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Abstract—Soft processors have a role to play in easing the
difficulty of designing applications into FPGAs for two reasons:
first, they can be deployed only when needed, unlike permanent
on-die hard processors. Second, for the portions of an application
that can function sufficiently fast on a soft processor, it is far
easier to write and debug single-threaded software code than to
create hardware. The breadth of this second role increases when
the performance of the soft processor increases, yet there has
been little progress in the performance of soft processors since
their commercial inception — in particular, the sophisticated out-
of-order superscalar approaches that arrived in the mid 1990s
are not employed, despite the fact that their area cost is now
easily tolerable. In this paper we take an important step towards
out-of-order execution in soft processors by exploring instruction
scheduling in an FPGA substrate. This differs from the hard-
processor design problem because the logic substrate is restricted
to LUTs, whereas hard processor scheduling circuits employ
CAM and wired-OR structures to great benefit. We discuss
both circuit and microarchitectural trade-offs, and compare three
circuit structures for the scheduler, including a new structure
called a fused-logic matrix scheduler. With this circuit, large
schedulers up to 40 entries can be built with the same cycle
time as the commercial Nios II/f soft processor (240 MHz). This
careful design has the potential to significantly increase both the
IPC and raw compute performance of a soft processor, compared
to current commercial soft processors.

I. INTRODUCTION

The design effort required to build large modern FPGA

systems has become a key focus of the industry. Many

of the approaches to reduce design time take the form of

transforming software directly into hardware. An alternative

is to simply implement that software on a processor, and

the modern hard processors in FPGAs can take on some

of that role. However, various subsystems may require their

own processor for performance, security or design isolation

reasons, and the limited number of hard processors may not

suffice. In that case, the ability to deploy a soft processor is

important, and the performance of the soft processor is key to

determining how much of the subsystem can be implemented

in software. High performance soft processors may be a better

vehicle to attach custom-hardware accelerators to, given their

inherent flexibility.

Despite this, there are still no commercial out-of-order

superscalar soft processors, yet there is clear evidence from

the hard processor arena that the move to out-of-order results

in a significant performance increase. This is illustrated in

Table I, which provides SPECint scores between pairs of

historical hard processor architectures that moved from in-

order to out-of-order microarchitectures. The ratio of each

pair of performance numbers in that table are normalized to

the same operating frequency to isolate instructions per cycle

(IPC) from clock frequency improvements. The table shows

that performance increases by a factor of 1.6 to 2 times moving

to out-of-order. This performance improvement largely arises

from exploiting instruction-level parallelism and tolerating the

multicycle latency of memory operations.

If these cycle-count performance gains can be obtained

without sacrificing operating frequency (fmax), then soft pro-

cessors can achieve significant performance gains. Prior aca-

demic work in this arena often failed to achieve reasonable

fmax [3]–[5].

This paper focuses on a key component of an out-of-

order processor, the instruction scheduler, and explores the

microarchitecture and design of scheduler circuits that yield

high IPC and large gains in fmax operating frequency. The

closest prior work has shown that out-of-order instruction

schedulers on an FPGA can be built at reasonable fmax [6]. Our

new circuit designs improve on these earlier results, achieving

60% greater fmax for the same size of scheduler.

This paper begins with an overview of instruction schedul-

ing trade-offs in Section II followed by a description of the

classical scheduling circuits in hard processors in Section III.

Section V discusses FPGA circuit designs that are evaluated

in Section VII. Section VIII describes how this work can

be extended to multiple-issue schedulers, as well as further

optimizations.

II. REVIEW OF INSTRUCTION SCHEDULING IN

OUT-OF-ORDER PROCESSORS

The key attribute of out-of-order processors is that they

execute instructions in dataflow order (based on data de-

pendencies) rather than program order. In typical processor

Vendor SPECint In-order Out-of-Order Ratio
MIPS [1] 95 R5000

180 MHz
4.8 R10000

195 MHz
11.0 2.1

Alpha [1] 95 21164
500 MHz

15.0 21264
500 MHz

27.7 1.9

Intel [1] 95 Pentium
200 MHz

5.5 Pentium Pro
200 MHz

8.7 1.6

Intel [2] 2006 Atom S1260
2 GHz

7.4 Atom C2730
2.6 GHz

15.7 1.6

Table I
COMPARISON OF SPECINT SCORES BETWEEN IN-ORDER AND

OUT-OF-ORDER PROCESSORS AND FREQUENCY-NORMALIZED RATIO
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pipelines, this dataflow ordering occurs after the instructions

are fetched, decoded, and register renamed in program order.

They are then inserted into the instruction scheduler, which

executes instructions as they become ready. Instructions leave

the scheduler when completed. Finally, completed instructions

are committed in program order.

The instruction scheduler is responsible for tracking the

readiness of every not-yet-completed instruction and for

choosing which ready instruction should be executed each

cycle. An instruction is ready to execute when all of its source

operands are available, having been computed by previously

executed instructions.

An instruction scheduler holds a pool of instructions that

have not yet executed which are waiting to be executed. The

wakeup portion of the scheduler is responsible for determining

when a waiting instruction is ready for execution. It does

this by observing which instructions are completing in each

cycle and comparing their outputs with the required inputs for

each waiting instruction. The selection logic is responsible for

selecting one of the ready instructions for execution.

A. Scheduler Trade-offs

Processor design is all about trading off IPC, fmax, and de-

sign complexity. Here we discuss three major design decisions

that affect this trade-off.

First, the number of scheduler entries affects how far ahead

in the instruction stream instructions can be considered for ex-

ecution. A small number of entries limits the ability to extract

instruction-level parallelism (ILP) whereas larger schedulers

(with more entries) increase ILP and IPC, but require more

area and tend to have lower fmax. For example, Figure 1(a)

shows how IPC improves with scheduler size on the system

we explore in this paper. It shows that more scheduler entries

eventually give diminishing returns — this is because other

parts of our processor limit the number of in-flight instructions

to 64 (reorder buffer size). The figure also shows that there is

severe IPC loss with small schedulers of less than 16 entries.

Second, the selection policy — how to decide which of

several ready instructions should execute — has an impact

on IPC: choosing the oldest instruction first is a known good

heuristic as it is more likely that an older instruction blocks ex-

ecution of later dependent operations. However, an oldest-first

heuristic requires tracking the age of entries in the scheduler,

which has a hardware cost. Figure 1(b) shows the impact of an

oldest-first selection policy compared to random selection. The

IPC impact is small for small schedulers because the chance

of having more than one ready instruction is lower, but the

impact grows to over 15% for large schedulers. Prior out-of-

order processors have mostly employed age-based selection

selection [7]–[10].

The third key decision is whether wakeup and selection

operations complete in a single cycle, which allows execu-

tion of dependent operations in consecutive cycles. Without

back-to-back execution of dependent instructions, a processor

will suffer a roughly 10% IPC penalty for adding just one

� � �� �� ��

�

�	�

�	�

�	�

�	�

�

�	�

�	�


��
���

���������

�������

����
���

���


������������

���� !"�����#������$�������%

&
�
�
�'
�

�

(a) IPC vs. Scheduler Capacity
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(b) Benefit of Age Priority vs. Random

Figure 1. IPC sensitivity to scheduler capacity and age-based selection policy.
The simulated processor has 1 each of branch, ALU, AGU, and store-data
execution units, and a peak IPC of 2.

extra cycle [11], [12]. Back-to-back execution of dependent

instructions does make circuit timing challenging, however.

In this work, which focuses on fast circuits for high-

performance soft processors, we make the following two

up-front design decisions: 1) a requirement of single cycle

wakeup and 2) an oldest-first selection policy (although we

will measure the impact of omitting this for one case). For all

scheduler designs we explore, we will measure the impact of

a wide range of the number of entries.

III. BACKGROUND ON SCHEDULER CIRCUITS

As described above, schedulers have two key components:

wakeup logic to determine which instructions are ready and

selection logic to choose among the ones that are ready

to execute in the next cycle. In this section we describe

how classical hard processor CAM-based and matrix [13]

schedulers do these two functions.

A. Wakeup Logic

CAM-based schedulers track operand dependencies using

physical register numbers (after register renaming). Each entry

in the scheduler’s wakeup array holds an instruction’s two

source operand register numbers and two comparators that

compare them to the destination register number of instruc-

tions completing each cycle. A source operand is available

after its register number has been broadcast on a result bus,

and an instruction is ready when all source operands are ready.

Matrix-based schedulers track dependencies by the position

of producer instructions in the scheduler. Each entry (row)

of the wakeup array contains a bit vector indicating which

instructions in the scheduler will produce the source operands.

The result bus bit vector indicates which instructions are

granted execution each cycle, and an instruction is ready when

all producer instructions have completed. This arrangement

uses wired-OR gates instead of comparators to compute when
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each entry is ready. Grant signals broadcasting vertically to

the horizontal wired-OR gates with an SRAM cell at each

intersection results in a circuit that resembles a matrix.

B. Selection Logic

The selection logic is responsible for choosing one in-

struction for execution from a set of ready instructions. The

simplest and fastest selection logic uses fixed priority, pri-

oritizing instructions based only on an instruction’s position

in the scheduler. However, age-based selection heuristics are

better than random selection for IPC (Section II-A). Age-

based selection can be achieved by maintaining age ordering

of scheduler entries and compacting holes so that scheduler

position corresponds to age, or allowing random ordering of

instructions in the scheduler and augmenting the selection

logic with age information.

Compacting schedulers insert new instructions at the top,

and shift scheduler entries down to fill holes left behind by

instructions that have completed execution. Compaction allows

a fast fixed-priority selection circuit to be used. The main

drawback is in the power consumption of shifting the scheduler

entries and the delay of the multiplexer required for shifting.

The alternative of explicitly tracking instruction age makes

selection logic more complicated due to dynamic priority.

There are many methods to track age, including precise and

approximate methods (e.g., [7], [9]). Our matrix scheduler uses

age matrices, a precise method that uses a matrix where the

bits in each row indicate which instructions are older than the

instruction occupying the row [14].

Hybrids approaches have also been used, such as the Alpha

21264 that uses a compacting scheduler that tracks register

numbers, but uses wired-OR dynamic logic instead of com-

parators [8].

IV. SCHEDULER CIRCUITS ON FPGAS

FPGA logic is composed of LUTs and wires, while custom

CMOS has much more flexibility in implementation. Unfor-

tunately, matrix schedulers rely heavily on dynamic logic and

wired-OR circuits with dense, regular layouts, so matrix-style

schedulers become less appealing on FPGAs. However, its

LUT-based matrix circuits can still be optimized.

Instruction schedulers are usually implemented with sepa-

rate wakeup and select circuits, performed sequentially. For

matrix schedulers on FPGAs, the wakeup logic’s wide OR

gate reductions and the selection logic’s (conceptually) linear

pick-first-ready scan logic are both implemented as trees of

LUTs. In some circuits, it is possible to reformulate the logic

function to combine two reduction or scan operations into

one, improving delay. The sum-addressed decoder is one well-

known example of this kind of transformation [15].

Inspired by this strategy, we present a new scheduler cir-

cuit, the fused-logic matrix scheduler, that combines both the

wakeup wide-OR and select linear scan operations into a single

tree of LUTs. This circuit is faster than both the CAM and

age-based matrix schedulers for most scheduler sizes.

5-LUT

5-LUT

(a) 6-LUT

5-LUT

5-LUT

(b) 7-input function

Figure 2. Altera ALMs can implement some 7-input functions

Before we discuss detailed circuit implementations in the

next section, we first explain the 7-input mode of Altera

Adaptive Logic Modules (ALMs), which we use in several

of our circuits.

The Stratix IV ALM contains an 8-input fracturable 6-LUT.

Although it is mainly intended to allow fracturing into two

smaller LUTs (e.g., two independent 4-LUTs), the ALM can

also implement 7-input functions that can be expressed as a 2-

to-1 multiplexer selecting between two 5-input LUTs sharing 4

inputs (Figure 2). Having LUTs that implement logic functions

with more inputs can reduce logic depth. Priority multiplexers

and our new fused select-and-wakeup logic are mapped to 7-

input functions that fit into an ALM.

V. DETAILED CIRCUIT DESIGNS

This section discusses the circuit designs of the three

scheduler circuits we implemented on the Stratix IV FPGA: a

compacting CAM scheduler, a non-compacting matrix sched-

uler, and our new fused-logic matrix.

A. CAM

Our CAM scheduler implementation uses compaction to

maintain age ordering and allows back-to-back scheduling of

dependent operations. In each cycle, ready bits are used to

select an instruction for execution. The selected instruction’s

destination tag is then broadcast on the result bus, and con-

sumers of the newly-produced register are woken up.

1) Wakeup: Each entry in the CAM wakeup logic has two

source operand tags and an associated pair of comparators.

The comparators monitor the result bus for a physical register

number that indicates when an operand becomes available. An

instruction is ready when all operands are available and has

not already been selected for execution. The register number is

assumed to be large enough to hold at least twice the scheduler

capacity, so comparators compare two log2N+1 bit numbers.

Each 6-LUT can do three bits of a comparison, which is

followed by an AND tree, so the total logic depth for two

comparators is roughly log6(4(log2N + 1)). The ready bit of

every entry, forming a ready vector, is sent to the selection

logic.

2) Compaction: Our CAM wakeup logic can shift down

to eliminate up to one hole per clock cycle. This is enough

because only one instruction can be selected for execution

each cycle, so new holes are created no faster than one
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Figure 3. CAM Wakeup Circuit. Entries compact downwards. An example
critical path is highlighted in red.

per cycle. Compacting by one position occurs through 2-to-1

multiplexers immediately before the set of pipeline registers.

The control logic to decide whether each entry should shift

down is a prefix OR operation, computing for each entry

whether there is a vacant entry at or below the current position.

This prefix OR function is implemented using a tree of LUTs

with logic depth log6(N) using a radix-6 Han-Carlson prefix

tree with sparsity 6 [16]. The radix and sparsity were chosen to

suit a 6-LUT FPGA architecture, rather than the more typical

radix-2 used in custom CMOS designs. This is much faster

than a naı̈ve implementation that uses a linear chain of 6-input

OR gates with depth (N − 1)/5.

3) Selection: The CAM scheduler’s selection logic per-

forms two functions. It must grant execution to the oldest ready

instruction, and it must also select that instruction’s destination

register number and broadcast it on the result bus to wake up

dependent operations.

One grant signal per entry indicates whether that entry

has been selected for execution. Oldest-ready grant logic

is implemented using the same radix-6 Han-Carlson prefix

tree used for computing the wakeup compaction multiplexer

control signals.

Generating the destination register is done with a priority

multiplexer that selects the destination register number field

of the oldest ready instruction. The priority multiplexer has

a logic depth of log4N LUTs, implemented as a radix-4 tree

using 7-input ALMs. Figure 4 shows this circuit.

B. Matrix

The matrix scheduler implementation tracks dependencies

of instructions using a wakeup matrix of dependency bits. We

evaluated the matrix scheduler both with and without age-

based selection. Age-based selection tracks the age of each

entry using an age matrix, without compaction. In each cycle,

the ready bits (and age matrix) are used to select an instruction

for execution, and grant signals are broadcast into the wakeup

matrix to wake up dependent instructions.

grp_rdy4

grp_rdy8

grp_rdy12

grp_data4

grp_data8

grp_data12

...

...

...

rdy0

rdy1
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data0

data1

data2
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0

grp_data0
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7-LUT

1

1

1

0

0

0

data

rdy4-LUT

7-LUT

Figure 4. Priority multiplexer built from radix-4 blocks, each of which is a size
4 priority multiplexer. This figure shows how a depth-2 tree can implement
a 16-entry priority multiplexer. grp data and grp rdy fit in a single 7-input
and 4-input LUT, respectively. Used for CAM selection and fused-logic matrix
selection.
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Figure 5. Matrix wakeup circuit. Diagonal is omitted as an instruction does
not depend on itself. An example critical path is shown.

1) Wakeup: The wakeup array consists of a matrix of

dependency bits. Each row corresponds to an instruction

in the scheduler, and the bits in each row indicate which

other instructions must execute before this one may do so.

These bits are eventually cleared by the grant signals of the

parent instructions when they execute. When all of the bit

positions were ready or just granted, the ready bit for the

row is set, resulting in a N -wide NOR of required-and-not-

granted functions. An N -wide NOR of two-input functions

(2N inputs) can be computed with a tree of 6-input LUTs

with depth log6(2N).

2) Position-Based Selection: The position-based select

logic grants a ready instruction if there are no other ready

instructions before it. As scheduler position does not correlate

with instruction age, position priority is essentially random

priority. It is implemented as a prefix OR function using the

same radix-6 Han-Carlson prefix tree as found in the CAM
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Figure 6. Age matrix selection circuit. An entry is granted if it is ready and
the grant isn’t “killed” by a higher-priority grant. Lower triangle registers are
omitted as it is the complement of the upper triangle.

compaction control (Section V-A2) and CAM selection grant

logic (Section V-A3). It is simpler and has higher frequency

than the age-based selection logic, but with lower IPC.

3) Age-Based Selection: The age-based selection logic uses

an age matrix to dynamically specify age priority, as the

scheduler entries are not ordered by age. An age matrix

specifies for each row which other instructions are older than

itself. When a new (youngest) instruction is inserted into the

scheduler, its corresponding row in the age matrix is set to

1 to indicate that every other instruction is older, and its

corresponding column is cleared to 0 to indicate to every other

instruction that the newly-inserted instruction is younger than

it. A ready instruction is granted execution if there are no

older ready instructions, which is a N -wide NOR of ready-

and-older functions. This is computed with a radix-6 tree with

logic depth log62N , shown in Figure 6. We note that the age

matrix has symmetry (if instruction A is older than B, then

B must be younger than A), so we omit half of the matrix to

reduce area.

Compared to the compacting CAM scheduler, the 2-to-1

compaction multiplexer and radix-4 priority multiplexer are

removed from the critical loop. Dynamic-priority grant logic

is slower than fixed-priority grant logic, with depth log6(2N)
rather than log6(N). The CAM and matrix wakeup delays

scale differently with scheduler size, favouring matrix wakeup

for small sizes, but CAM wakeup for large sizes.

C. Fused-Logic Matrix

As noted in Section IV, matrix schedulers were originally

formulated for dynamic wired-OR logic, which, in the FPGA

context, have to be replaced with trees of LUTs. With separate

wakeup and selection circuits, both the CAM and matrix

schemes contained two such reduction trees of LUTs in their

critical path. In the CAM scheduler, the operand register

number comparators reduce the many bits of both operand

comparisons down to a single ready bit (wakeup), and the

selection logic reduces a vector of ready bits down to a

single destination register number for the granted instruction

(selection). In the matrix scheduler, a LUT tree reduces one

row of the wakeup matrix down to one ready bit (wakeup),

and the selection logic reduces a vector of ready bits and one

row of age matrix down to a single grant signal (selection). To

further improve speed, we endeavoured to create a scheduler

with a critical loop containing only one reduction tree that

would perform both wakeup and select functions.

The resulting design is a compacting matrix scheduler with

fused wakeup and select logic. Dependency information is

expressed as a matrix of dependency bits like the matrix

scheduler, but select and wakeup are computed using a single

radix-4 tree of LUTs. Conceptually, instead of having one

instance of selection logic broadcasting its result to per-entry

wakeup logic, the selection logic is also replicated per entry

and merged with the wakeup logic. Figure 7 shows this

arrangement.

1) Wakeup and Select: Scheduler entries are ordered by

age using compaction, so the selection uses fast fixed-priority

selection. Each row has a combined select-and-wakeup circuit.

The two inputs to each instance of the select-wakeup logic

are a ready vector indicating which instructions are ready for

execution, and a dependence vector indicating whether the in-

struction in the current row is dependent each instruction. The

select-wakeup logic computes whether the current instruction

depends on the oldest ready (i.e., selected) instruction. If so,

this means one dependency has been satisfied, and a two-

bit counter storing the number of outstanding dependencies is

decremented. An instruction is ready when the counter reaches

zero. Grant logic is still used to generate grant signals to clear

dependency bits in the matrix, but is now moved off the critical

path.

The select-wakeup logic is equivalent to a priority multi-

plexer, implemented using the circuit in Figure 4, which is a

radix-4 tree of 7-input ALMs with a logic depth of log4N .

The priority multiplexer finds the first ready instruction and

selects the one bit of data indicating whether the instruction

depends on the selected (oldest ready) instruction.

There is more preprocessing that needs to be done than for

the matrix scheduler. In addition to encoding dependencies as

positions in the scheduler, we also need to count how many
dependencies are outstanding, which is a population count of

the dependence vector. In this implementation, the single-cycle

preprocessing is a critical timing path. However, because it

is outside the wakeup-select loop, it should be possible for

future implementations to further pipeline preprocessing with-

out giving up the ability to schedule dependent instructions in

back-to-back cycles.

2) Compaction: Compaction of a matrix is more complex

than for a CAM. In a matrix scheduler, dependencies are

represented as a bit vector indexed by the scheduler position

of the parent instruction, whose position can change due to

compaction. As scheduler entries are compacted downwards

in a matrix scheduler, the dependency bit vectors are also
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Figure 7. Fused-logic matrix circuit. Selection and wakeup are merged and
implemented as a one-bit wide priority multiplexer and a two-bit counter.
Lower triangle is omitted as instructions do not depend on itself or future
instructions.

compacted horizontally to track the changing instruction po-

sitions as they shift down the scheduler. Fortunately, the extra

compaction logic is off the critical wakeup and select loop.

VI. EVALUATION METHODOLOGY

The main objective of this work is to evaluate area and

fmax of different circuit-level implementations of broadcast-

based instruction schedulers. We build optimized circuits for

the circuits described in the previous section (CAM, non-

compacting matrix, and fused-logic matrix) targeting the a

Stratix IV FPGA (smallest, fastest speed grade, EP4SGX70-

C2) using Quartus 15.0.

We sweep scheduler capacity (entries) and observe area and

fmax scaling as the scheduler size varies. All results are the

mean of 100 random seeds. We focus on area and delay here

because all of the scheduler circuits have nearly the same

cycle-by-cycle behaviour: they wake up all ready instructions

every cycle and select either a random instruction or the oldest

ready instruction for execution.

VII. RESULTS

This section presents area and fmax results of implementing

CAM, matrix, and fused-logic matrix scheduler circuits on a

Stratix IV FPGA.

A. Area

Figure 8 compares the area of the three scheduler circuit

types as scheduler size changes. The matrix schedulers scale

similarly, as the size of the matrix grows quadratically with

the number of scheduler entries, but the matrix with position-

based selection is smaller as it does not have an age matrix.

CAM schedulers have better area at large sizes, as the size of

comparators increases logarithmically (register number width)

but the size of each matrix row’s OR gate increases linearly.

This can be seen more clearly when plotting area per entry, in

Figure 8(b). Because we scale register number width with the

scheduler size, there are small discontinuities at powers-of-two

sizes when the register number width is incremented.

For out-of-order FPGA soft processors, we are mostly

interested in small schedulers, generally below 20 entries.

All circuit types have similar area below 20 entries, so delay

targets will usually determine which scheduler circuit style to

choose. The poor area scaling of matrix wakeup logic was also

true in custom CMOS, where the original matrix scheduler

proposal saw more than four times greater wakeup array area

when replacing the CAM wakeup logic with matrices for

a 48-entry scheduler, in exchange for halving the wakeup

delay [13].

B. Delay

Figure 9 shows the achieved fmax for the three scheduler

circuit types as scheduler capacity is varied. The general trend,

unsurprisingly, is that larger schedulers are slower. The delay

for the matrix schedulers increase faster than CAM schedulers

at large sizes. On an FPGA where there are no fast wired-OR

circuits, we see smaller improvements than those reported for

custom CMOS implementations [13].

Among the three age-based schedulers, our new fused-

logic matrix scheduler is the fastest option beyond 6–10

entries, though at very large sizes, excessive area causes poor

routing delays. CAM schedulers are slow at small sizes, only

being faster than the matrix scheduler beyond 24 entries. At

small scheduler sizes where giving up age-based selection is

acceptable, the position-based matrix scheduler is the fastest.

For out-of-order FPGA soft processors, we are interested

in small schedulers. Below 20 entries, both types of matrix

scheduler are faster than CAM schedulers, with little dif-

ference in area. To match the clock speed of a Nios II/f

on the same FPGA (240 MHz or 4.2 ns), the largest age-

based scheduler that will fit a 4.2 ns cycle time is around

20 entries for CAM, 22 entries for age-based matrix, and

42 entries for the compacting fused-logic matrix. A 44-entry

position-based matrix scheduler also fits in a 4.2 ns period,

but has limited usefulness at this size given the large IPC

degradation of the selection policy. For comparison, current

high-end x86 processors have 40–60 scheduler entries [7],

while earlier out-of-order processors have far less (20 for

Alpha 21264 [8], 16 for Pentium 4 [9]). This suggests that

moderately aggressive out-of-order designs are feasible on

FPGAs even when targeting the same frequency as simple

single-issue in-order soft processors.

C. Instructions per Second

Figure 10 combines the IPC (Figure 1) and delay (Figure 9)

results into a single plot, showing the performance trade-

offs of the different scheduler circuits. The curved grid lines

mark instruction throughput in MIPS, which is the product

of IPC and frequency in MHz. Each point on the plot shows

the IPC and frequency for a scheduler of a particular type

and capacity. For example, a 10-entry matrix scheduler with

random selection policy has 0.81 IPC, 434 MHz, and 353

MIPS, while a 12-entry scheduler of the same type achieves
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(b) Area per Scheduler Entry

Figure 8. Area of four scheduler types. Area per entry gives insight into
scaling trends with scheduler size.
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Figure 9. Delay of four scheduler types at varying capacities
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Figure 10. IPC vs. frequency of scheduler circuits from 6 to 64 entries. The
curved gridlines mark x86 instruction throughput (MIPS). A higher-IPC age-
based scheduler achieves higher throughput unless the rest of the processor
exceeds 350 MHz.

almost the same throughput (351 MIPS) but does so with a

higher IPC (0.88) and lower frequency (397 MHz). While

these two design points have similar overall performance, the

latter is easier to build as it imposes a less stringent timing

constraint on the rest of the processor.

While the simpler position-based priority matrix can run

at a higher frequency, its lower IPC at larger sizes means

it performs best with small schedulers running at high fre-

quencies above 350 MHz. For lower fmax targets, age-based

schedulers provide higher overall performance, with the fused-

logic matrix being the fastest. We expect soft processor designs

would be unlikely to run above 350 MHz on a Stratix IV

FPGA as the Nios II/f only runs at 240 MHz [17].

Some caution is needed in interpreting the absolute values

in this chart: It combines data using fmax from a single-issue

scheduler, but IPC from a multi-issue unified scheduler of the

same size.

D. Comparisons to Previous Work on FPGAs

Direct comparisons with prior work are difficult to make due

to differences in scheduler microarchitecture, but the approx-

imate comparisons can still demonstrate our improvements.

In most cases, to match the chip used in prior work, we re-

synthesized our scheduler circuits on a different Altera FPGA

than the one our circuits were designed for. Our instruction

scheduler circuits achieve faster cycle times than schedulers

in the literature, in some cases by substantial amounts.

1) Single-issue CAM: Aasaraai and Moshovos [6] pre-

sented a design space exploration of traditional single-issue

CAM schedulers on Stratix III FPGAs. The microarchitecture

of their scheduler circuits match well with our CAM (single

issue, compacting age-priority, two operands) allowing for a

reasonably fair comparison. On the same Stratix III FPGA,

we achieve higher frequencies with our CAM scheduler circuit

(+40% at 16 entries). Matrix and fused-logic matrix schedulers

get additional gains (+47% and +60% at 16 entries, respec-

tively).

2) Dual-issue CAM and Matrix: Johri compared two-issue

CAM and matrix schedulers on FPGAs [18]. Our single-issue

schedulers achieved twice the frequency at 16 entries for both

CAM and matrix schedulers, but they use 3 source operands

per instruction on a Virtex-6, while we use 2 source operands

per instruction on a Stratix IV.

3) OpenRISC OPA: The OpenRISC OPA out-of-order pro-

cessor merges the reorder buffer (ROB) and scheduler into

a single unit, allowing some circuit simplifications and good

fmax [19]. On the same Arria V FPGA, our fused-logic matrix

scheduler in isolation achieves about 30% higher frequency

than their complete processor at both 18 and 27 entries. Its

main drawback is that a merged ROB and scheduler is wasteful

of scheduler capacity. Schedulers only need to be 30–50% of

the ROB size with almost no loss in IPC, which is also seen

in our processor design with 64 ROB entries (Figure 1(a)).

4) Combined ROB and Scheduler: Rosière et al. presented

a combined ROB and scheduler [5]. The microarchitecture

appears highly unbalanced, with a large (128–512 entry) ROB,
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but only the oldest few instructions (4–16) are considered

for scheduling. On a Virtex 5, they reported slow fmax (4.7×
slower than our fused-logic matrix at 16 entries), and did not

report absolute IPC numbers.

5) Non-Broadcast Scheduler: SEED is a scheduler de-

signed to avoid broadcast behaviour [3]. Their circuits are

surprisingly slow. On the same Stratix II FPGA, our fused-

logic matrix scheduler achieves 1.9–2.4× higher fmax over their

broadcast-free scheduler, and 6.5–5.5× higher fmax over their

baseline, an Alpha 21264-like compacting CAM scheduler, for

16 to 64 entries.

VIII. FUTURE WORK

We presented circuits and results for single-issue schedulers.

These serve as fundamental building blocks on our path

towards a superscalar out-of-order x86 soft processor.

As part of an optimized superscalar processor, the sched-

ulers will need to be extended to support multiple issue. This

is generally straightforward, but the design space is much

larger. The selection logic is similar to single-issue, but some

unified schedulers may choose to use pick-N circuits to choose

N ready instructions instead of multiple pick-1 circuits. The

wakeup logic for multiple-issue schedulers is extended by

monitoring multiple result buses for producers.

The schedulers also need to implement details of the target

instruction set, such as supporting different instruction types

(e.g., arithmetic vs. load/store vs. floating point), register

types (e.g., general-purpose vs. condition codes), and variable

latency instructions. In addition, further microarchitecture-

level optimizations are available that trade IPC for faster and

smaller circuits.

A. Further Microarchitectural Improvements

There has been much processor microarchitecture research

that improves on the fundamental scheduler circuits. Most of

these proposals still use the same circuit structures at their

core, but trade some amount of IPC to improve area, speed,

or power [11], [12], [14], [20]–[25]. The majority of these

techniques can still be used on FPGA designs.

However, one technique for reducing matrix scheduler size,

compacted matrices [14], [26], maps poorly to an FPGA sub-

strate as it requires large multiplexers in the critical wakeup-

select loop. For large schedulers on FPGAs, this is another

reason to prefer CAM schedulers over matrix schedulers.

IX. CONCLUSIONS

We compared optimized circuit structures used in broadcast-

based instruction schedulers. We also presented an improved

age-based fused-logic matrix circuit that is substantially faster

at age-based scheduling than traditional CAM- or matrix-

based schedulers (∼20% faster at 22–36 entries, or twice the

capacity at 240 MHz), yet is functionally equivalent. These

are fundamental circuits found at the core of many optimized

schedulers.

Our results show that moderately-aggressive out-of-order

soft processors with schedulers of up to 40 entries are feasible

on FPGAs at no frequency loss compared to the small, simple,

highly-optimized Nios II/f. A matrix scheduler using position-

based selection priority has high fmax, but is suitable only for

low-IPC, high-frequency designs above 350 MHz. A higher-

capacity age-based fused-logic matrix scheduler performs bet-

ter for designs with lower frequency targets due to the higher

IPC of age-based selection.

The IPC and performance benefit of out-of-order processors

is expected to be large, on the order of 2× for a first

implementation, and opens the door to even more aggressive

designs in the future.
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