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Example Signal Spectra
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* X () has same spectra as X () but repeats every f,

Example Signal Spectra

(assuming no aliasing occurs).

* X(0) has same spectra as X (f) freq axis normalized.

* Spectra for X ,(f) equals X () multiplied by
response — in effect, filtering out high frequency

Images.
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Laplace Transform & Discrete-Time

x7)

i / ’EXS(Z‘) (al pulses)

AEET

ingle pulse at
szn(t) (single pulse at nT)

* x,(7) scaled by t such that the area under the pulse at
nT equals the value of x (nT).

e |n other words, at ¢+ = n7, we have

University of Toronto

x(nT) =

L) (1)
T
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Laplace Transform & Discrete-Time A

* Thus as t— 0, height of x (/) at time »T goes to « and
so we plot tx (¢) Instead.

« Define 9(¢) to be the step function,
S(t)z{ 1 (£20) (2)
0 (t<0)
* then single-pulse signal, x_ (¥, can be written as

x (nT)
T

x, () = [9(t—nT)—3(t—nT—1)] (3)

and the entire signal x () as

o0

0= Y 5,0 (4)

n — —o0
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Laplace Transform & Discrete-Time

 Above signals are defined for all time — we can find
Laplace transforms of these signals.

« The Laplace transform x_ (s) for x_ () Is

1(1—e¢"" —sn
X (s) = ;( Se )xc(nT)e ! (5)
and X(s) is simply a linear combination of x_ (), which
results in
(1= —sn

X (s) = ;( . ) S x e (6)
%i
o
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Laplace Transform & Discrete-Time

2
 Using the expansion ¢ = 1+x+’-26-7+ ..., when 150,

the term before the summation in (6) goes to unity.
 Therefore, as 1 — 0,

o0

X(s) = Y xmne" (7)

n — —o0

 This Laplace transform only depends on sample
points, x _(»T) which in turn depends on the relative

sampling-rate, T.
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Spectra of Discrete-Time Signals
x,(#) spectra can be found by replacing s = jo In (7)

However, a more intuitive approach is ...

Define a periodic pulse train, s(s) as

(V.

s() = Z S(t—nT) (8)

_ —N

where 3(7) is the unit impulse function.
Then x (r) can be written as

x (6) = x (1)s(2) 9)
X (jo) = %CXC(/'@) ® S(jo) (10)
where ® denotes convolution.

ale
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Spectra of Discrete-Time Signals

« Since the Fourier transform of a periodic impulse
train is another periodic impulse train we have

(o) = 2—; 3 a(m—k%“) (11)

= —_~n

* Thus, the spectra X (jm) Is found to be

xjo) = 7 z X o -2 (12)

k = —o0

e Or equivalently,

o0

X (f) = 1T S X (2nf—jk2nf,) (13)

k = —o0
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Spectra for Discrete-Time Signals

* The spectra for the sampled signal x (r) equals a sum
of shifted spectra of x (z).

* No aliasing will occur if X (jo) Is bandlimited to f./2.

* Note that x (r) can not exist is practice as it would

require an infinite amount of power (seen by
integrating X (f) over all frequencies).
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Spectra Example
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Z-Transform

The z-transform is merely a shorthand notation for

(7).
Specifically, defining

we can write

X(z) = Z xc(nT)z_n

n — —oo

where X(z) is called the z-transform of the samples

x (nT).

University of Toronto

(14)

(15)
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Z-Transform
o 2 properties of the z-transform are:

—If x(n) <> X(2), then x(n—k) <z " X()

— Convolution in the time domain is equivalent to
multiplication in the frequency domain.

X(z) is not a function of the sampling-rate!

A 1Hz signal sampled at 10Hz has the same
transform as a similar 1kHz signal sampled at 10kHz

* X(z) Is only related to the numbers, x (nT) while X (s)
Is the Laplace transform of the signal x (/) as t — 0.

 Think of the series of numbers as having a sample-
rate normalized to 7 = 1 (i.e. /, = 1Hz).

5%%
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Z-Transform
e Such a normalization results In

X() = X(ZJ—% (16)
or equivalently, a frequency scaling of
o = 27“f (17)

 Thus, discrete-time signals have o In units of
radians/sample.

o Continuous-time signals have frequency units of cycles/
second (hertz) or radians/second.
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Example Sinusoidal Signals

x(n)

I 5 10 15 5

0 rad/sample = 0 cycles/sample

tx(n)

5 - 15

—

I N[/ 10

Sy

/4 rad/sample = 1/8 cycles/sample
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' x(n)

10 15

‘ n

7t/ 8 rad/sample = 1/16 cycles/sample

2 x(7)

L

T

7t/ 2 rad/sample = 1/4 cycles/sample
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Example Sinusoidal Signals

A continuous-time sinusoidal signal of 1kHz when
sampled at 4kHz will change by n/2 radians between
each sample.

Such a discrete-time signal is defined to have a
frequency of n/2 rad/sample.

Note that discrete-time signals are not unique since
the addition of 2= will result in the same signal.

For example, a discrete-time signal having a
frequency of n/4 rad/sample IS identical to that of
9n/4 rad/sample.

Normally discrete-time signals are defined to have
frequency components only between —x and =«
rad/sample.
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Downsampling

Sl e B I
Rt SR - T

A A

(I RA ANVAA N

27

 Keep every L‘th sample and throw away L -1 samples.
It expands the original spectra by L.

* For aliasing not to occur, original signal must be
bandlimited to n/L.
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Upsampling o
b 1[ ll l | ’Z " 1L ey Y JL j%“l l “““ I
YN /N WAL
0 == 2n A 2n

* Insert L—1 zero values between samples

e The frequency axis is scaled by L such that 2= now
occurs where L2rn occurred in the original signal.

 No worry about aliasing here.
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Discrete-Time Filters

u(n) —— H(z) -, y(n)
(/(n) equalsi(n)ifu(n) isanimpulse)

(discrete-time filter)

* An input series of numbers is applied to a discrete-
time filter to create an output series of numbers.

* This filtering of discrete-time signals is most easily
visualized with the shorthand notation of z-transforms.

Transfer-Functions

o Similar to those for continuous-time filters except
Instead of polynomials in “s”, polynomials in “z” are
obtained.

ale
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Cont-Time Transfer-Function
Low-pass continuous-time filter, H (s),

H(s) = —2 (18)

S2+2S+4

The poles are the roots of the denominator
polynomial

e Poles: —1.0+1.7321; for this example.

Zeros: Defined to have two zeros at « since the den
poly is two orders higher than the numerator poly.
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Cont-Time Freqguency Response
’\high-frequency

s-plane 4 .
Jo = o
1 ]0)
X
>
X
o dc
(poles) jo =0

e Poles and zeros plotted in the s-plane.

e Substitution s = jo Is equivalent to finding the
magnitude and phase of vectors from a point along

the jo axis to all the poles and zeros.

University of Toronto
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Discrete-Time Transfer-Function

H(z) = =2 (19)
¥~ 1.62+0.65

 Poles: 0.8+£0.1; in the z-plane and two zeros are
again at .

* To find the frequency response of H(z), the poles and
zeros can be plotted in the z-plane, and the unit

circle contour is used, z = ¢
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Discrete-Time Frequency Response

o =1/2 ' eim Z-plane

_ 3z
o = F
2
 Note that poles or zeros occurring at z = 0 do not
affect the magnitude response of H(z) since a vector
from the origin to the unit circle always has a length

of unity. However, they would affect the phase
response.

ale
P o

University of Toronto 240f40

© D. Johns, K. Martin, 1997



Discrete-Time Frequency Response

z = 1 corresponds to the frequency response at both
dc (i.,e. ® = 0) and for o = 2.

The time normalization of setting 7 = 1 implies that
o = 27 IS equivalent to the sampling-rate speed (i.e.

f=f)for X ().

As with cont-time filter, if filter coefficients are real,
poles and zeros occur in complex-conjugate pairs —
magnitude Is symmetric, phase Is anti-symmetric.

Going around the circle again would give the same
result as the first time implying that the frequency
response repeats every 2x.
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Stability of Discrete-Time Filters
) y(n+1)

X(l’l) o > % Z_1 > y(n)

a

* To realize rational polynomials in “z”, discrete-time

filters use delay elements (i.e. “y building blocks)
much the same way that analog filters can be formed

using integrators (i.e. “g building blocks).

 The result is finite difference equations describing
discrete-time filters
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Stability of Discrete-Time Filters

* A finite difference equation can be written for above

system
Wn+1) = bx(n) +ay(n) (20)
* In the z-domain, this equation is written as
zY(z) = bX(z) + a¥(2) (21)
 We find H(z) given by
:M — b 292
HE) =y = 72 (22)
which has a pole on the real axis at z = 4.
\ g University of Toronto 27 0f40
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Stability of Discrete-Time Filters
* To test for stability, let the input x(n) be an impulse

»0) = k
where k is some arbitrary initial state value for y.
y(1) = b+ak
v(2) = ab+ a’k
y(3) = a’b+ak
v(4) = ab+a'k
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e This response remains bounded only when |4l <1 for
this first-order filter and is unbounded otherwise.

 In general, a linear time-invariant discrete-time
filter, H(z), is stable if and only if all its poles are

Stability of Discrete-Time Filters
 The response, i(n), IS seen to be given by

-

h(n) = <

\

0 (n<1)
@ 'b+d"k) (n>1)

located within the unit circle.

University of Toronto
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IR Filters

Infinite-Impulse-Response (lIR) filters are those
discrete-time filters that when excited by an impulse,
their outputs remain non-zero assuming infinite
precision arithmetic.

 The above example is IR when a =0

* |IR filters can be more efficient when long impulse
responses are needed.

 They have some unusual behaviors due to finite-
precision effects such as limit-cycles.
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FIR Filters

Finite-Impulse-Response (FIR) filters are those
discrete-time filters that when excited by an impulse,
their outputs go precisely to zero (and remain zero)
after a finite value of .

Example — running average of 3

yn) = () +x(n = 1) + x(n-2)) (24)

H(z) = 3 Z z (25)

Has poles but they all occur at z = 0.

FIR filters are always stable and exact linear phase
filters can be realized.
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Bilinear Transform

« Consider H (p) as a continuous-time transfer-function
(where “p” Is the complex variable equal to G, +7Q)),
the bilinear transform is defined to be given by,

p = =1 (26)

z+1
 The inverse transformation is given by,
, = 1+p (27)
I—p
* The z-plane locations of 1 and -1 (i.e. dc and f,/2)

are mapped to p-plane locations of 0 and «,
respectively.

\ University of Toronto 320f40

© D. Johns, K. Martin, 1997



Bilinear Transform

« The unit circle, z = ¢%, in the z-plane is mapped to
the entire ;Q axis in the p-plane.

_ e/'oo_l ~ g/'(oa/Z)(ej(oa/2)_e—j(oa/2))

—— . . (28)
g]®+1 e](o)/2)(e](0)/2)+e—](a)/2))
_ 2jsin(w/2) _ 4 7 29
2cos(w/2) Jtan(e/2) (29)
e Results in the following frequency “warping”.
Q = tan(w/2) (30)
University of Toronto 33040
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Bilinear Transform Filter Design

* Design a continuous-time transfer-function, # (p),

and choose the discrete-time transfer-function, H(z),
such that

H(z)=H ((z-1)/(z+ 1)) (31)
so that
H({®) = H (jtan(w/2)) (32)

 The response of H(z) Is seen to be equal to the
response of H (p) except with a frequency “warping”

e Order of the cont-time and discrete-time also same.

\ University of Toronto 340f40
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Bilinear Design Example

 Find a first-order H(z) that has a 3db frequency at
f./20, a zero at -1 and a dc gain of one.

* Using (30), the frequency value, £, /20, or
equivalently, o = (27)/20 = 0.314159 Is mapped to
QQ = 0.1584.

* Thus, A (p) should have a 3dB frequency value of
0.1584 rad/s.

e Such a 3db frequency value is obtained by having a
p-plane zero equal to « and pole equal to -0.1584.
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Bilinear Design Example

e Transforming these continuous-time pole and zero
back using (27) results in a z-plane zero at -1 and a
pole at 0.7265.

 Therefore, H(z) appears as

) = k(z+1)
He) z—0.7265 (33)

 The constant k£ can be determined by setting the dc
gain to one, or equivalently, |[H(1)] = 1 which results in

k = 0.1368.
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Sample-and-Hold Response

* A sample-and-held signal, x_,(?), Is related to its
sampled signal by the mathematical relationship,

o0

x () = Z x (nD)[8(—nT)=8(t—nT-1)] (34)

* x,(7) Is well-defined for all time and thus the Laplace
transform can be found to be equal to

00)

—s T

XSh(S) — l —e Z xC(nT)e—SnT

S

n = —o0

1_eST
= ——X,(s)

(35)
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Sample-and-Hold Response
* The hold transfer-function, 7, (s), Is equal to

1 — —sT
Hsh(S) = j (36)

* The spectra for H,(s) Is found by substituting s = jo

H,(jo) = — = Txe ° x (37)
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Sample-and-Hold Response
« The magnitude of this response is given by

. (O
sm—‘

Hpo)| = T—
B

an()

or ‘ h(f)‘ =T ‘[|
/ (38)
 and is often referred to as the * Sl;m” or “sinc”
response.
gﬁ%
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Sample-and-Hold Response
‘ |Hsh(iw)|

S,

S 2 A 0 S Ay 3

* This frequency shaping of a sample-and-hold only
occurs for a continuous-time signal.

o Specifically, a sample-and-hold before an A/D
converter does not aid in any anti-aliasing
requirement since the A/D converter has a true
discrete-time output.
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