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ABSTRACT
As soft processors are increasingly used in diverse applica-
tions, there is a need to evolve their microarchitectures in
a way that suits the FPGA implementation substrate. This
paper compares the delay and area of a comprehensive set
of processor building block circuits when implemented on
custom CMOS and FPGA substrates. We then use the re-
sults of these comparisons to infer how the microarchitecture
of soft processors on FPGAs should be different from hard
processors on custom CMOS.

We find that the ratios of the area required by an FPGA
to that of custom CMOS for different building blocks varies
significantly more than the speed ratios. As area is often
a key design constraint in FPGA circuits, area ratios have
the most impact on microarchitecture choices. Complete
processor cores have area ratios of 17-27× and delay ratios
of 18-26×. Building blocks that have dedicated hardware
support on FPGAs such as SRAMs, adders, and multipliers
are particularly area-efficient (2-7× area ratio), while multi-
plexers and CAMs are particularly area-inefficient (> 100×
area ratio), leading to cheaper ALUs, larger caches of low
associativity, and more expensive bypass networks than on
similar hard processors. We also find that a low delay ratio
for pipeline latches (12-19×) suggests soft processors should
have pipeline depths 20% greater than hard processors of
similar complexity.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles

General Terms
Design, Measurement

Keywords
FPGA, CMOS, Area, Delay, Soft Processor

1. INTRODUCTION
Custom CMOS silicon logic processes, standard cell ASICs,

and FPGAs are commonly-used substrates for implementing
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digital circuits, with circuits implemented on each one hav-
ing different characteristics such as delay, area, and power.
In this paper, we compare custom CMOS and FPGA sub-
strates for implementing processors and explore the microar-
chitecture trade-off space of soft processors in light of the
differences.

FPGA soft processors have mostly employed single-issue
in-order microarchitectures due to the limited area budget
available on FPGAs [1–3]. We believe that future soft pro-
cessor microarchitecture design decisions can benefit from a
quantitative understanding of the differences between cus-
tom CMOS and FPGA substrates. Another reason to revisit
the soft processor microarchitecture trade-off space is that
the increased capacity of modern FPGAs can accommodate
much larger soft processors if it results in a performance
benefit.

Previous studies have measured the relative delay and area
of FPGA, standard cell, and custom CMOS substrates as an
average across a large set of benchmark circuits [4,5]. While
these earlier results are useful in determining an estimate of
the size and speed of circuit designs that can be implemented
on FPGAs, we need to compare the relative performance of
various types of “building block” circuits in order to have
enough detail to guide microarchitecture design decisions.

This paper makes two contributions:

• We compare delay and area between FPGA and cus-
tom CMOS implementations of a set of building block
circuits. While prior work gave results for complete
systems, we show specific strengths and weaknesses of
the FPGA substrate for the different building blocks.

• Based on the delay and area ratios of building block
circuits on FPGAs vs. custom CMOS, we discuss how
processor microarchitecture design trade-offs change
on an FPGA substrate and the suitability of existing
processor microarchitecture techniques when used on
FPGAs.

We begin with background in Section 2 and methodology
in Section 3. We then present our comparison results and
their impact on microarchitecture in Sections 4 and 5, and
conclude in Section 6.

2. BACKGROUND

2.1 Technology Impact on Microarchitecture
Studies on how process technology trends impact microar-

chitecture are essential for designing effective microarchitec-
tures that take advantage of ever-changing manufacturing
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processes. Issues currently facing CMOS technology include
poor wire delay scaling, high power consumption, and more
recently, process variation. Microarchitectural techniques
that respond to these challenges include clustered processor
microarchitectures and chip multiprocessors [6, 7].

FPGA-implemented circuits face a very different set of
constraints. Power consumption is not currently the domi-
nant design constraint due to lower clock speeds, while area
is often the primary constraint due to high area overheads
of FPGA circuits. Characteristics such as inefficient multi-
plexers and the need to map RAM structures into FPGA
hard SRAM blocks are known and generally adjusted for
by modifying circuit-level, but not microarchitecture-level,
design [8–11].

2.2 Measurement of FPGAs
Kuon and Rose have measured the area, delay, and power

overheads of FPGAs compared to a standard cell ASIC flow
on 90 nm processes [4] using a benchmark set of complete
circuits to measure the overall impact of using FPGAs com-
pared to ASICs and the effect of FPGA hard blocks. They
found that circuits implemented on FPGAs consumed 35×
more area than on standard cell ASIC for circuits that did
not use hard memory or multiplier blocks, to a low of 18×
for those that used both types. Minimum cycle time of the
FPGA circuits were not significantly affected by hard blocks,
ranging from 3.0 to 3.5× greater than ASIC. Chinnery and
Keutzer [5] made similar comparisons between standard cell
and custom CMOS and reported a delay ratio of 3 to 8×.
Combined, these reports suggest that the delay of circuits
implemented on an FPGA would be 9 to 28× greater than
on custom CMOS. However, data for full circuits are insuf-
ficiently detailed to guide microarchitecture-level decisions.

3. METHODOLOGY
We seek to measure the delay and area of FPGA build-

ing block circuits and compare them against their custom
CMOS counterparts, resulting in area ratios and delay ra-
tios. We define these ratios to be the area or delay of an
FPGA circuit divided by the area or delay of the custom
CMOS circuit. A higher ratio means the FPGA implemen-
tation has more overhead. We compare several complete
processor cores and a set of building block circuits against
their custom CMOS implementations, then observe which
types of building block circuits have particularly high or low
overhead on FPGA.

As we do not have the expertise to implement highly-
optimized custom CMOS circuits, our building block circuit
comparisons use data from custom CMOS implementations
found in the literature. The set of building block circuits is
generic enough so that there are sufficient published delay
and area data. We focus mainly on custom designs built in
65 nm processes, because it is the most recent process where
design examples are readily available in the literature, and
compare them to the Altera Stratix III 65 nm FPGA. In
most cases, we implemented the equivalent FPGA circuits
for comparison. Power consumption is not compared due
to the scarcity of data in the literature and the difficulty in
standardizing testing conditions such as test vectors, volt-
age, and temperature.

We normalize area measurements to a 65 nm process using
an ideal scale factor of 0.5× area between process nodes. We
normalize delay using published ring oscillator data, with

90 nm 65 nm 45 nm

Area 0.5 1.0 2.0
Delay 0.78 1.0 1.23

Table 1: Normalization Factors Between Processes

Resource
Relative Area Tile Area
(Equiv. LABs) (mm2)

LAB 1 0.0221
ALUT (half-ALM) 0.05 0.0011
M9K memory 2.87 0.0635
M144K memory 26.7 0.5897
DSP block 11.9 0.2623

Total core area 18 621 412

Table 2: Estimated FPGA Resource Area Usage

the understanding that these reflect gate delay scaling more
than interconnect scaling. Intel reports 29% FO1 delay im-
provement between 90 nm and 65 nm, and 23% FO2 delay
improvement between 65 nm and 45 nm [12, 13]. The area
and delay scaling factors used are summarized in Table 1.

Delay is measured as the longest register to register path
or input to output path in a circuit. In papers that describe
CMOS circuits embedded in a larger unit (e.g., a shifter in-
side an ALU), we conservatively assume that the subcircuit
has the same cycle time as the larger unit. In FPGA circuits,
delay is measured using register to register paths, with the
register delay subtracted out when comparing circuits that
do not include a register (e.g., wire delay).

To measure FPGA resource usage, we implement circuits
on the Stratix III FPGA and use the “logic utilization” met-
ric as reported by Quartus II to account for lookup tables
(LUT) and registers, and count partially-used memory and
multiplier blocks as entirely used since it is unlikely another
part of the design can use them. Table 2 shows the areas
of the Stratix III FPGA resources. The FPGA tile areas
include routing area so we do not track routing separately.
The core of the the largest Stratix III (EP3LS340) FPGA
contains 13 500 LABs of 10 ALMs each, 1 040 M9K memo-
ries, 48 M144K memories, and 72 DSP blocks, for a total of
18 621 LAB equivalent areas and 412 mm2 core area.

We implemented FPGA circuits using Altera Quartus II
10.0 SP1 using the fastest speed grade of the largest Stratix
III. Circuits containing MLABs used Stratix IV due to hard-
ware1 issues. Registers delimit the inputs and outputs of our
circuits under test. We set timing constraints to maximize
clock speed, reflecting the use of these circuits as part of a
larger circuit in the FPGA core.

3.1 Additional Limitations
The trade-off space for a given circuit structure on custom

CMOS is huge and our comparison circuit examples may not
all have the same optimization targets. Delay, area, power,
and design effort can all be traded-off, resulting in vastly
different circuit performance. We assume that designs pub-
lished in the literature are optimized primarily for delay with
reasonable values for the other metrics and we implement
our FPGA equivalents with the same approach.

Another source of imprecision results from the differences
in performance between chip manufacturers. For example,

1A Stratix III erratum halves the MLAB capacity to 320 bits and
is fixed in Stratix IV. See Stratix III Device Family Errata Sheet
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transistor drive strength impacts logic gate delay and is
voltage- and process-dependent. At 100 nA/µm leakage cur-
rent, Intel’s 65 nm process [14] achieves 1.46 and 0.88 mA/µm
at 1.2 V for NMOS and PMOS, respectively, and 1.1 and
0.66 mA/µm at 1.0 V, while TSMC’s 65 nm process [15]
achieves 1.01 and 0.48 mA/µm at 1.0 V. The choice of sup-
ply voltage results from both the power-performance trade-
off and the transistor reliability the manufacturer can achieve.

Finally, we note that high-performance microprocessor de-
signs tend to have generous power budgets that FPGAs do
not enjoy, and this has an impact that is embedded in the
area and speed comparisons.

4. FPGA VS. CUSTOM CMOS

4.1 Complete Processor Cores
We begin by comparing complete processor cores imple-

mented on an FPGA vs. custom CMOS to provide context
for the building block measurements. Table 3 shows a com-
parison of the area and delay of four commercial processors
that have both custom CMOS and FPGA implementations
and includes in-order, multithreaded, and complex out-of-
order processors. The FPGA implementations are synthe-
sized from RTL code for the custom CMOS processors, with
some FPGA-specific circuit-level optimizations. However,
the FPGA-specific optimization effort is smaller than for
custom CMOS designs and could inflate the area and delay
ratios slightly. Overall, custom processors have delay ratios
of 18-26× and area ratios of 17-27×, with no obvious trends
with processor complexity.

The OpenSPARC T1 and T2 cores are derived from the
Sun UltraSPARC T1 and T2, respectively [21]. Both cores
are in-order multithreaded, and use the 64-bit SPARC V9
instruction set. The OpenSPARC T2 has the encryption
unit from the UltraSPARC T2 removed, although we believe
the change is small enough to not significantly skew our
measurements.

The Intel Atom is a reduced-voltage dual-issue in-order
64-bit x86 processor with two-way multithreading. The FPGA
synthesis by Wang et al. includes only the processor core
without L2 cache, and occupies 85% of the largest 65 nm
Virtex-5 FPGA (XC5VLX330) [10]. Our FPGA area metric
assumes the core area of the largest Virtex 5 is the same as
the Stratix III, 412 mm2.

The Intel Nehalem is a high-performance multiple-issue
out-of-order 64-bit x86 processor with two-way multithread-
ing. The Nehalem’s core area was estimated from a die
photo. The FPGA synthesis by Schelle et al. does not in-
clude the per-core L2 cache, and occupies roughly 300% of
the largest Virtex-5 FPGA [19]. Because the FPGA synthe-
sis is split over multiple chips and runs at 520 kHz, it is not
useful for estimating delay ratio.

4.2 SRAM Blocks
SRAM blocks are commonly used in processors for build-

ing caches and register files. SRAM performance can be
characterized by latency and throughput. Custom SRAM
designs can trade latency and throughput by pipelining,
while FPGA designs are typically limited to the types of
hard SRAM blocks that exist on the FPGA. SRAMs on
the Stratix III FPGA can be implemented using two sizes
of hard block SRAM, LUTRAM, or in registers and LUTs.
Their throughput and density are compared in Table 4 to
five high-performance custom SRAMs in 65 nm processes.

Figure 1: SRAM Throughput

Figure 2: SRAM Density

The density and throughput of FPGA and custom SRAMs
is plotted against memory size in Figures 1 and 2. The
plots include data from CACTI 5.3, a CMOS memory per-
formance and area model [27]. The throughput ratio be-
tween FPGA memories and custom is 7-10×, lower than the
overall delay ratio of 18-26×, showing that SRAMs are rel-
atively fast on FPGAs. It is surprising that this ratio is not
lower because FPGA SRAM blocks have little programma-
bility. The FPGA data above use 32-bit wide data ports
that slightly underutilize the native 36-bit ports. The raw
density of an FPGA SRAM block is listed in Table 4.

Below 9 kbit, the bit density of FPGA RAMs falls off
nearly linearly with reducing RAM size because M9Ks are
underutilized, and the MLAB density is low. For larger
arrays with good utilization, FPGA SRAM arrays have a
density ratio of only 2-5× vs. single read-write port (1rw)
CMOS (and CACTI) SRAMs, far below the full processor
area ratio of 17-27×.

As FPGA SRAMs use dual-ported (2rw) arrays, we also
plotted CACTI’s 2rw model for comparison. For arrays of
similar size, the bit density of CACTI’s 2rw models are
1.9× and 1.5× the raw bit density of fully-utilized M9K
and M144K memory blocks, respectively. This suggests that
half of the bit density gap between FPGA and custom in
our single-ported test is due to FPGA memories paying the
overhead of dual ports.

For register file use where latency may be more important
than memory density, custom processors have the option
of trading throughput for area and power by using faster
and larger storage cells. The 65 nm Pentium 4 register file
trades 5× bit density for 9 GHz single-cycle performance
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Processor
Custom CMOS FPGA Logic Ratios

fmax Area fmax Area Utilization fmax Area
(MHz) (mm2) (MHz) (mm2) (ALUT)

OpenSPARC T1 (90 nm) [16] 1800 6.0 79 100 86 597 23 17
OpenSPARC T2 (65 nm) [17] 1600 11.7 88 294 250 235 18 25
Atom (45 nm) [10,18] >1300 12.8 50 350 85% 26 27
Nehalem (45 nm) [19,20] 3000 51 - 1240 300% - 24

Geometric Mean 22 23

Table 3: Complete Processor Cores. Area and delay normalized to 65 nm.

Design Ports
Size fmax Area Bit Density Ratios

(kbit) (MHz) (mm2) (kbit/mm2) fmax Density

IBM 6T 65 nm [22] 2r or 1w 128 5600 1.2 V 0.276 464 9.5 2.1
Intel 6T 65 nm [23] 1rw 256 4200 1.2 V 0.3 853 7.6 3.9
Intel 6T 65 nm [14] 1rw 70 Mb 3430 1.2 V 110 [24] 820 – –
IBM 8T 65 nm SOI [25] 1r1w 32 5300 1.2 V – – 9.0 –
Intel 65 nm Regfile [26] 1r1w 1 8800 1.2 V 0.017 59 18 3.3

Registers 1r1w - - - 0.77
MLAB 1r1w 640 b ∼600 0.033 23
M9K 1r1w 9 590 0.064 142
M144K 1r1w 144 590 0.59 244

Table 4: Custom and FPGA SRAM Blocks

CACTI 5.3 FPGA
Ratios

Ports
fmax Density fmax Density

(MHz) ( kbit
mm2 ) (MHz) ( kbit

mm2 ) fmax Density

2r1w 4430 109 501 15.7 9 7
4r2w 4200 35 320 0.25 13 143
6r3w 3800 17 286 0.20 13 89
8r4w 3970 9.8 269 0.15 15 65
10r5w 3740 6.3 266 0.10 14 61
12r6w 3520 4.5 249 0.090 14 51
14r7w 3330 3.4 237 0.080 14 43
16r8w 3160 2.7 224 0.068 14 39

Live Value Table (LVT)
4r2w 420 1.50 10 23
8r4w 345 0.41 12 24

Table 5: Multiported 2 kbit SRAM. LVT data from
LaForest et al. [28].

[26]. FPGA RAMs lack this flexibility, and the delay ratio
is even greater (18×) for this specific use.

4.3 Multiported SRAM Blocks
FPGA hard SRAM blocks can typically implement up to

two read-write ports (2rw). Increasing the number of read
ports can be achieved reasonably efficiently by replicating
the memory blocks but increasing the number of write ports
cannot. A multi-write port RAM can be implemented us-
ing registers for storage, but it is inefficient. A more efficient
method using hard RAM blocks for most of the storage repli-
cates memory blocks for each write and read port and uses
a live value table (LVT) to indicate for each word which of
the replicated memories holds the most recent copy [28]. We
present data for multiported RAMs implemented using reg-
isters, LVT-based multiported memories [28], and CACTI
5.3 models of custom CMOS multiported RAMs. We focus
on a 64×32-bit (2 kbit) memory array with twice as many

read ports as write ports (2N read, N write) because it
is similar to register files in processors. Table 5 shows the
throughput and density comparisons.

The custom vs. FPGA bit density ratio is 7× for 2r1w,
and increases to 23× and 143× for 4r2w LVT- and register-
based memories, respectively. The delay ratio is 9× for 2r1w,
and increases to 10× and 13× for 4r2w LVT- and register-
based memories, respectively, a smaller impact than the area
ratio increase.

4.4 Content-Addressable Memories
A Content-Addressable Memory (CAM) is a logic circuit

that allows associative searches of its stored contents. Cus-
tom CMOS CAMs are implemented as dense arrays using 9T
to 11T cells compared to 6T in SRAM, and are about 2-3×
less dense than SRAMs. Ternary CAMs use two storage cells
per “bit” to store three states (0, 1, and don’t-care), a capa-
bility often used for longest prefix searches in network packet
routers. In processors, CAMs are used in tag arrays for high-
associativity caches and TLBs. CAM-like structures are also
used in out-of-order instruction schedulers. CAMs in pro-
cessors require both frequent read and write capability, but
not large capacities. Pagiamtzis and Sheikholeslami give a
good overview of the CAM design space [29].

There are several methods of implementing CAM func-
tionality on FPGAs [30]. CAMs implemented in soft logic
use registers for storage and LUTs to read, write, and search
the stored bits. Another proposal, which we call BRAM-
CAM, stores one-hot encoded match-line values in block
RAM to provide the functionality of a w × b-bit CAM us-
ing a 2b×w-bit block RAM [31]. The soft logic CAM is the
only design that provides one-cycle writes, while the BRAM-
CAM offers improved bit density with two-cycle writes. We
do not consider CAM implementations with even longer
write times.

Table 6 shows a variety of custom CMOS and FPGA
CAM designs. Figures 3 and 4 plot these and also 8-bit
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Size
Search Bit

Ratios
Time Density

(bits) (ns) ( kbit

mm2 ) DelayDensity

Ternary CAMs
IBM 64×72 [32] 4 608 0.6 - 5.0 -
IBM 64×240 [32] 15 360 2.2 167 1.7 205

Binary CAMs
POWER6 8×60 [33] 480 <0.2 - 14 -
Godson-3 64×64 [34] 4 096 0.55 76 5 99
Intel 64×128 [35] 8 192 0.25 167 14 209

FPGA Binary CAMs
Soft logic 64×72 4 608 3.0 0.82
Soft logic 64×240 15 360 3.8 0.81
Soft logic 8×60 480 2.1 0.83
Soft logic 64×64 4 096 2.9 0.77
Soft logic 64×128 8 192 3.4 0.80
MLAB-CAM 64×20 1 280 4.5 1.0
M9K-CAM 64×16 1 024 2.0 2.0

Table 6: CAM Designs

Figure 3: CAM Search Speed

and 128-bit soft logic CAMs of varying depth. Because of
high power consumption, CAMs often have three competing
design goals: delay, density, and energy per bit per search.
CAMs can achieve delay comparable to SRAMs but at a
high cost in power. Both the POWER6 TLB and Intel’s
64×128 BCAM achieve at least 4 GHz, but the latter uses
13 fJ/bit/search while IBM’s 450 MHz 64×240 TCAM uses
1 fJ/bit/search. While Intel’s BCAM and the Godson-3
TLB are both 64-entry full-custom designs, Intel achieves
twice the bit density and half the cycle time at equal energy
per bit per search, highlighting the impact of good circuit
design, layout, and process technology.

As shown in Table 6, soft logic CAMs have poor 100-
210× bit density ratios vs. custom CAMs. Despite the
low density, the delay ratio is only 14×. BRAM-CAMs
built from M9Ks can offer 2.4× better density than soft
logic CAMs but halved write bandwidth. Despite the higher
port-width/depth aspect ratio, MLAB BRAM-CAMs have
bit density worse than M9K-CAMs because of control logic
overhead. The halved write bandwidth of BRAM-CAMs
make them unsuitable for performance-critical uses, such as
tag matching in instruction schedulers and L1 caches.

We observe that the bit density of soft logic CAMs is
nearly the same as using registers to implement RAM (Ta-
ble 4), suggesting that the area inefficiency comes from using
registers for storage, not the associative search itself.

Figure 4: CAM Bit Density

Figure 5: Multiplier Latency

4.5 Multipliers
Multiplication is an operation performed frequently in sig-

nal processing applications, but not used as often in pro-
cessors. Multiplier blocks can also be used to inefficiently
implement shifters and multiplexers [39].

Figure 5 shows the latency of multiplier circuits on cus-
tom CMOS and on FPGA using hard DSP blocks. Latency
is the product of the cycle time and the number of pipeline
stages, and does not adjust for unbalanced pipeline stages
or pipeline latch overheads. Table 7 shows details of the de-
sign examples. The two IBM multipliers have latency ratios
comparable to full processor cores. Intel’s 16-bit multiplier
design has much lower latency ratios as it appears to target
low power instead of delay. Because custom multiplier de-

Figure 6: Multiplier Area
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Design Size Stages
Latency Area Ratios

(ns) (mm2) LatencyArea

Intel 90 nm
1.3 V [36] 16×16 1 0.81 0.014 3.4 4.7

IBM 90 nm
SOI 1.4 V [37] 54×54 4 0.41 0.062 22 7.0

IBM 90 nm
SOI 1.3 V [38] 53×53 3 0.51 0.095 17 4.5

Stratix III 16×16 1 2.8 0.066
Stratix III 54×54 1 8.8 0.43

Table 7: Multiplier area and delay, normalized to
65 nm process. Unpipelined latency is pipelined cy-
cle time×stages.

Figure 7: Adder Delay

signs are often more deeply pipelined (3 and 4 stages) than
the hard multipliers on FPGAs (2 stages), throughput ratios
are higher than latency ratios.

The area of the custom CMOS and FPGA multipliers are
plotted in Figure 6. The area ratios of 4.5-7.0× are much
lower than for full processor cores.

4.6 Adders
Custom CMOS adder circuit designs can span the area-

delay trade-off space from slow ripple-carry adders to fast
parallel adders. On an FPGA, adders are usually imple-
mented using hard carry chains that implement variations
of the ripple-carry adder, although carry-select adders have
been also been used. Although parallel adders can be im-
plemented with soft logic and routing, the lack of dedicated
circuitry means parallel adders are bigger and slower than
the ripple-carry adder with hard carry chains [44].

Figure 7 plots a comparison of adder delay, with details in

Design
Size fmax Area Delay Area
(bit) (MHz) (mm2) Ratio Ratio

Agah et al. [40] 32 12 000 1.3 V - 20 -
Kao et al.

64 7 100 1.3 V 0.016 19 4.590 nm [41]
Pentium 4 [42] 32 9 000 1.3 V - 16 -
IBM [43] 108 3 700 1.0 V 0.017 15 6.9

Stratix III
32 593 0.035
64 374 0.071
108 242 0.119

Table 8: Adders. Area and delay normalized to
65 nm process.

Mux
Inputs

FPGA Custom
Area Delay Delay Delay

(mm2) (ps) (ps) Ratio

2 0.0011 210 2.8 74
4 0.0011 260 4.9 53
8 0.0022 500 9.1 54

16 0.0055 680 18 37
32 0.0100 940 29 32
64 0.0232 1200 54 21

Table 9: Analytical model of passive tree multiplex-
ers [45] normalized to 65 nm process.

Table 8. The Pentium 4 delay is conservative as the delay is
for the full integer ALU. FPGA adders achieve delay ratios
of 15-20× and a low area ratio of around 4.5-7×.

4.7 Multiplexers
Multiplexers are found in many circuits, yet we have found

little literature that provides their area and delay in custom
CMOS. Instead, we estimate delays of small multiplexers us-
ing an RC analytical model and the delays of the Pentium 4
shifter unit and the Stratix III ALM. Our area ratio estimate
comes from an indirect measurement using the ALM.

Table 9 shows a delay comparison between FPGA and an
analytical model of switch-based tree multiplexers [45]. This
passive switch model is pessimistic for larger multiplexers,
as active buffer elements can reduce delay. On an FPGA,
small multiplexers can often be combined with other logic
with minimal extra delay and area, so multiplexers measured
in isolation are likely pessimistic. For small multiplexers,
the delay ratio is high, roughly 40-75×. Larger multiplexers
appear to have decreasing delay ratios, but we believe this
is largely due to the unsuitability of passive designs.

The 65 nm Pentium 4 integer shifter datapath [42] is dom-
inated by small multiplexers (sizes 3, 4, and 8), but not
in isolation. We implemented the datapath (Figure 8) ex-
cluding control logic on the Stratix III, with results shown
in Table 10. The delay ratio of 20× is smaller than sug-
gested by the isolated multiplexer comparison, but may be
optimistic if Intel omitted details from their shifter circuit
diagram. Another delay ratio estimate can be made by ex-
amining the Stratix III Adaptive Logic Module itself, as its
delay consists mainly of multiplexers. Configuration RAM
hold static values and do not affect delay. We implemented
a circuit equivalent to an ALM as described in the Stratix
III Handbook [46], comparing delays of the FPGA imple-
mentation to custom CMOS delays of the ALM given by
the Quartus timing models. Internal LUTs are modeled as
multiplexers. Each ALM input pin is modeled as a 21-to-1
multiplexer, as 21 to 30 are reasonable sizes according to
Lewis et al. [47].

We examined one long path and one short path out of
many possible timing paths through the ALM. The long
and short timing paths begin after the input multiplexers
for pins datab0 and dataf0, respectively, both terminating
at the LUT register. We placed these two paths into sepa-
rate clock domains to ensure they were independently opti-
mized. Table 10 shows delay ratios of 7.1× and 11.7× for
the long and short paths, respectively. These delay ratios are
lower compared to previous examples due to the lower power
and area budgets preventing custom FPGAs from being as
aggressively delay-optimized as custom processors, and to
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Circuit
FPGA

Delay (ps)

Custom
Delay
(ps)

Ratio

65 nm Pentium 4 Shifter 2260 111 20

Stratix III ALM
Long path 2500 350 7.1
Short path 800 68 11.7

Table 10: Delay of Multiplexer-Dominated Circuits

Byte rotate
0‐7 bits

Word rotate
0/8/16/24 bits

Adder
result

Fill
value

Set/Zero/
True/Negate

1
0

Adder

Figure 8: 65 nm Pentium 4 Integer ALU Shifter [42]

extra circuit complexity not shown in the Stratix III Hand-
book.

We estimate the multiplexer area ratio indirectly by again
implementing the equivalent circuit of an ALM on a Stratix
III. We find that our equivalent ALM consumes 104 ALUTs,
or roughly 52 ALMs. An area ratio of 52× is the ratio of the
area of the FPGA equivalent circuit (52 ALMs) compared
to the silicon area of the custom circuit (1 ALM equiva-
lent). The real area ratio is substantially greater, as we im-
plemented only the ALM’s input and internal multiplexers
and did not include global routing resources or configuration
RAM. A rule of thumb is that half of an FPGA’s core area
is spent in the programmable global routing network, for
an area ratio estimate of 104×. We expect this to be even
higher once configuration RAM and other ALM complexities
are accounted for.

Groups of multiplexers have delay ratios below 20×, with
small isolated multiplexers being worse (40-75×). However,
multiplexers are particularly area-intensive with an area ra-
tio greater than 100×. Thus we find that the intuition that
multiplexers are expensive is justified, especially from an
area perspective.

4.8 Pipeline Latches
In synchronous circuits, the maximum clock speed of a cir-

cuit is typically limited by a register-to-register delay path
from a pipeline latch2, through a pipeline stage’s combina-
tional logic, to the next set of pipeline latches. The delay of
a pipeline latch (setup and clock-to-output times) impacts
the speed of a circuit and the clock speed improvement when
increasing pipeline depth.

The “effective” cost of inserting an extra pipeline register
into LUT-based pipeline logic is measured by observing the
increase in delay as the number of LUTs between registers
increases, then extrapolating the delay to zero LUTs. Ta-
ble 11 shows estimates of the delay cost of a custom CMOS
pipeline stage. The 180 nm Pentium 4 design assumed 90 ps
of pipeline latch delays including clock skew [48], which we

2Latch refers to pipeline storage elements. This can be a
latch, flip-flop, or other implementation.

Design Register Delay (ps) Delay Ratio

Sprangle et al. [48] 35 (90 ps in 180 nm) 12
Hartstein et al. [49] 32 (2.5 FO4) 14
Hrishikesh et al. [50] 23 (1.8 FO4) 19

Geometric Mean 29.5 15

Stratix III 436 -

Table 11: Pipeline Latch Delay

scaled according to the FO1 ring oscillator delays for Intel’s
processes (11 ps at 180 nm to 4.25 ps at 65 nm) [14]. Hart-
stein et al. and Hrishikesh et al. present estimates expressed
in FO4 delays, which were scaled to an estimated FO4 delay
of 12.8 ps for Intel’s 65 nm process.

The delay ratio for a pipeline latch is 10-15×. Although
we do not have area comparisons, registers are considered
to occupy very little FPGA area because more LUTs are
used than registers in most FPGA circuits, yet FPGA logic
elements include at least one register for every LUT.

4.9 Point-to-Point Routing
Interconnect delay comprises a significant portion of the

total delay in both FPGAs and modern CMOS processes.
Figure 9 plots the point-to-point wire delays for three classes
of interconnect (local, intermediate, and global), and FPGA
routing delay both in absolute distance and normalized for
decreased FPGA area efficiency.

We model each buffered segment as an RC delay as illus-
trated in Figure 10 and Equation 1, where h is the buffer
transistor size and Rtr is the linearized buffer resistance.
Buffered wires are modeled as multiple identical segments
with the number of segments chosen to minimize delay, while
minimum-delay buffer transistor sizing can be found by dif-
ferentiating Equation 1 with respect to h. Equation 1 is
modified from Bakoglu and Meindl to include transistor gate
(Cg) and junction (Cd) lumped capacitances and to model
50%-to-50% delay instead of 0-to-90% [51].

T = RtrCd + (
1

h
Rtr +

1

2
Rint)Cint + (

1

h
Rtr +Rint)hCg (1)

We use interconnect and transistor parameters from the
International Technology Roadmap for Semiconductors (ITRS)
2007 report [52]. We model the minimum pitch for each class
of wiring (local, intermediate, global). Buffers are assumed
to be inverters with 2:1 PMOS to NMOS transistor size ra-
tio, and junction capacitance is approximated as half of gate
capacitance. Gate and junction capacitances are modeled
as lump capacitances and wires are modeled as distributed
RC. Interconnect delays using ITRS 2007 data may be pes-
simistic, as Intel’s 65 nm process reports lower delays using
larger pitch and wire thicknesses [14].

The point-to-point delay on FPGA is measured using the
delay between two manually-placed registers, with the delay
of the register itself subtracted out, and includes the over-
head of routing programmability. Assuming LABs have an
aspect ratio (the vertical/horizontal ratio of delay for each
LAB) of 1.6 gives a good delay vs. Manhattan distance fit.
The physical distance is calculated from LAB coordinates
using the aspect ratio and area of a LAB (Table 2).

In Figure 9, the delay of the CMOS load and driving
buffers (one FO1) dominates the delay for CMOS short wire
lengths under 20 µm. FPGA short local wires (100 µm) have
a delay ratio around 9×. Long global wire delay is quite close
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Figure 9: Point-to-Point Routing Delay

VDD
R tr

Cd Cg

intR

intC

Driver Interconnect Load

Figure 10: RC Model of Wire Delay

(2×) to CMOS for the same length of wire.
Routing delays are more meaningful when “distance” is

normalized to the amount of “logic” that can be reached. To
approximate this metric, we adjust the FPGA routing dis-
tance by the square-root of the FPGA’s overall area over-
head vs. custom CMOS (

√
23× = 4.8×). Short local FPGA

wires (100 µm) have a logic density-normalized delay ratio
20×, while long global wires (7 500 µm) have a delay ratio
of only 9×. The short wire delay ratio is comparable to
the overall delay overhead for full processors, but the long
wire delay ratio is half that, suggesting that FPGAs are less
affected by long wire delays than custom CMOS.

4.10 Off-Chip Memory
Table 12 gives a brief overview of off-chip DRAM latency

and bandwidth as commonly used in processor systems. Ran-
dom read latency is measured on Intel DDR2 and DDR3
systems with off-chip (65 ns) and on-die (55 ns) memory
controllers. FPGA memory latency is the sum of the mem-
ory controller latency and closed-page DRAM access time.
While these estimates do not account for real access pat-
terns, they are enough to show that off-chip latency and
throughput ratios between custom CMOS and FPGA are
far lower than for in-core circuits like complete processors.

4.11 Summary of Building Block Circuits
A summary of our estimates for the FPGA vs. custom

CMOS delay and area ratios can be found in Table 13. The
range of delay ratios (8-75×) is smaller than the range of area
ratios (2-210×). Multiplexers have the highest delay ratios
and hard blocks only have a small impact on delay ratios.
Hard blocks are particularly area-efficient (SRAM, adders,
multipliers), while multiplexers and CAMs are particularly
area-inefficient.

In previous work, Kuon and Rose reported an average of
3.0-3.5× delay ratio and 18-35× area ratio for FPGA vs.
standard cell ASIC for a set of complete circuits [4]. Al-

Custom
FPGA [53] Ratio

CMOS

DDR2 Frequency (MHz) 533 400 1.3
DDR3 Frequency (MHz) 800 533 1.5
Read Latency (ns) 55-65 100-133 2

Table 12: Off-Chip DRAM Latency and Through-
put. Latency assumes closed-page random accesses.

Design Delay Ratio Area Ratio

Processor Cores 18 - 26 17 - 27

SRAM 1rw 7 - 10 2 - 5
SRAM 4r2w LUTs / LVT 13 / 10 143 / 23
CAM 14 100 - 210
Multiplier 17 - 22 4.5 - 7.0
Adder 15 - 20 4.5 - 7.0
Multiplexer 20 - 75 > 100
Pipeline latch 12 - 19 -
Routing 9 - 20 -
Off-Chip Memory 1.3 - 2 -

Table 13: Delay and Area Ratio Summary

though we expect both ratios to be higher when comparing
FPGA against custom CMOS, our processor core delay ra-
tios are higher but area ratios are slightly lower, likely due
to custom processors being optimized more for delay at the
expense of area compared to typical standard cell circuits.

5. IMPACT ON MICROARCHITECTURE
The area and delay differences between circuit types and

substrates measured in Section 4 affects the microarchitec-
tural design of circuits targeting custom CMOS vs. target-
ing FPGAs. As FPGA designs often have logic utilization
(area) as a primary design constraint, we expect that area
ratios will have more impact on microarchitecture than de-
lay ratios.

5.1 Pipeline Depth
Pipeline depth is one of the fundamental choices in the

design of a processor microarchitecture. Increasing pipeline
depth results in higher clock speeds, but with diminishing
returns due to pipeline latch delays. The analysis by Hart-
stein et al. shows that the optimal processor pipeline depth

for performance is proportional to
√

tp
to

, where tp is the to-

tal logic delay of the processor pipeline, and to is the delay
overhead of a pipeline latch [49].

Section 4.8 showed that the delay ratio of registers (i.e., to
FPGA vs. to custom CMOS,∼15×) on FPGAs is lower than
that of a complete processor (approximately tp FPGA vs.
tp custom CMOS, ∼22×), increasing tp/to on FPGA. The
change in tp/to is roughly (22/15), suggesting soft processors
should have pipeline depths roughly 20% longer compared
to an equivalent microarchitecture implemented in custom
CMOS. Today’s soft processors prefer short pipelines [54]
because soft processors are simple and have low tp, and not
due to a property of the FPGA substrate.

5.2 Partitioning of Structures
The portion of a chip that can be reached in a single clock

cycle is decreasing with each newer process, while transistor
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switching speeds continue to improve. This leads to microar-
chitectures that partition large structures into smaller ones
and partition the design into clusters or multiple cores to
avoid global communication [7].

In Section 4.9, we observed that after adjustment for the
reduced logic density of FPGAs, long wires have a delay
ratio roughly half that of a processor core. The relatively
faster long wires lessen the impact of global communication,
reducing the need for aggressive partitioning of designs for
FPGAs. In practice, FPGA processors have less logic com-
plexity than high-performance custom processors, further
reducing the need to partition.

5.3 ALUs and Bypassing
Multiplexers consume much more area on FPGAs than

custom CMOS (Section 4.7), making bypass networks that
shuffle operands between functional units more expensive
on FPGAs. The functional units themselves are often com-
posed of adders and multipliers and have a lower 4.5-7× area
ratio. The high cost of multiplexers reduces the area benefit
of using multiplexers to share these functional units.

There are processor microarchitecture techniques that re-
duce the size of operand-shuffling networks relative to the
number of ALUs. “Fused” ALUs that perform two or more
dependent operations at a time increase the amount of com-
putation relative to operand shuffling, such as the com-
mon fused multiply-accumulate unit and interlock collapsing
ALUs [55,56]. Other proposals cluster instructions together
to reduce the communication of operand values to instruc-
tions outside the group [57,58]. These techniques may ben-
efit soft processors even more than hard processors.

5.4 Cache Organization
Set-associative caches have two common implementation

styles. Low associativity caches replicate the cache tag RAM
and access them in parallel, while high associativity caches
store tags in CAMs. High associativity caches are more ex-
pensive on FPGAs because of the high area cost of CAMs
(100-210× bit density ratio). In addition, custom CMOS
caches built from tag CAM and data RAM blocks can have
the CAM’s decoded match lines directly drive the RAM’s
word lines, while an FPGA CAM must produce encoded
outputs that are then decoded by the SRAM, adding a re-
dundant encode-decode operation that was not included in
the circuits in Section 4.4. In comparison, custom CMOS
CAMs have minimal delay and 2-3× area overhead com-
pared to RAM allowing for high-associativity caches to have
an amortized area overhead of around 10%, with minimal
change in delay compared to set-associative caches [59].

CAM-based high-associativity caches are not area efficient
in FPGA soft processors and soft processor caches should
have lower associativity than similar hard processors. Soft
processor caches should also be higher capacity than simi-
lar hard processors because of the area efficiency of FPGA
SRAMs (2-5× density ratio).

5.5 Memory System Design
The lower area cost of block RAM encourages the use of

larger caches, reducing cache miss rates and lowering the
demand for off-chip bandwidth to DRAM main memory.
The lower clock speeds of FPGA circuits further reduce off-
chip bandwidth demand. The latency and bandwidth of
off-chip memory is only slightly worse on FPGAs than on
custom CMOS processors.

Low off-chip memory system demands suggest that more
resources should be dedicated to improving the performance
of the processor core than improving memory bandwidth or
tolerating latency. Techniques used to improve the memory
system in hard processors include DRAM access schedul-
ing, non-blocking caches, prefetching, memory dependence
speculation, and out of order memory accesses.

5.6 Out-of-Order Microarchitecture
Section 4.1 suggests that processor complexity does not

have a strong correlation with area ratio, so out-of-order
microarchitectures seem to be a reasonable method for im-
proving soft processor performance. There are several styles
of microarchitectures commonly used to implement precise
interrupt support in pipelined or out-of-order processors and
many variations are used in modern processors [60,61]. The
main variations between the microarchitecture styles con-
cern the organization of the reorder buffer, register renam-
ing logic, register file, and instruction scheduler and whether
each component uses RAM- or CAM-based implementations.

FPGA RAMs have particularly low area cost (Section 4.2),
but CAMs are area expensive (Section 4.4). These charac-
teristics favour microarchitecture styles that minimize the
use of CAM-like structures. Reorder buffers, register re-
naming logic, and register files are commonly implemented
without CAMs. There are CAM-free instruction scheduler
techniques that are not widely implemented [6,62], but may
become more favourable in soft processors.

If a traditional CAM-based scheduler is used in a soft
processor, its capacity would tend to be smaller than on hard
processors due to area, but the delay ratio of CAMs (15×) is
not particularly poor. Reducing scheduler area can be done
by reducing the number of entries or the amount of storage
required per entry. Schedulers can be data-capturing where
operand values are captured and stored in the scheduler,
or non-data-capturing where the scheduler tracks only the
availability of operands, with values fetched from the register
file or bypass networks when an instruction is finally issued.
Non-data-capturing schedulers reduce the amount of data
that must be stored in each entry of a scheduler.

On FPGAs, block RAMs come in a limited selection of
sizes, with the smallest commonly being 4.5 kbit to 18 kbit.
Reorder buffers and register files are usually even smaller
but are limited by port width or port count so processors
on FPGAs can have larger capacity ROBs, register files,
and other port-limited RAM structures at little extra cost.
In contrast, expensive CAMs limit soft processors to small
scheduling windows (instruction scheduler size). Microar-
chitectures that address this particular problem of large in-
struction windows with small scheduling windows may be
useful in soft processors [63].

6. CONCLUSIONS
We have presented area and delay comparisons of pro-

cessors and their building block circuits implemented on
custom CMOS and FPGA substrates. In 65 nm processes,
we find FPGA implementations of processor cores have 18-
26× greater delay and 17-27× greater area usage than the
same processors implemented using custom CMOS. We find
that the FPGA vs. custom delay ratios of most processor
building block circuits fall within the delay ratio range for
complete processor cores, but that area ratios vary more.
Building block circuits such as adders and SRAMs that
have dedicated hardware support on FPGAs are particularly
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area-efficient, while multiplexers and CAMs are particularly
area-inefficient. The measurements’ precision is limited by
the availability of custom CMOS design examples in the lit-
erature. The measurements can also change as both CMOS
technology and FPGA architectures evolve and may lead to
different design choices.

We have discussed how our measurements impact microar-
chitecture design choices: Differences in the FPGA substrate
encourage soft processors to have larger, low-associativity
caches, deeper pipelines, and fewer bypass networks than
similar hard processors. Also, out-of-order execution is a
valid design option for soft processors, although scheduling
windows should be kept small.
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