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Abstract

FPGAs are becoming an attractive platform for accel-
erating many computations including scientific applica-
tions. However, their adoption has been limited by the
large development cost and short life span of FPGA de-
signs. We believe that FPGA-based scientific computation
would become far more practical if there were hardware li-
braries that were portable to any FPGA with performance
that could scale with the resources of the FPGA. To illus-
trate this idea we have implemented one common super-
computing library function: the LU factorization method
for solving linear systems. This paper discusses issues in
making the design both portable and scalable. The design
is automatically generated to match the FPGA’s capabil-
ities and external memory through the use of parameters.
We compared the performance of the design on the FPGA
to a single processor core and found that it performs 2.2
times faster, and that the energy dissipated per computation
is a factor 5 times less.

1. Introduction

As the logic and computational capacity of FPGAs have

grown, FPGAs have become an attractive platform for ac-

celerating many computations including scientific applica-

tions. The high level of parallelism and abundant flexibility

available in the FPGA fabric offer the promise of significant

speed-up. A number of vendors offer platforms that enable

a processor to offload computation to an FPGA-based ac-

celerator including XtremeData [1], SRC [2], and Cray [3].

However, adoption of these FPGA accelerators by the sci-

entific computing community has been limited because the

creation of an FPGA design is difficult and time consum-

ing and outside the skill set of the typical scientific com-

puting user. In addition, once a design has been created for

one specific FPGA chip and board, the same design cannot

be easily transferred to another. The design is locked onto

that FPGA-based platform because it typically has a specific

memory architecture that soon becomes outdated.

In contrast, software is highly portable. Once a software

application is completed, it can easily be upgraded to new

and faster machines and obtain significantly better perfor-

mance. This permits software programmers to develop and

maintain rich libraries that solve important problems. Sci-

entific computing users need not be highly skilled in creat-

ing optimized code because they can simply use the func-

tions in these libraries. In hardware, IP cores do allow some

design reuse, but at a much lower level of abstraction than

with high level software libraries.

One method that attempts to make FPGA programming

more accessible is to employ high-level languages and syn-

thesis tools that map software directly to an FPGA. Exam-

ples include Handel-C [6], Catapult C [9], and SystemC [4].

However, this approach is often not adequate to create an ef-

ficient hardware design from complex code as the program-

mer typically has to write the code in a stylized manner with

the final architecture of the system in mind to obtain good

performance.

In this work, we present an alternative solution for mak-

ing FPGA-based computation more accessible by creating a

computational “library” that is portable to any FPGA plat-

form with minimal effort. The key second feature of the

library is that its performance should also scale with the ca-

pabilities and resources of the FPGA. Given an FPGA with

more capacity and faster elements, the library performance

should improve without extra effort from the designer. By

creating a portable and scalable library, we can drastically

reduce the development cost and increase the life span of

the design, thus making it more attractive to scientific com-

puting users.

Common software libraries for scientific computing in-

clude matrix manipulation packages such as BLAS [10],

SAT solvers, and linear program solvers. If an equivalent
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library existed for FPGAs, it could enable broader adoption

of FPGA acceleration. This research lays out a framework

to create such a hardware library, by illustrating the design

issues and efforts needed to build one such library member.

Our focus application is the solution of systems of lin-

ear equations, as this is a very common problem and the

computation time is high for large systems. There are two

main classes of linear equation solvers: iterative and direct.

Iterative solvers either require less computation but do not

guarantee convergence for all types of matrices or require

the same order of computation as direct solvers to guaran-

tee convergence; thus both iterative and direct solvers are

widely used. Iterative solvers begin with an initial guess

for the solution vector and then refine it until the error is

sufficiently small. Direct solvers manipulate the matrix and

solution vector until the solution can be easily computed.

Prior work [16] on iterative solvers has not resulted in sig-

nificant speed-up over processors due to the large memory

bandwidth requirements; thus, we focus on direct methods

and solving dense matrices. We have created a generator

that automatically creates a portable and scalable FPGA

computer engine for the LU factorization method [13] to

solve a linear system. The generator and engine are highly

parameterized to permit any size of matrix (up to the exter-

nal memory capacity) and to make use of any size of FPGA.

This paper is organized as follows. Section 2 provides

background on the LU factorization method for solving lin-

ear systems and summarizes previous work. Section 3 out-

lines the architecture of our design, including the broad

space of parameters for which the tool can generate im-

plementations. Section 4 discusses the experimental results

and Section 5 concludes.

2. Solutions of Systems of Linear Equations

A system of linear equations is often represented in a

matrix and vector form as Ax = b. The coefficients of the

variables in the linear system are represented in an N x N

matrix (A) with the unknown variables represented in an N-

element vector (x). A solver must determine the values of

x for which the product generates the N-dimensional con-

stant (b). The LU factorization method directly solves for

x by breaking the coefficient matrix into two matrices, thus

forming LUx = b. One of those matrices, L, is a lower tri-

angular matrix which has the diagonal elements equal to 1

and all elements above the diagonal equal to 0; the other ma-

trix, U , is an upper triangular matrix which has the elements

below the diagonal equal to 0. If we set y = Ux, a forward

substitution can be performed to compute y from Ly = b.

Then a backward substitution can be performed to compute

x from Ux = y. The most time consuming computation in

this algorithm is the factorization of the coefficient matrix,

which is the determination of the matrices L and U such

that A = LU , as this requires O(N3) operations.

2.1. LU Factorization

A pseudo-code for a simple LU factorization algorithm

is given in Algorithm 1. There are two kinds of operations

that must to be performed: the first is the division of all the

elements below the diagonal in the column, ak+1,k to aN,k,

by the diagonal element, ak,k. The second is the multipli-

cation of column elements, ak+1,k to aN,k, by row element,

ak,j , and the subsequent subtraction of the product from the

column elements below the row element, ak+1,j to aN,j .

The multiplication and subtraction is repeated for j from

k + 1 to N . All the operations are repeated for the next

diagonal element until the last diagonal element is reached.

Algorithm 1 Pseudo-code for a simple LU factorization

for k = 1 to N − 1 do {for each diagonal element}
for i = k + 1 to N do {for each element below it}

ai,k ← ai,k/ak,k {normalize}
end for
for j = k + 1 to N − 1 do {for each column right of current

diagonal}
for i = k + 1 to N do {for each element below it}

ai,j ← ai,j − ai,k × ak,j

end for
end for

end for

For the simple LU factorization method described above,

all of the elements in the matrix must be accessible dur-

ing the computation. For many scientific computing prob-

lems, the matrix size (N) is at least 10,000 x 10,000 single-

precision numbers, which requires roughly 0.4GBytes of

memory. This is far too large to store on a chip - either

an FPGA or a processor’s cache, and therefore, the matrix

must be stored in off-chip memory. Thus all practical ap-

proaches must deal with the limitation to off-chip memory

bandwidth. The common approach to deal with this is to

performed the computation in a “blocked” manner - to bring

on-chip subsections of the coefficient matrix A, each of size

NbxNb and perform as many computations on that data as

possible to minimize the number of times the data have to

be fetched from off-chip memory.

There are three common variants of the block LU fac-

torization [13]; and we will employ the “right-looking” ver-

sion - in this method the current block being updated uses

elements from the left-most and top-most block in its row

and column as shown in Figure 1(a). With this blocking

method there are four types of computations: Case 1: all

three blocks (current, left-most, and top-most) are the same

physical block. Case 2: current block is the same as left-

most block. Case 3: current block is the same as top-most

block. Case 4: all three blocks are different.

Figure 1(b) shows an example matrix in which blocks are

labeled with each case. The computation for these blocks

are similar to the simple LU factorization algorithm de-

scribed in Algorithm 1, except the loop indices are differ-
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Figure 1. Matrix Blocks in First Block Pass

ent and some elements obtained from the left-most and top-

most blocks are required. The pseudo-code for all the cases

is shown in Algorithm 2, where ai,j , li,j , and ui,j represent

elements in the current block, left-most block and top-most

block respectively. For a large matrix, case 4 is the most

common and dominates the computation time. The blocks

are updated in the order shown in Figure 1(c). After the first

block pass in which every block is updated, the blocks in the

first block column and block row have the final solution.

The remaining blocks, which were all the case 4 blocks in

the first block pass, are updated again, repeating the above

computations. This process repeats until no blocks are left,

requiring N/Nb block passes.

Algorithm 2 Code for all 4 cases of block LU factorization

Case 1:

same as simple LU factorization with Nb instead of N {See Alg. 1}
Case 2:

for k = 1 to Nb do {for each diagonal element in top-most block (u)}
for i = 1 to Nb do {for each element below in current block (a)}

ai,k ← ai,k/uk,k {normalize}
end for
for j = k+1 to Nb do {for each column right of current diagonal}

for i = 1 to Nb do {for each element below it}
ai,j ← ai,j − ai,k × uk,j

end for
end for

end for
Case 3:

for k = 1 to Nb do {for each column in left-most block (l)}
for j = 1 to Nb do {for each column in current block (a)}

for i = k + 1 to Nb do {for each element below it}
ai,j ← ai,j − li,k × ak,j

end for
end for

end for
Case 4:

for k = 1 to Nb do {for each column in left-most block (l)}
for j = 1 to Nb do {for each column in top-most block (u)}

for i = 1 to Nb do {for each element in current block (a)}
ai,j ← ai,j − li,k × uk,j

end for
end for

end for

2.2. Prior Work

There has been some prior research on implementing lin-

ear equation solvers in FPGAs. The work in [16], [12], [15]

and [14] built iterative solvers using the conjugate gradient

method [13]. The work in [15] reports a speed-up of 2.4 us-

ing the Virtex II 6000 over a 2.8 GHz Xeon processor. They

also implemented a Jacobi iterative solver, which achieved

a speed-up of 2.2 using the same hardware. In all these prior

works, except for [16], these solvers imposed a limit on the

matrix size based on the on-chip memory capacity of the

FPGA. Since the input matrix can be stored on the FPGA,

the memory bandwidth required can be amortized across all

the iterations of the algorithm. For [16], blocks of the ma-

trix are loaded and computations performed on them before

another block is brought on chip. The performance is lim-

ited by the memory bandwidth as N2 computation requires

N2 data, indicating a large amount of memory access per

unit of computation.

The work in [17] implemented the same LU factoriza-

tion method employed in our work. It reported a speed-

up of about 1.2 in double precision using a Virtex-II Pro

XC2VP100 over a 2.2 GHz Opteron. This work also im-

posed a limit on the matrix size; a blocking version to re-

move the matrix size limit was proposed, but not imple-

mented, in [11]. The present work can solve linear systems

of any size up to the capacity of the off-chip memory of the

system, which is an important feature as it is the largest ma-

trices which most need accelerated solutions. Many previ-

ous works do not mention external memory and some sim-

ply provide a bound on the required memory bandwidth.

In contrast, this paper explicitly considers external memory

and outlines how portability and scalability can be achieved

for different FPGAs with different external memories.

3. Hardware Implementation

Our goal is to create a highly parameterized LU factor-

ization hardware design for single-precision floating-point

matrices. The matrices most in need of solution acceler-

ation are very large, thus a key feature of our approach

will be to employ large off-chip memories (we’ll assume

DDR2 SDRAM) to store the large input matrices. We will

use the block LU factorization method described in Section

2.1 - where blocks of the large matrix are brought into on-

chip memory and processed separately to make most effi-

cient use of off-chip memory bandwidth. We use the Altera

Stratix III 3SL340 as the main FPGA vehicle for the com-

putation, which has 16.7 Mbits of on-chip memory and can

hold at most one 721 x 721 single precision matrix block.

Furthermore, we will assume that the matrix is square and

restrict the on-chip matrix blocks to be square. The result

of the LU factorization will be stored in the same location

as the input matrix on the external memory.

Figure 2 shows a high level diagram of the design, which

performs two main functions: The first is called data mar-
shalling, which is the loading and storing of matrix blocks

onto the FPGA from the external memory. The second func-

tion is the actual computation on each set of blocks brought

into the FPGA.

The data marshalling is handled by the Data Transfer
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Figure 2. Diagram Linear System Solver

Unit (DTU) and the Memory Controller (MemC) modules

as shown in Figure 2. The computation is performed by the

LU Processing (LUP) which is controlled by the LU Con-

troller (LUC) module. The Marshalling Controller (MC)

is responsible for issuing commands to these modules and

to provide synchronization between the major tasks. The

MC controls which blocks of memory to load and store

and which series of operations are performed on the loaded

blocks to complete the LU factorization. There are two

clocks in this design: one clock controls the speed of the

external memory and the connected part of the data mar-

shalling unit; the second clock mainly controls the compu-

tation. Separating these clocks is important for scalability;

it is unlikely the speed of the off-chip memory and that of

the on-chip memory and computation units will scale at the

same rate.

3.1. Ordering of Computation

In creating our design, we observed that the time re-

quired to transfer the matrix from off-chip memory onto the

chip was on the same order of the computation itself, when

there are many processing elements. To gain the best com-

putational time, it is thus necessary to simultaneously fetch

data and compute on it. This requires on-chip “double-

buffering” of the memory to allow one memory to do trans-

fers while the other is used in the computation.

The basic computation involves updating (i.e. perform-

ing all the computations for) a single block of the matrix.

To update any given block, up to three blocks are required,

as discussed in Section 2.1: the current block being com-

puted, the top-most block in the same column and the left-

most block in the same row. Following the order of updating

show in Figure 1(c), the top-most block is the same for the

all blocks in the same column and we can reuse this block if

the next block is in the same column. Therefore, this block

only has to be loaded once per column, which is at the start

of a new column. At the beginning of a new column, this

top-most block is also the current block. Thus in total, we

only ever need to load a maximum of two blocks to per-

form any block computation, as we do not have to load the

top-most block explicitly. This reduces the external mem-

ory bandwidth required to sustain the computation and thus,

a total of 5 matrix blocks in on-chip memory is required to

enable computation on one set of blocks while simultane-
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Figure 3. Diagram of the LU Processing

ously pre-loading of the next set.

To initiate LU factorization on the FPGA, the host pro-

cessor sends the size of the matrix (N), the starting memory

address of the matrix in external memory and a start signal

to the compute engine. The output is written back into the

original input matrix in the external memory, and a done

signal is asserted when the algorithm is completed. We now

proceed to describe the computation and data marshalling.

3.2. Computation

In this section we will describe the hardware needed to

implement the LU factorization computation. As described

in Section 2.1, there are four different block operations that

have to be performed. The LU Processing module contains

the data path units that perform all four block operations.

A diagram of the structure of the LU Processing module is

shown in Figure 3. As described in the previous section,

the computation requires three input blocks – labeled top
block, left block, and current block in the figure. Recall that

the engine must load two of the blocks for the subsequent

computation as part of the double buffering, and so the left

and current blocks have “0” and “1” versions in the figure.

Most of the area of the LU processing module (and in-

deed the total design) is made up of the processing ele-

ments. These are multiplication and subtraction floating-

point units. The number of processing elements in the com-

pute engine are specified by a generator parameter, k. The

multiplexers (labeled mux) shown in Figure 3 are needed to

route the data among the matrix blocks, and are controlled

by the LU Controller. The LU Controller ensures all data

dependences in the algorithm are preserved.

While the computation largely consists of multiplica-

tions and subtractions, some blocks perform one division

on all the elements while other blocks perform no division.

Rather than creating many parallel dividers that are infre-

quently used, we compute the reciprocal of the divisor (with

just one divider), and use the multiplier units to effectively
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compute the division.

The floating point units are generated using Altera’s

MegaCore IP functions [5]. The multiplication and subtrac-

tion units are fully pipelined and have a throughput of one

per cycle. Since we only have to perform the division once

in a while, we allow the division unit to take multiple cycles

to prevent it from being the critical path of the engine.

The on-chip memory blocks must supply enough data to

keep the k processing elements busy. The left block and

current block need to supply a matrix element to each mul-

tiplication and subtraction operator respectively. Therefore

the data width of the left block and current block has to

be 32 times the number of processing elements (k) to sup-

port 32-bit (single precision) arithmetic. Typically, k is on

the order of 100, therefore these on-chip memories are very

wide, on the order of 3200 data bits. This is only possible

because of the high bandwidth of on-chip FPGA memories.

For the top memory block, one matrix element is sent to all

the multiplier or the one division operator, and therefore the

top block has a data width of 32 bits for single precision.

3.3. Data Marshalling

The data marshalling function (the transfer of blocks to

and from external memory) is performed by the Memory

Controller (MemC), Data Transfer Unit (DTU) and Mar-

shalling Controller (MC) as illustrated in Figure 2. The co-

efficient matrix A is stored in column major format in the

off-chip memory to match how the matrix blocks need to be

stored on the on-chip memory. The blocks that need to be

loaded on-chip are broken into contiguous sets of memory

addresses, which the MC issues as load and store instruc-

tions to the DTU. Each instruction consists of the external

memory address, the on-chip memory address, size of trans-

fer, a load signal and a store signal.

The MemC is a DDR2 SDRAM memory controller gen-

erated from Altera’s MegaCore IP functions [5]. This unit

receives read or write commands of size up to the DDR2

burst length and converts it into appropriate DDR2 off-chip

interface. The DTU takes an arbitrary size of memory trans-

fer and breaks it up into suitable size read or write com-

mands for the MemC.

The Data Transfer Unit (DTU), shown in more detail

in Figure 4, along with MemC are the key modules that

enable the portability of our generator to different FPGA-

based boards regardless of the type of off-chip memory. We

have designed the DTU to allow the operation of the speed

of the off-chip memory to be independent of the speed and

bandwidth (number of bits of width) of the on-chip mem-

ory. Speed and external memory bus width are two key pa-

rameters to the compute engine generator. The decoupling

is accomplished through the use of the FIFOs illustrated in

the figure. The left hand side of the FIFOs operate at the

external memory clock speed, while the right hand side op-
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Figure 4. Diagram of the Data Transfer Unit

erates on the compute engine’s clock speed.

The FIFOs in the DTU are generated using Altera’s mul-

tiple clock FIFOs MegaCore IP functions, which have pa-

rameterized input and output data width. One side of the

FIFO has to match the data width of the MemC and exter-

nal memory itself, which will be D bits; while the other side

of the FIFO has to match the data demand of the processing

elements, which is 32 × k bits. The FIFO’s input or output

datawidth can be scaled by a factor, r, but r is limited to

powers of 2 and thus, it is unlikely the two sides will match

after scaling.

In the case that it matches, all data read from external

memory can be written to on-chip memory and vice versa.

However, when it does not match, we have to deal with the

extra bits. One option is the extra bits contain useful data

and we will add resource to shift the data for the next read

or write, which is expensive to do on FPGA. We decided to

waste the extra bits by padding it with zeroes. Since the on-

chip memory resource is more scarce/valuable than external

memory, the external memory is zero padded. We scale up

the FIFO so that the data width coming from or going to the

external memory is larger than on-chip memory.

Similarly, the size of the matrix will not always match

the blocking size that is used in the engine. To simplify

the data marshalling task, we pad the end of the column so

that it is a multiple of the block size and each column starts

some multiple of the block size from the previous column.

These extra padded sections of columns are not loaded or

stored. The cost of having internal padding is an increase in

the total memory needed in the external memory to store the

input matrix, which we assume is sufficient to store any in-

put matrix. The user is required to prepare the input matrix

by adding the necessary padding.

3.4. Portability and Scalability in Design

Portability and scalability is achieved by having the com-

pute engine adapt to the available resources of the FPGA

and the specific external memory used. To be portable, the

engine must move to a new FPGA and external memory in-

terface with minimal human effort, and to be scalable, the

engine must automatically take advantage of speed, capac-
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Table 1. Subset of the Generator Parameters
Name Description

k Number of processing elements

AdderLatency The latency of adder unit

MultLatency The latency of floating point multiplier unit

DivLatency The latency of floating point divide unit

OnChipRamBlockSize The size of the on chip memory blocks (in bits)

DDRWidth The datawidth of the DDR2 memory interface

DDRAddrWidth The width of the DDR2 address line

DDRRowAddrWidth The width of the DDR2 row address line

DDRBurstLen The burst length of the DDR2 memory interface

ity and memory bandwidth improvements in the new FPGA

and memory system. We achieve portability and scalability

by (1) defining parameters for the portions of an engine that

should change as the FPGA or external memory technology

changes, and (2) creating a generator which can create an

HDL design implementation that matches the desired pa-

rameters. Table 1 shows a subset of the parameters used

as input to the compute engine generator. Some of the pa-

rameters deal with the variability of resources on the FPGA

while some other parameters deal with the external mem-

ory. In addition, some parameters are used to optimize the

engine by trading area for clock speed.

We found that Hardware Description Languages, such

as Verilog, were not sufficiently powerful to fully adapt the

compute engine to all the parameters. Consequently, we im-

plement our generator as software (written in C language)

that generate Verilog code. The compute engine consists

of automatically created HDL code from the generator and

cores generated from the Altera MegaCore IP functions.

One of the key portability and scalability parameters is

the number of processing elements. The generator can be

set to produce an engine with any number of processing el-

ements. As more FPGA real estate is available on a chip (or

in moving to a larger chip) the number can be increased, im-

proving performance. Other parameters include choosing

the pipeline latency of the floating point units. Most FPGA

vendors offer floating point unit implementations with a

range of latencies to allow area/speed tradeoffs, and by ex-

posing this latency parameter we preserve this tradeoff in

our compute engine. In the future, if a better floating-point

unit with a different latency is created, the generator will

automatically take care of it based on this parameter.

We achieve portability and scalability of the external

memory interface by (1) parameterizing key aspects of the

memory interface and (2) ensuring there is a clean divide

between our design and the off-chip memory controller

including different clock domain. Table 1 lists some of

the memory interface parameters – DDR2 data width, ad-

dress width, and burst length. In addition to affecting how

the vendor-supplied off-chip memory controller is imple-

mented, they affect the FIFOs in the DTU to ensure that the

correct commands are issued to the memory controller and

data is transferred to the on-chip memory at the appropriate

times. Parameterizing the memory interface in this way al-

lows the user to use DDR2 SDRAM of various data widths

and speeds without any redesign.

Moving to a different (non-DDR2) memory technology

is very low effort if the vendor-supplied off-chip memory

controller has the same interface to the FPGA logic as that

of the DDR2 off-chip memory controller we use. If the

memory controller has a different interface, some bridging

hardware must be designed; this is akin to creating a new

device driver in the software world.

By using different clock domains for the external mem-

ory interface and the main computation units, we can run

each part of our design at its own maximum frequency. One

does not have to slow the computation to match the clock

speed of the external memory or vice versa, and since mem-

ory interface and on-FPGA clock speeds will probably in-

crease at different rates, this flexibility is very important to

a scalable design.

4. Results

The hardware design described in Section 3 was targeted

to a Stratix III 3SL340F1760C3 FPGA. We assume that

the FPGA is attached to off-chip DDR2 SDRAM of size

256MB and 64bit wide. We are able to create many versions

of the design by changing various parameters; this allows

us explore the trade-offs in the resulting designs. For ex-

ample, performance increases as the number of processing

elements (k) increases, up to the point where the occupancy

of the FPGA is so large that the tools have difficulty opti-

mizing operating frequency, thereby making overall perfor-

mance suffer.

The top-performing design employs 120 processing el-

ements and achieves a maximum operating frequency of

200MHz. This design was compared to a software ver-

sion from the Intel highly vendor-optimized MKL library

[7] and more basic code running on an Intel Xeon 5160 dual

core 3.0 GHz processor with 4MB of L2 cache and 8GB

of RAM. The Intel MKL library is highly optimized mul-

tithreaded code specifically created for the Intel processor.

The more basic code is single-threaded, and it is modeled

after the pseudo-code in Algorithm 1 in Section 2.1. (We

include a performance comparison to this more basic code

to show how impressive the vendor-optimized software is).

For each platform/code type, we measure the perfor-

mance in useful GFLOPS (the number of floating-point op-

erations per second used in the LU factorization calcula-

tion), which is calculated by taking the total number of op-

erations needed to solve the LU factorization and dividing

by the total runtime. The total runtime is calculated by mul-

tiplying the number of cycles required to perform the com-

putation (as measured by running the design in the Model-

sim logic simulator) times the cycle time as determined by

post-placement and routing timing analysis performed by
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Table 2. Performance for Various Platforms
Platform Clock GFLOPS Performance

Frequency Ratio

FPGA: Stratix III 3SL340F1760C3 200 MHz 47 2.2

CPU: MKL on Xeon 5160 single core 3 GHz 21 1

CPU: MKL Xeon 5160 dual core 3 GHz 42 2

CPU: basic code on Xeon 5160 single core 3 GHz 1.1 0.052

Altera’s Quartus II version 7.2.

Table 2 gives the performance of several platforms, with

all chips fabricated in the same 65nm IC process. The first

column lists the platforms, including the the top-performing

Stratix III 3S340 FPGA implementation described above,

the MKL running on a single core and dual core Intel Xeon

processor and the single core running the more basic code.

The table also states the operating frequency of the hard-

ware (either of our design or the processor clock speed), the

performance in GFLOPS, and the performance normalized

to that of the single core optimized MKL code.

Our FPGA implementation achieves a performance of

47 GFLOPS, which is 2.2 times greater than the single core

Xeon running MKL. The FPGA is essentially tied with the

dual core processor, which is perhaps a more fair compari-

son as the second core resides on the same chip. This is a

surprising result, as we expected to achieve far more signif-

icant speed gains. The Intel optimized code for the Xeon

processor makes use of the SSE2 instruction set, which

employs 4-way data parallelism on 32 bit single-precision

quantities for multiplication and addition. The quality of

this optimization is illustrated by the performance of the

basic software as shown in Table 2. The basic software is a

factor of 19 times slower than the optimized MKL code run-

ning on the single core processor. We believe a key learning

of this research is that for FPGA-based compute accelera-

tion it is crucial to compare to the best performing software

on large-scale problem instances, as we have done here. We

understand that significant effort is given by Intel to pro-

duce this optimized library, perhaps not unlike our effort to

create the FPGA-based design.

While it is true that in supercomputing performance is

the key metric, in recent years the power consumed for

computation has become a significant issue, not only in the

portable world, but in the cost of electricity required to sup-

port super computers. Table 3 shows the power and en-

ergy consumption for each of the platforms listed in Table 2

normalized to the single core processor running MKL. The

power consumption of the 120 processing element FPGA

design was measured using vectorless estimation in Altera’s

PowerPlay Power Analyzer, which is generally within 30%

of the actual power consumption. The power consumption

of the dual core processor was determined from the specifi-

cation on the Intel website [8], which should be close to the

actual power since the MKL keeps the processor busy. The

Xeon dual core processor requires 80W of power and we

assume that a single core requires half the power. As shown

Table 3. Power and Energy Comparison
Platform Power Power GFLOPS Efficiency

(W) Ratio per Watt Ratio

FPGA: Stratix III 3SL340F1760C3 18 0.45 2.61 5

CPU: MKL on Xeon 5160 single core 40 1 0.525 1

CPU: MKL on Xeon 5160 dual core 80 2 0.525 1

CPU: basic code on Xeon 5160 single core 40 1 0.0275 0.052
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Figure 5. Performance versus Matrix Size

in the table, the FPGA implementation requires 2.2 times

less power than the single core processor. Furthermore, the

performance in GFLOPS per Watt, which is essentially the

amount of energy used per computation, is 5 times better

for the FPGA implementation than the processor. The en-

ergy efficiency of the single and dual core processor is the

same because the dual core performance is twice as fast as

the single core but uses twice the power.

We observed that many previous works typically only

use on-chip FPGA memory to store the matrix, which

severely limits the size of the problems addressed, and

therefore the overall applicability. Our implementation em-

ploys off-chip large-scale RAM and therefore is much more

widely applicable. Figure 5 measures the performance for

the various platforms as a function of Matrix dimensions,

N. Here you can see that the performance for all platforms

eventually levels out and reaches a maximum as matrix size

increases. We use these leveled-off performance values in

our comparison. The FPGA implementation is able to reach

its maximum achievable performance faster and thus, there

is a larger speed-up when comparing for small matrices.

4.1. Scalability

A key aspect of our design goals is scalability - hav-

ing a compute engine generator that can grow the engine

to take advantage of more FPGA logic resources as they

become available. To illustrate the scalability of our sys-

tem, we implemented four versions of the LU factorization

design with 30, 60, 90 and 120 processing elements. Ta-

ble 4 gives the performance in GFLOPS for each number

of processing elements (k). The fourth column in the table

gives the performance relative to the 30 processing element

compute engine. With more processing elements, the en-

gine can compute more operations per cycle. However, this

also results in a decrease in the clock frequency as more
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Table 4. Performance for Various Design
Number of Processing Clock GFLOPS Performance

Elements Frequency Ratio

30 240 MHz 14 1.00

60 220 MHz 26 1.9

90 215 MHz 38 2.7

120 200 MHz 47 3.4

resources on the FPGA are used, resulting in a loss of oper-

ating frequency due to congenstion. In general, the perfor-

mance increases with the number of processing elements,

thus achieving scalability.

4.2. Caveats and Future Work

While one of key goals was to provide a core that is

portable, there are a few restrictions that limit its porta-

bility. To reduce development time, we used pre-designed

cores from Altera (that are vendor-specific and therefore not

portable to other vendor’s devices, but are portable within

this vendor’s families) to generate part of our compute en-

gine: specifically the floating-point operators and DDR2

memory controller were Altera-specific. In most cases, a

simple wrapper could be created to allow vendor indepen-

dent portability.

One final limitation involves setting up and initiating the

engine. In our current design, we require a host processor

to be able to fill the external memory with the input ma-

trix data and it must also initiate the computation on the

FPGA. In some FPGA computation systems, the external

memory for the FPGA has a dedicated connection to the

FPGA and the host processor has no access to it. In such a

case the host would have to use the FPGA itself to fill the

data in external memory. In general, an additional hardware

module is needed to handle all possible board configura-

tions for complete portability. Future work should remove

these restrictions to achieve complete portability. Even with

these restrictions, the generator provides more portability

and scalability than most designs to date.

While our current design only solves linear systems, the

framework of the design can be used to create portable and

scalable designs for other scientific algorithms. The data

marshalling blocks can be reused for any algorithm. The

computation blocks will have to be modified but similar pa-

rameters can be used to maintain portability and scalability.

Future work should involve implementing other common

scientific algorithms and expanding the hardware library.

5. Conclusion

In this paper, we have shown how to create a portable

and scalable computational engine generator for the LU fac-

torization method of solution of linear systems that should

make it easy to employ FPGAs in supercomputing appli-

cations. We have shown that the generated compute en-

gine has significant performance and performance per watt

advantages over a single-core processor, but not nearly

as large as expected when we compared to the vendor-

optimized software library for the same computation. Our

scalable FPGA core is 2.2 times faster than a single core

processor (built in the same IC fabrication process) and 5

times more power efficient.
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