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Abstract

As the capacities of FPGAs grow, it becomes feasi-
ble to implement the memory portions of systems di-
rectly on an FPGA together with logic. We believe
that such an FPGA must contain specialized archi-
tectural support in order to tmplement memories ef-
ficiently. The key feature of such architectural sup-
port is that it must be flexible enough to accommodate
many different memory shapes (widths and depths) as
well as allowing different numbers of independently-
addressed memory blocks. This paper describes a fam-
tly of centralized Field-Configurable Memory architec-
tures which consist of a number of memory arrays and
dedicated mapping blocks to combine these arrays. We
also present a method for comparing these architec-
tures, and use this method to examine the tradeoffs
involved in choosing the array size and mapping block
capabilities.

1 Introduction

Most digital systems are composed of both logic and
memory. Field-Programmable Gate Arrays (FPGAs)
have traditionally been used to implement the logic
portion of a system, leaving the memory to be im-
plemented using standard off-the-shelf memory chips.
As the capacities of FPGAs grow, however, it be-
comes feasible to implement memory directly on the
FPGA itself. This paper describes and compares a
set of architectures for implementing on-chip Field-
Configurable Memory (FCM).

*This work was supported by the Natural Sciences and En-
gineering Research Council of Canada, MICRONET, and the

Walter C. Sumner Foundation.

Memory Requirements

three 28x16, one 28x3
eight 128x22, two 16x27
16x80, 16x16

two 256x69 (buffers)
16x18 (register file)
2048x56, 4096x12 (ROM)
two 1620x3, two 168x12,
two 366x11

six 88x8, one 64x24

| System

Viterbi decoder [1]
Graphics Chip [2]

Neural Networks Chip [3]
Translation Lookaside
Buffer [4]

Fast Divider [5]
Communications Chip #1

Communications Chip #2

Table 1: Example systems

There are several advantages to including memory
on an FPGA. First, on-chip memory reduces the de-
mand on the FPGA’s I/O resources, especially for
wide memories. Secondly, on-chip memory will likely
result in faster circuits, since the I/O pins need not
be driven which each access. Finally, on-chip memory
will likely reduce a system’s chip count, resulting in
less expensive implementations.

Table 1 gives several example systems and their
memory requirements. We will refer to the memory
requirements of a given application circuit as a log-
tcal memory configuration. Each independent mem-
ory within a logical memory configuration will be re-
ferred to as a logical memory. Many configurations
contain more than one logical memory; for example,
the Viterbi decoder in Table 1 requires four logical
memories. The specification of these four memories,
with their widths, speeds, and any other special re-
quirements (such as dual-port) make up the circuit’s
logical memory configuration.

The primary difference between standard memory
and memory in FPGAs is that FPGA memory will be
used in many different contexts and must, therefore,
be flexible. Each circuit in Table 1 requires a differ-
ent number of memories and different memory sizes.
A good FCM architecture will allow the efficient im-
plementation (in terms of area and speed) of a wide



variety of logical memory configurations.

Since logic and memory have very different charac-
teristics, we begin with the assumption that an FPGA
that can implement both efficiently will have separate
resources for each. It is well-known that look-up tables
with about 4 inputs are well-suited for implementing
logic [6]. A large memory, however, is implemented
more efficiently using larger arrays; not only is the
extra overhead of using many small look-up tables
avoided, but also dedicated decoding and mapping cir-
cuitry can be provided instead of using logic blocks
for that purpose. One of the questions we set out to
answer in Section 4 is how big each of these blocks
should be. In the architecture presented in Section 2,
the data width of each block is configurable; the ap-
propriate amount of configurability in each block will
also be examined in Section 4.

FPGA architectures containing both logic blocks
and memory arrays can be classified into two cat-
egories: centralized and distributed. In a central-
ized architecture, the memory arrays are all grouped
together on the FPGA, which allows dedicated cir-
cuitry for combining these blocks to be easily included.
In a distributed architecture, memory arrays are dis-
tributed throughout the chip. A distributed archi-
tecture should work well for applications that don’t
need to combine arrays to form large memories, since
it would likely be easier to place the memories closer
to their address and data sources and sinks. In this
paper, we restrict our discussion to centralized archi-
tectures.

Several FPGA vendors already offer limited mem-
ory capability [7, 8, 9, 10, 11, 12]. For the most part,
these existing architectures are aimed at implementing
circuits with relatively small memory requirements.
For circuits with larger memories, new architectures
are needed. In the next section, we present a family of
centralized Field-Configurable Memory architectures
that can be included in an FPGA. Since little work
has been done in this area, it is unclear how such ar-
chitectures should be compared and evaluated. Sec-
tion 3 describes our approach, and Section 4 examines
the effects of changing various parameters of the ar-
chitecture.

2 Configurable Memory Architecture

This section describes a family of Field-
Configurable Memory  architectures similar to the
FiRM FCM described in [13]. The FCM architecture,
illustrated in Figure 1, consists of b bits divided evenly
among n arrays that can be combined (using the ad-
dress and data mapping blocks) to implement logical
memory configurations. The parameters used to char-
acterize each member of this architectural family are
given in Table 2. Since each logical memory requires
at least one array, one address bus, and one data bus,

m external data buses (width of each bus =w)
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Figure 1: General architecture for a centralized FCM

Parameter | Meaning

Total bits

Number of arrays

Number of external data buses
Number of external address buses
Nominal data width of each array
off Set of allowable effective data widths
of each array

s =

g g =

Table 2: Architectural Parameters

the maximum number of logical memories that can
be implemented on this architecture is the minimum
of m, r, and n.

Flexibility is achieved by this architecture in two
ways: by allowing the user to configure the effective
output width of each array, and by allowing the user to
combine arrays to implement larger memories. First
consider the effective output width of each array. Each
array has a nominal width of w and depth of % This
nominal aspect ratio can be altered by the level 1 (L1)
data mapping block. Figure 2(a) shows an example
L1 data mapping block in which w = 8. Each dot
represents a pass-transistor switch. In this example,
the set of allowable effective output widths, wqg, is
{1,2,4, 8}, meaning each array can be configured to be
one of £x1, %X?, %X‘l, or %XS. Figure 4(b) shows
two sets of switches, A and B, that are used to im-
plement the ﬁxll configuration. One of the memory
address bits is used to determine which set of switches,
A or B, is turned on. Each set of switches connects a
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Figure 2: L1 data mapping block

different portion of the memory array to the bottom
four data lines.

Notice that the mapping block need not be capa-
ble of implementing all power-of-two widths between
1 and w. By removing every second switch along the
bottom row of the block in Figure 2(a), a faster and
smaller mapping block could be obtained. The result-
ing mapping block would only be able to provide an
effective data width of 2, 4, or 8, however, meaning
that the resulting architecture would be less flexible.
Section 4 examines the impact of removing L1 data
mapping block switches on area, speed, and flexibil-
ity.

Memory flexibility is also obtained by allowing the
user to combine arrays to implement larger memories.
Figure 3(a) shows how four 1024x8 arrays can be com-
bined to implement a 1024x32 logical memory. In this
case, a single external address bus is connected to each
array, while the data bus from each array is connected
to separate external data buses (giving a 32-bit data
width). Each L1 data mapping block connects 8 array
data lines directly to the 8 L1 outputs.

Figure 3(b) shows how this architecture can be used
to implement a configuration containing two logical
memories: one 24576x1 and one 2048x4. The three ar-
rays implementing the 24576x1 memory are each con-
figured as 8192x1 using the L1 data mapping block,
and each output data line is connected to a single ex-
ternal data line using bidirectional pass transistors.
Two address bits control the pass transistors; the value
of these address bits determine which array drives (or
is driven by) the external data line. The 2048x4 mem-
ory can be implemented using the remaining array,
with the L1 block configured in the “by 4” mode.

The topology of the switches in the level 2 (L2)
data mapping block and the address mapping block
determine to what extent the arrays can be combined.
If both of these mapping blocks are fully populated,
meaning any external bus (both address and data) can
be connected to any array, a very flexible, but slow,
architecture would result. As a compromise between
speed and flexibility, the switch topologies in Figure 4
will be used in this paper. In this figure, each dot
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Figure 4: Level 2 data and address mapping block
topology (n = m = r = 4)

represents a set of switches controlled by a single pro-
gramming bit, one switch for each bit in the bus (w
in the L2 data mapping block and logsb in the ad-
dress mapping block) [13]. This topology can support
almost all required mappings as long as the mapping
algorithm is free to set the external bus and array as-
signments, but, because there are fewer switches than
in a fully populated block, the delay is less than in the
fully populated case. In Section 4, n will be varied; it
is simple to extend the same basic pattern to an array
of any width.

In addition to address and data lines, write enable
signals are required for each array. The write enable
lines can be switched in the L2 mapping block just as
the data lines are. In order to correctly update arrays
for effective widths less than the nominal width, we
assume that the arrays are such that each column in
the array can be selectively enabled. The address bits
used to control the L1 mapping block can be used to
select which array column(s) are updated.

3 Evaluation of Memory Architectures

This section describes how the set of architectures
obtained by varying the parameters discussed in Sec-
tion 2 can be compared on the basis of speed, area,
and flexibility.

One way to compare architectures would be to
gather a set of benchmark circuits (each contain-
ing memory), and attempt to map the logical mem-
ory configuration of each circuit to each architecture.
Each mapping attempt may or may not be success-
ful. A flexibility measure could be obtained by count-
ing the number of successful mappings to each archi-
tecture, and the architecture with the highest count
would be deemed the most flexible. Detailed access
time and area models can be used to estimate the ac-
cess times and chip area of each memory implementa-
tion.

The problem with this approach stems from the
fact that circuits typically have only a few logical
memories. This is in contrast to previous studies on
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logic block architectures, where each circuit contains
enough logic blocks that, even for a moderate num-
ber of benchmark circuits, hundreds (or thousands)
of logic blocks will be used. Thus, all architectural
features of the logic block are thoroughly exercised.
This isn’t the case with memory; to adequately exer-
cise each configurable memory architecture, thousands
of logical memory configurations would be required.
Clearly, it isn’t feasible to gather that many bench-
mark circuits.

As an alternative, we have developed a “logical
memory configuration generator” that generates log-
ical memory configurations randomly, constrained by
the set of parameters shown in Table 3. This table also
gives the parameter values we have used to gather all
the results in this paper. Each configuration is gener-
ated as follows. First, the number of logical memories
is randomly chosen (each number between 1 and nge,
is equally likely). Then, for each logical memory, a
width between wpin and wpmge, and depth between
dmin and dpmqe are selected. The parameter a is used
to indicate what proportion of the generated dimen-
sions are a power of two. We have chosen a = 0.8; this
means 80% of the depths and 80% of the widths gen-
erated are a power of two (all powers-of-two between
Wmin and Wmag OF dmin and dpygp are equally likely).

Once the dimensions of all n,.,, memories have been
chosen, the total number of bits is compared to byen,
and if it is larger, a completely new set of dimensions
is chosen (for the same number of logical memories).
This is repeated until the total number of bits is less
than b,.,. To gather all results in the next section,
10,000 logical memory configurations were generated.

To map a logical memory configuration onto an ar-
chitecture, an algorithm that assign arrays, address
buses, and data buses to each logical memory is re-
quired. If the mapping blocks are fully populated,
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that is, any external bus can be connected to any ar-
ray, the mapping problem is easy. However, for archi-
tectures with mapping blocks similar to Figure 4, the
task is much less straightforward. Such an algorithm
was developed, and is described in [14].

To compare implementations in terms of speed and
area, detailed access time and area models are needed.
The access time model used in this study was modi-
fied from a detailed cache access time model [15]. Tt
contains terms for the delays due to the decoder, word
lines, bit lines, column multiplexors, and sense ampli-
fiers, as well as routing. The area model is based on a
cache area model [16]. Area measurements are given
in memory bit equivalents or mbe’s; one mbe is equal
to the size of one memory cell in an SRAM array (1
mbe = 0.6 rbe in [16] ~ 250um? in a 0.8um CMOS
process).

As described earlier, flexibility is also an important
metric. Each attempt to map a logical memory con-
figuration to an architecture might or might not be
successful. There are several reasons why an attempt
might not be successful: the architecture might not
contain enough bits, it might not have enough data
lines, the mapping blocks might not be flexible enough
to combine arrays in such a way that the configuration
can be mapped, or the granularity of the arrays might
be such that too many bits are wasted (the last of
these reasons will be described in more detail in Sec-
tion 4). A measure of flexibility can be obtained by
counting the number of successful mappings to each
architecture, and by using the following definition:

e Number of configurations successfully mapped
flexibility =

Number of configurations attempted

Using this definition, an architecture that is better
able to adapt to the generated logical memory config-
urations has a higher flexibility.



| Param. | Meaning | Setting |

bgen Maximum number of bits per configuration 65536
Rgen Maximum number of logical memories 4

Winin Minimum width of each logical memory 1

Winax Maximum width of each logical memory 64

dmin Minimum depth of each logical memory 16

Admaz Maximum depth of each logical memory 65536

« Proportion of dimensions that are a power of two | 0.8

Table 3: Parameters for workload generator

4 Experimental Results

In this section, the effects of varying the number of
memory arrays and the topology of each L1 data map-
ping block on access time, chip area, and flexibility are
shown.

4.1 Number of Memory arrays

This subsection examines how the number of mem-
ory arrays (n) affects the delay, area, and flexibility
of an FCM architecture. For all architectures in this
section, both the number of external data buses (m)
and the number of external address buses (r) are set
to 4; thus, all architectures can implement at most 4
logical memories. In addition, the nominal data width
of each array is fixed at 16, and the set of allowable
effective data widths is w.g = {1,2,4,8,16}. Four
memory sizes (parameter b) from 8Kbits to 64Kbits
were considered. For each memory size, the number
of arrays was varied from 4 to 64 (a greater number
of arrays implies that each array is smaller, since the
total number of bits is kept constant). Figure 5(a)
shows that as the number of arrays increases, the chip
area required to implement the configurable memory
increases. This is due to the need for more decoders,
drivers, sense amplifiers, and mapping blocks.

Figure 5(b) shows the effect on the average logical
memory access time (in the 0.8um CMOS process used
in [15]). As the number of arrays increases, the delay
due to the mapping blocks increases. However, smaller
arrays are faster (due to the shorter wordlines, bitlines,
and the smaller decoder). The two competing trends
cause a minimum in the access time graph, which is
especially clear in the 64Kbit case.

Figure 6 shows the effect of changing the number
of arrays on the flexibility of the configurable mem-
ory (in order to focus on the dependency of flexibility
on the number of arrays, only the 64Kbit results are
shown). The vertical scale is the proportion of test
configurations that could be successfully mapped. As
mentioned in Section 3, one of the reasons a mapping
might be unsuccessful is that the granularity of the ar-

rays is too course. Since each array can be connected
to at most one address bus, an array can not be shared
between two logical memories. Thus, if a logical mem-
ory uses only half an array, the remainder is wasted.
If the arrays are only half the size, however, those bits
would be available to implement another logical mem-
ory (recall that each logical configuration contains sev-
eral logical memories). As the graph shows, the in-
crease in flexibility is not significant, especially past
eight arrays. Thus, the access time and area should
be of primary concern when choosing a value for n.

The results in Figures 5 and 6 apply only to the ar-
chitecture parameters described above and the work-
load parameters in Table 3. For these parameters, the
graphs suggest that the memory should be broken into
eight blocks. Although these results are specific to the
parameters shown, we believe that the trends shown
in the graphs apply over a wide range of architecture
and workload parameters.

It is important to point out that in order to con-
centrate on how the memory granularity affects flexi-
bility, we have fixed the number of external buses (r
and m) in this experiment. If these parameters were
allowed to increase with n, architectures with more ar-
rays would be able to implement configurations with
more logical memories, and would thus be more flexi-

ble.
4.2 L1 Data Mapping Block Capability

As described in Section 2, the effective data width
of each array can be set by configuring the L1 data
mapping blocks. In the previous section, it was as-
sumed that the set of effective output widths, wqg,
was {1,2,4,8,16}. Section 2 described how a faster,
but less flexible architecture could be obtained by re-
moving some of the capability of the L.1 data mapping
block. In this section, we investigate the effects of
changing the minimum effective data width (smallest
value of wep). Intuitively, the higher the minimum
data width, the less flexible the L1 mapping block,
and hence, the less flexible the architecture.

Figure 7 shows how the minimum L1 data width
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affects the average access time and area of each archi-
tecture for three values of n (b is fixed at 64Kbits). As
the graphs show, removing switches from the L1 map-
ping block has almost no effect on area; this isn’t sur-
prising, since the switches are small and are controlled
by a small number of programming bits. The average
access time, however, decreases noticeably as switches
are removed; the marked decrease at 16 is because if
the minimum output width is 16, then no L1 mapping
block is needed at all. Figure 8 shows that removing
switches has a devastating effect on flexibility. Not
only is the “by 1” configuration good for logical mem-
ories with width 1, but also for logical memories with
odd output widths (a 3-bit wide memory can be im-
plemented using 3 arrays in the “by 1” configuration).
It is clear that the decrease in delay as the minimum
L1 mapping block output width is increased does not
make up for the loss in flexibility. Therefore, for this

class of architectures, all possible power of two widths

should be included in Weff-

5 Conclusions

In this paper, we have presented a family of central-
ized field-configurable memory architectures. Each ar-
chitecture is composed of a number of arrays, and a
data and address mapping network. The architectures
are flexible enough that they can implement logical
configurations containing several logical memories of
different depths and widths.

An important contribution of this work is the
method used to analyze the architectures. We be-
lieve that by generating a large number of test config-
urations stochastically, we can obtain results that are
much more useful than those that could be obtained
using a handful of “real” circuits.

Although this paper has concentrated on central-
ized architectures, we believe that the evaluation
method we have proposed is also useful when com-
paring distributed architectures. When investigating
distributed architectures, however, it is necessary to
take into account routing beyond the memory “bound-
aries” and also to consider logic block and memory
array placement. Clearly, this is an exciting area of
future research.
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