Field-Programmable Gate Array
Architecturesand Algorithms Optimized

for Implementing Datapath Circuits

Andy Gean Ye

November 2004

Field-Programmable Gate Array
Architectures and Algorithms Optimized

for Implementing Datapath Circuits

by

Andy Gean Ye

A thesis submitted in conformity with
the reguirements for the degree of

Doctor of Philosophy
November 2004

The Edward S. Rogers Sr. Department of
Electrical and Computer Engineaing
University of Toronto

Toronto, Ontario, Canada

© Copyright by Andy Gean Ye 2004

“We are pattern-seeking animals, the descendents of hominids who were espedally dex-
terous at making causal links between ewents in naure. The associations were real often
enoughthat the ahility became engrained in ou neural architecture. Unfortunately, the belief
engine sputters occasiondly, identifying false patternsasreal . . .

The solutionis sience, our preaminent pattern-discriminating method and ou best hope
for detecting agenuine signal within the noise of nature’s cacophony.”

—“ Codified Claptrap,” Michael Shermer, Scientific American, June 2003

Abstract

Field-Programmable Gate Arrays (FPGAS) are user-programmable digital devices that
provide efficient, yet flexible, implementations of digital circuits. Over the years, the logic
capadty of FPGAs has been dramatically increesed; and currently they are being used to
implement large arithmetic-intensive gpli caions, which contain a greater portion o datapath
circuits. Each circuit, constructed ou of multiple identical building blocks cdled bit-slices,
has highly regular structures. These regular structures have been routinely exploited to
increase speed and area-efficiency in designing custom Application Specific Integrated Cir-
cuits (ASIC).

Previous research suggests that the implementation areaof datapath circuits on FPGASs
can also be significantly reduced by exploiting catapath regularity through an architecural
feaure cdled configuration memory sharing (CMS), which takes advantage of datapath regu-
larity by sharing configuration memory bits aaoss normally independently controlled, recon-
figurable FPGA resources. The results of these studies suggest that CM S can reduce the total
arearequired to implement a datapath circuit on FPGA by as much as 50%. They, however,
did na take into accourt detailed implementation issues such as transistor sizing, utilizable
regularity in adual datapath circuits, and Computer-Aided Design (CAD) todl efficiencies.

This gudy isthefirst magjor in-depth study onCMS. The study foundthat when detailed
implementation issues are taken into accourt, the actual achievable areasavings can be signif-
icant less than the previous estimations — the CM S architedure investigated in this gudy is
only abou 10% more aea efficient than a comparable mnventional and widely studied FPGA
architecure for implementing datapath circuits. Furthermore, this increase in area dficiency

has a potential speed penalty of around 1@%.

To conduct the study, a new area-efficient FPGA architedure is designed along with its
suppating CAD toals. The architecture, called Multi-Bit FPGA (MB-FPGA), isthefirst com-
pletely specified FPGA architedure that employs CM S routing resources. This sharing signif-
icantly reduces the number of configuration memory bits and consequently increases its area
efficiency.

The use of the CM S resources, however, imposes new demands on the traditional FPGA
CAD algorithms. As aresult, a complete set of CAD tools supporting FPGAs containing CMS
resources are proposed and implemented. These toals are designed to extrad and uili ze datap-
ath regularity for the CMS resources. It is shown that these tools yield excellent results for

implementing a set of realistic datapath circuits onthe MB-FPGA architecure.

Acknowledgements

| would like to take this oppatunity to express my sincere thanks and appredation to my
academic supervisors. Professor Jonathan S. Rose and Professor David M. Lewis have pro-
vided continual source of guidance, suppat, advice, and friendship through ou my graduate
studies. It has been my privil ege to work with these two experienced academics and excellent
engineers. They have made my doctoral studies a truly rewarding and urforgettable experi-
ence. | would espedally like to thank Professor Jonathan S. Rose for taking the extra mile to
point out the big pictures in my research and my academic caree. | would also like to thank
Professor David M. Lewisfor all his extremely detailed and insightful technical advice

My father and mother have dways been a constant suppat throughout my studies and
my personal life. Their courage, kindness, hard-working ethics, and constant striving for good-
ness have been a grea inspiration to me. | am especially inspired by their courage in over-
coming almost insurmountable difficulties in immigrating and establishing themselves in
Canada. Thisthesisis as much an achievement of theirsasit is mine.

| would like to thank my academic supervisors, the Natural Sciences and Engineering
Research Council, the Ontario Government, Communicaions and Information Techndogy
Ontario, and Micronet for their financial suppart.

Finally, | would like to thank all my friends for endless hours of play, insightful discus-

sions, rejuvenating lunch ouings, friendship, support, and encouragement. Thank you all!

Vi

Vii

TABLE OF CONTENTS

1 Introduction

1.1 Introduction to Field-Programmable Gate ArTaysccccceeeveeveeiiieseesiveneeseeseesseee e 1
1.2 ThESISMOLIVALIONeiiieeieei ettt sttt ettt e s e e se et e e e sae e eeeen 2
G S {7S"=F- (ol n IVAN] 0 £ 07 o o [T 3
IR I = oY @] o {1 10 o o TR 4
R I TS TS @ 0 = g = (o] o 4
2 Background
228 R 1 11 o To [ot £ o I TSR 7
2.2 FPGA CAD FIOW ..ottt ettt et e se s e st enee e 7
2.2.1 Synthesis and Tedhindogy MappiNgccceoveeiieeiinnessieeieeie e e e sree s s srvenne s ers 9
2.2.1.1 Synopsys FPGA COMPIIEScoviieiee et 10
2.2.1.2 Datapath-Oriented SYyNthESIS ..o e 11
WA - o {1 o [T 12
2.2.3 Placement and ROULINGc.cuocviiieiier e sie s eie et ste st et sr e e e s sraesn e s sneears 13
2.2.3.1 VPR Placer andROULEYcocuiiieiieiee ettt st e eeeeees 13
LI LSV 8 = 1o < ST STSRP 14
LI TSV 01 = ST 14
2.3 FPGA ATChITECIUINES ...ttt sttt e ettt st e s ne s e e see e e ee s 15
2.3.1 A Conventional FPGA ArchiteCturecccoooiiiiiie e 16
G T 0 I oo [o [(= U 16
Local ROULING NEIWOIKcocuveieiiie ettt er e en s 18
2.3.1.2 ROUING SWILCNES ..ooiciiiiicce ettt e er et sr e e en e en s 19
2.3.1L.3 ROUING ChaNMElSccooiieie e et e e en s 20
2.3.1.4 SWILCN BIOCKSviviieie ettt ettt st e ee e e enen 22
2.3.1.5 Inpu and Output ConnrectioN BIOCKScovcceeiiiven et 24
P20 1 T @ 1 =] o ot <SRRI 25
2.3.2 DP-FPGA — A Datapath-Oriented FPGA Architedureccccoceeevveeniiesveennnne 26
2.3.2.1 Overview of the Datapath BIOCKcccovieeivciiiniinves et 26
2.3.2.2 Arithmetic LoOk-UpP TabIES ...cvviiiiiecie et 29
ARG T B oo [o =] o Tox U 30
Data ConNECtiON BIOCKScc.veiiiiiiie ettt sttt 32
ShiIft BIOCKSceeeieei ettt ettt et ettt et er s e sn e en e e see e e ee s 33
2.3.4 Other Datapath-Oriented Field-Programmable Architecturescccccvveeeveaee. 34
2.3.4.1 Processor-Based ArChiteCLUrEScooeviiiiiiieciie et 35
2.3.4.2 Static ALU-Based ArChitECIUIEScooveeviieeiiee e e 37
2.3.4.3 Dynamic ALU-Based ArChiteCIUIEScccoeeveeiiiniensiecie e see e eneeans 38
2.3.4.4 LUT-Based ArChitECLUMEScoceiiieeeeeeie et st s eeeeees 39
2.3.4.5 Datapath-Oriented Features on Commercial FPGAScccccoeevven i vviecnnnnn, 40
2.3.5Delay and AreaMOdeliNgcoccevvieiiiiiei et 41
P s 11 0] 017 YOS RPRRTPRP 42

viii

3 A Datapath-Oriented FPGA Architecture

1200 1 11 oY [o ' o I TS 43
13228 \V Ko 1 Y= 1 o o TS 45
3.2.1 Heterogeneous ArChItECLUNEcviiercee ettt een 45
122 W oTo Yol =] Vo To: 1 = i i ot = o Tos Y A 46
3.2.3 Par@mMELeriZAIONocoeieeieeeie ettt ettt ea e e s s e e sae e 48
3.3Design Goals of MB-FPGAco ottt e st st s ers 48
3.4 A Modd for Arithmetic-Intensive AppliCationsccccovvciecie e 49
3.5 General Approach and Overall Architectural Descriptionccevcevicvievvinecceeene 52
3.5.1 Partitioning Datapath Circuits into SUPEr-CIUSLEN'Sccoeveeiecieece e 52
3.5.2 Implementing Non-Datapath Circuitson MB-FPGAccccovvicvecine e 54
3.6 The MB-FPGA ATCIITECIUIEcc.eeice ittt st 54
3.6.1 SUPEI-CIUSLErSveceiectiee e eee s ste sttt st e s s e te e st e sreerbeenbe s er e s nne s s e enbeenneans 55
G2 300 I O 1= TSR 57
Local ROULING NEIWOIKcocuviieiiie ittt e se e s 58
Carry NetWork in DEtalccooccueciiiiie e e e en s 59
3.6.1.2 Configuration Memory Sharingccccoeveeiieeiieesiin e sieeie e e see s see s s snseans 60
3.6.2 ROULING SWILCNES ...oviiiiice ettt ettt et e e s r e sn e s ern 60
3.6.3 ROULING ChANNEISooceeee ettt er e sr e sr e s eren 61
3.6.4 SWILCH BIOCKSeeieeeeie ettt ettt e st et e en e eeee 63
3.6.5 Input and Output ConnedioN BIOCKSccccoviiiiinieciece e 65
G S S L@ 1 =] o ot & TSRS 67
G TS 11 01017 Y PSSP 68
4 An Area Efficient Synthesis Algorithm for Datapath Circuits
0 g1 o T W oo o ST 69
4.2 Motivation and Backgroundcceieriiriiiesieeiie s sie e ese e se e see s s s sr e s ers 70
4.3 Datapath Circuit REPrESENAIONcccciceeiiieiie s e s s s eres 73
4.4 The EMC SynthesisS AIQOrithimccviriir it 75
4.4.1Word-Level OptiMiZaionccocovieiice i see et st ereeae s sre s sree e 76
4.4.1.1 Common Sub-expression EXIraCtionccccccvieeiveevieeniinsesseeie e eres e 76
4.4.1.2 OperatioN REOIAENTNG ...ccuvicie ettt st sre s sree e 79
4.4.2ModUE COMPACHIONveiieciiee ettt sreesrae s s e ste e st sreerreenae s sre s sreeseas 81
4.4.3 Bit-Slice Netlist 1/0O OptimizZationc.cccocieiiieiieerecsin e 83
4.5 EXperimental RESUILSccocei ittt e r e s r e s arn 86
I N =T Y 1 1 1 = (o R 86
I (= o |V K= 1] YRR 89
4.5.2.1 LOgIC REQUIAKITY ..icvvecieeiei e stee ettt st sr e st sr et ere s sree e 89
I (= a2 (= o [V =) Y/ TP 90
G @ 'ox 11T o] o ST 93

5 A Datapath-Oriented Packing Algorithm

o300 1 11 e To [ot ' o I TS 95
L3228V Lo Y= 1 o o TS 96
5.3 General Approach and Problem Definition ... e 99
5.4 Datapath Circuit REPrESENtatioNcccccveeiiiir i sre st s st ers 100

5.5 The CNG Packing AlgOrithmcoiciiiiiiie e et ers 102

RIS (=l o I R Lo 11 = = (o 102
5.5.1.1 Breaking NOGESccoiiiiiei sttt st st s er e et ere s sree e 102
5.5.1.2 Timing Analysis and Criticality Calculationccocoveiveieeceiien e 103

RIS (=] o Il == 1o (1 o o U 104
5.5.2.1 Calculating Sead CritiCAitycccccviiieiieiiiie e 106
5.5.2.2 Calculating Attraction CritiCalityccceveevrievie s ee e sree e 109

Base Seed CrtiCAlItYccvvcieiiie ettt e sr e sr e e n e n s 110
Semndary Attradion CritiCalityoccceciiiiiiic e s 110
Shared 17O COUI ...ttt et e eae s e sn et sre e e 111
(0011010070] o 1 1 X @o 11T o S ST STRSR 111
BB RESUILS ...ttt ettt ettt et e et e es e e ere e ensen e ere e ne e 112

5.6.1 Super-Cluster ArChitECIUIESucviiiecie ettt s r e s ers 113

5.6.2 REQUIAITY RESUILSc.eoieeiie sttt ettt et er e e e sr e sn e s ern 114

B5.6.3 ATEARESUILSeoviiie ettt sttt ee et e e s re s e e ene e 114

5.6.4 PerfOrmanCeRESUILScooueiiiiiiie ettt ee e st en e s 116

5.7 Conclusions and FULUrE WOTKcooiioiiiie et 117

6 A Datapath-Oriented Routing Algorithm

L300 R T 11 e To [ot ' o TS 119
L3281V Kol Y= 1 o o TS 120
6.3 ThE MB-FPGA PlaElc.ocvveiiie ittt eeetis et ses et et see s sse e s esensanen 122
6.4 General Approach and Problem Definition ... e 123
6.5 MB-FPGA Architedural REPresentalioncccceeciiieeiieemiiesieesee s s seaesrveeesseeees 124
6.6 The CGR Routing AlQOrithimcoiciiiii e st ees 126
(SIS =l o I R Lo 11 = 1= (o 127
6.6.2 StEP 2 ROULING NELS ...oooeciie st tee sttt sre st e et sr e e e sr e sn e s eren 130
LSS I2 o] g o == 1 o] 1 Oo 1= AR 131
6.6.2.2 Optimizing CirCUit DEIAYcccveiieiiieicee e e n s 132
6.6.2.3 EXPANSION COSE ...oouveciieciieeieciieesiesteestteie e sreestae s seete e sre s sreentesnte s eressreeseas 133

[g0z 05 o] g T K070 o) Fo o 1 === T 133
EXPansion COSt FUNCLIONSccocvieiiiiece et er e se e s sn e en e 136

6.6.3 Step 3 UPatiNng MELIICSoocvviieiceecee ettt se e st s s ers 140
8.7 RESUILS ... ettt et ettt e s st er et e et e s e e et et ere s anen 141
6.7.1 MB-FPGA AIChItECLUIE ..ottt ettt e e e 141
B.7.2 TrACK COUM ...ttt ettt et sttt ee et ee e se e s enees e s e seeeneeee s 143
6.7.3 ROULINGATEARESUILSccoeieeice ettt sttt n s 145
6.7.4 Routing Performance RESUILSccccivevieiice et st 146
6.8 Conclusions and FULUrE WOTKccoiiiiiie ettt 146

7 The Regularity of Datapath Circuits

48 R 1 L1 (0T [ot £ o TS 149
7.2 MB-FPGA Architedural ASUMPLIONSccoeieecieciiee ettt st ers 151
7.3 EXperimental ProCEAUNEc..oiei ettt sr e s arn 151
7.4 EXPerimental RESUILScccviiiis et e ettt et st e st sr e s arn 152

7.4.1 Effect of Granularity onLogic RegUIarityccccccvveeiecine v s 152

7.4.1.1 Diversity of Datapath WIidthscccceciiiie i 155

7.4.1.2 Maximum Width Datapath Components and Irregular LOQICcccuveeeene. 156
7.4.1.3 Inherent Regularity DiStributionccccoceiieieiiii e 158
7.4.1.4 Architedural CONCIUSIONScooiiiee e st eeeeees 159
7.4.2 Effect of Granularity onNet Regularityccccccovenveciecie e 159
7.4.2.1 Shift DEFINITION ..viiiicecieiee ettt s e er e sre e 161
7.4.2.2 Net Regularity RESUILSccocceeiiceiie ettt et ere s e e 162
7.4.2.3 Effect of M onlrregular Two-Terminal Conredionscccccecvveviveseveennnnn 162
7.4.2.4 Effect of M onthe Most POpUOUS BUS TYPES ...eovveeieiiin i sieciecie e 164
7.4.2.5 Architedural CONCIUSIONScooiiiieeeee e st eeeeees 164

7.5 Summary and CONCIUSIONSccccciviiiieiie e eites e e et e e s seesree st e sr e se e s sraesrberne s sneeares 165

8 The Area Efficiency of MB-FPGA

5380 N 1 11 0T [ot ' o TP 167
8.2 MB-FPGA Architedural ASUMPLIONSccccoeieecieciiiiee ettt ers 169
8.2.1 A Summary of Architedural Parametersccccovvveeieciie e 170
8.2.2 ParamMELer VAIUEScceeeeeeie ettt sttt sttt ee et eaae e e st en e e see e e ee s 172
8.2.2.1 Physical Placement of Super-Cluster Inpus and QUIPULSccccceeveieriieeenene 175
8.2.2.2 Physical Placement of Isolation BUFfErScccccceiveiieicii s 176
G N I - 0 S T (o) g T4 Vo 179
8.3 EXperimental ProCEIUNEc.uooeiiiiciice ettt st st st e s ern 179
8.4 Limitations Of thISWOFKuoieieice it 181
8.5 EXperimental RESUILScccviiiiiie et et st s st sr e s eres 182
8.5.1 Effect of Granularity on AreaEffiCiencycccccovvv v 182
8.5.1.1 MB-FPGA Architectures with No CMS Routing Trakscccoeeevvveevveennnne. 183
8.5.1.2 MB-FPGA Architectures with CMS Routing Trackscccccecvveviceiiecnnne, 184
8.5.2 Effect of Propartion of CMS Tracks on Area Efficiencyccccccveeevven e, 186
8.5.3 MB-FPGA Versus Conventional FPGAcccooiiiieine et 187
8.5.3.1 Parameter RESUILSc..ooiieiieeeie ittt s s eneeees 188
O ettt ettt ettt n et et e neereneas 188

[o = (o o o U 188
TSRS 190
8.5.3.2 Area and PerformanCe RESUILScooeuiiiiiiieiie e e 191

8.6 SumMmMmary and CONCIUSIONScccoiviiiiieiie e stes ettt e e s seesraesrbe s sr e se e s sraesr b aree s eneeares 194

9 Conclusions

9.1 TNESIS SUMIMAIY ..ecveeivieeeeeieeetestesste et teeste s seesstes s re et beeasarae e s saesree st be s seesneesnaesraesrsaneesnnnearen 195
9.2 ThesiS CONLITDULTIONSc.ooiiieiiece ettt s s e s er e e 197
9.3 SuUgEestions for FULUrE RESEAICHcccuviviiie et st st ers 199
Appendix A: Net Regularity Distribution
A.1 MB-FPGA Architectural Granularity = 2ccccciveiiesiesneerie s sreesreeieesiessresseee e 203
A.2 MB-FPGA Architectural Granularity = 4ccccovveieiiesseerie st steeie e e svessres e 203
A.3 MB-FPGA Architectural Granularity = 8ccccvereiesiiesseerie s sressreeieenieesresseee e 203
A.4 MB-FPGA Architectural Granularity = 12ccccoeviiesiiesseenie s seesreeieenieeseessees e 204
A.5 MB-FPGA Architectural Granularity = 16cccocveiesiiesmeeriecsiie e seeieenieesressees e 204

Xi

A.6 MB-FPGA Architectural Granularity = 20ccccveviiesiiesieere s siveieenieesressres e 206

A.7 MB-FPGA Architectural Granularity = 24ccccocveiesiesieesie e seesteeie e e sressres e 208
A.8 MB-FPGA Architectural Granularity = 28ccccoevriesiiesneere s sreesteeieenieesressees e 210
A.9 MB-FPGA Architectural Granularity = 32ccccvvveiesiies e sreeieenieeseessees e 213

Xii

Xiii

21
2.2
2.3
24
25
2.6
2.7
2.8
2.9
2.10
211
212
2.13
214
2.15
2.16
2.17
2.18
2.19

31
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
311
3.12
3.13
3.14

4.1
4.2
4.3
4.4
4.5
4.6
4.7

LIST OF FIGURES

FPGA CAD FIOWcitiieiiceiere sttt s et ere et se s e e s sse e s neenennenen 8

Overview of FPGA Architecture Described in [Betz99a]cccceveevivveniieciieennnnn 17
[0 Lol O 10 = = 17
BaSiC LOGIC EIEMENTcoiie ettt e sr e sr e e ern 18
[T0] LU o T = o] = S 18
ROULING SWITCNES ...t et et sr e e sr e sr e e sne e eren 20
S0 (=S =1 o TS 21
ROULING ChaNNE]oooieeee ettt e s st sr e e ene e ern 22
Staggered Wir€ SEOMENEScoiei ittt st s ee et sre s sreer e eabe e sr e s see s e sn e sn s e 23
L1 =S USSP 23
Different Topdogies of A Horizontal Track Meding A Vertical Traccc........ 24
FgTo]0 A @toTaT g =To (Kol TN =1 Ko S 25
Output CoNMECION BIOCK.......cuiiiei ettt er e e e 26
Overview of DP-FPGA ArChiteCIUre........cco it 27
Overview of Datapath BIOCK..........cccueiiiiiiiiiecee et 28
Arithmetic LOOK-UP TabIE......c.cooiicie ettt et sre s sree e 29
(o]0 Tol =] Vo Te: Q@] a1 p'=To 1171 0SS 30
(] 2 o o AN W0 T Lol =1 oo S 31
Data ConNECLION BIOCKcciieeeiieie sttt sttt e eneeeen 33
Arithmetic-Intensive APPIICALIONcoocecieciie e ere e e e 50
Datapath SETUCTUIE.ecvie ettt st st e e e er e en e e sr e s e e s e sn e enr s 51
Overview of MB-FPGA ArChitEAUIe........cooeieeeeeeeeeee e st e 55
Super-Cluster With M CIUSLES........coue ittt sr e see s s sr e en s 56
L 11 = TSP 56
A Modified Cluster from [Betz99a]cccocieeiveciieiiine e cie et ers 58
Local ROULING NEIWOIK......cccceiiie ittt sttt st sr e e sr e sr e s sne e ers 59
(0= 14 Y N L= 411§ ST 60
BLEs and Configuration Memory Sharingccccceeveeieerinnessieeieeneeseessees e sree s 61
ROULING SWITCNES ...t ettt e e e s e e sr e sr e e ene e eres 62
CMS Routing Tracks With A Granularity Value of TWO.........cccceveieeveiven e 63
Connecting ROULING BUSES.........coiiie ettt st sre s st er et se e see s s sn e sn s 65
Input Connedion BIOCK (M=4) ...ttt sttt s ern 66
Output ConnectioN BIOCK (IM=4)cuvciiie ettt e se e s 67
Regularity and AreaEffiCIeaNCYccccue i 71
Share LOOK-UP TaBIE Coociecie et sttt st erte st s sre s sne e e 72
SIMPlify LOOK-UP TabIE B ..ot 72
4-bit Ripple Adder Datapath COMPONENTooeivieiiecie e ere e 75
Overall SYNthESIS FIOWoociiii e e e 76
Mux TreeCollapsing EXAMPIEccueiiiii et sn e en e 78
Result Selectionto Operand Selection Transformation..........ccccevvvevicevievviniecveeene 80

Xiv

4.8
4.9
4.10
411
412

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
5.9
5.10
511
5.12
5.13
5.14

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

8.1
8.2
8.3

A Bit-Slice Netlist Merging EXample ...t 82

Feedback AbSOrption EXaMPIE.......ccuciiiiiiiiecis ettt se e e 85

[DI0T0! o= (=0 ITaTo10 AN 015 o g o] 4 o] o FHS S 85

4-bit Wide BUS TOPAOGY ..c.vvereeieieieesiessieeuieetinneessaesreesstesseesneessassrassssessesssesssessenssnnas 91

P78 oT1 @XoT g v {o) I \\T= G o] oo Koo | /8PN 92

Regularity and PErformManCe...........coviieiiien ettt st ers 97

A Naive Packing SOIULION......c.cccviiir ittt sr s st st ere s sree e 98

A Better Padking SOIULION.......c.cociiiir ettt ettt e sre s sree e 98

Coarse-Grain NOGE Graphccoiiceviieiiire e s reer e se e e e er e en s 101
Datapath Circuit Represented by the Coarse-Grain Node Graph........cccccceceevvvenene 101
Overview of the CNG Padking Algorithm........cccccoo et 103
Order for Filling Super-Cluster With N =4, M = 3. 105
Equivalence of BLES TN CIUSLENScccivicies e cecie et ste sttt se e e e st sr e s arn 106
Topdogy for Identifying Potential Local CoNNECtioN..........cccocccverviveinciec e 107
Adding aNode to a Super-Cluster at Position (4,1)cccevvveeviivinsverieeneeeee e 110
Common Inpus Between Clustersin a SUper-ClUSLES ... veeieciirecense s 112
Regularity VS, GranUIartycccueiieiiiereies et e e sre st se e e e st sr e s sne e ers 115
ATEAVS. GIaANUIAIITY ..e..eeiveectveie e eteestes s se et te et e e e sae st e st e e sr e s e e s sraesreenneene e erensrenseas 115
(D VY S T = 01U = | 117
Example of Contention Between CM S and Fine-Grain Nets..........cccooeevevvire e, 121
An Example Routing Resource Graph...........cccvvieiieiie s esie e sres e e 126
Overview of the CGR Routing Algorithm...........ccco e 128
A PIN-BUS..cc e er e e r e er e enne e 129
A Net-Bus Containing Net A, B, and C........ccocoiiiiicienie et eree e e 129
COMPELItioN FOr RESOUICES.........ceiieeitiectiirie e ctee e s s ete e sre s sre et esbe e sr e see s e sn e en e 134
(S qor= 105 o] o T K0T« o] Fo o |2 139
Double Conredionin One Bit of A NOGE-BUS.........ccooveevereeirioereie e 140
Track Court vs. #CM S Tracks per Channgl.........cccviieveiieeiie s 144
ATEAVS. HCM S TIACKS ... e ietie ettt ettt ettt ee et s e st en e s e seesneeeeas 145
Delay VS. HOCMS TIACKSvvieeeiiee i stiesttirie s se e stesstee s seeste et e sr e sresr e ente s se e s nee s s e sn e enseans 146
Super-Cluster With M CIUSLEFS........coue ittt sr e sr e en s 150
(@7 o o SO RR 152
Dividing A Super-Cluster into Datapath COMPONENEScccevveeiieeiieeneenescee e 153
Datapath Comporent Types Containinga Minimum % of BLES..........c..ccccccevvennne. 156
% of BLEsin Maximum Width Datapath Comporents...........c.ccceeeevveieciinecienien e 157
% of BLESIN Irregular LOGIC VS. M ..ottt st enie et er e 157
A 2-bit wide buswith ore-bit shift for M =4 ..o 160
% of Irregular Two-Terminal ConNECtIONSVS. Mcooviei e 163
The Most Popuous Bus Types for Each Granularity..........cccccvceveriieinciineceensen e 165
The MB-FPGA ArCNILEAUIE.coii ettt sttt s s ere e 168
Tp for FPGA Architedureswith N =4 and | = 10....cccccciveiieiiiiiin e 176
I solation Buffer Topology for Conventional FPGA..........cccoovi e 177

XV

8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15

Equivalent MB-FPGA ATChItECIUIE........ccciiiecee et 178

CAD FIOWS ...ttt sttt ettt er et e sttt an e e s et et neeee s e 180
Total Areavs. M with NO CM S Routing Tracks........ccccocevveeve v sen e 183
Logic Areavs. M with NO CMS RoUtING TradkSccceevieeieeieeneesiee s s sreeseveneeesneeeees 185
Areavs. M with CMS ROULING TraCKS.......cvccuiiiiiiieciestie s se s steesrvene e s sressree e 185
Areavs. Propartion of CMS TraCKS........civierinececiiinee e ctie st se e see s st srase e ers 187
Iteration 1 Routing Areavs. Fc_if for FC_pf = 1.00 ..o 189
Iteration 2 Routing Areavs. FC_pf for FC_if = 0.5 189
Iteration 3: Routing Areavs. FC_if for FC_pf = 0.2 190
Areavs. Logica Track LeNgth.........coo oo 191
Areavs. Percentage of CMS TratkS......cocieeiuiiieeinie e stie e e se e s staesrvete e s sresseessees 192
Normalized Delay vs. Percentage of CMS TradkS.......ccoveveieeieeneeiiensicesiiesrvine e enes 193

XVi

XVii

4.1
4.2
4.3
4.4
4.5
5.1
6.1
6.2
6.3
7.1

7.2
7.3

8.1

8.2

Al

A2

A3

A4

A5

A.6

A7

A.8

A9

A.10

All

LIST OF TABLES

Arealnflation for Hard-Boundary Hierarchical Synthesis.........cccccooveeiviiieiciniiennnee 74
LUT & DFF Inflation for Regularity Preserving Synthesis........ccccccvevvvenivesivecennnn 87
LUT Count Inflationas a Function of Granularityccccceeeeemeiiesicesiesvineeseeenes 89
(oo Toll (= o [V = 4] Y 91
L o L1 =) S 92
EXPerimental CIrCUITSccovice ettt e e s st sr e s ers 113
b(n) Values for Each Type of ROUtiNg RESOUICE........cccovvveieeiieceeicee et 131
[q 7= 105 Ko 4 O S 137
EXPerimental CirCUITScovice ettt et sr e sr e s sne e ers 142
% of BLEs Contained in Each Width of Datapath Comporents.........ccccceeveeniennene 154
Distribution d BLESTOr M = 32uiiiieee e e 158
% of Inter-Super-Cluster Two-Terminal Connections Contained in

Each Type of BUSESTOr M = 12ccciiiiicie ettt e e e st st s ern 163
MB-FPGA Architectural Parameters............ccooeuiieiienieenire e e 170
Values for Architedural Parametersoocooieeieiieieniee s e 173

% of Inter-Super-Cluster Conrections Contained in Each Type of

BUSESTOr M = 2 1ot et et er e sttt et ee e e nnen 203
% of Inter-Super-Cluster Conrections Contained in Each Type of
BUSESTOr M =4 ettt ettt er e sttt ee e e nnen 203
% of Inter-Super-Cluster Conrections Contained in Each Type of
BUSESTOr M = 8 .ttt et e sttt ee e e eeen 204
% of Inter-Super-Cluster Conrections Contained in Each Type of
BUSESTOr M = 12 ..ttt et ettt er e st st ee e e nnen 204
% of Inter-Super-Cluster Conrections Contained in Each Type of
Busesfor M =16 —Part 1 0f 2ooceeieie e e 205
% of Inter-Super-Cluster Conrections Contained in Each Type of
Busesfor M =16 —Part 2 0f 2ooeeieie e e 205
% of Inter-Super-Cluster Connections Contained in Each Type of
Busesfor M =20 —Part 1 0f 2c.ooeeeie e e e 206
% of Inter-Super-Cluster Conrections Contained in Each Type of
Busesfor M =20 —Part 2 0f 2ooeeeeie e e 207
% of Inter-Super-Cluster Conrections Contained in Each Type of
Busesfor M =24 —Part 1 0f 2 ...ocuoeeeiee e e 208
% of Inter-Super-Cluster Conrections Contained in Each Type of
Busesfor M =24 —Part 2 0f 2c.ooeee i e 209
% of Inter-Super-Cluster Conrections Contained in Each Type of
Busesfor M =28 —Part 1 0f 3c.ooiee i e e 210

XViii

A.12

A.13

A.l4

A.15

A.16

% of Inter-Super-Cluster Conrections Contained in Each Type of
Busesfor M =28 —Part 2 0f 3ooeee e e
% of Inter-Super-Cluster Conrections Contained in Each Type of
Busesfor M =28 —Part 3 0f 3 ..o e
% of Inter-Super-Cluster Connrections Contained in Each Type of
Busesfor M =32 —Part 1 0f 3 ..o s
% of Inter-Super-Cluster Conrections Contained in Each Type of
Busesfor M =32 —Part 2 0f 3 ..o s
% of Inter-Super-Cluster Conrections Contained in Each Type of
Busesfor M = 32—Part 3 of 3

XiX

1 Introduction

1.1 Introduction to Field-Programmable Gate Arrays

Field-Programmable Gate Arrays (FPGAS) are user programmable digital devices that
provide dficient, yet flexible, implementations of digital circuits. An FPGA consists of an
array of programmable logic blocks interconneded by programmable routing resources. The
flexibility of FPGAs allows them to be used for a variety of digital applications from small
finite state machines to large complex systems. The research reported in this thesis is focused
onreducingtheimplementation area of large, arithmetic-intensive, systems on FPGAsthrough
architeaural innowations. We dso present new and innovative Computer-Aided Design
(CAD) agorithms which are designed to support the new architecture.

Sincetheir inventionin 1984 Cart86], FPGAs have beame one of the most widely used
platforms for digital applications. Comparing to alternative technologies, which drectly fabri-
cate hardware on silicon, FPGAs have the alvantage of instant manufacurabili ty and infinite
re-programmability. They also incur lower cost for low to medium volume production o digi-
tal devices. Unlike full fabrication of integrated circuits, which require highly spedalized
manufacturing fadlities and cost hundeds of thousands of dallarsto prototype, FPGASs can be
programmed onthe desks of their designers. This makes the verification of hardware designs
much faster — once amistake is found, unlike full fabrication, which has to rebuild masks,
corrections on FPGAs only take the reprogramming of afew configuration memory hits. This
also allows multiple design iterations to be done quickly and at a much lower cost. FPGA
based applications also can be updated after they are delivered to their customers all owing

incremental hardware improvements and adaptation of old designsto new protocols and spec-

ifications. Furthermore, FPGA CAD toadls are much cheaper to acquire than comparable CAD
tools that support full fabrication.

These advantages allow FPGASs to compete head onwith full fabrication techndogies,
such as the Application Spedfic Integrated Circuit (ASIC) techndogy, for market share. The
user-programmability of FPGAS, however, also hasits dortcomings: FPGAs are more expen-
sive in high vdume production; circuits implemented on FPGAs are usually many times big-
ger and slower than comparable ASICs. In order for FPGAs to overtake full fabrication
technologies, FPGA researchers need to find new and innovative ways of improving the per-

formance andlogic density of FPGAs.

1.2 Thesis Motivation

Over the yeas, the capacity of FPGAs has increased dramatically. Current state-of-the-
art devices can contain near 100,000 logic elements (where a logic element is typicdly a 4-
inpu look-up table, a flip-flop, and 1-bit worth of arithmetic cary logic) [Alte02] [Xili02]
with a projected logic capacity of several millionlogic gates [Xili02]. In comparison, the first
FPGA [Cart86] contains only 64 logic blocks with a projected capacity of between 1000and
1600 gates. Since the logic capacity has grown significantly, the gpli cation domain of FPGAs
has been grealy expanded. Modern FPGAs are often used to implement large aithmetic-
intensive applications, including CPUs, digital signal processors, graphics accelerators and
internet routers.

Arithmetic-intensive applications often contain significant quantities of regular struc-
tures cdled datapahs. These datapaths are nstructed out of multiple identicd building
blocks called bit-slices. They are used to perform mathematical or logical operations on multi-
ple-bits of data. It is our hypathesis that greater area efficiency can be achieved in FPGAs by

incorporating catapath specific features. One such feature is the configuration memory shar-

ing (CMS) routing resources proposed by Cherepacha and Lewisin [Cher96], which takes the
advantage of the regularity of datapath circuits by sharing configuration memory bits across
normally independent routing resources. This reduces the number of programming kits needed
to control these resources and consequently reduces FPGA area.

The primary focus of thisthesisisto explore in-depth methods of increasing FPGA logic
density for arithmetic drcuits using multi-bit logic and CM S routing structures under a highly
automated modern design environment. The goal of the study isto determine the most appro-
priate amount of CMS routing resources in order to achieve the best logic density improve-
ment for real circuits using real automated CAD tools. Since routing area typically consists of
a significant percentage of the total FPGA area, its reduction is particularly important to
reducethe overall FPGA area Thisresearch isa mntinuation o the DP-FPGA work [Cher96].
It is aso closely related in methoddogy to several previous FPGA research projects

[Betz99a].

1.3 Research Approach

Datapath-oriented FPGA architedures are studied in this thesis using an experimental
approach. A parameterized FPGA architedure, called Multi-Bit FPGA (MB-FPGA), with bus-
based CM S routing resources has been proposed. A complete CAD flow for the architecture
has also been implemented. The experiments consist of varying the anournt of CMS routing
resources and measuring the dfeds on the implementation area of datapath circuits. The
results of the experiments provide insight to the amourt of CMS routing resources that are

needed to achieve aea savings for real datapath applications using real CAD todls.

1.4 Thesis Contributions

To the best knowledge of the author, the MB-FPGA architecture is the first completely
specified spedal-purpose FPGA architecture targeting catapaths. It is also the first FPGA
architeaure containing CM Srouting resources suppated bya cmmplete set of CAD tools. Fur-
thermore, the achitectural study presented here represents the first in-depth empirical study on
the effectiveness of CM S routing resources in trandating catapath regularity into areasavings.
Previous studies [Cher96] [Leij03] onthe subjed are dl analyticd in nature. Asaresult, none
of them takes the detail ed transistor-sizing issues, the actual benchmark regularity, and the
areaefficiency of the CAD algorithms into account. Asit will be shown by the results of this
study, these previous gudies are much lessaccurate and tends to overestimate the benefits of

the CM S resources.

1.5 Thesis Organization

This thesis is organized as follows. Chapter 2 reviews the background information rele-
vant to this work, including a review of various CAD toadls available for transforming high-
level descriptions of digital circuits into FPGA programming information. The review
includes a brief description d representative toals from each major classof CAD toadls. The
chapter also describes the work of two previous architectural studies that significantly influ-
enced the work presented in thisthesis.

Chapter 3 presents a new, highly parameterized, datapath-oriented FPGA architecture
called the Multi-Bit FPGA (MB-FPGA). The architecture is unique in that it uses a mixture of
conventional routing resources and CM S routing resources. The combination all ows a homog-
enous architecture for the efficient implementation o large datapath circuits as well as snall

nontdatapath circuits. The achitecture is the basis from which the CAD flow presented in

Chapter 4, 5, and 6 are designed and the experiments presented in Chapter 7 and 8are wn-
ducted.

Chapter 4, 5, and 6 pesents a new datapath-oriented CAD flow. The flow includes sv-
eral new algorithms covering the entire processof transforming and gotimizing high-level cir-
cuit descriptions into FPGA programming information. These algorithms are unique in that
they effectively preserve and uili ze datapath regularity on CM S routing resources. In particu-
lar, Chapter 4 discusses datapath-oriented synthesis; Chapter 5 presents a datapath-oriented
packing algorithm; and Chapter 6 discusses datapath-oriented placement and routing.

Using the synthesis and packing toadls presented in Chapter 4 and 5 Chapter 7 character-
izes and quantifies the amount of regularity presented in a typical datapath circuit. Analyti-
cally, this regularity information is used to determine good values for several important MB-
FPGA architectural parameters, including the degree of configuration memory sharing (called
grandarity) andthe proportion d CMS routing resources.

The MB-FPGA is diredly explored in Chapter 8 using an experimental approadh. The
CAD flow presented in Chapter 4, 5, and 6is used to implement a set of datapath circuits on
the MB-FPGA architedure. For each circuit the best area is evaluated by varying a range of
architeaural parameters. The experiments measure the effediveness of CMS routing on
improving the area dficiency of datapath circuit implementations and the effect of these rout-
ing resources on performance.

Finally, Chapter 9 provides concluding remarks and drections for future research.

2 Background

2.1 Introduction

This chapter reviews the two main fields of research, FPGA CAD tools and FPGA archi-
tectures, that are studied in this thesis. Sedion 2.2 provides some necessary backgroundinfor-
mation on FPGA CAD that is assumed in various discussions, particularly in Chapter 4, 5, and
6, which discuss CAD design for the MB-FPGA architecture. Section 2.3 describes s®veral
previous FPGA architedures to provide a point of reference for the MB-FPGA architecture
presented in Chapter 3 and the FPGA modeling methoddogy that is used throughou this

work.

2.2 FPGA CAD Flow

Since the focus of this thesis isthe design of a datapath-oriented FPGA architecture sup-
ported by a highly automated modern design environment, this chapter begins with an over-
view of the modern CAD toals that are commonly used to implement circuits on FPGAs. A
typical CAD flow for FPGAs consists of a series of interconnected CAD toodls asillustrated in
Figure 2.1. Theinpu to the flow usually is ahigh-level description of the hardware, expressed
in high-level hardware description languages such as Verilog a VHDL.

The descriptionis read by a synthesis program [Call98] [Cora96] [Koch96a] [Koch96h]
[Kutz00a] [KutzO0b] [Nase94] [Nase98] [Syno99] [Synp03], which maps the description lan-
guage into a network of Boolean equations, flip-flops, and pre-defined modules. During the
synthesis process, the Boolean equations are optimized with respect to estimated i mplementa-
tion area and celay. The optimizaions performed at this gage ae limited to those that can ben-
efit circuit implementations on any medium, not just FPGAs. Some synthesis algorithms,

including [Call 98] [Cora96] [Koch96a] [Koch96H [Kutz00a] [KutzOOb] [Nase94] [Nase9g],

High-Level
Hardware
Description

Synthesis

Y

Technology
Mapping

Y
Packing

Y
Placement

Y
Routing

FPGA
Programming
Data

Figure 2.1: FPGA CAD Flow
also attempt to preserve the regularity of datapath circuits by maintaining a hierarchy that

clearly delineates the boundary of bit-slices. These dgorithms are often cdled the datapath-
oriented synthesis algorithms.

The Boolean equations are then first mapped into a circuit of FPGA Look-Up Tables
(LUTs) through the techndogy mapping process [Syno99]. Then the packing process
[Betz97a] [Betz99a] [Marq99 [Bozo01] groups LUTs and flip-flopsinto logic blocks, each of
which usually contains sveral LUTs and flip-flops. During the techndogy mapping and the
packing process the circuit is again optimized with respect to estimated implementation area
and delay. This time the optimizations are targeted towards specific implementation technolo-

gies. Areais typically optimized by minimizing the number of LUTs or logic blocks that are

required to implement the drcuit; and delay is often ogimized by minimizing the number of
LUTsor logic blocks that are on the estimated timing-critical paths of the drcuit.

The spedfic location of each logic block on the target FPGA is determined during the
placement process [Betz99] [Kirk83] [Marg00e] [Sech85 [Sech86] [Sech87] [Sun9j
[Swar95]. A placement program assigns each logic block to an urique location to ogimize
delay and minimizewiring demand.

Finally, during the routing process [Betz99a] [Brow92a] [Brow92h] [Chan00] [Ebel95]
[Lee6]] [Swar98], arouting program is used to connect logic blocks together by determining
the mnfiguration of the programmable routing resources. The main task of all routing pro-
gramsisto successfully establish all connedionsin a drcuit using the limited amourt of phys-
ical resources available on the target FPGA. The other task of the routing programs is to
minimize delay by allocating fast physical conrections to timing-criticd paths.

Together the synthesis, techndogy mapping, and packing processare mmmonly called
the front end o the FPGA CAD flow; and the placement and routing steps are commonly
called the back end of the FPGA CAD flow. The remainder of this sedion reviews previous
work on each stage of the FPGA CAD flow. In particular, severa tools discussed below,
including the Synopsys FPGA compiler [Syno99 for synthesis and techndogy mapping, the
T-VPACK padker [Marq99] [Betz99a] for packing, and the VPR (Versatil e Placer and Router)
[Betz994] tools for placement and routing, serve & the framework from which the CAD work

described in Chapter 4, Chapter 5, and Chapter 6 is devel oped.

2.2.1 Synthesis and Technology Mapping
There are several commercially available synthesis toals for FPGAs, including the Syn-
opsys FPGA Compiler [Syno99, Synplicity’s Synplify [Synp03, and Altera Quartus Il

[Quar03]. In general, these toals perform both the task of synthesis and techndogy mapping;

however, nore of these toadls preserves the regularity of datapath circuits snce they usually
optimize acrossthe boundaries of bit-slices. These cross-boundary optimizations often destroy
the regularity of datapath circuits. This section first describes the various features of the Syn-
opsys FPGA Compiler [Syno99], which is used as a part of a datapath-oriented synthesis flow
built for the MB-FPGA architecture. Then previous research ondatapath-oriented synthesisis

reviewed in detail.

2.2.1.1 Synopsys FPGA Compiler

The Synopsys FPGA Compiler performs a combination o synthesis and techndogy
mapping. The input to the cmpiler consists of three files including a drcuit description file,
an architedural description file, and a compiler script file. The circuit description file
describes the behavior of the circuit that is to be synthesized. The format of the file an bein
either Verilog, VHDL, or severa other high-level or low-level hardware description lan-
guages.

The architecural description file describes the properties of two fundamental FPGA
building Hocks that the inpu circuit is to be mapped into, the LUTs and the flip-flops. The
description includes parameters describing various delay and areaproperties of each building
block. The LUTs are combinational circuit elements each with several inputs and one output.
A LUT can be used to implement any single output Boolean function that has the same num-
ber of inputs as the LUT. The flip-flops, on the other hand, are used to implement sequential
circuit elements.

The ompiler script fil e gives gecific compile-time instructions to the FPGA compil er. It
can be used to set up various g/nthesis boundaries in the input circuit so that circuit elements

will not be merged acrossthese bourdaries during the synthesis and the techndogy mapping

10

process In thisresearch, thisfeature is used to preserve datapath regularity; andit is described
in more detail i n Chapter 4.

Thefinal output of the Synopsys FPGA compiler is anetwork of LUTs and fli p-flops that
implements the exaa functionality of the inpu circuit. The compiler can ouput the final result

in avariety of file formats including the Verilog and the VHDL formats.

2.2.1.2 Datapath-Oriented Synthesis

Datapath-oriented synthesis techniques can be roughly classified into four categories
including hard-boundary hierarchical synthesis, template mapping [Call98] [Cora96] [Nase94]
[Nase98], modue compaction [Koch96a] [Koch96b], and the regularity preserving logic
transformation algorithm [Kutz00a] [KutzOOb]. Note that most of these dgorithms were pri-
marily developed to speed upthe development cycle (toal runtime) of their applications; and
they often pay little attention to area optimization.

Hard-bourdary hierarchical synthesis is the simplest form of regularity preserving syn-
thesis. It preserves datapath regularity by performing gotimizations grictly within the bound
aries of user-defined hit-slices. However, as will be shown in Chapter 4, this method suffers
from the problem of high area inflation when compared to conventional synthesis algorithms
that do not preserve datapath regularity.

Template mapping [Call98] [Cora96] [Nase94] [Nase98] attempts to reduce the aea
inflation of the hard-boundary hierarchical synthesis by mapping the inpu datapath orto a set
of predefined templates. These templates are datapath circuits that have been designed to be
very area dficient. In theory, if one can define an arbitrarily large datapath template library
and has an udimited amourt of timeto reconstruct the inpu datapath circuits out of these tem-
plates, one can achieve excellent area efficiency. However, in rea life, limited by a reasonably

sized datapath template library and limited computing time, the template mapping algorithm

11

also performs poaly in terms of area dficiency and can have over 48% area inflation
[CoraZeg].

Modue compadion [Koch96a] [Koch96l takes one step further. It merges some of the
user-defined hit-slices into larger bit-slices while stil| preserving the regularity of datapath cir-
cuits. Thisalgorithm is modified in Chapter 4 into an very area dficient datapath-oriented syn-
thesis algorithm when complemented with several extra optimization steps. Withou these
optimization steps, however, the area dficiency of the modue compaction algorithm as pro-
posed in [Koch96a] [Koch96H is till quite poa. For example, the dgorithm discussed in
[Koch96b] has an areainflation d onthe order of 17%.

Finally, the regularity preserving logic transformation algorithm [Kutz00a] [KutzOOh|
takes an entirely different approach to datapath-oriented synthesis. Instead of preserving user-
defined regularity, it tries to extract regularity from flattened datapath logic. As a resullt,
althoudh it iseffective in areaoptimization, its effectiveness in preserving detapath regularity,

islimited by the amount of regularity that can be discovered bythe extraction process

2.2.2 Packing

All existing packing algorithms place LUTs and flip-flops into FPGA logic blocks. Each
logic block has a fixed capacity, which is determined by the number of LUTs and flip-flops
that the logic block contains and the available number of unique logic block inpus and out-
puts. The VPACK algorithm [Betz97a] tries to maximize the number of LUTs that can be
packed into a logic block by goupng highly conneded LUTs together. The T-VPACK algo-
rithm [Marq99 improves upon the VPACK algorithm by using the timing information on top
of the mnredivity information. Other packing algorithms, including RPACK and T-RPACK
[Bozo01], further improve uponthe VPACK and the T-VPACK algorithms by using routabil-

ity information ontop of the annrectivity and timing information. Note that all four packing

12

algorithms assume afully conrected logic cluster architecure, which is described in detail in
Sedion 23.1.1. Furthermore, during the packing process each padking algorithm considers
individual LUTsor DFFsinisolation. Asaresult, none of these algarithms preserves the regu-

larity of the datapath circuits during the packing process

2.2.3 Placement and Routing

This section gives an overview of the VPR placement and routing tools [Betz99a], which
serve as the basis for the MB-FPGA placement and routing software and algorithms described
in Chapter 6. The VPR place is based on the simulated annealing algorithm [Kirk83]
[Sech85], while the VPR router is a negatiation-based router [Ebel95]. Note that simulated
annealing based algorithms [Betz99a] [Kirk83] [Marq00a] [Sech85 [Sech86 [Sech87]
[Sun9] [Swar95] are one of the most widely used types of placement algorithms for FPGAS,
while many FPGA routing algorithms are negatiation-based routers [Betz99a] [Chan0Q
[Ebel95] [Lee61] [Swar98]. None of the &isting dacement [Betz99a] [Kirk83] [Marq0Ca]
[Sech85] [Sech86] [Sech87] [Sun%b] [Swar95] and routing algorithms [Betz99a] [Brow92a]
[Brow92h] [Chan0(Q] [Ebel95] [Leebl] [Swar98] preserves the regularity of datapath circuits.
For placement, regularity is destroyed by existing placers, which orly incrementally improve
the placement of individual logic blocks. Routers, on the other hand, also destroy the regular-

ity information as they only route one net at atime.

2.2.3.1 VPR Placer and Router

The VPR placer and the VPR router are contained in a single computer program. The
inpu to the program consists of two fil es, acircuit descriptionfile and an architectural descrip-
tion file. The circuit description fil e describes a network of logic blocks that is to be imple-

mented on an FPGA. The architecural description file specifies the detailed architecture of the

13

FPGA. The achitedural choicesin the achitectural description file ae limited to the variants

of the logic duster based FPGA architecture described in Sedion 23.1.

The VPR Placer

The VPR placer performs placement using the simulated annealing algorithm [Kirk83]
[Sech85]. It first places each logic block randomly onto an unaccupied locaion onthe FPGA.
It then moves two logic blocks by swapping their physicd locations or moves a logic block
into a location that is not occupied by any other logic blocks. After each move, the algorithm
either kegos the move or discards the move by comparing the placement before the move with
the placement after the move using a set of metrics. These metrics represent an estimation o
how easily a particular placement can be routed and the achievable speed of the placement
after routing. Usually the optimization strategy chooses a placement with a metric indicating
easier routing a better speed. But occasionally, the algorithm choases the opposite in the hope
that a bad placement choice can lead to avery good one in subsequent moves.

A key metric in smulated annedingis call ed the annealing temperature. At the start of a
placement process the temperature is set at avery high value. Throughou the placement pro-
cess the temperature is gradually lowered to zero. At high temperatures, the optimization
strategy will be more likely to choose abad move;, while at low temperatures, fewer bad
moves are acepted by the dgorithm. Finally at zero temperature, only good moves are

accepted.

The VPR Router

The VPR router takesthe output of the VPR placer asitsinpu. Theinpu describes a net-
work of logic blocks whaose physical | ocations are determined. The same achitectural fil e that

the placer uses also spedfies the routing architecure for the router. Recall that the fundamen-

14

tal goal of the routing toal is to successfully conrect all the nets throughthe routing retwork
and to meet the timing constraints of the most timing-critica connections.

Since each physical routing resource can only be used by a single net at a time, the best
connection choices for individual nets might conflict with each ather. The VPR router usesthe
negotiation-based approach of the Pathfinder routing algorithm [Elbe95] to resolve these rout-
ing conflicts. It conrects the logic blocks together through several routing iterations. During
each iteration, the router completely routes the entire drcuit; and except during the final itera-
tion, each physicd routing resource ae allowed to be used by several nets at atime. The over-
useis cdled congestion and the over-used routing resources are call ed congested resources.

During ead iteration, the router conneds one net at a time using the maze routing algo-
rithm [Lee61]. For each net, the routing processis guided by a set of metrics that are based on
the delay of the net and the @wngestion o the routing resources from all the previous routing
iterations. These metrics are updated after each routing iteration to make alrealy congested
resources more @stly to use as time progresss. The nets compete for congested resources
based onthese metrics. When a net is more timing-critical or has no aher alternatives, it is
given priority for the routing resources that it prefers. When a net is not timing-critical or has

other equally goodalternatives, it isforced to give up the congested resource that it occupies.

2.3 FPGA Architectures

This sction provides a detailed description of two FPGA architectures proposed in pre-
vious FPGA studiesincluding a cmnventional FPGA architecure described in [Betz99a] and a
datapath-oriented FPGA architecture described in [Cher96]. These two architedures have
been chosen because of their influence on the MB-FPGA architecture proposed in Chapter 3.
Each FPGA isdescribed interms of itslogic block architedure, itsrouting architecure, and its

CAD flow. Enough cttail sare given, and in some ases gecific comments are made, to show

15

how specific architectural features of these FPGASs relate to the research described in this dis-
sertation. Following these detailed architectural descriptions, several existing datapath-ori-
ented architedures are briefly described. The section is concluded by a brief review of the

various techniques used for modeling FPGA delay and area througho this work.

2.3.1 A Conventional FPGA Architecture

The overall structure of the conventional FPGA architecture propaosed in [Betz994] is
shown in Figure 2.2. It consists of a two-dimensional array of programmable logic blocks,
called logic dusters, with haizontal routing channels between rows of logic blocks and verti-
cal routing channels between columns of logic blocks. At the periphery of the architecure are
the 1/O blocks, which bring signals from outside into the achitecture and send signals gener-
ated inside the architedure to the outside. At the intersection o a horizontal routing channel
and a verticd routing channel is a switch block, which provides programmable mnrectivity
between the horizontal and vertical channels. This architecture was developed by Betz . al.
as the base achitedure for the development of the T-VPACK and the VPR tools described in
Sedion 22. The achitecture has been used in many architedural studies including [Betz974]
[Betz97h| [Betz98] [Betz99a] [Betz99H] [Betz00] [Chen(3] [Cong03] [Harr02] [Li03] [Lin0J
[Marq99] [Marq00e] [Marq00H [Sank99 [Swar98] [Tess02] [Varg99]. In this thesis, the
architedure is used as a comparison architecure for the experimental results presented Chap-
ter 5. The structure of each architecural comporent is described in great detail in [Betz994],

so each of these mmponents is described in turn.

2.3.1.1 Logic Clusters

The structure of alogic duster, ill ustrated in Figure 2.3, consists of aset of cluster inputs,

a set of cluster outputs, and several tightly conrected Basic Logic Elements (BLES). The out-

16

oo oo oo oo

Logic Cluster

/
I/O Block =0 %4 O
d O
[] { | { | {] [+——Switch Block
d O
d O
d O
o O Horizontal
[] { | { | {] [] = Routing
O g Channel
Vertical d O
Routing [[]]
Channel oo oo oo oo

Figure 2.2: Overview of FPGA Architecture Described in [Betz99a]
puts of the logic duster are directly conrected to the outputs of the mrrespondng BLES. The

network that conreas all the BLEs within a cluster is call ed the local routing network.

MR A |
ﬂ:: Basic Logic /\‘
> Element (\'
> Local Basic Logic >
.~ Routing Element |, Cluster
Cluster __| Network : . Outputs
Inputs . . .
. Basic Logic -
- Element U
R A

Clock

Figure 2.3: Logic Cluster

The detailed structure of a BLE is shown in Figure 2.4. It consists of a LUT, a D-type
Flip-Flop (DFF), and a multiplexer. The LUT output is feed into the DFF input. The multi-
plexer is controlled by a Static Randam AccessMemory (SRAM) cell and is used to choase
either the LUT output or the DFF output as the output of the BLE. The inpu of the BLE con-

sists of inpusto the LUT and the clock input to the DFF.

17

BLE
Output

BLE Look-Up
Inputs . Table

Multiplexer

CLock ~
Input o I sraw
D-type
Flip-Flop

Figure 2.4: Basic Logic Element

The detail ed structure of a LUT is shown in Figure 2.5. The LUT has K inputs and ore
output where K is gecified as an architectural parameter of the achitecture. It can be pro-
grammed to implement any K-inpu logic function. The LUT is implemented as a multiplexer
whose select lines are the LUT inputs. These inputs ®€led a signal from the outputs of 2K

SRAM cellsto generate the LUT outpui.

K —F—
Look-Up .
Table U) Multiplexer
Inputs ’—
Look-Up
2K SRAM Cells — ——» Table
. Output

Figure 2.5: Look-Up Table

Local Routing Network

Theinpusto alocd routing retwork, as hown in Figure 2.3, consist of two types of sig-
nals. The first typeisan inpu to the logic cluster. The secondtypeisan ouput of aBLE inthe

cluster. Each cluster inpu or each BLE output conneds to exadly one input of the local rout-

18

ing retwork. The outputs of the local routing retwork are cnnected to the BLE inputs; and
there is exactly one network output for every BLE inpu.

The local routing network has a fully conreaded topdogy. Each output of the network
can be conrected to any inpu of the network. The topologyiswidely used in many subsequent
FPGA studiesincluding [Marq004. The topology also has the advantage of reducing the com-
plexity of the padking tools [Betz99a] since any network input can be mnreded to any LUT
inpu. Note that commercial devices including Virtex [Xili02], Stratix [Alte02], and Cyclone
[Alte02], typically use adepopuated locd routing retwork structure [LemiO1], which uses

lessarea, but requires more ammplex padkingtoadls.

2.3.1.2 Routing Switches

Programmable switches, called routing switches, provide reconfigurable mnrectivity
throughaut the architecture. The achitedure uses two types of routing switches, the pass tran-
sistor switch and the buffered switch. As illustrated in Figure 2.6a, a pass transistor switch
consists of a single passtransistor controlled by an SRAM cell. The switch is bi-directional
which allows eledrical current to flow from either end d the switch to anather.

A buffered switch, shown in Figure 2.6b, consists of a buffer, a pass transistor, and an
SRAM cdl. Since buffers only allow €electrical current to flow in one direction, buffered
switches are uni-diredional. A bi-directional switch can be built out of two bufered switches
using the configuration shown in Figure 2.6¢c. Comparing the two types of switches, pass tran-
sistor switches are much small er in size while buffered switches provide more driving strength
and regenerate their input signals. Since passtransistor switches do nd regenerate their inpu
signals, the RC time mnstant of a signal grows quadratically as a function o the number of

passtransistor switches that the signal passes and the total length of the wire [Betz99a]. As a

19

<— SRAM
L

[e

(a) Pass Transistor Switch

<— SRAM
L

| 1

|
(b) Buffered Switch

<— SRAM

L

1

I

1

(c) Bi-Directional Buffered Switch

Figure 2.6: Routing Switches

result, the pass transistor switches are much dower than the buff ered switches for connecting
longsignal conrections.

The FPGA architecture uses a technique called bufer sharing to save the implementation
area of buffered switches. The technique shares a mmmon bufer among several buffered
switches that originate from a cmmon source. An example is shown in Figure 2.7. In the fig-
ure, a sourceis conrected to three sinks throughthree buffered switches. Withou buffer shar-

ing, threeseparate buffers are needed. With bufer sharing, only one buffer is used.

2.3.1.3 Routing Channels

Asill ustrated in Figure 2.8, each routing channel of the architecture mnsists of wire seg-
ments and routing switches. Note that for clarity only one horizontal routing channel is srown

in thefigure. The vertical channelsthat intersed the horizontal channel are naot ill ustrated. The

20

<— SRAM

Lo IS
—— Sink1 — Sink1
Source # Sink 2 Sourcel # Sink 2
I # Sink 3 # Sink 3
(a) Three Buffered Switches (b) Three Buffered Switches
Without Buffer Sharing With Buffer Sharing

Figure 2.7: Buffer Sharing

number and types of wire segments and routing switches in each channel are specified as
architecural parameters of the achitecure. A wire segment starts at one switch block, spans
severa logic blocks, and ends at another switch block. The number of logic blocks that the
segment spansis cdled the logical length of the segment. Routing switches are located in the
switch blocks. They conrea wire segments together to form one continuous track, called a
routing tradk, that spans the entire length of the routing channel. In Figure 2.8, three routing
tracks are il lustrated. The top track contains wire segments of logical length one. The middle
track contains wire segments of logical length two; and the bottom track contains wire seg-
ments of logical length four.

The dhoice of wire segment lengths is important to the overall performance of the achi-
tecture. Longwire segments are valuable for implementing signals that connect two far away
logic blocks. By using longwire segments, arouter can reduce the number of routing switches
used to implement these long conrnedions, and consequently reducethe delay of these cnnec-
tions. Appropriate combination d segment lengths also can be used to increase the logic den-

sity of the FPGA architecture. By evenly matched the segment lengths with net lengths, the

21

Logic
<71 Cluster

Logical —_
Length 1

Logical —~_
Length 2 Switch

Logical —~_
Length 4

A
\
A
\
A
\
A
\

A
\
A
\j

A
\

Wire Bi-Directional
Segment Routing Switch

Figure 2.8: Routing Channel

total number of routing switches in any particular implementation o the architecure can be
effectively reduced; and consequently the logic density of the architecure can beincreased.
As shown in Figure 2.9, the starting pasitions of the wire segments with the same length
are staggered in order to ease the physical layout of the architecdure. With staggered starting
pasitions, routing tradks in Figure 2.9 can be rearranged into the topdogy shown in Figure
2.10 to crede identical tiles, each containing ore logic block and its neighbaing routing
resources. With atile based architecture, the physical layout of FPGAs can be grealy ssmpli-
fied. Instead of designing the layout of an entire FPGA chip, only the layout of one single tile
has to be designed. The tile then can be dudicated along a two-dimensional array to crede a
complete FPGA layout. Note that for clarity only one horizontal routing channel is illustrated
in Figure 2.9 and Figure 2.10; nevertheless, the same design principle gplies for architedures

with bah horizontal and vertical routing channels.

2.3.1.4 Switch Blocks

A switch block consists of all the programmable switches located at the intersedion o a
horizontal routing channel and a vertical routing channel. The FPGA architecture described in

[Betz994] is designed with two types of switch blocks. One type is based on the disjoint topol-

22

Track 1+

O

Track 24>

O

O

Track 3+
Track 44>

O

O

M
U

Track 54>

O

O

M)
N4

Track 64>

O

Track 74>

O

O

Track 84>

O

)
N4

(M)
J

Logic Block O Routing Switch

O

O
)
j&)

Staggered Starting Positions

Figure 2.9: Staggered Wire Segments

A Tile

N

Track 1]
Track 2]
Track 34>
Track 44>

Track 54
Track 64>
Track 741

NUIRANIY:

Track 84>

ogy [Hsei90] and the other is based onthe Wiltontopdogy [Wilt97]. The disjoint topdogy is
more popuar andis described here. Note that other newer switch block topdogies sich asthe

Imran topdogy [Masu99 can also be used with the achitecture; althoughthey are nat further

Logic Block O Routing Switch

Figure 2.10: Tiles

discussed in thiswork.

The disjoint topology assumesthat all routing channels contain the same number of rout-
ing tracks. For two intersecting channels, every trad in the horizontal channel is connected to
the same track number in the vertical channel by routing switches. The achitedure described

in [Betz99a] further assumes that the two conneding tradks must have the same segment

length.

23

There aetwo configurations for two trads that are conneded at a switch bock to inter-
sect. In the first configuration shown in Figure 2.11a, both the horizontal segments and the
vertical segments end at the switch block. This configuration uses six bi-directional switches
to conred the segments together. Two of the six switches are part of the horizontal routing
track or the vertical routing tradk. The remaining four switches are used to conred the hori-
zontal track to the vertical track. In the second configuration, shown in Figure 2.11b, neither
the horizontal segment nor the vertical segment ends at the switch block. For this configura-
tion, only one bi-diredional switch is needed to conned the horizontal and vertical tracks
together. The wire segments are distributed in such away so that the two conredingtracks can
never intersect in the configuration shown in Figure 2.11c, where segments on ore track end at

the switch block, whil e the segment on the other track does not.

W
ﬁ{“% '\
(a) (b) (c)
Segments meet at Two segments meet at Middle of one segment meets
their ends their middle the ends of another two

Logic Block . Bi-Directional

—— Wire Segment Routing Switch

Figure 2.11: Different Topologies of A Horizontal Track
Meeting A Vertical Track

2.3.1.5 Input and Output Connection Blocks

Logic clusters are connected to its neighbaing routing channels through connection

blocks. A collection o switches that connect all the inpus of alogic duster to arouting chan-

24

nel is called an inpu conredion Hdock, while a wlledion d switches that connect all the out-
puts of alogic cluster to arouting channel is called an output conrection dock.

A portion d an input connedion block that connect alogic cluster inpu to aneighbaing
routing channel is shown in Figure 2.12. It isimplemented using a multi plexer. The output of
the multiplexer is connected to the inpu of the logic cluster. The inputs of the multiplexer are
connected to a set of routing trads. Isolation bufers are used to electricdly isolate the multi-
plexer inpus from the routing tracks [Betz99a], shielding the capacitance of the tracks from

the input multiplexers.
‘ Logic Cluster

Logic Block Input —~

SRAM @{ .
Cells L Isolation Buffers

Routing

/ R Tracks

Figure 2.12: Input Connection Block

A portion of an ouput conrection Hock that conreds alogic duster output to a neigh-
boring routing channel is shown in Figure 2.13. It is implemented by connecting the logic
cluster output througha shared driving buffer and dedicated passtransistors to a set of routing
tracks. The configuration d both the input connection Hocks and the output connection Hocks

are controlled by SRAM cells.

2.3.1.6 1/0O Blocks

Inthe FPGA architecture described in [Betz99a], each /O block contains an input pin for
bringing signalsinto the FPGA and an ouput pin for sendinginternal signals to the outside of

the FPGA. Both the input pin and the output pin are conneded to the routing channels through

25

‘ Logic Cluster

DBrlIJ\;'FQ? : %7 =~ Logic Block Output

o Pass Transistor
] 3+ SRAM

Routing
Tracks

g

Figure 2.13: Output Connection Block

the same output conredion Hock and the same input connection Hdock that are discussed in

Sedion 23.1.5, respectively.

2.3.2 DP-FPGA — A Datapath-Oriented FPGA Architecture

The work of this thesis is based onthe DP-FPGA architedure described in [Cher94]
[Cher96] [Cher97]. The overall structure of the DP-FPGA [Cher96] is shown in Figure 2.14. It
consists of three high-level blocks including the memory block, the control block, and the
datapath block. The memory block consists of banks of SRAM. It can be configured to imple-
ment memory systems of different width and depth. Of the two remaining Hocks, the function
of the antrol block isto implement non-datapath circuits while the datapath block is designed
specifically for implementing datapath. The exaa structure of the memory block and the con-
trol block was nat specified in detail by the Cherepacha study. The study also did not spedfy
how each block shoud be connected to the other two blocks. The focus of the Cherepacha

study was on the architecture of the datapath block, which is described in detail below.

2.3.2.1 Overview of the Datapath Block

The datapath block of DP-FPGA is one of the first FPGA architectures that use the tech-
nique of configuration memory sharing (called programming-bit sharing in the DP-FPGA ter-

minology [Cher96]) to create both the CM S routing resources and the CM S logic blocks. The

26

Control

Datapath

Memory

Figure 2.14: Overview of DP-FPGA Architecture

technique aeates CM S resources by sharing a single set of configuration memory among sev-
eral programmable resources. By sharing, the anount of configuration memory that is need to
control the programmable resources is reduced and consequently, the implementation area of
datapath applications, which contain alarge amourt of identicd bit-slices, are minimized. The
Cherepacha study demonstrates that there can be significant savings in logic block areawhen
CMS logic blocks are used instead of conventional logic blocks for implementing catapath cir-
cuits. The effectiveness of the CMS routing resources, which account for the majority of
FPGA area, however, was not investigated in detail by thiswork.

The Cherepacha study also only specified a subset of the datapath block architecture.
These architectural feaures are described here. Because of the incompletenessin architecural
specification, no CAD flow was ever designed for the DP-FPGA architecture. The overall
structure of the datapath block is shownin Figure 2.15. Like the conventional FPGA architec-
ture described in [Betz99a], it also consists of a two-dimensional array of logic blocks with
horizontal routing channels between rows of logic blocks and ertical routing channels
between columns. Each routing channel consists of two separate sub-channels. One, called
data sub-channel, is designed to carry multiple-bit wide data. The other, cdled control sub-
channdl, is designed to carry one-bit wide data. The data sub-channels contain more routing
tracks in the horizontal direction than in the vertical direction. The @ntrol sub-channels, on

the other hand, contain more routing tracks in the vertica direction.

27

Control
Connection = Logic | Shift Logic | Shift
Block Block [Block Block |[Block| Shift
Chain
Carry /
Chain =
4
Data
Connection
Block
Logic | Shift Logic | Shift
Block |Block Block |Block
Data
Switch
Block =
Control ﬂ
Switch
Block — Data Sub-Channel

Control Sub-Channel
Figure 2.15: Overview of Datapath Block

The datapath block contains two types of switch blocks — the data switch blocks, which
provide connectivity for the data sub-channels, and the control switch blocks, which provide
connectivity for the control sub-channels. The Cherepacha study did not specify the exact
topdogy o these switch blocks. Neither did it specify the exact topdogy of the control con-
nection Hocks, which conrect the logic blocks to the @ntrol sub-channel. The Cherepacha
study did spedfy in detail the structure of the logic blocks, shift blocks, and data connection
blocks. It finds, with a few simplifying assumptions including the assumption that all transis-
tors are minimum width, and withou knowing the exact number of routing tracks per channedl,

that collectively these comporents can pdentially doulde the area dficiency of the @rre-

28

spondng conventional componrents for datapath [Cher96]. Each of these architecural compo-

nentsis described in turn.

2.3.2.2 Arithmetic Look-Up Tables

The main bulding blocks of a DP-FPGA logic block are aithmetic LUTs. Structurally,
these LUTs are more complex than the conventional LUTs used in the conventional architec-
ture described in Sedion 2.3.1. An arithmetic LUT, shown in Figure 2.16, consists of n inputs,
two ouputs, two conventional LUTs each with n-1 inputs, two two-input multiplexers and an
SRAM cdl. The LUT hastwo modes of operations, the normal mode and the aithmetic mode,
which are controll ed by the SRAM cdl. When the SRAM cell is =t to be one, the arithmetic
LUT isinthe normal mode of operation. In this mode, it behaves as a conventional LUT with
n-inpus and ore output. The LUT output is presented onthe output P shown in Figure 2.16
and the output G isignared. When the SRAM cdll is set to be zero, the LUT isinthe aithmetic
mode of operation. In this mode, one mnventional LUT in the aithmetic LUT is used to gen-
erate the output at P, which is used as a propagate signal of a cary look ahead adder. The other
conventional LUT inthe arithmetic LUT is used to generate the output at G, whichisused as a

generate signal of a carry look ahead adder.

@—SRAM
0 —»0

1

Iy

n-1 Input
Arithmetic 2 Look-Up
Table
Look-Up Outout P
Table utpu
Inputs
n-1 Input Output G
Look-Up >
Table

Figure 2.16: Arithmetic Look-Up Table

29

2.3.2.3 Logic Blocks

The connectivity of aDP-FPGA logic block is shown in Figure 2.17. Thelogic block has
severa inpu signals, call ed data inpus, and four output signals, cdled data outputs. The data
inpus are mnreded to aneighbaing data sub-channd througha data connection Hock, called
the input data mnnection Hock. The data outputs are cnneded to the same sub-channel
throughanother data connection block, called the output data connection block. The data out-
puts are further connected to a shift block whase outputs are mnreaed to the data sub-chan-

nel. The logic block also has connections to the logic blocks above and below through carry

signals.
Carry to/from Outputs from
Logic Block Above Logic Block Above
> Data
> Outputs
* | Logic > Shift
. Block > Block
Data
Inputs =< A Yvyvy Yvy
Input Output Output
. Data . Data . Data g b%?ta |
. |Connection| ¢ Connection| 2 Connection| ¢ ub-L-hanne
Block Block Block
\J
Carry to/from Outputs from

Logic Block Below Logic Block Below

Figure 2.17: Logic Block Conn ectivity

Theinternal structure of the logic block is shown in Figure 2.18. It consists of four arith-
metic LUTs, one carry block, four flip-flops, and four two-input multiplexers. All four arith-
metic LUTs have the same number of inpus. Each LUT inpu is connected to a unique data

inpu of the logic block. All four LUTs dare a single set of configuration memory and are

30

identicdly configured at all times. The SRAM cell that controls the operation mode of the

arithmetic LUTs s also shared acrossall four LUTS.

SRAM for mode

Carry Connections

to/from A Neighboring

Log ic Block

Carry
Block

»
Ll

N

L[

Flip-Flop

Y

Y

n VAN . .
Loo k-Up . configuration
Table () .
Inputs —v | Output P
2" SRAM ,:} Arithmetic
Cells B .| Look-Up >
.)| Table w
Output G
n Fa
Loo k-Up :
Table .
Inputs VY | v
L | | Arithmetic
o/ Look-Up >
:| Table w
n
Loo k-Up A .
Table .
Inputs —v | Y
L | | Arithmetic
«| Look-Up >
.| Table o
n N
Loo k-Up :
Table .
Inputs vV |
Arithmetic
«| Look-Up >
;| Table >
Clock

4

Carry Connections

to/from A Neighboring
Logic Block

ST

—

SRAM

Logic
Block
Output

Logic
Block
Output

Logic
Block
Qutput

Carry Block Output

Figure 2.18: DP-FPGA Logic Block

The outputs of the LUTs are fed to the carry block. When the LUTs are in the normal
mode of operation, the P outputs are direaly connected to the correspondng carry block out-
puts. When the LUTs are in the arithmetic mode of operation, each arithmetic LUT behaves as
a hit-slice of a cary look ahead adder. The cary block generates carry signals based onthe P
outputs and the G outputs of the aithmetic LUTSs. In the aithmetic mode, each output of the
carry block represents a bit of the sum output of a carry look ahead adder.

Each carry block output is conneded to a flip-flop input. Each two-input multiplexersis
used to select either an carry block output or the correspondng flip-flop output to produce a
logic block output. Note that all four two-input multiplexers also share asingle SRAM bit that

stores their programmable configuration.

Data Connection Blocks

There aetwo types of data cnnection Hocks. One type, called the input data connection
block, connects the logic block inputs to the data sub-channel. The other type, called the out-
put data connection block, conrects the logic block outputs or the shift block outputs to the
data sub-channel. Both conredion Hocks are CM S routing resources, which uses configura-
tion memory sharing to increase their logic density. A portion of the input data connection
block is shown in Figure 2.19a. It connects four logic block inpusto four routing tracks in the
data sub-channel through four passtransistors. The four passtransistors $are a single anfig-
uration SRAM bit.

A portion of the output data awnnedion Hock is shown in Figure 2.19b. It connects the
four logic block outputs to four routing tracks in a data sub-channel throughfour pass transis-

tors. Again these four pass transistors is controll ed by asingle bit of SRAM.

32

Block Inputs

o] \7\ <
SRAM (H' : Logic Block
-
.l_,:_
i — Routing
1 Channel -
ol Ble— Data
. | Sub-Channel
(a) Input Data Connection Block
Block Outputs
. ,f/ - SRAM
Logic Block or i > [
Shift Block J&» >
—
T Routing
1 Channel -
e R Data
| L Sub-Channel

(b) Output Data Connection E}Iock

Figure 2.19: Data Connection Block

Shift Blocks

The shift block, shown in Figure 2.17, is a barrel shifter and is design to perform arith-
metic and logical shift operations, which are commonly foundin arithmetic applications, for
multiple-bit wide data. The block is necessary for the DP-FPGA architecture due to the limited
connectivity provided by the data conredion blocks shown above. Withou the shift blocks,
the DP-FPGA architectureisonly capable of performing coarse-grain shift operationsin incre-
ments of four [Cher96]. Such limitation can greatly reduce the usefulness of the achitedure.

To accommodate all possble shift operations, the shift block is elaborately designed. It
can either left shift or right shift the output of the logic block and presentsthe shifted data & its

output. The output is then connected to the data sub-channel throughthe output data connec-

33

tion block. For each shift operation, new data can be shifted in from several sourcesincluding
the outputs of the logic blocks above and below, constant Os, and constant 1s.

Several shift blocks can be used to shift multiple-bit wide data generated by multiple
logic blocks when these logic blocks are physically placed adjacent to ore ancther. The place-
ment is necessary in order to allow datato be cacaded from one shift block to ancther through
the outputs from logic block above and the outputs from logic block below conrections sown

inFigure2.17.

2.3.4 Other Datapath-Oriented Field-Programmable Architectures

Having described in detail the FPGA architedures that form the basis of this work, this
section provides a general survey onthe field of datapath-oriented field-programmable archi-
tectures, which are typicdly designed for arithmetic-intensive gplications. These datapath-
oriented architedures can be dasdfied into four classes, including the processor-based archi-
tectures, the static Arithmetic Logic Unit (ALU)-based architecture, the dynamic AL U-based
architedures, and the LUT-based architectures. Each of these architectural classesis described
in turn; and the sectionis concluded by a brief review of the various datapath-oriented feaures
employed in the arrent state-of-the-art commercial FPGAs.

Note that the first three achitectural classes are built aroundarrays of small processors
or ALUs, which are considerably more complex than LUTs. As aresult, these devices usually
have quite different routing demands and contain substantially different routing resources than
the anventional FPGAs. The fourth class of architedures are more FPGA-like — eacdh con-
tains an array of LUT-based logic blocks and segmented routing resources. As a result, this
class of devices are more dosely related to the aurrent work and can benefit the most from its

results.

34

2.3.4.1 Processor-Based Architectures

The achiteaures of PADDI-1 [Chen92], PADDI-2 [Yeun93, RAW madine [Wain97],
and REMARC [Taka98] all consist of an array of processors. These architectures can be said
to be reconfigurable on a cycle-by-cycle basis snce, whenever a processor exeautes a new
instruction, the behavior of the processor is changed. This cycle-by-cycle reconfigurability is
quite different from the conventional FPGAs whaose logic blocks are mnfigured orly once —
at the beginning d a computation rocess

In particular, PADDI-1, PADDI-2, and REMARC all use simple 16-bit wide processors
that can perform addition, subtracion, and several logical operations in hardware. Each pro-
cesor also contains a 16-bit wide register file (PADDI-1 and PADDI-2) or data memory
(REMARC) for storing data. Each also has enoughinstruction memory to store amaximum of
8 (PADDI-1 and PADDI-2) or 32 (REMARC) instructions. Note that these instructions are
stored in fully decoded forms $ each instruction might take up to 32to 53-bits of storage
space. The instructions are executed in an order either as indicated by a global program
counter (PADDI-1 and REMARC) or as secified in the next-program-counter field of each
instruction (PADDI-2).

The RAW machine is composed of an array of full-scale 32-bit wide processors, each
containing a large instruction memory and data memory, as well as a register file. The ALU
inside each processor can perform a variety of arithmetic and logicd operations including
hard-wired multiplication and dvision. The processor also contains a substantial amount of
reconfigurable logic in the form of LUTs and fli p-flops. Note that many spedfics of the RAW
machine including the number of instruction and data memory entries, the amourt of registers
in each register fil g, the exact structure of the ALU, and the size of the reconfigurable logic are

variable architectural parameters.

35

The processors communicate with each ather through dobal conrection networks, which
vary widely from architecture to architedure. In particular, the PADDI-1 device anploys a
crossbar network that connects two rows of four processors together. The cnrections are
made in chunks of 16-bit wide buses. The PADDI-2 architecture is built uponthe PADDI-1
architecure. Here eight processors are connected into a cluster using the crossbar network of
PADDI-1. Sixteen clusters are then grouped into two rows of eight clusters. Between these two
rows are severa horizontal routing buses that run the full length of the row. The clusters are
connected to the buses throughtheir input or output pins. For better performance, each routing
bus is broken into segments using programmable switches at pre-determined intervals. The
buses are time-shared resources. To communicate, a processor has to use aset of pre-defined
communication protocolsto claim abus. Once abusis claimed, the mmmunication can be bi-
directional — either to or from the initiating processor.

Each REMARC device contains 64 processors in an 8 by 8array. Thereis only one 16-
bit wide bus running haizontally or verticdly in between every two rows or two columns of
processors. The mmmunication is again time-shared and wses a set of pre-defined protocols.
Note that in this architedure, unlike the conventional FPGAS, a horizontal bus does not con-
nect to averticd bus.

Finally, the RAW madine has an elaborate routing architecture. Similar to REMARC,
its processors are arranged in an array structure. There are anumber of 32-bit wide buses run-
ning horizontally or vertically in between two rows or two columns of processors. Like @on-
ventional FPGAs, at the intersection d a horizontal and vertical routing channel, there is a
switch block. Unlike conventional FPGAs, however, each switch block contains a set of
instruction memory (controlled by the program counter of a nearby processor) whose content

controls the cycle-by-cycle connectivity of the switch block. The switch block also can per-

36

form wormhole routing d packets generated by the processors using the addresses contained

in the header of each packet.

2.3.4.2 Static ALU-Based Architectures

Unlike processor-based architectures, static ALU-based architectures, including Colt
[Bitt96], DReAM [Also0(, and PipeRench [Gold0(], do nd contain instruction memory, the
program courter, and their associated control logic. Instead, the configuration d each ALU is
directly controlled by the configuration memory. Nevertheless ALU-based architectures il |
can be rapidly reconfigured since these achitectures consume significantly lessconfiguration
memory than the traditional FPGAs.

A Colt [Bitt96] logic block is cdled an IFU, which contains a 16-bit wide ALU and sev-
era pipdline registers. The device consists of 16 IFUs placed in a4 by 4 array. Each IFU is
connected to itsimmediate neighbors througha set of nearest neighbor interconneds. Two 16
bit wide inpus of each IFU located at the top row of the array and ore 16-bit wide output of
each IFU located at the bottom row of the aray are connected together by a full crosshar
(cdl ed the smart crosshar) which also provides partial conrectivity to chip-level |/Os.

A DReAM [Also0Q logic block is called a RPU, which contains two 8-bit wide ALUs
and two banks of 8-bit wide memory. Four RPUs are grouped into a duster. Within the cluster,
RPUs communicate with each ather through a set of 16-hit wide duster-level locd intercon-
nects. Nine clustersin a 3 by 3array form a DReAM device The array isinterconnected by a
global routing retwork, which is smilar in topdogy to a conventional FPGA global routing
network. As in conventional FPGAS, the horizontal and vertical routing channels are con-
nected together by switch blocks at their intersections. Unlike mnventional FPGAS, however,
the routing tracks are grouped into 16-bit wide buses; and the RPUs communicate across these

buses througha set of pre-defined communication grotocols. Note that beside the RPUs, each

37

DReAM device also contains a global communicaion unit whose function and structure is
beyondthe scope of this work.

Each ALU-based logic block of PipeRench [Gold00] is called a stripe, which contains
sixteen 8-bit wide ALUs and a set of registers. Stripes in a PipeRench device ae vertically
stadked; and the physical routing network of the device only provides conrectivity between
two adjacent stripes. Communicaion aaossdistant stripesis achieved throughrapid reconfig-
uration and by storing cata in the internal registers of a stripe. The technique, called virtual
global connection, is described in more detail in [Gold00]. Althoughessential to the structure
of PipeRench, the technique caana be readily applied to the traditional FPGAs and is not

described in detail here.

2.3.4.3 Dynamic ALU-Based Architectures

Like the static ALU-based devices, the RaPiD [Ebel96], MATRIX [Mirs96], and Chess
[Mars99] architectures contain only ALU-based logic blocks and no instruction memory.
These ALUs, however, nat only can be configured by configuration memory but also by data
from the computation processitself. This extralevel of flexibili ty increases the functionality of
the achitectures at the expense of increased architectural complexity and hardware st.

In particular, each RaPiD device is composed of identical functional units, which consist
of groups of 16-hit wide datapath comporents including ALUs, registers, RAM blocks, and
integer multipliers. The functional units are linealy placed in arow and connected to a set of
routing tradks through pogrammable switches. These tradks are grouped into 16-bit wide
buses and run haizontally aaoss the full length of the row. To increase speed, each trad is
broken into a series of wire segments, which are interconnected by programmable switches.

The MATRIX architecture mnsists of 8-bit wide ALUs and memory blocks placed in an

FPGA-like two-dimensional array. The aray is conneded by FPGA-like routing resources

38

including reaest neighba conredions, length four routing wires, and dobal routing wires.
The achitectureis also deeply pipelined to increase the dock frequency of its applicaions.
Each Chessdevice mnsists of aset of 4-bit wide ALUs placed in an array, which isinter-
spersed by RAM blocks. The ALUs and RAM blocks are mnreaed by an FPGA-like global
routing network. The ALUs are also directly connected to their immediate neighbars by a set

of neaest neighbor interconrects.

2.3.4.4 LUT-Based Architectures

Similar to DP-FPGA, Garp [Haus97] and the mixed-grain FPGA [Leij03] are LUT-based
FPGASs that target datapath applications. A Garp device is designed as a reconfigurable fabric
that serves as a @-processor to a MIPS core. The achitecture mnsists of an array of 32 rows
by 24 columns of logic blocks. Each logic block contains two LUTs that are controlled by a
single set of configuration memory. Each LUT hasfour inputs and is conrected by a set of fast
carry conredionsto ather LUTsthat are on the same row. The global routing retwork of Garp
is gmilar to the global routing network of a mnventional FPGA in topdogy. However, unlike
the conventional routing network where wire segments are annected together by routing
switches, wire segments of Garp remain unconrected to ead ather. The exclusion o routing
switches significantly reduces the configuration memory required to control a Garp device and
can lead to faster reconfiguration (by allowing the parallel loading of locally stored configura-
tion data). It also, however, severely limits the passhble gplications of the Garp architedure.

The mixed-grain architedure as proposed in [Leij03] contains asingle 4-LUT in each of
its logic blocks. The logic blocks can be cnfigured into two modes including the random-
logic mode and the arithmetic mode. In the random-logic mode, the logic block behaves as a
single 4-LUT. In the aithmetic mode, the 4-LUT is decomposed into 4 2-LUTs to implement

four distinct bit-sli ces. In this mode, each 2-LUT can be used as a part of afull adder, a part of

39

a 2:1 multiplexer, or atwo inpu Boolean equation. The global routing retwork of the mixed-
grain architecture is smilar to the conventional FPGA architecture in topdogy. The routing
tracks, however, are grouped into 2-bit wide buses. In the randam-logic mode, the bus is used
toroute asingle bit of data; andin the aithmetic mode, the busis used to route two hits of data
at atime. The achitecture dso contains some special routing tracks, each independently con-
trolled by asingle set of configuration memory, dedicated for routing the control signals of the
logic blocks.

Note that althoughthe work in [Leij03] has defined the basics of the mix-grain FPGA
routing architecture, the work did nd measure its area dficiency by acually pladng and rout-
ing a set of benchmark circuits onthe achitecture. Instead, the routing arearequired to imple-
ment several simple benchmarks are roughly estimated by counting the total number of logic
block pins required to implement each circuit. This method is much less accurate than area
measurements obtained by acually implementing a set of well-chosen benchmarks on a given
architecure [Betz99a]. Furthermore, the feasibility of the routing architecture has not been

exactly proven since no circuit has been actually implementing onthe achitecture.

2.3.4.5 Datapath-Oriented Features on Commercial FPGAs

Commercialy avail able general purpose FPGAS have been incrementally adding catap-
ath-oriented feaures throughou the years. The earliest adopted datapath-oriented features is
carry chains; and in recent years, more cmplex datapath-oriented features like DSP blocks
[Alte02] (Altera Sratix) and multipliers [Xili02] (Xilinx Virtex!l) have been added to existing
architeaures. Unlike the research done in this work, however, these features are mainly aimed
at improving the performance of specific arithmetic functions through reterogeneous architec-
tures. The heterogeneity introduced by the DSP and multiplier blocks often increases the com-

plexity of FPGA CAD flow, which pdentially can introduceinefficiency in areautili zation.

40

Finally, even thoughrouting area accourts for a majority of the total FPGA area nonre of
the existingcommercial FPGAs utilizes the CM S routing resources, which employs configura-
tion memory sharing to increase the aeaefficiency of routing resources in datapath-oriented
applicaions. Furthermore, little research has been dae on designing automated CAD toals
that caen cgpture datapath regularity and efficiently utili ze the regularity on CMSlogic or rout-

ing resources.

2.3.5 Delay and Area Modeling

Given an FPGA architedure, three of the most important questions that can be asked

about the achitecture are:

1. What isthe performance of the architecture?

2. How much area does the architedure cnsume? and

3. How much power do the appli cations implemented on the architecture demand?

To address the first two questions, one needs a method d measuring the time that it takes
asignal to propagate from one point of the achitecture to another and the implementation area
of the FPGA. One obvious approach to addressng these two guestionsisto physically imple-
ment the achitedure and measure the delay and area. However, this approach istoo time con-
suming to be practical and can be influenced by the skill s of the physical designer.

In thiswork, asimpler and more efficient approach is used. The approach is described in
detail in [Betz99a]. In [Betz99a], each type of transistor in the FPGA architecture is szed
using a set of guidelines to obtain the best transistor size for performance and area. Then the
Elmore delay model [EImo48 [Okam96] is used to cdculate the delay between any two pants
on the architecture; and area(call ed the minimum-width transistor areg is cdculated by total-
ingthe area ®nsumed by all transistors in the architedure, and dvidingthistotal areainto the

areaof aminimum width transistor. Commercially, this methoddogy was used in the design o

41

the Stratix and Cyclone FPGAs [Leve03] and was shown to give accurate results. Note that the

third guestion, power, is not investigated in this work.

2.4 Summary

This chapter has described a typical FPGA CAD flow, a conventional FPGA architec-
ture, as well as the datapath-oriented DP-FPGA architecture that form the basis of this work.
Several representative datapath-oriented reconfigurable/FPGA architectures have dso been
briefly described. Note that few prior work hasinvested effort into the detailed architecure of

datapath-oriented FPGAs. Next chapter proposes the detail s of such an architedure.

42

3 A Datapath-Oriented FPGA Architecture

3.1 Introduction

This chapter presents a new FPGA architecture that contains multi-bit logic and CMS
routing resources designed spedfically for arithmetic-intensive gplications. The architecture
is unique in that its routing channels contain a mixture of conventional fine-grain routing
resources and detapath-oriented CM S routing resources. The combination all ows a homoge-
nous architecture for the efficient implementation d large datapath circuits as well as gnall
nontdatapath circuits. This architecture is used as the base architedure for designing the CAD
tools presented in Chapter 4, Chapter 5, and Chapter 6. Various parameters of this architecture
are explored in Chapter 7 and Chapter 8 to determine the dfect of CMS routing onthe aea
efficiency of the achitecture.

An overwhelming majority of circuitsin an arithmetic-intensive goplication are datapath.
These circuits have highly regular and ht-sliced structures. The remainder of the drcuits in
these gppli caions are non-datapath, which are designed to control the operations of the datap-
ath circuits. Each nondatapath circuit typically resembles a somewhat random-looking net-
work of logic gates and contains little regular structure, which will be cdled irregular logic.

Since datapath circuits are highly regular, CM S resources created throughconfiguration
memory sharing can be dfectively used to increase their area dficiency. Non-datapath cir-
cuits, on the other hand, canna benefit from configuration memory sharing sincethey do nd
possess much regularity. In fact, nondatapath circuits implemented on CM S resources often
consume significantly more aea since they can orly utilize a small fraction of these identi-

cally configured resources.

43

To efficiently implement both datapath and nondatapath circuits, the DP-FPGA archi-
tecture, discussed in Chapter 2, uses a heterogeneous structure that contains one dedicaed
region for implementing datapath circuits and another dedicated region for implementing non
datapath circuits. The use of dedicaed regions for each type of circuit, however, has its own
shortcomings including the need of more complex placement techniques, inherent issues of
heterogeneity, inefficient utili zation o programmable resources, and increased complexity in
CAD tool design. The achitedure described in this chapter, called the Multi-Bit FPGA (or
MB-FPGA for short) architecture, eliminates these shortcomings through the use of a homog-
enous architedure. The architedure is carefully designed to take advantage of the ammmonali-
ties between datapath and non-datapath circuits. It also leverages the assumption that an
overwhelming majority of its target applications are datapath in structure. Comparing to the
original DP-FPGA architecture, the MB-FPGA designis much simpler in structure and has no
restrictions on placement — propertiesthat can paentially increase the utilization o program-
mable resources. The homogenous structure of MB-FPGA also greatly simplifiesthe design o
the CAD todls.

The remainder of this chapter describes the MB-FPGA architecture in detail . Section 3.2
motivates the development of the MB-FPGA architecture through a review of the DP-FPGA
architeaure discussed in Chapter 2 and a discusson on its hartcomings. Section 3.3 presents
other motivations and li sts the design gaal's of the MB-FPGA. Section 3.4 presents a structural
model of the aithmetic-intensive gplicaions. A description d the general approach for
designing the MB-FPGA architedure follows in Sedion 3.5. Section 36 presents a detailed
description o the MB-FPGA architecture; and finally Section 37 presents concluding

remarks.

3.2 Motivation

The MB-FPGA architecure evolves from the DP-FPGA architecture. The primary goal
in designing the MB-FPGA architecture is to improve the DP-FPGA architedure using recent
advances in conventional FPGA research and to create a complete FPGA architecural
description that can be suppated by modern CAD tools. Asaresult, thefirst step in designing
the MB-FPGA architecture was to identify the shortcomings of the original DP-FPGA archi-
tecture; and improving uponthese shortcomings has became the main motivation d the MB-
FPGA design process. This ®ction presents each of these identified shortcomings in order of

their importance.

3.2.1 Heterogeneous Architecture

The DP-FPGA architedure implements logic in an arithmetic-intensive gplication in
two distinct high-level blocks. The datapath block implements the datapath circuits; and the
control block implements the non-datapath circuits. Inside the datapath block there ae two
distinct routing channels. One type of routing channel, the control sub-channdl, is used to
bring single-bit signals generated by the cntrol block into the datapath block. The other type
of routing channdl, the datapath sub-channel, is used to connect multi-bit signals inside the
datapath block.

This heterogeneous architecture is inefficient for implementing large aithmetic-inten-
sive applications with complex structures for two reasons: First, the achitecdure predetermines
two separate placement regions, one for datapath logic and the other for non-datapath logic.
This limits the placement options of logic blocks and can lead to placement that causes critical
paths to be far longer than necessary because they are forced to crisscross between the two
major placement regions. Second, the architedure pre-allocates a fixed amount of resources

for each high-level block. Consequently, a circuit can fit in the architedure only if both of its

45

datapath and nonrdatapath components fit in their respective high-level blocks. If any one type
of logic does nat fit inits high-level block, the entire drcuit will not fit. As aresult, for many
applicaions, one of the high-level blocks is often severely underutilized; and the overall area
efficiency suffers.

The heterogeneity of DP-FPGA further complicates CAD tool design. A CAD flow
designed for the heterogeneous architecture has to asdgn logic to either the datapath block or
the control block. This assgnment usually takes place d a very early stage of the CAD flow,
often right before packing, since eah of the high-level blocks has a ammpletely different logic
block design. Normally datapath logic is assigned to the datapath block; and nondatapath
logic is assgned to the aontrol block. For goad performance, however, it is sometimes benefi-
cial to implement some non-datapath logic in the datapath block and vice-versa. Identifying
these spedal cases needs the help of good timing and area information for each posshle
implementation, but the timing and area information at this early stage of the CAD flow often
is highly inaccurate. This makes the design o good CAD algorithms difficult. A homogenous
architeaure, on the other hand, avoids the differentiation processentirely; therefore, it greatly

simplifiesthe CAD design process

3.2.2 Logic Block Efficiency

In additionto the difficulties due to heterogeneity, the logic block architecture of the DP-
FPGA datapath block is inefficient for implementing large arithmetic-intensive applications.
Thisinefficiency manifestsin two ways. First, modern complex datapath circuits often contain
bit-slices that resemble non-datapath circuits. These bit-sli ces are often large enough to require
tens or hundreds of LUTs to implement. Recent research onconventional FPGA architedures
[Betz97h [Betz98] [Betz99a] suggests that, for implementing nordatapath circuits, a good

conventional logic block architecture should contain four to ten tightly connected LUTS; and

46

logic blocks containing oy one LUT are extremely inefficient. Althougha DP-FPGA logic
block contains four LUTS, these LUTs only can be used to implement logic from four separate
bit-slices. As a result, to each hit-slice the DP-FPGA logic block resembles a mnventional
logic block containing anly one LUT. This gnall logic block capacity is inefficient for imple-
menting modern large bit-dices. To increase efficiency, each logic block of the MB-FPGA
architecure contains svera groups of tightly conreaed LUTSs; and each group is used to
implement logic from asingle hit-slice.

Semnd, al LUTsin a DP-FPGA logic block are dways identicdly configured through
configuration memory sharing. The routing resources asociated with each LUT are also iden-
ticdly configured at all times. In a homogenous architecture, this degree of configuration
memory sharing can leal to poa utilization d baoth logic and routing resources sncethe logic
blocks are not only used to implement highly regular datapath logic, but also irregular non
datapath logic. When a DP-FPGA logic block is used to implement non-datapath logic, only
one of the four LUTs can actually be used. The other three LUTS, al sharing the same awnfig-
uration memory, are wasted since they canna be onfigured to implement any ather logic
functions. As aresult, the logic capacity of the DP-FPGA logic block when used to implement
nondatapath logic is only one fourth of the logic capadty of the same logic block when used
to implement datapath logic. To overcome this inefficiency, the MB-FPGA uses a multi-bit
logic block architecture called super-clusters, which is parameterized to have a@ther no config-
uration memory sharing (which will be the focus of all the investigations condicted in this
work), full configuration memory sharing, or lesser than the full degree mnfiguration memory

sharing.

47

3.2.3 Parameterization

The other major motivation o designing the MB-FPGA architedure isto create ahighly
parametrized platform for investigating the efect of various datapath-oriented CM S resources.
The design shoud be highly parameterized. It shoud have the same degree of parameteriza-
tion asthe one used by the VPR todls discussed in Chapter 2 and shoud include new parame-

tersto charaderize the multi-bit logic and CM S routing resources.

3.3 Design Goals of MB-FPGA

Having dscussed the motivations for creating the MB-FPGA architecture, the five
design gals of the MB-FPGA architecture ae summarized below:

1. The achitecture shoud be a homogenous architecure with datapath-oriented multi-
bit logic and CM Srouting, suppating the aea-efficient implementation of arithmetic-
intensive applications.

2. The achitecture shoud be equally capable of implementing datapath circuits as well
as gnall non-datapath circuits. (Note that thisdesign gal was not verified experimen-
tally in thiswork.)

3. Each logic block should be ale to implement several bit-slices at once; it should be
large enough to efficiently implement logic from each distinct bit-slice

4. The architedure shoud be suppated by a modern CAD flow, which shoud contain
new algorithms designed to suppat the new datapath-oriented architectural feaures.

5. The achitecture can be used as a highly parameterized platform for architecural
experimentation. Particularly, the datapath-oriented CMS resources should be

designed to have a variable degree of configuration memory sharing.

48

3.4 A Model for Arithmetic-Intensive Applications

Since the primary purpase of the MB-FPGA architedure is to provide an area dficient
platform for implementing arithmetic-intensive gplications, an appropriate model must be
defined for these gplicaions. The model presented here is based onthe widely used dgital
design minciples described by several textbooks on dgital design including [Hama02]
[Katz94] [Kore02] [West92]. The model is further verified by analyzing several arithmetic-
intensive applications including two CPU designs [Sun99 [Ye97] and a graphics accel erator
design[Ye99a] [Ye99H.

The hardware implementation d an arithmetic-intensive appli caiontypically consists of
two interconnected modues, as shown in Figure 3.1. One modueis called the aithmetic mod-
ule and the other is called the control modue. The arithmetic module is designed to perform
all arithmetic operations of the application. It consists of a colledion of interconnected datap-
ath circuits. It also has ®veral multiple-bit wide data inputs and multi ple-bit wide data out-
puts. The cntrol modue, on the other hand, is designed to control and sequence the
operations performed by the aithmetic modue. It consists of acollection d nondatapath cir-
cuits which typicdly are finite-state machines. Its inpus consist of external commands from
outside of the applicaion and the aurrent state of the datapath generated by the aithmetic
modue. In terms of the amourt of logic that one @ntains, the arithmetic modue typically is
much larger than the control module. This is espedally true for applicaions that ded with
complex arithmetic operations or have very wide data inputs and outputs.

Note that the aithmetic and the control modules are only conceptual entities designed to
ease the design process of arithmetic-intensive gplications. During the adual placement pro-
cess circuits in each modue neal na to be physically placed in their own distinct regions.

Most of thetime, it isactually beneficial in terms of maximizing performanceto place the con

49

trol logic dose to the correspondng datapath that it controlsinstead of placing it close to other

control circuits.

Datapath
Eﬂﬁﬁlﬂé&}l Output Non-Datapath
- — I 1
to Control Circuits

Inputs

Datapath -
Circuits

\

External
Inputs
to
Control

Control
Signals
to
Datapath

L .. L Datapath
Arithmetic |\C/)|U|tI-BIt
Module utputs

Figure 3.1: Arithmetic-Intensive Application

The structure of a datapath circuit is shown in Figure 3.2. It consists of a set of intercon-
nected hit-slices, each of which processes a set of bits from the inpu data. Asill ustrated, the
bit-slices are lined upfrom left to right according to the bit pasitions of the bits that they pro-
cess The bit-dice that processes the most significant bit is positioned at the extreme l€eft of the
figure.

The width of a datapath circuit is defined to be the number of bit-slices that it contains.
Thiswidth usually isthe same as the width of theinput and ouput data of the datapath circuit.
For example, a circuit that processes 32-hit wide data usually consists of 32 ht-slices. A data-
path circuit can usually be expanded to process wider data by adding more bit-slices to its

structure.

50

Look-Up Table or
D-type Flip Flop

"y "y

YV, A A Y

HElE
]]]
/
/ /

Y / /

v
L

y
1
Y
]
\

A A
L1 f] f] L1
4 A

/ ¢ \ \J \ [F \J ¢
Irregular \7\ / g:{e.%lljll?e"
Bit-Slice Bit-Slices

Figure 3.2: Datapath Structure

Y oleod
y

Within each hit-slice, there is a network of interconneded logic and storage, which is
typicaly implemented by LUTs and DFFs, respedively. The network typicdly resembles the
network foundin a non-datapath circuit. With the exception d the hit-slices at both ends of a
datapath circuit, most bit-slicesin a datapath circuit usually contain identicad networks — they
have exactly the same number of DFFs, exactly the same number of LUTSs for each available
LUT configuration, and exadly the same @nrections that conned the LUTs and DFFs
together. The bit-slices at the ends of a datapath often are structurally different from other bit-
slices dnce they have to ded with the boundary conditions for processng the least and the
most significant hits of inputs. Most often, however, the differences are small.

Bit-dices in a datapath circuit often have similar external conrections. For example,
assume that there are two datapath circuits, circuit A and circuit B. Also assume that the bit-
slices in each circuit are assgned conseautive index numbers with the right most bit-slice

assigned zero. If a bit-slice in circuit A with index number i is conneded to a bit-slice with

51

index number | in datapath circuit B, the bit-slicewith index number i + p in circuit A usually
has correspondng connections to the hit-slice with index number j + p in circuit B. If circuit B
has lessthan | + p slices, bit-slice i + p in circuit A often is conneded to the bit-slicein circuit

B with index number (j + p) moduo ng, where ng is the total number of bit-slicesin B. Note

that, in both cases, A and B can be used to represent the same datapath circuit.

3.5 General Approach and Overall Architectural Description

Designing FPGA architeduresis a mmplex problem; and there are no prescribed design
methodologies. The general approach taken here, in designing the MB-FPGA architecture, is
to first conceive an efficient architecure for implementing datapath circuits snce these cir-
cuits account for the majority of logic in arithmetic-intensive gplications. Then the designis
modified to accommodate non-datapath circuits.

The major design effort of the MB-FPGA architecture involves in creating an efficient
partitioning methodology that can eff ectively divide datapath circuitsinto logic blocks, which
are suitable to be automatically placed by modern placement algorithms like the various ver-
sions of the simulated anneding algorithms described in [Betz99a] [Kirk83] [Marq0Qal
[Sech85] [Sech86] [Sech87] [Sun9] [Swar95]. This methodology significantly influences the
design d the MB-FPGA architedure, and is described next along with a brief overview of
MB-FPGA. Identifying the simil ariti es between the datapath circuits and ron-datapath circuits
also significantly influences the design of MB-FPGA; and it is described in turn after the

description onthe partitioning methoddogy.

3.5.1 Partitioning Datapath Circuits into Super-Clusters

The sizes and the widths of datapath circuits vary grealy from application to application.

Even within a single appli cation, there can be some degree of discrepancy in the sizes and the

52

widths of datapath circuits. The MB-FPGA architecture accommodates these varying sizes
and widths by partitioning each datapath circuit into fixed sized churks. Each chunkis siitable
for implementation ona MB-FPGA logic block, which is called a super-cluster. The partition-
ing processattempts to capture the regularities of each datapath circuit and map the catured
regularities onto the datapath specific features of the super-clusters.

The MB-FPGA architecture is designed with the assumption that the partitioning rocess
starts from one end of a datapath circuit and progresses to the other end. In this process, every
M neighboring kit-slices are grouped together into a group. For each group, N LUTs and their
associated DFFs are seleded from each bit-sice and are mapped orto a super-cluster. This
processis repeated urtil al LUTs and DFFs are mapped orto super-clusters. Within each
super-cluster, LUTs and DFFs from eadch hit-slice ae kept together in a distinct sub-structure
of the super-cluster, cdled a cluster. Note that if the copies of a particular LUT configuration
exist across ®veral bit-slices in a particular group, the partition process will kegp these mpies
in a single super-cluster.

The partitioning process exposes intra-bit-slice conrections and turns them into inter-
super-cluster connections. For super-clusters that are used to implement groups of identical
bit-slices, these inter-super-cluster conredions form M-bit wide buses. Signals in each o
these buses dhare the same source and sink super-clusters. Furthermore, comparing to all the
other signals in the same bus, each of these signals has a unique source duster and a unique
sink cluster. When the super-clusters are mnrected together during the routing process these
buses can be routed through CM S routing resources that use configuration memory sharing to

improve the aea efficiency.

53

3.5.2 Implementing Non-Datapath Circuits on the MB-FPGA Architecture

The MB-FPGA architecture uses the simil arities between the structure of a bit-slice and
the structure of a non-datapath circuit to implement non-datapath circuits in the super-clusters.
For implementing a non-datapath circuit, a super-cluster is broken down into its constituent
clusters, each of which is used to implement a portion d the non-datapath circuit. Since bit-
slices are structurally simil ar to nan-datapath circuits, clusters, which are designed for the effi-
cient implementation o bit-slices, can also be dficient for implementing many nondatapath
circuits.

When clusters are used to implement a non-datapath circuit, CMS routing resources that
are aeated throughconfiguration memory sharing can become inefficient. To increase the area
efficiency of implementing badh datapath and non-datapath circuits, only aportion o the MB-
FPGA routing resources are CMS resources. The remaining resources are mnventional

resources that do no share their configuration memory hits.

3.6 The MB-FPGA Architecture

The overall structure of the MB-FPGA architecture is shown in Figure 3.3. It consists of
a two-dimensional array of super-clusters interconneded by horizontal and \ertical routing
channels. The mnnectivity between the super-clusters and the routing channels is provided by
switch blocks and conrection Hocks. On the periphery of the architecture are the 1/0 blocks
that connect the achitedure to the outside world.

The MB-FPGA architecture has sveral unique datapath-oriented feaures including a
hierarchical logic block architecture that consists of super-clusters and clusters. It also has
routing channels that contain a mixture of configuration memory sharing routing tracks, called
CMS routing tradks, and conventional routing tracks, call ed fine-grain routing tracks. Each of

these featuresis described in turn.

54

OO d bood oogd

S S

[] [}<+— I/O Block
[[]

[[]

[] []

[[]

[[]

[[]

[] []

C S <+ Switch Block

[[]

[[]

[[]

[] []

S S Connection
Block
ood oo DOodoo
H HH H Fine-Grain Routing Tracks
Cluster ***l || Super-Cluster
CMS Routing Tracks

Figure 3.3: Overview of MB-FPGA Architecture

3.6.1 Super-Clusters

The structure of an MB-FPGA super-cluster, shown in Figure 3.4, consists of a set of
super-cluster inputs, a set of super-cluster outputs, a set of carry inputs, a set of carry outputs,
and several loosdly connected clusters. The externa interface of an MB-FPGA cluster is
shown in more detail in Figure 3.5. It consists of a set of cluster inputs and a set of cluster out-
puts, a set of carry inputs, and a set of carry outputs. The number of carry inpusis equal to the
number of carry outputs for ead cluster. The number of carry inputs of a duster is also equal

to the number of carry inpus of a super-cluster and the number of carry outputs of a super-

55

cluster. We believe the logic function o the MB-FPGA cluster can be based onany conven-

tional FPGA logic block that is efficient at implementing nordatapath circuits.

Super-Cluster

Inputs
Cluster Cluster Cluster
Inputs Inputs Inputs
c —>] < - - c
arry —» > > . —> Carry
Inputs 3 Cluster : Cluster : Cluster : Outputs
> - -

~

cry VR ot Ry oot A

Network Cluster Cluster Network Cluster
Outputs Outputs Outputs

Super-Cluster
Outputs

Figure 3.4: Super-Cluster with M Clusters

Cluster
Inputs

—» -
Carry —® |LUTs| —® Carry

Inputs « Outputs
p DFFs p

Cluster
Outputs

Figure 3.5: Cluster

The total number of super-cluster inputs is equal to the total number of cluster inputs of
all the clustersin a super-cluster; and each super-cluster input is directly connected to a wrre-
spondng cluster input. Simil arly, the total number of super-cluster outputs is equal to the total
number of cluster outputs; and each super-cluster output is directly conrected to a correspond
ing cluster output.

The network that conreds all the dusters within a super-cluster together is cdled the
carry network. It is created by connecting the aarry outputs of each cluster to the carry inpus

of one of its neighbaring clusters to form a carry chain. The carry inpus of the super-cluster is

56

connected to the aarry inputs of the duster at one end d the carry chain; and the cary outputs
of the super-cluster is connected to the cary outputs of the cluster at the other end.

As it is apparent from the super-cluster structure, a super-cluster containing M clusters
can be used to implement an M-bit wide datapath circuit whaose bit-slices are no kigger than
the logic cepacity of asingle duster. Larger datapath circuits can be decomposed into small er
datapath circuits each of which can be implemented by a single super-cluster. When imple-
menting nondatapath circuits, the behavior of the super-cluster is smil ar to the behavior of M

conventional logic dusters.

3.6.1.1 Clusters

Thedesign o the MB-FPGA cluster is based onthe dusters used in [Betz99a], which are
presented in Chapter 2. The overall structure of the cluster is shown in Figure 3.6. It consists of
several tightly conneded BLEs and a set of input and ouput signals as gecified in Figure 3.5.
The number of cluster outputsis equal to the number of BLEs in the cluster; and each cluster
output is diredly conrected to a BLE output. Note that, for the ease of discussion, it is
assumed that there are an even number of BLEs in a cluster; although with some minor adjust-
ments, the achitedure described below applies equally well to any cluster containing an odd
number of BLESs.

The number of carry outputs is equal to half of the number of BLEs in a cluster in order
to match the nature of the arithmetic structures targeted by MB-FPGA. To conred carry out-
puts, BLESs are grouped into groups of two. One BLE in the group is cdled a carry BLE; and
the other BLE is cdled a sum BLE. The output of a cary BLE is connected to a duster carry
output as well as a cluster output. The output of a sum BLE, on the other hand, is only con
nected to a cluster output. Both the cluster inputs and the duster carry inpus are mnnected to

the local routing network.

57

i A

Basic Logic A‘Carry Output
Element o
Cluster . ; ; (\ Sum Output
Inputs . Local Basic Logic >
: Routing Element |, Cluster
Network : . Outputs
Carry — .
Inputs . Basic Logic -
. Element U

A

Figure 3.6: A Modified Cluster from [Betz99a]

Local Routing Network

The local routing retwork, as shown in Figure 3.7, consists of two separate networks.
The first network, labelled locd network 1, has a fully conneded topology. The inputs to the
network consist of two types of signals. The first type is a cluster input; and the ssoondtypeis
an output of a BLE in the same cluster. Each of these signals is connected to exactly one net-
work input. The number of outputs of the network is equal to the total number of BLE inpus
in the duster.

The second network, labelled local network 2, connects the inputs of each BLE to the
correspondng ouputs of the first network. It also conneds the duster cary inpus to the
BLEs. As $hown in Figure 3.7, for every BLE, one BLE inpu is connected to bah a carry
inpu and an ouput of the first network through a two-input multi plexer controlled by an
SRAM cdll. All the other BLE inputs are directly conrected to their correspondng outputs
from thefirst network. Since each cluster contains half as many cluster carry inputs asthe total
number of BLES, each carry inpu is shared by two BLEs— one BLE isacarry BLE and the

other isasum BLE.

58

From
Cluster,
Inputs

From

Basic

Logic
Element
Outputs

Carry Input
5 —— . 43/
> Basic
. > Logic
— . Element
I |
—
— =L>]
. > Basic
. . > Logic
— > . Element
Fully o
Connected | ¢ :
Routing | * ¢
Network Cirry Input
- Bas]c
o . ™ Logic
— . o Element
> Basic
. > Logic
. Element
Local Local
Network 1 Network 2

Figure 3.7: Local Routing Network

Carry Network in Detail

The arry network is designed to reduce the routing delay of long carry chains which
often exist in datapath circuits. A detailed illustration of a carry network is own in Figure
3.8. It consists of chains of BLES connected across the duster boundiries. In a duster, the
carry signals are generated by carry BLES; and each of these carry signalsis connected to ore
carry BLE and ore sum BLE in aneighbaing cluster. When implementing ripple carry adders,
the carry BLES and the sum BLESs are used to implement the carry generation logic and the

sum generation logic respectively. Note that this gructure is different from the carry chainsin

commercial architectures which propagate within individual clusters.

59

Carry BLE

Sum BLE

Cluster 1 Cluster 2 Cluster 3 Cluster M

| T T | 1
Carry Carry Carry | Carry
Super- BLE BLE BLE BLE | Super-
Cluster Cluster
Carry Carry
Input Output
Sum Sum Sum | Sum |
« | BLE BLE BLE BLE
Carry Carry Carry | Carry
Super- BLE BLE BLE BLE Super-
Cluster Cluster
Carry Carry
Input Output
Outputs Sum | Sum | Sum | e e— Sum |
from == BLE « | BLE « | BLE « | BLE
Local
Network 1
Hf_J L] Hf_/ L] H/‘J L] H/‘J L]
Local Local Local Local
Network 2 Network 2 Network 2 Network 2

Figure 3.8: Carry Network

3.6.1.2 Configuration Memory Sharing

As illustrated in Figure 3.9, in an MB-FPGA cluster, several BLEs and their associated
local routing resources can share configuration memory across cluster bourdaries. The exact
number of BLESs that share configuration memory is an architectural parameter of the MB-
FPGA architecture and is seleded according to the regularity of the target applications. Note
that this architectural feature is not further explored in this thesis; and its characteristics will be
fully studiesin detail in futureinvestigations. For the remainder of the thesis, it is assumed that

each BLE isalways assgned its own unique set of configuration memory.

3.6.2 Routing Switches

The MB-FPGA architecture can use three types of routing switches including the pass

transistor switches and the bi-directional buffered switches used in [Betz99a], the uni-direc-

60

/7(BLE BLE || eee|| BLE []
Potential T |
Configuration [[E—

Memory | BLE BLE || ee«|| BLE []
Sharing ||]
BLEs \<]]

1 BLE BLE || see«|| BLE [J

Cluster Cluster Cluster

Figure 3.9: BLEs and Configuration Memory Sharing
tional buffered switches used in [LemiO2]. As described in Chapter 2, the buffered switches

can use buffer sharing to reduce their implementation area. The MB-FPGA architecture dso
contains switches that share asingle set of configuration memory. These switches are alled
CMS routing switches. Several examples of the CM S switches are shown in Figure 3.10 along

with their conventional fine-grain counter parts.

3.6.3 Routing Channels

Each routing track in an MB-FPGA routing channel consists of wire segments conneded
by routing switches. These routing switches can either be conventional or configuration mem-
ory sharing. Each group o trads that share a single set of CM S switches is called a routing
bus. The number of tradks in arouting bus is cdled the granularity of the routing bus. As dis-
cussd in the general approach section, the task of transporting multi-bit wide buses from one
location to another occurs frequently in datapath appli cations. By sharing configuration mem-
ory, CM S routing tracks can route bus sgnalsin less areathan the cnventional routing trads.

Three routing buses, each with a granularity value of two, are shown in Figure 3.11.
These routing buses contain wire segments with logical length of one, two, and four respec-
tively. Note that all routing tracks in a routing bus have the same starting position; and the

starting paition d therouting busis defined to be the starting paosition o all the routing tracks

61

<— SRAM
L

N e

(a) Conventional
Pass Transistor Switch

<— SRAM

(c) Conventional
Buffered Switch

<— SRAM

(e) Conventional
Bi-Directional Buffered Switch

R I I

(b) Two Configuration Memory Sharing
Pass Transistor Switches

<— SRAM

I

(d) Two Configuration Memory Sharing
Buffered Switches

<— SRAM

I

e
et

L

HAY

(f) Two Configuration Memory Sharing
Buffered Switches

Figure 3.10: Routing Switches

in the routing bus. To conform to the single tile layout methoddogy autlined in Chapter 2, the
starting paitions of routing buses in the MB-FPGA architecture ae staggered just like the
starting pasitions of the routing tracks discussed in Chapter 2.

Not all signals in a datapath circuit can be grouped into buses. For example, control sig-
nals from control logic seldom can be grouped into buses. Since it isinefficient to use awide
routing busto route one-bit wide signal's, the MB-FPGA routing channels also contain conven-

tional routing tracks, which are called fine-grain routing tracks. Note that, for the study dorein

62

Super-Cluster
with Two
< Clusters Per
Super-Cluster

Logical
Length 1™

Logical
Length 2™

Logical <
Length 4™

AA
Yy
AA
Yy
AA
Yy
AA
Yy

AA
Yy
AA
Yy

Switch
Block

AA
Yy

. Two
— Wire Configuration Memory
Segment Sharing Bi-Directional

Routing Switches
Figure 3.11: CMS Routing Tracks With A Granularity Value of Two

this work, each MB-FPGA routing channel is assumed to contain a mixture of fine-grain rout-
ing tracks and CM S routing tracks. The granularity value of the CM S tradksis st to be ejual

to the number of clustersin a super-cluster.

3.6.4 Switch Blocks

A variety of switch block topdogies can be used to create the MB-FPGA switch blocks.
Most of these topdogies are derived from existing conventional switch block topdogies like
the disjoint topdogy [Hsei90] [Lemi97] and the Wilton topdogy [Wilt97]. This section
describes the design decisions that were made for the MB-FPGA routing architecture andtheir
justifications.

1. A conventional switch block topdogy defines the conrectivity between routing tracks
at the intersection d ahorizontal and a vertical routing channel. When the same topol -
ogy is applied to CMS routing tracks, the annectivity defined for any two routing
tracksin the original topdogy shoud be used to define the connectivity for two corre-

spondng routing buses in the MB-FPGA architecture. This is the essential nation o

63

CMS routing. Each routing bus shoud have the same position and the same orienta-
tionasits correspondng routing track relative to the switch block.

2. When conrecting two routing buses together, the mrrespondng bits in each buws
shoud always be @mnnrected together. An example is shown in Figure 3.12. In the fig-
ure, each routing bus is two-bit wide; and each track in arouting bus is labell ed with
an index number of either O or 1. For each case, only tracks with the same index num-
ber are mnreded to each other in the switch block.

3. For routing channels that contain bah CMS routing tracks and fine-grain routing
tracks, only CMS tracks can be conreded to CMS trads; and ony fine-grain tracks
can be connected to fine-grain tracks. This sgnificantly reduces the complexity of the
switch blocks. However, conrecting fine-grain tracks to CMS tracks and vice versa
may be beneficial. It isleft as an areafor future work.

4. The switchesthat connect two routing buses together must share asingle set of config-
uration memory hits; and the switches that conred two fine-grain routing tracks
together must be cnventional.

5. In each switch block, the switch block topdogy that conneds CMS routing tracks
together does not have to be the same & the switch block topology that conreds the
fine-grain routing tracks together.

Note that there are many ather choices that could be made in this design. For example,
like the DP-FPGA architedure, hardware shifters can be added to the switch blocks to support
shifting qperations. For the purpose of this thesis, however, the decisions listed abowve are

always used unessit is dated otherwise.

64

VAN > 0 0 0
i

Routing _?>
Bus 1

d
/
=
=
=

=
Logic Block 0]1 0 1
Bi-Directional 0 1
Routing Switch
0 0
1 1
0 1

(a) Six ways of connecting segments that meet at their Ends

o
=

0 \\\: 0

(b) Connecting two segments that meet at their middle

Figure 3.12: Connecting Routing Buses

3.6.5 Input and Output Connection Blocks

A portion d aninpu conredion Hock of an MB-FPGA super-cluster is shown in Figure
3.13. Note that, for the eae of ill ustration, the super-cluster is drawn with four clusters. The

topdogy dscussd here, however, applies equally well to super-clusters containing any num-

65

ber of clusters. As shown in the figure, each inpu pin of a super-cluster can be mnrected to a
fixed number of fine-grain routing tradks. For each super-cluster with M clusters, M super-
cluster inpus, each conneded to an input of a unique cluster, are grouped together to form an
M-bit wide bus, cdled an input bus. Each input bus is conneded to a fixed number of routing

buses; and there ae as many input buses as the number of cluster inputs.
Note there is no

Super-Cluster sharing of SRAM
here due to the
need to connect
both the fine-grain
and the coarse-
grain tracks to
— each input pin.

AN AN AN _¥D<1—SRAM</

ol AL AT)

l

Cluster Cluster Cluster Cluster

Input Bus

Routing BUS—I>|{ \]
\]

AV

Fine-Grain <+— Isolation Buffer
Routing (\) Zix 2 a8
Tracks \

Figure 3.13: Input Connection Block (M=4)

A portion d an output conredion Hock of a MB-FPGA super-cluster is shown in Figure
3.14. Again, for the ease of illustration, the super-cluster is drawn with four clusters. Individu-
ally, each ouput pin of the super-cluster can be mnreaded to afixed number of fine-grain rout-
ing tracks. As with super-cluster inputs, M super-cluster outputs, one from an ouput of a
unigue cluster, are grouped into an M-bit wide bus, called an output bus. Each ouput bus is
connected to afixed number of routing buses; and there ae a many output buses as the num-
ber of cluster outputs.

As shown in Figure 3.13 and Figure 3.14, when conreding an input/output bus to arout-
ing bus, the arrespondng bits of each bus are mnneded together. The programmable
switchesin each bus-to-bus conredion o the output conredion Hocks are able to share asin-

gle set of configuration memory.

66

Super-Cluster

Cluster Cluster Cluster Cluster

><—Output Bus
\Y4 \V4 \V4 /<+—Driving Buffer

3 I 3+ =-SRAM

A\
Routing Bus —|>{ \,

\/

\J

Fine-Grain 1:| l_D :| l_D 1:| l_D :| l_D
Routing r— .
Tracks U

Figure 3.14: Output Connection Block (M=4)

3.6.6 I/0O Blocks

As in most conventional FPGA architectures, all 1/0 blocks of MB-FPGA reside on the
periphery of the achitedure. Each 1/O block is bi-diredional — each 1/0 block contains one
inpu pin and ore output pin. Both the input pin and the output pin have the same connection
patterns to the fine-grain and CM S routing tracks in their neighbaring routing channel. Each I/
O block input or output pin can be conrected to afixed number of fine-grain routing tracks.

M 1/O block input pins or M 1/0O block output pins are grouped together to form M-bit
wide buses, where M isequal to the number of clustersin a super-cluster. The buses formed by
inpu pins are called pad-input buses; and the buses formed by the output pins are cdl ed pad
output buses. Each pad-input or pad-output busis conneaed to afixed number of CMS routing
buses. Similar to the input bus to routing bus conredions and ouput bus to routing bus con-
nections, when conneding a pad-input or a pad-output bus to arouting bus, the crrespondng
bits of each bus are conreaed together. For pad-output buses, the programmable switches in

each bus-to-bus connection share asingle set of configuration memory.

67

3.7 Summary

This chapter has described a new datapath-oriented FPGA architecture, called MB-
FPGA. The achitecture is homogenous and contains a mixture of CMS and fine-grain
resources designed for the aea dficient implementation o arithmetic-applications. The achi-
tectureis also highly parameterized and can be used in architectural experimentsto investigate

the dfea of CMS routing resources.

68

4 An Area Efficient Synthesis Algorithm for Datapath Circuits

4.1 Introduction

This chapter presents a new kind of synthesis algorithm that has been designed spedfi-
cally to synthesize datapath circuits into datapath-oriented FPGAs, such as the one described
in Chapter 3. The algorithm is unique in that it preserves the regularity of datapath circuits
while atievingthe aea dficiency of more conventional synthesis algorithms that do nad pre-
serve datapath regularity. The dgorithm is used as a part of a CAD flow in Chapter 7 and
Chapter 8 to explore the achitectural parameters andthe aea dficiency of the datapath archi-
tecture described in Chapter 3.

Synthesizing datapath circuits for datapath-oriented FPGAs can be more difficult than
conventional synthesis because the algorithm must preserve the regularity of datapath circuits
in order to utilize the special features of datapath-oriented FPGAs. The task of preserving reg-
ularity limits the optimizaion oppatunities that conventional synthesis algorithms can
exploit, which can severely limit the effedivenessof these algorithms. This is especially true
for tools that focus on minimization of area To preserve regularity, conventional algorithms
must limit their areaoptimizations grictly within the boundiries of bit-slices. As aresult, the
optimization oppatuniti es that exist across bit-slice boundaries canna be dfedively exploited
by these dgorithms. For FPGA architectures like the MB-FPGA architedure, which are
designed to improve the aea dficiency of FPGAs through the utilization o datapath regular-
ity, improving the aeaefficiency of their synthesis algorithms is essential to achieve the over-
all effediveness of the architedure. The dgorithm described here, called the Enhanced
Module Compadion (EMC) agorithm, addresses the issue of area dficiency by using several

high level techniques that discover optimization oppartunities aaossbit-slice bourdaries and

69

transform these hit-slices into more area€efficient implementations while still preserving their
regularity.

EMC has been used to oltain excellent synthesis results for several datapath circuits
from the Pico-Java processor [Sun99]. The results show that the algorithm is able to preserve
datapath regularity while achieving the aea dficiency of conventional synthesis algorithms
that do not preserve datapath regularity.

This chapter is organized as follows: Section 4.2 motivates the development of an area
efficient, datapath-oriented synthesis algorithm by reviewing several existing algorithms. Sec-
tion 4.3 presents the datapath circuit representation wsed in the EMC algorithm. Sedion 44
describes the algorithm in detail. Section 4.5 presents the synthesis results of the dgorithm;

and Section 4.6 gives concluding remarks.

4.2 Motivation and Background

The most effective way of preserving datapath regularity is to preserve bit-slices. Pre-
serving hit-slices, however, can often interfere with areaoptimizaions. Consider Figure 4.1,
which shows three interconnected hit-slices. All three bit-slices have identical internal struc-
tures consisting d three interconneded 3-input LUTSs, A, B, and C. The external connection of
these bit-slices, however, are slightly different. Bit-sliceinpus a, b, and c are cnrected to a
different set of external inpus for each hit-dice Inpusd, e, and f, on the other hand, share a
single set of external inputs across all three hit-slices. The remaining ht-slice input, g, is con-
nected to a constant zero for bit-slice 1, to a constant onefor bit-dice 2, andto aregistered ver-
sion d the output of LUT B for bit-slice 3.

The simplest way of preserving hit-dices isto perform area optimization strictly within
bit-slice boundiries withou considering the bit-slice I/O conrections. Using this technique,

each hit-slice in Figure 4.1 needs exadly three 3-input LUTs to implement. To be more aea

70

a
<3
<3

000 NIuly| 000
alblg dlef alblc dlelf albld dlef
A A A
C C C
]]]
g 0 g 1 g
L | L [[
B B B

Bit-Slice 1 Bit-Slice 2 Bit-Slice 3 [jaclock

Figure 4.1: Regularity and Area Efficiency

efficient, area optimizations can peer acrossthese boundaries withou destroying them. In this
case, LUT C can be extraded ou of the threebit-dlices and shared as shown in Figure 4.2. The
total implementation area of the drcuit is reduced, since eah hit-sliceonly needstwo 3-inpu
LUTs to implement. However, since LUT C does not belong to any hit-dice, irregularity is
introduced into the drcuit. The implementation area @n be further reduced throughthe intro-
duction o even more irregularities. For example, LUT B in hit-slice 1 and ht-slices 2, can be
implemented using a smaller 2-input LUT as shown in Figure 4.3. If the target FPGA allows
more than ore type of LUT, this implementation requires even lessareato implement at the
expense of increased irregularity. Althoughthisis asimple example, it illustrates the essence
of the problemsthat occur whil e preserving detapath regularity during synthesis.

As discussed in Chapter 2, existing synthesis algorithms that preserve datapath regularity
can be dassfied into four categories: regularity preservinglogic transformation-based synthe-
sis [KutzO0a] [Kutz00b], hard-boundary hierarchicd synthesis (synthesis that performs opti-
mizations grictly within hit-slice boundaries), template mapping [Call 98] [Cora96] [Nase94]
[Nase98], and module compaction [K och96a] [Koch96b]. Among these four algorithms, regu-

larity preserving logic transformation relies on extracting regularity diredly from datapath cir-

71

<3
C—<:|
000 NIuly| 000
alblg a|blc alblg
A A A
T | I
L | L [[
B B B

Bit-Slice 1 Bit-Slice 2 Bit-Slice s[jaclock

Figure 4.2: Share Look-Up Table C

—
c —a
000 000 000
alb/g alblc alblg
A A A
j j j .
|
BO B1 B

Bit-Slice 1 Bit-Slice 2 Bit-Slice s[jcclock

Figure 4.3: Simplify Look-Up Table B

cuits without the guidance of hit-slices. Its effectiveness in preserving detapath regularity is
limited because this is a difficult problem that does not leverage information that existsin the
user design.

Hard-bourdary hierarchical, template mapping [Call98] [Cora96] [Nase94] [Nase9g],
and modue mmpaction [Koch96a] [Koch96H algarithms, all make use of user-defined regu-
larity information in the form of bit-slices. All three, however, are not very area dficient. For
example, when the Synopsys FPGA Compiler is used to synthesize aseries of 15 datapath cir-

cuits from the Pico-Java processor [Sun99 using the hard-boundiry hierarchical synthesis,

72

there is an average aea increase of 38% compared to synthesis that destroys datapath regular-
ity (which will be called flat synthesis in the remainder of this thesis). The detailed results of
this experiment after synthesis are summarized in Table 4.1, where wlumn 1lists the name of
each circuit. Column 2and 3 list LUT count for the flat synthesis and the hard-boundary hier-
archicd synthesis, respedively. Column 4 lists the percentage of LUT increase for hard-
boundary hierarchicd synthesis as compared to the flat synthesis. Column 5, 6, and 7 summa-
rize the same information for the DFF count.

For the template mapping, using the technique discussed in Chapter 2, [Cora96] reports
an area increase of over 48%. The modue compaction algorithm, on the other hand, has the
shortcoming of being designed specificdly for the Xilinx XC4000 FPGA architecture. As a
result, the algorithm uses dedicated hardware in XC4000to implement some of its preserved
regular structures. This artificially reduces the total number of LUTs needed to implement a
circuit. Furthermore, there ae limited experimental results on the dgorithm’s area dficiency
— only two arearesults were ever published. Both are for relatively small circuits. Even with
dedicated hardware suppat, the bigger circuit, containing oy 712 4LUT, till has a worst
case aeainflation of 17%. The much small er circuit, containing oy 112 4-LUT, was shown

to have an area reduction of 16%.

4.3 Datapath Circuit Representation

The goal of thiswork isto develop an algorithm that preserves datapath regularity. To do
this requires an appropriate format for spedfying detapath regularity. The format used in this
thesis consists of a netlist of datapath comporents, described in VHDL or Verilog, which is
called the top-levd netlist. All datapath components used in the netli st are instantiated from a
predefined datapath component library. This library contains fundamental datapath buil ding

blocks auch as multiplexers, adders/subtraaers, shifters, comparators, and registers.

73

#LUTs #DFFs

Flat HB % inflat. Flat HB % inflat.
dcu_dpath 960 1190 24% 288 288 0.0%
ex_dpath 2530 3517 3% 364 364 0.0%
icu_dpath 3120 4430 42% 355 356 0.28%
imdr_dpath 1182 1548 31% 170 170 0.0%
pipe_dpath 443 549 24% 218 220 0.92%
smu_dpath 490 568 16% 190 190 0.0%
ucode dat 1243 1362 9.6% 224 224 0.0%
ucode_reg 78 172 121% 74 80 8.1%
code_seq_dp 218 366 68% 216 226 4.6%
exponent_dp 477 725 52% 64 64 0.0%
incmod 779 1207 55% 72 72 0.0%
mantissa_dp 846 1167 38% 192 192 0.0%
multmod_dp 1558 2275 46% 193 193 0.0%
prils_dp 377 675 7% 0 0 0.0%
rsadd _dp 346 526 52% 0 0 0.0%
Total 14647 20277 38% 2620 2639 0.73%

Table 4.1: Area Inflation for Hard-Bound ary Hierarchical Synthesis

These datapath components are in turn compaosed of bit-level structures that are clled

bit-slice netlists. A bit-slice netlist is a netlist of logic gates, representing the function d asin-

gle hit-slice of adatapath. The bit-slicenetlist is typically instantiated multiple timesin adata-

path comporent. At this level the netlist is called the datapath component levd netli st.

The number of bit-dli ce netli st instantiations corresponds to the width of the datapath. All

instantiations are assgned a unique bit-slice number from one to the width of the datapath

with the least significant bit-slice labeled ore.

An example of a4-hit ripple carry adder datapath comporent is shown in Figure 4.4. The

bit-slice netlist of this datapath component is a netlist of logic gates defining afull adder. This

designisinstantiated four times to form the 4-bit adder.

74

cin
Instantiation #1 of ol
Bit-Slice Netlist

Y

Instantiation #2 of 02
Bit-Slice Netlist

Y

Instantiation #3 of 03
Bit-Slice Netlist

Bit-Slice Netlist

Y

Instantiation #4 of 04
Bit-Slice Netlist

¢ cout

Figure 4.4: 4-bit Ripple Adder Datapath Compon ent

4.4 The EMC Synthesis Algorithm

Figure 4.5 gives the overall flow of the new datapath-oriented EMC synthesis algorithm,
which consists of four major steps. word-level optimization, modue mmpadion, bit-dicel/O
optimization, and within hit-slice boundary synthesis. In the first three steps, the top-level
netlist is optimized for areathroughthe transformation and merging o its datapath compo-
nents into more area efficient implementations. During these steps, some logic might be cre-
ated which dces not belong to any spedfic bit-slices. For example, new logic might be aeaed
to generate signals that fan ou to multiple bit-slices such as the example in Figure 4.2. This
logic is cdled irregular logic (previousy known as non-datapath, to distinguish it from logic
that fits nicely into a datapath) and is represented directly aslogic gatesin the top-level netlist.
Each ore of these threestepsis discussed in more detail in the subsections that follow.

In the final and fourth step, each hit-diceis g/nthesized and mapped into 4-input LUTs

and DFFs throughthe use of a conventional synthesis algorithm. The irregular logic gates are

75

Netlist of Datapath Components

4
Step 1: Word-Level
Optimization

Y
Step 2: Module
Compaction

4
Step 3: Bit-Slice /0
Optimization

4
Step 4: Within Bit-Slice
Boundary Synthesis

Figure 4.5: Overall Synthesis Flow
also synthesized and mapped into LUTs and DFFs independently from the datapath compo-

nents using the same mnventional synthesis algorithm.

4.4.1 Word-Level Optimization

Duringthefirst step, two types of word-level optimizations are performed. Oneis used to
extract common sub-expressons acrosshit-slice bourdaries. The other uses operation reorder-
ingto reduce aea These two optimizaions are performed manually. Their algorithms, which

are suitable for automation, are presented here.

4.4.1.1 Common Sub-expression Extraction

Each datapath component represents a set of arithmetic operations. In the top-level
netli st, datapath componrents are connected together to form complete mathematica functions.
Each of these functions has multiple bit outputs, where the output bits can be individually
described using logic expressions. Often, common sub-expresdons exist aaoss these logic

expressons. More precisely, let both X ([Xg , X1 , ..., Xal) @andy ([yg, Y1 » --- » Ynl) be bit vectors

76

of width n. Let y = f(X) be amathematicd function d x. Each individual bit of y can be

expressed in terms of bits of x as follows:
Yo=fo (X0 X1, -+ Xn)

y1=f1 (X0 X1 5 5 Xp)

Yn= T (X0, X1 5 e s Xp)

If there exist afunction g (Xg , Xq , ... , Xp), Such that:
Yo= f0(@ (X0, XL, « s Xn) » X0 s X1 5 - s Xn)

V1= £1(0 (X0 X0 o Xe) Ko 2 X0 s o s Xe)

Yn= Fn(@ (o Xy %) X0, X5 s Xp)
then g(x) is called a common sub-expressgon of fo(x), f1(X), ... , f,(X). The implementation area
of mathematical functions can be reduced by discovering and extracting these coommon sub-
expressons D that they are only implemented once.

Ina conventional synthesis process common sub-expressons are extracted through logic
transformations. This extraction process usually destroys the regularity of datapath circuits,
since conventional synthesis independently transforms logic expressons one bit at atime. We
have foundthat many of these ammmon sub-expressons can be discovered at the word-level
where aitire datapath components are examined based on their functionality. Most impor-
tantly, datapath regularity can be easily preserved by extracting these common sub-expres-
sions at the word-level where datapath structures remain clearly identifiable.

For the benchmarks investigated in this work, the most effedive word-level transforma-
tion that extracts common sub-expressionsis multiplexer treecoll apsing. In a multiplexer tree,

the multi plexers, their data inpus, outputs, and the interconredion signals form a treetopol-

77

ogy. Each node of the treg which has multi ple inputs and a single output, represents a multi-
plexer. Each input of a node corresponds to a multiplexer data input. The output of a node
corresponds to a multiplexer output. An edge in the graph represents a net conneding a multi-
plexer output to a multiplexer data inpu, a primary input, or the primary output of the multi-
plexer tree.

A multiplexer treesometimes can be subgtituted by a single multiplexer, which requires
much lesslogic to implement, asill ustrated in Figure 4.6. Here the multiplexer tree in the left
circuit is aubstituted by a single multiplexer in the right circuit. To implement the two multi-
plexers and the and gate in the left circuit, two 4-input LUTs are needed for every hit-slice as
indicated by the shaded regions in the figure. To implement the multiplexer and the and gate
in the right circuit, only one 4-input LUT is needed for every bit-dice The extra irregular
logic in the right circuit isthe common sub-expresson extracted bythe transformation. It usu-

ally is hared by several bit-slices, so its areacost is small i n wide datapath circuits.

DFF

il — irregular logic

Figure 4.6: Mux Tree Collapsing Example

The algorithm used to collapse multiplexer treesis as follows: First, multiplexer trees are
identified in the top-level netlist. Thisis easy to perform since the functionality of each datap-
ath component is known. The total number of unique datainpusto each tree is then identified.
Each tree is replaced by a single multi plexer whose width is equal to the number of unique

datainpus of the tree. Each inpu of the new multiplexer is connected to a unique multiplexer

78

tree primary data input. The output of the new multiplexer is connected to the primary output
of thetree. Finally, the seled signal of the new multiplexer is generated using the select signals
of the original multiplexer tree If the replacement reduces the aea st in terms of LUT and

DFF court, it isretained. Otherwise, the replacement is rejected.

4.4.1.2 Operation Reordering

The secondword-level transformation uses operation reordering to reduce aea In partic-
ular, the optimization reorders result seledions into operand selections. Arithmetic operators
such as multiplications are, in general, much more expensive than multiplexers. In the event
that several identical operations are performed onindependent data sets and orly one result is
used, it usually is much cheaper to preselect the inpu data than to perform all operations in
parall el and select the final results.

An exampleis givenin Figure 4.7. Here the result of two addition operationsis seleded
by a 2:1 mux. The operation can be more dficiently performed by preseleding adder inpus
and using asingle alder instead of two. Before optimization, five 4-inpu LUTSs are needed to
implement the function. After optimization, only four 4-input LUTSs are needed to implement
the same function. This optimization is not obvious at the bit-slice level, since coutOa and
coutOb appear to be two independent signals. However, when viewed from the top-level
netli &, the optimizationis clearly identifiable.

More generally, assume that thereisafunctiony = f (X) wherex ([xg, X1 , -, Xp]) isann-

bit wide bit vector andy ([yg, Y1, -~ » Ypl) isap-bit wide bit vecor. The function:

if (s == 0) then
z=f(u)
else
z= f(V)

79

Before Optimization After Optimization

a0 b0 cinba c0 dO cinOb

]]
]]
=

==
Utgl-ijm ucarryN sum/%@
coutOa—F—"~_T—"~—

coutQb
S
e0

Bit-Slice Netlist Before Optimization

@m carry
cout0

e0
Bit-Slice Netlist After Optimization

Figure 4.7: Result Selection to Operand Selection Transformation

can be sometimes more cheaply implemented as:

if (s== 0) then
w=u
else
w=v
z=f(w)

if f(X) requires more area to implement than the extra multiplexers. The dgorithm would

search for multiplexers whaose data inpus are from the outputs of identical functions where

these outputs have no aher fan-outs. It then compares the aeaimplementation cost of f(x)

with the area implementation cost of the multiplexers. If the aea st of f(X) is greaer than the

area ost of the additional multiplexers, the transformation is performed.

80

4.4.2 Module Compaction

The goal of modue compadion is to create larger bit-slices, which can be more effi-
ciently synthesized by the conventional synthesis algorithms. This compadion process is per-
formed as the second step of the optimization. Here two conrected hit-slice netlists are
iteratively merged together to form a larger bit-dice netlist. The algorithm repeaedly iterates
throughthe input netlist until there ae no eligible datapath comporents left to be merged. By
creding larger bit-slice netlists, more optimizaion oppatunities are aeated for the conven-
tional synthesis gage shown in Figure 4.5, where the synthesis is restricted to within the
boundries of bit-dice netlists. This merging process is smilar to the modue compaction
algorithm proposed by Koch in [Koch964] as discussed in Chapter 2. It differs in its merging
criteria; unlike Koch's algorithm, it does not depend onany placement information. As a
result, the EM C algorithm can be more eaily integrated into existing CAD flows.

The basic merging operation is a pattern identification process Two groups of bit-dices
from two datapath comporents are merged if the foll owing condtions are met:

1. Thesetwo groups contain equal numbers of hit-sli ces.

2. All bit-slicesin each group have consecutive hit-dli ce numbers as defined in Section 4.3.

3. All bit-slicesin one groupare identicdly connected to their correspondng ht-slicesin the
other group. Here two corresponding hit-slices are defined to be bit-slices from two dis-
tinct groups, each with the same offset from the lowest bit-slice number in its group.

Each merging operation creates a new datapath component. The bit-dlice netlist of the
new component combines the two original bit-slice netlists. If a merging goup das not
include dl the bit-slices of its datapath componrent, the remaining slices in the comporent are

split into two datapath components — one with all the bit-slices whose bit-slice numbers are

81

smaller than the bit-slice numbers of the merging group, and the other with all the bit-dlices
whose bit-slice numbers are larger than the bit-dli ce numbers of the merging goup.

An example of modue compaction is shown in Figure 4.8. Here, before merging, as
shown in Figure 4.8a, there are two datapath componrents with labels FA and mx, respectively.
One comporent contains five slices of full adders labeled FAO to FA4. The other component
contains four slices of single-bit 2:1 multiplexers labeled mx0 to mx3. Based on the merging
rules stated above, two full adders, FA1 and FA2 can be merged with two single-bit 2:1 multi-
plexers, mx0 and mx1, to form anew datapath comporent. The remaining three full addersare
broken into two new componrents after merging. The four new datapath componrents creaed by

the merging process is shown in Figure 4.8b. They arelabeled A, B, C, and D.

(a) Before Merging

A=t——i—t
Fa1 H Fa2 |

IRETIM

(b) After Merging

Figure 4.8: A Bit-Slice Netlist Merging Example

Two extra condtions are imposed to prevent a cary type signal from causing al bit-
slices connected to it to be merged into a single component. For example, consider a second
merging iteration on the circuit of Figure 4.8b after the initial merging described above. Data-
path comporent A will be qualified to be merged with the first slice of datapath comporent B
sincethey are mnreaed bythe cary signal. Then, in the third merging iteration, componrent A

and B will be ompletely merged into a single bit-dice. After two more iterations, the carry

82

chain will cause A, B, and D in the figure to be merged into a single hit-slice, which com-
pletely destroys the regularity of the datapath.

To prevent this, first, merging operations are ordered so that operations that will crede
the widest datapath componrents are performed first. Second, for every bit-dice netlist an
ancestors field is defined, which is a set of bit-slice netlists. Initially each hit-slice netlist has
only itself in its ancestors set. When two bit-sli ce netlists are merged, the ancestors set of the
new bit-slice netlist is the union d the ancestors sets of the two merging hit-slice netlists. If
the intersection d the ancestors of two hit-dice netlists is not empty, these two hit-slice
netli sts canna be merged together.

With the ancestors field, nothing can be merged during the second merging iteration in
Figure 4.8b, since all mergable component pairs, (A, B) and (B, D) share one common ances-

tor — FA.

4.4.3 Bit-Slice Netlist I/O Optimization

Each hit-slice netlist has a set of predefined I/0O signals that enter and exit the netlist.
Depending o the usage of these signals, some of them can be diminated and converted into
internal signals of the netlist. Since each hit-slice netlist is synthesized using a conventional
synthesis algorithm in the final step of the synthesis flow, converting 1/O signals into internal
signals can reduce the implementation area of bit-slices by providing extra information to the
conventional synthesizer. In this optimizaion process, four types of bit-dice 1/0 signals are
converted into internal signals of bit-slices. Each is discussed below.

Before any 1/O optimizaion is performed, each datapath comporent in the top-level
netlist isfirst divided into m-bit wide subcomponrents, where m is ecified by the user. Each
subcomponent is a self-contained datapath comporent with its own bit-slice netlist definition

and a netlist of m instantiations of the bit-di ce netli st. The division starts from the least signif-

83

icant bit of each datapath component and groups adjacent m bit-sli ces into a subcomporent. If
the width of the datapath comporent is not an integer multiple of m, the subcomporent con-
taining the most significant bitswill be lessthan m-hit wide. The variable m is cdl ed the gran-
ularity of the synthesis flow. A larger m preserves more datapath regularity typicdly at the
expense of increased area, while a smaller m deaeases area & the expense of preserving less
datapath regularity. After division, each ariginal datapath comporent in the top-level netlist is
substituted by its corresponding subcomponents.

The first type of 1/O optimization is constant absorption. When an input of a hit-slice
netlit is always connected to the same constant value (either zero or one) for all i nstantiations
of the netlist in a datapath component, this inpu signal is converted into a cnstant internal
signal of the netlist.

The seamnd type of 1/0O optimization is feedback absorption. When a conrection exists
between a bit-dlice netlist inpu and a bit-sli ce netlist output for all instantiations of the netlist,
thisinpu signal is converted into an internal signal and reconnected to the @rresponding out-
put inside the netlist.

An example of feedback absorptionis shown in Figure 4.9. Here Datapath Component
A consists of four bit-slices, which are dl i nstances of the same hit-sli ce netli st. Since each of
the slice inpus labeled Ail is connected to a arrespondng slice output labeled Ao from the
same slice, Ailiseliminated as an inpu of the bit-slice netlist and is converted to an internal
signal. Ail isreconnected to Ao inside the netlist.

The third type of 1/O optimization is duplicaed input absorption. When two hit-slice
netlist inputs are cnrected together for al i nstantiations of the design, one of theinpu signals
is converted into an internal signal and is reconneded to the other input signal inside the

netli st.

84

I -

< Bit- A All < _BI'[- A0|—|
= (Slice A1 Ai2[T] [g Slice Al Ai2[T]
(O]
c [c _
2 [Bit- adl Aﬁ g _Blt- Ao
§ Slice A2 ai T § Slice A2 Ai2[]
o [
g Bit- Al AL g _Bit— Aol
S (Slice A3 ai2[T] [+ S (Slice A3 ai2[]
IS | o
O [T Bitt g AL 8 7Bt agld

Slice A4~ aipp I Slice A4 Ai2[T]
Before Optimization After Optimization

Figure 4.9: Feedback Absorption Example
An example of duplicated input absorptionis shown in Figure 4.10. As before, Datapath

Component A consists of four bit-slices, which are dl i nstances of the same bit-slice netlist.
Since each of the slice inpus labeled Ail is always connected to a correspondng sliceinpu
labeled Ai2 in the same slice, Ai2 is eliminated as an input of the bit-slice netlist and is con-

verted to an internal signal. Ai2 isremnnected to Ail inside the netlist.

Bit- g AL Bit- A AL
< Slice A1 Ai2[] J < Slice A1 e
c A c
(4] (4]
&[Bit- pgld AL &[Bitt agld AL
o .. _ o |, D«_
g Slice A2 A2 J g Slice A2
O _ © .
= [Bit- Al AL = [Bt Al AL
S Slice A3 Ai2[T] J 8 ISlice A3 e
g | — g
S[Bt aold AQ| Q[Bt agd AL
sice A4_pizf] 1] Slice A4 e
L S—
Before Optimization After Optimization

Figure 4.10: Duplicated Input Absorption

The last type of 1/O optimizaion is unused ouput elimination. When a bit-sli ce netli st
output does not conred to any ather signalsin all instantiations of the bit-sli cenetlist, this out-
put signal is converted into an internal signal of the hit-slice netlist, which will permit the

downstrean synthesis to optimize it away.

85

4.5 Experimental Results

The eperimental results from applying the EMC synthesis on fifteen datapath bench-
marks are presented in this sction. These fifteen circuits are from the Pico-Java processor
[Sun99, which is a 32-bit processor; and the benchmark set covers all major datapath compo-
nents of the procesor. Note again that the word-level optimizations, described in Section
4.4.1, were performed manually. The other two optimization steps were done by automated
algorithms implemented in the C-language. The Synopsys FPGA Compiler [Syno99 is used
to perform the within hit-slicebourdary synthesis. Unless gecified atherwise, all the data pre-
sented here ae synthesized using a granularity value (m), as defined in Section 4.4.3, of four.
Inthe remainder of this ®dion, the areainflation o EMC isfirst discussed; and then the regu-

larity results are presented in turn.

4.5.1 Area Inflation

For every benchmark circuit, the final LUT and DFF court of the EMC synthesisis com-
pared with the courts achieved by afully conventional synthesis flow that flattens the datapath
hierarchy. The conventional flow isalso performed bythe Synopsys FPGA Compil er. In order
to assure that the best achievable amnventional synthesis results are used to be compared with
the EMC synthesis, two conventional synthesis flows are used. One flow diredly synthesizes
the input netlist of the EMC algorithm. The other flow resynthesizes the output netlist of the
EMC agorithm. In some cases, one flow offers dightly better results than the other; and the
best result is aways used as the flat synthesis resullt.

Table 4.2 summarizesthe LUT and DFF inflation d each benchmark circuit for the hard-
boundary hierarchical synthesis, and the new EMC synthesis. Each inflation figure is calcu-

lated by comparing the regularity preserving synthesis with the best conventional synthesis

86

results. The formula, inflation = %’2-1, is used to calculate the inflation for both LUTs and

DFFs. In the formula, DA represents the synthesis areaof the regularity preserving synthesis;

FA represents the synthesis area of the flat conventional synthesis.

Area Inflation for Regularity Preserving Synthesis
Best Flat EMC — EMC —
Svnthesis Hard- Word-Level
Yy Word-Level o
Area Bound ary Obtimizati Optimization Full EMC
- . ptimization
Hierarchical and Module
Only -
Compaction
#LUT | #DFF | LUT | DFF | LUT | DFF | LUT | DFF | LUT | DFF
dcu_dpath 960 288 24% | 0.0% 22% | 0.0%| 81% | 0.0% | 0.63% | 0.0%
ex_dpath 2530 364 39% | 0.0% 38% | 0.0% 26% | 0.0% | 0.91% | 0.0%
icu_dpath 3120 355 42% | 0.28% 24% | 0.28% 23% | 0.28% | 3.7% | 0.0%
imdr_dpath 1182 170 31%| 0.0% 31%| 0.0% 29% | 00%| 3.1%| 0.0%
pipe_dpath 443 218 24% | 0.92% 19 | 0.92% 19% | 0.92% | 6.3% | 0.0%
smu_dpath 490 190 16% | 0.0% 16% | 0.0%| 94% | 0.0% | 0.61% | 0.0%
ucode dat 1243 224 9.6% | 00%| 9.6%| 00%| 9.6% | 00%| 4.9% | 0.0%
ucode_reg 78 74| 121% | 8.1% | 113% | 8.1% | 113% | 8.1% | 51% | 0.0%
code_seq_dp 218 216 68% | 4.6% 53% | 4.6% 53% | 46% | 23%| 0.0%
exponent_dp a77 64 52% | 0.0% 31%| 0.0% 26% | 0.0%| 5.0%| 0.0%
incmod 779 72 55% | 0.0% 50%| 0.0% 36% | 0.0% 11% | 0.0%
mantissa_dp 846 192 38% | 0.0% 29% | 0.0% 28% | 0.0%| 3.8%| 0.0%
multmod_dp 1558 193 46% | 0.0% 42% | 0.0% 15% | 0.0%| 4.9% | 0.0%
prils_dp 377 0 79% | 0.0% 7% | 0.0% 36% | 0.0%| 29% | 0.0%
rsadd_dp 346 0| 51%| 0.0% 51%| 0.0% | -26% | 0.0% | -12%| 0.0%
Total 14647 | 2620 38% | 0.73% | 32% | 0.73% | 22% | 0.73% | 3.2% | 0.0%

Table 4.2: LUT & DFF Inflation for Regularity Preserving Synthesis

Column ore of thetable lists the name of each benchmark circuit. Columnstwo and three
give the LUT and DFF count of each circuit from the best conventional synthesis flow. Col-
umns four and five restate the inflation figures of the hard-boundiry hierarchical synthess,
which were shown in Table 4.1. Here, synthesis is performed without the first three optimiza-

tion steps of the EMC algorithm. Columns gx to eleven summarize the inflation figures for

87

various configurations of EMC to show the contributions of each individual optimization step.
In particular, columns s$x and seven show the inflation figures when only step 1 (word-level
optimization) and step 4 (within hit-dice boundary synthesis) are performed. Columns eight
and nine list the inflation figures when step 1, step 2 (module compadion), and step 4 are per-
formed. Finally columnsten and eleven list the inflation figures for the full EMC synthesis.

The average LUT inflation of the hard-boundary hierarchica synthesis is 38% and the
average DFF inflation is 0.73%. The word-level optimization reduces the average LUT infla-
tion to 32%; and the combined word-level optimization and module compaction reduce the
average LUT inflation further down to 22%6. Using the full EMC agorithm, the average LUT
inflation is finally reduced to 3.2% and the DFF inflation is reduced to zero. Note that the bit-
slice netlist 1/0 optimization contained in the full EMC algorithm utilizes many optimization
oppartunities created by the previous modue compaction step, which creates bit-slices con-
taining many common |/O signals through the merging o smaller bit-dlices.

The benchmarks exponent_dp, icu_dpath, and code seq dp benefited the most from
word-level optimization. Their LUT inflation figures were reduced by 21, 18, and 15 percent-
age points, respectively. Benchmarks rsadd dp, prils_dp, and multmod_dp on the other hand,
benefited the most from module compaction. Their LUT inflation was reduced by 54 41, and
27 percentage points, respectively, when module compaction is performed ontop d word-
level optimization. Finally, benchmarks ucode reg, code seq_dp and prils dp benefited the
most from bit-slice I/O optimization. The LUT inflation figures were reduced by 108, 51, and
33 percentage points, respedively, when the optimization is performed ontop d word-level
optimization and modue compaction.

The numbers from Table 4.2 show that the EMC algorithm does not significantly

increase the LUT and DFF count for the benchmarks as compared with flat synthesis and is

88

much more area efficient than the hard-boundary hierarchical synthesis. For the drcuit,
rsadd_dp, the EMC algorithm even discovered more optimizaions than the conventional syn-
thesis, resulting in much small er area.

Finally, Table 4.3 presents LUT count inflationas afunction of m, the granularity of syn-
thesis. DFF count inflation remained at zero with increasing m. The table shows that the LUT
inflation increases from 3.5% to 7.4% as m is incressed from 4 to 32 The cuse of this
increase is the lessefficient 1/0 optimization as described in Section 44.3 as a result of the

increased datapath componrent width.

m 1 4 8 12 | 16 | 20 | 24 | 28 | 32

Avg. LUT 00| 35| 46| 63| 67| 65| 67| 68| 74
Inflation (%)

Table 4.3: LUT Count Inflation as a Function of Granularity

4.5.2 Regularity

Various aspeds of the datapath regularity were measured for the drcuits after they are
synthesized bythe EMC algorithm in order to illustrate that the regularity was preserved. The
granularity of the synthesis, m, is again set at four. Higher granularities typically result in

higher regularity.

4.5.2.1 Logic Regularity

To measure the logic regularity preserved by the synthesis process. The benchmark cir-
cuits are first synthesized by the full EMC algorithm. LUTs and DFFs in the synthesized cir-
cuit are divided into two groups. The first groupis called regular logic, which, as defined in
Sedion 4.3, contains LUTs and DFFs that belongto datapath comporents. The second group
is cdled irregular logic, which contain LUTs and DFFs that do na belong to any datapath

comporent. Note that several optimizations described in Section 4.4 create irregular logic dur-

89

ing the optimizaion process so the propartion d regular logic a compared to irregular logic
in anetlist is changed by the synthesis process

Before synthesis, nealy al logic in the benchmarks is regular. After synthesis, the
detailed regularity results for each circuit is shown in Table 4.4. In the table column 1 lists the
name of each circuit. Column 2, 3, and 4 list the number of LUTS, the number of DFFs, and the
total number of LUTs and DFFs for eech circuit after EMC synthesis. Column 5, 6, and 7list
the number of LUTS, the number of DFFs, and the total number of LUTs and DFFs that are
preserved in datapath for each circuit after synthesis. Finally column 8lists the total percent-
age of LUTs and DFFs that are in datapath. Overall, the EMC algorithm preserves a signifi-
cantly amourt of logic regularity. Here, 90% of the total number of LUTs remain in datapath

comporents after synthesis, while only 10% of thelogic residesin irregular logic.

4.5.2.2 Net Regularity

The regularity of nets after synthesis was also measured. Table 4.5 shows two major
types of two-terminal connections (defined as a logical conredion containing one LUT/DFF
output pin and ane LUT/DFF inpu pin) exist in datapath benchmarks after synthesis — bus
and control signals. The first column of Table 4.5 lists the name of each benchmark circuit.
The second column lists the total number of two-terminal connedions in each circuit.

A two-terminal busis defined as an m-bit wide bus (four in this table) that conneds one
datapath comporent to another and doeys the following two conditions: First, each hit of the
bus must be generated by a distinct bit-slicein the source datapath component and absorbed by
a distinct bit-slice in the sink datapath comporent. Second, the source hit-dice and the sink
bit-slice must have the same bit-slice number. The topology o a 4-bit wide bus is shown in

Figure 4.11. On average 48% of two-terminal connections in these benchmarks can be

90

#LUT +

#LUT in

#DFF in

#LUT +

%LUT &

ALUT #DFF #DFF | Datapath | Datapath g;zg;t”h DZ;';;h

dcu_dpath 966 288 1254 900 288 1188 95%
ex_dpath 2553 364 2917 2390 350 2740 94%
icu_dpath 3235 355 3590 3108 352 3460 96%
imdr_dpath 1218 170 1388 1132 160 1292 93%
pipe_dpath 471 218] 689] 387| 188| 575| 83%
smu_dpath 493 190 683 428 190 618 90%
ucode_dat 1304 224 1528 1224 224 1448 95%
ucode_reg 82 74 156 68 64 132 85%
code_seq_dp 223 216 439 52 152 204 46%
exponent_dp 501 64 565 320 64 384 68%
incmod 867 72 939 772 64 836 89%
mantissa_dp 878 192 1070 772 192 964 90%
multmod_dp 1634 193 1827 1388 152 1540 84%
prils_dp 388 0 388 324 0 324 84%
rsadd_dp 305 0 305 281 0 281 92%
Total 15118 2620| 17738| 13546| 2440| 15986] 90%

Table 4.4: Logic Regularity

grouped into 4-bit wide busses. The percentage number for each benchmark is sammarized in

column three of Table 4.5.

LILT L)L

A

A A

sink datapath component

4-bit wide bus

bit-slice

QO ouu 9

source datapath component

Figure 4.11: 4-bit Wide Bus Topology

A control net is asingle net that enters a datapath comporent and fans out to al m bit-

slices (4 inthistable). Thetopdogy d a4-hit control net is shown in Figure 4.12. The wntrol

91

Total Percen_tage of Two- Pe‘ltgrer:itr?gleg;nt]\/\{o-
Two- Terminal Conn. that are Fan-Out
T((a:rcr)rrlllr:]al that arBeui-SBeZWMe Four Control
' Signals
dcu_dpath 2232 49% 43%
ex_dpath 6547 52% 3%
icu_dpath 8047 47% 36%
imdr_dpath 3100 50% 36%
pipe_dpath 1049 48% 42%
smu_dpath 1167 48% 25%
ucode dat 3143 52% 41%
ucode_reg 194 2% 21%
code_seq_dp 799 58% 18%
exponent_dp 1362 32% 23%
incmod 2013 42% 33%
mantissa_dp 2533 47% 36%
multmod_dp 3380 3% 25%
prils_dp 864 41% 32%
rsadd_dp 722 52% 27%
Total 37152 48% 35%

Table 4.5: Net Regularity
nets on average aonsist of 35% of the total two-terminal connections in these benchmarks. The

detailed percentage number for each benchmark is shown in column four of Table 4.5.

datapath component

bit-slice
(][] [

A & A 4-bit control net

[

control logic (can be ather datapath or irregular)

Figure 4.12: 4-bit Control Net Topology

Overall, there are 83% of two-terminal connections that belong to either a bus or a on-

trol net. There are few two-terminal connedions that belongto bah abus and a @ntrol net at

92

the same time. Note that in order to standardize the amount of logic contained in a datapath
comporent in the aove definition of bus and control signals, a datapath component is defined
to beagroupof LUTs and DFFsthat can befitted into an MB-FPGA super-cluster. The super-
cluster contains four clusters; and each cluster contains ten inputs and four BLES. The packing
algorithm that will be described in Chapter 5, is used to create these fixed sized datapath com-

porents before the regularity measurement.

4.6 Conclusion

This chapter presented the EMC synthesis algorithm targeting datapath-oriented FPGASs.
It empirically demonstrated that the dgorithm is nealy as efficient in terms of LUT/DFF
usage as the mnventional flat synthesis algorithms. In terms of LUT and DFF court, the dgo-
rithm produces circuits onaverage with orly 3%—-8% LUT inflationand noincrease in register
count. The regularity of the fifteen benchmark circuits was also measured. The results sow
that there is ahigh degree of regularity in these synthesized benchmarks, with 48% of two-ter-
minal conrections that can be grouped into 4-bit wide busses and 3% of two-terminal con-

nections from highly regular control signals with at least 4-bit fan-oui.

93

94

5 A Datapath-Oriented Packing Algorithm

5.1 Introduction

This chapter presents a new kind d pading algorithm that has been designed spedfi-
cally for datapath circuits. The dgorithm is unique in that it preserves the regularity of datap-
ath circuits and maps the preserved regularity onto the super-clusters of the MB-FPGA
architeaure described in Chapter 3. Thisalgorithm and software is employed in Chapter 7 and
Chapter 8 to investigate the dfect of CM S routing onthe area dficiency of FPGAs.

Padking that preserves datapath regularity can be more difficult than classcd padingas
described in [Betz97a] [Marq99 [Bozo01] because the task of preserving catapath regularity
limitsthe flexibility of the padkingtoadls. Recdl that the MB-FPGA architecture captures data-
path regularity by implementing identical portions of neighbaing hit-slicesin a single super-
cluster. Within the super-cluster, logic from each bhit-dice is implemented in individual clus-
ters. Under this architecture, when a LUT or a DFF from a datapath is packed into a cluster,
other LUTs and DFFs from the same bit-dlice shoud be given priority for implementation in
the same cluster. Similarly, LUTs and DFFs from neighbaing bit-slices shoud be given prior-
ity for implementation in the super-cluster that the duster resides in. The algorithm described
here, cdled the marse-grain nock graph (CNG) padking algorithm, addresses this issue of pre-
serving datapath regularity by ssimultaneously packing several identicd LUTs or DFFs from
neighbaing hit-slices. It also uses specially designed metrics to optimize the implementation
areaof datapath circuits and the delay of timing-critical nets.

CNG has been used to oltain excellent padking results for the datapath circuits from the
Pico-Java processor [Sun99. It isableto pack for awide range of super-cluster configurations

whil e preserving a high degreeof datapath regularity; and its area dficiency and performance

95

approach those of the traditional packing algorithms, which do nd preserve datapath regular-
ity.

This chapter is organized as follows: Section 52 motivates the development of the datap-
ath-oriented packer; Section 53 defines the datapath-oriented packing problem; Section 54
presents the model that is used to represent datapath circuits for the CNG packing algorithm;
Sedion 55 describes the algorithm in detail; Section 56 presents the results from the tests of

the padker; and Sedion 57 gives concluding remarks.

5.2 Motivation

A key problem in packing for the MB-FPGA architecture is that packing choices made
for one LUT or one DFF from a bit-slice may limit the packing choices of another LUT or
DFF. Consider Figure 5.1, which shows two groups of identical bit-slices. The first group con-
sists of hit-slice 1, 2 and 3; and the second group consists of bit-slice 4, 5, 6, 7, and & For the
purpose of timing analysis, each LUT is assumed to have a logic delay of 1 time unit. Each
connection between any two LUTsis also assumed to have a propagation celay of 1 time unit
if it is implemented inside asuper-cluster and 10 time units if it is implemented ouside a
super-cluster. In the figure, assuming that all connections are implemented outside super-clus-
ters, the most timing-critical path is the path that conneds bit-slice 2, 5, 6, 7, and 8together
throughLUT A and LUT D in hit-dice 2, LUTs labeled E in hit-dice 5, 6, and 7, and LUT E
and LUT Fin hit-slice 8. The total delay of this critical path is 60 time units.

Now, assume that each target super-cluster contains three dusters and each cluster con-
tainstwo BLES. Naively, atiming-driven padker, which also attemptsto preserve datapath reg-
ularity, might pack bit-slice 1 first. Considering hit-slice 1 in isolation, the padker will try to
minimize the local critical path that conneds LUT A, B, and C together. As aresult, LUT A

and B will be padked into asingle duster and LUT C and D will be packed into ancther clus-

96

A A A
= -2 = 9 B =
] []] []] []
B D B D B D
(e, (e, (e,
B] B] B]
C C C
Bit-Slice 1 Bit-Slice 2 Bit-Slice 3
U U U U U
000 U 00 00 00
E E E E E
= = = = =
]]]]]
F F F F F
Bit-Slice 4 Bit-Slice 5 Bit-Slice 6 Bit-Slice 7 Bit-Slice 8
U U U U U

Figure 5.1: Regularity and Performance

ter. Once hit-slice 1 is packed, in order to preserve datapath regularity, bit-slice 2 and 3 will
have to be packed using exactly the same configuration as bit-slice 1. After packing these three
bit-slices into clusters, the threeclusters containing LUT A and B can be grouped into a super-
cluster; and the dusters containing LUT C and D can also be grouped into a super-cluster.
Similarly, bit-dice4, 5, 6, 7, and 8can be packed into two super-clusters; and the entire padk-
ing solutionis shownin Figure 5.2. This naive packing solution, however, is saub-optimal since
LUTsonthe critical path are separated into six clusters across four super-clusters, resulting in
acriticd path delay of 33time units.

A better solution is for the padker to pack bit-dlice 2 first. Inthiscase, LUT A and D are

packed into a duster and LUT B and C are padked into another cluster based onthe red criti-

97

A A A | Super-Cluster 1

B B B
» | C | | C » | C Super-Cluster 2
> | D — |D— *™ |D

1
E > | E E E E
| L— [L— L L
F F F F F
Super-Cluster 3 Super-Cluster 4

Figure 5.2: A Naive Packing Solution
cal path. As dhown in Figure 5.3, in this lution, LUTs on the criticd path are contained in

only five dusters acrossthree super-clusters, consisting o super-cluster 1, 3, and 4 Conse-
guently, this packing solutionis much faster that the previous one and has a aiticd path delay

of 24 time units.

A A A | Super-Cluster 1

D D D
» | B » | B » | B Super-Cluster 2

C C C

E > | E E E E

L B L L
F F F F F
Super-Cluster 3 Super-Cluster 4

Figure 5.3: A Better Packing Solution

Note that LUTs on the part of the criticd path that connects bit-slice 5, 6, 7, and 8
together are packed into separate clusters in order to preserve datapath regularity. Also, the
carry chains in the super-clusters are used to improve the performance of this section d the
critical path. Although this is a simple example, it ill ustrates the essence of the problem that

arises from the nead of preserving datapath regularity.

98

Common approaches used for packing d other FPGA architectures are not suitable for
the super-clusters of the MB-FPGA architecture. VPACK [Betz97a], T-VPACK [Marq99,
RPACK [Bozo0]], and T-RPACK [Bozo0]] are all ineffective because, as discussed in Chap-
ter 2, they are dl designed for purely cluster based FPGA architedures. Each algorithm can
only pack one LUT and ore DFF at a time while completely ignaring the regularity of the

datapath circuits.

5.3 General Approach and Problem Definition

The input to the CNG packing algorithm is derived from the output of the EMC algo-
rithm as described in Chapter 4, which consists of anetlist of LUTs and DFFs. The netlist also
contains adescription o the boundaries of each hit-slicein theinpu circuit. This netlist isfirst
processd to create BLEs by iterating througheach of its bit-dices. Within abit-dice, aLUT is
grouped with a DFF to form a BLE if the connedion between the LUT and the DFF has the
following threeproperties:

1. Theinput of the DFF isdiredly conrected to the output of the LUT.

2. TheDFFistheonly sink of the LUT output.

3. The DFF isin the same bit-slice asthe LUT.

Otherwise, the LUT isassgned to a BLE by itself. Each DFF that cannot be grouped with any
LUTs based onthe three properties above is a'so assigned to a BLE by itself. Note that prop-
erty 1 and 2are the criteria that the more traditional packing algorithms, including VPACK, T-
VPACK, RPACK, and T-RPACK, use to group LUTs and DFFs into BLES. Property 3 is
added to ensure the preservation o datapath regularity during the grouping process

After the aeaion of BLES, the task of the CNG pading algorithm isto assign each BLE
first to a super-cluster of the MB-FPGA and then to a cluster in the super-cluster. Each super-

cluster isassumed to have afixed nunber, M, of clusters. Each cluster is assumed to contain a

99

fixed number, |, of cluster inputs and a fixed number, N, of BLEs. The top riority of the
assignment is to preserve datapath regularity of the input circuit. When possble, the assgn-
ment shoud also minimize the total number of super-clusters used (to minimize the imple-

mentation area) and the aitical path delay of the input circuit.

5.4 Datapath Circuit Representation

Since the primary purpose of the CNG pading algorithm isto preserve datapath regular-
ity, an appropriate format for spedfying datapath regularity must be defined for the packer.
The format used in this chapter consists of a graph, G(V,A), which is cdl ed the coarse-grain
node graph The nodes, V, of G(V,A), represent the BLES; and the edges, A, of G(V,A) repre-
sent the two-terminal conrections that connect the BLESs together. Each nock of G(V,A) can
contain either one or several identical BLES; and the number of BLES contained in the nodeis
called the grandarity of the node. A node containing ore BLE iscalled afine-grain node; and
it represents a BLE that does not belongto any datapath componrent. A node mntaining more
than ore BLE, on the other hand, is called a coarse-grain nodce; and each BLE in the node is
from aunique hit-slice of a datapath comporent.

An example of the coarse-grain node graphis shown in Figure 5.4, which represents the
datapath circuit shown in Figure 5.5. The graph consists of 11 interconnected nodes represent-
ing the 25 BLEs in the drcuit. Nodes A through F are 3-bit wide coarse-grain nods. A, B, C,
and D represent the crresponding BLEsin hit-slices 1, 2 and 3, while nodes E and F represent
BLEslabeled E and F in hit-slices 4 and 5, respectively. E' and F' are 2-bit wide marse-grain
nodes. E’ representsthe two BLEs|abeled E in hit-slices 7 and 8, while F' representsthe BLES
labeled F in the same two hit-dlices. Finally nodes G, H, and | are fine-grain nodes, which rep-

resent BLEs with the corresponding labels in the irregular logic part of the drcuit.

100

__ 1-BitWide
— 2-Bit Wide
— 3-Bit Wide

Q Fine-Grain
Node

Q 2-Bit Wide
Coarse-Grain
Node

O 3-Bit Wide

Coarse-Grain

Node
Figure 5.4: Coarse-Grain Node Graph
NAVVIVIVIVLY NAVVIVIVIVLY
Irregular Logic
g g tDﬁ
Bit-Slice 1 Bit-Slice 2 Bit-Slice 3

e
|

—|U? 1

|

—al

Y
o] | |t
D— D— D— A D—

JJBit-SIice 4 JJBit-SIice 5 JJBit-SIice 6 JJBit-SIice 7 JJBit-SIice 8

Figure 5.5: Datapath Circuit Represented by the Coarse-Grain Node Graph

101

5.5 The CNG Packing Algorithm

The overall flow of the packing algorithmis shownin Figure 5.6. It consists of two major
steps. In the first step, initialization, the algorithm adjusts the granularity of the coarse-grain
node graph and performs timing analysis on the inpu circuit. In the second step, packing, the
algorithm groups nodes into super-clusters. Note that this algorithm is derived from the T-
VPACK algorithm [Marq99], which is modified to acoommodate the unique feaures of the
MB-FPGA super-clusters. The basic principles described here, however, can also be enployed
to transform other packing algorithms, including VPACK [Betz97a], RPACK [Bozo01], and

T-RPACK [Bozo01], into datapath-oriented algorithms.

5.5.1 Step 1: Initialization

Step 1, initiali zation, consists of two sub-steps. First, each coarse-grain nade whose gran-
ularity valueis greater than the granularity value of the target architecture (such asthe M value
for the MB-FPGA presented in Chapter 3) is transformed into a set of nodes. Each nade in the
set has a granularity value that is gnaller than or equal to the granularity of the super-clusters.
Timing analysis is then performed onthe input circuit. Each of these sub-stepsis described in

turn.

5.5.1.1 Breaking Nodes

Given a coarse-grain node that is more than M bits wide, the breaking nodes function
starts at the most significant bit of the node and continuously groups M neighbaing BLEs into
new coarse-grain nodes. If there are less than M BLES remaining at the least significant end,
these remaining BLESs are grouped by themselves into a @warse-grain nock that islessthan M-
bit wide. These newly formed nodks are then used to substitute the original node in the marse-

grain nade graph.

102

| Breaking Nodes |

|Timing Analysis|

| Create a new super-cluster|

Are there anymore
nodes left?

Is position (i, j) occupied in
the super-cluster?

Exit

| Find the most suitable node for position (i, j) in the super-cluster |

| Add the most suitable node to the super-cluster at position (i, j) |

Figure 5.6: Overview of the CNG Packing Algorithm

103

5.5.1.2 Timing Analysis and Criticality Calculation

Step 1:
Initialization

Step 2:
Packing

Duringtiming analysis, the propagation delay and the expeaed arrival time of each BLE
inpu or output pin is first calculated for the input circuit. The slad of each net isthen derived

from the delay and the expeded arrival time metrics. For all of the above timing calculations,

the logic delay of each BLE is =t to be 1 time unit and the propagation delay of each two-ter-
minal connection that connects two BLEs together is st to be 10time units. Finally, the clock
cycle time of the inpu circuit is set to be the delay of the most critical path of the drcuit.
These values were shown to generate good packing results for the T-VPACK algorithm in
[Marg99] from which the current algorithm is derived.

The final step of the timing analysis calculates the aiticdity value for each net in the
inpu circuit as defined in [Marg99]. For completeness, the aiticality definitionis briefly sum-
marized here. The aiticdity is used to represent the slack information in a normalized form.
The formula for cdculating a aiticdity value from a correspondng slack value is shown in
Equation 51. Here, the slack value is normalized by dividing into the maximum slack of the
circuit, max_slack. The normali zed valueis then subtracted from oneto derive the correspond
ing criticality value. For netsthat are onthe aitica path of a drcuit, whose sladk value is zero,
the correspondng criticdity value is one. Lesscriticad nets have smaller criticality values; and
the least critical nets, whose sladk values are egual to max_slad, have a wrresponding criti-

cality value of zero.

slack

ticality = 1—
criticality P

Equation 51

5.5.2 Step 2: Packing

During step 2, new super-clusters are aeated ore & atime and each super-cluster isfilled
with nodes from the coarse-grain nade graph. Nodes are added to a super-cluster in a predeter-
mined order. Assuming that the ith BLE in the jth cluster is denoted by the pair of integers (i,
j), anoceisadded to pasition (1, 1) first. Then, asshown by Figure 5.7, nodes are sequentially
added to pasitions (2, 1), (3, 1), ..., (N, 1), (1, 2), (2, 2), ... (N, 2), ..., (1, M), (2, M), ... (N, M),

if these positions are not already occupied by BLEs.

104

BLE Position Order for Adding Nodes to Super-Clusters

Index

w1 (12)5 (13)
(2.1)|2 (2.2)[6 (23|10
E.1)|3 B.2)|7 331
414 (428 (4,3)]12

Figure 5.7: Order for Filling Super-Cluster with N=4, M =3
This order of adding nodes to super-clusters guarantees that if no BLEs have been added

to pastion (i, j), BLE positions (i, j + 1), (i,] + 2), ..., (i, M) will also be unoccupied. To find
the most suitable node for BLE position (i, j), CNG first finds all nodes whose granularity is
lessthan M - j + 1. If (i, j) isequal to (1, 1), then the seed criticality function is used to select
the most suitable node from this group of nodes. Otherwise, the atradion criticdity function
is used instead. Once the most suitable node with a granularity value of m is determined, the
BLEsinthisnode ae added to consecutive BLE positions (i, j), (i,j + 1), ..., (i,] + m - 1) with
the least significant BLE added to position (i, j) and the most significant BLE added to pasi-
tion(i,j + m-1).

Note that because of the carry network, not all BLE positionsin an MB-FPGA cluster are
equivalent. This ladk of equivalency is the reason why CNG must select nodes for each spe-
cific paositions in a super-cluster. An example is shown in Figure 5.8. Here there ae three
BLEs, A, B, and C, in asuper-cluster. These BLESs are connected by a carry chain throughthe
carry network. In the figure, the BLE position (1, 1) is equivalent to the BLE position (3, 1);
therefore, BLE A can be moved to pasition (3, 1) provided that BLEs B and C are dso moved
to pasition (3, 2) and (3, 3) respectively. However, BLE A canna be moved to position (2, 1)
or (4, 1) sincethese two pdasitions are nat equivalent to BLE pasition (1, 1) due to the differ-

ence in their carry connections.

105

A (1,1) B (1,2) C (1,3)
2,1 t: 2,2) t: 2,3)
(3,1) (3,2) (3,3)
4,1 t: 4,2) t: (4,3)

Figure 5.8: Equivalence of BLEs in Clusters

The remainder of this sdion describes the two criticality functions, including the seed
criticality function and the attraction criticality function, which are used in the padking pro-

cess Each of these functionsis described in detail i n turn.

5.5.2.1 Calculating Seed Criticality

Thefirst node added to a super-cluster is called a seed. This sed node is ®lected using a
metric cdled the seed criticality metric, which measures the maximum possble speed
improvement of building super-clusters based on ore particular node & the seed nade. Imple-
menting a seed nock in a super-cluster by itself does nat necessarily improve the performance
of a circuit; however, when a subsequent node, A, is added to the same super-cluster, many
two-terminal connections that conned the seed noce and nod A together can then be imple-
mented in the local routing retworks or the cary network of the super-cluster. Because these
networks are inside the super-clusters, they are inherently much faster than the global routing
network. Consequently, the performance of the circuit isimproved. Note that each of the two-
terminal conredions that can be implemented inside the super-cluster is called a potential
local connections of the seed nock.

Potential local connections can be identified using a pattern matching process. This pro-
cessfirst labels all the BLEs in each node consecutively from 1 to m, where misthe granular-
ity of the node. The BLE at the least significant position is labeled 1; and the BLE at the most

significant position is labeled m. Potential local connections are then identified by matching

106

each two-terminal connection d the seed node against the four topologies dhown in Figure
5.9. If the connection matches one of the topology, then it is a potential local connection. Oth-
erwiseit isnaot.

Corresponding
Topology Super-Cluster
Connections

Seed Node

(a) Two Two-Terminal Connections in Topology 1 Configuration

Seed Node

(d) Three Two-Terminal Connections in Topology 4 Configuration

Figure 5.9: Topology for Identifying Potential Local Connection

Figure 5.9a shows two two-terminal connedionsin the configuration of topdogy 1. One
connection conneds BLE 1 to BLE 2, while the other connection conneds BLE 2 and BLE 3

together. In general, in topdogy 1, both the source BLE and the sink BLE of the two-terminal

107

connection isin the seed nade. The index of the source BLE is one lessthan the index of the
sink BLE. As shown by Figure 5.9a, topology 1 connections can be implemented in the carry
networks of the super-clusters.

Figure 5.9b and Figure 5.9c shows connections in topdogy 2and topdogy 3 configura-
tions, respectively. As shown, in topologies 2 and 3 the source and the sink BLEs exist in two
distinct nodes; and for either topology 2or 3 the source BLE is always in the seed noce. Fur-
thermore, for topdogy 2 the index of the source BLE is one less than the index of the sink
BLE. For topology 3 on the other hand, the source BLE and the seed BLE have the same
index. Topdogy 2 can be implemented in the arry networks; and topdogy 3 is suitable for
implementation in the locd routing networks of the super-clusters. Finally, topdogy 4 is
almost identical to topology 3with the exceptionthat the sink BLE isin the seed node.

seed_criticality(n) = max(S(n)) + € x cnt(S(n)) + g% d(n)
(€ «1)

Equation 52

The formulafor calculating seed criticality is shown in Equation 5.2. In the equation, the
function max(X) returns the maximum value in a set, X, of real numbers. Function cnt(X),
returns the number of elementsthat are equal to max(X) in the set X. S(n) isthe complete col-
lection o all the net criticdity values from all the potential locd connections of node n.

The function, max(S(n)), corresponds to the maximum speed improvement achievable
by implementing nas asead nade. cnt(S(n)) isatie breaker; and it courts the number of poten-
tial local conrections that can achieve the maximum speed improvement. Note that max(S(n))
and cnt(S(n)) are analogousto the base sedl criticdity and the number of path aff ected metrics
used in [Margq99|, respectively. These functions, however, are more general in nature and are
applicableto awider range of FPGA clustering architecdures than the fully conneced topdogy

assumed by [Marq99.

108

The metric distance to source, d(n), on the other hand, is an unmodified version of the
same metric defined in [Marq99], which is described in detail in [Marg99. Nodes with the
same max(S(n)) values usually are connected together by a single aiticd path. d(n) measures
the order of these nodes alongthe criticd path. Everything else being equal, the node that is
the furthest from the source of the aitical path is given the highest priority for implementation
as a seed nock. This alows the padking process to start padking from one end o the critical
path instead of from the middle. As auggest by the study dorein [Marq99, this packing ader

minimizes the overall critical path delay of a drcuit.

5.5.2.2 Calculating Attraction Criticality

Once a seed is added to a super-cluster, CNG fills the super-cluster based on the attrac-
tion criticality metric. Each noce in the coarse-grain node graph has an attraction criti cdity
metric as hown in Equation 53. The metric consists of four parts: the base sedl criticality,
B(n), acoourts for the performance improvement of implementing a node in a super-cluster;
shared 1/0 count, C(n), accourts for the number of additional cluster 1/Os that is needed to
implement a nocke in a super-cluster; and finally secondary attraction criticality, Bp(n), and

common |I/O coun, Cp(n), account for the dosenessof the placement resulting from adding a
nocde to a super-cluster. These four parts are weighted and summed into the atracdion critica-
ity metric. Each of these parts are described in turn.

attradion_criticality(n)=
ax pxB(n) + (1-p) x 204

max Equation 53

C
(1-0) x [By + (1) * g

109

Base Seed Criticality

As shown in Figure 5.10, after a noce is added to a super-cluster, the @wnnredions
between the node and the super-cluster can be classfied into two types. The first type consists
of conredions that can be implemented in the local routing networks of the dusters or the
carry network that conredsthe dusterstogether. The second type mnsists of connections that
have to be routed through the global routing retwork. The implementation o the first type of
connections often results in increased performance; and this increase in performance is mea-
sured by the base dtradion criticdity in Equation 53. It is equal to the maximum criticdity
among all type one connections in additionto all internal connedions of the node that can be

implemented in the carry network.

Occupied

| BLE

2.3 Position
3,3 Unoccupied
23| [BLE

Position

“

A\

2z

4,1

Type 1
Connection
BLE BLE Type 2
Connection

Figure 5.10: Adding a Node to a Super-Cluster at Position (4,1)

Secondary Attraction Criticality

Adding anodeto a super-cluster also makes all BLEsin the node physically closer to the
BLESs in the super-cluster. This physical closeness makes type two connedions patentially
much faster than any connection that connects two separate super-clusters. The secondary
attraction criticdity is used to measure this speed up. It is equal to the maximum criticdity
amongall type two conrectionsin additionto all internal conredions of the node that must be

routed throughthe global routing network.

110

Shared 1/0O Count

Since duster inputs are limited routing resources, it isimportant to minimizethe usage of
cluster inpus when adding nodes to a super-cluster. As described in [Marq99, it is preferable
to choose BLEs with the following three types of 1/Os for a duster:

1. aBLE input that is conneded to the same net as one of the cluster inputs

2. aBLE input that is conneaed to one of the duster outputs

3. aBLE output that is connected to a cluster input

When adding a BLE with type 1 or 2 inputs to a cluster, the dugicated BLE inpus do nd
require aditional cluster inputs. Adding a BLE with atype 3 ouput to a duster €li minates the
cluster inpu that is connected to the output of the BLE. The shared 1/0 count metric measures
the I/O commonalities between a node and a super-cluster. It is equal to the total number of the
three types of BLE 1/Os in a node when each BLE is matched with its corresponding cluster.

Note that, in Equation 53, P, iS defined to be the maximum paossible value of the shared 1/0

count metric. It is used in the equation to normalize the shared I/O court to a value that is

between Oand 1

Common /O Count

Adding a noce to a super-cluster might increase the number of common 1/O signals
shared by various clusters of a super-cluster. As shown in Figure 5.11, for two clusters from
the same super-cluster, routing an input signal that is shared by the two clusters usually
requires lessresources than routing two distinct inputs. Similarly, routing the output of one
cluster to anather requires lessrouting resources if both clusters are in the same super-cluster.
The owmmon1/O court isused to accourt for thisincrease in routing efficiency. It isanalogous
to the shared 1/0 cournt metric. However, instead of measuring the number of 1/O signals that

are in common batween each BLE and its correspondng cluster, the common /O court is

111

equal to the total number of BLE I/Osin anode that isin commonwith all the I/Os of a super-

cluster excluding the signals that have dready been courted bythe shared 1/0 court metric.

a common input
requires only one
track to route.

%’WO clusters with

two distinct inputs

requires two
tracks to route.

Figure 5.11: Common Inputs Between Clusters in a Super-Cluster

| > Two clusters sharing
L

Note that for all experiments performed in this thesis, a, 3, and T are set to be 0.85,
0.75, and Q.75 respedivey. These values are experimentally shown to generate good facking

results when the CNG algorithm is used to padk the 15 benchmark circuits from the Pico-Java

processor [Sun99].

5.6 Results

CNG has been used to pack several benchmark circuits into various super-cluster archi-
tectures of MB-FPGA. The packing results dhown in this sedion are based on the fifteen data-
path circuits from the Pico-Java Processor from Sun Microsystems [Sun99. Each circuit is
first synthesized into several granularity values using the EMC algorithm as described in
Chapter 4. Table 1 gives the name, size (number of BLES) of each circuit for a given granular-
ity value. For each synthesis granularity, the synthesized circuits are paded into a correspond-
ing super-cluster architecture with the same granularity value. The detailed structure of these
super-cluster architectures is described in detail in the next sub-section. The packing results

for regularity, areg and performance are then described in turn.

112

Circuit Name

Number of BLEs Obtained by Each Synthesis Granularity

1 2 4 8 12 16 20 24 28 32
code_seq_dp | 362| 364 364| 364| 364| 364 364| 364| 364 364
dcu_dpath 958| 962| 966| 974 982| 974| 978| 982| 986| 990
ex_dpath 2823 | 2747 | 2649 | 2719 | 2947 | 2955 | 2942 | 2938| 2918| 2938
expon ent 467| 517| 517| 539| 567| 565| 565| 565| 565| 565
icu_dpath 32%4 | 3237 | 3245 | 3245| 3273 | 3277 | 3281 | 3285| 3289| 3294
imdr_dpath | 128 | 1263| 12% | 128 | 1283| 1283 | 1291 | 1296| 1294| 1297
incmod 870| 862| 867| 940| 948| 1005| 1000| 995| 993| 1021
mantissa_dp | 912| 919| 942 966| 971 982 983| 983 977| 983
multmod_dp | 162 | 1636 | 1634| 1636 | 1636| 1636 | 1653| 1635 1637| 1637
pipe_dpath 452 | 499| 452 503| 503| 501| 483 503| 503| 501
prils_dp 363| 39| 393| 38| 38| 393| 389| 385| 385| 409
rsadd_dp 350| 314| 313| 305 305| 305| 305 305| 305| 305
smu_dpath 561| 557| 557| 560| 563| 561| 543| 563| 563| 561
ucode dat | 1264| 1273 | 1304| 12/8| 128 1285 | 1290 | 1294| 1298| 1301
ucode_reg 78 80 82 86 86 94 90 86| 106| 110

Table 1: Experimental Circuits

5.6.1 Super-Cluster Architectures

The overall structure of a super-cluster used in the tests of the CNG algorithm contains a

variable number, M, of clusters, where M is the granularity of the MB-FPGA architecture.

Each cluster of the super-cluster contains 10 (1) inpu pins, afully connected locd routing net-

work, and 4 (N) BLEs. An | value of 10 and an N value of 4 were chosen because they were

shown to be the most efficient for the dusters of conventional FPGA architectures in

[Betz97h [Betz98] [Betz99a]. Several values of M were investigated. These values are the

same a&the ones hown in Table 1, namely 1, 2, 4, 8, 12, 16, 20, 24, 28, and 32.

113

5.6.2 Regularity Results

Two yardsticks are used to measure the anourt of regularity preserved by the CNG
packer. The first yardstick measures the percentage of BLEs in all datapath comporents of
width M, where M is the number of clustersin a super-cluster. The second yardstick measures
the percentage of BLEs in all datapath comporents which are at least 2-bit wide. Figure 5.12
plots these two metrics against the granularity of the target super-clusters over all benchmark
circuits. As shown, over 85% of BLEs are in at least 2-bit wide datapath components regard-
lessof the granularity of the target super-clusters. The percentage of BLEs in M-bit wide data-
path comporents drops from over 90% when M is equal to 2to slightly over 40% when M is
equal to 20. The metric then increases again to slightly less than 55% when M is further
increased to 32 (Note that the underlying cause of the variation of this metric is discussed in
detail in Chapter 7.) These ae excellent results espedally considering that the conventional
packers preserve little regularity. Note that since the padker does not break up coarse-grain
nodes that represent datapath componrents when the synthesis granularity and the packing
granularity are egual, any logic regularity from the synthesis process is completely preserved

by the padker in these experiments.

5.6.3 Area Results

One penalty that the CNG algarithm pays in preserving datapath regularity is in area
inflation. The average area onsumed by super-clusters over all the benchmark circuits is
shown in Figure 5.13, which plots the arithmetic average acrossthe fifteen benchmark circuits
against the granularity of the target super-clusters. Note that the aeaof each super-cluster is
measured using the minimum-width transistor area as defined in [Betz99a], which was dis-
cussd in detail in Chapter 2. As shown, when M is equal to 1, the packer does not preserve

any datapath regularity and is able to achieve the lowest area. The aea lowly increases when

114

A Percentage of Regular BLEs Preserved

100%-
0% e Width > 1
8094
70%-
60%- Width = M
5094
40%-
- Granularity (M)
300/ | | | | | | | | | >
° 2 4 8 12 16 20 24 28 32

Figure 5.12: Regularity vs. Granularity
M isincreased from 1 to 4. Then it rises quickly when M isincreased from 4 to 12 The rate of

increase then dows when M is further increased to 32 Overall the maximum areainflation
occurswhen M is equal to 32 Herethe areais 18% larger than the aeaobtained when no data-
path regularity was preserved (when M isequal to 1).

Circuit Area in
Minimum-Width Transistor Area (x106)

A

4.1
4.0
3.9
3.8
3.7
3.6
3.5
3.4
3.3
3.2

Granularity (M)

|
2 >

| | | | |
4 8 12 16 20
Figure 5.13: Area vs. Granularity

|
24

|
28

The reason for this increase in area is that as the granularity of packing increases, the

packer has to deal with an increasing variety of datapath width. Geometrically, it is much

115

harder to fit datapath componrents with a large variety of width into the structure of the super-
clusters. Furthermore, at high ganularity values, one super-cluster contains many more BLESs
than super-clusters with lower granularity values. This reduces the number of super-clusters
needed to pack a drcuit; however, it also increases the number of wasted BLEs if a super-clus-
ter isonly partialy filled.

Overall, the datain Figure 5.13 shows that the granularity values of 2, 4, and 8represent
a reasonabl e trade-off between regularity and areainflation. At these values, the packer pre-

serves alarge amount of regularity while only giving up ketween 1% to 6% of area

5.6.4 Performance Results

The CNG padking results $how that the preservation d regularity benefits the overal
logic performance of datapath circuits when the carry networks is significantly faster than the
local routing retworks. This is true for the MB-FPGA architecture, since carry networks are
more directly conneded to the BLE inputs as compared to the local routing networks. The
same is true for many commercial FPGAs where the speed of the cary networks is much
faster than local routing [Alte02] [Xili02]. If the speed of the cary networksis smilar to the
speed of the locd routing networks, on the other hand, the logic performance of the circuits
degrades when regularity is preserved.

The geometric average of logic delay over the fifteen benchmark circuits are shown in
Figure 5.14. Note that to calculate logic delay, the delay of the global routing retwork is %t to
be zro. There ae two curves in the figure. The first curve labeled slow carry assumes that
each two-terminal connedionin both the locd routing networks and the carry networks have 1
time unit of delay. The logic delay through a BLE is also assumed to be 1 time unit. The sec-
ond curve labeled fast cary, on the other hand, assumes that the cary networks are much

faster than the local routing retworks. A connection in the cary networks is assumed to have

116

A Logic Delay (in time units of delay)

33
32
31
30 - Slow Carry
29
28
AN
27 \
N\
26 .
25 - NN //’“*/~+~~*_‘*\\ Fast Carry
24 | - N
Granulanty (M)

23 | | | I | | I I I s

1 2 4 8 12 16 20 24 28 32

Figure 5.14: Delay vs. Granularity

0.01 time units of delay; and a connection in the locd routing retworks is assumed to have 1
time unit of delay. The logic delay throughaBLE is dill assumed to be 1 time unit.

The slow carry curveincreases from 28.2 time unitsto dightly over 32time unitsasM is
increased from 1 to 8 The aurve then decreases to around 29 time units as M is further
increased to 32. The fast carry curve, on the other hand, decreases sgnificantly from 28.2 to
24.3 when M isincreased from 1to 4. As M is further increased to 32, the arve stays within
the range of 24 to 25 time units. These data demonstrate the benefit of identifying regularity
and the cary chains associated with it for architedures with fast carry connections. For the
benchmark circuits, a speed improvement around14% is achieved for fast carry architectures.
If the carry connedions are nat significantly faster than the cnnections in the local routing

networks, however, there is a speed penalty of around 1384 for the benchmark circuits.

5.7 Conclusions and Future Work

This chapter has described a new kind of packing algorithm that is designed specifically

for preserving datapath regularity. The dgorithm treats several BLES, each from a unique bit-

117

sliceof adatapath, as asingle group, and considers the packing options of the etire groupat a
time. The algorithm also uses various techniques to accommodate the spedal architectural fea-
tures of the MB-FPGA architecdure. The dgorithm isableto preserve alarge amount of datap-
ath regularity and achieves good performance results while incurring a small amourt of area
inflationin logic area.

Future research shoud try to further reduce the logic areainflation d the dgorithm. It

also shoud find ways of further improving the performance of the packed circuits.

118

6 A Datapath-Oriented Routing Algorithm

6.1 Introduction

This chapter presents a new datapath-oriented routing algorithm that has been designed
specifically for the MB-FPGA routing architecure described in Chapter 3. The dgorithm is
uniguein that it balances the usage of conventional fine-grain routing tracks with datapath-ori-
ented CMS routing tracks, allowingthe MB-FPGA architecture to achieve maximum areasav-
ings over a wide range of datapath circuits. This algorithm and software is used in Chapter 7
and Chapter 8 to investigate the dfed of CMS routing onthe aea-efficiency of FPGAs.

The routing problem for MB-FPGA is more difficult than clasdc routing because there
are two distinct types of routing tradks and each type is designed for a specific purpase. The
CMS routing tracks are primarily designed for routing a group of regularly structured connec-
tions from a common source to a mmmon sink; the fine-grain routing tradks are designed to
route irregular connectionsthat canna be grouped into any regular groups. It isusually benefi-
cial to use each type of routing track for itsintended pupose; however, when ore type of rout-
ing tradk is over-subscribed, it might be beneficial to route the intended connections through
the other type of routing track. Asaresult, groups of regular connections and individual irreg-
ular conredions might compete for the same type of routing track. Resolving such competi-
tion is esential to achieving 100 percent routing completion. The algorithm described here,
called the Coarse-Grain Resource (CGR) routing algorithm for MB-FPGA, addresses the issue
of the balanced use of routing tracks by carefully considering the usage of each type of tradk
and compensating the overused type with the under-used type. The dgorithm also has the abil-
ity to opimizethe routing delays of time-critical conreaions, by asdgning the fastest paths to

the onredions that nead them the most.

119

CGR has been used to ohtain excellent routing results for the datapath circuits from the
Pico-Java processor. The results show that CGR is able to route relatively large MB-FPGA
architedures containing various propartions of CM S routing tracks; and it is ableto effectively
translate the regularity in inter-super-cluster conredivity into areasavings.

This chapter is organized as follows: Section 6.2 motivates the development of the datap-
ath-oriented router; Sedion 6.3 describes the placement algorithm that is used in conjunction
with the CGR router; Sedion 6.4 defines the routing problem; Section 6.5 presents the model
used to represent MB-FPGA architectures containing CMS routing tracks, Section 66
describesthe CGR routing algorithm in detail; Section 6.7 presentsthe results from the tests of

the router; and Section 638 gives concluding remarks.

6.2 Motivation

A key problem in datapath-oriented routing o MB-FPGA isto deddeif agroup d regu-
lar connections should be routed through the CMS routing trads or the fine-grain routing
tracks. This will be illustrated with a contrived example shown in Figure 6.1. It shows three
views of the same sedion of an FPGA. Thefirst view gives the routing ogions for agroup d
four regular conrections that connect the super-cluster on the top-left corner to the super-clus-
ter on the bottom-right corner of the figure. These four connedions are @llectively labelled as
connection kus A. The secondand the third view in the figure give the routing ogions for two
individual conrections labelled B and C respectively. In the figure, a routing switch is rown
as an X, awiring segment as a dotted line, and a posdble route @ a solid line. There ae nine
wire segments in the routing channel. Wire segments 1 through 4are from a group of four
CMS routing tracks. These four tradks form a single CM S routing bus by sharing a single set
of configuration memory. Wire segments 5 through 9are from five independent fine-grain

routing tracks.

120

Now, assume arouter that always routes groups of regular conrections throughthe CMS
routing tracks. Since wire segments 1, 2, 3, and 4 are the only CMS trads, they must be
selected for conredion bus A. Then one of the cmnrections B and C cannot be routed because
they both rely on the same single remaining ogion, namely the wire segment numbered 5.
Under these drcumstances, amore flexible router would choose the fine-grain wire segment 6,
7, 8, and 9for connection kus A. Connedion B then can be routed throughwire segment 1 of
the CM S routing tradks. Since wire segment 2, 3, and 4 share the same set of configuration
memory as wire segment 1, they also become unavail able to route the remaining conrection.
Finally conredion C can be routed throughwire segment 5. Although this is a simple exam-
ple, it illustrates the essence of the problems that occur because of the differentiation o rout-

ing tracks into fine-grain tracks and CM S tracks.

View 1 View 2 View 3

Options for Connection Bus A Options for Connection B Options for Connection C

sc SC | chaing | SC sc sc sc

switches

Q \——4}{% Qx ____g;(:j -3
IINLER)3 S N Vs W QA VA B 3
-4 b - == == 44+ -5 — — — -5 - - = -5
-4+ L -6 00 - - - - - - - — - - — - = 6 - - - - - - - - - — - 6
- 44+ -7 - - - - - - - - - - = 7 - - - - - - - - - — - 7
- -+ = -8 - - - - - - - - - = - 8 - - - - - - - - - — - 8
- - 44+ -9 - - - - - - - - - — - 9 - - - - - - - - - — - 9

SC SC SC SC SC SC

SC - Super-Cluster

Figure 6.1: Example of Contention Between CMS and Fine-Grain Nets

Common approades used for routing in ather FPGA architectures are not suitable for
MB-FPGA. Maze Router [Leeb1], CGE [Brow92a] [Brow92b], Pathfinder [Ebel95], VPR
[Betz99a] [Swar98], and NC [Chan0(are ineffective because, as shown in Chapter 2, nore of

them is equipped to deal with the CMS routing tradks. Each algorithm assumes the routing

121

channels contain orly fine-grain routing tracks, which do not share any configuration memory;

and each algorithm completely ignares datapath regularity.

6.3 The MB-FPGA Placer

The input to the CGR routing algorithm is derived from the output of the CNG packing
algorithm as described in Chapter 5. It consists of a netli st of super-clusters. These super-clus-
ters are first placed by a datapath-oriented placer that employs the simulated annealing algo-
rithm. The placer, cdled the MB-FPGA place, is a modified version d the VPR placer
[Betz99a] [Marq0Qa] as described in Chapter 2. It uses exadly the same anneali ng schedule
and the same st functions as the ones used bythe VPR placer. It differsfrom the VPR placer
in how clusters are moved during the anneding process. This difference aises from the need
of preserving datapath regularity.

Like the VPR placer, the MB-FPGA placer first assgns each super-cluster to arandom
location. Then it iteratively improves the initial placement by moving either clusters or super-
clusters. This ability of the MB-FPGA placer to move logic blocks from two different hierar-
chies — the duster level and the super-cluster level — constitutes the major difference
between it and the VPR placer, which orly can move asingle hierarchical level of logic
blocks, namely the clusters. Movingtwo levels of logic blocks gives the MB-FPGA placer the
unique ability of concurrently preserving datapath regularity, by moving individual super-clus-
tersthat contain datapath componrents, as well as maximizing placement efficiency when pos-
sible, by movingindividual clustersresiding in super-clusters that contain orly irregular logic.

To create amove, aninitial cluster, isfirst randamly seleaed. If theinitial cluster isa part
of a datapath, the entire super-cluster containing the duster is moved to a new, randamly
selected, location. If thislocationis already occupied by another super-cluster, this super-clus-

ter is then moved to the original location containing the initial cluster. If the initial cluster is

122

not a part of a datapath, another cluster positionis randomly selected. If this paositionis unac-
cupied, the initial cluster is moved to the paosition. Otherwise, the cluster occupying the posi-
tion (called the target cluster) is svapped with the initial cluster if the target cluster is not apart
of any datapath. If the target cluster is a part of a datapath, the super-cluster containing the ini-
tial cluster is svapped with the super-cluster containing the target cluster. Finally, the moveis
evaluated using the cost functions, and is either accepted o rejected based on the evaluation

result and the annealing schedule.

6.4 General Approach and Problem Definition

After the placement, the routing problem is transformed into the foll owing: for each two
point connection, the router must first identify if the mnnedion belongs to any group d regu-
lar connections. It then should choose specific routing resources to implement the two pant
connection. The algorithm shoud prefer CMS routing trads if the conredion is a part of a
group d regular connections. Otherwise, fine-grain routing tracks shoud be used when avail -
able.

The CGR router takes a routing resource graph and a netlist as its input. The routing
resource graph represents a target MB-FPGA architecture; and the netlist represents a circuit
of interconnected super-clusters in the target architecture. The router then finds a feasible
(defined below) routing solution in the routing resource graph for each net in the netlist. The
solution shoud minimize the delay of inpu circuit, in terms of minimizing the maximum
propagation time of all signals in the placed and routed input netlist, as well as the anourt of
resources consumed by the inpu netlist.

A routing solution is defined to be a collection d interconnected nodes and edges that
contains the sourcenoce and all the sink nocdes of anet. To be feasible, the occupancy value —

the total number of times that a node gpeas in all routing solutions — of each nock in the

123

routing solution must be less than or equal to its capacity value. Otherwise, the routing solu-
tionis sid to beinfeasible. A net is sid to be routed, once a routing solution (either feasible

or infeasible) isfound.

6.5 MB-FPGA Architectural Representation

Since the primary purpose of the CGR routing algorithm isto provide ameans of investi-
gating the datapath-oriented routing architecture of MB-FPGA, an appropriate model must be
defined to capture the unique feaures of MB-FPGA. The model that has been chosen is arout-
ing resource graph G(V,A) consisting d a set of nodes, V, connected by edges A. Note that
this model is similar to the routing resource graph o [Betz99a]; however, it is considerably
more complex because it models the multi-bit logic, CM S routing tracks, and CM S switches,
as well as the fine-grain resources. In the CGR routing resource graph, each nodk, V, repre-
sents a piece of routing resource. There are seven types of nodes, representing a signal source
(cdled a source node), a signal sink (called a sink node), a super-cluster input pin, a super-
cluster output pin, aninpu pin of an 1/0 block, an ouput pin of an I/O block, or arouting tradk
(either aCM S track or afine-grain track). Each edge in the routing resource graph represents a
programmable routing switch.

Each node of the routing resource graph is associated with a capacity value. This value
represents the maximum number of times that the routing resource represented by the node
can be used in the final routing solution. For each pin or ead routing trad, this cgpacity value
isone since e&h o these routing resources can orly be legally used orce. For each source or
sink nade, this capacity value is a positive number whaose value depends on the equivalency of
super-cluster output or inpu pins [Betz99a]. In general, if a source (sink) is conneded to X
super-cluster output (input) pins, these pins must be logically equivalent; and the caacity of

the source (sink) isequal to X.

124

A super-cluster containing M clusters is modeled using M source nodes and M sink
nodes. Each cluster is assgned ore source node and ore sink node. A source noce is con-
nected to all the output pins of its cluster; and its capacity is equal to the total number of BLES
(or output pins) in the duster. A sink node is connected to all the input pins of its cluster; and
its capadty is equal to the total number of cluster inpu pins.

Some of the nodes in a routing resource graph are grouped into node-buses. A node-bus
can be M sourcenodes or M sink nodes of a super-cluster. It also can be M cluster input or out-
put pinsin an inpu bus or output bus, M routing tracks in arouting bws, M pad input pins or
pad ouput pins in a pad-input bus or pad-output bus. (Recall that all the above bus types are
defined in Chapter 3.) Edges conneded to a node-bus are similarly grouped into edge-buses
with each bus containing M edges. Each edge-bus is associated with a flag indicaing if the
switches in the bus dhare asingle set of configuration memory. When the configuration mem-
ory is shared, all M switches in the bus must be turned onand df at the same time. When the
state of these memory sharing switches are changed, the occupancy values of all the nodes
connected immediately downstream to these switches must be increased and decreased simul-
taneously.

An example of the routing resource graph and its correspondng routing resources is
shownin Figure 6.2. The super-cluster shown in the figure containstwo clusters, meaningM =
2. Each cluster contains two input pins, two output pins, and is connected to a neighbaing
routing channel containing two fine-grain routing track and a two-bit wide routing bus. Also
noted in the figure are the logic capadty of each nodg, the groupng o the node-buses, and the

grouping o the edge-buses.

125

Cluster
Super-Cluster

E H | VA L
d ff
F G J K utter
]
v g SRAM
Hl ~]] |—B<]—J Fine-Grain
Routing Track #1
N . .
Fine-Grain
i 4+ | Routing Track #2
CMS
o Routing Bus
P
(a) Super-Cluster
Cluster Cluster

©

Source Nodes (Capacity = 2 / Node): B, D

Sink Nodes (Capacity = 2 / Node): A, C

Input Pins (Capacity = 1/ Node): E, F, 1, J

Output Pins (Capacity = 1/ Node): G, H, K, L

Fine-Grain Routing Tracks (Capacity = 1 / Node): M, N

CMS Routing Tracks (Capacity = 1 / Node): {O, P}

Node-Buses: {A, C}; {B, D}; {E, 1}, {F,J}; {G, K}; {H, L}; {O, P}

Edge-Buses without Memory Sharing: {E->A, |->C}; {F->A, J->C}; {B->G, D->K};
{B->H, D->L}; {O->E, P->I}

Edge-Buses with Memory Sharing: {H->O, L->P}

(b) Routing Resource Graph

Figure 6.2: An Example Routing Resource Graph

6.6 The CGR Routing Algorithm

The overall flow of the CGR routing algorithm is shown in Figure 6.3. It consists of three
major steps. In step 1, initialization, the dgorithm identifies two types of bus gructures — the

pin-buses and the net-buses — in the input netli st. (These buses are defined in detail in Section

126

6.6.1.) Routing is then performed in step 2 where buses identified in step 1 are given priority
for routing throughthe CM S routing tradks. In step 3, various cost metrics are updated accord-
ingto the routing results from step 2 Once step 3iscompleted, each net isreset to its unrouted
state; and step 2 and step 3 are repeded in a new routing iteration. The repetition continuows
urttil the exit condtion is met. Note that the CGR algorithm described here is built uponthe
VPR routing algorithm as described in [Betz99a]; nevertheless, the basic principles presented
here @an also be used to transform other conventional routing algorithms into datapath-ori-
ented routers. (VPR [Betz994] is slected as the basis of thiswork over the original Pathfinder
[EIbe95] router mainly due to its extensive suppat for FPGA architedural evaluation and

modeling, which the Pathfinder router lacks.)

6.6.1 Step 1: Initialization

During step 1, CGR identifies inter-super-cluster connections that can be dficiently
routed throughthe CM S routing tradks. For each input netlist, the initialization step first clas-
sifies all inter-super-cluster conrections into two types of two-terminal connedions (defined
as a logical conrection containing one super-cluster output pin and ore super-cluster inpu
pin) — groups of coarse-grain two-terminal connections called the pin-buses and individual
fine-grain two-terminal conrections. Then inter-super-cluster nets are similarly classfied into
groups of coarse-grain nets called net-buses and individual fine-grain nets. The anount of
two-terminal connections or nets captured bythese busesis afunction d the anount of datap-
ath regularity presented in theinpu netlist.

A pin-busisagroupof M two-terminal connections with the following four properties:
1. M isequal to the granularity of the MB-FPGA.

2. All connections must originate from the same source super-cluster and terminate at the

same sink super-cluster.

127

Step 1. | Identify pin-buses and net-buses in the input netlist. |

Initialization L *‘

|Add all nets that are not in net-buses to the unrouted-nets list. |

Is i <= the number of
et-buses in the input netlist?

Route net-bus(i). |

Are all nets in net-bus(i Yes
completely routed?
Step 2:
Routing
Nets
Add nets with unrouted connections to the unrouted-nets list.
No Is i <= the number of nets
in the unrouted-nets list?
Route net(i) in the unrouted-nets list.
. Yes
Step .3' s exit condition met?
Updating
Metrics Exit

| Update metrics; rip up nets; and empty the unrouted-nets list.
[

Figure 6.3: Overview of the CGR Routing Algorithm

3. Eachtwo-terminal connection must have aunique source duster and a unique sink cluster.

128

4. For eadch two-terminal connedion, its ource duster must have the same index asits snk

cluster.

An example of apin-busisillustrated in Figure 6.4.

A Pin-Bus

\—JF 8
oL | > >

Figure 6.4: A Pin-Bus

Routing algorithms are most efficient when they are used to route anet, which contains a
source and al the sinks of the source, at atimeinstead of individual two-terminal connections.
To increase routing efficiency, pin-buses are grouped into net-buses. A net-busisdefined to be
agroup d M nets that contains at least one pin-bus, where M is equal to the granularity of the
MB-FPGA. Note that a net-bus may also contain fine-grain two-terminal conredions in addi-

tion to pin-buses. An example of net-busesis shown in Figure 6.5.
Net A Net B Net C

X T2 [

Pin-Bus #1 Pin-Bus #2
~— — T
] = =] L -

Two-Terminal]
connections that >

do not belong
to any pin-buses 1 P

Figure 6.5: A Net-Bus Containing Net A, B, and C

129

6.6.2 Step 2: Routing Nets

After initialization, CGR firgt iterates through all the net-buses in the inpu netlist and
routes the pin-buses throughthe CMS routing tracks. For each pin-bus, the dgorithm also
routes the first bit of the bus throughthe fine-grain routing trads. The st of routing the first
bit is then compared with the st of routing the entire pin-bus. When the CMS tracks are
much more congested than the fine-grain tracks, the st of routing the pin-bus throughthe
CMS tracks will be higher than the cost of routing the first bit throughthe fine-grain tracks. In
this case, the solution d routing the pin-bus throughthe CM S tracks is rejected. I nstead each
connection in the pin-bus is routed individually as described in the next two paragraphs. On
the other hand, if using the CMS routing tradks incurs lower cost, the solution of routing the
pin-bus through the CM S tracks is accepted.

During the routing d the net-buses, an unrouted-nets list is constructed. It contains three
types of netsincluding al the fine-grain netsin the input netlist, netsin net-buses that contain
fine-grain two-terminal conrections, and net-buses containing pn-buses that are too expensive
to be routed throughthe CM S routing tracks.

After iterating throughthe net-buses, CGR goes throughthe unrouted-nets li st and routes
each individual net in the list. Here only the unrouted connections in a net are routed. Again, a
net is routed through bah the fine-grain and the CMS routing tradks. The ast of using the
fine-grain tracks is compared against the aost of using the CMS tracks. The lower cost option
is always chosen as the final routing solution.

Note that as in other congestion-negatiation routing algorithms, each net-bus and each
individual net is routed using the maze expansion algorithm, and the routing solutions are

guided bythe expansion cost. This cost is a cmmbination d the congestion cost and the delay

130

cost. It isalso afunction d thetopdogy of the expansion. The mngestion cost, delay cost, and

the expansion cost are described below in more detail .

6.6.2.1 Congestion Cost

The CGR algorithm uses the same congestion cost function as the VPR router [Betz994].
The VPR congestion cost functionis briefly summarized here for completeness A congestion
cost is assgned to each nodk, n, in the routing resource graph. As shown in Equation 61, this
congestion cost is a product of the base ast, b(n), the aurrent congestion cost, p(n), and the
historic congestion cost, h(n). The base @st, b(n), is a function d the routing resource type.

Different routing resources are assgned different base cost values as shown in Table 6.1.

congestion_cost(n)= b(n) x p(n) x h(n) Equation 61
Routing Resource b(n)
Routing track 1

Super-Cluster Output pin 1

Super-Cluster input pin | 0.95

Source 1
Sink 0

Table 6.1: b(n) Values for Each Type of Routing Resource

The airrent congestion cost, p(n), is defined to be afunction d the difference between
the current occupancy of the node and the capadty of the node as shown in Equation 6.2. The
scaling factor, pfac, in Equation 62 is called the routing schedule of the router. The initial
value of pfacisasmall (< 0.5), so duingearly iterations, the current congestion d the node is
asmall part of the total cost of the node. Thisallows each node to be used more than its capac-
ity allows. The value of pfacisincreased byafador of 1.5 to 2 during each routing iteration.

So duing the latter iterations, the current congestion cost becomes a significant fador in deter-

131

mining the total cost of a node. Consequently, at latter routing iterations, once anode reaches

itsfull capadty, it nolonger can be used in the routing solutions of other nets.
p(n) = 1+ max(0,[occupancy(n) + 1 —cgpacity(n)] x pfac) Equation 62
The historic congestion cost, h(n), is an accumulation d the past congestion values; and
it is defined by Equation 6.3. For the first iteration, | = 1, the historic congestion, h(n)! is set to
be one. For each subsequent iteration, the diff erence between occupancy and capacity is scded

by a mnstant value, hfac, and is added to the historic congestion cost, h(n)"“1, from the previ-

ous iteration to derive the aurrent historic congestion cost, h(n)'. The usual value of hfac is

between 0.2 and 1

1l 1 | =1
1l

h(n)'= g h(n)' =t + max (0, Equation 63
E[occupancy(n) — cagpacity(n)] x hfac) I1>1

6.6.2.2 Optimizing Circuit Delay

As with the VPR routing algorithm, CGR cdculates the delay of each net using the
Elmore delay model. For caculating the ElImore delay, the capadtance and the resistance of
each routing resource ae obtained through the SPICE simulations as described in [Betz99a].
The delay values are then used to determine the aiticality of each two-terminal connections.
Note that for all the experiments performed in this thesis, the device charaderistics of the
CMC 0.18 um processis used in the SPICE simulations.

For each two-terminal conredion, the aiticdity of the connedion is calculated using
Equation 64. Here i represents the source of a two-terminal connection and j represents the
sink of the two-terminal conredion. As sown by Equation 64, the aiticdity is a value

between zero and oneinclusively. It isafunction d the sladk of the conrection and Dmax, the

132

critical path delay of the circuit. When the total delay of a mnnedion is close to the maximum
delay of the circuit, the net has a very small slack. Consequently, its criticality is high. When
the total delay of a connection is much small er than the maximum delay of the drcuit, the net
has avery large sladk. Consequently its criticdity is low. Both the slack and Dmax values are
re-calculated in each routing iteration based onthe awnnedivity data obtained from the previ-

ous routing iteration.

criticality i,)= max([l —MJ,O) Equation 64

Dmax
6.6.2.3 Expansion Cost

When routing a net-bus, CGR expands one node-bus at atime asit is typically done in
many cther routing algorithms [Lee61] [Brow92a] [Ebel95] [Betz99a] [Chan00Q]. The expan-
sion starts at the node-bus where the sources of the net-bus reside. It first expands into all the
immediate neighbaing rmode-buses. It then finds the node-bus with the least expansion cost.
Thisnode-bus is then expanded in turn. The expansion continues until the node-bus containing
the targeted sinks is reached. When routing an individual net, the same dgorithm is applied to

individual nodes instead of node-buses.

Expansion Topologies

The expansion cost of CGR is nat only designed to balance delay with congestion, but
also to balance the use of CMS and fine-grain routing tradks based on the foll owing two fac-
tors:
1. The number of net-buses and fine-grain netsin the inpu netlist.
2. The available number of CM S and fine-grain routing tradks in the MB-FPGA architecture.
The expansion cost also addresses the complication resulting from the “dual personality” of

several types of routing resources — these resources can be considered either as an extension

133

of fine-grain tracks or CMS tracks. For example, a super-cluster inpu pin can be cnsidered
either as an individual input pin or as a part of a super-cluster inpu bus. When conreded to a
signal from afine-grain routing tradk, the pin behaves like the extension d the fine-grain rout-
ing tradks. When connected to asignal from agroup d CM Srouting tracks carrying anet-bus,
onthe other hand, the pin behaves like a part of the extension o the CM S routing tradks. Rout-
ing resources that behave simil arly include super-cluster output pins, 1/0 block input and out-

put pins, sources, and sinks.

_ — _X_
Left Channel ., ___+.. S
IX5EZcr: uper-Cluster
A —d el
1 IIII- :'l -l-ﬁx - i1 1
AUk T X auy
il Sfav o zzicMs
| xnr {AB CD} xnir x - = - Rouling fracs
1 IIII:EK-I:l:'I::IIII 1 ___Fine_.Grain
Bottom Channel = - = = S Routing Tracks
- y(_____
_______ (a) Switch Pattern o
: TR TR
| [N N I L |
| [N N I L |
| ABCD i | ABCD i |
| "“IIII Fine JJ. "“IIII
(F3ine' J<t+—Net-Bus Groin —F g<<—Net-Bus
N;"” = Net
(b) Routing Solution 1 (c) Routing Solution 2

Figure 6.6: Competition for Resources

Because of this dual personality, fine-grain nets often compete with coarse-grain net-
buses for resources. An exampleis shown in Figure 6.6, which shows threedifferent views of
the same MB-FPGA til e. The tile cntains a super-cluster and four routing channels, which are
connected by disjoint switch blocks [Hsei90]. In the figure, the unaccupied routing tracks are

shown in dashed lines; and the occupied routing tracks are shown in solid lines. Finally, the

134

switch pattern for the input connection Hocks is shown in Figure 6.6a, where an X marks the
paosition d arouting switch.

Figure 6.6b and Figure 6.6¢ shows two different routing solutions for routing afine-grain
net and a 4-bit wide net-bus. As dhown, both the fine-grain net and a net in the net-bus can use
pin A to get into the super-cluster. These two nets are said to be in competition for the same
routing resource. In Figure 6.6b, the router first routes the fine-grain net throughpin A. To
avoid congestion, only threenets in the net-bus can get into the super-cluster from the bottom
channel through pns B, C, and D. To complete the routing process the net-bus needs to be
routed from the bottom channel into the left channel and then into the super-cluster. In Figure
6.6¢c, pin A isused by the net-bus instead. All four bits of the net-bus can now be routed into
the super-cluster through the bottom channel. However, one extra fine-grain routing segment
has to be used in the left channel to conned the fine-grain net to the super-cluster.

This example shows the nead of two separate expansion cost functions for dual-personal -
ity routing resources — one for the fine-grain expansions and the other for the coarse-grain
expansions. Furthermore, these two cost functions shoud be @nsistently defined so that they
can be fairly compared with each ather. The CGR router accommodates the dual-personality
routing resources by classifying all possble expansions into five expansion topdogies. Each
topdogy is completely defined by three items — the source node(s) of the expansion, the sink
node(s) of the expansion, and the routing switch(es) that connect the source node(s) to the sink
node(s). Each of these expansion topologies is then assgned a maximum of two urnique st
functions, one for routing fine-grain nets and the other for routing coarse-grain net-buses. Fur-
thermore, these functions are designed to share several key ingredients to ensure fair compari-
son. Each of these functions and its correspondng expansiontopdogy are described in turn in

more detail .

135

Expansion Cost Functions

As down in Table 6.2, the expansion cost is calculated based onthe expansion topolo-
gies. The table is divided into three major columns including the expansion topdogy column,
the net type column, and the expansion cost column. The expansion topdogy column is then
subdvided into five sub-columns. Each topdogy is labelled by a unique number in sub-col-
umn 1 Sub-column 2and 3list the granularity of the expansion source and the expansion sink
respedively. Sub-column 4 states whether the edges conneding the expansion source and the
expansion sink form a memory sharing edge-bus. Sub-column 5 lists sveral examples for
each expansion topdogy. The net type column lists the two routing scenarios for each expan-
sion— asingle net or a net-bus. Finally, the expansion cost column lists the formulas for cd-
culating the expansion cost under each scenario.

Note that, in these formulas, n,, is used to denote the expansion sink if it is a fine-grain
node. On the other hand, if the expansion sink is a node-bus, N, is used instead; and N;(l) is
used to denote the Ith bit in the node-bus, N;,. Finally, for the topdogies where the expansion
sink is a node-bus and a single net is being routed, N;,(k) denctes the node, in the expansion
sink, throughwhich the single net will be ac¢ually routed. Similar convention applies to the
expansion source, which is denoted by M, om, Nfrom: Nerom(1), O N¢om(K) for agiven circum-
stance.

All formulas, shown in Table 6.2, are variations of Equation 65. The ejuation has three
terms. The first term, C(n), represents the total congestion cost of all nodes in an expansion
path that conreds the source of anet to node n. The second term, D(n), represents the delay of
the expansion path from the source to node n. These two terms are scaded bythe aiticdity of
the target sink. If the two-terminal connedion conrecting the source to the sink is very critical

then the delay cost dominates. If the net is not critical then the congestion cost dominates. The

136

Expansion Topology

Net .
From To Mem Examples Type Expansion Cost
Node(s) | Node(s) | Shar P
fine- fine- N/A fine-grain net [1—criticality (i,)] x C(n) +
grain grain track -> fine- P,
node node grain track criticality (i, J) x D(ngo) +
future_expansion_cost(n,,)
C(n,,)= congestion_cost(n,,) +
C(nfrom)
net-bus N/A
fine- node-bus | N/A fine-grain net [1—criticality(i, j)] x C(Ny(K)) +
grain track -> super- T
node dluster input criticality (i, j) x D(N,o(K)) +
pin future_expansion_cost(N,,(Kk))
C(No(k))= congestion_cost(N,,(k)) +
C(nfrom)
net-bus N/A
node-bus | fine- N/A | super-cluster net [1—criticdity(i,)] x C(n) +
grain output pin -> P,
node fine-grain criticaity (i, j) x D(n,) +
track future_expansion_cost(n,,)
C(n,,)= congestion_cost(n,,) +
C(Nfrom(k))
net-bus N/A
node-bus | node-bus | no CMStrack -> net [1—criticality (i,)] X C(N,,(K)) +
super-cluster T
input pins; criticality (i, j) x D(N,o(K)) +
sources-> future_expansion_cost(N,,(K))
super-cluster - .
inpt pins: C(N;o(K))= congestion_cost(N,,(k)) +
super-cluster C(Ngrom(K))
output pins-> AT
psinrlls net-bus | max([1 —criticality(i, j)] x C(Ny (1)) +
criticality (i, j) x D(N,o(1)) +
future_expansion_cost(N,, (1)) |: . ’tl)
C(N,(1))= congestion_cost(N,, (1)) +
C(Nfrom(l))

Table 6.2: Expansion Cost

137

Expansion Topology

Net

Expansion Cost
NE[ioer?s) Nog?e(s) '\SAE;; Examples Type P
5| node-bus | node-bus | yes | super-cluster | net [1—criticality (i, j)] x C(N(K)) +
°g“hﬁg“§fk‘; criticality (i, j) x D(N,(K)) +
CMStracks-> future_expansion_cost(N,,(K))
CMStracks (N (K))=

. I=1
maxB:ongestlon_cost(Nw(l))h: M%+

C(Nfrom(k))
net-bus | max([1 - criticality(i, j)] x C(Ny (1)) +
criticality (i, j) x D(N,(1)) +

future_expansion_cost(N,, (1)) |: f ’tl)
C(N(1))= congestion_cost(N,,(1)) +
C(Nfrom(I))

Table 6.2: Expansion Cost
third term represents the estimated future expansion cost, which is described in detail in

[Betz99a]. Briefly, the future expansion cost is calculated by estimating the remaining expan-
sion path that connects nock n to the target sink. The total cost of this estimated path is then

calculated and used as the future expansion cost.
expansion_cost(n)= [1—criticality(i,j)] x C(n) +
criticdity(i, j) x D(n) + Equation 65
future_expasion_cost(n)

Expansiontopdogy #1lisillustrated in Figure 6.7(a). In thistopdogy, both the expansion
source and the expansion sink are fine-grain nodes. The edge that connects these two nodes
together does not belong to any edge-bus. For this topdogy, Equation 65 is used to caculate
the expansion cost with nset to be n,,. The expansion cost for topdogy #2and #3are similarly
defined.

Expansiontopology #4isill ustrated in Figure 6.7(b). Here both the expansion source and

the expansion sink are node-buses, and are connected by an edge-bus that does nat share con-

138

Expansion Source Expansion Source Expansion Source

v

Edge-Bus Edge-Bus
without—> < ——<J— Wwith
SRAM SRAM
Sharing Sharing
Expansion Sink Expansion Sink Expansion Sink

(a) (b) (©)
Figure 6.7: Expansion Topology
figuration memory. When only routing afine-grain net throughthis expansion topology, Equa-

tion 6.5 is used to calculate the expansion cost with nset to be N;,(K).

It isimportant to nae that, due to the dual personality of some routing resources, nodes
in a node-bus do not necessarily have the same @ngestion cost. An example is sown in Fig-
ure 6.8. Here the nodes in the node-bus represent four inpu pins. All four pins are conreded
to a net-bus througha CM S routing bis. Pin 0, however, has one more wnnedion— it isalso
connected to afine-grain net throughafine-grain routing tradk. The occupancy value of pin 0
is 2 whil e the occupancy values of pin 1, 2, and 3 are 1. Sincethe occupancy values are differ-
ent, the expansion costs are also diff erent. So when routing a net-bus through expansion topol -
ogy #4 Equation 65 is used to calculate the expansion cost for each nock in the expansion
sink. The maximum cost is then used as the final expansion cost to accourt for any diff erences
in either delay or congestion.

Expansiontopdogy # isillustrated in Figure 6.7(c). Here both the expansion source and
the expansion sink are node-buses. These two node-buses are mnneded by an edge-bus that
shares asingle set of configuration memory. When routing afine-grain net throughthis expan-

siontopdogy, the maximum congestion cost over al nodesin the expansion sink isfirst calcu-

139

Super-Cluster

Cluster1 Cluster2 Cluster3 Cluster 4/ A Node-Bus
Containing 4
Super-Cluster

4:’% . A >_/'pt£’MS

i il

== Routing
Tracks
Fine-Grain
. <J— Routing
Track

Figure 6.8: Double Connection in One Bit of ANode-Bus

-

lated. To accourt for the sharing of the configuration memory, the maximum congestion cost is
added to the acumulated congestion cost of the expansion source to derive the accumulated
congestion cost for node N,(k). Equation 65 is then used to calculate the expansion cost
where n is substituted by N;y(k). If anet-bus is routed throughthis expansion topdogy, on the
other hand, Equation 65 is used to cdcul ate the expansion cost for each nockin the expansion
sink. The maximum cost is then used as the expansion cost.

Note that to encourage net-buses to use the CM S routing tracks, the expansion cost of
routing the first bit of each net-bus through the fine-grain routing tracks is penalized bya won-
stant multiplicationfador. In this thesis a multiplicaion fador of 20 isfoundto work well for

the benchmarks.

6.6.3 Step 3: Updating Metrics

The tasks performed in step 3include updating congestion cost for each noce and ca cu-
lating criticdity values for each net. The it condtionis also chedked at this step to see if the
maximum number of routing iterations has been reached. Finally, CGR rips up all previously
routed nets by setting the occupancy values of all nodes in the routing resource graph to zero.

It then empties the unrouted-netslist in preparation for the next routing iteration.

140

6.7 Results

CGR has been used to route several industrial circuits implemented on the MB-FPGA
architeaure. The routing results shown in this section are based onthe fifteen datapath circuits
of the Pico-Java Processor [Sun99 described in Chapter 4 and 5. Each circuit is first synthe-
sized using the EMC synthesis algorithm as described in Chapter 4. Then it is padked into
super-clusters using the CNG packing algorithm described in Chapter 5. The placement algo-
rithm, described in Sedion 63, isthen used to place eah circuit onto a square MB-FPGA that
contains just enoughsuper-clusters to accommodate the drcuit.

Table 6.3 gives the name, size (the number of super-clusters, two-terminal connections,
and pin-buses) of each benchmark circuit. The super-cluster architectures used to oltain these
results will be presented in detail in the next sub-section along with the detail ed routing archi-
tecture used in the investigation. After the achitectural description, the routing results in terms

of tradk court, routing area and routing performance ae described in turn.

6.7.1 MB-FPGA Architecture

The detailed MB-FPGA architecture used in the tests of the CGR algorithm is presented
here. This architecture is constructed based onthe results of several previous gudies on con-
ventional cluster-based FPGA architedures described in [Betz97h [Betz98] [Betz99%al
[Betz99h [Marq004. These architectural choices are described and justified in much more
detail in Chapter 8. A brief summary of these choices is presented here.

Each super-cluster used in this investigation consists of 4 clusters. Each cluster contains
4 BLEs (with one 4-LUT in each BLE) and 10inputs. At the super-cluster leve, thistrandates
to 40super-cluster inpus grouped into 104-bit wide inpu buses and 16super-cluster outputs
grouped into 44-bit wide output buses. The input buses are distributed aroundthe periphery of

each super-cluster with 2 buses at the top, 2 buses on the right side, 3 buses at the bottom and

141

Cirouit | Ciydtors | Connr | #Pin-Buses
code_seq_dp 23 799 116
dcu_dpath 63 2232 273
ex_dpath 176 6547 851
exponent_dp 32 1362 109
icu_dpath 217 8047 945
imdr_dpath 81 3100 387

incmod 57 2013 211
mantissa_dp 64 2533 298
multmod_dp 105 3380 330
pipe_dpath 29 1049 126
prils_dp 26 864 89
rsadd_dp 21 722 94
smu_dpath 36 1167 140
ucode dat 83 3143 409
ucode_reg 6 194 35

Table 6.3: Experimental Circuits
3 buses on the left side of each super-cluster. The output buses are uniformly distributed

arourd each super-cluster.

The switch block topdogy used in this gudy is the disjoint topology [Hsei90] for bath
the fine-grain tracks and the CM Stracks. For input/output connection docks, each super-clus-
ter input/output pinis connected to 40%/25% of the fine-grain tradks in each of its neighbaing
routing channels. Similarly each input bus/output bus is conrected to 40%/25% of the 4-bit
wide CMS routing buses in each neighbaring channel. It is assumed that, for each circuit, the
physical dimension d each /O block is small enough so that the circuit will always be core-
limited after placement. Each |/O block input or output pin is assumed to conrect to 20% of
the fine-grain routing tracks in its neighbaing routing channel. Similarly, each pad-inpu or

pad-output bus is assumed to connect to 20% of the CM S routing buses. Finally, each routing

142

segments (either fine-grain or CMS) is assumed to expand two super-clusters. Note that the
architecural generation methoddogy described in [Betz00] [Betz994] is used to generate the
actual topology o the input/output connection Hocks based on the percentage values pre-
sented above.

Two architectural variables are used in the tests of the CGR routing algorithm. These
variables are the number of CM S routing tracks and the number of fine-grain routing tradks in
each routing channel. The testing processconsists of first specifying a fixed number of CMS
routing tracks per channel for routing a given circuit. The CGR router is then used to find the
minimum number of fine-grain routing tracks required in each channel (in additi on to the fixed
number of CMS routing tracks) in order to succesdully route the drcuit. The methoddogy
used in seaching for the minimum number of fine-grain routing tracks is smilar to the ones
described in [Betz99a] [Betz99h]. The data mlleded from these tests are used to demonstrate
the adility of the CGR algorithm to utili ze the CM S routing tradks in plaae of the fine-grain

routing tracks.

6.7.2 Track Count

The aithmetic average of the alditional number of fine-grain routing tracks required to
route a éreuit for a specified number of CMSrouting tracksis shown in Figure 6.9, where the
average number of fine-grain tracks is plotted against the specified number of CMS trads.
The X-axisistrad court in terms of the number of CM S routing tracks gpedfied in theinves-
tigation. The Y-axis is also track court, but it is in terms of the number of tracks needed in
order to successully route a drcuit.

Also plotted in the figure is the aithmetic average of the total number of tradks (fine-

grain tracks plus CMS tracks) required per channel for routing a circuit against the spedfied

143

number of CMS tracks. Finally, for the ease of reference the number of CMS routing tracks

specified in each investigationis transferred from the X-axis into the dashed line in the figure.

A #Tracks Total Number of Tracks
100

90

80 #CMS Trflcks

70 -
-«
e —
60
50
40 . .
#Fine-Grain Tracks
30|
-«
e —~
20 -
«
-
10| -
— #CMS Tracks

/T | | | | | | | | | | | | | | | | | | |

0O 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Figure 6.9: Track Count vs. #CMS Tracks per Channel

0

As shown, the average number of fine-grain tracks decreases from 56 tracks down to less
than 30tracks per channel as the average number of CMS tracks is increased from 0 to 80
tracks per channel. This decrease is due to the use of the CMS tracks in place of the fine-grain
tracks by CGR. Note that the fine-grain tracks decreases sgnificantly when the number of
CMS tracks is increased from 0 to 40tracks per channel. By adding these 40 CM S tracs, a
maximum of 21 fine-grain tradks are diminated. The rate of deaease slows sgnificantly when
the number of CMS tracks is further increased from 40 to 80 tracks per channel. By adding
these 40 CM Stracks, only 5 fine-grain tracks are saved. This dow down isdue to the fact that,
in many circuits, the number of CMS tracks has reached saturation. In saturation, further
increases in the number of CMS tracks will not reduce the number of fine-grain tracks snce
there ae dways nets that can never been routed throughthe CMS tracks (due to the limited

connectivity of the CMS routing resources as described in Chapter 3).

144

6.7.3 Routing Area Results

The arithmetic average of thetotal area mnsumed by routing resources for each circuit is
shown in Figure 6.10. The aeais measured in terms of the minimum-width transistor area
[Betz99a], which is described in detail in Chapter 2. In the figure, the X-axis is the number of
CMS routing tradks specified by the investigation. The Y -axis is the aea measured in mini-

mum-width transistor area

Routing Area in

A Minimum-Width Transistor Area (x106)
1270

1.24
1.21
1.18
1.15.
1.121

1.09

1.06-

1.03

#CMS Tracks
1.00 |

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Figure 6.10: Area vs. #CMS Tracks

As dhown, the graph can be divided into three regions. In the first region, where the
architecaures contain between 0to 28 CMS tradks per channel, the routing areaactually gets
worse with the increased number of CM Strads. Thisincreasein areaisdueto thefad that the
area dficiency of the CMS tracks is outweighed by the extremely small number of routing
buses and the increased diversity in routing resources as explained in more detail in Chapter 8.

In the second region, as the number of CM S tracks is further increased, the routing area
starts to decrease. At between 32to 64 CMS tracks per channel, the routing area becomes
smaller than the routing areaof the achitecture that containsno CMStracks. Finally, in region

three, as the number of CM S tradks reaches sturation, the routing area again startsto increase

145

and becomes larger than the routing area of the architedure that contains no CMS routing

tracks.

6.7.4 Routing Performance Results

124‘ Critical Path Delay Due to Routing (ns)

12.2
12.0
1.8
11.6]

11.4

11.2]\

I#CI\{IS Tlracks

11.0 N R N N N N R R A M NN MO SO M S >

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Figure 6.11: Delay vs. #CMS Tracks

The geometric average of the portion o critical path delay that is consumed by the rout-
ing resources for each circuit is shown in Figure 6.11. In the figure, the X-axis represents the
number of CM S routing tradks gedfied in the investigation. The Y -axis represents the delay
measured in nanoseconds. As shown, there ae some speed penalties associated with using the
CMS tradks for amajority of architecures. For 4, 8, 12, 40, 44, 60, and 64CM S routing tracks
per channel, however, the performance of these architectures are comparable to the architec-

ture containing m CM S tracks.

6.8 Conclusions and Future Work

This chapter has described a new kind of routing algorithm that is designed specifically
for the MB-FPGA architecture. The algorithm is able to balance the use of CM S andfine-grain

routing resources to achieve maximum area savings over a wide range of datapath circuits.

146

The algorithm also is capable of optimizing the routing delays of time-critical conredions and
achieves good gerformance results.

Future research should improve upon the timing performance of the router. The goal
shoud be to achieve consistently optimal routing delays regardless of the number of CMS

routing tracks in each routing channdl.

147

148

7 The Regularity of Datapath Circuits

7.1 Introduction

This chapter uses an experimental approach to investigate the effect of the granularity of
the MB-FPGA architecture on the regularity of its circuit implementations. Granuarity, as
defined in Chapter 3, is equal to the number of clusters in a super-cluster or the number of
CMS routing tracks in a routing bis. Regularity is a function of the number of identicad bit-
slicesand bwsesin a drcuit. The experiment consists of synthesizingand packing a set of data-
path circuits onto several variants of the MB-FPGA architecture. Regularity is then measured
over a range of granularity values, using the synthesis and packing algorithms described in
Chapter 4 and 5 respectively.

Redall that the MB-FPGA architedure uses groups of CMS routing tracks, caled routing
buses, to route groups of signals, called buses, from their common source to their common
sink super-clusters. When there is enoughregularity, it is often preferable to have high ganu-
larity — wide routing buses — since in wide routing buses the configuration memory area can
be amortized over a greaer number of tradks, resulting in higher area dficiency. Too high a
granularity value, however, can cause an over-supdy of routing tracks in each routing bus,
resulting in unwsed tracks and lower area dficiency. Asaresult, knowing the detailed relation-
ship between the granularity and the regularity is essntial in designing an areaefficient MB-
FPGA architecture.

The MB-FPGA super-cluster introduced in Chapter 3 is used in the pading experiments
conducted in this chapter. Figure 7.1 reproduces an overview of the super-cluster architecture
for ease of reference. The super-cluster shown in the figure has a granularity value of M since

it contains M clusters; and each cluster contains several BLES, cluster inputs, and cluster out-

149

puts. The number of cluster outputs is always equal to the number of BLES that it contains.
The granularity of the super-cluster can be dtered by changing the number of clusters; and
individual cluster capadty can also be changed by varying the number of BLEs and the num-
ber of inpus per cluster.

Super-Cluster

Inputs
Cluster Cluster Cluster
Inputs Inputs Inputs
c —] > e e c
arry —» > > - —» Carry
Inputs 3 Cluster : Cluster : Cluster : Outputs
> _— _—

v

ca? L Tt Seary Wt S

Network Cluster Cluster Network Cluster
Outputs Outputs Outputs

Super-Cluster
Outputs

Figure 7.1: Super-Cluster with M Clusters

By definition, regularity can be measured using two distinct metrics, including the logic
regularity, which measures the number of identical bit-slices in a datapath circuit, and the net
regularity, which measures the number of buses in the same drcuit. The specific questions
concerning catapath regularity that are answered in this chapter include: what is the dfect of
the MB-FPGA granularity onthe amount of logic regularity that can be captured by the syn-
thesis and packing tools? and what is the effect of the MB-FPGA granularity onthe amount of
net regularity that can be catured? Sedion 7.4.1 and Sedion 7.4.2 define logic and ret regu-
larity in more detail and propose ways of measuring these regularity values. They also show
that small granularity values of 2 and 4 are the best for capturing bah types of regularity infor-
mation.

This chapter is organized as follows: Sedion 7.2 presents assumptions that are made

about the architecture of MB-FPGA,; Section 7.3 describes the experimental procedure; the

150

experimental results are presented in Section 7.4; and concluding remarks appear in Section

7.5.

7.2 MB-FPGA Architectural Assumptions

The MB-FPGA super-cluster architecture, used by the CNG packing algorithm, can be
completely specified by four architectural parameters, including M, the granularity of the
architeaure, K, the number of inputs that each LUT contains, N, the number of BLEsin each
cluster, and |, the number of cluster inpus. In thiswork, these values are selected based onthe
results of several previous studies on conventional FPGAs; and the same values are dso used
in the achitectural study presented later in Chapter 8.

Throughou the experiments, K is set to be 4 since it has been shown that 4-LUTs are one
of the most efficient LUT sizes [Rose90] [Ahme00] and this LUT sizeis also used in many
commercial FPGAs [Alte02] [Xili02]. N and | are set to be 4 and 10respedively since this
combination was shown to be one of the most efficient by [Betz97b] [Betz98] [Betz99a] andis
also used by many previous FPGA studies [Ahme00] [Betz99a] [Betz99b] [Lemi01] [Marq99
[Marg00a] [Marq00b] [Sank99]. Finally, M is the variable of the investigation and is varied

from 2 to 32for each experiment.

7.3 Experimental Procedure

The CAD flow used in the experiments is dhown in Figure 7.2. As down, the fifteen
benchmark circuits from the Pico-Java processor [Sun9)] are first synthesized by the EMC
datapath-oriented synthesis algorithm into LUTs and DFFs. The synthesis process preserves
the regularity of datapath circuits according to a given value of M. Using the preserved regu-
larity, the CNG packing algorithm padks the synthesized circuits into a set of MB-FPGA

super-clusters, again with respect to M. After packing, the logic regularity and the net regular-

151

15 Benchmark Circuits

Synthesis
(EMC Chap 4)

Packing
(CNG Chap 5)

Logic and Net
Regularity
easuremen

Figure 7.2: CAD Flow

ity of each circuit are measured. Finally, the CAD flow isinvoked multiple times urtil al con

cerned values of M are investigated.

7.4 Experimental Results

This sctionfirst investigates the dfea of granularity on logic regularity. Then the dfect
of granularity on ret regularity is examined. Note that the various aspects of the benchmark
circuits used in these experiments are summarized in previous chaptersin Table 4.1, Table 5.1,

and Table 6.1.

7.4.1 Effect of Granularity on Logic Regularity

After packing, datapath circuits are transformed into netlists of interconnected super-
clusters. The logic regularity of these netlists, which is defined as the anount of logic that
exists as datapath, can be measured by courting the number of identical BLEs in each super-
cluster. More precisely, each super-cluster after packing can be divided into disjoint sets of

BLESs. Each set, called a datapath componrent, has the following threeproperties:

152

1. EachBLE inthe setisfrom an urique cluster that is diff erent from the dusters of al the
other BLEs in the set.

2. All BLEsinthe set are configured to perform the same logic function.

3. The set contains as much BLES as property 1 and 2all ows.

An example of datapath componentsis shownin Figure 7.3. Inthe figure, thereis a super-clus-

ter that contains four clusters; and each cluster contains four BLEs. The BLEs are mnfigured

to perform one of the six possble logic functions labeled as A, B, C, D, E, and F. As down,

the super-cluster can be divided into eight distinct datapath components based onthe proper-

ties above. Four of the datapath components contain more than ore BLE each andisindicaed

by unique shades in the figure. The remaining four datapath comporents contain one BLE

each and are configured as function C, B, E, and F, respectively.

BLE

Cluster Cluster Cluster Cluster

Super-Cluster

Figure 7.3: Dividing A Super-Cluster into Datapath Components
The datapath components can be dassfied according to their width, which isequal to the
number of BLEs in each comporent. By definition, for a given MB-FPGA architecture, the
maximum possble width of a datapath component is equal to M — the granularity of the
architeaure; and ore-bit wide datapath componrents represent irregular logic.
Table 7.1 liststhe percentage of BLES that are in each width of datapath comporentsas a
function d the MB-FPGA granularity that was imposed during synthesis. Each percentage

value is calculated byfirst summing the total number of BLEs in all datapath comporents of a

given width ower all the 15 benchmark circuits. Then the sum isdivided by the total number of

153

BLEsin the benchmarks. Each column of the table cmrrespondsto adifferent value of M. Each
row corresponds to a different width of datapath componrents. Note that for each value of M
represented in a given column, there ae only M different widths of datapath components. The
remaining rows in the column are labeled as n.a. and shaded in dark gray. Finally, cells that

contain values that are lessthan ore percent are shaded in light gray in the table.

DP M — MB-FPGA Granularity Imposed in Synthesis
Width 2 4 8 12 16 20 24 28 32
1 94% | 9.9% | 10% 11% 11% | 12% | 12% | 13% | 13%

54%

| 54% |

Table 7.1: % of BLEs Contained in Each Width of Datapath Compon ents

154

The key conclusion to be drawn from Table 7.1 is that as indicate by the @lls haded in
light gray, many entries in the table mntain values that are lessthan ore percent. As aresult,
for each M, a majority of BLEs is concentrated in ornly a small number of datapath widths. To
illustrate this point further, the diversity of datapath comporent widths is analyzed in more
detail next; the analysisis foll owed by an examination o the logic contained in the maximum
width datapath comporents and in irregular logic; and finally the inherent regularity distribu-
tion of the benchmarks is analyzed; and architectural conclusions are drawn based on the

results of logic regularity.

7.4.1.1 Diversity of Datapath Widths

Figure 7.4 isaplot of the diversity of datapath component widths versus granularity. The
X-axis of the figure represents the granularity of the achitecture, M. The Y -axis represents the
number of distinct widths of datapath comporents. The figure mntains four curves. The top
curve represents the maximum possible number of datapath componrent widths for each granu-
larity value. The remaining three curves represent the number of distinct widths of datapath
comporents that contain more than 1%, 10%, and 40% of the total number of BLES, respec-
tively. As illustrated, as the minimum percentage value is increased from 1% to 40%, the
diversity of the datapath components is reduced dramaticdly. For M = 32, for example, there
are eight ditinct widths of datapath componrents that contain more than 1% of the total num-
ber of BLES, while only three distinct widths of datapath comporents contain more than 10%
of the total number of BLEs. Finally, for each granularity, only one distinct width of datapath
componrent contains more than 40% of the total number of BLES. Note that the datapath com-
porent widths that contain more than 40% of the total number of BLEs are highlighted in bdd

printsin Table 7.1. The table dearly shows that, for a given value of M, the datapath compo-

155

nent width that contains more than 40% of the total number of BLES is always equal to the

maximum possble datapath componrent width of the given granularity.

Number of Unique

3o Datapath Component Types Maximum Number of Types
-
28| A
-
241 i Ve
-
20 A
-
16 A
-

[- 1% T

- > es

8 o e . i yp
—~ .- - e-"

45 - et e _ _ e _ _>10% Types
or - >40% Types
| | | | | | | | |

2 4 8 12 16 20 24 28 32 ™

Granularity (M)
Figure 7.4: Datapath Component Types Containing a Minimum % of BLEs

7.4.1.2 Maximum Width Datapath Components and Irregular Logic

The percentage of BLESs in these maximum width datapath componrents are plotted in
Figure 7.5, where the X-axis represents the granularity values and the Y -axis represents the
percentage values. Note that most of the percentage values are much larger than 40%. For M =
2 to 8, the number of BLES that exist in maximum width datapath componentsis between 824
and 91%. For the rest of the granularity values, excluding M = 20, the percentage values
remain at the 50% to 60% range. Finally, using cata from Table 7.1, Figure 7.6 plots the per-
centage of BLEs in irregular logic versus the granularity of the architecture. It shows that over
all granularity values, lessthan 13 of the total number of BLEs are in irregular logic.

Note that there is a quite large variation for the percentage of BLES captured in the max-
imum width datapath components — 91% for M = 2 versus 41% for M = 20. To explain this

variance, it isinstructive to measure the inherent regularity distribution — the distribution o

156

BLEs among the various widths of datapath comporents in the original circuit specificaions

— of these circuits.

A% of BLEs in Maximum Width Datapath Components
95% [

90% |
85% |
80% |
75% |
70% |
65% |
60% |
55%
50% |
45% - Granularity (M)

40% L L | | | | | |
2 4 8 12 16 20 24 28 32

Figure 7.5: % of BLEs in Maximum Width Datapath Components

A % of BLEsin Irregular Logic
13.5%

13% |-
12.5% |-
12% |-
11.5% [
11%
10.5% |
10% |-
9.5% -
9%

Granularity (M)
-

| | | | | | | |
2 4 8 12 16 20 24 28 32
Figure 7.6: % of BLEs in Irregular Logicvs. M

157

7.4.1.3 Inherent Regularity Distribution

Since the widest datapath in the benchmark circuits is 32 bits wide, the distribution o
BLESs among datapath comporents at M = 32 closely resembles the inherent regularity distri-
bution d these drcuits. The detail ed distribution d BLEsfor M = 32 are restated in Table 7.2.
It shows that, for M = 32, 13% of BLEs are inirregular logic. Furthermore, for the remaining
datapath comporent widths, 83% of BLEs are in the six largest categories, including M = 32,

8, 4, 28, 16, and 3, of datapath comporents. The rest of the datapath componrents collectively

only contain afradion (around 4%) of the total number of BLEs.

Datapath | Percentage Datapath | Percentage
Ranking | Comp. of BLEs in ||Ranking | Comp. of BLEs in
Width Dp. Comp. Width Dp. Comp.
1 32 54% 17 2 0.049%
2 8 14% 18 3 0.037%
3 13% 19 5 0%
4 4 5.9% 20 9 0%
5 28 4.1% 21 10 0%
6 16 2.7% 22 11 0%
7 30 2.0% 23 13 0%
8 20 1.1% 24 14 0%
9 29 0.71% 25 17 0%
10 23 0.57% 26 18 0%
11 24 0.44% 27 19 0%
12 27 0.33% 28 21 0%
13 15 0.18% 29 22 0%
14 6 0.15% 30 25 0%
15 7 0.086% 31 26 0%
16 12 0.074% 32 31 0%

Table 7.2: Distribution of BLEs for M =32

158

More interestingly, 32, 8, 4, 28, 16, and 30are dl evenly divisible by two, and except 30,
all these numbers are evenly divisible by four. This characteristic explains why such a large
amourt (91%) of BLEs are in 2-bit wide datapath componrents when M is equal to 2 and
equally large anourt (90%) of BLEs are in 4-bit wide datapath componrents when M is equal
to 4. It aso helpsto explain the distribution of BLEsfor other granularity values. For example,
when M is equal to 8, the largest two groups of datapath componrents are 8-bit wide and 4hit
wide since 8, 16, and 32are all evenly divisible by eight and four, and the reminder of 28

divided by 8is equal to four.

7.4.1.4 Architectural Conclusions

These distribution characteristics of BLEs among datapath components suggest that by
using architectures with a granularity value of two or four, one can maximize the number of
BLESs captured in the widest avail able datapath comporents in these achitectures. Further-
more, at these granularity values, logic regularity is concentrated in only one width. Other
granularity values have more complex distributions of BLES among datapath componrents.
This characteristic contributes to the high percentage of maximum-width buses captured by
the CAD flow when M is equal to 2or 4 as hown in Sedion 7.4.2. Capturing more maximum-
width buses is especially desirable for MB-FPGA since the CMS routing tracks are the most
efficient when they are used to route maximum-width buses. Note that the best granularity val-
ues for capturing datapath regularity islikely to increase propartionall y as the maximum width

of the datapath applicationsisincreased.

7.4.2 Effect of Granularity on Net Regularity

After packing, net regularity, which is defined as the anourt of nets that exist in datap-

ath, can be measures by courting the number of netsthat share mmon source and sink super-

159

clusters with other nets. More precisely, the net regularity is measured by classifying all two-

terminal connections that contain ore super-cluster output pin and ore super-cluster inpu pin

ina drcuit into a variety of buses. Each two-terminal connedionis cdled ainter-super-cluster

two-terminal connedion; and each bus is defined to be agroup o two-terminal connedions

that connect two or threesuper-clusters together with the foll owing five properties.

1. One super-cluster isthe source of all the two-terminal connectionsin the group; andthe
remaining super-cluster(s) are the sink(s).

2. Eachtwo-terminal conrectionin the group hes aunique source cluster that is different
from the source clusters of all the other two-terminal connectionsin the group.

3. Eachtwo-terminal conrectionin the group hes aunique sink cluster that is diff erent from
the sink clusters of all the other two-terminal connections in the group.

4. All two-terminal conrections in the group must have the same amourt of shift as defined
shortly below in Sedion 7.4.2.1.

5. The bus contains as much two-terminal connedionsasit isallowed by property 1 to 4.

The number of two-terminal connedions in a busis cdled the width of the bus; and an

example bus is shown in Figure 7.7. There are three super-clustersin the figure — each with a

granularity value of four. These super-clusters are cnrected together by three two-terminal

connections to form a single 3-bit wide bus.

Index Source Super-Cluster

&\

N

Cluster —r> 1 2 3 4
|

3

1 2 3 4 1 2 3 4

Sink Super-Cluster Sink Super-Cluster

Figure 7.7: A 2-bit wide bus with one-bit shift for M =4

160

7.4.2.1 Shift Definition

Buses of the same width are further clasdfied by the anount of shift that each of their
two-terminal connections possesses. To determine the amourt of shift, each cluster in a super-
cluster isfirst assigned with aunique index number from 1 to M, where M is the granularity of
the achitecture. The shift of a two-termina connection is defined to be the difference, d,
between the index of the sink cluster and the index of the source duster if the d is paositive. If
the d is negative, the shift is defined to be the d + M. Each two-terminal connection shown in
Figure 7.7 has a shift value of one, so the bus shown in the figure dso has a shift value of one.
By definition, the maximum passible width of abusis M — the granularity of the MB-FPGA
architeaure; the maximum amourt of shift that a bus can have is M - 1; and finally one-bit
wide buses represent irregular nets.

The measurement of net regularity as defined above @an be used to understand two of the
most important questions with regards to MB-FPGA:

1. How many inter-super-cluster two-terminal connedions can be grouped into buses and
conseguently can be dficiently routed throughthe CM Srouting tracks of MB-FPGA?

2. Should the MB-FPGA conreaion Hdocks have the capability of shifting busesby 1to M -
1 bits?

Note that the second question arises from the architedural diff erences between the MB-FPGA

and the DP-FPGA [Cher96] architecture. Recall that, as described in Chapter 2, the DP-FPGA

architecure contains gpedal hardware resources called shift blocks, which can perform arith-

metic shift operations whil e routing a group of two-terminal conreaions. On the other hand,

the routing architecture of MB-FPGA, described in Chapter 3, does not contain any hardware

suppat for shift operations. The data presented in this s2dion measure the effed of excluding

161

these dedicated shift operations from MB-FPGA and provides some insights on the actual

effectiveness of these dedicaed shift hardware resources.

7.4.2.2 Net Regularity Results

Table 7.3 shows the percentage of inter-super-cluster two-terminal connections that exist
in eadh type of buses for the granularity value of 12. The percentage value is calculated byfirst
summing the total number of inter-super-cluster two-terminal connedions in a given type of
buses over the 15 benchmark circuits. The sum is then divided by the total number of inter-
super-cluster two-terminal conrections that exist in these benchmark circuits. Each row of the
table corresponds to a fixed bus width; while each column of the table corresponds to a fixed
amourt of shift. Each entry lists the percentage of two-terminal conredions that are in the
buses with the arrespondngwidth and shift. Again values that are less than 1% are shaded in
light gray. The key conclusion to be drawn from this table is that a majority of the bus types
contains only a very small amourt of inter-super-cluster two-terminal connections; and the
same istruefor all the other granularity values other than M = 12, whose data ae presented in
detail in Appendix A.

As shown by the data presented in these tables, M has several important effeds on the
types and the widths of buses obtained bythe CAD flow. In particular, the effect of M onirreg-
ular two-terminal connections and the most popuous bus types are analyzed below. The anal-

ysisisfollowed by several architecural conclusions.

7.4.2.3 Effect of M on Irregular Two-Terminal Connections

Figure 7.8 plots the percentage of irregular inter-super-cluster two-terminal conredions
as a function of granularity. The X-axis is the granularity; and the Y-axis is the number of

irregular two-terminal connections as the percentage of the total number of inter-super-cluster

162

Sh

ift

Bus

Wwidth| o 1 2 3 4 5 6 7 8 9 10 | 11
1 21% | 1.7% | 1.8% | 2.0% | 2.2% | 24% | 25% | 25% | 24% | 24% | 24% | 2.4%
2 0.80% | 1.2% | 1.2% | 0.96% | 0.82% | 0.79% | 0.98% | 0.77% | 0.92% | 0.79% | 0.82% | 0.65%
3 0.27% | 0.48% | 0.29% | 0.27% | 0.29% | 0.28% | 0.22% | 0.13% | 0.27% | 0.30% | 0.18% | 0.21%
4 3.0% [0.066%|0.053%|0.066%| 1.7% |0.092%| 0.16% | 0.16% | 1.7% |0.013%)|0.066%)| 0.12%
5 0.050%]| 0.017%| 0.033%] 0.033%| 0.38% |0.0176| 0.0% |0.066%]0.083%]0.017%| 0.0% |0.017%
6 0.28% | 0.0% |0.079%| 0.0% | 0.32% |0.020%| 0.20% | 0.0% |0.020%|0.040%/| 0.040%|0.020%
7 0.069%| 0.21% | 0.0% | 0.0% |0.046%| 0.12% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
8 14% | 0.11% | 0.0% | 0.0% | 0.69% | 0.0% | 0.0% | 0.0% | 1.1% |0.026%|0.053%| 0.18%
9 0.62% | 0.059%| 0.030%] 0.030%| 0.089%| 0.05%%6| 0.0% |0.030%|0.030%|0.059%| 0.030%|0.08%%
10 | 043% | 0.0% | 0.0% | 0.0% | 0.0% |0.033%|0.066%|0.033%]0.033%|0.066%| 0.36% |0.033%
11 0.33% | 0.11% |0.036%| 0.036%| 0.036%| 0.073%| 0.0% | 0.0% |0.036%]0.036%| 0.22% | 0.40%
12 27% | 1.3% | 0.24% | 0.12% | 0.75% | 0.12% | 0.36% |0.040%| 0.75% |0.040%| 0.48% | 0.36%

Table 7.3: % of Inter-Super-Cluster Two-Terminal Connections Contained in

Each Type of Buses for M =12

two-terminal connections in the benchmark circuits. As gown by the plot, this percentage

value remains quite cnstant acrossa wide range of granularity values. In particular, the irreg-

ular two-terminal connections always consist of 20% to 2% of the total number of two-termi-

nal conredions.

31% -
29% -
27%
25% -
23% -
21% -
19% -
17% |
15%

A % of Irregular Two-Terminal Connections

Upper Limit=27%

Lower Limit=20%

Granularity (M)

' L

8

12

16 20

24

28

32

Figure 7.8: % of Irregular Two-Terminal Connections vs. M

163

7.4.2.4 Effect of M on the Most Populous Bus Types

Figure 7.9 plots the percentage of two-terminal conrections in the three bus types that
contain the most amourt of inter-super-cluster two-terminal connections as a function of gran-
ularity, M. The top curve represents the bus type that contains the most amourt of two-termi-
nal conrections; and the baottom curve represents the bus type that contains the third most
amourt of two-terminal connections. The exact types of these buses are labeled beside each
data point by a pair of integers indicating the width and the shift of the bus. The figure shows
that, for all granularity values, the most popuous bus type (the bus type that contains the most
amourt of inter-super-cluster two-terminal connections) is always M-bit wide and na-shift-
ing. The percentage of two-terminal conrections in these M-bit wide non-shifting buses
decreases quite significantly as M is increased from 2 to 20. The number recovers dightly as
M is further increased to 32 The second most popuous bus type usualy is ggnificantly
smaller than the most popuous type. It usually is aso nonshifting. The majority of the
remainder bus types usually contain a very small percentage of the total number of two-termi-
nal connections each. For example, when M is equal to 12, 12-bit wide non-shifting buses are
the most popuous bus type and consist of 27% of the total number of two-terminal connec-
tions. The second most popuous bus type is 8-bit wide non-shifting huses, which consist of
14% of the total number of two-terminal connections. The third most popuous bus type @n-

tainsjust slightly less than 3% of thetotal number of two-terminal conrections.

7.4.2.5 Architectural Conclusions

The above observations can guide usto choose the appropriate types of routing resources
for various CM S architectures. First of all, if thereis only one type of conrection between the
CMS routing tracks and the super-clusters in the achitecture, the best choice is M-bit wide

nontshifting connedions. Seoondy, it is likely that regardless of granularity, 20% to 274 of

164

% of two-terminal connections
(2,0)

A

60%
54%
48%¢
42%+
36%}-
30%}-
24%
18%1 5.4 | ',
129 3rd '*\

1st

6%
0%

Granularity
Figure 7.9: The Most Populous Bus Types for Each Granularity

the routing resources should be fine-grain. Furthermore, sincethe MB-FPGA architecdure only
has one type of CM S routing tracks — CMS routing tracks of width M, many small buses are
routed through fine-grain routing resources. This further increases the demand for fine-grain
routing resources. Finally, due to the small amount of M-bit wide and near M-hit wide shifting
buses, M-bit wide shift blocks, like those used in the original DP-FPGA architecture [Cher96],

will not be aost effedive for datapath architectures.

7.5 Summary and Conclusions

This chapter has explored the relationship between the granularity of the MB-FPGA
architeaure and the regularity preserved by the datapath-oriented CAD flow. The principle
conclusions are that regardless of granularity, a majority of BLES reside in datapath compo-
nentswith orly asmall number of datapath widths. Furthermore, a great number of BLEs exist
in the widest possible datapath comporents. The inherent regularity alongwith the net regular-

ity indicates that the granularity values of 2 and 4 are the best for area. Finally, regardless of

165

granularity, it is likely that 20% to 276 of the MB-FPGA routing tracks shoud be fine-grain;

and M-bit wide shift blocks will not be cost effective for the MB-FPGA architecture.

166

8 The Area Efficiency of MB-FPGA

8.1 Introduction

In this chapter, an experimental approach is used to investigate the effect of the CMS
routing capacity of the MB-FPGA architedure onits area efficiency. CMSrouting capacity is
ameasure of the routing capabili ty of the CM S routing tracks, and is a function d the granu-
larity of the achiteaure and the quantity of CM S routing tracks in each routing channel. Area
efficiency is defined to be the maximum amourt of logic that can be implemented in a given
amourt of area. The experiments consist of implementing a set of circuits on several variants
of the MB-FPGA architedure that have different granularity values and varying amounts of
CMSrouting tracks. The aea dficiency ismeasured over this pedrum of architectures, using
the synthesis, packing, and routing algorithms described in Chapter 4, Chapter 5, and Chapter
6, respedively. The dfea of these achitedures on the resulting speed of the drcuitsis also
measured.

As discussd in Chapter 1, a arefully designed CMS routing architedure an signifi-
cantly improve the aea-efficiency of datapath-oriented FPGASs for arithmetic-intensive apli-
cations. During the design process, it isimportant to match the CM S routing capadty with the
routing demands of typical arithmetic-intensive egplications. High capacity results in an
FPGA that can accommodate all coarse-grain routing demands in CM S routing tracks, but the
area dficiency suffersif CMS routing tradks are also used to route fine-grain nets or buses of
lesser width. Low capacity, on the other hand, forces wide buses onto routing tracks of lower
granularity values, resultingin urrealized areasavings.

The datapath-oriented FPGA architedure that will be studied in this chapter is the MB-

FPGA model that was introduced in Chapter 3. Figure 8.1 reproduces the overview of the MB-

167

FPGA architecture, for ease of reference The achitedure shown in the figure has two fine-
grain routing tracks and four CM S routing tracks per routing channel. Thefour CM Stradks are
grouped into a single routing kus o the grandarity of the achitecture is four. Recall that the
MB-FPGA designrequires the number of clustersin each super-cluster to be equal to the num-
ber of CMS routing tracks in arouting bus; consequently, there ae four clusters in each of the
super-clusters shown in the figure. The CMS routing capacity of the MB-FPGA architecture
can be dtered by changing the number of CMS routing trads in each routing channel or
simultaneously changing the width of the routing buses and the number of clusters in each
super-cluster. Therelative capadty of CM Srouting as compared to fine-grain routing can also
be changed byincreasing a decreasing the number of fine-grain routing tracks in each routing

channdl.

ECE=EEl]

Il Tl Tl
c c c
Il Tl Tl

==l

c S c S c
Il Tl Tl

E=Ell=<=

C | Connection Block Switch Block

Fine-Grain Routing Track
Cluster Super-Cluster .
CMS Routing Track

Figure 8.1: The MB-FPGA Architecture

1
[
(@]
[
| I—
1
[
@]
[
| I—

1
[
(@]
[
| I—

1
[
(@]
[
| I—

1
[
(@]
[

1
[
(@]
[
| I—

wn

The specific questions concerning the CMS routing resources of MB-FPGA that are

answered in this chapter include:

168

1. What isthe dfect of the granularity of the MB-FPGA architecture onits area efficiency?
2. What isthe dfect of the amount of CM S routing tracks onthe aea dficiency of the MB-
FPGA architecture?
3. How doesthe MB-FPGA architecdure compare against conventional FPGA architedures?
Sedion 8.5.1 shows that the granularity values of 2 and 4 are the best for area Section
8.5.2 showsthat, in order to achieve goodarearesults, nealy half of the routing tracks in each
routing channel shoud be CM S tracks for a wide range of granularity values. Finally, Section
8.5.3 shows that, comparing to the cnventional architecture [Betz99a] described in Chapter 2,
the MB-FPGA architedure is nealy 10% more area dficient for implementing datapath cir-
cuits.
This chapter is organized as foll ows. Secion 8.2 reviewsthe MB-FPGA architecture and
lists architectural parametersinvolved in this gudy; Section 8.3 describes the experiment pro-
cedure; the limitations of this work are discussed in Sedion 8.4; Section 8.5 presents experi-

mental results and explanations; and concluding remarks appear in Sedion 8.6.

8.2 MB-FPGA Architectural Assumptions

The set of potential FPGA architecturesis an extremely large design space. For example,
22 architectural parameters are needed to completely describe the MB-FPGA architedure pre-
sented in Chapter 3. Conventional architedures can be daracterized using fewer design
parameters snce they only contain fine-grain resources. Nevertheless, fourteen architecural
parameters are still needed the to completely charaderize the conventional FPGA architecture
described in Chapter 2. In addition to the achitedural parameters, one dso hasto specify the
sizeof each type of transistor in order to get meaningful area and speed measurements.

This combination of parameters creates a design space that is too large to be explored

completely. The study conducted in this chapter uses a more intelligent exploration strategy

169

where many of these parameters are set to be know good \alues from previous FPGA studies.
Care is aso taken in the parameter seledion process to ensure a fair comparison between the
MB-FPGA architecture andthe mnventional FPGA architecture.

In the remainder of this sction, the achitectural parameters involved in this gudy are
first summarized and defined. Then the selected values of each parameter are presented and

justified. Finally, the transistor sizing issues are discussed in detail .

8.2.1 A Summary of Architectural Parameters

The 22 architectural parameters that completely define the MB-FPGA architecture are
listed in Table 8.1. The first column shows the dassficaion of the achitedural parameters;
and column 2 lists the symbals that will be used in this chapter to reference each of these
parameters. As shown by the table, the parameters can be clasdfied into five categories. The
first category, routing capadty parameters, contains three members, M, Wy, and W.. These
parameters charaderize the routing capacity of the fine-grain and the CMS routing tradks in
each routing channel of the MB-FPGA architecture. The second caegory, super-cluster
parameters, contains four members, K, N, I, and Tp. Along with M, these parameters com-
pletely define the structure of the MB-FPGA super-clusters. The third and the fourth category,
connection Hock and switch block parameters, contain seven members each. They define the
complete structures of the connection Hocks and the switch blocks, respedively. Finaly the

pad_ratio parameter defines the I/O block charaaeristics of the MB-FPGA architecture.

Class. | Symb. Egg‘;\ Definition
Routing M no |thegranularity of the achitecture
Capacity Ws yes | the number of fine-grain routing tracks in arouting
Parameters channel
W, no |thenumber of CMSroutingtracksin arouting channel

Table 8.1: MB-FPGA Architectural Parameters

170

Conv. S
Class. Symb FPGA Definition
Super- K yes | LUT size— the number of inpusthat aLUT has
Cluster N yes | the number of BLES per cluster
Parameters I yes | the number of cluster inputs per cluster
Tp yes | thetopdogy of the physical placement of super-cluster
inputs and outputs
Connec- Fc if yes | the number of fine-grain routing tracks that a super-
tion Block cluster input conrects to as a percentage of W;
Parameters | ¢ ¢ no |thenumber of routing buses that a super-cluster input
bus conrects to as a percentage of W /M
Fc_of yes | the number of fine-grain routing tracks that a super-
cluster output conrects to as a percentage of W
Fc oc no |the number of routing buses that a super-cluster output
bus conrects to as a percentage of W /M
Fc_pf yes | the number of fine-grain routing tracks that an I/O
block inpu/output pin connects to as a percentage of
Wi
Fc pc no |the number of routing buses that an pad-inpu/pad-out-
put bus conrects to as a percentage of WJ/M
T yes |thetopdogy of the physicd placement of isolation
buffers
Switch Ts yes | the switch block topdogy
Block Fs f yes |thefine-grain flexibility of the switch blocks — the
Parameters number of fine-grain tradks that each fine-grain track
conrectsto in aswitch block
Fs c no |the CMSflexibility of the switch blocks — the number
of routing buses that arouting bus conrectsto in a
switch block
Ls yes |thelength of afine-grain routing track
Lc no |thelength of aCMS routingtrack
yes | thetype of fine-grain routing switches that connect
fine-grain routing tracks to each other in a switch block
Sc no |thetype of CMS routing switches that connect routing
buses to each other in a switch block
[/OBlock | pad ratio| yes |MB-FPGA: the number of I/O blocks residing onone
Parameter side of a super-cluster
conventional FPGA: the number of I/0O blocks residing
on ore side of acluster

Table 8.1: MB-FPGA Architectural Parameters

171

The 14 architectural parameters that describe the conventional FPGA architecture pre-
sented in Chapter 2 is a subset of the 22 parameters listed in Table 8.1. Column 3 of the table
indicatesif a parameter listed in Table 8.1 also can be used to describe the cnventional FPGA
architedure. The definition d each parameter is given in column 4. These definitions are self
explanatory when Chapter 2 and Chapter 3 are referenced for the conventional FPGA and the

MB-FPGA architectures, respectively.

8.2.2 Parameter Values

The values used for each parameter are listed in Table 8.2, where the dasdfication and
the symbol of each parameter are listed in column 1 and 2 respedively. As shown by column

3, al 22 parameters are involved in the investigation d question 1 and 2. M, Wy, and W, are

the variables of the investigation. K is set to be 4 since it has been shown that 4-LUTs are one
of the most efficient LUT sizes [Rose90] [Ahme00] and this LUT sizeis also used in many
commercial FPGAs [Alte02] [Xili02]. N and | are set to be 4 and 10respedively since this
combination was shown to be one of the most efficient by [Betz97b] [Betz98] [Betz99a] andis
used in many previous FPGA studies [Ahme00] [Betz99a] [Betz99b] [LemiOl] [Marq99

[Marg00a] [Marg00b] [Sank99]. Ty and T, are discussed in detail in Sedion 8.2.2.1 and Sec-

tion 8.2.2.2, respectively.

For the remaining parameters, both Fc_ic and Fc_if are set to be 0.50; and Fc_oc and
Fc_of are set to be 0.25. These values were found to generate good arearesults by the study
dore in [Betz99a] for fine-grain routing resources. Due to the ladk of studies on Fc_pf, bath
Fc_pc end Fc_pf are set to be 1.00 as it isdore in [Betz99a] for fine-grain routing tradks. To
minimizethe impad of not using the best values for Fc_pc and Fc_pf, the aeaof theinpu and

output connection Hocks of the I/0 blocks are excluded from the total areacount. This exclu-

172

val. for Q1 & Val. for Q3
Class. Param.
Q2 MB-FPGA Conv. FPGA
Routing M variable 4 n.a.
Capacity W; variable variable variable
Parameters W, variable variable n.a
Super- K 4 4 4
Cluster N 4 4 4
Parameters | 10 10 10
To seeSec 8.22.1 | seeSec 8221 | seeSec 8221
Connec- Fc if 0.5 best best
tionBlock | Fc ic 05 equal to Fc_if n.a
Parameters [Fo of 0.25 best best
Fc _oc 0.25 equal to Fc_oc n.a.
Fc_pf 1.0 best best
Fc pc 10 equal to Fc_pf n.a.
T seeSec 8.22.2 | seeSec 8222 | seeSec 8222
Switch Ts digoint digoint digoint
Block Fs f 3 3 3
Parameters Fs c 3 3 n.a
Ls 2 best best
L. 2 equal to L¢ n.a
S bi-directional bi-directional bi-directional
buffered buffered buffered
S bi-directional bi-directional n.a
buffered buffered
/O Block | pad_ratio core-limited core-limited core-limited
Parameters

Table 8.2: Values for Architectural Parameters

sion simulates the real-life design practices of keeping bah datapath and its control logic on
the same chip in order to reduce the total number of chip-level I/Os.

The digoint switch block topdogy [Hsei90] with Fs f and Fs_c set to be threeisused for
bath the fine-grain tradk connedions and the CM S routing bus connections sncethisis one of
the most efficient and widely used topdogiesfor conventional FPGAs. A fully buffered global
routing architedure is also assumed — all switchesin the switch blocks are buffered switches

— since buffered switches are widely used in many current commercial FPGAs [Lewi03]

173

[Alte02] [Xili02]. Thetrad length is measured in terms of the number of super-clusters that a
routing tradk passes before it is interrupted by a switch. It is st to be two for both the CMS
and the fine-grain routing tradks. The tradk length of two along with the duster size of four
were foundto generate good arearesults in [Betz99a] for conventional FPGAs. Finally, the
pad_ratio is assumed to be sufficiently high so all benchmarks are @re-limited — the mini-
mum arearequired to implemented each benchmark is bounded by the aeaof the logic and
routing resources needed instead of the aearequired to implement the 1/O blocks of the
benchmark.

The investigation d question 3 requires the definition d two sets of independent archi-
tectural parameters. One set describes the MB-FPGA architecture andis shown in column 4 of
Table 8.2. The other set describes the amnventional FPGA architecture andis ghown in column

5. For MB-FPGA, W; and W are the variables of the investigation. M isset to be 4 sinceit is

shown to be one of the most area dficient granularity values by the results of question 1. K is
again set to be 4; and again all benchmarks are assumed to be core-li mited.

The rest of the parameters can be dasdfied into two groups — one group describes the
topdogical features of the architedure and the other group consists of single numerical values.
The topdogical parameters, including Tp, T, Tg Fs f, Fs_c, &, and S, are set to be the same
values as the ones used in theinvestigation o question 1 and 2. Two of the numericd parame-
ters, N and |, describe the super-cluster structure; and they are dso set to be the same values as
the ones used to addressquestion 1 and 2.

The remaining parameters describe the MB-FPGA routing architecure. As shown in
Table 8.2, it is assumed that the achitectural parameters that describe the CMS routing
resources are always equal to their correspondng parameters that describe the fine-grain rout-

ing resources. Since the routing resources usually consume the majority of FPGA area these

174

fine-grain parameters, including Fc_of, Fc_if, Fc_pf, and Ly, are systematically seached to
ensure that the best possible area results are obtained for the MB-FPGA architecture. These
experimentally determined values will be presented in detail in Section 8.5.3.

To fairly compare the aea efficiency of the anventional architecture with the MB-
FPGA architecture, the corresponding numerical parameters of the conventional architecture,

including Fc_of, Fc_if, Fc_pf, and L¢, are dso systematically searched to find a set of values

that generate the best area. These experimentall y determined values will be presented in detail
in Section 8.5.3. Finally, for the cnventional architecture, all benchmark circuits are assumed
to be core-limited; and all other parametersto are set to be the most areaefficient values based

onthe results of the previous studies, which are summarized for question 1 and 2.

8.2.2.1 Physical Placement of Super-Cluster Inputs and Outputs
In Table 8.2, T, represents the distribution topdogy d the input and ouput pins for an

MB-FPGA super-cluster or a conventional FPGA cluster. For the mnventional FPGA, the
cluster inpus and autputs are assumed to be uniformly distributed around the perimeter of
each logic cluster similar to the distribution topdogy used in [Betz99a] [Betz01]. This distri-
bution topology takes the alvantage of the logical equivalency among the duster inpus or
outputs [Betz99a]. An example of the distribution topdogy is shown in Figure 8.2. Here each
number represents either a cluster inpu or acluster outpt.

The MB-FPGA uses a simil ar distribution topdogy for the super-cluster inputs and out-
puts. However, insgtead of uniformly distributing cluster inpus or cluster outputs, the input
buses or output buses are uniformly distributed. For the MB-FPGA architecture, each number

in Figure 8.2 represents an inpu/output bus instead of an individual cluster input/output.

175

1 2 3 1
4
10 Cluster/ Cluster/
Super- 5 4 Super- 2
9 Cluster 6 Cluster
8 7 3
(a) Physical Placement of (b) Physical Placement of
10 Cluster Inputs or 4 Cluster Outputs or
Super-Cluster Input Buses Super-Cluster Output Buses

Figure 8.2: T, for FPGA Architectures with N =4 and | = 10
Again this uniform distribution topd ogy takes the alvantage of the logical equivalency among

inpu buses or output buses when carry chains are not used.

8.2.2.2 Physical Placement of Isolation Buffers

In Table 8.2, T, represents the physical placement of the isolation buffers in either the

MB-FPGA architedure or the conventional FPGA architedure. Recdl that the function d the
isolation bufersisto eledrically isolate the routing tracks from the input conredion blocks.
For the mnventional FPGA architecture, ead routing track has one isolation bufer for each
cluster positionthat it passes [Betz99a]. An example is shown in Figure 8.3 where an X indi-
cates the presence of an isolation bufer. In the figure, the amnventional FPGA consists of 16
clusters, 5 horizontal routing channels, and 5 \ertical routing channels. There is one routing
track in each routing channel; and these tracks are labeled x1to x5and y1 to y5. In total, there
are 40 isolation bufersin the figure. In general, the total number of isolation bufers, C, ina
conventional architecture can be determined by the following formula:
C=Wx(Xx(Y+1)+(X+1)xY),
where W is the number of routing tracks in each routing channel. X isthe number of rows of

clusters; and Y isthe number of columns of clusters.

176

yl y2 y3 y4 y5
x1
Cluster Cluster Cluster Cluster
x2
Cluster Cluster Cluster Cluster
x3
Cluster Cluster Cluster Cluster
x4
Cluster Cluster Cluster Cluster
X5

Figure 8.3: Isolation Buffer Topology for Conventional FPGA

For the MB-FPGA architecture, electricdly, it is aso sufficient to placeonly one isola
tion buffer for every super-cluster paosition that a routing track passes. However, this topdogy
givesthe MB-FPGA architecture an urfair area advantage since it needs only half of the isola-
tion buffers as compared with an equivalent conventional FPGA architecture. This unfairness
isillustrated by Figure 8.4, whichis atransformation of Figure 8.3. The mnventional architec-
turein Figure 8.3 is transformed into the MB-FPGA architedure shown in Figure 8.4 by rear-
ranging the routing tracks and the dusters. In Figure 8.4, every four clustersare grouped into a
super-cluster. As shown, only 20 isolation buffers are needed for the new architecture. In gen-

eral, the total number of isolation bufers, C', needed in the transformed MB-FPGA architec-

ture is determined bythe formula:

177

yl y2 y3 y4 yS

x1
X2
Cluster Cluster Cluster Cluster
Cluster Cluster Cluster Cluster
X3
x4
Cluster Cluster Cluster Cluster
Cluster Cluster Cluster Cluster
x5

Figure 8.4: Equivalent MB-FPGA Architecture

Crm wx XX(Y+1) , X+ 1) x¥o_ _C

] Tl BT

Since isolation bufers do nd influence the overall routing capadty of the FPGAS, this
reduction in isolation buffers would unfairly advantage the MB-FPGA architedure in area
measurements. Throughout this gudy, extra isolation buffers are added to the MB-FPGA
architecure to cancel this unfair advantage. For the MB-FPGA architecture shown in Figure
8.4, two isolation bufers, instead of one, are courted for every super-cluster position that a
track passes. Note that the adjusted isolation bufer placement slightly disadvantages the M B-

FPGA architecture if all routing channelsin Figure 8.4 contain two routing tracks.

178

8.2.3 Transistor Sizing

Each type of transistor used in the experiments is szed according to the methoddogy
laid ou in [Betz99a] based on the TSMC 0.18um process Both the MB-FPGA architecture
and the conventional FPGA architecture use the same transistor sizes for the same transistor
types.

In particular, for configuration memory, each of the six transistors in an SRAM cell is
sized to be minimum width; and each tri-state buffer in a buffered switch is szed to have a
drive strength that is five times of the minimum drive strength. Note that the difference
between the SRAM size and the tri-state buffer size is one of the major factorsin determining
the effectiveness of configuration memory sharing in increasing area dficiency. Unlike the
current study, none of the previous gudies [Cher96] [Lelj03] have detailed enough models to

take this sizing effect into accourt.

8.3 Experimental Procedure

This ®dion describes the experimental procedure that is used to investigate the MB-
FPGA routing architecture. The CAD flow used throughou this investigationis shown in Fig-
ure 8.5(a). Itsinput consists of fifteen benchmark circuits from the Pico-Java processor from
SUN Microsystems [Sun99. The benchmark set covers all major datapath comporents of the
processor. These drcuits are synthesized into LUTs using the EM C datapath-oriented synthe-
sis process described in Chapter 4. This g/nthesis processpreserves the regularity of datapath
circuits while atempting to minimize area.

The synthesized circuits are then padked into super-clusters using the CNG datapath-ori-

ented padking algorithm as described in Chapter 5. The packing toadl triesto pack adjacent bit-

179

15 Benchmark Circuits 15 Benchmark Circuits

Synthesis Synthesis
(EMC Chap 4) (Best Flat)
Packing Packing
(CNG Chap 5) (T-VPack)
Placement Placement
(Section 6.3) (VPR)
Routing Routing
(CGR Chap 6) (VPR)

Area Measurement Area Measurement

(a) CAD Flow for the MB-FPGA (b) CAD Flow for A Conventional
Architecture FPGA Architecture

Figure 8.5: CAD Flows

slicesinto a series of super-clusters. The padker also utilizes the super-cluster level carry con-
nections to minimize the delay of carry chains. The padked circuits are then placed using a
placement algorithm modified from the VPR placer [Betz994] as described in Section 62. The
algorithm moves super-clusters as a basic unit if they contain grouped hit-slices. Otherwise,
nondatapath clusters are optimized individually. The placed circuits are then routed using the
CGR datapath-oriented router described in Chapter 6, which is modified to efficiently use the
CMS routing resources. Using a set of specially designed cost functions, the router triesto bal-
ance the use of the fine-grain routing resources with the use of the CMS routing resources
based oncongestion and the goal of timing opimization.

The arearesults used to addressquestion 1, 2, and 3 are measured at the end o the CAD
flow. There are two options for averaging the area results aaossthe fifteen benchmark cir-

cuits. They are the geometric averaging method, which weights each circuit equall y regardless

180

of its gze, and the arithmetic averaging method, which gives propartionally more weight to
larger circuits. For this gudy, the arithmetic averaging methodis used, so the results contain a
higher percentage of contribution from the larger benchmark circuitsin the benchmark suite.
Figure 8.5(b) shows the flow used for the conventional FPGA architedure, whose area
results are used in comparison with the MB-FPGA architedure to address question 3. For this
flow the best avail able flat synthesis results of Chapter 4 is used instead of the regularity pre-
serving datapath synthesis. The T-VPad agorithm is used for packing; and the VPR tools

[Betz994] are used for placement and routing.

8.4 Limitations of this work

This dion dscusses the effeds of the architectural assumptions and the experimental
procedure on the acuracy and the implication of the results that are presented later in this
chapter.

The models that have been used for the MB-FPGA and the conventional FPGA architec-
tures are highly realistic. As a result, each modd contains a large amount of architecural
parameters. Because of this high degreeof parameterization, it isimpaossble to oltain the best
architeaures through afull exploration of the design spaces. Insteal, the val ues of many archi-
tectural parameters are seleded based on previous studies on conventional FPGA architedures
as practical time limits preclude complete explorations. For the MB-FPGA architecure, these
are only “best-guessed” values snce the MB-FPGA contains several significant differences
from the previous conventional FPGA architedures.

The benchmarks used in this gudy are all regular datapath circuits. The €f ectiveness of
the achitecture in implementing irregular control logic is not examined. Furthermore, since
the benchmarks are mainly 32-bit wide datapath circuits, the dfectiveness of the MB-FPGA

architecure in implementing wider datapath circuits can orly be inferred from these results.

181

Finally, as all other empiricd studies, the accuracy of the results that are presented in this
chapter depends on the quality of the CAD tools employed in the investigation — the results
reflead what is achievable by the arrent state-of-the-art tools; and future results might vary

with the development of the CAD techndogy.

8.5 Experimental Results

The experimental results that are presented here ae based onthe fifteen benchmark cir-
cuits used in the verification experiments from Chapter 4 through Chapter 6. Various aspects
of these drcuits were described in Table 4.1, Table 5.1, and Table 6.1. Furthermore, their regu-
larity was quantified and analyzed in detail in Chapter 7. In this section, these circuits are used
to investigate the dfed of M and W, onthe area dficiency of MB-FPGA. They are dso used
to compare the aea dficiency of the MB-FPGA architecture against the conventional FPGA

architedure.

8.5.1 Effect of Granularity on Area Efficiency

While Chapter 7 indirealy investigates the achitectural implications of granularity
throughits effect on logic and ret regularity, the direct effect of granularity onthe aea effi-
ciency of MB-FPGA is examined here. Note that this examination is based on the set of
parameters listed in column three of Table 8.2; and in order to separate out the dfed of granu-
larity on coarse-grain logic from its effed on coarse-grain routing, MB-FPGA architedures
containing ony fine-grain routing tracks are first investigated. Then CMS routing tracks are

added to these achiteduresto fully explore the eff ect of granularity on MB-FPGA.

182

8.5.1.1 MB-FPGA Architectures with No CMS Routing Tracks

Figure 8.6 plots the average aearequired to implement the benchmark circuits versus M
for MB-FPGA architedures that contain no CMS routing tracks. The X-axis represents the
granularity values. The Y -axis represents the average aea; and it is measured using the equiv-
alent minimum-width transistor areamodel as described in [Betz99a]. As shown, the granular-
ity values of 2 and 4 consume the least area. As the granularity value is increased beyond 4

the average arearequired increases sgnificantly.

A Minimum-Width Transistor Area (x106)
3.20 -
A

3.04 1
2.88 |-
2.72
2.56 |-
2.40 | 9
2.24 -
2.08 |-
1.92F
1.76 |-
1.60 |-

5% Increase in Area

Granularity (M)

| | | | | | | | |
7 4 8 12 16 20 24 28 32 >

Figure 8.6: Total Area vs. M with No CMS Routing Tracks

The primary cause of this increase is due to the large demand for routing created by
increased super-cluster capadties, which is a consequence of the high granularity values. As
the granularity value is increased, the logic capadty of the super-clustersincreases propartion-
ally. For example, for a 32-bit wide achitedure, there ae 1281o0k-up tables, 320 inpus and
128 outputs per super-cluster. Such large super-clusters need to be served by very wide routing
channels; and in wide routing channels, each super-cluster input is conneded to many routing

tracks. Thisresultsin avery large inpu connection block. Similarly, the size of the output con-

183

nection Hocks also increases sgnificantly as the routing channels get wider. It is observed,
through our experiments, that this areaincrease cannot be countered by simply reducing the
values of Fc_if and/or Fc_of. (For example, no further areasavings can be achieved by reduc-
ing Fc_of to lessthan 0.25, which isthe most area efficient Fc_of value for N = 4 [Betz994].)
Asaresult, the aea consumed by the global routing resourcesis significantly increased as M
isincreased.

Note that the cause of this area increase is very different from a similar scenario
described in [Betz994]. In [Betz99a], for the mnventional FPGA architecture, the aea that
required to implement a set of benchmark circuits increases as the duster size, N, isincreased.
The cause of thisareainflation, however, is due to the quadratic increase in area cmnsumed by
the local routing resources inside the clusters.

Inthe current experiment, the local routing resource aeaconsumed by each super-cluster
increases only linealy with respect to the granularity value, M, since N and | are fixed at 4 and
10, respectively. As aresult, the logic aea— the total area consumed by the super-clusters —
remains relatively constant. Figure 8.7 plots thislogic area versus M averaged over the bench-
marks. The figure shows that the average logic area increases only by 136 as M isincreased
from 2 to 32 In contrast, in Figure 8.6, the average total area (the logic areaplus the global

routing areg isincreased by 9%% over the same range of granularity values.

8.5.1.2 MB-FPGA Architectures with CMS Routing Tracks

Figure 8.8 plotsthe average aearequired to implement each benchmark circuit versus M
for MB-FPGA architectures with CM S routing tradks. The X-axisis M; and the Y-axis isthe
minimum-width transistor area. The plot contains two curves. The top curve represents the
MB-FPGA architectures with noCM S routing tracks and is the same aurve that was shown in

Figure 8.6. The bottom curve represents the most area dficient MB-FPGA architectures that

184

5.3
5.2
5.1
5.0
4.9
4.8
4.7
4.6
4.5

A Minimum-Width Transistor Area (x105)
5.41

L 13% Increase in Area
| | | | | | | Granulayity (ML
2 4 8 12 16 20 24 28 32

Figure 8.7: Logic Area vs. M with No CMS Routing Tracks

contain CM S routing trads. The percentage of CMS routing tracks in each routing channel,

w
which is cdculated by the formula V_V—+C—VV— is also labeled beside each data point on the bot-
f

tom curve.

c

A Minimum-Width Transistor Area (x106)

3.20
3.04
2.88
2.72
2.56
2.40
2.24
2.08
1.92
1.76
1.60
1.44

MB-FPGA without o
CMS Routing 4i>/ -

Tracks

Best MB-FPGA
<I—— with CMS Routing

50% Tracks

Granularity (M)

| | | | | | | | |
2 4 8 12 16 20 24 28 22 >

Figure 8.8: Areavs. M with CMS Routing Tracks

185

As down, for al granularity values, CMS routing tracks can be dfectively used to
increase the aea dficiency of MB-FPGA. For example, when M is equal to 2, the best archi-
tecture with CM S routing tracks is 5.6% smaller than the architecture with no CMS routing
tracks. When M is equal to 4, the best architedure with CMS routing tracks is 11% smaller
than the achitedure with no CM S routing tracks. Overall, the most area efficient MB-FPGA
architeaure, shown in Figure 8.8, has agranularity value of 4 and contains a CM S tradk court

that is equal to 55% of the total number of tracksin each routing channel.

8.5.2 Effect of Proportion of CMS Tracks on Area Efficiency

Figure 8.9 plots the average area consumed by each benchmark circuits againgt the per-
centage of CM S routing tradks in each routing channel. The X-axis represents the percentage
of CMS routing tracks per channel. The Y -axis represents the aea. There are 9 curves in the
figure; and each curve represents an MB-FPGA architedure with afixed granularity value of
M. An X marks the locaion of the minimum areaon each curve. As shown, except M = 20, the
most area efficient propation d CMS routing tracks remains relatively constant at between
40% to 6% range for all granularity values. (Note that for M = 20, lessCMS routing tracks
are nealed since, as discussed in Chapter 7, relative small amourt of logic and net regularity
are captured by the CAD flow at this granularity.)

This relative consistency of the best proportion o CMS routing trads can be explained
by the percentage, P, of inter-super-cluster two-terminal connections that can be grouped into
M-bit wide buses after packing. These connections can be most efficiently routed throughthe
CMS routing tracks. For each granularity value in the graph, P is marked by an O. The graph
shows that the most area efficient percentage of CM S routing tradks is around P + 10% for
smaller granularity values of 2, 4, and 8 and aroundP + 30% for larger granularity values of

16, 24, 28, and 32 Interestingly, at smaller granularity values, more two-terminal connedions

186

———-— M=32
AMinimum-Width TransistorArea(xlOe) - — — M=28
3.207___“ — - - —-—M=24
3.02 \‘\o——————j\ ————— M =20
e S M = 16
2.84 | - - — o — —M=12
— - O T M=8
2.66 R . __M=4
248 | - M=2
S
230} ------ -
e o. . /
2.12 L B - x- T 7 7
1.94 | — - - —c — 7 /
/
1.76
1.58 |
W . /(W+W
1.40 L L L L L L L L L T L L L L L C(| f L i
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Figure 8.9: Area vs. Proportion of CMS Tracks
are aptured in buses by the CAD flow, so P already is a quite large number. For larger granu-

larity values, however, fewer connedions are captured in buses; and Pisrelatively small.

The main reason for the most areaefficient percentage value to deviate more from P at
larger granularitiesis that, at high granularity values, the mnfiguration memory area is amor-
tized among a greaer number of CMS routing tracks. As a result, the cost per tradk for the
CMS routing tracks deaeases as the granularity value isincreased. This reductionin cost war-

rants the increased use of CM S routing tracks relative to P,

8.5.3 MB-FPGA Versus Conventional FPGA

This sction compares the MB-FPGA architedure against the conventional FPGA archi-
tecture by measuring the average area required to implement the benchmark circuits on each
of the architectures. Two sets of experiments were performed. The first set of experiments
determines the most area efficient values for the numerical parameters describing the routing

architeaures. Using these values, the second set of experiments measures the area, as well as

187

the performance, of the benchmark circuits implemented onthe two architectures. Each set of

these experimentsis described in turn.

8.5.3.1 Parameter Results

Thefirst set of experiments g/stematically searches four numerical parameters, including
Fc_of, Fc_if, Fc_pf, and L. A divide-and-conquer approach is used to reduce the number of
searches required to explore this four dimensional design space First, the most area dficient
value of Fc_of is determined. Then the best valuesfor Fc_if and Fc_pf are determined using an
iterative gproach. Finally, the most area efficient value of L; is determined experimentally. To
further reduce the number of searches, only the MB-FPGA architectures that contain noCM S
routing tracks are mnsidered in most of the experiments. It is assumed that these results are

generally true acossall MB-FPGA architectures.

Fc of

As it is described in [Betz994], for the conventional FPGA architedure, the most area

efficient values for Fc_of isequal to %1 Using the same set of experiments, it is found that the

same formula appli es to the MB-FPGA architecture cmntaining no CMS routing tracks.

Fc if and Fc_pf

An iterative goproach is used to determine the most area dficient values for Fc_if and
Fc_pf using the MB-FPGA architecture without CM S routing tracks. For iteration 1, the Fc_pf
is set to be 1.00. Figure 8.10 dots the average aea consumed by the routing resources against
Fc_if in implementing the benchmark circuits. The X-axis in the figure represents Fc_if. The

Y -axis represents the area As shown, the best areais generated when Fc _if is equal to 0.5.

188

A Minimum-Width Transistor Area (x106)
137+

1.36 -
135+
134+
133+

132+
Fc_if

| | | | | | |
03 035 04 045 05 055 06 >

Figure 8.10: Iteration 1: Routing Area vs. Fc_if for Fc_pf=1.00

Inthe second iteration, Fc_if isset to be 0.5, which isthe most area efficient valuein iter-
ation 1 Fc_pf is plotted against the routing area & own in Figure 8.11. As $hown, the best
areais achieved when Fc_pf isequal to 0.2. Finaly in the third iteration, Fc_pf is %t to be 0.2;
and Figure 8.12 plots the average routing area ajainst Fc_if. The best area is achieved when
Fc if is equal to 0.4. Subsequent iterations confirm that the most area dficient values for
Fc_pf and Fc_if is equal to 0.2 and 0.4, respectively. Finally, using the same set of experi-
ments, the most area efficient values of Fc_pf and Fc_if are determined to be 0.5 and 04,

respedively, for the cmnventional FPGA architecture.

A Minimum-Width Transistor Area (x106)
1.23 -

1.21 -
1.19 -
1.17
1.15
1.13 -

, Fe_pf

| | | | |
0.1 0.2 0.3 0.4 0.5 0.6
Figure 8.11: Iteration 2: Routing Area vs. Fc_pffor Fc_if =0.5

189

A Minimum-Width Transistor Area (x106)
2290

2.09L
1.89 L
1.69 L
1.49 |
1.29 L
1.09 L

Fc_if

| | | | | | |
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Figure 8.12: Iteration 3: Routing Areavs. Fc_if for Fc_pf=0.2

Figure 8.13 is a plot of the average area required to implement the benchmark circuits
versus the tradk length, L. Here, the track length is measured in terms of the logicd tradk
length, which is equal to the number of super-clusters that a track spans. It is assumed that
50% of the tracksin the MB-FPGA architedureare CMS; and L ;. isalways equal to L. The X-
axis in the figure represents L¢, which ranges from 1 to 16 The Y -axis represents the area
There ae 4 curvesin the figure. Each curve represents an urique duster size, N, including 2
4, 8, and 1Q For these duster sizes, | isset to be 4, 10, 18, and 22 respedively. These values
of | are shown to generate goad area results for their correspondng cluster sizes [Betz99a]. As
shown, the duster size of 4 and the track length of 2 are the best architectural choice for the
MB-FPGA architecture. Furthermore, the track length of 2 is always the most area dficient
acrossall cluster sizes. Finally, using the same experiment, the best L; value for the conven-

tional FPGA architedure is determined also to be 2.

190

A Circuit Area in

Minimum-Width —e N=2
Transistor Area (x106)
-0 =4
2.20
—a =8
1.80
¥ L¢
160 1 1 1 1 >

1 2 4 8 1|6
Figure 8.13: Area vs. Logical Track Length

8.5.3.2 Area and Performance Results

After obtaining the best posshble achitectural parameters for MB-FPGA, a set of experi-
ments were performed by repeatedly invoking the CGR router over arange of values for W,
and W;. For eadh invocation a fixed value of W, is first chasen from the range of 0 to 80in
increments of 4. Then the router is instructed to seach for the minimum value of Ws that is
needed to succes<ully route each of the benchmark circuits. The resulting MB-FPGA archi-
tectures are then classified into eight groups based on the percentage of total trads that are
CMS tracks. The percentile ranges are (0%, 0%], (0%, 10%], (10%, 20%)], (20%, 30%], (30%,
40%], (40%, 50%)], (50%, 60%], and (60%, 70%]. Within each region, the minimum area
obtainable by each circuit is first recorded. These minimum areavalues are then averaged
acrossthe fifteen benchmark circuits. The area again is measured in terms of the number of
equivalent minimum-width transistor area @& described in [Betz99a]. The arithmetic average
of the aeavaluesisthen plotted against each percentil e range.

Figure 8.14 is a graph o the total area versus the percentage of routing tracks that are
CMS tracks in the MB-FPGA routing architecure. The figure shows that when there ae only

a small percentage of CMS routing tracks, the implementation areaof circuits on MB-FPGA

191

A Circuit Area in Minimum-Width Normalized A

Transistor Area (x106) Circuit Area
1.60 - 1100.0%
1.50 - -4 95.0%
1.40 ! ! ! ! | | ! | 90.0%

0% 0%- 10%-20%-30%-40%-50%-60%- % of CMS Tracks
10% 20% 30% 40% 50% 60% 70%

Figure 8.14: Area vs. Percentage of CMS Tracks

actually increases with the increased number of CMS routing tracks. There ae two main
causes of thisinitial increase in area. First when there ae few CMSroutingtradcs, not all logic
block inpu pins can be connected to all 1ogic block output pins through CMS routing. This
limitation dramaticaly reduces the usefulnessof the CMS routing resources, hence resulting
inincreased area. A secondary cause isthat asthe CM Srouting tradks are alded to the routing
fabric, routing resources are differentiated into two types. This differentiation reduces the rout-
ing flexibility and also accourts for therisein area.

As the number of CM S routing tracks is increased to the 20% range, enoughlogic block
pins can be conneded to each ather throughthe CMS routing trads; and the benefit of CMS
routing tracks garts to outweigh the decreased flexibility in routing. As aresult, the total area
required decreases urtil it reaches the minimum when CMS routing tracks accourt for
between 40% to 50% of the total number of routing tracks. When the number of CMStradsis
further increased, the number of CMS routing tracks provided by the achitedure starts to
excedal the number of CMS routing tradks required by the circuits. The router then isforced to
use CMS routing tracks to implement fine-grain routing. This reduces the dficiency of the

MB-FPGA architecture past the 50% point.

192

Overall, the best area is achieved when CMS routing tracks accourt for 40% to 50% of
the total number of routing tracks, where the benchmark circuits use 6% less area comparing
to architectures with no CM S routing tracks. It is interesting to nae that even though 9% of
LUTs in the benchmark circuits belong to four-hit wide datapath comporents, only 40% to
50% of CM S routing tracks are needed. It is because many datapath componrents are nat only
connected by buses but also by a substantial amourt of non-bus control signals, indicaing that
even highly regular circuits need many fine-grain routing tracks.

Theright hand axis of Figure 8.14 al so shows the area data normalized against the aea of
the best conventional FPGA architedure. All MB-FPGA architedures performed better than
the best conventional architedure, where the 100% point represents the aea of the mnven-
tional architecture when implementing the same circuits. Even with no CMS routing trads,
the MB-FPGA architecture is 3.6% small er due to the more dficient datapath-oriented place-
ment and routing. Overall the best MB-FPGA architedure is 9.6% smaller than the best stan-

dard architecture,

A Normalized Delay
114.0%

113.4%
112.8%
112.2%
111.6%
111.0%
110.4%
109.8%
109.2%+
108.6%
108.0%

% of CMS Tracks

| | | | | | | |
0% 0%- 10%- 20%- 30%- 40%- 50%- 60%- >
10% 20% 30% 40% 50% 60% 70%

Figure 8.15: Normalized Delay vs. Percentage of CMS Tracks

193

Finally, Figure 8.15 dots the geometric average of circuit delay against the proportion o
CMS routing tradcks. The delay is normalized against the delay of the same circuits imple-
mented onthe mnventional FPGA architecture. Note that, here, the delay of the carry chainis
assumed to be the same as the delay of the local routing network. As shown the MB-FPGA
implementation is around % to 13% dower than the conventional FPGA implementation.
However, if the cary chains are much faster than the local routing network, this gpeed penalty

might be significantly reduced if not completely eli minated.

8.6 Summary and Conclusions

This chapter has explored the relationship between the capadty of CMS routing
resources and the aeacefficiency of MB-FPGA. The principle conclusions are that the granu-
larity value of 4 has the best area result. Furthermore, to achieve the best area results, 40% to
50% of the total number of routing tracks shoud be CM S routing tradks despite the faa that,
in the benchmark circuits, over 90% of LUTs are in regular datapath components. Finally, for
cluster sizeof four, the best MB-FPGA architectureis 9.6% smaller than the best conventional
architeaure. The best architecture, however, has a potential speed penalty of 9.2%. Note that
the aea savingis much less than the 50% savings predicated by the DP-FPGA study [Cher96].

Theresults suggest that in order for the configuration memory sharing technique to be an
effective methodology in achieving significant areasavings, the configuration memory areain
the target FPGA architedures must be significantly greater than the aea of the switch that they
control. The ase of using configuration memory sharing architedures for applications with
significantly more regularity and wider datapath than the benchmarks used in this gudy is

more cmpelling bu remainsto be proven in afuture study.

194

9 Conclusions

9.1 Thesis Summary

The main focus of thisthesis has been the study d datapath-oriented FPGA architedures
with regard to the dfect of multi-bit logic and CMS routing resources on their area dficiency.
The study’s purpose has been to determine the most appropriate anournt of CMS routing
resources that can be used in FPGASs in order to minimize the implementation area of real
datapath circuits under real modern CAD flows.

To this end, the first major in-depth study is condwcted onthe amourt of datapath regu-
larity that can be acually translated into area savings throughconfiguration memory sharing.
The study found that when detailed implementation issues are taken into aacount, the actual
achievable area savings can be significant lessthan the previous estimations. The configura-
tion memory sharing FPGA architedure, the MB-FPGA architecture, used in thisstudyisonly
about 10% more aeaefficient than a comparable conventional and widely studied FPGA
architecure in implementing datapath circuits. Furthermore, this increase in area dficiency
has a potential speed penalty of around 1@%.

In particular, the studies conducted in this thesis foundthat when transistors are properly
sized, the SRAM size relative to the tri-state buffer size in a buffered switch is not significant
enoughto generate significant area savings as predicaed by previous gudies, which do not
have detailed enough models to take the transistor sizing eff ect into account. Furthermore, the
study on catapath regularity foundthat net regularity does not necessarily correspond to logic
regularity. For example, for the benchmarks used in this sudy, 90% of the logic belongs to 4-
bit wide datapath components; only around 50% of the nets, however, belongs to 4-bit wide

buses.

195

Theresults suggest that in order for the configuration memory sharing technique to be an
effective methodology in achieving significant areasavings the configuration memory areain
the target FPGA architedures must be significantly greater than the aea of the switch that they
control. Note that for both the cnventional FPGA and the MB-FPGA architedure, SRAM
composed of minimum width transistors are found to be sufficient. This SRAM size & com-
pared to the size of areasonably sized tri-state buffer is not significant enough to generate
goodareasavings.

The cae of using configuration memory sharing architedures for applications with sig-
nificantly more regularity and wider datapath than the benchmarks used in this gudy is more
compelling but remains to be proven in afuture study. Finally, the study foundthat the config-
uration memory-sharing scheme still can be used to significantly reduce the amourt of config-
uration memory used to control an FPGA and remains to be a promising techndogy in
appli caions where such an effect is desired.

The research has been carried ou using an experimental approach. For the experimental
study, a new FPGA architecture cdl ed the Multi-Bit FPGA (MB-FPGA) has bee devel oped.
The achitecture contains both multi-bit logic and CM S routing resources. It is also highly
parameterized and closely resembles the duster-based architedures that have been widely
used in many academic studies and state-of-the-art commercial FPGAs. This close resem-
blance along with high parameterization enables a direct comparison between the area effi-
ciency of the MB-FPGA architecture and the aea efficiency of a @nventional FPGA
architecure that was widely used in many previous gudies.

During the study, new types of synthesis, packing, and routing algorithms, specially
designed to preserve and Uilize datapath regularity, have been used to measure the dfect of

CMS routing resources on the area efficiency of the MB-FPGA architecture. The results of the

196

work in this thesis provide new insights into the design o FPGA architectures that utilize
multi-bit logic and CMS routing resources. The thesis also provides an in-depth study on the
design and the @nstruction o datapath-oriented CAD tools and propases a method of system-

atically characterizing and quaentifying datapath regularity.

9.2 Thesis Contributions

This dissertation makes the following detail ed contributions:

In Chapter 3, the MB-FPGA architedure was described. It is the first datapath-oriented
FPGA architecture that contains a completely specified gobal and detail ed routing architec-
ture. The MB-FPGA organizes its logic resources into super-clusters, which can be used to
capture the intra-bit-slice mnredions into inter-super-cluster buses. These buses are then
routed throughthe global routing resources, which employs configuration memory sharing in
order to reduce the area overhead of transporting buses across the architecdure. The global
routing resources also contain a mixture of fine-grain and CMS routing tracks in each routing
channel, resulting in a homogenous architecture that is cgpable of implementing bah large
datapath circuits and small non-datapath circuits.

In Chapter 4, the Enhanced Modue Compadion (EMC) datapath-oriented synthesis
algorithm was described. It is the first pullished algorithm that preserves user-spedfied regu-
larity information in datapath circuits while achieving an areaefficiency that is comparable to
the conventional flat synthesis techniques. EMC employs two word-level optimizaion tech-
niques and severa hit-slice 1/0 optimizaions to enhance the area dficiency of the original
modue mmpaction algorithm. Furthermore, unlike the original modue mmpadion algo-
rithm, the EMC algorithm does not rely onthe results of any placement tools. EMC has been
used to oktain excellent synthesis results, especially in terms of area-efficiency and datapath

regularity preservation, for realistic datapath circuits implemented on FPGAs.

197

The Coarse-grain Node Graph (CNG) pading algorithm for MB-FPGA was developed
in Chapter 5. It isthe first pullished FPGA pading algorithm that preserves the regularity of
datapath circuits throughout the padking process CNG employs gedally designed cost func-
tions that take into account datapath regularity aswell as performance and area dficiency dur-
ing padking. CNG has been used to oltain excdlent pading results for realistic datapath
circuits implemented onthe MB-FPGA architecure.

The Coarse-Grain Resource (CGR) routing algorithm for MB-FPGA was described in
Chapter 6. It is the first pubished FPGA routing algorithm that accommodates CM S routing
resources, which share mnfiguration memory, as well as conventional fine-grain routing
resources. The accommodation is achieved by a set of specially designed cost functions that
balance the demands on each type of routing resources with their avail ability. The st func-
tions also all ow the optimization of FPGA routing area and routing delay. CGR has been used
to oktain excell ent routing results for redi stic datapath circuits implemented onthe MB-FPGA
architedure.

Chapter 7 determines appropriate values for several MB-FPGA architectural parameters
throughan analytical approad. It formally charaderizes and measures datapath regularity in
terms of two parameters — the logic regularity and the net regularity. Using the regularity
information, the granularity values of 2 and 4 are determined to be good \alues for the €fi-
cient implementation of datapath circuits on MB-FPGA. It also showsthat, for goodarea fi-
ciency, the number of fine-grain routing tracks should be & least 20% to 276 of the total
number of routing tracks. Finally, it shows that the M-bit wide shift blocks employed in the
DP-FPGA architedure are likely to be inefficient in area.

Chapter 8 gives the results of an experimental study of the effects of CMS routing

resources on the aea efficiency of the MB-FPGA architedure. This dudy is the first of its

198

kind for FPGASs that contain CMS routing resources. The principle conclusions reached are
that for the best area dficiency, 40% to 50% of the routing tradks in the MB-FPGA architec-
ture shoud be CMS routing tracks. This is true even for highly regular datapath circuits that
have over 90% of LUTs in regular datapath componrents. Also it shows that the granularity
value of 4 givesthe best area results for the MB-FPGA architecture when implementing 32hbit
wide datapath circuits. Finally, the results show that the best MB-FPGA architecure is 9.6%
smaller than the best conventional FPGA architecture. This area saving is much smaller than
the savings predicated bythe DP-FPGA study; andthe best architecture has aworst case speed

penalty of 9.2%.

9.3 Suggestions for Future Research

The MB-FPGA architecture can be used as aresearch vehicle to investigate into the vari-
ous questions regarding multi-bit logic and CM S routing resources, including:

1. Can configuration memory sharing ke dfedively used in super-clusters to further
increase the aea dficiency of the MB-FPGA architecture?Currently there is no shar-
ing d configuration memory inside the super-clusters. However, since, as described in
Chapter 3, in order to capture intra-hit-dli ce connections into inter-super-cluster buses,
identicd LUT configurations are often kept inside a single super-clusters and ead of
these identical LUTs are implemented in unique dusters, configuration memory shar-
ing acrossclusters might be able to reduce the implementation area of the super-clus-
ters. The sharing need na to be implemented for all logic andlocd routing resources;
instead, it might be most beneficial to only share cnfiguration memory for only a per-
centage of these resources. Reseach neeads to be done to find the best propation of
configuration memory sharing resources in a super-cluster. The CNG packing algo-

rithm also has to be modified accordingly to accommodate this architectural change.

199

2. Isthere any benefit to adding programmable anrections between the CM S routing
tracks and the fine-grain routing tradks inside the MB-FPGA switch bocks? Cur-
rently, it is assumed that inside each MB-FPGA switch block, there is no conrectivity
between a CMS track and a fine-grain trad. Adding such connectivity, however,
might increase routing flexibility by allowing buses to be dispersed into individual
signals and vice versa — individual signals to be grouped into buses. The benefit of
such added functionality is unclea and warrants further research.

3. Will there be any benefit in having different track lengths for the CM S routing tracks
and the fine-grain routing tradks? Buses and individual signals might have different
routing requirements. Having dfferent track lengths for these two types of tracks
might improve the overall performance of the MB-FPGA architecture and warrants
further reseach.

Several improvements can also be made to the MB-FPGA CAD toadlsincluding:

1. Fully automate the two word-level optimizations described in Chapter 4.

2. For the datapath-oriented routing algorithm, future research shoud improve upon the
timing performance of the router. The goal shoud be to achieve consistently good
routing delays regardless of the number of CMS routing tracks in each routing chan-
nel.

Finally, according to [Tuan03, configuration memory consumes significant amourt
(around 38%) of the total FPGA |eakage power. Configuration memory sharing allows the
programmable resources to share configuration memory; therefore, reduces the total amount
of configuration memory required to implement datapath circuits. It is possble that datapath-
oriented architedures like the MB-FPGA architecture will have much lower leskage power

consumption than conventional FPGAs — making it more suitable for implementing mobile

200

applicaions, which often are aithmetic and datapath intensive. This area warrants further

reseach.

201

202

Appendix A: Net Regularity Distribution

This appendix lists the net regularity distribution for the granularity values of 2, 4, 8, 12,
16, 20, 24, 28, and 32 It supplements the discusson presented in Sedion 7.5.2. Each section
lists the net regularity distributionfor a spedfic granularity value. Each row of the table crre-
sponds to a fixed bus width. Each column of the table corresponds to a fixed amourt of shift.
Each entry of the table lists the percentage of two-terminal connections that are in the buses

with the correspondng width and shift. Entries that are lessthan 1% are shaded in light gray.

A.1 MB-FPGA Architectural Granularity = 2

Bus Shift
Width 0 1

1 16% | 11%
2 59% | 14%

Table A.1: % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M =2

A.2 MB-FPGA Architectural Granularity =4

Bus Shift
Width 0 1 2 3

1 6.9% | 55% | 5.7% | 6.5%
2 20% | 34% | 3.0% | 2.3%
3 0.79% | 1.2% | 1.2% | 0.80%
4 54% | 28% | 2.2% | 1.5%

Table A.2: % of Inter-Super-Cluster Connections Contained in Each Type of
Buses forM =4

A.3 MB-FPGA Architectural Granularity = 8

203

Bus
Width

Shift

0

1

2

3 4

5

6

7

3.0%

2.7%

2.9%

2.8% | 3.1%

3.2%

3.1%

3.3%

1.5%

1.6%

1.3%

12% | 1.2%

1.1%

1.4%

1.1%

0.48%

0.68%

0.48%

0.54% | 0.50%

0.58%

0.39%

0.56%

2.3%

0.29%

0.35%

0.41% | 1.5%

0.16%

0.20%

0.16%

0.083%

0.033%

0.050%

0.13% | 0.33%

0.083%

0.050%

0.017%

0.54%

0.020%

0.20%

0.0% (0.080%

0.10%

0.34%

0.060%

0.23%

0.61%

0.023%

0.023%]0.070%

0.047%

0.070%

0.14%

NG| WIN

47%

1.6%

0.59%

0.13% | 2.1%

0.19%

0.80%

0.75%

Table A.3: % of Inter-Super-Cluster Connections Contained in Each Type of
Buses forM =8

A.4 MB-FPGA Architectural Granularity =12

Bus Shift

width| o 1 2 3 4 5 6 7 8 9 | 10 | 11
1 21% | 1.7% | 1.8% | 2.0% | 22% | 24% | 25% | 25% | 24% | 24% | 24% | 2.4%
2 0.80% | 1.2% | 1.2% | 0.96% | 0.82% | 0.79% | 0.98% | 0.77% | 0.92% | 0.79% | 0.82% | 0.65%
3 0.27% | 0.48% | 0.29% | 0.27% | 0.29% | 0.28% | 0.22% | 0.13% | 0.27% | 0.30% | 0.18% | 0.21%
4 3.0% [0.066%|0.053%]| 0.066%| 1.7% |0.092%)| 0.16% | 0.16% | 1.7% |0.013%]|0.066%)| 0.12%
5 0.050%| 0.017%| 0.033%] 0.033%]| 0.38% |0.017%| 0.0% |0.066%]|0.083%|0.0176| 0.0% |0.017%
6 0.28% | 0.0% |0.079%| 0.0% | 0.32% |0.020%| 0.20% | 0.0% |0.020%|0.040%|0.040%/|0.020%
7 0.069%| 0.21% | 0.0% | 0.0% |0.046%| 0.12% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
8 14% | 0.11% | 0.0% | 0.0% | 0.69% | 0.0% | 0.0% | 0.0% | 1.1% |0.026%|0.053%| 0.18%
9 0.62% | 0.059% 0.030%| 0.030%)| 0.08%%%| 0.059%| 0.0% |0.030%|0.030%| 0.05%%|0.030%|0.089%
10 0.43% | 0.0% | 0.0% | 0.0% | 0.0% |0.033%]0.066%|0.033%|0.033%|0.066%| 0.36% |0.033%
11 0.33% | 0.11% | 0.036%]| 0.036%)]| 0.036%]| 0.073%| 0.0% | 0.0% |0.036%|0.036%| 0.22% | 0.40%
12 27% | 1.3% | 0.24% | 0.12% | 0.75% | 0.12% | 0.36% |0.040%)| 0.75% | 0.040%)| 0.48% | 0.36%

Table A.4: % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M =12

A.5 MB-FPGA Architectural Granularity = 16

204

Bus Shift

Width| o 1 2 3 4 5 6 7
1 1.2% | 1.1% | 1.3% | 1.3% | 1.4% | 1.4% | 1.4% | 1.4%
2 0.82% | 0.87% | 0.70% | 0.67% | 0.64% | 0.69% | 0.66% | 0.73%
3 0.40% | 0.41% | 0.35% | 0.41% | 0.29% | 0.32% | 0.35% | 0.39%
4 1.0% | 0.19% | 0.22% | 0.20% | 0.70% | 0.19% | 0.16% | 0.07 9%
5 |0.083%)| 0.12% |0.033%|0.050%)| 0.26% |0.033%)|0.017%| 0.050%
6 | 0.10%|0.020%| 0.10% | 0.0% |0.040%)|0.060%)| 0.0% |0.020%
7 10.046%| 0.0% | 0.0% | 0.0% |0.046%]|0.046%)|0.023%| 0.0%
8 4.4% | 0.0% | 0.0% [0.053%| 0.42% | 0.0% | 0.0% | 0.0%
9 [0.089%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
10 [0.033%| 0.0% | 0.0% | 0.0% |0.033%| 0.0% | 0.10% | 0.0%
11 |0.073%| 0.15%| 0.0% | 0.0% | 0.0% [0.036%| 0.0% | 0.0%
12 | 0.60% | 0.0% |0.040%| 0.0% | 0.32% | 0.0% | 0.0% | 0.0%
13 | 0.0% | 0.0% | 0.0% |0.043%| 0.0% | 0.0% | 0.0% | 0.0%
14 | 0.97% |0.046%| 0.14% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
15 |0.25%] 0.89% | 0.0% | 0.0% | 0.0% [0.050%| 0.0% | 0.0%
16 34% | 0.79% | 0.21% | 0.11% | 0.32% | 0.11% | 0.21% | 0.11%

Table A.5: % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M =16 — Part 1 of 2

Bus Shift

Width| g 9 | 10 | 11 | 12 | 13 | 14 | 15
1 14% | 14% | 14% | 14% | 1.3% | 1.3% | 1.3% | 1.4%
2 0.73% | 0.58% | 0.62% | 0.67% | 0.77% | 0.75% | 0.81% | 0.72%
3 0.25% | 0.34% | 0.32% | 0.36% | 0.34% | 0.43% | 0.28% | 0.29%
4 0.52% | 0.079%| 0.11% | 0.12% | 0.87% | 0.15% | 0.19% | 0.21%
5 |0.083%| 0.033%)| 0.050%] 0.066%)| 0.066%)| 0.050%)| 0.050%| 0.050%]
6 |0.020%)] 0.020%)] 0.079%] 0.020%)| 0.060%)| 0.060%)| 0.020%| 0.0%
7 | 0.0% |0.046%| 0.0% | 0.0% [0.046%| 0.0% | 0.0% | 0.0%
8 2.2% |0.026%| 0.11% |0.026%| 0.13% | 0.0% | 0.0% |0.053%
9 |045%]0.030% 0.0% | 0.0% | 0.0% | 0.0% |0.060%| 0.0%
10 | 0.10%0.033%|0.033%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
11 | 0.11% |0.036%|0.073%| 0.0% |0.073%| 0.0% | 0.0% | 0.0%
12 0.040%| 0.0% | 0.0% | 0.0% | 0.20% | 0.0% |0.040%|0.040%
13 | 0.0% |0.043%| 0.0% | 0.0% |0.043%)|0.086%)|0.086%| 0.086%
14 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.046%)| 0.51% |0.046%|
15 |0.050%| 0.10% | 0.0% | 0.0% |0.050%| 0.0% | 0.10% | 0.40%
16 2.8% | 0.0% | 0.32% | 0.0% | 0.64% | 0.0% | 0.26% | 0.42%

Table A.6: % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M =16 — Part 2 of 2

205

A.6 MB-FPGA Architectural Granularity = 20

Bus Shift
Width| o 1 2 3 4 5 6 7 8 9
1 11% | 1.1% | 1.2% | 1.1% | 1.2% | 1.2% | 1.3% | 1.2% | 1.2% | 1.3%
2 0.54% | 0.63% | 0.58% | 0.54% | 0.50% | 0.69% | 0.65% | 0.72% | 0.70% | 0.77%
3 0.36% | 0.27% | 0.29% | 0.30% | 0.29% | 0.25% | 0.26% | 0.17% | 0.24% | 0.20%
4 1.6% | 0.13% | 0.17% | 0.13% | 1.0% [0.067%| 0.11% |0.094%)| 0.52% |0.054%
5 0.067%| 0.033%)] 0.01 7% 0.033%]| 0.28% |0.050%| 0.0% |0.084%| 0.10% | 0.0%
6 0.10% [0.080%]| 0.040%| 0.0202%6| 0.12% | 0.0% |0.020%| 0.0% |0.080%| 0.0%
7 0.094%|0.023%| 0.0% | 0.0% |0.070%]|0.070%]|0.047%]|0.023%| 0.023%]| 0.023%
8 3.0% | 0.0% |0.080%]|0.080%| 0.62% | 0.0% |0.027%| 0.0% | 2.5% |0.054%
9 0.060%| 0.0% | 0.0% |0.030%]|0.060%| 0.0% | 0.0% |0.030%| 0.33% |0.060%
10 |0.23% | 0.0% |0.067%| 0.0% | 0.0% | 0.0% |0.033%| 0.0% | 0.13% | 0.0%
11 |0.074%]| 0.51% | 0.0% | 0.0% | 0.0% [0.037%| 0.0% | 0.0% |0.037%|0.037%
12 8.6% | 0.12% | 0.040%]| 0.040%| 0.24% | 0.0% | 0.0% | 0.0% | 0.24% |0.040%
13 [0.74% | 0.0% | 0.0% | 0.0% | 0.0% |0.043%| 0.0% |0.087%| 0.0% | 0.0%
14 |0.14% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.047%| 0.0% | 0.0% | 0.0%
15 [0.10% | 0.15% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% [0.050%| 0.0% | 0.0%
16 1.9% |0.054%| 0.0% | 0.0% [0.054%| 0.0% | 0.0% | 0.0% | 0.11% | 0.0%
17 0.0% | 0.0% | 0.0% |0.057®%6 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
18 [0.24% | 0.0% | 0.12% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
19 [019% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
20 19% | 0.54% | 0.13% | 0.13% | 0.40% |0.067%| 0.13% | 0.0% | 0.20% | 0.0%

Table A.7: % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M =20 — Part 1 of 2

206

Bus Shift
Width| 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19
1 13% | 1.2% | 1.2% | 1.2% | 1.2% | 1.2% | 1.2% | 1.1% | 1.1% | 1.2%
2 0.66% | 0.68% | 0.61% | 0.56% | 0.60% | 0.64% | 0.53% | 0.58% | 0.58% | 0.47%
3 0.23% | 0.16% | 0.25% | 0.29% | 0.22% | 0.26% | 0.28% | 0.21% | 0.22% | 0.29%
4 0.013%| 0.094%)| 0.72% | 0.040%]| 0.067%|0.027%| 1.0% | 0.16% [0.094%| 0.12%
5 | 0.0% |0.067%| 0.10% |0.033%| 0.0% |0.084%)|0.050%| 0.0% |0.033%|0.017%
6 |0.060%| 0.0% | 0.10% | 0.0% |0.060%)| 0.0% |0.020%)|0.020%|0.020%6|0.040%
7 0.0% | 0.0% |0.023%|0.07%%6| 0.0% [0.023%| 0.0% | 0.0% |0.047%|0.047%
8 0.0% [0.080%| 2.6% |0.054%]|0.054%| 0.0% | 0.35% |0.027%| 0.0% | 0.0%
9 | 0.0% | 0.0% | 0.24% | 0.0% | 0.0% |0.030%|0.090%| 0.0% |0.030%|0.030%
10 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.033%|0.033%
11 0.0% | 0.0% |0.037%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
12 0.0% | 0.0% | 0.12% | 0.0% | 0.12% |0.080%]|0.040%| 0.0% |0.080%)| 0.12%
13 | 0.0% | 0.0% |0.087%|0.043% 0.0% | 0.0% | 0.0% |0.043%|0.043% 0.0%
14 0.0% | 0.0% |0.047%]|0.047%| 0.28% | 0.0% |0.047%| 0.0% | 0.0% |0.047%
15 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.10%
16 0.0% | 0.0% | 0.21% |0.054%| 0.0% | 0.0% | 0.21% | 0.0% |0.054%| 0.0%
17 0.0% | 0.0% | 0.0% [0.05P%6 0.0% | 0.0% [0.057%|0.057%| 0.0% | 0.0%
18 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.48% | 0.0%
19 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.064%)|0.064%)| 0.19% | 0.44%
20 |0.067%| 0.0% | 0.60% | 0.0% | 0.0% | 0.0% |0.067%| 0.0% | 0.0% | 0.13%

Table A.8: % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M =20 — Part 2 of 2

207

A.7 MB-FPGA Architectural Granularity = 24

Bus Shift
Wwidth| o 1 2 3 4 5 6 7 8 9 10 | 11
1 0.78% | 0.81% | 0.89% | 0.90% | 0.89% | 0.94% | 1.0% | 0.99% | 0.94% | 0.98% | 0.91% | 0.96%
2 0.61% | 0.60% | 0.55% | 0.52% | 0.53% | 0.45% | 0.50% | 0.46% | 0.49% | 0.35% | 0.48% | 0.46%
3 0.30% | 0.38% | 0.29% | 0.23% | 0.21% | 0.25% | 0.19% | 0.28% | 0.25% | 0.33% | 0.24% | 0.24%
4 0.49% | 0.082%| 0.15% | 0.11% | 0.44% | 0.15% | 0.22% | 0.14% | 0.52% | 0.15% | 0.14% | 0.10%
5 0.10% | 0.051% 0.068%| 0.085%)| 0.12% |0.085%]0.068%| 0.0% |0.017%|0.034%|0.068%|0.017%
6 0.12% | 0.0% |0.041%)]0.020%)] 0.020%]| 0.020%| 0.0% |0.020%)| 0.16% |0.02(%|0.061%| 0.0%
7 0.071%|0.071%| 0.0% |0.024%)|0.024%| 0.0% | 0.0% |0.024%]|0.024%| 0.19% | 0.0% | 0.0%
8 56% | 0.11% | 0.0% |0.027%)| 0.16% |0.027%| 0.0% |0.082%| 3.3% | 0.11% | 0.0% | 0.0%
9 0.55% |0.031%| 0.0% | 0.0% |0.061%| 0.0% | 0.0% | 0.0% | 0.37% [0.061%| 0.0% | 0.0%
10 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.10% |0.034%]|0.034%| 0.0%
11 0.11% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
12 0.12% | 0.0% | 0.0% | 0.0% |0.041%| 0.0% | 0.0% | 0.0% |0.082%| 0.0% | 0.0% | 0.0%
13 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
14 |0.048%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% [0.048%| 0.0%
15 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
16 2.0% | 0.16% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.11% | 1.5% | 0.0% | 0.0% | 0.0%
17 (0.058%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.058%]0.058%| 0.0% | 0.0%
18 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.12% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
19 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.065%
20 0.48% | 0.0% | 0.0% | 0.0% | 0.34% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
21 0.0% | 0.0% | 0.0% | 0.14% | 0.0% | 0.0% | 0.0% |0.071%| 0.0% | 0.0% | 0.0% | 0.0%
22 0.37% | 0.0% | 0.15% | 0.0% | 0.0% |0.075%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
23 0.23% | 0.55% |0.078%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.078%| 0.0% | 0.0% | 0.0%
24 23% | 0.24% | 0.0% | 0.0% |0.082%6 0.0% |0.082%| 0.0% |0.082%| 0.0% | 0.0% | 0.0%

Table A.9: % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M =24 — Part 1 of 2

208

Bus Shift
Width| 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23

1 | 0.89%] 1.0% | 0.92% | 0.99% | 0.93% | 0.95% | 0.92% | 0.94% | 0.95% | 0.94% | 0.93% | 0.95%

0.55% | 0.46% | 0.50% | 0.48% | 0.55% | 0.55% | 0.57% | 0.55% | 0.48% | 0.54% | 0.54% | 0.51%
3 0.16% | 0.22% | 0.25% | 0.23% | 0.23% | 0.18% | 0.19% | 0.22% | 0.33% | 0.24% | 0.22% | 0.30%
4 0.52% | 0.15% | 0.15% | 0.041%)]| 0.34% |0.068%| 0.12% | 0.11% | 0.56% | 0.18% | 0.19% | 0.15%
5 0.085%| 0.0% |0.068%] 0.034%] 0.017%%|0.034%]|0.017%]|0.085%]| 0.034%| 0.01 76| 0.017%| 0.017%
6 0.0% | 0.0% [0.041%]|0.061%)| 0.10% |0.020%| 0.10% | 0.0% |0.041%]0.041%)]0.020%| 0.0%
7 0.048%| 0.024%| 0.024%| 0.0% | 0.0% |0.048%)]|0.024%| 0.0% |0.024%| 0.0% | 0.0% | 0.0%
8 0.22% | 0.027%)| 0.054%)| 0.16% | 3.7% |0.082%]0.054%| 0.0% | 0.22% | 0.0% |[0.027%|0.027%
9 0.0% | 0.0% | 0.0% | 0.15% | 0.21% | 0.0% | 0.0% |0.031%| 0.0% | 0.0% |0.031%| 0.0%
10 [0.034%| 0.0% | 0.0% | 0.0% | 0.10% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
11 | 0.0% | 0.0% | 0.0% | 0.0% |0.03M6| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.075%| 0.0%
12 0.41% | 0.0% | 0.0% | 0.0% |0.082%%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
13 0.13% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.044%| 0.0% | 0.0%
14 | 0.0% |0.048%| 0.0% | 0.0% |0.048%| 0.0% |0.048%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
15 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.10%
16 0.16% | 0.0% | 0.0% |0.054%)| 0.82% | 0.0% | 0.16% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
17 0.0% | 0.0% | 0.0% | 0.0% | 0.17% | 0.17% | 0.12% | 0.0% | 0.0% |0.058%| 0.0% | 0.0%
18 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% [0.061%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
19 | 0.0% | 0.0% | 0.0% | 0.0% |0.069%| 0.0% | 0.0% | 0.0% | 0.0% |0.069%4| 0.0% | 0.0%
20 | 0.0% | 0.0% | 0.0% | 0.0% |0.068%| 0.0% | 0.0% | 0.0% | 0.20% | 0.0% | 0.0% | 0.0%
21 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
22 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.90% | 0.0%
23 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.078%)| 0.63%
24 | 00% | 0.0% | 0.0% | 0.0% | 0.49% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.082%

Table A.10: % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M =24 — Part 2 of 2

209

A.8 MB-FPGA Architectural Granularity = 28

Bus Shift
Width| o 1 2 3 4 5 6 7 8 9 10 | 11
1 0.69% | 0.69% | 0.75% | 0.72% | 0.75% | 0.81% | 0.80% | 0.83% | 0.82% | 0.84% | 0.84% | 0.85%
2 0.44% | 0.36% | 0.38% | 0.43% | 0.39% | 0.48% | 0.40% | 0.39% | 0.33% | 0.36% | 0.42% | 0.46%
3 0.25% | 0.36% | 0.26% | 0.30% | 0.19% | 0.14% | 0.24% | 0.24% | 0.21% | 0.16% | 0.15% | 0.20%
4 1.8% | 0.19% | 0.19% | 0.16% | 0.82% | 0.13% | 0.12% | 0.16% | 0.92% | 0.19% |0.073%| 0.15%
5 0.26% | 0.073%)| 0.073%)| 0.13% | 0.16% | 0.16% |0.055%]0.091%)| 0.11% |0.018%|0.055%|0.018%
6 0.15% | 0.13% |0.088%| 0.0% |0.066%]|0.022%]0.022%| 0.0% |0.066%|0.0226 0.0% |0.022%
7 0.0% | 0.0% | 0.0% | 0.0% |0.026%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
8 2.4% | 0.0% | 0.0% |0.029%| 0.15% | 0.0% | 0.0% | 0.0% | 2.0% [0.02%%6| 0.0% | 0.0%
9 0.10% | 0.0% |0.033%| 0.0% |0.033%| 0.0% | 0.0% | 0.0% |0.033%| 0.0% | 0.0% | 0.0%
10 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.036%| 0.0% |0.036%| 0.0% | 0.0% | 0.0%
11 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
12 0.13% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.044%| 0.0% | 0.0% | 0.0%
13 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
14 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
15 0.11% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
16 1.6% | 0.18% | 0.0% [0.058%| 0.0% | 0.0% | 0.0% | 0.12% | 0.23% | 0.0% | 0.0% | 0.0%
17 10.062%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
18 [0.066%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.066%| 0.0%
19 |(0.069%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
20 0.51% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.22% | 0.0% | 0.0% | 0.0%
21 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
22 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.08% | 0.24% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
23 0.25% | 0.0% |0.084%)0.084%)| 0.17% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
24 0.35% | 0.0% | 0.0% | 0.0% |0.088%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
25 0.0% | 0.0% | 0.0% |0.091%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
26 0.38% | 0.0% |0.095%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
27 0.20% | 0.59% | 0.10% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
28 25% | 0.41% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%

Table A.11: % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M =28 — Part 1 of 3

210

Bus Shift
Width| 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23

1 | 0.81%] 0.90% | 0.8%% | 0.86% | 0.82% | 0.85% | 0.80% | 0.78% | 0.69% | 0.78% | 0.83% | 0.84%

0.41% | 0.45% | 0.41% | 0.46% | 0.50% | 0.40% | 0.46% | 0.31% | 0.36% | 0.35% | 0.32% | 0.35%
3 0.18% | 0.20% | 0.25% | 0.25% | 0.16% | 0.19% | 0.16% | 0.21% | 0.26% | 0.32% | 0.33% | 0.22%
4 | 0.73%]0.058%] 0.13% | 0.088%)| 0.80% |0.058%)| 0.088%] 0.23% | 0.72% | 0.19% | 0.18% | 0.36%
5 [0.055%)|0.091%]0.055%| 0.11% | 0.055%6| 0.055%)| 0.091%]0.073%| 0.15% | 0.091%6|0.018%| 0.091%
6 0.022%| 0.0% | 0.0% | 0.0% |0.022%|0.066%]| 0.0% |0.022%]|0.022%| 0.0% |0.022%|0.022%
7 | 00% | 0.0% | 0.0% | 0.0% |0.051%|0.051%)|0.026%| 0.0% |0.051%|0.026%| 0.0% | 0.0%
8 0.85% | 0.0% | 0.0% | 0.0% | 1.1% | 0.0% | 0.0% | 0.0% | 1.6% [0.02%%6]0.029%| 0.0%
9 0.16% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.20% | 0.0% | 0.0% | 0.0%
10 [0.036%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.073%| 0.0% | 0.0% | 0.0%
11 |0.080%| 0.0% | 0.0% [0.040%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
12 0.13% | 0.0% | 0.0% | 0.0% | 0.18% | 0.0% | 0.0% | 0.0% |0.044%| 0.0% | 0.0% | 0.0%
13 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
14 0.10% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
15 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
16 0.41% | 0.0% | 0.0% | 0.0% | 0.12% | 0.0% | 0.0% | 0.0% | 0.12% |0.058%]|0.058%| 0.0%
17 0.0% | 0.0% | 0.0% | 0.0% |0.0620(0.062%| 0.0% | 0.0% |[0.062%]|0.062%%|0.062%)| 0.0%
18 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.066%| 0.0% | 0.0%
19 [0.069%| 0.0% | 0.0% | 0.0% |0.069%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
20 0.15% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.29% | 0.0% | 0.15% | 0.0%
21 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.15% | 0.0% | 0.0%
22 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
23 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
24 10.088%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
25 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
26 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
27 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
28 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%

Table A.12: % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M =28 — Part 2 of 3

211

Bus Shift

Table A.13: % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M = 28 — Part 3 of 3

212

A.9 MB-FPGA Architectural Granularity = 32

Bus Shift
Width| o 1 2 3 4 5 6 7 8 9 10 | 11

1 0.53% | 0.55% | 0.57% | 0.63% | 0.59% | 0.60% | 0.65% | 0.64% | 0.61% | 0.69% | 0.62% | 0.66%
2 0.42% | 0.45% | 0.39% | 0.35% | 0.36% | 0.42% | 0.30% | 0.31% | 0.34% | 0.31% | 0.39% | 0.40%
3 0.21% | 0.17% | 0.21% | 0.18% | 0.22% | 0.18% | 0.23% | 0.18% | 0.17% | 0.21% | 0.21% | 0.16%
4 0.47% | 0.15% | 0.19% | 0.20% | 0.44% | 0.20% | 0.20% | 0.24% | 0.31% | 0.13% | 0.16% | 0.11%
5 0.084%| 0.10% |0.034%] 0.06 7%| 0.084%]| 0.017%| 0.017%]| 0.051%]| 0.034%| 0.034%] 0.017%| 0.067%
6 0.040%| 0.040%| 0.0% |0.020%] 0.040%]| 0.061%|0.020%| 0.0% |0.061%|0.04(%|0.020%| 0.0%
7 0.047%|0.024%| 0.0% | 0.0% |0.047%6| 0.0% |0.047%]|0.047%]|0.024%| 0.0% | 0.0% | 0.0%
8 1.6% | 0.0% |0.054%|0.054%| 0.13% [0.027%|0.027%|0.027%| 0.92% |0.027%6| 0.0% |0.027%
9 0.12% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.21% | 0.0% | 0.0% | 0.0%
10 0.03% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.10% | 0.0% | 0.0% | 0.0%
11 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.037%| 0.0% | 0.0% | 0.0%
12 0.20% | 0.0% | 0.0% | 0.0% |0.040%| 0.0% | 0.0% | 0.0% |0.040%| 0.0% [0.040%| 0.0%
13 (0.044%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
14 |0.047%| 0.0% |0.047%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
15 0.10% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
16 0.97% |0.054%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.054%| 0.65% | 0.0% | 0.11% | 0.0%
17 0.11% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
18 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
19 0.13% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
20 0.40% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
21 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
22 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.074%| 0.0% | 0.0% | 0.0% | 0.0% |0.074%| 0.0%
23 0.16% | 0.0% | 0.0% | 0.0% |0.078%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
24 0.16% | 0.0% |0.081%)0.081%| 0.0% | 0.0% | 0.0% | 0.0% | 0.40% | 0.0% | 0.0% | 0.0%
25 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.168%| 0.0% | 0.0% | 0.0%
26 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.18% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
27 |0.091%| 0.18% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
28 1.4% |0.094%| 0.0% | 0.0% | 0.47% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
29 0.0% | 0.0% | 0.0% |0.098%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
30 1.5% | 0.10% | 0.30% | 0.0% | 0.0% [0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
31 0.31% | 0.42% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
32 2% | 0.11% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.11% | 0.0% | 0.0% | 0.0%

Table A.14: % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M =32 — Part 1 of 3

213

Bus Shift
Width| 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23

1 0.69% | 0.70% | 0.68% | 0.70% | 0.68% | 0.71% | 0.64% | 0.64% | 0.63% | 0.70% | 0.69% | 0.63%
0.38% | 0.36% | 0.36% | 0.37% | 0.34% | 0.41% | 0.43% | 0.37% | 0.36% | 0.32% | 0.33% | 0.41%

3 0.18% | 0.11% | 0.17% | 0.19% | 0.17% | 0.12% | 0.16% | 0.15% | 0.23% | 0.14% | 0.18% | 0.14%
4 0.36% | 0.13% | 0.12% | 0.081%)| 0.26% |0.081%]0.094%|0.094%| 0.30% | 0.12% |0.081%/|0.081%
5 0.067%|0.017%| 0.0% |0.034%] 0.017%%|0.034%]|0.017%]|0.034%]| 0.10% |0.034%] 0.051%|0.067%
6 | 0.0% |0.020%| 0.0% | 0.0% |0.040%| 0.0% | 0.0% |0.020%]|0.040%|0.040% 0.0% |0.061%
7 | 00% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
8 0.027%| 0.0% | 0.0% | 0.0% | 1.5% | 0.0% | 0.0% | 0.0% | 0.27% | 0.0% | 0.0% | 0.0%
9 | 00% | 0.0% | 0.0% | 0.0% |0.061%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
10 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
11 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.037”%6| 0.0% | 0.0%
12 [0.040%| 0.0% | 0.0% | 0.0% |0.04%%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
13 0.0% | 0.0% | 0.0% | 0.0% [0.044%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
14 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
15 | 0.0% | 0.0% | 0.0% |0.051%|0.051%|0.051%| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
16 | 0.16%| 0.0% | 0.0% | 0.0% | 1.08% |0.054%)|0.054%]0.054%| 0.0% | 0.0% | 0.0% |0.054%
17 0.0% | 0.0% | 0.0% |0.057%)| 0.11% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
18 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
19 0.0% | 0.0% | 0.0% | 0.0% | 0.13% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
20 | 0.27%] 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
21 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.071%| 0.0% | 0.0%
22 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
23 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
24 0.0% | 0.0% | 0.0% | 0.0% | 0.40% | 0.0% | 0.0% | 0.0% [0.081%| 0.0% | 0.0% | 0.0%
25 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
26 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
27 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% [0.091%| 0.0% | 0.0% | 0.0%
28 0.28% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |0.094%| 0.0% | 0.0% | 0.0%
29 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
30 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
31 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
32 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.11% | 0.0% | 0.0% | 0.0%

Table A.15: % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M =32 — Part 2 of 3

214

Bus Shift

Table A.16: % of Inter-Super-Cluster Connections Contained in Each Type of
Buses for M =32 — Part 3 of 3

215

216

References

[Ahme0Q]
E. Ahmed and J. Rosg, “The Effed of LUT and Cluster Size on Deep-Submicron FPGA
Performance and Density,” Proceedings of the ACM/SI GDA Internationd Sympasium on
Field Programmable Gate Arrays, February 2000, pp.3-12

[Also0q
A. Alsolaim, J. Starzyk J. Becker, and M. Glesner, “Architecture and Application d a
Dynamicdly Reconfigurable Hardware Array for Future Mohile Communication Sys-
tems,” Proceedings of the IEEE Symposium on Field-Programnable Custom Computing
Machines, April 200Q pp.205-214.

[Alte02]
Altera Data Steet, Altera, 2002

[Betz97a]
V. Betz and J. Rose, “VPR: A New Pading, Placement and Routing Toal for FPGA
Research,” Proceedings of the International Workshop onField-Programmable Logic and
Applications, 1997, pp.213-222

[Betz97h]
V. Betz and J. Rosg, “ Cluster-Based Logic Blocks for FPGAs:. Area-Efficiency vs. Inpu
Sharing and Size,” Proceedings of the IEEE Custom Integrated Circuits Conference,
1997, pp.551-554.

[Betz98]
V. Betz and J. Rose, “How Much Logic Shoud Go in an FPGA Logic Block?’, IEEE
Design andTest Magazine, Spring 1998 pp.10-15.

[Betz99a]
V. Betz, J. Rose, and A. Marquardt, Architedure and CAD for Degx-Submicron FPGASs,
February 1999 Kluwer Academic Publishers.

[Betz99h]
V. Betz and J. Rose, “FPGA Routing Architecture: Segmentation and Buffering to Opti-
mize Speed and Density,” Proceedings of the ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, February 1999, pp.59-68

[Betz0Q]
V. Betz and J. Rose, “ Automatic Generation d FPGA Routing Architectures from High-
Level Descriptions,” Proceedings of the ACM/SIGDA Internationa Symposium on Field
Programmable Gate Arrays, February 2000, pp.175-184

[Betz01]
V. Betz, J. Rose, and A. Marquardt, “VPR: A Placement and Routing Toal for FPGA
Research,” Sdtware Publication at http://www.eecg.utoronto.ca/~vaughrvpr/vpr.html,
University of Toronto, 2001.

217

[BItt96]
R. Bittner, P. Athanas, and M. Musgrove, “Colt: An Experiment in Wormhole Run-Time
Rewnfiguration,” Proceedings of the Conference on High-Speed Computing, Digital Sg-
nal Processing, andFiltering Using reconfigurable Logic, 1996

[Bozo0]]
E. Bozorgzadeh, S. Memik, and M. Sarrafzadeh, “RPack: Routabil ity-Driven Packing for
Cluster-Based FPGAs,” Proceedings of the Conference on Asia-Sauth Pacific Design
Automation Conference, January 2001, pp.629—-64.

[Brow92a)
S. Brown, “Routing Algorithms and Architectures for Field-Programmable Gate Arrays,”
Ph.D. Dissrtation, University of Toronto, 1992

[Brow92h)
S. Brown, J. Rose, and Z. Vranesic, “A Detailed Router for Field-Programmable Gate
Arrays,” IEEE Transactions on Computer-Aided Design o Integrated Circuitsand s
tems, May 1992 pp.620—&28.

[Call9g]
T. Callahan, P. Chong A. DeHon, and J. Wawrzynek, “Fast Modue Mapping and Place-
ment for Datapathsin FPGAS,” Proceedings of the ACM/SIGDA International Sympasium
on Field Programmable Gate Arrays, 1998 pp.123-132.

[Cart86]
W. Carter, K. Duong, R. Freeman, H. Hsieh, J. Ja, J. Mahoney, L. Ngo, and S. Sze, “A
User Programmable Reanfigurable Logic Array,” Proceedings of the IEEE Custom Inte-
grated Circuits Conference, 1986, pp.233—-235

[Chan0Q
P. Chan and M. Schlag, “New Parallelization and Convergence Resultsfor NC: A Negoti-
ation-Based FPGA Router,” Proceedings of the ACM/SIGDA International Symposiumon
Field Programmable Gate Arrays, 2000 pp.165-174

[Chen9Z
D. Chen and J. Rabaey, “A Reconfigurable Multiprocessor IC for Rapid Prototyping o
Algorithmic-Spedfic High-Speed DSP Data Paths,” IEEE Journal of Sdid-Sate Circuits,
December 1992, pp.1895-194.

[Chen03
D. Chen, J. Cong and Y. Fan, “Low-Power High-Level Synthesisfor FPGA Architec-
tures,” Procedadings of the International Symposium on Low Power Eledronics and
Design, August 2003, pp.134-13.

[Cher94]
D. Cherepacha and D. Lewis, “A Datapath Oriented Architecture for FPGAS,” Proceed-
ings of the ACM/SIGDA International Symposium on Field Programnable Gate Arr ays,
1994

[Cher96]
D. Cherepacha and D. Lewis, “DP-FPGA: An FPGA Architecture Optimized for Datap-
aths,” VLS Design, 1996, pp.329—-343

218

[Cher97]
D. Cherepacha, M.A.Sc. Thesis, University of Toronto, 1997.

[Cong(B]
J. Cong, M. Romesis, and M. Xie, “Optimality and Stabili ty Study o Timing-driven
Placement Algorithms,” Proceedings of the Internationa Conference on Computer Aided
Design, November 2003 pp.472—-4B.

[Cora96]
M. Coraza, M. Khalaf, M. Potkonjak, and J. Rabaey, “ Performance Optimization Using
Template Mapping for Datapath-Intensive High-Level Synthesis,” IEEE Transactions on
Computer-Aided Design o Integrated Circuits and Systems, 1996 pp.877—3&88.

[Ebel95]
C. Ebeling, L. McMurchie, S. Hauck, and S. Burns, “Placment and Routing Tools for the
Triptych FPGA,” IEEE Transactions on VLS Systems, December 1995 pp.473-482

[Ebel96]
C. Ebdling, D. Cronquist, P. Franklin, and C. Fisher, “RaPiD A Configurable Computing
Architecture for Compute-I ntensive Applications,” Proceedings of the Internationd
Workshop onField-Programmable Logic and Applications, 1996

[Elmo48]
W.C. Elmore, “The Transient Response of Damped Linear Network with Particular
Regard to Wideband Amplifier,” Journal of Applied Physics, 19, pp.55-63 1948

[Gold0Q)
S. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. Taylor, “PipeRench: a
reconfigurable achitecture and compil er,” IEEE Computer, April 2000 pp.70-77.

[Hama02]
C. Hamacdher, Z. Vranesic, and S. Zaky, Computer Organization, 5th Edition, 2002
McGraw-Hill.

[Harr02]
|. Harrisand R. Tesger, “ Testing and Diagnosis of Interconnect Faultsin Cluster-Based
FPGA Architedures,” |IEEE Transactions on Computer-Aided Design d Integrated Cir-
cuits and §stems, November 2002, pp.1337-133.

[Haus97]
J. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with a Reconfigurable Coproces-
sor,” Proceedings of the IEEE Symposium of Field-Programmable Custom Computing
Machines, April 1997, pages 24-33

[Hsei9q]
H. Hselh, et al, “ Third-Generation Architecture Boosts Speed and Density of Field-Pro-
grammable Gate Arrays,” Proceeadings of the |IEEE Custom I ntegrated Circuits Confer-
ence, 199Q pp.31.2.1-312.7.

[Katz94]
R. Katz, Contemporary Logic Design, 1994, The Benjamin/Cummings Publi shing Com-
pany.

219

[Kirk83]
S. Kirkpatrick, C. Gelatt and M. Vecchi, “ Optimization by Simulated Annealing,” Science,
May 13, 1983 pp.671-680.

[Koch96al
A. Koch, “Structured Design Implementation— A Strategy for Implementing Regular
Datapaths on FPGAs,” Proceedings of the ACM/SIGDA Internationa Symposiumon
Field Programmable Gate Arrays, 1996 pp.151-157.

[Koch96h]
A. Koch, “Modue Compaction in FPGA-based Regular Datapaths,” Proceedings of the
Design Automation Conference, 1996, pp.471-476

[Kore02]
|. Koren, Computer Arithmetic Algorithms, 2002 A K Peters.

[Kutz00a]
T. Kutzschebauch and L. Stok, “Regularity Driven Logic Synthesis,” Proceedings of the
|IEEE/ACM Internationa Conference on Computer Aided Design, 2000, pp.439-446

[Kutz00b]
T. Kutzschebauch, “Efficient Logic Optimization Using Regularity Extraction,” Proceed-
ings of the International Conference on Computer Design, 2000, pp.487—-493

[Lee6]]
C. Lee “An Algorithm for Path Conrections and its Applications,” IRE Transactions on
Electronic Computing, Vol. 10, 1961, pp.346—35.

[Leijo3]
K. Leijten-Nowak and J. van Meeabergen, “ An FPGA architecture with enhanced datapath
functionality,” Proceeadings of the ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, 2003 pp.195-204.

[Lemi97]
G. Lemieux, S. Brown, D. Vranesic, “On Two-Step Routing for FPGAs,” ACM Sympo-
siumon Physical Design, 1997, pp.60-66.

[LemiO]1]
G. Lemieux andD. Lewis, “Using Sparse Crossbarswithin LUT Clusters,” Proceedings of
the ACM/SIGDA Internationad Symposium on Field Programmable Gate Arrays, 2001,
pp.59-68

[LemiO2]
G. LemieuxandD. Lewis, “analyticd Framework for Switch Block Design,” Proceedings
of the Conference on Field-Programmable Logic and Applications, 2002, pp.122-131

[LeveO3]
P. Leventis, M. Chan, M. Chan, D. Lewis, B. Nouhan, G. Powell, B. Vest, M. Wong, R.
Xia, and J. Costello, “Cyclone: A Low-Cost, High-Performance FPGA,” Proceedings of
the IEEE Custom Integrated Circuits Conference, 2003

220

[LewiO3]
D. Lewis, V. Betz, D. Jefferson, A. Leg C. Lane, P. Leventis, S. Marquardt, C. McClin-
tock, B. Pedersen, G. Powell, S. Reddy, C. Wysocki, R. Cliff, and J. Rose, “ The Stratix
Routing and Logic Architecture,” Proceedings of the ACM/SIGDA Internationd Sympo-
siumon Field Programmable Gate Arrays, February 2003 pp.15-20.

[LiO3]
F. Li, D. Chen, L. He, andJ. Cong, “ Architedure Evaluation for Power-Efficient FPGAS,”
Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, February 2003 pp.175-184.

[Lin03
J. Lin, A. Jagannathan, and J. Cong, “Placement-Driven Techndogy Mapping For LUT-
Based FPGAS,” Proceedings of the ACM/SIGDA Internationd Symposium on Field Pro-
grammable Gate Arrays, February 2003, pp.121-126

[Marq99]
A. Marquardt, V. Betz, and J. Rose, “Using Cluster-Based Logic Blocks and Timing-
Driven Packing to Improve FPGA Speed and Density,” Proceadings of the ACM/SIGDA
Internationd Symposiumon Field Programmable Gate Arrays, February 1999 pp.37-46.

[Marg00g]
A. Marquardt, V. Betz, and J. Rosg, “ Timing-Driven Placement for FPGAS,” Proceedings
of the ACM/SIGDA Internationa Symposium on Field Programmable Gate Arr ays, Feb-
ruary 200Q pp.203-213.

[Marg00b]
A. Marquardt, V. Betz, and J. Rose, “ Speed and Area Tradeoffsin Cluster-Based FPGA
Architectures,” IEEE Transactions on VLS Systems, February 200Q pp.84—93

[Mars99]
A. Marshall, T. Stansfield, |. Kostarnov, J. Vuillemin, and B. Hutchings, “A remnfig-
urable arithmetic array for multimedia applications,” Proceedings of the ACM/SSGDA
Internationd Symposium on Field Programmable Gate Arrays, 1999 pp.135-43.

[Masu99
M. Masud and S. Wilton, “A New Switch Block for Segmented FPGAS,” Proceedings of
the Internationd Workshopon Field Programmable Logic and Appli cations, August
1999 pp.274-281

[Mirs96]
E. Mirsky and A. DeHon, “MATRIX: A Reconfigurable Computing Architecture with
Configurable Instruction Distribution and Deployable Resources,” Proceedings of the
| EEE Symposium on Field-Programmable Custom Computing Machines, April 1996
pp.157-166

[Nase94]
A. Naseer, M. Balakrishnan, and A. Kumar, “FAST: FPGA Targeted RTL Structure Syn-
thesis Technique,” Procealings of the International Conference on VLS Design, 1994,
pp.21-24

221

[Nase9g]
A. Naseer, M. Balakrishnan, and A. Kumar, “Direct Mapping d RTL Structures onto
LUT-Based FPGAS,” IEEE Transactions on Computer-Aided Design d Integrated Cir-
cuitsand §stems, July 1998, pp.624—631

[Okam96]
T. Okamoto and J. Cong, “Buffered Steiner Tree Constructionwith Wire Sizing for Inter-
connect Layout Optimization,” Proceedings of the [IEEE/ACM Internationd Conference
on Computer Aided Design, 199, pp.44—-49

[Quar03]
Quartus Il Manual, Altera Corp., 2003.

[Rose90Q]
J. Rose, R. Francis, D. Lewis, and P. Chow, “Architedure of Field-Programmable Gate
Arrays: The Effect of Logic Block Functionality on Area Efficiency,” |IEEE Journal of
Sdid-Sate Circuits, October 199Q pp.1217-1225

[Sank99
Y. Sankar and J. Rose, “Trading Quality for Compil e Time: Ultra-Fast Placement for
FPGASs,” Procedlings of the ACM/S GDA International Symposium on Field Programmne-
ble Gate Arrays, February 1999 pp.157-166.

[Sech85]
C. Sechen and A. Sangiovanni-Vincentdli, “ The TimberWolf Placement and Routing
Padkage,” IEEE Journal of Solid-Sate Circuits, April 1985, pp.510-522

[Sech86]
C. Sechen and A. Sangiovanni-Vincentdli, “ TimberWolf3.2: A New Standard Cell Place-
ment and Global Routing Package,” Proceedings of the Design Automation Conference,
1986 pp.432-439.

[Sech87]
C. Sechen and K. Lee “An Improved Simulated Anneali ng Algorithm for Row-Based
Placement,” Proceedings of the IEEEACM Internationa Conference on Computer Aided
Design, 1987, pp.478-481

[Sun9]
W. Sunand C. Sechen, “Efficient and Eff ective Placement for Very Large Circuits,” IEEE
Transactions on Computer-Aided Design of Integrated Circuitsand Systems, March 1995
pp.349-359

[Sun99
Pico-Java Processor Design Documentation, 1999 Sun Microsystems.

[Swar95]
W. Swartz and C. Sechen, “Timing Driven Placement for Large Standard Cell Circuits,”
Proceedings of the Design Automation Conference, 1995, pp.211-215

[Swar98]
J. Swartz, V. Betz and J. Rose, A Fast Routabil ity-Driven Router for FPGAS," Proceed-
ings of the ACM/SIGDA International Symposium on Field Programnable Gate Arr ays,
1998 pp.140-149.

222

[Syno99]
Synopsys Design Compiler Manud, SynopsysInc., 1999

[Synp(g]
Synplify Pro Manual, Synplicity Inc., 2003

[Taka9g]
T. Miyamori and K. Olukotun, “REMARC: Reconfigurable Multimedia Array Coproces-
sor,” Proceedings of the IEEE Symposium on Field-Programnable Custom Computing
Machines, April 1998

[Tess02]
R. Tessier, “Fast Placement Approaches for FPGAs,” ACM Transactions on Design Auto-
mation of Eledronic Systems, April 2002 pp.284-305.

[Tuan03
T. Tuan and B. Lai, “Leakage Power Analysisof a90nm FPGA,” Proceedings of the IEEE
Custom Integrated Circuit Conference, November 2003 pp.57-60.

[Varg99
G. Varghese, H. Zhang, and J. Rabagy, “Design of aLow Energy FPGA,” Proceedings of
the Internationd Sympaosium on Low Power Electronics and Design, 1999 pp.188-193

[Wain97]
E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Leg, J. Kim, M. Frank, P.
Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal, “Baring It All to Software:
Raw Machines,” IEEE Computer, September 1997, pp.86—93

[West92]
N. Weste and K. Eshraghian, Principles of CMOSVLS Design: A Systems Perspective,
2ndEdition, 2002 Addison Wesley Longman.

[Wilt97]
S. Wilton, “Architectures and Algorithms for Field-Programmable Gate Arrays with
Embedded Memories,” Ph.D. Dissertation, University of Toronto, 1997

[Xili0Z]
Xilinx Data shed, Xilinx Inc., 2002

[Ye97]
A. Ye, “Microelectronics Bridge Camp Projed: A 16-bit CPU,” Technical Report, Univer-
sity of Toronto, Summer 1997

[Ye9%e]
A.YeandD. Lewis, “Procedural Texture Mapping onFPGAS,” Procedlings of the ACM/
SIGDA Internationd Symposium on Field Programmable Gate Arrays, February 1999,
pp.112-120

[Ye99h
A. Ye, “Procedural Texture Mapping onFPGAS,” M.A.&c. Thesis, University of Toronto,
June 1999,

223

[Yeun93
A. Yeung and J. Rabaey, “A Reoonfigurable Data Driven Multi-Processor Architecture for
Rapid Prototyping of High Throughpu DSP Algorithms,” Proceedings of the HICCS
Conference, January 1993 pp.169-178.

224

