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ABSTRACT
As more embedded systems are built using FPGA platforms,
there is an increasing need to support processors in FPGAs.
One option is the soft processor, a programmable instruc-
tion processor implemented in the reconfigurable logic of
the FPGA. Commercial soft processors have been widely
deployed, and hence we are motivated to understand their
microarchitecture. We must re-evaluate microarchiteture in
the soft processor context because an FPGA platform is sig-
nificantly different than an ASIC platform—for example, the
relative speed of memory and logic is quite different in the
two platforms, as is the area cost. In this paper we present
an infrastructure for rapidly generating RTL models of soft
processors, as well as a methodology for measuring their
area, performance, and power. Using our automatically-
generated soft processors we explore the microarchitecture
trade-off space including: (i) hardware vs software mul-
tiplication support; (ii) shifter implementations; and (iii)
pipeline depth, organization, and forwarding. For example,
we find that a 3-stage pipeline has better wall-clock-time
performance than deeper pipelines, despite lower clock fre-
quency. We also compare our designs to Altera’s NiosII
commercial soft processor variations and find that our au-
tomatically generated designs span the design space while
remaining very competitive.
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C.1.3 [Processor Architectures]: Other Architecture
Styles—Adaptable architectures
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1. INTRODUCTION
With the increasing cost and time-to-market of designing

a state-of-the-art ASIC, an increasing number of embedded
systems are being built using Field Programmable Gate Ar-
ray (FPGA) platforms. Such designs often contain one or
more embedded microprocessors which must also migrate to
the FPGA platform to avoid the increased cost and latency
of a multi-chip design. FPGA vendors have addressed this
issue with two solutions: (i) incorporating one or more hard
processors directly on the FPGA chip (eg., Xilinx Virtex
II Pro and Altera Excalibur), and (ii) implementing one or
more soft processors using the FPGA fabric itself (eg., Xilinx
MicroBlaze and Altera Nios).

While FPGA-based hard processors can be fast, small,
and relatively cheap, they have several drawbacks. First, the
number of hard processors included in the FPGA chip may
not match the number required by the application, leading
to either too few or wasted hard processors. Second, the per-
formance requirements of each processor in the application
may not match those provided by the available FPGA-based
hard processors (eg., a full hard processor is often overkill).
Third, due to the fixed location of each FPGA-based hard
processor, it can be difficult to route between the processors
and the custom logic. Finally, inclusion of one or more hard
processors specializes the FPGA chip, impacting the result-
ing yield and narrowing the customer base for that product.

While a soft processor cannot easily match the perfor-
mance/area/power of a hard processor, soft processors do
have several compelling advantages. Using a generic FPGA
chip, a designer can implement the exact number of soft pro-
cessors required by the application, and the CAD tools will
automatically place them within the design to ease rout-
ing. Since it is implemented in configurable logic, a soft
processor can be tuned by varying its implementation and
complexity to match the exact requirements of an applica-
tion. While these benefits have resulted in wide deployment
of soft processors in FPGA-based embedded systems [27],
the architecture of soft processors has yet to be studied in
depth.

1.1 Understanding Soft Processor Microarchi-
tecture

The microarchitecture of processors has been studied by
many researchers and vendors for decades. However, the
trade-offs for FPGA-based soft processors are significantly
different than those implemented directly in transistors [25,
26]: for example, on-chip memories are often faster than the
clock speed of a soft processor pipeline, and hard multipli-
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Figure 1: Overview of the SPREE system.
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Figure 2: Comparison of our generated designs vs
the three Altera Nios II variations.

ers are area-efficient and fast compared to other functions
implemented in configurable logic. Furthermore, due to the
difficulty in varying designs at the logic layout level, proces-
sor microarchitecture has traditionally been studied using
high-level functional simulators that estimate area and per-
formance. In contrast, FPGA CAD tools allow us to quickly
and accurately measure the exact speed, area, and power
of the final placed and routed design for any soft proces-
sor. Hence we have the compelling opportunity to develop a
complete and accurate understanding of soft processor mi-
croarchitecture.

Our long-term research agenda is to be able to automati-
cally navigate the soft processor design space, and to make
intelligent application-specific architectural trade-offs based
on a full understanding of soft processor microarchitecture.
In this paper we describe our initial work comprised of the
following three goals: (i) to build a system for automatically-
generating soft processors with minimal input from the user;
(ii) to develop a methodology for comparing soft processor
architectures; (iii) to begin to populate and analyze the soft
processor design space. We have developed the Soft Pro-
cessor Rapid Exploration Environment (SPREE) (shown in
Figure 1), a system which automatically generates an RTL-
level description of a soft processor from text-based ISA and
datapath descriptions—SPREE is described in detail in Sec-
tion 2. We use FPGA CAD tools to accurately measure

area, clock frequency, and power of the resulting RTL de-
signs, and we also verify correctness and measure the cycle
counts of several embedded benchmark applications on these
designs. As a preview of the capabilities of our system, Fig-
ure 2 shows wall-clock-time vs area for our initial generated
designs as well as for the three variations of the industrial
Altera NiosII soft processor [7] (these results are described
in detail in Section 4). Our designs successfully span the
trade-off space between the NiosII variations, and a few de-
signs even provide greater performance with less area than
one of the NiosII variations.

1.2 Related Work
While industry architects have optimized commercial soft

processors [25, 26], to the best of our knowledge a microar-
chitectural exploration of FPGA-based soft processors has
never been conducted in the depth presented in this paper.

SPREE is a system for architecture exploration, of which
there are numerous previously-proposed approaches that fall
into two categories: parametrized cores and architecture de-
scription languages (ADLs). A parameterized core [3, 8, 15,
17, 24, 28] is designed at the RTL level allowing for certain
aspects of the architecture to be adjusted. Few existing pa-
rameterized cores target FPGAs specifically, and all of them
narrowly constrain the potential design space. Changing the
ISA, timing, or control logic requires large-scale modification
to the source code of the processor.

A multitude of architecture exploration environments have
been proposed—a good summary of these is provided by
Gries [16] and by Tomiyama [31]. The foundation of these
environments is the ADL which completely specifies the de-
sign of the processor. The focus of these ADLs is to drive
the creation of custom compilers, instruction set simulators,
cycle accurate simulators, and tools for estimating area and
power. Unfortunately these ADLs are often verbose and
overly general (for our purposes). Furthermore, few ADLs
provide a path to synthesis through RTL generation, and
for those that do [20, 30, 32] the resulting RTL is often a
very high-level description (for example, in SystemC), and
therefore depends heavily on synthesis tools to optimize the
design. In an FPGA, using different hardware resources re-
sults in large trade-offs—hence the soft processor designer
needs direct control of these decisions.

There are two systems most closely related to SPREE:
UNUM and PEAS-III. The UNUM [14] system automati-
cally generates microprocessor implementations where users
can seamlessly swap components without explicit changes to
the control logic. The output of the system is a processor
implemented in Bluespec [1], a behavioral synthesis language
which can be translated to RTL. The drawback to this ap-
proach is that there is overhead to using the behavioral syn-
thesis language, which also abstracts away implementation
details that are essential for efficient FPGA synthesis.

The PEAS-III project [21] focuses on ISA design and
hardware software co-design, and proposes a system which
generates a synthesizable RTL description of a processor
from a clock-based micro-operation description of each in-
struction. Although PEAS-III enables a broad range of ex-
ploration, it requires changes to the description of many
instructions to produce a small structural change to the
architecture. Instead of inferring the datapath from the
micro-operation instruction descriptions, in SPREE we in-
fer the micro-operations of each instruction from the dat-
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Figure 3: An overview of the SPREE RTL genera-
tor.

apath, allowing the user to carefully design the datapath.
PEAS-III was used [19] to conduct a synthesis-driven explo-
ration which explored changing the multiply/divide unit to
sequential (34-cycles), and then adding a MAC (multiply-
accumulate) instruction. The results were compared for
their area and clock frequency as reported by the synthe-
sis tool.

Finally, there has recently been a surge of interest in using
FPGAs as a platform for doing processor and system-level
architectural studies [18]. However, the goal of such work is
to overcome the long simulation times associated with soft-
ware simulators of large and complex processors to enable
cycle-accurate simulation.

1.3 Contributions
This paper makes the following three contributions. First,

we present a methodology for comparing and measuring
soft processors architectures. Second, we perform detailed
benchmarking of a wide-variety of soft processor architec-
tures, including accurate area, clock frequency, and energy
measurements, compare our results to Altera’s Nios II soft
processor variations—this is what we believe is the first
such study in this depth. Finally, we suggest architectural
enhancements, component implementations, and potential
compiler optimizations which are specific to FPGA-based
soft processors.

2. OVERVIEW OF THE SPREE SYSTEM
The purpose of SPREE is to facilitate the rapid generation

of RTL for a wide variety of soft processors, enabling us to
thoroughly explore and understand the soft processor design
space. As shown in Figure 3, SPREE takes as input a de-
scription of the target ISA and the desired datapath, verifies
that the datapath supports the ISA, instantiates the data-
path, and then generates the corresponding control logic.
The output is a complete and synthesizable RTL descrip-
tion (in Verilog) of a soft processor. This section describes
the SPREE system, further details of which are available
online [33, 34].

It is important to note that for now we consider sim-
ple, in-order issue processors that use only on-chip memory
and hence have no cache. The memory on the FPGA is
faster than a typical processor implementation eliminating
the need for exploring the memory hierarchy. Moreover, the
largest FPGA devices have more than one megabyte of on
chip memory which is adequate for many applications (in
the future we plan to broaden our application base to those
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Figure 4: A datapath description shown as an inter-
connection of components.

requiring off-chip RAM and caches). We also do not yet in-
clude support for dynamic branch prediction, exceptions, or
operating systems. Finally, in this paper we do not modify
the ISA (we restrict ourselves to a subset of MIPS-I) or the
compiler, with the exception of evaluating software vs hard-
ware support for multiplication (due to the large impact of
this aspect on cycle time and area).

2.1 Input: The Architecture Description
The input to the SPREE system is the description of the

desired processor, composed of textual descriptions of the
target ISA and the processor datapath. The datapath is
described as a graph of components from the Component
Library. The functionality of each component and the re-
quired functionality of each instruction in the ISA are both
described in a common language. The following describes
each of these in more detail.

2.1.1 Describing the Datapath
The datapath is described by listing the set of compo-

nents to use and the interconnection between their physical
ports—an example of which is shown in Figure 4. A pro-
cessor architect can therefore create any datapath that sup-
ports the specified ISA. This structural approach enables ef-
ficient synthesis, for example when pipelining: often a minor
re-organization of the pipeline may be required to accommo-
date a high delay path through the circuit. Balancing logic
delay to achieve maximum clock frequency depends criti-
cally on this ability to manually arrange the pipeline stages,
a task that is beyond the retiming capabilities of modern
synthesis tools. Without this ability we risk making incor-
rect conclusions based on poor implementations.

The datapath must also include certain control compo-
nents when necessary, again using the case of a pipelined
processor for example: pipeline registers, hazard detection
units, and forwarding lines are available in the Component
Library and must be used in an appropriate combination to
ensure correct functionality of the processor. We hope to
automate the insertion of these components in the future.

2.1.2 Selecting and Interchanging Components
The SPREE Component Library stores the RTL code,

interface, and interface descriptions of every available pro-
cessor component, for example: register files, shifters, and
ALUs. When selected in the datapath description, a compo-
nent is included in the resulting processor architecture. To
evaluate different options for a given unit, a user can easily
interchange components and regenerate the control logic.
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2.1.3 Creating and Describing Custom Components
The Component Library can be expanded to include cus-

tom components. Designers must provide the RTL descrip-
tion of the new component and describe its interface and
functionality in a library entry. Figure 5 shows a simplified
library entry for a small ALU. The interface is described by
the Module line, which defines the name of the module, and
by the names and bit-widths of the physical input and out-
put ports which follow. The functionality of the component
is described in the Opcode section which defines an opcode
port (opcode). The fields inside the Opcode section describe
the functionality of the component. Each line begins with
the name of the supported operation and is proceeded by
two integers: (i) the opcode port value that selects that
operation, and (ii) the latency in cycles for the operation
to complete (aynchronous components are denoted with a
negative latency). For example, the ADD function of the
simple ALU specified in figure 5 is selected by opcode 0 and
has zero extra cycles of latency. The name of the supported
operation comes from a set of generic operations (GENOPS)
which form a common language for describing the behavior
of a component and also the semantics of an instruction.
Each GENOP is a small unit of functionality performed in-
side a typical microprocessor: examples of GENOPs include
ADD, XOR, PCWRITE, LOADBYTE, and REGREAD. An opcode can
support an arbitrary number of GENOPs, which allows for
resource sharing, and a component can have an arbitrary
number of opcode ports, which allows for parallellism.

2.1.4 Describing the ISA
Each instruction in the processor description is described

in terms of a data dependence graph of GENOPs. An ex-
ample of such a graph is shown in Figure 6 for a MIPS
Add-Immediate instruction. In the graph, the nodes are
GENOPs and the edges represent a flow of data from one

GENOP to another. We institute the rule that no GENOP
can execute until all of its inputs are ready. For a given
instruction this graph shows the mandatory sequence of
GENOPs, although the datapath will determine the exact
timing.

2.2 Generating a Soft Processor
From the above inputs, SPREE generates a complete Ver-

ilog RTL model of the desired processor. As shown in Fig-
ure 3 and described below, SPREE generates the processor
in three phases: (i) datapath verification, (ii) datapath in-
stantiation, and (iii) control generation.

2.2.1 Datapath Verification
Since there are two separate inputs that describe the pro-

cessor datapath and the ISA, SPREE must verify that the
datapath indeed supports the ISA by ensuring that two con-
ditions are met. First, the set of GENOPs supported by
all of the components collectively must include each of the
GENOPs required by the ISA. Second, the interconnection
of these components must be such that the flow of data be-
tween GENOPs is analogous to the flow of data imposed
by the ISA description. Both conditions can be met sim-
ply be ensuring that the GENOP graph describing each in-
struction in the ISA is a subgraph of the datapath GENOP
graph. Note that by tracking which portions of the datap-
ath GENOP graph remain unused (by any instruction), we
can automatically trim unnecessary components and con-
nections from the datapath.

2.2.2 Datapath Instantiation
From the input datapath description, we must generate

an equivalent Verilog description. This task is relatively
straight-forward since the connections between components
are known from the datapath description. However, to sim-
plify the input, SPREE allows physical ports to be driven
by multiple sources and then automatically inserts the logic
to multiplex between the sources, and generates the corre-
sponding select logic during the control generation phase.

2.2.3 Control Generation
Once the datapath has been described and verified, SPREE

automatically performs the laborious task of generating the
logic to control the datapath’s operation to correctly imple-
ment the ISA. The control logic provides two things to each
component: what operation to perform (through Opcodes),
and when to perform it (through Enables). From the data-
path verification we know which operation is performed by
each component for a given instruction, hence the opcode
is simply decoded from the instruction. To distribute the
opcode signals to multiple stages in the case of a pipelined
processor, the control logic propagates the instruction word
through every pipeline stage, and inserts necessary decode
logic in each stage. The user can optionally locate the de-
code logic in the previous stage, which can have the effect
of shortening a control-dominated critical path.

Enables are used to schedule operations. Generation of
enable signals must take into account the datapath, asyn-
chronous components which may take multiple cycles to
complete, and hazard detection logic in the case of a pipelined
processor. Generation of enable signals proceeds as follows:
First the generator collects all timing information from each
component. Next it analyzes the datapath and infers the
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Figure 7: CAD flow overview. Optimizations and
seed values add noise to the system affecting the fi-
nal area, clock frequency, and power measurements,
and hence must be carefully managed.

pipeline stage of each component. Within each pipeline
stage, local stall signals are extracted and combined. Any
stall signal is propagated to earlier stages so that all stages
behind that which created the stall are also stalled— we re-
fer to this propagation of stalls as the stall network. From
the stall network, the enables are easily generated since a
component is enabled if the instruction uses it and the com-
ponent is not stalled. Similarly, the generator also generates
squash signals: these are used to kill instructions and replace
them with null operations, as in the case of a mis-speculated
branch.

3. EXPERIMENTAL FRAMEWORK
Having described the design and implementation of SPREE

in the previous section, we now describe our framework for
measuring and comparing the soft processors it produces.
We present a method for verifying the correctness of our
soft processors, methods for employing FPGA CAD tools,
a methodology for measuring and comparing soft processors
(including a commercial soft processor), and the benchmark
applications that we use to do so.

3.1 Processor Verification
SPREE verifies that the datapath is capable of execut-

ing the target ISA—however, we must also verify that the
generated control logic and the complete system function
correctly. We implement trace-based verification by using a
cycle-accurate industrial RTL simulator (Modelsim [6]) that
generates a trace of all writes to the register file and memory
as it executes an application. We compare this trace to one
generated by MINT [5] (a MIPS instruction set simulator)
and ensure that the traces match. SPREE automatically
generates test benches for trace dumping and creates debug
signals to facilitate the debugging of pipelined processors.

3.2 FPGAs, CAD, and Soft Processors
While SPREE itself is indifferent to the target FPGA ar-

chitecture, we have selected Altera’s Stratix I [23] device for
performing our FPGA-based exploration. The Components
Library thus targets Stratix I FPGAs. We use Quartus II
v4.2 CAD software for synthesis, technology mapping, place-
ment and routing. We synthesize all designs to a Stratix
EP1S40F780C5 device (a middle-sized device in the family,

with the fastest speed grade) and extract and compare area,
clock frequency, and power measurements as reported by
Quartus.

It is important to understand that one must proceed care-
fully when using CAD tools to compare soft processors.
Normally when an HDL design fails design constraints (as
reported by the CAD software), there are three alterna-
tives that avoid altering the design: (i) restructure the HDL
code to encourage more efficient synthesis, (ii) use different
optimization settings of the CAD tools, and (iii) perform
seed sweeping—a technique which selects the best result
among randomly-chosen starting placements. These three
are design-independent techniques for coaxing a design into
meeting specifications, and their existence illustrates the
non-determinism inherent in combinatorial optimization ap-
plied in a practical context.

We have taken the following measures to counteract vari-
ation caused by the non-determinism caused by CAD tools:
(i) we have coded our designs structurally to avoid the cre-
ation of inefficient logic from behavioral synthesis; (ii) we
have experimented with optimization settings and ensured
that our conclusions do not depend on them, and (iii) for
the area and clock frequency of each soft processor design
we determine the arithmetic mean across 10 seeds (different
initial placements before placement and routing) so that we
are 95% confident that our final reported value is within 2%
of the true mean.

3.3 Metrics for Measuring Soft Processors
To measure area, performance, and power, we must decide

on an appropriate set of specific metrics. For an FPGA, one
typically measures area by counting the number of resources
used. In Stratix, the main resource is the Logic Element
(LE), where each LE is composed of a 4-input lookup table
(LUT) and a flip flop. Other resources, such as the hardware
multiplier block, and memory blocks can be converted into
an equivalent number of LEs based on the relative areas
of each in silicon. The relative area of these blocks was
provided by Altera [13] Hence we report area in terms of
equivalent LEs.

To measure performance, we have chosen to report the
wall-clock-time for execution of a collection of benchmark
applications, since reporting clock frequency or instructions-
per-cycle (IPC) alone can be misleading. To be precise,
we multiply the clock period (determined by the Quartus
timing analyzer after routing) with the arithmetic mean of
the cycles-per-instruction (CPI) across all benchmarks, and
multiply that by the average number of instructions exe-
cuted across all benchmarks. Averaging in this way prevents
a long-running benchmark from biasing our results.

To measure power, we use Quartus’ Power Play tool which
produces a power measurement based on the switching ac-
tivities of post-placed-and-routed nodes determined by sim-
ulating benchmark applications on a post-placed-and-routed
netlist of a processor in Modelsim. We subtract out static
power, and we also subtract the power of the I/O pins since
this power dominates and is more dependent on how the
processor interfaces to off-chip resources than its microar-
chitecture. For each benchmark, we measure the energy per
instruction and report the arithmetic mean of these across
the benchmark set.



Table 1: Benchmark applications evaluated.
Dyn. Instr.

Source Benchmark Modified Counts

MiBench [4] bitcnts di 26,175
CRC32 d 109,414
qsort* d 42,754

sha d 34,394
stringsearch d 88,937

FFT* di 242,339
dijkstra* d 214,408
patricia di 84,028

XiRisc [12] bubble sort 1,824
crc 14,353
des 1,516
fft* 1,901
fir* 822

quant* 2,342
iquant* 1,896
turbo 195,914
vlc 17,860

Freescale [2] dhry* i 47,564

RATES [9] gol di 129,750
dct* di 269,953

* Contains multiply
d Reduced data input set
i Reduced number of iterations

3.4 Comparing with Altera NiosII Variations
To ensure that our generated designs are indeed interest-

ing and do not suffer from prohibitive overheads, we have
selected Altera’s NiosII family of processors for compari-
son. NiosII has three mostly-unparameterized variations:
NiosIIe, a very small unpipelined 6-CPI processor with a
serial shifter and software multiplication support; NiosIIs, a
5-stage pipeline with a multiplier-based barrel shifter, hard-
ware multiplication, and an instruction cache; and NiosIIf,
a large 6-stage pipeline with dynamic branch prediction, in-
struction and data caches, and an optional hardware divider.

We have taken several measures to ensure that compari-
son against the NiosII variations is as fair as possible. We
have generated each of the Nios processors with memory
systems identical to those of our designs: two 64KB blocks
of RAM for separate instruction and data memory. We do
not include caches in our measurements, though some logic
required to support the caches will inevitably count towards
the NiosII areas. The NiosII instruction set is very similar to
the MIPS-I ISA with some minor modifications (for exam-
ple, no branch delay slots)—hence NiosII and our generated
processors are very similar in terms of ISA. NiosII supports
exceptions and OS instructions, which are so far ignored by
SPREE. Finally, like NiosII, we also use GCC as our com-
piler, though we did not modify any machine specific pa-
rameters nor alter the instruction scheduling. Despite these
differences, we believe that comparisons between NiosII and
our generated processors are relatively fair, and that we can
be confident that our architectural conclusions are sound.

3.5 Benchmark Applications
We measure the performance of our soft processors using

20 embedded benchmark applications from four sources, (as
summarized in Table 1): XiRisc [12], MiBench [4], RATES [9],
and Freescale [2]. Some applications operate solely on inte-
gers, and others on floating point values (although for now
we use only software floating point emulation); some are

compute intensive, while others are control intensive. Ta-
ble 1 also indicates any changes we have made to the ap-
plication to support measurement, including reducing the
size of the input data set to fit in on-chip memory (d), and
decreasing the number of iterations executed in the main
loop to reduce simulation times (i). Additionally, all file
and other I/O were removed since we do not yet support an
operating system.

4. EXPLORING SOFT PROCESSOR
MICROARCHITECTURE

In this section we use SPREE to perform an initial in-
vestigation into the microarchitectural trade-offs for soft-
processors. We first validate our infrastructure by showing
that the generated designs are comparable to the highly opti-
mized NiosII commercial soft processor variations. We then
investigate in detail the following aspects of soft processor
microarchitecture: 1) hardware vs software multiplication—
the tradeoffs in containing hardware support for performing
multiply instructions; 2) shifter implementations—how one
should implement the shifter, since shifting logic can be ex-
pensive in FPGA fabrics; 3) Pipelining—we look at pipeline
organization, measure different pipeline depths, and exper-
iment with inter-stage forwarding logic. This small initial
design space permits us to perform a very complete study,
which will not be possible in the future when we support the
variation of a greater number of archtectural features such
as caches and branch predictors.

4.1 Comparison with NiosII Variations
As previewed earlier in Figure 2, we compare our gener-

ated designs to the three NiosII variations. Thus, there are
three points in the space for NiosII, with NiosIIe being fur-
thest left (smallest area, lowest performance), NiosIIf fur-
thest right (largest area, highest performance), and NiosIIs

in between. The figure shows that our generated designs
span the design space, and that one of our generated de-
signs even dominates the NiosIIs—hence we examine that
processor in greater detail.

The processor of interest is an 80MHz 3-stage pipelined
processor, which is 9% smaller and 11% faster in wall-clock-
time than the NiosIIs, suggesting that the extra area used
to deepen NiosIIs’s pipeline succeeded in increasing the fre-
quency, but brought overall wall-clock-time down.1 The gen-
erated processor has full inter-stage forwarding support and
hence no data hazards, and suffers no branching penalty.
The pipeline stalls only on load instructions (which must
await the value being fetched from data memory) and on
shift and multiply instructions (which complete in two cycles
instead of one, since both are large functional units). The
CPI of this processor is 1.36 whereas the CPIs of NiosIIs
and NiosIIf are 2.36 and 1.97 respectively. However, this
large gap in CPI is countered by a large gap in clock fre-
quency: NiosIIs and NiosIIf achieve clock speeds of 120
MHz and 135 MHz respectively, while the generated proces-
sor has a clock of only 80MHz. These results demonstrate
the importance of evaluating wall-clock-time over clock fre-
quency or CPI alone, and that faster frequency is not always
better. A similar conclusion was drawn for the original Nios

1A cynic might attribute this decision to the strong market-
ing influence of clock frequency.
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Figure 8: Average wall-clock-time vs area of proces-
sors with and without hardware multiplication sup-
port. The NiosIIe (top left) supports multiplication
in software.

by Plavec [29], who matched the Nios wall clock time by
targetting lower cycle counts in spite of slower clock fre-
quencies.

Our smallest generated processor is within 15% of the area
of NiosIIe, but is also 11% faster (in wall-clock-time). The
area difference can be attributed to overhead in the gen-
erated designs compared to the hand optimized NiosIIe,
knowing that overheads are more pronounced in a smaller-
area design (600-700 LEs). Altera reports that NiosIIe typ-
ically requires 6 cycles per instruction, while our smallest
processor typically requires 2-3 cycles per instruction. Al-
though our design has less than half the CPI of the NiosIIe,
our design also has half the clock frequency (82MHz for our
design, 159 MHz for NiosIIe), reducing the CPI benefit to
an 11% net win in wall-clock-time for our design.

Bearing in mind the differences between NiosII and our
processors, it is not our goal to draw architectural conclu-
sions from a comparison against NiosII. Rather, we see that
the generator can indeed populate the design space while
remaining relatively competitive with commercial, hand op-
timized soft processors.

4.2 The Impact of Hardware vs Software
Multiplication

Whether multiplication is supported in hardware or soft-
ware can greatly affect the area, performance, and power
of a soft processor. For this reason, the NiosIIe has no
hardware support while the other two Nios variations have
full support. There may be many variations of multiplica-
tion support which trade off area for cycle time; we consider
only full multiplication support using the dedicated multi-
pliers in the FPGA.2

Figure 8 obviates the trade-off between area and wall-
clock-time for multiplication support. In the figure we plot
the NiosII variations, as well as a collection of our gen-
erated designs each with either full hardware support for
multiplication or software-only multiplication. In terms of
area, removing the multiplication saves 230 equivalent LEs,
or approximately one fifth of the total area. However, in
some of the designs, the multiplier is also used to perform

2Hybrid implementations that we do not yet consider can
also provide partial multiplication support in hardware.
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Figure 9: Cycle count speedup of hardware support
for multiplication, for only those benchmarks that
contain multiplies.

shift operations as recommended by Metzgen [26], hence the
multiplier itself is not actually removed even though it is no
longer used for multiplies. For such designs the control logic,
multiplexing, and the MIPS-I HI and LO registers used for
storing the multiplication result are all removed, resulting
in an area savings of approximately 80 equivalent LEs. In
both cases the area savings is substantial, and depending on
the desired application may be well worth any reduction in
performance.

Figure 9 shows the impact of hardware support for mul-
tiplication on the number of cycles to execute each bench-
mark, but only for those benchmarks that use multiplica-
tion (Table 1). We see that some applications are sped up
minimally while others benefit up to 8x from a hardware
multiplier, proving that multiplication support is certainly
an application-specific design decision. Software-only sup-
port for multiplication roughly doubles the total number of
cycles required to execute the entire benchmark suite com-
pared to hardware support. This increase translates directly
into a wall-clock-time slowdown of a factor of two, since the
clock frequency remains unimproved by the removal of the
multiplication hardware.

The impact of multiplication support on energy is also
very interesting. Experiments showed that the energy con-
sumption of the dedicated multipliers and supporting logic
is insignificant. This conclusion is expected because the
switching activity of this path is relatively low, and because
the dedicated multipliers are implemented efficiently at the
transistor level. In fact, even with appreciable switching
activities, the multipliers are often seen to make no contri-
bution to power. The only effect of the hardware multipli-
cation support is a decreased instruction count: while this
reduces total energy, the energy consumed per instruction
remains the same.

4.3 The Impact of Shifter Implementation
Shifters can be implemented very efficiently in an ASIC

design. However, this is not true for FPGAs due to the
relatively high cost of multiplexing logic [26]. We study
three different shifter implementations: a serial shifter, im-
plemented by using flip-flops as a shift register and requiring
one cycle per bit shifted; a LUT-based barrel shifter imple-
mented in LUTs; and a multiplier-based barrel shifter imple-
mented using hard multipliers. We study the effects of using
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Figure 10: Average wall-clock-time vs area for dif-
ferent pipeline depths. In each series we have in or-
der from left-to-right the 3 shifter implementations:
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each of these shifter types over 4 different architectures, each
with a different pipeline depth.

Figure 10 gives the wall-clock-time versus area tradeoff
space for the different shifter implementations in the 4 ar-
chitectures. It shows that the serial shifter is the smallest
while the LUT-based barrel shifter is largest, on average 250
LEs larger than the serial shifter. In contrast, the multiplier-
based shifter is only 64 LEs larger than the serial shifter: the
multiplier is being shared for both shift and multiplication
instructions, and the modest area increase is caused by the
additional logic required to support shift operations in the
multiplier.

The impact of each shifter type on wall-clock-time is also
seen in Figure 10. On average, the performance of both
the LUT-based and multiplier-based shifters are the same,
because in all architectures the cycle counts are identical.
The differences in wall-clock-time are caused only by slight
variations in the clock frequency for different architectures.
Thus, the multiplier-based shifter is superior to the LUT-
based shifter since it is smaller yet yields the same perfor-
mance. There is a definite trade-off between the multiplier-
based shifter and serial shifter: the multiplier-based shifter
is larger as discussed before—however, it yields an average
speedup of 1.8x over the serial shifter.

In Figure 11 we show the energy per instruction for each
of the shifter types with three different pipelines. Both the
LUT-based and multiplier-based barrel shifters consume the
same amount of energy, even though the LUT-based shifter
is significantly larger in area. This is due to the increased
switching activity in the multiplier and its tighter integra-
tion with the datapath (MIPS multiply instructions are writ-
ten to dedicated registers while the shift result must be
written directly to the register file). The processors with se-
rial shifters consume more energy per instruction than those
with barrel shifters because of the switching activity in the
pipeline while the serial shifter is stalled (the stages from
execute to writeback continue and are eventually filled with
null operations). The shifter itself consumes significant en-
ergy as counters and comparators are toggled for every cycle
of the shift, in addition to the shift register itself. Further en-
ergy overhead is caused by the SPREE Component Library
which is yet to utilize power-aware features (even when not
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pipeline depths and different shifter implementa-
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Figure 12: Processor pipeline organizations studied.
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used, many functional units remain active). As the pipeline
stalls for many cycles, these overheads accumulate and sur-
pass that of a barrel shifter which would complete without
stalling.

4.4 The Impact of Pipelining
We now use SPREE to study the impact of pipelining in

soft processor architectures by generating processors with
pipeline depths between 2 and 5 stages, the organizations of
which are shown in Figure 12. A purely unpipelined proces-
sor, or 1-stage pipeline, is neglected since fetching the next
instruction and writing a result to the register file can be
pipelined for free, increasing the throughput of the system
and decreasing the size of the control logic by a small margin.
The area and average wall-clock-time measurements of the
pipelines are shown in Figure 10. For each pipeline depth,
we averaged the measurements across the three shifter im-
plementations described in the previous section. For every
pipeline, data hazards are prevented through interlocking,
branches are statically predicted to be not-taken, and in-
structions after a taken branch are squashed.
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Figure 10 shows that area does indeed increase with the
number of pipeline stages as expected, due to the addition of
pipeline registers and data hazard detection logic. However,
the 5-stage pipeline has only a small area increase over the
4-stage pipeline: for shorter pipelines, memory operations
stall until they have completed, while in the 5-stage pipeline
memory operations are contained within their own pipeline
stage, eliminating the need for the corresponding stalling
logic and saving some area for this design.

With respect to wall-clock-time, we see that deepening the
pipeline improves performance over the shortest pipeline.
The 2-stage pipeline has no branch penalty or data hazards.
However, it suffers from reduced clock frequency and fre-
quent stalls for multi-cycle operations: specifically, reading
operands from the register file is multi-cycle because the reg-
ister file is implemented using the synchronous RAMs in the
FPGA, which inherently incur a cycle delay. Hence there is
a large performance gain for increasing the pipeline depth
from 2 to 3 stages. In the 3-stage pipeline we execute the
operand fetch in parallel with the write back, which will
cause stalls only on read-after write (RAW) hazards instead
of on the fetch of every operand. Combined with the in-
crease in clock frequency shown in Figure 13, this decrease
in stalls leads to the 1.7x wall-clock-time speedup for the
3-stage pipeline over 2-stages.

While deciding the stage boundaries for our 3-stage pipeline
was obvious and intuitive, deciding how to add a fourth
pipeline stage was not. One can add a decode stage as shown
in Figure 12(c), or further divide the execution stage. We
implemented both pipelines for all three shifter types and
observed that although the pipeline in Figure 12(c) is larger
by 5%, its performance is 16% better. Hence there is an
area-performance trade-off, proving that such trade-offs ex-
ist not only in pipeline depth, but also in pipeline organiza-
tion.

While frequencies improve for the 4 and 5 stage pipelines,
their cycle counts increase due to increased branch penalties
and data hazards. The net effect on wall-clock-time, shown
in Figure 10, shows that the performance of the 3, 4, and
5 stage pipelines improves only slightly. While the 3-stage
pipeline seems the most attractive, it has the least opportu-
nity for future performance improvements: for example, the
cycle count increase suffered by the deeper pipelines can po-
tentially be reduced by devoting additional area to branch
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Figure 14: Average wall-clock-time vs area for dif-
ferent forwarding lines. As more forwarding is
added, the processor moves right (more area) and
down (faster wall-clock-time).

prediction or more aggressive forwarding. Frequency im-
provements may also be possible with more careful place-
ment of pipeline registers.

The energy per instruction of the three, four, and five
stage pipelines can be seen in Figure 11. The energy con-
sumption remains relatively consistent with a slight decrease
as the pipeline depth increases (in spite of the extra area
gained). We attribute this to decreased glitching3 in the
logic as more pipeline registers are added. The energy sav-
ings are diminished by the squashing associated with mis-
speculated branches and the previously-discussed overheads
in stalling the pipeline.

4.4.1 The Impact of Inter-Stage Forwarding Lines
An important optimization of pipelined architectures is

to include forwarding lines between stages to reduce stalls
due to RAW hazards. We use SPREE to evaluate the ben-
efits of adding forwarding lines to our pipelined designs. In
all pipelines studied in this paper, there is only one pair of
stages where forwarding is useful: from the writeback stage
(WB) to the first execute stage (EX) (see Figure 12). Since
the MIPS ISA can have two source operands (referred to as
rs and rt) per instruction, there are four possible forward-
ing configurations for each of the pipelines: no forwarding,
forwarding to operand rs, forwarding to operand rt, and
forwarding to both rs and rt.

Figure 14 shows the effects of each forwarding configu-
ration on wall-clock-time and area (note that points in the
same series differ only in their amount of forwarding). While
there is clearly an area penalty for including forwarding, it is
consistently 65 LEs for any one forwarding line, and 100 LEs
for two across the three different pipeline depths. In all cases
the performance improvement is substantial, with more than
20% speedup for supporting both forwarding lines. An in-
teresting observation is that there is clearly more wall-clock-
time savings from one forwarding line than the other: for-
warding operand rs results in a 12% speedup compared to
only 5% for operand rt, while the area costs for each are
the same. Also, the inclusion of forwarding did not decrease
clock frequency significantly.

3Glitching refers to the spurious toggling of gate outputs
often due to differing arrival times of the gate inputs.
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Figure 16: Average wall-clock-time vs area for dif-
ferent pipeline depths and shifters implemented on
Stratix II.

The impact of forwarding lines on energy is shown in Fig-
ure 15. Energy is decreased by 15% (compared to no for-
warding) when forwarding is present for both the rs and rt

operands. This indicates that the energy consumption of
the forwarding lines and associated control logic is consid-
erably less than the energy consumed in the pipeline when
instructions are stalled (without forwarding lines).

4.5 Device Independence of Exploration
The difference between ASIC and FPGA platforms is large

enough that it serves as a one of the motivations for this
work. However, FPGA devices differ among themselves:
across device families and vendors the resources and rout-
ing architecture vary greatly. We have focused on a single
FPGA device, the Altera Stratix, to enable efficient synthe-
sis through device-specific optimizations. Our hypothesis, is
that in spite of differences in FPGA architecture, the conclu-
sions drawn about soft processor architecture will be trans-
ferable between many FPGA families. In the future, we plan
to investigate this across a range of different FPGA fami-
lies; fortunately, this only requires porting the Component
Library since the Verilog generated by SPREE is generic.
For now, we have migrated to Stratix II [11, 22], which is
very similar to Stratix: the main differences are that Stratix

II has a more advanced basic logic block, the ALM (Adap-
tive Logic Module), instead of the LE. One ALM can fit
either one or two ALUTs (Adaptive Lookup Tables), which
are used to measure area. We observed that there is some
variation in the architectural conclusions, but that many of
the conclusions still hold. For example, the graph in Fig-
ure 10 is nearly identical as seen in Figure 16, except that
the LUT-based shifter is smaller in area as expected [10]. It
is expected that the variation will be greater when migrating
to another vendor.

5. CONCLUSIONS
As FPGA-based soft processors are adapted more widely

in embedded processing, we are motivated to understand
the architectural trade-offs to maximize their efficiency. We
have presented SPREE, an infrastructure for rapidly gener-
ating soft processors, and have analyzed the performance,
area, and power of a broad space of interesting designs.
We have presented a rigorous method for comparing soft
processors. We have also compared our generated proces-
sors to Altera’s NiosII family of commercial soft processors
and discovered a generated design which came within 15%
of the smallest NiosII variation while outperforming it by
11%, while other generated processors both outperformed
and were smaller than the standard NiosII variation.

Our initial exploration included varying support for mul-
tiplication, shifter implementations, pipeline depths and or-
ganization, and support for inter-stage forwarding. We have
found that a multiplier-based shifter is often the best, and
that pipelining increases area, decreases energy slightly, but
does not always increase performance. We have observed
that for a given pipeline depth, there still exist performance/area
trade-offs for different placements of the pipeline stages. We
have also quantified the effect of inter-stage forwarding, and
observed that one operand benefits significantly more from
forwarding than the other. These observations have guided
us towards interesting future research directions.

5.1 Future Work
In the future, we plan to further validate the soft proces-

sor architectural conclusions drawn from SPREE by testing
the fidelity of the conclusions across different FPGA devices
and by implementing exception support to put SPREE gen-
erated soft processors in the same class as other commer-
cial embedded processors. We also plan to broaden our ar-
chitectural exploration space by including dynamic branch
predictors, caches, more aggressive forwarding, VLIW dat-
apaths, and other more advanced architectural features. In
addition, we will explore compiler optimizations and hard-
ware/software tradeoffs and include those in SPREE. Fi-
nally, we will research and adopt different exploration meth-
ods since our exhaustive eploration strategy is not applicable
to a more broad architectural space.
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