
EVE: A CAD Tool for Manual Placement and Pipelining
Assistance of FPGA Circuits

William Chow
Edward S. Rogers Sr. Department of Electrical and

Computer Engineering, University of Toronto
 Toronto, Ontario, Canada M5S 3G4

choww@eecg.toronto.edu

Jonathan Rose
Edward S. Rogers Sr. Department of Electrical and

Computer Engineering, University of Toronto
 Toronto, Ontario, Canada M5S 3G4

jayar@eecg.toronto.edu

ABSTRACT
As FPGAs push ever deeper into mainstream digital design,

there is an increasing desire for high-performance circuits. This
paper describes a manual editor, called EVE, which can assist a
designer to perform manual packing, placement and pipelining of
commercial FPGA circuits to achieve a meaningful increase in
performance. This effort is inspired by Von Herzen’s paper [15]
[16], which proposed the notion of an “Event Horizon” – a high-
speed circuit design approach in which complete knowledge of
the timing effect of every synthesis change is used. It is very
laborious to implement circuits using this approach; therefore we
try to augment manual design tools in order to make this Event
Horizon methodology easier to perform. This paper describes a
first step in that direction, which focuses on placement, packing
and pipelining. EVE provides an interactive environment that
immediately reroutes and timing analyzes after each user circuit
modification, giving an exact value for critical path delay. It can
also suggest good placement positions and provide flip-flop
insertion assist during pipelining. Compared to a state-of-the-art
Synthesis and place and route flow, we used EVE to achieve an
average of 12.7% higher operating frequency on a set of eight
Xilinx Virtex-E circuits of 250 or fewer LUTs.

Keywords
FPGA, programmable logic, manual placement and pipelining,
event horizon

1. INTRODUCTION
Most FPGA circuits are designed using a traditional “push-

button” CAD flow, which involves design entry, logic
optimization, technology mapping, floorplanning, placement and
routing. When a high circuit speed that pushes the limits of the
silicon’s capability is desired, this approach often fails to achieve
the required performance. Designers will typically repeatedly
floorplan, place and route the circuit until the design goal is met.
This iterative process is very time consuming because the
resulting design speed is not known until after timing analysis is

performed, and the result may seem to be decoupled from the
changes applied. There is a clear need for a different high-speed
circuit design methodology. In [15] [16], Von Herzen described
the design of a signal processing circuit in FPGA running at
250MHz in 1997 using 0.6µm CMOS technology. This
remarkable achievement stands in stark contrast to the struggles
that designers face to achieve speeds on the order of 150MHz in
today's 0.18 µm CMOS technology.

Von Herzen demonstrated a high-speed circuit design
methodology using the notion of an “Event Horizon”, which
refers to the boundary that a circuit element can be placed within
in order to satisfy a timing budget. This methodology demands
that the designer create each microscopic piece of the circuit with
the timing budget in mind. During this process, the complete
routing delays are included in the time accounting. Von Herzen
used low-level manual design tools to select routing resources
carefully, and to avoid the placement of logic elements outside of
the horizon. However, it is very laborious to implement circuits
using the low-level manual design tools. We therefore became
interested to augment such tools to facilitate circuit design
employing the Event Horizon methodology. This paper describes
the features and implementation of the editor (called EVE, for
EVent horizon Editor) as well as quantitative results achieved
using it. This initial work focuses on the packing, placement,
routing and timing analysis phase of circuit implementation, and
uses a push-button flow result as the starting point somewhat
different from Von Herzen's design-from-scratch approach. This
work relates somewhat to the full-custom VLSI editors Magic
[10] and Electric [12] developed in the early eighties to enhance
design capabilities with assistance.

In the following section we review Von Herzen's work and
present the objectives and context for our work. Section 3
describes the basic move generation mode of the editor while
Section 4 describes its pipelining-assist features. Section 5
presents experimental results and Section 6 concludes.

2. BACKGROUND, GOALS and CONTEXT
 Von Herzen achieved a circuit speed far beyond the

otherwise typical capability of silicon. He did this by employing
low-level manual design tools to configure each logic block of the
circuit and to select the routing resources manually. He carefully
chose where to place each circuit element physically on the chip,
because routing delays made up a significant portion of the
critical delay of the circuit. He proposed the concept of an “Event
Horizon”, which could be used to quickly estimate where circuit
elements could be placed without violating a very tight timing
budget.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA’02, February 24-26, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-452-5/02/0002…$5.00.

0.8 0.4

1.2 1.2

0.8 1.2 0.4

src CLB

0.8

Figure 1: Event Horizon

src
CLB src

CLB

Event Horizon

dst
CLB

Extended Event Horizon
dst
CLB

Pipelining flip-flop

Figure 2: Extending the Event Horizon using Pipelining
The “Event Horizon” concept is illustrated in Figure 1.

Assume that a circuit needs to run at 250MHz, so the critical path
time budget is 4.0ns. A flip-flop (FF) in a source logic block
(CLB) (marked with a circle in the figure) drives a LUT-to-FF
combination in another logic block. To determine how far away
the target logic block can be placed, we first need to obtain some
timing characteristics about the chip such as the maximum clock
skew, the LUT delay, the routing delays, as well as the clock-to-
output delay and FF setup time. Assume that the maximum clock
skew is 0.1ns, the clock-to-output delay is 1.3ns, and that LUT
delay + FF setup time through is 1.5ns. In order for the time
budget to be met, the routing delay can then take at most 4.0-0.1-
1.3-1.5 = 1.1ns. Suppose, for simplicity, that the FPGA has a
routing architecture that requires 0.4ns to travel the distance of
one logic block (in Manhattan distance) in all directions. For the
example given in Figure 1, the target logic block can only be
placed at locations that can support a routing delay of at most
0.8ns, as indicated by the shaded box in Figure 1. Von Herzen
called such a boundary box the Event Horizon of the source logic
block in the context of a circuit required to run at 250MHz. The
“Event Horizon” is then defined as the boundary within which the
target logic block can lie, such that the routing delay to reach the
target logic block from the source logic block is small enough to
satisfy the timing budget. With a timing goal in mind, Von
Herzen then calculated the Event Horizon for each circuit
element, and tried to place the connecting elements in its Event
Horizon. In cases when this was not possible (for example, all
locations in the Event Horizon were already occupied), extra flip-
flops could be introduced to pipeline the circuit, permitting the
target logic block to move outside of the current Event Horizon,

as illustrated in Figure 2. By first calculating the Event Horizon of
each circuit element at a given target speed, Von Herzen
incrementally built each part of the circuit, knowing that the
timing budget would be met throughout the design process.

2.1 Objectives
Our work has two objectives. Firstly, we would like to

construct a manual editor that augments the current low-level
floorplanning and circuit editing tools, by employing elements of
the Event Horizon methodology. Secondly, we would like to gain
more insights to better placement and routing techniques by
extensively using the tool to augment the speed of real designs.
EVE has the following design objectives:

1. Target Real FPGA Architectures. Traditional FPGA
research tools tend to work on simplified models of real
FPGAs [2]. These tools, for example, rarely represent carry
chains correctly. Our goal in this work is to apply the Event
Horizon concept and its implications to real devices so that
we can deal with all of the realities that designs possess, and
try to achieve usable improvements. We chose the Xilinx
Virtex-E [20] family as our target.

2. Give Full Low-Level Control. The Event Horizon notion
requires careful design of each microscopic piece of the
circuit. Our editor must permit the user to easily control
placement and packing of each LUT, carry element and flip-
flop, and to precisely control where flip-flops are inserted
when pipelining.

3. Give Instant Performance Feedback. After each user
circuit modification, the editor should immediately reroute
and perform a full timing analysis to report the real circuit
performance. This is usually not possible in automated
placement of large circuits, but it is feasible for interactively
editing small designs. In this work we focus on designs with
250 or fewer 4-input logic cells.

4. Be Timing Budget Aware. EVE should be timing-budget
aware. It should highlight circuit elements that violate the
timing budget and quickly and accurately estimate the effect
of a change to the circuit before it is applied. It should also
provide a visual aid to illustrate the Event Horizon itself (see
Figure 5).

5. Assist Pipelining. EVE should assist the user to pipeline the
circuit by maintaining correct functionality of the circuit
throughout the pipelining process. It should also select good
physical placement for pipelining flip-flops to minimize the
critical path delay.

2.2 The Xilinx Virtex-E Architecture
In this section we describe the salient features of the target

Xilinx Virtex-E [20] architecture. The Virtex-E is fabricated in a
0.18µm CMOS technology. It is an island-style [2] FPGA
architecture in which routing resources surround Configurable
Logic Blocks (CLBs). Each CLB has two slices and each slice has
two 4-input look up tables (4-LUTs) and two flip-flops (FFs). The
two 4-LUTs in each slice can be combined to form a 5-LUT and
two such 5-LUTs in the same CLB can be combined to form a 6-
LUT. There are carry chains for high-speed arithmetic that run
vertically upwards in each slice. Each slice also contains
dedicated AND gates and XOR gates to support fast addition and
multiplication. A 4-LUT can also be configured as RAM, ROM,

or a 1-bit Shift Register LUT (SRL) of variable depth (1-16).
Figure 3, taken from [20], shows a Virtex-E CLB.

Figure 3: A Virtex-E CLB (taken from [20])

3. TIMING EXACT MICROSCOPIC
PLACEMENT (TEMP) MODE

In this section we describe the features and implementation of
the basic packing and placement editor assistant. We call this the
"Timing Exact Microscopic Placement" (TEMP) mode of EVE. It
permits microscopic placement and packing/unpacking of circuit
elements while giving instant exact timing feedback. The
graphical user interface of EVE is built using EasyGL for
Windows [3]. Figure 4 illustrates the concept of a “Timing
Horizon”. It is based on the Event Horizon concept described in
Section 2. When a circuit element (such as a LUT) is to be moved
EVE will calculate the change in critical path delay that would
occur if the element is placed in a series of target locations (like
those marked in gray in Figure 4). In Figure 4, a Timing Horizon
of radius one (CLB) is displayed. A negative number means that
the critical path delay improves. When a target position is not
feasible (it may be occupied or the target slice configuration is not
compatible), it does not appear in the Timing Horizon. In EVE,
we will call this Timing Horizon simply the “Horizon”. It is an
important feature of EVE that the designer can use to evaluate the
effect of moving a circuit element in the chip.

+0.2

-0.2

-0.2

src LUT

+0.0

+0.4

+0.4

+0.2

+0.2

+0.2

Figure 4:Timing Horizon
In the Timing Exact Microscopic Placement (TEMP) mode,

the circuit is represented in a grid format, with each grid cell
representing a CLB. Figure 5 shows a circuit on a Xilinx
XCV100E [20] chip. Each CLB has two slices, and each slice is
divided into six components: two LUTs, two carry cells, and two
FFs. In this mode, the placement of all circuit elements is shown,
and logic packing and placement operations can be easily
modified using a drag-and-drop paradigm. EVE recognizes
structural grouping of circuit elements such as carry chains, 5-
LUTs, and 6-LUTs. On start up, the critical path of the circuit is
highlighted. The current maximum operating frequency of the

circuit is also calculated and displayed in the status window. The
user can then perform the following operations:

Figure 5: Screen capture of TEMP mode showing a

"Horizon"

1. Change Placement of Components. Select the components
and drag them to the destination location. Eve does this
better than the native Xilinx Floorplanner because it
immediately reroutes the circuit and reports the real circuit
timing. EVE also performs immediate legality checking of
move and informs the user of illegal moves by displaying
“X” markers on invalid target positions.

2. Packing/Unpacking of Slices. When a LUT is moved from
one slice to another, the packing of the source and
destination slices may be altered. The native Xilinx
Floorplanner can only pass this packing/unpacking directive
to the mapper as a slow batch task; and such
packing/unpacking operation may not be applied
successfully. In contrast, EVE can determine the packing
feasibility instantly.

3. Change/Set Timing Budget. When the timing budget is set
or changed, the design is timing-analyzed and the
components and nets that violate the budget are highlighted.
A typical methodology is to slowly decrease the timing
budget, and focus on a more timing critical part of the
circuit, until the desired timing goal is met.

4. Invoke Horizon. Here the user selects a component and
press the “Horizon” button. A Horizon is displayed with a
gradient of colors indicating the “goodness” of placing the
selected components at the indicated positions. A number is
displayed in each valid target position, indicating the change
in critical path delay should the component be moved there.
The user can control a “Horizon Radius” parameter that
controls in Manhattan distance within how many CLBs the
horizon calculations should be performed. (A Large radius
will take a long time to compute, but reasonable ones are

quick) Figure 5 illustrates a Horizon of radius three for a
selected flip-flop component.

5. Nets Reroute. We have found that, after a series of
microscopic packing and placement changes, that the critical
path can be improved by rerouting all of the timing-critical
elements. In this option, the user selects some components
and invokes the reroute. All nets connected to the selected
components will be re-routed leaving other nets in the circuit
intact.

6. Display Dynamic Delay Distribution. After each user
move, EVE analyzes the timing of the circuit and outputs a
delay distribution, which summarizes the number of delay
paths having delays within different delay ranges. This gives
the user an overall picture on the current state of the circuit.

After each move, EVE modifies the netlist as needed,
incrementally re-routes nets, and performs timing analysis to
report the real timing of the modified circuit. Using instant timing
feedback and various budget-aware features, a user can produce
superior performance circuits. The following sections describe
how the above features of the editor are implemented.

3.1 Interactivity
EVE has to provide high interactivity, which requires very

quick partial placement, routing, and timing analysis of the circuit
after a user move. One approach would be to use the set of
command-line based backend tools from Xilinx including MAP
(technology mapping) PAR (placement and routing), TRACE
(timing analyzer), and XDL (Xilinx proprietary circuit format to
ASCII conversion utility). Since these are relatively slow batch-
based tools, each user move could still take minutes to process.
Clearly we need to bypass using these tools yet still perform the
necessary tasks in a much shorter time. EVE achieves this by
interfacing with the Xilinx manual editor directly. The Xilinx
FPGA Editor [18] has a full-featured set of textual commands for
controlling various operations including slice configuration,
placement, and routing. On start up, EVE spawns two copies of
FPGA Editor. One copy serves as the “backend” where the real
circuit changes are applied. The other copy serves as a “net delay
reporter” which calculates net delays on the fly. EVE instructs
both the “backend” and “net delay reporter” by sending
commands to them using named pipes supported by the Windows
NT based platform. The execution result in the backend is
obtained for further analysis, by capturing text from the FPGA
Editor window using Windows messaging API calls.

EVE determines the timing of the entire circuit at all times. It
obtains the initial timing information from the Xilinx timing
analyzer (TRACE). It then builds a timing graph of the circuit and
performs subsequent timing analysis internally. When the user
makes a move, EVE will calculate the effect of the move by using
delay values stored in a delay database (described in Section 3.2),
and estimate the resulting circuit critical path delay. The change is
then communicated to the backend using named pipes. The
backend makes the corresponding change, including logic
configuration modification, netlist modification, and placement.
Then it unroutes all nets affected by the change, and re-routes
them using the critical path delay estimated by EVE as a timing
constraint for timing-driven routing. This routing is very quick
since it is only a partial re-route, and the unaffected nets are left

untouched. Finally, the net delays of the modified nets are queried
by EVE through the backend, and it will once again have
complete knowledge of the updated circuit timing information.

3.2 Delay Modeling
Two types of delays are needed for timing analysis: the logic

delay within a slice, and routing delay. Logic delays are usually
modeled as constants since the number of configurable paths that
exist within each slice is limited. They are usually pre-calculated
and stored in look-up tables for fast future retrieval. Routing
delays however, vary according to the routing resources taken up
by a route. Each routing delay value is governed by an RC model,
such as Elmore [4] and Penfield-Rubinstein [13] models. These
models take into account the length of the routing wires, and the
number and type of switches (buffered or non-buffered) that the
routes pass through. For EVE, obtaining such delay information is
hard because it has no knowledge of the proprietary RC
characteristics of the commercial device. Without this knowledge,
EVE has to obtain both logic and routing delay values by
querying the Xilinx backend tools one delay at a time and then
storing the delays in data files, which we refer to as the delay
database.

Logic delays are calculated and stored automatically for each
chip with a given speed grade the first time EVE encounters the
chip. It does so by enumerating all the possible configurable
pathways present within a slice or in-between slices (as in the
case of a delay involving 6-LUT). It then writes out a Xilinx
Description Language (XDL) description of the circuit containing
all the paths of interest, with each path using different CLBs.
XDL is a text-based language describing the internals of Xilinx
circuits, including slice configuration and routing information. It
can be translated into the Xilinx native NCD circuit format using
the XDL utility. The design is then timing analyzed using a
command-based timing analyzer program called TRACE. The
logic delay values for each path are then extracted from the report
file to form a delay-matching table. Such a table will provide
mapping from various slice configurations to logic delay values.
For Virtex-E, there are 230 such logic delay values. The
extraction of routing delays is much more difficult because of the
large number of CLB pin to CLB pin delay values present in the
Virtex-E devices. For example, an XCV100E chip has 20 rows
and 30 columns of CLBs and each CLB has two slices. For any
given pin-to-pin route, it can originate from one out of six output
pins in either slice S0 or S1. It can also terminate in one out of
twelve input pins in either slice S0 or S1. The total number of
possible routes of Manhattan distance of length five or less is
(2*5*5 + 2*5 + 1)*20*30*2*2*6*12 ≈ 10.5 million delay values.
We estimate that a 450MHz Pentium-III processor can process
four delay values per second, and each delay can be stored using
10 bytes. We would thus need about 30 days to generate the
database and the data will take up 100MB of disk space. To make
the delay search space smaller, we devise a compression scheme
making use of the symmetric nature of the Virtex-E routing
architecture.

3.2.1 Delay Database Compression
To describe the compression scheme better, we have to

introduce some notation. We group related pin-to-pin routing
delay values together in a group identified by the following
format: G=(S1,P1,S2,P2,X,Y). S1 and P1 specify the source slice
and pin, while S2 and P2 specify the target slice and pin. X and Y

are integers that represent the relative position of the target pin to
the source pin. G is used to refer to this group of delays. Figure 6
shows a 3-D plot of the real routing delay values for the delay
group G=(0,XQ,0,G1,-1,-1) of the XCV100ECS144-8 device,
which refers to the group of delay values with source pin located
on XQ pin of S0, and target pin located on G1 pin of S0, and
target slice is one CLB west and one CLB north of the source
slice. The pin-to-pin routing delay values in group G will then be
represented using the notation (G,R,C) where R and C represents
the row and column coordinate of the source pin. Each delay
value (in ns) is plotted in 3-D space against the (R,C) coordinate.
We can observe from Figure 6 that the routing delays are indeed
fairly symmetrical across identical rows and columns. Now we
will discuss the compression scheme we use:

1. Using Two One-Dimensional Functions. A two-
dimensional grid, with notation D(r,c), where r and c
corresponds to the row and column coordinate, is used to
represent all the delay values in the group. It requires r*c
data points. The following procedure is used:
a. All D(r,c) values are converted from floating point

numbers into integers using a scaling factor of 0.02ns
(0.35ns will become 0.35/0.02 = 17). We call the scaled
values D′(r,c).

b. We locate an “intersect” point on the 2-D grid at the
“base” of the 3-D plot, and record its delay. We refer to
it as the “base delay” (b). All D′ (r,c) values are
normalized by subtracting from the base delay to form
D′′(r,c). The resulting data points will then contain
mostly zeroes.

c. From the same “intersect” point, we can form two one-
dimensional functions, Dr(r) and Dc(c), using the
column and row vectors at the intersect, such that
D′′(r,c) = Dr(r) + Dc(c) (illustrated in Figure 6). With
these two functions, the number of data points needed to
represent all D(r,c) values becomes r+c.

2. Eliminating Zeroes. Dr(r) and Dc(c) are found to contain
mostly zeroes. For example, Dr(r) may be a vector like [0 0 0
0 2 3 0 0 0 …]. Instead of processing the columns with 0
entries in Dr(r), these column numbers are recorded, and are
skipped for all subsequent rows. The same rule applies to
Dc(c).

3. Eliminating Duplicates. Dr(r) and Dc(c) frequently contain
entries with the same value. Instead of processing all the
entries with the same delay value, only one entry is
processed. For example, for the vector [0 0 2 3 0 0 2 3 0 0
…], columns 3-4 and 7-8 are the same, so columns 7-8 are
not processed. This rule can be applied to both Dr(r) and
Dc(c).

4. Using Symmetry of Pins. Delays with P1 = X and P1 = Y
are the same. Only one P1 value needs to be processed. The
same also applies for P1 = XQ and P1 = YQ.

5. Record Extra Data Points. Data points, which cannot be
calculated accurately using the above compression scheme,
are recorded individually.

Using the heuristics given above, the search space is compressed
by about 100 times. All delay values as well as other information
including: base delay, intersect point coordinate, zero matching

columns/rows, duplicate matching columns/rows and extra data
points, are generated and recorded in data files using a set of
PERL scripts. In EVE, the data files are loaded into a group of
efficient data structures, which we refer to as the delay database.
Delay retrieval from the database is quick, and the whole database
consumes about 20MB of physical memory.

 Figure 6: Routing Delay Profile for group G

) Dc(c)

Intersect

n

n

3.3 Instant Timing Feedback
To provide instant timing feedback, full timing a

performed internally within EVE. It is based on a for
backward sweep approach described in [6]. The
demonstrates instant timing feedback. For each target
EVE first determines if the move is valid. Then, it
temporary circuit resulting by moving the target to e
location and performs a full-timing analysis on it. The
critical path delay timing is displayed in the target po
horizon of radius three takes about two seconds to calc
1GHZ Pentium-III machine.

4. PIPELINING MODE
Pipelining traditionally occurs during logic design,

designer introduces pipeline stages to enable parallel ex
multiple circuits to achieve a higher throughput. Pipelin
Event Horizon methodology context, however, refers to
to register logic elements when the physical placement
an obstacle to satisfy a high-speed design goal as illu
Figure 2. We believe research in pipelining at the phys
will become more important as circuit speed pushes to
limit of the silicon. We need a pipelining assistant that a
designer to fully control where pipelining flip-flops are
yet helping the designer retain correct functionality of t
The TEMP mode displays the physical locations of ea
element, so it is ideal for performing packing/unpac
placement operations. For pipelining, however, such
representation cannot present clearly to the user where
can be inserted because the graphical display will
cluttered. We thus propose the pipelining mode in EVE
to present the circuit in a better form to assist pipelini
the user insert or move a flip-flop in the circuit,
automatically determine where in the circuit to insert
flip-flops to maintain correct functionality of the circuit.
Dr(r)
Column of source pi
Row of
source pi
Pin-to-pin delay (ns

nalysis is
ward and
“horizon”
 position,
 builds a
ach valid
change in
sition. A

ulate on a

 when the
ecution of
ing in the
 the need
 becomes
strated in
ical level
wards the
llows the
 inserted,

he circuit.
ch circuit
king and
a circuit

 flip-flops
 be very
 as a way
ng. When
EVE will
additional

In the pipelining mode, the circuit is displayed as a directed
acyclic graph (DAG). Each graph node represents an input or
output pin of a logic slice, or the input and output ports of
sequential elements, including flip-flops and Shift Register LUTs
(SRLs). Each edge represents a logical connection between the
graph nodes, which usually has an associated delay value,
corresponding to an internal logic delay, or an external routing
delay. Primary inputs are displayed at the top and primary outputs
at the bottom of the DAG (See Figure 8). If there exists a
sequential loop in the circuit, we need to detect and collapse it
down into a single graph node. Graph edges are colored
differently to indicate their status: critical nets are marked red
while edges that are flip-flop insertable are marked green. A
square appears when a flip-flop is inserted on an edge. A number
appeared next to an edge indicates the number of edges
connecting the nodes. Information that is not useful such as the
sub-graphs within loops is eliminated from the graph to make it
less cluttered. With a detail representation of connected graph
nodes and edges, flip-flop insertion and flip-flop motion can be
done intuitively as if the circuit is a combinational circuit.

 2 1 3

4 5

6 7 8

9

Figure 7: A Timing Graph
During flip-flop insertion, the user selects an edge and clicks

the “Insert FF” button. A flip-flop is inserted in the specified
location. Then EVE will then insert additional flip-flops in the
DAG to maintain correct circuit behavior. For example, for the
timing graph in Figure 7, if a flip-flop is inserted at edge 4→6,
additional flip-flops must be inserted at edges 4→7, 5→7, 8→9.
The resulting circuit still functions properly, with one additional
cycle of latency across all paths. (Note that other flip-flop to edge
assignments are also possible.) The additional flip-flop positions
are determined based on a continuous forward and backward
sweeping algorithm. The algorithm first inserts a flip-flop on the
supplied edge, then it marks all its transitive fanin and fanout
edges as processed. For back edges encountered during a forward
traversal or forward edges encountered during a backward
traversal, FFs are inserted if they are not marked as processed.
This process continues until all edges are visited.

After flip-flop insertion, the user is able to move the newly
inserted flip-flops forward or backward using the “up” and
“down” arrow keys. When a flip-flop is moved forward or
backward across a node, EVE will make sure that the circuit is
still functioning properly, by moving other flip-flops affected by
the move. For example, for the timing graph in Figure 7 , assume
that flip-flops are inserted at edges 4→6, 4→7, 5→7, 8→9. Now
if the user moves the flip-flop from 5→7 to 7→9, flip-flops at
edge 4→7 and 5→7 will be removed, and a flip-flop is added to
edge 7→9.

The new circuit speed is calculated on the fly as the user
changes the flip-flop positions. The actual placement of the
inserted flip-flops is selected one by one in the order of the flip-

flop’s criticality. Each flip-flop position is then selected by an
exhaustive search over a limited set of promising flip-flop
positions to minimize critical path delay. When the user is
satisfied with the flip-flop positions, the “Synthesize” button is
pressed, and the inserted flip-flops are synthesized into the netlist
and placed.

Figure 8: Screen Capture of the Pipelining Mode

5. EXPERIMENTAL RESULTS
In this chapter, we evaluate the quality of results EVE

produced for both the Timing Exact Microscopic Placement
(TEMP) and pipelining mode using eight circuits. Each circuit has
approximately 250 or fewer LUTs. They are:

1. Vision. The Vision circuit is an FIR filter circuit used in a
vision application presented in [8]. The circuit is highly
pipelined using a pyramid structure of shifters and adders. It
uses 142 LUTs and 241 FFs.

2. Batcher. The Batcher circuit is an ATM packet-sorting
network that sorts incoming packets by serially comparing
the bits of two packets. It is a component of the StarBurst
ATM chip [1] project developed at the University of
Toronto. It uses 252 LUTs and 455 FFs.

3. Banyan. The Banyan circuit is also a component of the
StarBurst ATM chip [1] described above. It is a packet
routing network that is responsible for delivering ATM
packets to specific destination ports based on the address
field stored in the ATM packets. It uses 165 LUTs and 311
FFs.

4. Trap. The Trap circuit is also a component of the StarBurst
ATM chip [1]. It is a comparator circuit used to detect
duplicated packets. It uses 187 LUTs and 470 FFs.

5. Miim. The Miim circuit [9] is an MII Management module
of an Ethernet IP core obtained from OpenCores.org. The
complete Ethernet IP core is designed for implementation of
CSMA/CD LAN in accordance with the IEEE 802.3
standards. It uses 122 LUTs and 112 FFs.

4. Repeat step (1) to (3), increasing frequency 10% each
time until the best frequency is obtained.

6. Div. The Div circuit is an IP Core circuit generated by the
Xilinx LogiCORE Pipelined Divider for Virtex Version 2.0
generator [17]. It has unsigned 8-bit dividend and divisor
with integer remainder. It has throughput of one division per
clock cycle with a latency of eight clock cycles. It uses 87
LUTs and 255 FFs.

5. Use the frequency obtained in (4), place and route again
using the Multi-Pass Place&Route (MPPR) option for
ten runs, and pick the best resulting design.

The options used to generate the baseline circuits are recorded
in Table 1. It is worth noting that these settings get the best results
we could achieve in a push-button flow.

7. Dotproduct. The Dotproduct circuit computes the dot
product of two 8-bit 3D vectors. It is a part of a 3D ray-
tracing application under development at the University of
Toronto [5]. It uses 243 LUTs and 178 FFs. 5.2 Results: Using TEMP Mode Only

We spent approximately two hours using the EVE editor to
improve timing on each circuit. The machine used is a 1GHz
Pentium-III PC with 512MB ram running Windows2000 and
Xilinx Foundations 3.3i SP7. When we used the Timing Exact
Microscopic Placement (TEMP) mode, we limited the area within
which circuit elements can be placed. This ensures that we do not
improve circuit speed at the expense of increase in occupied chip
area. The results are summarized in Table 2 below. The first
column of the table gives the circuit name, then the number of
LUTs and flip flops, the original clock period and frequency, and
then the new frequency after editing with EVE.

8. Crossproduct. The Crossproduct circuit computes the cross
product of two 4-bit 3D vectors. It is also a part of the 3D
ray-tracing application [5]. It uses 129 LUTs and 126 FFs.

5.1 Baseline Circuits Generation
To evaluate EVE, we obtain a full implementation of a set of

baseline circuits from an automatic push-button flow. These form
the starting points for the manual editor, and the basis for
comparison. We use the following state-of-the-art synthesis and
placement and routing tools: Synplify Pro 6.20 [14] (one of the
preeminent synthesis tools for FPGAs) for logic synthesis, and
Xilinx Foundation 3.1i [19] for mapping, placement and routing.
As an exception, the Div circuit does not require logic synthesis
because it is directly generated from an IP Core netlist generator
from Xilinx [17]. It is placed and routed in the usual way using
the Xilinx backend tools. The baseline results are obtained
following the steps below:

 On average over the eight circuits, the circuit speed improved
by 12.7% over the baseline. Below we discuss the properties of
each circuit and the nature of the operations we performed using
EVE to improve circuit performance.

1. Vision. By using the initial delay profile, we focused on
improving the placement of circuit element on the k-most (k
is about 1 to 5) critical paths and achieved good speed
improvement. This is done by setting a slightly tighter timing
budget, exposing more nets that are in timing violations.
Also, when the critical path is in a carry chain, the reroute
operation is observed to be able to relieve routing
congestions effectively.

The input is VHDL or Verilog code obtained as described in
Section 5:

1. Synthesize the HDL code using Synplify Pro 6.2, set to
perform automated pipelining.

2. Place and route using Xilinx Foundation 3.3i Service
Pack 7 tools.

3. Obtain final circuit frequency from P&R reports.

Table 1: Options used in Synthesis & P&R tools for Baseline Circuit generation

Options used for Synplify Pro:
 Max Fanout = 100
 Disable I/O = on
 Pipelining = on
 FSM Compiler = on
 Resource Sharing = on

Options used for Xilinx backend tools:
 P&R effort = 4
 Trim unconnected logic = no
 Replicate logic = yes

MPPR initial placement seed = 1
 MPPR P&R passes =- 10
 MPPR save N Best = 1

Frequency setting (for Synplify Pro & Xilinx
backend):
 Vision = 200MHz
 Batcher = 330MHz
 Banyan = 335MHz
 Trap = 400MHz
 Miim = 165MHz
 Div = 220MHz (for Xilinx backend only)
 Dotproduct = 150MHz
 Crossproduct = 220MHz

Table 2: Results for Using the TEMP Mode

Vision 142 241 4.92 203.3 224.8 10.6%
Batcher 252 455 3.06 326.8 380.1 16.3%
Banyan 165 311 2.94 340.7 395.3 16.0%
Trap 187 470 2.45 408.3 460.4 12.8%
Miim 122 112 6.16 162.4 168.5 3.8%
Div 87 255 4.65 215.1 229.6 6.7%
Dotproduct 243 178 6.74 148.4 173.3 16.8%
Crossproduct 129 126 4.54 220.1 261.4 18.8%
Average 166 269 4.43 238.7 268.8 12.7%

New Freq
(MHz)

%
Change

Circuit #
LUTs

FFs Period
(ns)

Freq
(MHz)

2. Batcher. The circuit is highly pipelined by design with
a starting speed over 300MHz. It is interesting to note
that even for circuits operating at such a high speed,
their placement and packing can be improved further
over the result generated with an automatic approach.

3. Banyan. The Banyan circuit has a high baseline circuit
speed of 340MHz. To achieve speeds close to
400MHz, which approaches the physical speed limit of
the FPGA, we need to place circuit elements no more
than one CLB apart horizontally on the chip. This
circuit orientation guides routing to use extremely fast
nearest neighbor connections [11] which are present
across neighboring horizontal CLBs.

4. Trap. The Trap circuit has the highest speed among all
experimental circuits. However, we found out that
many of the circuit elements are actually not optimally
packed together in the same logic slice, and we were
able to improve the circuit speed further to over
460MHz by doing packing/unpacking operations.

5. Miim. Although we tried very hard to improve the
speed of the Miim circuit, we could only improve it by
3.8%. The critical path of the Miim circuit is in a
single carry chain which loops back to itself tightly.

6. Div. Editing the placement of the design can only
improve by 6.7%. The critical path has a carry chain
feeding into another carry chain.

7. Dotproduct. The Dotproduct circuit is dominated by a large
number of carry chains employed for multiplication. The
initial placement was not very good, because carry chains
were not aligned correctly for signal to flow through
naturally. We rearranged the carry chains manually by
simply examining the signal flow of the nets connecting the
carry chains. A floorplanning tool may well have achieved
similar gains.

8. Crossproduct. The circuit contains 4-bit multipliers
synthesized into short carry chains. Again, as observed in the
Dotproduct circuit above, the signal flow of the carry chains
is poor. The initial circuit placement has a critical path
spanning nine CLBs horizontally. Subsequent rearrangement
of carry chains order greatly improved circuit speed.

In this section, we have shown the effectiveness of EVE’s
Timing Exact Microscopic Placement mode to further improve on
high circuit speeds. From this experience, we make the following
observations in order of effectiveness:
1. The ability to pack and unpack logic slices during placement

and routing is essential.
2. An automatic floorplanning algorithm based on signal flow

analysis should help timing. This observation has been made
by FPGA design experts [7].

3. Focusing on improving delay on the critical path or the k-
most critical paths is effective (as described above).

4. Floorplanning or placement editing tools should inform the
user of any high speed routing resources available in the
chip, so the user can make better micro-placement decisions.

5. Partial re-routing of timing-critical regions of the circuit is
effective because routing resources in the surrounding area
of critical paths can be freed up, and more critical nets can be
reassigned faster routing resources.

6. The presence of un-occupied space near the critical path
made the manual-editing task much easier.

7. The delay distribution (described in Section 3) helps the user
identify improvement opportunities.

8. The more pipeline stages a circuit has, the easier the
placement-editing task will be.

5.3 Results: Using Both TEMP and Pipelining
Modes

In this section we present results obtained by using both the
TEMP and pipelining modes of EVE to improve circuit speed.
We only successfully obtained results for two circuits: Div and
Mult. While Div was used in the previous section, the Mult circuit
is a new circuit designed to test EVE’s pipelining ability. It is a
non-pipelined 4x4bit multiplier built using full and half adder
blocks. The circuit is synthesized using the procedure described in
Section 5.1, except that we does not turn on the pipelining and
retiming features of Synplify Pro. The resulting circuit does not
contain any carry chains, and so it is highly pipeline-able by
design. Results for the Vision and Miim circuits are not available
because the critical paths are inside loops, which cannot be
pipelined. Results for the Batcher, Banyan and Trap circuits are
not gathered because the circuits are already sufficiently
pipelined. Results for the Dotproduct and Crossproduct circuits
are not available due to software instability.

Table 3 shows the summary of results.
These results are gathered after one stage of pipeline

insertion. For the already well-pipelined Div circuit, minimal
performance increase after the pipelining operation is expected.
For the Mult circuit, however, we achieve a performance increase
of 42.2%. It proves that the pipelining feature is functional.
However, pipelining at the logic synthesis level could probably
have increased the speed of the Mult circuit to about 220MHz.
Pipelining at the logic synthesis level is still the preferred choice
over pipelining at the physical level. But for extremely high-speed
circuits, pipelining at the physical level may be the only way to
obtain accurate post-placement/routing delay information for
performing optimal pipelining operation. The current user
interface of EVE’s pipelining mode is very limited. It can
demonstrate basic ideas for pipelining at the physical level, but
the actual pipelining operation is not easy to do. Future research
that looks at the Synthesis stage in the Event Horizon
methodology may make better use of the pipelining feature that
EVE currently offers.

Table 3: Results for Using both TEMP and Pipelining Modes

Circuit # LUTs # FFs # FFs
added

Freq
(MHz)

New Freq
(MHz)

% Change

Vision 142 241 224.8 N/A : critical path in loop
Batcher 252 455 380.1 N/A : already well pipelined
Banyan 165 311 395.3 N/A : already well pipelined
Trap 187 470 460.4 N/A : already well pipelined
Miim 122 112 168.5 N/A : critical path in loop
Div 87 255 66 229.6 237.7 3.5%
Dotproduct 243 178 173.3 N/A : due to tool instability
Crossproduct 129 126 261.4 N/A : due to tool instability
Mult 39 23 38 123.1 175.1 42.2%

[5] J. Fender, University of Toronto, Bachelor’s Thesis in
progress, working title: “A 3D Ray Tracing Engine on
TM-3”, April 2002.

6. CONCLUSION AND FUTURE WORK
In this paper, we present a tool for manual packing, placement

and pipelining, with the goal of aiding designers seeking very
high-speed implementation of circuits. We implemented the
method in a manual editor called EVE. EVE provides an intuitive
GUI interface, which can perform powerful operations such as
packing/unpacking, placement, and routing operations. It
integrates tightly with the Xilinx backend tools to allow editing of
real commercial FPGA circuits based on the Xilinx Virtex-E
architecture. It gives the user full low-level control of the circuit,
and it provides instant real timing feedback while during
placement editing and pipelining operations. It is timing-budget
aware and it provides useful features to help designers meet the
timing goal. Experimental results show that EVE is capable of
improving the maximum operating frequency of real circuits by
up to 19%, and we show that it improves a group of eight circuits
on average by 12.7%. The pipelining mode in EVE demonstrates
important ideas involved in pipelining at the physical level. EVE
will serve as a good reference CAD tool for further research into
the area of high-speed manual-assisted design tools. In the future,
we will explore the use of this framework together with logic
synthesis to perform the ground-up design creation as articulated
by Von Herzen. We may also extend the tool to support newer
device architectures.

[6] R. Hitchcock, G. Smith and D. Cheng, “Timing Analysis
of Computer-Hardware,” IBM Journal of Research and
Development, Jan. 1983, pp. 100-105.

[7] T. Maniwa, “FPGA 2000 Panel,” ISD Magazine, February
2000. (Available from
http://www.isdmag.com/articles/fpga0002.html).

[8] R. McCready, J. Rose, “Real-Time Face Detection on a
Configurable Hardware System,” FPL 2000, pp 157-162,
August 2000.

[9] OpenCores.org, “Ethernet MAC 10/100 Mbps project,”
March 2001. (Available from
http://www.opencores.org/cores/ethmac/).

[10] J. Ousterhout, G. Hamachi, R. Mayo, W. Scott, G. Taylor,
"Magic: A VLSI layout system," in Proc. of 21st Design
Automation Conf., pp. 152-159, 1984

[11] A. Roopchansingh, University of Toronto, Master’s
Thesis in progress, working title: “Research on Nearest
Neighbor Connections”, 2002.

[12] S. Rubin, "An Integrated Aid for Top-Down Electrical
Design," VLSI '83 (Anceau and Aas, eds), North Holland,
Amsterdam, pp.63-72, August 1983

7. ACKNOWLEDGEMENTS
The authors gratefully acknowledge support from NSERC,

MICRONET and Xilinx. We would also like to thank Dr. Kevin
Chung of Xilinx for his timely and helpful advice on the use of
Xilinx backend tools.

[13] J. Rubinstein, P. Penfield and M. Horowitz, “Signal Delay
in RC Tree Networks,” IEEE Trans. On CAD, 1983, pp.
202-211

[14] Synplicity, Inc, “Synplify Pro 6.20,” 2000. (Available
from
http://www.synplicity.com/literature/pdf/SynPro_datashee
t.pdf).

8. REFERENCES
[1] P. Bade, W. Chow, P. Kundarewich, N. Saniei, A. Wang,

“Starburst ATM Chip project at University of Toronto”,
October 2000. (Available from
http://www.eecg.utoronto.ca/~wangk/report.ps) [15] B. Von Herzen. Signal processing at 250 MHz using high-

performance FPGA's. In Proc. ACM/SIGDA Int. Symp. on
Field Programmable Gate Arrays (FPGA'97), pages 62-
68.

[2] V. Betz, J. Rose, and A. Marquardt, Architecture and
CAD for Deep-Submicron FPGAs, Kluwer Academic
Publishers, February 1999.

[16] B. Von Herzen, “Signal Processing at 250 MHz Using
High-Performance FPGA’s,” in IEEE Trans. on VLSI
Systems, Vol 6, No.2, pp. 238-246, June 1998.

[3] W. Chow, “EasyGL For Windows,” 2001. (Available
from http://www.eecg.utoronto.ca/~choww/easygl.html)

[4] W. Elmore, "The Transient Response of Damped Linear
Networks," Journal of Applied Physics, Vol. 19, pp. 55 -
63, Jan 1948.

[17] Xilinx Corporation, “Pipelined Divider Core”, May 1999.
(Available from
http://www.xilinx.com/dsp/docs/pipediv.pdf).

http://www.eecg.utoronto.ca/~wangk/report.ps
http://www.eecg.utoronto.ca/~choww/easygl.html
http://www.isdmag.com/articles/fpga0002.html
http://www.opencores.org/cores/ethmac/
http://www.synplicity.com/literature/pdf/SynPro_datasheet.pdf
http://www.synplicity.com/literature/pdf/SynPro_datasheet.pdf
http://www.xilinx.com/dsp/docs/pipediv.pdf

[18] Xilinx Corporation, “FPGA Editor Guide, V3.1i,” 2000
(Available from
http://toolbox.xilinx.com/docsan/3_1i/pdf/docs/fpg/f
pg.pdf.)

[19] Xilinx Corporation, The Xilinx Foundation Series 3.1,
2000. (Available from http:// www.xilinx.com).

[20] Xilinx Corporation, “Virtex-E 1.8V FPGA Family:
Detailed Functional Description,” 2001 (Available from
http://www.xilinx.com/partinfo/ds022-2.pdf.)

http://toolbox.xilinx.com/docsan/3_1i/pdf/docs/fpg/fpg.pdf
http://toolbox.xilinx.com/docsan/3_1i/pdf/docs/fpg/fpg.pdf
http:// www.xilinx.com/
http://www.xilinx.com/partinfo/ds022-2.pdf

	INTRODUCTION
	BACKGROUND, GOALS and CONTEXT
	Objectives
	The Xilinx Virtex-E Architecture

	TIMING EXACT MICROSCOPIC PLACEMENT (TEMP) MODE
	Interactivity
	Delay Modeling
	Delay Database Compression

	Instant Timing Feedback

	PIPELINING MODE
	EXPERIMENTAL RESULTS
	Baseline Circuits Generation
	Results: Using TEMP Mode Only
	Results: Using Both TEMP and Pipelining Modes

	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

