
A Parameterized Automatic Cache Generator for FPGAs

Peter Yiannacouras and Jonathan Rose
Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto

Toronto, Ontario, Canada M5S 3G4
{yiannac@eecg.utoronto.ca, jayar@eecg.utoronto.ca}

Abstract
Caches in FPGAs can improve the performance of soft
processors and other applications beset by slow storage
components. In this paper we present a cache generator
which can produce caches with a variety of
associativities, latencies, and dimensions. This tool
allows system designers to effortlessly create, and
investigate different caches in order to better meet the
needs of their target system. The effect of these three
parameters on the area and speed of the caches is also
examined and we show that the designs can meet a wide
range of specifications and are in general fast and
compact.

1. Introduction

 Choosing the best cache for a system is very
application-specific, but is often done subjectively. A
particular cache is often selected based on general notions
of its area, speed, and effectiveness inferred from the
many studies performed on caches. This leads to a less
than optimal cache solution. In order to more
aggressively pursue good choices for cache parameters, a
more precise understanding of a cache’s area, speed, and
effectiveness is required. Our goal is to facilitate such a
pursuit by providing an automatic cache generator for
FPGAs which, given a set of input parameters, will output
an efficient cache implementation satisfying the given
parameters. The generator is versatile as it allows for a
number of different cache types to be generated. Users
can select the appropriate size, latency, and associativity
for their desired cache and use the proposed generator to
create an implementation in Verilog. While The
implementations are targeted for Altera’s Stratix family
of FPGAs, the code could be modified to emit primitives
specific to other families of FPGAs.
 The generator can be used to easily implement a
desired cache, quickly evaluate performance for a number
of caches, or to compile a catalogue of statistics for
several cache variants. We will present statistics for the
area and speed of caches with different associativities,
latencies, and dimensions in an FPGA environment.
Doing so will perhaps pave the way for a more exact and
deterministic process for selecting cache parameters.

 The remainder of this paper is organized as follows:
Section 2 describes the Stratix FPGA architecture and
necessary Cache nomenclature; Section 3 describes the
various cache designs that can be generated; Section 4
examines the resource utilization and speed performance
for caches of various types and sizes; Section 5 provides a
link to the software developed; and Section 6 concludes.

2. Background

 In this section we provide relevant background on the
FPGA we use, our cache nomenclature and other working
parts of our system. The Stratix FPGA from Altera is
built in a 0.13um technology, and contains a
heterogenous mixture of programmable logic, memory,
and arithmetic blocks [1][4]. Its memory blocks come in
three different sizes: 512 bits, 4 kilobits, and 512 kilobits
(not including parity bits). These memory blocks are
named M512, M4K, and MRAM (Mega RAM) according
to their size and will be referred to as such throughout this
document. The Stratix Logic Element (LE) consists of a
4-input lookup table and flip-flop, with the ability to
implement 1 bit of add/subtract arithmetic in each cell.
 The speed of a system is defined as its maximum
operational clock frequency. This figure is reported by
CAD tools, in our case Altera’s Quartus II version 2.1
CAD package, which was used for all levels of synthesis.
 A cache is a memory that stores a small subset of the
data available in a processor’s address space. If currently
addressed data is in the cache, a hit is said to have
occurred and the cache can satisfy the memory operation
without involving the slower memory. Data values in the
cache are identified using a tag. A tag is the subsection
of the address required to uniquely identify the data.
Tags are each stored in a tag store alongside the
corresponding data stored in a data store.
 There are three dimensions which define the size of a
cache. These are its cache line, cache depth, and tag
width. A cache line refers to the unit of data storage, in
bits, used in the cache. The maximum number of cache
lines that can be stored in the cache is known as the cache
depth. The tag width is the number of bits in a tag.
 Ideally, new data can be added to the cache as long as
the cache has an unoccupied cache line available. This
implies that a given data can map to any cache line. Such

a cache is known as a fully associative cache, or just
associative cache. A more simplified cache such as the
direct-mapped cache maps data to only one cache line
determined by the low order bits of its address. Between
these two extremes is the set associative cache. Instead
of using the low order bits to select a single cache line,
they are used to select n different cache lines. Such a
cache is said to be n-way set associative. These caches
generally provide the best compromise between circuit
complexity and performance.
 The strategy used to choose which data to evict from
the cache is known as the replacement policy. Eviction
occurs when space needs to be made for new data. The
most common method, known as LRU (Least Recently
Used), tracks how recently each piece of data was
referenced, and evicts the one used furthest in the past.
 A write operation can potentially cause the cache and
memory to become unsynchronized if the cache contains
a more recent value than the memory, and that value is
evicted without being written to memory. In this design
this is prevented by employing a write-through policy,
which ensures the synchronization of the cache and
memory by always writing to both.
 A CAM (Content Addressable Memory) is the inverse
of RAM. While a RAM is given an address and outputs
the data stored at that address, a CAM receives data, often
called a pattern, and returns the address where it is stored,
or indicates that the pattern is not currently in the CAM.
This makes CAMs ideal for searching through tags and
detecting cache hits in associative caches.

3. Cache Design

 Table 1 lists the set of characteristics that can be
specified to our parameterized cache generator.

 Table 1. Characteristics of Each Cache Type

3.1 Fully Associative Cache

 The design of a fully associative cache involves five
components: A CAM, an encoder, a data store, a tag
store, and a counter. Figure 1 illustrates a read operation.
 A simple logical OR of the decoded CAM outputs is
used to detect a hit. An encoder is used to generate the
encoded address needed by the data store. The encoder is
the largest and often slowest block of logic in this cache.

Its size is determined solely by the depth of the cache but
is minimized in this design by capitalizing on the CAM’s
one-hot decoded outputs.

Figure 1. Associative Cache Read

 A cached read completes in either two or three cycles
after being issued, depending on the choice of the user.
Writes require one cycle latency and use a counter-based
replacement policy as was used in [2]. The CAM
implementation is identical to that in [3]; the only
modification is in the chosen dimensions of the CAM
blocks which were customized to fit Stratix’s M512s.
Doing so required one fifth the memory [3] needed.

3.2 Direct-Mapped Cache

 The direct-mapped cache has a simple design. It
requires only a tag store, data store, and comparator,
where the tag and data stores are both single-port RAM
blocks. Since only one tag in the tag store can match the
tag input, that tag is the only one read, and the only one
that need be compared. Thus a single comparator is used
to detect a hit. A schematic of the read circuitry is
shown in Figure 2. A write operation involves simply
writing the tag to the tagstore and the data to the data
store overwriting any values already there.

Figure 2. Cache Read for the Direct-Mapped cache

3.3 Two-Way Set Associative Cache

 A two-way set associative cache has two cache lines in
each set. Reading from the cache requires comparing tags
from both cache lines and selecting which (if any) of the
data to return. Figure 3 shows the implementation of
such a system which is, in effect, two direct-mapped
caches arranged in parallel.
 The write operation is also identical to the direct-
mapped cache except that a true LRU replacement policy
is used to specify which of the two cache lines in a set are
to be overwritten. The LRU circuitry is comprised of a
single one bit-wide RAM block which indicates which of
the two cache lines is to be evicted.

Fully

Associative
Direct-
mapped

Two-way
Set Assoc.

Read Latency 2,3 1,2 1,2
Write Latency 1 1 1,2
Depth any any any
Addr Width any any any
Data Width any any any

Figure 3. Two-way Set Associative Cache Read

4. Speed and Area Measurements

 In this section we compare the different types of
caches with respect to their maximum operating
frequency, and area in terms of logic and memory usage.
All measurements are made using a 32-word deep cache
with a 32-bit address space and 32-bit data width as a
base and varying only one of the dimensions.
 We measure both logic (in terms of number of Stratix
Logic Elements, or LEs) and memory (M512s, M4Ks,
and Mega RAMs) consumption for the different caches.
The effect of increased cache depth, address width, and
data width will be examined for all cache types. Changes
in latency were observed to have a negligible impact on
the area of the circuits. Thus, the area measurements
were made only for the different amounts of associativity.
 For increases in cache depth, the number of Stratix
LEs used for the direct-mapped and two-way set
associative caches was fixed at 99 and 198 respectively.
This independence is expected since those designs have
no logic components which depend on the depth.
Moreover, the number of logic elements is seen to be very
small, respectively using 1% and 2% of the smallest
Stratix chip, the S10. In the associative case, the increase
in LE usage was linear with slope 3.5 LEs/word and zero
offset. The contributing factors were the CAM, encoder,
LRU circuitry, and wide logical OR, all of which grew
with increased cache depth.
 Figure 4 shows that all cache types suffer linear
increases in LE usage with increases in address width.
The direct-mapped and two-way cache designs both
exhibit increases because of the comparators which need
to compare larger tags. In the associative cache, the
increase is due to the increasing size of the CAM. The
two-way cache has two comparators while the direct
mapped cache has one; thus, it increases at twice the rate.
Still, LE usage is rather modest for all the caches.
 The effect of increasing data width on the number of
LEs used is also seen in Figure 4. This increase comes
solely from growth in the data multiplexers. The two-
way set associative cache contains three data muxes,
whereas the direct and associative require only two. Thus

it increases 150% faster than the direct and associative
caches. Again these increases are rather moderate.

Figure 4. LE usage vs. Address Width and Data Width

Table 2. Memories used for different Cache Depths
 Number of RAM Blocks Used

Depth Associative Direct Mapped Two Way Set Ass.
(words) 512 4K Mega 512 4K Mega 512 4K Mega

32 14 2 0 0 2 0 1 4 0
128 56 2 0 0 2 0 1 4 0
256 112 4 0 0 4 0 1 4 0
1024 448 16 0 0 14 0 1 14 0
2048 NA NA NA 0 27 0 0 29 0
4096 NA NA NA 0 0 1 0 55 0

Table 3. Memories used for different Address Widths

Addr. Number of RAM Blocks Used
Width Associative Direct Mapped Two Way Set Ass.
(bits) 512 4K Mega 512 4K Mega 512 4K Mega

32 14 2 0 0 2 0 1 4 0
128 53 4 0 1 4 0 3 8 0
256 105 8 0 0 8 0 3 16 0
512 207 15 0 0 15 0 3 30 0

Table 4. Memories used for different Data Width

Data Number of RAM Blocks Used
Width Associative Direct Mapped Two Way Set Ass.
(bits) 512 4K Mega 512 4K Mega 512 4K Mega

32 14 2 0 0 2 0 1 4 0
64 14 3 0 0 3 0 1 6 0
92 14 4 0 1 3 0 1 8 0
128 14 5 0 1 4 0 1 10 0
256 15 8 0 0 8 0 1 17 0

 While all the designs had relatively modest LE
requirements, the opposite is seen in their memory
requirements. The number of Stratix M512s, M4Ks, and
Mega RAMs required for each cache design is shown in
Tables 2, 3 and 4. Again the latencies are ignored since
this did not impact the number of memories used. Note
that the Altera software system, Quartus II, selects the

target physical memories used (except in the case where
we explicitly used the small memories for the CAMs).
 The growth of the M512s used for the CAMs in the
associative cache is linear as expected from [3]. Changes
in the data width have no effect on the CAM as can be
seen in Table 4 column 8. An interesting observation
occurs for the direct-mapped cache with depth of 4096
words. The Quartus II compiler merged the tag and data
store into a single Mega RAM block. This technique
reduces the number of memory blocks and simplifies
routing which may speed up the circuit.
 We now present the effect of different cache
parameters and types on the post-routed speed of the
cache. Data was gathered for all cache types including
different latencies since latency plays a pivotal role in the
system’s overall speed. Figure 5 provides a graph
generated from the measured data from increasing cache
depth. For data and address width graphs see [5].

Frequency vs Cache Depth with 32-bit Tag Width

and 32-bit Data Width

0

50

100

150

200

250

5 7 9 11
Cache Depth (Log2 of No. of Words)

Fr
eq

ue
nc

y
(M

H
z)

Figure 5. Graph of Frequency vs. Cache Depth

 As expected, we noticed the direct-mapped cache is
generally fastest and the associative cache is slowest. It is
interesting to note that an associative cache with a three
cycle read latency can outperform a single cycle read
latency direct-mapped cache. Also, the direct-mapped
cache which was merged into a MegaRAM performs
faster than the direct-mapped cache half its size.
 A summary of the effects of increasing each cache
dimension on the speed of the cache is show in Table 5.
These results follow intuitively from growth in their
respective components as it is mostly larger CAMs and
comparators that slow down the caches. Address widths
affect both, data widths change neither, and depth
influences only CAMs.

Table 5. Speed Reductions with Growth in Dimension
 Depth Addr Data
Assoc. Yes Yes No
Direct No Yes No
Two Way No Yes No

5. Software

 Software and source code for the cache generator is at:
http://www.eecg.toronto.edu/~jayar/software/cachegen/ca
chegen.html. It consists of C-language code which
generates parameterized Verilog.

6. Conclusion

 We have presented an automatic parameterized cache
generator that emits cache designs for an FPGA in a
Verilog output file. The input to the generator is a set of
parameters describing the desired cache, including
associativity, latency, cache depth, address width, and
data width. Cache designs were generated and evaluated
for a wide variety of input parameters. From this
analysis, a number of trends were established concerning
their area and speed. The generator is very robust offering
a wide variety of cache types, able to satisfy a wide
variety of size and speed constraints. With this tool, and
the presented statistics, a designer can identify cache
parameters which satisfy the area and speed constraints of
a system, and then choose a cache with optimal
effectiveness. Progress in this direction will eventually
yield a more precise method of selecting cache types for
soft processors and other cache applications.

References

[1] Altera Corporation. “Altera Stratix FPGA Family Data

Sheet, ” December 2002. http://www.altera.com/

[2] Altera Corporation, “AN 119: Implementing High-Speed

Search Applications with Altera CAM,” in Altera
Application Notes, July 2001. http://www.altera.com/

 [3] J.L. Brelet. “Using Block RAM for High Performance

Read/Write CAMs” in Xilinx Application Note xapp204.
May 2000, http://www.xilinx.com/

[4] D. Lewis, V. Betz, D. Jefferson, A. Lee, C. Lane, P.

Leventis, S. Marquardt, C. McClintock, B. Pedersen, G.
Powell, S. Reddy, C. Wysocki, R. Cliff, and J. Rose, "The
Stratix Routing and Logic Architecture" in FPGA '03,
ACM. Symp. FPGAs, February 2003, pp. 15-20.

[5] P. Yiannacouras, “An Automatic Cache Generator for

Stratix FPGAs,” BASc Thesis. University of Toronto,
2003.
http://www.eecg.utoronto.ca/~yiannac/docs/bascthesis.pdf

