

Table 5.1 shows the technology parameters estimated from three Bell-Northern Research

memories and Tony Ngai's FiRM layout[34].

5.2.5 Area Measurements

Table 5.2 presents the model predictions for three architectures. The �rst architecture is

the FiRM architecture, containing four 1-Kbit arrays connected using four address and

four data buses. The second architecture contains eight 1-Kbit arrays, connected using

80

Component B = 4K;N = 4; B = 8K;N = 8; B = 64K;N = 16;
M = Q = 4 M = Q = 4 M = Q = 8

We� = f1; 2; 4; 8g We� = f1; 2; 4; 8g We� = f1; 2; 4; 8;16g

memory bits 4096 8192 65536
x-driver 819 1638 6554
x-decoder 379 758 3543
y-decoder 538 1075 4301
sense ampli�ers 960 1920 7680
control 1040 2080 4160
L1 data mapping blocks 928 1857 10339
L2 data mapping block 671 1343 30463
address mapping block 975 2104 30463
total 10407 20966 163039

Table 5.2: Area model predictions (results in mbe's).

four address and four data buses. The third architecture contains sixteen 4-Kbit arrays

connected with eight address and eight data buses.

The routing structures make up 25%, 25% and 44% of the total area of the three

architectures respectively. The area due to the L2 data mapping block and address mapping

block is considerably higher in the third architecture than the �rst or second; this is because

the larger architecture uses two-stage blocks as described in Section 4.1.3 to improve its

access time. In the next section, we describe an access time model, and show the e�ect that

a two-stage mapping block has on the speed of the device.

The �rst set of results in Table 5.2 can be compared to the FiRM layout. One mbe in

a 1.2�m CMOS technology is approximately 580 �m2. From [1], the core area of FiRM is

7.08 mm2; this translates into 12204 mbe's. The di�erence between this number and the

�rst total in Table 5.2 is because FiRM employs a di�erent, less dense bus routing structure

than the one assumed here. Unfortunately, we have no other physical devices to which we

can compare the model.

5.3 Access Time Model

Another important characterization of a device is the speed at which it can operate. The

advantages of a con�gurable memory will not ensure its viability if its access time is far

greater than that of a comparable non-con�gurable o�-the-shelf SRAM part. Thus, we need

an accurate way to compare the access times of our proposed architectures.

81

This section describes such a model. The model consists of two components:

1. access time of an array

2. routing delay through mapping blocks

Each of these will be discussed separately.

5.3.1 Array Delay

The array access time model was based on the CACTI model [78, 79], which we originally

developed to estimate the access time of on-chip microprocessor caches. This subsection

highlights the relevant parts of the model; more details can be found in [78, 79]. Note that

this portion of the model does not include the L1 data mapping block; this block will be

considered as part of the routing delay in Subsection 5.3.2.

The array access time is composed of four components: the delay of the address decoder,

the wordline rise time, the bitline and column multiplexor delay, and the sense ampli�er

delay. The original CACTI model contains other cache-speci�c components that were not

used in this study.

The delay of each component was estimated by decomposing each component into several

equivalent RC circuits, and then using an equation due to Horowitz [80] to estimate the

delay of each stage. Horowitz's equation accounts for non-zero rise/fall times of component

inputs, which we found to have a signi�cant e�ect on the overall delay. The equation

in [80] assumes equal threshold voltages among all gates; we modi�ed the equation slightly

to account for gates with di�erent threshold voltages. The bitline circuitry is the most

complex of the components; rather than using Horowitz's equation for the bitline delay,

we used a novel technique described in [78] in order to account for non-zero input rise/fall

times.

In [78], results from CACTI are compared to those obtained from Hspice. As shown in

the paper, the CACTI estimates are within 6% of the Hspice measurements.

82

Component Model Prediction (ns)
address mapping network 0.456
array decoder 0.850
array wordlines 0.450
array bitlines and sense ampli�ers 0.369
data mapping network 0.506
total 2.63

Table 5.3: Model predictions (B = 8Kbits, N = 8;M = Q = 4;We� = f1; 2; 4; 8g).

5.3.2 Routing Delay

The L1 and L2 data and address mapping blocks were represented by an RC-tree, and

the delays estimated using the �rst-order Elmore delay [81]. As described in Section 4.1.3,

mapping blocks in architectures with a high N (more than 8) are assumed to consist of

two stages; the delay of each stage is estimated independently, and the results combined to

give the overall routing delay. The resistance used for each pass transistor was the \full-on"

resistance from [78].

5.3.3 Delay Results

Table 5.3 shows the access time model predictions for an architecture consisting of eight

1-Kbit arrays connected using four address and four data buses. CACTI assumes a 0.8�m

CMOS technology; we divided all access times by 1.6 to more closely reect a 0.5�m tech-

nology (this approach was also used in [77]). As the table shows, the overhead in the two

mapping networks represents about 37% of the overall memory access time. Note that the

timing values will vary slightly depending on which memory con�guration is implemented;

the results in Table 5.3 are for a 8Kx1 logical memory.

The architecture in Table 5.3 is small, and thus, can most e�ciently be implemented

using a single-stage L2 mapping block and address block. As described in Section 4.1.3,

however, a hierarchical interconnect scheme can be used for wider mapping blocks in order

to reduce the memory's access time. Timing results for an architecture for which this is

appropriate are shown in Figure 5.5. This architecture consists of 32 arrays and 8 data

and address buses. The horizontal axis in this graph is the number of sub-buses in each

mapping block. As can be seen, the minimum overall access time occurs for a mapping

83

block with 4 sub-buses, each connecting 32

4
arrays. The speed improvement obtained by

using the hierarchical routing structure is approximately 20% for this architecture.

Since FiRM uses a di�erent technology (1.2�m vs. 0.5�m) and uses a slightly di�erent

decoder, sense ampli�er, and wordline driver size than those assumed in the CACTI model,

direct comparisons between the model and the measured FiRM delay are not meaningful.

Access
Time

Number sub-buses in lower level of each mapping block

1 2 4 8 16

0

1ns

2ns

3ns

4ns

5ns

g g g

array access time
g g

g

overall access time
g

g

g

g

Figure 5.5: Access time predictions: B = 64K;N = 32;M = Q = 8;We� = f1; 2; 4; 8g.

5.4 Architectural Study

As stated at the beginning of this chapter, in order to create a exible but e�cient con-

�gurable memory architecture, it is vital to understand how the architectural parameters

in Table 4.1 a�ect the exibility, access time, and chip area of the resulting device. In this

section, we examine four parameters: the number of basic arrays (N), the capability of

the L1 mapping block (We�), the number of data buses (M), and the L2 mapping block

switch patterns. Our goal here is not to uncover the single best architecture, but rather

to understand how each of these design decisions a�ects the e�ciency and exibility of the

device.

5.4.1 Number of Basic Arrays

One of the key architectural parameters is the number of arrays, N . This subsection exam-

ines the impact of changing N while keeping the total number of bits constant.

84

The motivation for increasing N is exibility. Since each array can be connected to

at most one address bus at a time, it can only be used to implement one logical memory.

If a logical memory does not use the entire array, the remaining bits are wasted. This is

especially a problem when implementing con�gurations with many small logical memories.

As an example, an architecture with four 1-Kbit arrays can implement at most four logical

memories, no matter how small they are. An architecture with eight 512-bit arrays, however,

can implement con�gurations with up to eight logical memories if there are su�cient data

buses.

Figure 5.6 shows exibility results as a function of N for two architectures: the �rst

architecture contains 8 Kbits of memory and four address and data buses, while the second

contains 64 Kbits of memory and eight address and data buses. In each case, N is varied

from its minimum value (it does not make sense to have N < Q) to 64. The vertical axis

in each graph shows the proportion of the 100,000 stochastically generated logical memory

con�gurations that could not be mapped. In each graph, the con�gurations that could not

be mapped are broken into three categories:

1. The lower dashed line indicates the mapping attempts that failed because the logical-

to-physical mapper could not �nd a mapping using N or fewer arrays.

2. The distance between the two dashed lines indicates the con�gurations for which the

logical-to-physical mapper could not �nd a mapping requiring M or fewer external

data buses.

3. The distance between the upper dashed line and the solid line indicates the con�gu-

rations that failed in the placer/router stage; that is, the switches in the L2 mapping

block and address mapping blocks were not su�cient to perform the required mapping.

Con�gurations that fail for more than one of the above reasons are classi�ed into the �rst

appropriate failure category.

As the two graphs show, for low values of N , the predominant cause of failures is that

the logical-to-physical mapper can not �nd a mapping requiring N or fewer arrays. As N

increases, the blame shifts to an insu�cient number of external data buses or an insu�cient

number of switches in the mapping blocks. The total number of failures, however, drops as

N increases. For the �rst architecture, the number of failures is reduced by 28% over the

85

range of the graph, while for the second architecture, the number of failures is reduced by

22%.

Figure 5.7 shows how the memory access time is a�ected by N for the same two archi-

tectures. The access time is broken into two components: the array access time and the

delay due to the mapping blocks. For each value of N we tested both one and two level

mapping blocks; for the two level blocks we varied the number of sub-buses in the lower

level. The mapping block that resulted in the minimum access time was chosen.

As N increases, each array gets smaller; these smaller arrays have lower access times

as shown by the dotted lines in Figure 5.7. This is overshadowed, however, by an increase

in the delay due to the mapping blocks; as N increases, these mapping blocks get larger,

causing the overall access time to increase. For the smaller architecture, the access time

increases by about 38% over this range, while for the larger architecture, it increases by

about 24%.

Finally, Figure 5.8 shows the chip area required by each architecture as a function of

N , again broken into two components: the area of the arrays (along with their support

circuitry) and the area due to the mapping blocks. As N increases, the arrays get smaller,

meaning the overhead due to the array support circuitry increases. The mapping blocks

also get larger as N increases.

Combining the access time, area, and exibility results, we can conclude that a good

FCM architecture has a moderate number of basic arrays (in our architectures, 2 or 4 times

Proportion
Failed

Number of arrays

4 8 16 32 64

0%

2%

4%

6%

8%

10%

12%

14% g

g

g
insufficient arrays

g

g

g

g

g

g
g

insufficient buses

g

g
all failures

g
g g

Proportion
Failed

Number of arrays

8 16 32 64

0%

10%

20%

30%

40% g

g

ginsufficient arrays

g

g

g

g

ginsufficient buses

g

g
all failures

g
g

a) B = 8K;M = Q = 4;We� = f1; 2; 4; 8g b) B = 64K;M = Q = 8;We� = f1; 2; 4; 8; 16g

Figure 5.6: Number of failures as a function of number of arrays (N).

86

Access
Time

Number of arrays

4 8 16 32 64

0

1ns

2ns

3ns

4ns

g
g

garray access time g g

g
g

goverall access time
g

g

Access
Time

Number of arrays

8 16 32 64

0

1ns

2ns

3ns

4ns

g
g

garray access time g

g

goverall access time
g

g

a) B = 8K;M = Q = 4;We� = f1; 2; 4; 8g b) B = 64K;M = Q = 8;We� = f1; 2; 4; 8; 16g

Figure 5.7: Access time as a function of number of blocks (N).

Area
(mbe)

Number of arrays

4 8 16 32 64

0

10000

20000

30000

40000

50000

60000

70000

80000

g

g

gtotal area

g

g

g
g

g area of arrays

g

g
Area
(mbe)

Number of arrays

8 16 32 64

0

50000

100000

150000

200000

250000

300000

g

g

g
total area

g

g
g area of arrays

g

g

a) B = 8K;M = Q = 4;We� = f1; 2; 4; 8g b) B = 64K;M = Q = 8;We� = f1; 2; 4; 8; 16g

Figure 5.8: Chip area as a function of number of arrays (N).

the number of address buses is a good choice). If more arrays are used, the area increases

considerably, but without as much of an increase in exibility.

5.4.2 L1 Mapping Block Capability

The e�ective data width of each array can be set by con�guring the L1 data mapping blocks.

In the previous set of results, it was assumed that the set of e�ective output widths, We�,

consisted of all powers-of-two between 1 and the nominal array width Wnom. Section 4.1.1

described how a faster, but less exible architecture could be obtained by removing some

of the capability of the L1 data mapping block. In this section, we investigate the e�ects

of changing the minimum e�ective data width (smallest value of We�).

87

Proportion
Failed

Allowable effective data widths

{1,2,4,8} {2,4,8} {4,8} {8}

0

5%

10%

15%

20%

g
g

ginsufficient arrays

g

ginsufficient buses
g

g

g

g
g

g
all failures

g

Proportion
Failed

Allowable effective data widths

{1,2,4,8,16} {2,4,8,16} {4,8,16} {8,16} {16}

0

10%

20%

30%

40%

50%

g g
g

insufficient arrays

g

g

g g g
insufficient buses g

g

g g g
g

total failures

g

a) B = 8K;N = 8;M = Q = 4 b) B = 64K;N = 16;M = Q = 8

Figure 5.9: Number of failures as a function of L1 mapping block capability.

Access
Time

Allowable effective data widths

{1,2,4,8} {2,4,8} {4,8} {8}

0

1ns

2ns

3ns

4ns

g g g
g

Access
Time

Allowable effective data widths

{1,2,4,8,16} {2,4,8,16} {4,8,16} {8,16} {16}

0

1ns

2ns

3ns

4ns

g
g g g

g

a) B = 8K;N = 8;M = Q = 4 b) B = 64K;N = 16;M = Q = 8

Figure 5.10: Access time as a function of L1 mapping block capability.

Area
(mbe)

Allowable effective data widths

{1,2,4,8} {2,4,8} {4,8} {8}

0

5000

10000

15000

20000
g g g g

Area
(mbe)

Allowable effective data widths

{1,2,4,8,16} {2,4,8,16} {4,8,16} {8,16} {16}

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

g g g g g

a) B = 8K;N = 8;M = Q = 4 b) B = 64K;N = 16;M = Q = 8

Figure 5.11: Chip area as a function of L1 mapping block capability.

88

Intuitively, the higher the minimum data width, the less exible the L1 mapping block,

and hence, the less exible the architecture. As shown in Figure 5.9, this is indeed the

case; decreasing the L1 block exibility causes the logical-to-physical mapper to fail more

often. The di�erence is more noticeable in the smaller architecture. Recall that we are only

including con�gurations that use between 75% and 100% of the available bits; con�gurations

aimed at the larger architecture are more likely to have wide data widths, meaning an L1

block that can be con�gured in the \x1" or \x2" con�guration is less important.

Figures 5.10 and 5.11 show that the speed and area bene�t of the simpler L1 mapping

blocks is small. For both architectures, the access time of a memory employing the least

exible L1 mapping block is only 10% less than that for a memory employing the most

exible mapping block. The area requirements of a memory with the least exible mapping

block are only 6% and 7% less than if the most exible block was used for the two architec-

tures considered. Thus, we conclude that, especially for small architectures, a exible L1

mapping block is most appropriate.

5.4.3 Data Bus Granularity

In Section 5.4.1, the number of failures due to insu�cient arrays was reduced by increasing

the array granularity (creating more, but smaller, arrays). Unfortunately, most of the gain

was lost because the architecture did not contain enough external data buses. In this section,

we vary the number of external data buses in an attempt to reduce this e�ect.

In order to perform fair comparisons, we �x the total number of data pins. In the results

in this section, there are 128 data pins; we examine architectures in which these 128 pins

are broken into 2, 4, 8, and 16 buses (of 64, 32, 16, and 8 bits respectively). In order to

concentrate on the data bus e�ects, we �x the number of arrays at 16 (each containing 4

Kbits) and the number of address buses at 8.

Figure 5.12 shows the failure rates for the three architectures. As the number of data

buses is increased, the failures due to insu�cient buses is reduced, as expected. This is

o�set, however, by an increase in the number of failures due to insu�cient arrays. The

increase in failures due to insu�cient arrays is because as the data width decreases, each

array becomes less capable, and thus, more of them are needed to implement wider logical

memories. For example, in the 16-bus architecture, each bus is only 8 bits wide. This means

89

Proportion
Failed

(data buses, data bus width)

(2,64) (4,32) (8,16) (16,8)

0

10%

20%

30%

40%

50%

g g

g insufficient arrays

g

g

g

ginsufficient buses
g

g

g
g

g
all failures

Figure 5.12: Failures as a function of data bus width: B = 64K;N = 16; 128 data pins.

Access
Time

(data buses, data bus width)

(2,64) (4,32) (8,16) (16,8)

0

1ns

2ns

3ns

4ns

g g g garray access time

g

g
g goverall access time

Area
(mbe)

(data buses, data bus width)

(2,64) (4,32) (8,16) (16,8)

0

50000

100000

150000

200000

g

g

g
g

Figure 5.13: Delay/area as a function of data bus width: B = 64K;N = 16; 128 data pins.

that the maximum data width (highest value in We�), and hence the maximum number of

data bits that can be extracted from each array, is 8. Thus, a 32-bit wide logical memory

will require at least four arrays, regardless of the memory's depth. This is in contrast to

the 4-bus architecture, in which 32 bits can be extracted from each array. The same wide

logical memory on this architecture would require only one array (as long as the depth is

less than 128). Overall, the number of failures drops by 29% over the range of the graph.

Figure 5.13 shows the area and delay results for the same set of architectures. There

is an area advantage for architectures with more buses; a narrower bus means fewer sense

ampli�ers are required in each array. A narrower bus also means a less complex L1 mapping

block. These two factors o�set the fact that the architectures with more external data buses

have more complex L2 mapping blocks. Over the range of the graph, the access time drops

16% and the area drops 34%.

90

Overall, the results indicate that an architecture with many narrow data buses is better

in terms of speed, area, and (with the exception of the last data point) exibility.

5.4.4 L2 Switch Patterns

Until now, all results have assumed that the L2 mapping block and address mapping block

employ the switch pattern de�ned by Equation 4.2. In this section, we compare this pattern

to three other patterns; the four patterns are shown in Figure 5.14. For each pattern, an

equation giving the set of buses to which each array can connect is also given. Intuitively,

the more switches within the mapping blocks, the more exible the overall architecture will

be, but at the expense of slower logical memory implementations and more chip area.

Table 5.4 shows the exibility, delay, and area results for an architecture with eight

1-Kbit arrays and four address and data buses. The column labeled \P&R Failures" shows

the proportion of all con�gurations that failed during the place-and-route algorithm (clearly,

the switch pattern has no e�ect on the logical-to-physical mapper, so con�gurations that

failed during that phase are not included in the table). Pattern 1 does not provide su�cient

exibility; 85% of the con�gurations could not be mapped. Pattern 2, which is the pattern

assumed in all other results in this section, can be used to implement all but 7.8% of

the con�gurations. The area and delay penalties when moving from pattern 2 to 3 are

small (0.3% and 0.7% respectively). With pattern 3, however, every con�guration could be

mapped. Thus, for this architecture, pattern 3 seems to be the best choice.

Table 5.5 shows the results for a larger architecture (16 arrays and 8 address and data

buses). For this architecture, the delay penalty from moving from pattern 2 to 3 is 4%,

and the area penalty is 17%. The dramatic increase in area is because more sub-buses are

required; each of the sub-buses needs a second-level driver. If the number of sub-buses was

held constant, the access times for patterns 3 and 4 would be considerably larger than they

are. From the results in the two tables of this section, we conclude that the FiRM-style

mapping block (pattern 2) is exible enough to perform most required mappings, but at a

lower area and speed cost than patterns 3 and 4 (especially for large architectures).

91

external
buses

8 arrays

external
buses

8 arrays

external
buses

8 arrays

external
buses

8 arrays

Pattern 1: B(i)={i mod M}

Pattern 4: B(i)={j: 0<j<M}Pattern 3: B(i)={j: j<(i mod M)}

Pattern 2: B(i)={i mod 2 : 0<j<log M}j

Figure 5.14: L2 data block/address block switch patterns considered.

Pattern P&R Failures Total Delay Total Area

1 84.6% 3.53 ns 20841
2 7.79% 4.06 ns 20966
3 0% 4.09 ns 21029
4 0% 4.20 ns 21216

Table 5.4: L2 switch pattern results (B = 8K;N = 8;M = Q = 4;We� = f1; 2; 4; 8g).

Pattern P&R Failures Total Delay Total Area

1 68.7% 4.13 ns 137153
2 6.84% 5.29 ns 163039
3 0.06% 5.50 ns 189050
4 0% 5.81 ns 189924

Table 5.5: L2 switch pattern results (B = 64K;N = 16;M = Q = 8;We� = f1; 2; 4; 8; 16g).

92

5.5 External Pin Assignment Flexibility

The results in the previous section assumed that the place/route algorithms are free to

assign any I/O signal to any external pin. In practice, there are many applications in which

this is unacceptable. For example,

� In large systems where the con�gurable memory is one of many chips mounted on a

PC-board, once the board has been constructed, the pin assignments of all chips are

�xed. If future system changes involve recon�guring the FCM, the new pin assign-

ments must be the same as the old assignments.

� In recon�gurable systems which contain FPGAs and FCMs, although each chip is

con�gurable, the interconnections between these chips are often �xed [66, 67]. If

there is little exibility in the FCM pin assignments, severe restrictions will be placed

upon the system level partitioner, placer, and router.

In order to evaluate the viability of FCMs in these applications, a measure of pin assignment

exibility is required. This section de�nes a metric for this exibility, and evaluates this

exibility for the FCM architecture described in the previous chapter.

In any memory, there is complete functional exibility in the pin assignments within

a single address or data bus; i.e. all address pins are equivalent, as are all data pins. In

this section, we are concerned with a higher level of exibility: exibility in the assignment

of buses. As an example, consider Figure 5.15. In this example, a single logical memory

that requires four data buses is implemented. There is no exibility at all in the address

bus assignment; only address bus 4 has enough pins to connect to all four arrays. There is

complete exibility in the data bus assignments, however, since each bus need only connect

to one array. If two data buses are swapped, the arrays implementing the corresponding

data �elds can also be swapped, guaranteeing a successful implementation.

Consider a logical con�guration requiring s data buses and z address buses mapped

onto an architecture with M data buses and Q address buses (M � s and Q � z). If the

address mapping block contains switches at every horizontal/vertical bus interconnection,

93

1

2

3

4

4

3

2

1

ADDRESS
BUSES

DATA
BUSES

ARRAYS AND
L1 MAPPING BLOCK

Figure 5.15: A single logical memory that uses 4 data buses and 1 address bus.

the number of possible address bus assignments is

Aa;max =

0
@ Q

s

1
A s! =

Q!

(Q� s)!

Similarly, if the L2 data mapping block contains switches at every intersection, the number

of possible data bus assignments is

Ad;max =

0
@ M

z

1
A z! =

M !

(M � z)!

Combining these two results gives the number of possible bus assignments given complete

mapping block exibility:

Amax = Aa;max �Ad;max =
Q!M !

(Q� s)!(M � z)!

For architectures with mapping blocks that do not contain switches at every intersec-

tion (such as the FiRM architecture), not all Amax bus assignments will lead to a valid

implementation. Averaging the ratio of the number of valid bus assignments to Amax over

many logical memory con�gurations gives the bus assignment exibility of a particular ar-

chitecture. The maximum value of an architecture's bus assignment exibility is 1.

In order to evaluate the bus assignment exibility of our architectures, we used an ex-

haustive algorithm that iteratively steps through all possible address bus assignments and

determines whether a valid mapping is possible. Because of the heavy computational re-

94

4 arrays

external
buses

Figure 5.16: FiRM switch pattern for address and L2 data mapping blocks.

4 arrays

external
buses

4 arrays

external
buses

Figure 5.17: Best switch patterns if one switch-set is added.

quirements of this algorithm, we were limited to studying an architecture with 4 arrays,

4 data buses, and 4 address buses (the FiRM architecture). Nonetheless, this simple ar-

chitecture provides insight into the behaviour that we expect out of larger con�gurable

memories.

Using the above procedure, we measured the bus assignment exibility of the FiRM

architecture with the FiRM switch pattern to be 0.0829. In other words, on average, only

8.3% of all possible bus assignments result in valid implementations. For many applications,

this is unacceptable.

In order to increase FiRM's bus assignment exibility, we can add switches to the L2

data mapping block and address mapping block. The mapping block employed in FiRM

contains 8 intersections with switches and 8 intersections without switches (see Figure 5.16).

Consider adding switches (a switch-set, since each wire in the bus needs its own switch) to

a single intersection. Since there are 8 intersections without switches, there are 8 locations

where we can add this switch-set. We experimentally tried each, and the mapping blocks

that gave the best results are in Figure 5.17 (both blocks shown are equivalent). If either of

these mapping blocks are used in the FiRM architecture, its address bus exibility approxi-

mately doubles to 0.157. The area and speed overhead in adding one extra set of switches is

small, so clearly, for many applications, either of the mapping blocks in Figure 5.17 results

in a better FCM architecture.

95

4 arrays

external
buses

Figure 5.18: Best switch pattern if two switch-sets are added.

We can go further and add switches to two intersections. There are 28 ways these two

switch-sets can be added; the best combination is shown in Figure 5.18. This mapping

block gives a bus assignment exibility of 0.217.

This process was repeated for 3,4,5,6,7, and 8 switch sets. The graph in Figure 5.19

gives the bus assignment exibility for each number of switch sets. For each point, all

possible switch patterns were considered, and the best chosen. As the graph shows, the

curve is roughly linear, meaning there is no point beyond which adding switches gives little

bene�t. Thus, we conclude that in order to get a bus assignment exibility of close to 1,

the mapping block should be fully populated.

Note that there are two points on the graph that stand out: 3 and 6 switch sets. Fig-

ure 5.20 shows the mapping block patterns corresponding to these points. Figure 5.20(a)

is the �rst pattern which has two horizontal buses that can connect to all 4 arrays; Fig-

ure 5.20(b) is the �rst pattern containing three horizontal buses that can connect to all 4

arrays. Logical memory con�gurations in which all arrays must be connected to each other

Bus
assignment
flexibility

extra switch-sets added to each mapping block

0 1 2 3 4 5 6 7 8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

g

g

g

g
g

g

g
g

g

Figure 5.19: Bus assignment exibility results.

96

4 arrays

external
buses

4 arrays

external
buses

a) Three switch-sets added b) Six switch-sets added

Figure 5.20: Best switch patterns if 3 and 6 switch-sets are added.

are common; thus, the more buses on which this can be done, the higher the bus assignment

exibility.

5.6 Conclusions

In this chapter, we studied the standalone memory architecture described in Chapter 4,

examining how the architectural parameters described in that chapter a�ect the chip area,

access time, and exibility of the device. Speci�cally, we have shown that:

� As the array granularity is increased, the exibility of the architecture increases (more

con�gurations can be implemented), but that this is accompanied by a corresponding

increase in access time and a signi�cant increase in area. We considered two archi-

tectures: one with four address and data buses and 8 Kbits of memory, and one with

eight address and data buses and 64 Kbits of memory. For the �rst architecture, the

number of mapping failures decreased by 28% as the number of arrays was varied from

4 to 64, while for the second architecture, the number of mapping failures decreased

by 22% as the number of arrays was varied from 8 to 64. Over the same two ranges,

the access times of the two architectures increased by 38% and 24% respectively, and

the area increased by 400% and 142% respectively. Overall, we found that, in our

architectures, setting the number of arrays to be 2 or 4 times the number of address

buses was a good choice.

� The more exible the L1 mapping block, the more exible the overall architecture will

be. We considered the same two architectures as in the array granularity experiments,

with the number of arrays �xed at 8 and 16 respectively. We varied the capability

of the L1 mapping block from fully exible (any power-of-two width between 1 and

97

the data bus width can be chosen) to not exible at all (the e�ective data width is

�xed). The fully exible L1 mapping block resulted in 33% and 24% fewer mapping

failures than the non-exible L1 mapping block for the two architectures. There was

found to be very little speed and area penalty as the exibility of the L1 mapping

block is increased. For both architectures, the access time of a memory employing the

non-exible L1 mapping block is only 10% less than that for a memory employing the

fully-exible mapping block. The area requirements of a memory with the non-exible

mapping block are only 6% and 7% less than if the fully-exible block was used for the

two architectures considered. Overall, we concluded that a fully-exible L1 mapping

block is best, especially for small architectures.

� An architecture with more, narrower data buses is a win in terms of speed, area, and

exibility. We considered an architecture with 64 Kbits of memory and 16 arrays, and

varied the number of data buses was varied from 2 through 16, while the total number

of data pins was held constant at 128. Over this range, the access time dropped by

16%, the area by 34% and the number of mapping failures by 29%.

� The L2 data mapping block and address mapping block switch patterns are critical

to the overall exibility of the architecture. Although a FiRM-like pattern provides

near-perfect exibility when the algorithms are free to assign buses, it is not nearly

exible enough when pins must be pre-assigned. In these applications, a mapping

block in which every bus can connect to every array is the most appropriate.

The architectures in this chapter have been stand-alone; that is, the address and data

pins are assumed to connect directly to I/O pads. As stated in the introduction to Chap-

ter 4, one of the key applications of a con�gurable memory architecture is that it can be

embedded onto an FPGA to create on-chip memory. This is the focus of the remainder of

this dissertation.

98

Chapter 6

Embedded Arrays: Architecture

and Algorithms

The architecture studied in Chapters 4 and 5 is a stand-alone memory intended for use in re-

con�gurable systems containing both FPGAs and memory chips. As a result of the ongoing

improvements in integrated circuit technology and FPGA architectures, many applications

that once required these multi-chip systems are becoming suitable for implementation on

a single FPGA. Since memory is an important part of these applications, on-chip memory

support in an FPGA is critical. As discussed in Chapter 1, on-chip memory will help relax

I/O constraints, will improve the speed of many circuit implementations, and will reduce

the number of chips required to implement large circuits, leading to lower system costs.

In this chapter, we present the architecture of an FPGA with on-chip memory. The

memory resources consist of large blocks of RAM, similar to those discussed in Chapter 4.

The logic resources consist of �ve input lookup tables connected using horizontal and vertical

channels. The memory and logic are interconnected through memory/logic interconnect

blocks. Section 6.1 describes the architecture in more detail.

This chapter also describes custom place and route tools (called SPLACE and SROUTE)

that map circuits to the FPGA. Placement and routing in an FPGA with both memory and

logic blocks is more di�cult than placement and routing for FPGAs without memory arrays

since both types of resource must be considered simultaneously. In the placement phase,

the placements of the memory blocks must inuence the placement of the logic blocks, and

99

vice versa. In the routing phase, the tool must be aware of di�erences in exibility between

the connections to the memory blocks and connections to the logic blocks. Section 6.2 will

describe our solutions to these problems.

6.1 Basic Architecture

In the following subsections, we will describe the memory resources, logic resources, and

the memory/logic interconnect. Much of this discussion also appears in [82].

6.1.1 Memory Resources

As described in Chapter 1, we concentrate on heterogeneous architectures with large blocks

of RAM. The memory resources consist of a set of identical arrays, similar to those employed

in the stand-alone architecture of Chapter 4. As in the stand-alone architecture, the number

of bits in each array is �xed, but the aspect ratio of each array can be con�gured by the

user. Unlike the stand-alone architecture, here we assume that each array has a separate

data-in and data-out port (as well as an address port).

As shown in Figure 6.1, the memory arrays are assumed to be positioned in a single row

across the middle of the chip. This is similar to the Altera FLEX 10K architecture. As will

be shown, connections between two or more memory arrays are common; these connections

are shorter if the memory arrays are positioned close together on the chip, resulting in

a potentially faster and more routable device. Another approach would be to \spread"

the memory arrays around the chip as evenly as possible; Figure 6.2 shows one possible

oorplan for this sort of architecture. This would tend to shorten the memory-to-logic

connections but lengthen the memory-to-memory connections. This sort of architecture is

not considered in this dissertation; a full exploration of these tradeo�s is left as future work.

Table 6.1 shows the parameters that characterize the embedded memory resources. The

parameters B, N , and We� are the same as those in the stand-alone architecture. In

Chapter 7, we vary the number of arrays, N , from 2 to 16, while �xing the array size (B=N)

at 2048 bits and the set of allowable data widths, We�, at f1; 2; 4; 8g. The parameters W ,

Fc, and Fs were de�ned in [37, 83], and Fm,M , V , and R will be described in Section 6.1.3.

100

Logic Block

Memory Array

Figure 6.1: Floorplan showing memory and logic blocks.

Logic Block

Memory Array

Figure 6.2: An alternative oorplan with arrays distributed throughout the FPGA (not
considered in this dissertation).

101

Parameter Meaning

B Total bits

N Number of arrays

We� Set of allowable e�ective data widths of each array

M Number of pins in each memory block

G Number of logic blocks

W Parallel tracks per logic routing channel

Fm Number of tracks to which each memory block pin can connect

Fc Number of tracks to which each logic block pin can connect

Fs Number of choices o�ered to each incident track by a switch block

V Vertical tracks between each memory array

R Logic blocks per memory block in the horizontal dimension

Table 6.1: Architectural parameters for embedded memory resources.

6.1.2 Logic Resources

The logic resources of the FPGA are assumed to consist of �ve-input lookup tables intercon-

nected using horizontal and vertical channels, similar to the Xilinx 4000 FPGA, the Lucent

Technologies ORCA FPGA, and the architecture studied in [37].

Of particular interest is the switch block that is found at the intersection of each hor-

izontal and vertical channel. Figures 6.3(a) and 6.3(b) show two switch blocks used in

previous work; in both, each incoming wire is o�ered three possible connections (denoted

by Fs = 3 in [37]). Each dotted line represents one of these connections.

Neither of these switch blocks works well with the limited memory/logic interconnect

that will be described in the next subsection. As will be shown, an inexible memory/logic

interconnect structure will often make it necessary to route a net to a speci�c track within

a channel. Figure 6.4 illustrates the problem. Consider the implementation of a portion of

0 1 2 3 4

4

3

2

1

0

0 1 2 3 4

4

3

2

1

0

0 1 2

0 1 2

2

1

0

0

1

2

1

0

0

1

1 0

1 0

a) from [12, 84] b) from [85, 86] c) new switch block

Figure 6.3: Three di�erent switch blocks.

102

A

B

Logic Block
Switch Block

A

B

Logic Block
Switch Block

a) Impossible using switch b) Possible using switch

block of �g. 6.3(a) or 6.3(b) block of �g. 6.3(c)

Figure 6.4: Routing a net from A to B.

a net that must connect track A to track B. If either of the switch blocks in Figures 6.3(a)

or 6.3(b) is used, the connection is impossible. Each track in Figure 6.3(a) and (b) is labeled;

both of these switch blocks are such that a track labeled i can only be connected to another

track labeled i. Since track A would have a di�erent label than track B, the connection is

impossible, no matter how many switch blocks are traversed along the route. In [87, 88],

such a routing structure is termed disjoint.

To alleviate this problem, we have used the switch block shown in Figure 6.3(c). This

is similar to the switch block in Figure 6.3(b), except the diagonal connections have been

\rotated" by one track. A precise description of the switch block can be written by repre-

senting it by a graph M(T; S) where each node in T represents a terminal (incident track)

of the switch block and each edge in S represents a programmable switch that connects

two terminals. T is partitioned into four subsets, each with W terminals (each subset rep-

resents the tracks incident to one side of the switch block). Each terminal in T is labeled

tm;n where m is the subset number (0 � m � 3) and n is the terminal number within the

subset (0 � n � W � 1). Figure 6.5 shows the correspondence between terminal label and

physical switch block pin. The set of edges, S, for the non-disjoint switch block is then:

S =
W�1[
i=0

f (t0;i; t2;i) ; (t1;i; t3;i) ; (t0;i; t1;(W�i) mod W); (6.1)

(t1;i; t2;(i+1) mod W) ; (t2;i; t3;(2W�2�i) mod W) ; (t3;i; t0;(i+1) mod W)g

In Section 6.2.3, this switch block will be compared to the others in Figure 6.3.

103

t
0,0

0,1
t
0,2

t

0,3
t

0,4
t

t
1,0

t
1,1

t
1,2 t1,3 t 1,4 t 1,W−1

t
0,W−1

2,0
t

2,1
t

2,2
t

2,4
t

2,W−1
t

2,3
t

t
3,0

t
3,2

t
3,3

t
3,4

t
3,W−13,1

t

Figure 6.5: Correspondence between terminal label and physical switch block pin.

6.1.3 Memory/Logic Interconnect

Figure 6.6 shows the assumed interconnect structure between the logic and memory portions

of the FPGA. Each memory pin is connected to one or more vertical routing tracks using a

memory/logic interconnect block.

An example memory/logic interconnect block is shown in Figure 6.7. The vertical

tracks connect to the logic routing resources above and below the memory row as shown

in Figure 6.6. The memory pins can be programmably connected to these vertical tracks.

Each dot in the �gure represents a programmable connection. The interconnect block is

characterized by the switch pattern, the number of memory pins, M , and the number of

vertical tracks, V that run between each memory array. To calculate V , letN be the number

of memory blocks and R the ratio of the number of logic blocks in the horizontal dimension

to the number of memory blocks. There are then (RN + 1) vertical channels connecting

the top and bottom halves of the chip, each containing W parallel tracks. Then,

V =

�
(RN + 1)W

N + 1

�

We de�ne the exibility of the memory/logic interconnect, Fm, as the number of vertical

tracks to which each memory pin can connect. The example of Figure 6.7 shows Fm = 4.

The maximum value of Fm is V (a switch at every pin/track intersection) and the minimum

value is 1. As will be shown in Chapter 7, the value of Fm has a signi�cant e�ect on the

104

MEMORY
 BLOCK

MEMORY
 BLOCK

MEMORY/
LOGIC
INTERCONNECT
BLOCK

MEMORY/
LOGIC
INTERCONNECT
BLOCK

MEMORY/
LOGIC
INTERCONNECT
BLOCK

Figure 6.6: Memory/logic interconnect structure.

routability of the architecture.

The switch pattern shown in Figure 6.7 is just one of many possible switch patterns

for Fm = 4. The choice of switch pattern in each memory/logic interconnect block is

important since a poor pattern can cause unnecessary competition for one or more of the

vertical tracks. The pattern we use is as follows: the set of Fm tracks to which pin j can

connect are:

Tj =

� ��
jV

M

�
+

�
V

Fm

�
i

�
mod V : 0 � i < Fm

�
(6.2)

(the tracks are numbered starting at the left-most track and the memory pins are numbered

from the top).

The motivation for choosing this formula is that it tends to \spread out" tracks to

which a pin is connected as much as possible. Although we have not thoroughly explored

all possible switch patterns, the patterns obtained from the above formula were found to

105

TO LOGIC PART OF FPGA

TO LOGIC PART OF FPGA

MEMORY
 BLOCK

V Tracks

M Pins

Figure 6.7: Memory/logic interconnect block.

work well (although in Section 7.1.2 we will show an anomaly where this formula produces

a pattern that performs poorly). Finding an optimum pattern is left as future work.

6.2 Implementation Tools

As mentioned in Section 6.1, programs that map circuits to heterogeneous FPGA architec-

tures are likely to be more complex than those for homogeneous FPGAs. Without e�ective

CAD software, however, a heterogeneous architecture is of little practical use. In this sec-

tion, we describe how the mapping algorithms of Chapter 4 can be combined with existing

logic optimization and technology mapping tools and new place and route programs to

produce a CAD ow that is simple, yet results in e�cient circuit implementations.

Our main goals in creating this CAD ow were:

1. To create a tool suite that was exible enough to map to a wide variety of architectures.

In the next chapter, di�erent memory/logic interconnect structures are considered; a

single tool suite that can map to all of these architectures is essential.

106

TECHNOLOGY
MAPPING

LOGICAL−PHYSICAL
MAPPING

LOGIC
OPTIMIZATION

PLACEMENT

ROUTING

PROGRAMMING

CIRCUIT

TECHNOLOGY
MAPPING

LOGICAL−PHYSICAL
MAPPING

LOGIC
OPTIMIZATION

PLACEMENT

ROUTING

PROGRAMMING FPGA

LOGIC
PART

MEMORY
 PART

Figure 6.8: CAD ow.

2. To minimize the development time of the CAD tools. Since the primary focus of

this dissertation is to consider con�gurable memory architectures, we did not wish to

spend an inordinate amount of time optimizing the CAD tools.

Two secondary goals were:

1. To provide results that were not signi�cantly worse than results reported elsewhere.

2. To provide tools with run times that were short enough to allow many repetitive

experiments to be run using a limited amount of CPU time.

The CAD ow is shown in Figure 6.8. Until the placement phase, the logic and memory

portions of the circuit are processed independently, since optimization and technology-

mapping is very di�erent than the corresponding routines for memory. The optimization

and technology-mapping stages for logic have been well studied; we use SIS [61] for logic

optimization and FlowMap [62] for logic technology-mapping. The logical-to-physical map-

ping problem for memory was presented in Chapter 4; we use the heuristic algorithm from

Section 4.2.2.

Since we wish to consider both memory and logic during the placement and routing

phases, existing tools that support only logic circuits will not su�ce. Instead, we have

107

created custom tools; these tools are described in the following two subsections. In devel-

oping these tools, we have followed the traditional approach of separating the placement

and routing tasks and using separate algorithms to solve each. Although combined place-

ment/routing programs exist [73, 74, 75], and would likely provide superior circuit imple-

mentations, such a tool would be more complex to develop. Since the development time of

our tools was of the upmost importance, we decided to employ separate algorithms.

The �nal phase of the CAD ow, programming, is highly dependent on the technology

used in the FPGA. We do not consider this in this dissertation.

6.2.1 Placement Program

During the placement phase, circuit elements (logic blocks, memory blocks, and I/O blocks)

are assigned physical locations on the target FPGA. Although there have been several

published placement tools for FPGAs [75, 73, 74, 89, 90], none of them support an FPGA

architecture with both logic and memory. The placement algorithm described in Chapter 4

works well (almost optimally) for the standalone architecture described in that chapter,

but is not likely suitable for the architecture in this chapter, since the interconnect between

the memory arrays is much more exible than that of the standalone architecture. In the

architecture of this chapter, any array can be connected to any other array and to any

logic block through the chip's routing resources. The costs of each of these connections,

however, is di�cult to estimate, since the tracks used to connect memory arrays are also

needed to connect logic blocks to each other. In addition, the placement of logic blocks

should inuence the placement of the memory blocks, and vice-versa. These complications

motivate us to develop a new placement tool.

Our placement program, called SPLACE, is based on the popular simulated annealing

optimization algorithm [91]. The algorithm has been used in many standard cell placement

programs [92, 93, 94, 95, 96, 97], and later in placement programs speci�c to FPGAs [74,

90, 98]. The appeal of the simulated annealing algorithm is that it can be used to place

both logic and memory blocks simultaneously (as well as I/O blocks) and provides a natural

mechanism for the placement of logic blocks to inuence the placement of memory blocks,

and vice versa.

The simulated annealing algorithm as applied to placement starts with a random place-

108

P = Random Placement
T = Initial Temperature
While (exitCondition(T) == False) f

Repeat for a �xed number of iterations f
Pnew = generateMove(P)
�C = cost(Pnew) - cost(P)
if (random(0,1) < exp(��CT) f

P = Pnew
g

g
T = updateTemperature(T)

g

Figure 6.9: Pseudo-code for simulated annealing algorithm.

ment, and iteratively swaps random elements until some stopping criteria is achieved. The

key to the annealing algorithm is that each swap may or may not be accepted. This section

describes the algorithm, concentrating on our selection of annealing schedule, cost function,

swap acceptance probability, and the stopping criteria.

Figure 6.9 shows psuedo-code for the algorithm. Within each iteration, a move is chosen

(legal moves will be discussed below), and the change in cost �C is calculated. The cost of

a placement is the total sum of the half-perimeters (sum of the X and Y dimensions) of the

bounding box for each net. The motivation for choosing this cost function is that we wish to

minimize the routing area in the �nal circuit implementation; hence, we seek to minimize

the total wire-length over all nets. Since an easily computable cost function is essential

for simulated annealing, we approximate the wire-length of a net by the half-perimeter of

its bounding box. Nets that connect to memory are treated in the same manner as those

that connect to logic. If the change in cost is negative, meaning the move improves the

placement, the move is performed. If the change is positive, the move is accepted with

a probability of exp(��C
T

). This possible acceptance of seemingly bad moves allows the

algorithm to escape from local minima in order to �nd a better placement.

As shown, the acceptance rate depends on the system \temperature", T . T is initialized

to a large enough value that most bad moves are accepted. During each call to updateTem-

perature, T is updated as follows:

Tnew = MAX

�
T exp

�
��T

�

�
; 0:75T

�

109

where � is the standard deviation of the costs obtained during the current temperature

step (iteration of the outer loop) and � is a constant. This formula was used in [94]. We

used � = 0:7 (this value was also used in [94]).

For each value of T , the inner loop executes

MIN(5(elements in circuit)4=3 ; 20000)

times, where elements in circuit is the total number of memory arrays, logic blocks, and

I/O pads in the netlist. This schedule, which is a scaled version of the formula used in [97],

was found to produce good results in a reasonable amount of time.

A legal move is the swapping of two blocks or the movement of a block to an unoccupied

location. The blocks are selected at random; they can be either memory, logic, or I/O

blocks, but both selected blocks must be of the same type (if a movement of a block to an

unoccupied location is chosen, the destination site must be of the appropriate type). The

selection is subject to the constraint that the current physical distances between the two

blocks is less than Rx in the x-direction and Ry in the y-direction. Initially Rx and Ry

are set to the size of the device, but after each temperature update, they are updated as

follows:

if the acceptance rate for the last temperature is less than a constant � f

decrease Rx and Ry by 20%

g else f

increase Rx and Ry by 20%

g

In no case do we let Rx or Ry become smaller than the length of 3 logic blocks, nor do we

let them become larger than the size of the device. This dynamic sizing of range windows

ensures that the acceptance rate stays as close to some desired rate � as possible, leading

to a reduction in CPU time [95, 97]. In [95, 97], � = 0:44 was used; we use the same value

here.

Finally, the algorithm is terminated when either T or the standard deviation of the costs

obtained during the previous temperature step drops below a preset value. A �nal greedy

stage is performed, in which moves are accepted only if they improve the cost function

(equivalent to T = 0).

110

The placement algorithm was implemented. Rather than presenting a quantitative com-

parison with existing placement tools, Section 6.2.3 will combine the placer and router, and

compare the composite results with existing placer/router combinations.

6.2.2 Routing Program

Once the placement program has assigned physical locations for all circuit elements, the

next step is to use the prefabricated routing resources to implement all required connections

between these circuit elements. Once again, many FPGA routing tools have been devel-

oped, but none are general enough to map to our heterogeneous architecture. This section

describes a custom FPGA router that is general, e�cient, and provides good results.

In many FPGA CAD systems, the routing task is solved in two stages: global routing [99,

100, 101, 98], in which nets are assigned to channels, and detailed routing [102, 84], in which

individual routing segments within the assigned channels are chosen. Because our router

must be exible enough to work with very low-exibility connections (in the next chapter,

architectures with Fm = 1 will be considered), the split global/detailed scheme will not

su�ce. Consider a global router searching for a route for a net starting in a memory block

in the architecture of Figure 6.6. Each memory/logic interconnect block can connect to

six logic switch blocks (three above the memories and three below). Without knowledge of

the internals of the memory/logic interconnect block (the detailed routing architecture), it

is impossible to determine which of these switch blocks can be connected to the starting

pin. Single-stage routers that combine the global and detailed routing phases have also

been proposed [88, 103, 104, 105, 106]. Since single-stage routers take into account the

detailed routing architecture at all phases of the routing, it is more suitable for architectures

containing very low exibility connections.

Our router, called SROUTE, employs a multi-pass maze router, with enhancements that

signi�cantly speed up the routing and lower the algorithm's memory requirements. The

next subsection describes the basic algorithm, while the subsequent subsection describes

the enhancements.

111

Basic Maze Routing Algorithm

The maze router is based on the maze routing algorithms by Lee and Moore [107, 108],

both of which use the shortest-path algorithm of Dijkstra [109]. Each net is processed

sequentially. For each net, the shortest path connecting the source to all sinks that does

not conict with previously routed nets is found; the algorithm that routes one net is shown

in Figure 6.10. The algorithm operates on a graph in which each node represents a track

or pin in the physical architecture, and each edge represents a programmable connection

between nodes (this is the same graph structure used in [106]). A breadth-�rst algorithm

is used to traverse the nodes; thus, at each stage, the closest unvisited node to the source

is expanded. This ensures that each node need only be visited once, and that the shortest

path for this net is found. In the next subsection, we will describe how this strategy can be

modi�ed to speed up the search.

heap = null
T = null /* T will contain route of net */
mark all nodes as 'unused'
put source of net in heap with label=0
while there are still pins to connect for this netf

if heap is empty f
routing for this net failed, exit algorithm

g
from heap, remove node with lowest label, l
if this node is a goal pin (a sink of the net) f

backtrace through graph, adding nodes to T, and marking resources as `used'
heap = null
place all nodes in T into heap with label=0

g else f
if we have not yet visited this node f

for each neighbour f
if this neighbour is not marked `used' f

place neighbour in heap with label = l + 1
g

g
g

g
g

Figure 6.10: Pseudo-code for algorithm to route a single net.

The success of this algorithm will depend on the ordering of the nets. Rather than

attempting to determine a priori which nets should be routed �rst, we perform the routing

using several passes, re-ordering the nets between each pass. The nets that fail in one pass

112

N = list of nets to route
sort N by number of memory connections
N 0 = N
passes = 0
done = 0
repeat until (passes = 10 or done = 1) f

for each net i in N f
route net according to algorithm of Figure 6.10
if routing for this net fails f

move element i to head of N 0

g
g
if all nets were routed successfully f

done = 1
g
N = N 0

add 1 to passes
g

Figure 6.11: Pseudo-code for algorithm to route all nets.

are moved to the head of the list, and routed �rst in the next pass, as shown in Figure 6.11.

This \move-to-front" heuristic was also used in [105].

The initial order of nets (for the �rst pass) was found to have little inuence on the

quality of the �nal solution, but it was found to have an e�ect on the number of passes

required to successfully route circuits. In general, the nets with the most connections to

memory were harder to route (see Chapter 7); thus, before the �rst pass, we sort nets by

the number of memory pins on each net, and route those with more memory pins �rst.

During subsequent passes, the nets are re-ordered as described above. When this strategy

was employed, we found 10 iterations su�cient to �nd a successful routing in most circuits

(if one exists).

Directional Algorithm

For large architectures, the search space for the maze router can be very large. Consider

Figure 6.12. Each solid track in the diagram represents a node that must be visited during

the search when routing from the source to the destination. Because of the breadth-�rst

nature of the algorithm, the set of visited nodes expands in a \diamond" pattern around

the source. As the nodes get farther apart, the number of nodes that must be visited (and

hence the run-time and memory requirements of the algorithm) increases quadratically.

113

DEST.

SOURCE

Node visited during search
Logic Block

Figure 6.12: Nodes visited by the basic maze routing algorithm.

There have been many published techniques to reduce the run-time of the maze routing

algorithm. These fall into two categories: algorithms that attempt to reduce the state

stored for each node, and algorithms that attempt to reduce the number of nodes that

must be visited during a search. We employ the latter approach. The remainder of this

section describes our enhancements, which are similar to the depth-�rst algorithm described

in [110].

The enhancements are motivated by the observation that for most connections, the

chosen route has few \loops" or \detours" to avoid congestion. To take advantage of this,

we precede the execution of the algorithm in Figure 6.10 with a �rst pass that attempts to

route the net quickly without searching for loops or detours. Only if the �rst pass fails, is

the full maze router of Figure 6.10 used.

This initial pass is similar to the algorithm of Figure 6.10 with two modi�cations. First,

during the expansion of a node, neighbours that are geometrically farther away from the

destination than the current node (in both the X and Y direction) are not placed into

the heap. This has the e�ect of disallowing \backwards" turns. The reason for limiting

114

X

Y

Z

B A

Figure 6.13: Example in which pruning should be limited to moves that are further in both
the X and Y dimensions.

A

B

C D

E

DEST.

SRC.

Figure 6.14: Example in which the cost of a node should reect both the distance from the
source and distance to the destination.

the pruning to moves that are further in both dimensions (as opposed to using Manhattan

distance to determine which nodes should be pruned) can be seen in Figure 6.13 in which

block A is to be connected to block B. Assume the router is currently expanding around

track X. In terms of Manhattan distance, both tracks Y and Z are further away from the

destination than X, but clearly Y or Z must be chosen to complete the route. These tracks

are closer to the destination than X in terms of their X-dimensions; therefore, our algorithm

would place Y and Z in the heap, leading to a valid solution.

Second, we modify the order in which nodes in the heap are visited. Rather than using

a breadth-�rst search, we visit nodes according to their geometric location. At each step,

we extract the node in the heap that is closest to the destination (Manhattan distance) and

expand around it.

Figure 6.14 shows a potential problem with this approach. Here, tracks B, D, and E

115

DEST.

SOURCE

Node visited during search

Logic block

Figure 6.15: Nodes visited by the directional search algorithm.

are equally far from the destination (recall that we use the Manhattan distance). Using

the algorithm described, path fA,D,E,Cg might be chosen, when clearly path fA,B,Cg is
a better choice. To avoid this problem, we select a node from the heap based not only on

the distance of the node to the destination, but also the path length between this node and

the source.

This can be implemented by changing the \then" clause of the inner-most \if" statement

in the algorithm of Figure 6.10 to:

place neighbour in heap with label = distance to destination + �(l + 1)

By experimentation, we found that � = 0:75 works well.

Figure 6.15, shows the nodes visited during the routing of the net of Figure 6.12 using

the enhanced algorithm. In this example, only �ve nodes that were not part of the �nal

path were visited.

The above algorithm assumes that we know the location of the destination pin. For

multi-sink nets, however, there are several possible destination pins. To route multi-sink

nets, we choose the closest pin to the source, and use that as the \target". When the target

is found, the remaining pins are examined to determine which is closest to any single node

116

of T (the partial route for this net). This closest pin is the new target, the single closest

node of T is placed in the heap, and the process repeated. The modi�ed algorithm is shown

in Figures 6.16 and 6.17.

heap = null
T = null /* T will contain route of net */
mark all nodes as 'unused'
put source of net in heap with label=0
target = closest sink to source
while there are still pins to connect for this netf

if heap is empty f
routing for this net failed, exit algorithm

g
from heap, remove node with lowest label, l
if this node is a goal pin (a sink of the net) f

backtrace through graph, adding nodes to T, and marking resources as `used'
heap = null
target = closest unconnected sink to any node in T
place node in T that is closest to target into heap

g else f
if we have not yet visited this node f

for each neighbour f
if this neighbour is not further in both the X and Y dimensions f

if this neighbour is not marked `used' f
place neighbour in heap with label =

distance between neighbour and target + �(l+1)
g

g
g

g
g

g

Figure 6.16: Modi�ed pseudo-code for algorithm to route a single net.

As described above, if the directional algorithm fails, the search is repeated using a

breadth-�rst search. This ensures that if a route exists, it will be found. However, often the

route found by the directional algorithm will be sub-optimal, and this sub-optimal route

may lead to failures when subsequent nets are routed. In the next section, we place and

route several benchmark circuits, and quantify the e�ects of using the directional algorithm.

Pin Equivalence

Both the standard and directional maze routing algorithms make use of the fact that all

input pins to a lookup table are equivalent. Thus, when routing towards a lookup table

117

N = list of nets to route
sort N by number of memory connections
N 0 = N
passes = 0
done = 0
repeat until (passes = 10 or done = 1) f

for each net i in N f
route net according to algorithm of Figure 6.16
if routing for this net fails f

route net according to algorithm of Figure 6.10
if routing still fails f

move element i to head of N 0

g
g

g
if all nets were routed successfully f

done = 1
g
N = N 0

add 1 to passes
g

Figure 6.17: Modi�ed pseudo-code for algorithm to route all nets.

input, the �rst available input found is used. Similarly, all address pins of a memory block

are equivalent. Data pins are also equivalent with the restriction that once a connection is

made to a data-in pin, the corresponding data-out pin is no longer equivalent to the other

data-out pins (and vice versa). For example, if the �fth data-in pin of a given memory block

is used to implement a connection to bit 0 of a logical memory, the �fth data-out pin of

that block must also correspond to bit 0. Our router takes advantage of this when possible.

6.2.3 Validation of Placement and Routing Tools

This section presents a quantitative comparison of the placer/router combination described

in this chapter with existing placer/router combinations. Since all published results are

for logic-only circuits, we �rst present comparisons for an FPGA with no memory arrays.

In Subsection 6.2.3, we examine the algorithms' performance on two circuits containing

memory.

118

Altor/ Altor/ FPR Altor/ Altor/ Altor/ SPLACE/ Altor/
LR/ GPB [75] GC IKMB TRACER SROUTE SROUTE

Circuit Sega [88] [103] [105] [106]
[111, 100, 84]

9symml 9 9 9 9 8 6 7 7
alu2 10 11 10 9 9 9 8 9
alu4 13 14 13 12 11 11 9 12
apex7 13 11 9 10 10 8 6 9
example2 17 13 13 12 11 10 7 11
k2�x 16 17 17 16 15 14 11 15
term1 9 10 8 9 8 7 5 8
too large 11 12 11 11 10 9 8 11
vda 14 13 13 11 12 11 10 12
TOTAL 112 110 103 99 94 85 71 94

Table 6.2: Minimum number of tracks/channel for various CAD ows.

Logic Circuits

Table 6.2 compares place and route results from our CAD ow to those obtained from �ve

other sources using 9 small logic benchmark circuits (54 to 358 logic blocks). Each entry

in the table is the smallest number of tracks within each channel for which the circuit can

be completely routed. In each case, we assumed an FPGA size and aspect ratio consistent

with those assumed in the previous studies.

As Table 6.2 shows, the results obtained by SPLACE and SROUTE compare favor-

ably with the previous published results. Overall, we require 16.5% fewer tracks than the

next best set of results, and 36.6% fewer tracks than the Altor/LocusRoute/Sega combina-

tion [111, 100, 84]. Note that each of the referenced papers (except [75]) presents results

for a routing algorithm using an existing placement. The Altor program, used to create

the placements for each of the other studies, is a standard cell placement tool, and not

optimized for FPGAs. To determine how much of an e�ect the new placement has on the

�nal routing results, we re-routed the circuits using SROUTE with the same placement

that was used in the other studies. As the �nal column in table 6.2 shows, SROUTE routed

the circuits using 15% fewer tracks than the LocusRoute/Sega combination, and required

more tracks that only one of the previous routing algorithms. Thus, both SPLACE and

SROUTE perform well, and are suitable for the architectural experiments we present in the

next chapter.

119

SPLACE/SROUTE SPLACE/SROUTE
Circuit (directional) (maze-routing only)
9symml 7 7
alu2 8 8
alu4 9 9
apex7 6 6
example2 7 7
k2�x 11 11
term1 5 5
too large 8 8
vda 10 9
TOTAL 71 70

Table 6.3: Comparison of directional and maze-routing algorithm results.

Table 6.3 shows the results with and without the directional enhancements described

in Section 6.2.2. As the table shows, the directional algorithm performs nearly as well as

the full maze routing algorithm. In only one circuit was an extra track required. Table 6.4

shows the di�erence in CPU time required by the two routing algorithms for the three

largest circuits of Table 6.2. The CPU time required depends on the \di�culty" of the

routing problem; this, in turn, depends on the number of tracks in each channel. For each

benchmark in Table 6.4, two sets of results are presented: one for an architecture with 14

tracks per channel (an \easy" problem), and one for an architecture with the minimum

number of tracks in each channel (a more di�cult problem). In each case, the directional

algorithm requires less CPU time than the maze router algorithm, but the di�erence is not

as dramatic as might be expected. This is because these are small circuits; as shown in the

next subsection, the di�erence is larger for large circuits.

The results in Table 6.2 assume that the switch block in Figure 6.3(a) is employed (this

is the same across all CAD ows presented). As explained in Section 6.1.2, this switch

block will not work well in an architecture with a low memory-logic exibility. Table 6.5

shows the track count results for the other two switch blocks in Figure 6.3. As explained

in Section 6.1.2, the non-disjoint switch block of Figure 6.3(c) is superior when making

connections between low-exibility memory pins; these results show that this switch block

works well, even if no memory blocks are present.

120

Circuit
and Maze only Directional
Tracks/Channel

alu4:
14 tracks/channel 4.22 sec 1.75 sec
minimum tracks/channel 10.6 sec 2.02 sec
k2�x:
14 tracks/channel 8.88 sec 2.58 sec
minimum tracks/channel 7.35 sec 7.08 sec
vda:
14 tracks/channel 4.00 sec 1.27 sec
minimum tracks/channel 5.87 sec 3.62 sec

Table 6.4: CPU time requirements2 for router.

Disjoint Non-disjoint
Circuit Fig.6.3(a) Fig.6.3(b) Fig.6.3(c)
9symml 7 7 6
alu2 8 9 8
alu4 9 10 9
apex7 6 6 6
example2 7 8 6
k2�x 11 12 10
term1 5 6 5
too large 8 9 8
vda 10 11 9
TOTAL 71 78 67

Table 6.5: Track count using disjoint and non-disjoint switch blocks.

Circuits with Memory

In this section, we quantify the performance of the placer and router for circuits and archi-

tectures with both memory and logic. Since there are no comparable published studies, the

results are presented for our tools only.

Table 6.6 shows the minimum number of tracks required in each channel for two circuits.

The �rst circuit, obtained from Hewlett-Packard Labs, �nds the \edit distance" between two

strings (representing handwritten characters) [112]. The circuit, called Scribbler, contains

486 �ve-input lookup tables, 84 I/O pads, 8 memory blocks, and 573 nets. It was placed and

routed on an architecture with 504 logic blocks and 8 memory arrays. The second circuit was

2All timing results in this chapter were obtained on a 110Mhz Sparc-5 with 32MB of memory.

121

generated by the stochastic circuit generator described in Chapter 3 and contains 1848 �ve-

input lookup tables, I/O pads, 15 memory blocks, and 2156 nets. It was placed and routed

on an architecture with 1872 logic blocks and 16 memory arrays. For both architectures,

Fm = 4 was assumed (other values of Fm will be investigated in the next chapter).

As Table 6.6 shows, the directional algorithm �nds results with only slightly more tracks

in each channel than does the full maze routing algorithm. The di�erence in CPU time

requirements is shown in Table 6.7; again, results are presented for both \easy" and \more

di�cult" routing problems. Clearly the di�erence in CPU time is more signi�cant than it

was for the smaller circuits, and justi�es the use of the directional algorithm in architectural

experiments.

Circuit Directional Maze only
Scribbler 12 11
Stochastic 17 15

Table 6.6: Minimum number of tracks/channel.

Circuit
and Maze only Directional
Tracks/Channel

Scribbler:
17 tracks/channel 39.3 sec 3.10 sec
minimum tracks/channel 258.6 sec 33.1 sec
Stochastic:
20 tracks/channel 420 sec 16.8 sec
minimum tracks/channel 1296 sec 16.9 sec

Table 6.7: CPU time requirements for router.

6.3 Summary

This chapter has described a heterogeneous FPGA architecture that can e�ciently imple-

ment circuits containing both memory and logic. The memory resources consist of a set

of identical arrays, similar to those discussed in Chapter 4, while the logic resources con-

sist of a grid of �ve-input lookup tables connected using horizontal and vertical channels.

122

The memory and logic resources are connected through memory/logic interconnect blocks;

within each block, each memory pin can be programmably connected to one (or more) of

Fm tracks.

We have also presented a CAD tool suite that maps circuits to our heterogenous FPGA.

The optimization and technology-mapping phases are performed separately for the logic and

memory portions of the circuits while the custom placer and router processes the memory

and logic portions simultaneously. We have shown that the placer and router perform well

compared to several existing published CAD tools. Overall, we require 16.5% fewer tracks

than the next best set of results, and 36.6% fewer tracks than the Altor/LocusRoute/Sega

combination [111, 100, 84]. When using a �xed placement, our router �nds solutions using

fewer tracks than all but one of the algorithms that we compared our results to, and 15%

fewer tracks than the LocusRoute/Sega combination.

The next chapter focuses on the memory/logic interconnect. In particular, we �rst

determine how exible the interconnect must be, and then examine enhancements to the

interconnect presented here that improves the routability and speed of the FPGA.

123

Chapter 7

The Memory/Logic Interface

The previous chapter described an FPGA architecture containing both logic and memory

resources. The logic blocks of this device are �ve-input lookup tables connected using hori-

zontal and vertical channels, similar to those in the Xilinx XC4000 and Lucent Technologies

ORCA FPGAs [12, 13]. The memory resources consist of a set of con�gurable arrays similar

to those described in Chapter 4. The focus of this chapter is the interface between these

memory and logic resources.

The design of a good memory/logic interface is critical. If the interface is not exible

enough, many circuits will be unroutable, while if it is too exible, it will be slower and

consume more chip area than is necessary. This chapter concentrates on two aspects of the

memory/logic interface. First, Section 7.1 investigates how exible the interface must be,

and how exibility a�ects the area and speed of the device. Second, Section 7.2 shows that

the routability and speed of the FPGA can be improved by adding architectural support

for nets that connect more than one memory array. The results in both of these sections

were obtained experimentally using benchmark circuits from the generator described in

Chapter 3. In Section 7.3, we compare the results to those obtained using a single \real"

benchmark circuit.

124

TO LOGIC PART OF FPGA

TO LOGIC PART OF FPGA

MEMORY
 BLOCK

Figure 7.1: Memory/logic interconnect block example from Chapter 6.

7.1 Memory/Logic Interface Flexibility

As described in Section 6.1.3, the exibility of the interconnect structure is quanti�ed by

a parameter Fm which indicates the number of tracks to which each memory pin can be

connected. The example of that section is repeated in Figure 7.1. In this �gure, each dot

represents a programmable switch that can optionally connect a single horizontal pin to a

single vertical track. Since each pin in Figure 7.1 has four of these switches, Fm = 4. The

question we address in this section is: what value (or range of values) of Fm results in the

most area-e�cient and speed-e�cient FPGA?

Note that we are concerned about the area and speed of the entire FPGA, not just the

memory/logic interconnect region. Clearly, the lower Fm, the smaller the memory/logic

interconnect block will be because fewer programming bits and pass transistors are needed.

Decreasing Fm, however, places additional demands on the rest of the FPGA since it makes

it more di�cult to route nets between the logic and memory blocks. One way the designer

of an FPGA can compensate for this reduction in routability is to add extra tracks to each

routing channel across the entire FPGA. The area cost of these additional tracks must be

considered when determining a good value of Fm.

125

Similarly, the lower Fm, the fewer switches there are on any path into and out of the

memory blocks, and hence, the shorter the memory access times. However, the lower-

exibility memory/logic interconnect blocks may result in circuitous routes that connect

logic and memory. The extra delay due to these circuitous routes must also be considered

when determining a good value for Fm.

An early version of part of this section appeared in [82].

7.1.1 Methodology

We employ an experimental approach in which we \implement" many benchmark circuits

on FPGAs with di�erent values of Fm and measure the area and delay of the resulting im-

plementations. The following subsections describe the benchmark circuits, the architectures

explored in the experiments, the implementation tools employed, and the area and timing

models used to evaluate the architectures.

Benchmark Circuits

As described in Chapter 3, the usual approach of using a handful of benchmark circuits is

not suitable for the exploration of con�gurable memory architectures. Since most memory

circuits contain only a few logical memories, we need hundreds of benchmark circuits to

thoroughly exercise the memory/logic interconnect architecture. Rather than gather that

many circuits, we use the same approach used in in Chapter 5; that is, we use stochastically

generated circuits from the circuit generator described in Chapter 3. The use of the 171

circuits evaluated during the analysis of Chapter 3 is not an option since we could not

obtain the netlists for these circuits. Unlike Chapter 5, here we use the entire generated

circuits, not just the logical memory con�gurations.

It is important that the circuits used as benchmarks be realistic representatives of circuits

that would actually be implemented on the device in question. Since the circuits generated

by the generator described in Chapter 3 vary widely in terms of size, memory usage, and

I/O pin requirements, it is necessary to constrain the generator to ensure that it generates

circuits suitable for our study.

126

Architecture to Number Logic Memory I/O Nets
which circuits Blocks Blocks Blocks
are targeted Avg St.Dev Avg St.Dev Avg St.Dev Avg St.Dev

2 arrays 100 535 279 2 0 123 75 651 307
4 arrays 100 657 373 3.63 0.81 134 85.9 788 415
8 arrays 100 913 467 7.72 0.57 146 85.5 1069 497
16 arrays 100 849 500 15.2 1.33 154 102 1030 500

Table 7.1: Circuit statistics.

The following restrictions are placed on the generated circuits:

1. The number of logic blocks in each circuit must be between 200 and 2500. The upper

bound ensures that the circuits can be placed and routed using a reasonable amount

of CPU time.

2. Each circuit must use no more than 400 I/O pins. This ensures that the generated

circuits do not require an inordinately large FPGA.

3. The total number of memory bits in each circuit's logical memory con�guration must

be between 75% and 100% of the total bits in the target architecture. The lower limit

ensures that we are \stressing" the architecture in each experiment.

4. The logical-to-physical mapper must be able to �nd a mapping using N or fewer ar-

rays, where N is the number of arrays in the target architecture. As described in

Section 4.2.4, even if an architecture contains enough bits, there is no guarantee that

the memory resources will be able to implement a circuit's logical memory con�gura-

tion using N or fewer arrays.

Circuits that do not meet these constraints are discarded, and replacements generated.

In the results of Section 7.1.3, we examine four sizes of FPGAs: FPGAs with two, four,

eight, and sixteen 2-Kbit memory arrays. Since each size of FPGA will have a di�erent

total number of memory bits, we must create a separate set of benchmark circuits for each

size of FPGA. For each of the four sizes, we created circuits until there were 100 that met

all of the above criteria. Table 7.1 shows the number of logic blocks, memory blocks, I/O

blocks, and nets in the accepted circuits.

127

Architectural Considerations

As mentioned above, we employ an experimental approach in which each benchmark circuit

is \implemented" on an FPGA. The architecture on which the circuits are implemented is

the focus of this section.

In selecting a particular FPGA architecture from the family of architectures described in

the previous chapter, there are four independent decisions: the number of memory blocks

(N), the number and positions of the logic blocks, the value of Fm, and the number of

parallel tracks in each routing channel (W). In the next section, we present results for

FPGAs with 2, 4, 8, and 16 memory arrays, and for each, we vary Fm from 1 to its

maximum value. Thus, the values of Fm and N are constrained by the experiment.

A common approach used to select the number of logic blocks in the target architecture

is to choose the smallest square FPGA onto which the benchmark circuit �ts [11, 98, 113].

This means that a di�erent architecture is used for each benchmark circuit. The motivation

for allowing the FPGA size to oat with the circuit size is that this results in \nearly-full"

FPGAs, which is the case FPGA designers wish to optimize.

We use a similar approach. Our choice is complicated by the fact that we must ensure

a reasonable ratio of logic blocks to memory blocks in the horizontal dimension. Given

a desired ratio, the memory block designer can choose an appropriate aspect ratio for

the memory block such that the desired memory block to logic block ratio is achieved. For

example, if there are to be 8 memory arrays, and 32 logic blocks in the horizontal dimension,

the memory block designer can lay out the memory block such that it is four times as wide

as one logic block. On the other hand, if there are to be 16 memory arrays and 32 logic

blocks in the horizontal dimension, the memory block designer would be hard-pressed to

lay out the memory block such that it is only twice as wide as one logic block. By using

area models for logic and memory blocks, we have determined that it would be di�cult to

lay out a memory block with a width less than that of three logic blocks.

Thus, to choose an appropriate number and position of logic blocks, we do the following:

1. If g is the number of logic blocks in the circuit, we choose an architecture with G

logic blocks where G is the smallest value such that G � g and
p
G is an integer.

Half of these blocks are positioned above the memory row and half below, creating an

128

Class of architectures R =
num. logic blocks in horiz. dimension

num. memory blocks aspect ratio

Average St.Dev Avg St.Dev
2 arrays 12.1 3.35 1 0
4 arrays 6.60 1.99 1 0
8 arrays 3.93 0.86 1.08 0.25
16 arrays 3.01 0.01 3.16 1.72

Table 7.2: Architecture statistics.

approximately square chip.

2. We assume that an architecture with G logic blocks contains 8
p
G I/O blocks on the

periphery of the chip (two I/O blocks per logic block on each edge). If the circuit

requires more I/O pins, G is adjusted to give a square FPGA with enough pins.

3. The above will create an architecture with R =
p
G=N logic blocks per memory block

in the horizontal dimension, where N is the number of memory blocks. If R is less

than three, we create the smallest rectangular FPGA with enough logic blocks and

I/O blocks such that R = 3.

Table 7.2 shows the FPGA aspect ratio and logic blocks per memory block averaged over

all 100 circuits for each class of FPGA architecture.

The �nal architectural parameter to be discussed is the number of tracks per routing

channel, W . In our experiments, we let this parameter oat, as was done in [11, 98, 113].

For each implementation, we determine the minimum number of tracks per channel for

which all nets in the circuit can be routed. This value of W is then used in the area model

described below.

Implementation Tools

Figure 7.2 shows the CAD ow used to implement each benchmark circuit. The logical-

to-physical mapper was described in Section 4.2.2, the automatic placement tool in Sec-

tion 6.2.1, and the automatic routing tool in Section 6.2.2. The routing is performed

several times for each circuit; between attempts, we vary the number of tracks in each

channel. From this, we determine the minimum channel width required to route all nets in

the circuit. In each case, we assume a uniform channel width across the FPGA.

129

TIMING
ANALYSIS

memory
part

logic
part

MAP TO
PHYSICAL
ARRAYS

P
LA

C
E

M
E

N
T

R
O

U
T

IN
G DELAY

MODEL

TIMING
ANALYSIS

AREA
MODEL

number of
programmable
connections

read access time

C
IR

C
U

IT
S

Figure 7.2: Methodology for memory/logic interconnect block experiments.

We do not need to perform logic optimization or technology mapping for the logic since

the logic portions of the circuits from the circuit generator have already been optimized and

are expressed in terms of �ve-input lookup tables.

Area Model

The area required by an FPGA architecture is the sum of the area required by the logic

blocks, memory blocks, and routing resources. Since the value of Fm does not a�ect the

number of memory blocks or logic blocks required to implement a circuit, we focus on the

routing area.

The routing resources are made up of three components: programmable switches, pro-

gramming bits, and metal routing segments. Since estimates of the area required by the

metal routing segments are di�cult to obtain without performing a detailed layout, we

concentrate on the area due to the programming bits and switches. Unlike the standalone

architecture of Chapter 4, the area due to switches and programming bits makes up a

signi�cant portion of the FPGA area.

The programming bits and switches appear in three places: connections between logic

blocks and neighbouring routing tracks, connections between memory blocks and neighbour-

ing routing tracks (within the memory/logic interconnect blocks), and connections between

routing tracks in switch blocks. First consider the connections between logic blocks and

routing tracks. The number of such connections is:

programmable connections between logic and routing = PFcG

where G is the number of logic blocks, P is the number of pins incident to each logic block,

and Fc is the number of tracks to which each pin can be connected. In our architecture,

130

P = 6 and Fc = W ; thus,

programmable connections between logic and routing = 6WG

Within each switch block, there are 2 �Fs �W programmable bidirectional connections; in

our architecture Fs = 3 and there are approximately G switch blocks, thus,

programmable connections in switch blocks = 6WG

Within each memory/logic interconnect block, there areM �Fm programmable connections.

In the architecture assumed in this Chapter, there are 8 data-in pins, 8 data-out pins, and

11 address pins incident to each array. Since there are N arrays,

programmable connections in memory/logic interconnect = 27NFm

Combining the above gives:

number of programmable connections = 12WG+ 27NFm (7.1)

The number of programmable connections estimated by Equation 7.1 is used as an area

metric. Of course, not all programmable connections are the same size; the W connections

to the input of a logic block do not each require their own programming bit since the W

bits can be encoded. Nonetheless, the number of programmable connections gives a good

indication of the relative sizes of routing architectures.

Since the number of logic blocks is typically much larger than the number of memory

arrays, Equation 7.1 suggests that the area depends much more on the number of tracks in

each channel than on Fm.

Delay Model

A detailed delay model is used to compare the delays of circuit implementations for FPGAs

with di�erent values of Fm. Since the circuits from the circuit generator do not include ip-

ops, it is di�cult to identify the critical path of each circuit. Thus, rather than comparing

critical paths, we compare the maximum read access time of the memories in each circuit.

The read access time is the time to read an item from memory, including the delay due

131

Figure 7.3: Bi-directional re-powering switch.

to the routing between the address pins and the driving logic block and the delay due to

the routing between the data-out pins and the logic sink. The delays of the logic blocks on

either end are not included. A memory typically has several address and data connections;

the longest connection for each is chosen. For circuits with more than one memory, the

memory with the longest read access time is chosen.

Like the delay model used in the stand-alone architecture studies, the model used here

contains two parts: the delay through the memory array and the delays of the input and

output networks. The �rst component is estimated using the access time model described

in Section 5.3.1, which takes into account the delay due to the decoder, wordlines, bitlines,

and sense ampli�ers. The second component, the network delay, is found by constructing

RC trees for each routed net, and �nding the Elmore delay of each tree [81].

The delay of a routed net depends signi�cantly on the switch architecture of the FPGA.

If a single pass transistor is used for each switch, the delay increases quadratically as the

net length increases. To speed up high fan-out and long nets, commercial FPGAs either

contain re-powering bu�ers distributed through the FPGA, or the associated CAD tools use

logic blocks to re-power long or high fan-out nets. The identi�cation of the optimum bu�er

placement strategy is an active area of research. In our model, we make the pessimistic

assumption that every switch in each switch block and memory/logic interconnect block is

replaced by the bidirectional re-powering switch of Figure 7.3. Although this architecture

is not likely to be used in practice because of the large area requirements of each switch

block, we believe that the delay estimates obtained by assuming such an architecture are

similar to those that would be obtained had a more intelligent bu�er placement policy been

employed.

132

7.1.2 E�ect of Fm on FPGA with 16 Memory Blocks

The �rst set of results is for an FPGA with sixteen 2-Kbit memory arrays. We will �rst

discuss how Fm a�ects FPGA routability, and then compare FPGAs with di�erent values

of Fm in terms of area and speed.

Track Requirement Results

As explained in Section 7.1.1, the results are based on the implementation of 100 stochas-

tically generated circuits. For each circuit, the minimum channel width required to route

all nets in the circuit is determined, assuming that all channels across the FPGA have the

same width. This channel width (number of tracks) is then averaged over all 100 bench-

mark circuits, giving the average number of tracks required to route the circuits. This is

repeated for several values of Fm, giving the solid line in Figure 7.4. The dotted lines show

the track requirement plus and minus one standard deviation. As expected, as the mem-

ory/logic interconnect exibility (Fm) increases, the average track requirement drops. It is

interesting, however, that beyond Fm = 4, very little further drop is seen. The �nal point

on the horizontal axis is the case in which each pin can be connected to all of the tracks

in the neighbouring vertical channel. Even with this high degree of exibility, almost no

improvement beyond that obtained for Fm = 4 is seen.

The graph shows an anomaly at Fm = 3. To understand why Fm = 3 is a bad choice

in this particular architecture, it is necessary to examine the memory/logic interconnect

pattern employed. Consider Figure 7.5, which shows a particularly bad case for the pattern

described in Section 6.1.3. In this example, the number of memory pins, M , is 27, the

number of vertical tracks incident to each memory/logic interconnect block, V , is 57, and

the number of these tracks to which each pin can connect, Fm, is 3. As can be seen, the 81

memory connections (M � Fm) connect to only 27 of the vertical tracks, leaving 30 vertical

tracks unconnected. Forcing the 27 memory pins to compete for only 27 vertical tracks

when 57 are available is clearly bad for routability. In the next section, we derive a general

condition for which the memory/logic interconnect block described by Equation 6.2 leaves

unconnected vertical tracks, and in the subsequent section we show how this general result

relates to our experiments.

133

Number
of Tracks
Required
to Route

Memory/Logic Interconnect Flexibility (Fm)

1 2 3 4 5 6 7 15 25 Full

0

5

10

15

20

25

30

35

g

........................

.

g

.

.

g
Average

Plus 1 Std. Dev.

Minus 1 Std. Dev.

..

.
g

.

.
g

.

.
g

.

.
g

.

.
g

.

.
g

.

.
g

Figure 7.4: Average track requirement as a function of Fm for FPGA with 16 arrays.

TO LOGIC PART OF FPGA

TO LOGIC PART OF FPGA

MEMORY
 BLOCK

V tracks

M pins

Figure 7.5: Bad case for memory/logic interconnect block of Chapter 6.

134

General condition for poor memory/logic interconnect blocks

In this subsection, we show that the memory/logic interconnect block described by Equa-

tion 6.2 results in V �M vertical tracks being left unconnected if V andM are both divisible

by Fm and V > M .

We use the following notation: Ti(p) indicates the track number of the i'th connection

to pin p (0 � i < Fm, 0 � p < M , and 0 � Ti(p) < V). From Equation 6.2,

Ti(p) =

��
pV

M

�
+

�
V

Fm

�
i

�
mod V (7.2)

We will use Ti to denote the set of all elements of Ti(p) for all 0 � p < M .

Assume that V and M are both divisible by Fm and V > M . We will �rst show that

each of the M elements of T0 are distinct. From Equation 7.2, the �rst operand of the

modulus operation is never larger than V , since p < M . Thus:

T0(p) =

�
pV

M

�

Since V > M , it is clear that no two elements of T0 are the same.

We now show that Ti+1(p) = Ti(p +M=Fm) (this result will be needed later). From

Equation 7.2,

Ti+1(p) =

��
pV

M

�
+

�
V

Fm

�
(i+ 1)

�
mod V

From our initial assumptions, we know V=Fm is an integer. Taking advantage of this, and

simplifying, gives:

Ti+1(p) =

($
(p+ M

Fm
)V

M

%
+

�
V

Fm

�
i

)
mod V (7.3)

= Ti

�
p+

M

Fm

�

We further show that Ti(M + d) = Ti(d) for all integers d. From Equation 7.2,

Ti(M + d) =

��
(M + d)V

M

�
+

�
V

Fm

�
i

�
mod V (7.4)

=

�
V +

�
V d

M

�
+

�
V

Fm

�
i

�
mod V

= Ti(d)

135

Having established the above, we now show that if x is an element of Ti, it is also an

element of Ti+1 under our assumptions. In other words,

Ti(p) = Ti+1(k) for some k : 0 � k < M 8p : 0 � p < M (7.5)

If M=Fm � p < M , then from Equation 7.4,

Ti(p) = Ti+1

�
p�

M

Fm

�

while if 0 � p < M=Fm,

Ti(p) = Ti+1

�
p�

M

Fm

�

= Ti+1

�
p+M �

M

Fm

�

= Ti+1

�
p+

M (Fm � 1)

Fm

�

where we have used Equation 7.5 to give a pin number in the required range. In both

cases, the argument of Ti+1 is between 0 and M ; therefore, Equation 7.5 is true.

Since Ti and Ti+1 each have M elements, and since every element in T0 is unique, from

Equation 7.5 we know that each set Ti for 0 � i < Fm contains the sameM unique elements.

Since each element is between 0 and V � 1, and since V > M , there are V �M integers

that are not within Ti for any 0 � i < Fm. Thus, the vertical tracks that are represented

by these missing elements are not connected to any memory pins.

Application of General Result to our Experiments

In all of our experiments, each array contains 11 address pins, 8 data-in pins, and 8 data-out

pins, giving M = 27.

The value of V depends on the number of tracks in each logic routing channel:

V =

�
(RN + 1)W

N + 1

�

where N is the number of memory blocks, W is the width of a single channel between

two logic blocks, and R is the number of logic blocks per memory block in the horizontal

136

dimension. From Table 7.2, in the experiments using an FPGA with 16 memory arrays,

R = 3 for most circuits. This (along with N = 16) gives:

V =

�
49W

17

�

From the above equation, V is divisible by 3 when 18 � W � 25. Although the average

W for this set of experiments is below 18, there are many circuits that require a W in

the above range. For these circuits, both M and V are divisible by 3. From the result in

the previous subsection, we know that the resulting memory/logic interconnect block will

contain unconnected vertical tracks when Fm = 3. Thus, we would expect a larger average

track requirement for this value of Fm; Figure 7.4 shows that this is the case.

Area Results

As explained in Section 7.1.1, simply counting the number of tracks needed may not be

an accurate reection of the area required for routing. Instead, we use the number of pro-

grammable connections in the routing resources of the FPGA as an area metric. Figure 7.6

shows the number of programmable connections vs. Fm, averaged over the 100 circuits,

as well as the results plus and minus one standard deviation. As expected, this follows

the track requirement curve from Figure 7.4 very closely. Since the logic routing resources

contain many more switches than the memory/logic interconnect does, the increase in the

memory/logic interconnect area as Fm increases is swamped by the decrease in the area of

the logic routing resources due to the decrease in the number of tracks per channel. Thus,

in this architecture, the best area e�ciency is obtained for Fm � 4. For very large values

of Fm, the area increases slightly due to the larger memory/logic interconnect blocks and

the inability of the extra switches to reduce the track requirement. The �nal point on the

graph shows the number of programmable connections when Fm equals its maximum value;

in this case, only slightly more area is required than when Fm = 7.

Delay Results

Figure 7.7 shows the average read access time of the memories in the 100 benchmark circuits.

As explained above, the read access time is the time to perform a read including the delay

of the address-in and data-out networks. The extremes of Fm = 1 and Fm equal to its

137

Total
Number of

Programmable
Connections

in FPGA

Memory/Logic Interconnect Flexibility (Fm)

1 2 3 4 5 6 7 15 25 Full

0

100000

200000

300000

400000

500000

g

.......................

.

g

. .
. .

. .
. . .

.

g
Average

Plus 1 Std. Dev.

Minus 1 Std. Dev.

...........

.

g

.

.

g

.

.

g

.

.

g

.

.

g

.

.

g

.

.

g

Figure 7.6: No. of programmable connections as a function of Fm for FPGA with 16 arrays.

maximum value are both bad choices. If Fm = 1, circuitous routes are required to connect

nets to the low exibility memory pins. These circuitous routes pass through more switch

blocks than would otherwise be necessary, leading to longer net delays. When Fm is its

maximum value, the large number of switches in the memory/logic interconnect block adds

a signi�cant amount of extra capacitance to the routing wires, again leading to longer

routing delays. Between Fm = 2 and Fm = 7, the delay is roughly constant.

Combining the area and delay results, we see that the area and speed e�ciency of the

FPGA is roughly the same over a wide range for Fm. Architectures with 4 � Fm � 7 all

have approximately the same area and speed e�ciency.

138

Memory
Read
Time

Memory/Logic Interconnect Flexibility (Fm)

1 2 3 4 5 6 7 15 25 Full

80ns

90ns

100ns

110ns

120ns

130ns

140ns

150ns

160ns

g

.

.

g

.

.

g
Average

Plus 1 Std. Dev.

Minus 1 Std. Dev.

.

.

g

.

.

g

.

.

g

.

.

g

.

.

g

.
. . .

.

g

. .
. .

..
. .

. .

. .
. .

..
. .

. .

g

Figure 7.7: Delay as a function of Fm for FPGA with 16 arrays.

7.1.3 E�ect of Fm on FPGAs with Fewer Memory Blocks

The results in the previous section were for an FPGA with sixteen arrays. Here we compare

the results to those obtained for FPGAs with two, four, and eight 2-Kbit arrays.

Track Requirement Results

Figure 7.8 shows the number of tracks required in each channel averaged over all circuits for

all four FPGA sizes. Recall from Section 7.1.1 that the benchmark circuits used to evaluate

each architecture depend on the total number of memory bits in the architecture. Thus,

each line in Figure 7.8 represents a di�erent set of 100 benchmark circuits.

The most interesting trend in Figure 7.8 is that the results for the smaller FPGA ar-

chitectures are less sensitive to Fm than those for the larger architectures. In fact, for the

2 and 4 array FPGAs, an Fm of 1 or 2 provides su�cient exibility. To understand why

the smaller architectures can tolerate such low values of Fm, it is necessary to examine the

circuits that are used to evaluate each architecture.

139

Number
of Tracks
Required
to Route

Memory/Logic Interconnect Flexibility (Fm)

1 2 3 4 5 6 7 15 25 Full

0

5

10

15

20

25 g16 arrays

g
g

g g g g g g g

g8 arrays

g g
g g g g g g gg4 arrays

g g g g g g g g gg2 arrays g g g g g g g g g

Figure 7.8: Average track requirement as a function of Fm.

Table 7.3 breaks down all nets in the benchmark circuits into three categories:

1. nets which connect only logic blocks

2. nets that connect exactly one memory block to one or more logic blocks

3. nets that connect more than one memory block to one or more logic blocks

Consider the third category: nets that connect to more than one memory block. In the

generated circuits, these nets serve two purposes:

1. When arrays are combined to implement a larger logical memory, the address pins

(and possibly data-in pins) of the arrays are connected together.

2. In clusters with more than one logical memory, often the data-in pins are driven by a

common bus (the shared-connection patterns described in Section 3.2.3).

Architecture to which Category 1 Category 2 Category 3 Memory Pins per
circuits are targeted nets nets nets category 3 net

2 arrays 94.2% 4.32% 1.45% 2.00
4 arrays 93.0% 5.24% 1.78% 2.77
8 arrays 92.2% 5.93% 1.91% 4.24
16 arrays 89.4% 8.17% 2.43% 7.19

Table 7.3: Net statistics.

140

These memory-to-memory nets are particularly hard to route with small values of Fm.

Figure 7.9 illustrates a net that connects to three memory pins. Assuming a low value of

Fm, there are three regions of low exibility; the logic routing resources must be used to

connect to speci�c tracks incident to each of these three low-exibility regions. Given the

relatively few options available within each switch block, circuitous routes are often required

to make connections between these low exibility regions, causing routability problems.

Intuitively, these nets will appear more often in circuits aimed at larger architectures,

since there are likely more memory blocks to connect. Table 7.3 shows that this intuition is

correct. Thus, the FPGAs used to implement the larger circuits need a higher value of Fm.

To investigate this further, we removed all memory-to-memory connections from the cir-

cuits, and repeated the experiment. Figure 7.10 shows the results for the 16-array case. The

solid line shows the original results from Figure 7.4. The dashed line shows the results ob-

tained from the circuits with the memory-to-memory connections removed. The dotted line

shows the results obtained from the circuits with all memory connections removed (clearly,

this is independent of Fm). As the graph shows, removing just the memory-to-memory

connections gives a routability only slightly worse than that obtained by removing all mem-

ory connections (only slightly more tracks are required). This motivates us to study these

memory-to-memory connections more closely; in Section 7.2 we will present architectural

enhancements aimed at e�ciently implementing memory-to-memory connections.

LOW
FLEXIBILITY

Figure 7.9: A net connected to three memory blocks: three regions of low exibility.

141

Number
of Tracks
Required
to Route

Memory/Logic Interconnect Flexibility (Fm)

1 2 3 4

0

5

10

15

20

25

. .
all but memory

connections
(lower bound)

g
all but category 3 memory connections

g g g

g

route all nets

g
g

g

Figure 7.10: E�ect of removing memory-to-memory connections.

Area Results

Figure 7.11 shows the number of programmable connections required in each architecture

as a function of Fm. As before, the curves closely follow the track requirement results of

Figure 7.8, since the number of programmable connections is dominated by the connections

within the logic routing resources.

Delay Results

As shown in Figure 7.12, the delay curves for the smaller FPGAs follow the same trends as

the 16-array FPGA examined earlier. Since the nets connecting the memories have a larger

fanout in the larger FPGAs, we might expect the delay of the larger FPGAs to be more

sensitive to Fm. Because of the bu�ering assumptions described in Section 7.1.1, however,

it is the depth of the tree implementing a net that determines its delay. Branches that are

not part of the longest source-to-sink path of a tree do not contribute signi�cantly to its

delay.

142

Total
Number of

Programmable
Connections

in FPGA

Memory/Logic Interconnect Flexibility (Fm)

1 2 3 4 5 6 7 15 25 Full

0

50000

100000

150000

200000

250000

300000

350000
g16 arrays

g

g

g g g g g g g

g8 arrays

g g g g g g g g g

g4 arrays g g g g g g g g g

g2 arrays g g g g g g g g g

Figure 7.11: Number of programmable connections as a function of Fm.

Memory
Read
Time

Memory/Logic Interconnect Flexibility (Fm)

1 2 3 4 5 6 7 15 25 Full

60ns

80ns

100ns

120ns

140ns

g
16 arrays

g g g g g g

g

g

g

g
8 arrays

g g g g g g

g

g

g

g 4 arrays
g g g g g g

g

g

g

g

2 arrays
g g

g g g g
g

g

g

Figure 7.12: Delay as a function of Fm.

143

7.1.4 E�ect of Connection Block Flexibility

In the next two sections, we vary the base architecture slightly and repeat the experiments.

In this section, we reduce the exibility of the logic routing resources, and in the next

section, we assume the arrays are positioned at the edge of the FPGA rather than in the

middle.

To create a less exible logic architecture, we reduce the number of tracks to which each

logic block pin can connect (Fc in [37]). The results presented earlier assume Fc = W ; that

is, each logic block pin can connect to any of the tracks in its adjacent channel. Figure 7.13

compares these previous track requirement results to those obtained if Fc = 0:5W for an

FPGA with 8 memory arrays. As the graph shows, reducing Fc means more tracks per

channel are required; this result is not new and was reported in [37]. It is interesting,

however, that the dependence on Fm is the same for both values of Fc (the \shapes" of the

two curves are similar). In the preceding section, we showed that changing Fm primarily

a�ects the memory-to-memory connections; the di�culty in routing these connections does

not depend on Fc. Thus, the fact that the dependence on Fm is the same for both curves in

Figure 7.13 gives additional evidence that the reasoning in the previous section was correct.

Figure 7.14 shows the number of programmable connections as a function of Fm. Again,

the dependence on Fm closely matches that in the track requirement graph of Figure 7.13.

Note that the architecture with Fc = 0:5W requires fewer programmable connections; this

is because there are fewer programmable connections attached to each logic block pin.

7.1.5 Memory at Edge of FPGA

The results so far have assumed that the memory arrays are positioned in the middle of

the chip, as shown in Figure 6.1. The motivation for placing the arrays in the middle of

the FPGA was to minimize the average wire-length of the logic-to-memory connections.

It is conceivable that in some circuits, however, these memory arrays might \get in the

way", causing extra contention in the middle of the device. In this section, we position the

memory arrays at the edge of the chip, as shown in Figure 7.15, and repeat the experiments

described above.

Figure 7.16 compares the track requirements of an 8-array FPGA with the memory

144

Number
of Tracks
Required
to Route

memory/logic interconnect flexibility (Fm)

1 2 3 4 5 6 7 15 25 Full

0

5

10

15

20

g............g.g.g
Fc=W

.g.g.g.g.g.g

g

Fc=0.5 W
g g g g g g g g g

Figure 7.13: Track requirement results for two values of Fc.

Total
Number of

Programmable
Connections

memory/logic interconnect flexibility (Fm)

0

50000

100000

150000

200000

1 2 3 4 5 6 7 15 25 Full

g..............g.g.g

Fc=W
.g.g.g.g.g.g

g

Fc=0.5 W
g g g g g g g g

g

Figure 7.14: Number of programmable connections for two values of Fc.

arrays at the edge (solid line) to the same FPGA with the memory arrays in the middle

(dotted line). As the graph shows, the FPGA with the arrays at the edge is slightly less

routable; approximately one extra track per channel is required (four extra tracks if Fm = 1).

The e�ect of Fm on the track requirement, however, is roughly the same. The area results

in Figure 7.17 follow the track requirement results closely, as before.

A potential advantage of placing the arrays near the edge of the chip is that direct

145

Logic Block
Memory Array

Figure 7.15: Floorplan of FPGA with memory arrays at one edge.

Number
of Tracks
Required
to Route

Memory/Logic Interconnect Flexibility (Fm)

1 2 3 4 5 6 7 15 25 Full

0

5

10

15

20

Arrays at edge

Arrays in middle

g............g.g.g.g.g.g.g.g.g

g

g g
g g g g

g
g g

Figure 7.16: Track requirements results for FPGA with memory arrays at one edge.

connections between memory arrays and I/O pins would be easier. Providing direct access

to the memory arrays can result in a more testable circuit since the contents of the memories

can be more easily read and written by an external test circuit. Also, arrays at the edge

of the device may result in faster I/O to memory transfers, which may be advantageous in

some applications. We have not attempted to quantify these advantages, but we believe

that the di�erence in track requirement shown in Figure 7.16 should motivate an FPGA

designer to investigate alternative ways of providing connections between the arrays and

I/O pins.

146

Total
Number of

Programmable
Connections

Memory/Logic Interconnect Flexibility (Fm)

1 2 3 4 5 6 7 15 25 Full

0

50000

100000

150000

200000

250000

Arrays at edge

Arrays in middle

g............g.g.g.g.g.g.g.g.g

g

g g
g g g g

g
g

g

Figure 7.17: Area results for FPGA with memory arrays at one edge.

7.1.6 Summary of Flexibility Results

In this section, we have shown that in the architecture described in the previous chapter, the

most area-e�cient FPGA occurs when Fm � 4. This conclusion holds for FPGAs with 2, 4,

8, and 16 memory arrays, as well as devices with Fc = 0:5W and devices with the memory

arrays at one edge of the chip. The most speed-e�cient FPGA occurs for 2 � Fm � 7.

Combining the area and speed results, the most e�cient architecture occurs for 4 �
Fm � 7. As Fm approaches its maximum value, the speed-e�ciency is reduced considerably,

and the area-e�ciency somewhat.

The amount of exibility required in the memory/logic interconnect is determined to

a large extent by connections between memory arrays. In the next section, we consider

two architectural enhancements intended to reduce the track requirements of the FPGA by

supporting these memory-to-memory connections.

147

7.2 Enhancements to Support Memory-to-Memory

Connections

In this section, we consider two architectural enhancements intended to e�ciently implement

memory-to-memory connections, and hence improve the area- and speed-e�ciency of the

resulting FPGA.

7.2.1 Pins on Both Sides of Arrays

The �rst enhancement is aimed at common connections between neighbouring memory

blocks. In the standard architecture, shown in Figure 7.18, each memory pin is connected

to Fm tracks in the channel to its right. If a net is to be connected to two neighbouring

memory blocks, the connection must be performed using the logic routing network, as

shown in Figure 7.19 (the circuitous route shown may be a result of contention for tracks

or may be a result of the limited connectivity within a switch block). Figure 7.20 shows

an enhanced interconnect structure; each input pin of a memory is connected to tracks in

both the right and left neighbouring channels. The speci�c track(s) connected within both

channels are the same. Figure 7.21 shows how this enhanced architecture can implement

the net of Figure 7.19. Since the net is to drive the same pin in each array, a single vertical

track between the two arrays can be used.

Since the outputs of our memory arrays can not be placed in a high-impedance state,

it does not make sense to share output pins this way. As shown in Figure 7.20, only input

pins are connected to both neighbouring channels.

Figure 7.22 compares the track requirement results for this new scheme to those obtained

earlier for the 8-array architecture. To present a fair comparison, the horizontal axis of

this graph is the number of switches in each memory/logic interconnect block. In both

architectures, each array has 19 input and 8 output pins. In the standard architecture, this

translates into 27Fm switches per interconnect block, while in the enhanced architecture,

there are 2Fm switches for each input and Fm switches for each output, leading to 46Fm

switches per interconnect block. Each point is labeled with Fm.

148

INPUT PIN

INPUT PIN

INPUT PIN

OUTPUT PIN

OUTPUT PIN

OUTPUT PIN

INPUT PIN

INPUT PIN

INPUT PIN

OUTPUT PIN

OUTPUT PIN

OUTPUT PIN

Figure 7.18: Standard memory/logic interconnect structure for Fm = 1.

Figure 7.19: Circuitous route on standard architecture.

149

OUTPUT PIN

OUTPUT PIN

OUTPUT PIN

OUTPUT PIN

OUTPUT PIN

OUTPUT PIN

INPUT PIN

INPUT PIN

INPUT PIN

INPUT PIN

INPUT PIN

INPUT PIN

Figure 7.20: Enhanced memory/logic interconnect structure for Fm = 1.

Figure 7.21: Direct route on enhanced architecture.

150

Number
of Tracks
Required
to Route

Memory/Logic Programmable Connections per Memory Block

0

5

10

15

0 50 100 150 200 400 700

Memory inputs connected to two channels

Normal interconnect pattern

g

1

2

............g
3

.g

4

.g

5
.g

6
.g

7
.g

15
.g

25
.g

g
1

2
g

3
g 4

g
5
g

9
g

15
g

Figure 7.22: Track requirement results for architecture of Figure 7.20.

As the results of Figure 7.22 show, the new architecture is not e�ective at improving

routability. Consider Figure 7.23(a), in which logic block X is to be connected to memory

blocks Y and Z. In the absence of contention, the router will route the �rst segment of

the net as shown in Figure 7.23(a). Since track-to-track connections via a memory pin are

not allowed (in most commercial FPGAs, pins are unidirectional, making such connections

impossible), the remaining connection must be performed using the logic routing resources

as in Figure 7.23(b). A better route would be to connect each array to a single vertical

track between the two arrays. Although we have added extra switches to the architecture,

in this case, the router is unable to take advantage of them.

X

Z Y

X

Z Y

a) First connection routed b) Second connection routed

Figure 7.23: An example where the router does not take advantage of extra switches.

151

Even if the router was modi�ed to properly take advantage of the extra switches, the

improvement may still not be dramatic. This architecture allows easy connections between

neighbouring memory blocks, but does not allow the e�cient connection of more than two

memory blocks. As shown in Table 7.3, the average net connecting more than one memory

block actually connects four such blocks (seven in the 16-array architecture circuits). In

the next section, we will present an alternative architecture that e�ciently supports these

higher memory-fanout nets.

7.2.2 Dedicated Memory-to-Memory Switches

In this section, we present a more aggressive approach to supporting memory-to-memory

connections. Some of this material also appears in [114].

Architecture

Figure 7.24 illustrates the second enhanced architecture. Each vertical wire incident to

a memory/logic interconnect block can be programmably connected to the corresponding

track in the two neighbouring memory/logic interconnect blocks. This connection is made

through a pass transistor denoted by a rectangle in Figure 7.24. We refer to each of these

pass transistors as a memory-to-memory switch. The connections shown as dots are non-

programmable permanent connections.

Figure 7.25 shows an example of a net connecting three arrays implemented on the

enhanced architecture. Two memory-to-memory switches are used to connect the three

memory arrays. The same net implemented on an FPGA with no memory-to-memory

switches is shown in Figure 7.26; in this architecture, the net must be implemented using

the logic routing resources that could otherwise be used to route signals between logic

blocks.

The area cost of this enhancement is small; if there are N arrays and V vertical tracks

per memory/logic interconnect block, then NV extra switches are required.

This enhancement is related to the broader channel segmentation issue in FPGAs [22,

38]. There are, however, several major di�erences from this previous work:

1. In a segmented routing architecture, all channels across the chip usually contain an

identical distribution of segment lengths. In the architecture of Figure 7.24, there are

152

PERMANENT CONNECTION (NON−PROGRAMMABLE)

PROGRAMMABLE CONNECTION BETWEEN
TWO HORIZONTAL SEGMENTS

MEMORY
 BLOCK

MEMORY
 BLOCK

MEMORY/
LOGIC
INTERCONNECT
BLOCK

MEMORY/
LOGIC
INTERCONNECT
BLOCK

MEMORY/
LOGIC
INTERCONNECT
BLOCK

Figure 7.24: Dedicated memory-memory connection architecture.

exactly V additional horizontal tracks, regardless of how many logic routing channels

exist on the chip. Thus, the routing architecture is heterogeneous to better match the

heterogeneous logic/memory block architecture.

2. Each memory-to-memory connection consists of a programmable switch connecting

two tracks. This is topologically di�erent than a standard routing track (of any

length), in which two programmable switch blocks are connected using a �xed track.

153

MEMORY
 BLOCK

MEMORY
 BLOCK

Figure 7.25: Enhanced architecture example.

MEMORY
 BLOCK

MEMORY
 BLOCK

Figure 7.26: Original architecture example.

154

Number
of Tracks
Required
to Route

Memory/Logic Programmable Connections per Memory Block

0 50 100 150 200 250

0

5

10

15

.

With memory-to-memory switches
Normal architecture

g

2 3
.g

4

.g

5
.g

6
.g

7
.g

g

2 3
g

4
g

5
g

6
g

7
g

Figure 7.27: Routing results assuming standard router.

CAD Issues

Figure 7.27 shows track requirement results for eight-array FPGA with and without the

memory-to-memory switches. The horizontal axis is the number of programmable switches

in the memory/logic interconnect region (not the entire FPGA) per memory block. Both

architectures contain 27Fm switches in each memory/logic interconnect block. In the en-

hanced architecture there are also V memory-to-memory switches per memory block; V is

approximated by:

V =

�
(RN + 1)W

N + 1

�

where R is the average R from Table 7.2, N = 8, and W is from the measured data. Each

point in the graph is labeled with Fm.

As the graph shows, the average track count is increased by approximately 2 tracks for

Fm = 2 and 3, and relatively unchanged for higher values. At Fm = 1, in the enhanced

architecture, more that half of the circuits could not be routed using less than 45 tracks;

we do not present results for this case.

The primary reason for these disappointing results is that non-memory nets will often

use the memory-to-memory switches as a low-cost route to travel from one side of the chip

to the other. Consider Figure 7.28, which shows the connection between two distant logic

blocks. If the net is implemented using only the logic routing resources, at least six switch

155

MEMORY
 BLOCK

MEMORY
 BLOCK

Solution favoured by maze−router

Source

Dest.

Track A Track B Track C

Solution that does not use memory−memory switches

Figure 7.28: Routing a logic net with and without memory-to-memory switches.

blocks would lie on the path between the two logic blocks. Using the memory-to-memory

switches, only two switch blocks and two pass transistors (one under each memory block)

must be traversed. Since the latter alternative is cheaper, it will be favoured by the router.

Although this provides an e�cient implementation of this net, the vertical tracks labelled

A and C in the diagram are unavailable for future nets (recall that the router processes nets

one at a time). If future nets require connections to the memory, the loss of vertical tracks

A and C may severely hamper the routing of these nets, especially in low-Fm architectures.

Also, since the connections between the vertical tracks incident to each memory/logic in-

terconnect block and the horizontal tracks connecting the memory-to-memory switches is

156

permanent, the track labelled B will also be unavailable for future nets.

There are several possible solutions. The most obvious is to route all the memory nets

�rst, and routing nets that do not connect to the memory arrays only after all the memory

connections have been made in each pass. The memory-to-memory switches would then

only be used by non-memory nets if they are not needed to implement memory connections.

There are several problems with this approach:

1. It reduces the exibility of the \move-to-front" heuristic employed in the router (see

Section 6.2.2). This heuristic attempts to route \di�cult" nets �rst; if additional

constraints are placed on the net ordering, the heuristic will be less e�ective.

2. As explained in Section 6.2.2, the address pins of each memory block are equivalent;

that is, the connections to any two (or more) address pins of an array can be swapped,

and the circuit will function identically. Similarly, the data pins are permutable with

the restriction that once an assignment is made to a data-in pin, the corresponding

data-out pin assignment is �xed (and vice-versa). Routing all memory nets reduces

the potential bene�ts obtained by this extra exibility, since if the memory nets are

routed �rst, all memory pin assignments are made when there is little contention in

the chip (near the start of each phase).

3. Even the memory nets can interfere with each other as shown in Figure 7.29. In

this example, the memories are connected to a logic block using an extra memory-

to-memory switch to the right of the right-most memory array to be connected. The

track labelled C is then unavailable for future memory nets. Had the logic routing

resources been used instead of the right-most memory-to-memory switch, track C

would remain available.

A second solution is to replace the permanent connections below each memory/logic

interconnect block with programmable switches. This would free track B in the example of

Figure 7.28, since the vertical track can be \disconnected" from its corresponding horizontal

track. Tracks A and C, however, are still unavailable. The main problem with this approach

is the extra area required to implement the switches and programming bits.

A third solution is to use the memory-to-memory switches only to implement memory-

to-memory connections. Although this means that these tracks are wasted if a circuit

157

MEMORY
 BLOCK

MEMORY
 BLOCK Track C

Figure 7.29: Example of a memory net that uses an extra memory-to-memory switch.

contains no (or few) memory-to-memory connections, it alleviates all of the problems de-

scribed above. To investigate the e�ectiveness of this approach, we modi�ed the router such

that during the normal directional expansion, the memory-to-memory switches are ignored.

When routing a net that connects to memory, the algorithm proceeds until the �rst mem-

ory pin is found. The router then determines if the corresponding pins in either of the two

neighbouring memory blocks should be on the same net. If so, the connection is made using

the proper memory-to-memory switch, the neighbour of the new array is checked, and the

process repeated. Once no neighbouring memory blocks can be connected in this way, the

normal directional expansion is once again employed for the rest of the net. In this way,

the memory-to-memory switches are only used to implement connections between memory

arrays. All other connections are made using the normal logic routing resources.

158

Number
of Tracks
Required
to Route

Memory/Logic Programmable Connections per Memory Block

0 50 100 150 200 400 700

0

5

10

15

. . . .

With memory-to-memory switches

Normal architecture

g

1

2

............g
3

.g 4.g
5

.g
6

.g
7

.g
15.g 25.g

g

1
2
g

3
g

4
g

5
g

6
g

7
g

14
g

24
g

Figure 7.30: Track results for an 8-array FPGA with memory-to-memory switches.

Number
of Tracks
Required
to Route

Memory/Logic Programmable Connections per Memory Block

0 50 100 150 200 400 700

0

5

10

15

20

25

. . .

With memory-to-memory switches
Normal architecture

g
1

2

...................g

3
.g

4
.......g 5.g

6.g
7.g

15.g
25.g

g

1

2
g

3
g

4
g

5
g

6
g

7
g

14
g

24
g

Figure 7.31: Track results for an 16-array FPGA with memory-to-memory switches.

Figures 7.30 and 7.31 show the track requirement results obtained using this algorithm

for the 8 and 16 array FPGAs respectively. Again, the horizontal axis is the number of

switches in the memory/logic interconnect region per memory array (including the memory-

to-memory switches in the enhanced architecture). The most signi�cant comparison is

between the lowest point of the two curves; the enhanced architecture requires, on average,

half of a track less in each channel than the original architecture for the 8-array FPGA, and

almost a full track less in the 16-array FPGA.

159

Total
Number of

Programmable
Connections

Memory/Logic Programmable Connections per Memory Block

0 50 100 150 200 400 700

0

50000

100000

150000

200000

. . . .

With memory-to-memory switches
Normal architecture

g

1

2

............g

3
.g

4
.g

5
.g

6
.g

7
.g

15
.g

25
.g

g

1
2

g

3

g

4

g

5

g

6

g

7

g

14
g

24
g

Figure 7.32: Area results for an 8-array FPGA with memory-to-memory switches.

Total
Number of

Programmable
Connections

Memory/Logic Programmable Connections per Memory Block

0 50 100 150 200 400 700

0

50000

100000

150000

200000

250000

300000

350000

. . .

With memory-to-memory switches
Normal architecture

g
1

2

....................g

3

.g

4
.......g

5
.g

6
.g

7
.g

15
.g

25
.g

g

1

2
g

3
g

4
g

5
g

6
g

7
g 14

g
24
g

Figure 7.33: Area results for an 16-array FPGA with memory-to-memory switches.

Figures 7.32 and 7.33 show the area results for the 8 and 16 array FPGAs. As before,

the area results closely match the track requirement measurements.

Figures 7.34 and 7.35 show delay estimates. As the graphs indicate, the enhancements

reduce the memory read time by as much as 25%. Nets that connect to multiple memory

arrays usually dominate the memory read time; the memory-to-memory switches provide

more direct and therefore faster routes for these paths.

These results show that even with this relatively unaggressive use of the memory-to-

memory switches, area is improved somewhat, and speed is improved signi�cantly. The

development of algorithms that use these tracks more aggressively is left as future work; it is

160

Memory
Read
Time

Memory/Logic Programmable Connections per Memory Block

0 50 100 150 200 400 700

0ns

20ns

40ns

60ns

80ns

100ns

120ns

g

1
Normal architecture

2.g
3

.g
4

.g
5

.g
6

.g
7

.g

15

.g

25

.g

g

1

With memory-to-memory switches

2
g

3
g

4
g

5
g

6
g

7
g 14

g 24
g

Figure 7.34: Delay results for an 8-array FPGA with memory-to-memory switches.

Memory
Read
Time

Memory/Logic Programmable Connections per Memory Block

0 50 100 150 200 400 700

0ns

20ns

40ns

60ns

80ns

100ns

120ns

140ns

g

1
Normal architecture

2.g
3

.g
4

.g
5

.g
6

.g
7

.g

15

.g

25

.g

g

1

With memory-to-memory switches
2
g

3
g

4
g

5
g

6
g

7
g 14

g
24
g

Figure 7.35: Delay results for an 16-array FPGA with memory-to-memory switches.

likely that such algorithms would give improvements beyond those presented in Figures 7.30

through 7.35.

161

7.3 Scribbler Circuit

The results in the previous two sections were obtained using benchmark circuits from the

stochastic circuit generator of Chapter 3. In this section, we repeat the key experiments

using a real circuit, called Scribbler, obtained from Hewlett-Packard Labs [112]. Besides

providing additional evidence to support our conclusions, this section serves as a �rst step

in the validation of the circuit model of Chapter 3.

Table 7.4 gives the important circuit and implementation properties of the Scribbler

circuit. The circuit contains six logical memories, which require eight 2-Kbit arrays. Thus,

the results will be compared to the 8-array results from the previous two sections.

Figure 7.36 compares the track requirement results from Section 7.1 (dashed line) to

those obtained using the Scribbler circuit (solid line). The dotted lines indicate one standard

deviation above and below the dashed line. Comparing Tables 7.4 and 7.3, it is clear that

Scribbler contains more than the average number of memory-to-memory connections in the

stochastically generated circuits. Thus, we would expect Scribbler to be slightly harder to

route than the average stochastically generated circuit. Figure 7.36 shows that this is the

case, but that the track requirement of Scribbler is still within one standard deviation of

the average.

Area and delay comparisons are presented in Figures 7.37 and 7.38. As can be seen in

Figure 7.37, Scribbler requires fewer programmable connections than the average stochastic

circuit, even though in Figure 7.36, we showed that Scribbler requires more than the average

tracks per channel. This is because Scribbler contains fewer logic blocks than the average

Number of Logical Memories 6
Number of Memory Blocks after Mapping 8
Number of Logic Blocks 486
Number of I/O Blocks 84
Number of Nets 573
Proportion of Category 1 Nets 78.5%
Proportion of Category 2 Nets 15.7%
Proportion of Category 3 Nets 5.76%
Memory Pins per Category 3 Net 2.0
r of FPGA used for experiments 3
Aspect Ratio of FPGA used for experiments 1.14

Table 7.4: Statistics for Scribbler circuit.

162

Number
of Tracks
Required
to Route

Memory/Logic Interconnect Flexibility (Fm)

1 2 3 4 5 6 7 Full

0

5

10

15

20

25

.

Scribbler
Average Stochastic
Upper and Lower

Standard Deviation

g

..................

.
g

.

.

g

.

.
g

.

.
g

.

.
g

.

.
g

.

.
g

g

g g

g
g

g g g

Figure 7.36: Track requirement results for Scribbler.

Total
Number of

Programmable
Connections

Memory/Logic Interconnect Flexibility (Fm)

1 2 3 4 5 6 7 Full

0

100000

200000

300000
.

Scribbler
Average Stochastic
Upper and Lower

Standard Deviation

g

..................

.

g

.

.

g

.

.

g

.

.

g

.

.

g

.

.

g

.

.

g

g

g g
g g g g g

Figure 7.37: Area results for Scribbler.

Memory
Read
Time

Memory/Logic Interconnect Flexibility (Fm)

1 2 3 4 5 6 7 Full

0ns

50ns

100ns

150ns

.

Scribbler
Average Stochastic
Upper and Lower

Standard Deviation

g

.

.

g

.

.

g

.

.

g

.

.

g

.

.

g

.

.

g

. .
. .

. .
. .

. .
. .

.

g

g
g g

g
g

g
g

g

Figure 7.38: Delay results for Scribbler.

163

Number
of Tracks
Required
to Route

Memory/Logic Programmable Switches per Memory Block

50 100 150 200

0

5

10

15

20

25

.

Scribbler
Average Stochastic
Upper and Lower

Standard Deviation

g

.

.
g

.

.
g

.

.
g

.

.
g

.

.
g

.

.
g

g

g
g

g g g g

Figure 7.39: Track requirement results for Scribbler assuming memory-to-memory switches.

Total
Number of

Programmable
Connections

Memory/Logic Programmable Switches per Memory Block

50 100 150 200

0

50000

100000

150000

200000

250000

.

Scribbler
Average Stochastic
Upper and Lower

Standard Deviation

g

.

.

g

.

.

g

.

.

g

.

.

g

.

.

g

.

.

g

g

g
g

g g g g

Figure 7.40: Area results for Scribbler assuming memory-to-memory switches.

Memory
Read
Delay

Memory/Logic Programmable Connections per Memory Block

50 100 150 200

0ns

50ns

100ns

150ns

.

Scribbler
Average Stochastic
Upper and Lower

Standard Deviation

g

.

.

g

.

.

g

.

.

g

.

.

g

.

.

g

.

.

g

g g
g g

g g g

Figure 7.41: Delay results for Scribbler assuming memory-to-memory switches.

164

32x16 32x16

16
16

data−out data−out

data−indata−in

MUX

MUX MUX

address and
write enable

address and
write enable

1616

STR1
MEMORY

STR2
MEMORY

LOGIC

LOGIC LOGIC

LOGIC

LOGIC

Figure 7.42: One cluster in Scribbler.

stochastic circuit.

Figure 7.38 shows the estimated memory read time of Scribbler. The results are sig-

ni�cantly lower than the average from the stochastic circuits. Each memory-to-memory

connection in Scribbler goes to only two memory blocks; thus, the typical memory-to-logic

distance in Scribbler is less than the average of that in the stochastically generated circuits.

Figures 7.39 to 7.41 show the same comparisons if the FPGA contains memory-to-

memory switches. As in Section 7.2, the horizontal axis in each graph is the number of

routing switches per memory array.

By comparing Figures 7.36 and 7.39 it is clear that the memory-to-memory switches do

not help Scribbler as much as they do the stochastic circuits, even though, from Table 7.4,

this circuit has more than the average number of memory-to-memory connections. To

understand why this is so, consider Figure 7.42 which shows a high-level view of part of

the circuit (two of the six logical memories). Since each logical memory has 16 data

bits, the logical-to-physical mapper requires two memory blocks to construct each as shown

in Figure 7.43. Since the memory blocks labelled STR1UPPER and STR1LOWER share

address connections, we would expect that the placer would place those two memory blocks

next to each other. The logic subcircuit connected to the data pins, however, is such

165

address and
write enable

1616

MUX MUX

256x8 256x8 256x8 256x8

8888

bits 0−7 bits 8−15 bits 0−7 bits 8−15 address and
write enable

MUX

8888

16

STR1UPPER STR1LOWER STR2UPPER STR2LOWER

LOGIC

LOGIC LOGIC

LOGIC

LOGIC

Figure 7.43: One cluster in Scribbler after logical-to-physical mapping.

that each data pin i of the STR1 memory is \tightly connected" to the same data pin i

of the STR2 memory. In order to make the data connections shorter, the placer tries to

place STR1UPPER next to STR2UPPER and STR1LOWER next to STR2LOWER. Since

there are fewer address pins than data pins, the placer favours the latter, resulting in the

placement in Figure 7.44. With this placement, the memory-to-memory connections span

more than one memory array, and thus, can not be implemented using the memory-to-

memory switches. Of the other six logical memories, two do share data-in connections, and

these are implemented using the memory-to-memory switches, but it is the routing around

the STR1 and STR2 memories that, for the most part, determines the track requirements.

This example shows the danger of using only a few circuits to evaluate con�gurable

memory architectures. The interconnect pattern in Scribbler is such that the memory-to-

memory switches are of no use. Yet, by perturbing the circuit slightly, we could have reached

256x8 256x8256x8 256x8

STR1UPPER STR2UPPER STR1LOWER STR2LOWER

Figure 7.44: Placement of four memory blocks from Figure 7.43.

166

a di�erent conclusion. If the STR1 and STR2 memories had been deeper, the attraction

of the address lines would have been stronger, and may have caused the placer to place

STR1UPPER next to STR1LOWER and STR2UPPER next to STR2LOWER. With this

placement, the memory-to-memory switches might have helped routability and lowered the

track requirements. Since such small changes can so signi�cantly a�ect the conclusions, it

is impossible to �nd only a few circuits that adequately represent all circuits that will ever

be implemented on the device. In order to obtain meaningful results, many circuits are

required; thus, a circuit generator such as the one we have used in this research is vital.

7.4 Conclusions

In this chapter, we examined the memory/logic interface in the heterogeneous FPGA archi-

tecture described in Chapter 6. We �rst investigated the e�ects of Fm on the area and delay

of the resulting FPGA. FPGAs with 2, 4, 8, and 16 memory arrays were considered. In

each experiment, 100 stochastically generated circuits from the circuit generator of Chapter

3 were used as benchmark circuits. The most area and speed-e�cient architecture occurs

for 4 � Fm � 7. The area conclusions do not change if exibility is removed from the logic

connection block, or if the arrays are moved to the edge of the chip.

We also showed that by adding switches between the vertical tracks incident to each

memory/logic interconnect block, the speed performance of the circuits implemented on

these devices is improved by as much as 25%. The area e�ciency is also slightly improved.

Finally, we repeated the experiments using a real circuit and arrived at the same con-

clusions. The memory-to-memory switches, however, did not improve the routability of the

FPGA because of the peculiarities of the circuit's interconnect structure. This underlines

the need for a stochastic circuit generator that can generate many realistic circuits rather

than relying on results from only a few benchmark circuits.

167

Chapter 8

Conclusions and Future Work

8.1 Dissertation Summary

Constant improvement in process technology is changing the way FPGAs are used and

designed. In the past, the relatively low capacities of these devices has limited their use to

small logic subcircuits, but as FPGAs grow, designers are able to use them to implement

much larger systems. These larger systems look signi�cantly di�erent than small logic

subcircuits. One of the key di�erences is that these systems often contain memory. Memory,

therefore, will be a crucial component of future FPGAs. This dissertation is the �rst step

in examining the architecture of these next-generation devices.

In Chapter 3, an extensive circuit analysis was presented that examines the use of mem-

ory in circuits, and a circuit generator was described. This generator stochastically creates

realistic circuits and was used in the architecture studies in the rest of the dissertation. Such

a generator is essential to obtain realistic experimental results, since it is the only feasible

way to gather enough benchmark circuits to adequately exercise a con�gurable memory

architecture.

In Chapter 4, the FiRM stand-alone con�gurable memory architecture was generalized

and extended to larger memory sizes, and novel algorithms were created that map logical

memory con�gurations to these con�gurable memory architectures. These algorithms were

then used in the architectural experiments described in Chapter 5. The purpose of these

experiments was to examine the e�ects of various architectural parameters on the exibility,

168

delay and area of the con�gurable memory architecture.

Finally, Chapter 6 discussed issues involved in embedding memory resources onto an

FPGA. An important part of this work was the generation of tools to map circuits to these

devices. In Chapter 7, custom placement and routing programs were used to investigate the

exibility requirements of the interconnect between the memory and logic resources. It was

shown that a surprisingly small amount of exibility results in the most area- and speed-

e�cient FPGAs, especially in devices with only a few memory arrays. We also examined

speci�c architectural support for memory-to-memory connections, and found that the access

times of the memories can be improved by up to 25% by adding switches that allow direct

connections between neighbouring memory arrays.

An important part of this work is the use of stochastically generated circuits in the

architectural studies. In the last section of Chapter 7, we examined one real example circuit,

and showed that architectural conclusions were very dependent on the peculiarities of the

circuit, and suggested that if the circuit had been modi�ed even slightly, the conclusions

could change. This highlights the need to base architectural conclusions on many circuits;

these circuits can only be feasibly obtained using a stochastic circuit generator.

8.2 Future Work

This work is the �rst published research in this area and has laid the foundation for much

more research into con�gurable memories. Some of the avenues of future work that will

likely prove fruitful are discussed in this section. Since architecture studies, algorithm

studies, and circuit analysis all make up important parts of FPGA research, we will discuss

elements of each.

8.2.1 Architecture Studies

There are many open architectural questions. Chapter 4 briey described an alternate

oorplan in which memory arrays are distributed around the FPGA; the example is repeated

in Figure 8.1. This scheme has a number of potential advantages, the primary one being

that the contention resulting from memory connections would be spread over the entire

chip, rather than concentrated in a single stripe down the middle of the device. Also, if

169

Logic Block

Memory Array

Figure 8.1: An alternative oorplan with arrays distributed throughout the FPGA.

circuits with many small logical memories are to be implemented, the average memory-

to-logic distances would likely be less, resulting in lower memory access times and higher

potential clock frequencies.

The challenge in creating an architecture with this alternate oorplan is that memory-

to-memory nets still must be e�ciently supported. Likely, additional memory-to-memory

tracks would be required, but it is not obvious how prevalent these tracks should be, and

how they should be connected to the rest of the FPGA.

A hybrid scheme in which memory blocks are grouped into sets, and these sets dis-

tributed throughout the FPGA, might be a suitable compromise. In this architecture,

arrays which are to be tightly connected can reside in the same set, while arrays that make

up unrelated logical memories (memories from di�erent clusters) can be placed in di�er-

ent sets. Further experimental architectural studies are needed to evaluate these potential

oorplans.

8.2.2 Algorithm Studies

FPGA architectures can not be created in isolation. An integral part of any architectural

decision is the set of algorithms that will be used to map circuits to the device. Much work

remains to be done in �nding suitable algorithms for the heterogeneous devices studied

170

in this dissertation. One of the most compelling avenues of research is the mapping of

random logic into unused memory blocks. Logic can be implemented very e�ciently in

large memories, since the per-bit overhead is much smaller than that for lookup tables.

Algorithms that map logic to FPGAs with both memory arrays and logic blocks would

likely result in unprecedented improvements in FPGA logic density and speed.

In [115, 116], an algorithm that maps circuits to an FPGA consisting of two di�erent-

sized lookup tables was described. This algorithm does not take into account lookup tables

with more than one output, nor memories whose width can be traded for depth. The

mapping of logic to large memory arrays was studied in [117]; the envisaged application

in that work allowed for sequential function evaluation, as might be common in a circuit

emulation system. When mapping logic to embedded memory arrays in an FPGA, we likely

want to be able to evaluate all functions simultaneously. Thus, a new mapping algorithm

is required.

8.2.3 Circuit Analysis Studies

It is di�cult to propose suitable FPGA architectures or algorithms without a �rm grasp of

the nature of the circuits or systems the device is to implement. The circuit analysis (and

accompanying generator) described in Chapter 3 is a step in this direction.

One important extension to this would be to study the interaction between clusters.

Currently, the generator constructs clusters independently and glues them together. This

was su�cient for this study, as it was the interaction between the memory and logic that

was of concern, but future architectural experiments may need a more accurate model of

how these clusters interact.

The current model does not distinguish between di�erent types of logic subcircuits.

Intuitively, the data pins of memories in many circuits are connected to datapath logic, while

the address lines might be driven by a counter with control logic. The theoretical modeling

of logic circuits is the focus of [35]; combining the model presented in this dissertation with

that from [35] would likely result in a useful and accurate picture of the large digital systems

that will be implemented on next-generation FPGAs.

171

8.2.4 Long-Term Research

Memory is only one way in which large systems di�er from the small logic circuits that

have been targeted to FPGAs in the past. These large systems often contain datapath

portions; dedicated datapath FPGA resources might become important. Options include

providing datapath-oriented routing structures in part of the chip [118], or including an

embedded arithmetic/logic unit (ALU) that is exible enough to implement a wide variety

of datapath circuits. In the very long term, even larger embedded blocks such as digital

signal processing components or even simple CPUs are likely. A thorough understanding

of the issues involved with these heterogeneous devices will be crucial as FPGAs grow to

encompass even larger systems.

172

References

[1] T. Ngai, \An SRAM-programmable �eld-recon�gurable memory," Master's thesis,
University of Toronto, 1994.

[2] R. T. Masumoto, \Con�gurable on-chip RAM incorporated into high speed logic ar-
ray," in Proceedings of the IEEE 1985 Custom Integrated Circuits Conference, pp. 240{
243, May 1985.

[3] H. Satoh, T. Nishimura, M. Tatsuki, A. Ohba, S. Hine, and Y. Kuramitsu, \A 209K-
transistor ECL gate array with RAM," IEEE Journal of Solid-State Circuits, vol. 24,
pp. 1275{1279, Oct. 1989.

[4] D. A. Luthi, A. Mogre, N. Ben-Efraim, and A. Gupta, \A single-chip concatenated
FEC decoder," in Proceedings of the IEEE 1995 Custom Integrated Circuits Confer-
ence, pp. 13.2.1{13.2.4, May 1995.

[5] R. Wilson and B. Fuller, \IBM pushes its ASICs to 0.18um." Electronic Engineering
Times, May 6 1996.

[6] M. Gold and R. Wilson, \TI enters 0.25um race." Electronic Engineering Times, May
27 1996.

[7] I. Agi, P. J. Hurst, and K. W. Current, \A 450 MOPS image backprojector and his-
togrammer," in Proceedings of the IEEE 1992 Custom Integrated Circuits Conference,
pp. 6.2.1{6.2.4, May 1992.

[8] R. Mason and K. Runtz, \VLSI neural network system based on reduced interchip
connectivity," in Proceedings of the Canadian Conference on Very Large Scale Inte-
gration, pp. 7.69{7.74, Nov. 1993.

[9] G. Feygin, P. Chow, P. G. Gulak, J. Chappel, G. Goodes, O. Hall, A. Sayes, S. Singh,
M. B. Smith, and S. Wilton, \A VLSI Implementation of a Cascade Viterbi Decoder
with Traceback," in Proceedings of the 1993 IEEE International Symposium on Cir-
cuits and Systems, pp. 1945{1948, May 1993.

[10] K. Kaneko, T. Okamoto, M. Nakajima, Y. Nakakura, S. Gokita, J. Nishikawa,
Y. Tanikawa, and H. Kadota, \A VLSI RISC with 20-MFLOPS peak, 64-bit oating
point unit," IEEE Journal of Solid-State Circuits, vol. 24, pp. 1331{1339, October
1989.

[11] J. Rose, R. Francis, D. Lewis, and P. Chow, \Architecture of programmable gate
arrays: The e�ect of logic block functionality on area e�ciency," IEEE Journal of
Solid-State Circuits, vol. 25, pp. 1217{1225, October 1990.

173

[12] Xilinx, Inc., The Programmable Logic Data Book, 1994.

[13] AT&T Microelectronics, Data Sheet: Optimized Recon�gurable Cell Array (ORCA)
Series Field-Programmable Gate Arrays, March 1994.

[14] Altera Corporation, Datasheet: FLEX 10K Embedded Programmable Logic Family,
July 1995.

[15] Actel Corporation, Datasheet: 3200DX Field-Programmable Gate Arrays, 1995.

[16] Y. Nishio, F. Murabayashi, I. Masuda, H. Maejima, S. Owaki, K. Yamazaki, and
S. Kadono, \0.45ns 7K Hi-BiCMOS gate array with con�gurable 3-port 4.6K SRAM,"
in Proceedings of the IEEE 1987 Custom Integrated Circuits Conference, pp. 203{204,
1987.

[17] P. S. Bennett, R. P. Dixon, and F. Ormerod, \High performance BICMOS gate arrays
with embedded con�gurable static memory," in Proceedings of the IEEE 1987 Custom
Integrated Circuits Conference, pp. 195{198, 1987.

[18] Y. Sugo, M. Tanaka, Y. Mafune, T. Takeshima, S. Aihara, and K. Tanaka, \An
ECL 2.8 ns 16K RAM with 1.2K logic gate array," in Proceedings of the 1986 IEEE
International Solid State Circuits Conference, pp. 256{257, Feb. 1986.

[19] M. Kimoto, H. Shimizu, Y. Ito, K. Kohno, M. Ikeda, T. Deguchi, N. Fukuda, K. Ueda,
S. Harada, and K. Kubota, \A 1.4ns/64kb RAM with 85ps/3680 logic gate array,"
in Proceedings of the IEEE 1989 Custom Integrated Circuits Conference, pp. 15.8.1{
15.8.4, 1989.

[20] LSI Logic, LCB500K Preliminary Design Manual, November 1994.

[21] H.-C. Hsieh, W. S. Carter, J. Ja, E. Cheung, S. Schreifels, C. Erickson, P. Freidin,
L. Tinkey, and R. Kanazawa, \Third-generation architecture boosts speed and den-
sity of �eld-programmable gate arrays," in Proceedings of the IEEE 1990 Custom
Integrated Circuits Conference, pp. 31.2.1{31.2.7, 1990.

[22] Xilinx, Inc., XC4000E: Field Programmable Gate Array Family, Preliminary Product
Speci�cations, September 1995.

[23] B. K. Britton, D. D. Hill, W. Oswald, N.-S. Woo, and S. Singh, \Optimized recon�g-
urable cell array architecture for high-performance �eld-programmable gate arrays,"
in Proceedings of the IEEE 1993 Custom Integrated Circuits Conference, pp. 7.2.1{
7.2.5, March 1993.

[24] T. Ngai, S. Singh, B. Britton, W. Leung, H. Nguyen, G. Powell, R. Albu, W. Andrews,
J. He, and C. Spivak, \A new generation of ORCA FPGA with enhanced features
and performance," in Proceedings of the IEEE 1996 Custom Integrated Circuits Con-
ference, pp. 247{250, May 1996.

[25] Crosspoint Solutions, Inc., CP20K Field Programmable Gate Arrays, November 1992.

[26] D. Marple and L. Cooke, \An MPGA compatible FPGA architecture," in Proceedings
of the ACM/SIGDA International Workshop on Field-Programmable Gate Arrays,
pp. 39{42, Feb. 1992.

174

[27] S. Reddy, R. Cli�, D. Je�erson, C. Lane, C. Sung, B. Wang, J. Huang, W. Chang,
T. Cope, C. McClintock, W. Leong, B. Ahanin, and J. Turner, \A high density
embedded array programmable logic architecture," in Proceedings of the IEEE 1996
Custom Integrated Circuits Conference, pp. 251{254, May 1996.

[28] Lattice Semiconductor Corporation, Datasheet: ispLSI and pLSI 6192 High Den-
sity Programmable Logic with Dedicated Memory and Register/Counter Modules, July
1996.

[29] D. E. Smith, \Intel's FLEXlogic FPGA architecture," in Compcon Spring '93,
pp. 378{384, February 1993.

[30] K. Kawana, H. Keida, M. Sakamoto, K. Shibata, and I. Moriyama, \An e�cient logic
block interconnect architecture for user-reprogrammable gate array," in Proceedings of
the IEEE 1990 Custom Integrated Circuits Conference, pp. 31.3.1{31.3.4, May 1990.

[31] Plus Logic, FPSL5110 Product Brief, October 1989.

[32] Chip Express, Application Note: CX2000 Recon�gurable Single & Dual Port
SRAM/ROM Macro, May 1996.

[33] Chip Express, Product Description: 0.6u High Performance Fast Turn ASIC, May
1996.

[34] T. Ngai, J. Rose, and S. J. E. Wilton, \An SRAM-Programmable �eld-con�gurable
memory," in Proceedings of the IEEE 1995 Custom Integrated Circuits Conference,
pp. 499{502, May 1995.

[35] M. Hutton, J. Grossman, J. Rose, and D. Corneil, \Characterization and parame-
terized random generation of digital circuits," in Proceedings of ACM/IEEE Design
Automation Conference, pp. 94{99, June 1996.

[36] J. Darnauer and W. W. Dai, \A method for generating random circuits and its appli-
cation to routability measurement," in Proceedings of the ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp. 66{72, Feb. 1996.

[37] J. Rose and S. Brown, \Flexibility of interconnection structures for �eld-
programmable gate arrays," IEEE Journal of Solid-State Circuits, vol. 26, pp. 277{
282, March 1991.

[38] S. Brown, G. Lemieux, and M. Khellah, \Segmented routing for speed-performance
and routability in �eld-programmable gate arrays," Journal of VLSI Design, vol. 4,
no. 4, pp. 275{291, 1996.

[39] D. Hill and N.-S. Woo, \The bene�ts of exibility in lookup table-based FPGA's,"
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 12, pp. 349{353, February 1993.

[40] J. L. Kouloheris and A. E. Gamal, \PLA-based FPGA area versus cell granularity," in
Proceedings of the IEEE 1992 Custom Integrated Circuits Conference, pp. 4.3.1{4.3.4,
1992.

175

[41] M. Toyokura, M. Saishi, S. Kurohmaru, K. Yamauchi, H. Imanishi, T. Ougi,
A. Watabe, Y. Matsumoto, T. Morishige, H. Kodama, E. Miyagoshi, K. Okamoto,
M. Gion, T. Minemaru, A. Ohtani, T. Araki, K. Aono, H. Takeno, T. Akiyama, and
B. Wilson, \A video DSP with a macroblock-level-pipeline and and a SIMD type
vector-pipeline architecture for MPEG2 CODEC," in Proceedings of the 1994 IEEE
International Solid-State Circuits Conference, pp. 74{75, Feb. 1994.

[42] S. Ti and C. Stearns, \A 200 MFlop CMOS transformation processor," in Proceedings
of the IEEE 1992 Custom Integrated Circuits Conference, pp. 6.1.1{6.1.4, May 1992.

[43] C. Benz, M. Gowan, and K. Springer, \An error-correcting encoder and decoder for a
1 Gbit/s �ber optic link," in Proceedings of the IEEE 1991 Custom Integrated Circuits
Conference, pp. 7.1.1{7.1.4, May 1991.

[44] P. Tong, \A 40-Mhz encoder-decoder chip generated by a reed-solomon code com-
piler," in Proceedings of the IEEE 1990 Custom Integrated Circuits Conference,
pp. 13.5.1{13.5.4, May 1990.

[45] J. L. Hennessy and D. A. Patterson, Computer Achitecture: A Quantitative Approach.
Morgan Kaufmann Publishers, Inc., 1990.

[46] R. DeMara and D. Moldovan, \The SNAP-1 parallel AI prototype," in Proceedings of
the 18th Annual International Symposium on Computer Architecture, pp. 2{11, May
1991.

[47] A. Curiger, H. Bonnenberg, R. Zimmerman, N. Felber, H. Kaeslin, and W. Fichtner,
\Vinci: VLSI implementation of the new secret-key block cipher idea," in Proceedings
of the IEEE 1993 Custom Integrated Circuits Conference, pp. 15.5.1{15.5.4, May 1993.

[48] K. Fisher, P. Bednarz, J. Kouloheris, B. Fowler, J. Cio�, and A. ElGamal, \A 54
Mhz BiCMOS digital equalizer for magnetic disk drives," in Proceedings of the IEEE
1992 Custom Integrated Circuits Conference, pp. 19.3.1{19.3.4, May 1992.

[49] S. J. E. Wilton and Z. G. Vranesic, \Architectural Support for Block Transfers in
a Shared Memory Multiprocessor," in Proceedings of the Fifth IEEE Symposium on
Parallel and Distributed Processing, pp. 51{54, Dec. 1993.

[50] D. C. Chen and J. M. Rabaey, \A recon�gurable multiprocessor IC for rapid prototyp-
ing of algorithmic-speci�c high-speed DSP data paths," IEEE Journal of Solid-State
Circuits, vol. 27, pp. 1895{1904, December 1992.

[51] L. K. Tan and H. Samueli, \A 200-Mhz quadrature digital synthesizer/mixer in 0.8um
CMOS," in Proceedings of the IEEE 1994 Custom Integrated Circuits Conference,
pp. 4.4.1{4.4.4, May 1994.

[52] M. Matsui, H. Hara, K. Seta, Y. Uetani, L.-S. Kim, T. Nagamatsu, T. Shimazawa,
S. Mita, G. Otomo, T. Oto, Y. Watanabe, F. Sano, A. Chiba, K. Matsuda, and
T. Sakurai, \200 MHz video compression macrocells using low-swing di�erential
logic," in Proceedings of the 1994 IEEE International Solid-State Circuits Confer-
ence, pp. 76{77, Feb. 1994.

176

[53] S. Molloy, B. Schoner, A. Madisetti, and R. Jain, \An 80k-transistor con�gurable
25MPixels/s video-compression processor unit," in Proceedings of the 1994 IEEE In-
ternational Solid-State Circuits Conference, pp. 78{79, Feb. 1994.

[54] T. Karema, T. Husu, T. Saramaki, and H. Tenhunen, \A �lter processor for interpo-
lation and decimation," in Proceedings of the IEEE 1992 Custom Integrated Circuits
Conference, pp. 19.2.1{19.2.4, May 1992.

[55] M. Kuczynski, W. Lao, A. Dong, B. Wong, H. Nicholas, B. Itri, and H. Samueli, \A
1Mb/s digital subscriber line transceiver signal processor," in Proceedings of the 1993
IEEE International Solid-State Circuits Conference, pp. 26{27, Feb. 1993.

[56] N. Sollenberger, \An experimental TDMA modulation/demodulation CMOS VLSI
chip-set," in Proceedings of the IEEE 1991 Custom Integrated Circuits Conference,
pp. 7.5.1{7.5.4, May 1991.

[57] E. Vanzieleghem, L. Dartios, J. Wenin, A. Vanwelsenaers, and D. Rabaey, \A single-
chip GSM vocoder," in Proceedings of the IEEE 1992 Custom Integrated Circuits
Conference, pp. 10.3.1{10.3.4, May 1992.

[58] Y. Kondo, Y. Koshiba, Y. Arima, M. Murasaki, T. Yamada, H. Amishiro, H. Shino-
hara, and H. Mori, \A 1.2GLOPS neural network chip exhibiting fast convergence," in
Proceedings of the 1994 IEEE International Solid-State Circuits Conference, pp. 218{
219, Feb. 1994.

[59] K. Ueda, T. Sugimura, M. Okamoto, S. Marui, T. Ishikawa, and M. Sakakihara, \A
16b lower-power-consumption digital signal processor," in Proceedings of the 1993
IEEE International Solid-State Circuits Conference, pp. 28{29, Feb. 1993.

[60] S. Yang, \Logic synthesis and optimization benchmarks," tech. rep., Microelectronics
Center of North Carolina, 1991.

[61] E. Sentovich, \SIS: A system for sequential circuit analysis," Tech. Rep. UCB/ERL
M92/41, Electronics Research Laboratory, University of California, Berkeley, May
1992.

[62] J. Cong and Y. Ding, \An optimal technology mapping algorithm for delay opti-
mization in lookup-table based FPGA designs," in Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, pp. 48{53, November 1992.

[63] R. X. Nijssen and J. A. Jess, \Two-dimensional datapath extraction," in Proceedings
of the 5th ACM/SIGDA Physical Design Workshop, pp. 111{117, April 1996.

[64] J. M. Arnold and D. A. Buell, \Splash 2," in Proceedings of the 4th Annual ACM
Symposium on Parallel and Distributed Algorithms and Architectures, pp. 316{324,
1992.

[65] P. Bertin, D. Roncin, and J. Vuillemin, \Programmable Active Memories: A Per-
formance Assessment," in Research on Integrated Systems: Proceedings of the 1993
Symposium, MIT Press, 1993.

177

[66] D. E. van den Bout, J. N. Morris, D. Thomae, S. Labrozzi, S. Wingo, and D. Hall-
man, \Anyboard: An FPGA-based, recon�gurable system," IEEE Design and Test
of Computers, pp. 21{30, September 1992.

[67] Altera Corporation, Recon�gurable Interconnect Peripheral Processor (RIPP10) Users
Manual, May 1994.

[68] D. Galloway, D. Karchmer, P. Chow, D. Lewis, and J. Rose, \The Transmogri�er: the
University of Toronto �eld-programmable system," in Proceedings of the Canadian
Workshop on Field-Programmable Devices, June 1994.

[69] D. Karchmer and J. Rose, \De�nition and solution of the memory packing problem
for �eld-programmable systems," in Proceedings of the IEEE International Conference
on Computer-Aided Design, pp. 20{26, 1994.

[70] S. J. E. Wilton, J. Rose, and Z. G. Vranesic, \Architecture of centralized �eld-
con�gurable memory," in Proceedings of the ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pp. 97{103, 1995.

[71] R. J. Francis, Technology Mapping for Lookup-Table Based Field-Programmable Gate
Arrays. PhD thesis, University of Toronto, 1992.

[72] E. Kreyszig, Advanced Engineering Mathematics. John Wiley and Sons, Inc., 1983.

[73] N. Togawa, M. Sato, and T. Ohtsuki, \Maple: A simultaneous technology mapping,
placement, and global routing algorithm for �eld-programmable gate arrays," in Pro-
ceedings of the IEEE International Conference on Computer-Aided Design, pp. 156{
163, 1994.

[74] S. K. Nag and R. A. Rutenbar, \Performance-driven simulataneous place and route for
row-based FPGAs," in Proceedings of the ACM/IEEE Design Automation Conference,
pp. 301{307, 1994.

[75] M. J. Alexander, J. P. Cohoon, J. L. Ganley, and G. Robins, \Performance-oriented
placement and routing for �eld-programmable gate arrays," in Proceedings of the
European Design Automation Conference, Sept. 1995.

[76] J. M. Mulder, N. T. Quach, and M. J. Flynn, \An area model for on-chip memories
and its application," IEEE Journal of Solid-State Circuits, vol. 26, pp. 98{106, Feb.
1991.

[77] N. P. Jouppi and S. J. E. Wilton, \Tradeo�s in Two-Level On-Chip Caching," in
Proceedings of the 21st Annual International Symposium on Computer Architecture,
1994.

[78] S. J. E. Wilton and N. P. Jouppi, \CACTI: an enhanced cache access and cycle time
model," IEEE Journal of Solid-State Circuits, vol. 31, pp. 677{688, May 1996.

[79] S. J. E. Wilton and N. P. Jouppi, \An enhanced access and cycle time model for
on-chip caches," Tech. Rep. 93/5, Digital Equipment Corporation Western Research
Lab, 1993.

178

[80] M. A. Horowitz, \Timing models for MOS circuits," Tech. Rep. Technical Report
SEL83-003, Integrated Circuits Laboratory, Stanford University, 1983.

[81] W. Elmore, \The transient response of damped linear networks with particular regard
to wideband ampli�ers," Journal of Applied Physics, vol. 19, pp. 55{63, Jan. 1948.

[82] S. J. E. Wilton, J. Rose, and Z. G. Vranesic, \Memory/logic interconnect exibility
in FPGAs with large embedded memory arrays," in Proceedings of the IEEE 1996
Custom Integrated Circuits Conference, pp. 144{147, May 1996.

[83] S. D. Brown, Routing Algorithms and Architectures for Field-Programmable Gate Ar-
rays. PhD thesis, University of Toronto, 1992.

[84] G. G. Lemieux and S. D. Brown, \A detailed router for allocating wire segments in
�eld-programmable gate arrays," in Proceedings of the ACM Physical Design Work-
shop, April 1993.

[85] Y.-W. Chang, D. Wong, and C. Wong, \Universal switch modules for FPGA design,"
ACM Transactions on Design Automation of Electronic Systems, vol. 1, pp. 80{101,
January 1996.

[86] Y.-W. Chang, D. Wong, and C. Wong, \Universal switch module design for
symmetric-array-based FPGAs," in Proceedings of the ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp. 80{86, Feb. 1996.

[87] Y.-L. Wu and D. Chang, \On the NP-completeness of regular 2-D FPGA routing ar-
chitectures and a novel solution," in Proceedings of the IEEE International Conference
on Computer-Aided Design, pp. 362{366, 1994.

[88] Y.-L. Wu and M. Marek-Sadowska, \An e�cient router for 2-D �eld programmable
gate arrays," in Proceedings of the European Design Automation Conference, pp. 412{
416, 1994.

[89] S. Raman, C. Liu, and L. Jones, \Timing-based placement for an FPGA design en-
vironment," in More FPGAs (W. Moore and W. Luk, eds.), pp. 110{119, Abingdon
EE&CS Books, 1993.

[90] C. Ebeling, L. McMurchie, S. A. Hauck, and S. Burns, \Placement and routing tools
for the Triptych FPGA," IEEE Transactions on Very Large Scale Integration Systems,
vol. 3, pp. 473{482, December 1995.

[91] S. Kirkpatrick, J. C.D Gellat, and M. Vecchi, \Optimization by simulated annealing,"
Science, vol. 220, pp. 671{680, 1983.

[92] C. Sechen and A. Sangiovanni-Vincentelli, \The TimberWolf placement and routing
package," IEEE Journal of Solid-State Circuits, vol. SC-20, pp. 510{522, April 1985.

[93] C. Sechen and A. Sangiovanni-Vincentelli, \TimberWolf3.2: A new standard cell
placement and global routing package," pp. 432{439, 1986.

[94] M. Huang, F. Romeo, and A. Sangiovanni-Vincentelli, \An e�cient general cool-
ing schedule for simulated annealing," in Proceedings of the IEEE Conference on
Computer-Aided Design, pp. 381{384, 1986.

179

[95] J. Lam and J.-M. Delosme, \Performance of a new annealing schedule," in Proceedings
of the ACM/IEEE Design Automation Conference, pp. 306{311, 1988.

[96] J. S. Rose, W. M. Snelgrove, and Z. G. Vranesic, \Parallel standard cell placement
algorithms with quality equivalent to simulated annealing," IEEE Transactions on
Computer-Aided Design, vol. 7, pp. 387{396, March 1988.

[97] W. Swartz and C. Sechen, \New algorithms for the placement and routing of macro
cells," in Proceedings of the IEEE International Conference on Computer-Aided De-
sign, pp. 336{339, 1990.

[98] V. Betz and J. Rose, \Directional bias and non-uniformity in FPGA global routing
architectures," in to appear in International Conference on Computer-Aided Design,
November 1996.

[99] R. Nair, \A simple yet e�ective technique for global wiring," IEEE Transactions on
Computer-Aided Design, vol. CAD-6, pp. 165{172, March 1987.

[100] J. Rose, \Parallel global routing for standard cells," IEEE Transactions on Computer-
Aided Design, vol. 9, pp. 1085{1095, Oct. 1990.

[101] Y.-W. Chang, S. Thakur, K. Zhu, and D. Wong, \A new global routing algorithm for
FPGAs," in Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design, pp. 356{361, 1994.

[102] S. Brown, J. Rose, and Z. G. Vranesic, \A detailed router for �eld-programmable gate
arrays," IEEE Transactions on Computer-Aided Design, vol. 11, pp. 620{628, May
1992.

[103] Y.-L. Wu and M. Marek-Sadowska, \Orthogonal greedy coupling - a new optimization
approach to 2-D FPGA routing," in Proceedings of the ACM/IEEE Design Automa-
tion Conference, 1995.

[104] L. McMurchie and C. Ebeling, \Path�nder: A negotiation-based performance-driven
router for FPGAs," in Proceedings of the ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 111{117, 1995.

[105] M. J. Alexander and G. Robins, \New performance-driven FPGA routing algorithms,"
in Proceedings of the ACM/IEEE Design Automation Conference, pp. 562{567, June
1995.

[106] Y.-S. Lee and A. C.-H. Wu, \A performance and routability driven router for FP-
GAs considering path delays," in Proceedings of the ACM/IEEE Design Automation
Conference, June 1995.

[107] C. Lee, \An algorithm for path connection and its applications," IRE Transactions
on Electronic Computers, vol. EC-10, no. 3, pp. 346{365, 1961.

[108] E. Moore, \Shortest path through a maze," in Proceedings of the International Sym-
posium on Switching Circuits, pp. 285{292, Harvard University Press, 1959.

[109] E. Dijkstra, \A note on two problems in connexion with graphs," Numerische Math-
ematik, vol. 1, pp. 269{271, 1959.

180

[110] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout. John Wiley
and Sons, 1990.

[111] J. S. Rose, W. M. Snelgrove, and Z. G. Vranesic, \ALTOR: an automatic standard
cell layout program," in Proceedings of the 1985 Canadian Conference on Very Large
Scale Integration, pp. 169{173, November 1985.

[112] I. Kostarnov, J. Osmany, and C. Solomon, \Riley DPMatch - an exercise in algorithm
mapping to hardware," Tech. Rep. ACD 95-09-02, Hewlett Packard Laboratories,
Nov. 1995.

[113] K. K. Chung, Architecture and Synthesis of Field-Programmable Gate Arrays with
Hard-wired Connections. PhD thesis, University of Toronto, 1994.

[114] S. J. E. Wilton, J. Rose, and Z. G. Vranesic, \Memory-to-memory connection struc-
tures in FPGAs with embedded memory arrays," in ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, 1997.

[115] J. He and J. Rose, \Technology mapping for heterogeneous FPGAs," in Proceedings
of the ACM International Workshop on Field Programmable Gate Arrays, Feb 1994.

[116] J. He, \Technology mapping and architecture of heterogeneous �eld-programmable
gate arrays," Master's thesis, University of Toronto, 1994.

[117] R. Murgai, F. Hirose, and M. Fujita, \Logic synthesis for a single large look-up table,"
in Proceedings of the International Workshop on Logic Synthesis, May 1995.

[118] D. Cherepacha and D. Lewis, \A datapath oriented architecture for FPGAs," in Pro-
ceedings of the ACM/SIGDA International Workshop on Field-Programmable Gate
Arrays, Feb. 1994.

181

