FPGA-BASED SOFT VECTOR PROCESSORS

Peter Yiannacouras

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy
Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright (©) 2009 by Peter Yiannacouras

Abstract

FPGA-Based Soft Vector Processors

Peter Yiannacouras
Doctor of Philosophy
Graduate Department of Electrical and Computer Engineering
University of Toronto

2009

FPGAs are increasingly used to implement embedded digital systems because of their low
time-to-market and low costs compared to integrated circuit design, as well as their superior
performance and area over a general purpose microprocessor. However, the hardware design
necessary to achieve this superior performance and area is very difficult to perform causing
long design times and preventing wide-spread adoption of FPGA technology. The amount of
hardware design can be reduced by employing a microprocessor for less-critical computation in
the system. Often this microprocessor is implemented using the FPGA reprogrammable fabric
as a soft processor which can preserve the benefits of a single-chip FPGA solution without
specializing the device with dedicated hard processors. Current soft processors have simple
architectures that provide performance adequate for only the least-critical computations.

Our goal is to improve soft processors by scaling their performance and expanding their
suitability to more critical computation. To this end we focus on the data parallelism found
in many embedded applications and propose that soft processors be augmented with vector
extensions to exploit this parallelism. We support this proposal through experimentation with
a parameterized soft vector processor called VESPA (Vector Extended Soft Processor Archi-
tecture) which is designed, implemented, and evaluated on real FPGA hardware.

The scalability of VESPA combined with several other architectural parameters can be used

to finely span a large design space and derive a custom architecture for exactly matching the

ii

needs of an application. Such customization is a key advantage for soft processors since their
architectures can be easily reconfigured by the end-user. Specifically, customizations can be
made to the pipeline, functional units, and memory system within VESPA. In addition, general
purpose overheads can be automatically eliminated from VESPA.

Comparing VESPA to manual hardware design, we observe a 13x speed advantage for hard-
ware over our fastest VESPA, though this is significantly less than the 500x speed advantage
over scalar soft processors. The performance-per-area of VESPA is also observed to be sig-
nificantly higher than a scalar soft processor suggesting that the addition of vector extensions

makes more efficient use of silicon area for data parallel workloads.

iii

Acknowledgements

I would like to thank my advisors Professor Greg Steffan and Professor
Jonathan Rose for all their guidance throughout the years. Our weekly
meetings were key in directing and executing this research. Also count-
less writing edits and many dry runs helped improve my written and
oral communication. Thank you for all of that, your advice and insights
along the way, and also thank you for the opportunity to teach some

classes.

My committee including Professor Moshovos and Professor Abdelrah-
man, as well as Professor Enright Jerger provided useful suggestions and

commentary for filling out this work.

Many thanks to Professor Christos Kozyrakis for corresponding with
me and sending me the hand-vectorized benchmarks used throughout
this work. I would also like to acknowledge the useful input received
from Vaughn Betz, David Lewis, and James Ball which helped guide our

research direction.

Throughout my six years in LP392 and in the PaCRaT group, it was cer-
tainly a pleasure interacting with all my colleagues, thanks for technical

breadth, good fun, and stimulating discussions.

Thank you to my parents and brothers for raising me, taking care of me,

and looking out for me throughout my life.

To my wife Melinda, thank your for all your love and support, I'm glad

to have had you by my side for every step of the way.

iv

for Meli

Contents

List of Tables xi
List of Figures xiii
1 Introduction 1
1.1 Research Goals e 4
1.2 Organization e 5

2 Background 6
2.1 Microprocessor Background Lo Lo Lo oo 6
2.2 Vector Processors L o 7
2.2.1 Vector Instructions 8

2.2.2 Vector Architecture 9

2.2.3 Vector Lanes 10

2.2.4 Vector Chaining 11

2.2.5 The TO Vector Processor 12

2.2.6 The VIRAM Vector Processor 12

2.27 SIMD Extensionso e e 15

2.3 Field-Programmable Gate Arrays (FPGAs) 15
2.3.1 Block RAMs e 16

2.3.2 Multiply-Accumulate blocks 16

2.3.3 Microprocessor Cores oo e e 17

24 FPGA Design o o e 17

vi

2.4.1 Behavioural Synthesis Lo oo 18

2.4.2 Extensible Processors oo 20

2.5 Soft Processors and Related Work o L. 21
2.5.1 Soft Single-Issue In-Order Pipelines 22
2.5.2 Soft Multi-Issue Pipelines 22
2.5.3 Soft Multi-Threaded Pipelines 23
2.5.4 Soft Multiprocessors e 25
2.5.5 Soft Vector Processors 25

3 Experimental Framework 27
3.1 Overviewo 27
3.2 Benchmarks 28
3.3 Software Compilation Framework L. 30
3.4 FPGA CAD Software 30
3.4.1 Measuring Area 31

3.4.2 Measuring Clock Frequency 31

3.5 Hardware Platforms 32
3.5.1 Transmogrifier-4 32
3.5.2 Terasic DE3 33
3.5.3 Measuring Wall Clock Time 33

3.6 Measurement Error Lo 34
3.7 Verification 35
3.7.1 Imstruction Set Simulationo oo 35
3.7.2 Register Transfer Level (RTL) Simulation 36
3.7.3 In-Hardware Debugging, 37

3.8 Advantages of Hardware Execution 37
3.9 Summary e e 38
4 Performance Bottlenecks of Scalar Soft Processors 39
4.1 Integrating Scalar Soft Processors with Off-Chip Memory 39

vii

4.1.1 Scalar Soft Processor Area Breakdown 41

4.1.2 Scalar Soft Processor Memory Latency 42
4.2 Scaling Soft Processor Caches oo 44
4.3 Soft vs Hard Processor Comparison 46
4.4 SUmMmary oL e e e 49
The VESPA Soft Vector Processor 50
5.1 Motivating Soft Vector Processors 50
5.2 VESPA Design Goals 51
5.3 VESPA . . . e e 53
5.3.1 MIPS-Based Scalar Processor 54
5.3.2 VIRAM-Based Vector Instruction Set 55
5.3.3 Vector Memory Architecture 57
5.3.4 VESPA Pipelines 59
5.4 Meeting the Design Goals L o 60
54.1 VESPA Flexibility 60
5.4.2 VESPA Portability 62
5.5 FPGA Influences on VESPA Architecture 63
5.6 Selecting a Maximum Vector Length (MVL) 64
5.7 Summary e 68
Scalability of the VESPA Soft Vector Processor 69
6.1 Initial Scalability (L) o 69
6.1.1 Analyzing the Initial Design 71
6.2 Improving the Memory System oL 72
6.2.1 Cache Design Trade-Offs (DD and DW) 72
6.2.2 Impact of Data Prefetching (DPK and DPV) 7
6.2.3 Reduced Memory Bottleneck 83
6.2.4 Impact of Instruction Cache (IW and ID) 84
6.3 Decoupling Vector and Control Pipelines 85

viii

6.4 Improved VESPA Scalability,
6.4.1 Cycle Performance
6.4.2 Clock Frequency
6.4.3 Area e

6.5 SUmMmMAry

Expanding and Exploring the VESPA Design Space

7.1 Heterogeneous Lanes
7.1.1 Supporting Heterogeneous Lanes
7.1.2 Impact of Multiplier Lanes (X)
7.1.3 Impact of Memory Crossbar (M)

7.2 Vector Chaining in VESPA
7.2.1 Supporting Vector Chaining
7.2.2 Impact of Vector Chaining
7.2.3 Vector Lanes and Powers of Two,

7.3 Exploring the VESPA Design Space
7.3.1 Selecting and Pruning the Design Space
7.3.2 Exploring the Pruned Design Space
7.3.3 Per-Application Analysiso

7.4 Eliminating Functionality L oo
7.4.1 Hardware Elimination Opportunities
7.4.2 Impact of Vector Datapath Width Reduction (W)
7.4.3 Impact of Instruction Set Subsetting
7.4.4 Impact of Combining Width Reduction and Instruction Set Subsetting . .

75 SumMmMAary e

Soft Vector Processors vs Manual FPGA Hardware Design
8.1 Designing Custom Hardware Circuits
8.1.1 System-Level Design Constraints

8.1.2 Simplifying Hardware Design Optimistically

ix

8.2 Evaluating Hardware Circuits
8.2.1 Area Measurement
8.2.2 Clock Frequency Measurement
8.2.3 Cycle Count Measurement
8.2.4 Area-Delay Product

8.3 Implementing Hardware Circuits

8.4 Comparing to Hardware o
8.4.1 Software vs Hardware: Area
8.4.2 Software vs Hardware: Wall Clock Speed
8.4.3 Software vs Hardware: Area-Delay

8.5 Effect of Subsetting and Width Reduction

8.6 Summary e

9 Conclusions
9.1 Contributions e e

9.2 Future Work s

A Measured Model Parameters

B Raw VESPA Data on DE3 Platform

C Instruction Disabling Using Verilog

Bibliography

146
147

150

152

155

168

171

List of Tables

3.1
3.2

4.1

5.1

5.2

6.1

6.2

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2
8.3
8.4

Al
A2

Vectorized benchmark applications. 0oL 29
Benchmark execution speeds. o o 37
Memory latencies on soft and hard processor systems. 43
VIRAM instructions supported 55
Configurable parameters for VESPA. 0. 60
Clock frequency of different cache line sizes for a 16-lane VESPA. 74
Performance of VESPA varying lanes from 1to32. 88
Explored parameters in VESPA.o 106
Pareto optimal VESPA configurations. 110
Configurations with best wall clock performance for each benchmark. 113
Configurations with best performance-per-area for each benchmark. 114
Hardware elimination opportunites across all benchmarks. 117
Area after width reduction across benchmarks normalized to 32-bit width. 119
Hardware circuit area and performance. 133
Area advantage for hardware over various processors 134
Speed advantage for hardware over various processors. 135
Hardware advantages over fastest VESPA. 140
Load frequency and miss rates across cache size for EEMBC benchmarks. 153
Store frequency and miss rates across cache size for EEMBC benchmarks. 154

xi

B.1 Area of VESPA system without the vector coprocessor. 155

B.2 Area of VESPA system without the vector coprocessor. 155
B.3 System area of pareto optimal VESPA configurations. 156
B.4 Performance of pareto optimal VESPA configurations. 157
B.5 Performance of pareto optimal VESPA configurations (cont’d). 158
B.6 System area after customizing to AUTCOR. v v v v v v .. 159
B.7 System area after customizing to CONVEN. 160
B.8 System area after customizing to RGBCMYK. 161
B.9 System area after customizing to RGBYIQ. 162
B.10 System area after customizing to IP_.CHECKSUM. 163
B.11 System area after customizing to IMGBLEND. 164
B.12 System area after customizing to FILT3X3. 165
B.13 System area after customizing to FBITAL.« v v v v v v v oo v o 166
B.14 System area after customizing to VITERB. 167

xii

List of Figures

2.1

2.2

3.1

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

5.5

5.6

5.7

6.1

6.2

6.3

6.4

6.5

Vector processing and vector chaining in space/time.

VIRAM processor state. e

Overview of measurement infrastructure.

Area breakdown of scalar SPREE processor with off-chip memory system.
Memory latency breakdown on TM4.
Average speedup of various direct-mapped data cache sizes.

Performance of IBM PPC 750GX versus SPREE.

Application space targeted by VESPA. oo L
VESPA processor system block diagram.00 000
VESPA memory system diagram.
The VESPA memory unit.
The VESPA pipelines.
Area of the vector coprocessor across different MVL and lane configurations.

Cycle speedup measured when MVL is increased from 32 to 256.

Performance scalability of inital VESPA design.
Average wall clock speedup of various cache configurations.
Wall clock speedup of various cache configurations for VITERB.
System area of different cache configurations.

A wide cache assembled from multiple narrow block RAMs.

xiii

14

45

59

6.6
6.7
6.8
6.9
6.10
6.11
6.12

6.13

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15

7.16

8.1
8.2
8.3
8.4

Average speedup for different prefetching triggers. 80

Speedup of prefetching fixed number of cache lines. 81
Speedup of vector length prefetcher. 82
Analysis of memory and miss cycles before/after cache and prefetcher. 83
Average cycle performance across various icache configurations. 84
Performance improvement after decoupling the vector control pipeline. 86
Performance scalability of improved VESPA. 87
Performance/area design space of 1-32 lane VESPA. 90
Performance impact of varying X. Lo Lo 94
Cycle performance of various memory crossbar configurations. 96
Cycle performance versus area for various memory crossbar configurations. . . . 97
Wall clock performance of various memory crossbar configurations. 98
Element-partitioned vector register file banks shown for 2 banks. 100
Vector chaining support for a 1-lane VESPA processor with 2 banks. 100
Cycle performance of different banking configurations. 102
Average cycle performance for different chaining configurations. 103
Performance/area space of varying chaining and lane configurations. 104
Average normalized wall clock time and area VESPA design space. 107
Average normalized cycle count and area VESPA design space after pruning. . . 109
Average wall clock time and area of pruned VESPA design space. 111
Area of width-reduced VESPA processors. 119
Area of the vector coprocessor after instruction set subsetting. 120
Area of the vector coprocessor after subsetting and width reduction. 121
Normalized clock frequency of VESPA after subsetting and width reduction. . . . 122
Hardware circuit implemented for IP_CHECKSUM. 130
Area-performance design space of scalar and pareto-optimal VESPAs. 138
Area-delay product of VESPA versus hardware. 142
Area-performance design space after subsetting and width reduction. 144

Xiv

8.5 Area-delay product versus hardware after subsetting and width reduction

XV

Chapter 1

Introduction

Field-Programmable Gate Arrays (FPGAs) are commonly used to implement embedded
systems because of their low cost and fast time-to-market relative to the creation of fully-
fabricated VLSI chips. FPGAs also provide superior speed/area/power compared to a
microprocessor, although the hardware design necessary to achieve this is cumbersome
and requires specialized knowledge making it difficult for average programmers to adopt
FPGAs. Specifically, the detailed cycle-to-cycle description necessary for design in a
hardware description language (HDL) requires programmers to comprehend both their
application and hardware substrate with very low-level detail. In addition, hardware
design is accompanied with very limited-scope debugging and complexities such as circuit
timing and clock domains. To enable rapid and easy access to this better-performing
FPGA technology, we are motivated to simplify the design of FPGA-based systems by
leveraging the high-level programming languages and single-step debugging features of

software design.

Most FPGA-based systems include a microprocessor at the heart of the system, and
approximately 25% contain a processor implemented using the FPGA reprogrammable
fabric itself [3], such as the Altera Nios II [5] or Xilinx Microblaze [67]. These soft proces-
sors are inefficient compared to their hard counterparts but have some key advantages.

Compared to using both an FPGA and a separate microprocessor chip, soft processors

CHAPTER 1. INTRODUCTION 2

preserve a single-chip solution and avoid the increased board real estate, latency, cost,
and power of using a second chip. An alternative approach to addressing these issues is
to embed hard microprocessors and FPGA fabric on a single device such as the Xilinx
Virtex II Pro [68]. But this specializes the device resulting in multiple device families
for meeting the needs of designers who may want varying numbers of processors or even
specific architectural features. Maintaining these device families as well as the design
and/or licensing of the processor core itself contribute to increasing the cost of FPGA
devices. A soft processor avoids these increased costs while maintaining the benefits of a

single-chip solution.

The software design environment provided by soft processors can be used for quickly
implementing system components which do not require highly-optimized hardware im-
plementations, and can instead be implemented with less effort in software executing on
a soft processor. In this thesis, we leverage the inherent configurability of a soft processor
to adapt its architecture and match the properties found in the application to achieve
better performance and area. These improved soft processors can better compete with
the efficiencies gained through hardware design and be used to implement non-critical
computations in software rather than through laborious hardware design. As more com-
putations within a digital system are implemented in software on a soft processor, the
overall time required to implement the digital system is reduced hence achieving our goal

of making FPGAs more easily programmable.

Simplifying hardware design is a goal analogous to that of behavioural synthesis which
aims to automatically compile applications described in a high-level programming lan-
guage to a custom hardware circuit. However pursuing this goal within a processor
framework provides several advantages. First it provides a more fluid design method-
ology allowing designers to manually optimize the algorithm, code, compiler, assembly
output, and architecture. Behavioural synthesis tools combine these into one black box
tool which outputs a single result with few options for navigating the immense design

space along each of these axes. Second, the intractable complexities in behavioural syn-

CHAPTER 1. INTRODUCTION 3

thesis can result in poor results that may be improved from the knowledge gained by
customizing within a processor framework. Third, processors provide single-step debug-
ging infrastructure making it far easier to diagnose problems within the system. Fourth,
processors provide compiled libraries for easily sharing software and maintaining opti-
mization effort. In contrast, the output from behavioural synthesis depends heavily on
surrounding components making a given synthesized task questionably portable. Finally,
a processor provides full support for ANSI C while behavioural synthesis typically do
not. Overall, processors provide a fluid and portable framework that can be immediately

leveraged by soft processors to simplify FPGA design.

The architecture of current commercial soft processors are based on simple single-
issue pipelines with few variations, limiting their use to predominantly system control
tasks. To support more compute-intensive tasks on soft processors, they must be able
to scale up performance by using increased FPGA resources. While this problem has
been thoroughly studied in traditional hard processors [28], an FPGA substrate leads
to different trade-offs and conclusions. In addition, traditional processor architecture
research favoured features that benefit a large application domain, while in a soft pro-
cessor we can appreciate features which benefit only a few applications since each soft
processor can be configured to exactly match the application it is executing. These key
differences motivate new research into scaling the performance of existing soft processors

while considering the configurability and internal architecture of FPGAs.

Recent research has considered several options for increasing soft processor perfor-
mance. One option is to modify the amount and organization of the pipelining in existing
single-issue soft processors [70, 71] which provide limited performance gains. A second
option is to pursue VLIW [31] or superscalar [12] pipelines which are limited due to the
few ports in FPGA block RAMs and the available instruction-level parallelism within
an application. A third option is multi-threaded pipelines [16, 21, 38] and multiproces-
sors [55, 62| which exploit thread-level parallelism but require complicated parallelization

of the software. In this thesis we propose and explore vector extensions for soft proces-

CHAPTER 1. INTRODUCTION 4

sors which can be relatively easily programmed to allow a single vector instruction to
command multiple datapaths. An FPGA designer can then scale the number of these
datapaths, referred to as wvector lanes, in their design to convert the data parallelism in

an application to increased performance.

1.1 Research Goals

The goal of this research is to simplify FPGA design by making soft processors more
competitive with manual hardware design. This thesis proposes that soft vector proces-
sors are an effective means of doing so for data parallel workloads, which we aim to prove

by setting the following goals:

1. To efficiently implement a soft vector processor on an FPGA.

2. To evaluate the performance gains achievable on real embedded applications. FP-
GAs are frequently used in the embedded domain so this application-class is well-

suited for our purposes.

3. To provide a broad area/performance design space with fine-grain resolution allow-
ing an FPGA designer to select a soft vector processor architecture that meets their

needs.

4. To support automatic customization of soft vector processors to a specific applica-

tion, by enabling the removal of general purpose area overheads.

5. To quantify the area and speed advantages of manual hardware design versus a soft

vector processor and a scalar soft processor.

To satisfy the first goal we implement a full soft vector processor called VESPA (Vector
Eztended Soft Processor Architecture) and demonstrate its scalability in real hardware.
For the second goal we execute industry-standard benchmarks on several VESPA configu-

rations. For the third goal we extend VESPA with parameterizable architectural options

CHAPTER 1. INTRODUCTION 5

that can be used to further match an application’s data-level parallelism, memory access
pattern, and instruction mix. For the fourth we enhance VESPA with the capability to
remove hardware for unused instructions and datapath bit-widths. Finally for the last
goal, we compare VESPA to manually designed hardware and show it can significantly
reduce the performance gap over scalar soft processors, hence luring more designers into

using soft processors and avoiding laborious hardware design.

1.2 Organization

This thesis is organized as follows: Chapter 2 provides necessary background and sum-
marizes related work. Chapter 3 describes the infrastructure components used in this
thesis. Chapter 4 analyzes bottlenecks in current scalar soft processor architectures and
motivates the need for additional computational power. Chapter 5 describes the VESPA
processor. Chapter 6 shows that with accompanying architectural improvements, VESPA
can scale within a large performance/area design space. Chapter 7 explores the VESPA
design space by implementing heterogeneous lanes, vector chaining, and automatic re-
moval of unused hardware. Chapter 8 compares VESPA to a scalar soft processor and to
manual hardware design, quantifying the area and performance gaps and demonstrating
how significant strides are made towards the performance of manual hardware design
over scalar soft processors. Finally, Chapter 9 concludes and suggests future avenues for

research.

Chapter 2

Background

This chapter provides necessary background on microprocessors, vector processors, and

FPGAs. It also describes soft processors and summarizes research related to this thesis.

2.1 Microprocessor Background

Microprocessors have radically changed the world we live in and are integral parts of
the semiconductor industry. Compared to chip design, they provide a low cost path to
silicon by serving multiple applications with a single general purpose device which can
be easily programmed using a simple sequential programming model. Microprocessor
improvements have been achieved by primarily two methods: (i) shrinking the minimum
width of manufacturable transistors which increases the processor clock rate and reduces
its size; and (ii) improving the architecture of microprocessors by adding structures for
supporting faster execution. In this thesis we focus only on the latter approach.

Many architectural variants and enhancements have been thoroughly studied [28]
in conventional microprocessors. Architectural improvements such as branch predictors
alleviate pipeline inefficiencies, but scalable performance gains are achievable only by
executing operations spatially rather than temporally over the processor datapath. The

parallelism necessary for spatial computation comes in three forms:

e Instruction Level Parallelism (ILP): When an instruction produces a result not

CHAPTER 2. BACKGROUND 7

used by a later instruction in the same instruction stream, those two instructions

exhibit instruction level parallelism which allows them to be executed concurrently.

e Data Level Parallelism (DLP): When the same operation is performed over

multiple data elements allowing all operations to be performed concurrently.

e Thread Level Parallelism (TLP): When multiple instruction streams exist they
can be executed concurrently except for memory operations which may access data

shared between both instruction streams.

ILP has been heavily leveraged in creating aggressive out-of-order superscalar mi-
croprocessors, until three factors combined to prevent further improvements using this
approach: the complexity involved in exploiting this ILP, the growing performance gap
between processors and memory (known as the memory wall) [66], and most recently, the
limited power density that can be dissipated by semiconductor chips (known as the power
wall) [20]. Since then the microprocessor industry has turned to solving the parallel pro-
gramming problem in hopes of simplifying the extraction of TLP. With multiple threads
an architect can build a more efficient multithreaded processor which time-multiplexes
the different threads onto a single datapath. Additionally multiple processors, or mul-
tiprocessors, can be used to scale performance by simultaneously executing threads on
dedicated processor cores. Presently all mainstream processors now provide 4 or 8 cores
such as the Intel Core i7 family [29]. Exploiting either ILP and TLP can be used to
scale performance in soft processors; later in this chapter we discuss related work in that
area as well as its suitability to FPGA architectures. This thesis focuses primarily on
exploiting the DLP found in many of the embedded applications in which FPGAs are

employed.

2.2 Vector Processors

DLP has been historically exploited through a vector processor which is designed for effi-

cient execution of DLP workloads [28]. Vector processors have existed in supercomputers

CHAPTER 2. BACKGROUND 8

Listing 2.1: C code of array sum.

int a[16],b[16],c[16];

for (int i=0; i<16; i++)
c[i]=al[i]+b[i];

since the 1960s and were the highest-performing processors for decades. The fundamen-
tal concept behind vector processors is to accept and process wvector instructions which
communicate some variable number of homogeneous operations to be performed. This

concept and its advantages are discussed below in the context of an example.

2.2.1 Vector Instructions

Vector processors provide direct instruction set support for operations on whole vectors—
i.e., on multiple data elements rather than on a single scalar value. These instructions
can be used to exploit the DLP in an application to essentially execute multiple loop
iterations simultaneously. Listing 2.1 shows an example of a data parallel loop that sums
two 16 element arrays. The assembly instructions necessary to execute this loop on a
scalar processor is shown in Listing 2.2. Tracing through this code shows that a total of
148 machine instructions need to be executed, with 80 of them responsible for managing
the loop and advancing pointers to the next element.

With support for vector instructions, a vector processor can execute the same loop
with just the 8 instructions shown in Listing 2.3. After initializing the pointers, the
current vector length is set to 16 since the loop operates on 16-element arrays. Following
this, the vector instructions for loading, adding, and storing the resulting 16-element
array back to memory are executed. Note that due to finite hardware resources, a vector
processor exposes its internal maximum vector length MVL in a special readable register.
In this code we assume MVL is greater than or equal to 16, otherwise the loop must be
strip-mined into multiple iterations of MVL sized vectors. Nonetheless, the savings in

executed instructions is dramatic due to: (i) the multiple operations encapsulated in a

CHAPTER 2. BACKGROUND 9

Listing 2.2: Pseudo-MIPS assembly of array sum. Destination registers are on the left.

move rl,a
move r2,b
move rd,c
move r7,0
loop_add:

load . w 14 ,(rl)
load . w r5,(r2)

add r6,r4,r5

stor.w 16,(1r3)

add r7,r7,1 # Loop overhead
add rl,rl, r7 # Advance pointer
add r2,r2,r7 # Advance pointer
add r3,r3,r7 # Advance pointer
blt r7,16,loop_add # Loop overhead

Listing 2.3: Vectorized assembly of array sum. For simplicity it is assumed the maximum vector
length is greater than or equal to 16.

move vbasel ,a
move vbase2 ,b
move vbase3 ,c
move vl,16 #Set vector length to 16

vload .w vrd,(vbasel)
vload .w vr5 ,(vbase2)
vadd vr6 ,vrd ,vrd
vstor.w vr6,(vbase3)

single vector instruction; and (ii) the savings in loop overheads and pointer advancing.
Listing 2.3 shows the use of one possible vector instruction set. Many different vector

instruction sets have been extensively researched, including in modern processors [24].

Simultaneous research into the architectures that supports these vector instructions was

also thoroughly performed and is described next.

2.2.2 Vector Architecture

The vector architecture is responsible for accepting a stream of variable-lengthed vector
instructions and completing their associated operations as quickly as possible. We now
describe several architectural modifications that can be used to achieve this; a more

comprehensive summary can be found in [28].

CHAPTER 2. BACKGROUND 10

a) Base Vector Processor

vioad || | time

vadd | |

vmul space ’ ‘

b) Base Vector Processor with Lanes Doubled

vload time

vadd

vmul

space

c) Base Vector Processor with Chaining

vioad | | | time

vadd ’ ‘

vmul ’ ‘
space

Figure 2.1: Comparing vector execution of doubling lanes (b) and chaining (c) against a base
vector processor (a). The area of the boxes represents the amount of work for each instruction.
The base vector processor in (a) waits for each vector instruction to complete before executing
the next. In (b), doubling the number of lanes allows more of the work to be computed spatially
on the additional lanes, this makes the instructions twice as tall in space and half as long in
time. Chaining allows the work to be overlapped with the work of other instructions as seen
in (c). The execution is staggered so that at any point in time each instruction is executing on
different element groups.

2.2.3 Vector Lanes

The most important architectural feature of a vector processor is the number of vector
datapaths or vector lanes. A single lane can operate on a single element of the vector at a
time in a pipelined fashion; with more vector lanes a vector processor can perform more
of the element operations in parallel hence increasing performance. For example, the
vadd instruction in Listing 2.3 encodes 16 additions to be performed across 16 elements.
A vector processor with 8 lanes can then execute 8 element operations at a time—we

refer to this group of elements as an element group. After the first element group with

CHAPTER 2. BACKGROUND 11

indices 0-7 is processed, the next element group with indices 8-15 is processed and the
vadd instruction completes in two cycles.

Figure 2.1 shows a visual depiction of the effect of doubling lanes on vector instruction
execution. Compared to (a), doubling the number of lanes in (b) results in twice as much
spatial execution of the vector instructions, resulting in half as much execution time.
The number of lanes is a powerful parameter for trading silicon area (used for spatial
execution on the vector lanes) and performance (the time needed to complete the vector
instruction). Note that the number of lanes is always a power of two, otherwise accessing

an arbitrary element requires division and modulo operations to be performed.

2.2.4 Vector Chaining

Vector chaining provides another axis of scaling performance in addition to increasing
the number of lanes. Chaining allows multiple vector instructions to be executed simul-
taneously; the concept was first presented in the Cray-1 [56]. Using Listing 2.3 as an
example, the first element group of the vadd instruction does not need to wait for the
vload instruction preceding it to complete in its entirety. Rather, after the vload has
loaded the first element group into vr5, the vadd can execute its first element group since
its data is ready. Similarly the first element group for the stor can be stored as soon as
the vadd completes that element group. With this concept the throughput of the vector
processor can scale beyond the available number of lanes.

Figure 2.1 ¢) shows the effect of chaining compared to part a) of the same figure.
After an initial set of element groups have been processed, the next instruction can
execute alongside the previous. A continuous supply of vector instructions can lead to a
steady-state of multiple vector instructions in flight. However successful vector chaining
requires (i) available functional units, (ii) read/write access to multiple vector element
groups, and (iii) vector lengths long enough to access multiple element groups. The
first is achieved by replicating functional units, specifically the arithmetic and logic unit

(ALU). The second can be achieved by implementing many read /write ports to the vector

CHAPTER 2. BACKGROUND 12

register file or many register banks each with their own read/write ports. Historically
vector supercomputers used the latter approach, while research in more modern single-
chip implementations of vector architectures have resorted to the former [6] as discussed
below. Finally the third requires applications with enough DLP to use vector lengths

longer than the number of lanes.

2.2.5 The TO Vector Processor

While traditional vector supercomputers spanned multiple processor and memory chips,
Asanovic et. al. proposed harnessing advances in CMOS technologies to implement vec-
tor processors on a single chip with the aim of including them as add-ons to existing
scalar microprocessors [6, 7|. The 8-lane T0 vector processor was implemented with up
to 3-way chaining for a peak of 24 operations per cycle while issuing only one vector
instruction per cycle. A key contribution was in the reduction of the large delays histori-
cally associated with starting and completing a vector instruction. These delays require a
high-degree of data parallelism to be amortized, but with the shorter electrical delays of
a single-chip design, the delays were greatly reduced enabling new application classes to
exploit vector architectures. The TO also first realized the area efficiency gains of using a
many-ported vector register file to support chaining rather than a many-banked register
file. Finally, while caches were not typically used in traditional vector supercomputers,

they are further motivated in the T0O which connects to DRAM instead of SRAM.

2.2.6 The VIRAM Vector Processor

The IRAM project [1] investigated placing memory and microprocessors on the same chip,
which lead to the design of a processor architecture that can best utilize the resulting high-
bandwidth low-latency access to memory. The group selected a vector processor based on
the TO0, but optimized it for this memory system and for the embedded application domain
creating VIRAM [32, 33, 34, 35, 60]. The VIRAM vector processor was shown to provide

faster performance across several EEMBC industry-standard benchmarks compared to

CHAPTER 2. BACKGROUND 13

superscalar and out-of-order processors while consuming less energy. The vector unit is
attached as a coprocessor to a scalar MIPS processor with both connected to the on-chip
DRAM. The complete system is manufactured in a 180nm CMOS process. The VIRAM
vector processor has 4 lanes each 64-bits wide but can be reconfigured into as many as
16 16-bit vector lanes. The architecture is massively pipelined with 15 stages in each
vector lane to tolerate the worst case on-chip memory latency. With this pipelining and
the low-latency on-chip DRAM, no cache is used in VIRAM. The soft vector processor
implemented in this thesis is based on the VIRAM instruction set which is described in

more detail below.

2.2.6.1 VIRAM Instruction Set

VIRAM supports a full range of integer and floating-point vector operations including
absolute value, and min/max instructions. Fixed-point operations are directly supported
by the instruction set as well, providing automatic scaling and saturation hardware.
VIRAM also supports predication, meaning each element operation in a vector instruction
has a corresponding flag indicating whether the operation is to be performed or not. This
allows loops with if/else constructs to be vectorized. Finally VIRAM has memory
instructions for describing consecutive, strided, and indexed memory access patterns.
The latter can be used to perform scatter/gather operations albeit with significantly less
performance than consecutive accesses.

Figure 2.2 shows the vector state in VIRAM consisting of the 32 vector vr registers,
the 32 flag vf registers, the 64 control vc registers, and the 32 vs scalar registers. The
vector registers are used to store the vectors being operated on, while the flag registers
store the masks used for predication. The control registers are each used for dedicated
purposes throughout various parts of the vector pipeline. For example vcO0, also referred
to as v1, holds the vector length of the current vector instruction, while vc24 or mvl is
used to specify the maximum vector length of the processor (and hence this register is

read-only). The vcl or vpw register stores the width of each element used to determine

CHAPTER 2. BACKGROUND 14

Element Element
01 MVL 01 MVL
vr0 vf0
gvrl vfl
@ T
=)
o ok
§ o
g &
> LL
w3l [| \ vidl [[-]
+“—> H.
64—bits 1-bit
64-bits 64-bits 64—-bhits
— < > —>
veO vl ve32) vbaseO vsO
o Vel vpw vc33[_ vbasel vsl
m ana n
B2 O
o vca7| vbasels o)
o vc48) vinc0 g
S i
g vc55) vinc? ks
O vc24] mvl vc56| vstrideO §
vc3l vc63| vstride? vs31

Figure 2.2: Processor state of VIRAM vector coprocessor consisting of vector registers, flag
registers, control registers, and scalar registers. Our VESPA soft vector processor uses this
same state though with widths of 32 bits instead of 64 bits.

the datapath width of the vector lanes. As seen in the figure, this is normally 64-bits,
but can be modified to create narrower elements down to 16-bits which is automatically
accompanied by a corresponding 4x increase to mvl.

The control registers also include dedicated registers for memory operations. The
vbase0-15 registers can store any base address which can be auto-incremented by the
value stored in the vinc0-7 registers. The vstrideO-7 registers can store different
constant strides for specifying strided memory accesses. For example, if vl was 16 and
the instruction vld.w vrO,vbasel,vstride2,vinch was executed, the vector processor

would load the 16 elements starting at vbasel each separated by vstride2 words, store

CHAPTER 2. BACKGROUND 15

them in vr0, and finally update vbasel by adding vinc5 to it. More detailed information
can be found in the VIRAM instruction set manual [60]. Note the implementation of
VIRAM used in VESPA uses exactly the same vector state as in Figure 2.2 except that
it is 32-bits instead of 64-bits, and without supporting the width reconfiguration using

VpW.

2.2.7 SIMD Extensions

Modern microprocessors exploit data-level parallelism via SIMD (single-instruction, multiple-
data) support, including IBM’s Altivec, AMD’s 3DNow!, MIPS’s MDMX, and Intel’s
MMX/SSE/AVX. SIMD support is very similar to vector support except that it is typi-
cally limited to a fixed and small number of elements which is exposed to the application
programmer. In contrast, true vector processing abstracts from the software the actual
number of hardware vector lanes, instead providing a machine-readable MVL parameter
(discussed below) for limiting vector lengths. This is partly due to the longer vector
lengths typically used in vector processing which are permitted to exceed the amount
of hardware resources so that future vector architectures could add hardware resources
to exploit the DLP without software modification. In addition, vector processors are
typically equipped with a wider range of vector memory instructions that can explic-
itly describe different memory access patterns. These features make vector processing

appealing for current microprocessors instead of the SIMD extensions used to date [24].

2.3 Field-Programmable Gate Arrays (FPGAs)

Field-Programmable Gate Arrays are prefabricated programmable logic devices often
composed of lookup table based programmable logic blocks connected by a programmable
routing network. Using these elements an FPGA can implement any digital logic circuit
making them (originally) useful for implementing miscellaneous glue logic. As FPGAs

have grown in capacity they have become capable of implementing complete embedded

CHAPTER 2. BACKGROUND 16

systems. To augment their area efficiency and speed for certain operations, FPGA ven-
dors have included dedicated circuits for better implementing certain operations that are
typical in an embedded system. These dedicated circuits presently include flip flops, ran-
dom access memory (RAM), multiply-accumulate logic, and microprocessor cores [36].
We describe these in more detail below since they are used extensively in soft processors,

or in the case of the microprocessor cores, as an alternative to soft processors.

2.3.1 Block RAMs

The block RAMs in FPGAs provide efficient large storage structures which would oth-
erwise require large amounts of lookup tables and flip flops to implement. While the
capacity of a given block RAM is fixed, multiple block RAMs can be connected to form
larger capacity RAM storage. Additional flexibility is available in the width and depth
of the block RAMs allowing them to be configured as deep and narrow 1-bit memories,
or shallow and wide 32-bit memories. A key limitation of block RAMs is they have only
two access ports allowing just two simultaneous reads or writes to occur. This limitation
inhibits soft processor architectures which require many-ported register files to sustain
multiple instructions in flight. As a result most soft processor research has been on

single-issue pipelines or multiprocessors.

2.3.2 Multiply-Accumulate blocks

The multiply-accumulate blocks, referred to also as DSP blocks, have dedicated circuitry
for performing multiply and accumulate operations. The smallest such blocks are 9 or
18 bits wide and can be combined to perform multiply-accumulate for larger inputs. In
this work we use the multiply-accumulate blocks to efficiently implement the multiplier
functional units in a processor, which we also use to perform shift operations since barrel

shifters are inefficient when built out of lookup tables.

CHAPTER 2. BACKGROUND 17

2.3.3 Microprocessor Cores

Some FPGAs include one or two microprocessor cores implemented directly in silicon
with the FPGA programmable fabric surrounding it [4, 68]. These hard processors pro-
vide superior performance relative to a soft processor but also have many disadvantages:
(i) the number of hard processors on an FPGA may be insufficient or too many resulting
in wasted silicon; (ii) the architecture is fixed making it difficult to satisfy all application
domains; (iii) the cost of the FPGA is increased since vendors must design, build, and /or
license a processor core; and (iv) the FPGA is specialized often producing multiple fami-
lies of devices with/without processor cores which further increases design and inventory
costs. As a result soft processors have seen significant uptake by both vendors and FPGA

users, motivating research into improving soft processors.

2.4 FPGA Design

The typical FPGA design flow begins with an HDL language such as Verilog or VHDL
which describes the desired circuit. FPGA vendors provide computer-aided design (CAD)
tools for parsing this description and efficiently mapping the circuit onto the FPGA fabric.
This design process is far more difficult than the software-based flows of microprocessors.
An FPGA designer must specify the cycle-to-cycle behaviour of each component of the
system, and the interaction between these components creates many opportunities for
errors. Unlike the single-stepping debug infrastructure in a microprocessor, debugging a
hardware design is very difficult. A logic analyzer can be used to capture a snapshot of
a few signals at some event, but finding the erroneous event among its many symptoms
can involve weeks of effort. In addition, an FPGA designer must respect the timing
constraints of the system. Doing so requires pipelining, retiming, and other optimizations
which can create more state and hence increased opportunities for errors. Overall, the
biggest bottleneck of the FPGA design process is the design and verification of the desired

system. Unlike an ASIC, fabrication is performed in minutes to days depending on the

CHAPTER 2. BACKGROUND 18

circuit size and the compilation time of the FPGA CAD tools.

2.4.1 Behavioural Synthesis

Many efforts have been made to simplify the FPGA design flow. One option adopted by
the FPGA vendors is to use processors (soft or hard) to implement less critical compo-
nents and system control tasks—where errors can be very difficult to find if implemented
in a hardware finite state machine (FSM). But another option which has been extensively
researched in both FPGAs and ASICs is to automatically derive hardware implementa-
tions from a C-like sequential program. This is referred to as behavioural synthesis and
its goal is aligned with our own goal of simplifying FPGA-design by using sequential
programming for soft processors instead. Some examples of behavioural synthesis tools
and languages include Handel-C [59], Catapult-C [43], Impulse C [52], and SystemC [51].
Altera has their own behavioural synthesis tool called C2H [40] which can convert C
functions into hardware accelerators attached to a Nios II soft processor. Previous work
has shown that soft vector processors can scale significantly better than C2H-generated
accelerators even when manual code-restructuring is performed to aid C2H [75]. The
state-of-the-art behavioural synthesis results in overheads due to the intractable nature
of the problem including the pointer aliasing problem. These complexities have limited
the quality of results available from behavioural synthesis tools.

We believe that customized processors will continue to be useful until and even after

high-quality behavioural synthesis tools exist because of the following advantages.

1. Fluid Design Methodology — Processors have well-defined intermediate steps
throughout the design flow. Each of these steps are taught to engineers at the
undergraduate level providing them with the knowledge to manually optimize the
algorithm, compiler, assembler output, and processor architecture. Behavioural
synthesis tools aim to reap the efficiency gains from not having a fixed architecture
structure or instruction set. As a result it is difficult for designers to manually

navigate the vastly different hardware implementations possible.

CHAPTER 2. BACKGROUND 19

2. Libraries — For a processor, compiled output can be packaged and shared very
easily between software designers. This same idea has failed to gain traction in
hardware design because of differing speed/area constraints and non-standardized
interfaces. In contrast, software is decoupled from the hardware implementation
allowing it to be designed primarily for speed. Moreover, libraries can preserve

manual optimization of the compiled software.

3. Debug Support — Processors provide single-step debug capability. While this
can be emulated to some degree by hardware simulators, the parallel nature of
hardware can make it confusing. In addition, hardware simulators can not precisely
model the behaviour of the hardware itself because of external stimuli and hardware
imperfections. Inevitably this means some bugs will manifest only in the hardware

implementation where they are difficult to find and fix.

4. Intractable Complexities — The complexities in deriving a high-quality hardware
implementation of a system has made it a holy grail for many decades. Until high-
quality behavioural synthesis exists, designers can instead utilize the customization
opportunities in microprocessor systems. The knowledge gained through this re-

search can also be used for improving behavioural synthesis tools.

5. ANSI C Support — Overcoming the complexities in behavioural synthesis most
often leads to limited support for the full ANSI C standard or radically different
programming models. Some examples of these are summarized below, however
the willingness of FPGA designers to adopt new C variants or programming models
casts doubt on the future adoption of behavioural synthesis. In contrast a processor

can easily support full ANSI C which provides a familiar programming interface.

One of the largest hurdles to supporting full ANSI C in behavioural synthesis is the
global memory model used in high-level programming languages. While arithmetic oper-
ations can be literally converted to hardware circuits, a literal conversion of this memory

model would result in many processing elements being sequenced to preserve memory

CHAPTER 2. BACKGROUND 20

consistency but at the same time competing over the single memory. The CHiMPS [54]
project aims to support traditional memory models by providing caches for many pro-
cessing elements. Compiler analysis determines regions of memory safe for caching by
analyzing dependencies in scientific computing applications which rarely have complex
memory aliasing. Additionally, traditional memory models can be preserved with multi-
threaded and/or multi-processor systems but programming these systems requires facing
the difficult parallel programming problem. The implementation of these systems onto
FPGAs leads to soft processor research which is summarized in Section 2.5.3 and Sec-
tion 2.5.4.

Most behavioural synthesis compilers modify or restrict the memory model to facili-
tate better quality hardware implementations. The SA-C [17] compiler prohibits the use
of pointers and recursion and forces all variables to be single-assignment. While these
restrictions impose difficulties on the programmer, the resulting application code can be
more easily converted to hardware. The streaming programming paradigm has also been
researched as a means of programming FPGAs. For example the Streams-C [25] language
allows a programmer to express their computation in a consume-compute-produce model.
Data and task level parallelism can be extracted and used to build parallel hardware for
faster execution. Similar work was done using the Brook stream language [53] and also

using regular C file I/O streams for the PACT behavioural synthesis tool [48] [30].

2.4.2 Extensible Processors

Behavioural synthesis aims to convert whole programs into hardware, but other ap-
proaches are premised on the common characteristic that a small computation is largely
responsible for overall performance. The Warp [42] processing project derives on-the-
fly hardware accelerators for a simplified FPGA fabric. This allows an application to
be programmed in C and executed on a generic microprocessor which will automati-
cally accelerate critical computations. The eMIPS [44] project converts blocks of binary

MIPS instructions to hardware that can be dynamically configured onto an FPGA. The

CHAPTER 2. BACKGROUND 21

instructions are then replaced with an invocation of the hardware accelerator. These
dynamically extensible processors can be used to accelerate software and avoid custom
hardware design similar to our own goals. However they are accompanied with significant
overhead in synthesizing and configuring hardware accelerators and are hence critically
dependent on correctly identifying computation to accelerate. This decision depends on
how amenable the computation is to hardware acceleration and also depends on its overall
contribution to system performance. As the system is improved and computation is more
balanced across different kernels, it becomes increasingly difficult to select a computation

which can amortize the dynamic configuration overheads.

2.5 Soft Processors and Related Work

Soft processors are processors designed for a reprogrammable fabric such as an FPGA.
The two key attributes of soft processors are (i) the ease with which they can be cus-
tomized and subsequently implemented in hardware, and (ii) that they are designed to
target the fixed resources available on a reprogrammable fabric. This distinguishes soft
processors from hard processors which are extremely difficult to customize due to the high
cost and long design and fabrication times of full-custom VLSI design. Also, soft proces-
sors are distinct from parameterized processor cores which are pre-designed synthesizable

RTL implementations not necessarily targeting efficient FPGA implementation.

The Actel Cortex-M1 [2], Altera Nios II [5], Lattice Micro32 [39], and Xilinx Microb-
laze [67] are widely used soft processors with scalar in-order single-issue architectures that
are either unpipelined or have between 3 and 5 pipeline stages. While this is sufficient
for system coordination tasks and least-critical computations, significant performance
improvements are necessary for soft processors to replace the hardware designs of more
important system components. Research in this direction is recent and ongoing, and

summarized below.

CHAPTER 2. BACKGROUND 22

2.5.1 Soft Single-Issue In-Order Pipelines

The SPREE (Soft Processor Rapid Exploration Environment) system was developed to
explore the architectural space of current soft processors in our previous research [69,
70, 71]. SPREE can automatically generate a Verilog hardware implementation of a pro-
cessor from a higher-level description of the datapath and instruction set. The tool was
used to explore the implementation and latencies of functional units as well as the depth
and organization of pipeline stages creating a thorough space of soft processor design
points that were competitive with the slower and mid-range Altera Nios II commercial
soft processors. We found diminishing returns with deeper pipelining which required
more advanced architectural features to avoid pipeline stalls. While this work succeeded
in exploring the space and finding processor configurations superior to a mid-speed com-
mercial soft processor, it failed to extend the space, specifically with faster soft processors.
In this thesis, we continue to use SPREE by choosing the best overall generated design
and manually adding vector extensions to the architecture and compiler infrastructure.
Numerous other works created parameterized scalar soft processors aimed at cus-
tomization. The LEON [23] is a parameterized VHDL description of a SPARC processor
targetted for both FPGAs and ASICS with several customization options including cache
configuration and functional unit support. LEON is heavily focussed on system-level fea-
tures fully supporting exceptions, virtual memory, and multiprocessors. No scalable per-
formance options exist other than multiprocessing which requires parallelized code. Sim-
ilarly the XiRisc [41] is a parameterized core written in VHDL supporting 2-way VLIW,
16/32-bit datapaths, and optional shifter, multiplier, divider, and multiply-accumulate
units. While these options provide some performance improvements it cannot scale to

compete with manual hardware design. Other VLIW processors are discussed below.

2.5.2 Soft Multi-Issue Pipelines

The idea of using VLIW (Very Long Instruction Word) processors in which batches of

independent instructions are submitted to the processor pipeline has been explored as

CHAPTER 2. BACKGROUND 23

a way of increasing soft processor performance without the complexities of hardware
scheduling. Saghir et. al. implemented a soft VLIW processor using a register file with
2 banks replicated 4 times to achieve the 4 read ports and 2 write ports necessary to
sustain two instructions per cycle [57]. For an fir benchmark this configuration achieved
up to 2.55x speedup with 3 data write ports and 2 address write ports over 1 data write
port and 1 address write port. Bank conflicts and limits to instruction level parallelism
limit the performance scaling possible on soft VLIW processors, moreover the increasing
register file replication necessary would quickly become overwhelming. Jones et. al.
implemented a 4-way VLIW processor by implementing the register file in logic instead
of block RAMs [31]. This 4-way parallelism averaged only 29% speedup over single-issue,
suggesting that the technique cannot easily scale performance.

A superscalar processor can issue multiple instructions concurrently, but unlike VLIW
processors, a superscalar automatically identifies and schedules independent instructions
in hardware. While this approach is popular in hard processors, there is presently no
soft superscalar architectures in existence likely due to their complexity. Also, the large
associative circuit structures and many-ported register file required to build a superscalar
are not efficiently implementable in FPGAs. Carli designed an out-of-order single-issue
soft MIPS processor that implements Tomasulo’s algorithm and discusses the infeasibility
of superscalar issue with respect to his architecture [12]. The soft MIPS was found to be

up to twice as big as a Xilinx Microblaze and between 3x and 12x slower.

2.5.3 Soft Multi-Threaded Pipelines

A potentially promising method of scaling soft processor performance is to leverage multi-
ple threads. Research into exploiting multiple threads in soft processors will only become
more fruitful as advancements in parallel programming are made in the microprocessor in-
dustry. Nonetheless, auto-vectorization is a significantly simpler problem which exploits
predominantly fine-grain data parallelism and is hence supported in many compilers in-

cluding GCC.

CHAPTER 2. BACKGROUND 24

The advanced architectural features needed to keep a pipeline fully utilized can be
avoided by instead having multiple independent instruction streams (threads), which
can also be used to hide system latencies. Fort et. al. showed that a multithreaded
soft processor can save significant area while hiding memory latencies and performing as
fast as a multiprocessor system when both use an uncached latent memory system [21].
Labrecque et. al. showed that multithreading can save logic by eliminating branch
handling and data dependency hardware [37]. They also showed that with an off-chip
DRAM memory system the amount of hardware threads, cache configuration, cache
topology, and number of cores can be varied to achieve maximum throughput from the
memory system [38]. Moussali [47] built a multi-threaded version of the Xilinx Microblaze
and showed that 1.1x to 5x performance can be gained by hiding the latency caused by

custom instructions and custom computation blocks.

The CUSTARD [15, 16] customizable threaded soft processor is an FPGA implemen-
tation of a parameterizable core supporting the following options: different number of
hardware threads and types, custom instructions, branch delay slot, load delay slot, for-
warding, and register file size. The primary purpose of the design was to be used with
a tool for automatic custom instruction generation. However its uses as a parameterized
soft processor is more applicable to our own work. While the available architectural axes
are interesting the results show some overheads in the processor design: clock speed var-
ied only between 30 and 50 MHz on the XC2V2000 FPGA (on which the Microblaze soft
processor is clocked at 100 MHz), and overall performance is 6-61% worse than Microb-
laze. Also the single-threaded base processor consumed 1800 slices while the commercial
Microblaze typically consumes less than 1000 slices on the same device. Nonetheless
4-way multi-threading can be added for only 28% more area but was shown to gain only

10% in performance.

CHAPTER 2. BACKGROUND 25

2.5.4 Soft Multiprocessors

Unnikrishnan et. al. created a tool for automating the parallelization of streaming code
and making application-specific customizations to the targetted soft multiprocessor sys-
tem [62]. The individual cores could be customized to their software eliminating unused
hardware using our SPREE framework and achieving significant area savings. With 16
processors up to bx increased performance can be achieved using this tool. Similarly,
Plavec et. al. [53] developed a tool to generate a streaming architecture comprised of
multiple processor cores from a streaming program. The Altera C2H behavioural syn-
thesis tool is leveraged to convert processor nodes to custom hardware achieving further
speed improvements. The generated and optimized streaming architecture can perform
up to 8.9x faster than execution on a single soft processor, as well as 4.3x faster than using
C2H on the entire benchmark kernel. Similar to our own work, these stream-based design
flows can provide scalable soft processor performance if streaming languages are adopted
by embedded system designers. An auto-vectorizing compiler or vectorized library could
provide this scalability with minimal disruption to current design flows.

Ravindran et. al. built a soft multiprocessor system dedicated to IPv4 packet for-
warding [55]. The 14-processor system was able to achieve a throughput of 1.8Gbps,
which when normalized to area is 2.6x slower than the Intel IXP-2800 network proces-
sor. This case study show the potential of FPGA-based multiprocessors to compete
with highly optimized and specialized commercial hard multiprocessors. Rigorous man-
ual parallelization was required and the multiprocessor topology was customized, but
customizing each individual core was not performed as the authors used standard Xilinx
Microblaze cores. More aggressive customization would require extensive software and

hardware labour, but can perhaps be automated in the future.

2.5.5 Soft Vector Processors

Yu et. al. [75] first demonstrated the potential for vector processing as a simple-to-use

and scalable accelerator for soft processors. In particular, through performance mod-

CHAPTER 2. BACKGROUND 26

elling the authors show that (i) a vector processor can potentially accelerate data paral-
lel benchmarks with performance scaling better than Altera’s C2H behavioural synthesis
tool (even after manual code restructuring to aid C2H), and (ii) how FPGA architectural
features can be exploited to provide efficient support for some vector operations. For
example, the multiply-accumulate blocks internally sum multiple partial products from
narrow multiplier circuits to implement wider multiplication operations. This same ac-
cumulator circuitry is used by Yu to efficiently perform vector reductions which sum all
vector elements and produce a single scalar value. Also the block RAMs can be used as
small lane-local memories for efficiently implementing table lookups and scatter/gather
operations.

The work of Yu et. al. was done in parallel with our own development of VESPA and
its infrastructure, but it left many avenues unexplored. Its memory system consisted of
only the fast on-chip block RAMs—Ilatent memory systems were never explored. Without
this and without real execution of benchmarks, the scalability of soft vector processors
remains unproven. Also few customization opportunities in soft vector processors were
examined beyond the number of lanes and the maximum vector length: the width of
the lanes, multiplier, and memory were parameterized and were individually set for each
benchmark. Finally more sophisticated vector pipelines features such as vector chain-
ing were never considered. Beyond the work of Yu, in this thesis, we offer a full and
verified hardware implementation of a soft vector processor called VESPA, connected
to off-chip memory, with GNU assembler vector support, and evaluation on vectorized
industry-standard benchmarks. This thesis more thoroughly explores the scalability,
customizability, and architecture of soft vector processors. In addition, we explore the
design space of VESPA configurations and show how competitive it can be versus manual

hardware design in Chapter 8.

Chapter 3

Experimental Framework

Our goal of improving soft processors to be more competitive with hardware requires a
measurement infrastructure for accurately and thoroughly evaluating enhancements to
soft processors. In this chapter we describe the infrastructure used for executing, verify-
ing, and evaluating soft processors. Specifically, we describe the benchmarks, compiler,
CAD software, hardware platforms, measurement methodology, measurement error, and

verification process.

3.1 Overview

We employ a real and complete measurement infrastructure which implements soft pro-
cessors in hardware executing benchmarks on real FPGA devices. An overview of the
infrastructure is illustrated in Figure 3.1. Benchmark software programs are compiled
with standard compilers and simulated at the instruction-level to verify their correctness.
Architectural ideas are augmented into a complete Verilog design of a soft processor and
simulated at the register transfer level (RTL) using an RTL simulator. Once the correct-
ness of the architecture is verified, the design is synthesized using FPGA computer-aided
design (CAD) software which emit hardware characteristics such as the area and clock
frequency of the design. The soft processor is then configured onto a real FPGA and

executes each benchmark from off-chip DRAM-—at the end of each execution the to-

27

CHAPTER 3. EXPERIMENTAL FRAMEWORK 28

SOFTWARE HARDWARE

EEMBC
Benchmarks

(area, clock
SEICH frequency)

Instruction
Set
Simulation

RTL
Simulation

(cycles)
(verification) (verification)

Figure 3.1: Overview of measurement infrastructure.

tal number of cycles are reported. The individual components of the infrastructure are

discussed in detail in the remainder of this chapter.

3.2 Benchmarks

The benchmarks used in this study are predominantly from the industry-standard EEMBC
(Embedded Microprocessor Benchmark Consortium) benchmark collection [18]. This
EEMBC consortium is a non-profit corporation aiming to standardize embedded bench-
marks and aid designers in selecting an appropriate embedded processor. The bench-
marks are widely used in the embedded systems domain and since FPGAs are also used
in the embedded domain, the EEMBC benchmarks are appropriate for evaluating soft
processors. The benchmarks used in this study are selected from the Automotive 1.1, Of-
fice Automation 1.1, Telecom 1.1, Networking 2.0, and Digital Entertainment 1.0 suites.

Our infrastructure is capable of compiling and executing all EEMBC benchmarks un-

CHAPTER 3. EXPERIMENTAL FRAMEWORK 29

Table 3.1: Vectorized benchmark applications.

EEMBC Input Output Num

Benchmark Description Source Suite (Dataset) | size (B) | size (B) | Loops
AUTCOR auto correlation EEMBC/VIRAM Telecom (2) 1024 64 1
CONVEN convolution encoder | EEMBC/VIRAM Telecom (1) 522 1024 1
RGBCMYK rgb filter EEMBC/VIRAM | Digital Ent. (5) | 1628973 | 2171964 1
RGBYIQ rgb filter EEMBC/VIRAM | Digital Ent. (6) | 1156800 | 1156800 1
FBITAL bit allocation EEMBC/VIRAM Telecom (2) 1536 512 2
VITERB viterbi encoder EEMBC/VIRAM Telecom (2) 688 44 5
IP_CHECKSUM checksum EEMBC (kernel) | Net (handmade) 40960 40 1
IMGBLEND combine two images VIRAM (handmade) 153600 76800 1
FILT3X3 image filter VIRAM (handmade) 76800 76800 1

compromised and with the complete test harness allowing us to report official EEMBC

scores.

Our work on soft vector processors requires benchmarks with adequate data paral-
lelism, so we assembled a subset of benchmarks for that purpose shown in Table 3.1. The
top six are uncompromised EEMBC benchmarks vectorized in assembly and provided to
us by Kozyrakis who used them during his work on the VIRAM processor [33] discussed
in Section 2.2.6. Some debugging was subsequently performed on those benchmarks,
which were also re-coded to eliminate dependencies to the original VIRAM processor
configuration. The fifth benchmark is a kernel we extracted and hand-vectorized from
the EEMBC 1P_PKTCHECK benchmark. Since execution of this benchmark is indepen-
dent of the data set values, we provide a hand-made data set of 10 arbitrarily filled 4KB
packets. Similarly the last two benchmarks also execute independent of data set values,
so we provide two arbitrarily filled 320x240 images (one byte per pixel) for FILT3X3 and
one of those images for IMGBLEND. These two benchmarks were provided to us from
the VIRAM group as well. The last three columns of Table 3.1 show the input data
size, output data size, and total number of loops not including nested loops. All loops
were vectorized except for one loop in both the FBITAL and VITERB benchmarks. Finally
note that all benchmarks were written to be independent of the maximum vector length
supported in the vector processor; no benchmark modifications were made nor required

for any of our experiments.

CHAPTER 3. EXPERIMENTAL FRAMEWORK 30

3.3 Software Compilation Framework

Benchmarks are compiled using GNU GCC 4.2.0 ported to MIPS to match the MIPS-
based SPREE scalar processors used throughout this work. Benchmarks are compiled
with -03 optimization level. GCC has internal support for auto-vectorization potentially
enabling soft vector processors to be employed without manual software changes. How-
ever, experiments with this feature showed that it failed to vectorize all key loops in the
EEMBC benchmarks above. Using GCC 4.3.3 only the AUTCOR benchmark was success-
fully vectorized. We expect this technology to better incorporated in GCC in the future.
Commercial compilers such as the Intel C Compiler likely have better auto-vectorization
support but is closed-source making it impossible to port to our VIRAM vector instruc-
tion set. Instead of relying on auto-vectorization, we ported the GNU assembler found
in binutils version 2.1.6 to support our VIRAM vector instruction set, allowing us to
hand-vectorize loops in assembly, compile it into a regular application binary, as well as

disassemble the compiled result.

3.4 FPGA CAD Software

A key value of performing FPGA-based processor research directly on an FPGA is the
ability to attain high quality measurements of the area consumed and the clock frequency
achieved—these are provided by the FPGA CAD software. In this research we use Altera
Quartus II version 8.1. There are many settings and optimizations that one can enable
within the software, creating a wide range of synthesis results. In our work the settings
used are those suggested in previous research [69] which identified them as a good area,
clock frequency, and runtime tradeoff. First, we request that the CAD tool attempt to
attain a 200 MHz clock frequency despite the fact that our soft processors are incapable
of reaching such a high clock frequency. By doing this the CAD software thoroughly
optimizes the clock frequency of the design. Second, we enable the optimizations for

register retiming and register duplication as suggested. All other settings are left at their

CHAPTER 3. EXPERIMENTAL FRAMEWORK 31

default values.

3.4.1 Measuring Area

Area is comprised mostly of the FPGA programmable logic blocks described in Sec-
tion 2.3. Throughout this work two generations of FPGAs are used: the Stratix I
and Stratix III on which the programmable logic blocks are respectively referred to as
Logic Elements (LEs) and Adaptive Logic Modules (ALMs). Soft processors also make
use of memory blocks and multiply-accumulate blocks in their designs creating a multi-
dimensional area measurement, which we reduce to a single scalar measurement of the
total silicon area used by all the occupied FPGA resources. The silicon areas of each
FPGA resource relative to a single programmable logic block including its routing was
provided to us from Altera [13] for the Stratix I and Stratix II. The relative silicon areas
are proprietary and hence cannot be released in this document. We used these numbers
for the Stratix I and extrapolated them for the Stratix III and measured the total silicon
area consumed. We report the areas for the Stratix I and Stratix III respectively in units

of equivalent LEs and equivalent ALMs.

3.4.2 Measuring Clock Frequency

The clock frequency of a synthesized design is reported by the timing analysis tool in
the FPGA CAD software. In addition to the settings described above, the actual device
targeted can affect these results because of differing architecture, circuit design, and IC
fabrication process used in creating the FPGA. Rather than targeting the FPGA devices
used in this work (which are slower mid-speed devices as described in the next section),
we instead measure clock frequency by targeting a Stratix IIT EP3SL340H1152C2 which
is a faster device than those on our hardware platforms. Doing this accurately reflects
the speeds achievable on state-of-the-art FPGAs rather than limiting our results to the

devices available to us.

CHAPTER 3. EXPERIMENTAL FRAMEWORK 32

3.5 Hardware Platforms

All soft processors explored in this work are fully synthesized using the CAD flow de-
scribed above and implemented in hardware on an FPGA system. A hardware implemen-
tation is necessary to quickly benchmark a soft processor—an analysis of the execution
speeds of hardware over software simulation is presented in Section 3.8. Benchmarks
are executed in hardware and report the precise number of clock cycles required to
complete execution. The majority of this work was done on the University of Toronto
Transmogrifier-4 board, but prior to writing, we ported some of our work to the new
Altera DE3 board. We describe each of these hardware platforms below and specify in

our results which was used in the corresponding experiments.

3.5.1 Transmogrifier-4

The Transmogrifier-4 [19] is a multi-FPGA platform with four Altera Stratix 1S80F1508C6
devices on it (a high-end large-capacity FPGA device fabricated in 130nm technology).
This system was developed at the University of Toronto until completed in 2005 and was
intended for graphics and other compute-intensive streaming applications. It is equipped
with many peripherals such as video and Firewire connections, but the most important
non-FPGA component for our purposes is the two 1GB DIMMs of DDR-266 SDRAM
available for each of the four FPGAs. Only one Stratix I FPGA is used to host a soft
processor design and one of the connected DIMMs is used to store the instruction and
data for an application. The memory system is clocked at 133 MHz (266 MHz dual data

rate).

The TM4 was selected for our studies of soft processor design for a few reasons. First,
it provides a communication layer between user-designs on the FPGA(s) to a host Linux
computer simplifying the design of an I/O subsystem. This communication package is
referred to as the T'M4 Ports Package. Second, it has a pre-verified memory controller

design available. And finally, it has an abundance of DDR SDRAM on it whereas the

CHAPTER 3. EXPERIMENTAL FRAMEWORK 33

FPGA development kits at that time had only SRAM or only 16MB of DRAM. We
believe it is important to use DRAM technology since the desktop market will continue

to commoditize it making DRAM the cost-effective choice for embedded designs.

3.5.2 Terasic DE3

The Terasic DE3 boards were released in 2008 offering more up-to-date FPGA and DRAM
technologies. We use the Terasic DE3-340 board equipped with a single Stratix III
EP3SL340H1152C3 which is one of the largest state-of-the-art FPGAs available at the
time this work was performed. The Stratix III is fabricated in a 65nm CMOS technology
process making it two generations more advanced than the Stratix I FPGAs on the TM4.
We also use a 1GB DDR2-533 MHz memory device for the storage of instructions and
data in a program. The Altera DDR2 memory controller connects the soft processor to

the DDR2 DIMM and is clocked at the full-rate of 266 MHz.

3.5.3 Measuring Wall Clock Time

The implementation onto a real FPGA hardware platform enables accurate measurement
of not just the execution cycles (which traditionally was only modelled in the computer
architecture community) but also the wall clock time for executing a benchmark. Wall
clock time considers both cycle performance and clock frequency of a processor. Measur-
ing wall clock time is ideally performed by clocking the design at its highest clock rate,
measuring the number of clock cycles to execute a benchmark, and then multiplying the
number of cycles by the clock period. To avoid complications that arise from clocking
each design at a custom rate, we clock all designs at one clock frequency. On the TM4
this is 50 MHz and on the DE3 it is 100 MHz. Thus our calculation of wall clock time is

given by

WCT = Ncycles@SOorlOOMHz/fcpu (3]-)

where f.,, is the maximum clock frequency of the soft processor and N yciesasoor100n 2

CHAPTER 3. EXPERIMENTAL FRAMEWORK 34

is the number of cycles to complete the benchmark when clocked at 50 or 100 MHz
depending on the platform. Typically the soft processor can be clocked higher than

these frequencies, meaning we are underclocking the soft processors.

3.6 Measurement Error

Errors in our measurement methodology exist due to simplifications made, randomness in
the CAD software, and physical effects in our realistic infrastructure. These errors affect
the area, cycles, clock frequency, and wall clock time measurements and are detailed

below.

1. Area: Area measurements are subject to two sources of errors: (i) the synthesis
algorithms which can produce significantly different hardware implementations from
minor perturbations to the Verilog source; and (ii) the approximation of the silicon
areas of each resource on the Stratix III which we derived from the Stratix II. The
first is difficult to mitigate, the second cannot be discussed to protect the intellectual

property rights of the vendor.

2. Cycles: The number of cycles reported at the end of benchmark execution is
precisely measured, but certain events can randomly occur during execution altering
the measurement with each run. A DRAM refresh command is one such example,
as is settling times between signals crossing clock domains. In general this affected
only the least significant digit of cycle measurements while benchmarks executed

between thousands and millions of cycles. The error is hence ignored.

3. Clock Frequency: Clock frequency measurements can vary significantly from the
non-determinism in modern CAD algorithms which produce different clock frequen-
cies depending on an integer seed selected by the user. To filter out the noise caused
by this non-determinism, we select 8 different seeds and average the clock frequency
across the 8 runs as suggested in [69]. This averaging minimizes the amount of mea-

surement error in our methodology.

CHAPTER 3. EXPERIMENTAL FRAMEWORK 35

4. Wall Clock Time: As mentioned previously, measuring the maximum clock fre-
quency of a design and achieving a design that can operate correctly at that fre-
quency introduces additional complications. These complications are avoided by
underclocking all designs at the same clock frequency and using Equation 3.1 which
leads to time dilation effects between the processor and memory. Underclocking
a processor design means fewer processor cycles are needed to match the memory
latency. Scaling those cycles by a faster clock rate falsely accelerates the memory
latency as well. In Chapter 4 we show that cache misses are not a major contributor
to scalar soft processors, and in Chapter 6 we show that prefetching can minimize

their impact on performance so we ignore these effects.

3.7 Verification

All soft processors were fully tested in hardware using the built-in verification encoded
into each EEMBC benchmark. At the end of each benchmark a checksum is computed
across the output data and compared to a built-in gold-standard value to determine if ex-
ecution completed successfully. If the verification fails, it can be extraordinarily difficult
to uncover and fix bugs given that manual modifications were made to the benchmarks,
the assembler, the simulator, and the hardware design. As a result, developing a pow-
erful test and debug infrastructure with multiple abstraction levels is imperative for

in-hardware exploration of architectures.

3.7.1 Instruction Set Simulation

One useful abstraction is simulation at the instruction-level which is performed inde-
pendent of any architecture. Instruction set simulation can verify the correctness of the
benchmark and assembler hence ruling out bugs in these components. However without
a pre-verified VIRAM simulator available, considerable time was spent augmenting an

existing simulator with VIRAM extensions and simultaneously debugging it with the

CHAPTER 3. EXPERIMENTAL FRAMEWORK 36

benchmarks and assembler.

Our simulator is based on the MINT [64] MIPS simulator which is pre-verified and
can successfully execute the scalar MIPS code in our benchmarks. MINT models only
the MIPS state and parses instructions in the binary and appropriately updates the
state. We augmented this simulator with support for the VIRAM vector instruction set
modelling all the vector state described in Section 2.2.6. In addition we parse and execute
the vector instructions by correspondingly modifying the vector state. Once verified, the
augmented MINT simulator was used to verify the benchmarks and compiler, analyze
the instruction streams of the benchmarks, and even model caches and other processor
components to predict their effectiveness. The most important use of the the simulator
however is to generate traces of all modifications to the vector state which is used to

compare against by the RTL simulation described below.

3.7.2 Register Transfer Level (RTL) Simulation

RTL simulation is performed using Modelsim SE version 6.3c which can simulate the
Verilog design in software (avoiding hardware timing problems such as crossing a clock
domain). The complete system is simulated including the processor, bus, and even DDR
controller. The behaviour of the TM4 DDR DIMM is modelled in Verilog using a hand-
made memory model, as is the TM4 communication package which is stimulated with
bus transactions that emulate the TM4-to-host transactions. The DE3 DDR2 memory
is modelled with the Altera generated memory model. With this level of simulation we
can capture logic errors throughout the complete hardware system. Similar to MINT,
the RTL simulation emits a complete trace of all modifications made to the vector state.
By comparing this trace to that from MINT, we can identify: (i) the instruction which
triggered the error; (ii) the incorrect value computed; and (iii) the exact time in the
waveform the error occurred. This trace-guided debug infrastructure is used extensively

before implementing a design in hardware.

CHAPTER 3. EXPERIMENTAL FRAMEWORK 37

Table 3.2: Benchmark execution speeds.

‘ Platform ‘ Instructions/s ‘ Normalized Speedup ‘

DE3 68970334 2383961
MINT 76458 2643
Modelsim 29 1

3.7.3 In-Hardware Debugging

Despite the simulation at the instruction and RTL level, inevitably some errors will
manifest only in the hardware implementation. In such a case the benchmark will either
report that it failed or execute indefinitely with no response. For either case the Altera
SignalTap II Logic Analyzer is used to examine the internal state of the system. SignalTap
inserts logic into the design allowing some signals to be sampled under some event and
transmitted to the FPGA CAD software over a JTAG link. This tool provides very
limited scope and debug features, highlighting the need to catch errors before the system

is implemented in hardware.

3.8 Advantages of Hardware Execution

RTL simulation in Modelsim could be used in place of actual hardware execution while
still achieving high-fidelity results. But execution in real hardware has the advantage
of rapid benchmark execution which is necessary for benchmarking large design spaces
using long-running applications. To quantify the advantages of hardware execution we
measured the actual execution rates across: (i) our DE3 hardware platform hosting a soft
processor; (ii) our MINT-based instruction set simulator which executes the benchmark
without cycle-accurate hardware detail; and (iii) RTL simulation in Modelsim of the
same soft processor. This was measured by executing the QSORT benchmark from the
free MiBench [61] suite.

Table 3.2 lists the instruction execution rates and normalized speedup across the three
platforms. RTL simulation is by far the slowest since the exact cycle-to-cycle behaviour

of the processor is being emulated in software. The MINT simulator can execute 2643x

CHAPTER 3. EXPERIMENTAL FRAMEWORK 38

faster than modelsim by emulating only instruction-level behaviour without any cycle-
level details. The hardware implementation on the DE3 can execute 2.4 million times
faster than Modelsim, and approximately 1000x faster than MINT. The benchmarking
speed available in hardware enables us to quickly execute large benchmarks across many

soft processor configurations, while capturing full and realistic hardware behaviour.

3.9 Summary

In this chapter we presented our infrastructure for evaluating soft processors in real
hardware. Using industry-standard benchmark applications compiled through standard
software toolchains and executed from DRAM on real FPGA devices we achieve bench-
marking accuracies never seen in traditional computer architecture research. In addition,
with accurate area and clock frequency measurements from the FPGA CAD software,
we achieve a more complete view of pertinent architectural metrics enabling us to draw

accurate conclusions about soft processor architecture.

Chapter 4

Performance Bottlenecks of Scalar

Soft Processors

A key goal of this research is to scale the performance of soft processors. This is best
achieved by targeting the bottlenecks of current soft processors, hence motivating analysis
of the bottlenecks in current soft processor systems under their typical workloads. For
example, if soft processors were memory bound a soft processor can customize its memory
system and scale performance with area costs less than adding vector extensions. The
subsequent sections implement a soft processor system with off-chip memory, analyze
that system, explore different cache configurations, and finally compare it to an IBM
PowerPC hard processor. The observations gained from this analysis will be used to

guide system-level scalability enhancements for soft processors.

4.1 Integrating Scalar Soft Processors with Off-Chip Memory

Our previous work with the SPREE soft processor generator [70, 71] used only on-chip
memory, where memory latency is not a concern since FPGA block-RAMs typically op-
erate at higher speeds than the soft processors that use them. However, our consultations
with both Xilinx and Altera revealed [8, 65]: (i) that commercial soft processors were

most often used in systems with off-chip memory which requires several processor clock

39

CHAPTER 4. PERFORMANCE BOTTLENECKS OF SCALAR SOFT PROCESSORS 40

cycles to access—referred to as latent memory accesses; and (ii) that internally both
companies benchmark their processors with embedded systems benchmarks, believing
these represent typical soft processor workloads. The first suggests a disconnect between
the prior research and commercial uses of soft processors hence necessitating new studies
into soft processors with off-chip memory. The second confirms our benchmark selection,
yet motivates an off-chip memory system for supporting benchmarks with larger data
sets such as those from EEMBC as discussed in Chapter 3. Systems with only on-chip
memory have limited data and instruction memory available preventing them from exe-
cuting many of the EEMBC benchmarks (data set sizes for the vectorized benchmarks
are given in Chapter 3, Table 3.1). We therefore implemented a SPREE soft processor
on the TM4 using the DDR DRAM for memory.

The specific scalar processor design selected for our study was automatically generated
by the SPREE processor generator [70, 71]. We chose a 3-stage pipelined processor with
full forwarding and a 1-bit branch history table for branch prediction as we found it to be
the most area-efficient (good performance with low area). The processor suffers a single
pipeline stall on any branch misprediction or instance of a shift, multiply, load, or store
instruction. SPREE initially supported only on-chip memory, so we modified SPREE
to export an external memory bus allowing the connection of a memory subsystem and
hence allowing varying additional stalls for loads and stores depending on the response of
the memory subsystem. The DDR memory on the TM4 has 64 pins resulting in 128 bits
accessible per clock cycle since data is transmitted on both positive and negative edges
of the 133 MHz clock. To connect the processor and memory, we use instruction and
data caches to hide the memory latency. The caches have a 16-byte line size to match
the 128-bit interface of the DDR memory for simplicity. To fully utilize the Stratix I
block RAMs required to achieve this line size, we implement 4KB deep caches. The data

cache implements a write-back, write-allocate write policy.

Using the TM4 hardware platform, the processor and caches are clocked together
at 50 MHz while the DDR controller is clocked at 133 MHz as discussed in Chapter 3.

CHAPTER 4. PERFORMANCE BOTTLENECKS OF SCALAR SOFT PROCESSORS 41

Memory
Controller,
Peripherals,
TM4 Comm Processor
37% 42%
4KB DCache
11% 4KB ICache

11%

Figure 4.1: Area breakdown of scalar SPREE processor with off-chip memory system.

There are three main reasons for the reduced clock speed of the processor and caches: i)
the original 3-stage pipelined processor with on-chip memory could only be clocked at
72 MHz on the slower speed grade Stratix I FPGAs on the TM4; ii) adding the caches
and bus handshaking further reduced the clock frequency to 64 MHz; and iii) to relax
the timing constraints when crossing clock domains, we chose a 20 ns clock period which
is a rational multiple of the 133 MHz (7.5 ns) DDR clock. Doing this means the worst
case offset between these two clock edges is 2.5ns. This large delay makes it easier for

the CAD tools to meet timing constraints.

4.1.1 Scalar Soft Processor Area Breakdown

Figure 4.1 shows the relative area of components in our soft processor system with off-chip
DDR memory. The areas were measured in terms of silicon area as described in Chapter 3.
The figure shows that the system is comprised of the processor core (42%), 4KB direct-
mapped L1 data cache (11%), 4KB direct-mapped L1 instruction cache (11%), and the
rest of the system including memory controller, peripherals, and communication logic
between the TM4 and Linux host (37%). Note that cache accounts for less than a
quarter of system area, despite the simplicity of the processor core. While this is quite

different from conventional processors whose silicon area is typically dominated by cache,

CHAPTER 4. PERFORMANCE BOTTLENECKS OF SCALAR SOFT PROCESSORS 42

Clock-

. Handshake, 3
crossing, 4

Controller
pipelining, 3

Phase re-
align, 3

Single Edge

Conversion, 2 DRAM, 6

Figure 4.2: Breakdown of the 21 cycle memory latency in TM4-based soft processor system
measured in clock cycles of the memory core clock (133 MHz).

it is expected in FPGA technology since caches are composed mostly of memory which
can be built efficiently using block RAMs. Similarly, in contrast with hard systems, cache

area is also dominated by area devoted to the memory controller and other peripherals.

4.1.2 Scalar Soft Processor Memory Latency

A load miss penalty of only 9 cycles exists on our system with a processor clock of 50MHz
and a memory system clock of 133MHz. In terms of the memory system clock, the latency
is 21 cycles and can be broken-down as seen in Figure 4.2. The processor uses a 3-cycle
handshaking scheme to communicate a memory request to the DDR controller. Pipelining
within the DDR controller and the row and column access latencies are responsible for
a 9-cycle delay before the data is available at the pins of the FPGA.! Conversion from
the 64-bit dual-data-rate signal to a 128-bit wide single-edge signal requires 2 cycles,
followed by 3 cycles for phase realignment since data returns offset from the original
clock edge. Crossing back into the processor’s clock domain with some handshaking then
consumes an additional 4 cycles. This memory controller implementation can have its
latency further improved by: (i) tracking open DRAM pages and avoiding redundant row

access latencies; (ii) allowing multiple outstanding memory operations to be requested;

Note the controller uses a closed-page policy meaning every request opens a DRAM row and then closes it.

CHAPTER 4. PERFORMANCE BOTTLENECKS OF SCALAR SOFT PROCESSORS 43

and (iii) fusing the single edge conversion, phase re-alignment, and clock crossing which
together amount to a single clock crossing. Thus, we are confident the memory system

is not overly-optimized and hence is representative of the memory latencies typical in an

FPGA.

Table 4.1: Memory latencies on soft and hard processor systems.

SPREE on TM4 | SPREE on DE3 | Pentium 4 desktop
Processor Clock 50MHz 100MHz 2.8GHz
DRAM DDR DDR2 DDR
Memory Clock 133MHz 266MHz 160MHz
CAS Latency 2.5 4 2.5
Miss Penalty 9 11 325

Our first key observation is therefore that off-chip memory latency for FPGA-based
soft processors is not as significant as it is for ASICs and other hard processors, because
the clock frequency of typical soft processors is much slower as seen in Table 4.1. The
memory latency after missing in both the L1 and L2 caches on a 2.8GHz Pentium 4
(Northwood) processor with 160MHz DDR SDRAM was measured as 325 cycles using
the RightMark Memory Analyzer software [10]. This latency is 36 times higher than
the 9-cycle latency observed in our 50MHz soft processor on the TM4. Since the soft
processor is being underclocked as discussed earlier, the observed memory latency can
be higher with a faster processor clock frequency. But even with an optimistic 133MHz
processor clock, the 21 cycle latency is still very small compared to the 325 cycles on
the Pentium 4. Using the DE3 platform and DDR2 DRAM, the latency is increased to
11 cycles when the SPREE processor is clocked at 100 MHz. Clocking it optimistically
at 266MHz results in a 30 cycle latency which is still one-tenth of that on the Pentium
4 desktop system. These small memory latencies suggest that research into improved
memory systems for soft processors can be deferred until perhaps sometime in the future.
In this thesis we address the more immediate need for increased computational capability

by implementing vector extensions.

The increased latency observed on the DE3 platform over the TM4 is due to the

CHAPTER 4. PERFORMANCE BOTTLENECKS OF SCALAR SOFT PROCESSORS 44

Altera DDR2 High Performance Memory Controller used, which is much more sophisti-
cated than the DDR controller we designed ourselves for the TM4. The Altera DDR2
controller supports multiple outstanding memory requests, though our soft processor
does not exploit this as it can service only one memory operation at a time. It also
tracks open DRAM pages, so that a cache misses to an already open page would exhibit
a shorter latency. Finally, the memory controller is aggressively pipelined since it must
satisfy timing constraints in many different designs on many different devices. After
two generations of CMOS technology improvements, this increased latency can at best
suggest a gradual worsening soft processor-memory performance gap. We expect that
going forward, soft processors will continue to observe memory latencies much smaller
than conventional microprocessors. Despite the small memory latencies, the memory
system may be a significant bottleneck in a scalar soft processor if the latency could not

be effectively hidden. This is explored in the subsequent section.

4.2 Scaling Soft Processor Caches

If the memory latency was a significant bottleneck, then hiding that latency would greatly
increase the performance of the system. In this section we explore the impact of cache
configuration on performance to measure the significance of memory latency in our scalar
soft processor system. We extrapolate our results and model an ideal memory system
(effectively on-chip memory) to determine an upper bound on the speedup that could be

achieved by eliminating the memory latency.

In this experiment we use the parameterized data cache depth in our scalar soft
processor to vary the capacity of the cache. This data was collected from an in-hardware
execution of the EEMBC benchmarks on the TM4. The measured line in Figure 4.3 shows
the geometric-mean speedup across our EEMBC benchmarks for varying direct-mapped
data-cache sizes, relative to a 4KB data cache. Compared to the 4KB data cache, an

enormous 256KB data cache provides only a 9% additional speedup at the cost of a

CHAPTER 4. PERFORMANCE BOTTLENECKS OF SCALAR SOFT PROCESSORS 45

2

= 1.1

[]

e}

o

S 105

)

¥

< 1

)

>

2 095

e}

(0]

(0]

Q09

%)

o —e—Modelled Speedu
2 oss - peedup
o —m—Measured Speedup
< o8

2568 1KB 4KB 16KB 64KB 256KB 1024KB Perfect
Data Cache Size

Figure 4.3: Geometric mean speedup across our EEMBC benchmarks for varying direct-
mapped data-cache sizes, relative to a 4KB data cache. Speedup is both measured in real
hardware and modeled according to Equation 4.1, both with a 64KB instruction-cache. For the
modeled speedup, the perfect point shows the impact of a perfect data cache.
64-fold increase in area devoted to cache.

To extrapolate these results further, we used our hardware system and an instruction

set simulator to derive a model of the system. To model the impact of a given cache, we

use the equation:

Speedup = OP[perfect + (fldMldPld) + (fstMstPst) (41)

where C' Py, feet is the cycles-per-instruction measured with a perfect memory system,
fia is the frequency of loads, M4 is the load miss rate, Py is the load miss penalty
in processor cycles. The third term in the equation is analogous to the second and
uses equivalent parameters specifically for stores instead of loads. Using the CPI values
measured previously for our processors with only on-chip memory [70] as an estimate, the
frequency of memory references and miss rates measured using our instruction simulator
as seen in Appendix A, and miss penalties reported by the Altera SignalTap II Logic
Analyzer software, we plot the modelled speedup line shown in Figure 4.3. The figure
shows that the modelled speedup tracks the measured speedup very closely, with the
modelled speedup being slightly larger since it models neither instruction misses nor bus

contention. According to this model a perfect data cache improves performance only

CHAPTER 4. PERFORMANCE BOTTLENECKS OF SCALAR SOFT PROCESSORS 46

12% over the 4KB data cache. Caches with increased associativity may be ineffective
at achieving this performance because they would increase the cache access latency.
The diminishing returns seen in the larger cache sizes and the idealized cache point out
that the memory system is not a significant bottleneck. While vector extensions can
also aid in relieving memory bottlenecks, soft processors are uniquely able to adapt to
their memory access patterns to effectively hide memory latency. In a memory bound
system it is likely that this would produce performance scaling with significantly less area
cost than a vector processor. Since soft processors are not presently memory bound we
forego this potentially large research topic and are hence motivated to explore a means
of translating additional area into improved performance other than increasing memory

system performance.

4.3 Soft vs Hard Processor Comparison

Recall that our goal is to use software-programmed soft processors to replace much of
the manual hardware design in an FPGA system. To enable greater capability in soft
processors we also seek performance scaling significantly beyond that achieved by improv-
ing the memory system. To provide a context for these goals, we compare soft processor
performance to hard processor performance. This allows us to approximate the large per-
formance losses associated with implementing a processor on an FPGA substrate. Note
it is not our goal to make FPGAs the desired substrate for all microprocessors, rather,
soft processors are already adequately motivated despite their lack of performance as

discussed below.

An FPGA design which includes a software component can execute that software
on (i) an off-chip hard processor, (ii) an on-chip hard processor such as the PPC 405
included on various Xilinx FPGAs, and (iii) on a soft processor. The first option requires
additional board space and power, the second option raises the costs of FPGAs, while

the soft processor option likely performs the worst. By leveraging the reprogrammability

CHAPTER 4. PERFORMANCE BOTTLENECKS OF SCALAR SOFT PROCESSORS 47

3
[ee]
™ —
w 175 - 0 L© N~
| - —n <
o | ~ _
% 150 _
n 125 - o ~
> o\ <
(o] o0} (o))
X 100 © 2 Fon||B 9 =
Q N~ I~ ~ oM o
[75 ~oO Joo MU o © @
o) = 6w 0o 2 ©OBInG
| oPeloffrrdree ©
B < ©
E > H H ﬂ H Hﬂ H
g- 0 T T T o T T L T T T T \u\ T T
° Addddddddddd AN A NM SEN VAT AN NO© O N ©
@ 5528380088800 N NESES 85T 8C RO i NCER8nZ
o EEECSCEE S0 eR S SSEEeE S EX"EORECEEEREB8RE W
o EESELEEEE2ESE8ES88E88%xs 4§ 8E T T2TTYTTTIOT S
7)) £G5S 0EB8 " TBTIOTO g =0 4 T 3o XTOOAAN
288% S 3oL Soocood Q0O > > S oo =2> O
L0 5 = o5858a<= & 5 O ©» oS x00XDT W
a SCRTELLQ o C 9 00EQC225
TR itk v = 2 O TANSOCc ELF
835 2&7o .l o © N2lodgl®
S+ T2 SEggYIYT D=
Sie] o E-Z22om
o - D.EEL
™
Q
1S

Figure 4.4: Speedup of IBM 750GX 1GHz laptop processor versus the 3-stage 50 MHz SPREE-
based processor system.

in soft processors to customize them to their application, we hope to improve their
performance and make them an effective vehicle for avoiding hardware design by making
software sufficient. Quantifying the performance gap between soft and hard processors
will suggest the magnitude of performance scaling necessary to make soft processors
significantly more useful in this regard. Using our SPREE processor with 3-stage pipeline,
full forwarding, 1-bit branch history, and separate 4KB L1 direct-mapped caches, we
measure the performance of the EEMBC benchmarks on the TM4. Since EEMBC scores
are listed on the EEMBC website [18], we can easily compare this SPREE processor to
a real hard processor implemented in the same 130nm CMOS technology used in our
Stratix 1S80 platform. However, the number of processors listed on the EEMBC website
are relatively few so we chose the IBM PowerPC 750GX based on its reputation, high-
performance, and 130nm design. Other options were not very well-known and had low

performance.

We used the complete EEMBC benchmark suite choosing the largest datasets for

each application, and eliminating any benchmarks dominated by floating point or integer

CHAPTER 4. PERFORMANCE BOTTLENECKS OF SCALAR SOFT PROCESSORS 48

division operations as our processor did not have hardware support for these operations.
Certain benchmarks such as nat and iirflt01 still contain a significant amount of
division and hence additionally suffer in our system which performs division in software.
Figure 4.4 shows the performance of our SPREE processor against the IBM PowerPC
750GX which was used in laptop computers and greatly outperforms typical embedded
processors. The PPC750GX is a 1GHz out-of-order multi-issue processor with 32KB 4-
way set associative L1 caches, a shared 1MB L2 cache, and a 200 MHz memory bus clock.
On average, the PPC750GX performs 65x faster than our 50 MHz in-order single-issue
processor with separate 4KB direct-mapped caches and a 133-MHz memory clock with
9-cycle memory access latency. The RGBCMYK benchmark is executed only 17x faster
than our soft processor. This datum seems to be an anomaly, but without access to the
PPC750GX or its compiler further investigation is impeded. A likely cause of this are
the conditional statements within the small loop which cannot be accurately predicted
since they are data dependent. Our SPREE processor with its short pipeline is only
slightly affected by mispredicted branches, a more highly aggressive design such as the
PPC750GX may be more heavily impacted.

The large 65x performance gap is in part accounted for by the 20x faster processor
clock speed of the PPC750GX. Differing processor architecture, memory hierarchy, and
memory technology presumably contribute to the remainder of the gap. As we showed
in the last section, idealizing the complete memory system does not significantly increase
the performance of the soft processor. This suggests that soft processors need to be
equipped with far more powerful compute capabilities than currently available, and that
the order of performance gains necessary to truly make soft processors useful beyond
their current niche is in the 10-50x range. Our goal is to make significant progress in this

direction through the use of soft vector processors.

CHAPTER 4. PERFORMANCE BOTTLENECKS OF SCALAR SOFT PROCESSORS 49
4.4 Summary

In this chapter we investigated a system comprised of a commercially competitive scalar
soft processor connected to off-chip DDR RAM in real hardware. The observed memory
latency was only 9 cycles, significantly smaller than in traditional hard processors which
are clocked in the GHz range. We noted that the size of a 4KB data cache is just one
quarter the size of the soft processor. We also saw that expanding this cache to 256KB
provided only a 9% increase in performance as measured in hardware, and when we model
an ideal memory system, only 12% better performance is possible. Thus, the small 4KB
direct-mapped cache has largely solved the memory problem for current soft processors
running embedded benchmarks. Further increases to the computational capabilities of
soft processors are necessary to widen their adoption. Against a hard laptop processor
our commercially competitive soft processor was 65x slower with a 20x slower clock rate.
By reducing this gap we hope soft processors will provide a more affordable, simple,
and effective means of implementing computation in FPGAs. Rather than performing
incremental improvements to soft processors, the magnitude of the gap motivates research

into highly scalable soft processor architectures.

Chapter 5

The VESPA Soft Vector Processor

In this chapter we motivate, design, and build a soft vector processor called Vector

Extended Soft Processor Architecture or VESPA.

5.1 Motivating Soft Vector Processors

Recall that our goal is to scale the performance of soft processors so that they might be
used as an alternative to laborious hardware design. Since FPGAs are often used in em-
bedded systems, their workloads include telecommunication and multimedia applications
which are known to have ample data level parallelism [33]. Thus, to achieve our goal of
scaling the performance of soft processors, we are motivated to exploit this DLP so that
these workloads might be implemented more easily in software instead of hardware.
While DLP can be exploited in many ways, we chose a soft vector processor for a
number of reasons. First, supporting and using soft vector processors requires only ex-
tending the instruction set. Commercial soft processors already have infrastructures for
adding custom instructions, so vector extensions can be comfortably used by existing
FPGA designers. Second, vector processors provide a built-in abstraction between soft-
ware and hardware through the maximum vector length MVL parameter. This allows
the designer to vary the number of vector lanes and hence control the area/performance

trade-off without rewriting or re-compiling software. Third, auto-vectorization has been

50

CHAPTER 5. THE VESPA SorT VECTOR PROCESSOR 51

thoroughly researched and already exists in compilers such as GCC [14] because detecting
the fine-grain data parallelism used by vector processors is far simpler than the gen-
eral parallelization problem. With high-quality auto-vectorization, soft vector processors
could be seamlessly used in a typical C-based design flow and the FPGA designer would
need only to choose the number of lanes depending on the space available on their device.
On going research in auto-vectorization algorithms [50] could help enable this seamless
design flow. Finally, the biggest reason is that a vector architecture is well-suited to
FPGA implementation. A vector processor with all lanes operating in lockstep requires
very little inter-lane coordination making the design scalable in hardware. Moreover, the
architecture does not require any large associative lookups, many ported register files, or
other structures that are inefficient to implement in FPGAs. Other architectures such as
superscalar processors could require such inefficient FPGA structures. For all these rea-
sons we believe soft vector processors can effectively exploit DLP on an FPGA and hence
promote simpler software implementations of components instead of manual hardware

design.

5.2 VESPA Design Goals

In deriving the design goals for VESPA, it is useful to target the computational tasks that
a soft vector processor is likely to be used for. The decision to use a soft vector processor
implementation depends not only on the amount of DLP in a computation, but also on
how critical the given computation is to the overall performance of the system. A digital
system is comprised of many components each implementing different computational
tasks which vary in both their DLP and their performance requirements (or criticality).
Computations with little or no DLP, as well as highly critical computations which justify
highly-optimized hardware design are unsuitable candidates for execution on a soft vector
processor. Thus, as shown in Figure 5.1, the class of computations targeted in this thesis

is low to medium critical computations with sufficient DLP. The benchmarks used in

CHAPTER 5. THE VESPA SorT VECTOR PROCESSOR 52

Data Parallelism

0 T
Criticality

Figure 5.1: A view of the space of computations divided along the axes of DLP and performance
criticality. Computations with low DLP and criticality are near the origin and are likely candi-
dates for implementation on a scalar soft processor, while computations with sufficient DLP and
low to medium criticality are shown in grey and are targeted in this thesis for implementation
on a soft vector processor.

this thesis typically have very high DLP. Increased amounts of DLP motivate soft vector

processor implementations for more critical computations. As a result the design goals

for VESPA are as follows:

1. Scalability — The more VESPA can scale performance, the more likely it is to be
used for computation with higher criticalities. Since our goal is to reduce the amount
of hardware design, converting these more critical computations into software is key

for this thesis.

2. Flexibility — Aside from the number of lanes, there are several other parameters
that can dramatically affect the area and performance of a soft vector processor.
To exploit the unique ability of FPGAs to quickly implement custom hardware,
VESPA was designed with many architectural parameters which designers can use

to meet their area/performance needs.

3. Portability — Although less crucial than the first two goals, it is also important

that a soft vector processor can be easily ported to different FPGA architectures.

CHAPTER 5. THE VESPA SorT VECTOR PROCESSOR 53

Vector Coprocessor

\I/Seflgzr o *7Lane 2
Lane L
| Memory
Crossbar
| Scalar |
MIPS
t
L Icache Dcache
Prefetch
Arbiter

IDRAM

Figure 5.2: VESPA processor system block diagram.

With this property, FPGA vendors and users are more likely to adopt soft vec-
tor processors since maintaining the design across their many FPGA families is

simplified.

To achieve these goals and verify the feasibility of soft vector processors on FPGAs

we implemented VESPA on the FPGA hardware platforms described in Chapter 3.

5.3 VESPA

The VESPA soft vector processor was designed to meet the aforementioned goals. VESPA
is composed of a scalar processor and an attached vector coprocessor. A diagram includ-
ing both components as well as their connection to memory is shown in Figure 5.2. The
figure shows the MIPS-based scalar and VIRAM-based vector coprocessor both fed by
one instruction stream read from the instruction cache. Both cores can execute out-

of-order with respect to each other except for communication and memory instructions

CHAPTER 5. THE VESPA SorT VECTOR PROCESSOR 54

which are serialized to maintain sequential memory consistency. Vector instructions enter
the vector coprocessor, are decoded into element operations which are issued onto the
vector lanes and executed in lockstep. The vector coprocessor and scalar soft processor
share the same data cache and its data prefetcher though the prefetching strategy can
be separately configured for scalar and vector memory accesses. The four sections below
describe the scalar processor, the vector instruction set implemented by the vector co-
processor, the vector coprocessor memory architecture and the VESPA pipeline in more

detail.

5.3.1 MIPS-Based Scalar Processor

The instruction set architecture (ISA) used for our scalar processor core is a subset of
MIPS-T [46] which excludes floating-point, virtual memory, and exception-related instruc-
tions; floating point operations are supported through the use of software libraries. This
subset of MIPS is the set of instructions supported by the SPREE system [70, 71] which
is used to automatically generate our scalar soft processor FPGA implementation in syn-
thesizable Verilog HDL. The generated scalar processor is a 3-stage MIPS-I pipeline with

full forwarding and a 4Kx1-bit branch history table for branch prediction.

The SPREE framework was modified in two ways to better meet the needs of the
vector processor. First, an integer divider unit was added to the SPREE component li-
brary along with instruction support for MIPS divide instructions. This was necessary to
accommodate the FBITAL benchmark which requires scalar division. Second, to support
the vector coprocessor, the MIPS coprocessor interface instructions were implemented
in SPREE. These instructions allow the SPREE processor to send data to the copro-
cessor and vice versa. With these changes in place we can automatically generate new
scalar processor cores and attach them directly to the memory system and vector copro-
cessor without modification, allowing future studies to consider both scalar and vector

architectures in tandem.

CHAPTER 5. THE VESPA SorT VECTOR PROCESSOR 55

Table 5.1: VIRAM instructions supported

‘ Type Instruction ‘
Vector vadd vadd.u vsub vsub.u vmulhi vmulhi.u vemp.eq vemp.ne
vemp.lt vemp.u.lt vemp.le vemp.ulde vmin vmin.u vmax
vmax.u viullo vabs vand vor vxor vnor vsll vsrl vsra vsat.b
vsat.h vsat.w vsat.su.b vsat.su.h vsat.su.w vsat.su.l vsat.u.b
vsat.u.h vsat.u.w vsadd vsadd.u vssub vssub.u vsrr vsrr.u vsls

vsls.u vxumul vxumul.u vxlmul vxlmul.u

Vector Manipulation | vins.vv vins.sv vext.vv vext.sv vext.u.sv vmerge vexthalf

vhalf
Flag vfand vfor vfxor vinor viclr viset
Memory vld.b vld.h vld.w vld.l vld.u.b vld.u.h vld.u.w vlds.b vlds.h

vlds.w vlds.l vlds.u.b vlds.u.h vlds.u.w vldx.b vldx.h vldx.w
vldx.l vldx.u.b vldx.u.h vldx.u.w vst.b vst.h vst.w vst.l vsts.b
vsts.h vsts.w vsts.] vstx.b vstx.h vstx.w vstx.l vstxo.b vstxo.h
vstxo.w vstxo.l

Control vsatvl vimets vmste cfe2 cte2 mte2

5.3.2 VIRAM-Based Vector Instruction Set

While many vector processor implementations exist, we used an existing vector ISA
to leverage prior design effort, but implemented our architecture from scratch to take
advantage of FPGA-specific features. The instruction set architecture of the VESPA
vector coprocessor is based on the VIRAM [60] instruction set summarized in Chapter 2,
Section 2.2.6. The specifics of VESPA’s vector instruction set is described below.

The vector coprocessor implements all of the vector state of the VIRAM instruction
set which is shown in Chapter 2, Figure 2.2 (on page 14). While VIRAM implements 64-
bit vector elements and control/scalar registers, in VESPA this is reduced to 32-bits since
none of our vectorized benchmarks listed in Chapter 3, Table 3.1 (on page 29) require
64-bit processing. All of the state is efficiently implemented in FPGA block RAMs with
the vector and flag register files both having two copies of their state to provide the 2
read ports and 1 write port required by the vector pipeline. Since block RAMs have only
two access ports, we replicate the register files and broadcast writes to both copies of the
register file while each copy provides its own read access port.

The vector coprocessor supports most of the integer, fixed-point, flag, and vector

CHAPTER 5. THE VESPA SorT VECTOR PROCESSOR 56

From Vector Lanes

}

[l

l l
=~ /

Scalar
Processor

DRAM

[T []
}

To Vector Lanes

Figure 5.3: The VESPA memory architecture shares the data cache between the scalar processor
and vector coprocessor. The memory crossbar maps individual requests from the vector lanes
to the appropriate byte(s) in the cache line.

manipulation instructions in the VIRAM instruction set, as listed in Table 5.1. Some
instruction exclusions were necessary to better accommodate an FPGA implementation:
for example, the VIRAM multiply-accumulate instructions (which require 3 reads and 1
write) were eliminated since they would require further register file replication, banking,
or a faster register file clock speed to overcome the 2-port limitations on FPGA block
RAMs. Floating-point instructions are not implemented since they are generally not
used in embedded applications as seen in our benchmarks; also we do not support virtual
memory since it is not implemented in SPREE. Unlike the scalar processor, the vector
coprocessor does not support integer division and modulo instructions since they do not
appear in our benchmarks in vectorized form. Finally there is no support for exceptions—
no vector instruction causes an exception and all vector state must either be saved or

remain unmodified during exception processing.

CHAPTER 5. THE VESPA SorT VECTOR PROCESSOR 57

Memory
Request rddatal
Queue — [rddatal -1
Read
Data
Memory
Lanes=4
Memory
Write

Write Data Queue

]

Figure 5.4: The VESPA memory unit buffers all memory requests from each lane and satisfies
up to M requests a time from a single cache access. In this example M=4. The black bars shows
pipeline stages, the grey bars show cycle delays which require pipeline stalls.

5.3.3 Vector Memory Architecture

Figure 5.3 shows the VESPA memory architecture. Each vector lane can request its own
memory address but only one cache line can be accessed at a time which is determined
by the requesting lane with the lowest lane identification number. For example, lane
1 will request its address from the cache then each byte in the accessed cache line can
be simultaneously routed to any lane through the memory crossbar. Thus, the spatial
locality of lane requests is key for fast memory performance since it reduces the number
of cache accesses required to satisfy all lanes. The original VIRAM processor [34] had a
memory crossbar for connecting the lanes to different banks of the on-chip memory. We
use the same concept for connecting the lanes to different words in a cache line. There
is one such crossbar for reads and another for writes; we treat both as one and refer to
the pair as the memory crossbar (with the bidirectionality assumed). This crossbar is
the least scalable structure in the vector processor design but should be configured to
sustain the performance of the memory system it is connected to.

Figure 5.4 shows the vector memory unit in more detail. The black bars indicate
pipeline stages while the grey bars show registers which require pipeline stalls. In the

first stage the addresses being accessed by each lane is computed and loaded into the

CHAPTER 5. THE VESPA SorT VECTOR PROCESSOR 58

Memory Request Queue. The memory unit will then attempt to satisfy up to M of these
lane requests at a time from a single cache access. When all M requests have been satisfied
the Memory Request Queue shifts all its contents up by M. If the instruction is a vector
store, the Memory Write Queue duplicates this behaviour. When the Memory Request
Queue is empty the vector memory unit de-asserts its stall signal and is ready to accept

a new memory operation.

Many options exist for connecting the vector coprocessor to memory, including though
a cache shared with the scalar processor, a separate cache, or no cache. The original VI-
RAM processor used the last approach and was connected directly to its on-chip memory
without a cache. However for off-chip memories caches are more likely required to hide
the memory latencies. While this may not be true for heavily streaming benchmarks, in
some cases the cache may be so important that the vector coprocessor requires its own
separate data cache to avoid competing for cache space with the scalar core. This range
of different memory system configurations could be interesting to explore in the future,
but for this work a shared data cache is used primarily to avoid memory consistency
issues which complicate the design. The decision is further supported for the following
reasons: (i) its low area cost as seen in Section 4.1.1 provides little motivation to avoid
using a cache; (ii) it is certainly required for the scalar core which the vector coprocessor
can “piggyback” on, especially since (iii) there is very little competition for cache space
between the scalar and vector cores in our applications. This decision may need to be
revisited for applications with significant interaction between the scalar and vector cores,

but most of our benchmarks have only a small amount of supportive scalar operations.

The data cache blocks on any access, stalling execution until the transaction has been
completed. The memory controller for the TM4 also blocks on any memory access, while
the Altera DDR2 memory controller for the DE3 allows multiple outstanding requests.
VESPA was not improved to take advantage of this feature since the memory bus used
in commercial soft processors does not support it. In the future more scalable vector

architectures could take advantage of non-blocking memory systems.

CHAPTER £ 59

Icache

Scalar
Pipeline

Vector
Control
Pipeline

Vector
Pipeline VR

WB

Figure 5.5: The VESPA architecture with 2 lanes. The black vertical bars indicate pipeline
stages, the darker blocks indicate logic, and the light boxes indicate storage elements for the
caches as well as the scalar, vector control (vc), vector scalar (vs), and vector (vr) register files.

5.3.4 VESPA Pipelines

Figure 5.5 shows the VESPA pipelines with each stage separated by black vertical bars.
The topmost pipeline is the 3-stage scalar MIPS processor discussed earlier. The middle
pipeline is a simple 3-stage pipeline for accessing vector control registers and communi-
cating between the scalar processor and vector coprocessor. The instructions listed in
the last row of Table 5.1 are executed in this pipeline while the rest of the vector in-
structions are executed in the longer 7-stage pipeline at the bottom of Figure 5.5. Vector
instructions are first decoded and proceed to the replicate pipeline stage which divides
the elements of work requested by the vector instruction into smaller groups that are
mapped onto the available lanes; in the figure only two lanes are shown. The hazard
check stage observes hazards for the vector and flag register files and stalls if necessary
(note the flag register file and processing units are not shown in the figure). Since there
are two lanes, the pipeline reads out two adjacent elements for each operand, referred
to as an element group, and sends them to the appropriate functional unit. Execution
occurs in the next two stages (or three stages for multiply instructions) after which re-

sults are written back to the register file. The added stage for multiplication is due to

CHAPTER 5. THE VESPA SorT VECTOR PROCESSOR

Table 5.2: Configurable parameters for VESPA.

|| | Parameter | Symbol | Value Range H
o | Vector Lanes L 1,2,4,8,16.,. ..
E | Memory Crossbar Lanes M 1,2438,...L
= | Multiplier Lanes X 1,248,...L
3 | Register File Banks B 1,24,. ..

ALU per Bank APB true/false
- Maximum Vector Length MVL 2,4,8,16,. ..
w3 | Vector Lane Bit-Width W 1,234,..., 32
Each Vector Instruction - on/off
ICache Depth (KB) 1D 4.8,...
| ICache Line Size (B) w 16,32,64,. ..
g DCache Depth (KB) DD 48,...
@ | DCache Line Size (B) DW 16,32,64,. ..
= DCache Miss Prefetch DPK 1,2,3,...
Vector Miss Prefetch DPV 1,2,3,...

60

the fixed-point support which performs a right shift after multiplication. The multiplier

and barrel shifter necessary to do so require an extra stage of processing compared to

the ALU.

5.4 Meeting the Design Goals

Recall that the design goals for VESPA were for it to be scalable, flexible, and portable.

The scalability of VESPA is explored in the next chapter, while its flexibility and porta-

bility are discussed in this section beginning with the former.

5.4.1 VESPA Flexibility

VESPA is a highly parameterized design enabling a large design space of possible vector

processor configurations as seen in Chapter 7. These parameters can modify the VESPA

compute architecture (pipeline and functional units), instruction set architecture, and

memory system. All parameters are built-in to the Verilog design so a user need only

modify the parameter value and have the correct configuration synthesized with no addi-

tional source modifications. Each of these parameters are explored in detail in subsequent

chapters, but we concisely describe them below.

Table 5.2 lists all the configurable parameters and their acceptable value ranges—

CHAPTER 5. THE VESPA SorT VECTOR PROCESSOR 61

many integer parameters are limited to powers of two to reduce hardware complexity.
The number of vector lanes (L) determines the number of elements that can be processed
in parallel; this parameter is the most powerful means of scaling the processing power
of VESPA. The width of each vector lane (W) can be adjusted to match the maximum
element size required by the application: by default all lanes are 32-bits wide, but for
some applications 16-bit or even 1-bit wide elements are sufficient. The maximum vector
length (MVL) determines the capacity of the vector register file; hence larger MVL values
allow software to specify greater parallelism in fewer vector instructions, but increases

the register file capacity required in the vector processor.

The number of memory crossbar lanes (M) determines the number of lane memory
requests that can be satisfied concurrently, where 1 < M < L. For example, if M is half
of L, then in Figure 5.3, this means the crossbar connects to half the lanes in one cycle,
and the other half in the next cycle. M is independent of L for two reasons: (i) a crossbar
imposes heavy limitations on the scalability of the design, especially in FPGAs where
the multiplexing used to build the crossbar is comparatively more expensive than for
conventional IC design; and (ii) the cache line size limits the number of lane memory
requests that can be satisfied concurrently. Thus we may not need a full memory crossbar
which routes to all L lanes, rather the parameter M allows the designer to choose a subset

of lanes to route to in a single cycle. This trade-off is explored in Chapter 7, Section 7.1.3.

The user can similarly conserve multiply-accumulate blocks by choosing a subset of
lanes to support multiplication using the X parameter. The B and APB parameters control
the amount of vector chaining VESPA can perform as seen in Chapter 7, Section 7.2.
Also each vector instruction can be individually disabled thereby eliminating the control

logic and datapath support for it as seen in Chapter 7, Section 7.4.

The memory system includes an instruction cache, a data cache, and a data prefetcher.
The instruction cache is direct-mapped with depth ID and cache line size IW. Similarly,
the data cache is direct-mapped with depth DD and cache line size DW. The prefetcher can

be configured with a variety of prefetching schemes which respond to any data access

CHAPTER 5. THE VESPA SorT VECTOR PROCESSOR 62

using DP or exclusively to vector memory operations using DPV. All these memory system
parameters are explored in Chapter 6.

As seen in Chapter 7, the parameters in Table 5.2 provide a large design space for
selecting a custom configuration which best matches the needs of an application. Since
soft processors are readily customizable, we require only software for automatically se-
lecting a configuration for an application. The development of this software is beyond

the scope of this thesis and is hence left as future work.

5.4.2 VESPA Portability

The portability of soft vector processors is a major factor in whether FPGA vendors will
adopt them in the future. Since FPGA vendors have many different FPGA devices and
families, a non-portable hardware IP core would require more design effort to support
across all these devices. The discussion below describes our attempts to minimize the
porting effort.

VESPA is fully implemented in synthesizable Verilog but was purposefully designed to
have no dependencies to a particular FPGA device or family. In fact we ported VESPA
from the Stratix 1S80 on the TM4 to the Stratix III 35340 on the DE3 and required
zero source modifications. Although we do not port VESPA across different vendors or
families, we instead explain that the FPGA structures needed to efficiently build a soft
vector processor exist in most modern FPGA devices.

To maintain device portability in VESPA, the architected design makes very few
device-specific assumptions. First, it assumes the presence of a full-width multiply oper-
ation which is supported in virtually all modern day FPGA devices and does not assume
any built-in multiply-accumulate or fracturability support since the presence of these
features can vary from device to device. Second, with respect to block RAMs, VESPA
assumes no specific sizes or aspect ratios, nor any particular behaviour for read-during-
write operations on either same or different ports. VESPA only uses one read port and

one write port for any RAM hence limiting the need for bi-directional dual-port RAMs.

CHAPTER 5. THE VESPA SorT VECTOR PROCESSOR 63

These few assumptions allow the VESPA architecture to port to a broad range of FPGA
architectures without re-design. However, although VESPA was not aggressively de-
signed for high clock frequency, any timing decisions made are specific to the Stratix III
it was designed for, hence some device-specific retiming may be needed to achieve high

clock rates on other devices.

5.5 FPGA Influences on VESPA Architecture

Our goal of improving soft processors to compete with hardware design is largely pursued
by matching the architecture to the application. However, soft processors can also be
improved by matching their architectures to the FPGA substrate. Conventional notions
of processor architecture are based on CMOS design, but the tradeoffs on an FPGA sub-
strate can lead to different architectural conclusions. Several previous works considered
the influence of the FPGA substrate on the architecture of soft processors [26, 45, 49, 69].
These works often identify low-level circuit engineering differences but have not proposed
high-level architectural differences between soft and hard processors. Doing so is compli-
cated by two main factors: (i) designer effort and skill varies between academics, FPGA
vendors, and microprocessor companies; and (ii) the level of performance required varies
significantly between soft processors which are used largely as controllers and micropro-
cessors which are used for general purpose computation. As a result, it is difficult to
draw high-level conclusions about the architectures of soft processors since the perfor-
mance attainable on such an architecture is highly dependent on skill, effort, and desired

performance of the designer.

The VESPA architecture was influenced in a number of ways by the FPGA sub-
strate. These influences are discussed in more detail throughout this thesis in sections
devoted to the affected architectural component. We collect the key points and summa-
rize them here. First, the multiply-accumulate blocks are obvious choices for efficiently

implementing processor multipliers. This performance is still significantly less than an

CHAPTER 5. THE VESPA SorT VECTOR PROCESSOR 64

FPGA adder circuit leading to accommodations in the pipeline similar to hard micro-
processors. However, the multipliers are also efficient [45] for implementing shifters since
multiplexers are relatively expensive on FPGAs. This shared multiplier/shifter func-
tional unit means vector chaining on soft vector processors exhibits different behaviour
than traditional vector processors since vector multiplies and vector shifts cannot be ex-
ecuted simultaneously. Second, the block RAMs provide relatively inexpensive storage
helping to motivate the existence of caches even when they are not strongly motivated
in our vectorized applications. The low area cost of storage also helps motivate vector
processors since the large vector register files required can be efficiently implemented.
Finally, the two ports on FPGA block RAMs also impose architectural differences from
traditional processors. For 3-operand instruction sets such as MIPS, the register file must
sustain 2 reads and 1 write per cycle. Since FPGA block RAMs have only two ports, a
common solution is to leverage the low area cost of block RAMs to duplicate them as
discussed in section 5.6. Additional ports are required to support multiple vector instruc-
tion execution. Chapter 7.2 describes how banking is performed to overcome the port
limitations. This approach is reminiscent of vector processors before VLSI design, and
marks a key architectural difference between VESPA and modern vector processors such
as the TO [7] and VIRAM [34]. In general, the lack of ports and expensive multiplexing
logic make FPGAs less amenable to any architecture with multiple instructions in flight
such as traditional superscalar out-of-order architectures, though it may be possible for
clever circuit engineering by a skilled designer to make such architectures prevalent in

soft processors.

5.6 Selecting a Maximum Vector Length (MVL)

Before further evaluating VESPA we must determine an appropriate maximum vector
length (MVL). This parameter abstracts the number of hardware vector lanes from the

software vector length and hence affects both the hardware implementation of a vector

CHAPTER 5. THE VESPA SorT VECTOR PROCESSOR 65

processor and the software implementation of vectorized code. It represents a contract
between the processor and programmer to support at the very least storage space for
MVL-number of elements, thereby allowing the programmer to use vector lengths up to
this length while leaving the processor free to implement between 1 and MVL vector lanes.
Note that all of our vectorized benchmarks are designed to use vectors with the full MVL
length and require no modification for changes to MVL or any other parameter.

Increasing the MVL allows a single vector instruction to encapsulate more element
operations, but also increases the vector register file size and hence the total number of
FPGA block RAMs required. This growth is potentially exacerbated by the fact that
the entire vector register file is replicated to achieve the three ports necessary (2-read
and 1-write), since current FPGAs have only dual-ported block RAMs. The performance
impact of varying the MVL results in an interesting tradeoff: higher MVL values result in
fewer loop iterations, in turn saving on loop overheads—but this savings comes with more
time-consuming vector reduction operations. For example, as MVL grows, the Logs(MVL)
loop iterations required to perform a tree reduction that adds all the elements in a vector
grows with it. We examine the resulting impact on both area and performance below on
the TM4 platform; the results are analogous for the DE3.

The area impact of increasing MVL increases some control logic due to the increased
sizes of register tags and element indices, but primarily affects the vector register file and
hence its FPGA block RAM usage. Because of the discrete sizes and aspect ratios of
those block RAMs, these results are specific to the FPGA device chosen. Given block
RAMs with maximum width Wggraas bits and total capacity (or depth) of Dgra bits,
and using the parameters from Table 5.2, the number of block RAMs will be the greater
of Equations 5.1 and 5.2.

Nprams = [L-W - B/Wggaum | (5.1)

Nprams = [32MV L -W/Dgram | (5.2)

CHAPTER 5. THE VESPA SorT VECTOR PROCESSOR 66

40000

35000 EMVL=32 M
B MVL=64

30000 OMVL=128
OMVL=256

25000 m

20000 A

15000 -

Area (Equivalent LES)

10000 -

5000 -

0 - ‘
1 Lane 2lLanes 4lanes 8Llanes 16 Lanes

Figure 5.6: Area of the vector coprocessor across different MVL and lane configurations.

For example, the Stratix I M4K block RAM has Dgran=4096 bits and can output
a maximum of Wgrap=32-bits in a single cycle, hence a 16-lane vector processor with
1 bank requires 16 of these M4Ks to output the 32-bit elements for each lane using
Equation 5.1. This results in 64Kbits being consumed which exactly matches the demand
of the MVL=64 case according to Equation 5.2. But when MVL=32 the block RAMs are
only half-utilized resulting only in wasted area instead of area savings. The Stratix III

has block RAMs which are twice as big, so this phenomenon would be observed between

MVL values of 64 and 128 for the 16-lane VESPA.

Figure 5.6 shows the area of the vector processor for different values of MVL and for
a varying number of lanes. The graph shows that increasing the MVL causes significant
growth when the number of lanes are few, but as the lanes grow and the functional
units dominate the vector coprocessor area, the growth in the register file becomes less
significant as seen in the 16 lane vector processor. Of particular interest is the identical
area between the 16 lane processors with MVL equal to 32 and 64. This is an artifact of
the discrete sizes and aspect ratios of FPGA block RAMs as previously described. At 16
lanes the vector processor demands such a wide register file that Equation 5.1 dominates.
As a result, the storage space for vector elements is distributed among these block RAMs
causing, in the MVL=32 case, only half of each block RAM’s capacity to be used. We

avoid this under-utilization by setting MVL to 64 and doubling it to 128 for 32 lanes. For

CHAPTER 5. THE VESPA SorT VECTOR PROCESSOR 67

01 Lane B2 Lanes
15 04 Lanes 0O8Lanes
W16 Lanes
a
S
? 1
)
o
%))
Q@
2
O 05
O -
autcor conven fbital viterb rgbcmy rgbyiq

Figure 5.7: Cycle speedup measured when MVL is increased from 32 to 256.

Stratix III which has block RAMs twice as deep, we also double the MVL. Note that in our
area measurements we count the entire silicon space of the block RAM used regardless of
the number of memory bits actually used. By doing so we accurately reflect the incentive

to fully utilize consumed FPGA resources.

Figure 5.7 shows the performance of a set of vector processors with varying numbers
of lanes and MVL=256, each normalized to an identically-configured vector processor with
MVL=32. The benchmarks AUTCOR and FBITAL both have vector reduction operations
and hence show a decrease in performance caused by the extra cycles required to perform
these reductions. The performance degradation is more pronounced for low numbers of
lanes as the number of lanes increase the reduction operations themselves execute more
quickly, until finally the amortization of looping overheads dominates and results in
an overall benchmark speedup for 16 lanes. The remaining benchmarks do not contain
significant reduction operations and hence experience faster execution times for the longer
vectors when MVL=256. For CONVEN, which performs vector operations based on some
scalar processing, increasing the MVL has a dramatic affect on performance as both the
loop overhead and this scalar processing is amortized. The speedup reaches up to 43%
for 16 lanes. The remaining benchmarks have larger loop bodies which already amortize

the loop overhead and hence have only very minor speedups.

CHAPTER 5. THE VESPA SorT VECTOR PROCESSOR 68
5.7 Summary

This chapter described the VESPA soft vector processor which was built to evaluate the
concept of vector processors for FPGAs using off-chip memory systems on real FPGAs
and executing industry-standard embedded benchmarks. VESPA is a complete hardware
design of a scalar MIPS processor and a VIRAM vector coprocessor written in Verilog.
Only a portion of the VIRAM vector instruction set is supported by VESPA which is
described in this chapter. VESPA has many parameterized architectural parameters
briefly summarized here but more thoroughly explored in later chapters. The MVL is one

such parameter explored in this chapter.

Chapter 6

Scalability of the VESPA Soft

Vector Processor

The key goal of this work is to achieve performance significantly beyond current soft
processors to make it easier to leverage the computational power of FPGAs without
complicated hardware design. The scalability of a vector processor is potentially a pow-
erful method of doing so. In this chapter we evaluate whether this scalability holds true
on FPGAs and improve it by exploring the area and performance of several architectural

modifications.

6.1 Initial Scalability (L)

To highlight and quantify the importance of the architectural modifications subsequently
proposed in this research, we first measure the scalability of a base initial design which
lacks these features. Specifically, the initial VESPA design is identical to that described
in Chapter 5 but supported only parameterization of the number of lanes and the MVL
value (which is set to 64 for this scalability study). Its memory system was hard-coded
with two 4KB direct-mapped instruction and data caches each with 16B lines sizes. This
section evaluates the scalability of this design and presents those findings as measured

across the EEMBC benchmarks executed on the TM4 hardware platform. Note that the

69

CHAPTER 6. SCALABILITY OF THE VESPA SorT VECTOR PROCESSOR 70

9
8
o
5 7
T O
55
23
[7 5
29
3]
>~
S 4
3
2 4
1 -+
0 4
autcor conven rgbecmyk rgbyiq ip_checksum imgblend filt3x3 fbital viterb GEOMEAN
m llane 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
M 2 Lanes 1.91 1.82 1.69 1.74 1.62 1.76 1.87 1.89 1.73 1.78
W 4 Lanes 349 3.09 2.29 2.77 234 2.84 3.27 3.34 2.49 2.85
m 8 Lanes 5.95 4.63 3.02 401 2.73 4.10 5.30 4.62 3.03 4.02
W 16 Lanes 831 5.89 3.59 4.98 3.13 474 7.32 6.79 3.47 5.08

Figure 6.1: Cycle performance of increasing the number of lanes on the inital VESPA design
with 4KB data cache size and 16B cache line size.

TM4 is used only in this chapter because the improved VESPA which was ported to the
DE3 cannot be easily reverted to this initial design.

Figure 6.1 shows the cycle speedup (the speedup achieved when measuring only clock
cycles) attained by increasing the number of vector lanes. Speedup is measured relative
to the single-lane VESPA configuration executing the identical benchmark binary—we
do not compare against the non-vectorized benchmark here. Chapter 8 explores the
performance between VESPA and a scalar soft processor executing non-vectorized code.
The figure shows speedups ranging inclusively across all benchmarks from 1.6x to 8.3x.
On average the benchmarks experience a 1.8x speedup for 2 lanes, with a steady increase
to 5.1x for 16 lanes. We are unable to scale past 16 lanes because of the number of
multiply-accumulate blocks on the Stratix 1580 on the TM4 (we later port the improved
VESPA design to the DE3 to overcome this limitation). The observed scaling may be
adequate, but for most of the benchmarks the performance gains appear linear despite
the exponential growth in lanes.

Since scalability is such an important aspect of a soft vector processor, we are mo-
tivated to pursue architectural improvements which enable greater performance scaling
than seen in Figure 6.1. The following section analyzes the scaling bottlenecks in the

System.

CHAPTER 6. SCALABILITY OF THE VESPA SOFT VECTOR PROCESSOR 71

6.1.1 Analyzing the Initial Design

Assuming a fully data parallel workload with a constant stream of vector instructions
(which closely represents many of our benchmarks), poor scaling can be caused by either
inefficiencies in the vector pipeline or the memory system. Since VESPA executes vector
ALU operations without any wasted cycles it is therefore the vector memory instructions
inhibiting the performance scaling. The vector memory unit stalls one cycle upon re-
ceiving any memory request and then stalls for each necessary cache access. In addition
cache misses result in cycle stalls for the duration of the memory access latency. In this

section we evaluate whether the memory system is indeed throttling the scalability in

VESPA.

The impact of the memory system is measured using cycle-accurate RTL simulation of
the complete VESPA system including the DDR memory controller for four of the bench-
marks! using the Modelsim simulation infrastructure described in Chapter 3. Hardware
counters were inserted into the design to count the number of cycles the vector memory

unit is stalled, as well as the number of cycles it is stalled due specifically to a cache miss.

Our measurements demonstrate that this initial VESPA design with 16 lanes, 16B
data cache line size and 4KB depth spends approximately 67% of all cycles stalling in
the vector memory unit, and 45% of all cycles servicing data misses. This cache line
size was selected for the initial configuration because it matches the 128-bit width of the
DRAM interface—cache lines smaller than 16B would waste memory bandwidth. The
4KB depth is then selected to fully utilize the capacity of the block RAMs used to create
the 16B line size. Depths less than 4KB (for the Stratix I) would waste FPGA RAM
storage bits because of the discrete aspect ratios of the block RAMs. The large number
of cycles spent in the vector memory unit, and specifically the misses, suggests that the

memory system is significantly throttling VESPA’s performance.

!The other benchmarks are not included because their data sets are too large for simulation

CHAPTER 6. SCALABILITY OF THE VESPA SOFT VECTOR PROCESSOR 72

6.2 Improving the Memory System

Standard solutions for improving memory system performance include optimizing the
cache configuration and the implementation of an accurate data prefetching strategy. We
pursue these same solutions within VESPA but with an appreciation for the application-
dependence of these solutions since in a soft processor context, an FPGA designer can
select a cache and prefetcher to match their specific application. The data cache is hence
parameterized along its depth (or capacity) and its line size, while a data prefetcher is

implemented with parameterized prefetching strategies.

6.2.1 Cache Design Trade-Offs (DD and DW)

The most obvious approach to increasing memory system performance is to alter the
cache configuration to better hide the memory latency. In this section we parameterize
and explore the speed/area trade-offs for different data cache configurations for direct-
mapped caches. Set-associative caches require multiplexing between the entries in a set,
which is expensive especially in an FPGA and hence deters us from including this option
in our initial exploration. Also, banking the cache was not explored since all of our
benchmarks use mostly contiguous memory accesses. We vary data cache depth from
4KB to 64KB and the cache line size from 16B to 128B. Note, our system experiences
some timing problems caused by the large size of the memory crossbar on the TM4 for a
cache line size of 128B which limits the measurements we can make for that configuration

and cache lines greater than 128B.

Some conclusions from this study can be hypothesized with further examination of the
benchmarks. Many of our vectorized benchmarks are streaming in nature with little data
re-use. For such benchmarks we anticipate that cache depth will not impact performance
significantly while widening the cache line and hence increasing the likelihood of finding
needed data in a single cache access may considerably improve performance. In addition,

the longer cache lines provide some inherent prefetching by caching larger blocks of

CHAPTER 6. SCALABILITY OF THE VESPA SOFT VECTOR PROCESSOR 73

2.5
(2]
>
o A A 4 —aA 2.14
_g 2 211
) 0— = —a——— =
© 3 1.84 1.89| —a—1288
" ;" 15 N —m— 648
§ ﬁ 1.45 1.47 328
o ——16B
2 1 1.00 1.00
T
=

0.5 \ :

4KB 8KB 16KB 32KB 64KB

Cache Depth

Figure 6.2: Average wall clock speedup (excluding VITERB benchmark) attained for a 16-lane
VESPA with different cache depths and cache line sizes, relative to the 4KB cache with 16B
line size. Each line in the graph depicts a different cache line size.

contiguous memory on a miss.

Figure 6.2 shows the average wall clock speedup across all our benchmarks except
VITERB for each data cache configuration normalized against the 4KB cache with a 16B
cache line size. We first note that as predicted, the streaming nature of these benchmarks
makes cache depth affect performance only slightly. For the 16B cache line configuration
the performance is flat across a 16-fold increase in cache depth, while for the 128B
cache line this 16-fold growth in depth increases performance from 2.11x to 2.14x. In
terms of improving our baseline 4KB deep 16B line size default configuration for these
benchmarks, the cache line size plays a far more influential role on performance. Each
doubling of line size provides a significant leap in performance reaching up to 128B with

an average of more than double the performance of the 16B line size.

Figure 6.3 shows the wall clock speedup for just the VITERB benchmark across the
same cache configurations. The VITERB benchmark is significantly different than the
other benchmarks: it passes through multiple phases which have varying amounts of data
parallelism and in some cases none at all. Because of this, cache conflicts appear to be an
issue. The figure shows that once the cache depth reaches 16KB the performance plateaus
for all cache line configurations and results similar to the rest of the benchmarks are

observed where only increases to cache line provide significant performance boosts. For

CHAPTER 6. SCALABILITY OF THE VESPA SOFT VECTOR PROCESSOR 74

2.5
%)
>
S
8 2

m O O

Lo
n -1
« m 15
o XY
o <
© 1
©
=

0.5 - . ‘

4KB 8KB 16KB 32KB 64KB

Cache Depth

Figure 6.3: Wall clock speedup of VITERB benchmark attained for a 16-lane VESPA with
different cache depths and cache line sizes, relative to the 4KB cache with 16B line size. Each
line in the graph depicts a different cache line size.

Table 6.1: Clock frequency of different cache line sizes for a 16-lane VESPA.

Cache Line Size (B) | Clock Frequency (MHz)
16B 128 MHz
328 127 MHz
64B 123 MHz
128B 122 MHz

4KB cache depths, increasing the cache line size past 32B actually decreases performance.
For an 8KB cache the same phenomenon occurs at 64B instead. In both cases the cause is
increased conflicts since with constant depth, a wider cache line size creates fewer cache
sets. Unlike the other benchmarks, VITERB has significant data re-use and capturing
that working set in a 16KB cache is imperative before applying further memory system

improvements.

In contrast with the scalar soft processors shown in Chapter 4, the increase in com-
putational power via multiple lanes in the vector processor makes the memory system
more influential in determining overall performance. Chapter 4 demonstrated that the
impact of the memory system is limited to 12% additional performance for the scalar soft

processor, whereas in both Figure 6.2 and Figure 6.3 performance is more than doubled.

Table 6.1 shows that the clock frequency is slightly reduced as the cache line size

increases. This clock frequency degradation is due to the multiplexing needed to get data

CHAPTER 6. SCALABILITY OF THE VESPA SOFT VECTOR PROCESSOR 75

1.8
(4]
D 1.6 -
<
% - E4KB
- 12 -
2 m8KB
014 016KB
E 08 0032KB
= B 64KB
£ 0.6 -
o 0.4
S 0

0.2 4

0 41

16B 32B 64B 128B
Cache Line Size

Figure 6.4: System area of different cache configurations on a 16-lane VESPA normalized
against the 4KB cache with 16B line size. Each coloured bar in the graph depicts a different
cache depth.

words out of the large cache lines and into the vector lanes via the memory crossbar.
In other words, by doubling the cache line size, the memory crossbar is also doubled in
size and is responsible for the frequency degradation. Further logic design effort through
pipelining and retiming can mitigate these effects, resulting in slightly more pronounced

benefits for the longer cache lines.

Figure 6.4 shows the silicon area of the VESPA system normalized against that of
the 4KB cache with 16B line size. The area cost can be quite significant, in the worst
case almost doubling the system area. However, the area trends are quite different than
what one would expect with traditional hard processors. We discuss the effect on area

of cache depth and cache line size below.

Increases in cache depth have a minimal effect on area and in many cases are hidden
by the noise in the synthesis algorithms: for example, the 4KB cache with 64B line size
is larger than its 8KB counterpart. This is a synthesis anomaly since the number of
block RAMs and multiply-accumulate blocks is the same for both designs, yet the 4KB
configuration consumes 900 additional LEs. In fact all caches with a 64B line size have
the same number of block RAMs except for the 64KB depth configuration, in which case

the added block RAMs for cache depth does not contribute significantly more area than

CHAPTER 6. SCALABILITY OF THE VESPA SOFT VECTOR PROCESSOR 76

128 bit cache line size

16 16 16 16 16 16 16 16
bits bits bits bits bits bits bits bits

4096 4096 4096 4096 4096 4096 4096 4096
bits bits bits bits bits bits bits bits

4KB cache depth

Figure 6.5: Multiple block RAMs are needed to create the width necessary for 16B cache lines,
and the cache depth should be 4KB to fully-utilize the capacity of those block RAM:s.

the rest of the 64B configurations. Such results are expected for an FPGA since cache
depth only affects the block-RAM storage required, which is more efficiently implemented

relative to programmable logic.

Increasing the cache line size can also increase the number of block RAMs consumed.
Certainly the largest contributor to the increased area with cache line size is the multi-
plexers in the vector memory crossbar which routes each byte to each vector lane; however
it is also due to the increase in FPGA block RAMs being used, a phenomenon unique
to FPGAs. In their current configuration, the block RAMs are limited to a maximum
of 16-bit wide data ports: to create a cache with 16B (128-bit) line sizes we require at
least 8 such FPGA block RAMs in parallel, as shown in Figure 6.5, hence consuming all
8 of those block RAMs and their associated silicon area. Any increases in cache line sizes
will result in corresponding increases in the number of used block RAMs and with it an
automatic increase of physical storage bits used (whether they are logically used by the
design or not). Therefore we generally choose the depth to fill the capacity of the fewest
number of block RAMs required to satisfy the line size.

In terms of supporting VESPA configurations with many lanes, such as the 16-lane
configuration used throughout this section, we believe the 40% additional area is worth
the performance increase of a data cache with 64 byte line size and 16KB depth to fill the
used block RAMs. The two factors that contribute to these performance improvements
are: (i) wider cache lines require fewer cache accesses to satisfy memory requests from

all the lanes; and (ii) wider cache lines bring larger blocks of neighbouring data into

CHAPTER 6. SCALABILITY OF THE VESPA SOFT VECTOR PROCESSOR 77

the cache on a miss providing effective prefetching for our streaming benchmarks which
access data sequentially. Of course, the latter benefit can be achieved through hardware

prefetching which comes without significant area cost.

6.2.2 Impact of Data Prefetching (DPK and DPV)

Due to the predictable memory access patterns in our benchmarks, we can automatically
prefetch data needed by the application before the data is requested. We hence augment
VESPA by supporting hardware data prefetching where a cache miss translates into a
request for the missing cache line as well as additional cache lines that are predicted
to soon be accessed. This section describes the data prefetcher in VESPA as well as

evaluates its effect across our benchmarks.

6.2.2.1 Prefetching Background

Data prefetching is a topic thoroughly studied in the computer architecture commu-
nity [63]. The simplest scheme, known as sequential prefetching, fetches the missed cache
line as well as the next K cache lines in memory. All our prefetching schemes are based
on sequential prefetching since this maps well to our many streaming benchmarks.

Fu and Patel had investigated prefetching particularly in the context of a vector
processor [22]. They limited prefetching to vector memory instructions with strides