
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014 2067

Quantifying the Gap Between FPGA and Custom
CMOS to Aid Microarchitectural Design

Henry Wong, Student Member, IEEE Vaughn Betz, Member, IEEE and Jonathan Rose, Fellow, IEEE

Abstract— This paper compares the delay and area of a com-
prehensive set of processor building block circuits when imple-
mented on custom CMOS and FPGA substrates, then uses these
results to show how soft processor microarchitectures should be
different from those of hard processors. We find that the ratios
of the custom CMOS versus FPGA area for different building
blocks varies considerably more than the speed ratios, thus, area
ratios have more impact on microarchitecture choices. Complete
processor cores on an FPGA use 17–27× more area (“area ratio”)
than the same design implemented in custom CMOS. Building
blocks with dedicated hardware support on FPGAs such as
SRAMs, adders, and multipliers are particularly area-efficient
(2–7×), while multiplexers and content-addressable memories
(CAM) are particularly area-inefficient (>100×). Applying these
results, we find out-of-order soft processors should use physical
register file organizations to minimize CAM size.

I. INTRODUCTION

THE area, speed, and energy consumption of a digital
circuit will differ when it is implemented on different

substrates such as custom CMOS, standard cell application-
specific integrated circuits (ASICs), and field-programmable
gate arrays (FPGAs). Those differences will also change based
on the nature of the digital circuit itself. Having different
cost ratios for different circuit types implies that systems
built using a range of different circuit types must be tuned
for each substrate. In this paper, we compare the custom
CMOS and FPGA substrates with a focus on implementing
instruction-set processors—we examine both full processors
and subcircuits commonly used by processors, and explore
the microarchitecture tradeoff space of soft processors in light
of these differences.1

We believe this is a timely exercise, as the plausible
area budget for soft processors is now much greater than
it was when the first successful commercial soft processors
were architected and deployed [2], [3]. Those first processors
typically used less than a few thousand logic elements and
have mostly employed single-issue in-order microarchitectures
due to a limited area budget. Since then the size of FPGAs
available has grown by one to two orders of magnitude, pro-
viding more space for more complex microarchitectures, if the

Manuscript received May 27, 2013; revised August 19, 2013; accepted
September 25, 2013. Date of publication November 13, 2013; date of current
version September 23, 2014. This work was supported in part by NSERC and
in part by Altera.

The authors are with the Department of Electrical and Computer Engi-
neering, University of Toronto, Toronto, ON M5S 3G4, Canada (e-mail:
henry@eecg.utoronto.ca; vaughn@eecg.utoronto.ca; jayar@eecg.utoronto.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2013.2284281
1An earlier version of this paper appeared in [1], which contained fewer

circuit-level comparisons and less microarchitectural discussion. We have also
significantly elaborated on the data in our discussions of the results, and added
a section related to the effect of routing congestion in FPGAs.

increased complexity can achieve payoffs in performance. The
design decisions that will be required to build more complex
processors can benefit from a quantitative understanding of the
differences between custom CMOS and FPGA substrates.

Previous studies have measured the average delay and area
of FPGA, standard cell, and custom CMOS substrates across
a large set of benchmark circuits [4], [5]. While these earlier
results are useful in determining an estimate of the size and
speed of the full system that can be implemented on FPGAs,
it is often necessary to compare the relative performance of
specific types of building block circuits to have enough detail
for guiding microarchitecture design decisions.

This paper makes two contributions.

1) We compare the delay and area of custom CMOS and
FPGA implementations of a specific set of building
block circuits typically used in processors.

2) With these measured delay and area ratios, and prior cus-
tom CMOS processor microarchitecture knowledge, we
discuss how processor microarchitecture design tradeoffs
should change on an FPGA substrate.

We begin with a survey of prior work in Section II and
describe our methodology in Section III. We then present the
building block comparisons in Section IV and their impact
on microarchitecture in Section V and conclude this paper in
Section VI.

II. BACKGROUND

A. Technology Impact on Microarchitecture

One of the goals in processor microarchitecture design
is to make use of circuit structures that are best suited to
the underlying implementation technology. Thus, studies on
how process technology trends impact microarchitecture are
essential for designing effective microarchitectures that best
fit the ever-changing process characteristics. Issues currently
facing CMOS technology include poor wire delay scaling,
high power consumption, and more recently, process variation.
Microarchitectural techniques that respond to these challenges
include clustered processor microarchitectures and chip mul-
tiprocessors [6], [7].

Circuits implemented on an FPGA substrate face a very
different set of constraints from custom CMOS. Although
power consumption is important, it is not currently the dom-
inant design constraint for FPGA designs. FPGA designs run
at lower clock speeds and the architectures of FPGAs are
already designed to give reasonable power consumption across
the vast majority of FPGA user designs. Interestingly, area
is often the primary constraint due to high area overhead
of the programmability endemic to FPGAs. This different
perspective combined with the fact that different structures

1063-8210 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2068 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

have varying area, delay, and power characteristics between
different implementation technologies means that understand-
ing and measuring these differences are required to make
good microarchitecture choices to suit the FPGA substrate.
Characteristics such as inefficient multiplexers and the need
to map RAM structures into FPGA hard static RAM (SRAM)
blocks are known and are generally adjusted for by modifying
circuit-level, but not microarchitecture-level, design [8]–[11].

B. Measurement of FPGAs

Kuon and Rose [4] have measured the area, delay, and
power overheads of FPGAs compared with a standard cell
ASIC flow on 90-nm processes. They used a benchmark
set of complete circuits to measure the overall impact of
using FPGAs compared with ASICs and the effect of FPGA
hard blocks. They found that circuits implemented on FPGAs
consumed 35× more area than on standard cell ASIC for
circuits that did not use hard memory or multiplier blocks,
to a low of 18× for those that used both types. The minimum
cycle time (their measure of speed) of the FPGA circuits
ranged from 3.0 to 3.5× greater than that of the ASIC
implementations, and were not significantly affected by hard
blocks. Chinnery and Keutzer [5] made similar comparisons
between standard cell and custom CMOS and reported a
delay ratio of 3–8×. Combined, these reports suggest that
the delay of circuits implemented on an FPGA would be
9–28× greater than on custom CMOS. However, data for full
circuits are insufficiently detailed to guide microarchitecture-
level decisions, which is the focus of this paper.

III. METHODOLOGY

We seek to measure the delay and area of FPGA building
block circuits and compare them against their custom CMOS
counterparts, resulting in area and delay ratios. We define
these ratios to be the area or delay of an FPGA circuit
divided by the area or delay of the custom CMOS circuit.
A higher ratio means the FPGA implementation is worse. We
compare several complete processor cores and a set of building
block circuits against their custom CMOS implementations,
then observe which types of building block circuits have
particularly high or low overhead on an FPGA.

As we do not have the expertise to implement highly
optimized custom CMOS circuits, most of our building block
circuit comparisons use data from custom CMOS implemen-
tations found in the literature. We focus mainly on custom
CMOS designs built in 65-nm processes, because it is the most
recent process where design examples are readily available
in the literature. The custom CMOS data are compared with
an Altera Stratix III 65-nm FPGA. In most of the cases,
the equivalent FPGA circuits were implemented on an FPGA
using the standard FPGA CAD flows. Power consumption is
not compared due to the scarcity of data in the literature and
the difficulty in standardizing testing conditions such as test
vectors, voltage, and temperature.

We normalize area measurements to a 65-nm process using
an ideal scale factor of 0.5× area between process nodes. We
normalize delay using published ring oscillator data, with the
understanding that these reflect gate delay scaling more than

TABLE I

NORMALIZATION FACTORS BETWEEN PROCESSES

TABLE II

STRATIX III FPGA RESOURCE AREA USAGE

interconnect scaling. Intel reports 29% fanout-of-one (FO1)
delay improvement between 90 and 65 nm, and 23% FO2
delay improvement between 65 and 45 nm [12], [13]. The area
and delay scaling factors used are summarized in Table I.

Delay is measured as the longest register to register path
(sequential) or input to output path (combinational) in a circuit.
In papers that describe CMOS circuits embedded in a larger
unit (e.g., a shifter inside an arithmetic logic unit (ALU)),
we conservatively assume that the subcircuit has the same
cycle time as the larger unit. In FPGA circuits, delay is
measured using register to register paths, with the register
delay subtracted out when comparing subcircuits that do not
include a register (e.g., wire delay).

To measure FPGA resource usage, we use the logic
utilization metric as reported by Quartus rather than raw
lookup table (LUT) count, as it includes an estimate of
how often a partially used fracturable logic element can be
shared with other logic. We count partially used memory
and multiplier blocks as entirely used since it is unlikely
another part of the design can use a partially used mem-
ory or multiplier block. Table II shows the areas of the
Stratix III FPGA resources. The FPGA tile areas include
the area used by the FPGA routing network so we do
not track routing resource use separately. The core of the
largest Stratix III (EP3LS340) FPGA contains 13 500 clusters
(logic array block (LAB)) of 10 logic elements (adaptive
logic module (ALM)) each, 1040 9-kb (M9K) memories,
48 144-kb (M144K) memories, and 72 DSP blocks, for a total
of 18 621 LAB equivalent areas and 412-mm2 core area.

We implemented FPGA circuits using Altera Quartus II 10.0
SP1 CAD flow and employed the fastest speed grade of the
largest Stratix III device. We set timing constraints to maxi-
mize clock speed, reflecting the use of these circuits as a part
of a larger circuit in the FPGA core, such as a soft processor.

We note that the custom CMOS design effort is likely to
be much higher than for FPGA designs because there is more
potential gain for optimization and much of the design process
is automated for FPGA designs.

WONG et al.: QUANTIFYING THE GAP BETWEEN FPGA AND CUSTOM CMOS 2069

TABLE III

COMPLETE PROCESSOR CORES. AREA AND DELAY NORMALIZED TO 65 nm

IV. CUSTOM CMOS VERSUS FPGA

A. Complete Processor Cores

We begin by comparing complete processor cores imple-
mented on an FPGA versus custom CMOS to provide context
for the subsequent building block measurements. Table III
shows a comparison of the area and delay of four commercial
processors that have both custom CMOS and FPGA imple-
mentations, including in-order, multithreaded, and out-of-order
processors. The FPGA implementations are synthesized from
RTL code for the custom CMOS processors, with some FPGA-
specific circuit-level optimizations. However, the FPGA-
specific optimization effort is smaller than for custom CMOS
designs and could inflate the area and delay ratios slightly.

The OpenSPARC T1 and T2 cores are derived from the
in-order multithreaded UltraSPARC T1 and T2, respectively
[19]. The OpenSPARC T2 processor core includes a floating-
point unit. We synthesized one processor core for the Stratix
III FPGA, with some debug features unnecessary in FPGA
designs removed, such as register scan chains and SRAM
redundancy in the caches.

The Intel Atom is a dual-issue in-order 64-bit x86 processor
with two-way multithreading. Our Atom processor compar-
isons use published FPGA synthesis results by Wang et al.
[10], which includes only the processor core without L2
cache, and occupies 85% of the largest 65 nm Virtex-5 FPGA
(XC5VLX330). They do not publish a detailed breakdown of
the FPGA resource utilization, so the FPGA area is estimated
assuming the core area of the largest Virtex 5 is the same as
the largest Stratix III.

The Intel Nehalem is an out-of-order 64-bit x86 processor
with two-way multithreading. The FPGA synthesis by Schelle
et al. [17] includes the processor core and does not include the
per-core L2 cache, with an area utilization of roughly 300% of
the largest Virtex-5 FPGA. They partitioned the processor core
across five FPGAs and time-multiplexed the communication
between FPGAs, so the resulting clock speed (520 kHz) is not
useful for estimating delay ratio.

Table III compares the four processors’ speed and area.
For custom CMOS processors, the highest commercially
available speed is listed, scaled to a 65-nm process using
linear delay scaling, as described in Section III. The area
of a custom CMOS processor is measured from die photos,
including only the area of the processor core that the FPGA

version implements, again scaled using ideal area scaling to
a 65-nm process. The sixth and seventh columns contain the
speed and area ratio between custom CMOS and FPGA, with
higher ratios meaning that the FPGA is worse.

For the two OpenSPARC processors, FPGA area is mea-
sured using the resource usage (ALUT logic utilization, DSP
blocks, and RAM) of the design reported by Quartus mul-
tiplied by the area of each resource in Table II. The FPGA
synthesis of the Intel processors use data from the literature,
which only gave approximate area usage, so we list the logic
utilization as a fraction of the FPGA chip.

Overall, custom processors have delay ratios of 18–26×
and area ratios of 17–27×. We use these processor core area
and delay ratios as a reference point for the building block
circuit comparisons in the remainder of this paper. For each
building block circuit, we compare the FPGA versus custom
CMOS area and delay ratios for the building block circuit to
the corresponding ratios for processor cores to judge whether
a building block circuit’s area and delay are better or worse
than the overall ratios for a processor core.

Interestingly, there is no obvious area ratio trend with
processor complexity—for example, we might expect that an
out-of-order processor synthesized for an FPGA, such as the
Nehalem, to have a particularly high area ratio, but it does
not. We speculate that this is because expensive content-
addressable memories (CAMs) are only a small portion of
the hardware added by a high-performance microarchitec-
ture. The added hardware includes a considerable amount
of RAM and other logic, since modern processor designs
already seek to minimize the use of CAMs due to their
high power consumption. On the FPGA-synthesized Nehalem,
the hardware structures commonly associated with out-of-
order execution (reorder buffer (ROB), reservation stations,
and register renaming) consume around 45% of the processor
core’s LUT usage [17].

B. SRAM Blocks (Low Port Count)

SRAM blocks are commonly used in processors for building
caches and register files. SRAM performance can be char-
acterized by latency and throughput. Custom CMOS SRAM
designs can trade latency and throughput by pipelining, while
FPGA designs are limited to the prefabricated SRAM blocks
on the FPGA.

2070 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

TABLE IV

CUSTOM CMOS AND FPGA SRAM BLOCKS

Fig. 1. SRAM throughput.

Logical SRAMs targeting the Stratix III FPGA can be
implemented in four different ways: using one of the two
physical sizes of hard block SRAM, using the LUT RAMs
in memory LABs (MLABs allow the lookup tables in a
LAB to be converted into a small RAM), or in registers
and LUTs. The throughput and density of the four methods
of implementing RAM storage are compared in Table IV to
five high-performance custom SRAMs in 65-nm processes.
In this section, we focus on RAMs with one read–write port
(which we will refer to as 1rw), as it is a commonly used
configuration in larger caches in processors, but some custom
CMOS SRAMs have unusual port configurations, such as
being able to do two reads or one write [20]. The size column
lists the size of the SRAM block. For MLAB (LUT RAM,
640 bit), M9K (block RAM, 9 kbit), and M144K (block RAM,
144 kbit) FPGA memories, memory size shows the capacity
of the memory block type. The fmax and area columns list the
maximum clock speed and area of the SRAM block. Because
of the large variety of SRAM block sizes, it is more useful to
compare bit density. The last two columns of the table list fmax
and bit density ratios between custom CMOS SRAM blocks
and an FPGA implementation of the same block size on an
FPGA. Higher density ratios show worse density on FPGA.

The density and throughput of custom CMOS and FPGA
SRAMs listed in Table IV are plotted against memory size
in Figs. 1 and 2. The plots include data from CACTI 5.3, a

Fig. 2. SRAM density.

CMOS memory performance, and area model [26]. There is
good agreement between the CACTI models and the design
examples from the literature, although CACTI appears to be
slightly more conservative.

The throughput ratio between FPGA memories and custom
is 7–10×, lower than the overall delay ratio of 18–26×, show-
ing that SRAMs are relatively fast on FPGAs. It is surprising
that this ratio is not even lower because FPGA SRAM blocks
have a little programmability. The 2-kb MLAB (64 × 32)
memory has a particularly low delay because its 64-entry depth
uses the 64 × 10 mode of the MLAB, allowing both its input
and output registers to be packed into the same LAB as the
memory itself (each LAB has 20 registers), yet it does not
need external multiplexers to stitch together multiple MLABs.

The FPGA data above use 32-bit wide data ports (often
the width of a register on 32-bit processors) that slightly
underutilize the native FPGA 36-bit ports. The raw density of
a fully used FPGA SRAM block is listed in Table IV. Below
9 kb, the bit density of FPGA RAMs falls off nearly linearly
with reducing RAM size because M9Ks are underutilized. The
MLABs use 20-bit wide ports, so a 32-bit wide memory block
always uses at least two MLABs, using 80% of their capacity.
The MLAB bit density (25 kb/mm2) is low, although it is still
much better than using registers and LUTs (0.76 kb/mm2).
For larger arrays with good utilization, FPGA SRAM arrays
have a density ratio of only 2–5× versus single read–write

WONG et al.: QUANTIFYING THE GAP BETWEEN FPGA AND CUSTOM CMOS 2071

TABLE V

MULTIPORTED 8-kb SRAM. LVT DATA FROM [27]

port (1rw)2 CMOS (and CACTI) SRAMs, far below the full
processor area ratio of 17–27×.

As FPGA SRAMs use dual-ported (2rw) arrays, we also
plotted CACTIs 2rw model for comparison. For arrays of
similar size, the bit density of CACTIs 2rw models are 1.9×
and 1.5× the raw bit density of fully utilized M9K and M144K
memory blocks, respectively. This suggests that half of the bit
density gap between custom CMOS and FPGA SRAMs in
our single-ported test is due to FPGA memories paying the
overhead of dual ports.

For register file use where latency may be more important
than memory density, custom processors have the option
of trading throughput for area and power using faster and
larger storage cells. The 65-nm Pentium 4 register file trades
decreased bit density for 9-GHz single-cycle performance [25].
FPGA RAMs lack this flexibility, and the delay ratio is even
greater (15×) for this specific use.

C. Multiported SRAM Blocks

FPGA hard SRAM blocks can typically implement up to
two read–write ports (2rw). Implementing more read ports on
an FPGA can be achieved reasonably efficiently by replicating
the memory blocks, but increasing the number of write ports is
more difficult. A multiple write port RAM can be implemented
using registers for storage and LUTs for multiplexing and
address decoding, but is inefficient. A more efficient method
using hard RAM blocks for most of the storage replicates
memory blocks for each write and read port and uses a
live value table (LVT) to show for each word which of the
replicated memories holds the most recent copy [27].

We present data for multiported RAMs implemented using
registers, LVT-based multiported memories from [27], and
CACTI 5.3 models of custom CMOS multiported RAMs.
Like for single-ported SRAMs (Section IV-B), we report the
random cycle time of a pipelined custom CMOS memory. We
focus on a 256 × 32-bit (8 kb) memory block with twice as

2There are three basic types of memory ports: read (r), write (w), and read–
write (rw). A read–write port can read or write, but not both, per cycle.

TABLE VI

CAM DESIGNS

many read ports as write ports (2N read, N write) because it is
a port configuration often used in register files in processors
and the size fits well into an M9K memory block. Table V
shows the throughput and density comparisons.

The custom CMOS versus FPGA bit density ratio is 2.8×
for 2r1w, and increases to 12× and 179× for 4r2w LVT- and
register-based memories, respectively. When only one write
port is needed (2r1w), the increased area needed for duplicat-
ing the FPGA memory block to provide a second read port
is less than the area increase for tripling the number of ports
from 1rw to 2r1w of a custom CMOS RAM (445 kb/mm2

1rw from Section IV-B to 177 kb/mm2 2r1w). LVT-based
memories improve in density on register-based memories, but
both are worse than simple replication used for memories with
one write port and multiple read ports.

The delay ratio is 7.6× for 2r1w, and increases to 9× and
15× for 4r2w LVT- and register-based memories, respectively,
a smaller impact than the area ratio increase. The delay ratios
when using registers to implement memories (15–18×) are
higher than those for single-ported RAMs using hard RAM
blocks, but still slightly lower than the overall processor core
delay ratios.

D. Content-Addressable Memories

A CAM is a logic circuit that allows associative searches
of its stored contents. Custom CMOS CAMs are typically
implemented as dense arrays of cells using nine-transistor (9T)
to 11T cells compared with 6T used in SRAM and are typically
2–3× less dense than custom SRAMs. Ternary CAMs use
two storage cells per bit to store three states (0, 1, and don’t
care). In processors, CAMs are used in tag arrays for high-
associativity caches and translation lookaside buffers (TLBs).
CAM-like structures are also used in out-of-order instruction

2072 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

Fig. 3. CAM search speed.

Fig. 4. CAM bit density.

schedulers. CAMs in processors require both frequent read
and write capability, but not large capacities. Pagiamtzis and
Sheikholeslami [28] give a good overview of the CAM design
space.

There are several methods of implementing CAM function-
ality on FPGAs that do not have hard CAM blocks [29]. CAMs
implemented in soft logic use registers for storage and LUTs to
read, write, and search the stored bits. Another proposal, which
we will refer to as BRAM-CAM, stores one-hot encoded
match-line values in block RAM to provide the functionality
of a w × b-bit CAM using a 2b × w-bit block RAM [30].
The soft logic CAM is the only design that provides one-
cycle writes. The BRAM-CAM offers improved bit density but
requires two-cycle writes—one cycle each to erase then add an
entry. We do not consider FPGA CAM implementations with
even longer write times that are only useful in applications
where modifying the contents of the CAM is a rare event,
such as modifying a network routing table.

Table VI shows a variety of custom CMOS and FPGA CAM
designs. Search time shows the time needed to perform an
unpipelined CAM lookup operation. The FPGA versus custom
CMOS ratios compare the delay (search time) and density
between each custom CMOS design example and an FPGA
soft logic implementation of a CAM of the same size. Figs. 3
and 4 plot these and also 8- and 128-bit wide soft logic CAMs
of varying depth.

CAMs can achieve delay comparable with SRAMs but at
a high cost in power. For example, Intel’s 64 × 128 BCAM

Fig. 5. Multiplier latency.

TABLE VII

MULTIPLIER AREA AND DELAY, NORMALIZED TO 65-nm PROCESS.

UNPIPELINED LATENCY IS PIPELINED CYCLE TIME × STAGES

achieves 4 GHz using 13 fJ/bit/search, while IBMs 450-MHz
64 × 240 ternary CAM uses 1 fJ/bit/search.

As shown in Table VI, soft logic binary CAMs have poor bit
density ratios versus custom CMOS CAMs—from 100 to 210
times worse. We included ternary CAM examples in the table
for completeness, but since they are generally not used inside
processors, we do not include them when summarizing CAM
density ratios. Despite the poor density of soft logic CAMs, the
delay ratio is only 14 times worse. BRAM-CAMs built from
M9Ks can offer 2.4× better density than soft logic CAMs but
needs two cycles per write. The halved write bandwidth of
BRAM-CAMs makes them unsuitable for performance-critical
uses, such as tag matching in instruction schedulers and L1
caches.

We observe that the bit density of soft logic CAMs is nearly
the same as using registers to implement RAM (Table IV),
suggesting that most of the area inefficiency comes from using
registers for storage, not the added logic to perform associative
searching.

E. Multipliers

Multiplication is an operation performed frequently in signal
processing applications, but not used as often in processors. In
a processor, only a few multipliers would be found in ALUs
to perform multiplication instructions. Multiplier blocks can
also be used to inefficiently implement shifters and multiplex-
ers [38].

Fig. 5 shows the latency of multiplier circuits on custom
CMOS and on FPGA using hard DSP blocks. Latency is

WONG et al.: QUANTIFYING THE GAP BETWEEN FPGA AND CUSTOM CMOS 2073

Fig. 6. Multiplier area.

Fig. 7. Adder delay.

the product of the cycle time and the number of pipeline
stages, and does not adjust for unbalanced pipeline stages or
pipeline latch overheads. Table VII shows details of the design
examples.

The two IBM multipliers have latency ratios comparable
with full processor cores. Intel’s 16-bit multiplier design has
much lower latency ratios as it appears to target low power
instead of delay. In designs where multiplier throughput is
more important than latency, multipliers can be made more
deeply pipelined (three and four stages in these examples) than
the hard multipliers on FPGAs (two stages), and throughput
ratios can be even higher than the latency ratios.

The area of the custom CMOS and FPGA multipliers is
plotted in Fig. 6. FPGA multipliers are relatively area efficient.
The area ratios for multipliers of 4.5–7.0× are much lower
than for full processor cores (17–27×, Section IV-A).

F. Adders

Custom CMOS adder circuit designs can span the area-delay
tradeoff space from slow ripple-carry adders to logarithmic-
depth fast adders. On an FPGA, adders are usually imple-
mented using hard carry chains that implement variations of
the ripple-carry adder, although carry-select adders have been
also been used. Although fast adders can be implemented
on FPGAs with soft logic and routing, the lack of dedicated
circuitry means fast adders are bigger and usually slower than
the ripple-carry adder with hard carry chains [43].

Fig. 7 plots a comparison of adder delay, with details in
Table VIII. The Pentium 4 delay is conservative as the delay

TABLE VIII

ADDERS. AREA AND DELAY NORMALIZED TO 65-nm PROCESS

TABLE IX

ANALYTICAL MODEL OF TRANSMISSION GATE OR PASS TRANSISTOR

TREE MULTIPLEXERS [44] NORMALIZED TO 65-nm PROCESS

given is for the full integer ALU. FPGA adders achieve delay
ratios of 15–20× and a low area ratio of around 4.5–7×.
Despite the use of dedicated carry chains on the FPGA,
the delay ratios are fairly high because we compare FPGA
adders to high-performance custom CMOS adders. For high-
performance applications, such as in processors, FPGAs offer
a little flexibility in trading area for even more performance
using a faster circuit-level design.

G. Multiplexers

Multiplexers are found in many circuits, yet we have found
little literature that provides their area and delay in custom
CMOS. Instead, we estimate delays of small multiplexers
using a resistor–capacitor analytical model, the delays of the
Pentium 4 shifter unit, and the delays of the Stratix III ALM.
Our area ratio estimate comes from an indirect measurement
using an ALM.

Table IX shows a delay comparison between an FPGA and
an analytical model of transmission gate or pass gate tree
multiplexers [44]. This unbuffered switch model is pessimistic
for larger multiplexers, as active buffer elements can reduce
delay. On an FPGA, small multiplexers can often be com-
bined with other logic with minimal extra delay and area, so
multiplexers measured in isolation are likely pessimistic. For
small multiplexers, the delay ratio is high, roughly 40–75×.
Larger multiplexers appear to have decreasing delay ratios,
but we believe this is largely due to the unsuitability of the
unbuffered designs to which we are comparing.

An estimate of the multiplexer delay ratio can also be made
by comparing the delay of larger circuits that are composed

2074 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

TABLE X

DELAY OF MULTIPLEXER-DOMINATED CIRCUITS

mainly of multiplexers. The 65-nm Pentium 4 integer shifter
datapath [41] is one such circuit, containing small multiplexers
(sizes three, four, and eight). We implemented the same data-
path excluding control logic on the Stratix III. A comparison
of the critical path delay is shown in Table X. The delay ratio
of 20× is smaller than suggested by the isolated multiplexer
comparison, but may be optimistic if Intel omitted details
from their shifter circuit diagram causing our FPGA equivalent
shifter to be oversimplified.

Another delay ratio estimate can be made by examining the
Stratix III ALM itself, as its delay consists mainly of multi-
plexers. We implemented a circuit equivalent to an ALM, as
described in the Stratix III Handbook [45], comparing delays
of the FPGA implementation to custom CMOS delays of the
ALM given by the Quartus timing models. Internal LUTs are
modeled as multiplexers that select between static configura-
tion RAM bits. Each ALM input pin is modeled as a 21-to-1
multiplexer, as 21–30 are reasonable sizes according to [46].

We examined one long and one short path, from after the
input multiplexers for pins datab and dataf0, respectively,
terminating at the LUT register. Table X shows delay ratios
of 7.1× and 11.7× for the long and short paths, respectively.
These delay ratios are lower compared with previous examples
due to the lower power and area budgets preventing custom
FPGAs from being as aggressively delay-optimized as custom
processors, and to extra circuit complexity not shown in the
Stratix III Handbook.

We can also estimate a lower bound on the multiplexer area
ratio by implementing only the multiplexers in our FPGA
equivalent circuit of an ALM, knowing the original ALM
contains more functionality than our equivalent circuit. Our
equivalent ALM consumes 104 ALUTs, or roughly 52 ALMs,
resulting in an estimated area ratio of 52×. However, the real
ALM area ratio is substantially greater, as we implemented
only the ALMs input and internal multiplexers and did not
include global routing resources or configuration RAM. A rule
of thumb is that half of an FPGA’s core area is spent in the
programmable global routing network, doubling the area ratio
estimate to 104× while still neglecting the configuration RAM.

In summary, groups of multiplexers (measured from the
Pentium 4 shifter and ALM) have delay ratios below 20×, with
small isolated multiplexers being worse (40–75×). However,
multiplexers are particularly area intensive with an area ratio
greater than 100×. Thus, we find that the intuition that
multiplexers are expensive on FPGAs is justified, especially
from an area perspective.

TABLE XI

PIPELINE LATCH DELAY

H. Pipeline Latches

In synchronous circuits, the maximum clock speed of a
circuit is typically limited by a register-to-register delay path
from a pipeline latch,3 through a pipeline stage’s combina-
tional logic, to the next set of pipeline latches. The delay of
a pipeline latch (its setup and clock-to-output times) impacts
the speed of a circuit and the clock speed improvement when
increasing pipeline depth. Note that hold times do not directly
impact the speed of a circuit, only correctness.

The effective cost in delay of inserting an extra pipeline
register into LUT-based combinational pipeline logic is mea-
sured by observing the increase in delay as the number
of LUTs between registers increases, then extrapolating the
delay to zero LUTs. This method is different from, and
more pessimistic than, simply summing the Tco, Tsu, clock
skew, and one extra LUT-to-register interconnect delay to
reach a register, which is 260 ps. This pessimism occurs
because inserting a register also impacts the delay of the
combinational portion of the delay path. The measured latch
delay in Stratix III is 436 ps.

Table XI shows estimates of the delay of a custom CMOS
pipeline latch. The 180-nm Pentium 4 design assumed 90 ps
of pipeline latch delays including clock skew [47], which
we scaled according to the FO1 ring oscillator delays for
Intel’s processes (11 ps at 180 nm to 4.25 ps at 65 nm) [22].
Hartstein et al. [48] and Hrishikesh et al. [49] present estimates
expressed in FO4 delays, which were scaled to an estimated
FO4 delay of 12.8 ps for Intel’s 65-nm process.

Thus, the delay ratio for a pipeline latch ranges from 10 to
15 times. Although we do not have area comparisons, registers
are considered to occupy very little FPGA area because more
LUTs are used than registers in most FPGA circuits, yet FPGA
logic elements include at least one register for every LUT.

I. Interconnect Delays

Interconnect delay comprises a significant portion of the
total delay in both FPGAs and modern CMOS processes.
In this section, we explore the point-to-point delay of these
technologies, and include the effect of congestion on these
results.

1) Point-to-Point Routing: In this section, we measure the
wire delay of a point-to-point (single fanout) connection.
In modern CMOS processes, there are multiple layers of inter-
connect wires, for dense local and faster global connections.

3Latch refers to pipeline storage elements. This can be a latch, flip-flop, or
other implementation.

WONG et al.: QUANTIFYING THE GAP BETWEEN FPGA AND CUSTOM CMOS 2075

Fig. 8. Point-to-point routing delay.

On an FPGA, an automated router chooses a combination of
faster long wires or more abundant short wires when making
a routing connection.

For custom CMOS, we approximate the delay of a buffered
wire using a lumped-capacitance model with interconnect
and transistor parameters from the International Technology
Roadmap for Semiconductors (ITRS) 2007 report [50].
The ITRS 2007 data could be pessimistic when applied to
high-performance CMOS processes used in processors, as
Intel’s 65-nm process uses larger pitch and wire thicknesses
than the ITRS parameters, and thus reports lower wire
delays [22]. On the Stratix III FPGA, point-to-point delay
is measured using the delay between two manually placed
registers with automated routing, with the delay of the register
itself subtracted out We assume that LABs on the Stratix III
FPGA have an aspect ratio (the vertical/horizontal ratio of
delay for each LAB) of 1.6 because it gives a good delay
versus Manhattan distance fit.

Fig. 8 plots the point-to-point wire delays for custom CMOS
and FPGA wires versus the length of the wire. The delay for
short wires (under 20 mm) is dominated by the delay of the
driver and load buffers (i.e., one FO1 delay). These delays may
be optimistic for global wires because we do not include the
delay of the vias required to access the top layers of wiring.
The FPGA point-to-point wire delays are plotted as Stratix III.
FPGA short local wires (100 mm) have a delay ratio around
9× compared with local wires of the same length. Long wire
delay (above 10 000 mm) is quite close (2×) to CMOS for the
same length of wire.

When trying to measure the impact of wire delays on a
circuit, routing delays are more meaningful when distance
is normalized to the amount of logic that can be reached.
To approximate logic density-normalized routing delays, we
adjust the FPGA routing distance by the square root of the
FPGAs overall area overhead versus custom CMOS (

√
23× =

4.8×). That is, a circuit implemented on an FPGA will need
to use wires that are 4.8× longer than the equivalent circuit
implemented in custom CMOS.

The logic density-normalized routing delays are plotted as
Stratix III area adjusted in Fig. 8. Short local FPGA wires
(100 mm) have a logic density-normalized delay ratio of 20×,
while long global wires (7 500 mm) have a delay ratio of only
9×. The short wire delay ratio is comparable with the overall

Fig. 9. Comparing interconnect delays between an empty FPGA and soft
processors. (a) SPARC T1. (b) Nios II/f.

delay ratio for full processors, but the long wire delay ratio is
half of that, suggesting that FPGAs are less affected by long
wire delays than custom CMOS.

2) FPGA Routing Congestion: Section IV-I.1 compared
FPGA versus custom CMOS point-to-point routing delays
in an uncongested chip. These delays could be optimistic
compared with routing delays in real circuits where congestion
causes routes to take suboptimal paths. This section shows
how much FPGA routing delay changes from the ideal point-
to-point delays due to congestion found in real FPGA designs.

To measure the impact of congestion, we compare the delay
of route connections found on near-critical paths in a soft
processor to the delay of routes traveling the same distance on
an empty FPGA. We synthesized two soft processors for this
measurement: The OpenSPARC T1, a large soft processor, and
the Nios II/f, a small soft processor specifically designed for
FPGA implementation. We extracted register-to-register timing
paths that had delay greater than 90% of the critical path delay
(i.e., the top 10% of near-critical paths). Timing paths are made
up of one or more connections, where each connection is a
block driving a net (routing wires) and terminating at another
block’s input. For each connection in the top 10% of paths, we
observed its delay as reported by the Quartus timing analyzer
and its Manhattan distance calculated by placement locations
of the source and destination blocks.

The resulting delay versus distance plots are shown in
Fig. 9(a) for the OpenSPARC T1 and Fig. 9(b) for the

2076 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

TABLE XII

OFF-CHIP DRAM LATENCY AND THROUGHPUT. LATENCY ASSUMES

CLOSED-PAGE RANDOM ACCESSES

Nios II/f. The empty-chip measurements are the same as those
from the preceding section (Fig. 8). The larger size of the
OpenSPARC T1 results in many longer distance connections,
while the longest connection within the top 10% of paths in
the small Nios II/f has a distance of 1800 mm or about the
width of 15 LAB columns. We see from these plots that the
amount of congestion found in typical soft processors does not
appreciably impact the routing delays for near-critical routes,
and that routing congestion does not alter our conclusion in
the preceding section that FPGA long wire routing delays are
relatively low.

J. Off-Chip Large-Scale Memory

Table XII gives a brief overview of off-chip dynamic
RAM (DRAM) latency and bandwidth as commonly used
in processor systems. Random read latency is measured on
Intel DDR2 and DDR3 systems with off-chip (65 ns) and
on-die (55 ns) memory controllers. FPGA memory latency
is calculated as the sum of the memory controller latency and
closed-page DRAM access time [51]. While these estimates do
not account for real access patterns, they are enough to show
that off-chip latency and throughput ratios between custom
CMOS and FPGA are far lower than for any of the in-core
circuits discussed above.

K. Summary of Building Block Circuits

A summary of our estimates for the FPGA versus custom
CMOS delay and area ratios is given in Table XIII. Note that
the range of delay ratios (from 7–75×) is smaller than the
range of area ratios (from 2–210×). The multiplexer circuit has
the highest delay ratios. Hard blocks used to support specific
circuit types have only a small impact on delay ratios, but they
considerably impact the area efficiency of SRAM, adders, and
multiplier circuits. Multiplexers and CAMs are particularly
area inefficient.

Reference [4] reported an average of 3.0–3.5× delay ratio
and 18–35× area ratio for FPGA versus standard cell ASIC
for a set of complete circuits. Although we expect both ratios
to be higher when comparing FPGA against custom CMOS,
our processor core delay ratios are higher but area ratios are
slightly lower, which is initially surprising. We believe this
is likely due to custom processors being optimized more for
delay at the expense of area compared with typical standard
cell circuits.

V. IMPACT ON PROCESSOR MICROARCHITECTURE

Section IV measured the area and delay differences between
different circuit types targeting both custom CMOS and

TABLE XIII

DELAY AND AREA RATIO SUMMARY

FPGAs. In this section, we relate those differences to the
microarchitectural design of circuits in the two technologies.
It is important to note that area is often a primary concern in
the FPGA space, given the high area cost of programmability,
leading to lower logic densities and high relative costs of
the devices. In addition, the above results show that the area
ratios between different circuit types vary over a larger range
(2–200×) than the delay ratios (7–75×). For both of these
reasons, we expect that area considerations will have a stronger
impact on microarchitecture than delay.

The building blocks we measured cover many of the circuit
structures used in microprocessors.

1) SRAMs are very common, but take on different forms.
Caches are usually low port count and high-density
SRAMs. Register files use high port count, require
higher speed, and are lower total capacity. RAM
structures are also found in various predictors (branch
direction and target, memory load dependence), and
in various buffers and queues used in out-of-order
microarchitectures (ROB, register rename table, and
register free lists).

2) CAMs can be found in high-associativity caches and
TLBs. In out-of-order processors, CAMs can also be
used for register renaming, memory store queue address
matching, and instruction scheduling (in reservation
stations). Most of these can be replaced by RAMs,
although store queues and instruction scheduling are
usually CAM based.

3) Multipliers are typically found only in ALUs (both
integer and floating point).

4) Adders are also found in ALUs. Addition is also used
for address generation, and in miscellaneous places
such as the branch target address computation.

5) Small multiplexers are commonly scattered within
random logic in a processor. Larger, wider multiplexers
can be found in the bypass networks near the ALUs.

6) Pipeline latches and registers delimit the pipeline stages
(which are used to reduce the cycle time) in pipelined
processors.

We begin with general suggestions applicable to all processors,
then discuss issues specific to out-of-order processors. Our

WONG et al.: QUANTIFYING THE GAP BETWEEN FPGA AND CUSTOM CMOS 2077

focus on out-of-order processors is driven by the desire to
improve soft processor performance given the increasing logic
capacity of new generations of FPGAs, while also preserving
the ease of programmability of the familiar single-threaded
programming model.

A. Pipeline Depth

Pipeline depth is a fundamental choice in the design of a
processor microarchitecture. Increasing pipeline depth results
in higher clock speeds, but with diminishing returns due to
pipeline latch delays. Hartstein et al. [48] show that the opti-
mal processor pipeline depth for performance is proportional
to

√
tp/to, where tp is the total logic delay of the processor

pipeline and to is the delay overhead of a pipeline latch. Other
properties of a processor design, such as branch prediction
accuracy, the presence of out-of-order execution, or issue
width, also affect the optimal pipeline depth, but these proper-
ties depend on microarchitecture, not implementation technol-
ogy. The implementation technology-dependent parameters to
and tp have a similar effect on the optimal pipeline depth for
different processor microarchitectures, and these are the only
two parameters that change when comparing implementations
of the same microarchitecture on two different implementation
technologies (custom CMOS versus FPGA).

Section IV-H showed that the delay ratio of registers (which
is the to of the FPGA versus the to custom CMOS, measured
as ∼15×) is lower than the delay ratio of a complete processor
(which is roughly4 the tp of the processor on the FPGA versus
the tp of a custom CMOS processor, ∼22×), increasing tp/to
on FPGA. The change in tp/to is roughly (22/15), suggesting
soft processors should have pipeline depths roughly 20%
longer compared with an equivalent microarchitecture imple-
mented in custom CMOS. Today’s soft processors prefer short
pipelines [52] because soft processors had low complexity and
have low tp , and not due to a property of the FPGA substrate.
In addition, pipeline registers are nearly free in area in many
FPGA designs because most designs consume more logic cells
(LUTs) than registers, further encouraging deeper pipelines in
soft processors.

B. Interconnect Delay and Partitioning of Structures

The portion of a chip that can be reached in a single clock
cycle is decreasing with each newer process generation, while
transistor switching speeds continue to improve. This leads to
microarchitectures that partition large structures into smaller
ones. This could be dividing the design into clusters (such as
grouping a register file with ALUs into a cluster and requiring
extra latency to communicate between clusters) or employing
multiple cores to avoid global, one-cycle, communication [7].

In Section IV-I, we observed that after adjustment for the
reduced logic density of FPGAs, long wires have a delay

4The value of tp is the total propagation delay of a processor with the
pipeline latches removed, and is not easily measured. It can be approximated
by the product of the number of pipeline stages (N) and cycle time if we
assume perfectly balanced stages. The cycle time includes both logic delay
(tp/N) and latch overhead (to) components for each pipeline stage, but since
we know the custom CMOS versus FPGA to ratio is smaller than the cycle
time ratio, using the cycle time ratio as an estimate of the tp ratio results in
a slight underestimate of the tp ratio.

ratio roughly half that of a full processor core. The relatively
faster long wires lessen the impact of global communication,
reducing the need for aggressive partitioning of designs for
FPGAs. In practice, FPGA processors have less logic complex-
ity than high-performance custom processors, further reducing
the need to partition.

C. ALUs and Bypassing

Multiplexers consume much more area (>100×) on FPGAs
than custom CMOS (Section IV-G), making bypass networks
that shuffle operands between functional units more expensive
on FPGAs. On the other hand, the functional units themselves
are often composed of adders and multipliers and have a lower
4.5–7× area ratio. The high cost of multiplexers reduces the
area benefit of using multiplexers to share these functional
units.

There are processor microarchitecture techniques that
reduce the size of operand-shuffling networks relative to
the number of ALUs. Fused ALUs that perform two or
more dependent operations at a time increase the amount of
computation relative to operand shuffling, such as the common
fused multiply-accumulate unit and interlock collapsing
ALUs [53], [54]. Other proposals cluster instructions together
to reduce the communication of operand values to instructions
outside the group [55], [56]. These techniques may benefit
soft processors more than hard processors.

D. Cache Organization

Set-associative caches have two common implementation
styles. Low-associativity caches replicate the cache tag RAM
and access them in parallel, while high-associativity caches
store tags in CAMs. High-associativity caches are more expen-
sive on FPGAs because of the high area cost of CAMs
(100–210× bit density ratio). In addition, custom CMOS
caches built from tag CAM and data RAM blocks can have
the CAMs decoded match lines directly drive the RAMs word
lines, while an FPGA CAM must produce encoded outputs that
are then decoded by the SRAM, adding a redundant encode–
decode operation that was not included in the FPGA circuits
in Section IV-D (we assumed CAMs with decoded outputs).
In comparison, custom CMOS CAMs have minimal delay and
2–3× area overhead compared with RAM allowing for high-
associativity caches (with a CAM tag array and RAM data
array) to have an amortized area overhead of around 10%, with
minimal change in delay compared with lower associativity
set-associative caches [57].

CAM-based high-associativity caches are not area efficient
in FPGA soft processors and hence soft processor caches
should have lower associativity than similar hard processors.
Soft processor caches should also be of higher capacity than
those of similar hard processors because of the good area
efficiency of FPGA SRAMs (2–5× density ratio).

E. Memory System Design

The lower area cost of block RAM encourages the use
of larger caches, reducing cache miss rates and lowering
the demand for off-chip DRAM bandwidth. The lower clock

2078 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

Fig. 10. Typical out-of-order processor microarchitecture.

speeds of FPGA circuits further reduce off-chip bandwidth
demand. The latency and bandwidth of off-chip memory are
only slightly worse on FPGAs than custom CMOS processors
as they use essentially the same commodity DRAMs.

Hard processors use many techniques to improve memory
system performance, such as DRAM access scheduling, non-
blocking caches, prefetching, memory dependence specula-
tion, and out-of-order memory accesses. The lower off-chip
memory system demands on FPGA soft processors suggest
that more resources should be dedicated to improving the
performance of the processor core than memory bandwidth
or tolerating latency.

F. Out-of-Order Microarchitecture

Superscalar out-of-order processors are more complex than
single-issue in-order processors. The larger number of instruc-
tions and operands in flight increase multiplexer and CAM
use, leading to the common expectation that out-of-order
processors would be disproportionately expensive on FPGAs,
and therefore not a suitable choice for use in soft processors.
However, Section IV-A suggests that processor complexity
does not have a strong correlation with FPGA versus custom
CMOS area ratio: even when not specifically FPGA optimized,
the multiple-issue out-of-order Nehalem processor has an area
ratio similar to the three in-order designs, suggesting that out-
of-order and in-order processor designs appear equally suited
for FPGA implementation. One possible explanation is that,
for issue widths found in current processors, most of the area
in a complex out-of-order processor is not spent on the CAM-
like schedulers and multiplexer-like bypass networks, even
though these structures are often high power, timing critical,
and scale poorly to very wide issue widths. The small size of
the CAMs and multiplexers mean that even particularly high-
area ratios for CAMs and multiplexers cause only a small
impact to the area of the whole processor core.

Fig. 10 shows the high-level organization of a typical
out-of-order processor. Fetch, decode, register rename, and
instruction commit are done in program order. The ROB tracks
instructions as they progress through the out-of-order section
of the processor. Out-of-order execution usually includes a
CAM-based instruction scheduler, a register file, some exe-
cution units (ALUs), and bypass networks. The memory
load/store units and the memory hierarchy are not shown in
this diagram.

There are several styles of microarchitectures commonly
used to implement precise interrupt support in pipelined
or out-of-order processors and many variations are used in

Fig. 11. Out-of-order processor microarchitecture variants. (a) Intel P6.
(b) AMD K7. (c) PRF.

modern processors [58], [59]. The main variations between
the microarchitecture styles concern the organization of the
ROB, register renaming logic, register file, and instruction
scheduler and whether each component uses a RAM- or CAM-
based implementation. Some common organizations used in
recent out-of-order processors are shown in Fig. 11. These
organizations have important implications on the RAM and
CAM size and port counts used by a processor.

The Intel P6-derived microarchitectures (from Pentium Pro
to Nehalem) use reservation stations and a separate committed
register file (Fig. 11(a)) [60]. Operand values are stored in
one of three places: retired register file, ROB, or reservation
stations. The retired register file stores register values that
are already committed. The ROB stores register values that
are produced by completed, but not committed, instructions.
When an instruction is dispatched, it reads any operands that
are available from the retired register file (already committed)
or ROB (not committed), stores the values in the reservation
station entry, and waits until the remaining operand values
become available on the bypass networks. When an instruction
commits, its result value is copied from the ROB into the
retired register file. This organization requires several mul-
tiported RAM structures (ROB and retired register file) and
a scheduler CAM that stores operand values (any number
of waiting instructions may capture a previous instruction’s
result).

The organization used in the AMD K7 and derivatives
(K7–K10) unifies the speculative (future file) and retired
register files into a single multiported RAM structure (labeled
RegFile RAM in Fig. 11(b) [61]). Like the P6, register values
are stored in three places: ROB, register file, and reservation
stations. Unlike the P6, dispatching instructions only need to
read the future file RAM but not from the ROB. However,
result values are still written into the ROB, and, like the P6,
are copied into the register file when an instruction commits.
Using a combined future file and register file reduces the
number of read ports required for the ROB (the ROB is read
only for committing results), but increases the number of read
ports for the register file. Like the P6, the K7 uses a reservation
station scheduler that stores operand values in a CAM. For
FPGA implementations, the K7 organization seems to be a
slight improvement over the P6 because only the register file
is highly multiported (the ROB only needs multiple write ports
and sequential read for commit), and the total number of RAM
ports is reduced slightly.

The physical register file (PRF) organization (Fig. 11(c))
has been used in many hard processor designs, such as the
MIPS R10K, IBM Power4, Power5, and Power7, Intel Pentium
4 and Sandy Bridge, DEC 21264, and AMD Bobcat and

WONG et al.: QUANTIFYING THE GAP BETWEEN FPGA AND CUSTOM CMOS 2079

Bulldozer [62]–[67]. In a PRF organization, operand values
are stored in one central register file. Both speculative and
committed register values are stored in the same structure.
The register renamer explicitly renames architectural register
numbers into indices into the PRF, and must be able to track
which physical registers are in use and roll back register
mappings during a pipeline flush. After an instruction is
dispatched into the scheduler, it waits until all of its operands
are available. Once the instruction is chosen to be issued,
it reads all of its operands from the PRF RAM or bypass
networks, normally taking one extra cycle compared with the
P6 and K7. The instruction’s result is written back into the
register file RAM and bypass networks. When an instruction
commits, only the state of the register renamer needs to be
updated, and there is no copying of register values as in the
previous two organizations.

The PRF organization has several advantages that are
particularly significant for FPGA implementations. Register
values are only stored in one structure (the PRF), reducing
the number of multiported structures required. In addition, the
scheduler’s CAM does not store operand values, allowing the
area-inefficient CAM to be smaller, with operand values stored
in a more area-efficient register file RAM. This organization
adds some complexity to track free physical registers and an
extra pipeline stage to access the PRF. FPGA RAMs have
particularly low area cost (Section IV-B), but CAMs are area
expensive (Section IV-D). The benefits of reducing CAM size
and multiported RAMs suggest that the PRF organization
would be particularly preferred for FPGA implementations.

The delay ratio of CAMs (15×) is not particularly poor,
so CAM-based schedulers are reasonable on FPGA soft
processors. However, the high area cost of FPGA CAMs
means scheduler capacity should be kept small. In addition to
reducing the number of scheduler entries, reducing scheduler
area can be done by reducing the number of entries or the
amount of storage required per entry. One method is to choose
an organization that does not store operand values in the CAM,
like the PRF organization (Fig. 11(c)). Schedulers can be data
capturing where operand values are captured and stored in the
scheduler, or nondata capturing where the scheduler tracks
only the availability of operands, with values fetched from the
register file or bypass networks when an instruction is finally
issued. Nondata capturing schedulers reduce the amount of
data that must be stored in each entry of a scheduler.

The processor organizations described above all use a CAM
for instruction scheduling. It may be possible to further reduce
the area cost by removing the CAM. There are CAM-free
instruction scheduler techniques that are not widely imple-
mented [6], [68], but may become more favorable in soft
processors. ROBs, register renaming logic, and register files
have occasionally been built using CAMs in earlier processors,
but are commonly implemented without CAMs.

On FPGAs, block RAMs come in a limited selection
of sizes, with the smallest block RAMs commonly being
4.5–20 kb. ROBs and register files are usually even smaller in
capacity but are limited by port width or count so processors
on FPGAs can have larger capacity ROBs, register files,
and other port-limited RAM structures at a little extra cost.

In contrast, expensive CAMs limit soft processors to small
scheduling windows (instruction scheduler size). Microarchi-
tectures that address this particular problem of large instruction
windows with small scheduling windows may be useful in soft
processors [69].

VI. CONCLUSION

We have presented area and delay comparisons of proces-
sors and their building block circuits implemented on cus-
tom CMOS and FPGA substrates. In 65-nm processes,
we found FPGA implementations of processor cores have
18–26× greater delay and 17–27× greater area usage than the
same processors in custom CMOS. The FPGA versus custom
CMOS delay ratios for most of the processor building block
circuits fall within the relatively narrow delay ratio range for
complete processor cores, but area ratios have much wider
variation. Building blocks such as adders and SRAMs that
have dedicated hardware support on FPGAs are particularly
area efficient, while multiplexers and CAMs are particularly
area inefficient.

In the second part of this paper, we discussed the impact of
these measurements on microarchitecture design choices. The
FPGA substrate encourages soft processors to have larger, low-
associativity caches, deeper pipelines, and fewer bypass net-
works than similar hard processors. In addition, while current
soft processors tend to be in-order, out-of-order execution is
a valid design option for soft processors, although scheduling
windows should be kept small and a PRF organization should
be used to reduce the area impact of using a CAM-based
instruction scheduler.

REFERENCES

[1] H. Wong, et al., “Comparing FPGA vs. custom CMOS and the impact
on processor microarchitecture,” in Proc. FPGA, 2011, pp. 5–14.

[2] Nios II Processor, Altera, San Jose, CA, USA, May 2011.
[3] MicroBlaze Soft Processor, Xilinx, San Jose, CA, USA, Apr. 2004.
[4] I. Kuon, et al., “Measuring the gap between FPGAs and ASICs,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 2, pp.
203–215, Feb. 2007.

[5] D. Chinnery, et al., Closing the Gap Between ASIC & Custom, Tools and
Techniques for High-Performance ASIC Design. Norwell, MA, USA:
Kluwer, 2002.

[6] S. Palacharla, et al., “Complexity-effective superscalar processors,”
SIGARCH Comput. Archit. News, vol. 25, no. 2, pp. 206–218, May
1997.

[7] V. Agarwal, et al., “Clock rate versus IPC: The end of the road
for conventional microarchitectures,” SIGARCH Comp. Archit. News,
vol. 28, no. 2, pp. 248–259, May 2000.

[8] P. Metzgen, et al., “Multiplexer restructuring for FPGA implementation
cost reduction,” in Proc. 42nd DAC, Jun. 2005, pp. 421–426.

[9] P. Metzgen, “A high performance 32-bit ALU for programmable logic,”
in Proc. 12th Int. Symp. FPGA, 2004, pp. 61–70.

[10] P. H. Wang, et al., “Intel Atom processor core made FPGA-
synthesizable,” in Proc. FPGA, 2009, pp. 209–218.

[11] S.-L. L. Lu, et al., “An FPGA-based Pentium in a complete desktop
system,” in Proc. FPGA, 2007, pp. 53–59.

[12] S. Tyagi, et al., “An advanced low power, high performance, strained
channel 65 nm technology,” in Proc. IEEE IEDM, Dec. 2005,
pp. 245–247.

[13] K. Mistry, et al., “A 45-nm logic technology with high-k+metal gate
transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry pat-
terning, and 100% Pb-free packaging,” in Proc. IEEE IEDM, Dec. 2007,
pp. 247–250.

[14] A. S. Leon, et al., “A power-efficient high-throughput 32-thread SPARC
processor,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 295–304,
Jan. 2007.

2080 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 10, OCTOBER 2014

[15] U. Nawathe, et al., “Implementation of an 8-core, 64-thread, power-
efficient SPARC server on a chip,” IEEE J. Solid-State Circuits, vol. 43,
no. 1, pp. 6–20, Jan. 2008.

[16] G. Gerosa, et al., “A sub-2 W low power IA processor for mobile internet
devices in 45 nm high-k metal gate CMOS,” IEEE J. Solid-State Circuits,
vol. 44, no. 1, pp. 73–82, Jan. 2009.

[17] G. Schelle, et al., “Intel Nehalem processor core made FPGA synthe-
sizable,” in Proc. FPGA, 2010, pp. 3–12.

[18] R. Kumar, et al., “A family of 45 nm IA processors,” in Proc. IEEE
ISSCC, Feb. 2009, pp. 58–59.

[19] Sun Microsystems. (2010). OpenSPARC, Santa Clara, CA, USA
[Online]. Available: http://www.opensparc.net/

[20] J. Davis, et al., “A 5.6 GHz 64 kB dual-read data cache for the POWER6
processor,” in Proc. IEEE ISSCC, Feb. 2006, pp. 2564–2571.

[21] M. Khellah, et al., “A 4.2 GHz 0.3 mm2 256 kB dual-Vcc SRAM
building block in 65-nm CMOS,” in Proc. IEEE ISSCC, Feb. 2006,
pp. 2572–2581.

[22] P. Bai, et al., “A 65-nm logic technology featuring 35 nm gate lengths,
enhanced channel strain, 8 Cu interconnect layers, low-k ILD and
0.57 µm2 SRAM cell,” in Proc. IEEE IEDM, Dec. 2004, pp. 657–660.

[23] P. Bai, et al., “Foils from ‘a 65-nm logic technology featuring 35 nm
gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k
ILD and 0.57 µm2 SRAM cell’,” in Proc. IEEE IEDM, 2004.

[24] L. Chang, et al., “A 5.3 GHz 8T-SRAM with operation down to 0.41 V
in 65-nm CMOS,” in Proc. VLSI Symp., Jun. 2007, pp. 252–253.

[25] S. Hsu, et al., “An 8.8 GHz 198mW 16×64b 1R/1W variation-tolerant
register file in 65-nm CMOS,” in Proc. IEEE ISSCC, Feb. 2006,
pp. 1785–1797.

[26] S. Thoziyoor, et al., “CACTI 5.1,” HP Lab., Palo Alto, CA, USA,
Tech. Rep. HPL-2008-20, Apr. 2008.

[27] C. E. LaForest, et al., “Efficient multi-ported memories for FPGAs,” in
Proc. 18th Annu. ACM/SIGDA Int. Symp. FPGA, 2010, pp. 41–50.

[28] K. Pagiamtzis, et al., “Content-addressable memory (CAM) circuits and
architectures: A tutorial and survey,” IEEE J. Solid-State Circuits, vol.
41, no. 3, pp. 712–727, Mar. 2006.

[29] K. McLaughlin, et al., “Exploring CAM design for network processing
using FPGA technology,” in Proc. AICT-ICIW, Feb. 2006, paper 84.

[30] J.-L. Brelet, et al., “Using Virtex-II block RAM for high performance
read/write CAMs,” Xilinx, San Jose, CA, USA, Tech. Rep. XAPP260,
May 2002.

[31] I. Arsovski, et al., “Self-referenced sense amplifier for across-chip-
variation immune sensing in high-performance content-addressable
memories,” in Proc. IEEE CICC, Sep. 2006, pp. 453–456.

[32] D. W. Plass, et al., “IBM POWER6 SRAM arrays,” IBM
J. Res. Develop., vol. 51, no. 6, pp. 747–756, 2007.

[33] W. Hu, et al., “Godson-3: A scalable multicore RISC processor with
x86 emulation,” IEEE Micro, vol. 29, no. 2, pp. 17–29, Mar./Apr. 2009.

[34] A. Agarwal, et al., “A dual-supply 4 GHz 13fJ/bit/search 64×128b CAM
in 65 nm CMOS,” in Proc. 32nd ESSCIRC, Sep. 2006, pp. 303–306.

[35] S. Hsu, et al., “A 110 GOPS/W 16-bit multiplier and reconfigurable
PLA loop in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 1,
pp. 256–264, Jan. 2006.

[36] W. Belluomini, et al., “An 8 GHz floating-point multiply,” in Proc. IEEE
ISSCC, vol. 1. Feb. 2005, pp. 374–604.

[37] J. Kuang, et al., “The design and implementation of double-precision
multiplier in a first-generation CELL processor,” in Proc. ICIDT,
May 2005, pp. 11–14.

[38] P. Jamieson, et al., “Mapping multiplexers onto hard multipliers in
FPGAs,” in Proc. 3rd Int. IEEE-NEWCAS, Jun. 2005, pp. 323–326.

[39] A. Agah, et al., “Tertiary-tree 12-GHz 32-bit adder in 65 nm technol-
ogy,” in Proc. IEEE ISCAS, May 2007, pp. 3006–3009.

[40] S. Kao, et al., “A 240 ps 64b carry-lookahead adder in 90 nm CMOS,”
in Proc. IEEE ISSCC, Feb. 2006, pp. 1735–1744.

[41] S. B. Wijeratne, et al., “A 9-GHz 65-nm Intel Pentium 4 processor
integer execution unit,” IEEE J. Solid-State Circuits, vol. 42, no. 1,
pp. 26–37, Jan. 2007.

[42] X. Y. Zhang, et al., “A 270 ps 20 mW 108-bit end-around carry adder
for multiply-add fused floating point unit,” Signal Process. Syst., vol. 58,
no. 2, pp. 139–144, Feb. 2010.

[43] K. Vitoroulis, et al., “Performance of parallel prefix adders implemented
with FPGA technology,” in Proc. IEEE NEWCAS Workshop, Aug. 2007,
pp. 498–501.

[44] M. Alioto, et al., “Interconnect-aware design of fast large fan-in CMOS
multiplexers,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 6,
pp. 484–488, Jun. 2007.

[45] Stratix III Device Handbook Volume 1, Altera, San Jose, CA, USA, 2009.

[46] D. Lewis, et al., “The Stratix II logic and routing architecture,” in Proc.
13th Int. Symp. FPGA, 2005, pp. 14–20.

[47] E. Sprangle, et al., “Increasing processor performance by implementing
deeper pipelines,” SIGARCH Comput. Archit. News, vol. 30, no. 2,
pp. 25–34, 2002.

[48] A. Hartstein, et al., “The optimum pipeline depth for a microprocessor,”
SIGARCH Comput. Archit. News, vol. 30, no. 2, pp. 7–13, May 2002.

[49] M. S. Hrishikesh, et al., “The optimal logic depth per pipeline stage is
6 to 8 FO4 inverter delays,” in Proc. ISCA, 2002, pp. 14–24.

[50] (2007). International Technology Roadmap for Semiconductors [Online].
Available: http://www.itrs.net/Links/2007ITRS/Home2007.htm

[51] External Memory Interface Handbook, Volume 3, Altera, San Jose, CA,
USA, Nov. 2011.

[52] P. Yiannacouras, et al., “The microarchitecture of FPGA-based soft
processors,” in Proc. CASES, 2005, pp. 202–212.

[53] N. Malik, et al., “Interlock collapsing ALU for increased instruction-
level parallelism,” SIGMICRO Newslett., vol. 23, nos. 1–2, pp. 149–157,
Dec. 1992.

[54] J. Phillips, et al., “High-performance 3-1 interlock collapsing ALU’s,”
IEEE Trans. Comput., vol. 43, no. 3, pp. 257–268, Mar. 1994.

[55] P. G. Sassone, et al., “Dynamic strands: Collapsing speculative depen-
dence chains for reducing pipeline communication,” in Proc. 37th
MICRO, Dec. 2004, pp. 7–17.

[56] A. W. Bracy, “Mini-graph processing,” Ph.D. dissertation, Dept. Comput.
Inf. Sci., Univ. Pennsylvania, Philadelphia, PA, USA, 2008.

[57] M. Zhang, et al., “Highly-associative caches for low-power processors,”
in Proc. 33rd Int. Symp. Microarchit. Appears Kool Chips Workshop,
Dec. 2000, pp. 1–6.

[58] J. Smith, et al., “Implementing precise interrupts in pipelined proces-
sors,” IEEE Trans. Comput., vol. 37, no. 5, pp. 562–573, May 1988.

[59] G. Sohi, “Instruction issue logic for high-performance, interruptible,
multiple functional unit, pipelined computers,” IEEE Trans. Comput.,
vol. 39, no. 3, pp. 349–359, Mar. 1990.

[60] L. Gwennap, “Intel’s P6 uses decoupled superscalar design,” Micro-
processor Rep., vol. 9, no. 2, pp. 9–15, Feb. 1995.

[61] M. Golden, et al., “A seventh-generation x86 microprocessor,” IEEE J.
Solid-State Circuits, vol. 34, no. 11, pp. 1466–1477, Nov. 1999.

[62] K. Yeager, “The MIPS R10000 superscalar microprocessor,” IEEE
Micro, vol. 16, no. 2, pp. 28–41, Apr. 1996.

[63] G. Hinton, et al., “A 0.18-µm CMOS IA-32 processor with a 4-GHz
integer execution unit,” IEEE J. Solid-State Circuits, vol. 36, no. 11,
pp. 1617–1627, Nov. 2001.

[64] T. N. Buti, et al., “Organization and implementation of the register-
renaming mapper for out-of-order IBM POWER4 processors,” IBM
J. Res. Develop., vol. 49, no. 1, pp. 167–188, Jan. 2005.

[65] R. Kalla, et al., “IBM Power5 chip: A dual-core multithreaded proces-
sor,” IEEE Micro, vol. 24, no. 2, pp. 40–47, Mar./Apr. 2004.

[66] B. Burgess, et al., “Bobcat: AMD’s low-power x86 processor,” IEEE
Micro, vol. 31, no. 2, pp. 16–25, Mar./Apr. 2011.

[67] M. Golden, et al., “40-entry unified out-of-order scheduler and integer
execution unit for the AMD Bulldozer x86–64 core,” in Proc. IEEE
ISSCC, Feb. 2011, pp. 80–82.

[68] F. J. Mesa-Martínez, et al., “SEED: Scalable, efficient enforcement of
dependences,” in Proc. PACT, Sep. 2006, pp. 254–264.

[69] M. Pericas, et al., “A decoupled KILO-instruction processor,” in Proc.
12th Int. Symp. HPCA, Feb. 2006, pp. 53–64.

Henry Wong is pursuing the Ph.D. degree from the Department of Electrical
and Computer Engineering, University of Toronto, Toronto, ON, Canada.

Vaughn Betz is an Associate Professor of the Electrical and Computer
Engineering Department, University of Toronto, Toronto, ON, Canada. He
was previously a Senior Director of Software Engineering at Altera, where
he was one of the architects of the Quartus II CAD system and the Stratix
and Cyclone FPGA families.

Jonathan Rose (F’09) is a Professor with the Department of Electrical and
Computer Engineering, University of Toronto, Toronto, ON, Canada. He has
worked in the area of FPGA CAD and architecture for over 20 years, including
stints at the two major vendors, Xilinx and Altera, as well as a startup.

Prof. Rose is a Fellow of the ACM and a Foreign Associate of the American
National Academy of Engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

