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ABSTRACT 
As FPGAs push ever deeper into mainstream digital design, 

there is an increasing desire for high-performance circuits. This 
paper describes a manual editor, called EVE, which can assist a 
designer to perform manual packing, placement and pipelining of 
commercial FPGA circuits to achieve a meaningful increase in 
performance. This effort is inspired by Von Herzen’s paper [15] 
[16], which proposed the notion of an “Event Horizon” – a high-
speed circuit design approach in which complete knowledge of 
the timing effect of every synthesis change is used. It is very 
laborious to implement circuits using this approach; therefore we 
try to augment manual design tools in order to make this Event 
Horizon methodology easier to perform. This paper describes a 
first step in that direction, which focuses on placement, packing 
and pipelining. EVE provides an interactive environment that 
immediately reroutes and timing analyzes after each user circuit 
modification, giving an exact value for critical path delay. It can 
also suggest good placement positions and provide flip-flop 
insertion assist during pipelining. Compared to a state-of-the-art 
Synthesis and place and route flow, we used EVE to achieve an 
average of 12.7% higher operating frequency on a set of eight 
Xilinx Virtex-E circuits of 250 or fewer LUTs. 
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1. INTRODUCTION 
Most FPGA circuits are designed using a traditional “push-

button” CAD flow, which involves design entry, logic 
optimization, technology mapping, floorplanning, placement and 
routing. When a high circuit speed that pushes the limits of the 
silicon’s capability is desired, this approach often fails to achieve 
the required performance. Designers will typically repeatedly 
floorplan, place and route the circuit until the design goal is met. 
This iterative process is very time consuming because the 
resulting design speed is not known until after timing analysis is 

performed, and the result may seem to be decoupled from the 
changes applied. There is a clear need for a different high-speed 
circuit design methodology. In [15] [16], Von Herzen described 
the design of a signal processing circuit in FPGA running at 
250MHz in 1997 using 0.6µm CMOS technology. This 
remarkable achievement stands in stark contrast to the struggles 
that designers face to achieve speeds on the order of 150MHz in 
today's 0.18 µm CMOS technology.  

Von Herzen demonstrated a high-speed circuit design 
methodology using the notion of an “Event Horizon”, which 
refers to the boundary that a circuit element can be placed within 
in order to satisfy a timing budget. This methodology demands 
that the designer create each microscopic piece of the circuit with 
the timing budget in mind. During this process, the complete 
routing delays are included in the time accounting. Von Herzen 
used low-level manual design tools to select routing resources 
carefully, and to avoid the placement of logic elements outside of 
the horizon. However, it is very laborious to implement circuits 
using the low-level manual design tools. We therefore became 
interested to augment such tools to facilitate circuit design 
employing the Event Horizon methodology. This paper describes 
the features and implementation of the editor (called EVE, for 
EVent horizon Editor) as well as quantitative results achieved 
using it.  This initial work focuses on the packing, placement, 
routing and timing analysis phase of circuit implementation, and 
uses a push-button flow result as the starting point somewhat 
different from Von Herzen's design-from-scratch approach.  This 
work relates somewhat to the full-custom VLSI editors Magic 
[10] and Electric [12] developed in the early eighties to enhance 
design capabilities with assistance. 

In the following section we review Von Herzen's work and 
present the objectives and context for our work.  Section 3 
describes the basic move generation mode of the editor while 
Section 4 describes its pipelining-assist features.  Section 5 
presents experimental results and Section 6 concludes. 

2. BACKGROUND, GOALS and CONTEXT 
 Von Herzen achieved a circuit speed far beyond the 

otherwise typical capability of silicon. He did this by employing 
low-level manual design tools to configure each logic block of the 
circuit and to select the routing resources manually. He carefully 
chose where to place each circuit element physically on the chip, 
because routing delays made up a significant portion of the 
critical delay of the circuit. He proposed the concept of an “Event 
Horizon”, which could be used to quickly estimate where circuit 
elements could be placed without violating a very tight timing 
budget. 

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. 
FPGA’02, February 24-26, 2002, Monterey, California, USA. 
Copyright 2002 ACM 1-58113-452-5/02/0002…$5.00.  



 

0.8 0.4 

1.2 1.2 

0.8 1.2 0.4 

src CLB 

 

0.8 

Figure 1: Event Horizon  
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Figure 2: Extending the Event Horizon using Pipelining  
The “Event Horizon” concept is illustrated in Figure 1. 

Assume that a circuit needs to run at 250MHz, so the critical path 
time budget is 4.0ns. A flip-flop (FF) in a source logic block 
(CLB) (marked with a circle in the figure) drives a LUT-to-FF 
combination in another logic block. To determine how far away 
the target logic block can be placed, we first need to obtain some 
timing characteristics about the chip such as the maximum clock 
skew, the LUT delay, the routing delays, as well as the clock-to-
output delay and FF setup time. Assume that the maximum clock 
skew is 0.1ns, the clock-to-output delay is 1.3ns, and that LUT 
delay + FF setup time through is 1.5ns.  In order for the time 
budget to be met, the routing delay can then take at most 4.0-0.1-
1.3-1.5 = 1.1ns. Suppose, for simplicity, that the FPGA has a 
routing architecture that requires 0.4ns to travel the distance of 
one logic block (in Manhattan distance) in all directions. For the 
example given in Figure 1, the target logic block can only be 
placed at locations that can support a routing delay of at most 
0.8ns, as indicated by the shaded box in Figure 1. Von Herzen 
called such a boundary box the Event Horizon of the source logic 
block in the context of a circuit required to run at 250MHz. The 
“Event Horizon” is then defined as the boundary within which the 
target logic block can lie, such that the routing delay to reach the 
target logic block from the source logic block is small enough to 
satisfy the timing budget. With a timing goal in mind, Von 
Herzen then calculated the Event Horizon for each circuit 
element, and tried to place the connecting elements in its Event 
Horizon. In cases when this was not possible (for example, all 
locations in the Event Horizon were already occupied), extra flip-
flops could be introduced to pipeline the circuit, permitting the 
target logic block to move outside of the current Event Horizon, 

as illustrated in Figure 2. By first calculating the Event Horizon of 
each circuit element at a given target speed, Von Herzen 
incrementally built each part of the circuit, knowing that the 
timing budget would be met throughout the design process. 

2.1 Objectives 
Our work has two objectives. Firstly, we would like to 

construct a manual editor that augments the current low-level 
floorplanning and circuit editing tools, by employing elements of 
the Event Horizon methodology. Secondly, we would like to gain 
more insights to better placement and routing techniques by 
extensively using the tool to augment the speed of real designs. 
EVE has the following design objectives: 

1. Target Real FPGA Architectures. Traditional FPGA 
research tools tend to work on simplified models of real 
FPGAs [2]. These tools, for example, rarely represent carry 
chains correctly. Our goal in this work is to apply the Event 
Horizon concept and its implications to real devices so that 
we can deal with all of the realities that designs possess, and 
try to achieve usable improvements. We chose the Xilinx 
Virtex-E [20] family as our target. 

2. Give Full Low-Level Control. The Event Horizon notion 
requires careful design of each microscopic piece of the 
circuit. Our editor must permit the user to easily control 
placement and packing of each LUT, carry element and flip-
flop, and to precisely control where flip-flops are inserted 
when pipelining. 

3. Give Instant Performance Feedback. After each user 
circuit modification, the editor should immediately reroute 
and perform a full timing analysis to report the real circuit 
performance. This is usually not possible in automated 
placement of large circuits, but it is feasible for interactively 
editing small designs. In this work we focus on designs with 
250 or fewer 4-input logic cells. 

4. Be Timing Budget Aware. EVE should be timing-budget 
aware. It should highlight circuit elements that violate the 
timing budget and quickly and accurately estimate the effect 
of a change to the circuit before it is applied. It should also 
provide a visual aid to illustrate the Event Horizon itself (see 
Figure 5). 

5. Assist Pipelining. EVE should assist the user to pipeline the 
circuit by maintaining correct functionality of the circuit 
throughout the pipelining process. It should also select good 
physical placement for pipelining flip-flops to minimize the 
critical path delay. 

2.2 The Xilinx Virtex-E Architecture 
In this section we describe the salient features of the target 

Xilinx Virtex-E [20] architecture.  The Virtex-E is fabricated in a 
0.18µm CMOS technology. It is an island-style [2] FPGA 
architecture in which routing resources surround Configurable 
Logic Blocks (CLBs). Each CLB has two slices and each slice has 
two 4-input look up tables (4-LUTs) and two flip-flops (FFs). The 
two 4-LUTs in each slice can be combined to form a 5-LUT and 
two such 5-LUTs in the same CLB can be combined to form a 6-
LUT. There are carry chains for high-speed arithmetic that run 
vertically upwards in each slice. Each slice also contains 
dedicated AND gates and XOR gates to support fast addition and 
multiplication. A 4-LUT can also be configured as RAM, ROM, 



or a 1-bit Shift Register LUT (SRL) of variable depth (1-16). 
Figure 3, taken from [20], shows a Virtex-E CLB. 

 
Figure 3: A Virtex-E CLB (taken from [20]) 

3. TIMING EXACT MICROSCOPIC 
PLACEMENT (TEMP) MODE 

In this section we describe the features and implementation of 
the basic packing and placement editor assistant.  We call this the 
"Timing Exact Microscopic Placement" (TEMP) mode of EVE. It 
permits microscopic placement and packing/unpacking of circuit 
elements while giving instant exact timing feedback. The 
graphical user interface of EVE is built using EasyGL for 
Windows [3]. Figure 4 illustrates the concept of a “Timing 
Horizon”. It is based on the Event Horizon concept described in 
Section 2. When a circuit element (such as a LUT) is to be moved 
EVE will calculate the change in critical path delay that would 
occur if the element is placed in a series of target locations (like 
those marked in gray in Figure 4). In Figure 4, a Timing Horizon 
of radius one (CLB) is displayed. A negative number means that 
the critical path delay improves. When a target position is not 
feasible (it may be occupied or the target slice configuration is not 
compatible), it does not appear in the Timing Horizon. In EVE, 
we will call this Timing Horizon simply the “Horizon”. It is an 
important feature of EVE that the designer can use to evaluate the 
effect of moving a circuit element in the chip. 
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Figure 4:Timing Horizon 
In the Timing Exact Microscopic Placement (TEMP) mode, 

the circuit is represented in a grid format, with each grid cell 
representing a CLB. Figure 5 shows a circuit on a Xilinx 
XCV100E [20] chip. Each CLB has two slices, and each slice is 
divided into six components: two LUTs, two carry cells, and two 
FFs. In this mode, the placement of all circuit elements is shown, 
and logic packing and placement operations can be easily 
modified using a drag-and-drop paradigm. EVE recognizes 
structural grouping of circuit elements such as carry chains, 5-
LUTs, and 6-LUTs. On start up, the critical path of the circuit is 
highlighted. The current maximum operating frequency of the 

circuit is also calculated and displayed in the status window. The 
user can then perform the following operations: 

 
Figure 5: Screen capture of TEMP mode showing a 

"Horizon" 
 

1. Change Placement of Components. Select the components 
and drag them to the destination location. Eve does this 
better than the native Xilinx Floorplanner because it 
immediately reroutes the circuit and reports the real circuit 
timing. EVE also performs immediate legality checking of 
move and informs the user of illegal moves by displaying 
“X” markers on invalid target positions. 

2. Packing/Unpacking of Slices. When a LUT is moved from 
one slice to another, the packing of the source and 
destination slices may be altered. The native Xilinx 
Floorplanner can only pass this packing/unpacking directive 
to the mapper as a slow batch task; and such 
packing/unpacking operation may not be applied 
successfully. In contrast, EVE can determine the packing 
feasibility instantly. 

3. Change/Set Timing Budget. When the timing budget is set 
or changed, the design is timing-analyzed and the 
components and nets that violate the budget are highlighted. 
A typical methodology is to slowly decrease the timing 
budget, and focus on a more timing critical part of the 
circuit, until the desired timing goal is met. 

4. Invoke Horizon. Here the user selects a component and 
press the “Horizon” button. A Horizon is displayed with a 
gradient of colors indicating the “goodness” of placing the 
selected components at the indicated positions. A number is 
displayed in each valid target position, indicating the change 
in critical path delay should the component be moved there. 
The user can control a “Horizon Radius” parameter that 
controls in Manhattan distance within how many CLBs the 
horizon calculations should be performed. (A Large radius 
will take a long time to compute, but reasonable ones are 



quick) Figure 5 illustrates a Horizon of radius three for a 
selected flip-flop component. 

5. Nets Reroute. We have found that, after a series of 
microscopic packing and placement changes, that the critical 
path can be improved by rerouting all of the timing-critical 
elements. In this option, the user selects some components 
and invokes the reroute. All nets connected to the selected 
components will be re-routed leaving other nets in the circuit 
intact. 

6. Display Dynamic Delay Distribution. After each user 
move, EVE analyzes the timing of the circuit and outputs a 
delay distribution, which summarizes the number of delay 
paths having delays within different delay ranges. This gives 
the user an overall picture on the current state of the circuit. 

After each move, EVE modifies the netlist as needed, 
incrementally re-routes nets, and performs timing analysis to 
report the real timing of the modified circuit. Using instant timing 
feedback and various budget-aware features, a user can produce 
superior performance circuits. The following sections describe 
how the above features of the editor are implemented. 

3.1 Interactivity 
EVE has to provide high interactivity, which requires very 

quick partial placement, routing, and timing analysis of the circuit 
after a user move. One approach would be to use the set of 
command-line based backend tools from Xilinx including MAP 
(technology mapping) PAR (placement and routing), TRACE 
(timing analyzer), and XDL (Xilinx proprietary circuit format to 
ASCII conversion utility).   Since these are relatively slow batch-
based tools, each user move could still take minutes to process. 
Clearly we need to bypass using these tools yet still perform the 
necessary tasks in a much shorter time. EVE achieves this by 
interfacing with the Xilinx manual editor directly. The Xilinx 
FPGA Editor [18] has a full-featured set of textual commands for 
controlling various operations including slice configuration, 
placement, and routing. On start up, EVE spawns two copies of 
FPGA Editor. One copy serves as the “backend” where the real 
circuit changes are applied. The other copy serves as a “net delay 
reporter” which calculates net delays on the fly. EVE instructs 
both the “backend” and “net delay reporter” by sending 
commands to them using named pipes supported by the Windows 
NT based platform. The execution result in the backend is 
obtained for further analysis, by capturing text from the FPGA 
Editor window using Windows messaging API calls. 

EVE determines the timing of the entire circuit at all times. It 
obtains the initial timing information from the Xilinx timing 
analyzer (TRACE). It then builds a timing graph of the circuit and 
performs subsequent timing analysis internally. When the user 
makes a move, EVE will calculate the effect of the move by using 
delay values stored in a delay database (described in Section 3.2), 
and estimate the resulting circuit critical path delay. The change is 
then communicated to the backend using named pipes. The 
backend makes the corresponding change, including logic 
configuration modification, netlist modification, and placement. 
Then it unroutes all nets affected by the change, and re-routes 
them using the critical path delay estimated by EVE as a timing 
constraint for timing-driven routing. This routing is very quick 
since it is only a partial re-route, and the unaffected nets are left 

untouched. Finally, the net delays of the modified nets are queried 
by EVE through the backend, and it will once again have 
complete knowledge of the updated circuit timing information. 

3.2 Delay Modeling 
Two types of delays are needed for timing analysis: the logic 

delay within a slice, and routing delay. Logic delays are usually 
modeled as constants since the number of configurable paths that 
exist within each slice is limited. They are usually pre-calculated 
and stored in look-up tables for fast future retrieval. Routing 
delays however, vary according to the routing resources taken up 
by a route. Each routing delay value is governed by an RC model, 
such as Elmore [4] and Penfield-Rubinstein [13] models. These 
models take into account the length of the routing wires, and the 
number and type of switches (buffered or non-buffered) that the 
routes pass through. For EVE, obtaining such delay information is 
hard because it has no knowledge of the proprietary RC 
characteristics of the commercial device. Without this knowledge, 
EVE has to obtain both logic and routing delay values by 
querying the Xilinx backend tools one delay at a time and then 
storing the delays in data files, which we refer to as the delay 
database. 

Logic delays are calculated and stored automatically for each 
chip with a given speed grade the first time EVE encounters the 
chip. It does so by enumerating all the possible configurable 
pathways present within a slice or in-between slices (as in the 
case of a delay involving 6-LUT). It then writes out a Xilinx 
Description Language (XDL) description of the circuit containing 
all the paths of interest, with each path using different CLBs. 
XDL is a text-based language describing the internals of Xilinx 
circuits, including slice configuration and routing information. It 
can be translated into the Xilinx native NCD circuit format using 
the XDL utility. The design is then timing analyzed using a 
command-based timing analyzer program called TRACE. The 
logic delay values for each path are then extracted from the report 
file to form a delay-matching table. Such a table will provide 
mapping from various slice configurations to logic delay values. 
For Virtex-E, there are 230 such logic delay values. The 
extraction of routing delays is much more difficult because of the 
large number of CLB pin to CLB pin delay values present in the 
Virtex-E devices. For example, an XCV100E chip has 20 rows 
and 30 columns of CLBs and each CLB has two slices. For any 
given pin-to-pin route, it can originate from one out of six output 
pins in either slice S0 or S1. It can also terminate in one out of 
twelve input pins in either slice S0 or S1. The total number of 
possible routes of Manhattan distance of length five or less is 
(2*5*5 + 2*5 + 1)*20*30*2*2*6*12 ≈ 10.5 million delay values. 
We estimate that a 450MHz Pentium-III processor can process 
four delay values per second, and each delay can be stored using 
10 bytes. We would thus need about 30 days to generate the 
database and the data will take up 100MB of disk space. To make 
the delay search space smaller, we devise a compression scheme 
making use of the symmetric nature of the Virtex-E routing 
architecture. 

3.2.1 Delay Database Compression 
To describe the compression scheme better, we have to 

introduce some notation. We group related pin-to-pin routing 
delay values together in a group identified by the following 
format: G=(S1,P1,S2,P2,X,Y). S1 and P1 specify the source slice 
and pin, while S2 and P2 specify the target slice and pin. X and Y 



are integers that represent the relative position of the target pin to 
the source pin. G is used to refer to this group of delays.  Figure 6 
shows a 3-D plot of the real routing delay values for the delay 
group G=(0,XQ,0,G1,-1,-1) of the XCV100ECS144-8 device, 
which refers to the group of delay values with source pin located 
on XQ pin of S0, and target pin located on G1 pin of S0, and 
target slice is one CLB west and one CLB north of the source 
slice. The pin-to-pin routing delay values in group G will then be 
represented using the notation (G,R,C) where R and C represents 
the row and column coordinate of the source pin. Each delay 
value (in ns) is plotted in 3-D space against the (R,C) coordinate. 
We can observe from  Figure 6 that the routing delays are indeed 
fairly symmetrical across identical rows and columns. Now we 
will discuss the compression scheme we use: 

1. Using Two One-Dimensional Functions. A two-
dimensional grid, with notation D(r,c), where r and c 
corresponds to the row and column coordinate, is used to 
represent all the delay values in the group. It requires r*c 
data points. The following procedure is used: 
a. All D(r,c) values are converted from floating point 

numbers into integers using a scaling factor of 0.02ns 
(0.35ns will become 0.35/0.02 = 17). We call the scaled 
values D′(r,c). 

b. We locate an “intersect” point on the 2-D grid at the 
“base” of the 3-D plot, and record its delay. We refer to 
it as the “base delay” (b). All D′ (r,c) values are 
normalized by subtracting from the base delay to form 
D′′(r,c). The resulting data points will then contain 
mostly zeroes. 

c. From the same “intersect” point, we can form two one-
dimensional functions, Dr(r) and Dc(c), using the 
column and row vectors at the intersect, such that 
D′′(r,c) = Dr(r) + Dc(c) (illustrated in  Figure 6). With 
these two functions, the number of data points needed to 
represent all D(r,c) values becomes r+c. 

2. Eliminating Zeroes. Dr(r) and Dc(c) are found to contain 
mostly zeroes. For example, Dr(r) may be a vector like [0 0 0 
0 2 3 0 0 0 …]. Instead of processing the columns with 0 
entries in Dr(r), these column numbers are recorded, and are 
skipped for all subsequent rows. The same rule applies to 
Dc(c). 

3. Eliminating Duplicates. Dr(r) and Dc(c) frequently contain 
entries with the same value. Instead of processing all the 
entries with the same delay value, only one entry is 
processed. For example, for the vector [0 0 2 3 0 0 2 3 0 0 
…], columns 3-4 and 7-8 are the same, so columns 7-8 are 
not processed. This rule can be applied to both Dr(r) and 
Dc(c). 

4. Using Symmetry of Pins. Delays with P1 = X and P1 = Y 
are the same. Only one P1 value needs to be processed. The 
same also applies for P1 = XQ and P1 = YQ. 

5. Record Extra Data Points. Data points, which cannot be 
calculated accurately using the above compression scheme, 
are recorded individually. 

Using the heuristics given above, the search space is compressed 
by about 100 times. All delay values as well as other information 
including: base delay, intersect point coordinate, zero matching 

columns/rows, duplicate matching columns/rows and extra data 
points, are generated and recorded in data files using a set of 
PERL scripts. In EVE, the data files are loaded into a group of 
efficient data structures, which we refer to as the delay database. 
Delay retrieval from the database is quick, and the whole database 
consumes about 20MB of physical memory. 

 Figure 6: Routing Delay Profile for group G
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3.3 Instant Timing Feedback 
To provide instant timing feedback, full timing a

performed internally within EVE. It is based on a for
backward sweep approach described in [6]. The 
demonstrates instant timing feedback. For each target
EVE first determines if the move is valid. Then, it
temporary circuit resulting by moving the target to e
location and performs a full-timing analysis on it. The 
critical path delay timing is displayed in the target po
horizon of radius three takes about two seconds to calc
1GHZ Pentium-III machine. 

4. PIPELINING MODE 
Pipelining traditionally occurs during logic design,

designer introduces pipeline stages to enable parallel ex
multiple circuits to achieve a higher throughput. Pipelin
Event Horizon methodology context, however, refers to
to register logic elements when the physical placement
an obstacle to satisfy a high-speed design goal as illu
Figure 2. We believe research in pipelining at the phys
will become more important as circuit speed pushes to
limit of the silicon. We need a pipelining assistant that a
designer to fully control where pipelining flip-flops are
yet helping the designer retain correct functionality of t
The TEMP mode displays the physical locations of ea
element, so it is ideal for performing packing/unpac
placement operations. For pipelining, however, such 
representation cannot present clearly to the user where
can be inserted because the graphical display will
cluttered. We thus propose the pipelining mode in EVE
to present the circuit in a better form to assist pipelini
the user insert or move a flip-flop in the circuit, 
automatically determine where in the circuit to insert 
flip-flops to maintain correct functionality of the circuit.
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In the pipelining mode, the circuit is displayed as a directed 
acyclic graph (DAG). Each graph node represents an input or 
output pin of a logic slice, or the input and output ports of 
sequential elements, including flip-flops and Shift Register LUTs 
(SRLs). Each edge represents a logical connection between the 
graph nodes, which usually has an associated delay value, 
corresponding to an internal logic delay, or an external routing 
delay. Primary inputs are displayed at the top and primary outputs 
at the bottom of the DAG (See Figure 8). If there exists a 
sequential loop in the circuit, we need to detect and collapse it 
down into a single graph node. Graph edges are colored 
differently to indicate their status: critical nets are marked red 
while edges that are flip-flop insertable are marked green. A 
square appears when a flip-flop is inserted on an edge. A number 
appeared next to an edge indicates the number of edges 
connecting the nodes. Information that is not useful such as the 
sub-graphs within loops is eliminated from the graph to make it 
less cluttered. With a detail representation of connected graph 
nodes and edges, flip-flop insertion and flip-flop motion can be 
done intuitively as if the circuit is a combinational circuit. 
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Figure 7: A Timing Graph 
During flip-flop insertion, the user selects an edge and clicks 

the “Insert FF” button. A flip-flop is inserted in the specified 
location. Then EVE will then insert additional flip-flops in the 
DAG to maintain correct circuit behavior. For example, for the 
timing graph in Figure 7, if a flip-flop is inserted at edge 4→6, 
additional flip-flops must be inserted at edges 4→7, 5→7, 8→9. 
The resulting circuit still functions properly, with one additional 
cycle of latency across all paths. (Note that other flip-flop to edge 
assignments are also possible.) The additional flip-flop positions 
are determined based on a continuous forward and backward 
sweeping algorithm. The algorithm first inserts a flip-flop on the 
supplied edge, then it marks all its transitive fanin and fanout 
edges as processed. For back edges encountered during a forward 
traversal or forward edges encountered during a backward 
traversal, FFs are inserted if they are not marked as processed. 
This process continues until all edges are visited.  

After flip-flop insertion, the user is able to move the newly 
inserted flip-flops forward or backward using the “up” and 
“down” arrow keys. When a flip-flop is moved forward or 
backward across a node, EVE will make sure that the circuit is 
still functioning properly, by moving other flip-flops affected by 
the move. For example, for the timing graph in Figure 7 , assume 
that flip-flops are inserted at edges 4→6, 4→7, 5→7, 8→9. Now 
if the user moves the flip-flop from 5→7 to 7→9, flip-flops at 
edge 4→7 and 5→7 will be removed, and a flip-flop is added to 
edge 7→9.  

The new circuit speed is calculated on the fly as the user 
changes the flip-flop positions. The actual placement of the 
inserted flip-flops is selected one by one in the order of the flip-

flop’s criticality. Each flip-flop position is then selected by an 
exhaustive search over a limited set of promising flip-flop 
positions to minimize critical path delay. When the user is 
satisfied with the flip-flop positions, the “Synthesize” button is 
pressed, and the inserted flip-flops are synthesized into the netlist 
and placed. 

  
Figure 8: Screen Capture of the Pipelining Mode 

5. EXPERIMENTAL RESULTS 
In this chapter, we evaluate the quality of results EVE 

produced for both the Timing Exact Microscopic Placement 
(TEMP) and pipelining mode using eight circuits. Each circuit has 
approximately 250 or fewer LUTs.  They are: 

1. Vision. The Vision circuit is an FIR filter circuit used in a 
vision application presented in [8]. The circuit is highly 
pipelined using a pyramid structure of shifters and adders. It 
uses 142 LUTs and 241 FFs. 

2. Batcher. The Batcher circuit is an ATM packet-sorting 
network that sorts incoming packets by serially comparing 
the bits of two packets. It is a component of the StarBurst 
ATM chip [1] project developed at the University of 
Toronto. It uses 252 LUTs and 455 FFs. 

3. Banyan. The Banyan circuit is also a component of the 
StarBurst ATM chip [1] described above. It is a packet 
routing network that is responsible for delivering ATM 
packets to specific destination ports based on the address 
field stored in the ATM packets. It uses 165 LUTs and 311 
FFs. 

4. Trap. The Trap circuit is also a component of the StarBurst 
ATM chip [1]. It is a comparator circuit used to detect 
duplicated packets. It uses 187 LUTs and 470 FFs. 

5. Miim. The Miim circuit [9] is an MII Management module 
of an Ethernet IP core obtained from OpenCores.org. The 
complete Ethernet IP core is designed for implementation of 
CSMA/CD LAN in accordance with the IEEE 802.3 
standards. It uses 122 LUTs and 112 FFs. 



4. Repeat step (1) to (3), increasing frequency 10% each 
time until the best frequency is obtained. 

6. Div. The Div circuit is an IP Core circuit generated by the 
Xilinx LogiCORE Pipelined Divider for Virtex Version 2.0 
generator [17]. It has unsigned 8-bit dividend and divisor 
with integer remainder. It has throughput of one division per 
clock cycle with a latency of eight clock cycles. It uses 87 
LUTs and 255 FFs. 

5. Use the frequency obtained in (4), place and route again 
using the Multi-Pass Place&Route (MPPR) option for 
ten runs, and pick the best resulting design. 

The options used to generate the baseline circuits are recorded 
in Table 1. It is worth noting that these settings get the best results 
we could achieve in a push-button flow. 

7. Dotproduct. The Dotproduct circuit computes the dot 
product of two 8-bit 3D vectors. It is a part of a 3D ray-
tracing application under development at the University of 
Toronto [5]. It uses 243 LUTs and 178 FFs. 5.2 Results: Using TEMP Mode Only 

We spent approximately two hours using the EVE editor to 
improve timing on each circuit. The machine used is a 1GHz 
Pentium-III PC with 512MB ram running Windows2000 and 
Xilinx Foundations 3.3i SP7. When we used the Timing Exact 
Microscopic Placement (TEMP) mode, we limited the area within 
which circuit elements can be placed. This ensures that we do not 
improve circuit speed at the expense of increase in occupied chip 
area. The results are summarized in Table 2 below.  The first 
column of the table gives the circuit name, then the number of 
LUTs and flip flops, the original clock period and frequency, and 
then the new frequency after editing with EVE. 

8. Crossproduct. The Crossproduct circuit computes the cross 
product of two 4-bit 3D vectors. It is also a part of the 3D 
ray-tracing application [5]. It uses 129 LUTs and 126 FFs. 

5.1 Baseline Circuits Generation 
To evaluate EVE, we obtain a full implementation of a set of 

baseline circuits from an automatic push-button flow. These form 
the starting points for the manual editor, and the basis for 
comparison. We use the following state-of-the-art synthesis and 
placement and routing tools: Synplify Pro 6.20 [14] (one of the 
preeminent synthesis tools for FPGAs) for logic synthesis, and 
Xilinx Foundation 3.1i [19] for mapping, placement and routing. 
As an exception, the Div circuit does not require logic synthesis 
because it is directly generated from an IP Core netlist generator 
from Xilinx [17]. It is placed and routed in the usual way using 
the Xilinx backend tools. The baseline results are obtained 
following the steps below: 

 On average over the eight circuits, the circuit speed improved 
by 12.7% over the baseline. Below we discuss the properties of 
each circuit and the nature of the operations we performed using 
EVE to improve circuit performance. 

1. Vision. By using the initial delay profile, we focused on 
improving the placement of circuit element on the k-most (k 
is about 1 to 5) critical paths and achieved good speed 
improvement. This is done by setting a slightly tighter timing 
budget, exposing more nets that are in timing violations. 
Also, when the critical path is in a carry chain, the reroute 
operation is observed to be able to relieve routing 
congestions effectively. 

The input is VHDL or Verilog code obtained as described in 
Section 5: 

1. Synthesize the HDL code using Synplify Pro 6.2, set to 
perform automated pipelining. 

2. Place and route using Xilinx Foundation 3.3i Service 
Pack 7 tools. 

 
3. Obtain final circuit frequency from P&R reports. 

Table 1: Options used in Synthesis & P&R tools for Baseline Circuit generation 

Options used for Synplify Pro: 
 Max Fanout = 100 
 Disable I/O = on 
 Pipelining = on 
 FSM Compiler = on 
 Resource Sharing = on 

Options used for Xilinx backend tools: 
 P&R effort = 4 
 Trim unconnected logic = no 
 Replicate logic = yes 

MPPR initial placement seed = 1
 MPPR P&R passes =- 10 
 MPPR save N Best = 1 

Frequency setting (for Synplify Pro & Xilinx 
backend): 
 Vision = 200MHz 
 Batcher = 330MHz 
 Banyan = 335MHz 
 Trap = 400MHz 
 Miim = 165MHz 
 Div = 220MHz (for Xilinx backend only) 
 Dotproduct = 150MHz 
 Crossproduct = 220MHz   

 
Table 2: Results for Using the TEMP Mode 

Vision 142 241 4.92 203.3 224.8 10.6%
Batcher 252 455 3.06 326.8 380.1 16.3%
Banyan 165 311 2.94 340.7 395.3 16.0%
Trap 187 470 2.45 408.3 460.4 12.8%
Miim 122 112 6.16 162.4 168.5 3.8%
Div 87 255 4.65 215.1 229.6 6.7%
Dotproduct 243 178 6.74 148.4 173.3 16.8%
Crossproduct 129 126 4.54 220.1 261.4 18.8%
Average 166 269 4.43 238.7 268.8 12.7%

New Freq 
(MHz)

% 
Change

Circuit # 
LUTs

# FFs Period 
(ns)

Freq 
(MHz)

  



2. Batcher. The circuit is highly pipelined by design with 
a starting speed over 300MHz. It is interesting to note 
that even for circuits operating at such a high speed, 
their placement and packing can be improved further 
over the result generated with an automatic approach. 

3. Banyan. The Banyan circuit has a high baseline circuit 
speed of 340MHz. To achieve speeds close to 
400MHz, which approaches the physical speed limit of 
the FPGA, we need to place circuit elements no more 
than one CLB apart horizontally on the chip. This 
circuit orientation guides routing to use extremely fast 
nearest neighbor connections [11] which are present 
across neighboring horizontal CLBs.  

4. Trap. The Trap circuit has the highest speed among all 
experimental circuits. However, we found out that 
many of the circuit elements are actually not optimally 
packed together in the same logic slice, and we were 
able to improve the circuit speed further to over 
460MHz by doing packing/unpacking operations. 

5. Miim. Although we tried very hard to improve the 
speed of the Miim circuit, we could only improve it by 
3.8%. The critical path of the Miim circuit is in a 
single carry chain which loops back to itself tightly. 

6. Div. Editing the placement of the design can only 
improve by 6.7%. The critical path has a carry chain 
feeding into another carry chain. 

7. Dotproduct. The Dotproduct circuit is dominated by a large 
number of carry chains employed for multiplication. The 
initial placement was not very good, because carry chains 
were not aligned correctly for signal to flow through 
naturally. We rearranged the carry chains manually by 
simply examining the signal flow of the nets connecting the 
carry chains. A floorplanning tool may well have achieved 
similar gains. 

8. Crossproduct. The circuit contains 4-bit multipliers 
synthesized into short carry chains. Again, as observed in the 
Dotproduct circuit above, the signal flow of the carry chains 
is poor. The initial circuit placement has a critical path 
spanning nine CLBs horizontally. Subsequent rearrangement 
of carry chains order greatly improved circuit speed. 

In this section, we have shown the effectiveness of EVE’s 
Timing Exact Microscopic Placement mode to further improve on 
high circuit speeds. From this experience, we make the following 
observations in order of effectiveness: 
1. The ability to pack and unpack logic slices during placement 

and routing is essential. 
2. An automatic floorplanning algorithm based on signal flow 

analysis should help timing. This observation has been made 
by FPGA design experts [7]. 

3. Focusing on improving delay on the critical path or the k-
most critical paths is effective (as described above). 

4. Floorplanning or placement editing tools should inform the 
user of any high speed routing resources available in the 
chip, so the user can make better micro-placement decisions. 

5. Partial re-routing of timing-critical regions of the circuit is 
effective because routing resources in the surrounding area 
of critical paths can be freed up, and more critical nets can be 
reassigned faster routing resources. 

6. The presence of un-occupied space near the critical path 
made the manual-editing task much easier. 

7. The delay distribution (described in Section 3) helps the user 
identify improvement opportunities. 

8. The more pipeline stages a circuit has, the easier the 
placement-editing task will be. 

5.3 Results: Using Both TEMP and Pipelining 
Modes 

In this section we present results obtained by using both the 
TEMP and pipelining modes of EVE to improve circuit speed. 
We only successfully obtained results for two circuits: Div and 
Mult. While Div was used in the previous section, the Mult circuit 
is a new circuit designed to test EVE’s pipelining ability.  It is a 
non-pipelined 4x4bit multiplier built using full and half adder 
blocks. The circuit is synthesized using the procedure described in 
Section 5.1, except that we does not turn on the pipelining and 
retiming features of Synplify Pro. The resulting circuit does not 
contain any carry chains, and so it is highly pipeline-able by 
design. Results for the Vision and Miim circuits are not available 
because the critical paths are inside loops, which cannot be 
pipelined. Results for the Batcher, Banyan and Trap circuits are 
not gathered because the circuits are already sufficiently 
pipelined. Results for the Dotproduct and Crossproduct circuits 
are not available due to software instability.  

 
Table 3 shows the summary of results. 
These results are gathered after one stage of pipeline 

insertion. For the already well-pipelined Div circuit, minimal 
performance increase after the pipelining operation is expected. 
For the Mult circuit, however, we achieve a performance increase 
of 42.2%. It proves that the pipelining feature is functional. 
However, pipelining at the logic synthesis level could probably 
have increased the speed of the Mult circuit to about 220MHz. 
Pipelining at the logic synthesis level is still the preferred choice 
over pipelining at the physical level. But for extremely high-speed 
circuits, pipelining at the physical level may be the only way to 
obtain accurate post-placement/routing delay information for 
performing optimal pipelining operation. The current user 
interface of EVE’s pipelining mode is very limited. It can 
demonstrate basic ideas for pipelining at the physical level, but 
the actual pipelining operation is not easy to do. Future research 
that looks at the Synthesis stage in the Event Horizon 
methodology may make better use of the pipelining feature that 
EVE currently offers. 
 

 
 



Table 3: Results for Using both TEMP and Pipelining Modes 

Circuit # LUTs # FFs # FFs 
added

Freq 
(MHz)

New Freq 
(MHz)

% Change

Vision 142 241 224.8 N/A : critical path in loop
Batcher 252 455 380.1 N/A : already well pipelined
Banyan 165 311 395.3 N/A : already well pipelined
Trap 187 470 460.4 N/A : already well pipelined
Miim 122 112 168.5 N/A : critical path in loop
Div 87 255 66 229.6 237.7 3.5%
Dotproduct 243 178 173.3 N/A : due to tool instability
Crossproduct 129 126 261.4 N/A : due to tool instability
Mult 39 23 38 123.1 175.1 42.2%  
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6. CONCLUSION AND FUTURE WORK 
In this paper, we present a tool for manual packing, placement 

and pipelining, with the goal of aiding designers seeking very 
high-speed implementation of circuits. We implemented the 
method in a manual editor called EVE. EVE provides an intuitive 
GUI interface, which can perform powerful operations such as 
packing/unpacking, placement, and routing operations. It 
integrates tightly with the Xilinx backend tools to allow editing of 
real commercial FPGA circuits based on the Xilinx Virtex-E 
architecture. It gives the user full low-level control of the circuit, 
and it provides instant real timing feedback while during 
placement editing and pipelining operations. It is timing-budget 
aware and it provides useful features to help designers meet the 
timing goal. Experimental results show that EVE is capable of 
improving the maximum operating frequency of real circuits by 
up to 19%, and we show that it improves a group of eight circuits 
on average by 12.7%. The pipelining mode in EVE demonstrates 
important ideas involved in pipelining at the physical level. EVE 
will serve as a good reference CAD tool for further research into 
the area of high-speed manual-assisted design tools.  In the future, 
we will explore the use of this framework together with logic 
synthesis to perform the ground-up design creation as articulated 
by Von Herzen.  We may also extend the tool to support newer 
device architectures. 
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