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NLCOTD: Level Translator
VDD1 > VDD2, e.g.

• VDD1 < VDD2, e.g.

• Constraints: CMOS
1-V and 3-V devices
no static current

3-V logic 1-V logic?

1-V logic 3-V logic?
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Highlights
(i.e. What you will learn today)

1 1st-order modulator (MOD1)
Structure and theory of operation

2 Inherent linearity of binary modulators

3 Inherent anti-aliasing of continuous-time
modulators

4 2nd-order modulator (MOD2)

5 Good FFT practice

ECE1371 4

0. Background
(Stuff you already know)

• The SQNR* of an ideal n-bit ADC with a full-scale
sine-wave input is (6.02 n + 1.76) dB

“6 dB = 1 bit.”

• The PSD at the output of a linear system is the
product of the input’s PSD and the squared
magnitude of the system’s frequency response

i.e.

• The power in any frequency band is the integral
of the PSD over that band

*. SQNR = Signal-to-Quantization-Noise Ratio

H(z)X YSyy f( ) H ej 2πf( ) 2 Sxx f( )⋅=
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1. What is ∆Σ?
• ∆Σ is NOT a fraternity

• Simplified ∆Σ ADC structure:

• Key features: coarse quantization, filtering,
feedback and oversampling

Quantization is often quite  coarse (1 bit!), but the
effective resolution can still be as high as 22 bits.
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Loop
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What is Oversampling?
• Oversampling is sampling faster than required

by the Nyquist criterion
For a lowpass signal containing energy in the
frequency range , the minimum sample rate
required for perfect reconstruction is .

• The oversampling ratio  is

• For a regular ADC,
To make the anti-alias filter (AAF) feasible

• For a ∆Σ ADC,
To get adequate quantization noise suppression.
Signals between  and ~  are removed digitally.

0 f B,( )
f s 2f B=

OSR f s 2f B( )⁄≡

OSR 2 3–∼

OSR 30∼

f B f s
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Oversampling Simplifies AAF

f s 2⁄

Desired
Signal

Undesired
Signals

f

OSR ~ 1:

First alias band is very close

f s 2⁄
f

OSR = 3: Wide transition band

Alias far away
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How Does A ∆Σ ADC Work?
• Coarse quantization ⇒ lots of quantization error.

So how can a ∆Σ ADC achieve 22-bit resolution?

• A ∆Σ ADC spectrally separates the quantization
error from the signal through noise-shaping
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A ∆Σ DAC System

• Mathematically similar to an ADC system
Except that now the modulator is digital and drives a
low-resolution DAC, and that the out-of-band noise is
handled by an analog reconstruction filter.

∆Σ
Modulator

u v Reconstruction
Filter

digital

1 bit @fs

analog
output

signal shaped
analog
output
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–1
t

noise

input
w

(interpolated)

f B f s 2⁄ f B f s 2⁄ f B f s
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Why Do It The ∆Σ Way?
• ADC: Simplified Anti-Alias Filter

Since the input is oversampled, only very high
frequencies alias to the passband.
A simple RC section often suffices.
If a continuous-time loop filter is used, the anti-alias
filter can often be eliminated altogether.

• DAC: Simplified Reconstruction Filter
The nearby images present in Nyquist-rate
reconstruction can be removed digitally.

+ Inherent Linearity
Simple structures can yield very high SNR.

+ Robust Implementation
∆Σ tolerates sizable component errors.
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2. MOD1: 1st-Order ∆Σ Modulator
[Ch. 2 of Schreier & Temes]
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Since two points define a line,
a binary DAC is inherentl y linear.
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MOD1 Analysis
• Exact analysis is intractable for all but the

simplest inputs, so treat the quantizer as an
additive noise source:

z-1

z-1

Q

Y V

E

⇒(1–z-1) V(z) = U(z) – z-1V(z) + (1–z-1)E(z)

U VY

V(z) = Y(z) + E(z)
Y(z) = ( U(z) – z-1V(z) ) / (1–z-1)

V(z) = U(z) + (1–z–1)E(z)
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The Noise Transfer Function (NTF)
• In general, V(z) = STF(z)•U(z) + NTF(z)•E(z)

• For MOD1, NTF(z) = 1–z–1

The quantization noise has spectral shape!

• The total noise power increases, but the noise
power at low frequencies is reduced
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ω2 for ω 1«≅

Poles & zeros:
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In-band Quant. Noise Power
• Assume that e is white with power

i.e.
• The in-band quantization noise power is

• Since ,

• For MOD1, an octave increase in OSR increases
SQNR by 9 dB

“1.5-bit/octave SQNR-OSR trade-off.”

σe
2

See ω( ) σe
2 π⁄=

IQNP H ejω( ) 2See ω( )dω

0

ωB

∫=
σe

2

π
------ ω2dω

0

ωB

∫≅

OSR π
ωB
-------≡ IQNP

π2σe
2

3
------------- OSR( ) 3–=
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A Simulation of MOD1
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CT Implementation of MOD1
• Ri/Rf sets the full-scale; C is arbitrary

Also observe that an input at fs is rejected by the
integrator— inherent anti-aliasing

LatchedIntegrator
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MOD1-CT Waveforms

• With u=0, v alternates between +1 and –1

• With u>0, y drifts upwards; v contains
consecutive +1s to counteract this drift
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MOD1-CT STF =
Recall

1 z 1––
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MOD1-CT Frequency Responses
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Summary
• ∆Σ works by spectrally separating the

quantization noise from the signal
Requires oversampling. .

• Noise-shaping is achieved by the use
of filtering  and feedback

• A binary DAC is inherently linear,
and thus a binary ∆Σ modulator is too

• MOD1 has NTF (z) = 1 – z–1

⇒ Arbitrary accuracy for DC inputs.
1.5 bit/octave SQNR-OSR trade-off.

• MOD1-CT has inherent anti-aliasing

OSR f s 2f B( )⁄≡
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NLCOTD

3V → 1V:
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3. MOD2: 2nd-Order ∆Σ Modulator
[Ch. 3 of Schreier & Temes]

• Replace the quantizer in MOD1 with another
copy of MOD1 in a recursive fashion:

V(z) = U(z) + (1–z–1)E1(z), E1(z) = (1–z–1)E(z)

⇒V(z) = U(z) + (1–z–1)2E(z)

z-1

Q

z-1

z-1

z-1

U V
E1

E
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Simplified Block Diagrams

Q1
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z−1
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NTF z( ) 1 z 1––( )2=
STF z( ) z 1–=
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STF z( ) z 2–=
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NTF Comparison
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In-band Quant. Noise Power
• For MOD2,

• As before,  and

• So now

With binary quantization to ±1,
 and thus .

• “An octave increase in OSR increases MOD2’s
SQNR by 15 dB (2.5 bits)”

H e jω( ) 2 ω4≈

IQNP H ejω( ) 2See ω( )dω
0

ωB∫=

See ω( ) σe
2 π⁄=

IQNP
π4σe

2

5
------------- OSR( ) 5–=

∆ 2= σe
2 ∆2 12⁄ 1 3⁄= =
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Simulation Example
Input at 75% of FullScale

0 50 100 150 200
–1

0

1

Sample number
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Simulated MOD2 PSD
Input at 50% of FullScale
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SQNR vs. Input Amplitude
MOD1 & MOD2 @ OSR = 256
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SQNR vs. OSR
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Predictions for MOD2 are optimistic.
Behavior of MOD1 is erratic.
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Audio Demo: MOD1 vs. MOD2
[dsdemo4]

MOD1

MOD2

Sine
Wave

Slow
Ramp

Speech
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MOD1 + MOD2 Summary
• ∆Σ ADCs rely on filtering and feedback to

achieve high SNR despite coarse quantization
They also rely on digital signal processing.
∆Σ ADCs need to be followed by a digital decimation
filter and ∆Σ DACs need to be preceded by a digital
interpolation filter.

• Oversampling eases analog filtering
requirements

Anti-alias filter in an ADC; image filter in a DAC.

• Binary quantization yields inherent linearity

• MOD2 is better than MOD1
15 dB/octave vs. 9 dB/octave SQNR-OSR trade-off.
Quantization noise more white.
Higher-order modulators are even better.
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4. Good FFT Practice
[Appendix A of Schreier & Temes]

• Use coherent sampling
I.e. have an integer number of cycles in the record.

• Use windowing
A Hann window
works well.

• Use enough points
Recommend .

• Scale (and smooth) the spectrum
A full-scale sine wave should yield a 0-dBFS peak.

• State the noise bandwidth
For a Hann window, .

w n( ) 1 2πn N⁄( )cos–( ) 2⁄=

0 N
0

1

N 64 OSR⋅=

NBW 1.5 N⁄=
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Coherent vs. Incoherent Sampling

• Coherent sampling: only one non-zero FFT bin

• Incoherent sampling: “spectral leakage”
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–200
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Windowing
• ∆Σ data is usually not periodic

Just because the input repeats does not mean that
the output does too!

• A finite-length data record = an infinite record
multiplied by a rectangular window :

,
Windowing is unavoidable.

• “Multiplication in time is convolution in
frequency”

w n( ) 1= 0 n≤ N<
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–100
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–50
–40
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0
Frequency response of a 32-point rectangular window:

Slow roll-off ⇒ out-of-band Q. noise may appear in-banddB
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Example Spectral Disaster
Rectangular window, N = 256
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W f( ) w 2⁄
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Window Comparison ( N = 16)
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Window Properties
Window Rectangular Hann†

†. MATLAB’s “hann” function causes spectral leakage of tones located
in FFT bins unless you add the optional argument “periodic.”

Hann2

,

(  otherwise)
1

Number of non-zero
FFT bins

1 3 5

N 3N/8 35N/128

N N/2 3N/8

1/N 1.5/N 35/18N

w n( )
n 0 1 … N 1–, , ,=

w n( ) 0=

1
2πn
N

-----------cos–

2
--------------------------------

1
2πn
N

-----------cos–

2
--------------------------------

 
 
 
 

2

w 2
2 w n( )2∑=

W 0( ) w n( )∑=

NBW
w 2

2

W 0( )2
----------------=
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Window Length, N
• Need to have enough in-band noise bins to

1 Make the number of signal bins a small fraction
of the total number of in-band bins

<20% signal bins ⇒ >15 in-band bins ⇒

2 Make the SNR repeatable
 yields std. dev. ~1.4 dB.
 yields std. dev. ~1.0 dB.

 yields std. dev. ~0.5 dB.

•  is recommended

N 30 OSR⋅>

N 30 OSR⋅=
N 64 OSR⋅=
N 256 OSR⋅=

N 64 OSR⋅=
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FFT Scaling
• The FFT implemented in MATLAB is

• If †, then

⇒ Need to divide FFT by  to get A.

†. f is an integer in . I’ve defined ,
 since Matlab indexes from 1 rather than 0.

X M k 1+( ) x M n 1+( )e
j–
2πkn

N
--------------

n 0=

N 1–

∑=

x n( ) A 2πfn N⁄( )sin=

0 N 2⁄,( ) X k( ) X M k 1+( )≡
x n( ) x M n 1+( )≡

X k( )
AN
2

--------- , k = f or N f–

0 , otherwise





=

N 2⁄( )
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The Need For Smoothing
• The FFT can be interpreted as taking 1 sample

from the outputs of N complex FIR filters:

⇒ an FFT yields a high-variance spectral estimate

x h0 n( )

h1 n( )

hk n( )

hN 1– n( )

y 0 N( ) X 0( )=

y 1 N( ) X 1( )=

y k N( ) X k( )=

y N 1– N( ) X N 1–( )=

hk n( ) e
j 2πk

N
-----------n

, 0 n N<≤
0 , otherwise






=
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How To Do Smoothing
1 Average multiple FFTs

Implemented by MATLAB’s psd()  function

2 Take one big FFT and “filter” the spectrum
Implemented by the ∆Σ Toolbox’s logsmooth()
function
logsmooth()  averages an exponentially-increasing
number of bins in order to reduce the density of
points in the high-frequency regime and make a nice
log-frequency plot
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Raw and Smoothed Spectra
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Simulation vs. Theory (MOD2)
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What Went Wrong?
1 We normalized the spectrum so that a full-scale

sine wave (which has a power of 0.5) comes out
at 0 dB (whence the “dBFS” units)

⇒ We need to do the same for the error signal.
i.e. use .

But this makes the discrepancy 3 dB worse.

2 We tried to plot a power spectral density
together with something that we want to
interpret as a power spectrum

• Sine-wave components are located in individual
FFT bins, but broadband signals like noise have
their power spread over all FFT bins!

The “noise floor” depends on the length of the FFT.

See f( ) 4 3⁄=
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Spectrum of a Sine Wave + Noise

Normalized Frequency, f
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Observations
• The power of the sine wave is given by the

height of its spectral peak

• The power of the noise is spread over all bins
The greater the number of bins, the less power there
is in any one bin.

• Doubling N reduces the power per bin by a factor
of 2 (i.e. 3 dB)

But the total integrated noise power does not
change.
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So How Do We Handle Noise?
• Recall that an FFT is like a filter bank

• The longer the FFT, the narrower the bandwidth
of each filter and thus the lower the power at
each output

• We need to know the noise bandwidth  (NBW) of
the filters in order to convert the power in each
bin (filter output) to a power density

• For a filter with frequency response ,H f( )

NBW
H f( ) 2 fd∫
H f 0( )2

----------------------------= H f( )
f

NBW

f0
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FFT Noise Bandwidth
Rectangular Window

,

,

[Parseval]

∴

hk n( ) j 2πk
N

-----------n 
 exp= H k f( ) hk n( ) j– 2πfn( )exp

n 0=

N 1–

∑=

f 0
k
N
----= H k f 0( ) 1

n 0=

N 1–

∑ N= =

H k f( ) 2∫ hk n( ) 2∑ N= =

NBW
H k f( ) 2 fd∫
H k f 0( )2

------------------------------- N
N 2
------- 1

N
----= = =
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Better Spectral Plot
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