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Abstract 
Caches in FPGAs can improve the performance of soft 
processors and other applications beset by slow storage 
components.  In this paper we present a cache generator 
which can produce caches with a variety of 
associativities, latencies, and dimensions.  This tool 
allows system designers to effortlessly create, and 
investigate different caches in order to better meet the 
needs of their target system.   The effect of these three 
parameters on the area and speed of the caches is also 
examined and we show that the designs can meet a wide 
range of specifications and are in general fast and 
compact. 
 
1.  Introduction 
 
 Choosing the best cache for a system is very 
application-specific, but is often done subjectively.  A 
particular cache is often selected based on general notions 
of its area, speed, and effectiveness inferred from the 
many studies performed on caches.  This leads to a less 
than optimal cache solution.  In order to more 
aggressively pursue good choices for cache parameters, a 
more precise understanding of a cache’s area, speed, and 
effectiveness is required.  Our goal is to facilitate such a 
pursuit by providing an automatic cache generator for 
FPGAs which, given a set of input parameters, will output 
an efficient cache implementation satisfying the given 
parameters.  The generator is versatile as it allows for a 
number of different cache types to be generated.  Users 
can select the appropriate size, latency, and associativity 
for their desired cache and use the proposed generator to 
create an implementation in Verilog.  While The 
implementations are targeted for Altera’s Stratix family 
of FPGAs, the code could be modified to emit primitives 
specific to other families of FPGAs.   
 The generator can be used to easily implement a 
desired cache, quickly evaluate performance for a number 
of caches, or to compile a catalogue of statistics for 
several cache variants.  We will present statistics for the 
area and speed of caches with different associativities, 
latencies, and dimensions in an FPGA environment.  
Doing so will perhaps pave the way for a more exact and 
deterministic process for selecting cache parameters. 

 The remainder of this paper is organized as follows:  
Section 2 describes the Stratix FPGA architecture and 
necessary Cache nomenclature; Section 3 describes the 
various cache designs that can be generated; Section 4 
examines the resource utilization and speed performance 
for caches of various types and sizes; Section 5 provides a 
link to the software developed; and Section 6 concludes.  
 
2.  Background   
 
 In this section we provide relevant background on the 
FPGA we use, our cache nomenclature and other working 
parts of our system. The Stratix FPGA from Altera is 
built in a 0.13um technology, and contains a 
heterogenous mixture of programmable logic, memory, 
and arithmetic blocks [1][4].  Its memory blocks come in 
three different sizes: 512 bits, 4 kilobits, and 512 kilobits 
(not including parity bits).  These memory blocks are 
named M512, M4K, and MRAM (Mega RAM) according 
to their size and will be referred to as such throughout this 
document.  The Stratix Logic Element (LE) consists of a 
4-input lookup table and flip-flop, with the ability to 
implement 1 bit of add/subtract arithmetic in each cell. 
 The speed of a system is defined as its maximum 
operational clock frequency.  This figure is reported by 
CAD tools, in our case Altera’s Quartus II version 2.1 
CAD package, which was used for all levels of synthesis.  
 A cache is a memory that stores a small subset of the 
data available in a processor’s address space.  If currently 
addressed data is in the cache, a hit is said to have 
occurred and the cache can satisfy the memory operation 
without involving the slower memory.  Data values in the 
cache are identified using a tag.  A tag is the subsection 
of the address required to uniquely identify the data.  
Tags are each stored in a tag store alongside the 
corresponding data stored in a data store.  
 There are three dimensions which define the size of a 
cache.  These are its cache line, cache depth, and tag 
width.  A cache line refers to the unit of data storage, in 
bits, used in the cache.  The maximum number of cache 
lines that can be stored in the cache is known as the cache 
depth.  The tag width is the number of bits in a tag.   
 Ideally, new data can be added to the cache as long as 
the cache has an unoccupied cache line available.  This 
implies that a given data can map to any cache line.  Such 



a cache is known as a fully associative cache, or just 
associative cache.  A more simplified cache such as the 
direct-mapped cache maps data to only one cache line 
determined by the low order bits of its address.  Between 
these two extremes is the set associative cache.  Instead 
of using the low order bits to select a single cache line, 
they are used to select n different cache lines.  Such a 
cache is said to be n-way set associative.  These caches 
generally provide the best compromise between circuit 
complexity and performance. 
 The strategy used to choose which data to evict from 
the cache is known as the replacement policy.  Eviction 
occurs when space needs to be made for new data.  The 
most common method, known as LRU (Least Recently 
Used), tracks how recently each piece of data was 
referenced, and evicts the one used furthest in the past.  
 A write operation can potentially cause the cache and 
memory to become unsynchronized if the cache contains 
a more recent value than the memory, and that value is 
evicted without being written to memory.  In this design 
this is prevented by employing a write-through policy, 
which ensures the synchronization of the cache and 
memory by always writing to both. 
 A CAM (Content Addressable Memory) is the inverse 
of RAM.  While a RAM is given an address and outputs 
the data stored at that address, a CAM receives data, often 
called a pattern, and returns the address where it is stored, 
or indicates that the pattern is not currently in the CAM.  
This makes CAMs ideal for searching through tags and 
detecting cache hits in associative caches. 
 
3. Cache Design 
 
 Table 1 lists the set of characteristics that can be 
specified to our parameterized cache generator. 
 

 Table 1. Characteristics of Each Cache Type 
 
3.1  Fully Associative Cache 
 
 The design of a fully associative cache involves five 
components:  A CAM, an encoder, a data store, a tag 
store, and a counter.  Figure 1 illustrates a read operation. 
 A simple logical OR of the decoded CAM outputs is 
used to detect a hit.  An encoder is used to generate the 
encoded address needed by the data store.  The encoder is 
the largest and often slowest block of logic in this cache. 

Its size is determined solely by the depth of the cache but 
is minimized in this design by capitalizing on the CAM’s 
one-hot decoded outputs. 
 

 
Figure 1.  Associative Cache Read 

 
 A cached read completes in either two or three cycles 
after being issued, depending on the choice of the user.  
Writes require one cycle latency and use a counter-based 
replacement policy as was used in [2]. The CAM 
implementation is identical to that in [3]; the only 
modification is in the chosen dimensions of the CAM 
blocks which were customized to fit Stratix’s M512s.  
Doing so required one fifth the memory [3] needed. 
  
3.2  Direct-Mapped Cache 
 
 The direct-mapped cache has a simple design.  It 
requires only a tag store, data store, and comparator, 
where the tag and data stores are both single-port RAM 
blocks.  Since only one tag in the tag store can match the 
tag input, that tag is the only one read, and the only one 
that need be compared.  Thus a single comparator is used 
to detect a hit.   A schematic of the read circuitry is 
shown in Figure 2.  A write operation involves simply 
writing the tag to the tagstore and the data to the data 
store overwriting any values already there. 
 

 
Figure 2.  Cache Read for the Direct-Mapped cache 

 
3.3  Two-Way Set Associative Cache 
 
 A two-way set associative cache has two cache lines in 
each set.  Reading from the cache requires comparing tags 
from both cache lines and selecting which (if any) of the 
data to return.  Figure 3 shows the implementation of 
such a system which is, in effect, two direct-mapped 
caches arranged in parallel. 
 The write operation is also identical to the direct-
mapped cache except that a true LRU replacement policy 
is used to specify which of the two cache lines in a set are 
to be overwritten.  The LRU circuitry is comprised of a 
single one bit-wide RAM block which indicates which of 
the two cache lines is to be evicted.  

 
Fully 

Associative 
Direct-
mapped 

Two-way 
Set Assoc. 

Read Latency 2,3 1,2 1,2 
Write Latency 1 1 1,2 
Depth any any any 
Addr Width any any any 
Data Width any any any 



 
Figure 3.  Two-way Set Associative Cache Read 

 
4. Speed and Area Measurements 
 
 In this section we compare the different types of 
caches with respect to their maximum operating 
frequency, and area in terms of logic and memory usage.  
All measurements are made using a 32-word deep cache 
with a 32-bit address space and 32-bit data width as a 
base and varying only one of the dimensions. 
 We measure both logic (in terms of number of Stratix 
Logic Elements, or LEs) and memory (M512s, M4Ks, 
and Mega RAMs) consumption for the different caches.  
The effect of increased cache depth, address width, and 
data width will be examined for all cache types.  Changes 
in latency were observed to have a negligible impact on 
the area of the circuits.  Thus, the area measurements 
were made only for the different amounts of associativity.   
 For increases in cache depth, the number of Stratix 
LEs used for the direct-mapped and two-way set 
associative caches was fixed at 99 and 198 respectively.  
This independence is expected since those designs have 
no logic components which depend on the depth.    
Moreover, the number of logic elements is seen to be very 
small, respectively using 1% and 2% of the smallest 
Stratix chip, the S10.  In the associative case, the increase 
in LE usage was linear with slope 3.5 LEs/word and zero 
offset.  The contributing factors were the CAM, encoder, 
LRU circuitry, and wide logical OR, all of which grew 
with increased cache depth. 
 Figure 4 shows that all cache types suffer linear 
increases in LE usage with increases in address width.  
The direct-mapped and two-way cache designs both 
exhibit increases because of the comparators which need 
to compare larger tags.  In the associative cache, the 
increase is due to the increasing size of the CAM.  The 
two-way cache has two comparators while the direct 
mapped cache has one; thus, it increases at twice the rate.  
Still, LE usage is rather modest for all the caches. 
 The effect of increasing data width on the number of 
LEs used is also seen in Figure 4.  This increase comes 
solely from growth in the data multiplexers.  The two-
way set associative cache contains three data muxes, 
whereas the direct and associative require only two.  Thus 

it increases 150% faster than the direct and associative 
caches.  Again these increases are rather moderate.   
 
 

 
Figure 4.  LE usage vs. Address Width and Data Width 

 
Table 2.  Memories used for different Cache Depths 
 Number of RAM Blocks Used 

Depth Associative Direct Mapped Two Way Set Ass. 
(words) 512 4K Mega 512 4K Mega 512 4K Mega 

32 14 2 0 0 2 0 1 4 0 
128 56 2 0 0 2 0 1 4 0 
256 112 4 0 0 4 0 1 4 0 
1024 448 16 0 0 14 0 1 14 0 
2048 NA NA NA 0 27 0 0 29 0 
4096 NA NA NA 0 0 1 0 55 0 

 
Table 3.  Memories used for different Address Widths 

Addr. Number of RAM Blocks Used 
Width Associative Direct Mapped Two Way Set Ass. 
(bits) 512 4K Mega 512 4K Mega 512 4K Mega 

32 14 2 0 0 2 0 1 4 0 
128 53 4 0 1 4 0 3 8 0 
256 105 8 0 0 8 0 3 16 0 
512 207 15 0 0 15 0 3 30 0 

 
Table 4.  Memories used for different Data Width 

Data Number of RAM Blocks Used 
Width Associative Direct Mapped Two Way Set Ass. 
(bits) 512 4K Mega 512 4K Mega 512 4K Mega 

32 14 2 0 0 2 0 1 4 0 
64 14 3 0 0 3 0 1 6 0 
92 14 4 0 1 3 0 1 8 0 
128 14 5 0 1 4 0 1 10 0 
256 15 8 0 0 8 0 1 17 0 

   
 While all the designs had relatively modest LE 
requirements, the opposite is seen in their memory 
requirements.  The number of Stratix M512s, M4Ks, and 
Mega RAMs required for each cache design is shown in 
Tables 2, 3 and 4.  Again the latencies are ignored since 
this did not impact the number of memories used. Note 
that the Altera software system, Quartus II, selects the 



target physical memories used (except in the case where 
we explicitly used the small memories for the CAMs). 
 The growth of the M512s used for the CAMs in the 
associative cache is linear as expected from [3].  Changes 
in the data width have no effect on the CAM as can be 
seen in Table 4 column 8.  An interesting observation 
occurs for the direct-mapped cache with depth of 4096 
words.  The Quartus II compiler merged the tag and data 
store into a single Mega RAM block.  This technique 
reduces the number of  memory blocks and simplifies 
routing which may speed up the circuit.   
 We now present the effect of different cache 
parameters and types on the post-routed speed of the 
cache.  Data was gathered for all cache types including 
different latencies since latency plays a pivotal role in the 
system’s overall speed.  Figure 5 provides a graph 
generated from the measured data from increasing cache 
depth.  For data and address width graphs see [5]. 
 

 
Frequency vs Cache Depth with 32-bit Tag Width 

and 32-bit Data Width
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Figure 5.  Graph of Frequency vs. Cache Depth 

 
 As expected, we noticed the direct-mapped cache is 
generally fastest and the associative cache is slowest. It is 
interesting to note that an associative cache with a three 
cycle read latency can outperform a single cycle read 
latency direct-mapped cache.  Also, the direct-mapped 
cache which was merged into a MegaRAM performs 
faster than the direct-mapped cache half its size. 
 A summary of the effects of increasing each cache 
dimension on the speed of the cache is show in Table 5.  
These results follow intuitively from growth in their 
respective components as it is mostly larger CAMs and 
comparators that slow down the caches.  Address widths 
affect both, data widths change neither, and depth 
influences only CAMs. 

 

Table 5.  Speed Reductions with Growth in Dimension 
  Depth Addr Data 
Assoc. Yes Yes No 
Direct No Yes No 
Two Way No Yes No 

 
5.  Software 
 
 Software and source code for the cache generator is at: 
http://www.eecg.toronto.edu/~jayar/software/cachegen/ca
chegen.html. It consists of C-language code which 
generates parameterized Verilog. 
 
6.  Conclusion 
  
 We have presented an automatic parameterized cache 
generator that emits cache designs for an FPGA in a 
Verilog output file.  The input to the generator is a set of 
parameters describing the desired cache, including 
associativity, latency, cache depth, address width, and 
data width.  Cache designs were generated and evaluated 
for a wide variety of input parameters.  From this 
analysis, a number of trends were established concerning 
their area and speed. The generator is very robust offering 
a wide variety of cache types, able to satisfy a wide 
variety of size and speed constraints.  With this tool, and 
the presented statistics, a designer can identify cache 
parameters which satisfy the area and speed constraints of 
a system, and then choose a cache with optimal 
effectiveness.  Progress in this direction will eventually 
yield a more precise method of selecting cache types for 
soft processors and other cache applications. 
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