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Abstract
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Master of Applied Science
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Computer Engineering

University of Toronto

2008

FPGAs are becoming an attractive platform for accelerating many computations in-
cluding scientific applications. However, their adoption has been limited by the large
development cost and short life span of FPGA designs. We believe that FPGA-based
scientific computation would become far more practical if there were hardware libraries
that were portable to any FPGA with performance that could scale with the resources
of the FPGA. To illustrate this idea we have implemented one common supercomput-
ing function: the LU factorization method for solving linear systems. This dissertation
discusses issues in making the design both portable and scalable. The design is auto-
matically generated to match the FPGA’s capabilities and external memory through the
use of parameters. We compared the performance of the design on the FPGA to a single
processor core and found that it performs 2.2 times faster, and that the energy dissipated

per computation is 5 times less.
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Chapter 1

Introduction

As the logic and computational capacity of FPGAs has grown, they have become an
attractive platform for accelerating many computations including scientific applications.
The high level of parallelism and abundant flexibility available in the FPGA fabric offer
the promise of significant speed up. A number of vendors offer platforms that enable a
processor to offload computation to an FPGA-based accelerator including XtremeData
2], SRC [3], and Cray [4]. However, adoption of these FPGA accelerators by the scien-
tific computing community has been limited because the creation of an FPGA design is
difficult and time consuming, and outside the skill set of the typical scientific computing
user. In addition, once a design has been created for one specific FPGA chip and board,
the same design cannot be easily transferred to another. The design is locked onto that
FPGA-based platform because it typically has a specific memory architecture that soon

becomes outdated.

In contrast, software has a much lower development cost. Once a software application
is completed, it can easily be recompiled for newer machines. This permits software pro-
grammers to develop and maintain rich libraries that solve important problems. Scientific
computing users need not be highly skilled in creating optimized code because they can

simply use the functions in these libraries. In hardware, IP cores do allow some design
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reuse, but at a much lower level of abstraction than with high level software libraries.

One method that attempts to make FPGA programming more accessible is to employ
high-level languages and synthesis tools that map software directly to an FPGA. Exam-
ples include Handel-C [5], Catapult C [6], and SystemC [7]. However, this approach is
often not adequate to create an efficient hardware design from complex code as the pro-
grammer typically has to write the code in a stylized manner with the final architecture
of the system in mind to obtain good performance. Thus software libraries cannot be
easily and efficiency translated to FPGAs without significant manual manipulation.

In this work we present an alternative solution for making FPGA-based computation
more accessible by creating a computational “library” that is portable to any FPGA
platform with minimal effort. The key second feature of the library is that its performance
should also scale with the capabilities and resources of the FPGA. Given an FPGA with
more capacity and faster elements, the library performance should improve without extra
effort from the designer. By creating a portable and scalable library, we can drastically
reduce the development cost and increase the life span of the design, thus making it more
attractive to scientific computing users.

Common software libraries for scientific computing include matrix manipulation pack-
ages such as BLAS [18], SAT solvers, and linear program solvers. If an equivalent library

existed for FPGAs, it could enable broader adoption of FPGA acceleration.

1.1 Research Goals

This research lays out a framework to create such a hardware library, by illustrating the
design issues and efforts needed to build one such compute engine. The compute engine
in this library should have two key features:

1. Portability: the ability to maintain functionality while executing on different

FPGA-based platforms. In order to achieve portability, the engine has to handle memory
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Figure 1.1: Two Different Commercial Memory Architectures of FPGA Accelerators

architectures of different platforms. For example, Figure 1.1(a) shows the XtremeData
XD1000 FPGA accelerator, which has one Altera Stratix II FPGA. It has a 4MB On-
Board ZBT SRAM memory and a 128 bit-wide DDR-333 SDRAM memory [2]. Figure
1.1(b) shows another FPGA accelerator, the SRC-7 Series H MAP, which has two Altera
Stratix FPGAs, a 64 MB 8 bank On-Board SRAM and two DDR2 SDRAM memory
banks [3]. Our goal is to build a compute engine generator that will be able to gen-
erate engines that can use these different memory architectures to perform the same
functionality.

2. Scalability: the ability to improve performance by using all of the available re-
sources on the FPGA while maintaining the same functionality. The compute engine
should perform the same functionality faster on an FPGA with more resources than one
with fewer resources.

To achieve these two features, a compute engine generator (which is software that
produces synthesizable code) is created to automatically produce the engine that can
interact with the targeted memory architecture while taking advantage of all the resources
on the FPGA to improve performance. Parameters containing information about the
FPGA-based platform are provided to the generator so that it can create a customized
engine. The user only has to change these parameters when moving to another platform.

Our focus application is the solution of systems of linear equations, as this is a very
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common problem and the computation time is high for large systems. We have created a
generator that automatically creates a portable and scalable FPGA computer engine for
the LU factorization method [23] to solve a linear system. The generator and engine are
highly parameterized to permit any size of matrix (up to the external memory capacity)

and to make use of any size of FPGA.

1.2 Organization

This thesis is organized as follows. Chapter 2 provides background on solving linear
systems and summarizes previous work on using FPGAs to accelerate this computation.
Chapter 3 outlines the architecture of our compute engine. Chapter 4 describes the broad
space of parameters for which the generator can generate engines to achieve portability
and scalability. Chapter 5 discusses the experimental results. Chapter 6 concludes the

thesis and suggests future extensions to this work.



Chapter 2

Background

In this chapter we provide the background material related to our goal of a portable and
scalable hardware linear equations solver. First, we outline the LU factorization method
for solving linear equations, including the so-called blocking version that enables any
arbitrary problem matrix size on an FPGA. Next, we review software linear equation
solvers. Then we describe the FPGA architecture that we focus on in this work and
contrast our goals to what is currently available in industry standard IP cores, which are
also portable and scalable. Finally, we survey previous work on linear equation solvers

on FPGAs.

2.1 Solutions of Systems of Linear Equations

A system of M linear equations with N unknown variables, as shown in Equation (2.1),
is often represented in a matrix and vector form, as shown in Equation (2.2). The
coefficients of the variables in each linear equation are represented in each row of an M
x N matrix (A) and they are multiplied by the N-element vector of unknown variables
(). A solver must determine the values of = for which the product generates the M-
dimensional constant (b). Given a system of linear equations, there can be one solution,

an infinite number of solutions or no solution. For this research, we focus on systems of



CHAPTER 2. BACKGROUND 6

linear equations where the matrix is square (M = N) and nonsingular; this implies [24]

that the matrix is invertible and there is only one solution to the system.

a1171 + a12T2 + -+ A1 NTN = bl

a2,121 + A22%2 + -+ 2, NTN = b2

(2.1)
ap,1 + Apr2T2 +---+ M NTN = bM
Ar =0b
ay 1 1.2 ce. Q1N T bl
2.2
a2 1 a2 9 ce. Q2 N To bg ( )
A= x = b=
aym1 Aam2 --. AGMN N bM

There are two main classes of linear equation solvers: iterative and direct. Iterative
solvers begin with an initial guess for the solution vector, x, and then refine it until the
error is sufficiently small. To refine the guess vector, the coefficient matrix A is multiplied
by the guess vector to produce a new vector. The difference between this new vector and
the constant vector b is called the error vector. Based on the specific iterative solver, a
new guess for the solution vector is obtained based on the previous guess vector and the
error vector. Some examples of iterative solvers are the conjugate gradient [23] and the
Jacobi iterative method [23]. For an iterative solver, the bottleneck in each refinement
of the guess vector is the matrix-vector multiplication, which is O(N?) operations. In
general, the number of times the iterative solver has to refine its guess vector is less than
and independent of N for large systems. Thus the overall computation is typically stated
as O(N?).

By contrast, direct solvers [24] manipulate the matrix and solution vector until the

solution can be easily computed. Examples of direct solvers are Gaussian elimination
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[24] and LU factorization [24]. The direct solution requires O(N?) operations, which
is more than iterative solvers. However given a solution exists, it can always compute
the solution. In contrast, the error for the iterative solver will not always converge to a
sufficiently small value for all types of matrices. Some iterative solvers that do guarantee
converge require N iterations and therefore, its computation complexity is O(N?), which
is the same as direct solvers. Thus, both iterative and direct solvers are widely used.
In this research, we focus on LU factorization, which is a direct solver. More detail on

methods of solving linear equations can be found in [24] and [23].

2.1.1 LU Factorization Overview

The LU factorization method directly solves for z by breaking the coefficient matrix A
into two matrices, A = LU. One of those matrices, called L, is a lower triangular matrix
which has the diagonal elements equal to 1 and all elements above the diagonal equal to
0; the other matrix, called U, is an upper triangular matrix which has the elements below
the diagonal equal to 0. Using Equation (2.3), if we set y = Uz, a forward substitution
can be performed to compute y from Ly = b. Then a backward substitution can be
performed to compute x from Uz = y. The most time consuming computation in this
algorithm is the factorization of the coefficient matrix, which is the determination of
the matrices L and U such that A = LU, as this requires O(N?) operations for a N
x N matrix A. It is this factorization computation that this work seeks to accelerate
on an FPGA. To save space, we do not need to store the L and U matrices separately;
since we know the upper part of the L matrix (the diagonal is 1 and all elements above
the diagonal is 0) and we know the lower part of the U matrix (all elements below the
diagonal is 0), we do not have to explicitly store their values. To further save memory
space, the solution of the L. and U matrix can be stored in the same memory location
where the A matrix was originally stored [24]. The following sections outline the steps

required to perform the factorization.
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LUz =b (2.3)

2.1.2 Simple LU Factorization

A pseudo-code outline for a simple LU factorization algorithm is given in Algorithm 1
[24]. There are two kinds of operations that must be performed: the first is the division of
all the column elements below the diagonal, aj+1 x to an, by the diagonal element, ay, .
The second is the multiplication of all the column elements below the diagonal, aj1; to
ank, by the row element, a; ;, and the subsequent subtraction of the result from all the
column elements below the row element used in the multiplication, ay41; to ay;. The
multiplication and subtraction are repeated for j from k + 1 to N. All these operations

are repeated for the next diagonal element until the last diagonal element is reached.

Algorithm 1 Pseudo-code for a simple LU factorization of N x N A matrix
for k =1to N — 1 do {for each diagonal element}
for i = k41 to N do {for each element below it}
@ik a;r/a {normalize}
end for
for j = k+ 1 to N do {for each column right of current diagonal element}
for i = k+ 1 to N do {for each element below it}
Qi < Q5 — Qi kg X Ak,j
end for
end for
end for

2.1.3 Block LU Factorization

For the simple LU factorization method described above, all of the elements in the matrix
must be accessible during the computation. For problem sizes of interest, matrix size (N)
is at least 10,000 x 10,000 single precision numbers (smaller than this the computation
times on processor are reasonably fast), which requires roughly 0.4 GBytes of memory.

This is far too large to store on a chip, either an FPGA or a processor’s cache, and so
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the matrix must be stored in off-chip memory. Thus all practical approaches must deal
with the limitation to off-chip memory bandwidth. The common approach to deal with
this is to perform the computation in a “blocked” manner - to bring on-chip subsections
of the coefficient matrix A, each of size N, x N, and perform as many computations
on that data as possible to minimize the number of times data has to be fetched from
off-chip memory. We refer to a block as being “updated” to mean that computations are

performed on the block to produce new values.

There are three common variants of the block LU factorization: “right-looking”, “left-
looking” and “Crout” [23]. In this work we employ the “right-looking” version, and so
we focus on it here. In this method the current block being updated uses elements from
the left-most and top-most block in its row and column. Figure 2.1(a) shows the blocks
needed to update an example block in a matrix. In the figure, the current block is colored
black, the left-most block is the grey block to the left of the black block and the top-most
block is the grey block above the black block. Each block of the matrix has a size of N,
x N,. With this blocking method there are four kinds of computations performed on the

blocks based on the following cases:

Case 1: all three blocks (current, left-most, and top-most) are the same physical

block.
Case 2: the current block is the same as left-most block.
Case 3: the current block is the same as the top-most block.
Case 4: all three blocks are different.

Figure 2.1(b) shows an example matrix in which the blocks are labeled with with the
corresponding case type. The computation for these blocks are similar to the simple LU
factorization algorithm described in Algorithm 1, except the loop indices are different and
some elements are obtained from the left-most and top-most blocks. The pseudo-code for
all the cases is shown in Algorithm 2, where a; ;, l; ;, and u; ; represent elements in the

current block, left-most block and top-most block respectively. We will refer to the series
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(@) M | 113|13[3] ©[|1]5]9]13] @
21 4| 4| 4 2| 6[10|14 1
21 4| 4| 4 3(7|11|15 2
. 24| 4| 4 4| 8|12|16 2

Figure 2.1: (a) blocks required, in grey, to update the black block; (b) type of computation
for each matrix block in the first block pass; (c) order of blocks updated in the first pass;
(d) computation performed in the second block pass.

of operations performed on the matrix block as the block computation. For case 1, the
operations performed are the same as the simple LU factorization, except N is replaced
by N,. For case 2, the diagonal element in the top-most block, uyy is divided from
column elements below it in the current block, a; i to ay, ;. Then the column elements
in the current block, a; i, to an, i, is multiplied by the row element in the top-most block,
uy,j. The result is subsequently subtracted from the column elements in the current block
below the row element used in the multiplication, a; ; to ay, ;. The multiplication and
subtraction are repeated for j from k41 to N. All these operations are repeated for the

next diagonal element in the top-most block until the last diagonal element is reached.

Case 3 and 4 only perform the multiplication and subtraction and do not perform
the division, as an earlier block operation will have already normalized the necessary
elements. For case 3, the column elements in the left-most block below the diagonal,
l+1,1 to Iy, i, is multiplied by the row element in the current block, ay ;. The result is
subtracted from the column elements in the current block that is below the row element
used in the multiplication, a1,; to ay, ;. The multiplication and subtraction operations
are repeated for j from k+1 to N. These operations are repeated for k£ from 1 to N,. For
case 4, the column elements in the left-most block, [y 5 to Iy, x, is multiplied by the row
element in the top block, wuy ;. The result is subsequently subtracted from the column
elements in the current block that is below the row element used in the multiplication,

a1 j to ay, ;. The multiplication and subtraction are repeated for j from 1 to N. These
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Algorithm 2 Code for all 4 cases of block LU factorization
Case 1:
same as simple LU factorization with N, instead of N {See Algorithm 1}

Case 2:
for k =1 to N, do {for each diagonal element in top-most block (u)}
for i =1 to N, do {for each element below it in current block (a)}
Qi) Q;x/ugr {normalize}
end for
for j = k+1 to N, do {for each column right of current diagonal element}
for i =1 to N, do {for each element below it in current block (a)}
jj < Q5 — Qi X U5
end for
end for
end for

Case 3:
for k =1 to N, do {for each column in left-most block (1)}
for j =1 to N, do {for each column in current block (a)}
for i = k+ 1 to N, do {for each element below it}
Qij — @iy — ik X ag,;
end for
end for
end for

Case 4:
for k =1 to N, do {for each column in left-most block (1)}
for j =1 to N, do {for each column in top-most block (u)}
for i =1 to N, do {for each element below it in current block (a)}
Qij — Qij — lig X ugj
end for
end for
end for
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computations are repeated for k£ from 1 to N,. For a large matrix, case 4 is the most

common and dominates the computation time.

Before a block can be updated (where new values are computed), all the other blocks
that are required in the computation must be updated already. So one cannot randomly
update the blocks and Figure 2.1(c) shows one possible order in which the blocks can be
updated. After the first block pass in which every block is updated, the blocks in the
first block column and block row have the final solution. The remaining blocks, which
are all the case 4 blocks in the first block pass, are updated again. The current block
updated now use elements from the second left-most and the second top-most blocks.
It can be thought of as the remaining blocks forming a new matrix for which the above
computations are repeated. Figure 2.1(d) shows which of the four cases in the above
computation the remaining blocks fall under. After updating all the blocks and thus
completing another block pass, the first column and the first row in the remaining blocks
have the final solution. The new remaining blocks are updated again. This process

repeats until no blocks are left, requiring N/N, block passes in total.

2.2 Software Linear System Solvers

There exist many software libraries that can solve systems of linear equations. The BLAS
(Basic Linear Algebra Subprograms) [18] are routines that perform various vector and
matrix operations, which are the building blocks for solving linear equations. There
are three levels of BLAS routines based on level of complexity. Level 1 BLAS perform
scalar, vector and vector-vector operations, which are O(N). Level 2 BLAS perform
matrix-vector operations, which are O(N?), and Level 3 BLAS perform matrix-matrix
operations, which are O(N?). The LAPACK (Linear Algebra PACKage) [17] is a library
of routines that solves systems of linear equations, least-squares solutions of linear systems

of equations, eigenvalue problems, and singular value problems. It uses the BLAS routines
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to perform its computation. There is an LU factorization routine in LAPACK.

Intel Corporation has released its own version of LAPACK called Intel MKL (Math
Kernel Library) [8]. The MKL library also performs fast Fourier transforms (FFT), vector
trigonometry and vector statistic routines. It is highly optimized for Intel processors and
uses the processor’s Streaming SIMD Extensions (SSE), which is a single instruction,
multiple data instructions set for Intel processors. Both Intel [9] and AMD [10] support
SSE and its newer incarnations. The latest SSE (SSE4) on Intel processors have eight 128
bit registers on each core. Each register can be broken up to store four single precision
(32 bit) or two double precision (64 bit) floating point elements. Thus it can perform
four single precision or two double precision floating point operations simultaneously on
these registers. This feature enables a large peak floating point performance potential
for software. GFLOPS (FLoating point Operations Per Second in millions) is a common
metric for this performance and it is calculated by taking the number of operations
needed to perform a computation divided by the total execution time. To find the peak
GFLOPS of a platform, one can estimate the maximum floating point operations it can
perform per cycle and multiply it with the operating frequency. For example, the Xeon
5160 dual core 3.0 GHz processor has two cores and at maximum each core can perform
four single precision floating point multiplication and addition/subtraction operations
per cycle. Thus, this processor has a peak single precision performance of 48 GFLOPS

(3GHz x 2 cores x 2 types of operations x 4 single precision operations per cycle).

2.3 FPGA Architecture Capabilities

An FPGA consists mainly of look up tables (LUTs) and registers with programmable
routing. These LUTs are very flexible and can implement any logic function. As IC
fabrication process has improved, the number of LUTSs per chip has increased in FPGAs

thus allowing more computational capacity. In addition, other hard components have
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been added that have specific functions and offer speed and area improvements when
these functions are used. These new additions include multipliers and on-chip memory
blocks. For this research, we will use the Altera Stratix series of families of FPGA in our
implementation. Figure 2.2 shows the FPGA architecture of the Altera Stratix III [1].
The Stratix III consists largely of adaptive logic modules (ALMs) with 10 ALMs forming
a logic array block (LAB). The ALM is a fracturable LUT with two dedicated adders and
registers. The DSP blocks support 9x9, 12x12, 18x18 or 36x36 bit multipliers. There are
eight 18x18 bit hard multipliers in a DSP block. The Stratix III on-chip memory consists
of M9K blocks, which has 9,216 bits of memory, M144K blocks, which can hold 147,456
bits of data, and MLAB blocks, which can store up to 640 bits of data. The MLAB is
implemented using a LAB with all of its ALMs converted into small memory block. The
LUT is effectively a memory block that can be configured to implement any function.
The M9K and M144K blocks are dedicated on-chip memory blocks and they are true
dual-port memory blocks, where any two operations, read or write, can be performed
per cycle. The MLAB is only a simple dual-port, where one read and one write can
be performed per cycle. All three types of memory blocks have maximum operating
frequencies of 600 MHz. The largest Stratix III FPGA has 17 Mbits of on-chip memory,
which can store a maximum size single precision matrix of 721x721. Thus, it is necessary
for us to use off-chip memory to ensure matrices of larger dimensions can be solved. The
FPGA has PLLs, DLLs and I/O banks that are used to interact with off-chip memory.
The I/0 banks provide input and output connections to on-chip memory while the PLLs

and DLLs are used to align to the clock of the off-chip memory.

2.3.1 Vendor Supplied IP Cores

FPGA vendors, such as Altera and Xilinx, offer IP cores that implement specific func-
tions that users employ in creating their design. The cores consist of functions for DSP

algorithms, communication modules, interface modules, and soft processors. Similar to
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Figure 2.2: Altera Stratix III FPGA architecture [1]

our generator, the IP cores generator uses parameters and can create portable and scal-
able cores. The difference between our work and the IP cores is the size and complexity.
Figure 2.3 shows examples of IP cores and how they compare to our engine in terms of
size and complexity. Typically one IP core will occupy a small portion of the resources
on an FPGA while our computation engine can use up all the resources on an FPGA.
The cores are typically used as building blocks in the algorithm while our engine im-
plements the whole algorithm. In terms of complexity, our engine is significantly more
complex than today’s typical IP cores. Many cores like the arithmetic functional units
have little or no control logic and simply perform some manipulation of the input data.
More complicated cores such as the processor or off-chip memory controller have some
simple logic to control its datapath. Our engine generator creates the complete datapath
and control logic to perform a complex algorithm including communication with off-chip
memory. Our engine uses several Altera IP cores to generate components in the datapath
such as floating point functional units and off-chip memory controller. One could classify

our engine as a “super” IP core.
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Figure 2.3: Comparison of the complexity and size between IP cores and our computation
engine.

2.4 Prior Work

This section surveys some prior work in solving systems of linear equations on FPGA
hardware and highlights the differences with the work in this thesis.

The work in [28] compared the performance of floating point matrix operations on
FPGAs and CPUs. This work used data from five FPGAs and three CPUs from 1997
to 2003, which is specified in Table 2.1. However, the impact of newer CPUs with multi-
cores was not evaluated. It compared FPGAs and CPUs based on one routine from each
level of the BLAS library: dot-product, matrix-vector multiplication and matrix-matrix
multiplication. The software measurement was obtained from BLAS routines and the
FPGA measurement was estimated based on implementations using multiply-accumulate
units. This work showed that a state-of-the-art FPGA has a higher peak floating point
performance for various matrix operations than a CPU, and that an FPGA also has a
higher performance increase trend than CPU, so over time, the performance advantage
should increase. It also concluded that FPGAs can obtain a higher performance with less
memory bandwidth and on-chip storage than CPU. Thus, FPGAs have an advantage in
the future as they will not be limited by memory bandwidth as soon as CPUs.

We will review some prior research on implementing linear equation solvers in FPGAs.
For iterative solvers, the bottleneck is a matrix-vector multiplication as explained in

Section 2.1. The work in [29] and [21] implemented double precision sparse matrix-vector
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Table 2.1: FPGAs and CPUs analyzed in [28].

Year FPGA CPU

1997 | Xilinx XC4085XLA-09 | Pentium-II 266 MHz
1999 Virtex 1000-5

2000 Virtex-E 3200-7 Athlon 1.0 GHz
2001 Virtex-I1

2003 Virtex-II Pro 100-6 Pentium-4 3.06 GHz

multiplication for FPGA. A sparse matrix is a matrix that has many zero elements and

a dense matrix is a matrix with few zero elements.

In [29], the matrix and vector is broken up into blocks so that the matrix and vector
can be any size and are not limited by on-chip memory. A block matrix-vector multipli-
cation method is performed until all the blocks have been multiplied. A matrix-vector
multiplication can be broken up into one large dot-product operation per row of the ma-
trix. Each such operation can be further broken into smaller dot products with additional
logic needed to accumulate the results. The design in [29] has one dot-product operator
with accumulation logic so that it can effectively perform a larger dot-product operation
for the entire row of the matrix block. Each row of the matrix is computed in this manner
until all the rows in the matrix have been used. Without the accumulation logic, the
dot-product operator has to have an input size equal to the matrix block size. With the
use of accumulation logic, the design can use a small input size dot-product operator,
which uses less resources at the cost of a longer latency than a large dot-product. Also,
the block size of the matrix-vector multiplication can be independent of the input size of

the dot-product operator.

The dot-product operation is implemented by multipliers connected to an adder tree
structure which accumulates all the results into one value. Figure 2.4 shows the block
diagram of a size four dot-product operator, which performs on two input vectors of size
four and produces one result. The design in [29] was targeted on a Xilinx Virtex-1I Pro

XC2VP70 and the performance was limited by the memory bandwidth. For a memory
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Figure 2.4: Block Diagram of a Dot-Product Operator

bandwidth of 8GB/s, this design achieves at least 0.35 GFLOPS in double precision

depending on the matrix.

In [21], the matrix-vector multiplication was calculated using a bidirectional ring
structure with many processing elements (PE), each of which contains a multiply accu-
mulate operator, and a control element (CE). Figure 2.5 shows the block diagram of the
structure. The CE uses switches (SW) in the ring structure to send out instructions to
all the PEs. The CE has its own on-chip memory block to store the instructions that it
sends out to the PEs. The PE operates on its own on-chip memory block based on the

instructions. This ring structure mimics a SIMD processor.

The design does not use any off-chip memory. The matrix has to be divided among
the PEs and the appropriate instructions have to be determined beforehand. Memory
initialization files, which initializes an on-chip memory block to specific values, are used
to load the matrix elements into PEs and instructions into the CE when the FPGA
is programmed. Thus solving a different matrix requires the matrix to be partitioned
and instruction scheduling to be performed for each problem matrix. New memory
initialization files must produced and the FPGA will have to be reprogrammed, which
is inconvenient for the user. For the matrices used in [21], the matrix partition and
instruction scheduling requires a significant amount of time that is much larger than the
actual execution time of the iterative solver. These overheads need to be significantly

reduced before this design can be used. Because the matrix has to be stored all in on-chip
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Figure 2.5: Bidirectional Ring Structure in [21]

memory, the size of the matrix that can be solved is limited. On a Virtex II 6000-4, this
design achieved 1.5 GFLOPS. This design allows multiple FPGAs to be used and using

16 Virtex IIs, it achieved a total of 12 GFLOPS in double precision.

The work in [26] implemented a conjugate gradient (CG) and a Jacobi iterative solver
for sparse matrices on FPGA in double precision. This work used a SRC-6 Workstation
which has dual 2.8GHz Xeon processors with a 5120KB cache and 1GB of RAM and two
Xilinx Virtex IT 6000 FPGAs. For the CG solver, only the matrix-vector multiplication
was implemented on the FPGA while the remainder of the algorithm was executed in
software from the SPARSKIT library [27], which has routines for sparse matrix computa-
tion. For the Jacobi iterative solver, the whole algorithm was implemented on the FPGA.
Both designs need to perform a matrix-vector multiplication, which is the bottleneck of
the algorithm. To perform the multiplication, both designs use a dot-product operator
and additional logic to accumulate the results similar to the work in [29]. The entire ma-
trix is stored in on-chip memory on the FPGA and so there is a limit on the matrix size.
The matrix size is limited to 4,096 for the CG solver and 2,048 for the Jacobi iterative
solver. By having the whole matrix in on-chip memory, it reduces the memory band-
width requirement of the design as the data only has to be loaded once when performing

the entire algorithm and so performance is not memory bandwidth limited. This work
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reported a speed up of 2.4 for the CG using the Virtex II over running the entire CG
algorithm from SPARSKIT on the 2.8 GHz Xeon processor. The Jacobi iterative solver
achieved a speed-up of 2.2 using the Virtex II over software from SPARSKIT running on

the 2.8 GHz Xeon processor.

The work in [25] implemented a complete conjugate gradient (CG) for dense matrices
on the FPGA in single precision. To perform the matrix-vector multiplication, the design
implemented one dot-product operator, similar to the one in Figure 2.4, that operates
on a whole row of the matrix. The input size of the dot-product operator is the size of
the matrix, N. Each row of the matrix is sequentially operated in turn to complete the
matrix-vector multiplication. Thus, a large amount of resources are dedicated to creating
such a large dot-product operator and the input size of the dot-product operator limits
the matrix size. All the data necessary to perform the CG algorithm is stored in on-chip
memory. The design is fully pipelined and has a throughput of one iteration of the CG
algorithm per cycle. However, if there is only one matrix to solve, most of time the
components in the design are waiting for the next iteration. To maximize performance,
multiple problem matrices with the same matrix size have to be solved at the same time
to fully utilize the components in the design. On a Xilinx Virtex II 6000 with multiple
matrices, the performance achieved is 5 GFLOPS in single precision and the matrix is
limited to a size of 16. For a Virtex 5 LX330, the performance achieved is 35 GFLOPS

in single precision and the matrix is limited to a size of 58.

In all these prior works for iterative solvers except for [29], a limit is imposed on the
matrix size based on the on-chip memory capacity of the FPGA. For [29], there is no reuse
of matrix data. For each iteration of the solver, the matrix has to be loaded from off-chip
memory onto the FPGA to perform one matrix-vector multiplication. Thus, the memory
bandwidth is O(N?) while the computation complexity is also O(N?); therefore, a large
memory bandwidth is needed in order to obtain high performance. The performance is

likely to be memory-bandwidth limited. For matrices with limited size, the entire matrix
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can be stored on-chip and reused for each iteration of the solver. Since the matrix only
has to be loaded once, the memory bandwidth requirement can be amortized across all
the iterations of the algorithm. Thus, for the same amount of memory bandwidth, more
computation can be performed. Thus the performance is limited by the computation and
not by memory bandwidth. It seems that for iterative solvers, either the matrix size is

limited or the performance will be bandwidth limited.

For direct solvers, the computation complexity order is higher, O(N?), than iterative
solvers for the same matrix. Because the computation complexity is higher than the
memory bandwidth required to load the matrix, performance will be limited by com-
putation and not by memory bandwidth. Direct solvers are commonly used to solve
dense matrices. Iterative solver either require less computation but do not guarantee
convergence or require the same require the same order of computation as direct solvers
to guarantee convergence. Therefore, direct solver is still very useful today in scientific

applications. For these reasons, we decided to implement a direct solver.

The work in [30] implemented a direct solver using the same LU factorization method
employed in our work. It used a circular linear array of processing elements (PEs) in
double precision as shown in Figure 2.6. One of the PEs (PE;) has a divider while the
other PEs have a multiplier and adder. Matrix elements are passed from PE to PE
starting with PEy. PE, performs the normalization of the column elements while the
other PEs perform the matrix multiple and subtraction operations. The implemented
design stores all the matrix elements in on-chip memory and so it imposed a limit on the
matrix size. A blocking version to remove the matrix size limit was proposed, but not
implemented, in [20]. This design achieved 4 GFLOPS in double precision on a Virtex-II
Pro XC2VP100. Comparing to software from an AMD optimized library called ACML
[11] running on a 2.2 GHz Opteron with a L2 cache of 1IMB, this work reported a speed

up of about 1.2 in double precision using a Virtex-II Pro over software.

The work presented in this thesis can solve systems of linear equations of any size up
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Figure 2.6: LU Factorization Design Block Diagram in [30]

to the capacity of the off-chip memory of the system, which is an important feature as it
is the largest matrices which most need accelerated solutions. Many previous works do
not mention external memory and some simply provide a bound on the required memory
bandwidth. In contrast, this thesis explicitly considers external memory and outlines how
portability and scalability can be achieved for different FPGAs with different external

memories.

2.5 Summary

In this chapter, we have outlined the LU factorization algorithm including a blocking
version that will enable processing of arbitrary matrix sizes on an FPGA. We discussed
software linear equation solvers and summarized prior research for linear equation solvers

on an FPGA. Almost all FPGA designs had limitations on the matrix size.
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Our engine, which will be discussed in detail in the rest of this thesis, is analogous to
FPGA vendor supplied IP cores in that it is portable and scalable. However, our engine
is significantly more complex than the existing IP cores, such that it can be considered

a “super” or next-generation IP core.



Chapter 3

Hardware Implementation

In this chapter, we will discuss the hardware design of our compute engine. We will start
with a high level overview and then will describe the components of the engine in detail.

Finally, we will discuss the verification process for our engine.

3.1 High Level Design Overview

The goal of this research is to create a highly parameterized LU factorization hardware
compute engine for floating-point matrices (primarily 32-bit single precision) that is scal-
able to different sizes of FPGA and portable to different memory systems. The matrices
in need of solution acceleration are very large and require sufficient storage; a single pre-
cision 10,000 x 10,000 matrix requires approximately 0.4GB of memory. As explained in
Section 2.3, typical modern FPGAs do not have enough on-chip memory to store these
large matrices. Thus, a key feature of our approach is to employ large off-chip memories
(we will assume a DDR2 SDRAM) to store the large input matrices.

We will employ the block LU factorization method described in Section 2.1.3, where
blocks of the large matrix are brought into on-chip memory and processed separately to
make efficient use of off-chip memory bandwidth. In the foregoing we assume that the

input matrix is square of size N x N and has a single solution. The matrix is broken

24
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into square blocks of size N, x N,. The result of the LU factorization will be stored in

the same location as the input matrix on the off-chip memory.

Figure 3.1 shows a high level diagram of the compute engine, which performs two
main tasks. The first is data marshalling, which is the loading and storing of matrix
blocks onto the FPGA from the off-chip memory. The second function is the actual

computation on each set of blocks brought into the FPGA.

The data marshalling is handled by the Data Transfer Unit (DTU) and the Memory
Controller (MemC) modules as shown in Figure 3.1. The computation is performed by the
LU Processing (LUP) module, which is controlled by the LU Controller (LUC) module.
The Marshalling Controller (MC) is responsible for issuing commands to the DTU and
LUC and to provide synchronization between the two tasks. The MC controls which
blocks of memory to load and store and which series of operations are performed on the
loaded blocks to complete the LU factorization. The matrix data flows from the off-chip
memory through MemC and DTU to the LU Processing module, where computations are
performed. The updated data are then written back into the off-chip memory through
DTU and MemC. The generator source code that creates these modules are listed in

Appendix A.

There are two clocks in this design; one clock controls the off-chip memory controller
and part of the DTU; the second clock controls the computation and a portion of the
DTU. The separation into two clocks is important for scalability as it is unlikely the
maximum speed of the off-chip memory and that of the on-chip memory and computation

units will be related.

The key inputs to the compute engine are: the size of the matrix (N), the starting
memory address of the matrix in off-chip memory and a start signal. Before the com-
putation starts, the coefficient matrix, A, has to be loaded into the off-chip memory by
some other agent in the system. The L and U solution matrices are written back into

the same location in off-chip memory where the A matrix was stored. An output done
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Figure 3.1: Block Diagram Block-Based Linear System Solver

signal is asserted when the LU factorization finishes.

The LU factorization compute engine is highly parameterized to enable the portability
and scalability as described in Section 1.1. The modules of the compute engine are auto-
matically created from a compute engine generator based on a set of input parameters.

These parameters and the generator will be discussed in Chapter 4.

3.2 Setup of Computation

In creating our compute engine, we observed that the time required to transfer the matrix
from off-chip memory onto the chip was on the same order as the computation itself. If
the matrix size N is small and can fit all in on-chip memory, the matrix only has to
be loaded once. So the data transfer takes O(N?) time (there are N? matrix elements)
and the computation requires O(N?) time. In order to allow an arbitrary matrix size,
we use the blocking algorithm described in Section 2.1.3. This approach requires the
loading of the matrix in blocks and many of the blocks are loaded multiple times. There

are N/N, passes through the matrix, where N, is the block matrix size and is an input



CHAPTER 3. HARDWARE IMPLEMENTATION 27

constant and a parameter of the engine. The data transfer for each pass through the
matrix requires O(N?) read operations. Thus, the overall data transfer takes O(N?)
time, although it is divided by NNy, and thus it is less but comparable to the computation.
Therefore, performance is limited by the computation but data transfer is not something
we can ignore and simply perform sequentially in between computations. To get the best
overall performance, it is necessary to simultaneously fetch data and compute on it. This
requires on-chip “double-buffering” of the memory to allow one on-chip memory block

to perform transfers while the other is used in the computation.

The block LU factorization algorithm breaks the entire computation of a single matrix
block into blocks. To update any given block, up to a total of three blocks are required
as input, as described in Section 2.1.3: the current block being computed, the top-most
block in the same column and the left-most block in the same row. We follow the order
of updating blocks shown in Figure 2.1(c); thus, we update blocks in the same column
first before we move to blocks in the next column. In most cases, the top-most block is
the same for consecutive blocks being updated. Thus, we can reuse this block and do not
need to load it again. The only case that the next update block has a different top-most
block occurs when the updated block is the first block in a new column. However, in this
case, the top-most block is also the current block. So by loading in the current block, we
have also loaded the top-most block. Thus, we don’t have to explicitly load the top-most
block. In total, we only ever need to load a maximum of two blocks to perform any
block computation, the current block and the left-most block. This reduces the off-chip

memory bandwidth required to sustain the computation.

In summary, three blocks are needed to perform the computation while two blocks
are simultaneously pre-loaded (to implement the double-buffering described above) for
the next computation; thus a total of 5 matrix blocks of on-chip memory is required. The
current block and the left-most block are double-buffered to overlap the data fetching

with computation as described above. We will discuss, in Section 5.1.4, the effect of the
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block size and blocking algorithm have on the performance. We now proceed to describe

the computation and data marshalling functions in turn.

3.3 Computation

In this section we will describe the hardware needed to implement the block LU factor-
ization computation in the LUP module shown in Figure 3.1. The Marshalling Controller
instructs the LU Controller to perform one of four block computations described in Al-
gorithm 2 in Section 2.1.3. The LU Controller controls the LU Processing to perform the
block computation. The following subsections will describe the overall computation that
has to be performed to complete the LU factorization algorithm and discuss how each of

the four block computations is performed.

3.3.1 Overall Computation

The Marshalling Controller (MC) is responsible for directing the overall block LU fac-
torization algorithm described in Section 2.1.3. First, it loads the necessary blocks to
update the first block in Figure 2.1(c) by issuing load commands to the DTU. After load-
ing all the blocks, it then instructs the LU Controller to perform the block computation
corresponding to case 1 as shown in Figure 2.1(b). The LU Controller will direct the LU
Processing module to perform the computation and returns a done signal when the LU
Processing module completes the computation. While computation is being executed,
the engine also fetches the necessary blocks for the next block computation. After the
computation and block loading tasks are finished, the engine proceeds to compute on the
newly loaded blocks. At the same time, the previously updated block is written back to
off-chip memory. After that block is written, the next block to be processed is loaded.
This process continues for all the blocks until the last block is processed.

It is important to note that the next blocks being loaded cannot be the current block
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being computed, otherwise we are violating data dependencies in the algorithm. In the
whole algorithm, this does not occur except for the last matrix block. Special handling is
needed in this case. The last block to be updated in each pass through the matrix is the
last diagonal block in the matrix. For the N/N, pass, there is only one block that has to
be updated. So the previous updated block is from the N/N,—1 pass through the matrix.
The last block in that pass is also the last diagonal block in the matrix. This is a data
dependency violation. To avoid this violation, we do not load while the second last block
to be updated is being computed. After it has finished updating, the block is written
to off-chip memory. Only then are the necessary blocks to update the last block loaded
into on-chip memory. After loading is finished, computation is performed on the blocks.
Finally, the updated block is written to off-chip memory and the algorithm is completed.
Generally, the computation and matrix block transfer are performed simultaneously with
some overhead at the start and end of the algorithm. When solving a large matrix, these

overheads are small relative to the overall time required.

3.3.2 Block Computation

As described in Section 2.1.3, there are four different block computations that have to
be performed. The LU Processing module contains the data path units that perform
all four block computations. A diagram of the structure of the LU Processing module
is shown in Figure 3.2. As described in the previous section, the computation requires
three input blocks — labeled top block, left block, and current block in the figure. Recall
that the engine must load two of the blocks for the subsequent computation as part of
the double-buffering, and so the left and current blocks have “0” and “1” versions in the
figure. The top block is only updated while computing a block in a new column.

Most of the area of the LU Processing module (and also the total design) is made
up of the processing elements. The key engine input parameter is k, the number of

such processing elements (PEs). A processing element consists of one multiplication and
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Figure 3.2: Diagram of the LU Processing module which performs the computation.

one subtraction floating-point unit. As specified in Section 2.1.3, most of the operations
in block LU factorization consist of multiplication and subtraction, and therefore it is
desirable to have as many of the processing elements in our engine as possible to maximize
performance.

The LU Processing module uses the processing elements to perform the block compu-
tations in Algorithm 2. We will use the description of the algorithm in Section 2.1.3 to
describe the data paths in Figure 3.2. For case 4, the multiplication units use data from
the left block and top block. The subtraction units use data from the current block and

the outputs from the multiplication units. The first column in the left block is multiplied
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by the first row in the top block and the result is subtracted from elements in the current
block. Then the second column and second row are multiplied and this process repeats
until all columns and rows have been used. The output from the subtraction units are

written to the current block.

For the other three cases, several extra steps are needed. For case 1 and 3, the top
block needs to be updated with the current block. Instead of transferring the whole block
before computation, only the first row of the block is transferred to the top block. The
first row and the first column in the left block are used to update all the other rows in
the current block using the PEs. As the updated values are written back to the current
block, the next row of the current block is also stored into the top block and can be
used later in the computation. At the end of the block computation, the top block will
have the same data as the current block. The top block can be used for other block

computations for blocks in the same column.

For case 1 and 2, division operations have to be performed, while case 3 and 4 do not
perform any division operations. Rather than creating many parallel dividers that are
infrequently used, we compute the reciprocal of the one divisor, which is the diagonal
element, and use the multiplier units to compute the division (by multiplying by the re-
ciprocal). This way we only need to create one division unit. By only having one division
unit, we free up more area to be used for more processing elements. The reciprocal and
the column elements from left block are multiplied and the results are stored into the
current block and the left block. As a result, we only perform one division per column,

which is a total of IV, divisions when updating blocks for case 1 and 2.

The multiplexers (labeled mux) shown in Figure 3.2 are needed to route the data
among these memory block units, and are controlled by the LU Controller. Most mul-
tiplexers are 2 to 1 but there is one mux that is 2k-to-1 (labeled 2K:1 MUX). The top
block, which has a data width of 32 bits for single precision, stores elements from the

current block, which has a data width of 32xk bits, and the output from the k processing
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elements, which also have a data width of 32xk bits. The 2k-to-1 mux is used to store
elements into the top block.

The LU Controller generates the control signals for the LU Processing module. It
controls the on-chip memory blocks to ensure that the correct data is read and written
during computation. The LU Controller has a state machine that follows the algorithm
of the block computation. To simplify the state machine, some of the control signals
are generated and pipelined for later. For example, when performing the floating point
operations, the control signals to read the inputs are generated at the same time as the
control signals to store the output. The store control signals are passed through shift
registers so that they are delayed for the correct timing. Many parameters, like number
of processing elements and latency of floating point units, will alter the LU Controller to
ensure correct functionality of the algorithm. The correct cycle timing is controlled by
inserting registers on these signals. Details about how the LU Controller changes based

on the parameters is discussed in Chapter 4.

3.3.3 Floating Point Units in Processing Elements

The floating point units used in the compute engine are generated using Altera’s IP cores
generator [12]. Altera has cores for single and double precision floating point addition
(which can do subtraction), multiplication and division. These cores are portable to dif-
ferent Altera FPGAs; they offer some scalability by allowing users to choose the amount
of pipelining (and therefore the clock speed and latency) of the floating point unit. As
the latency increases, the operating frequency increases at the cost of more area used. Al-
tera has reduced functionality floating point units that save area and improve operating
frequency compared to fully functional floating point units. The reduced functionality
units do not perform denormalization and do not provide the exception indicators un-
derflow, overflow and not-a-number (NAN). We chose to use these reduced functionality

cores as they are sufficient for our algorithm and can yield a higher performance. The
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multiplication and subtraction units are fully pipelined and have a throughput of one per
cycle. Since we only have to perform the division rarely, we allow the division unit to
take multiple cycles (typically 35 - 50) to prevent it from being the critical path of the

engine.

3.3.4 On-chip Memory

The on-chip memory blocks must supply enough data to keep the k processing elements
busy. The left block and current block must supply a matrix element to each multipli-
cation and subtraction operator respectively, on every cycle. The left block and current
block store data in column major form (consecutive column elements are stored in con-
secutive memory locations) as the algorithm requires computations on elements in the
same column. For single precision operations, the data width of the left block and current
block has to be 32 times the number of processing elements. The k value is on the order
of 100, so these on-chip memories can be very wide, on the order of 3200 data bits. This
is only possible because of the high bandwidth of on-chip FPGA memories. For the top
block, one matrix element is sent to all the multipliers or the one division operator, and
so the top block has a data width of 32 bits in single precision. The top block stores data

in row major order as the algorithm requires elements in the same row.

3.4 Data Marshalling

The data marshalling function (the transfer of blocks to and from off-chip memory) is per-
formed by the Memory Controller (MemC), Data Transfer Unit (DTU) and Marshalling
Controller (MC) as illustrated in Figure 3.1. The coefficient matrix A is stored in column
major format in the off-chip memory to match how the matrix blocks need to be stored
on the on-chip memory. The blocks that need to be loaded to and stored from off-chip

are broken into contiguous sets of memory addresses. Each block transfer of contiguous
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memory is a single “instruction” implemented by the MC. The MC issues these load and
store instructions to the DTU. That instruction contains the off-chip memory address,

the on-chip memory address, the size of transfer, a load signal and a store signal.

3.4.1 Memory Controller

The MemC is a DDR2 memory controller generated from the DDR2 SDRAM High
Performance Memory Controller in Altera’s IP functions [12]. This unit receives read or
write commands up to the burst length of the DDR2 and converts it into appropriate
DDR2 off-chip interface. More details on the DDR2 SDRAM High Performance Memory
Controller are found in [13]. The DTU takes the memory “instruction” described above,
a transfer of an arbitrary size of contiguous memory, and breaks it up into suitable
sized read or write commands to the MemC. It handles communications between the
MC and the MemC. This way the MC can use the same interface and issues the same
commands independent of the specific configuration of the MemC (and therefore is part
of the design “portability” infrastructure). The MC issues commands based on the
computation modules and the problem size. The MemC is configured based on the
specific DDR2 SDRAM that is used in the FPGA platform. Parameters are used to
alter the memory controller to match different DDR2 SDRAM. The interface protocol
remains the same with slight changes to the interface pins. The data width, address
width and burst length of the interface to the DTU can change based on the parameters.
The DTU is responsible for dealing with the variations in MemC and performing the
commands given by the MC. The DTU is also altered based on the parameters for the
MemC and MC to ensure that it can communicate properly with both modules. The

effects of changing the parameters is discussed in Chapter 4.
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Figure 3.3: Diagram of the Data Transfer Unit which performs the data marshalling.

3.4.2 Data Transfer Unit

The Data Transfer Unit (DTU), shown in more detail in Figure 3.3, along with the
MemC are the key modules that enable the portability of our compute engine generator
to different FPGA-based boards regardless of the type of off-chip memory. We have
designed the DTU to allow the operation speed of the off-chip memory to be independent
of the speed and bandwidth (number of bits of width) of the on-chip memory. The speed
and bus width of the off-chip memory are two key parameters to the compute engine
generator. The decoupling is accomplished through the use of the dual clocked FIFOs
illustrated in the Figure 3.3. The left hand side of the FIFOs operates at the off-chip
memory clock speed, while the right hand side operates on the compute engine’s clock

speed.

The state machine in the DTU decodes the memory instructions from the MC and
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For store:

1. DTU reads the store data from on-chip memory and writes it into Wdata FIFO
2. DTU writes the write command to the Memcmd FIFO

3. When MemC is ready, it reads the write command from the Memcmd FIFO

4. MemC reads the store data from Wdata FIFO

For load:

1. DTU writes the read command to the Memcmd FIFO and the on-chip memory
address to the Raddr FIFO.

2. When the MemC is ready, it reads the command from the Memcmd FIFO

3. MemC writes the load data into Rdata FIFO.

4. When enough data is written into Rdata FIFO, the data is read from the Rdata
FIFO and the on-chip address is read from Raddr FIFO.

5. The load data is written to the on-chip memory.

Figure 3.4: Sequence of steps to perform load or store to off-chip memory

breaks it into corresponding memory commands for the MemC, which are sent through
dual-clock FIFOs. The dual-clock FIFOs are generated using Altera IP cores [12] and
more details can be found in [13]. The sequence of steps taken by the DTU to perform
load and store to the off-chip memory through the MemC is specified in Figure 3.4. In
Figure 3.3, the Memcmd FIFO stores read, write or nop commands to the MemC. The
MemC reads the commands from this FIFO when it is ready to do so. The Wdata FIFO
stores the data for write commands and the Rdata FIFO stores the data returned from
the off-chip read commands. The Raddr FIFO is a single clocked FIFO that stores the
address of the data to be written to the on-chip memory for a load operation. A new
command can be issued, before the previous commands are done or even issued, as long
as there is room in the FIFOs. FIFOs automatically maintain the order of the commands.
If any FIFO is full, the DTU will wait before issuing the next command. If the Memcmd
FIFO is empty, nop commands are issued to the MemC.

The Altera FIFOs can have different input and output data width. The FIFO’s input
or output data width can be scaled by a ratio of r, which is limited to powers of 2. One
side of the FIFO has to match the data width of the DDR2 memory controller and DDR2
SDRAM memory itself, which will be D bits; while the other side of the FIFO has to
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match the data demand of the processing elements, which is 32xk bits. With a limited
ratio value to change the input and output data width in the FIFO, it is unlikely the
data widths of the FIFO will match the two sides perfectly. In the case that it can match
exactly, which is rD = 32 x k, all data loaded from off-chip memory can be written to
on-chip memory and vice versa. However, when it does not match, There will be extra
bits on the input side. One option is to have the extra bits contain useful data and we
will add resources to use them in the next read or write. However, this solution requires
shifting the next data to line up to the end of the extra bits, which is expensive to do on
FPGA. We decided to waste the extra bits by padding them with zeroes. Since the on-
chip memory resource is more scarce/valuable than off-chip memory, the off-chip memory
is padded with zeroes. The exact amount of padding depends on the data width of the
on-chip and off-chip memory. We scale up the FIFO so that the data width coming from
or going to the off-chip memory is larger than on-chip memory.

Similarly, the size of the matrix will not always match the blocking size that is used in
the engine. To simplify the data marshalling task, we pad the end of the column so that
it is a multiple of the block size and each column starts some multiple of the block size
from the previous column. These extra padded sections of the column are not loaded or
stored. The cost of having internal padding is an increase in the total memory needed in
the off-chip memory to store the input matrix, which we assume is sufficient to store any
input matrix. The user is required to prepare the input matrix by adding the necessary

padding.

3.4.3 Off-chip Memory Overhead

To illustrate the effect of padding, we will compute the off-chip memory overhead for
an example compute engine. In this example, the compute engine has 120 processing
elements (k = 120) with a block size of 120 (N, = 120) and an off-chip memory controller

data width of 128 bits (D = 128). Thus, the processing elements need 3,840 bits and the
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closest match we can get with the FIFO ratio is 4,096 bits, with a scale ratio of 32 (r =
32). So instead of needing only 3,840 bits to store one packet of a transfer, 4,096 bits
are required and so there is a 6.7% increase in off-chip memory storage from the on-chip

and off-chip memory data width mismatch.

The waste due to block padding can be computed as follows, by example suppose
that the matrix size N is 10,000, which is divided into 84 x 84 blocks. The last block
in each block column has a block column of 40. Since we restrict all block columns to
be multiplies of the block size Ny, the block in each block column has an actual storage
block column of 120. So effectively, instead of storing a matrix of size 10,000 x 10,000,
we actually store a matrix of size 10,080 x 10,000. This results in an additional 0.8%
increase in off-chip memory and a total off-chip memory overhead of 7.5%. Of course the
actual overhead will depend on the compute engine parameters and the problem matrix

size.

3.5 Verification

To verify the functionality of the compute engine, we compared the result from a sim-
ulation of the synthesizable verilog to a software version of LU factorization. However,
one cannot simply check if each value in the result matrix is the same for the two ver-
sions. When using floating point operations, there are rounding errors because of the
inability to exactly represent decimal values due to the limited number of bits. When
computing each mathematical operation, the result has to be rounded to fit the closest
representation. If one takes a sequence of interchangeable operations and changes the ex-
act sequence of these operations, different rounding decisions have to be made along the
way. Given a long enough sequence of operations, these different rounding decisions can
result in a different final floating point result. There is no way to ensure that the FPGA

and software will have the exact same order of operations for all the computations and
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so these rounding errors will occur. To verify the correctness of the engine, one cannot
simply check if the results are the same as the software; a certain amount of error will

have to be tolerated.

With many elements in the result LU factorization matrix, each one will have an error
value. We need a method to group all these values in to one value for easy comparison.
The error for each matrix element does not have the same weight. In general, the large
values are more important in solving systems of linear equations. For this situation, the
error norm is typically used as a metric. In fact, for some iterative solvers, the error
norm is used to check if the error vector is sufficiently small, and so we shall use the
same metric [23]. The exact mathematical definition of the error norm, e, for a matrix

is shown in Equation (3.1) [22].

i=1 j=i (3.1)

where Vo0, = max(la(i, j)]) for0<i < N,0<j <N

Now that we have a metric to measure the amount of error, we have to measure it.
However, without knowing the exact application, it is hard to determine what amount
of error is acceptable. The only difference between the FPGA and software should be
the order of the operations. Thus if one uses another software version with a different
order of operations, then the two error norms should be similar and we can use this
difference as a standard for error. Instead of writing another software version, we used
a different optimization level in the gce compiler (level 2 and 3) to create two different
programs from the same code. The different optimization in the gcc compiler results in
different operations of the computation as the gcc compiler will try harder in the higher
optimization level to reduce the runtime of the program by moving instructions and thus

operations around.

Using randomly generated matrices of different dimensions with a range of -1000 to
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Table 3.1: Error Norms of Different Test Matrices on FPGA and Software

Test Case | Matrix Size | FPGA Error Norm | Software Error Norm
1 70 x 70 0.000018 0.000011
2 75 x 75 0.000036 0.000027
3 75 x 75 0.000068 0.000085
4 75 x 75 0.000723 0.000978
5 100 x 100 0.000185 0.000351

1000, we computed the results for the two software programs and the FPGA. The FPGA
results are obtained through simulation of synthesizable verilog using the ModelSim logic
simulator [14]. Using the results from the software with optimization level 2 as the gold
standard, we computed the error norms when compared to the other software version
(optimization level 3) and the FPGA. Table 3.1 shows the error norms for five test
matrices of various sizes. The FPGA results were obtained from simulation of a compute
engine with 10 processing elements. The error norms for the FPGA and software are
similar; in some cases, the FPGA was better, while in other case, the software was
better. The exact value of the error norm changed with respect to the matrix size and

the numerical stability of the matrix.

We used the same technique to verify that the software we use to compare with the
FPGA was correct by comparing it to the MATLAB version [15], which is a popular
commercial tool. The reason we did not directly compare it to the commercial tool is
because the commercial algorithm includes pivoting in the LU factorization which is not
implemented in the hardware design. Pivoting is the technique to improve numerical
stability in direct solvers. The technique involves exchange of rows of the matrix so
the diagonal element has the maximum absolute value before it is used to normalize the
column. When comparing the software to the MATLAB version, we manually pivoted the
matrix beforehand for the comparison. Using this process, our hardware implementation

was verified to be correct with an acceptable amount of error.
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3.6 Summary

In this chapter, we described the hardware design of our compute engine. We outlined the
high level overview of our hardware implementation. The engine has to to perform data
marshalling and computation of block LU factorization. We detailed the components
involved in performing these two tasks. Finally, we discussed the verification process
for our engine. In the next chapter, we will describe how portability and scalability is

achieved through the use of parameters and a compute engine generator.



Chapter 4

Portability and Scalability

Recall that the key goal of this research is to illustrate the creation of computational
designs on FPGAs that would be easy to use on different FPGA platforms, including
those in the future with newer and larger FPGAs as well as platforms with different
external memory architectures. This portability and scalability is achieved by having the
compute engine adapt to the amount of available resources on the FPGA and the specific
off-chip memory architecture. To be portable, the engine must be easy to move to a new
FPGA and off-chip memory interface with minimal human effort, and to be scalable, the
engine must automatically take advantage of the speed, capacity and memory bandwidth
improvements in the new FPGA and memory system. We achieve portability and scal-
ability by (1) defining parameters for the portions of the engine that should change as
the FPGA or off-chip memory technology and architecture changes, and (2) creating a
generator which can automatically produce an HDL design implementation that matches

the desired parameters.

4.1 Compute Engine Generator Parameters

The parameters that are used in the generator can be divided into two categories. The

first are the core parameters that must be supplied by the user and they are shown in

42
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Table 4.1: Core Parameters Used in Our Generator

\ Name \ Description \ Units \
k Number of processing elements #
Precision Of numerical value # of bits
NMax Maximum matrix size +#
MatrixBlockSizeDivk | Size of internal matrix block divided by k #
AdderLatency Latency of adder unit # of cycles
MultLatency Latency of floating point multiplier unit # of cycles
DivLatency Latency of floating point divide unit # of cycles
DDRWidth Data width of the DDR2 memory interface | # of bits
DDRAddrWidth Width of the DDR2 address bus # of wires
DDRRowAddrWidth | Width of the DDR2 row address bus # of wires
DDRBurstLen Burst length of the DDR2 memory interface | #

Table 4.1. These parameters control the amount of resources used on the FPGA (which
also ultimately control the achieved performance of the resulting engine) and specify
the off-chip memory system. The parameters k, Precision, NMax, MatrixBlockSizeDivk,
AdderLatency, MultLatency and DivLatency control the amount of resources used on
the FPGA. The performance of the engine typically increases as more resources are used,
but there are some dependencies between them and counteracting effects that influence
performance as well, which we will discuss in Chapter 5. By changing these parameters,
the user can create the most suitable engine that matches with the resources available
on the FPGA. The parameters DDRWidth, DDRAddrWidth, DDRRowAddrWidth, and
DDRBurstLen modify the off-chip memory interface of the engine. These parameters
contribute to the portability of the engine by allowing the use of various off-chip memory

systems.

The second category of parameters, which are referred to as advanced parameters and
described in Table 4.2, are parameters less visible and obvious to the user and they are
used to optimize the compute engine. The user does not have to input these parame-
ters, as default values are calculated by the engine to produce a functional engine. For
better performance, the user can modify these parameters to suit their FPGA platform.

FIFOSize changes the depth of the FIFOs in the DTU (described in Section 3.4.2). This
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Table 4.2: Advanced Parameters Used in Our Generator

] Name \ Description \ Units ‘
ExtraOnChipRamBlock- | Extra registers added to input port of | # of registers/bit
InputPortDelay on chip current and left blocks
ExtraOnChipRamBlock- | Extra registers added to output port | # of registers/bit
OutputPortDelay of on chip current and left blocks
ExtraOnChipTopBlock- | Extra registers added to input port of | # of registers/bit
InputPortDelay on chip top block
ExtraOnChipTopBlock- | Extra registers added to output port | # of registers/bit
OutputPortDelay of on chip top block
FIFOSize Size of FIFOs used in Data Transfer | # of elements

Unit

influences the data marshalling process, described in Section 3.4, which involves loading
the blocks for the next computation and storing the result block from the previous com-
putation. The four other parameters add registers to the inputs and outputs of on-chip
memory blocks to increase operating frequency at the cost of increased area consump-
tion (for those registers). More details about how these parameters can improve the
performance of the compute engine and their tradeoffs will be discussed in Section 4.1.2.

From these two sets of parameters, the compute engine generator can determine other
dependent variables for the engine. For example, the width of the registers needed to store
the value of parameters k and the block size, IV, is a direct function of these parameters.
The data width of the on-chip memory blocks and the FIFOs in the DTU depend on k
and the off-chip memory data width, DDRWidth.

The core and advanced parameters will be described in greater detail in the follow-
ing subsections. We will focus on how the engine has to be modified based on these

parameters.

4.1.1 Core Parameters

Of the core parameters listed in Table 4.1, one that is key to the portability and scalability

of the engine is k, the number of processing elements. The generator can be set to produce
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an LU Processing module with any number of processing elements. As more FPGA logic
capacity is available on a chip (or in moving to a larger chip) the number of processing
elements can be increased, thus improving performance. A change in k also affects other
modules in the engine. The data width for the on-chip memory blocks has to change to
supply data to the processing elements. Similarly, the generator must produce an LU
Controller that keeps the processing elements fully occupied. The generator will also have
to change the data width of the FIFOs in the DTU, which supply data to the on-chip

memory blocks during data marshalling.

The parameters AdderLatency, MultLatency and DivLatency allow the user to spec-
ify the latency of the adder, multiplier and divider respectively. Most FPGA vendors
offer floating point unit implementations with a range of latencies to allow area/speed
tradeoffs. By exposing this latency parameter for all the floating point units, we preserve
this tradeoff in our compute engine. In the future, if a superior floating-point unit with
a different latency is created, this parameter can be updated accordingly. To accommo-
date a change in latency, the generator must produce an LU Controller with the desired
delay in the control signals to match the specific latency in the floating point units. This
is handled by the generator in the following way: when using the floating point units,
the control signals to store the outputs are generated at the start of the floating point
operations. These control signals are passed through shift registers in the LU Controller

so that they can be sent to the LU Processing module when the outputs are ready.

The MatrixBlockSizeDivk parameter determines the size of the matrix block, NV,. In
Section 5.1.4, we will explain why N, must be a multiple of k. When the matrix block
size is changed, the generator creates an LU Controller with an altered state machine to
perform block computation for that specific block size. Moreover, the generator creates
a Marshalling Controller to handle changes in the number of blocks in the matrix and

the loading and storing of different sized blocks.

Finally, the precision of the compute engine can be changed so that the engine can
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operate on single precision or double precision floating point matrices. When changing
the precision parameter, the generator will create an LU Processing module with modified
data width in the data path involving the processing elements and will modify the data
width of the on-chip memory blocks. The generator will also produce a DTU with a
modified data width of the FIFOs. In addition, the user will have to create the desired

precision floating point units from the Altera IP core set.

4.1.2 Advanced Parameters

The advanced parameters allow the user to optimize the compute engine by improving op-
erating frequency at the cost of increased area. These include ExtraOnChipRamBlockIn-
putPortDelay, ExtraOnChipRamBlockOutputPortDelay, ExtraOnChipTopBlockInputPort-
Delay and ExtraOnChipTopBlockInputPortDelay, and they allow the user to add regis-
ters to the input and output port of the on-chip memory blocks. For compute engines
with many processing elements, the floating point units will likely be placed across the
entire FPGA and thus the on-chip memory blocks will have to connect to areas spanning
the FPGA. In the development of the engines, we found that many of the critical paths
in the compute engine involved the input and output port of the on-chip memory blocks.
Thus, by adding pipeline registers in these paths, the critical path delays can be reduced
or eliminated. However, simply adding one set of registers might not help reduce much of
the delays since all these paths, which could be heading in different directions, will have
to connect to these registers. Thus, it is important to duplicate these registers so that
they can be spread out across the FPGA and each path can pick the closest registers to
connect to minimize delay. We rely on the physical synthesis process in the CAD tools
[19] to automatically duplicate these registers and determine which paths should connect
to which duplicated registers.

Figure 4.1 shows a block diagram of the LU Processing module with locations where

pipeline registers can be added marked with dark circles. Since we have to double buffer
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the left and current blocks (as discussed in Section 3.2), the DTU has to write into both
of these blocks. To simplify the logic, the left and current blocks should have the same
input and output delay so that the DTU does not need to handle different delays in
on-chip memory blocks when loading data into these blocks. The top block can have
a different number of registers at its input and output port than the left and current
blocks since the DTU does not load the top block. However, as more pipeline registers
are added, more area is used, which may cause congestion and actually decrease maximum
operating frequency. Table 4.3 shows the clock frequency of a 57 PE double precision
compute engine with different advanced parameters on a Stratix III 3SL340F1760C3
FPGA. The other parameter values used to generate this engine are specified in Table
C.1 in Appendix C.1. As more pipeline registers are added to the engine, the clock
frequency improves as critical path delays are reduced. However, the clock frequency
decreases for the last set of parameters in the table because of congestion on the FPGA.

Thus, some experimentation is needed to determine a good number of registers to use.

The parameter FIFOSize allows the user to specify the size of the FIFOs in the DTU.
Since we perform the computation and data marshalling concurrently, the performance
will be limited by the computation as long as the time to perform the data marshalling
is less than computation time. Thus, we want the off-chip memory to be busy enough so
that the data marshalling time is less than computation time. During data marshalling,
the DTU issues memory commands to the off-chip memory controller whenever it is ready:.
The memory controller can process a few memory commands at the same time. While it
is processing other commands, it can still receive new commands. There will be a point
when the memory controller cannot process any more memory commands concurrently
and therefore, it will not accept any new commands. After it has finished processing
a memory command, it can receive a new command from the DTU. Thus, most of the
time the memory controller will be busy processing commands and occasionally it will

be ready to receive new commands.
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Figure 4.1: Identifies locations of advanced parameter pipeline registers that can be
added to LU Processing module

To reduce data marshalling time, the DTU has to ensure that it can issue new memory
commands to the memory controller when the memory controller becomes ready. As the
memory controller operates on a different clock than the DTU, the DTU can require
multiple cycles (with respect to the memory controller clock) to produce a memory
command, especially if it is a store command where the data to be stored have to be
obtained from on-chip memory. Since there are cycles when the memory controller is
not ready for new commands, we can use those cycles to buffer up memory commands

for when the memory controller becomes ready. We use dual-clock FIFOs to buffer the
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Table 4.3: Clock Frequency for Compute Engine (57 PEs) with Different Advanced
Parameters on Stratix II1 3S1.340 FPGA

ExtraOnChip- ExtraOnChip- ExtraOnChip- ExtraOnChip- Clock
RamBlock- RamBlock- TopBlock- TopBlock- Frequency
InputPortDelay | OutputPortDelay | InputPortDelay | OutputPortDelay
2 1 4 2 125 MHz
2 1 6 4 155 MHz
3 1 6 4 170 MHz
3 2 7 2 115 MHz

memory commands; the memory controller can obtain the memory commands from the
FIFOs whenever it is ready. For cases when the memory controller is operating faster
than the DTU, the dual-clock FIFOs allow multiple memory commands to be issued
to the memory controller for every cycle in the DTU. If the FIFO size is small, the
FIFOs will be empty at some points during data marshalling and the off-chip memory
will sit idle, thus increasing data marshalling time. As the FIFO size increases, the data
marshalling time will decrease as there will be less time when the FIFOs are empty. The
best FIFO size is one that results in a lower data marshalling time than the computation
time. Any further increase in FIFO size will not improve overall performance as it will be
computation-limited. In addition, by having a larger FIFO size than needed to achieve
a lower data marshalling time than computation time, the extra area of the FPGA used
to implement the FIFOs is wasted. That area could have been used to create more
processing elements and improve performance. Because the engine can have different
delays in accessing on-chip memory and the different clock speeds for the two clocks, the
minimum FIFO size that maximizes performance can change. The FIFOSize parameter
allows the user to control the size of the FIFOs in the engine to minimize the area used

for data marshalling based on their specific FPGA and off-chip memory system.
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Figure 4.2: The generator flow to create parameterized compute engine

4.2 Compute Engine (Generator

We found that Hardware Description Languages (HDL), such as Verilog, were not suf-
ficiently powerful programming languages to fully adapt the compute engine in all the
ways described above. Consequently, we implemented the compute engine as software
(written in the C language) which generates HDL code in Verilog, based on parameters
specific in Section 4.1. The generator source code is shown in Appendix A. Figure 4.2
shows the flow used to produce the compute engine. The compute engine will consist
of automatically created HDL code from the generator and Altera IP cores. Currently
there is no easy automated method to create these Altera IP cores, therefore they are
manually created using the Altera Quartus II design tool based on the parameters. The
Altera Quartus II design tool provides a graphic interface to input all the parameters to
create the customized cores for the engine. The cores used in the engine consist of the
floating point units used in the processing elements, on-chip memory blocks, dual-clock
FIFOs used in the DTU and the off-chip memory controller.

The generator takes as input the user-specified parameters and then computes other
necessary values. It then passes the necessary parameters and values to other functions
in the software that will produce the HDL code. Each of these functions generates the

HDL for a module in the engine. These functions mainly consist of C language fprintf



CHAPTER 4. PORTABILITY AND SCALABILITY 51

statements that output HDL statements into a file. The generator employs if-else and
for-loop statements in C to alter specific HDL statements based on the parameters. This
higher functionality in C permits clean adaptation of the engine to the specified param-
eters. The HDL has the ability to use parameter variables to represent constant values.
We use these parameter variables as much as possible to minimize changes in generated
HDL. This feature also improves the readability of the HDL code as it highlights the

parameters used in specific modules and shows how they affect the HDL code.

Through the following examples, we will illustrate how the generator produces cus-
tomized engines. First, consider the 2k-to-1 multiplexer used in the LU Processing mod-
ule to store values into the top block shown in Figure 3.2. The size of this mux changes
as a function of the k parameter, with the number of inputs to the mux based on the
following equation: 2k X precision (where precision is either 32 bits for single or 64 bits
for double). The generator C code, shown in Figure 4.3(a), automatically creates the
desired mux size based on the k and precision parameters. Two for-loops are used to
create the 2k-to-1 mux. Each for-loop generates a k-to-1 mux and combined together,
they form a 2k-to-1 mux. The generated HDL code for k = 4 and precision = 32 (single

precision) is shown in Figure 4.3(b).

Another example of customization in the engine is the shift registers used to delay
control signals in the LU Controller module. As described in Section 4.1.1, the control
signals to store the output of the floating point units are passed through shift registers to
create the necessary delay to match the latency of the floating point units. The generator
can change the size of the shift registers so that the delay in the control signals corresponds
to the latency of the floating point units, which are determined by the AdderLatency,
MultLatency, DivLatency parameters. One for-loop is used in the generator C code to
create the desired size of the shift registers for one control signal. Each iteration of the
for-loop increases the size of the shift registers by one and the number of iterations is a

function of the latency parameters.
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@

fprintf(fp, " case (topWriteSel)\n");
for (i=0;i<k;i++)

lowerldx = (k-i-1)*precision;
upperldx = (k-i)*precision-1;

fprintf(fp, " %i:\n", i);

fprintf(fp, " topWriteDataLU = ramReadDatal U[%:i:%i];\n", upperldx, lowerldx);
}
fprintf(fp, " default:\n");
fprintf(fp, " topWriteDataLU = ramReadDataLU[PRECISION-1:0];\n");

fprintf(fp, " endcase\n");

fprintf(fp, " else\n");

fprintf(fp, " case (topWriteSel)\n");
for (i=0;i<Kk;i++)

fprintf(fp, " %i:\n", i);

fprintf(fp, " topWriteDatalL U = addResult[%i];\n", k-i-1);
}
fprintf(fp, " default:\n");
fprintf(fp, " topWriteDataLU = addResult[0];\n");

fprintf(fp, " endcase\n");

(b)

if (topSourceSel == 0)
case (topWriteSel)

topWriteDatalLU = ramReadDatalU[127:96];
1:
topWriteDatalLU = ramReadDatal U[95:64];
2:
topWriteDataLU = ramReadDatalLU[63:32];
3:
topWriteDataLU = ramReadDatalLU[31:0];
default:
topWriteDataLU = ramReadDataLU[PRECISION-1:0];
endcase
else
case (topWriteSel)
0

topWriteDatalLU = addResult[3];
1:
topWriteDatalLU = addResult[2];
2:
topWriteDatalLU = addResult[1];
3:
topWriteDataLU = addResult[0];
default:
topWriteDataLU = addResult[0];
endcase

52

Figure 4.3: (a) shows C code from Generator; (b) shows automatically created Verilog

code

4.3 Scope of Portability and Scalability

In this section, we evaluate the portability and scalability available in our compute engine,

discuss its limitations and offer solutions to these limitations.
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To achieve portability and scalability for any FPGA, we used parameters and au-
tomated code generation. Our compute engine can scale for any number of processing
elements to perform LU factorization. It can also perform the algorithm given various
block sizes. These design features allow us to create the engine using different amounts
of FPGA resources. The performance of the engine scales up as more resources are
used. However, our compute engine uses Altera IP cores that can only be used on Altera
FPGA. Therefore, with our generator, we can create an engine customized to fit any
Altera FPGA or some portion of the Altera FPGA. To use another vendor’s FPGA, we
would have to use vendor-independent cores or that vendor’s own cores. A simple wrap-
per can be created to use those cores with our compute engine. For example, Xilinx has
its own arithmetic functional unit cores that can be used on their FPGAs. Their cores
have similar functionality and structure as the Altera core, just with different names for
the inputs and outputs. The wrapper would map the inputs and outputs of the Xilinx

cores to match those in the engine.

We achieve portability and scalability of the off-chip memory interface by (1) param-
eterizing key aspects of the memory interface and (2) ensuring there is a clean divide
between our design and the off-chip memory controller including different clock domains.
Parameterizing the memory interface in this way allows the user to use DDR2 SDRAM

of various data widths and speeds without any redesign.

Moving to a different (non-DDR2) memory technology is very low effort if the vendor-
supplied off-chip memory controller has the same interface to the FPGA logic as that
of the DDR2 off-chip memory controller we use. Altera also has memory controllers for
DDR1 and DDR3 SDRAM and the interface used for these are similar to the interface
for DDR2. Thus, it would require little effort use DDR1 and DDR3 SDRAM with
our compute engine. If the memory controller has a different interface, some bridging
hardware must be designed; this is akin to creating a new device driver in the software

world. For example, the DDR2 memory controllers for Xilinx have a slightly different
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interface protocol. During store commands to the off-chip memory, the write data is
supplied to the memory controller at the same time as the command is issued. Instead,
the Altera DDR2 memory controller will request the write data some cycles after the store
command. Therefore, to use the Xilinx FPGA platform, a bridging hardware would be

needed to handle this memory interface difference.

By using different clock domains for the off-chip memory interface and the main
computation modules, we can run each part of our engine at its own maximum frequency.
One does not have to slow the computation to match the clock speed of the off-chip
memory or vice versa, and since the memory interface and on-FPGA clock speeds will
probably increase at different rates, this flexibility is very important to the scalability
of our engine. This flexibility allows the user to change either the FPGA or the off-
chip memory independently of each other. When upgrading the FPGA, the off-chip
memory does not have to be upgraded if data marshalling is not the limiting factor in
the performance. To improve performance of data marshalling, the user can either obtain
faster off-chip memory or increase the data width of off-chip memory by employing more

banks of memory.

One final limitation involves setting up and initiating the engine. In our current de-
sign, we require a host processor to be able to fill the off-chip memory with the input
matrix data and it must also initiate the computation on the FPGA. In some FPGA
computation systems, the off-chip memory for the FPGA has a dedicated connection to
the FPGA and the host processor has no access to it. In such a case the host would
have to use the FPGA itself to fill the data in external memory. In general, an addi-
tional hardware module is needed to handle all possible board configurations for complete

portability to any FPGA platform.
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4.4 Summary

In this chapter, we have discussed how a large set of parameters are used to achieve
portability and scalability in our compute engine. The core parameters are used to
enable portability and scalability while the advanced parameters can be used to tune
performance. The generator will use the parameters to adapt the engine to the target
FPGA platform. Finally, we outlined the scope of the portability and scalability of our
engine. The limitations to achieve complete portability and scalability are discussed and

solutions to these limitations are suggested.



Chapter 5

Experimental Measurements

In this chapter, we describe the results of experiments that measure the performance of
the compute engines for solving linear systems produced by our generator. The generator
described in Section 4.2 can create many versions of a linear system solver engine for a
specific FPGA. As discussed in Chapter 4, there are a number of tradeoffs that must be
experimentally explored to find the best performance for any FPGA. In this chapter, we
will start by describing the optimization strategy to determine the best performing engine
for a specific FPGA. Then we will compare our best performing engine on a Stratix III
FPGA to the best performing software version running on a processor in the same IC
process technology. We will also analyze and compare the power consumption for the
FPGA and the processor. Next, we will examine the impact of the problem matrix size
on performance. Finally to illustrate the portability and scalability of our generator, we
compare the performance on a Stratix III FPGA to a Stratix II FPGA. A complete set

of data for the experiments described in this chapter can be found in Appendix B.

5.1 Optimizing Design for a Specific FPGA

The generator can create many engines for a specific FPGA platform by changing the

parameters described in Chapter 4. Some of the parameters are determined based on

o6
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the target FPGA platform to allow portability. The remaining parameters scale the
performance achieved and the amount of resources used on the FPGA. The number of
processing elements (k), latency of floating point units and block size (V,) are core param-
eters that affect the performance of the computation engine. The advanced parameters,
which are described in Section 4.1.2, can be used to reduce the critical path delay and im-
prove clock frequency. Using these parameters, the user can increase the resource usage
on the FPGA to obtain better performance. This succeeds until the FPGA becomes too
congested and performance begins to decrease. In this section, we will explore how these
parameters impact performance. We will provide an approach that users can take to
achieve the best performance on a specific FPGA. For this exploration, we targeted the
largest FPGA available at the time, the Stratix IIT 3SL340F1760C3 FPGA, and optimize

for a single precision compute engine.

5.1.1 Methodology

We will use GFLOPS, the number of billions of floating point operations per second as the
metric to measure the performance of a linear equation solver. The maximum GFLOPS
achievable for our compute engine can be computed by multiplying the maximum number
of floating point operations performed per cycle with the number of cycles per second. In
our engine, each processing element can perform two floating point operations (one mul-
tiply and one add) per cycle. So the maximum GFLOPS for an engine can be calculated
by the following equation: 2 x k x clock frequency. However, there is overhead required
to setup the computation and data dependencies in the LU factorization algorithm that
prevents the engine from achieving this maximum performance. Thus, we measure the
performance in useful GFLOPS, which counts only operations that are used to solve the
linear system.

The useful GFLOPS can be calculated by dividing the total number of floating point

operations needed to solve the LU factorization by the total runtime. Instead of using the
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total runtime as determined from the actual hardware, we rely on measurements obtained
from synthesizing the compute engine using the Altera Quartus II CAD tool and from
simulating it using the Modelsim logic simulator. The total runtime is calculated by
dividing the number of cycles required to perform the computation with the maximum
achievable clock frequency of the design, as determined by post-placement and routing
timing analysis performed by Altera’s Quartus II version 7.2 on the synthesizable design.
The number of cycles is obtained from a software model of the engine. The software
model, written in C language calculates the number of cycles of the block LU factorization
algorithm without actually computing any results. This software cycle count model was
verified against measurements obtained by running the actual engine in the Modelsim
logic simulator. This method is used because it is significantly faster to obtain the
cycle count through the software model than through the simulator, especially for large

matrices.

5.1.2 Number of Processing Elements

The key parameter that scales the performance and resource usage for the engine is
the number of processing elements, k. There are two competing trends that impact
performance as the number of processing elements is changed. On the one hand, as k
increases, more computation can be performed per cycle and so the number of cycles
required to compute the algorithm decreases. On the other hand, as more area is used,
the clock frequency of the engine can decrease because of congestion on the FPGA.
To investigate the impact of parameter k on performance, we created engines with the
same core parameters except for k. Then we further optimized each engine by adjusting
the advanced parameters. For each engine, we measured the critical path delay and
modified the advanced parameters to add pipeline registers in these critical paths to
reduce delays. We iterated this process until no further improvement in performance

was achieved. As more resources on the FPGA are used by the processing elements, the
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Table 5.1: Performance of Several Computing Engines on Stratix III 3SL340 FPGA

Number of Processing | Maximum Clock | GFLOPS | Performance Ratio
Elements Frequency vs 30 PEs
30 240 MHz 14 1.00
60 220 MHz 25 1.8
90 215 MHz 38 2.7
120 185 MHz 43 3.1
128 180 MHz 45 3.2
136 100 MHz 26 1.9
144 95 MHz 26 1.9

amount of area we can use to improve critical paths is reduced. We note that because the
highly pipelined nature of the design, increasing the latency in this way does not impact
wall-clock performance.

Table 5.1 gives the performance in GFLOPS of several generated compute engines.
The maximum number of single precision processing elements that can fit on the Stratix
1T 3SL.340 FPGA is 144, and is limited by the number of hard 36x36 multipliers on the
chip. The first column in the table specifies the number of processing elements (PEs) in
the engine. The second column provides the maximum post-place and route clock fre-
quency and the third column states the achievable useful GFLOPS. The fourth column
in the table shows the performance relative to the compute engine with 30 processing
elements (k = 30). The parameter values used to generate these compute engines are
specified in Table C.2 and C.3 in Appendix C.2.1. Figure 5.1 is a plot of the second
and third column versus the first column, the effect of varying the number of processing
elements on clock frequency and performance. As can be observed, the performance in-
creases with the number of processing elements up to approximately 128 PEs. Up to this
point, the decrease in number of cycles to compute the algorithm due to more processing
elements overshadows the slight decrease in clock frequency, resulting in improved per-
formance. However, the performance decreases for higher numbers of PEs because of the

large decrease in clock frequency.

The large decrease in clock frequency for when the number of PEs is higher than 128
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Figure 5.1: The effect of varying the number of processing elements on performance and
clock frequency on Stratix IIT 3SL340

can be caused by several possible reasons: One of the main reasons is congestion on the
FPGA, which makes it hard to place connected components closer together and tougher
to route the paths in the shortest distance. Another reason is the paths in the engine
become longer as k increases. The control signals and data in on-chip memory have to be
sent to all PEs. With increasing PEs, the PEs will be more spread out on the FPGA and
thus these paths will become longer. Also as k increases, the size of 2k-to-1 multiplexer
in the LU Processing module shown in Figure 3.2 becomes larger. A larger multiplexer
requires more levels of logic to implement and thus the paths through this multiplexer
are longer. These longer paths often become the critical paths in the engine and cause

the operating frequency of the whole engine to decrease.

It is possible to use the advanced parameters described in Section 4.1.2 to insert

registers to these long paths to reduce their delay. However, the numbers of these pipeline
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registers that can be added is limited by the remaining resources available on the FPGA.
For a highly utilized FPGA, fewer additional registers are available. Also by using more
area for these pipeline registers, we are further increasing congestion on the FPGA which
could adversely affect performance. Using this method in order to increase the clock
frequency, it may be necessary to reduce the number of processing elements in the engine
to make more registers available. Thus, there are tradeoffs between using the area to
decrease cycle count by increasing processing elements or to increase clock frequency by
adding pipeline registers to reduce critical paths.

In order to maximize performance, it is best not to use all of the resources on the
FPGA. Typically, we have found that engines that used over 90% of the resources on the

FPGA would suffer these significant decreases in clock frequency.

5.1.3 Floating Point Unit Latency

The latency of floating point units can affect the performance of the engine: by changing
the latency, the user can make area and speed tradeoffs. As latency increases, the operat-
ing frequency and area of the floating point units increase. As described in Section 3.3.3,
the adder and multiplier floating point units can become critical paths in the engine. For
engines with low k value, there would typically be sufficient area to add pipeline registers
to reduce delay in other paths by adjusting the related pipeline parameters. This may
then cause the adder and multiplier floating point units to become the critical paths and
limit the performance of the engine. For these engines, the largest latency of the floating
point units should be used in order to maximize performance. However, when most of
the area on the FPGA is used, it is not possible to add many more pipeline registers to
the other paths and so the critical paths in the engine are not in the floating point units.
Since the floating point units are not on the critical path, we can use their latency to
trade the area of the floating point units for other pipeline registers. Here the latency

of the floating point units can be decreased, as long as they do not become the critical



CHAPTER 5. EXPERIMENTAL MEASUREMENTS 62

paths, without decreasing overall performance. Because there are many floating point
units, any small area decrease for each unit can reduce the overall area of the engine by
a significant amount.

The Altera IP adder core can be set to have a latency ranging from 7 to 14 cycles,
and the multiplier can have a latency of 5, 6, 10 and 11. The multiplier has a big gap in
its latency range. The 5 and 6 latency multipliers are too slow to be useful, which only
leaves the 10 and 11 latency multipliers. This limited latency range in the multiplier
does not allow for many tradeoffs. The adder has a larger range of latency values and
can be use to trade area for speed. Figure 5.2 shows the maximum clock frequencies
achieved for a set of engines with 120 PEs and various adder latencies. For each engine,
the advanced parameters (listed in Table 4.2) were optimized, similar to the process
described in Section 5.1.2, to obtain the highest clock frequency. The parameter values
used to generate these compute engines are specified in Table C.4 and C.5 in Appendix
C.2.2. Given the same number of processing elements, the engine with the highest clock
frequency has the best performance. As shown in the figure, the best performing engine
has adder latency of 12. Comparing this engine to one with adder latency 14, this engine
used less area for the floating point units which was instead used for pipeline registers
to improve other critical path delays. For engines with latencies less than 12, the adder
in those engines becomes the critical path in the engine and thus clock frequency is

decreased.

5.1.4 Block Size

Recall that the engine computes on blocks of the whole matrix, based on the algorithm
described in Section 2.1.3. All the blocks have the same size and are square. The genera-
tor has a parameter to change the size of these blocks, which will affect the performance
of the engine in the following way: depending on the block size, IV}, the number of cycles

to perform the algorithm changes, which directly impacts performance. The maximum
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Figure 5.2: Clock Frequency for Compute Engines with Different Adder Latency on
Stratix I1T 3SL340

block size is limited by the amount of on-chip memory on the FPGA. The minimum
block size for an engine is N, = k. With a blocking size less than k, some processing

elements will never be used as there is no data for them to compute on.

Using the software model of the engine, we calculated the cycle count to complete LU
factorization for several different engines. We compared compute engines with various
block size for four different k values (40 PEs, 80 PEs, 120 PEs, and 160 PEs). The other
parameter values used to generate these compute engines are specified in Table C.6 in
Appendix C.2.3. Figure 5.3 shows the percentage change in cycle count as the blocking
size, N, is changed, with the 70%” base set at the cycle count for the minimum blocking
size for each design, which is N, = k. The cycle count is inversely proportional to the
performance of the engine. As is evident in the figure, simply increasing the block size

does not always improve performance. The performance for different block sizes depends
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Figure 5.3: Change in cycle count for various blocking size normalized to the minimum
block size.

on the particular engine, more specifically the parameter k. A block size that is aligned
to k (a multiple of k) performs well and there can be significant increases in cycle count

for unaligned block size.

The benefit of having a larger block size (N}) is that more computation can be per-
formed per matrix block and less data has to be loaded onto the FPGA. As explained
in Section 2.1.3, there are N/N, passes through the matrix and so if N, increases, fewer
passes are needed and thus less data has to be loaded onto the FPGA to perform the same
number of computations. This reduces the memory bandwidth required for the compu-
tation. However, since our engine is not memory bandwidth limited, this reduction in
memory bandwidth does not affect performance. The main benefit of having larger N,
comes from lower computation overhead. With more data available in the block, the

PEs are kept busy for a longer period of time. Also, for every case 2 matrix block in
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Table 5.2: Change in Cycle Count for Various Compute Engines

Change in Cycle Count

Block Size | 40 PEs | 80 PEs | 120 PEs | 160 PEs
1 x k 0.0% 0.0% 0.0% 0.0%
2 x k -8.8% | -4.2% -2.9% -2.2%
3 x k -10.2% | -5.0% -3.4% -2.6%
4 x k -10.8% | -5.3% -3.6% -2.8%

Algorithm 2 (see Section 2.1.3, we have to recompute a reciprocal in order to do the
normalization. By increasing Ny, there will be fewer blocks, including case 2 blocks, and
so fewer division operations are required. However, if N, is not aligned to k, then at the
end of each column some of the PEs will not have any data to compute. For example,
suppose N, = 1.5k. Then for every two cycles while the pipeline in the PEs is full, one
cycle will use all the PEs and the other cycle will only use 50% of the PEs. Thus, we
have an overall efficiency of 75% when the pipeline in the PEs is full. Compared to when
N, = k, when the pipeline is full, we use all the PEs every cycle; an overall efficiency of
100%. When N, is not a multiple of k, the idle cycles for some of the PEs outweighs the
benefit gained by having a larger N,. Thus, in our compute engine, we limit N, to be
multiples of k.

Table 5.2 shows the percentage change in cycle count, normalized to N, equal to k,
for different engines with various N, values that are multiples of k. The other parameter
values used to generate these compute engines are specified in Table C.6 in Appendix
C.2.3. As the block size increases, the cycle count decreases but the incremental difference
gets smaller. The majority of cycle count improvement can be achieved with a block size
of 2 x k or 3 x k. For compute engines with large k values, the minimum block size of
Ny equal to k does not degrade performance significantly as the performance is within
5% of that of larger V,. Thus, the amount of on-chip memory on an FPGA is not an
important factor limiting performance. To maximize performance, the largest block size
that is a multiple of k should still be used.

In summary, the parameters described in this section give the user flexibility to op-
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timize the engine to get the most performance out of their FPGA. When optimizing an
engine, the k parameter should be the first parameter to be varied since it has the great-
est effect on performance. While varying k, one should use the largest latency value for
the floating point units and the largest block size possible that is a multiple of k. Then
using the engines with the best performing k values, the latency and advanced parame-
ters are modified to get further improvement in performance. Some experimentation will
be necessary to determine the parameter values that will yield the best performance for
a particular FPGA. One may think that because more work and knowledge is required
of the user, the portability of the engine is reduced. However, the parameter values that
will achieve about 20% of the maximum performance for an engine can be determined
fairly quickly. The latency parameters can be set to the highest value, with which one
can typically get within 10% of the maximum performance as observed in Figure 5.2.
One feature to work on for the future is for the generator to automatically estimate good

values for the parameters based on the target FPGA platforms.

5.2 Performance

In this section, we compare the performance of the engine against a highly optimized
software version running on a processor in the same technology process. This comparison
is done for both single and double precision. We targeted the largest FPGA available at
the time, which was the Stratix III 3SL340F1760C3 FPGA. We assume that the FPGA
is attached to off-chip DDR2 SDRAM of size 256MB and 64bit wide. This is compared
to two software versions: one from the Intel MKL library [8] and a more basic code
written by the author. The processor used is an Intel Xeon 5160 dual core 3.0 GHz
processor with 4MB of L2 cache and 8GB of RAM. The Intel MKL library is highly
optimized multi-threaded code specifically created for the Intel processor. The more

basic code is single-threaded and it is modeled after the pseudo-code in Section 2.1.2.
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Table 5.3: Single Precision Performance on 65 nm FPGA and Processor Platforms

Platform Clock GFLOPS | Performance
Frequency Ratio
FPGA: Stratix III 3SL340F1760C3 200 MHz 47 2.2
CPU: MKL on Xeon 5160 single core 3 GHz 21 1
CPU: MKL on Xeon 5160 dual core 3 GHz 42 2
CPU: basic code on Xeon 5160 single core | 3 GHz 1.1 0.052

We include a performance comparison to this more basic code to show how impressive

the vendor-optimized software is.

5.2.1 Single Precision Performance

The top-performing single precision compute engine on the Stratix I1I 3SL340 FPGA em-
ploys 120 processing elements and achieves a maximum operating frequency of 200MHz.
The parameter values used to generate this compute engine are specified in Table C.7 in
Appendix C.3.1. This engine does not have the maximum number of processing elements
possible on the FPGA and has adder latency less than the maximum.

Table 5.3 gives the performance in GFLOPS of several platforms, with all chips fab-
ricated in the same 65nm IC process. The first column lists the platforms, including the
top-performing Stratix I1I 3SL340 FPGA implementation described above, a single core
Intel Xeon processor, the dual core (both running the optimized MKL version) and the
single core running the more basic code. The table also gives the operating frequency
of the hardware (either of our design or the processor clock speed), the performance in
GFLOPS, and the performance normalized to that of the single core optimized MKL
code.

Our FPGA implementation achieves a performance of 47 GFLOPS, which is 2.2 times
greater than the single core Xeon running the MKL code. The FPGA is essentially tied
with the dual core processor, which is perhaps the most fair comparison as the second

core resides on the same chip. This is a surprising result, as we expected to achieve far
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more significant speed gains. The Intel optimized code for the Xeon processor makes
use of the SSE2 instruction set, which employs 4-way data parallelism on 32 bit single
precision quantities for multiplication and addition. We also believe that the optimized
implementation uses a careful blocking scheme (similar to the one described in Section
2.1.3) to make the best use of the caches on the processor.

The quality of this optimization is illustrated by the performance of the basic code
as shown in Table 5.3. The basic code is a factor of 19 times slower than the optimized
MKL code running on the Xeon single core processor. We believe a key lesson of this
research is that for FPGA-based computation accelerators, it is crucial to compare to
the best performing software on large-scale problem instances, as we have done here.
We understand that significant effort is given by Intel to produce this optimized library,

perhaps related to the effort to create the FPGA-based engine.

5.3 Double Precision Performance

For the Stratix III 3SL340F1760C3 FPGA, we also determined the best performing dou-
ble precision compute engine. The best performing engine has 57 processing elements
and achieves a maximum operating frequency of 170MHz. The parameter values used to
generate this compute engine are specified in Table C.8 in Appendix C.3.1. This engine
utilizes the maximum number of processing elements available on the FPGA. This is
because the number of processing elements is limited by the number of hard multipliers
on the FPGA. The double precision multiplier uses 2.5 times more hard multipliers than
the single precision multiplier, and it uses twice as many registers. Thus, the FPGA still
has resources available to add pipeline registers and reduce critical path delay. Table 5.4
gives the performance in GFLOPS of several platforms in double precision, similar to

Table 5.3.

For double precision, our FPGA implementation achieves a performance of 19 GFLOPS,
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Table 5.4: Double Precision Performance on 65 nm FPGA and Processor Platforms

Platform Clock GFLOPS | Performance
Frequency Ratio
FPGA: Stratix III 3SL340F1760C3 170 MHz 19 1.7
CPU: MKL on Xeon 5160 single core 3 GHz 11 1
CPU: MKL on Xeon 5160 dual core 3 GHz 21 1.9
CPU: basic code on Xeon 5160 single core 3 GHz 0.55 0.05

which is a 1.7 times greater than the single core Xeon running the optimized code. The
FPGA engine is actually slower in performance than the dual core processor. The per-
formance ratio for double precision FPGA implementation is lower than the performance
ratio for single precision FPGA implementation, because of the higher cost for the FPGA
to perform double precision floating point operations than the processor. The SSE2 in-
struction set in the processor enables 2-way data parallelism on 64-bit double precision
quantities for multiplication and addition. So it can perform half the number of opera-
tions per cycle in double precision than single precision. Hence the GFLOPS for double
precision is approximately half that of the single precision. For the FPGA, the double
precision multiplication floating point unit uses 2.5 times the hard multipliers than the
single precision unit. So less than half the number of processor elements can fit on the
FPGA for double precision than single precision. Also the operating frequency is lower
for double precision than single precision on the FPGA while the operating frequency

remains the same for the processor in both cases.

5.4 Power Consumption

While it is true that in supercomputing, performance is the key metric, in recent years the
power consumed for computation has become a significant issue, not just in the portable
world but in the cost of electricity required to support supercomputers. Table 5.5 shows
the power consumption for single precision LU factorization on each platform listed in

Table 5.3 normalized to the single core processor running the MKL code. The second
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Table 5.5: Single Precision Power Consumption and Energy Efficiency Comparison

70

Platform Power | Power | GFLOPS | GFLOPS | Efficiency
(W) | Ratio per Watt Ratio
FPGA: Stratix 11T 3SL340F1760C3 18 0.45 47 2.61 5
CPU: MKL on Xeon 5160 single core 40 1 21 0.525 1
CPU: MKL on Xeon 5160 dual core 80 2 42 0.525 1
CPU: basic code on Xeon 5160 single core 40 1 1.1 0.0275 0.052

column lists the power consumption of each platform and the third column specifies the
power ratio, which is the power of the platform divided by the power of the single core
processor. The fourth column contains the energy efficiency in GFLOPS per Watt and
the fifth column states the energy efficiency ratio normalized to the single core processor
running MKL. The power consumption of the FPGA engine was measured using vector-
less estimation in Altera’s PowerPlay Power Analyzer. The power consumption of the
Xeon dual core processor was determined from the specification on the Intel website [16].
The Xeon dual core processor requires SOW of power and we assume that a single core
requires half the power. As shown in the table, the single precision FPGA implementa-
tion requires 2.2 times less power than the single core Xeon processor. Furthermore, the
performance in GFLOPS per Watt, which is essentially the amount of energy used per
computation, is 5 times better for the FPGA implementation than the processor. As the
performance of the dual core is twice as fast as the single core but uses twice the power,

the energy efficiency of the Xeon single and dual core processor is the same.

Table 5.6 shows the power consumption for double precision, similar to Table 5.5.
The double precision FPGA implementation uses 2 times less power than the single core
Xeon processor. In terms of GFLOPS per Watt, it is 3.5 times better than the single
core processor. Similar to the performance ratio, the energy efficiency ratio for double
precision FPGA implementation is lower than the energy efficiency ratio for single preci-
sion FPGA implementation. The energy efficiency of the single and dual core processor

is about the same for double precision.
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Table 5.6: Double Precision Power Consumption and Energy Efficiency Comparison

Platform Power | Power | GFLOPS | GFLOPS | Efficiency
(W) | Ratio per Watt Ratio
FPGA: Stratix 11T 3SL340F1760C3 20 0.5 19 0.95 3.5
CPU: MKL on Xeon 5160 single core 40 1 11 0.275 1
CPU: MKL on Xeon 5160 dual core 80 21 0.263 0.96
CPU: basic code on Xeon 5160 single core 40 1 0.55 0.0138 0.052

5.5 Matrix Size

We observed that many previous works that implemented linear equation solver on FPGA
typically only use on-chip FPGA memory to store the matrix, which severely limits the
size of the problems addressed, and therefore the overall applicability. Our implementa-
tion employs off-chip large-scale memory and therefore is much more widely applicable.
Figure 5.4 measures the performance (in GFLOPS) for the various platforms as a func-
tion of matrix dimensions, N. Here you can see that the performance for all platforms
eventually levels out and reaches a maximum as matrix size increases. The performance
comparison used the larger matrix size that achieves these leveled off performance values.
Many previous works [21] [26] [25] [30] have a limited and small block size and so most
of their comparison will be for a small matrix. When comparing for small matrices, the
performance of the software and FPGA implementation have not reached their maximum
performance. As shown in the figure, the FPGA implementation ramps up faster and is
able to reach its maximum achievable performance faster than software. Thus, there is
a larger speed up for FPGA over software when solving small matrices.

We will illustrate this larger speed up by comparing the performance for solving a
smaller matrix size. Since a Stratix III FPGA can store a maximum single precision
matrix of 721x721 in on-chip memory, we will compare performance of solving a 600x600
matrix on FPGA and processor. Table 5.7 shows the performance and energy efficiency
in single precision for each platform listed in Table 5.3. The second and fourth column
shows the performance in GFLOPS and energy efficiency in GFLOPS per Watt. The

third and fifth column show the performance and energy efficiency ratio normalized to
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Figure 5.4: Performance as a Function of Matrix Dimension

Table 5.7: Performance on FPGA and Processor Platforms for Solving a 600x600 Single
Precision Matrix

Platform GFLOPS | Performance | GFLOPS | Efficiency
Ratio per Watt Ratio
Stratix 111 3SL340F1760C3 38 4.9 2.1 11
MKL on Xeon 5160 single core 7.7 1 0.19 1
MKL on Xeon 5160 dual core 10 1.3 0.125 0.65

the single core processor. Since the FPGA can reach its maximum performance faster
than software, the FPGA has a higher performance and efficiency ratio than for solving
larger matrices. The FPGA achieves a performance of 38 GFLOPS while the software
running on single core and dual core processor has GFLOPS of 7.7 and 10 respectively.
Comparing the FPGA to the single core, the FPGA has 5 times higher performance
and is 11 times more energy efficient. The performance of the software on the dual core
processor ramps up more slowly than on single core processor and therefore, the dual
core processor actually has lower energy efficiency than single core processor. The FPGA
has about 4 times higher performance and is 17 times more energy efficient than the dual
core. In summary, when comparing for small matrices, the FPGA can achieve a much

higher performance than software because it can reach its maximum performance faster.

Although there are a few applications that require acceleration of small matrices, the
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problem of accelerating small matrices is not terribly useful as the overall computation
time is already small. We are simply pointing out that not using leveled-off performance

values is a common pitfall of FPGA acceleration research.

5.6 Portability to Different FPGAs

To demonstrate the portability and scalability of our generator and engine, we also
targeted the Altera Stratix II 2S180F1508C3 FPGA and assumed it is attached to off-
chip DDR2 SDRAM of size 256MB and 64bit wide. We determined the top-performing
single and double precision engine in a similar fashion as described in Section 5.1. The
best single precision compute engine we achieved has 64 processing elements and operates
at 170MHz. The parameter values used to generate this compute engine are specified
in Table C.9 in Appendix C.3.2. For double precision, our best performing engine has
29 processing elements with a block size of 58 and operates at 140MHz. The parameter
values used to generate this compute engine are specified in Table C.10 in Appendix C.3.2.
Table 5.8 compares the performance on Stratix II 25180 FPGA to the performance on
Stratix 11T 3SL340 FPGA as shown in Table 5.3 and 5.4 for both precision. The first
and second column shows the target platform and precision respectively. The third
and fourth column lists the number of processing elements and the clock frequency in the
top-performing engine respectively. The fifth column shows the performance in GFLOPS
and the sixth column shows the performance ratio normalized to the Stratix IT 25180
FPGA of the same precision. For single precision, the Stratix III 3SL340 FPGA has a
2.2 times performance improvement over Stratix II 25180, while there was a 2.6 times
performance improvement for double precision. Thus, the performance for both versions
scales up by about the same amount. From a Stratix II FPGA to a Stratix III FPGA, the
clock frequency increased by 18% for single precision and increased by 21% for double

precision. The majority of the performance improvement comes from increasing the
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Table 5.8: Performance on Stratix II 25180 and Stratix I1I 3SL340
Platform Precision | PEs Clock GFLOPS | Performance
Frequency Ratio

Stratix 1T 25180F1508C3 Single 64 | 170 MHz 21 1
Stratix IIT 3SL340F1760C3 Single 120 | 200 MHz 47 2.2
Stratix II 2S180F1508C3 Double 29 140 MHz 7.4 1
Stratix IIT 3SL340F1760C3 | Double 57 | 170 MHz 19 2.6

number of processing elements, which increased by 87.5% for single precision and 93% for

double precision. This scalability feature in our generator is key in achieving significant

performance improvement as one moves from one FPGA to another.

5.7 Summary

In this chapter, we analyzed tradeoffs in the parameters of the generator that affect

performance and provided a strategy to optimize the performance of the engine on an

FPGA. We described the results of experiments that measure the performance and power

consumption of the compute engines and compared it to highly optimized software run-

ning on a processor of the same IC process technology. We also examined the impact

of the problem matrix size on performance. Finally, we illustrated the portability of our

generator, measuring the performance and power consumption on another FPGA.




Chapter 6

Conclusion

In this thesis, we have created a portable and scalable computational engine generator
for the LU factorization method for solving systems of linear equations. Using the gen-
erator, we obtained a performance of 47 GFLOPS on a Stratix III 35340 FPGA and a
performance of 21 GFLOPS on a Stratix II 25180 FPGA in single precision. In double
precision, we reached performances of 19 and 7.4 for Stratix I1I 35340 FPGA and Stratix
IT 25180 FPGA respectively. For both precisions, the performance scaled by more than
twice when moving from Stratix II to III, largely due to the almost doubling of functional
units in the engine. We have also shown that this engine has significant performance and
performance per watt advantages over a single core processor, but the performance ad-
vantage was not nearly as large as expected when we compared to the vendor-optimized
software library for the same computation. Our scalable single precision FPGA engine
is 2.2 times faster than a single core processor (built in the same IC fabrication process)
and 5 times more power efficient. For double precision, the FPGA engine is 1.7 times

faster than a single core processor and 3.5 times more power efficient.
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6.1 Contribution

This work has demonstrated one example of a portable and scalable computation engine
for FPGAs, many of which would be needed to make it easy to employ FPGAs in su-
percomputing applications. Through the use of parameters, we can adapt the engine for
various FPGAs and their off-chip memories. The generator can create either single or
double precision LU factorization engines that can solve any arbitrary matrix size. This
engine establishes a framework to create other portable and scalable engines. The data
marshalling modules can be reused in other engines; only the computational modules
have to be changed. With the scalability of the compute engine, we can use any amount
of FPGA resources. This scalability allows for various different sized engines that can be

used for benchmarking purposes.

6.2 Future Work

Even though our compute engine is portable and scalable to different FPGA platforms,
there are a few restrictions that prevent complete portability. Currently our engine uses
Altera IP cores and so we are limited to using Altera FPGAs. To use other vendor
supplied cores, simple wrappers must be implemented. A second limiting assumption is
that the host processor has to be able to interact directly with the FPGA and its off-chip
memory. This setup is not always possible as the host processor might not be able to
interact with both the FPGA and its off-chip memory. An additional hardware module
would be required to deal various different FPGA system structure. The wrappers and
hardware module are needed to allow complete portability.

Another future improvement is for the generator to automatically optimize the per-
formance of the engine on any FPGA. The generator will have built in knowledge about
the FPGA so that it can determine the best set of parameters to achieve maximum per-

formance. Experimental data can be used to create a function that the generator can
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use to determine the best values of the parameters. This allows greater portability as
the user does not have to manually optimize the engine; the user simply has to specify

the FPGA platform.



Appendix A

Compute Engine Generator Source

Code

The compute engine generator has six functions including a main function and creates
five modules of the compute engine. These five modules are the top module, the LU
Processing module, the LU Controller module, the Data Transfer Unit module and the
Marshalling Controller module which are all described in Chapter 3. The main function
calls the other five functions which individually create a Verilog file that contains a module
of the compute engine. This appendix will show the C source code for the six functions
of the generator. Appendix A.1 shows the source code for the main function. Appendix
A.2 lists the source code for the top module. Appendix A.3 shows the source code for
the Marshalling Controller. Appendix A.4 lists the source code for the LU Processing
module. Appendix A.5 shows the source code for the LU Controller. Appendix A.6 lists
the source code for the Data Transfer Unit. More details about the generator can be

found in Section 4.2.
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Al

Main Function

The main function computes internal variables from the parameters and calls the other

five functions. Currently, the parameters are hard coded in the main function, requiring

the user to modify the function directly to change the parameters. In future versions,

the main function will read the parameters from an input file that the user can modify.

#include <stdio.h>
#include <math.h>
#define intlog2(x) (int)ceil(log(x)/log(2))

int main(int argc, char xargv|[])

{
int ramsize, ramwidth, ramsizewidth;
int Nmax, Nwidth, mdivk, m, mwidth, n;
int ddrwidth, ddrsizewidth , memconwidth, ddrrowwidth, full_rate;
int ddrburstlen, burstlen, ratio_factor;
int numPE, precision, PEwidth;
int topsize, topsizewidth;
int ramlat, toplat;
int multlat , addlat, divlat, totaldivlat;
int intdivlat;
int topinputdelay , topoutputdelay;
int meminputdelay , memoutputdelay;
int datawidth, ratio;
int fifosize;

// core parameters

numPE = 4; // number of processing elements

precision = 32; // bits of precision

ramsize = 64; // address size of on chip ram block

mdivk = 4; // internal block size in multiple of # of PEs
ddrwidth = 32; // ddr datawidth

ddrsizewidth = 24; // ddr total address width
ddrrowwidth = 13; // ddr row address width

ddrburstlen = 4; // ddr burst length

Nmax = 2000000; // mazx matriz dimension
addlat = 14; // output latency of fp_add
multlat = 11; // output latency of fp-mult
divlat = 33; // output latency of fp_div

// advanced parameters

fifosize = 16; // size of fifo buffer

topinputdelay = 4; // # of registers in top block input ports

topoutputdelay = 2; // # of registers in top block output ports

meminputdelay = 3; // # of registers in current and left blocks input ports
memoutputdelay = 1; // # of registers in current and left blocks output ports

totaldivlat = divlat;

ramlat = 2 4+ meminputdelay 4+ memoutputdelay ; // total latency for reading ram
block
toplat = 2 + topinputdelay + topoutputdelay; // total latency for reading

temp_row block
intdivlat = 2;
full_rate = 1;
m = numPEs«mdivk;

n = m;
ramwidth = numPExprecision ;

topsize = numPEsxmdivk*mdivk*numPE; // address size of temp_row block
ratio_factor = (full_-rate = 0) 7 4 : 2;

burstlen = ddrburstlen/ratio_factor;
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memconwidth = ddrwidth*ratio_factor;
ramwidth = numPExprecision;
ramsizewidth = intlog2 (ramsize);

topsizewidth = intlog2 (topsize);

Nwidth = intlog2 (Nmax+1);

mwidth = intlog2 (m+2);

ratio = pow(2, ceil (log(ramwidth*1.0/memconwidth)/log(2)));
datawidth = memconwidthxratio ;

// call functions to produce module in compute engine
gentop (Nwidth, mwidth, ddrwidth, ddrsizewidth, burstlen, ddrrowwidth, memconwidth,

ramwidth , ramsizewidth, 1);

genLUP (numPE, precision , mwidth, ramwidth, ramsizewidth, topsizewidth , meminputdelay
, memoutputdelay, topinputdelay, topoutputdelay);

genLUC (numPE, precision , mwidth, mdivk, intdivlat , multlat, addlat, ramlat, ramlat,
toplat , totaldivlat , ramwidth, ramsizewidth, topsizewidth);

genMC (m, Nwidth, mdivk, ratio, ddrsizewidth, ramsizewidth);

genDTU (burstlen , datawidth, memconwidth, ddrsizewidth , fifosize , ramwidth,
ramsizewidth , ratio, ramlat, mwidth);

return 0;

A.2 Top Module Function

The source code provided below creates the top module of the compute engine. This
module implements the high level diagram of the compute engine shown in Figure 3.1.

#include <stdio.h>
#include <math.h>
#define intlog2(x) (int)ceil(log(x)/log(2))

void gentop (int Nwidth, int mwidth, int ddrwidth, int ddrsizewidth, int burstlen, int
ddrrowwidth ,
int memconwidth, int ramwidth, int ramsizewidth, int mem_dqgsn)

{

FILE xfp;

fp = fopen(”top.v”, 7w’ );

fprintf(fp, ”//auto—generated top.v\n”);

fprintf(fp, ”//top level module of LU factorization\n”);

fprintf(fp, 7 //by Wei Zhang\n\n”);

fprintf (fp, ”?module top (clk, ref_clk, global_reset_n, start, N, offset, done, ready
An”) s

fprintf (fp, 7 mem_addr, mem_ba, mem_cas.n, mem-_cke, mem_clk, mem_clk_n, mem_cs_n,\
n”);

if (mem_dgsn = 1)
fprintf(fp, ” mem_dm, mem_dq, mem-dgs, mem._dgsn, mem-odt, mem_ras.n, mem_we_n)

i\n”);

}

else

{
fprintf(fp, ” mem-dm, mem_dq, mem-dgs, mem_odt, mem_ras.n, mem_we.n);\n”);

}
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fprintf(fp, ”\n”);

fprintf (fp, ”parameter NWIDTH = %i , BLOCKWIDTH = %i ;\n” , Nwidth, mwidth);

fprintf (fp, ”parameter DDRWIDTH = %i , DDRNUMBYTES = %i , DDRSIZEWIDTH = %i ;\n” ,
ddrwidth, ddrwidth/8, ddrsizewidth);

fprintf (fp, ”parameter BURSTLEN = %i;\n”, burstlen);

fprintf (fp, ”parameter MEMCONWIDTH = %i , MEMCONNUMBYTES = %i ;\n” , memconwidth,
memconwidth /8) ;

fprintf (fp, ”parameter RAMWIDTH = %i , RAMNUMBYTES = %i , RAMSIZEWIDTH = %i ;\n” ,
ramwidth, ramwidth/8, ramsizewidth);

fprintf(fp, 7?\n”);

fprintf(fp, 7input start;\n”);
fprintf (fp, ”input [NWIDTH—1:0] N;\n”);
fprintf (fp, ”input [DDRSIZEWIDTH—1:0] offset;\n”);
fprintf (fp, ”output done;\n”);
fprintf (fp, ”output [%i:0] mem_addr;\n”, ddrrowwidth—1);
fprintf(fp, ”output [1:0] mem_ba;\n”);
fprintf(fp, ”output mem-_cas_n;\n”);
fprintf (fp, ”output mem_cke;\n”);
fprintf (fp, ”inout mem-_clk;\n”);
fprintf(fp, ”inout mem_clk_n;\n”);
fprintf (fp, ”output mem_cs_n;\n”);
fprintf(fp, ”output [DDRNUMBYTES—1:0] mem dm;\n”);
fprintf(fp, ”inout [DDRWIDTH—1:0] mem.-dq;\n”);
fprintf(fp, ”inout [DDRNUMBYTES—1:0] mem-dgs;\n”);
if (mem_dgsn = 1)
{
fprintf(fp, ”inout [DDRNUMBYTES—1:0] mem_dgsn;\n”);
}
fprintf (fp, ”output mem_odt;\n”);
fprintf(fp, ”output mem-_ras_.n;\n”);
fprintf (fp, ”output mem_we.n;\n”);
fprintf(fp, ”input clk, ref_clk;\n”);
fprintf (fp, ”input global_reset_n;\n”);
fprintf (fp, ”output ready;\n”);
fprintf(fp, ”\n”);
fprintf(fp, ”wire phy_clk;\n”);
fprintf (fp, ”wire [BLOCKWIDTH—1:0] m, n, loop;\n”);
fprintf(fp, ”?wire[1:0] mode;\n”);
fprintf (fp, ”wire comp_start, comp_done;\n”);
fprintf(fp, ”?wire dtu_-write_req, dtu-read-req, dtu-ack, dtu-done;\n”);
fprintf(fp, ”wire [DDRSIZEWIDTH-—1:0] dtu-mem_addr;\n”);
fprintf (fp, ”?wire [RAMSIZEWIDTH-1:0] dtu-ram_addr;\n”);
fprintf(fp, ”wire [BLOCKWIDTH—1:0] dtu_size;\n”);
fprintf (fp, ?wire left_sel;\n”);
fprintf(fp, ”\n”);
fprintf(fp, ”wire [RAMWIDTH—1:0] curWriteDataMem, curReadDataMem;\n”);
fprintf (fp, ”wire [RAMSIZEWIDTH—1:0] curWriteAddrMem, curReadAddrMem;\n”);
fprintf (fp, ” wire [RAMNUMBYTES—1:0] curWriteByteEnMem;\n”);
fprintf (fp, ?wire curWriteEnMem;\n”);
fprintf(fp, ”wire [RAMWIDTH—1:0] leftWriteDataMem;\n”);
fprintf (fp, ”wire [RAMSIZEWIDTH-1:0] leftWriteAddrMem ;\n”);
fprintf(fp, ” wire [RAMNUMBYTES—1:0] leftWriteByteEnMem;\n”);
fprintf (fp, ”wire leftWriteEnMem;\n”);
fprintf (fp, ”?wire curMemSel, leftMemSel;\n”);
fprintf(fp, ”\n”);
fprintf(fp, ”wire burst_begin;\n”);
fprintf(fp, ”wire [MEMCONNUMBYTES-1:0] mem_local_be;\n”);
fprintf(fp, ”wire mem_local_read_req;\n”);
fprintf(fp, ”wire [BURSTLEN—1:0] mem_local_size;\n”);
fprintf (fp, ”?wire [MEMCONWIDTH-1:0] mem_local_-wdata;\n”);
fprintf(fp, ”?wire mem_local_write_req;\n”);
fprintf (fp, ”wire [MEMOONWIDIH—1:0] mem_local_rdata;\n”);
fprintf(fp, ”?wire mem_local_rdata_valid;\n”);
fprintf (fp, ”wire mem_local_ready;\n”);
fprintf (fp, ”?wire mem_local_-wdata_req;\n”);
fprintf(fp, ”wire reset_n;\n”);
fprintf (fp, ”wire [DDRSIZEWIDTH-1:0] mem-_local_addr;\n”);
fprintf(fp, ”\n”);
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fprintf (fp, ”wire [RAMWIDTH-1:0] ram_write_data, ram-_read_data;\n”);

fprintf (fp, ”wire [RAMSIZEWIDTH—1:0] ram_write_addr , ram_read_addr;\n”);

fprintf (fp, ”wire [RAMNUMBYTES-1:0] ram_write_byte_en;\n”);

fprintf(fp, ”wire ram_write_en;\n”);

fprintf(fp, ”\n”);

fprintf (fp, ”MarshallingController MC (clk, start, done, N, offset ,\n”);

fprintf(fp, 7 comp_start , m, n, loop, mode, comp_done, curMemSel, leftMemSel,\n”);

fprintf(fp, ” dtu_write_req , dtu_read_req, dtu_.mem_addr, dtu_ram_addr, dtu_size,
dtu_ack, dtu_done, left_sel);\n”);

fprintf(fp, 7?\n”);

fprintf(fp, ”?// block that computes the LU factorization , with answer stored back
into ram block\n”);

fprintf(fp, ?LUProcessing LUP (clk, comp_start, m, n, loop, mode, comp_done,\n”);

fprintf (fp, 7 curReadAddrMem, curReadDataMem , curWriteByteEnMem ,
curWriteDataMem , curWriteAddrMem , curWriteEnMem, curMemSel,\n”);
fprintf(fp, ” leftWriteByteEnMem , leftWriteDataMem , leftWriteAddrMem ,

leftWriteEnMem , leftMemSel);\n”);

fprintf(fp, ”\n”);

fprintf (fp, ”?DataTransferUnit DIU (clk, phy_clk, dtu_-write_-req, dtu-read-req,
dtu_mem_addr, dtu_ram_addr, dtu_size, dtu.ack, dtu.done,\n”);

fprintf (fp, 7 ram_read_addr, ram_read_data, ram_write_byte_en, ram_write_data ,
ram_write_addr , ram_write_en ,\n”);
fprintf (fp, ” mem_local_rdata, mem_local_-rdata_valid, mem_local_ready ,
mem_local_-wdata_req, reset_n ,\n”);
fprintf(fp, 7 burst_begin, mem_local_addr, mem_local_-be, mem_local_read_req,

mem_local_size ,\n”);
fprintf(fp, ” mem _local_wdata, mem_local_write_req);\n”);

fprintf(fp, ”\n”);
fprintf(fp, ”7ddr2 memController (\n”);
fprintf (fp, ” .global_reset_n (global_reset_n),\n”);
fprintf(fp, ” .local_address (mem_local_addr),\n”);
fprintf (fp, ” .local_be (mem_local_be) ,\n");
fprintf(fp, 7 .local_init_done (ready),\n”);
fprintf(fp, ” .local_rdata (mem_local_rdata),\n”);
fprintf(fp, ” .local_rdata_valid (mem_local_-rdata_valid),\n”);
fprintf(fp, ” .local_read_req (mem_local_read_req),\n”);
fprintf (fp, 7 .local_ready (mem_local_ready),\n”);
fprintf(fp, ” .local_refresh_ack (),\n”);
fprintf(fp, ” .local_size (mem-_local_size),\n”);
fprintf(fp, ” .local_wdata (mem-_local_-wdata) ,\n”);
fprintf(fp, 7 .local_wdata_req (mem_local_wdata_req),\n”);
fprintf (fp, 7 .local_write_req (mem-_local_write_req),\n”);
fprintf(fp, 7 .mem_addr (mem_addr) ,\n”);
fprintf (fp, 7 .mem_ba (mem-_ba) ,\n”);
fprintf(fp, ” .mem_cas_n (mem_cas_n),\n”);
fprintf (fp, ” .mem_cke (mem-_cke) , \n”);
fprintf(fp, ” .mem_clk (mem_clk) ,\n”);
fprintf(fp, ” .mem_clk_.n (mem-_clk_n),\n”);
fprintf (fp, 7 .mem_cs_-n (mem_cs_n),\n");
fprintf(fp, ” .mem dm (memdm),\n”);
fprintf(fp, 7 .mem_dq (mem-dq) ,\n”);
fprintf(fp, 7 .mem_dgs (mem_dgs) ,\n”);
fprintf (fp, 7 .mem_odt (mem-_odt) ,\n”);
fprintf(fp, ” .mem_ras_n (mem_ras_n),\n”);
fprintf(fp, ” .mem_wen (mem_-wen),\n”);
if (mem_dgsn = 1)
{
fprintf(fp, ” .mem_dgsn (mem-_dgsn) ,\n”);
fprintf(fp, ” .oct_ctl_rs_value (0),\n”);
fprintf(fp, ” .oct_ctl_rt_value (0),\n”);
fprintf (fp, ” .phy_clk (phy_clk),\n”);
fprintf(fp, ” .pll_ref_clk (ref_clk),\n”);
fprintf(fp, 7 .reset_phy_clk_n (reset_n),\n”);
fprintf(fp, ” .soft_reset_n (1)\n”);
fprintf(fp, 7 );\n”);
fprintf(fp, ”\n”);
fprintf(fp, ”assign curReadAddrMem = ram_read_addr;\n”);
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fprintf (fp, ”assign curWriteByteEnMem = ram_write_byte_en;\n”);

fprintf (fp, ”assign curWriteDataMem = ram_write_data;\n”);

fprintf (fp, ”assign curWriteAddrMem = ram_write_addr;\n”);

fprintf(fp, ”assign curWriteEnMem = ram_write_en && (left_sel = 0);\n”);
fprintf (fp, ”assign leftWriteByteEnMem = ram_write_byte_en;\n”);

fprintf (fp, ”assign leftWriteDataMem = ram_write_data;\n”);

fprintf (fp, ”assign leftWriteAddrMem = ram_write_addr;\n”);

fprintf(fp, ”assign leftWriteEnMem = ram_write_en && (left_sel = 1);\n”);

fprintf (fp, ”assign ram.read_data = curReadDataMem;\n”);

fprintf (fp, ”endmodule\n”);
fclose (fp);

A.3 Marshalling Controller Module Function

The source code provided below creates the Marshalling Controller module, which is de-
scribed in Section 3.1. This module directs the overall computation and data marshalling

in the compute engine to perform the block LU factorization.

#include <stdio.h>
#include <math.h>
#define intlog2(x) (int)ceil(log(x)/log(2))

void genMC(int m, int Nwidth, int mdivk, int ratio, int ddrsizewidth, int ramsizewidth)
{

FILE xfp;

int n, ndivk, blockwidth;

n = m;

ndivk = mdivk;

blockwidth = intlog2 (m+2);

fp = fopen(” MarshallingController.v”, "w”);

fprintf (fp, ”"module MarshallingController (clk, start, done, input_-N, offset ,\n”);

fprintf(fp, ” comp_start , block_m, block_n, loop, mode, comp_done, cur_mem_sel,
left_mem_sel ,\n”);

fprintf(fp, 7 dtu_-write_.req , dtu_read_-req, dtu-mem_addr, dtu_-ram_addr, dtu_size,
dtu_ack, dtu_done, left_sel);\n”);

fprintf(fp, ”\n”);

fprintf (fp, ”parameter BLOCKM = %i , BLOCKN = %i;\n”, m, n);

fprintf (fp, ”parameter BLOCKMDIVK = %i ;\n” , mdivk);

fprintf(fp, ”parameter MEMBLOCKM = %i , MEMBLOCKN = %i ;\n”, mdivk*ratio, ndivkxratio)

fprintf (fp, ”parameter NWIDTH = %i , BLOCKWIDTH = %i ;\n” , Nwidth, blockwidth);

fprintf (fp, ”parameter DDRSIZEWIDTH = %i , RAMSIZEWIDTH = %i;\n”, ddrsizewidth ,
ramsizewidth);

fprintf(fp, ”\n”);

fprintf(fp, ”input clk;\n”);

(
fprintf(fp, ”input start;\n”);
fprintf(fp, ”output done;\n”);
fprintf(fp, ”input [NWIDTH—1:0] input_-N;\n”);
fprintf(fp, ”input [DDRSIZEWIDTH-1:0] offset;\n”);
fprintf(fp, ”\n”);
fprintf(fp, ”// for computation section\n”);
fprintf (fp, ”output comp-_start;\n”);

(fp

fprintf , 7output [BLOCKWIDTH—1:0] block_-m, block._n, loop;\n”);
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fprintf (fp, ”output [1:0] mode;\n”);

fprintf (fp, ”input comp_done;\n”);

fprintf (fp, ”output cur-mem-_sel, left_-mem_sel;\n”);
fprintf(fp, ”\n”);

fprintf(fp, ?// for data marshaller section\n”);
fprintf(fp, ”output dtu_write_req, dtu.read_req;\n”);
fprintf(fp, ”output [DDRSIZEWIDTH—1:0] dtu-mem-_addr;\n”);

fprintf (fp, ”output [RAMSIZEWIDTH—1:0] dtu.ram_addr;\n”);

fprintf(fp, ”output [BLOCKWIDTH—1:0] dtu_.size;\n”);

fprintf(fp, ”input dtu-ack, dtu-done;\n”);

fprintf (fp, ”output left_sel;\n”);

fprintf(fp, ”?\n”);

fprintf (fp, ”parameter START = 0, SETUP = 1, FIRST = 2, MODEOSETUP = 3, MODEOWAIT
= 4, MODED = 5, MODEISETUP = 6, MODELWAIT = 7, MODEL = 8, \n”);

fprintf(fp, » MODE2SETUP = 9, MODE2WAIT = 10, MODE2 = 11, MODE3SETUP = 12,
MODE3WAIT = 13, MODE3 = 14, STALL = 15, STALL.WAIT = 16, WAIT = 17,\n”);
fprintf(fp, » FINALWRITE = 18, FINAL.WAIT = 19, IDLE = 20, LAST.SETUP = 21,

LASTSETUP_WAIT = 22, LAST = 23, LAST-WAIT = 24;\n”);
fprintf (fp, ”parameter MEMIDLE = 0, MEMWRITE = 1, MEM.WRITEWAIT = 2,
MEM_CHECKDONE = 3, MEMREAD = 4, MEM READWAIT = 5, MEMDONE = 6, MEM WAIT_ DONE

= 7;\n”);

fprintf(fp, ”\n”);

fprintf(fp, ”"reg [4:0] cur_state, next_state;\n”);

fprintf(fp, ”reg [NWIDTH-1:0] comp-N, N, mcount, ncount, Ndivk, memN;\n”);

fprintf(fp, 7reg [1:0] mode;\n”);

fprintf (fp, ”reg [BLOCKWIDTH—1:0] block-m, block_-n, loop, read_n;\n”);

fprintf(fp, ”reg [BLOCKWIDTH—1:0] write.n, write.n_buf;\n”);

fprintf (fp, ”reg left_mem_sel, cur_mem-_sel, no_left_switch;\n”);

fprintf(fp, ”\n”);

fprintf(fp, ”"reg [3:0] cur-mem_state, next_-mem_state;\n”);

fprintf(fp, ”"reg [RAMSIZEWIDTH:0] ram_addr;\n”);

fprintf(fp, ”"reg [DDRSIZEWIDTH—1:0] mem-_addr;\n”);

fprintf (fp, ”reg [DDRSIZEWIDTH-1:0] mem-_base, mem_top, mem_write, mem-_left, mem_cur
\n?)

fprintf (fp, ”reg [DDRSIZEWIDTH-1:0] mem_write_buf;\n”);

fprintf(f , "reg [BLOCKWIDTH—1:0] mem_count;\n”);

fprintf(fp, ”reg [1:0] mem.read;\n”);

fprintf(fp, ”reg [BLOCKWIDTH—1:0] mem_write_size, mem_write_size_buf, mem_read_size
A7)

fprintf (fp, ”wire mem-_done;\n”);

fprintf(fp, ”\n”);

fprintf(fp, ”assign done = (cur_-state = IDLE);\n”);

fprintf(fp, ”assign dtu_.ram_addr = ram_addr;\n”);

fprintf (fp, ”assign dtu-mem-_addr = mem-addr;\n”);

fprintf(fp7 ”assign dtu_size = (cur.mem_state = MEMWRITE) ? mem_write_size
mem_read_size;\n”);

fprintf(fp, ”assign comp_start = (cur_state = MODED) ||( cur_state = MODEIL) || (
cur_state = MODE2) || ( cur_state = MODE3) || ( cur_state =— FIRST) ||( cur_state —
LAST) ;\n") ;

fprintf(fp, ”assign dtu_write_.req = (cur-mem_state =— MEMWRITE);\n”);

fprintf (fp, ”assign dtu-read_-req = (cur-mem_state =— MEMREAD) ;\n”);
fprintf(fp, ”assign mem_done = (cur_mem_state = MEMDONE)&&(dtu_-done = 1);\n”);
fprintf (fp, ”assign left_sel = mem_read = 1 && (cur-mem_state = MEMREAD ||

cur_mem_state = MEMREAD WAIT || cur_mem_state =— MEM WAIT DONE) ;\n”) ;
fprintf(fp, ”\n”);

fprintf(fp, 7?// FSM to produce memory instructions to DIU\n”);
fprintf (fp, 7always @ (x)\n”);

fprintf(fp, ”begin\n”);

fprintf (fp, 7 case (cur-mem-_state)\n”);

fprintf(fp, ”» MEMIDLE:\n”);

fprintf (fp, ” begin\n”);

fprintf(fp, 7 if (cur_state = START)\n”);

fprintf(fp, ” next_mem_state <= MEM CHECKDONE;\n”) ;
fprintf(fp, ” else\n”);

fprintf(fp, 7 next_mem_state <= MEMIDLE;\n"”);
fprintf(fp, 7 end\n”) ;

fprintf(fp, ” MEMDONE: \n” ) ;
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7 begin\n”);

” if (cur_state = MODEO || cur_state = MODEL || cur.state =—
\n77) ;

7 cur_state = MODE3 || cur_state =— FINALWRITE || cur_state

— LASTSETUP)\n");
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fprintf (fp

7 next_mem_state <= MEM WRITE;\n"” ) ;

7 else if (cur_state = FIRST)\n”);

7 next_mem_state <= MEM CHECKDONE;\n”) ;
7 else\n”);

7 next_mem_state <= MEMDONE;\n"”);

» end\n”) ;

»  MEMWRITE:\n” ) ;

7 begin\n”);

7 next_mem_state <= MEM.WRITEWAIT;\n” ) ;

”» end\n” )7

7 MEM_WRITEWAIT:\n” ) ;

7 begin\n”);

” if (dtu.ack = 1)\n”);

7 begin\n”);

7 if (mem_count = write_n)\n”);

7 next_-mem_state <= MEM WAITDONE;\n”) ;
7 else \n”);

7 next-mem_state <= MEM WRITE;\n” ) ;
”» end\n”) ;

7 else\n”);

7 next_mem_state <= MEM.WRITEWAIT;\n”) ;
» end\n”) ;

»  MEM.WAITDONE:\n” ) ;

7 begin\n”);

” if (dtu_-done = 1)\n”);

7 next_mem_state <= MEM CHECKDONE;\n”) ;
7 else\n”);

7 next_mem_state <= MEM WAITDONE;\n”) ;

» end\n”) ;

»  MEM.CHECKDONE:\n”) ;

” begin\n”);

7 if (mem.read = 0)\n”);

7 next_mem_state <= MEMDONE;\n"”);

7 else\n”);

7 next_mem_state <= MEMREAD;\n"”);

” end\n”) ;

7 MEMREAD:\n”) ;

7 begin\n”);

7 next_mem_state <= MEMREAD WAIT;\n”) ;

”» end\n” )7

? MEM READ_WAIT:\n” ) ;

7 begin\n”);

" if (dtu.ack = 1)\n");

7 begin\n”);

” if (mem_count = read_n)\n”);

7 next_-mem_state <= MEM WAITDONE;\n”) ;
7 else\n”);

7 next_mem_state <= MEMREAD;\n"” ) ;
”» end\n”) ;

7 else\n”);

7 next_mem_state <= MEMREAD WAIT;\n”);
” end\n”) ;

7 default:\n”);

7 next_mem_state <= MEMIDLE;\n"”);
7 endcase\n”);

”end\n”) ;

” \n”) ;

”always @ (posedge clk)\n”);

”begin\n”);

7 if (cur.mem_state = MEMDONE || cur_-mem_state =— MEMIDLE)\n”);
7 begin\n”);

7 ram_addr <= 0;\n”);
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fprintf(fp, ” mem-_addr <= mem_write;\n”);

fprintf (fp, ” if (next_state == LAST_WAIT || next_state == FINAL.WAIT ||

next_state = STALL)\n”);

fprintf (fp

fprintf(fp, 7 else if (next_-state = MODEOSETUP || next_state = SETUP ||

)

7 mem_read <= 0;\n”);

cur_state = MODEO || next_state = LAST SETUP_.WAIT)\n”);
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7 mem_read <= 1;\n”);

7 else\n”);
7 mem_read <= 2;\n”);
mem_count <= 0;\n”);

» end\n”) ;

7 else if (cur-mem_state = MEM.CHECKDONE)\n”) ;
7 begin\n”);

7 if (mem.read = 2)\n”);

7 begin\n”);

7 mem_addr <= mem_left;\n”);
? read_n <= loop;\n”);

» end\n”) ;

7 else\n”);

7 begin\n”);

7 mem_addr <= mem_cur;\n”);
7 read-n <= block_n;\n”);

» end\nn) ;

7 mem._read <= mem_read — 1;\n”);

mem_count <= 0;\n”);
7 ram_addr <= 0;\n”);
” end\n” ) ;

? begin\n”);

7 ram_addr <= ram_addr + BLOCKMDIVK;\n” ) ;
7 mem_addr <= mem-_addr + Ndivk;\n”);
mem-_count <= mem-_count + 1;\n”);

” end\n” ) ;

” \n77) ;

”end\n”) ;

” \n”) ;

”// FSM to determine the block LU factorization algorithm\n”);
7always @ (*)\n”);

"begin\n”);

case (cur_state)\n”);

7 START:\n” ) ;

7 begin\n”);

” next_state <= SETUP;\n”);

” end\n” );

»  SETUP:\n”);

begin\n”);

7 next_state <= WAIT;\n"”);

» end\n”) ;

» WAIT‘Z\H”) :

begin\n”);

7 if (mem_done = 1)\n”);

7 next_state <= FIRST;\n”);

7 else\n”);

7 next_state <= WAIT;\n”);

”\H”) ;

7 end\n");

»  FIRST:\n”);

7 begin\n”);

7 if (mcount < comp_N)\n”);

7 next_state <= MODE1SETUP;\n”);
else if (ncount < comp_N)\n”);

7 next_state <= MODE2SETUP;\n”);
7 else\n”);

7 next_state <= LAST_WAIT;\n”);

7 end\n”) ;

»  MODEOSETUP:\n”);

86
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7 begin\n”);

” next_state <= MODEO_WAIT;\n”);

» end\n” ) ;

»  MODEO.WAIT:\n” ) ;

7 begin\n”);

7 if (mem_done =— 1 && comp_done = 1)\n”);
? next_state <= MODEO;\n”);

7 else\n”);

7 next_state <= MODEO.WAIT;\n”) ;
”» \n77 ) ;

» end\n”) ;

7 MODEO: \n” ) ;

7 begin\n”);

7 if (mcount < comp_N)\n”);

7 next_state <= MODE1SETUP;\n”);
7 else if (ncount < comp-N)\n”);

7 next_state <= MODE2SETUP;\n”);
7 else\n”);

7 begin\n”);

7 next_state <= LAST WAIT;\n”);

» end\n”) ;

”» end\n” ) ;

? MODE1SETUP:\n" ) ;

7 begin\n”);

” next_state <= MODE1.WAIT;\n”);

» end\n” ) ;

»  MODELWAIT:\n” ) ;

7 begin\n”);

7 if (mem_done = 1 && comp_done = 1)\n”);
? next_state <= MODEIL;\n”);

7 else\n”);

” next_state <= MODE1L.WAIT;\n");
” \n77) ;

” end\n” ) ;

7 MODEL:\n” ) ;

” begin\n”);

7 if (mcount < comp_N)\n”);

7 next_state <= MODE1SETUP;\n”);
7 else if (ncount < comp-N)\n”);

7 next_state <= MODE2SETUP;\n”);
” else if (comp-N <= BLOCKN + BLOCKN)\n”);
7 next_state <= STALL;\n”);

7 else\n”);

7 next_state <= MODEOSETUP;\n”);
”» end\n” ) ;

? MODE2SETUP:\n” ) ;

7 begin\n”);

7 next_state <= MODE2WAIT;\n”);

”» end\n” ) ;

»  MODE2.WAIT:\n” ) ;

7 begin\n”);

7 if (mem_done = 1 && comp_done = 1)\n”);
? next_state <= MODE2;\n”);

7 else\n”);

” next_state <= MODE2WAIT;\n");
”» end\n” ) ;

7 MODE2:\n” ) ;

7 begin\n”);

7 if (mcount < comp_N)\n”);

7 next_state <= MODE3SETUP;\n”);
7 else if (ncount < comp_N)\n”);

7 next_state <= MODE2SETUP;\n”)
7 else if (comp-N <= BLOCKN + BLOCKN)\n”);
” next_state <= STALL;\n”);

7 else\n”);

7 next_state <= MODEOSETUP;\n”);
7 end\n”) ;

»  MODE3SETUP:\n”);
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9

begin\n”);
next_state <= MODE3.WAIT;\n”);
end\n”);
MODES WAIT: \ n” ) ;
begin\n”);
if (mem_done =— 1 && comp_done = 1)\n”);
next_state <= MODE3;\n”);
else\n”);
next_state <= MODE3WAIT;\n”);
end\n”);
MODE3:\n”) ;
begin\n”);
if (mcount < comp_N)\n”);
next_state <= MODE3SETUP;\n”);
else if (ncount < comp_N)\n”);
next_state <= MODE2SETUP;\n”);
else if (comp-N <= BLOCKN + BLOCKN)\n”);
next_state <= STALL;\n”);
else\n”);
next_state <= MODEOSETUP;\n”);
end\n”) ;
STALL:\n”);
next_state <= STALL-WAIT;\n”);
STALL.WAIT:\n” ) ;

if (mem_done = 1 && comp_done 1)\n”);
next_state <= LAST SETUP;\n”);
else\n”);

next_state <= STALL.WAIT;\n”);
LAST SETUP:\n”) ;
next_state <= LAST.SETUP_WAIT;\n”);
LAST SETUP_WAIT:\n” ) ;

if (mem_done = 1 && comp_done == 1)\n");
next_state <= LAST;\n”);
else\n”);

next_state <= LAST SETUP_.WAIT;\n”);
LAST:\n”);
next_state <= LAST_WAIT;\n"”);
LAST_WAIT:\n” ) ;

if (mem_done = 1 && comp_done 1)\n”);
next_state <= FINAL.WRITE;\n”);
else\n”);

next_state <= LAST-WAIT;\n”);
FINAL_WRITE: \ n” ) ;
next_state <= FINAL-WAIT;\n”);
FINAL.WAIT:\n” ) ;

if (mem_done = 1)\n”);
next_state <= IDLE;\n”);
else\n”);

next_state <= FINAL.-WAIT;\n”);
IDLE:\n”);
if (start)\n”);
next_state <= SETUP;\n”);
else\n”);
next_state <= IDLE;\n”);
default:\n”);
next_state <= START;\n”);
endcase\n”);

7end\n”) ;
”» \n77 ) ;

”always @ (posedge clk)\n”);
"begin\n”);

”

if (start)\n”);
begin\n”);
cur_state <= START;\n"”);
cur_mem_state <= MEM.IDLE;\n" ) ;
end\n") ;
else\n”);
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fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp

7 begin\n”);

cur_state <= next_state;\n”);
cur.mem-_state <= next_mem_state;\n”);
» end\n”) ;

”end\n”) ;

77\n77) ;

“always @ (*)\n”);
"begin\n”);
7 case (cur_state)\n”);
»  MODEL:\n”);
7 mode = 1;\n”);
»  MODE2:\n”);
7 mode = 2;\n”);
»  MODE3:\n”);
” mode = 3;\n”);
7 default:\n”);
7 mode = 0;\n”);
endcase\n”);
”end\n”);
77\1111);
”always @ (posedge clk)\n”);
"begin\n”);
7 if (start)\n”);
begin\n”);
comp-N <= input_-N;\n”);
7 N <= input_-N;\n”);

7 end\n”);

7 else if (next_state = MODEO)\n”);
? begin\n”);

” comp_N <= comp_N — BLOCKN;\n”);
” end\n” ) ;

77\n77) ;

» Ndivk <= ((N4BLOCKM-1) /BLOCKM) MEMBLOCKM; \ n” ) ;
7 mem N <= Ndivk*BLOCKN;\n” ) ;

» \Il” ) ;

7 if (start)\n”);

7 begin\n”);

? mem_base <= offset;\n”);

” mem-_top <= offset;\n”);

7 mem_left <= offset;\n”);

7 mem_cur <= offset;\n”);

” end\n”) ;

7 else if (cur_state = MODEOSETUP)\n”);

” begin\n”);

7 mem_base <= mem_base + mem N-HVIEMBLOCKN;\ n”
7 mem_top <= mem_base + mem NHMEMBLOCKN;\n” )
” mem_cur <= mem_base + mem NHMEMBLOCKN;\n” )
7 mem_left <= mem_base + mem N+MEMBLOCKN;\ n”
» end\n”) ;

7 else if (cur_state = MODELSETUP)\n”);

7 begin\n”);

7 mem_cur <= mem-_cur + MEMBLOCKM;\n”) ;

”» end \n77 ) ;

7 else if (cur_state =— MODE3SETUP)\n”)

7 begin\n”);

7 mem_cur <= mem_cur + MEMBLOCKM;\n” ) ;

7 mem_left <= mem_left + MEMBLOCKM;\n” ) ;

» end\n”) ;

7 else if (cur_state = MODE2SETUP)\n”);

7 begin\n”);

? mem_cur <= mem-_top + memN;\n”);

? mem-_top <= mem-_top + memN;\n”);

” mem _left <= mem_base;\n”);

» end\n” ) ;

” \Il” ) ;

7 if (cur_state = SETUP)\n”);

7 begin\n”);

:

)

)

)
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fprintf(
fprintf(
fprintf(
fprintf (fp
fprintf (
fprintf (
fprintf (
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprlntf(
(fp
)
(
(

\n” ’
fprintf (fp
fprlntf fp
fprlntf(
fprintf(
fprintf (
fprintf (
fprintf(
fprintf (
fprintf(
fprintf (
fprintf (
fprintf (fp
fprintf (
fprintf(
fprintf (
fprintf(
fprintf (
fprintf (
fprintf (
fprintf (
fprintf(
fprintf (fp

”

\1’1”

\Il”

\nﬁ

mem_write <= 0;\n”);
mem_write_buf <= 0;\n”);
mem_write_size <= BLOCKMDIVK;\n”) ;
mem_write_size_buf <= BLOCKMDIVK;\n” ) ;
write.n <= block.n;\n”);
write_n_buf <= block_n;\n”);

end\n”);

else if (cur.mem_state =— MEMCHECKDONE && mem_read =—

begin\n”);
mem_write <= mem_write_buf;\n”);
mem_write_buf <= mem_cur;\n”);
mem_write_size <= mem_write_size_buf;\n”);
mem_write_size_buf <= mem_read_size;\n”);
write_n <= write_n_buf;\n”);
write_n_buf <= block_n;\n”);

end\n”) ;

)

mem _read_size <= BLOCKMDIVK;\n” ) ;
)

if (start)\n”);

loop <= BLOCKN;\n”);
else if (next_state = LAST)\n”);

loop <= comp-N[8:0] — BLOCKN;\n”);
\n77

~

if (next_state =— MODEOSETUP || next_state =— MODE2SETUP ||

mcount <= BLOCKM;\n”) ;

0)\n");

90

start)

else if (next_state =— MODEILSETUP || next_-state =— MODE3SETUP)\n”)

mcount <= mcount+BLOCKM;\n”) ;

)

if (next_state =— MODEOSETUP || start)\n”);
ncount <= BLOCKN;\n”);

else if (next_state =— MODE2SETUP)\n”);
ncount <= ncount+BLOCKN;\n” ) ;

)

if (mcount < comp-N)\n”);
block-m <= BLOCKM;\n”);
else\n”);
block-m <= comp-N — mcount + BLOCKM;\n”);
\n”);
if (ncount < comp-N)\n”);
block_n <= BLOCKN;\n”) ;
else\n”);
block_n <= comp_N — ncount + BLOCKN;\n”);
)
i

if (start)\n”);
cur_mem_sel <= 0;\n”);

else if ((cur_state = MODHED) || ( cur-state = MODEL) ||( cur_state

MODE2) || ( cur_-state = MODE3) ||\ n"”);

fprintf (fp, ”

fprintf (fp
fprintf (fp
fprintf (
fprintf (fp
fprintf(
fprintf (
fprintf (fp

)

)

”

(cur_-state = FIRST) || ( cur_state = FINAL.-WRITE) || ( cur_state =—
LASTSETUP) [|(cur_state = LAST))\n”) ;

cur_mem_sel <= !cur_mem_sel;\n”);
\n77).
if (start)\n”);

no_left_switch <= 0;\n”);

else if ((cur_state =— MODKD) ||( cur_state = FIRST))\n”);

no_left_switch <= 1;\n”);

else if ((cur_state = MODEL) ||( cur_state = MODE2) ||( cur_state

MODE3) [[\n”) ;

fprintf (fp
fprintf (
fprintf (fp
fprintf(
fprintf(
fprintf (fp

)

)

)

)

)

)

”

9

” \Il” ) ;
9

”

9

(cur_state = FINAL.WRITE) ||( cur_state = LAST_SETUP))\n”);

no_left_switch <= 0;\n”);

if (start)\n”);
left_mem_sel <= 0;\n”);

else if (((cur_state = MODED) ||( cur_state = MODEIL) ||( cur_state

MODE2) || ( cur-state = MODE3) ||\ n"”);
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fprintf(fp, ” (cur_state == FIRST) ||( cur-state = FINAL.WRITE) ||( cur_state =—
LAST SETUP) )&&(no_-left_switch = 0))\n”);
fprintf(fp, ” left_-mem_sel <= !left_mem_sel;\n”);

fprintf(fp, ”end\n”);
fprintf(fp, ”\n”);

fprintf (fp, ”endmodule\n”);
fclose (fp);

A.4 LU Processing Module Function

The source code provided below creates the LU Processing module, which is described
in Section 3.3. This module contains the processing elements that perform the desired

computation.

#include <stdio.h>
#include <math.h>
#define intlog2(x) (int)ceil(log(x)/log(2))

void genLUP(int numPE, int precision, int mwidth, int ramwidth, int ramsizewidth, int
topsizewidth , int meminputdelay, int memoutputdelay, int topinputdelay, int
topoutputdelay)

FILE xfp;
int PEwidth;
int i, upperldx, lowerldx;

PEwidth = intlog2 (numPE) ;

fp = fopen(” LUProcessing.v”, "w”);

fprintf(fp, ”?//auto—generated LUProcessing.v\n”);

fprintf(fp, 7 //datapath for computating LU factorization\n”);

fprintf(fp, ”?//by Wei Zhang\n\n”);

fprintf(fp, ”?module LUProcessing (clk, start, m, n, loop, mode, done, \n”);

fprintf(fp, ” curReadAddrMem, curReadDataMem, curWriteByteEnMem ,
curWriteDataMem , curWriteAddrMem , curWriteEnMem, curMemSel,\n”);
fprintf(fp, 7 leftWriteByteEnMem , leftWriteDataMem , leftWriteAddrMem ,

leftWriteEnMem , leftMemSel);\n”);
fprintf(fp, 7\n\n”);

fprintf (fp, ”parameter PRECISION = %i, NUMPE = %i , PEWIDTH = %i , BLOCKWIDTH = %i ;\n”
, precision , numPE, PEwidth, mwidth);

fprintf (fp, ”parameter RAMWIDTH = %i , RAMNUMBYTES = %i , RAMSIZEWIDTH = %i ,
TOPSIZEWIDTH = %i;\n”, ramwidth, ramwidth/8, ramsizewidth, topsizewidth);

fprintf (fp, ”parameter TOPINPUTDELAY = %i , TOPOUTPUTDELAY = %i;\n”, topinputdelay,
topoutputdelay) ;

fprintf (fp, ”parameter MEMINPUIDELAY = %i , MEMOUTPUIDELAY = %i ;\n” , meminputdelay,
memoutputdelay) ;

fprintf(fp, ”\n”);

fprintf (fp, ”input clk, start;\n”);

fprintf (fp, ”input [BLOCKWIDTH—1:0] m, n, loop;\n”);

fprintf(fp, ”input[1:0] mode;\n”);

fprintf (fp, ”output done;\n”);

fprintf (fp, ”wire [RAMWIDTH—1:0] curWriteData0O, curWriteDatal;\n”);
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fprintf (fp, ”wire [RAMSIZEWIDTH—1:0] curWriteAddr0, curReadAddr0, curWriteAddrl,
curReadAddrl;\n”);

fprintf (fp, ”wire [RAMWIDTH—1:0] curReadData0, curReadDatal;\n”);

fprintf(fp, ” wire [RAMNUMBYTES—1:0] curWriteByteEnO, curWriteByteEnl;\n”);

fprintf (fp, ”?wire curWriteEnO, curWriteEnl;\n\n”);

fprintf (fp, ”input [RAMWIDTH—1:0] curWriteDataMem;\n”);

fprintf (fp, ”output [RAMWIDTH—1:0] curReadDataMem;\n”);

fprintf (fp, ”input [RAMSIZEWIDTH—1:0] curWriteAddrMem , curReadAddrMem;\n”);
fprintf (fp, ”input [RAMNUMBYTES—1:0] curWriteByteEnMem;\n”);

fprintf(fp, ”input curWriteEnMem;\n”);

fprintf (fp, ”input [RAMWIDTH—1:0] leftWriteDataMem;\n”);
fprintf(fp, ”input [RAMSIZEWIDTH—1:0] leftWriteAddrMem;\n”);
fprintf (fp, ”input [RAMNUMBYTES-1:0] leftWriteByteEnMem;\n”);
fprintf (fp, ”input leftWriteEnMem;\n”);

fprintf(fp, ”input leftMemSel, curMemSel;\n\n");

fprintf(fp, ”wire [RAMWIDTH—1:0] curReadDataLU, curReadDataMem;\n”);

fprintf (fp, ”wire [RAMWIDTH—1:0] curWriteDataLU, curWriteDataMem;\n”);

fprintf (fp, ”wire [RAMSIZEWIDTH—1:0] curWriteAddrLU, curWriteAddrMem, curReadAddrLU,
curReadAddrMem;\n” ) ;

fprintf (fp, ”wire [RAMNUMBYTES—1:0] curWriteByteEnLU , curWriteByteEnMem;\n”);

fprintf(fp, ”wire curWriteEnLU, curWriteEnMem;\n\n”);

if (memoutputdelay > 0) {
fprintf(fp, ”reg [RAMWIDTH-1:0] curReadData0OReg [MEMOUTPUTDELAY—1:0],
curReadDatalReg [MEMOUTPUIDELAY—1:0];\n"” ) ;
fprintf (fp, ”reg [RAMWIDTH-1:0] leftReadData0Reg [MEMOUTPUITDELAY—1:0],
leftReadDatalReg [MEMOUTPUTDELAY—1:0];\n”) ;

}

if (meminputdelay > 0)

fprintf (fp, ”reg [RAMWIDTH—1:0] curWriteDataOReg [MEMINPUTDELAY—1:0],
curWriteDatalReg [MEMINPUTDELAY—1:0];\n” ) ;

fprintf(fp, ”reg[RAMSIZEWIDTH—1:0] curWriteAddrOReg [MEMINPUTDELAY—1:0],
curReadAddrOReg [MEMINPUTDELAY—1:0];\n”) ;

fprintf (fp, ”reg[RAMSIZEWIDTH—1:0] curWriteAddrlReg [MEMINPUTDELAY—1:0],
curReadAddr1Reg [MEMINPUIDELAY—1:0];\n" ) ;

fprintf (fp, ”reg[RAMNUMBYTES—-1:0] curWriteByteEnOReg [MEMINPUTDELAY—1:0],
curWriteByteEnlReg [MEMINPUTDELAY—1:0];\n” ) ;

fprintf (fp, ”reg curWriteEnOReg [MEMINPUTDELAY—1:0], curWriteEnlReg [MEMINPUTDELAY
—1:0]5\n”);

fprintf (fp, ”reg [RAMWIDTH—-1:0] leftWriteDataOReg [MEMINPUTDELAY—1:0],
leftWriteDatalReg [MEMINPUTDELAY—1:0];\n”) ;

fprintf(fp, ”reg[RAMSIZEWIDTH—1:0] leftWriteAddrOReg [MEMINPUITDELAY—1:0],
leftRead AddrOReg [MEMINPUTDELAY—1:0];\n”) ;

fprintf(fp, ”reg[RAMSIZEWIDTH—1:0] leftWriteAddrl1Reg [MEMINPUIDELAY—1:0],
leftRead Addr1Reg [MEMINPUTDELAY—1:0];\n” ) ;

fprintf(fp, ”reg[RAMNUMBYTES—1:0] leftWriteByteEnOReg [MEMINPUIDELAY—1:0],
leftWriteByteEnlReg [MEMINPUTDELAY—1:0];\n” ) ;

fprintf(fp, 7reg leftWriteEnOReg [MEMINPUITDELAY—1:0], leftWriteEnlReg|
MEMINPUTDELAY—1:0];\n”) ;

fprintf(fp, ”\n”);

fprintf (fp, ”reg[PRECISION—1:0] multOperand;\n”);

fprintf (fp, ”reg [PRECISION—1:0] diag;\n”);

fprintf(fp, ”wire [PRECISION—1:0] recResult;\n”);

fprintf (fp, ”wire [PRECISION—1:0] multA [NUMPE—1:0], multResult [NUMPE—1:0];\n");
fprintf (fp, ”wire [PRECISION—1:0] addA[NUMPE—1:0], addResult [NUMPE—1:0];\n\n”);

fprintf (fp, ”wire [RAMWIDTH—1:0] leftReadData0, leftReadDatal, leftWriteDataO ,
leftWriteDatal;\n”);

fprintf (fp, ”wire [RAMSIZEWIDTH—1:0] leftWriteAddr0, leftWriteAddrl, leftReadAddr0,
leftReadAddrl;\n”);

fprintf (fp, ”wire [RAMNUMBYTES—1:0] leftWriteByteEnO, leftWriteByteEnl;\n”);

fprintf (fp, ?wire leftWriteEnO, leftWriteEnl;\n”);
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fprintf (fp, ”wire [RAMWIDTH—1:0] leftReadDataLU, leftWriteDataLU, leftWriteDataMem ;\n
7)s

fprintf (fp, ”wire [RAMSIZEWIDTH—1:0] leftWriteAddrLU, leftWriteAddrMem ,
leftReadAddrLU;\n”);

fprintf (fp, ”wire [RAMNUMBYTES—1:0] leftWriteByteEnLU , leftWriteByteEnMem;\n”);

fprintf (fp, ?wire leftWriteEnLU , leftWriteEnMem ;\n\n”);

fprintf (fp, ”wire [PRECISION—1:0] topWriteData;\n”);

fprintf(fp, ”reg|[PRECISION—1:0] topWriteDataLU;\n”);

fprintf (fp, ”wire [PRECISION—1:0] topReadData, topReadDataLU;\n”);

fprintf(fp, ”wire [TOPSIZEWIDTH—1:0] topWriteAddr, topWriteAddrLU, topReadAddr,
topReadAddrLU;\n”) ;

fprintf(fp, ”wire topWriteEn, topWriteEnLU;\n\n”);

if (topoutputdelay != 0)
fprintf(fp, ”reg[PRECISION—1:0] topReadDataReg |[TOPOUTPUIDELAY—1:0];\n”);

if (topinputdelay != 0)
fprintf(fp, ”reg [PRECISION—1:0] topWriteDataReg [TOPINPUTDELAY—1:0];\n”);
fprintf(fp, ”reg|[TOPSIZEWIDTH—1:0] topWriteAddrReg [TOPINPUTDELAY—1:0],
topRead AddrReg [TOPINPUTDELAY—1:0];\n”) ;
fprintf(fp, ”reg topWriteEnReg [TOPINPUTDELAY—1:0];\n\n”);

fprintf (fp, ”wire [RAMWIDTH—1:0] rcWriteData;\n”);

fprintf (fp, ?wire leftWriteSel, curWriteSel, topSourceSel;\n”);
fprintf(fp, ”wire diagEn;\n”);

fprintf (fp, ”wire [PEWIDTH—1:0] diagSel, topWriteSel;\n\n");

fprintf (fp, ”wire MOSel;\n”);
fprintf(fp, ”wire MOEn;\n\n”);

fprintf(fp, 7?// control block\n”);
fprintf (fp, ?"LUController conBlock (clk, start, m, n, loop, mode, done, \n”);

fprintf(fp, 7 curReadAddrLU, curWriteAddrLU, curWriteByteEnLU ,
curWriteEnLU, curWriteSel ,\n”);
fprintf (fp, 7 leftRead AddrLU , leftWriteAddrLU , leftWriteByteEnLU ,
leftWriteEnLU , leftWriteSel ,\n”);
fprintf(fp, ” topReadAddrLU, topWriteAddrLU, topWriteEnLU

topWriteSel , topSourceSel, diagSel, diagEn, MOSel, MOEn);\n\n”);
fprintf(fp, 7 // fp-div unit\n”);

if (precision 64) {
fprintf(fp, ”div rec (clk, 64’h3FF0000000000000, diag, recResult);\n\n”);

else {
fprintf(fp, 7div rec (clk, 32’h3F800000, diag, recResult);\n\n");
}

fprintf(fp, ”// on—chip memory blocks that store the matrix to be LU factorized\n”);
fprintf(fp, ”?// store current blocks data\n”);

fprintf(fp, ”ram currentBlockO (curWriteByteEnO, clk, curWriteData0, curReadAddr0,
curWriteAddr0, curWriteEnO, curReadData0);\n”);

fprintf(fp, ”ram currentBlockl (curWriteByteEnl, clk, curWriteDatal, curReadAddrl,
curWriteAddrl, curWriteEnl, curReadDatal);\n”);

fprintf(fp, 7// store left blocks data\n”);

fprintf (fp, 7ram leftBlockO (leftWriteByteEnO , clk, leftWriteData0O , leftReadAddr0,
leftWriteAddr0, leftWriteEnO, leftReadData0);\n\n");

fprintf(fp, 7ram leftBlockl (leftWriteByteEnl, clk, leftWriteDatal , leftReadAddrl,
leftWriteAddrl , leftWriteEnl, leftReadDatal);\n\n");

fprintf(fp, 7?// store top block data\n”);

fprintf (fp, ”temp_row topBlock(clk, topWriteData, topReadAddr, topWriteAddr,
topWriteEn, topReadDataLU);\n\n”);

fprintf(fp, ?// processing elements that does the main computation of LU
factorization\n”);
for (i = 0; i < numPE; i++4) {
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fprintf(fp, ”"mult_add PEAGi (clk, multA[%i], multOperand, addA[%i], multResult[%i
], addResult[%i]);\n”, i, i, i, i, i);
}
fprintf(fp, ”\n”);

fprintf(fp, ?// connect to ports of the left blocks\n”);

fprintf (fp, ”assign leftWriteDataLU = (leftWriteSel = 0) ? curReadDataLU
rcWriteData;\n”);
if (meminputdelay = 0)
{
fprintf(fp, ”assign leftWriteData0 = (leftMemSel =— 0) ? leftWriteDataMem
leftWriteDataLU;\n”);
fprintf(fp, ”assign leftWriteAddr0 = (leftMemSel = 0) ? leftWriteAddrMem

leftWriteAddrLU ;\n” ) ;
fprintf (fp, ”assign leftReadAddr0 = leftReadAddrLU;\n”);

fprintf(fp, ”assign leftWriteByteEn0 = (leftMemSel = 0) ? leftWriteByteEnMem
leftWriteByteEnLU ;\n”) ;

fprintf(fp, ”assign leftWriteEn0O = (leftMemSel = 0) ? leftWriteEnMem
leftWriteEnLU ;\n”);

fprintf(fp, ”assign leftWriteDatal = (leftMemSel = 0) ? leftWriteDataLU
leftWriteDataMem ;\n” ) ;

fprintf(fp, ”assign leftWriteAddrl = (leftMemSel = 0) 7 leftWriteAddrLU

leftWriteAddrMem ;\n” ) ;
fprintf(fp, ”assign leftReadAddrl = leftReadAddrLU;\n”);

fprintf(fp, ”assign leftWriteByteEnl = (leftMemSel =— 0) ? leftWriteByteEnLU
leftWriteByteEnMem ;\n” ) ;
fprintf(fp, ”assign leftWriteEnl = (leftMemSel = 0) ? leftWriteEnLU
leftWriteEnMem ;\n”) ;
}
else
{
fprintf(fp, ”always @ (posedge clk)\n”);
fprintf(fp, ”begin\n”);
fprintf(fp, ” if (leftMemSel = 0)\n”);
fprintf(fp, ” begin\n”);
fprintf(fp, ” leftWriteDataOReg [0] <= leftWriteDataMem;\n”);
fprintf(fp, 7 leftWriteAddrOReg [0] <= leftWriteAddrMem;\n”);
fprintf(fp, ” leftWriteByteEnOReg [0] <= leftWriteByteEnMem;\n”);
fprintf(fp, ” leftWriteEnOReg [0] <= leftWriteEnMem ;\n”);
fprintf(fp, ” leftWriteDatalReg [0] <= leftWriteDataLU;\n”);
fprintf(fp, 7 leftWriteAddr1lReg [0] <= leftWriteAddrLU;\n”);
fprintf(fp, 7 leftWriteByteEnlReg [0] <= leftWriteByteEnLU;\n”);
fprintf(fp, ” leftWriteEnlReg [0] <= leftWriteEnLU;\n"”);
fprintf(fp, ” end\n”) ;
fprintf(fp, ” else\n”);
fprintf(fp, ” begin\n”);
fprintf(fp, 7 leftWriteDataOReg [0] <= leftWriteDataLU;\n”);
fprintf(fp, 7 leftWriteAddrOReg [0] <= leftWriteAddrLU;\n”);
fprintf(fp, 7 leftWriteByteEnOReg [0] <= leftWriteByteEnLU;\n”);
fprintf(fp, ” leftWriteEnOReg [0] <= leftWriteEnLU;\n”);
fprintf(fp, 7 leftWriteDatalReg [0] <= leftWriteDataMem;\n”);
fprintf(fp, ” leftWriteAddrlReg [0] <= leftWriteAddrMem;\n”);
fprintf(fp, 7 leftWriteByteEnlReg [0] <= leftWriteByteEnMem;\n”);
fprintf(fp, ” left WriteEnlReg [0] <= leftWriteEnMem ;\n”);
fprintf(fp, ” end\n”) ;
fprlntf(fp , 7 leftReadAddrOReg [0] <= leftReadAddrLU;\n”);
fprintf(fp, 7 leftReadAddrlReg[0] <= leftReadAddrLU;\n”);
for (i = 0; i < meminputdelay —1; i++)
{
fprintf(fp, ” leftWriteDataOReg[%i] <= leftWriteDataOReg[%i];\n”, i+1, i);
fprintf(fp, ” leftWriteAddrOReg[%i] <= leftWriteAddrOReg[%1i];\n”, i+1, i);
fprintf(fp, 7 leftRead AddrOReg[%i] <= leftReadAddrOReg|[%i];\n”, i+1, i);
fprintf(fp, ” leftWriteByteEnOReg[%i] <= leftWriteByteEnOReg[%i];\n”, i+1,
i);
fprintf(fp, 7 leftWriteEnOReg[%i] <= leftWriteEnOReg[%1i];\n”, i+1, i);
fprintf(fp, ” leftWriteDatalReg[%i] <= leftWriteDatalReg[%i];\n”, i+1, i);
fprintf(fp, ” leftWriteAddr1lReg[%i] <= leftWriteAddr1Reg[%i];\n”, i+1, i);

fprintf(fp, ” leftReadAddriReg[%i] <= leftReadAddrlReg[%i];\n”, i+1, i);
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fprintf(fp, ” leftWriteByteEnlReg[%i] <= leftWriteByteEnlReg[%i];\n”, i+1,
i);
fprintf(fp, ” leftWriteEnlReg[%i] <= leftWriteEnlReg[%i];\n”, i+1, i);
}
fprintf (fp, ”end\n”);
fprintf(fp, ”assign leftWriteData0 = leftWriteDataOReg[%i];\n”, i);
fprintf(fp, ”assign leftWriteAddr0 = leftWriteAddrOReg[%i];\n”, 1);
fprintf(fp, ”assign leftReadAddr0 = leftReadAddrOReg[%i];\n”, i);
fprintf(fp, ”assign leftWriteByteEnO = leftWriteByteEnOReg[%i];\n”, 1i);
fprintf(fp, ”assign leftWriteEn0 = leftWriteEnOReg[%i];\n”, i);
fprintf(fp, ”assign leftWriteDatal = leftWriteDatalReg[%i];\n”, i);
fprintf(fp, ”assign leftWriteAddrl = leftWriteAddrlReg[%i];\n”, i);
fprintf(fp, ”assign leftReadAddrl = leftReadAddrlReg[%i];\n”, i);
fprintf (fp, ”assign leftWriteByteEnl = leftWriteByteEnlReg[%i];\n”, 1);
fprintf(fp, ”assign leftWriteEnl = leftWriteEnlReg[%i];\n”, i);
}
fprintf(fp, ”\n”);
if (memoutputdelay = 0)
fprintf(fp, ”assign leftReadDataLU = (leftMemSel = 0) ? leftReadDatal
leftReadData0;\n”);
else {
fprintf(fp, ”always @ (posedge clk)\n”);
fprintf(fp, ”begin\n”);
fprintf(fp, 7 leftReadDataOReg [0] <= leftReadData0;\n”);
fprintf(fp, ” leftReadDatalReg [0] <= leftReadDatal;\n”);
for (i = 0; i < memoutputdelay —1; i++)
{

fprintf(fp, 7

leftReadDataOReg[%i] <= leftReadDataOReg[%i];\n”, i+1, i);

fprintf(fp, ” leftReadDatalReg[%i] <= leftReadDatalReg[%i];\n”, i+1, i)

fprintf(fp, ”end\n”);
fprintf(fp, ”assign leftReadDataLU = (leftMemSel =— 0) ? leftReadDatalReg|[%1]
leftReadDataOReg[%i];\n”, 1, 1);

}
fprintf(fp,
fprintf (fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf (fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf (fp,
fprintf(fp,
fprintf (fp,
fprintf(fp,
fprintf (fp,
fprintf(fp,
fprintf (fp,
fprintf (fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf (fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
for (i = 0;
{

lowerldx

7 // data feed to fp div unit\n”);
”always @ (posedge clk)\n”);

”begin\n”);

7 if (diagEn = 1)\n”);

7 begin\n”);

7 diag <= topReadData;\n”);
7 end\n”);

”» end\n” ) ;

”// one of the inputs to the PE\n”);
”always @ (posedge clk)\n”);
"begin\n”);

”»

if (start = 1)\n”);
multOperand <= 0;\n”);
else if (MOEn = 1)\n”);
begin\n”);
if (MOSel = 0)\n”);
multOperand <= recResult;\n”);
else\n”);
multOperand <= topReadData;\n”);
end\n");

”end\n\n”);

”// connections to top block memory ports\n”);
“always @ (*)\n”);
”begin\n”);

9

”

if (topSourceSel = 0)\n"”);
case (topWriteSel)\n”);

i < numPE; i++)

(numPE-i —1)*precision ;

)
)
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upperldx = (numPE-i)*precision —1;

fprintf(fp, 7 %i:\n”, i);
fprintf(fp, 7 topWriteDataLU = curReadDataLU[%i:%i];\n”, upperldx,
lowerldx) ;
fprintf(fp, ” default:\n”);
fprintf(fp, ” topWriteDataLU = curReadDataLU [PRECISION—1:0];\n”);
fprintf(fp, ” endcase\n”);
fprintf(fp, 7 else\n”);
fprintf(fp, 7 case (topWriteSel)\n”);
for (i = 0; i < numPE; i++)
{
fprintf(fp, ” %i:\n”, i);
fprintf(fp, ” topWriteDataLU = addResult[%i];\n”, numPE-i—1);
}
fprintf(fp, ” default:\n”);
fprintf(fp, 7 topWriteDataLU = addResult [0];\n”);
fprintf(fp, ” endcase\n”);
fprintf(fp, ”end\n\n");
if (topinputdelay = 0) {

fprintf(fp, ”assign topWriteData = topWriteDataLU;\n”);

fprintf(fp, ”assign topReadAddr = topReadAddrLU;\n”);
fprintf(fp, ”assign topWriteAddr = topWriteAddrLU;\n”);
fprintf(fp, ”assign topWriteEn = topWriteEnLU;\n”);

else {
fprintf (fp, ”always @Q (posedge clk)\n”);
fprintf(fp, ”begin\n”);
fprintf(fp, ” topWriteDataReg [0] <= topWriteDataLU;\n"”);
fprintf(fp, ” topReadAddrReg [0] <= topReadAddrLU;\n”);
fprintf(fp, ” topWriteAddrReg [0] <= topWriteAddrLU;\n"”);

fprintf(fp, 7 topWriteEnReg [0] <= topWriteEnLU;\n"”);
for (i = 0; i < topinputdelay —1; i++) {

fprintf(fp, ” topWriteDataReg[%i] <= topWriteDataReg[%i];\n”, i+1, i);
fprintf(fp, ” topReadAddrReg[%i] <= topReadAddrReg[%i];\n”, i+1, i);
fprintf(fp, 7 topWriteAddrReg[%i] <= topWriteAddrReg[%i];\n”, i+1, i);
fprintf(fp, ” topWriteEnReg[%i] <= topWriteEnReg[%i];\n”, i+1, i);
fprintf(fp, ”end\n”);
fprintf(fp, ”assign topWriteData = topWriteDataReg[%1i];\n”, i);
fprintf(fp, ”assign topReadAddr = topReadAddrReg[%1i];\n”, i);
fprintf(fp, ”assign topWriteAddr = topWriteAddrReg[%i];\n”, i);
fprintf (fp, ”assign topWriteEn = topWriteEnReg[%i];\n”, i);
}
if (topoutputdelay = 0) {
fprintf(fp, ”assign topReadData = topReadDataLU;\n”);
else {
fprintf (fp, ”always @ (posedge clk)\n”);
fprintf(fp, ”begin\n”);
fprintf(fp, ” topReadDataReg [0] <= topReadDataLU;\n”);
for (i = 0; i < topoutputdelay —1; i++) {
fprintf(fp, ” topReadDataReg|[%i] <= topReadDataReg[%i];\n”, i+1, i);
fprintf(fp, ”end\n”);
fprintf(fp, ”assign topReadData = topReadDataReg[%1i];\n”, i);
}
fprintf(fp, ”\n”);
fprintf(fp, ?// connections to processing element\n”);
for (i = 0; i < numPE; i++)
{
lowerldx = ixprecision;

upperldx = (i+41)xprecision —1;
fprintf(fp, ”assign multA[%i] = leftReadDataLU[%i:%i];\n”, i, upperldx, lowerldx
)
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fprintf(fp, ”\n”);
for (i = 0; i < numPE; i++)
{
lowerldx = ixprecision;
upperldx = (i+1)xprecision —1;
fprintf(fp, ”assign addA[%i] = curReadDataLU[%i:%i];\n”, i, upperldx, lowerldx);
fprintf(fp, ”\n”);
fprintf(fp, ”// connections to ports of the current blocks\n”);
for (i = 0; i < numPE; i++)
{
lowerldx = ixprecision;
upperldx = (i+1)xprecision —1;
fprintf(fp, ”assign rcWriteData[%1:%i] = (curWriteSel = 0) ? multResult[%1 ]
addResult[%i];\n”, upperldx, lowerldx, i, i);
fprintf (fp, ”assign curWriteDataLU = rcWriteData;\n”);
fprintf(fp, ”\n”);
if (meminputdelay = 0)
fprintf(fp, ”assign curWriteData0 = (curMemSel = 0) ? curWriteDataMem
curWriteDataLU;\n” ) ;
fprintf (fp, ”assign curWriteAddr0 = (curMemSel = 0) ? curWriteAddrMem
curWriteAddrLU;\n” ) ;
fprintf (fp, ”assign curReadAddr0 = (curMemSel = 0) ? curReadAddrMem
curReadAddrLU;\n” ) ;
fprintf (fp, ”assign curWriteByteEn0 = (curMemSel = 0) ? curWriteByteEnMem
curWriteByteEnLU;\n"” ) ;
fprintf (fp, ”assign curWriteEn0 = (curMemSel = 0) ? curWriteEnMem : curWriteEnLU
\n”);
fprintf(fp, ”assign curWriteDatal = (curMemSel = 0) ? curWriteDataLU
curWriteDataMem ;\n” ) ;
fprintf(fp, ”assign curWriteAddrl = (curMemSel = 0) ? curWriteAddrLU
curWriteAddrMem;\n” ) ;
fprintf(fp, ”assign curReadAddrl = (curMemSel = 0) ? curReadAddrLU
curReadAddrMem;\n” ) ;
fprintf(fp, ”assign curWriteByteEnl = (curMemSel = 0) ? curWriteByteEnLU
curWriteByteEnMem ;\n” ) ;
fprintf (fp, ”assign curWriteEnl = (curMemSel = 0) ? curWriteEnLU : curWriteEnMem
i\n”);
else
{
fprintf(fp, ”always @ (posedge clk)\n”);
fprintf(fp, ”begin\n”);
fprintf(fp, ” if (curMemSel = 0)\n”);
fprintf(fp, ” begin\n”);
fprintf(fp, 7 curWriteDataOReg [0] <= curWriteDataMem;\n”);
fprintf(fp, ” curWriteAddrOReg [0] <= curWriteAddrMem;\n”);
fprintf(fp, 7 curReadAddrOReg [0] <= curReadAddrMem;\n”);
fprintf(fp, ” curWriteByteEnOReg [0] <= curWriteByteEnMem ;\n”) ;
fprintf(fp, ” curWriteEnOReg [0] <= curWriteEnMem;\n”) ;
fprintf(fp, 7 curWriteDatalReg[0] <= curWriteDataLU;\n”);
fprintf(fp, 7 curWriteAddrlReg [0] <= curWriteAddrLU;\n”);
fprintf(fp, 7 curReadAddrlReg [0] <= curReadAddrLU;\n”);
fprintf(fp, ” curWriteByteEnlReg [0] <= curWriteByteEnLU;\n"”);
fprintf(fp, 7 curWriteEnlReg [0] <= curWriteEnLU;\n”);
fprintf(fp, ” end\n”) ;
fprintf(fp, 7 else\n”);
fprintf(fp, ” begin\n”);
fprintf(fp, ” curWriteDataOReg [0] <= curWriteDataLU;\n"”);
fprintf(fp, 7 curWriteAddrOReg [0] <= curWriteAddrLU;\n”);
fprintf(fp, ” curReadAddrOReg [0] <= curReadAddrLU;\n”);
fprintf(fp, 7 curWriteByteEnOReg [0] <= curWriteByteEnLU;\n”);
fprintf(fp, ” curWriteEnOReg [0] <= curWriteEnLU;\n”);
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fprintf(fp, ” curWriteDatalReg [0] <= curWriteDataMem;\n”);

fprintf(fp, ” curWriteAddrlReg [0] <= curWriteAddrMem;\n”);

fprintf(fp, 7 curReadAddrlReg [0] <= curReadAddrMem;\n”);

fprintf(fp, ” curWriteByteEnlReg [0] <= curWriteByteEnMem ;\n”);

fprintf(fp, 7 curWriteEnlReg [0] <= curWriteEnMem;\n”) ;

fprintf(fp, ” end\n”) ;

for (i = 0; i < meminputdelay —1; i++)

{
fprintf(fp, 7 curWriteDataOReg[%i] <= curWriteDataOReg[%i];\n”, i+1, 1);
fprintf(fp, ” curWriteAddrOReg[%i] <= curWriteAddrOReg[%i];\n”, i+1, i);
fprintf(fp, 7 curReadAddrOReg|[%i] <= curReadAddrOReg|[%i];\n”, i+1, i);
fprintf(fp, ” curWriteByteEnOReg[%i] <= curWriteByteEnOReg[%i];\n”, i+1, i

)
fprintf(fp, ” curWriteEnOReg[%i] <= curWriteEnOReg[%i];\n”, i+1, i);
fprintf(fp, ” curWriteDatalReg[%i] <= curWriteDatalReg[%i];\n”, i+1, i);
fprintf(fp, 7 curWriteAddrlReg[%i] <= curWriteAddrlReg[%i];\n”, i+1, i);
fprintf(fp, ” curReadAddrlReg[%i] <= curReadAddrlReg(%i];\n”, i+1, i);
fprintf(fp, 7 curWriteByteEnlReg|[%i] <= curWriteByteEnlReg[%i];\n”, i+1, i
)

fprintf(fp, 7 curWriteEnlReg[%i] <= curWriteEnlReg[%i];\n”, i+1, i);

}

fprintf(fp, ”end\n”);

fprintf(fp, ”assign curWriteData0 = curWriteDataOReg[%i];\n”, i);

fprintf(fp, ”assign curWriteAddr0 = curWriteAddrOReg[%i];\n”, i);

fprintf(fp, ”assign curReadAddr0 = curReadAddrOReg[%i];\n”, i);

fprintf(fp, ”assign curWriteByteEn0 = curWriteByteEnOReg[%i];\n”, i);

fprintf(fp, ”assign curWriteEn0 = curWriteEnOReg[%1i];\n”, i);

fprintf (fp, ”assign curWriteDatal = curWriteDatalReg[%i];\n”, i);

fprintf(fp, ”assign curWriteAddrl = curWriteAddrlReg[%i];\n”, i);

fprintf(fp, ”assign curReadAddrl = curReadAddrlReg[%i];\n”, i);

fprintf(fp, ”assign curWriteByteEnl = curWriteByteEnlReg[%i];\n”, i);

fprintf(fp, ”assign curWriteEnl = curWriteEnlReg[%1i];\n”, i);

}
fprintf(fp, ”\n”);

if (memoutputdelay =— 0) {
fprintf (fp, ”assign curReadDataMem = (curMemSel = 0) ? curReadData0
curReadDatal;\n”);
fprintf(fp, ”assign curReadDataLU = (curMemSel = 0) ? curReadDatal
curReadData0;\n”);
else {
fprintf(fp, ”always @ (posedge clk)\n”);
fprintf(fp, ”begin\n”);
fprintf(fp, ” curReadDataOReg [0] <= curReadData0;\n”);
fprintf(fp, 7 curReadDatalReg [0] <= curReadDatal;\n”);
for (i = 0; i < memoutputdelay —1; i++)
fprintf(fp, ” curReadDataOReg[%i] <= curReadDataOReg[%i];\n”, i+1, i);
fprintf(fp, 7 curReadDatalReg[%i] <= curReadDatalReg[%i];\n”, i+1, i);
}
fprintf(fp, ”end\n”);
fprintf(fp, ”assign curReadDataMem = (curMemSel = 0) ? curReadDataOReg[%1i ]
curReadDatalReg[%i];\n”, i, i);
fprintf(fp, ”assign curReadDataLU = (curMemSel = 0) ? curReadDatalReg[%i ]

}

curReadDataOReg[%i];\n”, i, 1);

fprintf (fp, ”endmodule\n”);
fclose (fp);
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A.5 LU Controller Module Function

The source code provided below creates the LU Controller module, which is described
in Section 3.3. This module produces the control signals that direct the LU Processing

module to perform the computation.

#include <stdio.h>
#include <math.h>
#define intlog2(x) (int)ceil(log(x)/log(2))

void genLUC(int numPE, int precision, int mwidth, int mdivk, int intdivlat , int multlat,
int addlat ,
int curlat , int leftlat , int toplat, int divlat, int ramwidth, int ramsizewidth, int
topsizewidth)

FILE xfp;

int PEwidth, mdivkwidth;

int maxcurleftlat , maxtopleftlat , maxcurtoplat, maxmemlat;
int divlatwidth;

int madelay, mcdelay, mdelay, rdelay, cdelay;

int i;

maxtopleftlat = (toplat > leftlat) ? toplat : leftlat;
maxcurleftlat = (curlat > leftlat) ? curlat : leftlat;
maxcurtoplat = (curlat > toplat) ? curlat : toplat;
maxmemlat = (maxcurtoplat > leftlat) ? maxcurtoplat : leftlat;
PEwidth = intlog2 (numPE) ;

divlat += toplat;

divlatwidth = intlog2(divlat+1);

mdivkwidth = intlog2 (mdivk+1);

madelay = multlat+addlat+maxtopleftlat+1;

mdelay = multlat+maxtopleftlat—curlat ;

mcdelay = multlat+leftlat ;

rdelay = toplat—leftlat;

cdelay = leftlat —toplat;

fp = fopen(”LUController.v”, ”?w”);
fprintf(fp, ”?//auto—generated LUController.v\n”);

fprintf(fp, 7?//control block that creates all the control signals\n”);
fprintf(fp, 7 //by Wei Zhang\n\n”);

fprintf (fp, ”"module LUController (clk, start-in, m-in, n_in, loop-in, mode.in, done
An”) s

fprintf (fp, 7 curReadAddr, curWriteAddr, curWriteByteEn
curWriteEn, curWriteSel, \n”);

fprintf (fp, 7 leftRead Addr , leftWriteAddr, leftWriteByteEn ,
leftWriteEn , leftWriteSel ,\n”);

fprintf(fp, ” topReadAddr, topWriteAddr, topWriteEn, topWriteSel,

topSourceSel , diagSel, diagEn, MOSel, MOEn);\n”);

fprintf(fp, ”\n”);

fprintf (fp, ”parameter NUMPE = %i , PEWIDTH = %i ;\n” , numPE, PEwidth);

fprintf (fp, ”parameter BLOCKWIDTH = %i , BLOCKDIVK = %i , BLOCKDIVKWIDTH = %i ;\n” ,
mwidth, mdivk, mdivkwidth);

fprintf (fp, ”parameter INTDIVLAT = %i;\n”, intdivlat);

fprintf(fp, ”parameter CURLAT = %i , LEFTLAT = %i, TOPLAT = %i, DIVLAT = %i;\n”,
curlat , leftlat , toplat, divlat);

fprintf (fp, ”parameter DIVLATWIDTH = %i , MADELAY = %i , MCDELAY = %i , MDELAY = %i ;\n”
, divlatwidth , madelay, mcdelay, mdelay);

fprintf (fp, ”parameter RDELAY = %i , CDELAY = %i;\n”, rdelay, cdelay);

fprintf (fp, ”parameter MAXCURLEFILAT = %i , MAXTOPLEFTLAT = %i , MAXCURTOPLAT = %i ;\n”
, maxcurleftlat , maxtopleftlat, maxcurtoplat);
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fprintf (fp, ”parameter RAMNUMBYTES = %i , RAMSIZEWIDTH = %i , TOPSIZEWIDTH = %i ;\n” ,
ramwidth /8, ramsizewidth, topsizewidth);

fprintf(
fprintf (
fprintf (
fprintf (
fprintf (
fprintf (
fprintf (
fprintf (
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

fp
fp
fp
fp
fp

fp
fp
fp

fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp

)

)

fprintf (fp,

fprintf (fp, ”parameter ROWWAIT = 0, FETCHROW = 1, DONEFETCHROW = 2,

77\n71) ;

“input clk, start_in;\n”);

”input [BLOCKWIDTH—1:0] m-in, n_in, loop-in;\n”);

“input [1:0] mode_in;\n”);

”output done;\n”);

77\n77) ;

”output [RAMNUMBYTES-1:0] curWriteByteEn;\n”);

”output [RAMSIZEWIDTH—1:0] curWriteAddr, curReadAddr;\n”);
”output curWriteEn;\n”);

”\H”) ;

”output [RAMNUMBYTES—1:0] leftWriteByteEn;\n”);

7output [RAMSIZEWIDTH—1:0] leftWriteAddr, leftReadAddr;\n”);
7output leftWriteEn;\n”);

77\n’7) ;

”output [TOPSIZEWIDTH—1:0] topWriteAddr, topReadAddr;\n”);
”output topWriteEn;\n”);

”» \H” ) ;

output leftWriteSel, curWriteSel, topSourceSel, diagEn;\n”);

”output [PEWIDTH—1:0] diagSel, topWriteSel;\n”);
77\n77) ;

”output MOSel;\n”);

”output MOEn;\n”);

77\n’7) ;

”» parameter SETUP = 0, START = 1, FETCH.COL = 2, WAIT.COL = 3, FIND_REC =
4, MULT.COL = 5, UPDATE.] = 6,\n");
fprintf(fp, ” STOREMO = 7, MULTSUB = 8, INCRE.I = 9, WAIT = 10, DONE = 11,
STOREDIAG = 12, STOREDIAG2 = 13, STARTFETCHROW = 14;\n”);

LOAD ROW_INC.J = 3;\n”);
fprintf (fp,
fprintf (fp,
fprintf(fp,

(
(
fprintf (
fprintf(
fprintf (
fprintf(
fprintf (
fprintf(
fprintf(

fp
fp
fp
fp
fp
fp
fp

)

)

)

)

)

)

)

fprintf (fp,

nextTopldxCounter;\n”);
fprintf (fp,
fprintf(fp,
fprintf (fp,
fprintf(fp,

readRowCounter, topWriteCounter;\n”);
fprintf (fp,
fprintf (fp,
fprintf (fp,
fprintf (fp,

(
(
(
fprintf (
fprintf(
fprintf (
fprintf (
fprintf(
fprintf (
fprintf(
fprintf (
fprintf (
fprintf (
fprintf(
fprintf(
fprintf (
fprintf(
fprintf (
fprintf(

fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp

77\n’7) ;

"reg start, startDelay [INTDIVLAT:0];\n”);

”reg [BLOCKWIDTH—-1:0] m, n, stop, stop2, loop;\n”);

"reg [1:0] mode;\n”);

"reg[3:0] nextState, currentState;\n”);

"reg[1:0] nextRowState, currentRowState;\n”);

"reg startFetchRow , doneFetchRow, loadRow, writeRow;\n”);
"reg updateCounter;\n”);

77\n77) ;

”reg [BLOCKWIDTH—-1:0] i1, j;\n”);

”reg [TOPSIZEWIDTH—1:0] nextTopldx, nextTopldx2, curTopldx,

” reg [BLOCKDIVKWIDTH—1:0] topldx, topldxCounter, mdivk;\n”);
” reg [RAMSIZEWIDTH—1:0] diagldx, leftIdx , msldx;\n”);
"reg [PEWIDTH—1:0] imodk, ilmodk;\n”);

”reg [RAMSIZEWIDTH—1:0] diagldxCounter, leftldxCounter , msIldxCounter,

”reg [RAMNUMBYTES—1:0] byteEn, ilmodkByteEn;\n”);

77\1177) ;

"reg done;\n”);

77\n77) ;

”reg [RAMNUMBYTES—1:0] curWriteByteEn;\n”);

"reg [RAMSIZEWIDTH—1:0] curWriteAddr, curReadAddr;\n”);
"reg curWriteEn;\n”);

77\n77) ;

”reg [RAMNUMBYTES—1:0] leftWriteByteEn;\n”);

”reg [RAMSIZEWIDTH—1:0] leftWriteAddr , leftReadAddr;\n”);
"reg leftWriteEn;\n”);

» Il”) ;

”reg [TOPSIZEWIDTH—1:0] topWriteAddr, topReadAddr;\n”);
"reg topWriteEn;\n”);

”\Il”) ;

"reg leftWriteSel , curWriteSel , topSourceSel, diagEn;\n”);
"reg [PEWIDTH—1:0] diagSel, topWriteSel;\n”);

”\Il”) ;

"reg MOSel;\n”);

”reg MOEn;\n”);
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fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp

)

)

)

)

)

)

”\Il”) ;

”reg [RAMSIZEWIDTH—1:0] counter;\n”);

”reg [DIVLATWIDTH—1:0] divCounter;\n”);

77\n77) ;

”reg [RAMNUMBYTES—1:0] writeByteEnDelay [MADELAY—1:0];\n”);

"reg [RAMSIZEWIDTH—1:0] curWriteAddrDelay [MADELAY—1:0], curReadAddrDelay |

MDELAY—1:0];\n”);

fprintf (fp

)

"reg leftWriteEnDelay [MADELAY—1:0], curWriteEnDelay [MADELAY—1:0];\n”);

fprintf(fp, ”reg leftWriteSelDelay [CURLAT—1:0], curWriteSelDelay [MCDELAY—1:0];\n”);
if (toplat > leftlat) {
fprintf(fp, ”reg[RAMSIZEWIDTH—1:0] leftReadAddrDelay [RDELAY—1:0];\n");

else if (toplat < leftlat) {
fprintf (fp, ”reg [TOPSIZEWIDTH—1:0] topReadAddrDelay [CDELAY—1:0];\n");

}

fprintf (fp, ”reg|[TOPSIZEWIDTH—1:0] topWriteAddrDelay [MADELAY—1:0];\n”);

fprintf (fp, ”reg topWriteEnDelay [MADELAY—1:0], topSourceSelDelay [CURLAT—1:0];\n”);

fprintf(fp, ”reg [PEWIDTH—1:0] topWriteSelDelay [MADELAY—1:0];\n”);

fprintf (fp, ”reg [PEWIDTH—1:0] diagSelDelay [LEFTLAT—1:0];\n”);

fprintf(fp, ”reg diagEnDelay [TOPLAT—1:0];\n");

fprintf (fp, ”reg MOSelDelay [LEFTLAT—1:0], MOEnDelay [TOPLAT—1:0];\n"”);

fprintf(fp, ”"reg [RAMSIZEWIDTH—-1:0] waitCycles;\n”);

fprintf(fp, ”\n”);

fprintf(fp, 7?// register store m, n and mdivk value\n”);

fprintf(fp, ”always @ (posedge clk)\n”);

fprintf(fp, ”begin\n”);

fprintf(fp, ” if (start_.in = 1)\n”);

fprintf (fp, 7 begin\n”);

fprintf(fp, ” n <= n_in;\n”);

fprintf (fp, ” m <= m_in;\n”);

fprintf(fp, ” loop <= loop_in;\n”);

fprintf(fp, ” mode <= mode_in;\n”);

fprintf(fp, ” end\n”);

fprintf(fp, ” if (mode[0] = 0 && m == loop)\n”);

fprintf(fp, 7 stop <= loop;\n”);

fprintf(fp, ” else\n”);

fprintf (fp, 7 stop <= loop+1;\n”);

fprintf(fp, ” stop2 <= loop;\n”);

fprintf(fp, ” startDelay [0] <= start_in;\n”);

for(i = 0; i < intdivlat; i++)

{
fprintf(fp, 7 startDelay[%i] <= startDelay[%i];\n”, i+1, i);

¥

fprintf (fp, 7 start <= startDelay[%i];\n”, intdivlat);

fprintf(fp, ” mdivk <= (mNUMPE-1)/NUMPE;\n”) ;

fprintf(fp, ”end\n\n");

fprintf(fp, 7?// registers that store values that are used in FSM, dependent on i and
/or j\n”);

fprintf (fp, ”always @Q (posedge clk)\n”);

fprintf(fp, ”begin\n”);

fprintf (fp, 7 if (start = 1)\n");

fprintf(fp, ” topldx <= 0; //offsetldivk;\n”);

fprintf(fp, ” else if (currentState = INCRE.I && ilmodk = NUMPE-1 && mode [0] =—
0)\n");

fprintf(fp, ” topldx <= topldx + 1;\n”);

fprintf(fp, 7 \n”);

fprintf(fp, ” if (start = 1)\n”);

fprintf (fp, 7 diagldx <= 0; //offsetdivk;\n”);

fprintf(fp, ” else if (currentState =— STOREDIAG && mode =— 1)\n”);

fprintf (fp, ” diagldx <= BLOCKDIVK; //uppermdivk;\n”);

fprintf(fp, ” else if (currentState = INCRE.I)\n”);

fprintf (fp, ” begin\n”);

fprintf(fp, ” if ((imodk == NUMPE-1 && mode = 0) || (ilmodk == NUMPE-1 &&
mode = 1))\n”);

fprintf (fp, 7 diagldx <= diagldx + BLOCKDIVK + 1;\n”);

fprintf(fp, ” else\n”);

fprintf(fp, 7 diagldx <= diagldx + BLOCKDIVK;\n”) ;

fprintf(fp, ” end\n”);
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fprintf(fp, ” \n”);

fprintf(fp, ” if (start = 1)\n”);

fprintf(fp, ” leftldx <= 0;\n”);

fprintf(fp, ” else if (currentState =— INCRE_.I)\n”);
fprintf(fp, 7 begin\n”);

fprintf(fp, ” if (ilmodk = NUMPE-1 && mode [0] = 0)\n”);
fprintf (fp, ” leftldx <= leftIdx + BLOCKDIVK + 1;\n”);
fprintf(fp, ” else\n”);

fprintf(fp, ” leftIdx <= leftIdx + BLOCKDIVK;\n”);
fprintf(fp, 7 end\n”);

fprintf(fp, ”\n”);

fprintf (fp, ” if (start = 1)\n");

fprintf(fp, ” msldx <= 0;\n”);

fprintf (fp, 7 else if (currentState UPDATE_J)\n”) ;
fprintf(fp, ” if (mode[l] = 0)\n”);

fprintf (fp, ” msldx <= leftIdx + BLOCKDIVK;\n”);
fprintf(fp, ” else\n”);

fprintf(fp, 7 msldx <= topldx;\n”);

fprintf (fp, 7 else if (nextRowState = LOAD_ROWINC.J)\n”);
fprintf(fp, ” msldx <= msldx + BLOCKDIVK;\n”) ;
fprintf(fp, ”\n”);

fprintf(fp, ” if (start = 1)\n”);

fprintf(fp, ” imodk <= 0; //offsetmodk;\n”);
fprintf(fp, 7 else if (currentState = INCRE_.I)\n”);
fprintf(fp, 7 begin\n”);

fprintf(fp, 7 if (imodk = NUMPE-1)\n");

fprintf(fp, 7 imodk <= 0;\n”);

fprintf (fp, 7 else\n”);

fprintf(fp, ” imodk <= imodk + 1;\n”);

fprintf (fp, ” end\n”) ;

fprintf(fp, ” \n”);

fprintf(fp, ” if (start = 1)\n”);

fprintf(fp, 7 ilmodk <= 1; //offsetlmodk;\n”);
fprintf(fp, ” else if (currentState =— INCRE_.I)\n”);
fprintf(fp, ” begin\n”);

fprintf(fp, ” if (ilmodk = NUMPE-1)\n");

fprintf (fp, 7 ilmodk <= 0;\n”);

fprintf(fp, ” else\n”);

fprintf(fp, ” ilmodk <= ilmodk + 1;\n”);
fprintf(fp, ” end\n”);

fprintf(fp, ” \n”);

fprintf (fp, ” if (start = 1)\n”);

fprintf(fp, ” nextTopldx <= 0;\n”);

fprintf (fp, 7 else if (currentState = INCRE.I)\n”);
fprintf(fp, ” if (mode[l] = 0)\n”);

fprintf (fp, ” nextTopldx <= nextTopldx + n + 1;\n”);
fprintf(fp, ” else\n”);

fprintf(fp, 7 nextTopldx <= nextTopldx + n;\n”);
fprintf (fp, 7 nextTopldx2 <= nextTopldx + n + 1;\n”);
fprintf(fp, ”\n”);

fprintf (fp, 7 if (start = 1)\n");

fprintf(fp, ” curTopldx <= 1;\n”);

fprintf (fp, 7 else if (currentState = UPDATE.J)\n”);
fprintf(fp, ” if (mode[l] = 0)\n”);

fprintf(fp, ” curTopldx <= nextTopldx+1;\n”);
fprintf(fp, ” else\n”);

fprintf(fp, 7 curTopldx <= nextTopldx;\n”);
fprintf (fp, 7 else if (nextRowState = LOAD_ROW.INC.J)\n”);
fprintf(fp, ” curTopldx <= curTopldx + 1;\n”);
fprintf (fp, ” \n”);

fprintf(fp, ” if (start = 1)\n”);

fprintf (fp, ” il <= 1;\n");

fprintf(fp, ” else if (currentState = INCRE_.I)\n”);
fprintf(fp, 7 il <= il + 1;\n”);

fprintf(fp, ”\n”);

fprintf(fp, ” if (start = 1)\n”);

fprintf(fp, ” j <= 0;\n”);

fprintf(fp, 7 else if (currentState =— UPDATE.J)\n"”);
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fprintf(
fprintf(
fprintf(
fprintf (
fprintf (
fprintf (
fprintf (
fprintf(
fprintf (
fprintf (
fprintf(
fprintf (
fprintf(
fprintf (
fprintf(
fprintf (
fprintf(
fprintf(

n”);
fprintf(
fprintf (
fprintf(

fp
fp
fp
fp
fp
fp
fp

fp
fp
fp

fp
fp
fp
fp
fp
fp
fp
fp
fp
fp

fp

)

)

)

if (mode[1] = 0)\n");
j <= il;\n”);

else\n”);

j <= 0;\n");
else if (currentRowState = LOAD_ROW.INC.J)\n");
<=+ 1\n);

9 \1’1” ) ;

”// compute cycles

of delay in FSM\n”);

if (currentState =— STOREMO)\n”);
waitCycles <= MADELAY—1;\n");

else if (currentState =— INCRE_.I)\n”);
begin\n”);
if (il = stop—1)\n");
if (mode[l] = 1)\n");

waitCycles <= MADELAY-1 + MAXCURTOPLAT — 3;\n”);

else\n”);

waitCycles <= waitCycles + MAXCURLEFILAT — 2;\n”);
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else if (mode = 1 && waitCycles < MADELAY-1 — (MCDELAY—1) — 4)\

waitCycles <= MADELAY-1 — (MCDELAY-1) — 4;\n”);
else if (mode = 2 && ilmodk == NUMPE-1)\n”);
waitCycles <= MADELAY-1 + MAXCURTOPLAT — 3;\n”);

if (toplat > leftlat) {
fprintf(fp, ” else if (mode = 0)\n”);

fprintf(fp, 7

fprintf (fp,

(
fprintf (
fprintf(
fprintf (
fprintf(
fprintf (
fprintf (
fprintf(
fprintf (
fprintf(
fprintf (
fprintf(
fprintf (
fprintf(
fprintf(
fprintf (
fprintf(
fprintf (
fprintf (
fprintf (
fprintf(
fprintf(
fprintf (
fprintf(
fprintf (
fprintf(
fprintf (
fprintf(
fprintf (
fprintf (
fprintf(
fprintf (
fprintf(
fprintf (
fprintf(
fprintf (
fprintf (
fprintf(
fprintf(
fprintf (
fprintf (
fprintf(

fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp

)

)

”»

”»

”»

end\n”);

waitCycles <= waitCycles + TOPLAT ;\n”);

else if (waitCycles > 0)\n”);
waitCycles <= waitCycles — 1;\n”);

77\1,1”);
”end\n”) ;
77\n’7);

7 // determining next state of main FSM\n”);
“always @ (*)\n”);
"begin\n”);

case (currentState)\n”);

SETUP:\n" ) ;
begin\n”);
if (start = 1)\n”);
nextState = START;\n”);
else\n”);
nextState = SETUP;\n”);
updateCounter = 1;\n”);
end\n”) ;
START:\n” ) ;
begin\n”);
if (mode = 0)\n”);
begin\n”);
if (m=1&& n = 1)\n");
nextState = DONE;\n”);
else\n”);
nextState = FETCH.COL;\n”);
end\n”) ;
else if (mode = 1)\n”);
nextState = STOREDIAG;\n”);
else if (mode = 2)\n”);
nextState = START FETCHROW;\n”);
else\n”);
nextState = UPDATE.J;\n”);
updateCounter = 1;\n”);

end\n”);

START FETCHROW:\n" ) ;

begin\n”);

if (counter = CURLATHTOPLAT—1)\n");

begin\n”);

if (mode = 0)\n”);
nextState = STOREDIAG;\n”);

else\n”);
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fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp

nextState = UPDATE.J;\n”);
end\n”);
else\n”);
nextState = START FETCHROW;\n”);
updateCounter = 0;\n”);
end\n”);
FETCH.COL:\n”) ;
if (counter >= mdivk—1)\n");
begin\n”);
if (mode = 0 && counter < CURLAT)\n”);
begin\n”");
nextState = WAIT_-COL;\n"”) ;
updateCounter = 0;\n”);
end\n”);
else\n”);
begin\n”);
if (mode = 0)\n”);

nextState = STARTFETCHROW;\n”);

else\n”);
nextState = FIND.REC;\n”);
updateCounter = 1;\n”);
end\n”) ;
end\n”);
else\n”);
begin\n”);
nextState = FETCH.COL;\n”) ;
updateCounter = 0;\n”);
end\n”) ;
WAIT_.COL:\n”) ;
if (counter >= CURLAT)\n”);
begin\n”);
if (mode = 0)\n”);
nextState = STARTFETCHROW;\n”);
else\n”);
nextState FIND_REC;\n”) ;
updateCounter = 1;\n”);
end\n”) ;
else\n”);
begin\n”);
nextState = WAIT_COL;\n”);
updateCounter = 0;\n”);
end\n”) ;
STOREDIAG:\n”) ;
begin\n”);
if (mode = 0)\n”);
nextState = FIND_REC;\n”);

else\n”);
nextState = FETCHCOL;\n”);
updateCounter = 1;\n”);
end\n” ) ;

FIND_REC:\n” ) ;
if (divCounter = DIVLAT)\n”);
begin\n”);
if (mode = 0)\n”);
nextState = MULT-COL;\n”);
else\n”);
nextState = STOREDIAG2;\n”);
updateCounter = 1;\n”);
end\n”) ;
else\n”);
begin\n”);
nextState = FIND_REC;\n”);
updateCounter = 0;\n”);
end\n”);
STORE_DIAG2:\n”) ;
begin\n”);
nextState = MULT-COL;\n”);
updateCounter = 1;\n”);
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fprintf(fp, ” end\n”);

fprintf(fp, 7 MULTCOL:\n” ) ;

fprintf(fp, 7 if (topldxCounter = mdivk—1)\n");

fprintf(fp, 7 begin\n”);

fprintf(fp, 7 nextState = UPDATE.J;\n”);

fprintf(fp, ” updateCounter = 0;\n”);

fprintf (fp, ” end\n”);

fprintf(fp, 7 else\n”);

fprintf(fp, ” begin\n”);

fprintf(fp, 7 nextState = MULT-COL;\n”);

fprintf(fp, 7 updateCounter = 0;\n”);

fprintf (fp, 7 end\n”) ;

fprintf(fp, ”» UPDATE.J:\n”);

fprintf (fp, 7 if ((mode[l] = 1 || counter >= MCDELAY-1) && doneFetchRow == 1)
\n”)

fprintf(fp, ” begin\n”);

fprintf(fp, ” nextState = STOREMO;\n”);

fprintf(fp, 7 updateCounter = 1;\n”);

fprintf (fp, 7 end\n”) ;

fprintf(fp, 7 else\n”);

fprintf (fp, 7 begin\n”);

fprintf(fp, ” nextState = UPDATE._J;\n”);

fprintf(fp, ” updateCounter = 0;\n”);

fprintf(fp, ” end\n”) ;

fprintf(fp, ” STOREMO:\n” ) ;

fprintf(fp, 7 begin\n”);

fprintf(fp, ” if (j = stop2)\n”);

fprintf (fp, 7 begin\n”);

fprintf(fp, 7 if (counter = mdivk—1+MAXCURLEFTLAT-2)\n") ;

fprintf (fp, 7 nextState = DONE;\n”);

fprintf(fp, ” else\n”);

fprintf(fp, ” nextState = STOREMO;\n”);

fprintf(fp, ” updateCounter = 0;\n”);

fprintf(fp, ” end\n”);

fprintf (fp, 7 else\n”);

fprintf(fp, ” begin\n”);

fprintf (fp, 7 nextState = MULTSUB;\n”);

fprintf(fp, ” updateCounter = 1;\n”);

fprintf(fp, ” end\n”);

fprintf(fp, ” end\n”);

fprintf(fp, ” MULT-SUB:\n”) ;

fprintf (fp, 7 if (topldxCounter = mdivk—1)\n");

fprintf(fp, 7 begin\n”);

fprintf (fp, 7 if (j = n-1)\n");

fprintf(fp, ” nextState = INCRE.I;\n”);

fprintf(fp, ” else\n”);

fprintf(fp, ” nextState = MULTSUB;\n”);

fprintf(fp, 7 updateCounter = 1;\n”);

fprintf(fp, ” end\n”) ;

fprintf(fp, ” else\n”);

fprintf(fp, 7 begin\n”);

fprintf(fp, 7 nextState = MULTSUB;\n”);

fprintf (fp, 7 updateCounter = 0;\n”);

fprintf(fp, 7 end\n”) ;

fprintf (fp, ” INCRE.I:\n”);

fprintf (fp, 7 begin\n”);

fprintf(fp, ” nextState = WAIT;\n”);

fprintf(fp, 7 updateCounter = 1;\n”);

fprintf(fp, ” end\n”) ;

fprintf (fp, ” WAIT:\n”) ;

fprintf(fp, ” if (waitCycles = 0)\n”);

fprintf (fp, ” begin\n”);

fprintf(fp, 7 if (il = stop)\n”);

fprintf(fp, ” nextState = DONE;\n”);

fprintf(fp, 7 else if (mode = 0)\n”);

fprintf(fp, 7 nextState = STOREDIAG;\n”);

fprintf(fp, 7 else if (mode = 1)\n”);

fprintf(fp, ” nextState = FIND.REC;\n”);



APPENDIX A. COMPUTE ENGINE GENERATOR SOURCE CODE

fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp

else\n”);
nextState = UPDATE.J;\n”);
updateCounter = 1;\n”);
end\n”) ;
else\n”);
begin\n”);
nextState = WAIT;\n”);
updateCounter = 0;\n”);

MULT-SUB && topldxCounter+2 =— mdivk)\n”);
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signals to temp-top block\n”);

fprintf(fp, 7 end\n”);

fprintf(fp, ” DONE:\n”) ;

fprintf(fp, ” begin\n”);

fprintf (fp, 7 nextState = DONE;\n”) ;

fprintf(fp, ” updateCounter = 0;\n”);

fprintf (fp, ” end\n”) ;

fprintf(fp, ” default:\n”);

fprintf(fp, ” begin\n”);

fprintf(fp, 7 nextState = SETUP;\n”);

fprintf(fp, 7 updateCounter = 1;\n”);

fprintf(fp, 7 end\n”);

fprintf(fp, ” endcase\n”);

fprintf(fp, ”end\n”);

fprintf(fp, ”\n”);

fprintf (fp, "always @ (x)\n”);

fprintf(fp, ”begin\n”);

fprintf(fp, 7 if (currentRowState =— DONEFETCHROW)\n”) ;

fprintf(fp, 7 doneFetchRow = 1;\n”);

fprintf(fp, ” else\n”);

fprintf (fp, 7 doneFetchRow = 0;\n”);

fprintf(fp, ” if ((nextState = STARTFETCHROW && currentState !=
START FETCHROW && il = 1))\n”);

fprintf(fp, ” startFetchRow = 1;\n”);

fprintf(fp, ” else\n”);

fprintf (fp, 7 startFetchRow = 0;\n”);

fprintf(fp, 7 if (currentState

fprintf(fp, ” loadRow = 1;\n”);

fprintf(fp, ” else\n”);

fprintf (fp, 7 loadRow = 0;\n”);

fprintf(fp, 7 writeRow = (msldxCounter = readRowCounter)&&(currentState=MULT_SUB
)&&(j!=n)&&(mode [0] = 0);\n”);

fprintf(fp, ”end\n”);

fprintf(fp, ”\n”);

fprintf(fp, ?// second FSM that controls the control

fprintf(fp, 7always @ (x)\n”);

fprintf (fp, ”begin\n”);

fprintf(fp, ” case (currentRowState)\n”);

fprintf (fp, ” FETCHROW:\n" ) ;

fprintf(fp, ” if (nextTopldxCounter = n—1)\n");

fprintf(fp, 7 nextRowState = DONEFETCHROW;\n”) ;

fprintf(fp, 7 else\n”);

fprintf(fp, 7 nextRowState = FETCHROW;\n” ) ;

fprintf(fp, 7 DONEFETCHROW:\n” ) ;

fprintf(fp, 7 if (startFetchRow = 1)\n”);

fprintf(fp, ” nextRowState = FETCHROW;\n” ) ;

fprintf (fp

)

else if (loadRow = 1 || (topldx+l = mdivk && nextState

MULT_SUB) )\n” ) ;

fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp

o~ P . =

)

)

)

”

9

nextRowState = LOAD ROW.INC.J;\n”);
else\n”);
nextRowState = DONEFETCHROW;\n” ) ;
LOAD_ROW_INC_J:\n” ) ;

if (topldx+l1 = mdivk && nextState = MULTSUB)\n”) ;

nextRowState = LOAD_ROW.INC.J;\n”) ;
else\n”);
nextRowState = DONEFETCHROW;\n”) ;
default:\n”);
nextRowState = DONEFETCHROW;\n” ) ;
endcase\n”);

7end\n”) ;
”» \n77 ) ;
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fprintf(fp, 7?// address counters\n”);
fprintf(fp, ”always @ (posedge clk)\n”);
fprintf(fp, ”begin\n”);
fprintf(fp, 7 if (updateCounter = 1 || currentRowState =— LOAD ROW.INC.J)\n”);
fprintf(fp, 7 topldxCounter <= topldx;\n”);
fprintf(fp, ” else\n”);
fprintf (fp, ” topIldxCounter <= topldxCounter + 1;\n”);
fprintf(fp, ”\n”);
fprintf(fp, 7 if (updateCounter = 1)\n”);
fprintf(fp, 7 diagldxCounter <= diagldx;\n”);
fprintf(fp, ” else\n”);
fprintf (fp, 7 diagldxCounter <= diagldxCounter + 1;\n”);
fprintf(fp, ”\n”);
fprintf (fp, 7 if (updateCounter = 1 || currentRowState = LOAD_ROW.INC.J)\n”);
fprintf(fp, ” msIdxCounter <= msldx;\n”);
fprintf(fp, ” else\n”);
fprintf(fp, ” msIdxCounter <= msIdxCounter + 1;\n”);
fprintf(fp, ”\n”);
fprintf(fp, 7 if (updateCounter = 1 || currentRowState = LOAD_ROW.INC.J)\n”);
fprintf(fp, ” leftIdxCounter <= leftldx;\n”);
fprintf (fp, ” else\n”);
fprintf(fp, ” leftIdxCounter <= leftIdxCounter + 1;\n”);
fprintf (fp, ” \n”);
fprintf(fp, ” if (currentState = FETCH.COL || currentState = STOREMO)\n”);
fprintf(fp, 7 topWriteCounter <= il;\n”);
fprintf(fp, 7 else if (writeRow = 1 || currentRowState =— FETCHROW)\n”);
fprintf(fp, 7 topWriteCounter <= topWriteCounter + 1;\n”);
fprintf(fp, ”\n”);
fprintf(fp, 7 if (currentState = START)\n”);
fprintf (fp, ” nextTopldxCounter <= nextTopldx;\n”);
fprintf(fp, ” else if (currentState STOREMO) \n” ) ;
fprintf (fp, ” if (mode[l] = 0)\n");
fprintf(fp, ” nextTopldxCounter <= nextTopldx + n + 1;\n”);
fprintf(fp, ” else\n”);
fprintf(fp, ” nextTopldxCounter <= nextTopldx + n;\n”);
fprintf(fp, ” else if (writeRow = 1 || currentRowState =— FETCHROW)\n”);
fprintf (fp, 7 nextTopldxCounter <= nextTopldxCounter + 1;\n”);
fprintf(fp, ”\n”);
fprintf (fp, ” if (currentState == START)\n”);
fprintf(fp, ” readRowCounter <= 0; //offsetdivk;\n”);
fprintf(fp, 7 else if (currentState STOREMO) \n” ) ;
fprintf (fp, 7 if (mode[l] = 0)\n”);
fprintf(fp, ” readRowCounter <= leftIdx + BLOCKDIVK;\n”);
fprintf (fp, 7 else\n”);
fprintf(fp, ” readRowCounter <= topldx;\n”);
fprintf(fp, ” else if (writeRow = 1 || currentRowState = FETCHROW)\n”);
fprintf(fp, ” readRowCounter <= readRowCounter + BLOCKDIVK;\n”) ;
fprintf(fp, ”\n”);
fprintf(fp, 7 if (updateCounter 1)\n”);
fprintf(fp, 7 counter <= 0;\n”);
fprintf (fp, 7 else\n”);
fprintf(fp, ” counter <= counter + 1;\n”);
fprintf(fp, ”\n”);
fprintf(fp, ” if (currentState = STOREDIAG || currentState = STORE_DIAG2)\n”);
fprintf(fp, ” divCounter <= 0;\n”);
fprintf(fp, 7 else if (divCounter < DIVLAT)\n”);
fprintf(fp, 7 divCounter <= divCounter + 1;\n”);
fprintf(fp, ”\n”);
if (precision = 64)
{
fprintf(fp, ” ilmodkByteEn <= “(%i\’h0) >> (ilmodk=8);\n”, ramwidth/8);
}
else
{
fprintf(fp, 7 ilmodkByteEn <= “(%i\’h0) >> (ilmodkx4);\n”, ramwidth/8);
¥

fprintf(fp, ”end\n”);
fprintf(fp, ”\n”);
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fprintf(fp, ”?// compute Byte Enable\n”);
fprintf(fp, ”always @ (posedge clk)\n”);
fprintf(fp, ”begin\n”);

fprintf(fp, ” if ((nextState = MULT.COL && currentState != MULT.COL) || (
currentState = STOREMO) || currentRowState = LOAD_ROW.INC_J)\n");

fprintf(fp, ” byteEn <= ilmodkByteEn;\n”);

fprintf (fp, ” else\n”);

fprintf(fp, ” byteEn <= “0;\n”);

fprintf(fp, ”end\n”);

fprintf(fp, ”\n”);

fprintf(fp, 7?// update FSM state register\n”);

fprintf (fp, ”always @Q (posedge clk)\n”);

fprintf(fp, ”begin\n”);

fprintf (fp, 7 if (start-in = 1)\n”);

fprintf(fp, ” currentState <= SETUP;\n”);

fprintf(fp, ” else\n”);

fprintf(fp, ” currentState <= nextState;\n”);

fprintf(fp, ” if (start = 1)\n”);

fprintf(fp, 7 currentRowState <= DONEFETCHROW;\n” ) ;

fprintf(fp, ” else\n”);

fprintf (fp, 7 currentRowState <= nextRowState;\n”);

fprintf(fp, ”end\n”);

fprintf(fp, ”\n”);

fprintf(fp, 7?// delay register for control signals\n”);

fprintf(fp, ”// control signals are delayed to match latency of operations and/or
memory access\n”);

fprintf (fp, ”always @ (posedge clk)\n”);

fprintf(fp, ”begin\n”);

for (i = 0; i < mdelay—1; i++) {
fprintf(fp, ” curReadAddrDelay[%i] <= curReadAddrDelay[%i];\n”, i, i+1);

fprintf(fp, ” curReadAddrDelay[%i] <= msldxCounter;\n”, i);
fprintf(fp, ” \n”);

for (i = 0; i < curlat—1; i++4) {
fprintf(fp, ” curWriteAddrDelay[%i] <= curWriteAddrDelay[%i];\n”, i, i+1);

}

fprintf(fp, ” if (currentState = FETCH.COL)\n”);

fprintf(fp, ” curWriteAddrDelay[%i] <= diagldxCounter;\n”, i);

fprintf(fp, ” else\n”);

fprintf(fp, ” curWriteAddrDelay[%i] <= curWriteAddrDelay[%i];\n”, i, i+1);

for (i = curlat; i < mcdelay—1; i++) {
fprintf(fp, ” curWriteAddrDelay[%i] <= curWriteAddrDelay[%i];\n”, i, i+1);

fprintf(fp, ” if (currentState == MULT_COL)\n”);

fprintf(fp, 7 curWriteAddrDelay[%i] <= leftldxCounter;\n”, i);

fprintf(fp, 7 else\n”);

fprintf(fp, ” curWriteAddrDelay[%i] <= curWriteAddrDelay[%i];\n”, i, i+1);

for (i = mcdelay; i < madelay—1; i++) {
fprintf(fp, ” curWriteAddrDelay[%i] <= curWriteAddrDelay[%i];\n”, i, i+1);

fprintf(fp, ” curWriteAddrDelay[%i] <= msIdxCounter;\n”, i);
fprintf(fp, ” \n”);

for (i = 0; i < curlat —1; i++) {
fprintf(fp, ” writeByteEnDelay[%i] <= writeByteEnDelay[%i];\n”, i, i+1);

}

fprintf(fp, ” if (mode[0] = 1)\n”);

fprintf (fp, 7 writeByteEnDelay[%i] <= “0;\n”, i);

fprintf(fp, ” else if (currentState = FETCH.COL)\n”);

fprintf(fp, ” writeByteEnDelay[%i] <= byteEn;\n”, i);

fprintf(fp, ” else\n”);

fprintf(fp, 7 writeByteEnDelay[%i] <= writeByteEnDelay[%i];\n”, i, i+1);

for (i = curlat; i < mcdelay—1; i++) {
fprintf(fp, ” writeByteEnDelay[%i] <= writeByteEnDelay[%i];\n”, i, i+1);

}
fprintf(fp, ” if (currentState = MULT.-COL)\n”);
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fprintf(fp, ” writeByteEnDelay[%i1] <= byteEn;\n”, i);
fprintf(fp, ” else\n”);
fprintf(fp, ” writeByteEnDelay[%i1] <= writeByteEnDelay[%i];\n”, i, i+1);

for (i = mcdelay; i < madelay—1; i++) {
fprintf(fp, ” writeByteEnDelay[%i1] <= writeByteEnDelay[%i];\n”, i, i+1);

fprintf(fp, ” writeByteEnDelay[%i] <= byteEn;\n”, i);
fprintf(fp, ” \n”);

for (i = 0; i < mcdelay—1; i++) {
fprintf(fp, ” curWriteSelDelay [%i] <= curWriteSelDelay[%i];\n”, i, i+1);

}

fprintf(fp, ” if (currentState = MULT.-COL)\n”);
fprintf (fp, 7 curWriteSelDelay[%i] <= 0;\n”, i);
fprintf(fp, ” else\n”);

fprintf (fp, ” curWriteSelDelay[%i] <= 1;\n”, 1i);
fprintf(fp, ”\n”);

for (i = 0; i < mcdelay—1; i++) {
fprintf(fp, ” curWriteEnDelay [%i] <= curWriteEnDelay[%i];\n”, i, i+41);

}

fprintf(fp, 7 if (currentState = MULT-COL)\n”);

fprintf (fp, ” curWriteEnDelay[%i] <= 1;\n”, 1);

fprintf(fp, 7 else\n”);

fprintf(fp, 7 curWriteEnDelay[%i] <= curWriteEnDelay[%i];\n”, i, i+41);

for (i = mcdelay; i < madelay—1; i++) {
fprintf(fp, ” curWriteEnDelay [%i] <= curWriteEnDelay[%i];\n”, i, i+41);

}

fprintf(fp, 7 if (currentState = MULTSUB)\n”);
fprintf(fp, ” curWriteEnDelay[%i] <= 1;\n”, 1);
fprintf(fp, ” else\n”);

fprintf(fp, ” curWriteEnDelay[%i] <= 0;\n”, 1);
fprintf(fp, ”\n”);

for (i = 0; i < curlat—1; i++) {
fprintf(fp, ” leftWriteSelDelay[%i] <= leftWriteSelDelay[%i];\n”, i, i+1);

}

fprintf(fp, ” if (currentState = FETCH.COL)\n”);
fprintf(fp, ” leftWriteSelDelay[%i] <= 0;\n”, i);
fprintf(fp, ” else\n”);

fprintf(fp, 7 leftWriteSelDelay[%i] <= 1;\n”, i);
fprintf(fp, ”\n”);

for (i = 0; i < curlat—1; i++) {

fprintf(fp, ” leftWriteEnDelay [%i] <= leftWriteEnDelay[%i];\n”, i, i+1);
fprintf(fp, ” if (currentState = FETCH.COL)\n”);
fprintf(fp, 7 leftWriteEnDelay[%i] <= 1;\n”, i);
fprintf(fp, 7 else\n”);
fprintf(fp, 7 leftWriteEnDelay [%i] <= leftWriteEnDelay[%i];\n”, i, i+1);
for (i = curlat; i < mcdelay—1; i++) {
fprintf(fp, ” leftWriteEnDelay [%i] <= leftWriteEnDelay[%i];\n”, i, i+1);
}
fprintf(fp, 7 if (currentState = MULT.COL)\n”);
fprintf (fp, ” leftWriteEnDelay[%i] <= 1;\n”, i);
fprintf(fp, ” else\n”);
fprintf(fp, 7 leftWriteEnDelay [%i] <= leftWriteEnDelay[%i];\n”, i, i+1);

for (i = mcdelay; i < madelay—1; i++4) {
fprintf(fp, ” leftWriteEnDelay [%i] <= leftWriteEnDelay[%i];\n”, i, i+1);

}

fprintf(fp, ” if (currentState = MULTSUB && (mode = 0 || (mode =— 1 && j = il)
))\n") ;

fprintf(fp, ” leftWriteEnDelay[%i] <= 1;\n”, i);

fprintf(fp, ” else\n”);

fprintf(fp, ” leftWriteEnDelay[%i] <= 0;\n”, i);

fprintf(fp, ”\n”);

for (i = 0; i < curlat—1; i++4) {
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fprintf(fp, 7 topWriteAddrDelay[%i] <= topWriteAddrDelay[%i];\n”, i, i+1);

}

fprintf(fp, ” if (currentRowState =— FETCHROW)\n”);

fprintf(fp, ” topWriteAddrDelay[%i] <= nextTopldxCounter;\n”, i);
fprintf(fp, 7 else\n”);

fprintf(fp, ” topWriteAddrDelay[%i] <= topWriteAddrDelay[%i];\n”, i, i+1);

for (i = curlat; i < madelay—1; i++) {
fprintf(fp, ” topWriteAddrDelay[%i] <= topWriteAddrDelay[%i];\n”, i, i+1);
}

fprintf(fp, ” topWriteAddrDelay[%i] <= nextTopldxCounter;\n”, i);
fprintf(fp, ”\n”);

for (i = 0; i < curlat—1; i++4) {
fprintf(fp, ” topWriteEnDelay[%i] <= topWriteEnDelay[%i];\n”, i, i+1);

}

fprintf(fp, ” if (currentRowState =— FETCHROW)\n”);

fprintf(fp, ” topWriteEnDelay [%i] <= 1;\n”, i);

fprintf(fp, ” else\n”);

fprintf(fp, ” topWriteEnDelay [%i] <= topWriteEnDelay[%i];\n”, i, i+1);

for (i = curlat; i < madelay—1; i++) {
fprintf(fp, ” topWriteEnDelay[%i] <= topWriteEnDelay[%i];\n”, i, i+1);
}

fprintf(fp, ” topWriteEnDelay[%i] <= writeRow;\n”, i);
fprintf(fp, ”\n”);

for (i = 0; i < curlat—1; i++) {
fprintf(fp, ” topWriteSelDelay[%i] <= topWriteSelDelay[%i];\n”, i, i+1);

}

fprintf(fp, ” if (currentRowState = FETCHROW || currentState =— UPDATE.J && il
= 1)\n”);

fprintf(fp, ” topWriteSelDelay[%i] <= imodk;\n”, i);

fprintf(fp, ” else\n”);

fprintf(fp, ” topWriteSelDelay[%i] <= topWriteSelDelay[%i];\n”, i, i+1);

for (i = curlat; i < madelay—1; i++) {
fprintf(fp, 7 topWriteSelDelay[%i] <= topWriteSelDelay[%i];\n”, i, i+4+1);
}

fprintf(fp, ” topWriteSelDelay[%i] <= ilmodk;\n”, i);
fprintf(fp, ”\n”);

for (i = 0; i < curlat —1; i++4) {
fprintf(fp, ” topSourceSelDelay[%i] <= topSourceSelDelay[%i];\n”, i, i+1);

}

fprintf(fp, 7 if (start = 1)\n”);

fprintf(fp, ” topSourceSelDelay[%i] <= 0;\n”, i);
fprintf(fp, ” else if (currentState = STOREMO)\n”);
fprintf(fp, ” topSourceSelDelay[%i] <= 1;\n”, i);
fprintf(fp, ”\n”);

if (leftlat > toplat) {
for (i = 0; i < cdelay—1; i++) {
fprintf(fp, ” topReadAddrDelay[%i] <= topReadAddrDelay[%i];\n”, i, i+1);

fprintf(fp, 7 topReadAddrDelay[%i] <= curTopldx;\n”, i);
fprintf(fp, ”\n”);

}

if (toplat > leftlat) {
for (i = 0; i < rdelay —1; i++) {
fprintf(fp, ” leftReadAddrDelay[%i] <= leftReadAddrDelay[%i];\n”, i, i+1);

}
fprintf(fp, ” leftRead AddrDelay[%i] <= leftldxCounter;\n”, i);
fprintf(fp, ”\n”);

}

fprintf(fp, ”\n”);

for (i = 0; i < toplat—1; i++) {
fprintf(fp, ” diagEnDelay[%i] <= diagEnDelay[%i];\n”, i, i+1);
}
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fprintf(fp, ”
STOREDIAG2) ;\n”, i);
fprintf(fp, ”\n”);

for (i = 0;
fprintf (fp,

}

diagEnDelay[%i] <= (currentState = STOREDIAG ||

i < toplat—1; i++) {

fprintf (fp,

LOAD_ROW_INC_J)\n” ) ;
fprintf (fp,
fprintf(fp,
fprintf(fp, ”

fprintf (fp
fprintf (fp

fprintf(
fprintf(
fprintf (
fprintf(
fprintf (
fprintf(
fprintf (fp
fprintf(
fprintf(
fprintf(
fprintf (
fprintf (
fprintf(
fprintf (fp

)

)

”

”

”

”

MOEnDelay(%i] <= MOEnDelay[%i];\n”, i, i+1);

if (currentState = STOREMO || currentRowState =—

MOEnDelay[%i] <= 1;\n”, i);
else\n”);
MOEnDelay[%i] <= 0;\n”, i);

7end\n”) ;

” \1’1”

)

”// output contorl signals\n”);
“always @ (*)\n”);
"begin\n”);

”»

9 \1’1”

if

(currentState == FETCH.COL)\n”);
curReadAddr <= diagldxCounter;\n”);

else if (currentRowState = FETCHROW)\n”);

curReadAddr <= readRowCounter;\n”);

else\n”);

curReadAddr <= curReadAddrDelay [0];\n"”);

curWriteAddr <= curWriteAddrDelay [0];\n");
curWriteByteEn <= writeByteEnDelay [0];\n”);
curWriteSel <= curWriteSelDelay [0];\n”);
curWriteEn <= curWriteEnDelay [0];\n”);

)

if (toplat > leftlat) {
fprintf(fp,

fprintf
fprintf
fprintf

else {

)

)

)

fprintf (fp,

fprintf(
fprintf (
fprintf (fp
fprintf(
fprintf (f

fprintf (
fprintf (fp
fprintf (
fprintf (
fprintf (fp

else {

)

)

)

)

”» \nw

”
”
7 els
”

9

”

”

if (currentState = MULT.COL)\n”);
leftReadAddr <= leftldxCounter;\n”);
else\n”);

leftReadAddr <= leftReadAddrDelay [0];\n”);

leftReadAddr <= leftIdxCounter;\n”);

leftWriteAddr <= curWriteAddrDelay [0];\n”);
leftWriteByteEn <= writeByteEnDelay [0];\n”);
left WriteSel <= leftWriteSelDelay [0];\n”);
leftWriteEn <= leftWriteEnDelay [0];\n”);

)
if

e

(currentState == STOREDIAG)\n”);
topReadAddr <= nextTopldx;\n”);

if (currentState =— STOREDIAG2)\n”);

topReadAddr <= nextTopldx2;\n”);
else\n”);
if (leftlat > toplat) {

fprintf(fp,

”

fprintf(fp, ”

}
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf

(
(
(
(fp
(fp
(
(
(
(
(

fp
fp
fp
fp
fp

”

”

”»

”

”» ”
\n

”»

” 3
if

”

”

9

”» \nw

topReadAddr <= topReadAddrDelay [0];\n");

topReadAddr <= curTopldx;\n”)

topWriteAddr <= topWriteAddrDelay [0];\n”);
topWriteEn <= topWriteEnDelay [0];\n”);
topWriteSel <= topWriteSelDelay [0];\n”);
topSourceSel <= topSourceSelDelay [0];\n”);

)

MOSel <= "(currentState = FIND_REC);\n”);
(currentState = FIND_REC)\n”);

MOEn <= 1;\n”);

else\n”);

)

MOEn <= MOEnDelay [0];\n”);

currentState —
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fprintf(fp, ” diagSel <= diagSelDelay [0];\n”);
fprintf(fp, 7 diagEn <= diagEnDelay [0];\n”);
fprintf(fp, ”\n”);

fprintf(fp, 7 if (currentState = DONE)\n”);
fprintf (fp, 7 done <= 1;\n”);

fprintf(fp, 7 else\n”);

fprintf (fp, ” done <= 0;\n”);

fprintf(fp, ”end\n”);
fprintf(fp, ”\n”);
fprintf (fp, ”endmodule\n”);
fclose (fp);

A.6 Data Transfer Unit Module Function

The source code provided below creates the Data Transfer Unit module, which is de-
scribed in Section 3.4. This module handles communication between the off-chip memory

controller and the Marshalling Controller module in order to perform data marshalling.

#include <stdio.h>
#include <math.h>
#define intlog2(x) (int)ceil(log(x)/log(2))

void genDTU(int burstlen, int datawidth, int memconwidth, int ddrsizewidth , int fifosize
b
int ramwidth, int ramsizewidth, int ratio, int ramlat, int transfersize)

FILE xfp;

int i, j, k;

int burstwidth, fifowidth , countwidth;
burstwidth = intlog2 (burstlen+1);

countwidth = intlog2(ratio+burstlen);
fifowidth = intlog2 (fifosize);

fp = fopen(”DataTransferUnit.v”, "w”);
fprintf(fp, ”\n”);

fprintf (fp, ”?module DataTransferUnit (clk, phy_clk, dtu_-write_req, dtu-read_req,
dtu_mem_addr, dtu_ram_addr, dtu_size, dtu.ack, dtu.done,\n”);

fprintf (fp, 7 ram_read_addr, ram_read_data, ram_write_.byte_en, ram_write_data ,
ram_write_addr, ram_write_en ,\n”);
fprintf (fp, 7 mem-_rdata, mem_rdata_valid, mem_ready, mem_wdata_-req, reset_n ,\n
77) .
b
fprintf (fp, ” burst_begin, mem_local_addr, mem_be, mem_read_req, mem_size,

mem-wdata, mem-_write_req);\n”);

fprintf(fp, ”\n”);

fprintf (fp, ”parameter BURSTLEN = %i , BURSTWIDTH = %i;\n”, burstlen, burstwidth);

fprintf (fp, ”parameter DATAWIDTH = %i , DATANUMBYTES = %i ;\n”, datawidth, datawidth
/8);

fprintf (fp, ”parameter MEMCOONWIDTH = %i , MEMCONNUMBYTES = %i , DDRSIZEWIDTH = %i ;\n” ,

memconwidth, memconwidth/8, ddrsizewidth);

fprintf (fp, ”parameter FIFOSIZE = %i, FIFOWIDTH = %i;\n”, fifosize , fifowidth);

fprintf(fp, ”parameter RAMWIDTH = %i , RAVMNUMBYTES = %i , RAMSIZEWIDTH = %i ;\n” ,
ramwidth, ramwidth/8, ramsizewidth);

fprintf (fp, ”parameter RATIO = %i, RAMLAT = %i;\n”, ratio, ramlat);

fprintf(fp, ”\n”);

fprintf (fp, ”output burst_begin;\n”);
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fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp

fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp

”output
”output
”output
”output
” output
”output
”input
”input
”input
”input
”input
”input
”» \1’1” ) ;
”input
”input
”input
”input
”input
”output
”output
» \Il” ) ;

”output

[DDRSIZEWIDTH—1:0] mem-_local_addr;\n”);
[MEMCONNUMBYTES-1: 0] mem_be;\n”);
mem_read_req;\n”);
[BURSTWIDTH—1:0] mem_size;\n”);
[MEMCONWIDTH-1:0] mem_wdata;\n”) ;
mem_write_req;\n”);

clk, phy_clk;\n”);

[MEMCONWIDTH—-1:0] mem_rdata;\n”);

mem_rdata_valid;\n”);

mem_ready;\n” ) ;

mem_wdata_req;\n”);

reset_n;\n”);

dtu_write_req;\n”);
dtu_read_req;\n”);
[DDRSIZEWIDTH—1:0] dtu-mem-_addr;\n”);
[RAMSIZEWIDTH—1:0] dtu.ram_addr;\n”);
[%1:0] dtu-size;\n”, transfersize —1);
dtu_ack;\n”);
dtu_done;\n”);

[RAMWIDTH—1:0] ram_write_data;\n”);

”input [RAMWIDTH—1:0] ram_read-data;\n”);

”output
”output
”output

”» \Il” ) ;

[RAMSIZEWIDTH—1:0] ram_write_addr , ram._read_addr;\n”);

[RAMNUMBYTES—1:0] ram_write_byte_en;\n”);
ram_write_en;\n”);

”parameter IDLE = 0, WRITE = 1, READ = 2;\n”);
"reg [DDRSIZEWIDTH-1:0] mem_addr [RAMLAT:0];\n”);
"reg [2:0] state;\n”);

”"wire [DATAWIDTH—-1:0] rdata, ram_write_dataw, ram_read_dataw;\n”);

9 \nﬁ ) ;

?wire [RAMSIZEWIDTH-1:0] rfifo_addr;\n”);
"reg fifo_write_reg [RAMLAT—1:0];\n");
"reg write_req-reg [RAMLAT—1:0];\n”);

"reg re

ad_req_-reg [RAMLAT—1:0];\n");

"reg fifo_read_reg [0:0];\n”);
"reg rdata_valid;\n”);

"reg te

st_.complete_reg [1:0];\n”);

"reg [BURSTWIDTH—1:0] size_count [RAMLAT—1:0];\n”);
"reg [RAMSIZEWIDTH-1:0] size;\n”);
"reg [RAMSIZEWIDTH—1:0] ram-addr [RAMLAT—1:0];\n”);

"reg (%

i:0] data_count;\n”, countwidth—1);

"reg ram-_write_en_reg;\n”);

” \1’1” ) ;

?wire r

ead_req;\n”);

”wire write_req;\n”);

”wire [FIFOWIDTH—1:0] wfifo_count;\n”);
"wire rfull , wempty, rempty, rdcmd_empty, wrcmd-full, wrcmd_empty;\n”);
”wire [DATAWIDTH—1:0] mem_data;\n”);
"wire not_stall;\n”);

?wire f
?wire r

”wire [BURSTLENADDRSIZEWIDTH+1:0] wrmem._cmd, rdmem_cmd;\n”);

ifo_write , fifo_read;\n”);
data_req;\n”);

”wire mem_cmd_ready, mem-_cmd_issue;\n”);

” \n77 ) ;

”// FIFOs to interact with off—chip memory\n”);
"memcmd_fifo cmd_store(\n”);

7 .rdclk (phy_clk) ,\n”);

7 .wrclk (clk) ,\n”);

.data (wrmem_cmd) ,\n”) ;
.rdreq (mem_cmd_ready) ,\n
.rdempty (rdemd_empty) ,\n
.wrreq (mem-_cmd_issue) ,\n
7 .wrfull (wremd_full) ,\n”);
.wrempty (wrcmd_empty) ,\n”) ;
.q(rdmem_cmd) );\n”);

113
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fprintf(fp, ”\n”);

fprintf(fp, ”wfifo wdata_store(\n”);

fprintf(fp, 7 .rdclk (phy_clk) ,\n”);

fprintf(fp, 7 .wrclk (clk) ,\n”);

fprintf(fp, 7 .data(mem-_data) ,\n”) ;

fprintf(fp, ” .rdreq(mem_wdata_req) ,\n”) ;

fprintf (fp, ” .wrreq(fifo_write) ,\n”);

fprintf(fp, ” .wrempty (wempty) ,\n”) ;

fprintf(fp, 7 .q(mem_wdata) ,\n”);

fprintf(fp, 7 .wrusedw (wfifo_count));\n”);

fprintf(fp, ”\n”);

fprintf (fp, ”7addr_fifo raddress_store (\n”);

fprintf(fp, 7 .clock (clk) ,\n”);

fprintf (fp, 7 .data(ram_addr [RAMLAT—2]) ,\n"” ) ;

fprintf(fp, ” .rdreq(rdata_req),\n”);

fprintf (fp, ” .wrreq (fifo_read),\n”);

fprintf(fp, ” .empty (rempty) ,\n”);

fprintf(fp, ” full(rfull) \n”);

fprintf (fp, 7 .q(rfifo_addr));\n”);

fprintf(fp, ”\n”);

fprintf(fp, ”rfifo rdata_store(\n”);

fprintf(fp, ” .data(mem_rdata) ,\n”);

fprintf (fp, ” .rdclk (clk) ,\n”);

fprintf(fp, 7 .rdreq(rdata-req),\n”);

fprintf(fp, 7 .wrclk (phy_clk) ,\n”);

fprintf(fp, 7 .wrreq(mem_rdata_valid) ,\n”);

fprintf(fp, ” .q(rdata),\n”);

fprintf (fp, 7 .rdempty (rdata_empty));\n”);

fprintf(fp, ”\n”);

fprintf(fp, ”assign mem_cmd_ready = (mem_ready =— 1) && (rdemd_empty = 0);\n”);

fprintf(fp, ”assign mem_cmd_issue = (wrcmd_full = 0) && (write_.req = 1 || read._req
= 1 || wrcmd_empty = 1);\n”);

fprintf(fp, ”assign wrmem_cmd [BURSTLENHDDRSIZEWIDTH+ 1:DDRSIZEWIDTH+2] = size_count
[0]:\n") ;

fprintf(fp, ”assign wrmem_cmd [DDRSIZEWIDTH+1:2] = mem_addr [0];\n”);

fprintf (fp, ”assign wrmem-cmd|[1l] = read_req;\n”);

fprintf(fp, ”assign wrmem_cmd|[0] = write_req;\n”);

fprintf(fp, ”assign mem_write_req = rdmem_cmd [0] && rdcmd_empty = 0;\n”);

fprintf (fp, ”assign mem_read_-req = rdmem-cmd[1] && rdcmd_-empty = 0;\n”);

fprintf (fp, ”assign mem_local_addr = rdmem_cmd [DDRSIZEWIDTH+1:2];\n”) ;

fprintf (fp, ”assign burst_begin = 0;\n”);

fprintf(fp, ”assign mem_size = rdmem_cmd [BURSTLENHADDRSIZEWIDTH+ 1:DDRSIZEWIDTH+2];\n”
)5

fprintf(fp, ”assign mem_be = ~0;\n”);

fprintf(fp, ”assign fifo_write = fifo_write_reg[0];\n”);

fprintf(fp, ”assign write_.req = (not_stall) ? write_req-reg[0] : 0;\n”);

fprintf(fp, ”assign read.req = (not.stall) ? read_req-reg[0] : 0;\n”);

fprintf (fp, ”assign fifo_.read = (not-stall) ? fifo_read_reg[0] : 0;\n”);

fprintf(fp, ”assign not_stall = (wfifo_count < FIFOSIZE-%i) && (rfull

wrcmd_full = 0);\n”, ramlat);

fprintf(fp, ”assign dtu_ack = (state = IDLE);\n”);

fprintf (fp, ”assign dtu_-done = (state = IDLE) && wempty && rempty;\n”);
fprintf(fp, ”\n”);

// match how memory is stored (like switching endianness)

j =
k =
for

{

}

memconwidth ;
datawidth;
(i = 0; i < ratio; i++)

fprintf (fp, ”assign ram_write_dataw[%i:%i] = rdata[%i:%i];\n”, j—1, j—
memconwidth, k—1, k—memconwidth) ;

fprintf(fp, ”assign mem_data[%i:%i] = ram_read_dataw([%i:%i];\n”, j—1, j—
memconwidth, k—1, k—memconwidth) ;

j += memconwidth;

k —= memconwidth;

fprintf (fp, ”assign ram_write_.data = ram_write_dataw[%i:%1i];\n”, datawidth—1,

datawidth—ramwidth) ;
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fprintf(fp, ”assign ram-_read_dataw[%i:%i] = ram_read_data;\n”, datawidth—1,
datawidth—ramwidth) ;

if (datawidth != ramwidth) {
fprintf(fp, ”assign ram_read_dataw[%i:0] = 0;\n”, datawidth—-ramwidth—1);

fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp

fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp

fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp
fp

fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf

P

”assign ram_write_addr = rfifo_addr;\n”);
”assign ram_read_addr = ram_addr [RAMLAT—1];\n");
”assign ram_write_byte_en = ~0;\n”);

”assign ram_write_en = ram_write_en_reg;\n”);
7assign rdata.req = !rdata_empty;\n”);

9 \nﬁ ) ;

”// FSM to produce off—chip memory commands\n”);
7always @ (posedge clk)\n”);

”

”»

”begin\n”);
if (reset_n = 0)\n"”);
begin\n”);
state <= IDLE;\n”);
end\n”);
else\n”);
begin\n”);
case (state)\n”);
IDLE:\n"”) ;
begin\n”);
if (dtu_write_req)\n”);
state <= WRITE;\n" ) ;
else if (dtu_read_req)\n”);
state <= READ;\n"”);
else\n”);
state <= IDLE;\n”);
end\n”) ;
WRITE:\n” ) ;
begin\n”);
if (not_stall && size =— 0 && data_count < BURSTLEN)\n”);
state <= IDLE;\n"”);
else\n”);
state <= WRITE;\n" ) ;
end\n”) ;
READ:\n"”) ;
begin\n”);
if (not_stall && size =— 0 && data_count < BURSTLEN)\n”);
state <= IDLE;\n"”);
else\n”);
state <= READ;\n"”);
end\n”) ;
default:\n”);
begin\n”);
state <= IDLE;\n”);
end\n”) ;
endcase\n”);
end\n”);
” end\n” ) ;
77\1,1”) ;
”always @ (posedge clk)\n”);
"begin\n”);
”\H”) ;
if (reset.n = 0)\n”);
begin\n”);

size <= 0;\n”);

data_count <= 0;\n”);

size_count [RAMLAT-1] <= 1;\n”);
mem_addr [RAMLAT]| <= 0;\n”);
ram_addr [RAMLAT—1] <= 0;\n”);
fifo_.write_-reg [RAMLAT-1] <= 0;\n”);
write_req_reg [RAMLAT-1] <= 0;\n”);
fifo_.read_reg [0] <= 0;\n”);
read_req_reg [RAMLAT-1] <= 0;\n”);
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fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp
fprintf (fp

” end\n”);

” else if (state =— IDLE)\n”);

7 begin\n”);

size <= dtu_size;\n”);

” size_count [RAMLAT—-1] <= BURSTLEN;\n” ) ;

” mem_addr [RAMLAT] <= dtu_mem_addr;\n”);

” ram_addr [RAMLAT-1] <= dtu_ram_addr;\n”);
” fifo_write_reg [RAMLAT-1] <= 0;\n”);

7 write_req-reg [RAMLAT-1] <= 0;\n”);

” fifo.read_-reg [0] <= 0;\n”);

fprintf(fp, 7 read_req_reg [RAMLAT-1] <= 0;\n”);
fprintf (fp, 7 data_count <= 0;\n”);
fprintf(fp, 7 end\n”) ;
fprintf (fp, 7 else if (data_count >= BURSTLEN && not_stall)\n”);
fprintf(fp, ” begin\n”);
fprintf(fp, ” data_count <= data_count — BURSTLEN;\n”);
fprintf(fp, ” mem_addr [RAMLAT] <= mem_addr [RAMLAT] + BURSTLEN;\n”);
fprintf(fp, 7 fifo_write_reg [RAMLAT-1] <= 0;\n”);
fprintf(fp, 7 write_req-reg [RAMLAT-1] <= state = WRITE;\n"”);
fprintf(fp, ” fifo_.read_reg [0] <= 0;\n”);
fprintf (fp, 7 read_req-reg [RAMLAT-1] <= state = READ;\n”);
fprintf(fp, ” end\n”);
fprintf (fp, ” else if (size = 0 && data_count = 0 && not_stall)\n”);
fprintf(fp, ” begin\n”);
fprintf(fp, 7 fifo_write_reg [RAMLAT-1] <= 0;\n”);
fprintf(fp, 7 write_req-reg [RAMLAT-1] <= 0;\n”);
fprintf(fp, ” fifo.read_reg [0] <= 0;\n”);
fprintf (fp, 7 read_req-reg [RAMLAT-1] <= 0;\n”);
fprintf(fp, ” end\n”);
fprintf(fp, ” else if (size = 0 && not_stall)\n”);
fprintf(fp, ” begin\n”);
fprintf(fp, ” size_count [RAMLAT-1] <= data_count;\n”);
fprintf(fp, ” fifo_write_reg [RAMLAT-1] <= 0;\n”);
fprintf(fp, 7 write_req_reg [RAMLAT-1] <= state =— WRITE;\n”);
fprintf(fp, ” fifo_.read_reg [0] <= 0;\n”);
fprintf(fp, ” read_req_reg [RAMLAT-1] <= state = READ;\n”);
fprintf (fp, ” end\n”) ;
fprintf(fp, ” else if (not_stall)\n”);
fprintf(fp, ” begin\n”);
fprintf(fp, ” size <= size — 1;\n”);
fprintf(fp, 7 data_count <= data_count + RATIO — BURSTLEN;\n”);
fprintf(fp, 7 mem_addr [RAMLAT] <= mem_addr [RAMLAT] + BURSTLEN;\n”);
fprintf(fp, 7 ram_addr [RAMLAT-1] <= ram_addr [RAMLAT-1]+1;\n");
fprintf (fp, 7 fifo_write_-reg [RAMLAT-1] <= state =— WRITE;\n”);
fprintf(fp, ” write_req_reg [RAMLAT-1] <= state = WRITE;\n”);
fprintf(fp, ” fifo_.read_reg [0] <= state = READ;\n”);
fprintf(fp, ” read_req._reg [RAMLAT-1] <= state = READ;\n”);
fprintf(fp, 7 end\n” ) ;
fprintf(fp, 7 else\n”);
fprintf(fp, ” begin\n”);
fprintf(fp, 7 fifo_write_-reg [RAMLAT-1] <= 0;\n”);
fprintf(fp, 7 end\n”) ;
fprintf(fp, ”end\n”);
fprintf(fp, ”\n”);
fprintf(fp, ”\n”);
fprintf (fp, ”always @ (posedge clk)\n”);
fprintf(fp, ”begin\n”);
fprintf(fp, 7 if (reset.n = 0)\n”);
fprintf (fp, ” begin\n”);
for (i = 0; i < ramlat—1; i++)
{
fprintf(fp, 7 fifo_write_reg[%i] <= 0;\n”, i);
}
fprintf(fp, ” end\n”);
fprintf(fp, 7 else\n”);
fprintf (fp, 7 begin\n”);
for (i = 0; i < ramlat—1; i++4)
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{
fprintf(fp, ” fifo_write_reg[%i] <= fifo_write_reg[%i];\n”, i, i+1);
}
fprintf(fp, 7 end\n”);
fprintf(fp, ”\n”);
fprintf(fp, ” if (reset.n = 0)\n”);
fprintf (fp, ” begin\n”);
for (i = 0; i < ramlat—1; i++)
{
fprintf(fp, 7 mem_addr[%i] <= 0;\n”, i);
fprintf(fp, ” ram_addr[%i] <= 0;\n”, i);
fprintf(fp, 7 size_.count[%i] <= 1;\n”, 1);
fprintf(fp, ” write_req-reg(%i] <= 0;\n”, 1i);
fprintf(fp, ” read_req-reg[%i] <= 0;\n”, 1i);
¥
fprintf(fp, ” mem_addr[%i] <= 0;\n”, ramlat—1);
fprintf(fp, 7 end\n”);
fprintf(fp, 7 else if (not_stall)\n”);
fprintf (fp, 7 begin\n”);
for (i = 0; i < ramlat—1; i++4)
{
fprintf(fp, ” size_count[%i] <= size_count[%i];\n”, i, i+1);
fprintf(fp, ” mem_addr[%i] <= mem_addr[%i];\n”, i, i+1);
fprintf(fp, 7 ram-addr[%i] <= ram-addr[%i];\n”, i, i+1);
fprintf(fp, ” write_req-reg|[%i] <= write_req_reg|[%i];\n”, i, i+1);
fprintf(fp, 7 read_req-reg|[%i] <= read_req-reg[%i];\n”, i, i+1);
fprintf (fp, 7 mem_addr[%i] <= mem_addr[%i];\n”, ramlat—1, ramlat);
fprintf(fp, ” end\n”);
fprintf (fp, 7 \n”);
fprintf(fp, ” ram_write_en_reg <= rdata_req;\n”);
fprintf(fp, ”end\n”);
fprintf(fp, ”\n”);
fprintf (fp, ”endmodule\n”);

fclose (fp);



Appendix B

Experimental Data

B.1 Software Performance

B.1.1 Intel MKL

Intel MKL
SGETREF (Single Precision)

4 Cores 2 Cores 1 Cores
Number of GFLOPS GFLOPS GFLOPS

N Operations | Runtime (s) | GFLOPS | per Watt | Runtime (s) | GFLOPS | per Watt | Runtime (s) | GFLOPS | per Watt
25 1.14E+04 2.43E-05 0.47 0.003 1.63E-04 0.07 0.001 2.85E-04 0.04 0.001
50 8.71E+04 7.38E-05 1.18 0.007 3.97E-04 0.22 0.003 6.64E-04 0.13 0.003
75 2.90E+05 1.29E-04 224 0.014 6.05E-04 0.48 0.006 1.01E-03 0.29 0.007
100 6.82E+05 2.00E-04 341 0.021 8.27E-04 0.82 0.010 1.29E-03 0.53 0.013
150 2.28E+06 4.26E-04 5.36 0.033 1.45E-03 1.57 0.020 2.21E-03 1.03 0.026
200 5.39E+06 6.77E-04 7.97 0.050 2.11E-03 2.55 0.032 3.06E-03 1.76 0.044
250 1.05E+07 1.09E-03 9.62 0.060 3.15E-03 3.33 0.042 4.32E-03 2.43 0.061
300 1.81E+07 1.50E-03 12.07 0.075 4.27E-03 4.24 0.053 5.69E-03 3.19 0.080
350 2.88E+07 2.10E-03 13.70 0.086 5.54E-03 5.19 0.065 7.27E-03 3.96 0.099
400 | 4.29E+07 2.65E-03 16.18 0.101 6.69E-03 6.42 0.080 8.57E-03 5.01 0.125
500 8.37E+07 4.39E-03 19.06 0.119 1.04E-02 8.07 0.101 1.33E-02 6.30 0.157
600 1.45E+08 6.39E-03 22.62 0.141 1.45E-02 9.95 0.124 1.88E-02 7.71 0.193
800 3.42E+08 1.03E-02 33.11 0.207 2.20E-02 15.55 0.194 3.23E-02 10.59 0.265
1000 | 6.68E+08 1.65E-02 40.46 0.253 3.52E-02 18.96 0.237 5.62E-02 11.90 0.297
1500 | 2.25E+09 5.01E-02 44.99 0.281 1.00E-01 22.43 0.280 1.74E-01 12.97 0.324
2000 | 5.34E+09 1.01E-01 52.99 0.331 1.96E-01 27.24 0.340 3.56E-01 15.01 0.375
3000 | 1.80E+10 3.04E-01 59.27 0.370 5.91E-01 30.48 0.381 1.10E+00 16.36 0.409
4000 | 4.27E+10 6.68E-01 63.93 0.400 1.29E+00 33.04 0.413 2.36E+00 18.11 0.453
5000 | 8.34E+10 1.26E+00 66.28 0.414 2.41E+00 34.64 0.433 4.44E+00 18.77 0.469
7500 | 2.81E+11 3.99E+00 70.46 0.440 7.54E+00 37.32 0.466 1.46E+01 19.32 0.483
10000| 6.67E+11 9.00E+00 74.05 0.463 1.72E+01 38.78 0.485 3.40E+01 19.64 0.491
12500| 1.30E+12 1.74E+01 74.78 0.467 3.33E+01 39.17 0.490 6.47E+01 20.14 0.504
15000| 2.25E+12 2.92E+01 77.07 0.482 5.55E+01 40.53 0.507 1.10E+02 20.55 0.514
17500| 3.57E+12 | 4.61E+01 77.46 0.484 8.80E+01 40.59 0.507 1.74E+02 20.50 0.512
20000| 5.33E+12 6.74E+01 79.10 0.494 1.29E+02 41.30 0.516 2.56E+02 20.80 0.520
25000| 1.04E+13 1.30E+02 80.05 0.500 2.50E+02 41.72 0.522 4.97E+02 20.98 0.524
30000| 1.80E+13 2.22E+02 81.16 0.507 4.27E+02 42.14 0.527 8.51E+02 21.15 0.529
40000 4.27E+13 5.19E+02 82.28 0.514 1.00E+03 42.67 0.533 2.00E+03 21.34 0.533

Table B.1: Single Precision Performance of MKL on Xeon 5160 for Various Matrix Size
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Intel MKL
DGETRF (Double Precision)
4 Cores 2 Cores 1 Cores
Number of GFLOPS GFLOPS GFLOPS
N Operations | Runtime (s) | GFLOPS | per Watt | Runtime (s) | GFLOPS | per Watt | Runtime (s) | GFLOPS | per Watt
25 1.14E+04 2.77E-05 0.41 0.003 1.72E-04 0.07 0.001 2.83E-04 0.04 0.001
50 8.71E+04 8.50E-05 1.02 0.006 3.96E-04 0.22 0.003 6.58E-04 0.13 0.003
75 2.90E+05 1.79E-04 1.62 0.010 6.49E-04 0.45 0.006 9.98E-04 0.29 0.007
100 6.82E+05 2.46E-04 2.77 0.017 9.07E-03 0.08 0.001 1.26E-03 0.54 0.014
150 2.28E+06 5.91E-04 3.87 0.024 1.74E-03 1.32 0.016 2.24E-03 1.02 0.025
200 5.39E+06 9.67E-04 5.58 0.035 2.67E-03 2.02 0.025 3.21E-03 1.68 0.042
250 1.05E+07 1.56E-03 6.75 0.042 3.86E-03 2.72 0.034 4.64E-03 2.26 0.057
300 1.81E+07 2.23E-03 8.12 0.051 5.33E-03 3.40 0.043 6.18E-03 2.93 0.073
350 2.88E+07 3.22E-03 8.93 0.056 7.09E-03 4.06 0.051 8.31E-03 3.46 0.087
400 | 4.29E+07 4.23E-03 10.14 0.063 9.07E-03 4.73 0.059 1.08E-02 3.99 0.100
500 8.37E+07 6.92E-03 12.10 0.076 1.39E-02 6.01 0.075 1.83E-02 4.57 0.114
600 1.45E+08 1.02E-02 14.16 0.089 2.02E-02 7.16 0.089 2.84E-02 5.09 0.127
800 3.42E+08 1.76E-02 19.40 0.121 3.32E-02 10.31 0.129 5.31E-02 6.44 0.161
1000 | 6.68E+08 2.78E-02 24.07 0.150 5.51E-02 12.13 0.152 9.68E-02 6.90 0.173
1500 | 2.25E+09 8.01E-02 28.13 0.176 1.54E-01 14.59 0.182 2.88E-01 7.82 0.195
2000 | 5.34E+09 1.79E-01 29.90 0.187 3.41E-01 15.66 0.196 6.40E-01 8.34 0.208
3000 | 1.80E+10 5.56E-01 32.39 0.202 1.05E+00 17.16 0.214 2.02E+00 8.92 0.223
4000 | 4.27E+10 1.26E+00 33.82 0.211 2.37E+00 18.01 0.225 4.52E+00 9.45 0.236
5000 | 8.34E+10 2.36E+00 35.32 0.221 4.54E+00 18.37 0.230 8.65E+00 9.64 0.241
7500 | 2.81E+11 7.53E+00 37.38 0.234 1.43E+01 19.61 0.245 2.80E+01 10.05 0.251
10000| 6.67E+11 1.74E+01 38.30 0.239 3.32E+01 20.11 0.251 6.52E+01 10.22 0.255
12500| 1.30E+12 3.33E+01 39.09 0.244 6.30E+01 20.66 0.258 1.26E+02 10.36 0.259
15000| 2.25E+12 5.67E+01 39.71 0.248 1.07E+02 20.95 0.262 2.14E+02 10.51 0.263
17500| 3.57E+12 8.94E+01 39.99 0.250 1.69E+02 21.15 0.264 3.38E+02 10.56 0.264
20000| 5.33E+12 1.32E+02 40.37 0.252 2.50E+02 21.33 0.267 5.00E+02 10.66 0.267
25000| 1.04E+13 NA NA NA 4.85E+02 21.50 0.269 9.72E+02 10.71 0.268
30000| 1.80E+13 NA NA NA 8.35E+02 21.56 0.269 1.67E+03 10.77 0.269
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B.1.2 Basic Code

Simple C code
Single Precision
Number of GFLOPS
N Operations | Runtime (s) | GFLOPS| per Watt
25 1.14E+04 6.74E-06 1.68 0.0421
50 8.71E+04 4.70E-05 1.85 0.0463
75 2.90E+05 1.57E-04 1.84 0.0460
100 6.82E+05 3.83E-04 1.78 0.0445
150 2.28E+06 1.29E-03 1.77 0.0443
200 5.39E+06 3.04E-03 1.78 0.0444
250 1.05E+07 5.86E-03 1.79 0.0448
300 1.81E+07 1.00E-02 1.81 0.0452
350 2.88E+07 1.58E-02 1.82 0.0454
400 4.29E+07 2.36E-02 1.82 0.0455
500 8.37E+07 4.62E-02 1.81 0.0453
600 1.45E+08 7.97E-02 1.81 0.0453
800 3.42E+08 1.89E-01 1.81 0.0453
1000 | 6.68E+08 3.83E-01 1.74 0.0436
1500 | 2.25E+09 1.68E+00 1.34 0.0335
2000 | 5.34E+09 4.55E+00 1.17 0.0293
3000 1.80E+10 1.64E+01 1.10 0.0274
4000 | 4.27E+10 3.95E+01 1.08 0.0271
5000 | 8.34E+10 7.68E+01 1.09 0.0271
7500 | 2.81E+11 2.58E+02 1.09 0.0273
10000| 6.67E+11 6.10E+02 1.09 0.0273
12500 1.30E+12 1.19E+03 1.10 0.0275
15000 | 2.25E+12 2.05E+03 1.10 0.0275
17500 3.57E+12 3.24E+03 1.10 0.0276
20000 | 5.33E+12 4.84E+03 1.10 0.0275
25000| 1.04E+13 9.47E+03 1.10 0.0275
30000| 1.80E+13 1.63E+04 1.10 0.0275
40000| 4.27E+13 3.87E+04 1.10 0.0276

Table B.3: Single Precision Performance of Basic Code on Xeon 5160 for Various Matrix
Size
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Simple C code
Double Precision
Number of GFLOPS

N Operations | Runtime (s) [ GFLOPS | per Watt
17500 3.57E+12 6.51E+03 0.549 0.0137
20000 5.33E+12 9.71E+03 0.550 0.0137
25000 1.04E+13 1.91E+04 0.545 0.0136
30000 1.80E+13 3.27E+04 0.550 0.0137

Table B.4: Double Precision Performance of Basic Code on Xeon 5160 for Various Matrix
Size

B.2 FPGA Performance

B.2.1 Stratix III 3SL340F1760C3

Single Precision Double Precision
120 PEs, Block Size 240x240 57 PEs, Block Size 114x114
Number of Cycle GFLOPS Cycle GFLOPS
N Operations Count |Runtime (s)| GFLOPS | per Watt Count Runtime (s) | GFLOPS | per Watt
25 1.14E+04 | 2.23E+03 | 1.11E-05 1.02 0.06 3.80E+03 | 2.24E-05 0.51 0.03
50 8.71E+04 | 4.62E+03 | 2.31E-05 3.77 0.21 7.87E+03 | 4.63E-05 1.88 0.09
75 2.90E+05 | 7.59E+03 | 3.80E-05 7.63 0.42 2.02E+04 | 1.19E-04 2.44 0.12
100 6.82E+05 | 1.12E+04 | 5.60E-05 12.18 0.68 2.87E+04 | 1.69E-04 4.04 0.20
150 2.28E+06 | 3.10E+04 | 1.55E-04 14.75 0.82 6.36E+04 | 3.74E-04 6.10 0.31
200 5.39E+06 4.85E+04 | 2.43E-04 22.24 1.24 1.18E+05 6.92E-04 7.79 0.39
250 1.05E+07 | 1.22E+05| 6.12E-04 17.17 0.95 2.10E+05 | 1.23E-03 8.51 0.43
300 1.81E+07 | 1.46E+05 | 7.30E-04 24.84 1.38 3.02E+05 | 1.78E-03 10.20 0.51
350 2.88E+07 1.83E+05 | 9.15E-04 31.43 1.75 5.02E+05 2.95E-03 9.75 0.49
400 4.29E+07 | 3.01E+05 | 1.51E-03 28.46 1.58 6.40E+05 | 3.76E-03 11.40 0.57
500 8.37E+07 | 5.85E+05 | 2.93E-03 28.61 1.59 1.07E+06 | 6.32E-03 13.24 0.66
600 1.45E+08 7.54E+05 | 3.77E-03 38.33 2.13 1.83E+06 1.07E-02 13.45 0.67
800 3.42E+08 | 1.80E+06 | 9.01E-03 38.00 211 4.27E+06 | 2.51E-02 13.63 0.68
1000 6.68E+08 | 3.54E+06 | 1.77E-02 37.76 2.10 7.02E+06 | 4.13E-02 16.18 0.81
1500 2.25E+09 1.09E+07 | 5.44E-02 41.45 2.30 2.37E+07 1.40E-01 16.15 0.81
2000 5.34E+09 | 2.45E+07 | 1.23E-01 43.50 242 5.29E+07 | 3.11E-01 17.16 0.86
3000 1.80E+10 | 7.88E+07 | 3.94E-01 45.71 2.54 1.73E+08 | 1.02E+00 17.70 0.89
4000 4.27E+10 1.90E+08 | 9.51E-01 44.90 2.49 4.08E+08 2.40E+00 17.78 0.89
5000 8.34E+10 | 3.63E+08 | 1.81E+00 45.96 2.55 7.67E+08 | 4.51E+00 18.47 0.92
7500 2.81E+11 | 1.22E+09 | 6.08E+00 46.28 257 2.57E+09 | 1.51E+01 18.62 0.93
10000 6.67E+11 2.87E+09 | 1.43E+01 46.48 2.58 6.06E+09 3.57E+01 18.70 0.93
12500 1.30E+12 | 5.59E+09 | 2.80E+01 46.57 2.59 1.18E+10 [ 6.95E+01 18.74 0.94
15000 2.25E+12 | 9.53E+09 | 4.77E+01 47.21 2.62 2.04E+10 | 1.20E+02 18.77 0.94
17500 3.57E+12 1.51E+10 | 7.57E+01 47.19 2.62 3.23E+10 1.90E+02 18.78 0.94
20000 5.33E+12 | 2.26E+10 | 1.13E+02 47.16 2.62 4.81E+10 | 2.83E+02 18.84 0.94
25000 1.04E+13 | 4.42E+10 | 2.21E+02 47.13 2.62 9.40E+10 | 5.53E+02 18.85 0.94
30000 1.80E+13 7.60E+10 | 3.80E+02 47.40 2.63 1.62E+11 9.55E+02 18.86 0.94
40000 4.27E+13 | 1.80E+11 [ 9.02E+02 47.30 2.63 3.83E+11 | 2.25E+03 18.95 0.95

Table B.5: Performance on Stratix III 3SL340 for Various Matrix Size



APPENDIX B. EXPERIMENTAL DATA

B.2.2 Stratix II 2S180F1508C3

Single Precision

Double Precision

60 PEs, Block Size 120x120

29 PEs, Block Size 58x58

Number of Cycle GFLOPS Cycle GFLOPS
N Operations Count Runtime (s) | GFLOPS | per Watt Count |Runtime (s)| GFLOPS | per Watt
25 1.14E+04 | 2.95E+03 | 1.60E-05 0.71 0.04 2.53E+03 | 1.81E-05 0.63 0.03
50 8.71E+04 | 6.17E+03 | 3.33E-05 2.61 0.15 7.56E+03 | 5.40E-05 1.61 0.08
75 2.90E+05 | 1.51E+04 | 8.14E-05 3.56 0.20 1.73E+04 | 1.24E-04 2.34 0.12
100 6.82E+05 | 2.18E+04 1.18E-04 5.77 0.32 3.15E+04 2.25E-04 3.03 0.15
150 2.28E+06 | 5.24E+04 | 2.83E-04 8.06 0.45 8.70E+04 | 6.21E-04 3.68 0.18
200 5.39E+06 | 1.00E+05 | 5.43E-04 9.93 0.55 1.45E+05 | 1.04E-03 5.19 0.26
250 1.05E+07 1.84E+05 9.94E-04 10.57 0.59 2.80E+05 2.00E-03 5.25 0.26
300 1.81E+07 | 2.20E+05 | 1.19E-03 15.23 0.85 4.81E+05 | 3.44E-03 5.27 0.26
350 2.88E+07 | 3.43E+05 | 1.86E-03 15.50 0.86 7.63E+05 | 5.45E-03 5.28 0.26
400 4.29E+07 5.13E+05 2.77E-03 15.48 0.86 9.74E+05 6.96E-03 6.16 0.31
500 8.37E+07 | 1.00E+06 | 5.41E-03 15.46 0.86 1.96E+06 | 1.40E-02 5.99 0.30
600 1.45E+08 | 1.46E+06 | 7.88E-03 18.33 1.02 3.12E+06 | 2.23E-02 6.49 0.32
800 3.42E+08 3.62E+06 1.95E-02 17.51 0.97 7.19E+06 5.13E-02 6.67 0.33
1000 6.68E+08 | 6.55E+06 | 3.54E-02 18.86 1.05 1.38E+07 | 9.88E-02 6.76 0.34
1500 2.25E+09 | 2.07E+07 | 1.12E-01 20.16 112 4.47E+07 | 3.19E-01 7.06 0.35
2000 5.34E+09 5.01E+07 2.71E-01 19.73 1.10 1.04E+08 7.41E-01 7.21 0.36
3000 1.80E+10 | 1.60E+08 | 8.67E-01 20.77 1.15 3.50E+08 | 2.50E+00 7.20 0.36
4000 4.27E+10 | 3.81E+08 | 2.06E+00 20.72 1.15 8.17E+08 | 5.84E+00 7.32 0.37
5000 8.34E+10 | 7.45E+08 4.03E+00 20.70 1.15 1.60E+09 | 1.14E+01 7.29 0.36
7500 2.81E+11 | 2.46E+09 | 1.33E+01 21.13 1.17 5.36E+09 | 3.83E+01 7.35 0.37
10000 6.67E+11 | 5.84E+09 | 3.16E+01 21.11 117 1.26E+10 | 9.03E+01 7.38 0.37
12500 1.30E+12 1.14E+10 6.17E+01 21.10 1.17 2.48E+10 | 1.77E+02 7.36 0.37
15000 2.25E+12 | 1.96E+10 | 1.06E+02 21.25 1.18 4.27E+10 | 3.05E+02 7.38 0.37
17500 3.57E+12 | 3.11E+10 | 1.68E+02 21.22 1.18 6.77E+10 | 4.83E+02 7.39 0.37
20000 5.33E+12 4.65E+10 2.52E+02 21.20 1.18 1.01E+11 | 7.20E+02 7.40 0.37
25000 1.04E+13 | 9.06E+10 | 4.90E+02 21.27 1.18 1.97E+11 | 1.41E+03 7.40 0.37
30000 1.80E+13 | 1.56E+11 | 8.45E+02 21.31 1.18 3.40E+11 | 2.43E+03 7.41 0.37
40000 4.27E+13 | 3.70E+11 | 2.00E+03 21.31 1.18 8.06E+11 | 5.75E+03 7.42 0.37

Table B.6: Performance on Stratix II 25180 for

Various Matrix Size
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B.3 Effect of Block Size on Performance

B.3.1 Square Block Size

Cycle Count

Block Size 40 PEs 80 PEs 120 Pes 160 Pes
40 9.44E+09 NA NA NA
80 8.61E+09 4.45E+09 NA NA
120 8.47E+09 5.72E+09 2.95E+09 NA
160 8.42E+09 | 4.26E+09 | 4.27E+09 | 2.20E+09
200 8.40E+09 5.08E+09 3.41E+09 3.42E+09
240 8.39E+09 4.22E+09 2.87E+09 2.83E+09
280 8.38E+09 | 4.83E+09 | 3.63E+09 | 2.46E+09
320 8.38E+09 4.21E+09 3.19E+09 2.15E+09
360 8.37E+09 4.69E+09 2.85E+09 2.82E+09

Table B.7: Cycle Count for Various Block Size

Simple LU Block LU Factorization
Factorization | Block Size 144x144 Block Size 256x256 Block Size 288x288 Block Size 432x432
Cycle Blocking Cycle Blocking Cycle Blocking Cycle Blocking
N Cycle Count Count Overhead Count Overhead Count Overhead Count Overhead

25 1.96E+03 1.96E+03 0.00% 1.96E+03 0.00% 1.96E+03 0.00% 1.96E+03 0.00%
50 4.22E+03 4.22E+03 0.00% 4.22E+03 0.00% 4.22E+03 0.00% 4.22E+03 0.00%
75 7.12E+03 7.12E+03 0.00% 7.12E+03 0.00% 7.12E+03 0.00% 7.12E+03 0.00%
100 1.06E+04 1.06E+04 0.00% 1.06E+04 0.00% 1.06E+04 0.00% 1.06E+04 0.00%
150 3.05E+04 4.28E+04 | 40.13% | 3.05E+04 0.00% 3.05E+04 0.00% 3.05E+04 0.00%
200 4.93E+04 554E+04 | 12.32% | 4.93E+04 0.00% 4.93E+04 0.00% 4.93E+04 0.00%
250 7.04E+04 7.65E+04 8.70% 7.04E+04 0.00% 7.04E+04 0.00% 7.04E+04 0.00%
300 1.39E+05 1.69E+05 | 22.06% | 1.48E+05 6.87% 1.58E+05 | 13.69% | 1.39E+05 0.00%
350 1.79E+05 1.98E+05 | 10.74% | 1.87E+05 4.38% 1.91E+05 6.45% 1.79E+05 0.00%
400 2.22E+05 2.41E+05 8.71% 2.28E+05 2.84% 2.34E+05 5.22% 2.22E+05 0.00%
500 4.38E+05 4.79E+05 9.31% 4.38E+05 0.10% 4.49E+05 2.65% 4.55E+05 3.89%
600 7.64E+05 8.43E+05 | 10.43% | 7.77E+05 1.70% 8.04E+05 5.27% 7.81E+05 2.23%
800 1.52E+06 1.63E+06 7.49% 1.85E+06 | 22.14% | 1.55E+06 2.44% 1.54E+06 1.13%
1000 2.63E+06 2.80E+06 6.38% 3.09E+06 | 17.37% | 2.71E+06 2.99% 2.68E+06 2.08%
1500 9.08E+06 9.61E+06 5.80% 9.99E+06 9.94% 9.30E+06 2.41% 9.20E+06 1.28%
2000 1.98E+07 2.08E+07 4.96% 2.32E+07 | 17.02% | 2.01E+07 1.64% 2.00E+07 1.04%
3000 6.56E+07 6.84E+07 4.36% 7.66E+07 | 16.78% | 6.66E+07 1.55% 6.61E+07 0.73%
4000 1.54E+08 1.60E+08 4.04% 1.80E+08 | 16.64% | 1.56E+08 1.23% 1.55E+08 0.76%
5000 2.99E+08 3.11E+08 3.84% 3.36E+08 | 12.37% | 3.03E+08 1.22% 3.01E+08 0.62%
7500 1.02E+09 1.06E+09 3.93% 1.14E+09 | 12.04% | 1.03E+09 1.12% 1.02E+09 0.53%
10000 2.37E+09 2.45E+09 3.42% 2.70E+09 | 14.24% | 2.39E+09 0.93% 2.38E+09 0.49%
12500 4.58E+09 4.73E+09 3.31% 5.21E+09 | 13.82% | 4.62E+09 0.92% 4.59E+09 0.42%
15000 7.96E+09 8.23E+09 3.32% 9.03E+09 | 13.40% | 8.03E+09 0.89% 8.00E+09 0.41%
17500 1.26E+10 1.30E+10 3.22% 1.42E+10 | 13.26% | 1.27E+10 0.84% 1.26E+10 0.40%
20000 1.86E+10 1.92E+10 3.17% 2.13E+10 | 14.23% | 1.88E+10 0.84% 1.87E+10 0.40%
25000 3.64E+10 3.76E+10 3.14% 4.14E+10 | 13.73% | 3.67E+10 0.80% 3.66E+10 0.37%
30000 6.30E+10 6.50E+10 3.11% 7.15E+10 | 13.41% | 6.35E+10 0.80% 6.33E+10 0.37%
40000 1.49E+11 1.53E+11 3.06% 1.69E+11 | 13.62% | 1.50E+11 0.77% 1.49E+11 0.35%

Table B.8: Cycle Count for Various Matrix Size on 144 PEs Compute Engines with
Different Block Size
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EXPERIMENTAL DATA

APPENDIX B.

B.3.2 Rectangular Block Size

Simple LU Block LU Factorization

Factorization Block Size 144x512 Block Size 288x256 | Block Size 432x170 | Block Size 576x128 | Block Size 1152x64 | Block Size 2304x32

Cycle Blocking Cycle Blocking Cycle Blocking Cycle Blocking Cycle Blocking Cycle Blocking

N Cycle Count Count Overhead| Count |Overhead| Count [Overhead| Count | Overhead| Count | Overhead | Count |Overhead
25 1.96E+03 1.96E+03 0.00% | 1.96E+03| 0.00% |[1.96E+03| 0.00% |[1.96E+03| 0.00% [1.96E+03| 0.00% [1.96E+03| 0.00%
50 4.22E+03 4.22E+03 0.00% | 4.22E+03| 0.00% |4.22E+03| 0.00% |4.22E+03| 0.00% |4.22E+03| 0.00% [|5.05E+03| 19.63%
75 7.12E+03 7.12E+03 0.00% 7.12E+03 0.00% 7.12E+03 0.00% | 7.12E+03 0.00% 8.72E+03| 22.51% |9.32E+03| 30.98%
100 1.06E+04 1.06E+04 0.00% | 1.06E+04| 0.00% |1.06E+04( 0.00% |1.06E+04| 0.00% |1.13E+04| 6.43% |1.48E+04| 39.16%
150 3.05E+04 3.51E+04 14.82% | 3.05E+04| 0.00% |3.05E+04| 0.00% |3.12E+04| 2.26% |2.89E+04| -5.24% |2.76E+04| -9.75%
200 4.93E+04 5.36E+04 8.65% |4.93E+04| 0.00% |5.04E+04| 2.25% |4.91E+04| -0.39% |4.76E+04| -3.39% |5.05E+04( 2.48%
250 7.04E+04 7.46E+04 6.06% | 7.04E+04| 0.00% |7.15E+04( 1.62% |6.95E+04| -1.27% |7.14E+04| 1.49% |7.61E+04| 8.07%
300 1.39E+05 1.51E+05 9.29% | 1.48E+05| 6.97% |1.31E+05( -5.19% |1.37E+05| -0.80% |1.22E+05| -12.16% |[1.19E+05| -14.32%
350 1.79E+05 1.92E+05 7.08% 1.87E+05 4.49% 1.85E+05| 3.24% 1.76E+05| -1.92% |1.63E+05| -8.82% 1.67E+05| -6.96%
400 2.22E+05 2.35E+05 5.69% |2.29E+05| 2.94% |2.28E+05( 2.48% |2.20E+05| -0.97% |2.24E+05| 0.85% |[2.33E+05| 5.01%
500 4.38E+05 4.63E+05 5.69% |4.39E+05| 0.17% |4.55E+05( 3.88% |4.25E+05| -2.87% |4.32E+05( -1.38% [|4.27E+05| -2.50%
600 7.64E+05 8.08E+05 5.82% 7.77E+05 1.78% 7.00E+05| -8.34% |7.47E+05| -2.16% |6.79E+05( -11.10% |6.77E+05| -11.30%
800 1.52E+06 1.59E+06 451% |151E+06( -0.77% |1.59E+06| 4.79% |1.49E+06( -1.97% |1.48E+06| -2.22% |1.47E+06( -2.89%
1000 2.63E+06 2.73E+06 3.80% |2.87E+06| 8.96% |2.79E+06| 6.20% |2.92E+06| 10.90% |2.76E+06| 5.08% [2.76E+06| 5.10%
1500 9.08E+06 9.37E+06 3.12% 9.13E+06 0.56% 9.18E+06 1.04% |[9.01E+06| -0.81% |8.82E+06| -2.95% |8.76E+06| -3.51%
2000 1.98E+07 2.03E+07 2.59% | 2.08E+07| 5.02% |2.06E+07| 3.93% |2.07E+07| 4.31% |2.02E+07| 2.08% [2.01E+07| 1.46%
3000 6.56E+07 6.70E+07 2.15% | 6.79E+07| 3.60% |6.76E+07| 3.09% |6.77E+07| 3.20% |6.67E+07| 1.70% |[6.65E+07| 1.46%
4000 1.54E+08 1.57E+08 1.78% |1.57E+08| 2.11% |1.58E+08| 2.30% |1.57E+08| 2.00% |1.56E+08| 0.96% |1.55E+08| 0.78%
5000 2.99E+08 3.04E+08 1.60% |3.05E+08| 1.92% |3.04E+08| 1.77% |3.05E+08| 1.83% |3.02E+08( 0.97% |3.02E+08| 0.83%
7500 1.02E+09 1.03E+09 1.35% |1.01E+09| -0.16% |1.01E+09| -0.29% |1.01E+09| -0.28% |1.01E+09| -0.89% |1.01E+09| -0.98%
10000 2.37E+09 2.40E+09 1.22% |2.39E+09| 0.74% |2.39E+09| 0.75% |2.38E+09| 0.63% |2.37E+09| 0.23% |2.37E+09| 0.20%
12500 4.58E+09 4.63E+09 1.16% 4.64E+09 1.49% 4.64E+09 1.37% | 4.64E+09 1.44% 4.63E+09 1.11% 4.63E+09 1.11%
15000 7.96E+09 8.05E+09 1.10% |8.00E+09| 0.44% |7.99E+09| 0.36% |7.99E+09| 0.40% |7.97E+09| 0.13% |7.97E+09| 0.14%
17500 1.26E+10 1.27E+10 1.06% |1.27E+10| 0.88% |1.27E+10| 0.87% |1.27E+10| 0.85% |1.26E+10| 0.64% |1.26E+10| 0.67%
20000 1.86E+10 1.88E+10 1.03% 1.89E+10 1.25% 1.89E+10 1.24% 1.89E+10 1.22% 1.88E+10 1.03% 1.88E+10 1.07%
25000 3.64E+10 3.68E+10 0.99% |3.68E+10| 0.96% |3.68E+10( 0.94% |3.68E+10| 0.94% |3.67E+10| 0.81% [3.68E+10| 0.87%
30000 6.30E+10 6.36E+10 0.96% |6.35E+10| 0.70% |6.35E+10( 0.71% |6.35E+10| 0.69% |6.34E+10| 0.58% |[6.34E+10| 0.65%
40000 1.49E+11 1.50E+11 0.93% |J1.50E+11| 0.96% |1.50E+11| 0.98% |1.50E+11| 0.96% |1.50E+11| 0.90% |1.50E+11 0.98%

Cycle Count for Various Block Size That Can in a 512x4608 On-Chip Memory

Table B.9



Appendix C

Parameter Values Used in

Experiments

C.1 Effect on Clock Frequency by Varying Pipeline

Registers

Table C.1: Parameter Values for Compute Engine Shown in Table 4.3

’ Name ‘ Value ‘
k 57
Precision 64
NMax 20,000
BlockSizeDivk 114
AdderLatency 12
MultLatency 11
DivLatency 33
DDRWidth 64
DDRAddrWidth 24
DDRRowAddrWidth | 13
DDRBurstLen 4
FIFOSize 16
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C.2 Effect on Performance

C.2.1

Numbers of Processing Elements

126

Table C.2: Common Parameter Values for Compute Engines Shown in Table 5.1

’ Name ‘ Value ‘
Precision 32
NMax 20,000
AdderLatency 14
MultLatency 11
DivLatency 33
DDRWidth 64
DDRAddrWidth 24
DDRRowAddrWidth | 13
DDRBurstLen 4
FIFOSize 16

Table C.3: Parameter Values for Each Compute Engine Shown in Table 5.1

k | MatrixBlock- | ExtraOnChip- ExtraOnChip- ExtraOnChip- ExtraOnChip-
SizeDivk RamBlock- RamBlock- TopBlock- TopBlock-
InputPortDelay | OutputPortDelay | InputPortDelay | OutputPortDelay
30 60 3 2 5 3
60 120 3 2 5 3
90 180 3 2 5 3
120 240 1 1 4 3
128 256 1 1 4 3
136 136 1 1 3 1
144 144 1 1 5 3
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C.2.2 Floating Point Unit Latency

Table C.4: Common Parameter Values for Compute Engines Shown in Figure 5.2

’ Name \ Value ‘
k 120
Precision 32
NMax 20,000
MatrixBlockSizeDivk | 240
MultLatency 11
DivLatency 33
DDRWidth 64
DDRAddrWidth 24
DDRRowAddrWidth | 13
DDRBurstLen 4
FIFOSize 16

Table C.5: Parameter Values for Each Compute Engine Shown in Figure 5.2

AdderLatency | ExtraOnChip- ExtraOnChip- ExtraOnChip- ExtraOnChip-
RamBlock- RamBlock- TopBlock- TopBlock-
InputPortDelay | OutputPortDelay | InputPortDelay | OutputPortDelay
14 1 1 4 3
12 2 1 4 4
10 3 1 5 3
8 3 2 5 3

C.2.3 Block Size

Table C.6: Common Parameter Values for Compute Engines Shown in Figure 5.3 and
Table 5.2

’ Name \ Value ‘
Precision 32
NMax 20,000
AdderLatency 14
MultLatency 11
DivLatency 33
DDRWidth 64
DDRAddrWidth 24
DDRRowAddrWidth | 13
DDRBurstLen 4
FIFOSize 16
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C.3 Performance and Power Consumption

C.3.1 Stratix III 3SL340F1760C3
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Table C.7: Parameter Values for Single Precision Compute Engine Shown in Table 5.3

’ Name ‘ Value ‘
k 120
Precision 32
NMax 20,000
BlockSizeDivk 240
AdderLatency 12
MultLatency 11
DivLatency 33
DDRWidth 64
DDRAddrWidth 24
DDRRowAddrWidth 13
DDRBurstLen 4
FIFOSize 16
ExtraOnChipRamBlockInputPortDelay 2
ExtraOnChipRamBlockOutputPortDelay | 1
ExtraOnChipTopBlockInputPortDelay 4
ExtraOnChipTopBlockOutputPortDelay | 4

Table C.8: Parameter Values for Double Precision Compute Engine Shown in Table 5.4

’ Name ‘ Value ‘
k 57
Precision 64
NMax 20,000
BlockSizeDivk 114
AdderLatency 12
MultLatency 11
DivLatency 33
DDRWidth 64
DDRAddrWidth 24
DDRRowAddrWidth 13
DDRBurstLen 4
FIFOSize 16
ExtraOnChipRamBlockInputPortDelay 3
ExtraOnChipRamBlockOutputPortDelay | 1
ExtraOnChipTopBlockInputPortDelay 6
ExtraOnChipTopBlockOutputPortDelay | 4
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C.3.2 Stratix II 2S180F1508C3
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Table C.9: Parameter Values for Single Precision Compute Engine on Stratix II 25180

Shown in Table 5.8

’ Name ‘ Value ‘
k 60
Precision 32
NMax 20,000
BlockSizeDivk 120
AdderLatency 12
MultLatency 11
DivLatency 33
DDRWidth 64
DDRAddrWidth 24
DDRRowAddrWidth 13
DDRBurstLen 4
FIFOSize 16
ExtraOnChipRamBlockInputPortDelay 3
ExtraOnChipRamBlockOutputPortDelay | 1
ExtraOnChipTopBlockInputPortDelay 3
ExtraOnChipTopBlockOutputPortDelay | 1

Table C.10: Parameter Values for Double Precision Compute Engine on Stratix IT 25180

Shown in Table 5.8

’ Name \ Value ‘
k 29
Precision 64
NMax 20,000
BlockSizeDivk 58
AdderLatency 12
MultLatency 11
DivLatency 33
DDRWidth 64
DDRAddrWidth 24
DDRRowAddrWidth 13
DDRBurstLen 4
FIFOSize 16
ExtraOnChipRamBlockInputPortDelay 2
ExtraOnChipRamBlockOutputPortDelay | 1
ExtraOnChipTopBlockInputPortDelay 3
ExtraOnChipTopBlockOutputPortDelay | 1
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