The Memory/Logic Interface in FPGAs with
Large Embedded Memory Arrays

Steven J.E. Wilton, Jonathan Rose, Zvonko G. Vranesic

Abstract— As the capacities of field-programmable gate ar-
rays (FPGAs) grow, they will be used to implement much
larger circuits than ever before. These larger circuits often
require significant amounts of storage. In order to address
these storage requirements, FPGAs with large embedded
memory arrays are now being developed by several ven-
dors. One of the crucial components of an FPGA with on-
chip memory is the routing structure between the memory
arrays and the logic resources. If this memory/logic inter-
face is not flexible enough, many circuits will be unroutable,
while if it is too flexible, it will be slower and consume more
chip area than is necessary. In this paper, we show that an
interconnect in which each memory pin can connect to be-
tween 4 and 7 logic routing tracks is best in terms of both
area and speed. We also show that by adding switches to
support nets that connect multiple memory arrays, we can
reduce the memory access time by up to 25% and improve
the routability slightly.

Keywords— FPGAs, Reconfigurable Systems, Embedded
Memory Arrays

I. INTRODUCTION

ECENT years have seen dramatic improvements in

FPGA capacities and speeds. Such improvements are
changing the way FPGAs are used. In the past, these de-
vices have been primarily used to implement small logic
subcircuits (often the “glue-logic” portions of larger sys-
tems), but as FPGAs get larger, they are being used to
implement much larger circuits and even entire systems.
One of the most important differences between these large
systems and the smaller logic subcircuits is that the sys-
tems often require significant amounts of storage. Architec-
tural support for the efficient implementation of memory
in next-generation FPGAs, therefore, is crucial.

In [1], [2], a configurable memory architecture was de-
scribed which is flexible enough to implement a wide vari-
ety of storage requirements. This configurable architecture
can be used in a stand-alone device or can be embedded
onto an FPGA to support on-chip memory. Implementing
memory on-chip has a number of advantages over off-chip
memory: it reduces the system cost by decreasing the num-
ber of chips required to fully implement a system, it often
allows for faster clock rates since external pins (and board-
level traces) need not be driven with each memory access,
and it frees T/O pins that would otherwise be devoted to
address and data connections. These advantages have led
several FPGA vendors to produce FPGAs with significant
amounts of on-chip memory [3], [4], [5], [6], [7].

One of the challenges when embedding memory arrays

S. Wilton is with the Department of Electrical and Computer Engi-
neering, University of British Columbia, Vancouver, BC, Canada. E-
mail: stevew@ee.ubc.ca. J. Rose and Z. Vranesic are with the Depart-
ment of Electrical and Computer Engineering, University of Toronto,
Toronto, Ontario, Canada. E-mail: {jayar,zvonko }@eecg.toronto.edu

Oo00o0000000O0O000O0OO0O0O0OOOO0O0OOOOOOOO0
Oo00o0000000O0O000O0OO0O0O0OOOO0O0OOOOOOOO0
Oo00o0000000O0O000O0OO0O0O0OOOO0O0OOOOOOOO0
O000000000O0000O0O0O0O0O0O0O0OO0O0O0OOOO0OOO
Oo00o0000000O0O000O0OO0O0O0OOOO0O0OOOOOOOO0
Oo00o0000000O0O000O0OO0O0O0OOOO0O0OOOOOOOO0
Oo00o0000000O0O000O0OO0O0O0OOOO0O0OOOOOOOO0

Oo00o0000000O0O000O0OO0O0O0OOOO0O0OOOOOOOO0
Oo00o0000000O0O000O0OO0O0O0OOOO0O0OOOOOOOO0

O E 0 E A A E

0000000000 O0O000O0OO0OO0OO0OO0OO0O0OOOOOOOOO0OO0
0000000000 O0O000O0OO0OO0OO0OO0OO0O0OOOOOOOOO0OO0

0000000000000000000000000000000
0000000000000000000000O000000000
0000000000000000000000000000000
0000000000000000000000000000000
0000000000000000000000000000000
0000000000000000000000000000000
0000000000000000000000000000000
O Logic Block
Memory Array
Fig. 1. FPGA with Embedded Memory

onto an FPGA is to provide enough interconnect between
the memory arrays and the logic resources. The design of
a good memory/logic interface is critical. Since memory
access time is often the performance bottleneck in many
systems, it is crucial that the memory/logic interface pro-
vides a flexible high-speed link between logic and memory.
If the interface is not flexible enough, many circuits will be
unroutable, while if it is too flexible, it will be slower and
consume more chip area than is necessary. This paper fo-
cuses on the design of a good memory/logic interface. We
concentrate on two issues: how flexible the interconnect
must be, and how the interconnect can be enhanced by
providing efficient connections between the memory arrays
themselves.

The paper is organized as follows. In the next section,
we describe the baseline FPGA architecture for our exper-
iments, and quantify the flexibility of the memory/logic
interconnect structure. Section IIT then determines how
flexible the interconnect must be, taking into account the
overall FPGA routability, area, and delay. Finally, Sec-
tion IV shows that by adding efficient paths between mem-
ory arrays, the FPGA routability and delay can be im-
proved significantly.

Early versions of some of these results appear in [8]
and [9]. More details regarding much of the material is
available in [10].

II. BASELINE ARCHITECTURE

The FPGA considered in this paper consists of distinct
logic and memory resources, as illustrated in Fig. 1. The
memory resources consist of a set of identical arrays that
can be combined to implement user memory configurations,
similar to [1]. The number of bits in each array is fixed,

<

| *r.
X

| *ri
X

1y 1y

.‘\>< K.

1 ikki
| .kk!

X
X
f

o f.\ f.\ P o f_\ P P ¥ T f.
AR AR 3 3 3 AAAI AR
% X X
] 7 D> RS

- Mggllgm/ [{ MEMORY/ H MEMORY/
= HLocic Hioaic
M INTERCONNECT MEMORY ' |NTERCONNECT MEMORY 1 INTERCONNECT
BLOCK BLOCK HBLoCK BLOCK © HaLocK
12 ek KK* _ R K < KK
Y J. Y J Y 3 Y Y
K
\KIXKI KV.\ K. KV.\ Kk.x,<. K.
e — = = e — b e N— =
Y v} vy Y Y Y v}
K K K X
Kk. K. Kk. ‘.‘. K. K.

Fig. 2. Memory/logic interconnect architecture.

TO LOGIC PART OF FPGA

% % % %
% % % %
% % % %
% % % %
% % % %
% % %Lt
% % % Xl
X x x %
% % %
* * *
MEMORY * * Lvamn
BLOCK % % %
% x %
% % %
% %
% % X
% % %
% % %
% % % %
X X X X
X X x X
% % % x L

TO LOGIC PART OF FPGA
Fig. 3. Memory/logic interconnect block.

but the aspect ratio can be configured by the user. In
the results presented in this paper, we assume that each
array contains 2-Kbits of storage, and has a configurable
data width of 1, 2, 4, or 8 (similar to the Altera 10K series
CPLDs [3] and [2]). We further assume that the arrays are
positioned in a single row across the width of the chip, as
is the case in Altera 10K and Actel SPGA parts [4], [5].
Positioning the arrays in this way allows for easy connec-
tions to logic, as well as easy connections between memory
arrays that are combined to implement large user memo-
ries. Unlike [1], here we assume that each memory array
has separate input and output data ports (as well as an
address port).

The logic resources of the FPGA are assumed to consist
of five-input lookup tables, interconnected using symmet-
ric horizontal and vertical channels similar to the Xilinx
and Lucent ORCA FPGAs [6], [7T]. At the intersection of
every horizontal and vertical channel is a switch block; the
switch block offers each incoming wire three possible con-

nections (i.e. Fs = 3 in the terminology of [11]). Each logic
block pin can be connected to W tracks, where W is the
number of tracks in each channel. We have assumed that
all segments are of length 1; that is, segments only connect
neighbouring switch blocks. Each pin of each lookup ta-
ble can be connected to two channels; within each channel,
each pin can be connected to all W tracks.

Fig. 2 shows the interconnect structure between the logic
and memory. Each memory block is connected to the logic
routing through a memory/logic interconnect block. An ex-
ample memory /logic interconnect block is shown in Fig. 3.
The vertical tracks in Fig. 3 are connected to the upper and
lower halves of the logic array and can be programmably
connected to the memory pins. We define the flexibility of
this block, F,,, as the number of vertical tracks to which
each memory pin can be connected. In Fig. 3, each cross
represents a programmable connection; thus, in this exam-
ple, F,, = 4. The minimum value of F, is 1, while the
maximum is V where V is the number of vertical wires
incident to the memory/logic interconnect block.

Another parameter affecting the FPGA routability is the
number of logic blocks per memory block in the horizontal
dimension. Section ITI-C discusses this further.

ITI. MEMORY/LoGIC INTERCONNECT FLEXIBILITY

As described above, the flexibility of the interconnect
structure is quantified by the parameter F,,; which indicates
the number of tracks to which each memory pin can be
connected. In this section we vary F,, and examine the
effects on the overall FPGA routability, area, and delay.

Note that we are concerned with the area and speed
of the entire FPGA, not just the memory/logic intercon-
nect region. Clearly, the lower F,,, the smaller the mem-
ory/logic interconnect will be because fewer programming
bits and pass transistors are needed. Decreasing F),, how-
ever, places additional demands on the rest of the FPGA
since it makes it more difficult to route nets between the
logic and memory blocks. One way the designer of an
FPGA can compensate for this reduction in routability is
to add extra tracks to each channel across the entire FPGA.
The area cost of these additional tracks must be considered
when determining a good value of F,.

A similar tradeoff exists between circuit speed and Fp,.
The lower F,,, the fewer switches there are on any path
into and out of the memory blocks. Since switches add
parasitic capacitance to the memory nets, the reduction
of F,, shortens the memory access times. However, the
lower-flexibility memory/logic interconnect blocks may re-
sult in circuitous routes (that are slower than direct routes)
between logic and memory. The extra delay due to these
circuitous routes must also be considered when determining
a good value for Fy,.

A. FExperimental Methodology

We employ an experimental methodology in which
benchmark circuits are “implemented” on candidate FPGA
architectures using custom-written CAD tools. For each
circuit and each architecture, we measure the minimum

number of tracks required in each channel to completely
route the circuit, and use this in an area model to estimate
the area-efficiency of the architecture (a fairly standard
method used when exploring the area effects of architec-
tural choices [11], [12]). A detailed delay model is used
to estimate the speed-efficiency of each architecture. The
following subsections describe the source of the benchmark
circuits and the CAD tools employed.

B. Benchmark Circuit Generation

The traditional method of placing and routing 10 to 20
benchmark circuits [11], [12] is not suitable for the anal-
ysis of configurable memory architectures. Since circuits
typically have only a few memories each, hundreds of such
examples may be required to properly exercise the architec-
ture. Because it isn’t feasible to gather that many bench-
mark circuits, our approach is to study the types of mem-
ory configurations found in systems, and then to develop a
stochastic memory configuration generator based on that
study.

It is crucial that the generated circuits are realistic. We
ensure this by basing the generator on the results of a de-
tailed circuit analysis. The next subsection briefly outlines
the analysis, while the following subsection describes how
we use the analysis results to ensure our stochastically gen-
erated circuits are realistic. A full explanation of both the
analysis and generation is given in [10].

B.1 Structural Analysis of Circuits with Memory

This analysis is based on 171 circuits containing a total
of 268 user memories. Data regarding these circuits was ob-
tained from several sources: recent conference proceedings,
recent journal articles, local designers at the University of
Toronto, a major telecommunications company, and a cus-
tomer study conducted by Altera [13]. Although we were
unable to obtain netlists for the circuits, we could gather
several key memory parameters.

As an example of the data gathered during the analysis,
Fig. 4 shows the distribution of the number of memories
in our sample circuits. As the graph shows, most circuits
require only a small number of memories. It is impor-
tant to note that the horizontal axis is the number of user
memories; many of these user memories will require more
than one physical array. We have also examined the widths
and depths of the memories used in our sample circuits.
Widths between 8 and 32 were common, while the range of
depths varied considerably. Of particular interest was that
approximately 70% of the dimensions were powers-of-two.
The uses of memories (RAMs vs. ROMs and single- vs.
dual-port) were also examined. Further data is presented
in [10].

We have also examined how the user memories are con-
nected to the logic parts of circuits. We have observed that
memories tend to form “tightly connected” clusters, where
is a cluster is a group of memories that are connected to
common data input or data output subcircuits. Figure 5
shows the number of clusters in our sample circuits (we
could only gather this information from 31 of our circuits)

50
40 7 Total Circuits = 171
Number
of Circuits
30
20 7
10
D e W | I
1 2 3 4 5 6 7 8 910 12
Number of User Memories
Fig. 4. Distributions of number of user memories in our sample

circuits.

We also examined com-
mon interconnect patterns between the memory and logic
within clusters. Figure 6 summarizes the common pat-
terns we observed. In Figure 6(a), each memory is driven
by a seperate logic subcircuit. In Figure 6(b), each logic
subcircuit is connected to seperate bits in each memory.
Finally, in Figure 6(c), a common bus is used to connect
the memory and logic. The details of the analysis results
are presented in [10].

and the sizes of these clusters.

B.2 Circuit Generation

In order to ensure that the circuits from the circuit gen-
erator are realistic, we closely based the generation on the
results of the circuit analysis. The distributions gathered
during the analysis were used to chose memory configu-
rations, to partition the memories into clusters, and to
connect logic subcircuits to the memories. The logic sub-
circuits themselves where chosen randomly from a collec-
tion of 38 MCNC circuits [14], and were optimized using
SIS [15] and technology-mapped to 5-input lookup tables
using FlowMap [16]. The actual construction of the circuits
is non-trivial and is described in detail in [10].

In the experiments described in this paper, we consider
architectures with two, four, eight and sixteen 2-Kbit mem-
ory arrays. For each of these four FPGA sizes, we generate
a separate set of 100 benchmark circuits; the user memories
in each circuit use between 75% and 100% of the available
bits in the target architecture. Table I shows statistics for
the four sets of benchmark circuits.

C. Implementation Tools

Each benchmark circuit is “implemented” in each FPGA
using custom-built CAD tools [10]. First, each memory
in the circuit must be implemented using one or more of
the physical memory arrays. For example, a 4Kx2 user
memory can be implemented using four 2-Kbit arrays each
configured as a 2Kx1 memory with appropriate decoding.
We call this process the logical-to-physical mapping and use
an algorithm described in [10].

Next, the mapped circuits are then placed and routed on
an appropriately-sized FPGA. The placer uses simulated-
annealing to determine good locations for both the memory

= Circuits with only
& one memory
Number 15 . Circuits with more than
of Circuits one memory

10 Total Circuits=31

1 2 3 4
Number of Clusters

a) number of clusters distribution

30

Number of

Clusters Total Clusters = 53

20

10

/L—_

1 2 3 4 8
Number of Memories

b) number of memories per cluster

Fig. 5. Cluster statistics.
Logic Logic Logic
subcircuit subcircuit subcircuit
Logic Logic Logic
subcircuit subcircuit subcircuit
Memory Memory Memory Memory Memory Memory Memory
Logic Logic Logic . grril;s:ate
Subcircuit Subcircuit Subcircuit €

i

Memory

Memory

Memory

Memory

Fig. 6. Common interconnect patterns between memory and logic in our sample circuits.

Architecture to || Number Logic Memory 1/0 Nets
which circuits Blocks Blocks Blocks
are targeted Avg | St.Dev | Avg | St.Dev | Avg | St.Dev | Avg | St.Dev
2 arrays 100 535 279 2 0 123 75 651 307
4 arrays 100 657 373 3.63 0.81 134 85.9 788 415
8 arrays 100 913 467 7.72 0.57 146 85.5 1069 497
16 arrays 100 849 500 15.2 1.33 154 102 1030 500
TABLE 1

CIRCUIT STATISTICS.

and logic blocks simultaneously. The cost function mini-
mized during the placement process is the sum of the di-
mensions of the bounding box surrounding each net; nets
connecting to memory are treated the same as nets that
only connect to logic.

The router uses a multi-pass maze routing algorithm.
Initially, nets that connect to memory arrays are given
higher priority (routed first). Between each iteration of the
router, the nets are re-ordered such that the nets that could
not be routed during one iteration are routed first during

the next iteration. This is repeated 10 times; if a successful
routing has not been found after 10 iterations, the circuit
is deemed unroutable. The routing is repeated for different
values of W (the number of tracks per channel) to deter-
mine the minimum W that gives a 100% routable solution.
The router considers all input pins of a lookup table to be
logically equivalent. Similarly, all address pins of a memory
array are logically equivalent. Data pins are also consid-
ered equivalent with the constraint that a pin assignment
for a specific bit in the data-out port fixes the correspond-

ing assignment in the data-in port (and vice versa). More
details on both the placer and router can be found in [10].

The size of the FPGA used in the place and route step
depends on both the number of lookup tables and mem-
ory arrays required by the circuit. For a given number of
arrays, we place the required number of logic blocks above
and below the memory row, creating a roughly square chip.
This will result in different values of R (the number of logic
blocks per memory block in the horizontal dimension) for
different circuits. If R is less than 3, we force R to be 3,
resulting in a non-square aspect ratio. For some circuits,
the number of inputs/outputs will determine the chip area;
for these circuits, a square array with the required number
of input/output blocks will be used. Table IT shows the
average values of R and the average aspect ratio (ratio
of horizontal logic blocks to vertical logic blocks) for the
benchmark circuits.

D. Memory/Logic Flexibility Results

The first set of results is for an FPGA with sixteen 2-
Kbit memory arrays. The solid line in Fig. 7(a) shows the
average number of tracks per channel required to route each
benchmark circuit (averaged over all circuits) as a function
of Fp,. The right-most point on the horizontal axis rep-
resents the case when Fj, equals its maximum value. The
dotted lines show the track requirement plus and minus one
standard deviation. As expected, as Fj,, increases, the av-
erage track requirement drops. Beyond F),, = 4, however,
very little further drop is seen. The anomaly at F,, = 3
is a result of the particular switch pattern chosen for each
memory /logic interconnect block [10].

The track requirements for all four FPGA sizes are shown
in Fig. 7(b). Notice that the results for the smaller FPGAs
are less sensitive to F,, that those for the larger architec-
tures. In fact, for the 2 and 4 array FPGAs, an F,, of
1 or 2 provides sufficient flexibility. To understand why
the smaller architectures can tolerate such low values of
Fi,, 1t 18 necessary to examine the circuits that are used to
evaluate each architecture.

Table III breaks down all nets in the benchmark circuits
into three categories: nets that connect only logic blocks,
nets that connect exactly one memory block to one or more
logic blocks, and nets that connect more than one memory
block to one or more logic blocks.

Consider the third category of nets: nets that connect
to more than one memory array. In the generated circuits,
these nets serve two purposes. First, when arrays are com-
bined to implement a larger user memory, the address pins
(and possibly data-in pins) of the arrays are connected to-
gether. Second, often the data-in pins of several user mem-
ories are driven by a common data bus. These memory-
to-memory nets are particularly hard to route with small
values of F,. Fig. 8 illustrates a net that connects to three
memory pins. Assuming a low value of F,,,, there are three
regions of low flexibility; the logic routing resources must be
used to connect to specific tracks incident to each of these
three low-flexibility regions. Given the relatively few op-
tions available within each switch block, circuitous routes

obooooon
oooonmho
RN

Dmm

oOooooOooo
oggoooooao

LOW
FLEXIBILITY

Fig. 8. A net connected to three memory blocks: three regions of
low flexibility

25
20] route all nets
Number 15 A
of Tracks)
Required | - -l butcategory 3 memory connections -
foRoute 10 T n Al Bl oo
] connections
) (lower bound)
5
0l

1 2 3 4

Memory/Logic Interconnect Flexibility (Fm)

Fig. 9. Effect of removing memory-to-memory connections for 16-

array FPGA.

are often required to make connections between these low
flexibility regions, causing routability problems.

Intuitively, these nets will appear more often in circuits
aimed at larger architectures, since there are likely more
memory blocks to connect. Table III shows that this intu-
ition 1s correct. Thus, the FPGAs used to implement the
larger circuits need a higher value of F,.

To investigate this further, we removed all memory-to-
memory connections from the circuits, and repeated the
experiment. Fig. 9 shows the results for the 16-array case.
The solid line shows the original results from Fig. 7(a).
The dashed line shows the results obtained from the cir-
cuits with the memory-to-memory connections removed.
The dotted line shows the results obtained from the cir-
cuits with all memory connections removed (clearly, this
is independent of Fy,). As the graph shows, removing
Jjust the memory-to-memory connections gives a routabil-
ity only slightly worse than that obtained by removing
all memory connections (only slightly more tracks are re-
quired). This motivates us to study memory-to-memory
connections more closely; in Section IV we will present ar-
chitectural enhancements aimed at efficiently implementing
memory-to-memory connections.

Class of architectures || R = 2 logic blocks in horiz._dimension aspect ratio
num. memory blocks
Average St.Dev Avg | St.Dev
2 arrays 12.1 3.35 1 0
4 arrays 6.60 1.99 1 0
8 arrays 3.93 0.86 1.08 0.25
16 arrays 3.01 0.01 3.16 1.72
TABLE 11
ARCHITECTURE STATISTICS.
351 25116 arrays.
30*; 20
25 1
Number 1 ‘PluslStd. Dev. Number 15] 8 arrays
of Tracks 20; of Tracks] —
Required 1\ Aveage. e Required . 14 e i s 2\
to Route E N to Route 7] T\ \=
105 TP N N]
] Minus 1 Std. Dev. 5]
5]]
0] 0]

1 2 3 4 5 6 7 15 25 Ful

Memory/Logic Interconnect Flexibility (Fm)

a) 16-array FPGA

T T
1 2 3 4 5 6 7 15 25Full

Memory/Logic Interconnect Flexibility (Fm)

b) 2,4,8, and 16-array FPGA

Fig. 7. Average track requirement as a function of Fi,.

Architecture to which Nets not connected Nets connected Nets connected
circuits are targeted to memory to exactly 1 memory | to more than 1 memory
2 arrays 94.2% 4.32% 1.45%

4 arrays 93.0% 5.24% 1.78%

8 arrays 92.2% 5.93% 1.91%

16 arrays 89.4% 8.17% 2.43%

TABLE III
NET STATISTICS.

E. Area Results

The area required by an FPGA architecture is the sum
of the area required by the logic blocks, memory blocks,
and routing resources. Since the value of F,,, does not af-
fect the number of memory blocks or logic blocks required
to implement a circuit, we focus on the routing area. The
routing resources are made up of three components: pro-
grammable switches, programming bits, and metal routing
segments. Since estimates of the area required by the metal
routing segments are difficult to obtain without perform-
ing a detailed layout, we concentrate on the area due to
the programming bits and switches.

We are interested in the area of the entire FPGA, and
thus must consider not only those switches in the mem-
ory/logic interconnect blocks, but also those in the logic
routing architecture. The number of switches in the mem-
ory/logic interconnect block is proportional to F,,, while
the number of switches in the logic routing depends on
W (number of tracks in each channel). The sum of these
two components gives an estimate of the total number of

programming bits required in the FPGA routing.

Fig. 10(a) shows the number of programmable connec-
tions in each of the four architectures as a function of F,,.
The results follow the routability measurements (Fig. 7)
closely. Since the logic routing resources contain many
more switches that the memory/logic interconnect does,
the increase in the memory/logic interconnect area as Fy,
increases is swamped by the decrease in the area of the
logic routing resources due to the decrease in the number
of tracks per channel. In all architectures, the best area
efficiency is obtained for F,, > 4. For very large values
of F,,, the area increases slightly due to the larger mem-
ory/logic interconnect blocks and the inability of the extra
switches to reduce the track requirement.

F. Delay Results

A detailed delay model is used to measure the memory
read time of all memories in the circuit. The memory read
time is the sum of the access time of the array itself, the de-
lay of the network driving the address pins, and the delay of
the network driven by the data-out pins. The array access

350000
16 arrays.
300000 -{
250000
Total
Number of 200000 -| 8 arrays
Programmable
Connections 150000 - \—\»_—_’\HH\\:
in FPGA V-—\\—-‘\
100000 4 arays \ﬂ
2amays e———————— .\ _'4\\\'_
50000 -
04

1 2 3 4 5 6
Memory/Logic Interconnect Flexibility (Fm)

a) Area Results

L —
7 15 25 Ful

140ns
120ns 16 arrays /\//\
] <
Memory i //
Read 100ns-
8 arrays
Time] & < /f
gons | -darays //
i s
2 arrays
60ns -

T T T
1 2 3 4 5 6 7 15 25 Ful
Memory/Logic Interconnect Flexibility (Fm)

b) Delay Results

Fig. 10. FPGA Area and Delay Results as a function of Fy,.

time 1s estimated by a modified version of CACTI, a de-
tailed cache access time model [17]. For the address-in and
data-out networks, the Elmore delay is used [18]. Commer-
cial FPGAs often contain repowering buffers to reduce the
delay of long nets; rather than assuming a specific repow-
ering buffer strategy, we make the pessimistic assumption
that each signal is repowered in every switch and mem-
ory/logic interconnect block. Although this architecture is
not likely to be used in practice, the delay estimates ob-
tained by assuming such an architecture will behave in a
manner similar to those that would be obtained had a more
intelligent buffer placement policy been employed.

Fig. 10(b) shows the average memory read time of the
memories in the 100 benchmark circuits. The extremes
of F,, = 1 and F,, equal to its maximum value are both
bad choices. If F,; = 1, circuitous routes are required to
connect nets to the low flexibility memory pins. These cir-
cuitous routes pass through more switch blocks than would
otherwise be necessary, leading to longer net delays. When
Fy, 1s its maximum value, the large number of switches
in the memory /logic interconnect block adds a significant
amount of extra capacitance to the routing wires, again
leading to longer routing delays. Between F,, = 2 and
F, = 7, the delay is roughly constant.

Combining these results, the most efficient FPGA archi-
tecture occurs 4 < F,, < 7. As Fj,, approaches its max-
imum value, the speed-efficiency is reduced considerably,
and the area-efficiency somewhat.

IV. ENHANCEMENT TO SUPPORT
MEMORY-TO-MEMORY CONNECTIONS

In Section III-D it was suggested that nets that con-
nect to more than one memory array are difficult to route
in low-F,, architectures, and that these nets are common
in circuits that use many memory arrays. In this section
we propose adding programmable switches between neigh-
bouring memory arrays to support these nets. These extra
switches take up negligible area. Below we will show that,
if they are employed correctly, these switches provide a sig-
nificant improvement in both the routability and speed of
the device.

A. Enhanced Architecture

Fig. 11 illustrates the enhanced architecture. Each verti-
cal wire incident to a memory /logic interconnect block can
be programmably connected to the corresponding wire in-
cident to the two neighbouring memory/logic interconnect
blocks. The connection is made through pass transistors
denoted by rectangles in Fig. 11. We refer to each of these
pass transistors as a memory-to-memory switch. Note that
the connections shown as solid dots are non-programmable
permanent connections.

Fig. 12 shows an example of a net connecting three ar-
rays implemented on both the baseline and the enhanced
architectures. In the baseline architecture, the net is im-
plemented using the logic routing resources that could oth-
erwise be used to route signals between logic blocks. Be-
cause of the limited connectivity within each switch block,
the route through the logic routing resources is somewhat
circuitous; in the presence of routing contention, the route
may be even worse. In the enhanced architecture, however,
two memory-to-memory switches are used to connect the
three memory arrays.

The area cost of the new memory-to-memory switches
is small. If there are N arrays and V vertical tracks per
memory block, then NV extra switches and programming
bits are required.

This enhancement is related to the broader channel seg-
mentation issue in FPGAs [6], [19]. There are, however,
several major differences from this previous work:

1. In a segmented routing architecture, all channels
across the chip usually contain an identical distribu-
tion of segment lengths. In our architecture, there
are exactly V' additional horizontal tracks, regardless
of how many logic routing channels exist on the chip.
Thus, the routing architecture is heterogeneous to bet-
ter match the heterogeneous logic/memory block ar-
chitecture.

2. Each memory-to-memory connection consists of a
programmable switch connecting two tracks. This is
topologically different than a standard routing track
(of any length), in which two programmable switch
blocks are connected using a fixed track.

I
,x.
N Iﬁ

i

FIMEMORY/ FMEMORY/ o MOE(’\;/lgRY/
Hocic Hiocic Hoal
MINTERCONNECT MEMORY | H|NTERCONNECT MEMORY | INTERCONNECT
MBLOCK BLOCK HeLock BLOCK MeLock
-
— — PERMANENT
— — CONNECTIONS
— (non—programmable)
— —
— — Ny
— —~
N
N
\\\
X XK1 X
g g g PROGRAMMABLE
MEMORY-TO-MEMORY
e eEEEEE &
g > > > > >

I
nm

Fig. 11. Enhanced memory/logic interconnect architecture.

MEMORY MEMORY

MEMORY
BLOCK

MEMORY
BLOCK

a) Baseline architecture

b) Enhanced architecture

Fig. 12. Routing a net on the baseline and enhanced architectures.

3. The purpose of these tracks is different than the long
lines used previously. In our architecture, the tracks
are used to efficiently connect memory arrays that are
next to each other; long lines, on the other hand, are
used to connect distant logic blocks.

Our enhancment is also related to the direct connec-
tions between adjacent logic blocks in some commercial
FPGAs [7], [5]. These connections are provided to pro-
vide low delay paths between logic blocks, and are often
very effective at speeding up certain logic structures (carry
chains, for example). Our enhancment can be thought of

as an application of this technique to memory. By provid-
ing fast connections between neighbouring memory arrays,
we can more efficiently implement large user memories that
share address or data connections. Typically, if memories
are connected together, they will share all their address
or all their data connections. This regularity is reflected
in the proposed architectural enhancement. By exploit-
ing the regularity and using the direct memory-to-memory
switches to connect adjacent blocks, we would expect sig-
nificant performance improvements.

15
] 2 3
10+
Track i
Requirement 1
w)]
51
o Normal architecture .
, —— With memory-to-memory switches
0

T T T T T
0 50 100 150 200 250
Routing Switches per Memory Block

Fig. 13. Routing results using standard maze router

B. Evaluation of Enhanced Architecture

In this section, we will show that the proposed enhance-
ment improves the speed and routability of circuit im-
plementations. To obtain these improvements, however,
the maze-routing algorithm must be restricted such that
it uses the memory-to-memory switches only to imple-
ment memory-to-memory connections. If a standard maze-
router that is free to use the memory-to-memory connec-
tions for all nets is employed, the extra switches actually
reduce the routability of the device.

In order to quantify the gains obtained by the memory-
to-memory switches, we employ the same experimental ap-
proach as that used in Section III. We first show results
for the case when the router is free to use the memory-to-
memory connections for all nets. Fig. 13 shows routability
results for an FPGA with eight memory arrays with and
without the memory-to-memory switches for several values
of Fy,. The horizontal axis is the number of programmable
switches per memory array in the memory/logic intercon-
nect. This includes the switches in the memory/logic inter-
connect blocks (proportional to Fj,), and, in the enhanced
architecture, the memory-to-memory switches. The verti-
cal axis is the number of tracks required in each channel
in order to completely route the circuit, averaged over all
100 benchmark circuits. Each point i1s labeled with the
corresponding value of F,.

As the graph shows, the required track count is signif-
icantly increased for low values of F,, and relatively un-
changed for higher values. At F,, = 1, in the enhanced
architecture, more that half of the circuits could not be
routed using less than 45 tracks; we do not present results
for this case.

The primary reason for these disappointing results is
that nets that do not connect to memory will often use
the memory-to-memory switches as a low-cost route to
travel from one side of the chip to the other. Consider
Fig. 14, which shows the connection between two distant
logic blocks. If the net 1s implemented using only the logic
routing resources, at least six switch blocks would lie on
the path between the two logic blocks. Using the memory-
to-memory switches, only two switch blocks and two pass
transistors (one under each memory block) must be tra-

wm— Solution favoured by maze-router
- Solution that does not use memory-memory switches

MEMORY

MEMORY
T?k A i BLOCK

Track B BLOCK

Sourt

Fig. 14. Routing a logic net with and without memory-to-memory
switches

versed. Since the latter alternative is cheaper, it will be
favoured by a standard maze-type router.

Although this provides an efficient implementation of
this net, the vertical tracks labeled A and C in the dia-
gram become unavailable for future nets (the router pro-
cesses nets one at a time). If future nets require connec-
tions to the memory, the loss of vertical tracks A and C may
severely hamper the routing of these nets, especially in low-
F,, architectures. Also, since the connections between the
vertical tracks incident to each memory/logic interconnect
block and the horizontal tracks connecting the memory-to-
memory switches are permanent, the track labeled B will
also be unavailable for future nets.

To alleviate this problem, we modified the router so
that the memory-to-memory switches are used only to im-
plement memory-to-memory connections. Although this
means that these tracks are wasted if a circuit contains no
(or few) memory-to-memory connections, it alleviates the
problems described above.

Figs. 15 gives the track requirement results obtained us-
ing this algorithm for the 8 and 16 array FPGAs. Again
the horizontal axis is the number of switches per memory
array (including the memory-to-memory switches in the
enhanced architecture) and the label above or below each
point is Fy,. As the graph shows, the memory-to-memory
switches help somewhat, reducing the average track re-
quirement by between 0.5 and 1 track.

Fig. 16 shows the area results for the 8 and 16 array
FPGAs. As before, the area results closely match the track
requirement measurements.

Fig. 17 gives delay results. As before, the vertical axis
in each graph is the time to perform a read access, includ-
ing the routing to the address pins and from the data-out
pins. If an address net connects to more than one mem-
ory array, it might have a circuitous route in the baseline
architecture, resulting in a longer net delay, and hence, a

1 1 x5
15 -] :
1 20 —
Number ;1 235583 N Number
of Tracks , 14 2 of Tracks
Required 1 Required 23 —
to Route] toRoute 10 4567 14 24
5+]
] . Norma architecture 5 ...Normal architecture
1 — With memory-to-memory switches — With memory-to-memory switches
0 0-
T T T T T T T T T T T T T T
0 50 100 150 20 400 700 0 50 100 150 20 400 700
Memory/L ogic Programmable Connections per Memory Block Memory/L ogic Programmable Connections per Memory Block
a) 8-array FPGA b) 16-array FPGA
Fig. 15. Routability results for FPGAs with memory-to-memory switches.
1 350000 - 1
200000 1 . .
300000 -
150000 - 250000 4
Total S Total L3
Number of 2345467 14 24 Number of 200000 - 2 . N s
Programmable 100000 - Programmable . v N N\
Connections Connections 150000 1 23 4556 7 \T‘iﬁ 24
50000 100000 -
1 - Normal architecture]
— With memory-to-memory switches 50000 o -qumal architecture .
— With memory-to-memory switches
0 0
0 50 100 150 200 400 700 0 50 100 150 20 400 700
Memory/Logic Programmable Connections per Memory Block Memory/Logic Programmable Connections per Memory Block
a) 8-array FPGA b) 16-array FPGA
Fig. 16. Area results for FPGAs with memory-to-memory switches.
120ns 140ns 4)
] lNormal architecture 5 25 20 1 1Normal architecture . 25
4 N\ ns - AN
100ns ..2.34.5.6.7\\. \\/ | .23 45 6 7_\
, . \/1/\ o 100ns.| [N S ST, o
80ns - -\.—./-—r—";)\ 14 | 1
Memory 1 123456 Memory 80ns- 456 7
Read 60ns With memory-to-memory switches Read | 12)
Time i Time 60ns- With memory-to-memory switches
40ns~ 1
| 40ns -
20ns 20ns;
Ons-| Ons-|

T T T T T T T
0 50 100 150 200 400 700
Memory/L ogic Programmable Connections per Memory Block

a) 8-array FPGA

T T T T T T T
0 50 100 150 200 400 700

Memory/L ogic Programmable Connections per Memory Block

b) 16-array FPGA

Fig. 17. Delay results for FPGAs with memory-to-memory switches.

longer read time. The memory-to-memory switches result
in more direct routes for these nets, leading to lower mem-
ory read times. In the architectures considered here, the
improvement is as much as 25%. Since the critical path of
a circuit implementation often includes the memory read
time, this speed-up will significantly impact the achievable
clock frequency of circuits implemented on the FPGA.
These results show that even with this relatively unag-
gressive use of the memory-to-memory switches, area is
improved somewhat, and speed is improved significantly.

The development of algorithms that use these tracks more
aggressively is left as future work; it is likely that such al-
gorithms would give improvements beyond those presented
in Figs. 15 through 17.

V. CONCLUSIONS

In this paper, we have examined the architecture of an
FPGA with on-chip memory, focusing on the interconnec-
tion structure between the memory arrays and the logic

resources. We have found that, in our architecture, the

most area-efficient and speed-efficient architecture occurs
if each memory pin can be programmably connected to be-
tween 4 and 7 tracks. This is in contrast to [11] which
shows that circuit routability for logic circuits is severely
hampered by low values of the connection block flexibility.

For FPGAs with 8 or more arrays, we showed that
the routability and speed of the FPGAs can be improved
by adding programmable switches between neighbouring
memory blocks. In our architecture, the enhancements re-
duced the channel width by between 0.5 and 1 track (aver-
aged over all benchmark circuits) and improved the speed
of circuit implementations by as much as 25%. The area
cost of these additional switches is small.

ACKNOWLEDGMENTS

This work was performed at the University of Toronto.
Financial support was provided by Xilinx, MICRONET,
the Natural Sciences and Engineering Research Council of
Canada, the Walter C. Sumner Memorial Foundation, and
UBC’s Centre for Integrated Computer Systems Research
(CICSR).

REFERENCES
[1] S. J. E. Wilton, J. Rose, and Z. G. Vranesic, “Architecture

of centralized field-configurable memory,” in Proceedings of the
ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pp. 97-103, 1995.

[2] T.Ngai, J. Rose, and S. J. E. Wilton, “An SRAM-Programmable
field-configurable memory,” in Proceedings of the IEEE 1995
Custom Integrated Circuits Conference, pp. 499-502, May 1995.

[3] Altera Corporation, Datasheet: FLEX 10K Embedded Pro-
grammable Logic Famaly, July 1995.

[4] Actel Corporation, Datasheet: 3200DX Field-Programmable

Gate Arrays, 1995.

[5] Actel Corporation, Actel’s Reprogrammable SPGAs, 1996.

[6] Xilinx, Inc., XC4000 Series (E/L/EX/XL) Field Programmable
Gate Arrays v1.04, Setpember 1996.

[7] AT&T Microelectronics, Data Sheet: Optimized Reconfigurable
Cell Array (ORCA) Series Field-Programmable Gate Arrays,
March 1994.

[8] S.J. E. Wilton, J. Rose, and Z. G. Vranesic, “Memory /logic
interconnect flexibility in FPGAs with large embedded mem-
ory arrays,” in Proceedings of the IEEE 1996 Custom Integrated
Circuits Conference, pp. 144-147, May 1996.

[9] S. J. E. Wilton, J. Rose, and Z. G. Vranesic, “Memory-

to-memory connection structures in FPGAs with embedded

memory arrays,” in ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, pp. 10-16, February 1997.

S. J. E. Wilton, Architectures and Algorithms for Field-

Programmable Gate Arrays with Embedded Memory. PhD the-

sis, University of Toronto, 1997.

J. Rose and S. Brown, “Flexibility of interconnection structures

for field-programmable gate arrays,” IEEFE Journal of Solid-

State Circuits, vol. 26, pp. 277-282, March 1991.

J. L. Kouloheris and A. E. Gamal, “PLA-based FPGA area ver-

sus cell granularity,” in Proceedings of the IEEE 1992 Custom

Integrated Circuits Conference, pp. 4.3.1-4.3.4, 1992.

[13] K. Veenstra. private communications, 1995.

] S. Yang, “Logic synthesis and optimization benchmarks,” tech.

rep., Microelectronics Center of North Carolina, 1991.

E. Sentovich, “SIS: A system for sequential circuit analysis,”

Tech. Rep. UCB/ERL M92/41, Electronics Research Labora-

tory, University of California, Berkeley, May 1992.

J. Cong and Y. Ding, “FlowMap: an optimal technology map-

ping algorithm for delay optimization in lookup-table based

FPGA designs,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 13, pp. 1-12, January

1994.

[17] S. J. E. Wilton and N. P. Jouppi, “CACTI: an enhanced cache

access and cycle time model,” IEEFE Journal of Solid-State Cir-
cuits, vol. 31, pp. 677-688, May 1996.

W. Elmore, “The transient response of damped linear networks
with particular regard to wideband amplifiers,” Journal of Ap-
plied Physics, vol. 19, pp. 55-63, Jan. 1948.

S. Brown, G. Lemieux, and M. Khellah, “Segmented routing for
speed-performance and routability in field-programmable gate
arrays,” Journal of VLSI Design, vol. 4, no. 4, pp. 275-291,
1996.

(18]

(19]

Steven J.E. Wilton received the B.Eng. de-
gree in Computer Engineering from the Uni-
versity of Victoria, Victoria, B.C., Canada in
1990 and the M.A.Sc. and Ph.D. degree from
the University of Toronto, Toronto, Ontario,
Canada in 1992 and 1997 respectively.

Since 1997, he has been an Assistant Profes-
sor in the Department of Electrical and Com-
puter Engineering at the University of British
Columbia in Vancouver, B.C., Canada. His
research interests include FPGA architecture,
CAD algorithms for FPGAs, and VLSI design. In 1998, he won the
Douglas R. Colton Medal for Research Excellence for his work in
FPGA architectures and their associated CAD tools.

Jonathan Rose is a Professor of Electrical
and Computer Engineering at the University of
Toronto, and an NSERC University Research
Fellow.

He received the Ph.D. degree in Electrical
Engineering in 1986 from the University of
Toronto. From 1986 to 1989, he was a Research
Associate in the Computer Systems Labora-
tory at Stanford University. In 1989, he joined
the faculty of the University of Toronto. He
spent the 1995-1996 year as a Senior Research
Scientist at Xilinx, Inc, in San Jose, CA, working on a next-generation
FPGA architecture.

He is the co-founder of the ACM FPGA Symposium, and remains
part of that Symposium on its steering and program committees. He
has worked for Bell-Northern Research and a number of FPGA com-
panies on a consulting basis.

His research covers all aspects of FPG As including architecture, CAD,
Field-Programmable Systems, and graphics and vision applications of
rapid prototyping systems.

Zvonko G. Vranesic received the B.A.Sc.,
M.A.Sc., and Ph.D. degrees in Electrical En-
gineering from the University of Toronto in
1963, 1966, and 1968, respectively. From 1963
to 1965 he worked as a design engineer for
Northern Electric Co. Ltd., Bramalea, On-
tario, Canada. In 1968, he joined the faculty of
the Departments of Electrical Engineering and
Computer Science at the University of Toronto,
where he is now a Professor. During the aca-
demic years 1977/78 and 1984/85 he was a Se-
nior Visitor in the Computer Laboratory at the University of Cam-
bridge, England, and in the Institut de Programmation at the Uni-
versity of Paris 6, France.

His research interests include computer architecture, VLSI systems,
local area networks and many-valued switching systems. He has co-
authored three books and published over 100 scientific papers.

He was the Chairman of the 3rd International Symposium on
Multiple-Valued Logic in 1973 and of the 18th International Sym-
posium on Computer Architecture in 1991.

