CCirc and CGen User’s Manual

Version 1.0

Paul D. Kundarewich (paul.kundarewich@utoronto.ca)

Jonathan Rose, Mike Hutton

http://www.eecg.toronto.edu/~jayar/software/Cgen/Cgen.html

February 1, 2003

1 Overview

The development of next-generation CAD tools and FPGA architectures require benchmark
circuits to experiment with new algorithms and architectures. There has always been a shortage
of good public benchmarks for these purposes, and even companies that have access to
proprietary customer designs could benefit from designs that meet size and other particular
specifications. This document describes two new tools CCirc and CGen to help alleviate this
shortage. These tools significantly improves the quality of previous work by imposing the natural
hierarchy of circuits through clustering and by using a simpler method of characterizing the
nature of sequential circuits. Also, in contrast to current constructive generation methods, we
employ new iterative techniques in the generation that provide better control over the generated
circuit’s characteristics.

CCirc characterize physical properties of circuits. It takes as input a circuit in the BLIF netlist
format (soon VHDL) and outputs statistical information.

CGen generates new synthetic circuits. It takes as input statistical information about a circuit and
outputs netlists in BLIF or VHDL ready to be place and routed.

Executables are available for Linux, Solaris, and Windows and source code is provided for those
who want to modify the code or for those who want to compile for other platforms.

The user's guide is organized as follows. Section 2 describes how to run CCirc and CGen to
analyze circuits and to generate synthetic circuits. Section 3 describes how to compile CCirc and
CGen. Section 4 discusses very briefly the characteristics of a circuit that form the basis of the
output of CCirc and for the input to CGen. More information on the characterizations can be
found from the documents in the biography. Section 5 illustrates a simple example of using
CCirc and CGen together to generate a synthetic circuit. Section 6 will (eventually) discuss more
advanced usage of CGen such as the problems involved in modifying the characterizations from
CCirc to generate different and/or larger circuits. Section 7 states what is currently not supported.

mailto:paul.kundarewich@utoronto.ca

2 Using the Executables

This section describes the operation of CCirc and CGen.

2.1 Operation of CCirc

CCirc takes as input a technology-mapped netlist of lookup tables (LUTs) and flip flops in BLIF
format, and outputs a . stats file containing the result of circuit characterization. A brief
description of these characterizations can be found in Section 4. CCirc is invoked by typing:

ccirc netlist.blif

[Options..]

In the command above, net1list .blif should be replaced by the BLIF file you are

analyzing.

Options for CCirc are listed in Table 2.1. The most important options is --partitions as this
controls the number of clusters created in the characterization. In general the default values for

the rest of the options are fine.

Table 2.1 CCirc Options

Option

Default

Description

--out <file name>

netlist.stats
where “netlist”
comes from the
input file’s
name.

The output file containing
the characterizations of the
circuit.

--partition type bi|kway

Kway

The type of partitioning.

--partitions <ints>

2

The number of clusters to
divide the circuit into.

--wirelength approx

Don’t calculate

Calculate the wirelength_

--draw Don’t draw Outputs a drawing of the
circuit in dot format.

--help Displays list of options.

--no warn Warn the user Suppresses warning messages.

2.2 Operation of CGen

CGen takes as input a . stats file (possibly modified) from CCirc and outputs a circuit in the
BLIF format where all gates in the circuit have been mapped to NAND gates. CGen is invoked

by typing:

cgen netlist.stats

[Options..]

In the command above, net1ist . stats should be replaced by the . stats file you want to

generate from.

Options for CGen are summarized in Table 2.2 and are described in the sections below. In
general, the default values of the options are fine and only people looking to explore the
algorithms used in CGen will use many of them. To output the synthetic circuit in the VHDL
format please use the option —vhdl_output.

Table 2.2 CGen Options Summary

Option

Default

--out output file

netlist clone.blif

--vhdl output

--seed <int>

Clock ticks from system clock

--draw

--help

--alpha <float> 1
--beta <float> 1
--gamma <float> 1
--delay structure init temperature 6
--init too many inputs factor <float> 1
--init_too few inputs_ factor <float> 1
--init too few outputs factor <float> 1
--mult too many inputs factor <float> 1.5
--mult too few inputs factor <floats> 1.5
--mult too few outputs factor <floats> 1.5
--delay structure init temperature <floats> 1
--delta <float> 0.5
--degree_init temperature <floats> 1
--eta <floats> 0.02

--wirelength {init | stats | <int> }

Combinational Circuits: init

Sequential Circuits:

0

--final edge assignment dff loop cost <float>

10

--final edge assignment init temperature <float>

0.0000001

2.2.1 General Options

--draw Outputs a drawing of the synthetic circuit in dot format.

--no_warn Suppresses warning messages to the user.

--seed <int> The random number generator seed. The default value is to randomly seed

the generator with the number of clock times from the system clock.

--vhdl_output Outputs the synthetic circuit as a VHDL file instead of a BLIF.

2.2.2 Delay Structure Creation Options

In delay structure creation we are trying to minimize the cost:

cost =a cost, + Bcost

Delay structure

+7v (cost

Edge Length

+ cost

Level Shape Problem Node)

Here, costc,m» measures the absolute difference between the current Comb and its specification,
COStEqgerengh Measures the absolute difference between the current edge length distributions and
their specifications, cost;eveisnape measures the absolute difference between the current input and
output shapes and their specifications with congestion factors multiplying this cost at each level
node to penalize level nodes that have too many inputs or outputs. Finally, costp,obiem Node
measures the number of node violations that would be forced to be made during final edge
assignment because of the number of edges input or output of a level node. In the cost function
alpha, beta, and gamma are factors that try to balance the individual costs against each other
although the cost that tends to dominate is the costpropiem Node DECause the congestion factors tend
to get quite large.

--alpha <float> Sets the multiplier of costc,mp. Default 1.
--beta <float> Sets the multiplier of costzygerengm. Default 1.
--gamma <float> Sets the multiplier of costrever node. Default 1.

--init_too_many_inputs_factor <float> Sets the starting value of the congestion factor
that penalizes level nodes that have more input edges than k * number of indiv. nodes. Default 1.

--init_too_few_inputs_factor <float> Sets the starting value that penalizes level nodes
that do not have enough input edges for all of their indiv. nodes. Default 1.

--init_too few_ outputs factor <float> The initial congestion factor that penalizes level
nodes that do not have enough output edges for all of their indiv. nodes. Default 1.

--mult_too_many_inputs_factor <float> Multiplies too_many_inputs_factor by this
amount when increasing the congestion costs. Default 1.5.

--mult_too_few_inputs_factor <float> Sets the growth factor that multiplies
too_few inputs factor when increasing the congestion factors. Default 1.5.

--mult_too few outputs factor <float> Sets the growth factor that multiplies
too_few outputs_factor when increasing the congestion factors. Default 1.5.

--delay_structure_init_temperature <float> Sets the initial temperature of the annealing
schedule. Default 6.

2.2.3 Degree Partitioning Options

In final edge assignment we are trying to minimize the cost:

COSIDegree = delta Z COStFanout Edge Misassignment (LN) + (1 - delta) cost
LNeLevel Nodes

(LN)

Fanout Penalty

Here costrunouEdgemissassignmens measures for each level node the absolute difference between the
sum of the fanout degrees assigned and the number of output edges that were assigned during the

creation of the delay structure and costrunouPenaiity 1S @ cost that penalizes level nodes with fanouts
that will force node violations in the final edge assignment. We use the factor delta to balance
the goal of achieving the a match between fanout and edge assignment against the goal of having
no node violations.

--delta <float> Degree Partitioning cost trade-off. Default 0.5.
--degree _init_temperature <float> Sets the temperature of the anneal. Default 1.
2.2.4 Final Edge Assignment Options

In final edge assignment we are trying to control the wirelength and we are trying to prevent
node violations. The cost function for circuit G is:

cost, . = = eta(wirelength

o Assig

(G) —desired _ wirelength) + (1 - eta) Z Number of Violations(7)
nel (G)

Approx

Here, desired wirelength is the desired wirelength ... and Number of Violations 1s a function
that returns the number of nodes that have no inputs, too many inputs, two or more connections
from the same source node, or if the node is a flip-flop a connection to itself. The wirelength
costs are normalized to the maximum horizontal position multiplied by the number of edges
while the Number of Violations cost is normalized to the number of edges. We use the factor eta
to balance the goal of achieving the desired wirelength against the goal of having no node
violations. The value is set to 0.02 because the wirelength cost is often much larger than the no
node violation cost and while achieving the desired wirelength is important it is more important
that we have no node violations because they create sizeable difficulties.

--eta <float> Final edge assignment cost trade-off. Default 0.02.

--wirelength { init | stats | <int> } Sets the desired_wirelength Wirelengthy,.. To use the
wirelength 4,0 Of the initial solution choose init. To use the wirelength 4,0« from the stats
choose stats. To use your own value of wirelength ..« enter an integer. The default for
combinational circuits is init. The default value for sequential circuits is the integer 0 to force

solutions to seek minimum wirelength.

--final_edge_assignment_dff loop_cost <float> Sets the factor by which to extra penalize
the node violations where flip-flops that connect to themselves. Default 10.

--final_edge assignment init temperature <float> Sets the temperature of the anneal.
Default 0.0000001.

3 Compiling CCirc and CGen

This section describes how to compile CCirc and CGen.

3.1.1 Compiling CCirc

This section describes how to compile CCirc. All versions of CCirc require the hMetis library
partitioner which is available at http://www-users.cs.umn.edu/~karypis/metis/hmetis/.

In the source code I have included files flex and bison generated code if you do not possess bison
or flex (although versions exists on the web for most platforms including Windows).

3.1.2 Compiling Under Linux or Solaris

If your are compiling under Linux or Solaris the compilation process is simple and has four
steps:

Step 1: Make sure your version of gcc is at least 2.95.

Step 2: Download the hMetis library and save it somewhere.

Step 2: In the file Makefile set PARTITION to point to where the hMetis library is located.
Step 4: type make.

Step 5: Look at your new executable ccirc.

3.1.3 Compiling Under Windows

If your are compiling under Windows the compilation process is little more complicated. I have
used STL hash_maps which is not included by default by Visual C++ 6.0". To solve the missing
hash map class I used the STLport located at http://www.stlport.org/. CCirc also uses the hMetis
partitioner and its use under windows also requires a little work.

The compilation of CCirc under Windows has 5 steps:

Step 1: Download the hMetis library
Step 2: Convert the .obj files stored in libhmetis.a into an libhmetis.lib.
2.1 libhmetis.a is as far as I can tell a UNIX archive of Windows object files.
One way to extract them is by in UNIX/Linux running: ar x libhmetis.a and
then transferring the obj files to a Windows machine.
2.2. Once they have been extracted and transferred a .1ib can be built by:
Running: lib.exe filel.obj file2.obj ... /OUT:libhmetis.lib
Step 3: Download and install STLport without STLports iostreams as instructed in the STLport

documentation.

" hash_map is available under Visual C++ 7.0 but I have not tried to compile under version 7.0.

http://www-users.cs.umn.edu/~karypis/metis/hmetis/
http://www.stlport.org/

Step 4: Start Visual C++ and open the workspace Cgen/ccirc/ccirc/ccirc.dsw
Step 5: Under Project->Settings Click on the Link Tab
Step 6: Under the Link tab change the Category.: General to Category: Input.

Step 7: In the Additional library path change the location of the hmetis.lib if incorrect. Then
Click ok.

Step 8: Under Build choose Batch build.

Step 9: Look at your new executable ccirc.

3.2 Compiling CGen

Compiling CGen is much simpler than compiling CCirc as no external libraries are required and
the code does not use flex/bison.

3.2.1 Compiling Under Linux or Solaris

If your are compiling under Linux or Solaris the compilation process is simple and has four
steps:

Step 1: Make sure your version of gcc is at least 2.95.
Step 2: Change to the cgen directory
Step 3: type make.

Step 4: Look at your new executable cgen.

3.2.2 Compiling Under Windows

If your are compiling under Windows the compilation process is also relatively simple:

Step 1: Start Visual C++ and open the workspace Cgen/cgen/cgen.dsw
Step 2: Under Build choose Batch build.

Step 3: Look at your new executable cgen.

4 Circuit Characterizations

In this section we very briefly discusses the characteristics of a circuit that form the basis of the
output of CCirc and for the input to CGen. More information on the characterizations can be
found in my thesis. A sample of the statistical information output from CCirc can be seen in
Figure 1in Section 5.

4.1 Circuit Model and Definitions

Circuits are modeled as a directed acyclic graph G = (V,E) where the nodes V represent gates in
the circuit and edges E represent two-point connections between gates.

4.2 Basic Characterizations of Circuit
The most basic parameters of a circuit are the following:

Circuit Name
The name of the circuit
Number of Nodes

The number of nodes in the circuit or cluster. A node is a primary input, a LUT/logic gate,
or a flip-flop.

Number of Edges

The number of edges in the circuit or cluster.
Maximum Delay

The maximum combinational delay in the circuit.
Number of PI

The number of primary inputs in the circuit.
Number of PO

The number of primary outputs in the circuit.
Number of Combinational Nodes

The number of LUTs/logic gates in the circuit.
Number of DFF

The number of flip-flops in the circuit

The lut-size/maximum gate fanin in the design.

clock

The clock name if it is a sequential circuit.
Number of Clusters

The number of clusters the circuit has been partitioned into.

4.3 Characterization of Delay Structure

A key concern of modern digital design is the speed at which circuits operate and therefore we
employ the unit delay model in which every gate incurred a single unit of delay. With this delay
model, the delay level of a node in the graph is defined as the maximum delay over all directed
paths beginning at a primary input (PI) or a flip-flop (DFF) and terminating at the given node.

The delay structure of the circuit is characterized by a collection of measurements at the various
delay levels. Shape is defined as the number of objects at each delay level. Accordingly, we
define:

Node Shape

A measurement of shape for the number of nodes at each delay level
Input Shape

A measurement of shape for the number of inputs into each delay level
Output Shape

A measurement of shape for the number of inputs into each delay level
POShape

A measurement of shape for the number of primary outputs at each delay level

Latched Shape
A measurement of shape for the number of nodes whose output drives the input of a flip-
flops or are “latched” at each delay level.

4.4 Characterization of Connections

To characterize the connections in the combinational circuit, we define an edge length property:
For an edge e=(x,y) with nodes x and y we define the length(e) = delay level(y) - delay level(x)
if delay level(y) > delay level(x). An edge of length 1 is termed a unit edge while any edge with
a length greater than 1 is termed a long edge.

With edge length, we can define an edge length distribution for the circuit which is the number
of edges at each edge length.

Inside each cluster we have edges that are internal to the cluster, that input into the cluster, and
that output from the cluster. As such we define an edge length distribution for each type of edge.

Intra-cluster Edge Length Distribution

The number of edges internal to a cluster at each edge length
Inter-cluster Input Edge Length Distribution

The number of inter-cluster inputs into a cluster at each edge length
Inter-cluster Output Edge Length Distribution

The number of inter-cluster outputs out of a cluster at each edge length
4.5 Characterization of Fanout from Nodes

For a node x, fanout(x) is the number of connections to combinational nodes. For a circuit we
describe the fanout in terms of the fanout distribution, defined as the number of nodes of each
fanout, starting at 0.

Fanout Distribution
The number of nodes of each fanout, starting at 0.

Maximum_fanout
The maximum fanout of a node in the circuit.

We also have a number of other fanout statistics which are output by CCirc related to the fanout
and fanin of the primary inputs, combinational nodes (LUTs), and the flip-flops in the circuit.
Their values are not as important as the other statistics in the file and with the exception of

Avg fanout piand Avg fanout dff are not use in synthetic circuit generation at present.

4.6 Characterization of Wirelength

To control the post-place and route wirelength of the synthetic circuits that we output from our
generation process we measure an approximation to wirelength in characterization that can be
used in generation.

Wirelength_approx

An approximation to wirelength in the circuit.

4.7 Characterization of the Inter-cluster Connectivity

The structure of the connections between clusters is then captured through two matrices that
count the number of connections to combinational nodes and flip-flops between clusters. The
first matrix we define as Comb=[combij] where combij is the number of inter-cluster
connections that drive combinational nodes from clusters Ci to Cj. The second matrix we define
as Latched=[latchij] where latchij is the number of connections that drive flip-flops from Ci to
Cj.

Comb
A matrix that measures the number inter-cluster connections to combinational nodes
Latched

A matrix that measures the number latched node to flip-flop connections between clusters

5 Using CCirc and CGen

As a simple illustration of using together CCirc and CGen we will generate a synthetic circuit
from the MCNC circuit diffeq.blif.

Step 1: Analyze the diffeq circuit by running CCirc.
ccirc diffeq.blif --partitions 4
This will produce a diffeq.stats file similar to the .stats file below in Figure 1.

Step 2: Modify the characterizations in diffeq.stats if a synthetic circuit with different properties
is desired.

Step 3: Generate a synthetic circuit by running CGen on diffeq.stats.
a) To produce a synthetic circuit in BLIF format:

cgen diffeq.stats
b) To produce a synthetic circuit in VHDL format:

cgen diffeq.stats —vhdl output

Figure 1 - A sample of the statistical output from CCirc

Note: The text in italics in this .stats file are comments used to illustrate a .stats file and do not
exist in a real .stats file. The statistics mentioned are the same as those is Section 4.

HH#HH A E 4SS 4444 BASIC ##4#4##44 444444444 HHHEHHHHS
Basic statistics about the circuit.

Circuit Name: diffeq
Number of Nodes: 1934
Number of Edges: 5631

Maximum Delay: 14

Number of PI: 63

Number of PO: 39

Number of Combinational Nodes: 1494
Number of DFF: 377

kin: 4

clock: pclk

Cluster Summary ==================
A summary of the basic statistics divided into the number of elements in each
cluster such as, for example, the number of nodes and in each cluster.

Number of nodes: (537 490 457 450)

Number of pi: (23 40 0 0)

Number of dff: (103 117 87 70)

Number of intra cluster edges: (1189 1014 1092 1052)
Number of inter cluster edges: (427 599 379 409)

The Partitioned scaled cost is a number that represents the quality of the
partitioning performed on the circuit.

Partitioned scaled cost: 1.2698
DEGREE
Statistics related to the fanout and fanin to the primary inputs (pi),
combinational (comb), the flip-flops (dff) in the circuit. Their values are
not as important as the other statistics and with the exception of

Avg fanout pi and Avg fanout dff are not use in synthetic circuit generation
at present.

Avg fanin comb: 3.51673 (0.662174)
Avg fanout: 2.91158 (14.2713)

Avg fanout comb: 1.7008 (3.84116)
Avg fanout pi: 8.92063 (61.8604)
Avg fanout dff: 6.70557 (17.9062)
Maximum fanout: 496

Number of high degree comb: 12
Number of high degree pi: 1
Number of high degree dff: 13
Number of 10plus degree comb: 27
Number of 10plus degree pi: 1
Number of 10plus degree dff: 33
SHAPE
Shape and fanout distribution statistics about the circuit as a whole.

Node shape: (440 718 277 119 38 46 112 61 39 32 19 15 9 5 4)

Input shape: (0 2476 895 466 140 175 433 229 137 111 71 55 33 20 13)
Output shape: (3090 1122 332 150 95 157 112 87 39 24 20 13 8 5 0)
Latched shape: (0 53 133 39 4 581 9 11 20 7 7 3 1 4)

POshape: (3 36 000 00 00O0O0O0O0O0O0)

Edge length distribution: (0 3813 568 170 98 218 162 90 47 26 27
Fanout distribution: (374 954 286 94 49 33 33 31 12 7 5 6 15
1 1

(@]
(@]
(@]
(@]
(@]
(@]
(@]
(@]
(@]
(@]
(@]
(@]
O
O
O

cNeoNoNoNoNoNoNoNoNoRo!
cNeoNoNoNoNoNoNoNoNoRe!
cNeoNoNoNoNoNoNoNoNoRe!

cNeoNeoNeoNoNoNoNoNoNeNoNeoNN|
cNeoNoNoNoNoNoNoNoNoRe!
cNeoNoNoNoNoNoNoNoNoRe!
cNeoNoNoNoNoNoNoNoNoRe!
cNeoNoNoNeoNoNoNolNoNo RN
cNeoNoNoNoNoNoNoNoNoRe!
cNeoNoNoNoNoNoNoNoNoRo!
cNeoNoNoNoNoNoNelNoNoRol
cNeoNoNoNeoNoNoNelNoNoRol=
cNeoNoNoNeoNoNeRolNoNol
cNeoNoNoNeoNoNoNeNoNol o)
cNeoNoNoNoNoNoNoNoNoRe!
cNeoNoNoNoNoNoNolNoNoRoll V)
cNeoNoNoNoNoNoNoNoNoRe!
cNeoNoNoNoNoNoNoNoNoNoNo)
cNeoNoNoNeoNoNe N ol el
cNeoNoNoNoNoNoNoNoNoNoNo)
cNeoNoNoNeoNoNoNelNoNoRol
cNeoNoNoNeoNoNoNelNoNoRol
cNeoNoNoNoNoNeoNoNoNoRe!
cNeoNoNoNoNoNoNoNoNoNoNo)
cNeoNoNoNoNoNe Nl NoNe!
cNeoNoNoNeoNoNeNoNoN TiNe
cNeoNoNoNoNoNoNoNoNoNoNo)
cNeoNoNeoNeoNoNoNelNoNoR i
cNeoNoNoNoNoNoNoNoNol o)
cNeoNoNoNeoNoNoNRoNoNoRol
cNeoNoNoNoNoNeoNoNoNoRo!
cNoNoNoNoNoNeNoNeNoeNoNole)
cNoNoNoNoNoNoNoNoNoNoNoNe
[cNeoNoNoNoNoNoNoNoNoNoNoNe)

000 0001)
FH##fH A H S H S H S Clusters ####44 444 #HHHSHHSHHSHH
The start of the statistics broken down cluster by cluster.

Number of Clusters: 4
HHAHHHAHHHHFHAAHHHHH Cluster O ###H##HHHHAHHHHHHAHHEH
The basic statistics for the first cluster.

Number of Nodes: 537

Number of Intra cluster edges: 1189
Number of Inter cluster edges: 427
Number of PI: 23

Number of PO: 1

Number of Comb: 411

Number of DFF: 103

Number of Latched: 96

Number of Inter cluster input edges: 248
Number of Inter cluster output edges: 179
DEGREE
Statistics related to the fanout and fanin to the primary inputs (pi),
combinational (comb), the flip-flops (dff) of the cluster.

Avg fanin comb: 3.49635 (0.732865)
Avg fanout: 2.72626 (7.89913)

Avg fanout comb: 1.74939 (4.59058)
Avg fanout pi: 1.17391 (0.636032)
Avg fanout dff: 6.97087 (14.7907)
Maximum fanout: 124

Number of high degree comb: 4
Number of high degree pi: O
Number of high degree dff: 4
Number of 10plus degree comb: 4
Number of 10plus degree pi: O
Number of 10plus degree dff: 4
SHAPE
Shape and fanout distribution statistics about the cluster.

Node shape: (126 194 119 41 8 12 6 9 9 55 3 00 0)
Input shape: (0 670 383 163 32 46 22 35 35 20 19 12 0 0 0)

[ecNeoNoNoloRolNolNolNolNolNolNoRNolN V]
[cNeoNoNoloRolNolNolNolNolNolNoRoRN
[ecNeoNoNolNoRolNolNoNolNolNolNoRNolN V]
[ecNeoNoNoloRoBolNoNoNoNolNolNol d

Output shape: (745 344 123 46 30 20 12 19 10 S 6 4 0 0 0)

Latched shape: (0 459 2311212120000)

POshape: (1 000 00000O0O0O0O0O0GOC)

Intra cluster edge length distribution: (0 948 125 41 21 12 919 4 2 4 4 00
0)

Inter cluster input edge length distribution: (0 204 32 1 1 12131200
0 0)

Inter cluster output edge length distribution: (0 138 26 12 0 1 0 1 0 0 1 O
000)

Fanout distribution: (95 278 58 16 19 17 14 19 9 4 001 0000000000
000000001 0000C2000010000000COO0O0OCOO0OOO0COOOOO
00000000001 00000000000O0OO0O0O0C1T000CO0OO0OO0OO0COOOOO
0000000O00O0COOO0O0COOO0OOGCOOOOCOOT1I)

HHEHHHE S Cluster 1 ####4##44 4444444 HHHH

The basic statistics for the second cluster.

Number of Nodes: 490

Number of Intra cluster edges: 1014
Number of Inter cluster edges: 599
Number of PI: 40

Number of PO: 38

{cut}

———————————————————— Inter cluster adjacentcy matrix to combinational nodes -

The Comb matrix

0 79 58 42
241 0 110 150
7 3 0 113

0 16 88 0

The Latched matrix

95 1 0 0
0 1151 0
8 1840
00270

6 Advanced Generation

Future Research!

7 Not Supported

1. Invisible nodes. Sometimes, especially when building a clock splitter or similar
structures, it is possible to have a set of registers and logic which is self-contained and 1is
fed purely from itself (no PIs affect the output) and will just outputs values. This is
different from being unreachable from the Pls, because the nodes are affected by the
clock. We refer to these nodes as “invisible” because they are not seen from the PIs. We
should deal with them but for now we just delete such nodes.

2. Circuits with more than one clock.

	CCirc and CGen User’s Manual
	Version 1.0
	Overview
	Using the Executables
	Operation of CCirc
	Operation of CGen
	General Options
	Delay Structure Creation Options
	Degree Partitioning Options
	Final Edge Assignment Options

	Compiling CCirc and CGen
	
	Compiling CCirc
	Compiling Under Linux or Solaris
	Compiling Under Windows

	Compiling CGen
	Compiling Under Linux or Solaris
	Compiling Under Windows

	Circuit Characterizations
	Circuit Model and Definitions
	Basic Characterizations of Circuit
	Characterization of Delay Structure
	Characterization of Connections
	Characterization of Fanout from Nodes
	Characterization of Wirelength
	Characterization of the Inter-cluster Connectivity

	Using CCirc and CGen
	Advanced Generation
	Not Supported

