
1

EVE: A CAD Tool for Manual
Placement and Pipelining Assistance of

FPGA Circuits

William Chow and Jonathan Rose

Edward S. Rogers Sr. Department of Electrical and Computer Engineering
University of Toronto

10 King’s College Road
Toronto, Ontario
Canada M5S 3G4

{choww, jayar}@eecg.utoronto.ca

Abstract. As FPGAs push ever deeper into mainstream digital design, there is an increasing desire for high-performance circuits.
This paper describes a manual editor, called EVE, which can assist a designer to perform manual packing, placement and
pipelining of commercial FPGA circuits to achieve a meaningful increase in performance. This effort is inspired by Von
Herzen’s paper [VonH97] [VonH97a], which proposed the notion of an “Event Horizon” – a high-speed circuit design approach
in which complete knowledge of the timing effect of every synthesis change is used. It is very laborious to implement circuits
using this approach; therefore we try to augment manual design tools in order to make this Event Horizon methodology easier to
perform. This paper describes a first step in that direction, which focuses on placement, packing and pipelining. EVE provides an
interactive environment that immediately reroutes and timing analyzes after each user circuit modification, giving an exact value
for critical path delay. It can also suggest good placement positions and provide flip-flop insertion assist during pipelining.
Compared to a state-of-the-art Synthesis and place and route flow, we used EVE to achieve an average of 12.7% higher operating
frequency on a set of eight Xilinx Virtex-E circuits of 250 or fewer LUTs.

1 Introduction

Most FPGA circuits are designed using a traditional “push-button” CAD flow, which involves design entry, logic
optimization, technology mapping, floorplanning, placement and routing. When a high circuit speed that pushes the limits of
the silicon’s capability is desired, this approach often fails to achieve the required performance. Designers will typically
repeatedly floorplan, place and route the circuit until the design goal is met. This iterative process is very time consuming
because the resulting design speed is not known until after timing analysis is performed, and the result may seem to be
decoupled from the changes applied. There is a clear need for a different high-speed circuit design methodology. In
[VonH97] [VonH97a], Von Herzen described the design of a signal processing circuit in FPGA running at 250MHz in 1997
using 0.6? m CMOS technology. This remarkable achievement stands in stark contrast to the struggles that designers face to
achieve speeds on the order of 150MHz in today's 0.18 ? m CMOS technology.

Von Herzen demonstrated a high-speed circuit design methodology using the notion of an “Event Horizon,” which
refers to the boundary that a circuit element can be placed within in order to satisfy a timing budget. This methodology
demands that the designer create each microscopic piece of the circuit with the timing budget in mind. During this process,
the complete routing delays are included in the time accounting. Von Herzen used low-level manual design tools to select
routing resources carefully, and to avoid the placement of logic elements outside of the horizon. However, it is very laborious
to implement circuits using the low-level manual design tools. We therefore became interested to augment such tools to
facilitate circuit design employing the Event Horizon methodology. This paper describes the features and implementation of
the editor (called EVE, for EVent horizon Editor) as well as quantitative results achieved using it. This initial work focuses
on the packing, placement, routing and timing analysis phase of circuit implementation, and uses a push-button flow result as
the starting point somewhat different from Von Herzen's design-from-scratch approach. This work relates somewhat to the
full-custom VLSI editors Magic [OHM84] and Electric [Rubi83] developed in the early eighties to enhance design
capabilities with assistance.

In the following section we review Von Herzen's work and present the objectives and context for our work. Section
3 describes the basic move generation mode of the editor while Section 4 describes its pipelining-assist features. Section 5
presents experimental results and Section 6 concludes.

2 Background, Goals and Context

Von Herzen achieved a circuit speed far beyond the otherwise typical capability of silicon. He did this by employing
low-level manual design tools to configure each logic block of the circuit and to select the routing resources manually. He
carefully chose where to place each circuit element physically on the chip, because routing delays made up a significant

2

portion of the critical delay of the circuit. He proposed the concept of an “Event Horizon”, which could be used to quickly
estimate where circuit elements could be placed without violating a very tight timing budget.

Figure 1: Event Horizon Figure 2: Extending the Event Horizon using Pipelining

The “Event Horizon” concept is illustrated in Figure 1. Assume that a circuit needs to run at 250MHz, so the critical
path time budget is 4.0ns. A flip-flop (FF) in a source logic block (CLB) (marked with a circle in the figure) drives a LUT-to-
FF combination in another logic block. To determine how far away the target logic block can be placed, we first need to
obtain some timing characteristics about the chip such as the maximum clock skew, the LUT delay, the routing delays, as
well as the clock-to-output delay and FF setup time. Assume that the maximum clock skew is 0.1ns, the clock-to-output delay
is 1.3ns, and that LUT delay + FF setup time through is 1.5ns. In order for the time budget to be met, the routing delay can
then take at most 4.0-0.1-1.3-1.5 = 1.1ns. Suppose, for simplicity, that the FPGA has a routing architecture that requires
0.4ns to travel the distance of one logic block (in Manhattan distance) in all directions. For the example given in Figure 1, the
target logic block can only be placed at locations that can support a routing delay of at most 0.8ns, as indicated by the shaded
box in Figure 1. Von Herzen called such a boundary box the Event Horizon of the source logic block in the context of a
circuit required to run at 250MHz. The “Event Horizon” is then defined as the boundary within which the target logic block
can lie, such that the routing delay to reach the target logic block from the source logic block is small enough to satisfy the
timing budget. With a timing goal in mind, Von Herzen then calculated the Event Horizon for each circuit element, and tried
to place the connecting elements in its Event Horizon. In cases when this was not possible (for example, all locations in the
Event Horizon were already occupied), extra flip-flops could be introduced to pipeline the circuit, permitting the target logic
block to move outside of the current Event Horizon, as illustrated in Figure 2. By first calculating the Event Horizon of each
circuit element at a given target speed, Von Herzen incrementally built each part of the circuit, knowing that the timing
budget would be met throughout the design process.

2.1 Objectives

Our work has two objectives. Firstly, we would like to construct a manual editor that augments the current low-level
floorplanning and circuit editing tools, by employing elements of the Event Horizon methodology. Secondly, we would like
to gain more insights to better placement and routing techniques by extensively using the tool to augment the speed of real
designs. EVE has the following design objectives:

1. Target Real FPGA Architectures. Traditional FPGA research tools tend to work on simplified models of real
FPGAs [BRM99]. These tools, for example, rarely represent carry chains correctly. Our goal in this work is to apply
the Event Horizon concept and its implications to real devices so that we can deal with all of the realities that
designs possess, and try to achieve usable improvements. We chose the Xilinx Virtex-E [Xili2001] family as our
target.

2. Give Full Low-Level Control. The Event Horizon notion requires careful design of each microscopic piece of the
circuit. Our editor must permit the user to easily control placement and packing of each LUT, carry element and flip-
flop, and to precisely control where flip-flops are inserted when pipelining.

3. Give Instant Performance Feedback. After each user circuit modification, the editor should immediately reroute
and perform a full timing analysis to report the real circuit performance. This is usually not possible in automated
placement of large circuits, but it is feasible for interactively editing small designs. In this work we focus on designs
with 250 or fewer 4-input logic cells.

src
CLB

src
CLB

Event Horizon

dst
CLB

Extended Event Horizon
dst
CLB

Pipelining flip-flop

0.8

0.8

0.4

1.2 1.2

0.8 1.2 0.4

src CLB

3

4. Be Timing Budget Aware. EVE should be timing -budget aware. It should highlight circuit elements that violate the
timing budget and quickly and accurately estimate the effect of a change to the circui t before it is applied. It should
also provide a visual aid to illustrate the Event Horizon itself (see Figure 5).

5. Assist Pipelining. EVE should assist the user to pipeline the circuit by maintaining correct functi onality of the
circuit throughout the pipelining process. It should also select good physical placement for pipelining flip -flops to
minimize the critical path delay.

2.2 The Xilinx Virtex-E Architecture

In this section we describe the salient features of the target Xilinx Virtex-E [Xili2001] architecture. The Virtex-E is
fabricated in a 0.18µm CMOS technology. It is an island -style [BRM99] FPGA architecture in which routing resources
surround Configurable Logic Blocks (CLBs). Each CLB has two slices and each slice has two 4 -input look up tables (4 -
LUTs) and two flip-flops (FFs). The two 4-LUTs in each slice can be combined to form a 5 -LUT and two such 5-LUTs in the
same CLB can be combined to form a 6 -LUT. There are carry chains for high -speed arithmetic that run vertically upwards in
each slice. Each slice also contains dedicated AND gates and XOR gates to support fast addition and multiplication. A 4 -
LUT can also be configured as RAM, ROM, or a 1-bit Shift Register LUT (SRL) of variable depth (1-16). Figure 3, taken
from [Xili2001] , shows a Virtex-E CLB.

Figure 3: A Virtex-E CLB (taken from[Xili2001])

3 Timing Exact Microscopic Placement (TEMP) Mode

In this section we describe the features and implementation of the basic packing and placement editor assistant. We
call this the "Timing Exact Microscopic Placement" (TEMP) mode of EVE. It permits microscopic placement and
packing/unpacking of circuit elements while giving inst ant exact timing feedback. The graphical user interface of EVE is
built using EasyGL for Windows [Chow2001]. Figure 4 illustrates the concept of a “Timing Horizon”. It is based on the
Event Horizon concept described above. When a circuit element (such as a LUT) is to be moved EVE will calculate the
change in critical path delay that would occur if the element is placed in a series of target locations (like those marked in gray
in Figure 4). In Figure 4, a Timing Horizon of radius one (CLB) is displayed. A negative number means that the critical path
delay improves. When a target position is not feasible (it may be occupied or the target slice configuration is not compatible),
it does not appear in the Timing Horizon. In EVE, we will call this Timing Horizon simply the “Horizon”. It is an important
feature of EVE that the designer can use to evaluate the effect of moving a circuit element in the chip.

In the Timing Exact Microscopic Placement (TEMP) mode, the circuit is represented in a grid format, with each grid
cell representing a CLB. Figure 5 shows a circuit on a Xilinx XCV100E [Xili2001] chip. Each CLB has two slices, and each
slice is divided into six components: two LUTs, two carry cells, and two FFs. In this mode, the placement of all circuit
elements is shown, and logic packing and placement operations can be easily modified us ing a drag-and-drop paradigm. EVE
recognizes structural grouping of circuit elements such as carry chains, 5 -LUTs, and 6-LUTs. On start up, the critical path of
the circuit is highlighted. The current maximum operating frequency of the circuit is also calc ulated and displayed in the
status window. The user can then perform the following operations:

1. Change Placement of Components. Select the components and drag them to the destination location. Eve does this
better than the native Xilinx Floorplanner because it immediately reroutes the circuit and reports the real circuit
timing. EVE also performs immediate legality checking of move and informs the user of illegal moves by displaying
“X” markers on invalid target positions.

2. Packing/Unpacking of Slices. When a LUT is moved from one slice to another, the packing of the source and
destination slices may be altered. The native Xilinx Floorplanner can only pass this packing/unpacking directive to

4

the mapper as a slow batch task; and such packing/unpacking operation may not be applied successfully. In contrast,
EVE can determine the packing feasibility instantly.

3. Change/Set Timing Budget. When the timing budget is set or changed, the design is timing -analyzed and the
components and nets that violate the budget are hi ghlighted. A typical methodology is to slowly decrease the timing
budget, and focus on a more timing critical part of the circuit, until the desired timing goal is met.

4. Invoke Horizon. Here the user selects a component and press the “Horizon” button. A Hor izon is displayed with a
gradient of colors indicating the “goodness” of placing the selected components at the indicated positions. A number
is displayed in each valid target position, indicating the change in critical path delay should the component be
moved there. The user can control a “Horizon Radius” parameter that controls in Manhattan distance how many
CLBs distance away the horizon should be calculated. (A Large radius will take a long time to compute, but
reasonable ones are quick) Figure 5 illustrates a Horizon of radius 3 for a selected flip -flop component.

5. Nets Reroute. We have found that, after a series of microscopic packing and placement changes, that the critical
path can be improved by rerouting all of the timing -critical elements. In this option, the user selects some
components and invokes the reroute. All nets connected to the selected components will be re -routed leaving other
nets in the circuit intact.

6. Display Dynamic Delay Distribution. After each user move, EVE analyzes the timing of the circuit and outputs a
delay distribution, which summarizes the number of delay paths having delays within different delay ranges. This
gives the user an overall picture on the current state of the circuit.

After each move, EVE modifies the netlist as needed, incrementally re -routes nets, and performs timing analysis to report the
real timing of the modified circuit. Using instant timing feedback and various budget -aware features, a user can produce
superior performance circuits. The following sections describe how the above features of the editor are implemented.

Figure 4:Timing Horizon Figure 5: Screen capture of TEMP mode showing a "Horizon"

3.1 Interactivity

EVE has to provide high interactivity, which requires very quick partial placement, routing, and timing analysis of
the circuit after a user move. One approach would be to use the set of command -line based backend tools from Xilinx
including MAP (technology mapping) PAR (placement and routing), TRACE (timing analyzer), and XDL (Xilinx proprietary
circuit format to ASCII conversion utility). Since these are relatively slow batch -based tools, each user move could still take
minutes to process. Clearly we need to bypass using these tools yet still perform the necessary tasks in a much shorter time.
EVE achieves this by interfacing with the Xilinx manual editor directly. The Xilinx FPGA Editor [Xili2001a] has a full -
featured set of textual commands for controlling various operations including slice configuration, placement, and routing. On
start up, EVE spawns two copies of FPGA Editor. One copy serves as the “backend” where the real circuit changes are
applied. The other copy serves as a “net delay reporter” which calculates net delays on the fly. EVE instructs both the
“backend” and “net delay reporter” by sending commands to them using named pipes supported by the Windows NT based
platform. The execution result in the bac kend is obtained for further analysis, by capturing text from the FPGA Editor
window using Windows messaging API calls.

+0.2

+0.2

-0.2

-0.2

src LUT

+0.0

+0.4

+0.4

+0.2

+0.2

5

EVE determines the timing of the entire circuit at all times. It obtains the initial timing information from the Xilinx
timing analyzer (TRACE). It then builds a timing graph of the circuit and performs subsequent timing analysis internally.
When the user makes a move, EVE will calculate the effect of the move by using delay values stored in a delay database
(described in Section 3.2), and estimate the resulting circuit critical path delay. The change is then communicated to the
backend using named pipes. The backend makes the corresponding change, including logic configuration modification,
netlist modification , and placement. Then it unroutes all nets affected by the change, and re -routes them using the critical
path delay estimated by EVE as a timing constraint for timing -driven routing. This routing is very quick since it is only a
partial re-route, and the unaffected nets are left untouched. Finally, the net delays of the modified nets are queried by EVE
through the backend, and it will once again have complete knowledge of the updated circuit timing information.

3.2 Delay Modeling

Two types of delays are needed for timing analysis: the logic delay within a slice, and routing delay. Logic delays
are usually modeled as constants since the number of configurable paths that exist within each slice is limited. They are
usually pre -calculated and stored in look -up tables for fast future retrieval. Routing delays however, vary according to the
routing resources taken up by a route. Each routing delay value is governed by an RC model, such as Elmore [Elmo48] and
Penfield-Rubinstein [RPH83] models. These models take into account the length of the routing wires, and the number and
type of switches (buffered or non -buffered) that the routes pass through. For EVE, obtaining such delay i nformation is hard
because it has no knowledge of the proprietary RC characteristics of the commercial device. Without this knowledge, EVE
has to obtain both logic and routing delay values by querying the Xilinx backend tools one delay at a time and then s toring
the delays in data files, which we refer to as the delay database.

Logic delays are calculated and stored automatically for each chip with a given speed grade the first time EVE
encounters the chip. It does so by enumerating all the possible configu rable pathways present within a slice or in -between
slices (as in the case of a delay involving 6 -LUT). It then writes out a Xilinx Description Language (XDL) description of the
circuit containing all the paths of interest, with each path using different C LBs. XDL is a text-based language describing the
internals of Xilinx circuits, including slice configuration and routing information. It can be translated into the Xilinx native
NCD circuit format using the XDL utility. The design is then timing analyzed u sing a command -based timing analyzer
program called TRACE. The logic delay values for each path are then extracted from the report file to form a delay -matching
table. Such a table will provide mapping from various slice configurations to logic delay value s. For Virtex-E, there are 230
such logic delay values. The extraction of routing delays is much more difficult because of the large number of CLB pin to
CLB pin delay values present in the Virtex -E devices. For example, an XCV100E chip has 20 rows and 30 columns of CLBs
and each CLB has two slices. For any given pin -to-pin route, it can originate from one out of six output pins in either slice S0
or S1. It can also terminate in one out of twelve input pins in either slice S0 or S1. The total number of possible routes of
Manhattan distance of length five or less is (2*5*5 + 2*5 + 1)*20*30*2*2*6*12 ̃10.5 million delay values. We estimate
that a 450MHz Pentium-III processor can process four delay values per second, and each delay can be stored using 10 bytes.
We would thus need about 30 days to generate the database and the data will take u p 100MB of disk space. To make the
delay search space smaller, we devise a compression scheme making use of the symmetric nature of the Virtex -E routing
architecture.

3.2.1 Delay Database Compression

To describe the compression scheme better, we have to introduce some notation. We group related pin-to-pin
routing delay values together in a group identified by the following format: G=(S1,P1,S2,P2,X,Y). S1 and P1 specify the
source slice and pin, while S2 and P2 specify the target slice and pin. X and Y are integers that represent the relative position
of the target pin to the source pin. G is used to refer to this group of delays. Figure 6 shows a 3-D plot of the real routing
delay values for the delay group G=(0,XQ,0,G1,-1,-1) of the XCV100ECS144-8 device, which refers to the group of delay
values with source pin located on XQ pin of S0, and target pin located on G1 pin of S0, and target slice is one CLB west and
one CLB north of the source slice. The pin-to-pin routing delay values in group G will then be represented using the notation
(G,R,C) where R and C represents the row and column coordinate of the source pin. Each delay value (in ns) is plotted in 3 -D
space against the (R,C) coordinate. We can observe from Figure 6 that the routing delays are indeed fairly symmetrical across
identical rows and columns. Now we will discuss the compression scheme we use:

1. Using Two One-Dimensional Functions. A two-dimensional grid, with notation D(r,c), where r and c corresponds
to the row and column coordinate, is used to represent all the delay values in the group. It requires r*c data points.
The following procedure is used:
a. All D(r,c) values are converted from floating point numbers into inte gers using a scaling factor of 0.02ns

(0.35ns will become 0.35/0.02 = 17). We call the scaled values D?(r,c).

6

b. We locate an “intersect” point on the 2 -D grid at the “base” of the 3 -D plot, and record its delay. We refer to it
as the “base delay” (b). All D? (r,c) values are normalized by subtracting from the base delay to form D??(r,c).
The resulting data points will then contain mostly zeroes.

c. From the same “intersect” point, we can form two one -dimensional functions, Dr(r) and Dc(c), using the column
and row vectors at the intersect, such that D??(r,c) = Dr(r) + Dc(c) (illustrated in Figure 6). With these two
functions, the number of data points needed to represent all D(r,c) values becomes r+c.

2. Eliminating Zeroes. Dr(r) and Dc(c) are found to contain mostly zeroes. For example, Dr(r) may be a vector like [0
0 0 0 2 3 0 0 0 …]. Instead of processing the columns with 0 entries in Dr(r), these column numbers are recorded,
and are skipped for all subsequent rows. The sa me rule applies to Dc(c).

3. Eliminating Duplicates. Dr(r) and Dc(c) frequently contain entries with the same value. Instead of processing all
the entries with the same delay value, only one entry is processed. For example, for the vector [0 0 2 3 0 0 2 3 0 0
…], columns 3-4 and 7-8 are the same, so columns 7-8 are not processed. This rule can be applied to both Dr(r) and
Dc(c).

4. Using Symmetry of Pins. Delays with P1 = X and P1 = Y are the same. Only one P1 value needs to be processed.
The same also applies fo r P1 = XQ and P1 = YQ.

5. Record Extra Data Points. Data points, which cannot be calculated accurately using the above compression
scheme, are recorded individually.

Using the heuristics given above, the search space is compressed by about 100 times. All delay values as well as other
information including: base delay, intersect point coordinate, zero matching columns/rows, duplicate matching columns/rows
and extra data points, are generated and recorded in data files using a set of PERL scripts. In EVE, the da ta files are loaded
into a group of efficient data structures, which we refer to as the delay database. Delay retrieval from the database is quick,
and the whole database consumes about 20MB of physical memory.

Figure 6: Routing Delay Profile for group G

3.3 Instant Timing Feedback

To provide instant timing feedback, full timing analysis is performed internally within EVE. It is based on a forward
and backward sweep approach described in [HSC83]. The “horizon” demonstrates instant timing feedback. For each target
position, EVE first determines if the move is valid. Then, it builds a temporary circuit resulting by moving the target to each
valid location and performs a full -timing analys is on it. The change in critical path delay timing is displayed in the target
position. A horizon of radius three takes about two seconds to calculate on a 1GHZ Pentium -III machine.

4 Pipelining Mode

Pipelining traditionally occurs during logic design, whe n the designer introduces pipeline stages to enable parallel
execution of multiple circuitries to achieve a higher throughput. Pipelining in the Event Horizon methodology context,
however, refers to the need to register logic elements when the physical pla cement becomes an obstacle to satisfy a high -
speed design goal as illustrated in Figure 2. We believe research in pipelining at the physical level will become more

Intersect

Dr(r)

Dc(c)

Column of source pin

Row of source pin

Pin-to-pin delay (ns)

7

important as circuit speed pushes towards the limit of the silicon . We need a pipelining assistant that allows the designer to
fully control where pipelining flip -flops are inserted, yet helping the designer retain correct functionality of the circuit. The
TEMP mode displays the physical locations of each circuit element , so it is ideal for performing packing/unpacking and
placement operations. For pipelining, however, such a circuit representation cannot present clearly to the user where flip -
flops can be inserted because the graphical display will be very cluttered. We thus propose the pipelining mode in EVE as a
way to present the circuit in a better form to assist pipelining. When the user insert or move a flip -flop in the circuit, EVE
will automatically determine where in the circuit to insert additional flip -flops to maintain correct functionality of the circuit.

In the pipelining mode, the circuit is displayed as a directed acyclic graph (DAG). Each graph node represents an
input or output pin of a logic slice, or the input and output ports of sequential elements, i ncluding flip -flops and Shift Register
LUTs (SRLs). Each edge represents a logical connection between the graph nodes, which usually has an associated delay
value, corresponding to an internal logic delay, or an external routing delay. Primary inputs are d isplayed at the top and
primary outputs at the bottom of the DAG (See Figure 8). If there exists a sequential loop in the circuit, we need to detect and
collapse it down into a single graph node. Graph edges are colored differentl y to indicate their status: critical nets are marked
red while edges that are flip -flop insertable are marked green. A square appears when a flip -flop is inserted on an edge. A
number appeared next to an edge indicates the number of edges connecting the no des. Information that is not useful such as
the sub-graphs within loops is eliminated from the graph to make it less cluttered. With a detail representation of connected
graph nodes and edges, flip -flop insertion and flip -flop motion can be done intuitivel y as if the circuit is a combinational
circuit.

During flip -flop insertion, the user selects an edge and clicks the “Insert FF” button. A flip -flop is inserted in the
specified location. Then EVE will then insert additional flip -flops in the DAG to maintai n correct circuit behavior. For
example, for the timing graph in Figure 7, if a flip -flop is inserted at edge 4? 6, additional flip -flops must be inserted at edges
4? 7, 5? 7, 8? 9. The resulting circuit still functions properly, with one additional cycle of latency across all paths. (Note
that other flip-flop to edge assignments are also possible.) The additional flip -flop positions are determined based on a
continuous forward and backward sweeping algorithm. The algorithm first inser ts a flip-flop on the supplied edge, then it
marks all its transitive fanin and fanout edges as processed. For back edges encountered during a forward traversal or forward
edges encountered during a backward traversal, FFs are inserted if they are not mark ed as processed. This process continues
until all edges are visited.

After flip-flop insertion, the user is able to move the newly inserted flip -flops forward or backward using the “up”
and “down” arrow keys. When a flip -flop is moved forward or backward a cross a node, EVE will make sure that the circuit is
still functioning properly, by moving other flip -flops affected by the move. For example, for the timing graph in Figure 7 ,
assume that flip -flops are inserted at edges 4? 6, 4? 7, 5? 7, 8? 9. Now if the user moves the flip-flop from 5? 7 to 7? 9,
flip-flops at edge 4? 7 and 5? 7 will be removed, and a flip -flop is added to edge 7? 9.

 2 1 3

4 5

6 7 8

9
Figure 7: A Timing Graph Figure 8: Screen Capture of the Pipelining Mode

The new circuit speed is calculated on the fly as the user changes the flip -flop positions. The actual placement of the
inserted flip -flops is optimized by a greedy algorithm to minimize critical path d elay. When the user is satisfied with the flip -
flop positions, the “Synthesize” button is pressed, and the inserted flip -flops are synthesized into the netlist and placed.

8

5 Experimental Results

In this chapter, we evaluate the quality of results EVE produ ced for both the Timing Exact Microscopic Placement
(TEMP) and pipelining mode using eight circuits. Each circuit has approximately 250 or fewer LUTs. They are:

1. Vision. The Vision circuit is an FIR filter circuit used in a vision application presented in [MR2000]. The circuit is
highly pipelined using a pyramid structure of shifters and adders. It uses 142 LUTs and 241 FFs.

2. Batcher. The Batcher circuit is an ATM packet -sorting network that sorts incoming packets by serially comparing
the bits of two packets. It is a component of the StarBurst ATM chip [BCK2000] project developed at the University
of Toronto. It uses 252 LUTs and 455 FFs.

3. Banyan. The Banyan circuit is a lso a component of the StarBurst ATM chip [BCK2000] described above. It is a
packet routing network that is responsible for delivering ATM packets to specific destination ports based on the
address field stored in the ATM packets. It uses 165 LUTs and 311 FFs.

4. Trap. The Trap circuit is also a component of the StarBurst ATM chip [BCK2000]. It is a comparator circuit used to
detect duplicated packets. It uses 187 LUTs an d 470 FFs.

5. Miim. The Miim circuit [Open2001] is an MII Management module of an Ethernet IP core obtained from
OpenCores.org. The complete Ethernet IP core is designed for implementation of CSMA/CD LAN in accordance
with the IEEE 802.3 standards. It uses 122 LUTs and 112 FFs.

6. Div. The Div circuit is an IP Core circuit generated by the Xilinx LogiCORE Pipelined Divider for Virtex Version
2.0 generator [Xili99]. It has unsigned 8 -bit dividend and divisor with integer remainder. It has throughput of one
division per clock cycle with a latency of eight clock cycles. It uses 87 LUTs and 255 FFs.

7. Dotproduct. The Dotproduct circuit computes the dot product of two 8-bit 3D vectors. It is a part of a 3D ray-
tracing application under development at the University of Toronto [Fend2002]. It uses 243 LUTs and 178 FFs.

8. Crossproduct. The Crossproduct circuit computes the cross product of two 4-bit 3D vectors. It is also a part of the
3D ray-tracing application [Fend2002] . It uses 129 LUTs and 126 FFs.

5.1 Baseline Circuits Generation

To evaluate EVE, we obtain a full implementation of a set of baseline circuits from a n automatic push -button flow.
These form the starting points for the manual editor, and the basis for comparison. We use the following state -of-the-art
synthesis and placement and routing tools: Synplify Pro 6.20 [Synp2000] (one of the preeminent synthesis tools for FPGAs)
for logic synthesis, and Xilinx Foundation 3.1i [Xili2000] for mapping, placement and routing. As an exception, the Div
circuit does not require logic synthesis because it is direc tly generated from an IP Core netlist generator from Xilinx [Xili99].
It is placed and routed in the usual way using the Xilinx backend tools. The baseline results are obtained following the steps
below:

The input is VHDL or Verilog code obtained as described above.
1. Synthesize the HDL code using Synplify Pro 6.2, set to perform automated pipelining.
2. Place and route using Xilinx Foundation 3.3i Service Pack 7 tools.
3. Obtain final circuit frequency from P&R reports.
4. R step (1) to (3), increasing frequency 10% each time until the best frequency is obtained.
5. Use the frequency obtained in (4), place and route again using the Multi -Pass Place&Route (MPPR) option for ten

runs, and pick the best resulting design.

The options used to generate the baseline circuits are recorded in Table 1.

Options used for Synplify Pro:
 Max Fanout = 100
 Disable I/O = on
 Pipelining = on
 FSM Compiler = on
 Resource Sharing = on

Options used for Xilinx backend tools:
 P&R effort = 4
 Trim unconnected logic = no
 Replicate logic = yes

MPPR initial place ment seed = 1
 MPPR P&R passes =- 10
 MPPR save N Best = 1

Frequency setting (for Synplify Pro & Xilinx
backend):
 Vision = 200MHz
 Batcher = 330MHz
 Banyan = 335MHz
 Trap = 400MHz
 Miim = 165MHz
 Div = 220MHz (for Xilinx backend only)
 Dotproduct = 150MHz
 Crossproduct = 220MHz

Table 1: Options used in Synthesis & P&R tools for Baseline Circuit generation

It is worth noting that these settings get the best results we could achieve in a push -button flow.

9

5.2 Results: Using TEMP Mode Only
We spent approximately two hours using the EVE editor to improve timing on each circuit. The machine used is a

1GHz Pentium-III PC with 512MB ram running Wi ndows2000 and Xilinx Foundations 3.3i SP7. When we used the Timing
Exact Microscopic Placement (TEMP) mode, we limited the area within which circuit elements can be placed. This ensures
that we do not improve circuit speed at the expense of increase in occ upied chip area. The results are summarized in the table
below. The first column of the table gives the circuit name, then the number of LUTs and flip flops, the original clock period
and frequency, and then the new frequency after editing with EVE.

On average over the eight circuits, the circuit speed improved by 12.7% over the baseline. Below we discuss the
properties of each circuit and the nature of the operations we performed using EVE to improve circuit performance.

Vision 142 241 4.92 203.3 224.8 10.6%
Batcher 252 455 3.06 326.8 380.1 16.3%
Banyan 165 311 2.94 340.7 395.3 16.0%
Trap 187 470 2.45 408.3 460.4 12.8%
Miim 122 112 6.16 162.4 168.5 3.8%
Div 87 255 4.65 215.1 229.6 6.7%
Dotproduct 243 178 6.74 148.4 173.3 16.8%
Crossproduct 129 126 4.54 220.1 261.4 18.8%
Average 166 269 4.43 238.7 268.8 12.7%

New Freq
(MHz)

%
Change

Circuit #
LUTs

FFs Period
(ns)

Freq
(MHz)

Table 2: Results for Using the TEMP Mode

1. Vision. By using the initial delay profile, we focused on improving the placement of circuit element on the k -most
(k is about 1 to 5) critical paths and achieved good speed improvement. This is don e by setting a slightly tighter
timing budget, exposing more nets that are in timing violations. Also, when the critical path is in a carry chain, the
reroute operation is observed to be able to relieve routing congestions effectively.

2. Batcher. The circuit is highly pipelined by design with a starting speed over 300MHz. It is interesting to note that
even for circuits operating at such a high speed, their placement and packing can be improved further over the result
generated with an automatic approach.

3. Banyan. The Banyan circuit has a high baseline circuit speed of 340MHz. To achieve speeds close to 400MHz,
which approaches the physical speed limit of the FPGA, we need to place circuit elements no more than one CLB
apart horizontally on the chip. This circu it orientation guides routing to use extremely fast nearest neighbor
connections [Roop2002] which are present across neighboring horizontal CLBs.

4. Trap. The Trap circuit has the highest speed among all experimen tal circuits. However, we found out that many of
the circuit elements are actually not optimally packed together in the same logic slice, and we were able to improve
the circuit speed further to over 460MHz by doing packing/unpacking operations.

5. Miim. Although we tried very hard to improve the speed of the Miim circuit, we could only improve it by 3.76%.
The critical path of the Miim circuit is in a single carry chain which loops back to itself tightly.

6. Div. Editing the placement of the design can only impr ove by 6.7%. The critical path has a carry chain feeding into
another carry chain.

7. Dotproduct. The Dotproduct circuit is dominated by a large number of carry chains employed for multiplication.
The initial placement was not very good, because carry chains were not aligned correctly for signal to flow through
naturally. We rearranged the carry chains manually by simply examining the signal flow of the nets connecting the
carry chains. A floorplanning tool may well have achieved similar gains.

8. Crossproduct. The circuit contains 4 -bit multipliers synthesized into short carry chains. Again, as observed in the
Dotproduct circuit above, the signal flow of the carry chains is poor. The initial circuit placement has a critical path
spanning nine CLBs horizontally. S ubsequent rearrangement of carry chains order greatly improved circuit speed.

In this section, we have shown the effectiveness of EVE’s Timing Exact Microscopic Placement mode to further

improve on high circuit speeds. From this experience, we make the f ollowing observations in order of effectiveness:
1. The ability to do pack and unpack logic slices during placement and routing is essential.
2. An automatic floorplanning algorithm based on signal flow analysis should help timing. This observation has been

made by FPGA design experts [Mani2000] .
3. Focusing on improving delay on the critical path or the k -most critical paths is effective (as described above).
4. Floorplanning or placement editing tools should inform the user of any high sp eed routing resources available in the

chip, so the user can make better micro -placement decisions.

10

5. Partial re-routing of timing-critical regions of the circuit is effective because routing resources in the surrounding
area of critical paths can be freed u p, and more critical nets can be reassigned faster routing resources.

6. The presence of un-occupied space near the critical path made the manual -editing task much easier.
7. The delay distribution (described in Section 3) helps the user identify improvement opportunities.
8. The more pipeline stages a circuit has, the easier the placement -editing task will be.

5.3 Results: Using Both TEMP and Pipelining Modes

In this section we present results obtained by using both the TEMP and pipelining modes of EVE to improve circuit
speed. We only successfully obtained results for two circuits: D iv and Mult. While Div was used in the previous section, the
Mult circuit is a new circuit coded to test EVE’s pipelining ability. It is a non -pipelined 4x4b it multiplier built using full and
half adder blocks. The circuit is synthesized using the procedure described in Section 5.1, except that we does not turn on the
pipelining and retiming features of Synplify Pro. The resulting circuit does not contain any carry chains, and so it is highly
pipeline-able by design. Results for the Vision and Miim circuits are not available because the critical paths are inside loops,
which cannot be pipelined. Results for the Batcher, Banyan and T rap circuits are not gathered because the circuits are already
sufficiently pipelined. Results for the Dotproduct and Crossproduct circuits are not available due to software instability. The
table below is the summary of results:

Circuit # LUTs # FFs # FFs
added

Freq
(MHz)

New Freq
(MHz)

% Change

Vision 142 241 224.8 N/A : critical path in loop
Batcher 252 455 380.1 N/A : already well pipelined
Banyan 165 311 395.3 N/A : already well pipelined
Trap 187 470 460.4 N/A : already well pipelined
Miim 122 112 168.5 N/A : critical path in loop
Div 87 255 66 229.6 237.7 3.5%
Dotproduct 243 178 173.3 N/A : due to tool instability
Crossproduct 129 126 261.4 N/A : due to tool instability
Mult 39 23 38 123.1 175.1 42.2%

Table 3: Results for Using both TEMP and Pipelining Modes

These results are gathered after one stage of pipeline insertion. For the already well -pipelined Div circuit, minimal
performance increase after the pipelining operation is expected. For the Mult circuit, however, we achieve a performance
increase of 42.24%. It proves that the pipelining feature is functional. However, pipelining at the logic synthesis level could
probably have increased the speed of the Mult circuit to about 220MHz. Pipelining at the logic synthesis level is still the
preferred choice over pipelining at the physical level. But for extremely high -speed circuits, pipelining at the physical level
may be the only way to obtain accurate post -placement/routing delay information for performing optimal pipelining
operation. The current user interface of EVE’s pipelining mode is very limited. It can demonstrate basic ideas for pipelining
at the physical level, but the actual pipelining operation is not easy to do. Futu re research that looks at the Synthesis stage in
the Event Horizon methodology may make better use of the pipelining feature that EVE currently offers.

6 Conclusion and Future Work

In this paper, we present a tool for manual packing, placement and pipelinin g, with the goal of aiding designers
seeking very high -speed implementation of circuits. We implemented the method in a manual editor called EVE. EVE
provides an intuitive GUI interface, which can perform powerful operations such as packing/unpacking, plac ement, and
routing operations. It integrates tightly with the Xilinx backend tools to allow editing of real commercial FPGA circuits based
on the Xilinx Virtex-E architecture. It gives the user full low-level control of the circuit, and it provides instant real timing
feedback while during placement editing and pipelining operations. It is timing -budget aware and it provides useful features
to help designers meet the timing goal. Experimental results show that EVE is capable of improving the maximum operat ing
frequency of real circuits by up to 19%, and we show that it improves a group of eight circuits on average by 12.7%. The
pipelining mode in EVE demonstrates important ideas involved in pipelining at the physical level. EVE will serve as a good
reference CAD tool for further research into the area of high-speed manual -assisted design tools. In the future, we will
explore the use of this framework together with logic synthesis to perform the ground -up design creation as articulated by
Von Herzen. We may also extend the tool to support newer device architectures.

7 Acknowledgements

The authors gratefully acknowledge support from NSERC, MICRONET and Xilinx. We would also like to thank
Dr. Kevin Chung of Xilinx for his timely and helpful advice on the use o f Xilinx backend tools.

11

8 References
[BCK2000] P. Bade, W. Chow, P. Kundarewich, N. Saniei, A. Wang, “Starburst ATM Chip project at University of

Toronto”, October 2000. (Available from http://www.eecg.utoronto.ca/~wangk/report.ps)

[BRM99] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs, Kluwer Academic

Publishers, February 1999.

[Chow2001] W. Chow, “EasyGL For Windows,” 2001. (Available from
http://www.eecg.utoronto.ca/~choww/easygl.html)

[Elmo48] W. Elmore, "The Transient Response of Damped Linear Networks," Journal of Applied Physics, Vol. 19,

pp. 55 - 63, Jan 1948.

[Fend2002] J. Fender, University of Toronto, Bachelor’s Thesis in progress, working title: “A 3D Ray Tracing Engine

on TM-3”, April 2002.

[HSC83] R. Hitchcock, G. Smith and D. Cheng, “Timing Analysis of Computer -Hardware,” IBM Journal of

Research and Development, Jan. 1983, pp. 100 -105.

[Mani2000] T. Maniwa, “FPGA 2000 Panel,” ISD Magazine, February 2000. (available at

http://www.isdmag.com/articles/fpga0002.html).

[MR2000] R. McCready, J. Rose, “Real-Time Face Detection on a Configurable Hardware System,” FPL 2000, pp

157-162, August 2000.

[OHM84] J. Ousterhout, G. Hamachi, R. Mayo, W. Scott, G. Taylor, "Magic: A VLSI layout system," in Proc. of 21st

Design Automation Conf., pp. 152 -159, 1984

[Open2001] OpenCores.org, “Ethernet MAC 10/100 Mbps project,” March 2001. (available at

http://www.opencores.org/cores/ethmac/).

[Roop2002] A. Roopchansingh, University of Toronto, Master’s Thesis in progress, working title: “Research on Nearest

Neighbor Connections”, 2002.

[RPH83] J. Rubinstein, P. Penfield and M. Horowitz, “Signal Delay in RC Tree Networks,” IEEE Trans. On CAD,

1983, pp. 202-211

[Rubi83] S. Rubin, "An Integrated Aid for Top-Down Electrical Design," VLSI '83 (Anceau and Aas, eds), North

Holland, Amsterdam, pp.63 -72, August 1983

[Synp2000] Synplicity, Inc, “Synplify Pro 6.20,” 2000. (Avail able from

http://www.synplicity.com/literature/pdf/SynPro_datasheet.pdf).

[VonH97] B. Von Herzen. Signal processing at 250 MHz using high -performance FPGA's. In Proc. ACM/SIGDA Int.

Symp. on Field Programmable Gate Arrays (FPGA'97), pages 62-68.

[VonH97a] B. Von Herzen, “Signal Processing at 250 MHz Using High -Performance FPGA’s,” in IEEE Trans. on

VLSI Systems, Vol 6, No.2, pp. 238-246, June 1998.

[Xili99] Xilinx Corporation, “Pipelined Divider Core”, May 1999. (Available from

http://www.xilinx.com/dsp/docs/pipediv.pdf).

[Xili2000] Xilinx Corporation, The Xilinx Foundation Series 3.1, 2000. (Available from http:// www.xilinx.com).

12

[Xili2001] Xilinx Corporation, “Virtex-E 1.8V FPGA Family: Detailed Functional Description,” 2001 (Available from
http://www.xilinx.com/partinfo/ds022 -2.pdf.)

[Xili2001a] Xilinx Corporation, “FPGA Editor Guide, V3.1i,” 2000 (Available from

http://toolbox.xilinx.com/docsan/3_1i/pdf/docs/fpg/fpg.pdf .)

