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1 Overview 
The development of next-generation CAD tools and FPGA architectures require benchmark 
circuits to experiment with new algorithms and architectures. There has always been a shortage 
of good public benchmarks for these purposes, and even companies that have access to 
proprietary customer designs could benefit from designs that meet size and other particular 
specifications. This document describes two new tools CCirc and CGen to help alleviate this 
shortage. These tools significantly improves the quality of previous work by imposing the natural 
hierarchy of circuits through clustering and by using a simpler method of characterizing the 
nature of sequential circuits. Also, in contrast to current constructive generation methods, we 
employ new iterative techniques in the generation that provide better control over the generated 
circuit’s characteristics. 

CCirc characterize physical properties of circuits. It takes as input a circuit in the BLIF netlist 
format  (soon VHDL) and outputs statistical information. 

CGen generates new synthetic circuits. It takes as input statistical information about a circuit and 
outputs netlists in BLIF or VHDL ready to be place and routed. 

Executables are available for Linux, Solaris, and Windows and source code is provided for those 
who want to modify the code or for those who want to compile for other platforms. 

The user's guide is organized as follows.  Section 2 describes how to run CCirc and CGen to 
analyze circuits and to generate synthetic circuits.  Section 3 describes how to compile CCirc and 
CGen.  Section 4 discusses very briefly the characteristics of a circuit that form the basis of the 
output of CCirc and for the input to CGen.  More information on the characterizations can be 
found from the documents in the biography. Section 5 illustrates a simple example of using 
CCirc and CGen together to generate a synthetic circuit. Section 6 will (eventually) discuss more 
advanced usage of CGen such as the problems involved in modifying the characterizations from 
CCirc to generate different and/or larger circuits. Section 7 states what is currently not supported. 
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2 Using the Executables 

This section describes the operation of CCirc and CGen. 

2.1 Operation of CCirc 

CCirc takes as input a technology-mapped netlist of lookup tables (LUTs) and flip flops in BLIF 
format, and outputs a .stats file containing the result of circuit characterization. A brief 
description of these characterizations can be found in Section 4. CCirc is invoked by typing: 

ccirc netlist.blif [Options…] 

In the command above, netlist.blif should be replaced by the BLIF file you are 
analyzing.  

Options for CCirc are listed in Table 2.1. The most important options is --partitions as this 
controls the number of clusters created in the characterization. In general the default values for 
the rest of the options are fine. 

Table 2.1 CCirc Options 
Option Default Description 
--out <file_name> netlist.stats 

where “netlist” 
comes from the 
input file’s 
name. 

The output file containing 
the characterizations of the 
circuit. 

--partition_type bi|kway Kway The type of partitioning. 
--partitions <int> 2 The number of clusters to 

divide the circuit into. 
--wirelength_approx Don’t calculate Calculate the wirelengthapprox. 
--draw Don’t draw Outputs a drawing of the 

circuit in dot format. 
--help  Displays list of options. 
--no_warn Warn the user Suppresses warning messages. 

 

2.2 Operation of CGen 

CGen takes as input a .stats file (possibly modified) from CCirc and outputs a circuit in the 
BLIF format where all gates in the circuit have been mapped to NAND gates. CGen is invoked 
by typing: 

cgen netlist.stats [Options…] 

In the command above, netlist.stats should be replaced by the .stats file you want to 
generate from.  

Options for CGen are summarized in Table 2.2 and are described in the sections below. In 
general, the default values of the options are fine and only people looking to explore the 
algorithms used in CGen will use many of them. To output the synthetic circuit in the VHDL 
format please use the option –-vhdl_output.



 

Table 2.2 CGen Options Summary 
Option Default 
--out output_file netlist_clone.blif 
--vhdl_output  
--seed <int> Clock ticks from system clock 
--draw  
--help  
--alpha <float>  1 

--beta <float> 1 

--gamma <float> 1 

--delay_structure_init_temperature 6 

--init_too_many_inputs_factor <float> 1 

--init_too_few_inputs_factor <float> 1 

--init_too_few_outputs_factor <float> 1 

--mult_too_many_inputs_factor <float> 1.5 

--mult_too_few_inputs_factor <float> 1.5 

--mult_too_few_outputs_factor <float> 1.5 

--delay_structure_init_temperature <float> 1 

--delta <float> 0.5 

--degree_init_temperature <float> 1 

--eta <float> 0.02 

--wirelength {init | stats | <int> } Combinational Circuits: init 

Sequential Circuits: 0 

--final_edge_assignment_dff_loop_cost <float> 10 
--final_edge_assignment_init_temperature <float> 0.0000001 

 

2.2.1 General Options 

--draw  Outputs a drawing of the synthetic circuit in dot format. 

--no_warn Suppresses warning messages to the user. 

--seed <int> The random number generator seed. The default value is to randomly seed 
the generator with the number of clock times from the system clock. 

--vhdl_output Outputs the synthetic circuit as a VHDL file instead of a BLIF. 

2.2.2 Delay Structure Creation Options 

In delay structure creation we are trying to minimize the cost: 

cost ( )α β γ= + + +Delay structure Edge Length Level Shape Problem NodeCombcost cost cost cost  



Here, costComb measures the absolute difference between the current Comb and its specification, 
costEdgeLength measures the absolute difference between the current edge length distributions and 
their specifications, costLevelShape measures the absolute difference between the current input and 
output shapes and their specifications with congestion factors multiplying this cost at each level 
node to penalize level nodes that have too many inputs or outputs. Finally, costProblem Node 
measures the number of node violations that would be forced to be made during final edge 
assignment because of the number of edges input or output of a level node. In the cost function 
alpha, beta, and gamma are factors that try to balance the individual costs against each other 
although the cost that tends to dominate is the costProblem Node because the congestion factors tend 
to get quite large. 

--alpha <float>  Sets the multiplier of costComb. Default 1.  

--beta <float> Sets the multiplier of costEdgeLength. Default 1. 

--gamma <float> Sets the multiplier of costLevel_Node. Default 1.  

--init_too_many_inputs_factor <float> Sets the starting value of the congestion factor 
that penalizes level nodes that have more input edges than k * number of indiv. nodes. Default 1. 

--init_too_few_inputs_factor <float> Sets the starting value that penalizes level nodes 
that do not have enough input edges for all of their indiv. nodes. Default 1. 

--init_too_few_outputs_factor <float> The initial congestion factor that penalizes level 
nodes that do not have enough output edges for all of their indiv. nodes. Default 1. 

--mult_too_many_inputs_factor <float> Multiplies too_many_inputs_factor by this 
amount when increasing the congestion costs. Default 1.5. 

--mult_too_few_inputs_factor <float> Sets the growth factor that multiplies 
too_few_inputs_factor when increasing the congestion factors. Default 1.5. 

--mult_too_few_outputs_factor <float> Sets the growth factor that multiplies 
too_few_outputs_factor when increasing the congestion factors. Default 1.5. 

--delay_structure_init_temperature <float> Sets the initial temperature of the annealing 
schedule. Default 6. 

2.2.3 Degree Partitioning Options 

In final edge assignment we are trying to minimize the cost: 

cost ( ) (1 )cost ( )
∈

= + −∑Degree Fanout Edge Misassignment Fanout Penalty
LN Level Nodes

cost delta LN delta LN  

Here costFanoutEdgeMissassignment measures for each level node the absolute difference between the 
sum of the fanout degrees assigned and the number of output edges that were assigned during the 



creation of the delay structure and costFanoutPenality is a cost that penalizes level nodes with fanouts 
that will force node violations in the final edge assignment. We use the factor delta to balance 
the goal of achieving the a match between fanout and edge assignment against the goal of having 
no node violations. 

--delta <float> Degree Partitioning cost trade-off. Default 0.5. 

--degree_init_temperature <float> Sets the temperature of the anneal. Default 1. 

2.2.4 Final Edge Assignment Options 

In final edge assignment we are trying to control the wirelength and we are trying to prevent 
node violations. The cost function for circuit G is: 

Approx
( )

( _ ) (1 )wirelength (G) Number of Violations( )
∈

= − + − ∑Edge Assign

n V G
cost eta desired wirelength eta n  

Here, desired wirelength is the desired wirelengthApprox and Number of Violations is a function 
that returns the number of nodes that have no inputs, too many inputs, two or more connections 
from the same source node, or if the node is a flip-flop a connection to itself. The wirelength 
costs are normalized to the maximum horizontal position multiplied by the number of edges 
while the Number of Violations cost is normalized to the number of edges. We use the factor eta 
to balance the goal of achieving the desired wirelength against the goal of having no node 
violations. The value is set to 0.02 because the wirelength cost is often much larger than the no 
node violation cost and while achieving the desired wirelength is important it is more important 
that we have no node violations because they create sizeable difficulties. 

--eta <float> Final edge assignment cost trade-off. Default 0.02. 

--wirelength { init | stats | <int> } Sets the desired_wirelength Wirelengthapprox To use the 
wirelengthApprox of the initial solution choose init. To use the wirelengthApprox from the stats 
choose stats. To use your own value of wirelengthApprox enter an integer. The default for 
combinational circuits is init. The default value for sequential circuits is the integer 0 to force 
solutions to seek minimum wirelength. 

--final_edge_assignment_dff_loop_cost <float> Sets the factor by which to extra penalize 
the node violations where flip-flops that connect to themselves. Default 10. 

--final_edge_assignment_init_temperature <float> Sets the temperature of the anneal. 
Default 0.0000001. 

3 Compiling CCirc and CGen 

This section describes how to compile CCirc and CGen. 



3.1.1 Compiling CCirc 

This section describes how to compile CCirc. All versions of CCirc require the hMetis library 
partitioner which is available at http://www-users.cs.umn.edu/~karypis/metis/hmetis/.  

In the source code I have included files flex and bison generated code if you do not possess bison 
or flex (although versions exists on the web for most platforms including Windows). 

3.1.2 Compiling Under Linux or Solaris 

If your are compiling under Linux or Solaris the compilation process is simple and has four 
steps: 

Step 1: Make sure your version of gcc is at least 2.95. 

Step 2: Download the hMetis library and save it somewhere. 

Step 2: In the file Makefile set PARTITION to point to where the hMetis library is located. 

Step 4: type make. 

Step 5: Look at your new executable ccirc. 

3.1.3 Compiling Under Windows 

If your are compiling under Windows the compilation process is little more complicated. I have 
used STL hash_maps which is not included by default by Visual C++ 6.01. To solve the missing 
hash_map class I used the STLport located at http://www.stlport.org/. CCirc also uses the hMetis 
partitioner and its use under windows also requires a little work. 

The compilation of CCirc under Windows has 5 steps:  

Step 1: Download the hMetis library 

Step 2: Convert the .obj  files stored in libhmetis.a into an libhmetis.lib.  

             2.1 libhmetis.a is as far as I can tell a UNIX archive of Windows object files.  

                    One way to extract them is by in UNIX/Linux running: ar x libhmetis.a and  

                    then transferring the obj files to a Windows machine. 

             2.2. Once they have been extracted and transferred a .lib can be built by: 

                     Running:  lib.exe file1.obj file2.obj ... /OUT:libhmetis.lib 

Step 3: Download and install STLport without STLports iostreams as instructed in the STLport 

 documentation. 

                                                 

1 hash_map is available under Visual C++ 7.0 but I have not tried to compile under version 7.0. 

http://www-users.cs.umn.edu/~karypis/metis/hmetis/
http://www.stlport.org/


Step 4: Start Visual C++ and open the workspace Cgen/ccirc/ccirc/ccirc.dsw 

Step 5: Under Project->Settings Click on the Link Tab  

Step 6: Under the Link tab change the Category: General to Category: Input. 

Step 7: In the Additional library path change the location of the hmetis.lib if incorrect.  Then 
Click ok. 

Step 8: Under Build choose Batch build. 

Step 9: Look at your new executable ccirc. 

 

3.2 Compiling CGen 

Compiling CGen is much simpler than compiling CCirc as no external libraries are required and 
the code does not use flex/bison. 

3.2.1 Compiling Under Linux or Solaris 

If your are compiling under Linux or Solaris the compilation process is simple and has four 
steps: 

Step 1: Make sure your version of gcc is at least 2.95. 

Step 2: Change to the cgen directory 

Step 3: type make. 

Step 4: Look at your new executable cgen. 

 

3.2.2 Compiling Under Windows 

If your are compiling under Windows the compilation process is also relatively simple: 

Step 1: Start Visual C++ and  open the workspace Cgen/cgen/cgen.dsw 

Step 2: Under Build choose Batch build.  

Step 3: Look at your new executable cgen. 

  

 



4 Circuit Characterizations  
In this section we very briefly discusses the characteristics of a circuit that form the basis of the 
output of CCirc and for the input to CGen.  More information on the characterizations can be 
found in my thesis. A sample of the statistical information output from CCirc can be seen in 
Figure 1in Section 5. 

4.1 Circuit Model and Definitions 

Circuits are modeled as a directed acyclic graph G = (V,E) where the nodes V represent gates in 
the circuit and edges E represent two-point connections between gates.  

4.2 Basic Characterizations of Circuit 

The most basic parameters of a circuit are the following: 

Circuit Name  

 The name of the circuit 

Number of Nodes       

 The number of nodes in the circuit or cluster. A node is a primary input, a LUT/logic gate, 
or a flip-flop. 

Number of Edges   

 The number of edges in the circuit or cluster.  

Maximum Delay  

 The maximum combinational delay in the circuit. 

Number of PI  

 The number of primary inputs in the circuit. 

Number of PO  

 The number of primary outputs in the circuit. 

Number of Combinational Nodes 

 The number of LUTs/logic gates in the circuit. 

Number of DFF 

 The number of flip-flops in the circuit 

kin 

 The lut-size/maximum gate fanin in the design. 

clock 



 The clock name if it is a sequential circuit. 

Number of Clusters 

 The number of clusters the circuit has been partitioned into. 

 

4.3 Characterization of Delay Structure 

A key concern of modern digital design is the speed at which circuits operate and therefore we 
employ the unit delay model in which every gate incurred a single unit of delay. With this delay 
model, the delay level of a node in the graph is defined as the maximum delay over all directed 
paths beginning at a primary input (PI) or a flip-flop (DFF) and terminating at the given node.  

The delay structure of the circuit is characterized by a collection of measurements at the various 
delay levels. Shape is defined as the number of objects at each delay level. Accordingly, we 
define: 

Node Shape  

 A measurement of shape for the number of nodes at each delay level 

Input Shape  

 A measurement of shape for the number of inputs into each delay level 

Output Shape  

 A measurement of shape for the number of inputs into each delay level  

POShape  

 A measurement of shape for the number of primary outputs at each delay level 

Latched_Shape 
 A measurement of shape for the number of nodes whose output drives the input of a  flip-
flops or are “latched” at each delay level. 

  

4.4 Characterization of Connections  

To characterize the connections in the combinational circuit, we define an edge length property: 
For an edge e=(x,y) with nodes x and y we define the length(e) = delay_level(y) - delay_level(x) 
if delay_level(y) > delay_level(x). An edge of length 1 is termed a unit edge while any edge with 
a length greater than 1 is termed a long edge. 

With edge length, we can define an edge length distribution for the circuit which is the number 
of edges at each edge length.  

Inside each cluster we have edges that are internal to the cluster, that input into the cluster, and 
that output from the cluster.  As such we define an edge length distribution for each type of edge.  



Intra-cluster Edge Length Distribution 

 The number of edges internal to a cluster at each edge length 

Inter-cluster Input Edge Length Distribution 

 The number of inter-cluster inputs into a cluster at each edge length 

Inter-cluster Output Edge Length Distribution 

 The number of inter-cluster outputs out of a cluster at each edge length 

4.5 Characterization of Fanout from Nodes 

For a node x, fanout(x) is the number of connections to combinational nodes. For a circuit we 
describe the fanout in terms of the fanout distribution, defined as the number of nodes of each 
fanout, starting at 0. 

Fanout Distribution  

 The number of nodes of each fanout, starting at 0. 

Maximum_fanout     

The maximum fanout of a node in the circuit. 

We also have a number of other fanout statistics which are output by CCirc related to the fanout 
and fanin of the primary inputs, combinational nodes (LUTs), and the flip-flops in the circuit. 
Their values are not as important as the other statistics in the file and with the exception of 
Avg_fanout_pi and Avg_fanout_dff are not use in synthetic circuit generation at present. 

4.6 Characterization of Wirelength 

To control the post-place and route wirelength of the synthetic circuits that we output from our 
generation process we measure an approximation to wirelength in characterization that can be 
used in generation. 

Wirelength_approx 

 An approximation to wirelength in the circuit. 

4.7 Characterization of the Inter-cluster Connectivity 

The structure of the connections between clusters is then captured through two matrices that 
count the number of connections to combinational nodes and flip-flops between clusters. The 
first matrix we define as Comb=[combij] where combij is the number of inter-cluster 
connections that drive combinational nodes from clusters Ci to Cj. The second matrix we define 
as Latched=[latchij] where latchij is the number of connections that drive flip-flops from Ci to 
Cj. 



Comb  

 A matrix that measures the number inter-cluster connections to combinational nodes 

Latched  

 A matrix that measures the number latched node to flip-flop connections between clusters 

 



5 Using CCirc and CGen 
As a simple illustration of using together CCirc and CGen we will generate a synthetic circuit 
from the MCNC circuit diffeq.blif. 

Step 1: Analyze the diffeq circuit by running CCirc. 

ccirc diffeq.blif --partitions 4 

This will produce a diffeq.stats file similar to the .stats file below in Figure 1. 

Step 2: Modify the characterizations in diffeq.stats if a synthetic circuit with different properties 
is desired.  

Step 3: Generate a synthetic circuit by running CGen on diffeq.stats. 

a) To produce a synthetic circuit in BLIF format: 

cgen diffeq.stats  

b) To produce a synthetic circuit in VHDL format: 

cgen diffeq.stats –vhdl_output  

 

 
   



Figure 1 - A sample of the statistical output from CCirc 
  

Note: The text in italics in this .stats file are comments used to illustrate a .stats file and do not 
exist in a real .stats file. The statistics mentioned are the same as those is Section 4. 

 
######################## BASIC ############################ 
Basic statistics about the circuit. 
 
Circuit_Name:  diffeq   
Number_of_Nodes:  1934 
Number_of_Edges: 5631 
Maximum_Delay: 14 
Number_of_PI: 63 
Number_of_PO: 39 
Number_of_Combinational_Nodes: 1494 
Number_of_DFF: 377 
kin: 4 
clock: pclk 
======================== Cluster_Summary ================== 
A summary of the basic statistics divided into the number of elements in each 
cluster such as, for example, the number of nodes and in each cluster. 
 
Number_of_nodes: ( 537 490 457 450 ) 
Number_of_pi: ( 23 40 0 0 ) 
Number_of_dff: ( 103 117 87 70 ) 
Number_of_intra_cluster_edges: ( 1189 1014 1092 1052 ) 
Number_of_inter_cluster_edges: ( 427 599 379 409 ) 
 
 
The Partitioned_scaled_cost is a number that represents the quality of the 
partitioning performed on the circuit. 
 
Partitioned_scaled_cost: 1.2698 
======================== DEGREE ============================ 
Statistics related to the fanout and fanin to the primary inputs (pi), 
combinational (comb), the flip-flops (dff) in the circuit. Their values are 
not as important as the other statistics and with the exception of 
Avg_fanout_pi and Avg_fanout_dff are not use in synthetic circuit generation 
at present. 
 
Avg_fanin_comb: 3.51673 (0.662174) 
Avg_fanout: 2.91158 (14.2713) 
Avg_fanout_comb: 1.7008 (3.84116) 
Avg_fanout_pi: 8.92063 (61.8604) 
Avg_fanout_dff: 6.70557 (17.9062) 
Maximum_fanout: 496 
Number_of_high_degree_comb: 12 
Number_of_high_degree_pi: 1 
Number_of_high_degree_dff: 13 
Number_of_10plus_degree_comb: 27 
Number_of_10plus_degree_pi: 1 
Number_of_10plus_degree_dff: 33 
======================== SHAPE ============================ 
Shape and fanout distribution statistics about the circuit as a whole. 
 



Node_shape: ( 440 718 277 119 38 46 112 61 39 32 19 15 9 5 4 ) 
Input_shape: ( 0 2476 895 466 140 175 433 229 137 111 71 55 33 20 13 ) 
Output_shape: ( 3090 1122 332 150 95 157 112 87 39 24 20 13 8 5 0 ) 
Latched_shape: ( 0 53 133 39 4 5 81 9 11 20 7 7 3 1 4 ) 
POshape: ( 3 36 0 0 0 0 0 0 0 0 0 0 0 0 0 ) 
Edge_length_distribution: ( 0 3813 568 170 98 218 162 90 47 26 27 17 12 4 2 ) 
Fanout_distribution: ( 374 954 286 94 49 33 33 31 12 7 5 6 15 9 0 0 0 0 0 0 0 
0 0 0 4 0 0 0 1 0 0 1 1 0 0 0 2 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 3 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 ) 
#################### Clusters ###################### 
The start of the statistics broken down cluster by cluster. 
 
Number_of_Clusters: 4 
#################### Cluster 0 ###################### 
The basic statistics for the first cluster. 
 
Number_of_Nodes: 537 
Number_of_Intra_cluster_edges: 1189 
Number_of_Inter_cluster_edges: 427 
Number_of_PI: 23 
Number_of_PO: 1 
Number_of_Comb: 411 
Number_of_DFF: 103 
Number_of_Latched: 96 
Number_of_Inter_cluster_input_edges: 248 
Number_of_Inter_cluster_output_edges: 179 
======================== DEGREE ============================ 
Statistics related to the fanout and fanin to the primary inputs (pi), 
combinational (comb), the flip-flops (dff) of the cluster. 
 
Avg_fanin_comb: 3.49635 (0.732865) 
Avg_fanout: 2.72626 (7.89913) 
Avg_fanout_comb: 1.74939 (4.59058) 
Avg_fanout_pi: 1.17391 (0.636032) 
Avg_fanout_dff: 6.97087 (14.7907) 
Maximum_fanout: 124 
Number_of_high_degree_comb: 4 
Number_of_high_degree_pi: 0 
Number_of_high_degree_dff: 4 
Number_of_10plus_degree_comb: 4 
Number_of_10plus_degree_pi: 0 
Number_of_10plus_degree_dff: 4 
======================== SHAPE ============================ 
Shape and fanout distribution statistics about the cluster. 
 
Node_shape: ( 126 194 119 41 8 12 6 9 9 5 5 3 0 0 0 ) 
Input_shape: ( 0 670 383 163 32 46 22 35 35 20 19 12 0 0 0 ) 



Output_shape: ( 745 344 123 46 30 20 12 19 10 9 6 4 0 0 0 ) 
Latched_shape: ( 0 4 59 23 1 1 2 1 2 1 2 0 0 0 0 ) 
POshape: ( 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ) 
Intra_cluster_edge_length_distribution: ( 0 948 125 41 21 12 9 19 4 2 4 4 0 0 
0 ) 
Inter_cluster_input_edge_length_distribution: ( 0 204 32 1 1 1 2 1 3 1 2 0 0 
0 0 ) 
Inter_cluster_output_edge_length_distribution: ( 0 138 26 12 0 1 0 1 0 0 1 0 
0 0 0 ) 
Fanout_distribution: ( 95 278 58 16 19 17 14 19 9 4 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ) 
#################### Cluster 1 ###################### 
The basic statistics for the second cluster. 
 
Number_of_Nodes: 490 
Number_of_Intra_cluster_edges: 1014 
Number_of_Inter_cluster_edges: 599 
Number_of_PI: 40 
Number_of_PO: 38 
 
 
 
{cut} 
 
 
 
 
-------------------- Inter_cluster_adjacentcy_matrix_to_combinational_nodes -
------------------- 
The Comb matrix 
 
0 79 58 42  
241 0 110 150  
7 3 0 113  
0 16 88 0  
 
 
-------------------- Inter_cluster_adjacentcy_matrix_to_dffs ----------------
------------------- 
The Latched matrix 
 
95 1 0 0  
0 115 1 0  
8 1 84 0  
0 0 2 70  
 
 



6 Advanced Generation 

Future Research! 

7 Not Supported 
1. Invisible nodes. Sometimes, especially when building a clock splitter or similar 

structures, it is possible to have a set of registers and logic which is self-contained and  is 
fed purely from itself (no PIs affect the output) and will just outputs values. This is 
different from being unreachable from the PIs, because the nodes are affected by the 
clock. We refer to these nodes as “invisible” because they are not seen from the PIs. We 
should deal with them but for now we just delete such nodes.  

2. Circuits with more than one clock. 
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