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Abstract

As the logic capacity of Field-Programmable Gate
Arrays (FPGASs) increases, they are being increasingly
used to implement large arithmetic-intensive applica-
tions, which often contain a large proportion of datap-
ath circuits. Since datapath circuits usually consist of
regularly structured components, called bit-dices, it is
possible to utilize datapath regularity in order to
achieve significant area savings through FPGA archi-
tectural innovations. This paper describes such an
FPGA logic block architecture, called a multi-bit logic
block, which employs configuration memory sharing to
exploit datapath regularity. It is experimentally shown
that, comparing to conventional FPGA logic blocks, the
multi-bit logic blocks can achieve 18% to 26% logic
block area reduction for implementing datapath cir-
cuits, which represents an overall FPGA area saving of
5% to 13%. A packing algorithm for the multi-bit logic
block architecture is also proposed in this paper; and it
is used to empirically find the best values for several
important architectural parameters of the new architec-
ture, including the most area efficient granularity val-
ues and the most area efficient amount of configuration
memory sharing.

1. Introduction

Field-Programmable Gate Arrays (FPGAS) that
process multiple bits of data & a time represent a new
architectural approach for implementing datapath cir-
cuits on reconfigurable hardware that can significantly
reduce the amourt of programming information
required to configure an FPGA. The main benefit of this
reduction in programming information is the subse-
guent reduction o configuration memory bits, which
can lead to increases in logic density. Called multi-bit
FPGASs, the detailed implementation o these devices
often consists of multiple-bit wide logic blocks and
routing resources that take advantage of datapath regu-
larity by sharing a single set of configuration memory
across multiple sets of programmable resources. This
sharing results in a denser FPGA that is especialy effi-
cient at implementing large arithmetic-intensive datap-
ath circuits including computer graphics, multimedia,
digital signal processing, and Internet routing applica
tions.

Several multi-bit FPGA architectures have been
proposed in the past [1]-{12] with awide range of logic
block designs. In this work, we focus on the study of
logic cluster-based multi-bit logic blocks. In particular,
we propose a specific logic block architecture dong
with its packing agorithm (the step in the CAD flow
that choases which logic dementsto group together in a
cluster). The area efficiency of the proposed logic block
architecture is then empirically evaluated. The primary
reason for the choice of logic cluster-based logic blocks
is due to the fact that logic dusters are the building
blocks of many state-of-the-art commercial FPGAs
(including the Altera Flex, Stratix, and Cyclone series
[17] and Xilinx 520Q Virtex, and Spartan families [18]
of FPGAS), and with their ever-increasing logic capac-
ity, commercial FPGASs are being increasingly used to
implement large datapath-intensive appli caions.

For multi-bit FPGAS, it is essential to have aset of
automated design tools in order to make the dfective
use of their multi-bit architectures. As aresult, a set of
datapath-oriented CAD todls, including synthesis, pack-
ing, placement, and routing tools, have been developed
at the University of Toronto; and in this paper, we focus
on the particular problem of automated packing. Pack-
ing for multi-bit FPGAs is more difficult than classical
packing [14] [15] [1€], because, to effectively ultili ze
configuration memory sharing, the pader has to pre-
serve the regularity of datapath circuits on top o the
conventional packing dojectives of achieving the small -
est possible implementation area and the shortest possi-
ble aitical path delay.

Toinvestigate the aea dficiency of the logic block
architecture, we experimentally determine the best
granularity values of and the best amourt of configura-
tion memory sharing for the proposed logic blocks.
Extensive research [19] [20] [15] [21] has been con-
ducted in the past in order to determine the best sizes
and structures for conventional FPGA logic blocks.
These studies have shown the importance of logic block
architecture on the overall area-efficiency of FPGAs.
None of the studies, however, considers the problem of
configuration memory sharing, which requires the pres-
ervation d datapath regularity (all these studies use
conventional synthesis and packing algorithms, which
destroy the regularity of datapath circuits and essen-
tially turn datapath into finite state machine-like netli sts
of “randomly” connected logic gates). In this study, a
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datapath-oriented synthesis algorithm [22] is used,
which preserves a grea amount of user-specified regu-
larity. The preserved regularity, in turn, is used by the
packing algorithm to investigate the area efficiency of
the proposed logic blocks.

The rest of this paper is organized as foll ows: Sec
tion 2 presents the multi-bit logic block architecture;
Section 3 describes the packing agorithm; Section 4
presents the experimental results on the area efficiency
of the proposed logic blocks; and Section 5 gives con-
cluding remarks.

2. The M ulti-Bit Logic Block Architecture

The basic building blocks of the multi-bit logic
blocks are logic dusters, which were first introduced in
[20] as ageneralized form of thelogic aray blocks used
in the Altera FLEX8K and FLEX10K series of FPGASs.
As shown in Figure 1, each logic cluster is constructed
out of Basic Logic Elements (BLES), which consist of a
4-input Look-Up Table (LUT), a register, and a multi-
plexer; and atotal of 17 Static Random A ccess Memory
(SRAM) bits are required to control the configuration
of asinge BLE.

N BLEs are grouped together to form a single
logic duster; and each BLE input is conrected to the |
cluster level inpus and the N BLE outputs through an
I +N to 1 multi plexer. Each multi plexer is, in turn, con-
trolled by [log,(I +N)] SRAM bits. Since there are a

total of 4N BLE inputs in a logic duster,
4N[log,(I +N)7 bits of SRAM arerequired to control all
the multiplexer configurations. Finaly, assuming that
two SRAM cells are used to control the set/reset logic
of each logic cluster [23], the tota number of SRAM
bits required to control a logic cluster is given by the
following equation:

Coram = 17N+4N[logy(1 +N)]+2 (1)

Using the observation in [20] that | shoud be
equal to 2N+ 2, Equation 1becomes:
Csram = 17N +4N[log,(3N +2)7+2 2

which isamonotonically increasing function d N. The
SRAM count for various cluster sizesis simmarized in
column 3of Table 1.

Asin previous gudies[23], in this paper, the ative
area (the area consumed by transistors), A, is used to
estimate the overall resource consumption of various
logic cluster components. This area is measured as the
number of minimum width transistors using the foll ow-
ing formula:

Y (05+

A= All Transistors (3)

Drive Strength o the Current Transistor
2 x Drive Strength of Min. Width Transistor[

Table 1 lists the total active area consumed by logic
clusters of various dzes and the total area consumed by
the SRAM bits in column 4 and 5, respedively. The
SRAM area @ a percentage of the total cluster area is
shown in column 6. As iown, unlike the SRAM count,
the total SRAM area as a percentage of the total cluster
area nearly monaonically decreases with increasing N .
For small cluster sizes, the SRAM area wnsists of near
50% of the total cluster area; for extremely large cluster
sizes, on the other hand, the SRAM cell s consume less
than 10% of the total cluster area. Most importantly,
however, for the cluster sizes of 4 to 10, which were
determined to be the most efficient cluster sizes by pre-
vious studies [20], the SRAM cell's consume asubstan-
tial amount (between 48% to 3%0) of the total cluster
area. (Note that for the active area calculations, al tran-
sistors in a logic duster are properly sized using the
methoddogy outlinedin [23].)

The large anount of area mwnsumed by the SRAM
cells motivates the multi-bit logic block design, which
shares the configuration memory across the logic dus-
ters. Figure 2 shows the structure of a multi-bit logic
block. Here, each logic block contains M logic dusters,
where M is cdled the granularity of the logic block.
Note that each cluster is designed to implement asingle
bit-sli ce of adatapath circuit and the clustersfrom asin-
gle logic block are used to implement the aljacent bit-
slices.

As diown in Figure 2, the configuration memory is
shared among M corresponding resources from distinct
logic clusters. It is assumed that when the configuration
memory of aBLE is dhared, the configuration memory
of all of its input multi plexers must aso be shared. It is
also assumed that not all BLEs in alogic duster must
be aontrolled by shared configuration memory; and the
degreeof configuration memory sharing, N, is defined
to be the actual number of BLES in each logic cluster
that are controlled by shared configuration.

Table 2 shows the aserage active aea per logic
cluster for cluster size (N) of 4 and cluster inpu (1) of
10 ower awide range of valuesfor M and N . Thisclus-

ter area is compared against the aea of a cnventiona
logic duster to calculate the percentage of areareduc-
tion due to configuration memory sharing. As shown,
the sharing of SRAM cdlscan result in significant clus-
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we| e wmw w104 e e oter b 15 calld
aining more than , ol
6786 447990 40716 9% . : .
128 2%8 i a coarse-grain node; and each BLE in the coarse-grain

ter areareduction. Thisis especially true for high values
of M and Ng. For example, the maximum area reduc-

tion per logic duster can be & much as 45% for
M =16 and Ng = 4.

Although multi-bit logic blocks can consume much
less area per cluster due to configuration memory shar-
ing, they might also have lower rate of utili zation if they
are used to implement irregular circuits. The rest of this
paper proposes an automated packing algorithm that
preserves as much datapath regularity as possible; and
the dgorithm is then used to investigate the gpropriate
granularity values and degrees of configuration memory
sharing for multi-bit logic blocks.

node is from a unique bit-dlice of a datapath circuit.

An example of the warse-grain nade graph is
shown in Figure 3, which represents the datapath circuit
shown in Figure 4. The graph consists of 11 intercon-
nected nodes representing the 25 BLEs in the drcuit.
Nodes A throughF are 3-bit wide coarse-grain nodes,
along with the 2-bit wide nodes E' and F', they repre-
sent the eight bit-sli ces of the datapath. Nodes G, H, and
I, on the other hand, are fine-grain nades, which repre-
sent BLEs with the corresponding labels in theirregular
logic part of the circuit.

3.2. Step 1: Initialization

The initidization step consists of two sub-steps.
First, each coarse-grain node whose granularity valueis
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greater than the granularity value of the target architec-
ture (M) is transformed into a set of nodes. Each node
in the set has a granularity value that is snaller than or
equal to the granularity of the multi-bit logic blocks. In
particular, given a coarse-grain nade that is more than
M bits wide, starting at the most significant bit of the
node, the packing agorithm continucusly groups M
neighboring BLEs into new coarse-grain nodes. If there
arelessthan M BLESs remaining at the least significant
end, these remaining BLES are grouped by themselves
into a nock that is less than M -bit wide. These newly
formed nodes are then used to substitute the original
node in the aoarse-grain node graph.

Timing anaysisis then performed onthe input cir-
cuit. During timing analysis, the propagation delay and
the expected arrival time of each BLE input or output
pin is caculated. The slack of each net is then derived
from the delay and the epected arrival time. Finally,
the aiticality value [15] of each net is calculated using
the formula:

S slack
criticality = 1—W (@)
where max_slad is the maximum slack of the input cir-
cuit.

3.3. Step 2: Packing

During step 2, new multi-bit logic blocks are ae-
ated one & atime and each logic block is filled with
nodes from the marse-grain node graph. Nodes are
added to alogic block in a predetermined order. Assum-
ing that the ith BLE in the jth cluster is denoted by the

BLE Position Ind(ix O-r/der for Adding Nodes to Multi-Bit Logic Blocks
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pair of integers (i,j), anodeis added to position (1, 1)
first. Then, as srown in Figure 5, nodes are sequentialy
added to pasitions (2,1), (3,1), ..., (N, 1), (1,2), (2,2),
e (N,2) e (LM), (2,M), ... (N, M), if these positions
arenot aready occupied by BLEs.

This order of adding nales to the logic blocks
guarantees that if no BLEs have been added to position
(i,j), BLE positions (i,j+1), (i,j+2), ..., (i,M) will
also be unoccupied. To find the most suitable node for
BLE position (i, ) , the packing algorithm first finds all
nodes whose granularity islessthan M—j + 1. If (i,j) is
equal to (1, 1), then the seed criti cality function is used
to select the most suitable node from this group of
nodes. Otherwise, the attraction criticality function is
used. Once the most suitable node with a granularity
value of m is determined, the BLEs in this node are
added to consecutive BLE positions (i,j), (i,j+1), ...,
(i,j +m-1) with the least significant BLE added to
paosition (i,j) and the most significant BLE added to
position (i,j + m-1) .

It is also assumed that each multi-bit logic block
contains a carry network as the one shown in Figure 6.
Because of the @rry network, not all BLE positionsin a
cluster are logicdly equivalent. This lack of equiva-
lency is the reason why the packing algorithm must
select nodes for each specific positionsin alogic block.
An example is shown in Figure 6. Here there ae three
BLEs, A, B, and C, in alogic block. These BLEs are
connected by a carry chain through the carry network.
In the figure, the BLE position (1, 1) is equivalent to
the BLE position (3,1); therefore, BLE A can be
moved to pasition (3,1) provided that BLEs B and C
are also moved to position (3, 2) and (3, 3) respectively.
However, BLE A cannot be moved to position (2, 1) or
(4,1) since these two positions are not equivalent to
BLE position (1, 1) due to the difference in their carry
connections.

The remainder of this sction describes the two
criticality functions, including the seed criti cality func-
tion and the dtraction criticality function, which are
used in the packing process.

3.4. Seed Criticality

The first node added to a logic block is called a
seed. It is selected using a metric called the seed criti-
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cality. Implementing a seed in a logic block by itself
does not necessarily improve the performance of a dr-
cuit; however, when a subsequent node, A, is added to
the same logic block, many two-terminal conrections
that connect the seed nade and node A can then be
implemented in the local routing networks or the cary
network of the logic block, which are inherently much
faster than global routing. Consequently, the perfor-
mance of the drcuit is improved. The seed criticality
measures the maximum possible performance improve-
ment; and each two-terminal conrection that can be
implemented inside the logic block is call ed a potential

local connection.

Potentia local connedions can be identified using
a pattern matching process against one of the four
topologies shown in Figure 7. Here topology A and B
contain connections that can be implemented in the
carry network of the logic block; and topology C and D
contain connections that can be implemented in the
local routing networks of the logic clusters.

The formula for calculating seal criticality is
shown in Equation . In the equation, the function
max(X) returns the maximum value in a set, X, of real
numbers. Function cnt(X), returns the number of ele-
ments that are equal to max(X) inthe set X. S(n) isthe
complete allection of all the net criticality values from
all potential loca connections of node n.

sead_criticaity(n) =

max(S(n)) +¢€ xcnt(S(n))+32><d(n) ©)
(e«1)

The function, max(S(n)) , corresponds to the maxi-
mum speed improvement achievable by implementing
n as a seed node. cnt(S(n)) is a tie breaker; and it
courts the number of potentia locd connections that
can achieve the maximum speed improvement. Note

that max(S(n)) and cnt(S(n)) are analogous to the base
seed criticality and the number of path aff ected metrics
used in [15], respedively. These functions, however,
are more general in nature and are gpli cable to awider
range of FPGA clustering architectures than the fully
connected topdogy assumed by[15].

The metric distance to source, d(n), on the other
hand, is an unmodified verson d the same metric
defined in [15]. Nodes with the same max(S(n)) vaues
usually are cnnrected together by a single «itical path.
d(n) measures the order of these nodes along the ariti-
cal path. Everything else being equal, the node that is
the furthest from the source of the aitical path is given
the highest priority for implementation as a seed node.

3.5. Attraction Criticality

Once a sed is added to a logic block, the logic
block is then filled based on the dtraction criticality
metric. Here, each nade in the coarse-grain node graph
is assigned an attraction criticdity value according to
Equation 6 The metric consists of four parts: the base
seed criticdity, B(n), accounts for the performance
improvement of implementing the node in the logic
block; shared I/0O count, C(n), accounts for the number
of additional cluster 1/Os that is needed to implement
the node; and finally secondary attraction criticality,
By(n), and common 1/O court, Cp(n) , account for the

closeness of the placement resulting from adding the
node to the logic block. These four parts are weighted
and summed into the dtraction criticality. Each part is
described in turn.
attraction_criticality (n)=
_p) x &0
* B?) ) B(n) * (1 B) ) PmaxD+ (6)

C
(1-0a)x % xBp(n) +(1-1) xmpf:n_)g

max

3.5.1. Base Seed Criticality As siown in Figure 8, for
logic blocks containing at least one node, the connec-
tions between the node and the logic block can be clas-
sified into two types. The first type consists of
connections that can be implemented in the local rout-
ing retworks of the dusters or the carry network that
connects the dusters together. The secondtype @nsists
of connections that have to be routed through global
routing. The implementation of the first type of connec-
tions often results in increased performance; and this
increase is measured by the base atraction criticdity. It
is equal to the maximum criticality among all type one
connectionsin additionto all the internal connections of
the node that can be implemented in the carry network.

3.5.2. Secondary Attraction Criticality Adding a
node to alogic block aso makes all BLEs in the node
physically closer to the BLEs in the logic block. This
physical closeness potentialy can improve the perfor-
mance of type two connections. The secondary attrac-
tion criticality is used to measure this speed up. It is
egual to the maximum criticality among all type two
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conrections in addition to al i nternal connections of the

node that must be routed through the global routing ret-

work.

3.5.3. Shared /0O Count Since duster inpus are lim-

ited routing resources, it isimportant to minimize their

usage when adding nales to logic blocks. Asin [15], it

is preferable to choose BLEs with the following three

types of I/Osfor a duster:

1. aBLE input that is connected to the same net as one
of the cluster inputs

2. aBLE input that is connected to one of the cluster
outputs

3. aBLE output that is connected to a cluster input

The shared I/O count metric measures the 1/O common-

aliti es between a node and a logic block. It is equal to

the total number of the three types of BLE I/Os in a

node when each BLE is matched with its corresponding

cluster. Note that, in Equation 6, P, is defined to be

the maximum possible value of the shared 1/O court
metric. It isused in the equationto namali ze the shared
1/0 count to avalue that is between Oand 1.
3.5.4. Common |/O Count Adding a node to a logic
block might increase the number of common 1/O sig-
nals sared by various clusters in the logic block. Rout-
ing an inpu signal that is sared by the two clusters
usualy requires fewer resources than routing two dis-
tinct inputs. Similarly, routing the output of one duster
to another requires fewer routing resources if both clus-
ters arein the same logic block. The ommon I/O count
is used to account for thisincrease in routing efficiency.
It is analogous to the shared 1/O count. However,
instead of measuring the number of 1/O signals that are
in common between each BLE and its corresponding
cluster, the common I/O count is equal to the total num-
ber of BLE I/Osinanocdethat isin commonwith all the
I/0s of alogic block excluding the signals that have
already been counted by the shared 1/O count.

Note that for all experiments performed in this the-
Sis, a, B, and 1 are set to be 0.85, 0.75, and 0.75
respectively. These values are experimentally shown to
generate good packing results.

4. Experimental Results

The packing agorithm has been used to pack sev-
eral benchmark circuits into multi-bit logic blocks with
various granularity values and degrees of configuration
memory sharing. The packing results shown in this ¢
tion are based on the fifteen datapath circuits from the
Pico-Java Processor from Sun Microsystems [24]. Each
circuit is first synthesized into severa granularity val-
ues using a datapath-oriented synthesis algorithm [22];

and Table 3 gives the name, size (number of BLES) of
each circuit for a given synthesis granularity value (here
the synthesis granularity is defined as the maximum
datapath width that is preserved by the synthesis pro-
cess).

Table 3: Experimental Circuits

#BL Es Obtained at Each Synthesis Granularity
1 2 4 8 12 16

Circuits

code_seq_dp 362 364 364 364 364 364

dcu_dpath 958 962 966 974 982 974

ex_dpath 2823| 2747 2649 2719 2947 2955

exponent 467 517 517| 539 567| 565

icu_dpath 3254 3237| 3245 3245 3273 3277

imdr_dpath | 1286 1268/ 1255 1286 1288 1283

incmod 870 862 867| 940 948/ 1005

mantissa_dp 912 919 942 966 971 982

multmod_dp 1602| 1636| 1634 1636| 1636 1636

pipe_dpath 452 499 452 503 503] 501

prils dp 363 396 393] 385 385 393

rsadd_dp 350 314 313] 305 305 305

smu_dpath 561 557 557| 560 563] 561

ucode_dat 1264| 1273] 1304 1278 1282 1286

78 80 82 86 86 94

ucode reg

The synthesized circuits are then packed into a set
of multi-bit logic blocks containing a variable number,
M, of clusters. Several values of M are investigated.
These values are the same & the ones shown in Table 3,
namely 1, 2, 4, 8, 12, and 16 and for each value of M,
the degree of configuration memory sharing, N, isalso

varied from O to 4. Note that each cluster is assumed to
contain 10 (1) input pinsand 4 (N) BLEs. The experi-
mental results on regularity, cluster count, and area are
presented in turn.

4.1. Regularity Results

Two yardsticks are used to measure the amount of
regularity contained in the benchmark circuits based on
the concept of a datapath comporent. Here, a datapath
comporent is defined to be a group d identicaly con-
figured BLEs that is a part of a datapath circuit. The
number of BLEs in a datapath component is called the
width of the componrent.

The first yardstick measures the percentage of
BLEs in al datapath components of width M after
packing. The second yardstick measures the percentage
of BLEs in all datapath components, which are at least
2-bit wide. Note that for both regularity measurements,
N, isasaumed to be zero.

Figure 9 plots these two metrics against the logic
block granularity. As shown, over 85% of BLEs are in
at least 2-bit wide datapath components regardless of
the granularity values. The percentage of BLEs in M -
bit wide datapath components drops from over 90%
when M is equal to 2to dightly over 50% when M is
equal to 12. The high percentage of BLES contained in
M -bit wide datapath components for the granularity
value of 2 and 4suggest that at these granularity values,
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the multi-bit logic block architecture can benefit sub-
stantially from a high degree of configuration memory
sharing.

4.2. Logic Cluster Count

As discussed in Section 2, the area savings of con-
figuration memory sharing depends on two parameters
— the cluster sizeand the duster utili zation. The cluster
utili zation can be easily measured by courting the total
number of clusters required to implement the fifteen
benchmark circuits; and this cluster count is siown in
Figure 10. In the figure, the granularity value is shown
on the x-axis and the total number of clusters required
to implement the fifteen benchmark circuits is own
on the y-axis. There are five lines in the figure, each
representing ore of the five possible degrees of configu-
ration memory sharing (0, 1, 2, 3, and 4). As expected,
when there is no configuration memory sharing, the
cluster count is the lowest for agiven granularity value;
and as the degree of configuration memory sharing
increases, so dces the cluster count. More interestingly,
concurring with the regularity results, for the granular-
ity values of 2 and 4 the increase in the degree of con-
figuration memory sharing from O to 3, only results in
small increasesin cluster count (lessthan 5% for M = 2
and 11% for M = 4); and for the granularity value of 2,
when N isincreased from O to 4, the duster court is

increased by only 8%. For all other granularity values
substantial increases in cluster court is observed.
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Figure 11: Areavs. Granularity

4.3. Area Results

The aea consumed by the multi-bit logic blocksis
plotted in Figure 11. In the figure the x-axis represents
the granularity of the architecture, the y-axis represents
the tota logic block area required to implement the fif-
teen benchmark circuits. Thereare six linesin the figure
representing the packing area for a conventional FPGA
whose clusters contain 4 BLEs and 10 inpus and
FPGAs containing multi-bit logic blocks with the
degree of configuration memory sharing of 0, 1, 2, 3,
and 4 respectively. As sown, for Ng = 0, all multi-bit

logic block architectures perform slightly worse than
the mnventional FPGA mainly due to their extra arry
logic. For the granularity value of 2, 4, and 8 severa
configuration memory sharing configurations perform
better than the conventional FPGA. In particular, for
M = 2, logic blocks with Ng = 4 perform the best; and

this configuration is 16% small er than the conventional
FPGA. For M =4 and M = 8, logic blocks with
Ng = 3 perform the best. Overall, logic blocks with a

granularity value of 4 and a degree of configuration
memory sharing d 3 gve the best area, which is 18%
smaller than the nventional FPGA logic blocks.
Assumingthat the total logic block area consists of 30%
to 50% of the total FPGA area, this logic block area
saving represents an overall area saving of 5% to %%.
Finally, Figure 12 shows that the area savings also
depends on the size of the SRAM cells. In the figure, it
is asuuimes that each SRAM cell is 1.5 times of the stan-
dard size (Larger SRAM cell sizes can be used to
improve fault tolerance). This increase in SRAM size
resultsin larger area savings. The best area is achieved
when M = 4 and N, = 4; and the area saving is 26%,
which represents a total FPGA area savings of 8%
(assuming 30 of FPGA area is logic block area) to
13% (assuming 50% of FPGA areaislogic block area).

5. Conclusions

This paper has described a new multi-bit logic
block architecture for FPGAs and its associated packing
algorithm. Using the packing algorithm, it is empiri-
cally shown that, for logic clusters containing 4 BLEs
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Figure 12: Areavs. Granularity (Large SRAM)
and 10cluster inputs, the most area efficient variant of
the multi-bit logic block architecture contains four clus-
ters per logic block and hes three BLEs per logic duster
that are controlled by shared configuration memory. In
this configuration, the multi-bit logic block areais 18%
smaller than the conventional FPGA logic block area.
This represents a 5% to 9% reduction in the total FPGA
area
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