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Abstract

One of the most di�cult aspects of experimental recon�gurable architecture or CAD tool

research is obtaining su�ciently large benchmark circuits. One approach to obtaining such

circuits is to generate them stochastically. Current circuit generators construct combinational

and sequential logic circuits. Many of today's devices, however, are being used to implement

entire systems, and often these systems contain on-chip storage. This paper describes a circuit

generator that constructs circuits containing signi�cant amounts of memory. To ensure the

circuits are realistic, we have performed a detailed structural analysis of such circuits; this

analysis is also described in this paper.
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I. Introduction

Until recently, Field-Programmable Gate Arrays (FPGA's) have been used to implement small

logic circuits, often the \glue-logic" portions of larger systems. Today, however, they are being

used to implement entire systems; often these large systems require on-chip memory. In order

to evaluate architectures and tools supporting on-chip memory, benchmark circuits containing

both logic and memory are required.

Obtaining enough su�ciently large benchmark circuits, however, is di�cult. One approach

is to use stochastic circuit generators which generate realistic \circuits". Such generators have

been developed before [1], [2], [3], [4], [5], [6]. These generators, however, all produce circuits

containing only logic. In this paper, we describe a generator that produces realistic circuits

containing both logic and memory.

Circuits containing both logic and memory are signi�cantly di�erent than those containing

only logic. Most circuits with memory contain a handful of large arrays to implement that

storage; this is very di�erent than the large number of small logic elements that typically make

up a logic circuit. In addition, the connections between memory arrays is very di�erent than the

connections between logic elements. Each memory array typically has many parallel connections,

while a typical logic element only has a few inputs and outputs. Thus, a circuit generator that

explicitly targets circuits containing memory is required.

A key issue in the use of stochastically generated circuits is to ensure that the circuits are

realistic. In order to understand the nature of digital circuits with memory, we performed a
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Fig. 1. Distribution of number of memories required.

detailed structural analysis of 171 real circuits, each with both memory and logic components.

Although we did not have complete netlists for these circuits, we were able to gather statistics

regarding the number, sizes, shapes, and other key characteristics of these memories. In addition,

we were able to identify common patterns for the interconnect between memory and logic. This

data is summarized in Section II. These statistics and patterns were then incorporated into the

circuit generator; the generator is described in Section III.

II. Structural Analysis

The analysis is based on 171 circuits, each containing between 1 and 16 memories. Data

regarding these circuits was obtained from several sources: recent conference and journal articles,

industrial designers, and a study obtained from Altera Corporation. We were not able to obtain

netlists for these circuits, but we did obtain characteristics of how the memories were used and

connected. Most circuits were initially designed to be implemented on a gate array or custom

chip.

A. Memory Con�gurations

Figure 1 shows the distribution of the number of memories in each circuit. As the graph shows,

circuits with one or two memories are common while the demand for higher numbers of memories

decreases rapidly.

Figure 2 shows the distribution of widths and depths of the memories in the analyzed circuits.

Since we did not have memory width/depth information for all circuits, the results only show the

distribution for 268 of the 533 memories. As the graphs show, the proportion of memories with

depths in each power-of-two-interval between 8 and 2048 is roughly constant, while the memory

width distribution peaks at about 8, and falls o� below 8 and above 16.

Finally, from our analysis, we saw that 69% of the widths and 74% of the depths were powers-
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Fig. 2. Distributions of memory widths and depths.
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Fig. 3. Forward error correction decoder datapath from [7].

of-two. In addition, 16% of the memories were used as ROMs, and 13% were multi-ported.

B. Memory Clustering

Memories connect to logic through their address pins, data-in pins, data-out pins, and other

control pins (write enable and perhaps a clock). Each of these sets of pins is driven by (or drives)

one or more logic subcircuits. We will refer to subcircuits driving the data-in pins as data-in

subcircuits, subcircuits driving the address pins as address subcircuits, and subcircuits driven by

the data-out pins as data-out subcircuits.

Memories in our example circuits typically appear in \tightly-connected" groups. We refer to

each of these groups as a cluster. More precisely, a cluster is de�ned to contain one or more

memories in which all data-in ports are connected to a common logic subcircuit (or set of logic

subcircuits) or in which all data-out ports are connected to a common logic subcircuit (or set of

logic subcircuits). As an example, the circuit in Figure 3 contains �ve clusters.

To quantify common sizes and numbers of clusters in circuits, we examined 31 of our example

circuits, and counted the number of clusters and the number of memories in each cluster. Figure 4



WILTON ET AL: STRUCTURAL ANALYSIS AND GENERATION OF DIGITAL CIRCUITS WITH MEMORY 5

summarizes the results. We also observed that, of those clusters containing more than one

memory, 95% consist of memories with the same width and 75% consist of memories with the

same depth.

Finally, Figure 5 shows the distribution of the number of data-in and data-out subcircuits con-

nected to the memories in each cluster in the 31 circuits. These measurements are approximate,

since in some circuits it is di�cult to deduce how a piece of logic can best be represented by a

set of subcircuits. As the graphs show, the memories in most clusters are connected to only a

single data-in subcircuit and a single data-out subcircuit.

C. Interconnect Patterns

We then considered the manner in which memories and logic subcircuits are interconnected

within a cluster. We have identi�ed three common patterns, as shown in Figure 6.

We refer to the �rst pattern (shown in Figure 6(a)) as point-to-point. In this pattern, each

logic subcircuit pin connects to exactly one data pin in one memory block Example circuits that

employ this pattern can be found in [8], [9], [10], [11], [7], [8], [12], [13], [14], [15], [16], [17], [18],

[19], [20].

We refer to the pattern shown in Figure 6(b) as shared-connection pattern. A typical use of

such a pattern is described in [21], in which the data-in ports of a scratch-pad memory and

�rst-in �rst-out bu�er are connected to a bus. Other examples can be found in [15], [22], [23],

[24], [25], [26].

The third pattern occurs only when there are an equal number of subcircuits as memories

within a cluster. Although this is actually a special case of the other two patterns, it occurs
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so often, we consider it separately. We refer to this pattern, which is shown in Figure 6(c), as

point-to-point pattern with no shu�ing. An example of this is in [20], in which the data-in ports

of two memories are driven by separate serial-to-parallel converters, while the data-out port of

each memory drives separate inputs of a large multiplier. Another example can be found in [19].

We analyzed each of the data-in and data-out networks in each cluster in the 31 circuits for

which we had block diagrams, and classi�ed each into one of the three categories described

above. We found that, for the connection between logic and the data-in ports of the memories,

all three patterns were approximately equally common. For the connection between the logic and

the data-out ports of the memories, the �rst two patterns were approximately equally common,

while the third pattern was rare.

III. Circuit Generation

A circuit generator was developed using the data from Section II. The generator stochastically

generates realistic circuits as follows:

1. A memory con�guration is chosen stochastically. The data in Figure 4(b) is used to guide

the selection of the number of clusters, and the data in Figure 4(a) is used to guide the

selection of the number of memories within each cluster. The width and depth of each
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Fig. 6. Common Interconnect Patterns.
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memory is then chosen using the data in Figure 2.

2. Interconnect patterns for the data-out and data-in networks within each cluster are chosen

from the patterns in Figure 6. If a multiplexor is required, it is constructed using lookup

tables (multiplexors are used rather than tri-state drivers since tri-state drivers are not

plentiful in current FPGAs).

3. The logic subcircuits are chosen from a collection of 38 logic circuits obtained from the Mi-

croelectronics Center of North Carolina (MCNC) [27]. These circuits are all combinational,

and contain between 24 and 184 �ve-input lookup tables. If the chosen circuits do not have

enough inputs or outputs to source or sink the memory inputs or outputs, the subcircuits

are replicated. Note that an alternative to randomly choosing pre-constructed circuits would

be to use an existing synthetic circuit generator (such as the one in [6]).

4. The memories and logic subcircuits are glued together, and the entire circuit is written in

either VHDL or BLIF formats.

The tool can generate a circuit in less than a second on a modern workstation. It has been

successfully used in several architectural studies involving FPGAs with on-chip memory. Details

can be found in [28], [29]. These studies would not have been possible without such a circuit

generator.

IV. Concluding Remarks

In this paper, we have presented a detailed structural analysis of circuits with memory, and

described a circuit generator that stochastically generates such circuits. The analysis focused on

the number, sizes, shapes, and other key characteristics of memories within circuits, and also the

way in which the memories are connected to logic. Statistics gathered during the analysis were

then used to calibrate the circuit generator.
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