
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012 1429

Portable, Flexible, and Scalable Soft
Vector Processors

Peter Yiannacouras, Member, IEEE, J. Gregory Steffan, Senior Member, IEEE, and Jonathan Rose, Fellow, IEEE

Abstract—Field-programmable gate arrays (FPGAs) are in-
creasingly used to implement embedded digital systems, however,
the hardware design necessary to do so is time-consuming and
tedious. The amount of hardware design can be reduced by
employing a microprocessor for less-critical computation in the
system. Often this microprocessor is implemented using the FPGA
reprogrammable fabric as a soft processor which presently have
simple architectures and moderate performance. Our goal is to
scale the performance of existing soft processors hence expanding
their suitability to more critical computation. To this end we
propose extending soft processors with vector extensions to exploit
the abundant data parallelism found in many embedded kernels.
Such a soft vector processor can execute these kernels much faster
than a single-core hence reducing the need for hardware imple-
mentations. We observe this improved execution speed through
experimentation with vector extended soft processor architecture
(VESPA) which is designed, implemented, and evaluated on real
FPGA hardware. VESPA is shown to effectively scale performance
up to 32 lanes, while providing substantial architectural flexibility
to create a fine-grained design space. With these characteristics,
and portability across FPGA devices, soft vector processors can
provide exact-fit architectures which can efficiently and more
easily implement data parallel workloads over custom FPGA
hardware design.

Index Terms—Customization, design space exploration,
field-programmable gate array (FPGA)-based soft-core pro-
cessors, processor generator.

I. INTRODUCTION

F IELD-PROGRAMMABLE GATE ARRAYS (FPGAs)
are commonly used to realize digital systems be-

cause of the low non-recurring engineering (NRE) costs and
fast time-to-market they provide relative to the creation of
fully-fabricated VLSI chips. The logic density and size of
modern FPGAs make them well-suited for hosting complete
embedded systems including a microprocessor. But FPGA
hardware design is difficult requiring the specification of
a cycle-by-cycle description of the system in a hardware
description language (HDL), achieving timing closure, and
in-hardware debugging. Embedded system designers with
aggressive time-to-market constraints often opt instead for
microprocessor-based systems with their simpler sequential
programming software-based design flows. Since FPGAs can

Manuscript received September 14, 2010; revised January 15, 2011; accepted
June 01, 2011. Date of publication July 25, 2011; date of current version June
14, 2012. This work was supported by NSERC and Altera Corporation.
The authors are with the Edward S. Sr. Rogers Department of Elec-

trical and Computer Engineering, University of Toronto, Toronto, ON M5S
3G4, Canada (e-mail: yiannac@eecg.utoronto.ca; steffan@eecg.utoronto.ca;
jayar@eecg.utoronto.ca).
Digital Object Identifier 10.1109/TVLSI.2011.2160463

provide increased performance and reduced energy over pro-
cessors, we are motivated to simplify FPGA hardware design
by leveraging the high-level programming and single-step
debugging features of software design.
Microprocessors are already used in FPGA systems to in-

terconnect the various system components and coordinate their
operations, as well as to perform some light-weight computa-
tion. In some FPGAs since the Virtex II Pro [1], these proces-
sors can be implemented as hard processors implemented di-
rectly in silicon with the FPGA fabric around it. However be-
cause of the diversity of embedded systems, some need one
processor, some need many, and some need none. This leads
to device family fragmentation and inevitably more expensive
FPGAs. Another option is the soft processor which is imple-
mented using the FPGA programmable fabric, hence inheriting
its end-user configurability. With this configurability soft pro-
cessors provide the compelling opportunity of being architec-
turally customized to compete with hardware while providing a
much easier software-based design flow. However, to be a vi-
able alternative to HDL design, soft processors require signifi-
cant performance scaling which is the main thrust of this work.

A. Scaling Soft Processor Performance

The architecture of current commercial soft processors are
based on simple single-issue pipelines with few variations, such
as the Xilinx Microblaze [2] with three-stage pipeline and the
Altera Nios II [3] with up to five pipeline stages. Despite their
ease of use relative to FPGA hardware design, they are pre-
dominantly used for system control tasks because of the large
disparity between the performance possible on a soft processor
versus FPGA hardware. To support more compute-intensive
tasks on soft processors, they must be able to scale up perfor-
mance by using increased FPGA resources. While this problem
has been thoroughly studied in traditional hard processors [4],
an FPGA substrate leads to different tradeoffs and conclusions.
In addition, traditional processor architecture research favoured
features that benefit a large application domain, while in a
soft processor we can appreciate features which benefit only a
few applications since each soft processor can be configured
to exactly match the application it is executing. These key
differences motivate new research into scaling the performance
of existing soft processors while considering the configurability
and internal architecture of FPGAs.
Recent research has considered several options for increasing

soft processor performance. One option is to modify the amount
and organization of the pipelining in existing single-issue soft
processors [5], [6] which provide limited performance gains. A
second option is to pursue VLIW [7] or superscalar [8] pipelines
which are limited due to the few ports in FPGA block RAMs and

1063-8210/$26.00 © 2011 IEEE

1430 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

the available instruction-level parallelism within an application.
A third option is multi-threaded pipelines [9]–[11] and multi-
processors [12], [13] which exploit thread-level parallelism but
require complicated parallelization of the software. In this work
we propose and explore vector extensions for soft processors
which can be relatively easily programmed to allow a single
vector instruction to command multiple datapaths. An FPGA
designer can then independently scale the number of these dat-
apaths in their design, referred to as vector lanes, to exploit the
data parallelism in an application to increase performance. This
scalability, coupled with architectural flexibility, and the porta-
bility of a vector architecture that can migrate between FPGA
devices, can form a powerful FPGA design flow that is far sim-
pler than hardware design while performing competitively.
Our goal is to provide this vectorized-software FPGA de-

sign flow as an additional tool for embedded system designers
to more easily meet their performance and time-to-market con-
straints. Whether this design flow is more widely applicable to
generic computing versus PCs and GPUs remains an open ques-
tion that is beyond the scope of this work. Instead we explore
the scalability, flexibility, and portability necessary for this de-
sign flow to be viable in an embedded FPGA context. This is
investigated through the following research contributions made
in this work: 1) we evaluate the design and implementation of
our vector extended soft processor architecture (VESPA), a real
hardware implementation of a parameterized soft vector pro-
cessor; 2) we highlight its scalability on a set of embedded
benchmarks derived from the industry standard EEMBC suite,
illustrating its ability to convert FPGA resources into perfor-
mance; 3) we provide a broad area/performance design space
with fine-grain resolution allowing an FPGA designer to select
a soft vector processor architecture that meets their precise ap-
plication needs; and 4) we support automatic customization of
VESPA through the removal of general purpose area overheads.
The VESPA source code and compiler are freely distributed
[14].

II. BACKGROUND

A. Vector Processors

For the last half-century computer architecture research
has sought to overcome the sequential execution limitations
of traditional microprocessors by exploiting various forms of
parallelism that exist within applications. One such form of
parallelism is data level parallelism (DLP) where the same
operation is performed over multiple data elements allowing
multiple operations to be executed concurrently in parallel
pipelines. This form of parallelization was used to create vector
supercomputers in the 1960s [4], and is an important aspect
of modern graphics processors. In addition, DLP continues to
be exploited (albeit to a lesser degree) in virtually all mid to
high performance microprocessors through SIMD extenstions:
Intel’s MMX/SSE/AVX, AMD’s 3DNow!, MIPS’s MDMX,
IBM’s Altivec, ARM’s NEON, etc. While many variations in
exploiting DLP exist, the vector processor approach continues
to be influential in computer architecture [15].
The soft vector processor architecture described in this

article was heavily influenced by previous research in vector

processors, specifically by the VIRAM [16]–[20] vector pro-
cessor which was used in the IRAM project [21] to explore the
prospect of having memory and microprocessor together on the
same chip. VIRAM was based on the T0 vector processor [22],
[23] but was optimized for a high performance on-chip memory
system, making it well suited for FPGA implementation where
the speed degradation of the programmable substrate can be
likened to a boost in memory performance. In addition VIRAM
targeted the embedded application space which is also the
target of current FPGA devices. The novelty in our research is
in exploring these ideas in an FPGA context as an alternative
to traditional HDL hardware design. Moreover this research
uses a vector architecture designed from scratch for the FPGA
fabric, and with built-in customization to support several vector
architecture variations by simply changing its parameters.

B. Behavioral Synthesis

The goal of reducing hardware design time is one that is
shared most notably by the behavioral synthesis community
which has been an active research area for many decades and
continues to have traction even in the FPGA context. The in-
tractable nature of the behavioral synthesis problem including
the pointer aliasing problem are often resolved by imposing re-
strictions to the input and front-end resulting in a fragmented
landscape of variants [24]–[28]. A customized processor can
however support the full ANSI standard and offers additional
advantages in modular development through libraries, intuitive
single-step debugging, and a fluid design methodology by sep-
arately optimizing algorithm, compiler, machine language, and
architecture. Recent research [29] even showed that soft vector
processors can provide better performance scaling than a com-
mercial behavioral synthesis tool.

C. Soft Processors

A soft processor is a processor designed for a repro-
grammable fabric such as an FPGA. The two key attributes
of soft processors are: 1) the ease with which they can be
customized and subsequently implemented in hardware and 2)
that they are designed to target the fixed resources available
on a reprogrammable fabric. This differentiates soft processors
from customizable processor cores such as Tensilica. The Actel
Cortex-M1 [30], Altera Nios II [3], Lattice Micro32 [31],
and Xilinx Microblaze [2] are widely used commerical soft
processors with scalar in-order single-issue architectures that
are either unpipelined or have between 3 and 5 pipeline stages.
While this is sufficient for system coordination tasks, significant
performance improvements are necessary for soft processors
to replace the hardware designs of more performance-critical
computations. Research in this direction is recent and ongoing,
and summarized below.
Soft Single-Issue In-Order Pipelines—The SPREE system

was developed to explore the architectural space of pipelined
single-issue soft processors [5], [6], [32]. SPREE can automati-
cally generate a Verilog hardware implementation of a processor
from a high-level description of the datapath and instruction set.
While this work succeeded in exploring the space and finding
processor configurations superior to a mid-speed commercial

YIANNACOURAS et al.: PORTABLE, FLEXIBLE, AND SCALABLE SOFT VECTOR PROCESSORS 1431

soft processor, it failed to extend the space since it did not con-
sider higher-performance soft processor architectures. In this
work we aim to significantly improve the performance of soft
processors with vector extensions.
The LEON [33] is a parameterized VHDL description of a

SPARC processor targetted for both FPGAs and ASICS with
several customization options including cache configuration
and functional unit support. LEON is a heavy-weight processor
with a large area footprint and full support for exceptions, vir-
tual memory, and multiprocessors. Performance can be scaled
with multiple LEON cores but this requires parallelized code
and replication of the entire processor.
Soft Multi-Issue Pipelines—Soft VLIW processors have

been investigated [34], [35], [7] and shown to achieve signif-
icant performance gains up to 3-4 but scaling beyond this
is significantly hindered by the limited amount of instruction
parallelism in applications and the complications in achieving
the register file bandwidth from the dual-ported FPGA block
RAMs. The register file bandwidth issue is also a limiting
factor in soft superscalar processors [8].
Soft Multi-Threaded Processors—A potentially promising

method to fully utilize a processor pipline is to leverage multiple
threads in soft multi-threaded processors [9], [11], [36]–[39].
Research into exploiting multiple threads in soft processors will
become more fruitful as advancements in parallel programming
are made in themicroprocessor industry. However, to truly scale
performance, multiple execution cores are required—as in mul-
tiprocessors.
Soft Multiprocessors—Scaling performance in soft multi-

processors requires extraction of the parallelism from applica-
tions. Doing this manually can be difficult and time consuming
but has been used to create a soft multiprocessor version of a
network processor which comes within 2.6 of the performance
per area of a commercial Intel network processor [13]. Innova-
tions for simplifying parallel programming from the computer
architecture and languages community can be harnessed by soft
processors. For example stream programming has been used
as a front end to soft multi-processor systems [12] and shown
that with 16 processors up to 5 performance can be gained.
Customization of each processor core is then performed, the
cores can even be transformed into custom hardware acceler-
ators using behavioral synthesis [40].
Soft Vector Processors—Yu et al. [29], [41] first demon-

strated the potential for vector processing as a simple-to-use and
scalable accelerator for soft processors. In particular, through
performance modelling the authors show that: 1) a vector pro-
cessor can potentially accelerate data parallel benchmarks with
performance scaling better than Altera’s behavioral syn-
thesis tool (even after manual code restructuring to aid)
and 2) how FPGA architectural features can be exploited to pro-
vide efficient support for some vector operations. For example,
the multiply-accumulate blocks internally sum multiple partial
products from narrow multiplier circuits to implement wider
multiplication operations. This same accumulator circuitry is
used by Yu to efficiently perform vector reductions which sum
all vector elements and produce a single scalar value. Also the

block RAMs can be used as small lane-local memories for ef-
ficiently implementing table lookups and scatter/gather opera-
tions.
The work of Yu et al. was done in parallel with our own

development of VESPA and its infrastructure, but it left many
avenues unexplored. Its memory system consisted of only the
fast on-chip block RAMs—memory systems with significant
latency to off-chip DRAM were never explored. Also few
customization opportunities in soft vector processors were
examined beyond the number of lanes and the maximum vector
length. The width of the lanes, multiplier, and memory were
parameterized and were individually set for each benchmark.
Finally, more sophisticated vector pipeline features such as
vector chaining were never considered. Beyond the work of Yu,
in this paper we offer a full and verified hardware implemen-
tation of a soft vector processor called VESPA, connected to
off-chip memory, with GNU assembler vector support, and an
evaluation of vectorized industry-standard benchmarks. This
work more thoroughly explores the scalability, customizability,
and architectural design space of soft vector processors.

III. VESPA: A SOFT VECTOR PROCESSOR

In this section we introduceVESPA a soft vector processor ar-
chitecture that is highly parameterizable, scalable and portable.
While there are many forms of parallelism and various methods
of exploiting them to scale the performance of soft processors,
we focus on exploiting data level parallelism through vector
extensions for several reasons. First, data level parallelism
is shown to abundantly exist in embedded applications [16].
Second, we believe vector extensions are a good candidate for
exploiting this parallelism because of their promising compiler
support, simplified abstraction between software and hardware
parallelism, and their suitability for FPGA implementation. A
vector processor with all lanes operating in lockstep requires
very little inter-lane coordination making the design scalable
in hardware. Moreover, the architecture does not require any
large associative lookups, many ported register files, or other
structures that are inefficient to implement in FPGAs.

A. VESPA Architecture

VESPA is composed of a vector coprocessor attached to a
MIPS [42] scalar soft processor generated by the SPREE system
[5], [6]. A diagram including both components as well as their
connection to memory is shown in Fig. 1. The figure shows
the MIPS-based scalar and VIRAM-based vector coprocessor
both fed by the same instruction cache. Both cores can execute
out-of-order with respect to each other except for communica-
tion and memory instructions which are serialized to maintain
sequential memory consistency. Vector instructions enter the
vector coprocessor, are decoded into element operations which
are issued onto the vector lanes and executed in lockstep. The
vector coprocessor and scalar soft processor share the same data
cache and its data prefetcher though the prefetching strategy
can be separately configured for scalar and vector memory ac-
cesses. The sections below describe the vector instruction set,

1432 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

Fig. 1. VESPA processor system block diagram. The data cache is shared be-
tween the scalar processor and vector coprocessor. The memory crossbar selects
between requests from the vector lanes to the byte(s) in the cache line.

the memory architecture, and the VESPA pipeline in more de-
tail.
1) VIRAM-Based Vector Instruction Set: The instruction

set architecture of the VESPA vector coprocessor is based
on the VIRAM [20] vector instruction set and includes the
integer, fixed-point, flag, and vector manipulation instructions.
Three-operand instructions were excluded to avoid further
complexities in the register file design. Floating point instruc-
tions were excluded since we target embedded applications
which do not typically use them. The division instructions were
excluded since this would require a large functional unit that is
not used in our benchmark set.
2) Vector Memory Architecture: Fig. 1 also gives an

overview of the VESPA memory architecture. Central to the
memory architecture is the data cache shared between the
vector and scalar processors. Each vector lane can request its
own memory address but only one cache line can be accessed
at a time. For example, lane 1 will request its address from the
cache then each byte in the accessed cache line can be simulta-
neously routed to any lane through the memory crossbar. Thus,
the spatial locality of lane requests is key for fast memory
performance since it reduces the number of cache accesses
required to satisfy all lanes. There is one such crossbar for reads
and another for writes; we treat both as one and refer to the pair
as the memory crossbar (with the bidirectionality assumed).
This crossbar is the least scalable structure in the vector pro-
cessor design and is a key factor in overall performance.
3) VESPA Pipelines: Fig. 2 shows the VESPA pipelines

with each stage separated by black vertical bars. The topmost
pipeline is the three-stage scalar MIPS processor discussed
earlier. The middle pipeline is a simple three-stage pipeline for
accessing vector control registers and communicating between
the scalar processor and vector coprocessor. The actual vector
instructions are executed in the longer seven-stage pipeline at
the bottom of the figure. Vector instructions are first decoded
and proceed to the replicate pipeline stage which divides the
elements of work requested by the vector instruction into
smaller groups that are mapped onto the available lanes; in
the figure only two lanes are shown. The hazard check stage
observes hazards for the vector and flag register files and stalls
if necessary (note the flag register file and processing units are
not shown in the figure). If there are two lanes, the pipeline
reads out two adjacent elements for each operand, referred to as

Fig. 2. VESPA architecture with two lanes. The black vertical bars indicate
pipeline stages, the darker blocks indicate logic, and the light boxes indicate
storage elements for the caches as well as the vector control (vc), vector scalar
(vs), and vector (vr) register files.

TABLE I
CONFIGURABLE PARAMETERS FOR VESPA

an element group, and sends them to the appropriate functional
unit. Execution occurs in the subsequent stages after which
results are written back to the register file.

B. VESPA Flexibility

VESPA is a highly parameterized design enabling a large
design space of possible vector processor configurations.
These parameters can modify the VESPA compute architecture
(pipeline and functional units), instruction set architecture,
and memory system. All parameters are built-in to the Verilog
design so a user need only enter the parameter value and have
the correct configuration synthesized with no additional source
modifications. Table I lists all the configurable parameters and
their acceptable value ranges. Note that many of the integer
parameters are limited to powers of two to reduce hardware
complexity. Further details about VESPA can be found in the
thesis [43] or in its freely distributed source code [14].

C. VESPA Portability

The portability of soft vector processors is a major factor in
whether FPGA vendors will adopt them in the future. Since
FPGA vendors have many different FPGA devices and fami-
lies, a non-portable hardware IP core would require more de-
sign effort to support across all of these devices. For this reason
VESPA is fully implemented in synthesizable Verilog but was
purposefully designed to have no dependencies to a particular
FPGA device or family. In fact we ported VESPA from the
Stratix 1S80 on the TM4 [44] to the Stratix III 3S340 on the
DE3 and required zero source modifications. We do not port

YIANNACOURAS et al.: PORTABLE, FLEXIBLE, AND SCALABLE SOFT VECTOR PROCESSORS 1433

TABLE II
VECTORIZED BENCHMARK APPLICATIONS

VESPA across different vendors or families, but there is nothing
in VESPA’s architecture preventing this.

D. FPGA Influences on VESPA Architecture

The VESPA architecture was influenced in a number of ways
by the FPGA substrate. In this section we collect the key points
and summarize them. First, the multiply-accumulate blocks are
obvious choices for efficiently implementing processor multi-
pliers. Their performance is still significantly less than an FPGA
adder circuit leading to accommodations in the pipeline similar
to hard microprocessors. However, the multipliers are also
efficient [45] for implementing shifters since multiplexers are
relatively expensive to implement in logic-elements on FPGAs.
This shared multiplier/shifter functional unit means vector
chaining on soft vector processors exhibits different behavior
than traditional vector processors since vector multiplies and
vector shifts cannot be executed simultaneously. Second, the
block RAMs provide relatively inexpensive storage helping to
justify the existence of caches even when they are not strongly
motivated in our streaming applications. The low area cost of
storage also helps motivate vector processors since the large
vector register files required can be efficiently implemented
if few ports are required. Finally, the fact that FPGA block
RAMs have only two ports imposes architectural differences
from traditional processors. For three-operand instruction sets
such as MIPS, the register file must sustain two reads and
one write per cycle. Since FPGA block RAMs have only two
ports, a common solution is to leverage the low area cost of
block RAMs to duplicate them. Additional ports are required
to support multiple vector instruction execution. Section VI-D
describes how VESPA employs banking to overcome the port
limitations. This approach is reminiscent of vector processors
before single-chip VLSI advancements, and marks a key ar-
chitectural difference between VESPA and application-specific
integrated circuit (ASIC) vector processors such as the T0 [23]
and VIRAM [19]. In general, the lack of block RAM ports
and expensive multiplexing logic make FPGAs less amenable
to any architecture with multiple instructions in flight such as
traditional superscalar out-of-order architectures.

IV. EXPERIMENTAL FRAMEWORK

We evaluate our proposed soft processor architecture en-
hancements with full hardware implementation of each VESPA
variant on a real FPGA device connected to off-chip DDR2

RAM and executing EEMBC benchmarks. In this section we
describe the individual components of this infrastructure.
Benchmarks—The benchmarks used in this study are

predominantly from the industry-standard embedded micropro-
cessor benchmark consortium (EEMBC) benchmark collection
[46]. These benchmarks are widely used in the embedded sys-
tems domain, many of them were used in the VIRAM project
which targeted the embedded domain. Altera’s C2H synthesis
tool and Nios II soft processor were also benchmarked with
many of these same applications [47], suggesting their appro-
priateness for embedded FPGA workloads. Our infrastructure
is capable of compiling and executing all EEMBC benchmarks
uncompromised and with the complete test harness allowing us
to report official EEMBC scores.
Our work on soft vector processors targets applications

with data parallelism, so we assembled a corresponding subset
of benchmarks in Table II. The top six are uncompromised
EEMBC benchmarks vectorized in assembly and provided
to us by Kozyrakis who used them during his work on the
VIRAM processor [16]. The fifth benchmark is a kernel we
extracted and hand-vectorized from the EEMBC IP_PKTCHECK
benchmark. Since execution of this benchmark is independent
of the data set values, we provide a hand-made data set of 10
arbitrarily filled 4 KB packets. Similarly FILT3X3 also uses
two arbitrarily filled 320 240 images (one byte per pixel),
while IMGBLEND uses one. These latter two benchmarks were
provided to us from the VIRAM group as well. The last three
columns of Table II show the input data size, output data size,
and total number of loops not including nested loops. All loops
were vectorized except for one loop in each of the FBITAL
and VITERB benchmarks. Finally, note that all benchmarks
were written to be independent of the maximum vector length
supported in the vector processor. The instruction mix, vector
length distribution, and percentage of vectorized code in each
benchmark are summarized by Kozyrakis [19].
Software Compilation Framework—The benchmarks

were compiled using GNU GCC 4.2.0 ported to MIPS to match
the MIPS-based SPREE [48] scalar processors used throughout
this work. Benchmarks are compiled with optimization
level. Auto-vectorization in GCC failed to vectorize key
loops in our benchmarks, while commercial compilers with
better auto-vectorization capabilities can not be ported to our
instruction set. Instead of relying on auto-vectorization, we
ported the GNU assembler found in version 2.1.6

1434 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

to support our VIRAM vector instruction set, allowing us to
hand-vectorize loops in assembly.
FPGA CAD Software—A key value of performing FPGA-

based processor research directly on an FPGA is the ability to
attain high quality measurements of the area consumed and the
clock frequency achieved—these are provided by the FPGA
CAD software. In this research we use Altera Quartus II ver-
sion 8.1 for FPGA synthesis, place, and route. There are many
settings and optimizations that one can enable within the soft-
ware, creating a wide range of synthesis results. In our work we
use an over-constrained clock rate of 200 MHz and ensure that
register retiming and duplication are enabled. These settings are
similar to those suggested in previous research [32].
Measuring Area—Area is comprised mostly of the FPGA

programmable logic blocks. Throughout this work we use the
Altera Stratix III FPGA—its programmable logic blocks are
referred to as Adaptive Logic Modules (ALMs). In addition to
ALMs, soft processors also make use of memory blocks and
multiply-accumulate blocks. We measure the total silicon area
consumed by the design and report it in units of equivalent
ALMs. The silicon areas of each FPGA resource relative to an
ALM (including its routing) was provided to us by Altera for
the Stratix II: M512 10.6, M4K 22.6, MRAM 708.5, and DSP
(9-bit) 7 equivalent ALMs. We extrapolated these areas for the
Stratix III architecture: M9K 45.2, MRAM 354.25, and DSP
(18-bit) 14 equivalent ALMs.
Measuring Clock Frequency—The clock frequency of a

synthesized design is reported by the timing analysis tool in the
FPGACAD software. In addition to the CAD settings described
above, the actual device targeted can affect these results due to
different logic/circuit architectre, process technology, and speed
bin. We report clock frequency from a Stratix III C2 (fastest
speed grade) device, although we managed only to procure a
slower C3 device.
DE3 Hardware Platform—All soft processors explored in

this work are fully synthesized using the CAD flow described
above and implemented in hardware on an Altera/Terasic DE3
board. Benchmarks are executed in hardware and report the pre-
cise number of clock cycles required to complete execution. We
use the Terasic DE3-340 board equipped with a single Stratix
III EP3SL340H1152C3 which is one of the largest state-of-
the-art FPGAs available at the time this work was performed.
The Stratix III is fabricated in a 65-nm CMOS technology and
is connected to a 1 GB DDR2-533 MHz memory device which
we use for the storage of program instructions and data. The Al-
tera DDR2 memory controller connects the soft processor to the
DDR2 DIMM and is clocked at the full-rate of 266 MHz.
Measuring Wall Clock Time—Implementation onto a real

FPGA hardware platform enables accurate measurement of not
just the execution cycles but also the wall clock time for ex-
ecuting a benchmark. Wall clock time considers both the cycle
performance and clock frequency of a processor. For simplicity,
we clock all designs at 100 MHz and measure wall clock time
by multiplying the observed number of cycles with the highest
clock rate achievable by a soft processor instance. The effect of
this time dilation is negligible and quantified via simulation to
reach 0.6% error for a 150 MHz design while VESPA’s fastest
variants are only 135 MHz.

Fig. 3. Performance scalability as the number of lanes are increased from 1
to 32 for a fixed VESPA architecture with full memory support (full memory
crossbar, 16 kB data cache, 64 B cache line, and prefetching enabled).

Testing—All soft processors were fully tested in hardware
using the hard-coded checksum in each EEMBC benchmark.
Debugging is performed using Modelsim and is guided by com-
paring traces of all writes to the register files to one obtained
from instruction-set simulation using the MINT [49] MIPS sim-
ulator augmented with the VIRAM extensions.

V. SCALABILITY OF THE VESPA SOFT VECTOR PROCESSOR

With scalable performance, a soft vector processor can be
used to leverage the computational power of FPGAs without
complicated hardware design. VESPA’s collection of architec-
tural parameters can be used to achieve significant performance
scaling, but a vector architecture’s scalability is often defined by
how well performance scales when only the number of lanes, ,
is varied. The (Maximum Vector Length) parameter deter-
mines the size of the longest possible vector operation and hence
limits . While can exhibit some interesting application-de-
pendent behavior [5], we fix to be 128 for this section. In
addition, we fix all other parameters and vary only to measure
VESPA’s scalability.

A. Cycle Performance

Fig. 3 shows the cycle performance improvement for each
of our benchmarks as we increase the number of lanes on an
otherwise aggressive VESPA architecture with full memory
support—i.e., a full memory crossbar, 16 kB data cache with
64-byte cache lines and hardware prefetching (while a variety
of prefetching schemes are possible we prefetch the next

elements since this was shown re-
liable across our benchmarks as seen in our previous work [50],
[51]). The figure illustrates that impressive scaling is possible
as seen in the 27 speedup for FILT3X3 executed on 32 lanes.
The potential for scaling soft processor performance for these
benchmarks is also exemplified in the near 100% conversion
of lanes to performance seen in the 2-lane configuration which
performs 1.95 faster than 1-lane on average. Overall we see
that indeed a soft vector processor can scale cycle performance
on average from 1.95 for 2 lanes to 15 for 32 lanes.
Ideally, the speedup would increase linearly with the number

of vector lanes, but this is prevented by a number of factors: 1)
only the vectorizable portion of the code can benefit from extra
lanes, hence benchmarks such as CONVEN that have a blend of

YIANNACOURAS et al.: PORTABLE, FLEXIBLE, AND SCALABLE SOFT VECTOR PROCESSORS 1435

TABLE III
AVERAGE PERFORMANCE OF VESPA

scalar and vector instructions are limited by the fraction of ac-
tual vector instructions in the instruction stream; 2) some appli-
cations do not contain the long vectors necessary to scale per-
formance, for example VITERB executes predominantly with a
vector length of only 16; 3) the movement of data becomes a
limiting factor specifically for RGBCMYK, and RGBYIQ which ac-
cess data streams in a strided fashion which requires non-ideal
cache accesses, and FBITAL which uses an indexed load to access
an arbitrary memory location from each lane. Indexed vector
memory operations are executed serially in VESPA which se-
verely limits performance when used often.

B. Clock Frequency

Table III shows the clock frequency for each configuration
produced by the FPGA CAD tools as described in Section IV.
As expected, the clock frequency decreases as lanes are added.
The effect on wall clock time (WCT) is moderate at 16 lanes
reducing the 10.4 cycle speedup to 9.3 in actual wall clock
time speedup as seen in the right-most two columns of the table.
At 32 lanes the clock frequency drops significantly reducing the
15 cycle speedup to 11 in wall clock time. The last column
shows that despite the clock frequency reductions, the average
wall clock time increases with more lanes up to 32. At 64 lanes
the clock frequency is reduced to 80 MHz and the performance
is worse than the 32-lane configuration. Because of these timing
problems, the 64-lane configuration is not used in our study.
In both the 16 and 32 lane configurations, the critical path is in

the memory crossbar which routes all 64 bytes in a cache line to
each of the lanes. The parameter can be used to reduce the size
of the crossbar and raise the clock frequency, but the resultant
loss in average cycle performance often overwhelms this gain
and produces a slower overall processor as will be shown in
Section VI-C3. The clock frequency reduction can instead be
addressed by further pipelining the memory crossbar as well
as additional engineering effort in retiming these large designs.
Ultimately scaling to larger lanes requires careful design of a
high-performing memory system, and may require a hierarchy
of memory storage units as seen in graphics processors.

C. Area

Fig. 4 shows the area of each VESPA vector coprocessor (ex-
cluding the memory controller, system bus, caches, and scalar
processor) on the x-axis and the normalized wall clock time ex-
ecution plotted on the y-axis. The initial area cost of a vector
coprocessor is considerable costing 2900 ALMs of silicon area
due to the decode/issue logic, 1 vector lane, and the vector state
with 64 elements in each vector . As the vector lanes
are increased a linear growth in area is eventually observed as

Fig. 4. Performance/area design space of 1-32 lane VESPA cores with full
memory support. Reported area accounts only for the area of the vector
coprocessor.

the constant cost of the state and decode/issue logic are dom-
inated. This incremental area cost becomes quite substantial,
for example growing from 8 to 16 lanes requires about 9000
ALMs. At 32 lanes the area reaches one third of the silicon on
the Stratix III-340. Nonetheless performance scaling is still pos-
sible with 32-lanes and likely beyond with additional processor
design effort.

VI. EXPANDING THE VESPA DESIGN SPACE

One of the most compelling features of soft processors is
their inherent reconfigurability. An FPGA designer can ideally
choose the exact soft processor architecture for their application
rather than be limited to a few off-the-shelf variants. If the ap-
plication changes, a designer can easily reconfigure a new soft
processor onto the FPGA device. Thus, a highly parameterized
processor core such as VESPA can be used to span a large design
space while providing fine-grain architectural tuning. Ideally in-
telligent software can analyze code execution and automatically
prescribe the most appropriate architecture.
This section explores VESPA’s remaining architectural

parameters individually. The previous section explored the
number of lanes which can be tuned to match the amount of
data parallelism in an application. VESPA’s other architectural
parameters can be used to exploit other program characteristics
and similarly trade performance and area. These parameters
and their resulting tradeoffs are discussed below.

A. Data Cache (and)

VESPA’s data cache is direct-mapped with configurable
capacity and cache line size [43], [50]. Increasing the capacity
reduces the number of conflict misses, however due to the
streaming nature of our benchmarks, this was not a significant
factor in their performance. Instead, the cache line size was
a key architectural option since with larger cache lines more
lanes can retrieve their desired data in a single cache access.
We explore the effect of cache depth and line size below.
Fig. 5 shows the average wall clock speedup across all of

our benchmarks except VITERB1 for each data cache configu-
ration normalized against the 4 kB cache with a 16 B cache
line size. We first note that the streaming nature of these bench-
marks makes cache depth affect performance only slightly. For

1In VITERB the affect of cache lines are similar, but cache depth increases
performance slightly but plateaus after 16 kB.

1436 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

Fig. 5. Average wall clock speedup (excluding VITERB benchmark) attained
for a 16-lane VESPA with different cache depths and cache line sizes, relative
to the 4 kB cache with 16 B line size. Each line in the graph depicts a different
cache line size.

the 16 B cache line configuration the performance is flat across
a 16-fold increase in cache depth, while for 128 B this 16-fold
growth increases performance from 2.11 to 2.14 . The cache
line size plays a far more influential role on performance since it
not only satisfies more per-lane requests in a single access, but
also inherently prefetches neighboring data. Each doubling of
line size hence provides a significant leap in performance span-
ning to more than double the performance of the 16 B line size
with 128 B.
In terms of area, the results are similar: cache depth has a

modest impact while cache line size has a dramatic impact. In-
creasing the cache depth increases only the FPGA block RAMs
which do not significantly contribute to VESPA’s area. How-
ever, increasing the cache line size results in a proportional in-
crease in the memory crossbar size. Hence the 2 performance
gained with 128 B cache lines is accompanied with a near 2
increase in area. Further details are available in Yiannacouras’
dissertation [43].

B. Data Prefetching

Ahardware data prefetcher [52] can capture part of the benefit
of larger cache lines without the excessive area costs associated
with growing the memory crossbar. In VESPA we support se-
quential prefetching in hardware similar to conventional vector
processor research [53] but in a reconfigurable context where
the prefetching scheme can vary based on the application. A
sequential prefetcher fetches the missed cache line plus the
neighboring cache lines. Determining a good value for is ap-
plication dependent, but in VESPA we also consider the vector
length of the memory operation. That is, rather than prefetching
a fixed number of cache lines, we prefetch a data set that as-
sumes executions of the same memory operation. For ex-
ample, the configuration will multiply the vector length
(a runtime parameter) by the access size (byte/half/word) and
then by 8. A more complete description is available in a prior
publication [50] which also shows the area cost to be less than
2%.
Fig. 6 shows the variation in performance of a range of vector

length prefetchers. Prefetching 8 times the vector length (8VL)
number of cache lines performs best, achieving a maximum
speedup of 2.2 for IP_CHECKSUM and 28% on average. Of
specific interest is the configuration which prefetches the

Fig. 6. Wall clock speedup achieved for different configurations of the vector
length prefetcher.

remaining elements in a vector miss and hence has zero cache
pollution. This configuration has no speculation, it guarantees
no more than one miss per vector memory instruction, and is
ideal for heavily mixed scalar/vector applications and achieves
20% speedup on average across our benchmarks. Greater per-
formance can be achieved by incorporating the right amount
of speculation in the prefetching. The figure shows that adding
speculation gains performance, but too much can undo the per-
formance gains as seen in IMGBLEND where large prefetches of
the input stream can pollute the cache and increase the miss rate.

C. Heterogeneous Lanes

In this section, we examine the option of reducing the number
of copies of a given functional unit which is in low demand [54].
For example, a benchmark with vector multiplication operations
will require the multiplier functional unit present, but if the mul-
tiplies are infrequent the application does not necessarily require
a multiplier in every vector lane. In the extreme case a 32-lane
vector coprocessor can have just one lane with a multiplier and
have vector multiplication operations stall as the vector multiply
is performed at a rate of one operation per cycle.We use this idea
to parameterize the hardware support for vectorized multiplica-
tion and memory instructions as described below.
1) Supporting Heterogeneous Lanes: The VESPA vector

datapath contains three functional units: 1) the arithmetic logic
unit (ALU) for addition, subtraction, and logic operations; 2)
the multiplier for multiplication and shifting operations; and
3) the memory unit for load and store operations. Increasing
the vector lanes with the parameter replicates all of these
functional units, so all vector lanes are homogeneous. We
provide greater flexibility by allowing the multiplier units to
appear in only some of the lanes specified with the parameter .
Similarly the number of lanes attached to the memory crossbar
can be selected using . This allows for a heterogeneous mix of
lanes where not all lanes will have each of the three functional
unit types. A user can specify the number of lanes with ALUs
using , the number of lanes with multipliers with , and the
number of lanes with access to the cache with .
2) Impact of Multiplier Lanes : The parameter deter-

mines the number of lanes with multiplier units. The effect of
varying X is evaluated on a 32-lane VESPA processor with 16
memory crossbar lanes (halved to reduce its area dominance)
and a prefetching 16 KB data cache with 64 B line size. Each

YIANNACOURAS et al.: PORTABLE, FLEXIBLE, AND SCALABLE SOFT VECTOR PROCESSORS 1437

Fig. 7. Performance impact of varying for a VESPA with
K, and ; area and performance are

normalized to the configuration.

halving of doubles the number of cycles needed to complete
a vector multiply with more than elements. We measure the
overall cycle performance and area and normalize it to the full

configuration. Note that clock frequency was unaffected
in these designs.
Fig. 7 shows that in some benchmarks such as FILT3X3 the

performance degradation is dramatic, while in other bench-
marks such as CONVEN there is no impact at all. Programs with
no vector multiplies can have multipliers removed completely
with the instruction-set subsetting technique explored later in
Section VIII-B, but programs with just few multiplies such as
VITERB can have the number of multipliers reduced saving 10%
area at the expense of 3.1% performance.
The area savings from reducing the multipliers is moderate

starting at 6% for halving the number of multipliers to 16, and
the savings asymptotically grow and saturate at 13%. Since the
multipliers are efficiently implemented in dedicated FPGAmul-
tiplier blocks, their contribution to the overall silicon area is
small, and the additional overhead for multiplexing operations
into the few lanes with multipliers ultimately nullify the area
savings. However, multipliers are often found in short supply, so
a designer might be willing to accept the performance penalty if
another more critical computation could benefit from using the
limited FPGA multipliers.
3) Impact of Memory Crossbar : A vector load/store in-

struction can perform in parallel as many memory requests as
there are vector lanes, however the data cache can service only
one cache line access per clock cycle. Extracting the data in a
cache line to/from each vector lane requires a full and bidirec-
tional crossbar between every byte in a cache line and every
vector lane. Such a circuit structure imposes heavy limitations
on the scalability of the design, especially within FPGAs where
multiplexing logic is comparatively more expensive than in tra-
ditional IC design flows. Because of this, the idea of using het-
erogeneous lanes to limit the number of lanes connected to the
crossbar can be extremely powerful.
The parameter, , controls the number of lanes the memory

crossbar connects to and hence directly controls the crossbar
size and the amount of parallelism for memory operations. For
example, a 16-lane vector processor with equal to 4 can com-
plete 16 add operations in parallel, but can only satisfy up to 4
vector loads/store operations in a cycle. The 16 memory oper-
ations are serialized through shift registers in groups of 4. De-

Fig. 8. Wall clock performance of various memory crossbar values on
a 32-lane vector processor with 16 KB data cache, 64B line size, and 8*VL
prefetching. Performance is normalized against the full configuration,
as is area shown in parentheses adjacent to each processor’s clock frequency.

creasing hence reduces area and decreases cycle performance
of vector memory instructions. Also, clock frequency can be in-
creased by reducing when the memory crossbar is the critical
path in the design.
Fig. 8 shows the effect on wall clock performance and as

the memory crossbar size is varied on a single 32-lane vector
processor with 16 kB data cache, 64B line size, and 8*VL
prefetching. Wall clock performance is normalized to the full
memory crossbar configuration as is the area shown in
parentheses beside the clock frequency of each configuration.
All configurations with are dominated by the
configuration since they have very similar areas. For the
area is reduced by 25% and performance by an average of 26%.
A half-size memory crossbar with provides an area
savings of 15% with an average performance degradation of
6%. For FBITAL there is no performance degradation, while sur-
prisingly for VITERB and IP_CHECKSUM there is a performance
increase because of the clock frequency increase discussed
below.
The memory crossbar can often be the critical path in de-

termining the maximum clock speed of the processor. In the
32-lane base design of Fig. 8, the crossbar size limits the clock
frequency to 98 MHz compared to the 131 MHz achievable on
a 1-lane VESPA. Reducing the memory crossbar to raises
the clock frequency to 110 MHz but results in many additional
cycles yielding a wall clock performance of one-fifth of the full
memory crossbar. In the cases where there is little cycle degra-
dation such as for VITERB, IP_CHECKSUM, and FBITAL,
the wall clock performance is the same or better than the full
memory crossbar because of the gain in clock frequency. Thus
the area savings from reducing must be weighed against the
impact on performance which can either degrade or improve.

D. Vector Chaining in VESPA (and)

Our goal of scaling soft processor performance is largely
met by instantiating multiple vector lanes using a soft vector
processor. However, additional performance can be gained by
leveraging a key feature of traditional vector processors: the
ability to concurrently execute multiple vector instructions
via vector chaining [55]. By simultaneously utilizing multiple
functional units, VESPA can more closely approach the effi-
ciency of a custom hardware design. In this section, VESPA is

1438 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

augmented with parameterized support for chaining designed
to be amenable to FPGA architectures.
1) Supporting Vector Chaining: VESPA has three functional

unit types: an ALU, a multiplier/shifter, and a memory unit,
but previously, only one functional unit type could be active
in a given clock cycle. Additional parallelism can be exploited
by noting that vector instructions operating on different ele-
ments can be simultaneously dispatched onto the different func-
tional unit types, hence permitting more than one to be active at
one time. Modern vector processors exploit this using a large
many-ported register file to feed operands to all functional units
keeping many of them busy simultaneously. This multi-port ap-
proach was shown to be more area-efficient than using many
banks and few ports in historical vector supercomputers [23].
But since FPGAs cannot efficiently implement a large many-
ported register file, our solution is to return to this historical ap-
proach and use multiple banks each with two read ports and one
write port.
The number of register banks, , needed to support vector

chaining is parameterized and must be a power of two. A value
of 1 reduces VESPA to a single-issue vector processor without
vector chaining support eliminating the hardware associated
with supporting vector chaining. VESPA can potentially issue
as many as instructions at one time, provided there is no bank
conflict and the corresponding functional units are available.
To increase the likelihood of this, VESPA allows replication of
the ALU for each bank as enabled by the parameter. For
example, with two banks and enabled, each vector lane
will have one ALU for each bank and in total two ALUs. Since
multipliers are generally scarce we do not support duplication
for the multiply/shift unit, and we also do not support multiple
memory requests in-flight because of the system’s blocking
cache.
2) Impact of Vector Chaining: We measured the effect of

the vector chaining implementation described above across our
benchmarks using an 8-lane vector processor with full memory
support (16 kB data cache, 64 B cache line, and prefetching of
8*VL) implemented on the DE3 platform. We vary the number
of banks from 2 to 4 and for each toggle the ALU per bank
parameter and compare the resultant four designs to an analo-
gous VESPA configuration without vector chaining.
Fig. 9 shows the cycle speedup of chaining across our bench-

marks as well as the area normalized to the 1 bank configuration.
The area cost of banking is considerable, starting at 27% for
the second register bank and the expensive multiplexing logic
needed between the two banks. This 27% area investment pro-
vides an average performance improvement of approximately
26%, and in the best case is 54%. Note that if instead of adding
a second bank, the designer opted to double the number of lanes
to 16, the average performance gain would be 49% for an area
cost of 77%. Two banks provide half that performance improve-
ment at one third the area, and is hence amore fine-grain tradeoff
than increasing lanes.
Replicating the ALUs for each of the two banks (two banks,

two ALUs) provides some minor additional performance, ex-
cept for FBITAL where the performance improvement is signif-
icant. FBITAL executes many arithmetic operations per datum
making demand for the ALU high and hence benefiting signifi-

Fig. 9. Cycle performance of different banking configurations across our
benchmarks on an 8-lane VESPA with full memory support. Area is shown in
parentheses for each configuration. Both cycle speedup and area are normalized
to the same VESPA without vector chaining.

cantly from increased ALUs and justifying the additional 7%
area. Similarly the four bank configurations benefit only few
benchmarks, while the area cost is significant at 59% with no
replication and near 100%with replication. Since this configura-
tion underperforms against a VESPA configuration with double
the lanes and no chaining, we do not further study configura-
tions with four or more banks. Note that instruction scheduling
in software could better utilize the banks, but in many of our
benchmarks only very little rescheduling was either necessary
or possible, so we did not manually schedule instructions to ex-
ploit chaining.

VII. EXPLORING THE VESPA DESIGN SPACE

Using VESPA we have shown soft vector processors can
scale performance while providing several architectural pa-
rameters for fine-tuning and customization. This customization
is especially compelling in an FPGA context where designers
can easily implement an application-specific configuration.
In this section we explore this design space more fully by
measuring the area and performance of hundreds of VESPA
processors generated by varying all VESPA parameters shown
in Table IV(a) and implementing each configuration on the
DE3 platform. The configurations chosen were intelligently
pruned to limit the number of inferior configurations, resulting
in a 768-point design space. For example a configuration with
1 lane and a very wide cache performs insignificantly better
than one with a smaller cache. Details about the derivation of
our intelligently pruned design space can be found in [43].
Fig. 10 shows the area and wall clock time space of the 768

VESPA design points. This data includes the effect of clock fre-
quency which decays only slightly throughout the designs up to
eight lanes but is eventually reduced by up to 25% in our largest
designs (the points in the bottom right of the figure). Since these
largest designs are also the fastest, the maximum speed achieved
is reduced considerably by the clock frequency reduction. The
design space spans 18 in wall clock time instead of the 24
spanned in cycle count. This is in line with the 25% performance
reduction expected because of the clock frequency decay. Ad-
ditional retiming or pipelining can mitigate this decay, moti-
vating a re-architected VESPA pipeline for many lanes or even
a pipeline generator such as SPREE [32]. Nonetheless the de-

YIANNACOURAS et al.: PORTABLE, FLEXIBLE, AND SCALABLE SOFT VECTOR PROCESSORS 1439

TABLE IV
VESPA DESIGN SPACE EXPLORATION. (A) EXPLORED SPACE OF VESPA
PARAMETERS. (B) CONFIGURATIONS WITH BEST PERFORMANCE-PER-AREA

Fig. 10. Average wall clock time and vector coprocessor area of 768 soft vector
processor variations across the pruned design space. Area is measured in equiv-
alent ALMs, while the wall clock time of each benchmark is normalized against
the fastest achieved time across all configurations and then averaged using geo-
metric mean.

sign space is still very large and even the designs with reduced
clock frequencies in the lower right corner of the figure provide
useful pareto optimal design points. Overall the space spans a
vast 28 in area and 18 in wall clock time, and does so with
fine granularity allowing for precise area/speed tradeoffs.
Fig. 10 confirms that VESPA has the performance scalability

and flexibility to meet a wide variety of area/performance con-
straints. This shows that soft vector processors can indeed be a
powerful FPGA design tool which can complement traditional
HDL hardware design and software soft processor design. In
fact, our previous work [51] directly compares VESPA to these
alternative design methods and shows that while a scalar soft
processor is 432 slower than HDL hardware design, VESPA
can scale to only 17 slower.

A. Per-Application Analysis

A key motivation for FPGA-based soft processors is their
ability to be customized to a given application. This applica-
tion-specific customization can aid FPGA designers in meeting
their system design constraints. Since these constraints vary
from system to system, in this section we examine the effect of
optimizing the VESPA parameters for performance-per-area, a
commonly used metric for measuring efficiency. To calculate
performance-per-area we take the inverse of the product be-
tween area and wall clock time, both measured as described in
Section IV. The measured area includes the complete processor
system excluding the memory controller and host communi-
cation hardware; the wall clock time is measured on the DE3
platform.
Table IV(b) shows the VESPA configuration which achieves

the best performance-per-area out of the 768 explored for each
benchmark. The first row shows the general purpose configura-
tion that achieves the best performance-per-area averaged arith-
metically across all benchmarks. The per-application configu-
rations can achieve up to 35.6% and an average of 11% better
performance-per-area over the general purpose configuration,
highlighting the benefits of tuning for a specific application.
The selected configurations for each benchmark vary signifi-
cantly from the general purpose eight-lane configuration with

, 2 banks, 32 kB data cache, 64 B line size, and
7 cache line prefetching. Three of the benchmarks work best
for the 8*VL prefetching strategy, while another three select the
smaller cache which does not support prefetching. The number
of lanes selected is typically 8 or 16 since 32-lane configurations
require significant area and also suffer from a significant clock
frequency degradation.
The VITERB benchmark is one of the least data-parallel ap-

plications and benefits most from exploiting a high degree of
chaining on a one-lane soft vector processor. This configuration
is certainly the most interesting as it differs the most from the
general purpose. The best VITERB configuration has two banks
and is the only one that benefits from enabling the param-
eter. The selected architecture is similar to a scalar processor
except the vector instructions are issued up to two per cycle
across the two ALUs, one multiplier, and the memory unit. Sur-
prisingly, for this benchmark this is more efficient in terms of
performance-per-area than any two-lane configuration.
The FBITAL benchmark achieves 24.6% better performance-

per-area than the general purpose configuration. This is gained
largely by the half-sized crossbar and the reduced vector state
from the decreased . Further area savings is gained by dis-
abling chaining in this configuration. The FILT3X3 benchmark
selects the largest configuration with 4 banks, and
16 homogeneous lanes achieving 7% improved performance-
per-area over the general purpose. The benchmarks with little or
no multiply operations are seen to employ heterogeneous lanes
reducing the number of lanes with multipliers. This is seen in
CONVEN, RGBCMYK, and IP_CHECKSUM.Overall, these improve-
ments highlight the value in matching the soft vector processor
architecture to the application.

1440 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

TABLE V
AREA ELIMINATION OPPORTUNITY AND RESULTS

VIII. ELIMINATING FUNCTIONALITY

All architectural parameters explored so far traded area
and performance while preserving functionality. But if a soft
processor need only execute one application, or the FPGA can
be reconfigured between runs of different applications, one
can create a highly-customized soft processor with only the
functionality needed by the current application. In this section
we target and automatically eliminate two key general purpose
overheads without affecting cycle performance: 1) the datapath
width, since many applications do not require full 32-bit pro-
cessing (we refer to this customization as width reduction); and
2) the hardware support for instructions which do not exist in
the application (we refer to this as subsetting or instruction set
subsetting).
Table V shows that there exists ample opportunity for such

customization. The middle column shows that all benchmarks
except AUTCOR and IP_CHECKSUM use less than 32-bit data
types with CONVEN needing only 1-bit. The right-most column
shows that all benchmarks use less than 15% of the vector
instruction set. We can thus expect significant area savings
from applying width reduction and instruction-set subsetting.

A. Impact of Vector Datapath Width Reduction (W)

Table V shows the effect of modifying the width in the third
column using the parameter on a 16-lane VESPA with full
memory crossbar and 16 kB data cache with 64 B cache line
size. Starting from a 1-bit vector lane width we double the width
until reaching the full 32-bit configuration. The area is reduced
to almost one-quarter in the 1-bit configuration with further re-
duction limited due to the control logic, vector state, and ad-
dress generation which are unaffected by width reductions. A
2-bit width saves 68% area and is only slightly larger than the
1-bit configuration. Substantial area savings are possible with
wider widths as well: a one-byte or 8-bit width eliminates 33%
area, while a 16-bit width saves 24% of the area. On average
the area is reduced by 31% across our benchmarks including
the two benchmarks which require 32-bit vector lane widths.
These area savings decrease the area cost associated with each
lane enabling low-cost lane scaling depending on the width re-
quired by the application.

B. Impact of Instruction Set Subsetting

VESPA supports a disable parameter for each vector instruc-
tion, the activation of which removes hardware support for that
instruction. Doing so automatically eliminates control logic and
datapath hardware for those instructions, with whole functional
units eliminated if all the corresponding instructions are dis-
abled. In the extreme case, disabling all vector instructions elim-
inates the entire vector coprocessor unit. To perform the reduc-
tion we developed a tool that parses an application binary and
automatically disables instructions not found.
The last column of Table V shows the area of the resulting

subsetted vector coprocessors for each benchmark using a base
VESPA configuration with 16 lanes, full memory crossbar, 16
kB data cache, and 64 B cache lines. Up to 57% of the area is
reduced for IP_CHECKSUM which requires no multiplier func-
tional unit and no support for stores which eliminates part of
the memory crossbar. Similarly AUTCOR has no vector store in-
structions resulting in the second largest savings of 42% area
despite using all functional units. The benchmarks CONVEN and
RGBCMYK can eliminate the multiplier only resulting in 30%
area savings while the remaining benchmarks cannot eliminate
any whole functional unit. In those cases removing multiplexer
inputs and support for instruction variations results in savings
between 15%–20% area. Across all our benchmarks a geometric
mean of 28% area savings is achieved.

C. Impact of Combining Width Reduction and Instruction Set
Subsetting

We can combine these two customizations, width reduction
and instruction subsetting, to be performed together in VESPA
for a given application, thereby creating highly area-reduced
VESPA processors with identical performance to a full VESPA
processor. Since these customizations overlap, we expect that
the savings will not be perfectly additive: for example, the sav-
ings from reducing the width of a hardware adder from 32-bits
to 8-bits will disappear if that adder is eliminated by instruction
set subsetting.
Fig. 11 shows the area savings of combining both the width

reduction and the instruction set subsetting. For comparison, on
the same figure are the individual results from width reduction
and instruction set subsetting. The CONVEN benchmark can have
78% of the VESPA vector coprocessor area eliminated through
subsetting and reducing the datapath width to 1 bit. Except for
the cases where width-reduction is not possible, the combined
approach provides additional area savings over either technique
alone. Compared to the average 31% from width reduction and
28% from subsetting, combining the two produces average area
savings of 47%. This is an enormous overall area savings, al-
lowing FPGA designers to scale their soft vector processors to
16 lanes with almost half the area cost of a full general-purpose
VESPA.

IX. CONCLUSION

The laborious hardware design required for efficient FPGA
implementation can be mitigated by shifting some computation
into a microprocessor which uses high-level programming
abstractions. A soft processor is a compelling candidate for
doing this, allowing designers to customize its architecture to

YIANNACOURAS et al.: PORTABLE, FLEXIBLE, AND SCALABLE SOFT VECTOR PROCESSORS 1441

Fig. 11. Area of the vector coprocessor after eliminating both unused lane-width and hardware support for unused instructions. All configurations have 16 lanes
with full memory crossbar and 16 kB data cache with 64 B cache lines. All area measurements are relative to the full uncustomized VESPA.

compete with a custom hardware implementation. In this work,
we improve soft processors by allowing their architecture to
respond to characteristics in the application. Specifically, we
focus on the data level parallelism found in many embedded
and multimedia applications. We show that soft vector proces-
sors are indeed scalable and can be used to efficiently scale
performance for such applications, hence more likely justifying
implementation of a computation in a soft vector processor
rather than using manual hardware design. The inherent flexi-
bility in soft processors was leveraged in two ways: 1) VESPA
allows designers to precisely match their area/performance
needs through its several architectural parameters which to-
gether were shown to finely span a broad 28 range in area
and 18 in wall clock; and 2) VESPA was customized to
reduce general purpose overheads by matching the precision
and instruction support required by the application. With these
characteristics and built-in portability across FPGA devices,
a portable, flexible, and scalable soft vector processor can be
used to implement computations on an FPGA with relative ease
thereby simplifying FPGA design while still achieving high
performance realizations.

REFERENCES
[1] Xilinx, San Jose, CA, “Virtex II Pro and Virtex II Pro X Platform

FPGAs,” DSO83 v4.7, 2007.
[2] Xilinx, San Jose, CA, “MicroBlaze,” 2010. [Online]. Available: http://

www.xilinx.com/microblaze
[3] Altera, San Jose, CA, “Nios II,” 2010. [Online]. Available: http://www.

altera.com/products/ip/processors/nios2
[4] J. L. Hennessy and D. A. Patterson, Computer Architecture; A Quanti-

tative Approach. San Francisco, CA: Morgan Kaufmann, 1992.
[5] P. Yiannacouras, J. Rose, and J. G. Steffan, “The microarchitecture

of FPGA based soft processors,” in Proc. Int. Conf. Compilers, Arch.,
Synth. for Embed. Syst. (CASES), 2005, pp. 202–212.

[6] P. Yiannacouras, J. G. Steffan, and J. Rose, “Application-specific cus-
tomization of soft processor microarchitecture,” in Proc. Int. Symp.
Field Program. Gate Arrays (FPGA), 2006, pp. 201–210.

[7] A. K. Jones, R. Hoare, D. Kusic, J. Fazekas, and J. Foster, “An FPGA-
based vliw processor with custom hardware execution,” in Proc. ACM/
SIGDA 13th Int. Symp. Field-Program. Gate Arrays (FPGA), 2005, pp.
107–117.

[8] R. Carli, “Flexible MIPS soft processor architecture,” Massachusetts
Inst. Technol., Cambridge, Tech. Rep. MIT-CSAIL-TR-2008-036,
2008.

[9] B. Fort, D. Capalija, Z. G. Vranesic, and S. D. Brown, “Amultithreaded
soft processor for sopc area reduction,” inProc. 14th Annu. IEEE Symp.
Field-Program. Custom Comput. Mach. (FCCM), 2006, pp. 131–142.

[10] R. Dimond, O. Mencer, and W. Luk, “CUSTARD—A customisable
threaded FPGA soft processor and tools,” in Proc. Int. Conf. Field Pro-
gram. Logic (FPL), 2005, pp. 1–6.

[11] M. Labrecque, P. Yiannacouras, and J. G. Steffan, “Scaling soft pro-
cessor systems,” presented at the IEEE Symp. Field-Program. Custom
Comput. Mach. (FCCM), Palo Alto, CA, 2008.

[12] D. Unnikrishnan, J. Zhao, and R. Tessier, “Application-specific cus-
tomization and scalability of soft multiprocessors,” presented at the
IEEE Symp. Field-Program. Custom Comput. Mach. (FCCM), Napa,
CA, 2009.

[13] K. Ravindran, N. Satish, Y. Jin, and K. Keutzer, “An FPGA-based soft
multiprocessor system for ipv4 packet forwarding,” Field Program.
Logic Appl., pp. 487–492, Aug. 2005.

[14] Univ. Toronto, Toronto, ON, Canada, “VESPA,” 2011. [Online]. Avail-
able: http://www.eecg.utoronto.ca/VESPA

[15] J. Gebis and D. Patterson, “Embracing and extending 20th-century in-
struction set architectures,” Computer, vol. 40, no. 4, pp. 68–75, 2007.

[16] C. Kozyrakis and D. Patterson, “Scalable, vector processors for em-
bedded systems,” IEEE Micro, vol. 23, no. 6, pp. 36–45, Nov. 2003.

[17] C. Kozyrakis and D. Patterson, “Vector vs. superscalar and VLIW
architectures for embedded multimedia benchmarks,” in Proc.
IEEE/ACM Int. Symp. Microarch. (MICRO-35), 2002, pp. 283–293.

[18] C. Kozyrakis and D. Patterson, “Overcoming the limitations of con-
ventional vector processors,” SIGARCH Comput. Archit. News, vol.
31, no. 2, pp. 399–409, 2003.

[19] C. Kozyrakis, “Scalable vector media processors for embedded sys-
tems,” Ph.D. dissertation, Elect. Eng. Comput. Sci., Univ. California-
Berkeley, Berkeley, 2002.

[20] D.Martin, “Vector extensions to the mips-iv instruction set architecture
(the v-iram architecture manual),” Univ. California, Berkeley [Online].
Available: http://iram.cs.berkeley.edu/isa.ps

[21] D. Patterson, K. Asanovic, A. Brown, R. Fromm, J. Golbus, B. Grib-
stad, K. Keeton, C. Kozyrakis, D. Martin, S. Perissakis, R. Thomas,
N. Treuhaft, and K. Yelick, “Intelligent ram (IRAM): The industrial
setting, applications, and architectures,” presented at the Int. Conf.
Comput, Design (ICCD), Washington, DC, 1997.

[22] K. Asanovic, J. Beck, B. Irissou, B. Kingsbury, and N. Morgan, “The
to vector microprocessor,” Hot Chips, vol. 7, pp. 187–196, 1995.

[23] K. Asanovic, “Vector microprocessors,” Ph.D. dissertation, Elect. Eng.
Comput. Sci., Univ. California, Berkeley, 1998.

[24] C. Sullivan and S. Chapell, “Handel-c for coprocessing and co-design
of field programmable system on chip,” JCRA, Wilsonville, OR, 2002.

[25] S. McCloud, “Catapult c synthesis-based design flow: Speeding imple-
mentation and increasing flexibility,” Mentor Graphics, Wilsonville,
OR, White Paper, 2004.

[26] D. Pellerin and S. Thibault, Practical FPGA Programming in c.
Upper Saddle River, NJ: Prentice-Hall, 2005.

[27] OSCI, “SystemC,” 2011. [Online]. Available: http://www.systemc.org
[28] B. A. Draper, A. P. W. Böhm, J. Hammes, W. A. Najjar, J. R. Bev-

eridge, C. Ross, M. Chawathe, M. Desai, and J. Bins, “Compiling sa-c
programs to FPGAs: Performance results,” in Proc. 2nd Int. Workshop
Comput. Vision Syst. (ICVS), 2001, pp. 220–235.

[29] J. Yu, G. Lemieux, and C. Eagleston, “Vector processing as a soft-core
cpu accelerator,” in Proc. Symp. Field Program. Gate Arrays, 2008,
pp. 222–232.

1442 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 8, AUGUST 2012

[30] MicroSemi (formerly Actel) Corporation, Mountain View, CA, “Mi-
croSemi ARM cortex-M1,” 2011. [Online]. Available: http://www.mi-
crosemi.com

[31] Lattice Semiconductor Corporation, Hillsboro, OR, “Lattice micro32,”
2011. [Online]. Available: www.latticesemi.com/micro32

[32] P. Yiannacouras, “The microarchitecture of FPGA-based soft pro-
cessors,” Master’s thesis, Dept. Elect. Comput. Eng., Univ. Toronto,
Toronto, ON, Canada, 2005.

[33] LEON SPARC, Goteborg, Sweden, “Gaisler Research,” 2011. [On-
line]. Available: http://www.gaisler.com

[34] A. Lodi, M. Toma, and F. Campi, “A pipelined configurable gate array
for embedded processors,” in Proc. ACM/SIGDA 11th Int. Symp. Field
Program. Gate Arrays (FPGA), 2003, pp. 21–30.

[35] M. A. R. Saghir, M. El-Majzoub, and P. Akl, “Datapath and isa
customization for soft vliw processors,” in Proc. Reconfig. Comput.
FPGA’s, 2006, pp. 1–10.

[36] M. Labrecque and J. G. Steffan, “Improving pipelined soft processors
with multithreading,” in Proc. FPL, 2007, pp. 210–215.

[37] R. Moussali, N. Ghanem, and M. A. R. Saghir, “Supporting multi-
threading in configurable soft processor cores,” in Proc. Int. Conf.
Compilers, Arch., Synth. for Embed. Syst., 2007, pp. 155–159.

[38] R. Dimond, O. Mencer, and W. Luk, “Application-specific customi-
sation of multi-threaded soft processors,” IEE Proc.—Comput. Digit.
Techn., vol. 153, no. 3, pp. 173–180, May 2006.

[39] J. Kingyens and J. G. Steffan, “A GPU-inspired soft processor for high-
throughput acceleration,” in Proc. Reconfig. Arch. Workshop, 2010, pp.
9–10.

[40] F. Plavec, Z. Vranesic, and S. Brown, “Towards compilation of
streaming programs into FPGA hardware,” in Proc. Forum on Speci-
fication, Verification, Design Lang. (FDL), 2008, pp. 67–72.

[41] J. Yu, C. Eagleston, C. H.-Y. Chou, M. Perreault, and G. Lemieux,
“Vector processing as a soft processor accelerator,” ACM Trans. Re-
config. Technol. Syst. (TRETS), vol. 2, no. 2, pp. 1–31, 2009, Art. No.
12.

[42] MIPS, Sunnyvale, CA, “MIPS technologies,” 2011. [Online]. Avail-
able: http://www.mips.com

[43] P. Yiannacouras, “FPGA-based soft vector processors,” Ph.D. disserta-
tion, Dept. Elect. Comput. Eng., Univ. Toronto, Toronto, ON, Canada,
2009.

[44] J. Fender, J. Rose, and D. R. Galloway, “The transmogrifier-4: An
FPGA-based hardware development system with multi-gigabyte
memory capacity and high host and memory bandwidth,” in Proc.
IEEE Int. Conf. Field Program. Technol., 2005, pp. 301–302.

[45] P. Metzgen, “A high performance 32-bit ALU for programmable
logic,” in Proc. ACM/SIGDA 12th Int. Symp. Field Program. Gate
Arrays, 2004, pp. 61–70.

[46] EEMBC, El Dorado Hills, CA, “The embedded microprocessor bench-
mark consortium,” 2011. [Online]. Available: http://www.eembc.org

[47] D. Lau, O. Pritchard, and P. Molson, “Automated generation of hard-
ware accelerators with direct memory access from ansi/iso standard c
functions,” in Proc. FCCM, 2006, pp. 45–56.

[48] P. Yiannacouras, J. G. Steffan, and J. Rose, “Exploration and cus-
tomization of FPGA-based soft processors,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 26, no. 2, pp. 266–277, Feb.
2007.

[49] J. E. Veenstra and R. J. Fowler, “MINT: A front end for efficient simu-
lation of shared-memory multiprocessors,” in Proc. 2nd Int. Workshop
Model., Anal., Simulation Comput. Telecommun. Syst. (MASCOTS),
1994, pp. 201–207.

[50] P. Yiannacouras, J. G. Steffan, and J. Rose, “Improving memory sys-
tems for soft vector processors,” in Proc. Workshop Soft Process. Syst.
(WoSPS), 2008, pp. 19–24.

[51] P. Yiannacouras, J. G. Steffan, and J. Rose, “Data parallel FPGA work-
loads: Software versus hardware,” presented at the FPL, Grenoble,
France, 2009.

[52] S. P. Vanderwiel and D. J. Lilja, “Data prefetch mechanisms,” ACM
Comput. Surv., vol. 32, no. 2, pp. 174–199, 2000.

[53] J. W. C. Fu and J. H. Patel, “Data prefetching in multiprocessor vector
cache memories,” SIGARCH Comput. Archit. News, vol. 19, no. 3, pp.
54–63, 1991.

[54] P. Yiannacouras, J. G. Steffan, and J. Rose, “Fine-grain performance
scaling of soft vector processors,” in Proc. Int. Conf. Compilers, Arch.
Synth. Embed. Syst. (CASES), 2009, pp. 97–106.

[55] R. M. Russell, “The cray-1 computer system,”Commun. ACM, vol. 21,
no. 1, pp. 63–72, 1978.

Peter Yiannacouras (M’09) received the B.A.Sc.
degree in engineering science, and the M.A.Sc. and
the Ph.D. degree from the Electrical and Computer
Engineering Department, University of Toronto,
Toronto, ON, Canada, in 2003, 2005, and 2009,
respectively.
He was with Intel Microarchitecture Research

Labs in 2006, Nokia Research Center in 2009, and
is currently with Altera Corporation, since 2010.
His research interests include processor and system
architecture, and embedded processing.

J. Gregory Steffan (SM’08) received the under-
graduate and M.S. degrees from the University of
Toronto, Toronto, ON, Canada, and the Ph.D. degree
from Carnegie Mellon University, Pittsburgh, PA, in
1995, 1997, and 2003, respectively.
He is an Associate Professor with the Edward S.

Rogers Sr. Department of Electrical and Computer
Engineering, University of Toronto. His research in-
terests include computer architecture and compilers,
reconfigurable computing, and distributed and par-
allel systems.

Prof. was a recipient of the OntarioMinistry of Research and Innovation Early
Researcher Award (2007), a Siebel Scholar (2002), an IBM CAS Visiting Sci-
entist and Faculty Fellow. He is a senior member of the ACM.

Jonathan Rose (F’09) is a Professor with the Depart-
ment of Electrical and Computer Engineering, Uni-
versity of Toronto, Toronto, ON, Canada. From 1986
to 1989, he was a Post-Doctoral Scholar and then a
Research Associate with the Computer Systems Lab-
oratory, Stanford University, Stanford, CA. He spent
the 1995–1996 year as a Senior Research Scientist
with Xilinx, San Jose, CA, working on the Virtex
FPGA. In October 1998, he co-founded Right Track
CAD Corporation, which delivered architecture for
FPGAs and packing, placement, and routing software

for FPGAs to FPGA device vendors. He became a Senior Director of the Altera
Toronto Technology Centre from May 2000 to April 2003, after the acquisition
of Right Track, sharing responsibility for the development of the architecture
for the Altera Stratix, Stratix II, Stratix GX, and Cyclone FPGAs and associ-
ated software. His research covers all aspects of FPGAs including their archi-
tecture, computer-aided design, field-programmable systems, soft processors,
and graphics, vision bio-informatic and mobile applications of programmable
hardware.
Dr. Rose is the co-founder of the ACM FPGA Symposium. He served as

Chair of the Edward S. Rogers Sr. Department of Electrical and Computer En-
gineering from 2004 through 2009. He is a Fellow of the IEEE, ACM, and Cana-
dian Academy of Engineering, and is a Foreign Associate of the American Na-
tional Academy of Engineering.

