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Motivation
* Popular approach for medium-to-low speed A/D and
D/A applications requiring high resolution

Easier Analog
* reduced matching tolerances

* relaxed anti-aliasing specs
 relaxed smoothing filters

More Digital Signal Processing

* Needs to perform strict anti-aliasing or smoothing
filtering

» Also removes shaped quantization noise and
decimation (or interpolation)
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Quantization Noise

e(n)

x(n) y(n)
» » —> —p X0 y(n)

e(n) = y(n)—x(n)

Quantizer Model

* Above model is exact
— approx made when assumptions made about e(n)

« Often assume e(n) is white, uniformily distributed
number between +A/2

* A is difference between two quantization levels
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Quantization Noise
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* White noise assumption reasonable when:
— fine quantization levels
— signal crosses through many levels between
samples
— sampling rate not synchronized to signal
frequency

« Sample lands somewhere in quantization interval
leading to random error of +A/2

.

University of Toronto slide 4 of 57

—

J

E! x © D.A. Johns, K. Martin, 1997

F
uany
:‘:‘



Quantization Noise

* Quantization noise power shown to be A*/12 and is
independent of sampling frequency

- If white, then spectral density of noise, S,(f), is

constant.
A . A 1
Height = (£} |—
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= f
f
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Oversampling Advantage

» Oversampling occurs when signal of interest is
bandlimited to f, but we sample higher than 2f,

» Define oversampling-rate
OSR = f./(2f,) (1)

« After quantizing input signal, pass it through a
brickwall digital filter with passband up to f,

Y1(n)
u(n) ———» J_,—'I ST = G N X ()

N-bit quantizer
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Oversampling Advantage
Output quantization noise after filtering is:
2

S22 2 Jo ;2 A 1
P, =I5 SOOI df = [ k. df = E(m) @

Doubling OSR reduces quantation noise power by
3dB (i.e. 0.5 bits/octave)

Assuming peak input is a sinusoidal wave with a
peak value of 2N(A/2) leading to
N 2
P, = ((A27)/(242))
Can also find peak SNR as:

_ P s\ _ 32N
SNR, .. = 10 log )= 10 log 52 +101log(OSR) (3
e
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Oversampling Advantage

Example
« A dc signal with 1V is combined with a noise signal

uniformily distributed between +./3 giving 0 dB SNR.
—{0.94, -0.52, -0.73, 2.15, 1.91, 1.33, -0.31, 2.33}.

* Average of 8 samples results in 0.8875
« Signal adds linearly while noise values add in a
square-root fashion — noise filtered out.
Example
» 1-bit A/D gives 6dB SNR.

» To obtain 96dB SNR requires 30 octaves of
oversampling ( (96-6)/3 dB/octave )

- If f, = 25kHz, f, = 2°" xf, = 54,000 GHz !

.
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Advantage of 1-bit D/A Converters

* Oversampling improves SNR but not linearity

* To acheive 16-bit linear converter using a 12-bit
converter, 12-bit converter must be linear to 16 bits

— i.e. integral nonlinearity better than 1/2* LSB

* A 1-bit D/A is inherently linear
— 1-bit D/A has only 2 output points
— 2 points always lie on a straight line

« Can acheive better than 20 bits linearity without
trimming (will likely have gain and offset error)

+ Second-order effects (such as D/A memory or signal-
dependent reference voltages) will limit linearity.
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Oversampling with Noise Shaping
* Place the quantizer in a feedback loop

X(n)
u(n) H(z) J_,_rr , Y

Quantizer

Delta-Sigma Modulator

e(n)
o L
u(n) H(z) () , Yy
Linear model
; E University of Toronto slide 10 of 57 y
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Oversampling with Noise Shaping

« Shapes quantization noise away from signal band of
interest

Signal and Noise Transfer-Functions

_Yz _ H@)
St =00 T TTAE

_Yz _ 1
NriD =50 T T7aG

Y(z) = S;H(2)U(z) + Nr2)E(2)
« Choose H(z) to be large over 0 to f,

* Resulting quantization noise near 0 where H(z) large
» Signal transfer-function near 1 where H(z) large
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Oversampling with Noise Shaping

* Input signal is limited to range of quantizer output
when H(z) large

» For 1-bit quantizers, input often limited to 1/4
quantizer outputs

» Out-of-band signals can be larger when H(z) small

« Stability of modulator can be an issue (particularily
for higher-orders of H(z)

 Stability defined as when input to quantizer becomes

so large that quantization error greater than +A/2
— said to “overload the quantizer”

(%]

[
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First-Order Noise Shapin

* Choose H(z) to be a discrete-time integrator

1
H(z) = T (7

x(n)

u(n) 2—1 R J_l_,_r , Y

Quantizer

« If stable, average input of integrator must be zero
» Average value of u(n) must equal average of y(n)

\ [TTT] University of Toronto
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Example

* The output sequence and state values when a dc
input, u(n), of 1/3 is applied to a 1’st order modulator
with a two-level quantizer of £1.0. Initial state for x(n)
is 0.1.

n x(n) x(n+1) y(n) e(n)
0 0.1 -0.5667 1.0 0.9

1 -0.5667 0.7667 -1.0 -0.4333
2 0.7667 0.1 1.0 0.2333
3 0.1 -0.5667 1.0 0.9

4 -0.5667 0.7667 -1.0 —0.4333

» Average of y(n) is 1/3 as expected
» Periodic quantization noise in this case

slide 14 of 57 y
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Transfer-Functions

Signal and Noise Transfer-Functions

Y=z o 1/(z-1)
i) = 0o T T e-D G ®
Yz _ 1 _ -1

* Noise transfer-function is a discrete-time
differentiator (i.e. a highpass filter)

i/t it

—joEf/fS e . _jnf/fs
Npdf) = 1-e = T x2jxe
/ (10)
. (n L7
= sin| = | x2jxe
g
A
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Signal to Noise Ratio

Magnitude of noise transfer-function

INpef)| = 2 sin(%f) (11)

N

Quantization noise power

o= ool a - () 2sn(D T o

* Assuming f, <<f, (i.e., OSR>>1)

3 2 2
re(BEED - 556 ®
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[

T
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Max SNR
* Assuming peak input is a sinusoidal wave with a
peak value of 2N(A/2) leading to
N 2
P, = ((A2")/(242))
* Can find peak SNR as:

PS
SNR, .. = 1010g(17)
_ 1010g@22N) n 101og[%(05R)3}
T (14)
or, equivalently,
SNR, = 6.02N+1.76 —5.17 + 30 log(OSR) (15)
* Doubling OSR gives an SNR improvement 9 dB or,
\ g University of Toronto slide 17 of 57 4
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equivalently, a benefit of 1.5 bits/octave
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SC Implementation

Quantizer

I_i> y(n)

1-bit D/A}qi

Analog . Digital

u(n)

C
Vin °_¢1 c ¢2L i Comparator
" 1 J:-¢1 % — Vout
Vref/2 OE’(% )C Lat?:h on ¢, falling
b4, (d5) <
vl g0 0 Vot high
(99, (dg) &V 4 low
ey
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Second-Order Noise Shaping
u(n) T JJJI > y(n)
Quantizer
S =z (16)
1.2
Npdf) = (1-z ) (17)
SNR,, . = 6.02N+1.76 -12.9 +501log(OSR) (18)
* Doubling OSR improves SNR by 15 dB
(i.e., a benefit of 2.5 bits/octave)
ey
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Noise Transfer-Function Curves

Second-order

e A
No noise shaping
T | > f
2

» Out-of-band noise increases for high-order
modulators

» Out-of-band noise peak controlled by poles of noise
transfer-function

» Can also spread zeros over band-of-interest

N [TTT] University of Toronto slide 21 of 57 y
Esu,. e © D.A. Johns, K. Martin, 1997
é N

Example
« 90 dB SNR improvement from A/D with f, = 25 kHz

Oversampling with no noise shaping

* From before, straight oversampling requires a
sampling rate of 54,000 GHz.

First-Order Noise Shaping
« Lose 5 dB (see (15)), require 95 dB divided by 9 dB/
octave, or 10.56 octaves — f, = 21020 2f, = 75 MHz

Second-Order Noise Shaping
* Lose 13 dB, required 103 dB divided by 15 dB/
octave, f, = 5.8 MHz (does not account for reduced
input range needed for stability).
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Quantization Noise Power of 1-bit Modulators

* If output of 1-bit mod is £1, total power of output
signal, y(n), is normalized power of 1 watt.

» Signal level often limited to well below +1 level in
higher-order modulators to maintain stability

* For example, if maximum peak level is +0.25, max
signal power is 62.5 m\W.

» Max signal is approx 12 dB below quantization noise
(but most noise in different frequency region)

* Quantization filter must have dynamic range capable
of handling full power of y(n) at input.

« Easy for A/D — digital filter
» More difficult for D/A — analog filter

&
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Zeros of NTF are poles of H(z)
x(n)

u(n) H(z) e . Y
N Quantizer

* Write H(z) as

H(z) = z% (19)
* NTF is given by:
1 _ D(2)
1+H(z) D)+ Nz
. k‘l_lglgles of H(z) are well-defined then so are zeros of

NTF(z) =

(20)

o
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Error-Feedback Structure
« Alternate structure to interpolative

X(n)
um - X Irrr )

(P
G(z)-1|, e(n)

« Signal transfer-function equals unity while noise
transfer-function equals G(2)

 First element of G(z) equals 1 for no delay free loops

 First-order system — G(z)-1 = !

* More sensitive to coefficient mismatches
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Architecture of Delta-Sigma A/D Converters
X ®  x( Xsh®  Xggm®™® Xp Xg(N)
Anti- Sample- AX Digital :
—,aliasingl—3| and- > : low-pass > l OSR [—
filter hold | fg | Mod fo | filter f 21,
: : Decimation filter E
Analog :
! Digital
L;(ji?_‘%;(sh(t) /WC(D
>t — >
b f() fS f
i
, N >
fO fS f
Time Frequency
A
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Architecture of Delta-Sigma A/D Converters

m( = £1.000000..

7|X f fﬁ)lm o
M “ M

A Xs(n)

”Yﬁ MKMWMMM

n 27 4 8n 10 12n

Time Frequency
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Architecture of Delta-Sigma A/D Converters
* Relaxes analog anti-aliasing filter
« Strict anti-aliasing done in digital domain

* Must also remove quantization noise before
downsampling (or aliasing occurs)

« Commonly done with a multi-stage system

* Linearity of D/A in modulator important — results in
overall nonlinearity

* Linearity of A/D in modulator unimportant (effects
reduced by high gain in feedback of modulator)

(%]

[
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~
Architecture of Delta-Sigma D/A Converters
xg(N) X52(M) XipM  Xgsm™  Xga® Xe®
Interpolation AS 1-bit Analog
— TOS R » (low-pass) " Mod > » low-pass —»
2f,, f filter f ¢ | DA filter
] ] sl
fg Digital Analog
OSR= 2, :
Xs(n{‘ /SZ(n) Xg(@)
|W@<3 AV
123"'(:1) I‘ 7: 2 4rn 67 8r  10n 12x
ﬁmmmmw
(2nf0)/f
Time Frequency
% University of Toronto slide 29 of 57 Yy
E!m X © D.A. Johns, K. Martin, 1997

Architecture of Delta-Sigma D/A Converters

R (n)
HHHI . X, (@)
T A M
S (2nfy) /f o
, Xdsm(™ Xda(® X 4 (@)

LLLEL L L] e 2 AN
A > (2nfy)/fg 2n

[ LT 0
x_(t) Mm  f

Time fo Frequency fq
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Architecture of Delta-Sigma D/A Converters

* Relaxes analog smoothing filter (many multibit D/A
converters are oversampled without noise shaping)

* Smoothing filter of first few images done in digital
(then often below quantization noise)

» Order of lowpass filter should be at least one order
higher than that of modulator

* Results in noise dropping off (rather than flat)

« Analog filter must attenuate quantization noise and
should not modulate noise back to low freq — strong
motivation to use multibit quantizers

&
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Multi-Stage Digital Decimation

Rate = f Rate = 8f, Rate = 2f,

Lth-order

AY T
modulator

sinc(z) TIIR(Z) '

. L+1 i
Sinc FIR filter IR filter

Rate = fs Rate = 8f0 Rate = 4f0 Rate = 2f0 Rate = 2f0

Lth-order

AX
modulator

T

sinc® » Hy@ — Hy@) — H3(2) ——

A 4

Halfband FIR filters Sinc compensation

. L+1 X
Sinc FIR filter (
FIR filter

» Sinc filter removes much of quantization noise
» Following filter(s) — anti-aliasing filter and noise

.

University of Toronto

—
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Sinc Filter

- sinc”"" is a cascade of L+1 averaging filters
Averaging filter

D (¢ N
Tavg(Z) o % - j_wigoz 21)

M is integer ratio of f./(8f,)
It is a linear-phase filter (symmetric coefficients)

If M is power of 2, easy division (shift left)

Can not do all decimation filtering here since not
sharp enough cutoff
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Sinc Filter
« Consider x; (n) = {1,1,-1,1,1,-1,... } applied to
M = 4 averaging filters in cascade
xl(n xz(”) x3(n)
xln(n) _’Tavg(z) > Tavg(z > Tan(Z) —>
- sinc3 filter ——

* x,(m) = {0.5,0.5,0.0,0.5,0.5,0.0,...}

* x,(n) = {0.38,0.38,0.25,0.38,0.38,0.25, ... }

* x;3(n) = {0.34,0.34,0.31,0.34,0.34,0.31, ... }

« Converging to sequence of all 1/3 as expected
\ E University of Toronto slide 34 of 57 Y
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Sinc Filter Response

» Can rewrite averaging filter in recursive form as

Yz 1[1-z
Tavg(z) - Wz) o M[] - /\3 (22)

z

and a cascade of L + 1 averaging filters results in

1 | anL+1
Tgine(?) = [ ZMJ 3)
sinc VAR

» Use L + 1 cascade to roll off quantization noise faster
than it rises in L‘th order modulator

\ E University of Toronto slide 35 of 57 Yy
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Sinc Filter Frequency Response

e Letz = ¢°
) 0)
im0
T avg(e] ?) = — (24)

smc(i)

where sinc(x) = sin(x)/x

1 T avg(elm)‘
0 T 2T
2
\ E University of Toronto slide 36 of 57 4
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Sinc Implementation

1 L+1 M. L+1 ]
Tginc(2) = ( — (1-z") M’L+1 (25)
l -z

In Out
Pl Y T

271 271 J L Zil\/I - ZilvI o f_S

M
(Integrators) (Differentiators)

In Out

P A

M F T
f: fz fg/M fs/M
(Operate at high clock rate) (Operate at low clock rate)

* If 2’s complement arithmetic used, wrap-around okay
since followed by differentiators
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Higher-Order Modulators

* An L'th order modulator improves SNR by
6L+3 dB/octave

Interpolative Architecture

» Can spread zeros over freq of interest using
resonators with f; and £,

* Need to worry about stability (more later)

University of Toronto slide 38 of 57 y
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MASH Architecture
* Multi-stAge noise SHaping - MASH

* Use multiple lower order modulators and combine
outputs to cancel noise of first stages

u(n) -

> z’1u(n) +(1 —z’1)e1(n)

1-bit D/A |«

o (0 y(n)

1-bit D/A |«

. —1 —1
Analog  : Digital z e M+(1-2 Heyn)
A
N [TTT] University of Toronto slide 39 of 57 -
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MASH Architecture
* Qutput found to be:

_ 1.2
Y@) =z U@ - (1-2 ) Ey2) (26)
Multibit Qutput

* Output is a 4-level signal though only single-bit D/A’s
— if D/A application, then linear 4-level D/A needed
— if A/D, slightly more complex decimation

A/D Application

* Mismatch between analog and digital can cause first-
order noise, ¢, to leak through to output

» Choose first stage as higher-order (say 2’nd order)

(%]

[

T
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Bandpass Oversampling Converters
« Choose H(z) to have high gain near freq f,

« NTF shapes quantization noise to be small near f,

* OSR is ratio of sampling-rate to twice bandwidth
— not related to center frequency

= z-plane f./4 = 1 MHz z-plane
g4 = 1 MHz —zero S O—zero

©)
dc /_' de
g A <
/
/2 \ 'E: 4 MHa fs/2 K fy = 4 MHz

_ —f—
fg = 10 kHz fy = 10 kHz
f

- _S -
Bandpass OSR = E = 200

f
- S _
Lowpass OSR = - 200
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u(n)

JIrr Y

Quantizer

» Above H(z) has poles at +j (which are zeros of NTF)
— H(z) is a resonator with infinite gain at f,/4
— H() = z/(z2+ 1)

* Note one zero at +j and one zero at -
— similar to lowpass first-order modulator
— only 9 dB/octave

 For 15 dB/octave, need 4’th order BP modulator

o
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Modulator Stability
» Since feedback involved, stability is an issue

» Considered stable if quantizer input does not
overload quantizer

* Non-trivial to analyze due to quantizer

* There are rigorous tests to guarantee stability but
they are too conservative

* For a 1-bit quantizer, heuristic test is:

‘NTF(ej(D)‘ <1.5 for0<ow<m (27)

* Peak of NTF should be less than 1.5

« Can be made more stable by placing poles of NTF
closer to its zeros

* Dynamic range suffers since less noise power
pushed out-of-band

\ E University of Toronto slide 43 of 57 4
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Modulator Stability
INTF]| less stable same area under two curves
&table
N > ®
2nf0/ fs 2n

Stability Detection

* Might look at input to quantizer

* Might look for long strings of 1s or Os at comp output
When instability detected ...

* reset integrators

« Damp some integrators to force more stable

o

X
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Linearity of Two-Level Converters

For high-linearity, levels should NOT be a function of
input signal
— power supply variation might cause symptom

Also need to be memoryless
— switched-capacitor circuits are inherently
memoryless if enough settling-time allowed

Above linearity issues also applicable to multi-level
A nonreturn-to-zero is NOT memoryless
Return-to-zero is memoryless if enough settling time
Important for continuous-time D/A

o e

\ [TTT] University of Toronto
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Linearity of Two-Level Converters

Typical .

Binary : : : : : : :
Area for Aqtdy Ay Ag 3y Ag Ay +dy Ag+ 8y A +d,

symbol
d Nonreturn-to-zero (NRZ)

Typical
Ideal T

Vi

Binary

Area for 1
symbol

Return-to-zero (RTZ2)

J

© D.A. Johns, K. Martin, 1997
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Idle Tones
* 1/3 into 1’st order modulator results in output
y(n) = {1,1,-1,1,1,-1,1,1,...} (28)

* Fortunately, tone is out-of-band at f,/3
* (1/3+1/24) = 3/8 into modulator has tone at f,/16

« Similar examples can cause tones in band-of-interest
and are not filtered out — say /256

 Also true for higher-order modulators

 Human hearing can detect tones below noise floor

» Tones might not lie at single frequency but be short
term periodic patterns.
— could be a tone varying between 900 and 1100 Hz
varying in a random-like pattern

\ E University of Toronto slide 47 of 57 Yy
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Dithering
Dither signal
u(n) H(z) —»(%)—» J_,_l_r > y(n)
Quantizer

* Add pseudo-random signal into modulator to break
up idle tones (not just mask them)

 If added before quantizer, it is noise shaped and
large dither can be added.
— A/D: few bit D/A converter needed
— D/A: a few bit adder needed

+ Might affect modulator stability

\ % University of Toronto slide 48 of 57 Y
E!m X © D.A. Johns, K. Martin, 1997




Opamp Gain

* Finite opamp gain, 4, moves pole at z = 1 left by
1/4

z-plane

Q—Z€ero R
INTEF|
A >
&, »>
low opamp gain

f N > (D
ZthO/fs 27'C

» Flattens out noise at low frequency
— only 3 dB/octave for high OSR

» Typically, require

A>OSR/m (29)
A
N [TTT] University of Toronto slide 49 of 57 y
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Multi-bit Oversampled Converters

« A multi-bit DAC has many advantages

— more stable - higher peak |[NTF|

— higher input range

— less quantization noise introduced

— less idle tones (perhaps no dithering needed)

* Need highly linear multi-bit D/A converters

Example

* A 4-bit DAC has 18 dB less quantization noise, up to
12 dB higher input range — perhaps 30 dB improved
SNR over 1-bit

Large Advantage in DAC Application

* Less quantization noise — easier analog lowpass
filter

.
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Multi-bit Oversampled Converters

A 4

b g J B
T— 3 » 8
(&)
b S 5
2 /¥ o e
a & Analog
= £
b a Jo2 output
5 =)
= w
—
o
e
'_

* Randomize thermometer code
» Can also “shape” nonlinearities

University of Toronto
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Third-Order A/D Design Example

All NTF zeros atz = 1

3

NTF(z) = (ZD_(ZI))

Find D(z) such that [NTF(/®)| < 1.4

Use Matlab to find a Butterworth highpass filter with
peak gain near 1.4

If passband edge at f,/20 then peak gain = 1.37

z-1)°
3

NTF(z) = .
z0—2.37412° +1.9294z — 0.5321

University of Toronto

(30)

€2))
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Third-Order A/D Design Example

© = /2 4 z-plane
J

Three zeros a® = 0
1 s\ ¥
X
©=n : Butterworth poles

-l

* Find H(z) as

1 -NTF(z)
H(z) = ———— 2/
(z) NTF(7) (32)
2
H(z) = 0.6259z" — 1.0706z + 0.4679 (33)
(z—1)°
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Third-Order A/D Design Example
+ Choosing a cascade of integrator structure
: V3 Quantizer -
RN y(n

—

1-bit D/A

A

Analog | Digital
* o, coefficients included for dynamic-range scaling
— initially o, = a5 = 1
— last term, a, initially set to B, so input is stable for
a reasonable input range
* Initial B, found by deriving transfer function from 1-bit
D/A output to V3 and equating to —H(z)
B
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Third-Order A/D Design Example
Z2(By + By + B3) — 2(By + 2B3) + B

H(z) = 34
(2) 1) (34)
« Equating (33) and (34) results in
a; =00232, a,=10, oy =10
(33)
B, =0.0232, B,=0.1348, B; = 0.4679
&
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Third-Order A/D Design Example

Dynamic Range Scalin

* Apply sinusoidal input signal with peak value of 0.7
and frequency ©/256 rad/sample

 Simulation shows max values at nodes V', V,, V5 of
0.1256, 0.5108, and 1.004

« Can scale node V| by k; by multiplying o, and B, by
k, and dividing a., by k&,
« Can scale node V, by k, by multiplying a,/k, and §,
by k, and dividing a4 by £,
a’'; =0.1847, o', =0.2459, o'y = 0.5108

(36)
B', =0.1847, B',=02639, B'; = 0.4679

(%]
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Third-Order A/D Design Example

+Voac

“Voac
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