
FIELD PROGRAMMABLE LOGIC AND APPLICATIONS

Measuring and utilising the correlation between
signal connectivity and signal positioning for FPGAs
containing multi-bit building blocks

A. Ye and J. Rose

Abstract: As the logic capacity of field-programmable gate arrays (FPGAs) increases, there has
been a corresponding increase in the variety of FPGA building blocks. From a mere collection
of conventional logic blocks, FPGAs can now include digital signal processors, multipliers, multi-
bit addressable memory cells and even processor cores. One of the common characteristics of these
new building blocks is their multi-bit design, where each block is designed specifically to process
several bits of data at a time. This multi-bit processing paradigm is significantly different from the
single-bit processing design of the conventional FPGA logic blocks, as it creates differentiation in
signals through its bussed structures. Consequently, the correlation between the positions of the
signals in buses and the connectivity of these signals is examined. On the basis of correlation
measurements, a multi-bit routing architecture is then proposed along with its routing tool. It is
experimentally shown that, compared with the conventional routing architectures, the multi-bit
architecture requires 6–12% less area to implement. In particular, it needs 27% fewer routing
switches to connect its multi-bit blocks to their routing tracks and 18% less configuration
memory to store the configuration information.

1 Introduction

Over the years, there has been a dramatic increase in the
variety of field-programmable gate array (FPGA) building
blocks. Evolving from a mere combination of simple logic
blocks and bit-addressable memory cells, FPGAs can now
include digital signal processing blocks, multipliers, multi-bit
addressable memory and even processor cores. One signifi-
cant difference between these new building blocks and the
classical logic block design is in the way that they process
data. On the one hand, the classical logic blocks are designed
to process one bit of data at a time; on the other, the new
building blocks are designed to process multiple bits of
data simultaneously. Consequently, the use of these multi-bit
processing elements presents new opportunities for exploit-
ing datapath regularity.

In particular, although the conventional FPGA logic
blocks are connected to FPGA routing through individual
input and output signals, the inputs and outputs of the multi-
bit building blocks can be grouped into buses. The positions
of signals in these buses often strongly correlate to the way
that they connect. This strong correlation between the con-
nectivity and the physical positioning of signals can create

opportunities for FPGA architects to selectively remove
routing switches from the routing fabric of an FPGA and
to share configuration memory; all, at the same time, main-
taining the original routability of the architecture. As
routing switches often consume a significant amount of
FPGA area, reducing the total number of routing switches
and their configuration memory in an FPGA can signifi-
cantly increase its area efficiency, especially for implement-
ing large arithmetic-intensive datapath circuits, including
computer graphics, multimedia, digital signal processing
and Internet routing applications.

Several FPGAs containing only multi-bit building blocks
have been proposed over the years [1–12]. Although they
come in a wide variety of routing architectures, in this work,
we focus on the study of FPGAs containing segmented-style
routing resources [13]. In particular, we empirically measure
the correlation between signal connectivity and the position
of these signals in buses for several datapath circuits. The cor-
relation is then used to remove routing switches and to share
configuration memory in order to increase the overall area effi-
ciency of the routing fabric. Note that the primary reason for
the choice of segmented-style routing resources is due to the
fact that these are the building blocks of many state-of-the-art
commercial FPGAs (including the Altera Flex, Stratix and
Cyclone series [14, 15] and Xilinx 5200, Virtex and Spartan
families [16] of FPGAs). With their ever-increasing logic
capacity, commercial FPGAs are being increasingly used to
implement large datapath-intensive applications.

For any new FPGA architecture, it is essential to have a
set of automated design tools that can make effective
use of its new architectural features. In particular, the
sharing of configuration memory places new demands on
computer-aided design (CAD) tools. As a result, a set of
datapath-oriented CAD tools, including synthesis [17],
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packing [18], placement [19] and routing tools, have been
developed at the University of Toronto. In this paper, we
focus on the particular problem of automated routing.
Routing for architectures containing configuration-memory
sharing switches is more difficult than classical routing
[13, 20–23], because the router has to properly model the
new architectural features. Additionally, in order to effec-
tively utilise these added features, the router has to preserve
the regularity of datapath circuits throughout the routing
process, while, at the same time, attempting to achieve
the conventional routing objectives of minimising conges-
tion and critical path delay. As a result, this paper presents
a new routing algorithm that is an evolution of the classical
negotiated-congestion (NC) routing algorithm [21]. The
algorithm leverages many existing features of the classical
router while incorporating several new metrics, which are
designed to measure the regularity of datapath circuits,
into the traditional cost functions of congestion and critical
path delay.

While two previous papers [24, 25] have examined the
area efficiency of datapath-oriented FPGAs and the work
of Lemieux et al. [26] examined the issue of generating
sparse crossbars for general purpose FPGAs without consid-
ering datapath regularity, this work advances the research in
two fundamental ways. First, it is the first to statistically
quantify the routing demand of datapath circuits – resulting
in statistics that are valuable both for designing specialised
datapath-oriented FPGAs and for improving the connec-
tivity of multi-bit building blocks in conventional FPGAs.
Secondly, this paper proposes a new routing algorithm for
configuration memory sharing resources (which can be
used to take advantage of the statistics in order to
improve area efficiency). The present paper enhances a
previous version [27] with an extended analysis on the
architectural design space of the switch patterns that
connect FPGA building blocks to their routing resources.
This analysis formally defines the uniform distribution-
nature of the previous switch pattern designs and exposes
the vastness of the design space, which has been frequently
overlooked in previous works.

2 Signal connectivity against signal positioning

As shown in Fig. 1, the input and output signals of a multi-
bit block can be grouped into buses. Each signal in a bus can
then be associated with a unique integer number indicating
the bit position of the signal in the bus. Note that this bussed
structure arises from the regularity of datapath circuits,
where a datapath is created by duplicating a single sub-
design, called a bit-slice, multiple times. For circuits
implemented using conventional logic blocks, a majority
of this regularity is often destroyed by the CAD tools
during the optimisation process; for circuits implemented
using the multi-bit blocks, in contrast, these bit-slices are

routinely preserved for the purpose of multi-bit processing.
As the primary purpose of FPGA routing is to provide
connectivity between the input and output signals of
various FPGA building blocks, it is important to examine
the relationship between the connectivity and the bit
positions of these signals.

As multi-bit blocks come in many different physical
forms, this work uses a model that contains M logic clusters
[13] to capture their common characteristics of bussed inter-
face. The basic structure of a logic cluster is shown in Fig. 2.
In the figure, each cluster contains a group of N four-input
look-up tables (LUT) and N D-type flip-flops (DFF), where
the LUTs and flip-flops are grouped into N basic logic
elements (BLEs) as shown in Fig. 2a. In Fig. 2b, each logic
cluster is shown to contain I input signals and N output
signals. These signals are connected to the LUT inputs
through a set of Iþ N to 1 multiplexers. Finally, each logic
cluster output is directly connected to a unique BLE
output. Note that, in this work, N is always set to be 4 and I
is always set to be 10, as these values have been previously
shown to be among the most efficient [28, 29].

M logic clusters are then used to create a single multi-bit
building block, where M is called the granularity of the
block. Each cluster-level input/output signal is assigned
to a unique M-bit wide input/output bus at the block
level. Each of these buses, as shown in Fig. 3, is created
by taking one unique input/output signal from each logic
cluster. Consequently, for each multi-bit building block,
there are I input buses and N output buses.

To map a datapath circuit onto the multi-bit blocks, the
datapath-oriented packing algorithm as described in the
work of Ye and Rose [18] is used. The algorithm first
groups logic in each bit-slice into a series of logic clusters.
It then groups M identical logic clusters from the neighbour-
ing bit-slices into a multi-bit block. (Note that by preserving
datapath regularity, carry chains in a datapath are also
routinely preserved as inter-logic-cluster connections by
the packing algorithm. Furthermore, logic that generates a
set of carry connections is often grouped into the same multi-
bit logic blocks.)

Once a circuit is mapped into multi-bit blocks, the
connectivity between the multi-bit block input and output
signals can be measured using two-terminal connections,
where each connection consists of a connected pair of a
multi-bit block input (called the sink of the connection)

Fig. 1 Multi-bit building block interface Fig. 2 Logic cluster structure
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and a multi-bit block output signal (called the source of
the connection). We then classify these two-terminal con-
nections on the basis of the bit positions of their sources
and sinks.

In particular, for the granularity value of two, all
connections can be classified into four types as shown
in Table 1: namely connections with both sources and
sinks from bit position 1, connections with both sources
and sinks from bit position 2, connections with sources
from bit position 1 and sinks from bit position 2 and
connections with sources from bit position 2 and sinks
from bit position 1. The table then shows the number of
connections in each type as a percentage of the total
number of two-terminal connections for 15 benchmark
circuits from the Pico-Java processor [30] in columns
2–5, respectively; column 6 shows the total number of
two-terminal connections in each circuit. As shown, a
majority (70%) of the connections in these benchmark
circuits have the same source and sink bit positions.
Connections with different source and sink bit positions,
in contrast, consist of only 30% of the total number of
two-terminal connections.

This strong correlation between the bit position
difference and the signal connectivity is observed across
all granularity values. Fig. 4 plots the difference against
the number of two-terminal connections (as a percentage
of the total number of two-terminal connections) for the
granularity of 4, 8, 12, and 16. As shown, connections
with the same source and sink bit positions (where the
difference value is 0) consist of from over 30% (for
M ¼ 12 and M ¼ 16) to over 70% (for M ¼ 2) of the total

number of two-terminal connections. These percentage
values are significantly greater than all other percentage
values.

The correlation still exists at the level of individual bit
positions. In particular, Fig. 5 shows the connectivity of
multi-bit block output signals at bit position 1 in terms of
the number of input signals that the outputs are connected
to. As shown, for all granularity values, the output signals
are connected to a significantly higher amount of input
signals that are also from bit position 1 than inputs from
any other bit positions. The same trend is observed for
outputs from other bit positions (figures not shown
because of space limitations).

The major architectural conclusion that can be drawn
from these observations is that, for multi-bit blocks, a
significant amount of connectivity should exist between
the inputs and outputs that are from the same bit positions,
and input and output signals from distinct bit positions, on
the contrary, would require much less connectivity. Note
that this observation is contrary to the connectivity

Fig. 3 Modelling the bussed interface

Fig. 4 Correlation between bit-position difference and signal
connectivity

Table 1: Two-terminal connections for M 5 2

Circuit name Two-terminal connections

Source ¼ 1,

sink ¼ 1, %

Source ¼ 1,

sink ¼ 2, %

Source ¼ 2,

sink ¼ 1, %

Source ¼ 2,

sink ¼ 2, %

Per circuit

total

code_seq_dp 40 22 12 26 873

dcu_dpath 39 11 11 39 2247

ex_dpath 38 13 12 37 7127

exponent_dp 30 19 20 30 1399

icu_dpath 39 15 11 35 8160

imdr_dpath 34 14 16 36 3030

incmod 31 25 19 26 2248

mantissa_dp 36 17 15 33 2554

multmod_dp 26 25 24 25 3645

pipe_dpath 40 16 10 34 1134

prils_dp 31 23 20 27 983

rsadd_dp 38 16 13 34 740

smu_dpath 35 17 16 33 1211

ucode_dat 39 12 11 38 3304

ucode_reg 47 14 4 36 191

Total 36 16 14 34 38 846
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requirements of the conventional FPGA logic blocks, where
architects strive to uniformly distribute the connections of
each logic block output signal to all available logic block
input signals [13].

For two-terminal connections that have the same source
and sink bit positions, some of these signals can be
further grouped into M-bit wide buses, as shown in Fig. 6,
where each signal in a bus has a distinct source/sink bit pos-
ition, and all the signals in the bus originate from a common
multi-bit block and terminate at another. The number of
signals that exist in these buses is shown in Fig. 7 for the
benchmark circuits over a range of granularity values
(M ). Here, there are two lines in the figure, where the top
line indicates the percentage of two-terminal connections
that have the same source and sink bit positions, and the
bottom line shows the percentage of two-terminal connec-
tions that can be grouped into M-bit wide buses. As
shown, the number of signals that can be grouped into
M-bit wide buses consists of a significant proportion
(from 25 to 60%) of the total number of connections. As
all signals in each bus share a single source and a single
sink block, these signals can be a potential source of redun-
dant information in FPGA routing configuration. This
redundancy, in turn, can be exploited by FPGA architects
to improve the area efficiency of FPGAs, where a single
configuration memory bit can be used in place of multiple
bits of memory to store the identical configurations.

Having observed the correlation, one question that
naturally arises is how exactly this correlation can be
turned into area savings. One of the best ways to address
the question is through a set of empirical studies, where
an FPGA architecture with varying switch patterns is first
defined and then used to implement a set of benchmark

circuits. Such an approach is used in this study. The archi-
tecture used in the study is discussed in what follows.

3 Multi-bit routing architecture

Each FPGA building block is connected to its neighbouring
routing channels through a set of programmable routing
switches. The distribution of these switches (called switch
patterns) can be partially characterised by five variables,
consisting of N, I, W, Fc out and Fc in. Here N is the
number of output pins that a block has, I is the number of
input pins of the block and W is the number of routing
tracks in a routing channel. Fc out and Fc in, respectively,
are the percentage of these tracks that an output pin and
an input pin connect to. For any given set of quintuplet,
(N, I, W, Fc out, Fc in), the total number of all possible
switch pattern variations can be as large as

D ¼
W

bFc out �Wc

� �N

�
W

bFc in �Wc

� �I

ð1Þ

and this design space can be somewhat reduced to

DE ¼

W

bFc out �Wc

� �

N

0
@

1
A�

W

bFc in �Wc

� �

I

0
@

1
A ð2Þ

if all input pins of a block are functionally identical (called a
set of logically equivalent [13] input pins) and all output
pins of the block are also functionally identical (called a
set of logically equivalent output pins).

DE, however, can still be a quite large number for the
typical values of N, I, W, Fc out and Fc in found in modern
FPGAs. For example, for N ¼ 4, I ¼ 10, W ¼ 20,
Fc out ¼ 0.25 and Fc in ¼ 0.5, which are the typical values
for connecting a conventional FPGA logic block to its
neighbouring routing tracks, D and DE are equal to
2.7 � 1069 and 3.1 � 1061, respectively. For multi-bit
building blocks, which typically contain many more input
and output pins, the design space is even larger.

This enormous design space has never been extensively
exploited before, especially with the aid of the connectivity
information such as those described in Section 2. Most auto-
mated FPGA architecture generation tools usually are
designed for FPGAs containing conventional logic blocks,
and usually assume that each of these blocks contains a
set of logically equivalent input/output pins. Typically,
these tools only explore a very limited number of switch

Fig. 5 Number of inputs that outputs at bit position 1 are con-
nected to

Fig. 7 Two-terminal connections in M-bit wide buses

Fig. 6 Grouping signals into M-bit wide buses
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patterns in the entire architectural design space. For
example, one of the most popularly used tools, as described
in the work of Betz et al. [13], allows the user to generate
various switch patterns through the variation of the five
architectural parameters, N, I, W, Fc out and Fc in, as
described earlier. For any given set of parameter values,
however, the tool only selects one design point in the
entire design space on the basis of following five design
criteria as outlined in Betz et al. [13].

1. ‘Ensure that each of the W tracks in a channel can be
connected to roughly the same number of input pins, and
roughly the same number of output pins’.
2. ‘Ensure that each pin can connect to a mix of different
wire types . . .’.
3. ‘Ensure that pins that appear on multiple sides of the
logic block connect to different tracks on each side . . .’.
4. ‘Ensure that logically equivalent pins connect to differ-
ent tracks . . .’.
5. ‘Ensure that pathological switch topologies in which it is
impossible to route from certain output pins to certain input
pins do not occur’.

Note that, in combination, criteria 1, 2, 4 and 5 attempt to
distribute, as uniformly as possible, the output connections
to all available inputs. This uniform-nature of the
distribution is more precisely defined by the actual
software implementation of the above criteria [31] as
shown in Fig. 8.

In the figure, P and Fc are assigned to be I and Fc in,
respectively, for generating switch patterns for input pins.
For generating switch patterns for output pins, in contrast,
they are assigned to be N and Fc out, respectively. The
resulting matrix, switch_pattern, contains the position of
each routing switch. Here each entry of the matrix, (i, j),
contains the index of a routing track (numbered from 0 to
W 2 1) that should be connected to the ith input/output
pin (where the input pins are numbered from 0 to I 2 1
and the output pins are numbered from 0 to N 2 1)
through a programmable routing switch. Note that for any
given value of i, the switches that connect to the ith
input/output pin are indexed by j in each column of the
matrix.

An example of the switch patterns generated by the above
algorithm is shown in Fig. 9. In the figure, a programmable
routing switch is denoted by an X. For clarity, all input and
output connections are connected to one routing channel
instead of being evenly distributed to the four routing
channels surrounding the building block as assumed by
criterion 3.

The uniform distribution-nature of the switch patterns
shown by the example strives to equalise the number of

routing paths from any output pin to any of the input pins.
In particular, in the figure, the routing paths are evenly dis-
tributed such that there is at least one routing path
connecting one output pin to each of the five input pins.
For example, output pin 0 can be connected to input pins
0, 1, 2 and 3 through track 0 and pin 4 through track 4;
output pin 1 can be connected to input pins 0, 1 and 4
through track 1 and input pins 2 and 3 through track 5;
similar connections exist for output pins 2 and 3,
respectively.

Additionally, there are five extra routing paths and the
distribution of these routing paths ensures that each input/
output pin receives at least one extra path. In particular,
output pins 1, 2 and 3, each have two routing paths for con-
necting to pin 1, 4 and 2, respectively, whereas output pin 0
has one extra routing path for connecting to pin 0 and
another for connecting to pin 3.

Mathematically, this uniform connection pattern can be
made more apparent by an N � I matrix, which will be
called the routing path distribution matrix in this paper,
where each entry (i, j) indicates the total number of
routing paths available for connecting output pin i (num-
bered from 0 to N 2 1) to input pin j (numbered from 0 to
I 2 1). The distribution matrix for the switch patterns
shown in Fig. 9 is listed below. Note that all entries of the
matrix are either n (where n ¼ 1 in this case) or nþ 1 and
all nþ 1 values are carefully staggered to ensure the even
distribution of all the extra routing paths

Rpath ¼

2 1 1 2 1

1 2 1 1 1

1 1 1 1 2

1 1 2 1 1

2
664

3
775 ð3Þ

Fig. 10 shows a denser switch pattern for the input pins.
This pattern nearly guarantees two routing paths for almost
all of the 20 pairs of output to input pin connections with
only five exceptions. These exceptions include the connec-
tions from output pin 0 to input pin 2, output pin 1 to input
pin 4, output pin 2 to input pin 1, output pin 3 to input pin 0
and output pin 3 to input pin 3, where only one routing path
exists in each case. Again these single paths are carefully
distributed to ensure that each input/output pin is connected
to at least one of these paths as shown by the distributionFig. 8 Algorithm for uniform switch pattern generation [31]

Fig. 9 Switch patterns for W ¼ 8, N ¼ 4, I ¼ 5, Fc out ¼ 0.25
and Fc in ¼ 0.7
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matrix below

Rpath ¼

2 2 1 2 2

2 2 2 2 1

2 1 2 2 2

1 2 2 1 2

2
664

3
775 ð4Þ

(Note that occasionally, the algorithm shown in Fig. 8
will create a set of switch patterns that violate criterion 5,
where an output pin can only be connected to a limited
number of input pins. One example of such an occurrence
appears when both the step and the increment variables
for generating the output switch pattern are even multiples
of their counterparts for generating the input switch
pattern. In these cases, one usually, as the work of Betz
et al. [31] does, adjusts the values of Fc in and Fc out accord-
ing to a set of pre-prescribed rules such that the new switch
patterns would conform to all the design criteria.)

The uniformly distributed switch patterns described
earlier, however, cannot take advantage of the non-uniform
nature of the correlation statistics observed in Section 2.
Turning our observation in signal connectivity into actual
area savings would require the design of another concrete
routing architecture. Such an architecture (called the
multi-bit routing architecture) is used in this work. As
shown in Fig. 11, the architecture contains two types of

routing tracks, the single-bit tracks and the multi-bit
tracks. Each track is connected to several multi-bit block
input and output signals through a set of routing switches
(denoted by an X in the figure).

The single-bit tracks are similar, in structure, to the con-
ventional FPGA routing tracks. Their switch patterns are
designed to uniformly distribute multi-bit block output con-
nections to all available multi-bit block inputs [13]. The
multi-bit tracks, in contrast, are organised into M-bit wide
buses. In a bus, each track is assigned a unique bit position
number, ranging from 1 to M. These numbers are then used
to match the bit positions of the signals that the tracks are
connected to. For example, a track at bit position 1 can
only be connected to multi-bit block input and output
signals that are also from bit position 1. In general, a
track at bit position x can only be connected to input and
output signals also from bit position x. Consequently,
increasing the number of multi-bit tracks in the architecture
only increases the availability of one type of two-terminal
connections, namely two-terminal connections with the
same source and sink bit positions. Increasing the number
of single-bit tracks, on the contrary, uniformly increases
the availability of all types of two-terminal connections.
(Note that within each set of multi-bit routing tracks that
have the same bit position number, the routing switches
are evenly distributed across these tracks on the basis of
an algorithm that is similar to the one outlined in Fig. 8.)

Furthermore, the routing switches in each routing bus
(which consists of a group of M multi-bit routing tracks)
are further grouped into M-bit wide groups in order to
exploit the observed redundant configuration information.
Each group, as shown in Fig. 11, shares a single set of con-
figuration memory. The sharing of configuration memory,
however, complicates the design of the routing tools. In
the next section, a new NC-based routing algorithm is intro-
duced. The algorithm accommodates configuration memory
sharing. Both the architecture and the algorithm are then
used to empirically measure the overall effect of this corre-
lation between signal connectivity and signal positioning on
the area efficiency of FPGAs.

4 Routing on the configuration-memory sharing
routing resources

As an NC-based routing algorithm, routing is performed in
multiple routing iterations. Each iteration is controlled by a
set of cost functions that measure the delay and the conges-
tion of each route. These cost functions consist of a collec-
tion of cost metrics. Each metric is updated at the end of
each routing iteration on the basis of the current and the
historical routing results.

During a routing iteration, two-terminal connections that
can be grouped into M-bit wide buses (as defined in Section
2) are first routed. In particular, all signals in the bus are
routed through the multi-bit routing tracks (which are con-
nected by the configuration-memory sharing switches) as a
single group. Then a bit chosen at random from the bus is
routed through the single-bit tracks as an individual
signal. These two routing solutions, one consists of a
series of multi-bit routing tracks and the other consists of
a series of single-bit routing tracks, are then compared on
the basis of their congestion and delay metrics. If the single-
bit tracks provide a better solution (because of much lower
delay or congestion), the multi-bit track solution is aban-
doned in favour of routing all the signals in the bus
through the single-bit tracks. Otherwise, the multi-bit
track solution is used to route the bus. Note that the main
purpose of routing a single bit of each bus through the

Fig. 10 Switch patterns for W ¼ 8, N ¼ 4, I ¼ 5, Fc out ¼ 0.25
and Fc in ¼ 0.7

Fig. 11 Multi-bit routing
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single-bit routing tracks is to test the congestion of these
tracks against the congestion of the multi-bit routing
tracks. In the case that the multi-bit tracks are heavily con-
gested, whereas the single-bit tracks are not, the routing of
the test bit will incur a significantly lower cost (based the
cost functions described subsequently). Consequently, all
signals in the bus will be routed through the less congested
single-bit tracks to avoid the congestion of the multi-bit
routing tracks.

For two-terminal connections that cannot be grouped into
buses, they are routed as individual signals. Here each
signal is routed through both the single-bit and the multi-bit
tracks in order to obtain the best routing solutions (which
means routing solutions with the best possible combination
of delay and congestion).

4.1 Expansion topologies

In conventional FPGAs, each architecture can be rep-
resented by a graph called the routing resource graph,
where nodes represent the routing resources, and the
edges represent the routing switches. To route a signal in
this graph, one uses a series of wave-front expansions,
where the initial wave front consists of only the source
node of the signal. At each stage of the expansion, the
node with the lowest possible cost is selected from the
front. The selected node is then substituted by its neighbour-
ing nodes to expand the current front. The expansion con-
tinues until all sinks of the signal are reached.

The multi-bit routing architecture can also be represented
by a routing resource graph. Here each node in the graph
represents either a multi-bit block input pin, a multi-bit
block output pin, a continuous wire segment between two
routing switches on a single-bit routing track or a similar
wire segment on a multi-bit routing track. Each edge of
the graph represents a routing switch that connects these
nodes together. Similarly signals can also be routed
through the graph using the technique of wave-front expan-
sion. In particular, when routing an individual signal
through the single-bit routing tracks, the expansion
appears exactly the same as the topology of the convention-
al wave-front expansions. An example of such an expansion
is shown in Fig. 12a, where the wave front is expanded from
a single node denoted by n0, to five neighbouring nodes (one
of which is denoted by n in the figure).

Routing either a bus or an individual signal through a
routing bus (which consists of M multi-bit routing tracks),
however, would require the simultaneous expansion of M
wave fronts, where one wave front is used to keep track of
a bit in the bus. The multiple fronts are needed in order to
fully account for the expansion costs because groups of M
switches in each routing bus are collectively controlled by
a single set of configuration memory. Consequently, no indi-
vidual connections can be made in isolation. Instead, wire
segments must be connected together in M-bit wide groups.

An example of such an expansion topology is shown in
Fig. 12b, where a set of wave fronts, each containing one

node, denoted by n01 through n0M in the figure, is expanded
into two sets of nodes, where one of the sets is denoted
by n1 through nM. This added expansion topology requires
the design of a set of expansion cost functions so the single-
bit expansions (such as the one shown in Fig. 12a) can be
fairly compared with the multi-bit expansions (such as the
one shown in Fig. 12b).

4.2 Expansion costs

As the single-bit expansion topology is identical to the con-
ventional expansion topology, the conventional cost func-
tion as defined [13] is used in this study for these
expansions. In particular, the following equation is used

expansion–costðnÞ ¼ ½1� criticality� � CðnÞ

þ criticality� DðnÞ

þ future–expansion–costðnÞ ð5Þ

Note that a detailed description of (5) is presented in the
work of Betz [13]. Here, we briefly review the major
features of the equation for completeness. In the equation,
C(n) is defined to be the accumulated congestion cost of
all nodes in an expansion path that connects the source of
the signal all the way to node n. It is calculated on the
basis of following formula

CðnÞ ¼ congestion–costðnÞ þ Cðn0Þ ð6Þ

which states that the accumulated congestion cost of any
node, n, is equal to the sum of the accumulated congestion
cost of n0, the node immediately preceding n on the expan-
sion path, and the congestion cost of n. This congestion cost
is a function of the capacity (which is equal to the maximum
number of times that a node can be legally used) of node n
and the number of times that n is actually being used [13].

Also, in (5), D(n) is defined to be the delay cost of the
expansion path that connects the source of the signal to
node n. Both C(n) and D(n) are scaled by the criticality of
the signal (which is a fraction between 0 and 1). A high
criticality value means that when compared with other
signals, the signal that is being routed has a higher delay
value; therefore a larger proportion of the expansion cost
should be equal to the delay cost. Otherwise, the signal
has a lower delay value and the accumulated congestion
cost should be the larger proportion of the expansion cost.
Finally, the final term in the equation represents the future
expansion cost, which is an estimation on the additional
delay and accumulated congestion cost that can incur in
the path that connects node n to the sink of the signal.

When routing a bus of two-terminal connections through
the multi-bit expansion topology, one has to deal with the
delay and accumulated congestion of M signals and M
nodes instead of one. In this case, (5) is used to calculate
the expansion cost for each signal and its corresponding
node. The maximum of these costs is then used as the
overall cost of the expansion. More formally, the expansion
cost in this case is defined to be

expansion–cost0ðn1; n2; . . . ; nM Þ

¼ maxðexpansion–costðn1Þ; expansion–costðn2Þ; . . . ;

expansion–costðnM ÞÞ

ð7Þ

When routing a single bit of a signal through the same
expansion topology, however, there will be only one
delay cost. This cost reflects the delay of the signal that is

Fig. 12 Expansion topologies

a Single-bit expansions
b Multi-bit expansions
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being routed. There are, however, M different accumulated
congestion costs, one for each node of the expansion. As a
result, (7) no longer applies. To accommodate, the accumu-
lated congestion cost is redefined to be the maximum of all
accumulated congestion costs as follows

C0ðn1; n2; . . . ; nM Þ

¼ maxðcongestion–costðn1Þ; congestion–costðn2Þ; . . . ;

congestion–costðnM ÞÞ þ C0ðn01; n02; . . . ; n0M Þ ð8Þ

This accumulated congestion cost is then used in place of
C(n) in (5) to calculate the overall expansion cost of the
topology.

5 Results

The router is then used with a set of datapath-oriented CAD
tools to map the 15 benchmark circuits (presented in
Section 2) onto several variants of the multi-bit routing
architecture presented in Section 3. These variants primarily
differ in the composition of their routing tracks where each
architecture contains a different amount of single-bit and
multi-bit tracks. From these architectures, the architecture
with the best area is identified for each circuit. It is then
compared with a base architecture that contains only single-
bit routing tracks (tracks that strictly distribute the connec-
tions of each multi-bit block output uniformly across all
available multi-bit block inputs) for the number of routing
switches, the amount of configuration memory (SRAM)
and the area usage of routing resources.

For the study, it is assumed that each circuit is placed onto
a square FPGA that contains just enough multi-bit building
blocks to accommodate the given circuit. It is also assumed
that each block contains four clusters, which is one of the
most widely used granularity values for several existing
datapath-oriented FPGA architectures [4, 9]. As discussed
in Section 2, it is assumed that each cluster contains four
four-input LUTs and four DFFs. The number of input
signals per multi-bit block is assumed to be 40 (I ¼ 10).
The number of output signals per multi-bit block is
assumed to be 16 (N ¼ 4). These signals are grouped into
ten 4-bit wide input buses and four 4-bit wide output buses,
respectively. The routing switches that connect the wire seg-
ments together are assumed to have a disjoint switch block
topology [32] (for both the single-bit and the multi-bit
tracks). Using data from conventional FPGAs [13], it is
further assumed that each multi-bit block input/output pin
is connected to 40/25% of the single-bit tracks in a routing
channel, and each input bus/output bus is connected to 40/
25% of the 4-bit wide routing buses. Finally, each wire
segment is assumed to continuously expand two multi-bit
building blocks before being interrupted by a switch-block
routing switch for both the single-bit and the multi-bit
tracks. Again, length-two wire segments have been shown
to have good performance for conventional FPGAs [13].
Note that all transistors are properly sized in each architec-
ture to ensure good performance and efficient area usage.

Table 2 shows the number of single-bit tracks and the
number of multi-bit tracks per channel, which are required
to implement each benchmark circuit in columns 2 and 3,
respectively. It also shows the number of tracks that is
needed to implement the same circuit, using purely single-
bit tracks in column 4. (Shown in parentheses in column 2 is
the value of column 2 as a percentage of the value presented
in column 4.) As shown, the multi-bit tracks can be used to
significantly reduce the number of single-bit tracks in an
architecture. For a vast majority (ten) of the circuits

shown in Table 2, the total number of single-bit tracks in
each is reduced by over 30% when compared with the full
single-bit track implementations. The average number of
single-bit tracks per channel is reduced by over 37%.

The direct benefit of reduction in single-bit tracks is in the
reduction of routing switches that connect the multi-bit
blocks to their routing tracks. Table 3 shows the reduction in
columns 2–4. Here column 2 lists the total number of switches
(both for connecting the multi-bit block input and output
signals) required for architectures containing both the single-
bit and the multi-bit tracks. Column 3 lists the same number
for architectures containing only single-bit tracks. The percen-
tage reduction is then listed in column 4. As shown, one can
achieve an overall routing switch reduction of over 27%
through the use of multi-bit routing tracks.

Reducing the number of single-bit tracks also reduces the
number of SRAM bits required to configure the routing
resources because of configuration memory sharing.
Columns 5–7 of Table 3 show the SRAM reduction
figures. As shown, architectures containing both the single-
bit and the multi-bit tracks consume about 18% fewer
SRAM bits than architectures containing only single-bit
routing tracks.

The area savings that can be achieved through the
reduction of routing switches and SRAM bits, however,
are offset by the larger switch block size in architectures
that use multi-bit routing tracks. This increase in switch
block size is primarily due to the increase in the total
number of routing tracks. As shown in Table 2, the
average track count per channel, including both the single-
bit tracks and the multi-bit tracks, actually increases from
the 56 tracks of the full single-bit track implementations
to the 66 tracks of the combined single-bit and multi-bit
implementations. This increase in track count also increases
the number of routing switches required in each switch
block (which should be differentiated from the routing
switches that connect multi-bit blocks to the routing
tracks), and consequently reduces the overall area savings.

Taking into consideration the increase in switch block
size, Table 4 summarises the actual area savings/increases

Table 2: Track count per channel

Circuit Single-bitþmulti-bit Single-bit

onlyNumber of

single-bit tracks,

n (%)

Number of

multi-bit tracks

code_seq_dp 37 (90) 8 41

dcu_dpath 27 (48) 36 56

ex_dpath 39 (45) 52 86

exponent_dp 41 (63) 36 65

icu_dpath 39 (45) 60 86

imdr_dpath 47 (66) 32 71

incmod 37 (69) 32 54

mantissa_dp 42 (55) 52 77

multmod_dp 57 (92) 8 62

pipe_dpath 32 (94) 8 34

prils_dp 33 (85) 20 39

rsadd_dp 22 (59) 32 37

smu_dpath 34 (79) 16 43

ucode_dat 29 (49) 44 59

ucode_reg 13 (46) 36 28

Average 35 (63) 31 56
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for each benchmark circuit. Here the area is measured using
the equivalent minimum-width transistor area as described
in the work of Betz et al. [13], where the total area required
to implement an FPGA is normalised against the area that is
required to implement a minimum-width transistor. As
shown, ten of the 15 circuits require less area to implement
when using multi-bit routing tracks. These circuits consist
of 82% of the total area of all benchmark circuits. Finally,
the overall area reduction for these benchmark circuits is
over 12%. In particular, the two largest circuits (ex_dpath
and icu_dpath) did particularly well, and achieve an area
reduction of 22 and 18% each.

Table 5 shows that the use of multi-bit routing tracks has
little impact on the overall delay of a circuit. In particular,
column 2 of the table shows the critical path delay for archi-
tectures containing both single-bit and multi-bit routing

tracks. Column 3 shows the delay for architectures contain-
ing only single-bit routing tracks. Finally, the change in
critical path delay is listed in column 4. Overall, there is a
slight reduction of 0.8% in critical path delay for all bench-
mark circuits. In the worst case, one circuit (multmod_dp)
has a 32% increase in critical path delay; but another
circuit (dcu_dpath), however, has a 32% reduction in criti-
cal path delay. (Note that both variations are caused by the
large number of near-critical path signals that these circuits
contain).

Finally, Table 6 shows the area results obtained by fixing
the total number of the multi-bit routing tracks to 32 (one
track more than the average number of multi-bit tracks
shown in Table 2) and adding just enough single-bit
routing tracks to make the circuits routable. In the table,
column 1 shows the circuit names; column 2 shows the

Table 3: Switch count and SRAM bit count

Circuit Switches in routing SRAM bits in routing

Single-bitþmulti-bit Single-bit only % Reduction Single-bitþmulti-bit Single-bit only % Reduction

code_seq_dp 18 768 19 688 4.7 20 700 21 206 2.4

dcu_dpath 47 880 72 072 34 53 739 68 922 22

ex_dpath 194 304 308 352 37 178 464 245 872 27

exponent_dp 34 048 41 984 19 32 128 37 312 14

icu_dpath 239 568 380 184 37 222 425 303 147 27

imdr_dpath 92 664 117 288 21 95 013 99 225 4.2

incmod 54 264 62 928 14 55 062 61 845 11

mantissa_dp 74 240 99 840 26 66 752 81 152 18

multmod_dp 127 680 131 880 3.2 116 550 121 065 3.7

pipe-dpath 20 416 20 416 0.0 24 969 25 375 1.6

prils_dp 21 216 20 800 22.0 22 802 23 738 3.9

rsadd_dp 13 608 15 960 15 17 031 18 648 8.7

smu_dpath 28 800 32 256 11 32 184 35 532 9.4

ucode_dat 71 048 99 600 29 72 459 93 209 22

ucode_reg 3072 3552 14 4356 4896 11

Total 1 041 576 1 426 800 27 1 014 634 1 241 144 18

Table 4: Routing area

Circuit Routing area (10 � 105)

Single-bitþmulti-bit Single-

bit only

% Reduction

code_seq_dp 2.69 2.66 21.1

dcu_dpath 7.24 8.81 18

ex_dpath 26.9 34.6 22

exponent_dp 5.04 5.40 6.7

icu_dpath 33.5 40.7 18

imdr_dpath 11.7 12.9 9.3

incmod 7.23 7.27 0.55

mantissa_dp 10.5 11.6 9.5

multmod_dp 14.8 14.7 20.68

pipe_dpath 2.82 2.71 24.1

prils_dp 2.80 2.54 210

rsadd_dp 2.14 2.09 22.4

smu_dpath 4.02 4.16 3.4

ucode_dat 10.2 11.6 12

ucode_reg 0.536 0.565 5.1

Total 142 162 12

Table 5: Routing delay

Circuit Routing delay (ns)

Single-bitþmulti-bit Single-

bit only

Change,

%

code_seq_dp 6.47 6.51 20.61

dcu_dpath 6.67 9.83 232

ex_dpath 20.1 20.1 0.0

exponent_dp 8.96 9.15 22.1

icu_dpath 12.0 11.6 þ3.5

imdr_dpath 19.1 18.2 þ4.9

incmod 19.1 19.6 22.6

mantissa_dp 8.14 7.86 þ3.6

multmod_dp 15.6 11.8 þ32

pipe_dpath 6.65 7.01 25.1

prils_dp 15.1 13.9 þ8.6

rsadd_dp 13.3 12.8 þ3.9

smu_dpath 9.92 10.5 25.5

ucode_dat 7.80 8.86 212

ucode_reg 1.99 1.96 þ1.5

Geo. average 9.92 10.0 20.8
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total number of tracks per channel. The routing area results
are shown in columns 3 and 4, respectively. The total area
results (logic areaþ routing area) are shown in columns 5
and 6. As shown, in this case, the overall routing area
reduction is 5.6%. The overall total area savings is 4.0%.

6 Conclusions

This paper examines the correlation between signal connec-
tivity and signal positioning for multi-bit building blocks in
FPGAs. It is shown that, for their bussed structures, multi-
bit block input and output signals with the same bit pos-
itions are much more likely to connect together. On the
basis of the observation, a routing architecture is designed
to use dedicated routing tracks to enrich the connectivity
between these identical bit positions. Configuration-memory
sharing is then used to reduce the amount of memory required
to configure these tracks.

Using the proposed architecture and a specialised routing
algorithm, it is empirically shown that the correlation can be
directly translated into a 27% reduction in the number of
routing switches, which connect the multi-bit blocks to
their tracks. Furthermore, 18% fewer configuration-memory
bits are needed to control the routing resources. Overall, one
can achieve a routing area saving of between 6 and 12%.

7 Future work

This work has quantified the routing demand of datapath
circuits implemented using multi-bit building blocks.
Datapath circuits, however, often are controlled by a set
of signals externally generated by the control logics of an
application, which typically are not datapath in nature. In
most cases, the sizes of control logics are much smaller
than the sizes of the datapaths. Consequently, control cir-
cuits usually have much less impact on the overall routing
demand of applications. It is still, however, useful to quan-
tify the routing characteristics of these circuits relative to
the routing demand of the actual datapaths. This work
will be carried out in future.

In future, we will also examine the routing characteristics
of entire applications, which typically consist of control
logics and several interconnected datapath circuits. These
applications will be implemented using a variety of multi-
bit building blocks in conjunction with the conventional
FPGA logic blocks to simulate the actual implementation
platforms provided by the current commercial FPGAs.
The detailed architectural questions that can be addressed
through these more extensive studies include the effect of
larger logic cluster sizes, more realistic channel widths (at
around 100 tracks per channel) and the effect of RAM
blocks with configurable datapath widths on the overall
area of efficiency of multi-bit routing tracks.
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